

Lecture Notes in Computer Science 4668
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Joaquim Marques de Sá Luís A. Alexandre
Włodzisław Duch Danilo P. Mandic (Eds.)

Artificial
Neural Networks –
ICANN 2007

17th International Conference
Porto, Portugal, September 9-13, 2007
Proceedings, Part I

13

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Volume Editors

Joaquim Marques de Sá
University of Porto, Faculty of Engineering
Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
E-mail: jmsa@fe.up.pt

Luís A. Alexandre
University of Beira Interior, Dept. of Informatics
and
IT-Networks and Multimedia Group
Rua Marquês d’Ávila e Bolama, 6201-001 Covilhã, Portugal
E-mail: lfbaa@di.ubi.pt

Włodzisław Duch
Nicolaus Copernicus University, Dept. of Informatics
ul. Grudziadzka 5, 87-100 Torun, Poland
E-mail: wduch@is.umk.pl

Danilo P. Mandic
Imperial College London
Communication and Signal Processing Research Group
Dept. of Electrical and Electronic Engineering
Exhibition Road, London, SW7 2BT, UK
E-mail: d.mandic@imperial.ac.uk

Library of Congress Control Number: 2007934292

CR Subject Classification (1998): F.1, I.2, I.5, I.4, G.3, J.3, C.2.1, C.1.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74689-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74689-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12116348 06/3180 5 4 3 2 1 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Preface

This book includes the proceedings of the International Conference on Artificial
Neural Networks (ICANN 2007) held during September 9–13, 2007 in Porto, Por-
tugal, with tutorials being presented on September 9, the main conference taking
place during September 10-12 and accompanying workshops held on September
13, 2007. The ICANN conference is organized annually by the European Neural
Network Society in co-operation with the International Neural Network Society,
the Japanese Neural Network Society, and the IEEE Computational Intelligence
Society. It is the premier European event covering all topics related to neural
networks and cognitive systems. The ICANN series of conferences was initiated
in 1991 and soon became the major European gathering for experts in these
fields. In 2007 the ICANN conference was organized by the Biomedical Engi-
neering Institute (INEB - Instituto de Engenharia Biomédica), Porto, Portugal,
with the collaboration of the University of Beira Interior (UBI - Universidade
da Beira Interior), Covilhã, Portugal and ISEP, Polytechnic Engineering School,
Porto, Portugal. From 376 papers submitted to the conference, 197 papers were
selected for publication and presentation, following a blind peer-review process
involving the Program Chairs and International Program Committee; 27 papers
were presented in oral special sessions; 123 papers were presented in oral reg-
ular sessions; 47 papers were presented in poster sessions. The quality of the
papers received was very high; as a consequence, it was not possible to accept
and include in the conference program many papers of good quality. A variety
of topics constituted the focus of paper submissions. In regular sessions, pa-
pers addressed the following topics: computational neuroscience and neurocog-
nitive studies, applications in biomedicine and bioinformatics, spiking neural
networks, data clustering, signal and times series processing, learning theory,
advances in neural network learning methods, advances in neural network archi-
tectures, data analysis, neural dynamics and complex systems, ensemble learn-
ing, self-organization, robotics and control, pattern recognition, text mining and
Internet applications, vision and image processing. Special sessions, organized
by distinguished researchers, focused on significant aspects of current research,
namely: emotion and attention, understanding and creating cognitive systems,
temporal synchronization and nonlinear dynamics in neural networks, complex-
valued neural networks. Papers presented in poster sessions were organized in
the following topics: real-world applications, signal and time series processing,
advances in neural network architectures, advances in neural network training,
meta learning, independent component analysis, graphs, evolutionary comput-
ing, estimation, spatial and spatio-temporal learning. Prominent lecturers gave
six keynote speeches at the conference. Moreover, well-known researchers pre-
sented seven tutorials on state-of-the-art topics. Four post-conference workshops,
entitled “Cognitive Systems”, “Neural Networks in Biomedical Engineering and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VI Preface

Bioinformatics”, “What It Means to Communicate” and “Neural Networks of the
Future?”, concluded the focus of ICANN 2007 on the state-of-the-art research
on neural networks and intelligent technologies. An in-depth discussion was held
on the prospects and future developments both in theory and practice in those
important topics. We would like to thank all the members of the local committee
for their contribution to the organization of ICANN 2007. A special thanks to
Alexandra Oliveira whose dedication and work quality were a major guarantee
of the success of ICANN 2007. We also wish to thank Alfred Hofmann and the
LNCS team from Springer for their help and collaboration in the publication of
the ICANN 2007 proceedings.

July 2007 Joaquim Marques de Sá
Lúıs A. Alexandre

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization

General Chair

Joaquim Marques de Sá
University of Porto, Portugal

Co-chair

Lúıs A. Alexandre
University of Beira Interior, Portugal

Program Chairs

W�lodzis�law Duch
Torun, Poland & Singapore, ENNS President

Danilo Mandic
Imperial College London, UK

Honorary Chair

John G. Taylor
Kings College, London, UK

Program Committee

Alessandro Sperduti, University of Padova, Italy
Alessandro Villa, University of Grenoble, France
Amir Hussain, University of Stirling, UK
Andreas Nuernberger, University of Magdeburg, Germany
Andreas Stafylopatis, NTUA, Greece
Andrzej Cichocki, RIKEN Brain Sci. Inst., JP
Bruno Apolloni, University of Milan, Italy
David Miller, University of Pennsylvania, USA
Dragan Obradovic, Siemens Corp. Res., Germany
Erkki Oja, Helsinki University, Finland
Erol Gelenbe, Imperial College London, UK
Hojjat Adeli, Ohio State University, USA
Jacek Mandziuk, Warsaw University, Poland

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

VIII Organization

João Lúıs Rosa, Catholic University Campinas, Brazil
Jose Dorronsoro, Universided Aut. de Madrid, Spain
José Pŕıncipe, University of Florida, USA
Jürgen Schmidhuber, TU Munich, DE - IDSIA, Switzerland
Lefteri Tsoukalas, Purdue University, USA
Marios Polycarpou, University of Cyprus, Cyprus
Mark Embrechts, Rensselaer Inst., USA
Michel Verleysen, University of Louvain-la-Neuve, Belgium
Nikola Kasabov, Auckland University, New Zealand
Okyay Kaynak, Bogazici University, Turkey
Olli Simula, Helsinki University, Finland
Peter Andras, University of Newcastle, UK
Péter Érdi, HU & Kalamazoo College, USA
Stan Gielen, University of Nijmegen, The Netherlands
Stefan Wermter, University of Sunderland, UK
Stefanos Kolias, NTUA, Greece
Steve Gunn, University of Southampton, UK
Thomas Martinetz, University of Luebeck, Germany

Local Organizing Committee

Alexandra Oliveira, INEB
Ana Maria Tomé, Aveiro University
Bernardete Ribeiro, Coimbra University
Carlos Soares, Porto University
Daniel Carrilho, Health Techn. -IPP
Fernando Sereno, ESE-IPP
Helena Brás Silva, ISEP-IPP
Hugo Proença, UBI
Jorge Santos, ISEP-IPP
Ĺıgia Carvalho, INEB
Lúıs Silva, INEB
Paulo Cortez, Minho University
Paulo Fazendeiro, UBI
Petia Georgieva, Aveiro University

Reviewers

Abe Shigeo Kobe University
Agell Núria Ramon Llull University
Aiolli Fabio Pisa University
Alexandre Frederic INRIA Lorraine/LORIA-CNRS
Alexandre Lúıs University of Beira Interior
Alhoniemi Esa Turku University
Andras Peter University of Newcastle

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization IX

Anguita Davide Genoa University
Angulo-Bahon Cecilio Technical University of Catalonia
Apolloni Bruno University of Milan
Archambeau Cédric Université Catholique de Louvain
Arenas Jerónimo Universidad Carlos III de Madrid
Atencia Miguel Universidad de Málaga
Avrithis Yannis National Technical University of

Athens
Barbosa Jorge University of Porto
Bermejo Sergi Universitat Politècnica da

Catalunya
Bianchini Monica Università di Siena
L Boni Andrea University of Trento
Bourlard Herve IDIAP Research Institute
Boyer Domingo University of Córdoba
Cabestany Joan Universitat Politécnica da

Catalunya
Colla Valentina Scuola Sup. Sant’Anna Pisa
Corchado Emilio Universidad de Burgos
Cornford Dan Aston University
Corona Francesco Helsinki University of Technology
Correia Miguel University of Porto
Cortez Paulo University of Minho
Crook Nigel Oxford Brookes University
Dorronsoro José Universidad Autónoma de Madrid
Dounias Georgios University of the Aegean
Duch Wlodzislaw Nicolaus Copernicus University
Duro Richard University of Coruña
Embrechts Mark Rensselaer Polytechnic Institute
Érdi Péter Henry Luce Foundation
Fazendeiro Paulo University of Beira Interior
Franco Leonardo Universidad de Málaga
Francois Damien Université Catholique de Louvain
Fyfe Colin University of Paisley
Garcia-Pedrajas Nicolas University of Córdoba
Georgieva Petia University of Aveiro
Gielen Stan University of Nijmegen
Giudice Paolo Istituto Nazionale di

Fisica Nucleare
Gonzalez Ana Universidad Autónoma de Madrid
Gosselin Bernard Faculté Polytechnique de Mons
Grana Manuel University Pais Vasco
Gunn Steve University of Southampton
Hammer Barbara University of Osnabrueck
Heidemann Gunther Bielefeld University

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

X Organization

Hollmen Jaakko Technical University of Helsinki
Honkela Antti Helsinki University of Technology
Hoyer Patrik Helsinki Institute for Information

Technology
Igel Christian Ruhr-Universitaet Bochum
Indiveri Giacomo UNI-ETH Zurich
Jin Yaochu Honda Research Institute Europe
Jutten Christian LIS-INPG
Kaban Ata University of Birmingham
Kaiser Marcus Newcastle University
Karhunen Juha Helsinki University of Technology
Karpouzis Kostas ICCS-NTUA
Kasderidis Stathis Institute of Computer Science -

FORTH
Kaynak Okyay Bogazici University
Kim DaeEun Max Planck Institute for

Psychological Research
Kollias Stefanos National Technical University of

Athens
Koroutchev Kostadin Universidad Autónoma de Madrid
Kounoudes Tasos SignalGeneriX
Laaksonen Jorma Technical University of Helsinki
Lagos Francisco Universidad de Málaga
Lang Elmar Universität Regensburg
Lansky Petr Academy of Sciences of the Czech

Republic
Larochelle Hugo University of Montréal
Leclercq Edouard Université du Havre
Leiviskä Kauko University of Oulu
Lendasse Amaury Helsinki University of Technology
Likas Aristidis University of Ioannina
Loizou Christos Intercollege, Limassol Campus
Magoulas George Birkbeck College, University of

London
Mandic Danilo Imperial College London, UK
Mandziuk Jacek Warsaw University of Technology
Marques de Sá Joaquim University of Porto
Martinetz Thomas University of Luebeck
Martinez Dominique LORIA
Masulli Francesco Polo Universitario di La Spezia

G. Marco
Micheli Alessio University of Pisa
Moreno Juan Universidad Politécnica de

Cataluña
Muresan Raul SC. NIVIS SRL
Müller Klaus-Robert University of Potsdam

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Organization XI

Nakayama Minoru CRADLE
Nav́ıa-Vázquez Ángel Universidad Carlos III de Madrid
Neskovic Predrag Brown University
Nikolopoulos Konstantinos Lancaster University

Management School
Nürnberger Andreas Otto-von-Guericke Universität

Magdeburg
Obradovic Dragan Siemens AG
Oja Erkki Helsinki University of Technology
Osowski Stanislaw Warsaw University of Technology
Parra Xavier Technical University of Catalonia
Patan Krzysztof University of Zielona Góra
Paugam-Moisy Helene Institut des Sciences Cognitives
Peters Gabriele Universitaet Dortmund
Peterson Leif Dept. of Public Health of the

Methodist Hospital
Petrosino Alfredo University of Naples “Parthenope”
Polani Daniel University of Hertfordshire
Porrmann Mario Heinz Nixdorf Institute
Pŕıncipe José CNEL - University of Florida
Proença Hugo University of Beira Interior
Puzenat Didier Université Antilles-Guyane
Reyes Jose Universidade da Coruña
Ribeiro Bernardete University of Coimbra
Rocha Miguel University of Minho
Rosa João PUC-Campinas
Rospars Jean-Pierre INRA - Laboratoire de Biométrie
Rossi Fabrice INRIA Rocquencourt
Ruiz Francisco Universitat Politécnica de

Catalunya
Sandoval Francisco Universidad de Málaga
Santos Jorge Instituto Superior de Engenharia

do Porto
Scheper Tjeerd Oxford Brookes University
Schmidhuber Jürgen TU Munich, DE - IDSIA
Schwenker Friedhelm University of Ulm
Sereno Fernando Escola Superior de Educação

do Porto
Serrano Eduardo Universidad Autónoma de Madrid
Silva Lúıs INEB - Instituto de Engenharia

Biomédica
Simula Olli Helsinki University of Technology
Stafylopatis Andreas National Technical University of

Athens
Steil Jochen University of Bielefeld
Suárez Alberto Universidad Autónoma de Madrid

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XII Organization

Suykens Johan Katholieke Universiteit Leuven
Thomaidis Nikos University of the Aegean
Tomé Ana Maria University of Aveiro
Touzet Claude Université de Provence /CNRS
Trentin Edmondo Universitá di Siena
Tsakonas Athanasios University of the Aegean
Varona Pablo Universidad Autónoma de Madrid
Verleysen Michel Université Catholique de Louvain
L Vigário Ricardo Helsinki University of Technology
Villa Alessandro Université de Lausanne
Villmann Thomas Clinic for Psychotherapy
Vinciarelli Alessandro IDIAP Research Institute
Wennekers Thomas University of Plymouth
Wermter Stefan University of Sunderland
Wersing Heiko Honda Research Institute Europe

GmbH
Wyns Bart Ghent University
Yearwood John University of Ballarat
Zervakis Michalis Technical University of Crete

Sponsors

ENNS - European Neural Networks Society
INNS - International Neural Networks Society
JNNS - Japanese Neural Networks Society
IEEE Computational Intelligence Society
EURASIP - European Association for Signal and Image Processing

INEB - Instituto de Engenharia Biomédica, Portugal
UBI - Universidade da Beira Interior, Portugal
ISEP - Instituto Superior de Engenharia do Porto, Portugal
UP - Reitoria da Universidade do Porto, Portugal
DEEC - Departamento de Engenharia Electrotécnica e de Computadores, UP
IPP - Instituto Politécnico do Porto

FCT - Fundação para a Ciência e Tecnologia
FLAD - Fundação Luso-Americana para o Desenvolvimento
Fundação Calouste Gulbenkian

Microsoft Research Cambridge Lab
PT - Portugal Telecom

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents – Part I

Learning Theory

Generalization Error of Automatic Relevance Determination 1
Shinichi Nakajima and Sumio Watanabe

On a Singular Point to Contribute to a Learning Coefficient and
Weighted Resolution of Singularities . 11

Takeshi Matsuda and Sumio Watanabe

Improving the Prediction Accuracy of Echo State Neural Networks by
Anti-Oja’s Learning . 19

Štefan Babinec and Jǐŕı Posṕıchal

Theoretical Analysis of Accuracy of Gaussian Belief Propagation 29
Yu Nishiyama and Sumio Watanabe

Relevance Metrics to Reduce Input Dimensions in Artificial Neural
Networks . 39

Héctor F. Satizábal M. and Andres Pérez-Uribe

An Improved Greedy Bayesian Network Learning Algorithm on Limited
Data . 49

Feng Liu, Fengzhan Tian, and Qiliang Zhu

Incremental One-Class Learning with Bounded Computational
Complexity . 58

Rowland R. Sillito and Robert B. Fisher

Estimating the Size of Neural Networks from the Number of Available
Training Data . 68

Georgios Lappas

A Maximum Weighted Likelihood Approach to Simultaneous Model
Selection and Feature Weighting in Gaussian Mixture 78

Yiu-ming Cheung and Hong Zeng

Estimation of Poles of Zeta Function in Learning Theory Using Padé
Approximation . 88

Ryosuke Iriguchi and Sumio Watanabe

Neural Network Ensemble Training by Sequential Interaction 98
M.A.H. Akhand and Kazuyuki Murase

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XIV Table of Contents – Part I

Improving Optimality of Neural Rewards Regression for Data-Efficient
Batch Near-Optimal Policy Identification . 109

Daniel Schneegaß, Steffen Udluft, and Thomas Martinetz

Advances in Neural Network Learning Methods

Structure Learning with Nonparametric Decomposable Models 119
Anton Schwaighofer, Mathäus Dejori, Volker Tresp, and
Martin Stetter

Recurrent Bayesian Reasoning in Probabilistic Neural Networks 129
Jǐŕı Grim and Jan Hora

Resilient Approximation of Kernel Classifiers . 139
Thorsten Suttorp and Christian Igel

Incremental Learning of Spatio-temporal Patterns with Model
Selection . 149

Koichiro Yamauchi and Masayoshi Sato

Accelerating Kernel Perceptron Learning . 159
Daniel Garćıa, Ana González, and José R. Dorronsoro

Analysis and Comparative Study of Source Separation Performances
in Feed-Forward and Feed-Back BSSs Based on Propagation Delays in
Convolutive Mixture . 169

Akihide Horita, Kenji Nakayama, and Akihiro Hirano

Learning Highly Non-separable Boolean Functions Using Constructive
Feedforward Neural Network . 180

Marek Grochowski and W�lodzis�law Duch

A Fast Semi-linear Backpropagation Learning Algorithm 190
Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero,
Beatriz Pérez-Sánchez, and Paula Fraguela

Improving the GRLVQ Algorithm by the Cross Entropy Method 199
Abderrahmane Boubezoul, Sébastien Paris, and Mustapha Ouladsine

Incremental and Decremental Learning for Linear Support Vector
Machines . 209

Enrique Romero, Ignacio Barrio, and Llúıs Belanche

An Efficient Method for Pruning the Multilayer Perceptron Based on
the Correlation of Errors . 219

Cláudio M.S. Medeiros and Guilherme A. Barreto

Reinforcement Learning for Cooperative Actions in a Partially
Observable Multi-agent System . 229

Yuki Taniguchi, Takeshi Mori, and Shin Ishii

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents – Part I XV

Input Selection for Radial Basis Function Networks by Constrained
Optimization . 239

Jarkko Tikka

An Online Backpropagation Algorithm with Validation Error-Based
Adaptive Learning Rate . 249

Stefan Duffner and Christophe Garcia

Adaptive Self-scaling Non-monotone BFGS Training Algorithm for
Recurrent Neural Networks . 259

Chun-Cheng Peng and George D. Magoulas

Some Properties of the Gaussian Kernel for One Class Learning 269
Paul F. Evangelista, Mark J. Embrechts, and Boleslaw K. Szymanski

Improved SOM Learning Using Simulated Annealing 279
Antonino Fiannaca, Giuseppe Di Fatta, Salvatore Gaglio,
Riccardo Rizzo, and Alfonso M. Urso

The Usage of Golden Section in Calculating the Efficient Solution in
Artificial Neural Networks Training by Multi-objective Optimization . . . 289

Roselito A. Teixeira, Antônio P. Braga, Rodney R. Saldanha,
Ricardo H.C. Takahashi, and Talles H. Medeiros

Ensemble Learning

Designing Modular Artificial Neural Network Through Evolution 299
Eva Volna

Averaged Conservative Boosting: Introducing a New Method to Build
Ensembles of Neural Networks . 309

Joaqúın Torres-Sospedra, Carlos Hernández-Espinosa, and
Mercedes Fernández-Redondo

Selection of Decision Stumps in Bagging Ensembles 319
Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and
Alberto Suárez

An Ensemble Dependence Measure . 329
Matthew Prior and Terry Windeatt

Boosting Unsupervised Competitive Learning Ensembles 339
Emilio Corchado, Bruno Baruque, and Hujun Yin

Using Fuzzy, Neural and Fuzzy-Neural Combination Methods in
Ensembles with Different Levels of Diversity . 349

Anne M.P. Canuto and Marjory C.C. Abreu

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVI Table of Contents – Part I

Spiking Neural Networks

SpikeStream: A Fast and Flexible Simulator of Spiking Neural
Networks . 360

David Gamez

Evolutionary Multi-objective Optimization of Spiking Neural
Networks . 370

Yaochu Jin, Ruojing Wen, and Bernhard Sendhoff

Building a Bridge Between Spiking and Artificial Neural Networks 380
Florian Kaiser and Fridtjof Feldbusch

Clustering of Nonlinearly Separable Data Using Spiking Neural
Networks . 390

Lakshmi Narayana Panuku and C. Chandra Sekhar

Implementing Classical Conditioning with Spiking Neurons 400
Chong Liu and Jonathan Shapiro

Advances in Neural Network Architectures

Deformable Radial Basis Functions . 411
Wolfgang Hübner and Hanspeter A. Mallot

Selection of Basis Functions Guided by the L2 Soft Margin 421
Ignacio Barrio, Enrique Romero, and Llúıs Belanche

Extended Linear Models with Gaussian Prior on the Parameters and
Adaptive Expansion Vectors . 431

Ignacio Barrio, Enrique Romero, and Llúıs Belanche

Functional Modelling of Large Scattered Data Sets Using Neural
Networks . 441

Q. Meng, B. Li, N. Costen, and H. Holstein

Stacking MF Networks to Combine the Outputs Provided by RBF
Networks . 450

Joaqúın Torres-Sospedra, Carlos Hernández-Espinosa, and
Mercedes Fernández-Redondo

Neural Network Processing for Multiset Data . 460
Simon McGregor

The Introduction of Time-Scales in Reservoir Computing, Applied to
Isolated Digits Recognition . 471

Benjamin Schrauwen, Jeroen Defour, David Verstraeten, and
Jan Van Campenhout

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents – Part I XVII

Partially Activated Neural Networks by Controlling Information 480
Ryotaro Kamimura

CNN Based Hole Filler Template Design Using Numerical Integration
Techniques . 490

K. Murugesan and P. Elango

Impact of Shrinking Technologies on the Activation Function of
Neurons . 501

Ralf Eickhoff, Tim Kaulmann, and Ulrich Rückert

Rectangular Basis Functions Applied to Imbalanced Datasets 511
Vicenç Soler and Marta Prim

Qualitative Radial Basis Function Networks Based on Distance
Discretization for Classification Problems . 520

Xavier Parra and Andreu Català

A Control Approach to a Biophysical Neuron Model 529
Tim Kaulmann, Axel Löffler, and Ulrich Rückert

Integrate-and-Fire Neural Networks with Monosynaptic-Like Correlated
Activity . 539

Héctor Mesa and Francisco J. Veredas

Multi-dimensional Recurrent Neural Networks . 549
Alex Graves, Santiago Fernández, and Jürgen Schmidhuber

FPGA Implementation of an Adaptive Stochastic Neural Model 559
Giuliano Grossi and Federico Pedersini

Neural Dynamics and Complex Systems

Global Robust Stability of Competitive Neural Networks with
Continuously Distributed Delays and Different Time Scales 569

Yonggui Kao and QingHe Ming

Nonlinear Dynamics Emerging in Large Scale Neural Networks with
Ontogenetic and Epigenetic Processes . 579

Javier Iglesias, Olga K. Chibirova, and Alessandro E.P. Villa

Modeling of Dynamics Using Process State Projection on the Self
Organizing Map . 589

Juan J. Fuertes-Mart́ınez, Miguel A. Prada,
Manuel Domı́nguez-González, Perfecto Reguera-Acevedo,
Ignacio Dı́az-Blanco, and Abel A. Cuadrado-Vega

Fixed Points of the Abe Formulation of Stochastic Hopfield Networks . . . 599
Marie Kratz, Miguel Atencia, and Gonzalo Joya

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XVIII Table of Contents – Part I

Visualization of Dynamics Using Local Dynamic Modelling with Self
Organizing Maps . 609

Ignacio Dı́az-Blanco, Abel A. Cuadrado-Vega,
Alberto B. Diez-González, Juan J. Fuertes-Mart́ınez,
Manuel Domı́nguez-González, and Perfecto Reguera-Acevedo

Comparison of Echo State Networks with Simple Recurrent Networks
and Variable-Length Markov Models on Symbolic Sequences 618

Michal Čerňanský and Peter Tiňo

Data Analysis

Data Fusion and Auto-fusion for Quantitative Structure-Activity
Relationship (QSAR) . 628

Changjian Huang, Mark J. Embrechts, N. Sukumar, and
Curt M. Breneman

Cluster Domains in Binary Minimization Problems 638
Leonid B. Litinskii

MaxSet: An Algorithm for Finding a Good Approximation for the
Largest Linearly Separable Set . 648

Leonardo Franco, José Luis Subirats, and José M. Jerez

Generalized Softmax Networks for Non-linear Component Extraction . . . 657
Jörg Lücke and Maneesh Sahani

Stochastic Weights Reinforcement Learning for Exploratory Data
Analysis . 668

Ying Wu, Colin Fyfe, and Pei Ling Lai

Post Nonlinear Independent Subspace Analysis . 677
Zoltán Szabó, Barnabás Póczos, Gábor Szirtes, and András Lőrincz

Estimation

Algebraic Geometric Study of Exchange Monte Carlo Method 687
Kenji Nagata and Sumio Watanabe

Solving Deep Memory POMDPs with Recurrent Policy Gradients 697
Daan Wierstra, Alexander Foerster, Jan Peters, and
Jürgen Schmidhuber

Soft Clustering for Nonparametric Probability Density Function
Estimation . 707

Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato,
Domingo López-Rodŕıguez, and Maŕıa del Carmen Vargas-González

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents – Part I XIX

Vector Field Approximation by Model Inclusive Learning of Neural
Networks . 717

Yasuaki Kuroe and Hajimu Kawakami

Spectral Measures for Kernel Matrices Comparison 727
Javier González and Alberto Muñoz

A Novel and Efficient Method for Testing Non Linear Separability 737
David Elizondo, Juan Miguel Ortiz-de-Lazcano-Lobato, and
Ralph Birkenhead

A One-Step Unscented Particle Filter for Nonlinear Dynamical
Systems . 747

Nikolay Y. Nikolaev and Evgueni Smirnov

Spatial and Spatio-Temporal Learning

Spike-Timing-Dependent Synaptic Plasticity to Learn Spatiotemporal
Patterns in Recurrent Neural Networks . 757

Masahiko Yoshioka, Silvia Scarpetta, and Maria Marinaro

A Distributed Message Passing Algorithm for Sensor Localization 767
Max Welling and Joseph J. Lim

An Analytical Model of Divisive Normalization in Disparity-Tuned
Complex Cells . 776

Wolfgang Stürzl, Hanspeter A. Mallot, and A. Knoll

Evolutionary Computing

Automatic Design of Modular Neural Networks Using Genetic
Programming . 788

Naser NourAshrafoddin, Ali R. Vahdat, and
Mohammad Mehdi Ebadzadeh

Blind Matrix Decomposition Via Genetic Optimization of Sparseness
and Nonnegativity Constraints . 799

Kurt Stadlthanner, Fabian J. Theis, Elmar W. Lang,
Ana Maria Tomé, and Carlos G. Puntonet

Meta Learning, Agents Learning

Meta Learning Intrusion Detection in Real Time Network 809
Rongfang Bie, Xin Jin, Chuanliang Chen, Chuan Xu, and
Ronghuai Huang

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

XX Table of Contents – Part I

Active Learning to Support the Generation of Meta-examples 817
Ricardo Prudêncio and Teresa Ludermir

Co-learning and the Development of Communication 827
Viktor Gyenes and András Lőrincz

Complex-Valued Neural Networks (Special Session)

Models of Orthogonal Type Complex-Valued Dynamic Associative
Memories and Their Performance Comparison . 838

Yasuaki Kuroe and Yuriko Taniguchi

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 848
Teijiro Isokawa, Haruhiko Nishimura, Naotake Kamiura, and
Nobuyuki Matsui

Neural Learning Algorithms Based on Mappings: The Case of the
Unitary Group of Matrices . 858

Simone Fiori

Optimal Learning Rates for Clifford Neurons . 864
Sven Buchholz, Kanta Tachibana, and Eckhard M.S. Hitzer

Solving Selected Classification Problems in Bioinformatics Using
Multilayer Neural Network Based on Multi-Valued Neurons
(MLMVN) . 874

Igor Aizenberg and Jacek M. Zurada

Error Reduction in Holographic Movies Using a Hybrid Learning
Method in Coherent Neural Networks . 884

Chor Shen Tay, Ken Tanizawa, and Akira Hirose

Temporal Synchronization and Nonlinear Dynamics
in Neural Networks (Special Session)

Sparse and Transformation-Invariant Hierarchical NMF 894
Sven Rebhan, Julian Eggert, Horst-Michael Groß, and Edgar Körner

Zero-Lag Long Range Synchronization of Neurons Is Enhanced by
Dynamical Relaying . 904

Raul Vicente, Gordon Pipa, Ingo Fischer, and Claudio R. Mirasso

Polynomial Cellular Neural Networks for Implementing the Game of
Life . 914

Giovanni Egidio Pazienza, Eduardo Gomez-Ramirez, and
Xavier Vilaśıs-Cardona

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Table of Contents – Part I XXI

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron
Model . 924

Yoshiyuki Asai, Takashi Yokoi, and Alessandro E.P. Villa

The Role of Internal Oscillators for the One-Shot Learning of Complex
Temporal Sequences . 934

Matthieu Lagarde, Pierre Andry, and Philippe Gaussier

Clustering Limit Cycle Oscillators by Spectral Analysis of the
Synchronisation Matrix with an Additional Phase Sensitive Rotation . . . 944

Jan-Hendrik Schleimer and Ricardo Vigário

Control and Synchronization of Chaotic Neurons Under Threshold
Activated Coupling . 954

Manish Dev Shrimali, Guoguang He, Sudeshna Sinha, and
Kazuyuki Aihara

Neuronal Multistability Induced by Delay . 963
Cristina Masoller, M.C. Torrent, and Jordi Garćıa-Ojalvo

Author Index . 973

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalization Error of Automatic Relevance
Determination

Shinichi Nakajima1 and Sumio Watanabe2

1 Nikon Corporation, 201-9 Miizugahara, Kumagaya, 360-8559 Japan
nakajima.s@nikon.co.jp, swatanab@pi.titech.ac.jp

http://watanabe-www.pi.titech.ac.jp/˜nkj23/index.html
2 Tokyo Institute of Technology, Mailbox R2-5, 4259 Nagatsuda, Yokohama, 226-8503 Japan

Abstract. The automatic relevance determination (ARD) shows good perfor-
mance in many applications. Recently, it has been applied to brain current es-
timation with the variational method. Although people who use the ARD tend
to pay attention to one benefit of the ARD, sparsity, we, in this paper, focus on
another benefit, generalization. In this paper, we clarify the generalization error
of the ARD in the case that a class of prior distributions is used, and show that
good generalization is caused by singularities of the ARD. Sparsity is not ob-
served in that case, however, the mechanism that the singularities provide good
generalization implies the mechanism that they also provide sparsity.

1 Introduction

The automatic relevance determination (ARD) [1, 2], an empirical Bayes (EB) or hier-
archical Bayes (HB) approach providing a sparse solution, is known to be useful when
we have to estimate a lot of parameters of which the majority are expected to be zero.
Recently, with the variational Bayes (VB) approach [3, 4], the ARD has been applied
to ill-posed brain current estimation from magnetoencephalography (MEG) data, and
shown good performance in a real data experiment, as well as in a computer simula-
tion [5, 6]. Although there are variations of EB approach, it has been shown that many
of them can be described as a unified framework [7]. So, we focus on a similar ap-
proach to the one proposed in [5]. Both the ARD and the maximum a posteriori (MAP)
estimation avoid ill-posedness by incorporating prior knowledge. However, benefits of
the ARD are experimentally observed, one of which is that the ARD provides a sparse
solution. Although less people might pay attention to that, there is another benefit of the
ARD, generalization ability. In this paper, we focus on generalization, and show that the
benefit is caused by singularities. In addition, consideration of the mechanism that the
singularities provide good generalization implies the mechanism that they also provide
sparsity, which we also discuss in this paper.

It is known that, in general, the Bayesian methods in singular models provide bet-
ter generalization performance than the MAP estimation [8], which is asymptotically
equivalent to the maximum likelihood (ML) estimation, and that, in some cases, the
effect of singularities is observed as the James-Stein (JS) type shrinkage [9]. The JS
estimator was proposed as an estimator dominating the ML estimator [10], and it has

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 1–10, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

2 S. Nakajima and S. Watanabe

been shown that the JS estimator can be derived as an EB estimator [11]. Moreover, its
asymptotic relation to the ARD with the variational method has been shown [12].

In this paper, focusing on the case that we use a class of prior distributions, we clarify
the asymptotic generalization error of the ARD. Then, we clarify the nonasymptotic
generalization error in a special case, to show the contribution of prior knowledge when
the number of samples is small. We also discuss the mechanism that causes sparsity, the
other benefit of the ARD. In Section 2, we describe the model analyzed in this paper, and
its VB solution. Then, we analyze its asymptotic generalization error in Section 3, and
the nonasymptotic one in Section 4. Discussion including the consideration of sparsity
follows in Section 5. Finally, we conclude this paper in Section 6.

2 Automatic Relevance Determination

In brain current estimation, we consider time series data such as

Y = V A′ + E , (1)

where Y ∈ R
L×U is an output matrix observed, V ∈ R

L×M is a constant matrix, called
the lead field matrix, A′ ∈ R

M×U is a parameter matrix to be estimated, and E ∈ R
L×U

is an observation noise. L, M , and U denote the output dimensionality, the parameter
dimensionality, and the length of time series, respectively, and their smaller letters are
used as the corresponding indices. In addition, L corresponds to the number of sensors,
M to the number of the sites where the current is to be estimated, in brain current
estimation. Note that U does not mean the length of the whole time series data but
the minimum length of the data used for estimation at one time, as described later. We
denote the column and row vectors by smaller letters, for example, Y = (y1, . . . , yU) =
(ỹ1, . . . , ỹL)t, where yu ∈ R

L is the output vector at the time u, and ỹl ∈ R
U is the time

series vector of the l-th output.1 Here t denotes the transpose of a matrix. By Nd(μ, Σ)
we denote the d-dimensional normal distribution with average μ and covariance matrix
Σ, and by Nd(·; μ, Σ) its probability density. We assume throughout this paper that all
the elements of E are subject to N1(0, σ2

y), where 0 < σ2
y < ∞ is known. We say that

a problem is ill-posed when the rank of V is smaller than the parameter dimensionality,
M , so that we cannot determine the unique parameter value without prior knowledge.
We assume that L < M , so our problem is obviously ill-posed.

In this paper, we consider the following singular model:2

p(Y |A, b) =
∏U

u=1 NL(yu; V (b ∗ au), σ2
yIL), (2)

φ(A) =
∏U

u=1 NM (au; 0, IM), φ(b) = NM (b; 0, (diag(c))2), (3)

where φ(·) denotes a prior distribution, A ∈ R
M×U and b ∈ R

M are the parameters,
and c ∈ R

M is a constant vector, of which each element, cm > 0, corresponds to the

1 A vector with a tilde denotes a time series vector throughout this paper.
2 This model is not singular from the viewpoint of the ML estimation, while it has singularities

from the viewpoint of the Bayesian learning [9].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalization Error of Automatic Relevance Determination 3

prior deviation of bm. Here, by Id we denote the d × d identity matrix, by ∗ the compo-
nentwise product of matrices, for example, (A ∗ B)mu = AmuBmu, and by diag(·) the
diagonal matrix consisting of the elements of a vector, for example, (diag(c))mm = cm.
By the transform B ∗ A → A′, where R

M×U � B = (b, . . . , b), we find that the sin-
gular model above is equivalent to the following automatic relevance determination
(ARD) [1, 2] of the original linear model, Eq.(1):

p(Y |A′) =
∏U

u=1 NL(yu; V a′
u, σ2

yIL), (4)

φ(A′) =
∏U

u=1 NM (a′
u; 0, (diag(b))2), φ(b) =

∏M
m=1 Γ (b2

m/c2
m; 1/2, 2), (5)

where we denote by Γ (κ, ν) the Gamma distribution with shape parameter κ and scale
parameter ν, and by Γ (·; κ, ν) its probability density. Therefore, we call the singular
model, Eqs.(2) and (3), the ARD model, where the parameter, A′, of the original ARD
model, Eqs.(4) and (5), corresponds to the componentwise product of the parameters,
B∗A. In addition, note that the deviation of A′

mu, which corresponds to bm, is assumed
to be constant for u = 1, . . . , U , as proposed in [5].3 This assumption essentially affects
generalization performance, as shown in the following sections. Hereafter, we assume
that we have adopted a coordinate system such that V is general diagonal. This assump-
tion is equivalent to the one that we use a prior distribution such that the components
along the right singular vectors of V are independent of each other. However, note that
this assumption breaks sparsity, another benefit of the ARD, which will be discussed in
Section 5.2.

The variational Bayes (VB) approach provides a tractable posterior distribution, de-
noted by r(A, b), that approximates the intractable Bayes posterior distribution, by re-
stricting the set of possible posterior distributions [3,4]. We apply it to the ARD, Eqs.(2)
and (3), as in [5], restricting the posterior distribution such that A and b are indepen-
dent of each other, i.e., r(A, b) = r(A)r(b). We suppose that we have n sets of out-
put samples observed, i.e., Y n = {Y (i); i = 1, . . . , n}, whose average is denoted by
Ȳ = n−1 ∑n

i=1 Y (i) = (ȳ1, . . . , ȳU) = (˜̄y1, . . . , ˜̄yL)t. In a similar fashion to the case,
analyzed in [12], that V is not assumed to be general diagonal and the posterior distri-
bution is restricted such that all the elements of A and b are independent of each other,
we obtain the following theorem, whose proof is omitted:

Theorem 1. When V is general diagonal, the VB posterior distribution is given by

r(A, b|Y n) =
∏M

m=1

(
NU (ãm; ˜̂am, σ̂2

am
IU) · N1(bm; b̂m, σ̂2

bm
)
)

, (6)

where the m-th element time series vector of the componentwise product of the means,
that is, the VB estimator of ã′

m in the original linear model, Eq.(1), is

˜̂a′
m = b̂m

˜̂am =
{

0 if vm = 0
S(˜̄ym/‖vm‖; σ2

yU/‖vm‖2) + Op(n−1) if vm �= 0 . (7)

Here, S(z̃; χ) = θ(n‖z̃‖2 >χ)
(
1−χ/n‖z̃‖2) z̃ (8)

3 In [5], the hyperprior of the inverse variance, b−2
m , is assumed to be subject to Γ (κ, ν), which

satisfies the condition for obtaining a stable iterative algorithm in the framework of the VB
approach [13]. We conjecture that this difference between the prior distributions less affects
generalization, which will be discussed in Section 5.1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

4 S. Nakajima and S. Watanabe

is the positive-part James-Stein type shrinkage (PJS) operator with the degree of shrink-
age χ > 0, where θ(·) denotes the indicator function of an event.

In the following sections, we compare the generalization error of the ARD with that of
the MAP estimator, given by

â′MAP
u = (V tV + σ2

yIM/nc2
m)−1V tȳu, (9)

where the prior deviation of the parameter, b in Eq.(5), is assumed to be equal to c, and
not estimated from observation.

3 Asymptotic Generalization Error

Although the purpose of an inverse problem is not prediction of a future output but
estimation of the parameter itself, it is difficult to compare learning methods fairly in the
parameter domain, since performance is strongly affected by prior knowledge. So, some
criteria, for example, the goodness-of-fit (GOF) value and χ2 value [14], are used in the
field of brain activity estimation for evaluation of the adequacy of models and learning
methods. They evaluate the difference between the observed output and the predictive
output, like the training error in the terms of machine learning. Since we would like to
count the effect of overfitting, we analyze the generalization error, which evaluates the
difference between the true output and the predictive output. The generalization error is
defined as the average Kullback-Leibler (KL) divergence between the true distribution,
q(Y), and the VB predictive distribution, p(Y |Y n) = 〈p(Y |A, b)〉r(A,b|Y n):

G(n, A′∗) =
〈∫

q(Y) log q(Y)
p(Y |Y n)dY

〉

q(Y n)
. (10)

Here, 〈·〉p denotes the expectation value over a distribution p, 〈·〉q(Y n) the expectation
value over all sets of n samples,

∫
dY the integral over all the elements of Y , and

A′∗ = B∗ ∗ A∗ the true original parameter matrix.
Let M∗ be the true number of nonzero row vectors of A′∗, namely, (M − M∗)

vectors satisfy ã′∗
m = 0. We, in advance, eliminate the components such that vm = 0,

since they never affect learning. Then, we obtain the following theorem:

Theorem 2. When V is general diagonal, the generalization error of the ARD, Eqs.(2)
and (3), is asymptotically expanded as

2G(n, A′∗) = 2λn−1 + O(n−3/2),

where2λ = UM∗ + U(M − M∗)Γfunc((U−2)/2,U/2)
Γfunc(U/2) . (11)

Here, Γfunc(h, x) =
∫ ∞

x sh−1e−sds, and Γfunc(h) = Γfunc(h, 0) (12)

are the upper incomplete Gamma function and the complete one, respectively. We call
λ the generalization coefficient.

(Outline of the proof) Considering the extent of the VB posterior distribution, Eq.(6),
like in [9], we can find that the predictive distribution of the ARD is asymptotically

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalization Error of Automatic Relevance Determination 5

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

M*

2
 /

U
M

MAP
ARD(U = 1)
ARD(U = 10)
ARD(U = 100)

Fig. 1. Asymptotic generalization error when M = 100, U = 1, 10, 100

equivalent to the model at the VB estimator. So, we just need to evaluate the squared
risk normalized by the noise variance, σ2

y :

2G(n, A′∗) = σ−2
y 〈tr((Â′ − A′∗)tV tV (Â′ − A′∗))〉q(Y n) + O(n−3/2), (13)

where tr(·) denotes the trace of a matrix. For the M∗ nonzero elements, the generaliza-
tion error is equal to UM∗, since those true values are on regular points. For the other
(M − M∗) irrelevant elements, we have

2Girr(n, A′∗) = (M − M∗)〈(‖g̃‖2 − U)2/‖g̃‖2〉q(g̃)n
−1 + O(n−3/2), (14)

where g̃ is a U -dimensional random vector subject to NU (0, IU), over which 〈·〉q(g̃)
denotes the expectation. Using the polar coordinate representation and calculating the
expectation in Eq.(14), we have

2λ = (M − M∗)4Γfunc((U+2)/2,U/2)−4UΓfunc(U/2,U/2)+U2Γfunc((U−2)/2,U/2)
2Γfunc(U/2)

= U(M − M∗)Γfunc((U−2)/2,U/2)
Γfunc(U/2) .

Thus, we obtain Theorem 2. (Q.E.D.)

Figure 1 shows the generalization coefficient normalized by the parameter dimension-
ality, 2λ/UM , in the case that M = 100 and U = 1, 10, 100. Note that the normalized
generalization coefficient is always equal to unity in the MAP estimation, Eq.(9), which
is asymptotically equivalent to the ML estimator. The horizontal axis indicates M∗. We
see in Fig.1 that the ARD provides much better generalization performance when the
model has a lot of irrelevant components. Another important fact is that the larger U is,
the better generalization is. From the viewpoint of statistical physics, the increase of U
leads to the increase of the state density of singularities, which enhances suppression
of overfitting. However, note that setting too large value to U may result in large M∗,
since the (M −M∗) irrelevant elements are defined as the ones that never have positive
true value during U .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

6 S. Nakajima and S. Watanabe

4 Nonasymptotic Generalization Error When U = 1

One purpose of brain current estimation is to investigate the brain activity of human or
other beings [6]. In that purpose, we can obtain a number of samples. However, in an-
other purpose such as brain computer interface (BCI) [15], where the estimation result
is used as an input signal to control some device in realtime, the number of samples is
only one. Therefore, nonasymptotic analysis is also important. If we focus on the case
that U = 1, we can obtain the nonasymptotic solution, again in a similar fashion to the
analysis in [12]:

Theorem 3. When V is general diagonal and U = 1, the VB estimator of the m-th
element is given by

â′
m =

{
0 if vm = 0

sign(ym)· max
(
0,

∣
∣S(ȳm/‖vm‖; σ2

y/‖vm‖2)
∣
∣ − σ2

y

ncm‖vm‖2

)
if vm �= 0

, (15)

where sign(·) denotes the sign of a scalar.4

When the number of samples, n, is small, the predictive distribution is not well ap-
proximated by the normal distribution, and difficult to be calculated. Since our purpose
is not to know the rigorous generalization error of the predictive distribution but to
evaluate the accuracy of the estimated parameter, we analyze a plug-in generalization
error, which we define as the KL divergence between the true distribution, q(Y), and
the model at the VB estimator, p(Y |Â, b̂):

G′(n, A′∗) =
〈∫

q(Y) log q(Y)
p(Y |Â,b̂)

dY
〉

q(Y n)
. (16)

We obtain the following theorem:

Theorem 4. When V is general diagonal and U = 1, the plug-in generalization error
of the ARD is given by

2G′(n, A′∗) =
∑M

m=1〈(â
′(0)
m (g) − a

′∗(0)
m)2〉q(g), (17)

where â′(0)
m (g) = sign(a′∗(0)

m + g)max
(
0, |S(a′∗(0)

m + g; 1)| − σy√
ncm‖vm‖

)
,

a′∗(0)
m =

√
na′∗

m‖vm‖/σy,

and g is a random variable subject to N1(0, 12).

(Proof) Substituting â
′(0)
m (g) =

√
nâ′

m‖vm‖/σy in the first term of Eq.(13), which is
equal to the plug-in generalization error, immediately completes the theorem. (Q.E.D.)

The expectation in Eq.(17) can, relatively easily, be calculated, by creating random vari-
ables subject to N1(0, 12). Figure 2 shows the normalized plug-in generalization error,
2G′/UM , in the case that M = 5, n = 1, σ2

y = 12, and ‖vm‖ = 1, cm = 10 for ∀m.
The dashed line (M∗∗ = 2) corresponds to the case that the true original parameter

4 In this section, the dimensionality of a time series vector is one, so we abbreviate tilde.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalization Error of Automatic Relevance Determination 7

0 2 4 6 8 10
0

0.5

1

1.5

í*

2G
’

/ U
M

MAP

ARD(M** = 2)

ARD(M** = 4)

Fig. 2. Nonasymptotic plug-in generalization error when M = 5, U = 1, M∗∗ = 2, 4

is equal to a′∗ = (10, 10, α′∗, 0, 0)t, and the dotted line (M∗∗ = 4) to the case that
a′∗ = (10, 10, 10, 10, α′∗)t, where α′∗ is indicated by the horizontal axis.5 We see in
Fig. 2 that the generalization performance of the ARD is much better than the MAP
estimation when a lot of irrelevant components exist, however, worse when few irrele-
vant component exists. This is because suppression of overfitting, naturally, accompa-
nies insensitivity to true components with small amplitudes. However, we conjecture
in Section 5.1 that the ARD provides no worse generalization error than the MAP es-
timation when we use a very vague prior and U ≥ 4. In addition, since we assume a
relatively vague prior in Fig. 2, the generalization error when α′∗ = 0 as well as when
α′∗ = 10 is well approximated by the asymptotic result given by Theorem 2, for ex-
ample, the result when a′∗ = (10, 10, 0, 0, 0)t is approximated by the asymptotic result
2G′/UM = 0.60 when M∗ = 2, and the result when a′∗ = (10, 10, 10, 0, 0)t by the
asymptotic result 2G′/UM = 0.73 when M∗ = 3.

5 Discussion

5.1 Generalization

We have shown that the ARD has the benefit of generalization performance. The sup-
pression of overfitting of the MAP estimation disappears in the asymptotic limit, while
that of the ARD remains. We can say that this benefit is caused by its singularities, be-
cause the asymptotic generalization performance of the Bayesian methods differs from
that of the ML estimation only in singular models. By using the algebraic geometrical
method [8], the asymptotic generalization error of the rigorous Bayes estimation, to
which Bayesian methods are to approximate, has been analyzed in a similar model to
the ARD [16]. Considering the result of [16], we can say that, in the ARD, the general-
ization property of the Bayes estimation is similar to that of the VB approach, clarified
in this paper. In general, it has been proved that the asymptotic generalization error
of the Bayes estimation is no greater than that of the ML estimation if we use a prior

5 By M∗∗ we denote the number of true components large enough.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

8 S. Nakajima and S. Watanabe

distribution having positive values on the singularities, while no smaller if we use the
Jeffreys’ prior [17], which has zero values on the singularities, and sufficiently small
values on their neighborhoods so that the state density of the singularities is compa-
rable to the other points. In fact, if we use a prior distribution such that the inverse
variance, b−2

m , of ã′
m is subject to Γ (κ, ν), as in [5, 6], the prior probabilities on a part

of the singularities, {(ãm, bm); bm = 0}, is zero, so, it seems possible that the property
that we have clarified in this paper differs from that of the method in [5, 6]. However,
we conjecture that, when U ≥ 2, the properties would be similar to each other, since
the other part of the singularities, {(ãm, bm); ãm = 0}, has a larger state density, and
therefore, dominates its performance when the dimensionality of ãm is larger than that
of bm. (See [9].)

We discussed in Section 4 that the ARD does not always provide better generalization
performance than the MAP estimation, since suppression of overfitting accompanies
insensitivity to true components with small amplitudes. However, we conjecture that,
when U ≥ 4 and we use a very vague prior, the ARD could dominate the MAP estima-
tion. That is for the following reasons: that Theorem 3 says that, even in nonasymptotic
cases, the ARD estimator converges to the PJS estimator when U = 1 and cm for ∀m
goes to infinity; and that the PJS estimator was proved to dominate the ML estimator
when 0 < χ ≤ 2(U − 2) [18], where χ is the degree of shrinkage, introduced in Eq.(8).
Although the asymptotic terms when U ≥ 2 have, unfortunately, not been derived yet,
we expect that they would converge to zero when cm goes to infinity, as in the case that
U = 1. Deriving the terms or their bounds and proving the domination of the ARD over
the MAP estimation is future work.

5.2 Sparsity

Comparing with the minimum norm maximum likelihood (MNML) estimator,

â′MNML
u = (V tV)−V tȳu, (18)

where (·)− denotes the Moore-Penrose generalized inverse of a matrix, we can find that
the term caused by l2-norm penalty of the MAP estimator, Eq.(9), is linear to the ob-
served output, ȳu. On the other hand, Theorems 1 and 3 say that both of the asymptotic
and the nonasymptotic shrinkage factors of the ARD, i.e., the factor included in the PJS
operator, Eq.(8), which depends on χ, and the factor proportional to c−1

m in Eq.(15), are
less increasing of ȳu. Assuming for simplicity that U = 1, we can say in general that

Proposition 1. An estimator, ŵ ∈ R
M , is more sparse than ŵ′, if each element of ŵ is

written as

ŵm = (1 − f(|ŵ′
m|)) ŵ′

m,

where f(|wm|) is a nonincreasing, nonconstant, and bounded function of |wm| such
that 0 ≤ f(|wm|) ≤ 1.

Let ŵ′ = â′MNML. Then, the MAP estimator, Eq.(9), is one such that f(|wm|) is con-
stant, and therefore, each component, â′MAP

m , uniformly shrinks, while the ARD estima-
tor is sparse.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalization Error of Automatic Relevance Determination 9

However, we should remember that we have adopted the coordinate system such
that V is general diagonal. Therefore, the sparsity above is observed on that coordinate
system, and the sparsity on the original coordinate system, which we prefer, is not
necessarily observed, if we use a prior distribution such that the components along the
right singular vectors of V are independent of each other. On the other hand, when we
apply the ARD, we usually use a prior distribution such that the components on the
original coordinate system are independent of each other, which is conjectured to lead
to sparsity on the original coordinate system. Further analysis is future work.

According to the discussion above, the following PJS estimator based on the MNML
estimator, proposed in [12], is expected to provide a more sparse solution than the ARD:

˜̂a′PJS
m = S(˜̂a′MNML

m ; σ2
yU/‖vm‖2), (19)

where we adopt the original coordinate system. Its application to real problems is future
work.

5.3 Properties of Variational Bayes Approach

Properties of the VB approach, proposed in [3,4], has recently been clarified. For exam-
ple, properties on convergence have been clarified [19], bounds of the VB free energy
in singular models have been derived [20]. Moreover, solutions in bilinear models have
been obtained in closed forms [21,22,12]. The last example means that, in such models,
we do not need iterative calculation like expectation-maximization (EM) algorithm. The
generalization error has also been clarified in bilinear models, and it has been shown
that the VB approach has both of an ML like aspect and a Bayesian aspect [9].

6 Conclusions

In this paper, we have clarified the asymptotic generalization error of the automatic
relevance determination (ARD) in the case that we use a class of prior distributions, and
the nonasymptotic one in a more special case. Thus, we have concluded that one benefit
of the ARD, generalization, is caused by its singularities, and that the larger the time
duration that the hyperparameter is assumed to be constant is, the stronger suppression
of overfitting is. We have also discussed another benefit of the ARD, sparsity, but further
analysis is needed, which is our future work.

Acknowledgments

The authors would like to thank Masanori Osako of ATR for the discussion on [6].
They would also like to thank Yutaka Iwasaki and Hiroshi Ooki of Nikon Corporation
for encouragement to research this subject.

References

1. MacKay, D.J.C.: Bayesian Non-linear Modeling for the Energy Prediction Competition.
ASHRAE Transactions 100, 1053–1062 (1994)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

10 S. Nakajima and S. Watanabe

2. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, Heidelberg (1996)
3. Hinton, G.E., van Camp, D.: Keeping Neural Networks Simple by Minimizing the Descrip-

tion Length of the Weights. In: Proc. of COLT, pp. 5–13 (1993)
4. Attias, H.: Inferring Parameters and Structure of Latent Variable Models by Variational

Bayes. In: Proc. of UAI (1999)
5. Sato, M., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., Doya, K., Kawato, M.: Hierar-

chical Bayesian Estimation for MEG inverse problem. Neuro Image 23, 806–826 (2004)
6. Osako, M., Yamashita, O., Hiroe, N., Sato, M.: Verification of Hierarchical Bayesian Estima-

tion Combining MEG and fMRI: A Motor Task Analysis (in Japanese). In: Technical Report
of IEICE, Tokyo, Japan, vol. NC2006-130, pp. 73–78 (2007)

7. Wipf, D., Ramirez, R., Palmer, J., Makeig, S., Rao, B.: Analysis of Empirical Bayesian Meth-
ods for Neuroelectromagnetic Source Localization. In: Advances in NIPS, vol. 19 (2006)

8. Watanabe, S.: Algebraic Analysis for Nonidentifiable Learning Machines. Neural Computa-
tion 13, 899–933 (2001)

9. Nakajima, S., Watanabe, S.: Variational Bayes Solution of Linear Neural Networks and its
Generalization Performance. Neural Computation 19, 1112–1153 (2007)

10. James, W., Stein, C.: Estimation with Quadratic Loss. In: Proc. of the 4th Berkeley Symp. on
Math. Stat. and Prob., pp. 361–379 (1961)

11. Efron, B., Morris, C.: Stein’s Estimation Rule and its Competitors—an Empirical Bayes
Approach. J. of Am. Stat. Assoc. 68, 117–130 (1973)

12. Nakajima, S., Watanabe, S.: Analytic Solution of Hierarchical Variational Bayes in Linear
Inverse Problem. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006.
LNCS, vol. 4132, pp. 240–249. Springer, Heidelberg (2006)

13. Sato, M.: Online Model Selection Based on the Variational Bayes. Neural Computation 13,
1649–1681 (2001)

14. Hamalainen, M., Hari, R., Ilmoniemi, R.J, Knuutila, J., Lounasmaa, O.V.: Magnetoen-
cephalography — Theory, Instrumentation, and Applications to Noninvasive Studies of the
Working Human Brain. Rev. Modern Phys. 65, 413–497 (1993)

15. Blankertz, B., Dornhege, G., Krauledat, M., Curio, G., Muller, K.R.: The Non-invasive Berlin
Brain-Computer Interface: Fast Acquisition of Effective Performance in Untrained Subjects
(2007) (to appear in Neuro Image)

16. Watanabe, S., Amari, S.: Learning Coefficients of Layered Models When the True Distribu-
tion Mismatches the Singularities. Neural Computation 15, 1013–1033 (2003)

17. Watanabe, S.: Algebraic Information Geometry for Learning Machines with Singularities.
In: Advances in NIPS, vol. 13, pp. 329–336 (2001)

18. Stein, C.: Estimation of the Mean of a Multivariate Normal Distribution. Annals of Statis-
tics 9, 1135–1151 (1981)

19. Wang, B., Titterington, D.M.: Convergence and Asymptotic Normality of Variational
Bayesian Approximations for Exponential Family Models with Missing Values. In: Proc.
of UAI, Banff, Canada, pp. 577–584 (2004)

20. Watanabe, K., Watanabe, S.: Stochastic Complexities of Gaussian Mixtures in Variational
Bayesian Approximation. Journal of Machine Learning Research 7, 625–644 (2006)

21. Nakajima, S., Watanabe, S.: Generalization Error and Free Energy of Variational Bayes Ap-
proach of Linear Neural Networks. In: Proc. of ICONIP, Taipei, Taiwan, pp. 55–60 (2005)

22. Barber, D., Chiappa, S.: Unified Inference for Variational Bayesian Linear Gaussian State-
Space Models. In: Advances in NIPS, vol. 19 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On a Singular Point to Contribute to a Learning

Coefficient and Weighted Resolution of
Singularities

Takeshi Matsuda and Sumio Watanabe

1 Department of Computational Intelligence and Systems Science, Tokyo Institute of
Technology, Mailbox R2-5, 4259 Nagatsuta-chou, Midori-Ku, Yokohama, Kanagawa,

226-8503, Japan
2 Precision and Intelligence Laboratory, Tokyo Institute of Technology,Mailbox R2-5,

4259 Nagatsuta-chou, Midori-Ku, Yokohama, Kanagawa, 226-8503, Japan

Abstract. A lot of learning machines which have the hidden variables
or the hierarchical structures are the singular statistical models. They
have a different learning performance from the regular statistical models.
In this paper, we show that the learning coefficient is easily computed
by weighted blow up, in contrast, and that there is the case that the
learning coefficient cannot be correctly computed by blowing up at the
origin O only.

1 Introduction

Learning machines which have its singular Fisher information matrix is called
the singular models. For example, layered neural networks, normal mixtures,
hidden Markov models, Boltzmann machines and Bayes networks are the singular
statistical models. These learning machines are not subject to the conventional
statistical theory of the regular statistical models. Recently, the generalization
performance of a singular learning machine in Bayes estimation determined by
the algebraic geometrical structure of the learning machine was proved [7]. The
generalization error

G(Xn) =
∫

q(x)log
q(x)

p(x | Xn)
dx

is equal to

G(n) =
λ

n
+ o(

1
n

),

where n is the number of training samples and λ is the learning coefficient. We
are able to express G(n) with a stochastic complexity F (n) as follows:

G(n) = F (n + 1) − F (n),

where F (n) = λlogn− (m− 1)loglogn+ o(1). The constants (−λ) and m are the
values which depend on the complex function of one variable

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 11–18, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

12 T. Matsuda and S. Watanabe

ζ(z) =
∫

H(ω)zϕ(ω)dω,

where H(ω) =
∫

q(x)log q(x)
p(x|ω)dx is the Kullback information, q(x) is a true dis-

tribution and p(x | ω) is a learning machine. The learning coefficients of some
learning machine, for example a three-layer perceptron and a reduced rank re-
gression have been obtained by using blow-up process [2] and [3]. When the
origin O is a singular point, we blow up at the origin O. Then it can happen
that the singular points appear at the origin O and another point (not origin).
Therefore, there is the case where the learning coefficient λ cannot be decided
only doing the blow-up at O. In this paper, we introduce the calculation method
of the learning coefficients using the weighted blowup and construct the example
that the learning coefficient cannot calculate by only doing blow-up at O. The
weighted blowup is method to get resolution of singularities using weight of poly-
nomials or analytic functions ,and by this method, we can easily get resolution
of singularities.

2 Bayes Learning and Asymptotic Theory

In this section, we summarize the well known statistical framework of Bayes
estimation.

Let Xn = (X1, X2, ..., Xn) be training samples which are independently taken
from the probability distribution q(x). q(x) is called true distribution and defined
on the N -dimensional Euclidean space RN . The integer n is referred to as the
number of training samples. A learning machine is represented by a conditional
probability density function p(x|w) where w is a d-dimensional parameter. Let
ϕ(w) be a priori distribution. Then the Bayes a posteriori distribution is defined
by

p(w|Xn) =
1

Z(Xn)
ϕ(w)

n∏

i=1

p(Xi|w),

where Z(Xn) is the normalizing constant. The Bayes predictive distribution is
also defined by

p(x|Xn) =
∫

p(x|w) p(w|Xn) dw,

which is the estimated probability density function on RN by Bayes learning.
The Generalization error G(n) is defined by

G(n) = E
[∫

q(x) log
q(x)

p(x|Xn)
dx

]
,

where E[·] denotes the expectation value overall sets of Xn. Also we define the
stochastic complexity by

F (n) = E
[
− logZ(Xn)

]
+ n

∫

q(x) log q(x)dx.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On a Singular Point to Contribute to a Learning Coefficient 13

Relation between generalization error and stochastic complexity is as follows;

G(n) = F (n + 1) − F (n)

The stochastic complexity indicates how appropriate the set of p(x|w) and ϕ(w)
are for a given training sample a set of Xn. In the learning theory, it is important
to clarify the asymptotic behaviors of G(n) and F (n). The following theorem
shows the relation between algebraic geometry of the Kullback information and
the singular learning machines.

Theorem 1. When n tends to infinity, the generalization error and the stochas-
tic complexity are respectively given by

G(n) =
λ

n
+ o(

1
n

),

F (n) = λ log n − (m − 1) log log n + O(1),

where (−λ) and m are each equal to the largest pole and its order of the zeta
function,

ζ(z) =
∫

H(w)z ϕ(w) dw.

Here H(w) is the Kullback information

H(w) =
∫

q(x) log
q(x)

p(x|w)
dx.

Proof. The proof is given in [7].

3 Preliminary Results and Facts

First, we review the definition of analytic equivalence of Kullback information.
Let U and V be open sets in Rd whose closures are compact. Let K(w) and
H(w) be analytic functions on U and V , respectively.

Definition 1. Two real analytic functions K(w) on U and H(w) on V are
analytically equivalent if a bijective analytic map g : V → U exists

H(w) = K(g(w)) w ∈ V

and the Jacobian |g′(w)| satisfies ε < |g′(w)| < C in V for some ε, C > 0.

Theorem1 shows that the learning coefficient is determined by the Kullback infor-
mation and the a priori distribution. From the definition of analytic equivalence,
the following theorem holds.

Theorem 2. If K(w) and H(w) are analytically equivalent, then two zeta func-
tions

ζ1(z) =
∫

U

K(w)zdw,

ζ2(z) =
∫

V

H(w)zdw

have the same largest pole.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

14 T. Matsuda and S. Watanabe

Proof. The proof of this theorem is to see [6].

Note that two zeta functions do not have the same second largest pole in general.
Now, we will explain the concept of weighted resolution of singularities of Kull-
back information.

Let v = (v1, . . . , vn) be a set of non-negative integers. For a monomial xu =
xu1

1 · · · xun
n ,we define the weighted degree ordw(xu) with the weight v as

ordw(xu) =< v, u >= v1u1 + . . . + vnun.

A polynomial is said to be quasi-homogeneous if it is a linear combination of the
monomials which have the same weighted degree with some weight. An analytic
function f is said to have an algebraic isolated singularity at O, if the dimension
of a real vector space

M(f) = R[[x1, · · · , xn]]/ <
∂f

∂x1
, · · · , ∂f

∂xn
>

is finite. The following theorem shows a sufficient condition of the analytic equiv-
alence.

Theorem 3. Let f be an analytic function

f = fd + fd+1 + fd+2 + · · · , fd �= 0

where fd is a quasi-homegeneous polynomial of degree q with weight v. If the
weighted degree of xui exceeds d and c1, . . . , cs are constants, then f and fd +
c1x

u1 + · · · + csx
us are analytically equivalent.

Proof. For the proof of this theorem, see [1].

Finaly, we will explain the concept of weighted blow up. The definitiion of a toric
variety is to see [5].

We fix the lattice N = Zn, Δ = {the first quadrant σ of Rn and its all faces }.
Then we have TN (Δ) = Rn, where TN(Δ) is a toric variety associated with a fan
Δ in NR = N ⊗Z R. Let Δ(w) be a decomposition of Δ for w = (w1, · · · , wn) ∈
σ ∩ N . We assume Δ(w) is a fan consisting of all faces of

σ1 = R≥0e1 + · · · + R≥0ei−1 + R≥0w + R≥0ei+1 + · · · + R≥0en.

Then the corresponding morphism

φ : TN (Δ(w)) → TN(Δ)

is called a weighted blowup by weight w. Specifically we can calculate as follows.
Let x1, · · · , xn be eigen coordinates in Rn, for Zm(cyclic group). The weighted
blow up of X ⊂ Rn with weights a1, · · · , an is a projective birational morphism
π : Y → X such that Y is covered by open sets U1, · · · , Un, where

Ui = Rn
y1,···,yn

/Zai(−a1, · · · , m, · · · , −an).

The coordinates in X and in Ui are related by

xi = y
ai
m

i , xj = yj · y
aj
m

i , j �= i.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On a Singular Point to Contribute to a Learning Coefficient 15

4 Learning Coefficients by Weighted Resolution of
Singularities

In this section, we introduce the calculation method of learning coefficients using
weighted blowup. First, we prove the following theorem.

4.1 Main Theorem

Theorem 4. Let H be an analytic function satisfying the following condition:
(1) H = Hd + Hd+1 + · · ·,
(2) Hd = xa1

1 · · · xan
n (xm1

1 + · · · + xmn
n),

(3) Hd is a weighted homogeneous polynomial of weighted degree d with weight
v = (p1, · · · , pn),

(4) Hd has an algebraic isolated singularity at O,
(5) Hd is non-degenerate.
We consider the following zeta function

ζ(z) =
∫

H(x)αzϕ(x)dx,

where x = (x1, · · · , xn). Then there exists some ai, (1 ≤ i ≤ n) and
{

λ = max{ p1+···+pn

(p1a1+···+pnan+pimi)α
}

m = 1

Proof. Let H ′
d be a weighted homogeneous polynomial of weight d. Then we can

write H as follow:

H = xa1
1 · · ·xan

n (g(x) + H ′
d+1 + · · ·),

and there exists the weighted homogeneous polynomial g(x) which satisfies

g(x) ∼ H ′
d + H ′

d+1 + · · · ,

where g(x) = xm1
1 + · · · + xmn

n . If two analytic functions are analytically equiva-
lent, then they have the same largest poles. Therefore, we consider the following
zeta function ζ1(z) to calculate the largest pole and its order of ζ(z),

ζ1(z) = {(xa1
1 · · ·xan

n)g(x)}αzϕ(x)dx.

From the definition of weighted blowup, we get

ζ1(z) =
n∑

i=1

∫

Ui

{(xa1
1 · · ·x

p1a1+···+pnan+pimi
pi

i · · · xan
n)

(xm1
1 + · · · + xmn

n)} | Ji | ϕi(x)dx,

where
Ui = {(x1, · · · , xn); | xi |≤| x

pi
p1
1 , · · · , | xi |≤| x

pi
pn
n |}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

16 T. Matsuda and S. Watanabe

| Ji |= x
p1+···+pi−1+pi+1+···+pn

pi

i .

Since

ϕi(x) = ϕi(x1x
p1
pi

i , x2x
p2
pi

i , · · · , xnx
pn
pi

i) = ϕi(0, · · · , 0)

+x1ϕix1(0, · · · , 0) + xnϕixn(0, · · · , 0) +
1
2!

{x2
1ϕix1x1(0, · · · , 0)

+ · · · + x2
nϕixnxn(0, · · · , 0) + x1x2ϕix1x2(0, · · · , 0) · · ·+

+xnx1ϕixnx1(0, · · · , 0)},

we have the following regular function

ζ1(z) =
ϕi(0, · · · , 0)

z + p1+···+pn

α(p1a1+···+pnan+pimi)

+ · · ·

(Re(z) > −p1 + · · · + pi−1 + 3pi + pi+1 + · · · + pn

α(p1a1 + · · · + pnan + pimi)
).

Hence we obtain {
λ = max{ p1+···+pn

(p1a1+···+pnan+pimi)α
}

m = 1.

}

For instance, let H1 = x2 + 2xy2 = x(x + 2y2), then p1 = 2, p2 = 1, a1 = 1,
a2 = 0, m1 = 1 and m2 = 2. Hence we get λ = 3

4 . However, we cannot apply this
theorem to the following case. Let H2 = x2 +2xy2 +y4 (degenerate polynomial),
then λ = 1

2 .
Next, let us study the following analytic function;

H(x, y) = xp + Σqk+pl≤pqx
kyl + yq.

Then since H ∼/xp + yq, we cannot apply the above theorem. The maps of blow
up and weighted blow up are birational maps. Therefore composite mapping is
also birational. Using this fact, we get the following theorem.

Theorem 5. Let H be an analytic function on the 2-dimensional space which
satisfying

H = xp +
∑

qk+pl<pq

aklx
kyl + yq,

and a = K + L be the minimum degree of aklx
kyl = aKLxKyL. We assume K

and L are the value of minimun k and l which satisfy akl �= 0 ,respectively. Then
the pole λ′ that is the nearest to the origin calculated by resolution of singularity
at O is as follows.

{
λ′ = max{ p−K+L

pL , 2
K+L , q−L+K

Kq }
m = 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

On a Singular Point to Contribute to a Learning Coefficient 17

Proof. It is easy to show that the condition satisfying

xp + yq ∼/ xp +
∑

qk+pl<pq

aklx
kyl + yq

is L < q. Let Y ⊂ R2 be the curve H = 0. Y is singular at the origin O. We will
blow up Y at the origin. Substitute x = x, y = xy on Y11(Y = Y11 ∪ Y12)

H11 = xK+L(xp−(K+L) +
∑

aklx
k+l−(K+L)yl + xq−(K+L)yq) onY11.

Similarly, substitute x = xy, y = y on Y12

H12 = yK+L(xpyp−(K+L) +
∑

aklx
kyk+l−(K+L) + yq−(K+L)).

Then, clearly we have

H11 ∼ xK+L(xp−(K+L) + aKLyL),

H12 ∼ yK+L(aKLxK + yq−(K+L)).

Therefore, we should consider the following zeta function.

ζ1(z) =
∫

Y11

xK+L(xp−(K+L) + aKLyL)xϕ(x, xy)dxdy+

∫

Y12

yK+L(aKLxK + yp−(K+L))yϕ(xy, y)dxdy,

where
Y11 = {(x, y) ∈ Y ; | x |≤| y |},

Y12 = {(x, y) ∈ Y ; | y |≤| x |}.

From the previous theorem, we get
{

λ = max{ p−K+L
pL , 2

K+L , q−L+K
Kq }

m = 1

It’s not always true that λ′ is the learning coefficient (i.e. λ �= λ′).

4.2 Example

(1)Let H = x5 + y2 + Σ2k+5l<10aklx
kyl, then λ = λ′ = 1.

(2)Let H = x5 + y3 + Σ3k+5l<15aklx
kyl. We assume a11 = 0.

If multi(A,B)(H11) ≤ multi(0,0)(H11), then λ = λ′.
The symbol multi(A,B)(H11) expresses multiplicity of H11 at (A, B) ∈ R2. For

example, we put a12 = −2 and a21 = 1. Then we get λ′ = 4
5 from the origin

singular point O. But λ = 3
5 from the singular point (0, 1) on H11.

In general, if multi(A,B)(H11) ≤ multi(0,0)(H11), then we have λ = λ′.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

18 T. Matsuda and S. Watanabe

5 Conclusion

In this paper, we have introduced the calculation method of learning coefficients
by weighted blow up and studied the relation between the learning coefficients
and resolution of singularities. If the analytic function is analytically equivalent
to xm1

1 + · · · + xmn
n , then we can easily compute the learning coefficient by

weighted blow up. Whereas if it is not so, we showed that there is the case that
the pole which is obtained by resolution of singularity at the origin O is not the
learning coefficient. By the coefficient part of the analytic function, a wide range
of singular points appears. It is the problem for the future study to construct
mathematical criterion for the higher dimensional above case.

Acknowledgment. This work was supported by the Ministry of Education, Sci-
ence, Sports, and Culture in Japan, Grant-in-aid for scientific research 18079007.

References

1. Arnol’d, I.V.: Normal forms of functions in neighbourhoods of degenerate critical
points. Russian Mathematical Surveys. 29(2), 10–50 (1974)

2. Aoyagi, M., Watanabe, S.: Stochastic complexities of reduced rank regression in
Bayesian estimation. Neural Networks 18(7), 924–933 (2005)

3. Aoyagi, M., Watanabe, S.: Resolution of singularities and generalization error with
Bayesian estimation for layered neural network. IEICE Trans. J88-D-II(10), 2112–
2124 (2005)

4. Atiyah, M.: Resolution of singularities and division of distributions. Communica-
tions of Pure and Applied Mathematics 13, 145–150 (1970)

5. Fulton, W.: Introduction to Toric Varieties, vol. 131. Princeton University Press,
Princeton (1993)

6. Matsuda, T., Watanabe, S.: Analytic Equivalence of Bayes a Posteriori Distribu-
tions. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS,
vol. 4131, pp. 113–121. Springer, Heidelberg (2006)

7. Watanabe, S.: Algebraic Analysis for Non-identifiable Learning Machines. Neural
Computation 13(4), 899–933 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Prediction Accuracy of Echo

State Neural Networks by Anti-Oja’s Learning

Štefan Babinec1 and Jǐŕı Posṕıchal2

1 Department of Mathematics, Fac. of Chemical and Food Technology
Slovak University of Technology, 812 37 Bratislava, Slovakia

Phone/FAX: +421 2 52495177
stefan.babinec@stuba.sk

2 Institute of Applied Informatics, Fac. of Informatics and Information Technologies
Slovak University of Technology, 842 16 Bratislava, Slovakia

Phone: +421 2 60291548, FAX: +421 2 65420587
pospichal@fiit.stuba.sk

Abstract. Echo state neural networks, which are a special case of re-
current neural networks, are studied from the viewpoint of their learning
ability, with a goal to achieve their greater prediction ability. A stan-
dard training of these neural networks uses pseudoinverse matrix for
one-step learning of weights from hidden to output neurons. This regu-
lar adaptation of Echo State neural networks was optimized by updat-
ing the weights of the dynamic reservoir with Anti-Oja’s learning. Echo
State neural networks use dynamics of this massive and randomly ini-
tialized dynamic reservoir to extract interesting properties of incoming
sequences. This approach was tested in laser fluctuations and Mackey-
Glass time series prediction. The prediction error achieved by this ap-
proach was substantially smaller in comparison with prediction error
achieved by a standard algorithm.

1 Introduction

From the point of information transfer during processing, neural networks can be
divided into two types: feed-forward neural networks and recurrent neural net-
works. Unlike the feed forward networks, recurrent neural networks contain at
least one cyclical path, where the same input information repeatedly influences
the activity of the neurons in a cyclical path. The advantage of such networks
is their close correspondence to biological neural networks, but there are many
theoretical and practical difficulties connected with their adaptation and imple-
mentation. The common problem of all such networks is the lack of an effective
supervised training algorithm. This problem was overcome with Echo State neu-
ral networks [2]. A very fast algorithm is used in these networks consisting of
a calculation of one pseudo-inverse matrix, which is a standard numerical task.
But the advantage of one step learning turns into a disadvantage when we try
to improve the predictive abilities of the network. The pseudo-inverse matrix
approach does not offer any straightforward solution in this case.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 19–28, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

20 Š. Babinec and J. Posṕıchal

One possibility of how to improve the dynamics of such a neural network
is an adaptation of the dynamic reservoir. It is not feasible to apply the usual
learning approaches because of the large number of neurons in the recurrent part
of an Echo State neural network. However, it motivates us to use more robust
technique. This led us to the idea of training the reservoir weights by Anti-Oja’s
learning, which provides a gradual change of the weights and a significantly
lower computational cost. In this paper, a one-step learning process, involv-
ing the use of a pseudo-inverse matrix, is combined with Anti-Oja’s learning,
adapting the weights of the dynamic reservoir itself. Connection between ”liq-
uid state” computing, related to Echo states was mentioned previously in [4,6].
The predictive abilities of optimized Echo State neural networks were tested on
laser-fluctuations and Mackey-Glass time series, which are standard benchmark
data.

2 Echo State Neural Network

Echo State neural networks are atypical in architecture and training of recurrent
neural networks (rnn). This new approach leads to a fast, simple and construc-
tive supervised learning algorithm for the rnn. The basic idea of Echo State
neural networks is an application of a huge reservoir, as a source of dynamic
behavior of a neural network, from which neural activities are combined into the
required output.

The activity of hidden layer neurons in an rnn is further denoted as xn =
(x1(n), x2(n), . . . , xN (n)), where xi(n) is the output of the ith-hidden neuron
in time (n), and (N) is the number of hidden neurons. Under certain condi-
tions, each xi(n) is a function of the networks previous inputs u(n),u(n−1), . . .,
previously processed by the network. The input vector is denoted as un =
(u1(n), u2(n), . . . , uK(n)), where ui(n) is the input of the ith-input neuron in
time (n) and (K) is the number of input neurons. Therefore, there exists such a
function, E, so that:

x(n) = E(u(n),u(n − 1), . . .). (1)

Metaphorically speaking, the state of the neural network x(n) can be considered
as an ”echo”, or in other words, a reflection of its previous inputs.

2.1 Description of the Neural Network

Neural network consists of (K) input, (N) hidden and (L) output neurons.
The state of the neurons in the input layer at time (n) is characterized by
the vector un = (u1(n), u2(n), . . . , uK(n)), in the output layer by the vector
yn = (y1(n), y2(n), . . . , yL(n)) and in the hidden layer by the vector xn =
(x1(n), x2(n), . . . , xN (n)). The values of all the synaptic weights will be stored
in matrices. An input weight matrix will be created: Win = (win

ij) with a size of
N×K, a weight matrix between hidden neurons:W = (wij) with a size of N ×N ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Prediction Accuracy of Echo State Neural Networks 21

a matrix of output weights: Wout = (wout
ij) with a size of L×(K +N +L), and a

matrix of weights from the output back to the reservoir: Wback = (wback
ij) with

a size of N × L. It is notable that, in this type of network, both direct input-
output weights, as well as the weights between output neurons are allowed. The

Fig. 1. The typical architecture of Echo State neural networks

structure and topology of Echo State networks can be adjusted according to their
current task. It is not necessary, for example, to use sigmoid output neurons, back
weights from the output layer to the reservoir may or may not exist, and even
the input neurons may not be used. In this application, sigmoid output neurons
were not used, however back weights from the output layer to the reservoir were
used. No loops were used for output neurons. We can find detailed description
of the learning algorithm in [2,3].

3 Motivation

At first we have to realize, how important the values and the structure (inter-
connection between hidden neurons) of synaptic weights are for the prediction
ability of Echo State neural networks. We will do two simple experiments. In the
first one, Echo State neural network will be trained independently fifty times
and only the values of synaptic weights in its hidden part will be randomly
changed. In the second experiment we will do the same thing, but with one dif-
ference. Now we will change the network topology of the dynamic reservoir. We
can see graphical representation of these experiments in the Fig. 2. These results
led us to one important conclusion from the results shown in the Fig. 2. Values
of synaptic weights and the structure of the dynamic reservoir have big influence

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

22 Š. Babinec and J. Posṕıchal

Fig. 2. Influence of the values and the structure of synaptic weights in dynamic reser-
voir on the prediction quality. The order of experiments is arbitrary.

on the prediction ability of Echo State networks. Therefore, our main goal is to
optimize or train the synaptic weights in the dynamic reservoir. However, it is
not feasible to apply the usual learning approaches due to the large number of
neurons in the recurrent part of an Echo State neural network.

Here we have to realize second important observation about the nature of Echo
State neural networks and their dynamics. The neurons in the dynamic reser-
voir should be slightly interconnected. It means the weight matrix W(synaptic
weights matrix of internal neurons) should be sparse. This is a simple method
how to encourage a rich variety of dynamics between different internal units.

Now we can explain why are we using Anti-Oja’s learning as the supplement of
the classic one-step learning algorithm in our experiments. Anti-Oja’s learning
changes synaptic weights in a way that decreases correlation between hidden
neurons. In final consequence, it results in increase of diversity between internal
state dynamics of hidden neurons, which will become much richer. We can say
that the Anti-Oja’s learning quells the effect of some synaptic weights and on
the other side, it raises impact of some others. This learning changes values of
synaptic weights and the structure of hidden layer, so it optimizes the dynamic
reservoir in the required way. Moreover, the computational demands of Anti-
Oja’s learning are substantially lower than those of standard learning techniques
or optimization methods. A more detailed description of Anti-Oja’s learning is
presented in the next chapter.

3.1 Anti-Oja’s Learning Rule

The only difference between Anti-Hebbian and Hebbian learning is in weight
update formula, which is in case of Anti-Hebbian learning negative (w(n + 1) =
w(n) − Δw(n)). From that reason, we will introduce the description of Hebbian

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Prediction Accuracy of Echo State Neural Networks 23

learning. Hebbian learning [1] is the first and the best-known learning rule in
neural networks. Hebb first suggested this approach in his book The Organization
of Behavior [5]. Its essence consists of the following two rules:

– If two neurons, located at the opposite sides of a synapse, are activated
concurrently (synchronously), then the value of the synaptic weight will in-
crease.

– If two neurons, located at the opposite sides of a synapse, are activated at
different times (asynchronously), then the value of the synaptic weight will
decrease.

The synapses of neural networks, which follow the rules named before, are called
Hebbian synapses. The change in a synaptic weight (wkj) of a Hebbian synapse
can be expressed mathematically for a pair of neurons k and j, where j sends
data to k, and for a time, noted as n, is as follows:

Δwkj(n) = F (yk(n), xj(n)). (2)

Here, xj(n) represents the activity of a pre-synaptic neuron and yk(n) the ac-
tivity of a post-synaptic neuron. F represents the function of post-synaptic and
pre-synaptic activities of the already mentioned neurons yk(n) and xj(n). These
activities are sometimes considered scale-free. A special case of Equation (2) is
the following formula:

Δwkj(n) = ηyk(n)zj(n). (3)

In this formula, η is a small positive constant, the so-called learning rate. Equa-
tion (3) is the simplest approach to a change of a synaptic weight wkj , expressed
as a product of the input and output signals. This rule clearly emphasizes the cor-
relative nature of Hebbian synapses. Sometimes, it is referred to as the activity-
product rule. It follows from Equation (3) that repeated application of the input
signal (pre-synaptic activity) xj(n) leads to an exponential increase, which even-
tually can lead to saturation of wkj . To avoid such a situation, there is a need to
limit the growth of the synaptic weight. One of the possibilities is to introduce a
nonlinear, forgetting factor into formula (3) that defines the change of wkj . The
change of the synaptic weight will be redefined as follows:

Δwkj(n) = ηyk(n)xj(n) − αyk(n)wkj(n). (4)

Here, α is a new, positive constant and wkj(n) is a synaptic weight in time n.
This formula can be further refined into:

Δwkj(n) = αyk(n)[cxj(n) − wkj(n)], (5)

where c is equal to η/α. This formula (5) is sometimes called the generalized
Hebbian Rule. The meaning of this formula is, that if xj(n) < wkj(n)/c then the
modified synaptic weight wkj(n + 1) in time n + 1 decreases proportionally to a
post-synaptic activity yk(n). On the other hand, when xj(n) > wkj(n)/c, then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

24 Š. Babinec and J. Posṕıchal

the synaptic weight wkj(n + 1) increases proportionally to yk(n). We have used
in our experiments another modification of Hebbian learning rule called Oja’s
learning rule:

Δwkj(n) = ηyk(n)[xj(n) − yk(n)wkj(n)], (6)

where η is small positive constant. There were two reasons for using this last
Oja’s rule in our experiments. With this rule, the prediction accuracy was on
average slightly better, but more importantly, it had less variance.

4 Experiments

Most of the publications about prediction strive to achieve the best prediction,
which is then compared with results of other prediction systems on selected data.
This paper is different in this aim; its goal was to compare results by original
”one-step” learning algorithm, with our new approach. We have used two classic
benchmarking data sets.

The first testing set was composed of a time sequence of 1000 samples of laser
fluctuations data, and the quality of prediction was measured by an error of
prediction in the next 100 steps. A mean absolute percentage error (MAPE) was
used to measure the quality of prediction on this testing set, where test values
P real

i and predicted values P calc
i are used, and N is the number of couples of

values (the length of the predicted time series):

MAPE =

∑N
i=1

∣
∣
∣
P real

i −P calc
i

P real
i

∣
∣
∣

N
× 100. (7)

The second testing set was composed of a time sequence of 3000 samples of
Mackey-Glass (MG) data, and the quality of prediction was measured by an
error of prediction in the independently generated 2000 steps. A normalized
root mean square error (NRMSE) was used to measure the quality of prediction
on this second testing set, where d(n) and y(n) are real, resp. predicted values.
σ2 is a variance of MG signal and m is a number of independent instances of
MG set, on which the trained Echo State neural network was tested. In our case,
m equals 50.

NRMSEk =

(∑m
j=1(dj(n + k) − yj(n + k))2

mσ2

)1/2

. (8)

The most used prediction horizon in literature is 84 steps ahead in the series
(variable k in equation 8). From that reason, we will use the same value. Different
error measures were used here to allow eventual comparison with previous results
[2,7].

The learning was divided into two phases. The first phase was aimed to find
the best parameters for Echo State neural network for quality prediction results
from the training set. No optimization involving Anti-Oja’s learning was used in
this first phase. The results for laser data are in Table 1 and for Mackey-glass

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Prediction Accuracy of Echo State Neural Networks 25

Table 1. Results of representative experiments in the first phase: quality of the laser
prediction for different parameter values

Index Size of DR Alpha Average MAPE Best MAPE
1 200 0.7 38.296% 34.233%

2 200 0.8 33.864% 31.244%

3 250 0.7 36.291% 31.343%

4 250 0.8 34.236% 29.526%

5 300 0.8 35.943% 32.855%

6 300 0.8 35.441% 30.893%

Table 2. Results of representative experiments in the first phase: quality of the Mackey-
Glass prediction for different parameter values

Index Size of DR Alpha Average NRMSE84 Best NRMSE84

1 200 0.7 0.00051 0.00045

2 200 0.8 0.00045 0.00039

3 300 0.7 0.00049 0.00042

4 300 0.8 0.00046 0.00038

5 400 0.7 0.00040 0.00036

6 400 0.8 0.00036 0.00034

data in Table 2. In these tables, DR represents the dynamic reservoir; Alpha is
the parameter influencing the ability of the neural network to exhibit echo states.
These DR and Alpha values were chosen in accordance with the proposal used
by Jaeger (see [2]). Experiments were carried out in the following way. For each
value of DR and the parameter Alpha, the values of synaptic weights in DR were
randomly generated 1000 times. This number was estimated to be sufficiently
large enough for statistical evaluation of prediction error on a testing set and
for each initialization of weights, the error for the testing set was calculated.
Further, an average error of all 1000 trials is presented in the columns Average
MAPE (Table 1) and Average NRMSE84 (Table 2). Also, the smallest achieved
error was recorded in the Best MAPE and Best NRMSE84 columns in the same
tables. A clear correlation between Best and Average value columns is apparent
from Tables 1 and 2. When a better Average MAPE (Average NRMSE84) was
achieved, there is also a better Best MAPE (Best NRMSE84). The best results
for laser prediction were achieved with a DR consisting of 250 neurons and for
the parameter Alpha 0.8. For Mackey-Glass prediction, the best results were
achieved with a DR composed of 400 neurons and for Alpha 0.8.

The main experiments were carried out in the second phase with a partial
knowledge of behavior of the neural network gained from the first phase. The
parameters of the neural network and the initialization of the synaptic weights of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

26 Š. Babinec and J. Posṕıchal

the dynamic reservoir were chosen based on the best results from the first phase
of the experiments. The adjustment of synaptic weights using Oja’s learning rule
(6) was carried out for all the samples of the training set. The only exceptions
were the last 10 samples in the case of laser prediction. These 10 samples were
chosen as the validation set, which was, after the adjustment, used for checking
the prediction quality of the samples, which were not available for training the
neural network. The validation set for Mackey-Glass data was newly generated
and was composed of 500 samples. Using this method, a great number of itera-
tions was carried out, while the use of the validation set monitored the quality of
prediction. The representative results are given in Tables 3 and 4. The variable

Table 3. Results of representative experiments for laser prediction in the second phase
after optimization using Anti-Oja’s learning

Index Number of iterations η MAPE 1 MAPE 2
1 1630 0.001 24.331%
2 2650 0.0001 29.526% 18.098%
3 4830 0.00001 21.567%

Table 4. Results of representative experiments for Mackey-Glass prediction in the
second phase after optimization using Anti-Oja’s learning

Index Number of iterations η NRMSE84 1 NRMSE84 2
1 1120 0.001 0.00032
2 1786 0.0001 0.00034 0.00031
3 2700 0.00001 0.00027

Number of iterations. Tells how many iterations were required to produce the
smallest error with the validation set. The variable η represent those values of
parameter from Equation (6), which were used in the calculations that yielded
the best results on the validation set after optimization of the neural network
by Anti-Oja’s learning. The variables MAPE 1 / NRMSE84 1 represent the pre-
diction error on the testing set before optimization. This value was the same for
all the experiments, since each optimization started with a neural network with
the same initialization of weights and other parameters. Variable MAPE 2 /
NRMSE84 2 provides the prediction error on the testing set after optimization
using Anti-Oja’s learning.

The results indicate that the initialization of weights in the dynamic reservoir
has a decisive role in prediction abilities of Echo State neural networks. Another
result is that an optimization using Anti-Oja’s learning can substantially improve
results. These conclusions can be drawn from Figures 3 and 4 as well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the Prediction Accuracy of Echo State Neural Networks 27

Fig. 3. Testing data: 100 records of laser fluctuations and 100 values predicted by
original Echo State neural network with ”one-step” learning algorithm (Experiment
No.4 from Table 1, DR Size 250, Alpha 0.8, MAPE 29.52 %)

Fig. 4. Testing data: 100 records of laser fluctuations and 100 values predicted by Echo
State neural network optimized with Anti-Oja’s learning (Experiment No. 2 from Table
3, MAPE 18.09 %)

5 Conclusions

Echo State neural networks are relatively new in the domain of neural networks.
Their advantage is a closer connection with biological models inherent to recur-
rent neural networks and in their usage of the reservoir of dynamic behavior
without adjusting the weights within the hidden layer. Echo State neural net-
works have a substantial advantage over other types of recurrent networks in
their one-step learning ability, even though this approach may not be very bio-
logically plausible. As a disadvantage, they can be considered to have a relatively
low ability to generalize and in general lack an approach, which would be able
to improve, at least partially, a previously learned network.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

28 Š. Babinec and J. Posṕıchal

The problem of improving on a previously learned network does not emerge
in the case of common feed-forward or even other recurrent neural networks.
If the need arises to improve the network, a simple adjustment of adding more
iterations of the back propagation of error can help. However, this does not work
for the Echo State networks, when a standard algorithm allows an all or nothing
approach, for example: either we shall teach, or we shall not teach the neural
network, but nothing between. The already taught neural network cannot be
partially amended by this approach.

The work described in this paper tried to solve this problem, where one special
approach was used to improve the learning ability of the Echo State neural
network. This approach originates in metaphors from nature and it is application
of the well-known Anti-Oja’s learning. The computational cost of the Anti-Oja’s
learning is substantial, but hybrid optimization is probably the only feasible way
to improve an already trained Echo State network.

We have chosen laser fluctuations and Mackey-Glass time series as a testing
data. Our aim was to find out if this approach is able to increase prediction
quality of Echo State neural networks. From the results shown in the paper, it is
clear, that this aim has been accomplished. Application of Anti-Oja’s learning in
Echo State neural networks can increase the quality of the network’s prediction.

Acknowledgement. This work was supported by Slovak Scientific Grant Agency,
Grant VEGA 1/1047/04 and by Slovak Research Development Agency under
the contract No. APVT-20-002504.

References

1. Haykin, S.: Neural networks - A comprehensive foundation. Macmillian Publishing,
NYC (1994)

2. Jaeger, H.: The Echo State Approach to Analysing and Training Recurrent Neural
Networks. German National Research Center for Information Technology, GMD
report 148 (2001)

3. Jaeger, H.: Short Term Memory in Echo State Networks. German National Research
Center for Information Technology, GMD report 152 (2002)

4. Natschlager, T., Maass, W., Markram, H.: The ”liquid computer”:A novel strategy
for real-time computing on time series. Special Issue on Foundations of Information
Processing of TELEMATIK 8(1), 39–43 (2002)

5. Hebb, D.O.: The organization of behavior: A neuropsychological theory. Wiley, New
York (1949)

6. Goldenholz, D.: Liquid computing: A real effect. Technical report, Boston University
Department of Biomedical Engineering (2002)

7. Babinec, S., Pospichal, J.: Optimization in Echo state neural networks by Metropolis
algorithm. In: Matousek, R., Osmera, P. (eds.) Mendel’2004. Proceedings of the 10th
International Conference on Soft Computing, pp. 155–160. VUT Brno Publishing
(2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Theoretical Analysis of Accuracy of Gaussian

Belief Propagation

Yu Nishiyama1 and Sumio Watanabe2

1 Department of Computational Intelligence and Systems Science,
Tokyo Institute of Technology,

4259, Nagatuta, Midori-ku, Yokohama, 226-8503 Japan
nishiyudesu@cs.pi.titech.ac.jp

2 Precision and Intelligence Laboratory, Tokyo Institute of Technology,
4259, Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan

swatanab@pi.titech.ac.jp

Abstract. Belief propagation (BP) is the calculation method which en-
ables us to obtain the marginal probabilities with a tractable computa-
tional cost. BP is known to provide true marginal probabilities when the
graph describing the target distribution has a tree structure, while do
approximate marginal probabilities when the graph has loops. The accu-
racy of loopy belief propagation (LBP) has been studied. In this paper,
we focus on applying LBP to a multi-dimensional Gaussian distribution
and analytically show how accurate LBP is for some cases.

1 Introduction

Belief propagation (BP) is the calculation method which enables us to obtain the
marginal probabilities with a tractable computational cost and has been widely
studied in the areas such as probabilistic inference for artificial intelligence, turbo
codes, code division multiple access (CDMA) systems, low-density parity check
(LDPC) codes, and probabilistic image processing. BP is known to provide true
marginal probabilities when the graph describing the target distribution has a
tree (singly connected) structure, while do approximate marginal probabilities
when the graph has loops (cycles).

The accuracy of loopy belief propagation (LBP) has been theoretically stud-
ied when the target distributions are discrete distributions [1]-[3] and Gaussian
Markov random fields mainly about the means [4]. The accuracy has also been
studied from the viewpoint of information geometry [5][6]. In probabilistic im-
age processing, the accuracy has been numerically studied as the accuracy of
estimated hyperparameters based on Gaussian graphical models [7][8].

In this paper, we focus on applying loopy belief propagation (LBP) to a multi-
dimensional Gaussian distribution whose inverse covariance matrix corresponds
to the graph with loops. Then, we mathematically show the differences between
true marginal densities and the approximate marginal densities calculated by
LBP. To be more specific, we give the exact solutions of messages and approxi-
mate marginal densities calculated by LBP and give the Kullback-Leibler (KL)

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 29–38, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

30 Y. Nishiyama and S. Watanabe

distances when the inverse covariance matrix corresponds to the graph with a
single loop. Next, we develop the results to the more general case that the graph
has a single loop and an arbitrary tree structure. Furthermore, we give the ex-
pansions of inverse variances of approximate marginal densities up to third-order
when the graph is allowed to have an arbitrary structure (i.e., multiloops).

The situation in which LBP is applied to a multi-dimensional Gaussian dis-
tribution can be seen for example in probabilistic image processing based on
Gaussian graphical models [7][8] and Markov random fields [4]. Besides, clarify-
ing the theoretical properties of LBP in the standard models such as a Gaussian
distribution helps to know the properties of more complex LBP and to design
LBP algorithms efficiently.

This paper is organized as follows. In section 2, we review the scheme for belief
propagation. In section 3, we give the main results of this paper. In section 4,
we give the conclusion and future works.

2 Belief Propagation

Here, we review the scheme for Belief propagation. We review the belief propa-
gation for tree structures in section 2.1, loopy belief propagation in section 2.2,
and the LBP when we apply it to a multi-dimensional Gaussian distribution in
section 2.3.

2.1 Belief Propagation for Tree Structures

Let the target distribution to which we apply LBP be the that of pairwise form

p(x) =
1
Z

∏

{ij}∈B

Wij(xi, xj), (1)

where Z is the normalization constant and B is the set which shows the existences
of correlations between xi and xj . For example, when x = (x1, x2, x3, x4)T and
correlations exist between {x1, x2}, {x2, x3}, and {x1, x4} respectively, the set
B is expressed as B = {{12}, {23}, {14}}. When the graph given by B is a tree
graph, the marginal distributions {pi(xi)}, {pij(xi, xj)} are exactly calculated
as follows by using normalized messages {Mi→j}, {Mj→i}, ({ij} ∈ B).

pi(xi) =
1
Zi

∏

k∈Ni

Mk→i(xi),

pij(xi, xj) =
1

Zij

(∏

k∈Ni\{j}
Mk→i(xi)

)

Wij(xi, xj)
(∏

k∈Nj\{i}
Mk→j(xj)

)

. (2)

Here, both Zi and Zij are the normalization constants and Ni is the subset
of random variables which directly correlate with random variables xi. Ni is
so-called the set of nearest neighbor variables of xi.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Theoretical Analysis of Accuracy of Gaussian Belief Propagation 31

2.2 Loopy Belief Propagation

Eqs.(2) are exactly correct when the graph given by B is a tree graph. In
loopy belief propagation, we also compose marginal distributions by eqs.(2)
when the graph given by B has loops. This leap of logic yields the problem of
convergence of LBP and gives marginal distributions approximately. Since the
marginal distributions {pi(xi)} and {pij(xi, xj)} should satisfy the constraints∫

pij(xi, xj)dxj = pi(xi) for consistency, messages {Mi→j} satisfy the equations
given by

Mi→j(xj) =
1

Z̃ij

∫ ∞

−∞
Wij(xi, xj)

∏

k∈Ni\{j}
Mk→i(xi)dxi,

Mj→i(xi) =
1

Z̃ji

∫ ∞

−∞
Wij(xi, xj)

∏

k∈Nj\{i}
Mk→j(xj)dxj . (3)

Note that there are 2|B| equations in total so that eqs.(3) are the decision equa-
tions for 2|B| messages {Mi→j}.

2.3 Gaussian Belief Propagation

We assume that the target probability density in eq.(1) is a multi-dimensional
Gaussian probability density whose mean vector is 0 and x ∈ Rd:

p(x) =

√
detS

(2π)d
exp

{
−1

2
xT Sx

}
. (4)

Here, S is an inverse covariance matrix and we denote the components of the
matrix S by (S)ij = si,j . Then, Wij(xi, xj) in eq.(1) can be expressed as

Wij(xi, xj) = exp
{
−1

2
(

si,i

|Ni|
x2

i + si,jxixj +
sj,j

|Nj |
x2

j)
}
, (5)

where |Ni| is the number of elements of subset Ni. For simplicity, we put si,i

|Ni| =
s̃i,i. We set the condition |Ni| > 0 for ∀i ∈ {1, · · · , d}.

We assume that the probability densities of messages {Mi→j} are Gaussian
densities:

Mi→j(xj) =

√
λi→j

2π
exp

{
−λi→j

2
x2

j

}
. (6)

Then, by substituting eqs.(6) into eqs.(3), we reduce eqs.(3) to the decision
equations for the parameters of inverse variances {λi→j} as follows.

λ̃i→j = −
s2

i,j

si,i +
∑

k∈Ni\{j} λ̃k→i

. (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

32 Y. Nishiyama and S. Watanabe

Here, {λ̃i→j} are λ̃i→j ≡ λi→j − s̃j,j . After obtaining the values of {λ̃i→j}
which satisfy eqs.(7), we compose messages {Mi→j} by eqs.(6). Next, we com-
pose marginal densities {p̃i(xi)} and {p̃ij(xi, xj)} approximately by substituting
eqs.(6) into eqs.(2). That is, we obtain marginal densities by substituting {λi→j}
which satisfy eqs.(7) into

p̃i(xi) ∝ exp
{
−

∑
k∈Ni

λk→i

2
x2

i

}
, p̃ij(xi, xj) ∝ exp

{
−(xi, xj)

S̃i,j

2

(
xi

xj

)}
,

S̃i,j ≡

⎛

⎜
⎜
⎝

s̃i,i +
∑

k∈Ni\{j}
λk→i si,j

si,j s̃j,j +
∑

k∈Nj\{i}
λk→j

⎞

⎟
⎟
⎠ . (8)

Throughout this paper, we put the inverse variances of approximate marginal
densities calculated by LBP as Λi(≡

∑
k∈Ni

λk→i).

3 Main Results of This Paper

We consider the differences between true and approximate marginal densities
when we apply LBP to a multi-dimensional Gaussian density. We consider the
differences in each case (3.1, 3.2, 3.3). In section 3.1, we give the exact solu-
tions of messages {Mi→j} (equally the inverse variances {λi→j}), approximate
marginal densities p̃i(xi) and p̃ij(xi, xj) (equally {Λi} and {S̃i,i+1}), and the
KL distances when inverse covariance matrix S corresponds to the graph with
a single loop. In section 3.2, we develop the results of 3.1 to the graph with a
single loop and tree structures. In section 3.3, we give the expansions of inverse
covariances of marginal densities {Λi} when the covariances are very small. All
the proofs in section 3 are shown in [9].

3.1 On the Graphs with a Single Loop

We consider the case in which the inverse covariance matrix S can be described as
the graph which have only a single loop as illustrated in Fig.1. Then, without loss
of generality, we can consider the case that the set B is B = {{12}, {23}, · · · , {d−
1d}, {d1}}. For the graph with a single loop, we obtain the following theorem.

Theorem 1. When the inverse covariance matrix S corresponds to the graph
given by B = {{12}, {23}, · · · , {d−1d}, {d1}}, the inverse variances of messages
{λi→j} are given by

λi→i+1 =
si,i+1Δi,i+1 − si+1,i+2Δi+1,i+2 ±

√
D

2Δi+1,i+1
,

λi→i−1 =
si,i−1Δi,i−1 − si−1,i−2Δi−1,i−2 ±

√
D

2Δi−1,i−1
,

D ≡ (detS)2 + (−1)d4s1,2s2,3 · · · sd−1,dsd,1 det S, (9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Theoretical Analysis of Accuracy of Gaussian Belief Propagation 33

s 31 s 12

s 23

x1

x2x3

s d1 s 12

s 23

x1

x2

x3

xd

Fig. 1. Examples of a single loop

where i ∈ {1, 2, · · · , d} and periodic boundary conditions sd,d+1 ≡ sd,1, s1,0 ≡ s1,d

hold. Δi,j are the cofactors of the matrix S.

Theorem 1 gives immediately the following corollary.

Corollary 1. When the inverse covariance matrix S corresponds to the graph
given by B = {{12}, {23}, · · · , {d − 1d}, {d1}}, the inverse variances {Λi} and
the inverse covariance matrices {S̃i,i+1} of approximate marginal densities are
given by

Λi =
detS

Δi,i
(1 +

(−1)d4s1,2 · · · sd,1

detS
)

1
2 , S̃i,i+1 =

(
Ei,i+1
Δi,i

si,i+1

si,i+1
Ei,i+1

Δi+1,i+1

)

, (10)

where

Ei,i+1 ≡ detS +
√

D
2

− si,i+1Δi,i+1. (11)

In corollary 1, if s1,2, s2,3, · · · , sd,1 approach 0, we know that Λi and S̃i,i+1 ap-
proach

Λi → detS

Δi,i
, S̃i,i+1 →

(
detS
Δi,i

0
0 det S

Δi+1,i+1

)

(12)

respectively since Ei,i+1 → detS. These results are equivalent to the inverse co-
variance matrices of the true marginal densities. Taking the limit as s1,2, s2,3, · · · ,
sd,1 → 0 means that the graph with a single loop (e.g., Fig.1) turns to a tree
graph and LBP can calculate marginal densities exactly. Hence, corollary 1 agrees
with and explains the well-known fact that belief propagation is exactly correct
when the graph provided by a target distribution is a tree graph but incorrect
when the graph has loops.

When we calculate the KL distances between true and approximate marginal
densities in order to know the differences between both densities, we obtain the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

34 Y. Nishiyama and S. Watanabe

following theorem. Here, KL and symmetrized KL (SKL) distances are defined
as follows.

KL(q(x)||p(x)) ≡
∫

q(x) log
q(x)
p(x)

dx, (13)

SKL(q(x), p(x)) ≡ KL(q(x)||p(x)) + KL(p(x)||q(x)). (14)

We note that a SKL distance satisfies the definition of distance although a KL
distance does not (since KL(q||p) �= KL(p||q)).

Theorem 2. The KL and SKL distances between true marginal densities pi(xi)
and approximate marginal densities p̃i(xi) calculated by LBP are given by

KL(pi||p̃i) = −1
2

+
1
2
(1 + ε)

1
2 − 1

4
log

(
1 + ε

)
,

SKL(pi, p̃i) = −1 +
1
2
(1 + ε)−

1
2 +

1
2
(1 + ε)

1
2 . (15)

where ε is given by

ε ≡ (−1)d4s1,2 · · · sd,1

detS
. (16)

Similarly, the KL and SKL distances between pij(xi, xj) and p̃ij(xi, xj) are
given by

KL(pi,i+1||p̃i,i+1) = −1 − 1
2

log(1 − Δ̄i,i+1) +
1 +

√
1 + ε

2
+

si,i+1Δi+1,i

detS

−1
2

log

{

(
1 +

√
1 + ε

2
)2 −

s2
i,i+1Δi,iΔi+1,i+1

(detS)2

}

,

SKL(pi,i+1, p̃i,i+1) = −2 +
[
1+

1
1 − Δ̄i,i+1

{
(
1 +

√
1 + ε

2
− si,i+1Δi,i+1

detS
)2

−
s2

i,i+1Δi,iΔi+1,i+1

(detS)2
}−1]1 +

√
1 + ε

2
, (17)

where we put Δ̄i,i+1 ≡ Δ2
i,i+1

Δi,iΔi+1,i+1
.

From the above theorem 2, we can know that both KL and SKL distances go
to 0 as ε tends to 0 since Δ̄i,i+1 tends to 0. We can say that ε is the control
parameter which decides the distances between both marginal densities. The
parameter ε decides the accuracy of LBP in the case that the target distribution
is a multi-dimensional Gaussian density whose inverse covariance matrix S forms
the graph with a single loop.

3.2 On the Graphs with a Single Loop and Tree Structures

From the results for a single loop in section 3.1, we can immediately develop
the results to the more general case that the graph given by B has a single

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Theoretical Analysis of Accuracy of Gaussian Belief Propagation 35

T
ree

Tree Tree

Tree

Fig. 2. Graphs with a single loop and tree structures

s 31 s 12

s 23

x1

x2x3

x4

x5

x6x8

x7

s 26

s 25

s 14

s 37

s 78

Fig. 3. An example

x1

x2x3

x4

x5

x6x8

x7

s’11= s11
s
41

s44

2

s’22= s22
s52
s55

2 s62
s
66

2

s’33= s33
s73

s77

2

s87
s88

2

Fig. 4. The same graph as Fig.3

loop and an arbitrary tree structure as illustrated in Fig. 2. For example, we
consider the graph shown by Fig.3. Then, in practice, we calculate the inverse
variances {Λi}. The variances {Λi} are obtained by solving eqs.(7) when d = 8
and B = {{12}, {23}, {31}, {14}, {25}, {26}, {37}, {78}}. The graph in Fig.3 can
be equivalent to the graph in Fig.4 after replacing inverse variances {si,i} as

s1,1 → s′1,1

(

≡ s1,1 −
s2
4,1

s4,4

)

, s2,2 → s′2,2

(

≡ s2,2 −
s2
5,2

s5,5
−

s2
6,2

s6,6

)

,

s3,3 → s′3,3

⎛

⎝≡ s3,3 −
s2
7,3

s7,7 − s2
8,7

s8,8

⎞

⎠ (18)

(These replacements are understandable by solving eqs.(7) directly). In Fig.4,
the directed edges mean that there exist messages in those directions but not in
reverse directions (e.g., message M1→4(x4) exists but message M4→1(x1) does
not exist between x1 and x4). If we focus on variable nodes x1, x2, and x3, these
variable nodes form a closed single loop. Then, referring to the result of corollary
1, we obtain

Λ′
i =

det S′

Δ′
i,i

(1 − 4s1,2s2,3s3,1

detS′)
1
2 (19)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

36 Y. Nishiyama and S. Watanabe

for i ∈ {1, 2, 3}. Here, S′ and Δ′
i,i are the inverse covariance matrix and the

cofactor respectively composed by {s′i,i} instead of {si,i}. The others {Λi}, i ∈
{4, · · · , 8} are calculated as follows by using the notation of continued fractions.

Λ′
4 = s4,4 −

s2
1,4

Λ′
1+

s2
4,1

s4,4
, Λ′

5 = s5,5 −
s2
2,5

Λ′
2+

s2
5,2

s5,5
, Λ′

6 = s6,6 −
s2
2,6

Λ′
2+

s2
6,2

s6,6
,

Λ′
8 = s8,8 −

s2
7,8

Λ′
7+

s2
8,7

s8,8
, Λ′

7 = s7,7 −
s2
8,7

s8,8
−

s2
3,7

Λ′
3+

s2
7,3

s7,7−
s2
8,7

s8,8
(20)

(These equations are also understandable by solving eqs.(7)).
In a similar way, we obtain {λij}, {Λi}, {S̃i,j}, KL, and SKL distances in

various connected graphs which have at most a single loops.

3.3 Expansions of {Λi} at Small Covariances

In sections 3.1 and 3.2, we address the inverse covariance matrix S whose graph
structure is restricted to the graph with a single loop. In this section, we address
the inverse covariance matrix S whose graph is allowed to have an arbitrary
structure (i.e. the graph has multiloops) but the covariance is very small. To
achieve that, we introduce a new parameter s and change the off-diagonal com-
ponents of the matrix S to (S)ij = ssi,j , where s satisfy 0 ≤ s ≤ 1. If s = 0,
the matrix S turns to a diagonal matrix and if s = 1, the matrix S turns to
the original matrix S in eq.(4). Then, our aim is to obtain the expansions of the
inverse variances {Λi} with respect to s:

Λi(s) = ai0 − ai1s − ai2s
2 − ai3s

3 + · · · (21)

when s satisfies s 	 1.
In this paper, for simplicity, we derive the terms up to third-order. Before

that, we prepare the following theorem for simultaneous equations which {Λi}
satisfy.

Theorem 3. The approximate inverse variances {Λi} calculated by LBP satisfy
either of

∑d
i=1 2|Ni| simultaneous equations

|Ni| − 2 +
2si,i

Λi
=

∑

j∈Ni

±

√

1 +
4s2s2

j,i

ΛjΛi
, i ∈ {1, · · · , d}, (22)

where ± takes an arbitrary sign for each term in the summation.

There exist
∑d

i=1 2|Ni| simultaneous equations since the sign ± assigns either of
positive or negative for each term. In addition, we note that there exist extra
simultaneous equations which have no solution. For example, there is no solution
when |Ni| ≥ 2 for ∃i and all the signs in the summation are negative.

When s = 0 in the matrix S, approximate inverse variance Λi should be equal
to the true inverse variance si,i (i.e., Λi(0) = si,i for i ∈ {1, · · · , d}) since the ma-
trix S becomes a diagonal matrix and LBP algorithm turns to BP algorithm for
tree structures. By imposing these conditions, we obtain the following theorem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Theoretical Analysis of Accuracy of Gaussian Belief Propagation 37

Theorem 4. For
∑d

i=1 2|Ni| simultaneous equations in Theorem 3, conditions
Λi(0) = si,i, i ∈ {1, · · · , d} holds if and only if all the signs in the summation
are positive. That is, the simultaneous equations are given by

|Ni| − 2 +
2si,i

Λi
=

∑

j∈Ni

√

1 +
4s2s2

j,i

ΛjΛi
, i ∈ {1, · · · , d}. (23)

Then, the solutions of the inverse variances {Λi} which satisfy eqs.(23) are ex-
panded with respect to s as follows.

Λi(s) = si,i −
d∑

j=1(=i)

s2
j,i

sj,j
s2 + O(s4). (24)

Compared with the result of theorem 4, the inverse variances of true marginal
densities are expanded as follows.

detS

Δi,i
= si,i −

d∑

j=1(=i)

s2
j,i

sj,j
s2 +

si,i

3
[tr(S−1

d So)3 − tr{(Sd)−1
i,i (So)i,i}3]s3

+O(s4). (25)

Here, matrices Sd and So are the diagonal and off-diagonal matrices which satisfy
S = Sd + sSo respectively. Matrices (Sd)i,i and (So)i,i are the minor matrices of
Sd and So with the i-th row and column omitted. From the eqs.(24)(25), we can
know that the approximate inverse variances {Λi} calculated by LBP give exact
coefficients up to second-order term but yield the differences from third-order
term. When we calculate the KL distances, we obtain the following theorem.

Theorem 5. KL distances from true marginal densities pi(xi) to approximate
marginal densities p̃i(xi) calculated by LBP are expanded as follows with respect
to s for i ∈ {1, 2, · · · , d}.

KL(pi||p̃i) =
(

tr
(S−1

d So)3 − {(Sd)−1
i,i (So)i,i}3

6

)2
s6 + O(s7). (26)

Theorem 5 tells us that approximate marginal densities calculated by LBP are
how close to the true marginal densities when covariances in S are very small.

4 Conclusion and Future Works

In this paper, we analytically show how accurate LBP is when the target distri-
bution is a multi-dimensional Gaussian distribution. In particular, we calculate
the fixed point, approximate marginal densities, and KL distances exactly when
matrix S forms the graph with a single loop. Then, we know that a control pa-
rameter ε decides the accuracy. Next, we develop the result to the more general
case. Furthermore, we show the series expansions of inverse variances {Λi(s)}

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

38 Y. Nishiyama and S. Watanabe

and KL distances up to third-order with respect to s when the matrix S forms
an arbitrary graph. These results contribute to the foundation for understanding
theoretical properties underlying more complex LBP algorithms and designing
LBP algorithms efficiently. We have several future works, some of which are to
derive the convergence rate to a fixed point, to obtain the higher order terms in
eqs.(24), and to compare the theoretical results with numerical experiments.

Acknowledgement

This research was partially supported by the Ministry of Education, Science,
Sports and Culture, Grant-in-Aid for JSPS Fellows and for Scientific Research
18079007, 2007.

References

1. Weiss, Y.: Belief propagation and revision in networks with loops, Technical Report
1616, MIT AI lab (1997)

2. Aji, S.M., Horn, G.B., McEliece, R.J.: On the convergence of iterative decoding on
graphs with a single cycle. In: proc. 1998 ISIT (1998)

3. Weiss, Y.: Correctness of local probability propagation in graphical models with
loops. Neural Computation 12(1), 1–41 (2000)

4. Weiss, Y., Freeman, W.: Correctness of belief propagation in graphical models with
arbitrary topology. Neural Computation 13(10), 2173–2200 (2001)

5. Ikeda, S., Tanaka, T., Amari, S.: information geometry of turbo and low-density
parity-check codes. IEEE Trans. Inf. Theory 50(6), 1097–1114

6. Ikeda, S., Tanaka, T., Amari, S.: Stochastic reasoning, free energy, and information
geometry. Neural Computation 16(9), 1779–1810 (2004)

7. Tanaka, K., Shouno, H., Okada, M.: Accuracy of the Bethe approximation for
hyperparameter estimation in probabilistic image processing. J. Phys. A, Math.
Gen. 37(36), 8675–8696 (2004)

8. Tanaka, K.: Generalized Belief Propagation Formula in Probabilistic Information
Processing Based on Gaussian Graphical Model. IEICE D-II J88-D-II(12), 2368–
2379 (2005)

9. Nishiyama, Y., Watanabe, S.: Theoretical Analysis of Accuracy of Belief Propaga-
tion in Gaussian Models. IEICE Technical Report 107(50), 23–28 (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relevance Metrics to Reduce Input Dimensions

in Artificial Neural Networks

Héctor F. Satizábal M.1,2,3 and Andres Pérez-Uribe2

1 Université de Lausanne, Hautes Etudes Commerciales (HEC),
Institut des Systèmes d’Information (ISI)

hector-fabio.satizabal-mejia@heig-vd.ch
2 University of Applied Sciences of Western Switzerland (HEIG-VD)(REDS)

andres.perez-uribe@heig-vd.ch
3 Corporación BIOTEC

Abstract. The reduction of input dimensionality is an important
subject in modelling, knowledge discovery and data mining. Indeed, an
appropriate combination of inputs is desirable in order to obtain better
generalisation capabilities with the models. There are several approaches
to perform input selection. In this work we will deal with techniques
guided by measures of input relevance or input sensitivity. Six strate-
gies to assess input relevance were tested over four benchmark datasets
using a backward selection wrapper. The results show that a group of
techniques produces input combinations with better generalisation capa-
bilities even if the implemented wrapper does not compute any measure
of generalisation performance.

Keywords: Input Selection, Input Relevance Measures.

1 Introduction

Artificial neural networks make a non linear mapping between an output and an
input dataset. These inputs could be high-dimensional depending on the mod-
elling problem. Moreover, it is well known that for a fixed amount of data, the
number of input variables cannot be increased indefinitely without a reduction
in performance1 [1]. Thus, the set of variables involved in the modelling process
must be reduced by variable selection or preprocessing.

There are several approaches to reduce the input dimensionality [11]. The
filter approach uses statistics to measure the relevance of each variable [23].
These calculations are independent of the learning machine and are computed
as a preprocessing step. The wrapper approach [15,19,24] considers the specific
learning algorithm as a black box, and some measures of performance are used to
evaluate the different combinations of inputs. There are also embedded techniques
that modify the learning algorithm by the addition of some penalty term to the
error function [5,6,20]. These penalty terms are intended to reduce the numeric

1 This phenomenon has been termed the curse of dimensionality.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 39–48, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

40 M.H.F. Satizábal and A. Pérez-Uribe

value of the weight connections of the network during the training process. As
a result, the influence of irrelevant inputs is minimized. In every case, the main
idea is to discard irrelevant or noisy information, increasing the generalisation
properties of the model.

The principal disadvantage of embedded methods is their dependency on the
learning algorithm. Instead, filters and wrappers could be considered as univer-
sal feature selectors since they are not based on a specific learning method [11].
Moreover, wrappers have more computational cost than filters, but they also
give better results because of the inclusion of the learning algorithm in the se-
lection process. This high computational cost is due to the performance measure
computed at each input evaluation step (cross-validation).

In the wrapper approach, testing the whole set of input combinations could
be a computationally infeasible approach depending on the quantity of inputs.
Instead, a search strategy like backward or forward selection should guide the
searching process. Backward selection has been commonly used by several re-
searchers in neural network feature selection [19,21,24]. This selection strategy
begins with the complete set of features and ranks each one of the input vari-
ables according to some measure of relevance. Then, the least relevant features
are pruned one by one [19] in a sequential manner, or could also be pruned
in group by the detection of a sufficient large gap in the mentioned relevance
ranking [24].

Concerning the metrics of relevance issue, it is well known that neural net-
works, although are good modelling tools to perform prediction or classification
tasks, they do not give any information about the nature of the problem, or the
relations between variables and their relevance for the whole process. The result-
ing model is not a mechanistic representation of the phenomenon to be modelled.
Instead, the neural network has a set of parameters that do not directly repre-
sent any characteristic of the process generating the data. Many researchers have
proposed distinct approaches trying to extract the knowledge that lies behind
the parameters of the network [8,17,19,24].

Relevance metrics could be categorized into two broad groups. Metrics based
only on calculations over the network parameters [8,17,19], and metrics where
the input dataset is fed into the model in order to get a numerical or analytical
measure of sensitivity of each input feature [24]. Actually, there are a large
number of strategies to measure input relevance in neural networks. Some of
these techniques are more effective than others to perform input selection.

In this work, we use a backward elimination approach to test some of the
existing methodologies that perform input ranking. Therefore, the goal is to
identify the relevance metrics performing the best the task of detecting irrelevant
or redundant input features. The backward selection methodology is evaluated
over four benchmark datasets from the UCI Machine-Learning Repository [16].
The organization of the paper is as follows: Section 2 describes the relevance
metrics under test. Section 3 shows the details of the backward elimination
approach implemented. Section 4 presents the results of the set of experiments
realized. Finally, in section 5 we give some conclusions of the tests.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks 41

2 Relevance Metrics

2.1 Using Network Parameters Only

These methods are based on the idea that the input weights of an artificial neu-
ron represent input gain. The learning algorithm (back-propagation) minimizes
the error signal by adjusting the weight connections between neurons such that
the output of the net tracks the target signal [12]. Irrelevant or noisy inputs have
to be attenuated by small weights in order to minimize the general error signal.
Conversely, the weights of relevant inputs must be increased. The most widely
used metrics are the Garson’s Algorithm, the Overall Connection Weights metric
and the ANNIGMA input gain approximation. The equation to calculate the rel-
evance in a single hidden layer and single output neural network is given in each
case. Expansion to multiple hidden layers networks should be straightforward.

Garson’s Algorithm. This weight based method is derived from the one first
proposed by Garson [8]. Some researchers have used this approach to asses input
relevance [9,14,17,18]. Input relevance is calculated as shown in equation 1.

Rik =
nh∑

j=1

(
|ωij | |ωjk|

∑ni
i′=1 (|ωi′j | |ωjk|)

)

=
nh∑

j=1

(
|ωij |

∑ni
i′=1 |ωi′j |

)

(1)

Where ni and nh are the number of inputs and hidden units respectively, ωij

is the weight between input i and hidden unit j, and ωjk is the weight between
hidden unit j and the output k. This method uses input-hidden connections.

Overall Connections. This strategy was proposed by Olden and Jackson [17],
and contrary to Garson’s algorithm, it does not use the absolute value of the
connection weights. Instead, the raw input-hidden-output weight product is ob-
tained (see equation 2). The use of the weight sign is founded on the idea that
the effect of an input could be cancelled in posterior layer calculations. More-
over, the sign indicates the direction of the contribution of each input. So far,
many researchers have used this technique in order to rank inputs according to
their relevance [14,18].

Rik =
nh∑

j=1

(ωijωjk) (2)

Where nh is the number of hidden units, ωij is the weight between input i and
hidden unit j, and ωjk is the weight between hidden unit j and the output k.

ANNIGMA. ANNIGMA is an acronym of Artificial Neural Net Input Gain
Measurement Approximation [19]. This method approximates the activation
functions of the artificial neurons by a linear factor. Thus, the analytical output-
input ratio is calculated (see equation 3). This ratio (called Local Gain) is nor-
malized, and used as a measure of input relevance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

42 M.H.F. Satizábal and A. Pérez-Uribe

LGik =
nh∑

j=1

|ωijωjk| (3)

Where nh is the number of hidden units, ωij is the weight between input i and
hidden unit j, and ωjk is the weight between hidden unit j and the output k.

2.2 Using Network Parameters and Input Patterns

These methodologies measure the neural network input sensitivity in a direct or
indirect way by the stimulation of the model with a set of input patterns. This
approach is the one used by the following three relevance metrics: Sensitivity
Matrix, Input Perturbation and Input Cancellation. Equations to calculate the
relevance in a single hidden layer and single output neural network are given in
each case. Expansion to multiple hidden layers should be straightforward.

Sensitivity Matrix. The neural network sensitivity expresses the amount of
change of an output with the variations of a specific input. In other words, the
sensitivity is the partial derivative of an output node with respect to an input
node. This is also known as the Jacobian matrix [2]. Since the Jacobian matrix
is a function of the network inputs, it is possible to find a different value of
sensitivity for each input pattern. There are different approaches to integrate
these values in a singular value of sensitivity per input [24]. In our case, we use
the accumulated absolute value (see equation 4). This direct calculation of input
sensitivity has been used in related works to asses input relevance [24], some
researchers use the name Partial Derivatives for this method [9,14,18].

Rik =
∑

p∈patterns

∣
∣
∣
∣
∂Op

k

∂Ii

∣
∣
∣
∣ and

∂Op
k

∂Ii
=

∂fk

∂ap
k

nh∑

j=0

(

ωjk
∂fj

∂ap
j

ωij

)

(4)

Where nh is the number of hidden units, ωij is the weight between input i and
hidden unit j, ωjk is the weight between hidden unit j and the output k, ∂fj

∂ap
j

is

the first derivative of the activation function of the hidden unit j and ∂fk

∂ap
k

is the
first derivative of the activation function of the output unit k.

Input Perturbation. This strategy is a numerical method to obtain the input
sensitivity of the neural network. The output error is calculated after the addition
of a small perturbation to one of the inputs of the network. Error variations are
accumulated over the whole set of training patterns (see equation 5). In this work,
we test two different variations of the technique. The former adds several input
perturbations within a range2 and the input sensitivity is accumulated after each
input perturbation. This approach is refered as noise perturbation metric in the
experiments. The latter adds only two perturbations to the input. These values
correspond to the extreme values of the distribution used in the former method.
This approach is refered as fix input perturbation. The mentioned processes are

2 Uniformly distributed, 5% of the input range, 100 times.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks 43

executed for all the inputs individually to obtain a measure of input relevance.
This metric has been used by some researchers in different works [9,14,18].

Rik =
∑

p∈patterns

(Rp
ik) and Rp

ik = [SE (Ok(Ip
i)) − SE (Ok(Ip

i + ε))]2 (5)

Where SE() is the squared error function, and ε is a small perturbation added
to the input signal.

Input Cancellation. This method accumulates the change in the output error
over the whole set of training patterns after replacing one of the inputs by its
average (see equation 6). The relevance of each input is assessed by computing
the output error increments.

Rik =
∑

p∈patterns

(Rp
ik) and Rp

ik =
[
SE (Ok(Ip

i)) − SE
(
Ok(Īi)

)]2 (6)

Where SE() is the squared error function, and Īi is the average of input i.

3 Description of the Backward Selection Algorithm

The backward elimination process is guided by the aforementioned metrics of
input relevance. The back-propagation with momentum algorithm [2] was used
to train the networks. Each training phase stops if a fixed number of epochs is
reached or, if all the training observations have an output error that is smaller
than a fixed threshold (2%-4% of output range). The backward selection algo-
rithm goes as follows:

1. Train a randomly initialized artificial neural network using the complete set
of inputs.

2. Compute input relevance for every input.
3. Prune the least relevant input.
4. Continue training for a fixed number of iterations.
5. If all the training observations are correctly mapped:

- Then, go to step 2.
- Else, restore last pruned input.

6. Compute input relevance for every input and exit.

Notice that the aforementioned backward selection strategy does not include the
calculation of any generalisation performance measure. The process is exclusively
guided by the relevance of each variable according to each technique.

4 Experiments

The backward selection strategy described so far was tested on four benchmark
datasets. In each case, the performance of the pruned model (the resulting set of
inputs after applying backward selection) was obtained using cross-validation.
The selection algorithm was executed 50 times with each metric in order to ob-
tain an error distribution. Results are shown using box-plots in order to compare
the performance of the different neural networks [4].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

44 M.H.F. Satizábal and A. Pérez-Uribe

4.1 Non Linear Static Function

This dataset was used by Sugeno and Yasukawa [22] to perform input selection
in a fuzzy system. The single output y belongs to a static system with two inputs
x1 and x2:

y =
(
1 + x−2

1 + x−1.5
2

)2
and 1 ≤ x1, x2 ≤ 5 (7)

Sugeno and Yasukawa also added two dummy inputs x3 and x4 to check the
appropriateness of their identification method. The dataset contains 50 rows
and the number of K-folds for the cross validation performance measure was 25.

Fig. 1. Accumulated input relevance after 50 iterations of different techniques over the
non linear function benchmark. Each bar represents one of the input variables x1, x2,
x3 and x4 (form left to right).

Figure 1 shows the accumulated relevance over 50 iterations of the metrics
under study. One can see that the four last metrics (ANNIGMA, Sensitivity
Matrix, Input Perturbation and Input Cancellation) perform better the identifi-
cation of irrelevant inputs. Moreover, Input Perturbation and Input Cancellation
reject consistently the two dummy variables.

Fig. 2. Different input selection techniques applied to the non linear function dataset.
A. All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Figure 2 shows that the pruned networks obtained using ANNIGMA, Sensitiv-
ity Matrix, Input Perturbation and Input Cancellation present a higher generali-
sation performance. This result validates the higher capability of these methods
for identifying irrelevant inputs, as shown in figure 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks 45

4.2 Wine Recognition Benchmark

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars [7]. The analysis de-
termined the quantities of 13 constituents found in each of the three types of
wines. The dataset contains 178 rows and the number of K-folds for the cross
validation performance measure was 16.

Fig. 3. Different input selection techniques applied to the wine recognition benchmark.
A. All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Different networks were trained and pruned using backward elimination. Fig-
ure 3 shows the results of the cross validation tests made over the resulting
pruned networks. In this case, the networks where the inputs were selected us-
ing Garson, ANNIGMA, Sensitivity Matrix and Input Perturbation present the
lowest validation errors. Notice that the Overall Connections metric yields net-
works with a validation error median that is higher than the one obtained with
the complete set of inputs. Overall Connections and Input Cancellation produce
networks with high training errors.

4.3 Box-Jenkins Furnace Benchmark

This dataset was presented by Box and Jenkins [3], and it has been used by
several researchers in input identification problems [13,22]. The process is a gas
furnace with single input u(t) and single output y(t): gas flow rate and CO2
concentration, respectively. In this dynamic process, the output yt is expressed
as a function of the signals y(t−1), y(t−2), y(t−3), y(t−4), u(t−1), u(t−2), u(t−3),
u(t−4), u(t−5) and u(t−6). The dataset has 296 data points and 19 K-folds were
used for the cross-validation evaluation.

Figure 4 shows the performance distribution after cross-validation of the final
pruned networks using backward elimination. Sensitivity Matrix, Input Pertur-
bation and Input Cancellation present the best validation performance for this
specific dataset. Concerning the training performance issue, Sensitivity matrix
and Input Perturbation produce pruned networks with best characteristics than
the other metrics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

46 M.H.F. Satizábal and A. Pérez-Uribe

Fig. 4. Different input selection techniques applied to the Box-Jenkins benchmark. A.
All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

4.4 Sonar Data

This is the dataset used by Gorman and Sejnowski in their study on the classifi-
cation of sonar signals using a neural network [10]. The task was to discriminate
between sonar signals bounced off a metal cylinder and those bounced off a
roughly cylindrical rock. There are 60 inputs corresponding to the amplitude
of the different bounding frequencies, and the output is the object class (metal
cylinder or cylindrical rock). This 208-row dataset has been used for several re-
searchers in the feature selection task [19,20]. In our case, we performed a 13
K-folds cross-validation evaluation.

Fig. 5. Different input selection techniques applied to the sonar benchmark. A. All
inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity matrix.
F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Figure 5 shows that the Sensitivity Matrix metric produces pruned networks
with the lowest validation error for this dataset. The only metric having a vali-
dation error median that is higher than the one obtained using the complete set
of inputs is Overall Connections. All the set of metrics yields pruned networks
having a median training error that is higher than the one that is obtained us-
ing the complete set of inputs. The lower training errors were found with the
ANNIGMA, Sensitivity Matrix, Input Cancellation and Fix Input Perturbation
metrics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks 47

5 Conclusions

Wrapper techniques although having a high computational cost are good uni-
versal input selectors. Some metrics of input relevance have been developed in
order to optimize the searching process of the adequate set of inputs. In this
article, six different methodologies for the assessment of input relevance have
been tested over four benchmark datasets. Metrics were divided into two groups
depending on the use of input information to determine input relevance:

G1. Garson, Overall Connections and ANNIGMA only use network parameters
(weight connections) to estimate input relevance.

G2. Sensitivity Matrix, Input Perturbation and Input Cancellation use a set of
patterns to stimulate the neuronal model and get the relevance information.

Results converge to show best performances when input relevance is assessed
using methodologies belonging to group G2. We could say that within this group
the Sensitivity Matrix technique presents the best behaviour in most of the cases.

Techniques belonging to group G1 should be used if there are time execution
constraints since they have less computational cost. In this case, a set of tests
with the specific dataset must be carried out in order to find the most suit-
able relevance metric. For instance, Garson technique behaves well in the wine
recognition benchmark (Section 4.2) even if only the input-hidden connections
are used to compute relevance. Within the group G1, we found that the AN-
NIGMA metric behaves better than the others in most of the cases (all tests
except the Box-Jenkins benchmark. Section 4.3). Notice that ANNIGMA was
created as a simplification of Sensitivity Matrix by replacing the first derivative
of the activation functions by a constant term.

An important remark should be made. The relevance metrics were tested in a
backward elimination framework. Thus, the techniques were evaluated on their
ability to detect irrelevant or redundant variables. The ability to rank a set of
inputs according to their relevance was not tested.

Acknowledgements

This work is part of a cooperation project between BIOTEC, CIAT, CENICAÑA
(Colombia) and HEIG-VD (Switzerland) named “Precision agriculture and the
construction of field-crop models for tropical fruits”. The economical support is
given by several institutions in Colombia (MADR, COLCIENCIAS, ACCI) and
the State Secretariat for Education and Research (SER) in Switzerland.

References

1. Bellman, R.: Adaptive control processes. A guided tour, Princeton University Press,
New Jersey (1961)

2. Bishop, C.: Neural networks for pattern recognition. Oxford University Press, New
York (1995)

3. Box, G., Jenkins, G.: Time Series Analysis, Forecasting and Control. Holden Day,
San Francisco (1970)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

48 M.H.F. Satizábal and A. Pérez-Uribe

4. Chambers, J.M., Cleveland, W.S., Kleiner, B., Tukey, P.A.: Graphical Methods for
Data Analysis. Wadsworth & Brooks/Cole, 62 (1983)

5. Chapados, N., Bengio, Y.: Input decay: simple and effective soft variable selection. In:
NeuralNetworks.Proc. IJCNN’01. Int. JointConference, vol. 2, pp. 1233–1237 (2001)

6. Cibas, T., Fogelman, F., Gallinari, P., Raudys, S.: Variable selection with optimal
cell damage. In: ICANN’94. Int. Conf. on Artificial Neural Networks, Amsterdam
(1994)

7. Forina, M.: PARVUS - An Extendible Package for Data Exploration, Classification
and Correlation. Institute of Pharmaceutical and Food Analysis and Technologies,
Via Brigata Salerno, 16147 Genoa, Italy (1991)

8. Garson, G.D.: Interpreting neural network connection weights. Artificial Intelli-
gence Expert 6, 47–51 (1991)

9. Gevrey, M., Dimopoulos, I., Lek, S.: Review and comparison of methods to study
the contribution of variables in artificial neural network models. Ecological Mod-
elling 160, 249–264 (2003)

10. Gorman, R., Sejnowski, T.: Analysis of Hidden Units in a Layered Network Trained
to Classify Sonar Targets. Neural Networks 1, 75–89 (1988)

11. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. The
Journal of Machine Learning Research 3, 1157–1182 (2003)

12. Haykin, S., Neural Networks, A.: Comprehensive Foundation. Macmillan College
Publishing, New York, NY (1994)

13. Jang, J.-S.R.: Input selection for ANFIS learning. In: Proceedings of the Fifth
IEEE International Conference on Fuzzy Systems, vol. 2, pp. 1493–1499. IEEE
Computer Society Press, Los Alamitos (1996)

14. Kaur, K., Kaur, A., Malhotra, R.: Alternative Methods to Rank the Impact of
Object Oriented Metrics in Fault Prediction Modeling using Neural Networks.
Transactions on Engineering, Computing and Technology 13, 207–212 (2006)

15. Kohavi, R., John, G.: Wrappers for feature selection. Artificial Intelligence, 232–
273 (1997)

16. Merz, C., Murphy, P.: UCI Repository of machine learning databases. Irvine, CA:
University of California, Department of Information and Computer Science (1998),
http://www.ics.uci.edu/∼mlearn/MLRepository.html

17. Olden, J., Jackson, D.: Illuminating the “black box”: a randomization approach
for understanding variable contributions in artificial neural networks. Ecological
Modelling 154, 135–150 (2002)

18. Olden, J., Joy, M., Death, R.: An accurate comparison of methods for quantifying
variable importance in artificial neural networks using simulated data. Ecological
Modelling 178, 389–397 (2004)

19. Schuschel, D., Hsu, C.: A Weight Analysis Based Wrapper Approach to Neural Nets
Feature Subset Selection. IEEE Transactions on Systems, Man and Cybernetics 32,
207–221 (2002)

20. Setiono, R., Liu, H.: Neural-network feature selector. IEEE transactions on neural
networks 8, 654–662 (1997)

21. Stracuzzi, D., Utgoff, P.: Randomized Variable Elimination. The Journal of Ma-
chine Learning Research 5, 1331–1362 (2004)

22. Sugeno, M., Yasukawa, T.: A Fuzzy-Logic-Based Approach to Qualitative Mod-
elling. IEEE Transactions on Fuzzy Systems 1, 7–31 (1993)

23. Witten, I.H., Frank, E.: Data Mining. Practical Machine Learning Tools and Tech-
niques, 2nd edn. Elsevier, Morgan Kaufmann publishers (2005)

24. Zurada, J., Malinowski, A., Usui, S.: Perturbation method for deleting redundant
inputs of perceptron networks. Neurocomputing 14, 177–193 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/~mlearn/MLRepository.html

An Improved Greedy Bayesian Network

Learning Algorithm on Limited Data

Feng Liu1, Fengzhan Tian2, and Qiliang Zhu1

1 Department of Computer Science, Beijing University of Posts and
Telecommunications,

Xitu Cheng Lu 10, 100876 Beijing, China
lliufeng@hotmail.com

2 Department of Computer Science, Beijing Jiaotong University,
Shangyuan Cun 3, 100044 Beijing, China

Abstract. Although encouraging results have been reported, existing
Bayesian network (BN) learning algorithms have some troubles on lim-
ited data. A statistical or information theoretical measure or a score
function may be unreliable on limited datasets, which affects learning ac-
curacy. To alleviate the above problem, we propose a novel BN learning
algorithm MRMRG, Max Relevance and Min Redundancy Greedy algo-
rithm. MRMRG algorithm applies Max Relevance and Min Redundancy
feature selection technique and proposes Local Bayesian Increment (LBI)
function according to the Bayesian Information Criterion (BIC) formula
and the likelihood property of overfitting. Experimental results show that
MRMRG algorithm has much better accuracy than most of existing BN
learning algorithms when learning BNs from limited datasets.

1 Introduction

During the last two decades, many BN learning algorithms have been pro-
posed. In general, BN learning algorithms take one of the two approaches: the
constraint-based method and the search & score method. The constraint-based
approach [1],[2] estimates from the data whether certain condition independences
hold between variables. Typically, this estimation is performed using statistical
or information theoretical measure. The search & score approach [3],[4],[7] at-
tempts to find a graph that maximizes the selected score. Score function is
usually defined as a measure of fitness between the graph and the data.

Although encouraging results have been reported, the recent explosion of high
dimensional and limited datasets in the biomedical realm and other domains has
induced a serious challenge to these BN learning algorithms. The existing algo-
rithms must face higher dimensional and smaller datasets. To further enhance
learning efficiency and accuracy, this paper proposes Max-Relevance and Min-
Redundancy Greedy BN learning algorithm. MRMRG algorithm applies Max
Relevance and Min Redundancy feature selection technology to obtain better
efficiency and accuracy on limited datasets, and proposes Local Bayesian In-
crement function according to BIC approximation formula and the likelihood
property of overfitting to learn BNs on limited datasets.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 49–57, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

50 F. Liu, F. Tian, and Q. Zhu

This paper is organized as follows. Section 2 provides a brief review of Bayesian
network. Section 3 describes Max Relevance and Min Redundancy feature se-
lection technology. In Section 4, we propose Local Bayesian Increment function.
Section 5 represents the details of MRMRG algorithm. At the same time, we
also analyze the time complexity of MRMRG. Section 6 shows an experimental
comparison among MRMRG, K2 and TPDA. Finally, we conclude our work and
present future works.

2 Bayesian Network

A Bayesian network is defined as a pair B = {G, Θ}, where G is a directed acyclic
graph (DAG) G = {V (G), A(G)}, with a set of nodes V (G) = {X1, . . . , Xn},
representing a set of random variables and a set of arcs A(G) ⊆ V (G) × V (G),
representing independent relationships that exist between variables. Θ represents
the set of parameters that quantify the network. It contains a parameter θijk =
P (xik | φi[j]) for each possible value xik of Xi, and φi[j] of Πi. Here Πi denotes
the parents set of Xi and φi[j] is a particular instantiation of the parents set Πi.

In the search & score approach, learning BN can be formally expressed as
follows: given a complete training dataset D, find a directed acyclic graph G∗

such that G∗ = arg max
G

score(G : D), where score(G : D) is the score function

measuring the degree of fitness of any candidate DAG G to the dataset D.
In general, the score functions for learning BN have the decomposability

property: the value assigned to each structure can be expressed as a sum of
local values that depend on each variable and its parents: score(G : D) =∑

Xi∈V (G)
score(Xi, Πi : D). The score functions are high-order functions. The

higher is the dimension of {Xi} ∪ Πi, the higher are the orders of the score
functions. We take K2 score proposed by Cooper and Herskovits in [3] as an
example.

We use the following notion: the number of values for the variable Xi is ri;
the number of possible configurations for the parents set Πi of Xi is qi; Nijk is
the number of instances in the dataset D where Xi takes the value xik and Πi

takes the value φi[j]; Nij =
ri∑

k=1
Nijk.

K2 score is based on several assumptions (multinomiality, parameter indepen-
dence, parameter modularity, uniformity of the prior distribution of the param-
eters given the network structure), and can be expressed as follows:

gK2(G : D) = log(p(G)) +
n∑

i=1

⎛

⎝
qi∑

j=1

(

log
(

(ri − 1)!
(Nij + ri − 1)!

)

+
ri∑

k=1

log(Nijk!)

)⎞

⎠ ,

where p(G) represents the prior probability of the DAG G.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Improved Greedy BN Learning Algorithm on Limited Data 51

3 Max-Dependence and MRMR

Definition 1. In feature selection, Max-Dependence sc- heme [5] is to find
a feature set S∗ with m features, which jointly have the largest dependency on
the target class C; S∗ = argmax

S
I(S; C).

Definition 2. In feature selection, Max-Relevance criterion [5] is to select a
feature set S∗ with m features satisfying S∗ = arg max

S
(1
|S|

∑

Xi∈S

I(Xi; C)), which

approximates I(S∗; C) with the mean value of all mutual information values
between the features Xi, i = 1, . . . , m and class C.

Definition 3. In feature selection, Min-Redundancy criterion [5] is to select
a feature set S∗ with m features such that they are mutually minimally similar
(mutually maximally dissimilar): S∗ = argmin

S
(1
|S|2

∑

Xi,Xj∈S

I(Xi; Xj)).

Definition 4. In feature selection, Max-Relevance and Min-Redundancy
criterion [5] is to find a feature set S∗ with m features obtained by optimizing
the Max-Relevance criterion and the Min-Redundancy criterion simultaneously.
Assume that the two conditions are equally important, and use the following
formula: S∗ = argmax

S
(

∑

Xi∈S

I(Xi; C) − 1
|S|

∑

Xi,Xj∈S

I(Xi; Xj)).

We select the feature set Sm = {X1, . . . , Xm}, the class variable C. Using the
standard multivariate mutual information MI(X1, . . . , Xm) =

∫ ∫
p(x1, . . . , xm)

log
(

p(x1,...,xm)
p(x1)...p(xm)

)
dx1 . . . dxm, we get the formula: I(Sm; C) = MI(Sm, C) −

MI(Sm). Applying the Max-Dependence scheme, we can get the formula:

S∗ = arg max
Sm

I(Sm; C) = arg max
Sm

(MI(Sm, C) − MI(Sm)) . (1)

Equation (1) is similar to the MRMR feature selection criterion: The second term
requires that the features Sm are maximally independent of each other(that is,
minimum redundant), while the first term requires every feature to be maxi-
mally dependent on C. In practice, the authors Peng & Ding have shown that
if one feature is selected at one time, then MRMR criterion is a nearly optimal
implementation of Max-Dependence scheme on limited datasets.[6]

4 Local Bayesian Increment Function

Let X and Y be two discrete variables, Z be a set of discrete variables, and z
be an instantiation for Z. X, Y /∈ Z.

Definition 5. According to Moore’s recommendation [8] about the chi-squared
test, the sub-dataset DZ=z satisfying the following condition is locally suffi-
ciently large for {X ∪Y } given Z = z : All cells of {X ∪Y } in the contingency
table conditioned on Z = z have expected value greater than 1, and at least 80%
of the cells in the contingency table about {X ∪Y } on Z = z have expected value
greater than 5.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

52 F. Liu, F. Tian, and Q. Zhu

Learning on limited datasets, we loose the “locally sufficiently large” condition:
If the number of cases in DZ=z is much larger than the number of values for
{X ∪ Y }, for example ‖DZ=z‖ ≥ 4 × (‖X‖ × ‖Y ‖); then we assume that the
sub-dataset DZ=z is “locally sufficiently large” for {X ∪ Y } given Z = z.

Let D be a dataset of m cases. Let V be a set of n discrete variables, where Xi

in V has ri possible values (xi1, xi2, . . . , xiri). BP and BS denote BN structures
containing just the variables in V. BS exactly has one edge Y → Xi more than
BP . Xi has the parents set Πi in BP and the parents set Πi ∪ Y in BS . Nijk

is the number of cases in D, which variable Xi is instantiated as xik and Πi is

instantiated as φi[j]. Let Nijk =
∑

y
Ni,{j∪y},k, Nij =

ri∑

k=1
Nijk. Θ̂i, Θ̂ denote the

maximum likelihoods of Θi, Θ. πl
i denotes the instantiation of Πi in the lth case.

Cases occur independently. The prior distribution of possible Bayesian net-
works is uniform. Given a Bayesian network model, there exist two properties:
Parameter Independence and Parameter Modularity. [4]

We apply the BIC formula also used by Steck in [9] : BIC(BS) = log L
(
Θ̂

)
−

1
2 log(m)dim

(
Θ̂

)
≈ log(P (D | BS)) to control the complexity of BN model. BIC

adds the penalty of structure complexity to LBI function to avoid overfitting.

Definition 6 (Local Bayesian Increment Function)

Lbi(Y, i, Πi) = log (P (BS , D)/P (BP , D)) ≈ BIC(BS) − BIC(BP)

= log
(
L

(
Θ̂BS

)
/L

(
Θ̂BP

))
− 1

2
log(m)

[
dim

(
Θ̂BS

)
− dim

(
Θ̂BP

)]

log
(
L

(
Θ̂BS

)
/L

(
Θ̂BP

))
= log

(
P

(
D | Θ̂BS

))
− log

(
P

(
D | Θ̂BP

))

=
m∑

l=1

log
(
P

(
xl

i | Θ̂BS

i , πl
i ∪ y

)
/P

(
xl

i | Θ̂BP

i , πl
i

))

According to the likelihood property of overfitting(the marginal likelihood of
overfitting for the training dataset is usually no less than non-overfitting), we
assume that the log-likelihood does not change on the sub-dataset DΠi=φi[∗]
which are not “locally sufficiently large” for {X ∪ Y } (that is, to assume that
there is overfitting between X and the parents set Πi ∪ Y on the DΠi=φi[∗]),

∑

dl∈DΠi=φi[∗]

log P
(
xl | Θ̂BS , πl ∪ y

)
=

∑

dl∈DΠi=φi[∗]

log P
(
xl | Θ̂BP , πl

)
. (2)

According to (2), we infer the following results:

log
(
L

(
Θ̂BS

))
− log

(
L

(
Θ̂BP

))

=
∑

j

Nij × Ij(X, Y), for j, DΠi=φi[j] is “locally sufficiently large”

dim
(
Θ̂BS

)
− dim

(
Θ̂BP

)
= (ry − 1)(ri − 1)qi

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Improved Greedy BN Learning Algorithm on Limited Data 53

Lbi(Y, i, Πi) =
∑

j

Nij × Ij(X, Y) − 1
2
(ry − 1)(ri − 1)qi log(m),

for j, DΠi=φi[j] is “locally sufficiently large”.

Note: Ij(X, Y) is the mutual information between X and Y on DΠi=φi[j].

5 MRMRG Algorithm

MRMRG algorithm initializes the current parents set Πi of the variable Xi to
NULL, and then adds the variables one by one, which acquire the maximal
value for Local Bayesian Increment (LBI) function, into the parents set Πi from
Prei − Πi, until the result of LBI function is no more than 0. Repeating the
above steps for every variable, we can obtain an approximately optimal Bayesian
network.

The pseudo-code of MRMRG algorithm sees Fig.1. Prei denotes the set of
variables that precede Xi. Πi denotes the current parents set of the variable Xi.
k < 5.

Input: A set V of n variables, an ordering on the variables, a dataset D containing m cases.

Output: for each variable Xi (i=1, . . . , n), a printout of the parents set i .

Procedure MRMRG()

For every variable Xi, call the procedure GSParentsSet (Xi, Prei) and obtain i ;

For every variable Xi, output the parents set i of the variable Xi

Endproc

Procedure GSParentsSet(C, Prei)

Initialize i to NULL and OK to TRUE;

while OK

For every variable X Prei - i , compute the formula
1

(;) (;)
1

j i

j
Xi

I X C I X X (1);

Sort the variables in Prei - i by descendant order according to the value of (1);

Obtain the top k variables {Y1, Y2, . . . , Yk} from the sorted variables set Prei - i ;

max
{ , ,... }

arg max (, ,)
j 1 2 k

j i
Y Y Y Y

Y Lbi Y i ;

If max , , 0iLbi Y i then

max{ }i i Y ;

Else
OK=FALSE;

Endif
Endwhile
Return i ;

Endproc

Fig. 1. Max-Relevance and Min-Redundancy Greedy BN Learning

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

54 F. Liu, F. Tian, and Q. Zhu

Given an ordering on the variables, MRMRG algorithm improves greedy BN
learning algorithms (such as K2 algorithm [3]) in the following two ways in order
to learn more accurately and efficiently on limited datasets.

Firstly, on limited datasets, the results of traditional scoring functions (such
as K2 score [3],BDe score [4], etc) score(C, Πi ∪Xj) have less and less reliability
and robustness with the dimension increase of Πi ∪ Xj , so that the formula
Y = arg max

Xj∈Prei−Πi

score(C, Πi ∪ Xj) cannot obtain the variable Y with the

maximal score, even cannot acquire a variable with approximately maximal score
sometimes. Since MRMR technology only uses 2-dimensional computation, it
has much higher reliability and robustness than traditional scoring functions
on limited datasets. Furthermore, according to the discussion in section 2.2,
we know that if one feature is selected at one time (that is Greedy search),
MRMR technology is nearly optimal implementation scheme of Max-Dependence
scheme, which is equivalent to the maximal score method, on limited datasets.
We consider that for some variable Xj ∈ Prei − Πi, if the value of {I(Xj ; C) −

1
|Πi|+1

∑

X∈Πi

I(Xj ; X)} is the largest, then it is the most probable that the value

of the formula score(C, Πi ∪Xj) is the largest. Thus, MRMRG algorithm applies
Max-Relevance and Min-Redundancy (MRMR) feature selection technology and
replaces score(C, Πi∪Xj) with the formula {I(Xj; C)− 1

|Πi|+1

∑

X∈Πi

I(Xj ; X)} to

obtain the variable Y which gets the maximal score. Firstly, MRMRG algorithm
selects the top k variables from the variables set Prei − Πi sorted according to
the value of the formula {I(Xj ; C)− 1

|Πi|+1

∑

X∈Πi

I(Xj ; X)} by descendant order.

Then, it take the variable Y with the largest value of LBI function among the k
variables as the variable with the maximal score.

Secondly, MRMRG algorithm proposes LBI function to replace traditional
score increment functions (such as K2 [3],BDe [4]) to control the complexity of
Bayesian network and to avoid overfitting. When the dataset D is “sufficiently
large” for {X ∪ Y ∪ Πi}, LBI function is equivalent to K2 increment function.
When the dataset D is not ”sufficiently large” for {X ∪ Y ∪ Πi}, but there
exist sub-datasets DΠi=φi[∗] that are ”locally sufficiently large” for {X ∪ Y }
given Πi = φi[∗], MRMRG algorithm can also apply LBI function to improve
accuracy and avoid overfitting (see section 4).

5.1 The Time Complexity of MRMRG

r = max(ri), i = 1, . . . , n, where ri is the number of values for the variable Xi.
The complexity of the formula I(X ; C) − 1

|Πi|+1

∑

Xj∈Πi

I(X ; Xj) is O(n). The

complexity of computing Lbi(Y, i, Πi) is O(mnr). The while statement loops at
most O(n) times, each time it is entered. In the worst case, the complexity of
GSParentsSet(Xi, P rei) is O(kmn2r). The for statement loops n times. So, in
the worst case, the complexity of MRMRG() is O(kmn3r).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Improved Greedy BN Learning Algorithm on Limited Data 55

6 Experimental Results

We implemented MRMRG algorithm, K2 algorithm[3], TPDA algorithm [2] and
presented the comparison of the experimental results for 3 implementations. .

Tests were run on a PC with Pentium4 1.5GHz and 1GB RAM. The operat-
ing system was Windows 2000. These programs were developed under Matlab
7.0. 5 Bayesian networks were used. Table 1 shows the characteristics of these
networks. The characteristics include the number of nodes, the number of arcs,
the maximal number of node parents/children(Max In/Out-Degree), and the
minimal/maximal number of node values(Domain Range).

From these networks, we performed these experiments with 200, 500, 1000
training cases each. For each network and sample size, we sampled 20 original
datasets and recorded the average results by each algorithm. Let k = 3 in Fig.1.

Table 1. Bayesian networks

BN Nodes Num Arcs Num Max In/Out-Degree Domain Range

Insur 27 52 3/7 2-5
Alarm 37 46 4/5 2-4
Barley 48 84 4/5 2-67
Hailf 56 66 4/16 2-11
Munin 189 282 3/15 1-21

6.1 Comparison of Runtime Among Algorithms

A summary of the time results of the execution of all the 3 algorithms is in
Table 2. We normalized the times reported by dividing by the corresponding
running time of MRMRG on the same datasets and reported the averages over
sample sizes. [10] Thus, a normalized running time of greater than 1 implies a
slower algorithm than MRMRG on the same learning task. A normalized running
time of lower than 1 implies a faster algorithm than MRMRG.

From the results, we can see that MRMRG has better efficiency than other
3 algorithms K2 and TPDA. In particular, for smaller sample sizes (200, 500,
1000), MRMRG runs several times faster than K2 and TPDA.

6.2 Comparison of Accuracy Among Algorithms

We compared the accuracy of BNs learned by these 3 algorithms according to
the BDeu score. The BDeu score corresponds to the posteriori probability of the
structure learned.[4] The BDeu scores of which Equivalent Sample Size (ESS) is
10 in our experiments were calculated on a seperate test set sampled from the
true BN containing 20000 samples. Tables 3-7 report the results.

From the results, we can see that MRMRG can learn more accurately than
TPDA on limited datasets. In particular, MRMRG has better accuracy than K2
on limited datasets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

56 F. Liu, F. Tian, and Q. Zhu

Table 2. Normalized Runtime

Size MRMRG K2 TPDA

200 1.0 2.39 8.82
500 1.0 5.57 7.61
1000 1.0 9.18 4.57

Table 3. Average BDeu(Insur)

Size MRMRG K2 TPDA

200 -21.915 -22.993 -31.507
500 -19.032 -19.583 -28.786
1000 -19.386 -19.533 -25.111

Table 4. Average BDeu(Alarm)

Size MRMRG K2 TPDA

200 -15.305 -16.069 -24.456
500 -13.858 -13.950 -18.097
1000 -13.319 -13.583 -15.429

Table 5. Average BDeu(Barley)

Size MRMRG K2 TPDA

200 -81.794 -83.972 -106.782
500 -76.327 -79.194 -103.783
1000 -76.846 -77.375 -111.069

Table 6. Average BDeu(Hailf)

Size MRMRG K2 TPDA

200 -72.138 -73.361 -106.135
500 -71.217 -72.662 -101.382
1000 -70.955 -71.734 -97.374

Table 7. Average BDeu(Munin)

Size MRMRG K2 TPDA

200 -65.971 -68.393 -135.103
500 -62.483 -63.250 -125.625
1000 -61.967 -62.837 -140.476

7 Conclusion

Accuracy are the main index in evaluating algorithms for learning BN. MRMRG
algorithm greatly reduces the number of high dimensional computations and im-
proves the accuracy of learning. The experimental results indicate that MRMRG
has better performance on accuracy than most of existing algorithms on limited
datasets.

We are interesting in incorporate ordering-based search method [7] into our
MRMRG algorithm to implement MRMRG without the information of the order
between nodes.

References

1. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction and Search, 2nd edn.
MIT Press, Massachusetts (2000)

2. Cheng, J., Greiner, R., Kelly, J., Bell, D., Liu, W.: Learning Belief Networks form
Data: An Information Theory Based Approach. Artificial Intelligence 137(1-2),
43–90 (2002)

3. Cooper, G., Herskovits, E.: A Bayesian Method for Constructing Bayesian Belief
Networks from Databases. In: Ambrosio, B., Smets, P. (eds.) UAI ’91. Proceedings
of the Seventh Annual Conference on Uncertainty in Artificial Intelligence, pp.
86–94. Morgan Kaufmann, San Francisco, CA (1991)

4. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian Networks: the
Combination of Knowledge and Statistical Data. Machine Learning. 20(3), 197–
243 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Improved Greedy BN Learning Algorithm on Limited Data 57

5. Peng, H.C., Ding, C., Long, F.H.: Minimum redundancy maximum relevance fea-
ture selection. IEEE Intelligent Systems 20(6), 70–71 (2005)

6. Peng, H.C., Long, F.H., Ding, C.: Feature Selection Based on Mutual Information:
Criteria of Max-Dependency, Max-Relevance,and Min-Redundancy. IEEE Trans-
actions on PAMI 27(8), 1226–1238 (2005)

7. Teyssier, M., Koller, D.: Ordering-Based Search: A Simple and Effective Algorithm
for Learning Bayesian Networks. In: Chickering, M., Bacchus, F., Jaakkola, T.
(eds.) UAI ’05. Proceedings of the 21st Conference on Uncertainty in Artificial
Intelligence, pp. 584–590. Morgan Kaufmann, San Francisco, CA (2005)

8. Moore, D.S.: Goodness-of-Fit Techniques, 1st edn. Marcel Dekker, New York (1986)
9. Steck, H.: On the Use of Skeletons when Learning in Bayesian Networks. In:

Boutilier, C., Goldszmidt, M. (eds.) UAI ’00. Proceedings of the 16th Confer-
ence on Uncertainty in Artificial Intelligence, pp. 558–565. Morgan Kaufmann,
San Francisco,CA (2000)

10. Ioannis, T., Laura, E.B.: The Max-Min Hill-Climbing Bayesian Network Structure
Learning Algorithm. Machine Learning 65(1), 31–78 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded

Computational Complexity

Rowland R. Sillito and Robert B. Fisher

School of Informatics, University of Edinburgh, UK

Abstract. An incremental one-class learning algorithm is proposed for
the purpose of outlier detection. Outliers are identified by estimating -
and thresholding - the probability distribution of the training data. In
the early stages of training a non-parametric estimate of the training data
distribution is obtained using kernel density estimation. Once the num-
ber of training examples reaches the maximum computationally feasible
limit for kernel density estimation, we treat the kernel density estimate as
a maximally-complex Gaussian mixture model, and keep the model com-
plexity constant by merging a pair of components for each new kernel added.
This method is shown to outperform a current state-of-the-art incremen-
tal one-class learning algorithm (Incremental SVDD [5]) on a variety of
datasets, while requiring only an upper limit on model complexity to be
specified.

1 Introduction

The problem of one-class learning (also known interchangeably as “outlier /
novelty / anomaly detection”) arises in a wide variety of different application
domains. The fundamental goal of one-class learning is to generate a rule that
distinguishes between examples of a known class of items and examples from
previously-unseen novel classes, on the exclusive basis of training examples from
the known class.

This problem presents itself in cases where one wishes to distinguish between
members of a class for which examples are abundantly available, and members
of another rarely observed class. This often arises when attempting to detect
abnormal activity, eg. jet engine failure, computer network intrusions, disease
symptoms, etc. In each of these domains, anomalous examples may be scarce or
entirely absent during training, but their subsequent identification is of crucial
importance. A wide variety of different methods have been proposed to address
this problem (see [3] for a review). However, almost all existing one-class clas-
sification algorithms require all training examples to be available at once, for a
single “batch” learning step: if a new example is presented, the classifier must be
retrained from scratch.

Since outliers might only be identifiable by their deviation from a normal
model, a key problem in one class learning is the choice of model complexity. In
some cases training data may be well described by the parameters of a single
Gaussian distribution, while in other cases - eg. where the data has multiple

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 58–67, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded Computational Complexity 59

modes or lies on a non-linear manifold - a more complex model is required. It
is important to select the correct level of model complexity: if it is too low, the
learned normal model may also include the anomalies that we wish to detect; if
it is too high, the model may not include the majority of normal examples.

In many cases it would be useful to be able to incrementally train a classi-
fier as data became available, without needing to pre-specify the level of model
complexity. In this paper we propose a new technique for performing incremen-
tal one-class learning, where only an upper limit on model complexity needs
to be specified. While computationally feasible, our algorithm attempts to es-
timate the underlying p.d.f. (probability density function) of the training data
using non-parametric kernel density estimation (with Gaussian kernels), thereby
generating a maximally complex one-component-per-example Gaussian mixture
model. Once a maximum number of mixture components has been reached, it is
kept constant by merging a pair of components for every new component added.
We choose pairs of components for merging based on an information theoretic
merging-cost function originally proposed by Goldberger and Roweis in [2].

Currently, at least two related techniques exist in the literature. In [9] Yaman-
ishi et al. propose an unsupervised outlier detection procedure “SmartSifter” in
which a Gaussian mixture model is trained using an on-line adaptation of the
EM (Expectation Maximization) algorithm. A key aspect of their adaptation is
the inclusion of “discounting” parameters which ensure that the effect of older
training examples on the model parameters is rapidly displaced by new exam-
ples. Each new training example is given a score based on the extent to which
it changes the model parameters: a comparatively high score, indicating a large
change in model parameters, indicates the possibility of an outlier. This algo-
rithm seems inappropriate for comparison with the proposed algorithm as it
models a finite window of training data preceding each new example, rather
than attempting to incrementally build a complete normal class description.

A more closely related algorithm has been proposed in [5], where Tax and
Laskov present an incremental training procedure for the SVDD (Support Vec-
tor Data Description) algorithm originally proposed by Tax and Duin in [7].
The SVDD algorithm attempts to find the smallest hypersphere that encloses
the training data, and allows more complex hyper-volumes (which may fit the
data better) to be obtained by introducing kernel functions which map the train-
ing data to a higher dimensional space [7]. In both batch and incremental forms,
the SVDD algorithm relies crucially on the correct choice of model complexity
parameters. Various methods have been proposed to address this issue in the
absence of example outliers, including: procedures for generating synthetic out-
liers (Tax and Duin [4]) and, more recently, a consistency based approach which
takes the simplest possible classifier and increases its complexity parameter un-
til the proportion of correctly recognized training data starts to fall (Tax and
Muller [8]). The incremental variant of SVDD does not include any on-line model
complexity selection, but it is conceivable that the batch optimization methods
could be applied to a pre-existing dataset to optimally parametrize the classifier
before using it for on-line training.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

60 R.R. Sillito and R.B. Fisher

We provide a detailed description of the proposed algorithm in Section 2, and
then illustrate its performance on a variety of datasets in Section 3, where we
also compare its performance with the incremental SVDD algorithm [5] (opti-
mized using the consistency criterion proposed in [8]). Our algorithm is shown
to yield equivalent, often better, performance than the incremental SVDD algo-
rithm without requiring any time-consuming parameter optimization.

2 Algorithm

The proposed algorithm is designed to receive a sequence of labeled multivariate
training data, and to determine - at any stage in the training process - whether
or not new data are outliers. This is achieved by estimating the underlying
probability density function that gave rise to the data, and setting a threshold
on this density: if a new example has a probability lower than the threshold, it
is classified as an outlier.

2.1 Density Estimation

Phase 1: Kernel Density Estimation. Initially the probability density of
the data is determined using Kernel Density Estimation. This technique allows
us to evaluate the probability of a new example by taking a uniformly weighted
combination of a set of Gaussian kernels (with identical covariance matrices Σ)
centered on each of the training data. Thus, finding the probability of a new
data point z, given a set of N training data X = {x1, . . . , xN}, simply consists
of evaluating the following function:

p(z) =
1

(2π)
d
2 |Σ| 1

2
· 1
N

·
N∑

n=1

e−
1
2 (z−xn)T Σ−1(z−xn) (1)

The factor 1

(2π)
d
2 |Σ| 12

(where d refers to the dimensionality of the data) ensures

that the resulting probability distribution integrates to 1. Training the model is
straight-forward: when a new training example xNEW is received, it is simply
added to the set X :

X → X ∪ {xNEW } (2)

The only remaining problem is the choice of the covariance matrix Σ. To re-
duce computational cost, we use a uniform covariance matrix Σ(σ) = Id · σ2,
which leaves only a single parameter σ to be determined. The value of σ is chosen
using the “leave-one-out” likelihood criterion proposed by Duin in [1] (recently
shown to be a good model selection criterion for multivariate kernel density
estimation by Zhang et al. in [10]). This technique allows us to find a param-
eter that maximizes the likelihood of the dataset, while avoiding the problem
of the data likelihood tending towards infinity as σ → 0. For a given value of
σ, the “leave-one-out” likelihood function combines the log-likelihoods for every

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded Computational Complexity 61

individual example xn given a model constructed from all others ∀x �= xn, as
follows:

LL(σ) =
N∑

n=1

log

(
1

(2πσ)
d
2

· 1
N − 1

·
∑

∀x �=xne−
1

2σ2 (xn−x)T (xn−x)

)

(3)

Every time the training dataset is updated (during the kernel density estimation
phase) we evaluate (3) for a range of values surrounding the previous σ, and
choose σ = arg maxσ (LL(σ)).

Phase 2: Mixture Model Merging. Since the computational cost of evaluat-
ing (1) scales linearly with the quantity of training data, it eventually becomes
infeasible to estimate the p.d.f. of the data in this fashion. Noting that the kernel
density estimate is essentially a maximally-complex Gaussian mixture model, we
adapt a method proposed by Goldberger and Roweis for reducing the complexity
of Gaussian mixture models in [2]: once the maximum feasible model complexity
has been reached, we keep it constant by merging a pair of components for each
new component added.

Initialization. Once the maximum model complexity has been reached N =
Nmax we initialize a data structure to store a Gaussian mixture model with
weights (initially uniform), and covariances (set to the final value estimated in
the kernel density phase), and means (the training data) as follows:

w1...N = 1
N

Σ1...N = Id · σ2
final

μ1...N = x1...N

(4)

For each pair of components Gi = {wi, μi, Σi} and Gj = {wj, μj , Σj} a merg-
ing cost is then calculated using (7) - explained in the next section - forming
an N × N matrix C. This one-off1 calculation of Nmax(Nmax−1)

2 different cost
values is computationally feasible for values of Nmax where it is still possible to
evaluate (1) in reasonable time.

Merging Strategy. In this stage every new training example still contributes a
Gaussian kernel. However the covariance matrix is now fixed to the final estimate
obtained in the preceding stage, and we employ a merging strategy to keep the
number of mixture components constant. For every new component added, a
pair of components (which may include the new one) is merged as follows:

wmerge(i,j) = wi + wj

μmerge(i,j) = wi

wi+wj
μi + wj

wi+wj
· μj

Σmerge(i,j) = wi

wi+wj

(
Σi + (μi − μmerge(i,j))(μi − μmerge(i,j))T

)

+ wj

wi+wj

(
Σj + (μj − μmerge(i,j))(μj − μmerge(i,j))T

)
(5)

1 Subsequently maintaining this cost matrix only requires a fixed number of Nmax +1
cost evaluations for each new training example.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

62 R.R. Sillito and R.B. Fisher

We wish to choose a pair of components to merge in a way that minimizes
the resulting change in the p.d.f. encoded by the model. The Kullback-Leibler
divergence provides a means of assessing the “damage” caused by replacing a
particular pair of components with a single merged component. Essentially, the
KL divergence KL(P ||Q) =

∫ ∞
−∞ p(x) log p(x)

q(x)dx quantifies the expected infor-
mation loss per sample when an approximating distribution Q is substituted for
a true distribution P . For a pair of Gaussian distributions Gp = {μp, Σp} and
Gq = {μq, Σq}, it can be calculated as follows [2]:

KL(Gp||Gq) =
1
2

(

log
|Σq|
|Σp|

+ Tr(Σ−1
q Σp) + (μp − μq)Σ−1

q (μp − μq)T − d

)

(6)
This allows us to quantify the cost of replacing components Gi and Gj (where

i �= j) with their merged counterpart Gmerge(i,j) by calculating a weighted
combination (as proposed by Goldberger and Roweis in [2]) of their respective
Kullback-Leibler divergences from Gmerge(i,j) as follows:

cost(Gi, Gj) = wiKL(Gi||Gmerge(i,j)) + wjKL(Gj ||Gmerge(i,j)) (7)

Updating Procedure. When a new training example xNEW arrives, a tempo-
rary new component GNmax+1 = { 1

Nex+1 , xNEW , Id · σ2
final} is created, and the

weights of existing components are rescaled by a factor of Nex

Nex+1 , where Nex is
the total number of training examples received before the new one. The cost
matrix is augmented with a new row/column for the new component, and a
pair of components is chosen such that {Gi, Gj} = arg minGi,Gj (cost(Gi, Gj)).
If {Gi, Gj} are both existing components, then Gi is replaced with Gmerge(i,j)
and Gj is replaced with the new component; alternatively if Gj is the new com-
ponent then Gi is simply replaced with Gmerge(i,j). The temporary component
GNmax+1 is then removed, and the merging cost matrix C updated accordingly.
This procedure requires a fixed total of Nmax + 1 evaluations of (7) for every
new training example, as the cost matrix only needs to be updated for entries
corresponding to merged/new components.

2.2 Classification Threshold

Given the proposed density estimation method, an important remaining issue is
the choice of classification threshold. A naive approach would be to set the thresh-
old at that the level of the least probable (given the current model) training exam-
ple, thereby correctly classifying all training data as normal. However, it is quite
possible that the least probable training example - which will be located in the
most sparsely populated region of training data - may have a probability value
equivalent to that of the outliers we wish to detect. To avoid this problem, and to
make the method robust to potential outliers in the training set, we set the thresh-
old at a value that deliberately misclassifies a certain proportion of the training
data as outliers. In the experiments described in the following section we choose
a value of 10%, aiming to learn a classifier that filters out 90% of normal data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded Computational Complexity 63

3 Experiments

In this section we measure the classification performance of the proposed algo-
rithm on a variety of datasets, showing how classification performance changes
as the model is trained on more training examples. To place the performance

Training Data
 (2500 points inside spiral)

Test Data
(2500 points inside spiral, 2500 outliers)

inside spiral
outliers

Kernels after 100 Training Examples (pre−merging) Mixture Model after 2500 Training Examples

= 1 s.d.

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observations

P
er

fo
rm

an
ce

Synthetic Spiral Dataset
(known class=’inside spiral’)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Comparison with incremental SVDD
(mean ROC from 10 trials)

True positives (standard deviation)
True positives (mean from 10 trials)
False positives (standard deviation)
False positives (mean from 10 trials)

Our model
(operating point)
Incremental SVDD
(operating point)

Fig. 1. Results for the synthetic spiral dataset. See text for description.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

64 R.R. Sillito and R.B. Fisher

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observations

P
er

fo
rm

an
ce

Wisconsin Breast Cancer Database
(known class=’benign’)

0 0.02 0.04 0.06 0.08 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Comparison with incremental SVDD
(mean ROC from 10 trials)

Incremental SVDD
(operating point)
Our model
(operating point)

True positives (standard devation)
True positives (mean from 10 trials)
False positives (standard deviation)
False positives (mean from 10 trials)

merging starts

100 200 300 400 500 600 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observations

P
er

fo
rm

an
ce

Letter Image Recognition Data
(known class=’A’)

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Observations

P
er

fo
rm

an
ce

Statlog Databases: Landsat Satellite Images
(known class=’red soil’)

0 0.02 0.04 0.06 0.08 0.1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

T
ru

e
po

si
tiv

e
ra

te

Fig. 2. Results for real datasets. See text for description.

of the proposed algorithm in context we compare its performance to that of the
incremental SVDD algorithm [5], making comparisons at the point where both
algorithms have been trained on all training examples in a given dataset.

We use a freely available implementation of the incremental SVDD algorithm,
incsvdd, contained in the DDtools MATLAB toolbox [6]. In all tests we use the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded Computational Complexity 65

0 200 400 600 800 1000 1200 1400
0

0.2

0.4

0.6

0.8

1
Is the Computational Complexity Really Bounded?

Training examples observed

Tr
ai

ni
ng

 ti
m

e
pe

r e
xa

m
pl

e
(s

ec
on

ds
)

Satellite dataset − 36 dimensions
(mean results from 10 trials)

plateau

Fig. 3. Measuring computational complexity

radial basis kernel function, and optimize the kernel parameter (for the whole
training dataset) using the consistent occ function (also from [6]) which im-
plements the consistency-based model selection criterion proposed in [8]. We
initially apply this criterion to a range of 20 linearly spaced values between
the shortest and longest Euclidean distances observed within the dataset; to
search for potentially better parameter values on a finer scale, we then run a
second parameter optimization for a further 20 values surrounding the opti-
mal parameter from the first set. As for the proposed algorithm, we set the
SVDD threshold parameter at a level that aims to reject to 10% of the training
data.

Synthetic Dataset. An initial experiment was carried out on a synthetic 2
dimensional dataset: we defined a spiral shaped region which we used to di-
vide a set of uniformly distributed random datapoints into a hypothetical nor-
mal class of datapoints (points in the spiral region) and outliers (all other
points). We used 2500 spiral points for training the algorithm, and a further 2500
points from the spiral along with 2500 outlier points for testing it, as shown in
Figure 1.

For this test (as for all subsequent tests) we set the upper limit on the number
of mixture components Nmax to be 100. The middle section of figure 1 shows
the configuration of the 100 Gaussian components before the merging phase
commences, and at the end of the training process. The resulting model organi-
zation appears to accurately reflect the shape of the spiral: indeed, at the end
of training the algorithm correctly classifies 88.13% of all test data, with a True
Positive rate2 of TP = 86.1% and a False Positive rate3 of FP = 0.0984%. The
TP and FP curves shown in the lower left hand section of Figure 1 indicate
that the classification performance increased in a stable fashion as more training
examples were processed. In this plot, and in subsequent plots of this type, the
vertical dotted line indicates the start of the merging phase.

At the end of training, the incremental SVDD algorithm correctly classified
79.44% of the test data (with TP = 89.69% and FP = 0.308%), misclassifying

2 Indicating normal examples correctly identified as normal.
3 Indicating outliers incorrectly classified as normal.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

66 R.R. Sillito and R.B. Fisher

a much larger number of outliers as normal. The ROC4 curve in the lower right
hand section of Figure 1 shows the different TP and FP values obtained as the
(training data rejection) threshold is varied for each classifier, indicating that the
proposed algorithm outperforms incremental SVDD algorithm across the range
of possible thresholds. Both plots in Figure 1 show the mean performance for 10
different random orderings of the training data.

Real Datasets. A series of subsequent experiments were then carried out on
three different real-world datasets obtained from the UCI Machine Learning
Repository5:

1. The Wisconsin Breast Cancer Database, which contains 699 (9-dimensional)
datapoints, containing 458 normal examples and 241 cases of cancer.

2. The Letter Recognition Database, which contains 20,000 (16-dimensional)
parametrizations of examples of printed letters, with 26 classes corresponding
to the alphabet. We use the 789 examples of the letter ’A’ as a hypothetical
normal class, and all other classes as outliers.

3. The STATLOG Landsat Satellite Database, which contains 6435 (36 dimen-
sional) vectors corresponding multispectral images of 6 different types of
ground coverage: we use the 1533 examples of ’red soil’ as the normal class.

For each of these datasets we use 90% of examples of the chosen normal class
as training data, and the remaining 10% for testing. All subsequent experiments
are performed for 10 different testing/training permutations of the normal class.
Again, we test our algorithm with a maximum complexity level of 100 com-
ponents, and compare it to the consistency-optimized incremental SVDD al-
gorithm. The classification results illustrated by the ROC curves in Figure 2,
indicate that the proposed algorithm consistently outperforms the incremental
SVDD algorithm, although the performance obtained on the Cancer and Satellite
datasets is very similar.

Computational Complexity. To confirm the assertion that the proposed algo-
rithm has bounded computational complexity, we recorded the time taken to
train our algorithm on each datapoint during the tests on the 36 dimensional
Satellite dataset. This is plotted (excluding the point where the merging matrix
is first initialized) in Figure 3, indicating that a fixed processing time per example
is indeed reached soon after the merging phase commences. Our algorithm takes
an average time of 565.56 ± 0.32 seconds to train on the 1379 examples, while
the SVDD algorithm takes a significantly shorter time of 6.25 ± 0.34 seconds
to train, albeit after a parameter optimization step which takes 482.53 ± 60.21
seconds. Evaluation times for the two algorithms are similar: our algorithm takes
2.88±0.02 seconds to classify 5056 testing examples, while the incremental SVDD
algorithm takes 2.01 ± 0.102 seconds to classify the same examples.

4 Receiver Operating Characteristic.
5 http://www.ics.uci.edu/˜mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental One-Class Learning with Bounded Computational Complexity 67

4 Discussion

We have proposed a simple procedure for incrementally training a one-class
classifier to perform outlier detection, without the need for any time-consuming
model optimization procedures. Despite its simplicity, the proposed algorithm
appears to perform better than the incremental SVDD algorithm, even though
the parameters of the latter were being chosen through a lengthy optimization
process. The fact that the optimization process proposed in [8] did not find
parameters that allowed incremental SVDD to outperform our algorithm does
not mean that such parameters could not be found in principle: it does, however,
illustrate the the key strength of our algorithm - the fact that it automatically
generates models that achieve a useful level of outlier detection performance.

References

1. Duin, R.P.W.: On the choice of smoothing parameters for Parzen estimators of
probability density functions. IEEE Trans. Computers C-25, 1175–1179 (1976)

2. Goldberger, J., Roweis, S.: Hierarchical clustering of a mixture model. Advances
in Neural Information Processing Systems 17, 505–512 (2005)

3. Hodge, V.J., Austin, J.: A survey of outlier detection methodologies. Artificial
Intelligence Review 22, 85–126 (2004)

4. Tax, D.M.J., Duin, R.P.W.: Uniform object generation for optimizing one-class
classifiers. Journal of Machine Learning Research 2, 155–173 (2001)

5. Tax, D.M.J., Laskov, P.: Online SVM learning: from classification to data descrip-
tion and back. In: Proc. 13th IEEE NNSP Workshop, IEEE Computer Society
Press, Los Alamitos (2003)

6. Tax, D.M.J.: DDtools, the Data description toolbox for Matlab. version 1.5.5
7. Tax, D.M.J., Duin, R.P.W.: Support vector domain description. Pattern Recogni-

tion Letters 20, 1191–1199 (1999)
8. Tax, D.M.J., Muller, K.-R.: A consistency-based model selection for one-class clas-

sification. In: Proc. ICPR 2004, vol. 3, pp. 363–366 (2004)
9. Yamanishi, K., Takeuchi, J., Williams, G., Milne, P.: On-line unsupervised outlier

detection using finite mixtures with discounting learning algorithms. Data Mining
and Knowledge Discovery 8, 275–300 (2004)

10. Zhang, X., King, M., Hyndman, R.J.: A Bayesian approach to bandwidth selec-
tion for multivariate kernel density estimation. Computational Statistics & Data
Analysis 50, 3009–3031 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks from

the Number of Available Training Data

Georgios Lappas

Technological Educational Institution (TEI) of Western Macedonia
Kastoria Campus, P.O. Box 30, GR 52100 Kastoria, Greece

lappas@kastoria.teikoz.gr

Abstract. Estimating a priori the size of neural networks for achieving
high classification accuracy is a hard problem. Existing studies provide
theoretical upper bounds on the size of neural networks that are unre-
alistic to implement. This work provides a computational study for esti-
mating the size of neural networks using as an estimation parameter the
size of available training data. We will also show that the size of a neural
network is problem dependent and that one only needs the number of
available training data to determine the size of the required network for
achieving high classification rate. We use for our experiments a threshold
neural network that combines the perceptron algorithm with simulated
annealing and we tested our results on datasets from the UCI Machine
Learning Repository. Based on our experimental results, we propose a
formula to estimate the number of perceptrons that have to be trained
in order to achieve a high classification accuracy.

1 Introduction

On non-seperable problems, finding the best function for minimizing the classifi-
cation error is an NP-complete problem. Blum and Rivest [11] proved that even
for a very small network to find weights and thresholds that learn any given
set of training examples is an NP-complete problem. Höffgen and Simon [17]
deal with the problem of learning a probably almost optimal weight vector for
a neuron, finding that it is an NP-complete problem. Also finding an optimum
network configuration for solving combinatorial optimization problems is not an
easy task [34]. Thus, establishing an optimal weight configuration of threshold
units (in order to minimize the error rate) cannot be executed in efficient time
and therefore only approximations of optimum solutions can be achieved.

In order for neural networks to approximate high classification rates, which
is equivalent to low error rates, to a specific classification problem it usually
requires a certain amount of adjustments, which are apparently unavoidable in
the light of the No Free Lunch Theorems; cf. [33]. The need for tunning network
parameters when the classification accuracy is very important may lead us to
lots of experiments for establishing a high classification rate. A piori estimation
of these parameters may help in reducing the time and effort to find an appro-
priate neural network for achieving high classification accuracy. An important

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 68–77, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks 69

adjustment related to neural networks implementations is the number of hidden
units (network size) that should be trained in order to approximate a function
that best describes the training data.

The problem of finding the smallest network that can realize an arbitrary
function given a set of m vectors in n dimensions defines the circuit complexity
problem [10]. The circuit complexity problem is of great importance for hard-
ware implementations and tries to find tight bounds for the number of units
used to realize an arbitrary function. Identifying sequences of Boolean func-
tions {f(x1, ..., xn)}∞n=n0

with “superpolynomial” (or exponential) gate number
in constant depth circuits of unbounded fan-in gates is a very difficult prob-
lem and only slow progress has been made over the past decades. For example,
Razborov and Widgerson [27] designed a sequence of functions that requires at
least the superpolynomial number nΩ(logn) of threshold gates in any circuit of
depth 3. Furthermore, it has been shown [3,12] that computing the permanent
of an n × n matrix requires a superpolynomial number of gates in any threshold
circuit of constant depth; for more information about the computational power
of small depth circuits, see [31]. In [10] Beiu surveys a large number of bounds
for a number of different network approaches.

Theoretical analysis on lower and upper bounds on VC-dimension [30] has
been performed for some type of networks. Baum and Haussler [8,9] show that
in a feedforward network with W weights and N computational threshold units
the VC-dimension is bounded V C ≤ 2 · W · log2(e · N). Maas [25] has obtained
a lower bound Wlog2W for certain types of multilayer feedforward network of
threshold units. Other tight bounds for specific type of functions have been
obtained in [6,7,14,18,19,29,32]; see Anthony and Bartlett [5] for a review of the
field.

Bounding VC-dimensions is a challenging task in mathematical investigations
of neural networks which provides a number of sophisticated mathematical tools.
The bounds, however, tend to be too large, since they provide such guarantees
of generalisation for any probability distribution of training examples and for
any training algorithm that minimizes the training error on the training ex-
amples. Therefore, the VC-dimension is a very general theoretical measure of
pattern classification ability. The proposed bounds are usually unrealistic and
with limited practical value for real world problems. Other alternative meth-
ods for calculating more realistic bounds should be considered, as in Haussler
et al. [16], where a probability distribution was introduced for considering the
performance of a classifier that implements a Bayes optimal classification algo-
rithm [13]. Empirical studies investigating the relation of classification ability
to parameters of the problem are important for more realistic VC-dimension
bounds.

In this work we relate the network learning capacity to the number of existing
training samples. We propose a formula of an upper bound of size S = 8 ·

√
2n/n

computational units as sufficient for a small error rate, where n := log|SL| is
the number of bits neccessary to enumerate all existing training data. Since in
the problems that we used from the UCI Repository n ≤ 12 and S ≤ 147,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

70 G. Lappas

the proposed formula leads to realistic to implement neural networks. With this
formula we also show that the size of the neural network depends on the size of
existing training samples SL. This means that if more training data emerge in
a problem then a larger network is required. Consequently, this also proves that
the number of trained units cannot be constant for all classification problems
but is a problem dependent parameter.

2 Methodology

Our experiments are performed with LSA machine [1,2], a neural network that
combines the classical perceptron algorithm [28] with a specific type of simu-
lated annealing [15] as the stochastic local search procedure for finding thresh-
old gates of a classification circuit. The simulated annealing procedure employs
a logarithmic cooling schedule c(k) = Φ/ ln (k + 2) search strategy where the
“temperature” decreases at each step. The simulated annealing-based extension
of the perceptron algorithm is activated when the number of misclassified ex-
amples increases for the new hypothesis compared to the previous one. In this
case, a random decision is made according to the rules of simulated annealing. If
the new hypothesis is rejected, a random choice is made among the misclassified
examples for the calculation of the next hypothesis. A detailed description on
the LSA machine can be found in [1,2].

We will experiment with depth-two circuits where depth-one consists of com-
putational units and depth-two of a voting function that decides the output class.
Depth-four networks with the LSA machine lead approximately to the same size
of networks for achieving low error rates [21]. The dataset D is divided into two
disjoint sets of data: the training dataset |SL| for training the neurons and the
testing dataset |ST | for evaluating the classification error of the network. Each
neuron at depth-one is trained by a sample set of size p randomly drawn from
the available training data set SL.

According to the No-Free-Lunch-Theorems, the performance of learning al-
gorithms is problem-dependent. Four problem-dependent parameters, the net-
work size N , the sample size p for training a unit, the length of inhomoge-
neous Markov chain k and the constant Φ of the simulated annealing cool-
ing schedule, are required for the LSA machine. The constant Φ determines
an escape from local minima in the simulated annnealing process and is ex-
pressed in terms of a percentage of the size p of the sample set used to train
a neuron, i.e. Φ = G · p, where G ∈ (0, 1) . For the estimation of the net-
work size we chose two datasets from the UCI Machine Learning Repository
(http://www.ics.uci.edu/̃ mlearn/MLRepository.html), where one of the
datasets induces three classes.

Splice-junction Gene Sequences Database (SJGSD): The database con-
sists of 3190 vectors representing 60 attributes. There are three classes with
distribution: 25% for IE (767 instances); 25% for EI (768 instances); and 50%
for “Neither” (1655 instances). In order to discriminate between the three classes,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks 71

we introduce three databases, each related to a single class as positive examples:
the “IE database” consists of 767 positive examples (IE class) and 2423 negative
examples (union of EI class and “Neither” class); the “EI database” consists
of 768 positive examples and 2422 negative examples; the “Neither database”
consists of 1655 positive examples and 1535 negative examples.

Wisconsin Breast Cancer Database (WBCD): WBCD is a binary classi-
fication problem where each vector represents 9 features. The output indicates
either a benign case (positive example) or a malignant case (negative example).
The data set consists of 699 samples, where 16 samples have missing values which
are discarded in a pre-processing step. The remaining 683 data are divided into
444 benign and 239 malignant cases.

2.1 Estimations of Circuit Size

Classification problems P can be encoded as Boolean functions fP on n input
variables where the sample sets usually provide only a tiny fraction of input-
output pairs of fP . For the splice-junction data we have “DNA windows” of
length 60 with the usual DNA information from {A, C, G, T }. Therefore, in bi-
nary notation we have n = 120. For the WBCD we have 9 attributes, each taking
a value from 1 to 10, i.e. the binary encoding leads us to n = 36.

In both cases the sample data provide only a tiny fraction of the theoretically
possible number of function values. A priori, we can argue that not all combi-
nations of binary inputs are feasible (or even a small fraction only has indeed
a valid interpretation). We take this into account by simply encoding (enumer-
ating) the sample data instead of using the variable number n as the input to
the core of the classification circuit: We apply a methodology which is well-
known from the synthesis of partially defined Boolean functions [22] in order
to obtain some rough estimations of the size of circuits representing the sam-
ple data. We denote by sP

L := | SL | the size of the training data set, i.e. we
have ssplice

L = 2127 and swbcd
L = 455. By nP we denote the number of binary

variables calculated from the number of input attributes and the range of val-
ues each attribute can take, i.e. nsplice = 120 and nwbcd = 36. The sP

L training
data can be enumerated by using nP

L := �log sP
L� binary variables, i.e. we have

nsplice
L = 12 and nwbcd

L = 9.
For a given problem P , we introduce the classification circuit CP : The circuit

is built from threshold functions of unbounded fan-in (as basic gates; cf. [23,25])
and has minimum size with respect to the gate number S(CP). The number
of input nodes is nP . We now try to approximate CP by a composition of two
circuits

ĈP = C[nP →nP
L] + C[nP

L], (1)

where C[nP → nP
L] is a multi-output circuit that calculates the encoding of el-

ements from SL. The encoding then becomes the binary input to C[nP
L]. Based

on the results about local encoding [22] we assume

S
(
C[nP →nP

L]
)

< S
(
C[nP

L]
)

and therefore S
(
ĈP

)
< 2 · S

(
C[nP

L]
)
. (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

72 G. Lappas

Actually, S(C[nP → nP
L]) depends strongly on the distribution of sample data

within the whole domain of feasible samples of P and (2) is valid for sufficiently
large nP and complex P only. Nevertheless, we will focus on S(C[nP

L]) alone
which seems to be justified by our experimental observation that indeed the
chosen problems are associated with complex functions fP .

To estimate S(C[nP
L]), we use the asymptotically optimal design of Boolean

functions by liner threshold functions as presented in [23]:

S(fn) ≤ 2 ·
√

2n

n
·
(
1 + o

(√
2n/n

))
, (3)

where fn = f(x1, ..., xn) is an arbitrary Boolean function. Moreover, almost all
Boolean functions fn asymptotically require 2 ·

√
2n/n linear threshold gates for

their representation [23] (i.e. almost all functions are as complex as the most
complex functions).

We computed classification results for depth-two circuits C. The remaining
parameter settings are k = 20, 000, and Φ = p/3. The size p is determined by
preliminary experiments on depth-two circuits for Nper = 50. The experiments
lead us to the following settings: psplice := | SL | /4 for all three classes and
pwbcd := |SL |/6.

Table 1. Error Rates on Test Sets for Networks of Size Nper

Nper Splice-Junction WBCD
IE EI Neither

30 4.1% 3.4% 6.3% 1.1%
48 4.0% 3.3% 6.0% 0.9%
66 4.0% 3.3% 6.0% 0.9%
80 4.0% 3.3% 6.0% 1.2%
84 4.0% 3.3% 6.0% 1.2%

130 3.9% 3.3% 6.0% 1.1%
154 3.9% 3.3% 6.0% 1.1%
180 3.8% 3.2% 5.9% 1.1%
252 3.8% 3.1% 5.9% 1.0%
300 3.8% 3.1% 5.9% 1.0%

Let RP denote the maximum of the three best (not necessarily different)
classification rates recorded in Table 1 for problem P and circuits C. We set:

SP
min := min

R=RP
S(CP [e = R]), (4)

where e = R means an error rate of R by the given circuit. We now allow a
margin of deviation from RP by Δ. As an estimation of the circuit size that
ensures a high classification rate we take

SP :=max
{
S(CP [e = R]) :

(
RP <R≤RP +Δ

)
&

(
S(CP [e = R])≤SP

min
)}

. (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks 73

If the max-operation is over an empty set, we take SP := SP
min. Taking the

max-operation in (5) gives some confidence that the error rates have already
stabilised. The calculation of the corresponding values for the four classification
problems is summarised in Table 2. From Table 1 and Table 2 we conclude that

Table 2. Circuit size estimates compared to SP
pred

Circuit size Splice-Junction WBCD
estimates IE EI Neither

SP 154 154 154 180

SP
pred 147 147 147 60

for P = WBCD the differences in the classification rate are very small. For the
Splice-junction data, where the size of sample sets is much larger, we observe an
improvement and then stabilisation of error rates with increased circuit size.

We compare (see Table 2) the values of SP to SP
pred := x · 2 · (2nP

L /nP
L)1/2;

cf. (3), where x = 4 is chosen on the following grounds: The RHS of (2) doubles
the complexity S(ĈP), and we assume that the third factor on the RHS of (3),
which summarises the complexity of auxiliary sub-circuits, at most doubles the
product of the first two factors for relatively small values of (2nP

L /nP
L)1/2. Thus,

we provide empirical evidence that

8 · (2ncp
L /ncp

L)1/2 (6)

is an appropriate upper bound for the size of a neural network in order to achieve
a high generalisation capability of the network.

We note that the simple rules from (4) and (5) generate the same SP for
P ∈ {IE, EI, Neither}. Furthermore, if P = WBCD and Nper = 48 or Nper = 66,
the error rate in Table 1 is only 0.9%, i.e. Swbcd

pred = 60 from Table 3 seems to be
a good estimation.

In the context of machine learning, the RHS of (3) provides an estimation
of the size of elements of the hypotheses space (circuits of threshold functions)
that represent particular objects (concepts). The method to prove the lower
bound for (3) was utilised in [24,25] (cf. also [4]) to obtain a lower bound for a
sufficient number of samples such that the error rate on test samples is below
ε with probability at least (1 − δ). The lower bound is expressed in terms of
the VC-dimensions of neural nets, which basically equals the number of neurons
(threshold gates); see also [26]. The lower bound is of the type

max{4 · n · (n + k)2/ε · log (13/ε) ; 4/ε · log (2/δ)}, (7)

where k is the number of gates in neural nets (which represent the hypotheses).
We note that k = SP

pred (or even k = 2 · (2nP
L /nP

L)1/2) and ε in the range of
values from Table 1 would result in a number of examples much larger than the
number of samples available from our datasets, which is relatively independent
of δ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

74 G. Lappas

3 Evaluation of the Estimated Network Size on
Additional Datasets

We will evaluate in this Section the proposed upper bound on more datasets
from the UCI Repository.

Hayes-Roth Datasets (Hayes): The datasets has three classes (named hayes-
1, hayes-2 and hayes-3 in the rest of the text), which consist of five numerical
attributes. The dataset in UCI Repository consists of a training file of 132 sam-
ples and a test file of 28 samples. We merged the two file and used 2/3 of data
for training and 1/3 for testing, therefore we reduced the number of training
samples and increased the number of test samples, preserving however in our
testset the 28 original test samples.

Iris Plant Datasets (Iris): The set consists of 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is linearly separable
from the other two; the latter are not linearly separable from each other. There
are four attributes containing measurements in cm of sepal length, sepal width,
petal length, and petal width, and the task is to identify the three classes: Iris
Setosa (linearly seperable), Iris Versicolour, and Iris Virginica. We denote the
three classification problems, as iris-1, iris-2 and iris-3.

The Monk’s Problems (Monk): The Monk-1 and Monk-2 datasets, used
in this research, have a target concept to be identified. Monk-1 consists of 556
samples, monk-2 consists of 601 samples, and both datasets, if we omit the “id”
attribute, which is unique for each sample, have 6 attributes.

US Congressional Voting Records Database (Votes): The US Congres-
sional Voting Records (Votes) data set includes votes for each of the U.S. House
of Representatives Congressmen on 16 key issues (attributes) identified by the
Congressional Quarterly Almanaco (CGA) in 1984. The dataset consists of 435
samples of two classes (267 democrats, 168 republicans). The dataset consists
of 16 features, which are key issues for congressman’s votes for which Boolean
data (as yes, no votes) exist in voting records.

Waveform Datasets (Wave): Waveform is a three class dataset (waveform
1, waveform 2, waveform 3) where each class is a “wave” generated from a
combination of 2 of 3 “base” waves. The dataset contains 5,000 samples, with
21 attributes with continuous values from 0 to 6. We used in our research these
datasets with their original numerical values.

We will apply the formula to the above described collection of additional
datasets. Table 3 shows the estimated circuit size for domains with |D| data,
where the available training data are |SL| = 2/3 · |D|. ’LS’ indicates a zero error
classification for the dataset, and we consider the set as lineary seperable. There-
fore such datasets will be excluded from further investigation. From preliminary
experiments for N = 50 units, p = |SL|/2, G = |SL|, and K=25,000 we have
fine-tuned for each dataset the rest of parameters G, p and K. With respect to
parameters G, p and K, we compare according to Equation (6) the classification

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks 75

Table 3. Datasets and Predicted Network Size

Domain |D| |SL| ncp
L Spred

Hayes-Roth 1 160 106 7 35
Hayes-Roth 2 160 106 7 35
Hayes-Roth 3 160 106 7 LS
Iris 1 150 100 7 LS
Iris 2 150 100 7 35
Iris 3 150 100 7 35
Monks 1 556 370 9 60
Monks 2 601 401 9 60
Votes 435 290 9 60
Waveform 1 5,000 3,333 12 147
Waveform 2 5,000 3,333 12 147
Waveform 3 5,000 3,333 12 147

error from the predicted size of neural network N = |S| from Table 3 to half of
circuit sizes N = |S|/2 and double circuit sizes N = 2 · |S| from the predicted
size. Comparison results are shown in Table 4.

Table 4. Classification Errors for |S|, |S|/2, 2 · |S|

Domain e2
T for |S| e2

T for |S|/2 e2
T for 2 · |S|

Hayes-Roth 1 11.1% ±1.0% 11.9% ±2.1% 11.1 ±1.0%
Hayes-Roth 2 11.5% ±2.0% 11.9% ±2.6% 10.4 ±1.7%
Iris 2 0.7% ±0.1% 0.7% ±0.1% 0.7 ±0.1%
Iris 3 0.7% ±0.1% 0.7% ±0.1% 0.7 ±0.1%
Monks 1 22.7% ±1.3% 23.1% ±2.4% 23.1 ±1.1%
Monks 2 34.2% ±2.6% 34.7% ±3.8% 37.3 ±4.7%
Votes 3.2% ±0.4% 3.4% ±0.1% 3.3 ±0.1%
Waveform 1 14.7% ±0.1% 14.7% ±0.1% 14.8 ±0.1%
Waveform 2 11.7% ±0.2% 11.7% ±0.2% 11.8 ±0.1%
Waveform 3 11.4% ±0.2% 11.6% ±0.2% 11.4 ±0.1%

The comparison shows that our upper bound 8 · (2ncp
L /ncp

L)1/2) for estimating
the circuit size does indeed imply the highest classification rates. Except for the
‘Hayes-Roth 2’ dataset, where a 10.4 classification rate is obtained for double
circuit size, the highest classification rate is obtained for N according to (6).

4 Conclusions

Minimising the error of missclassified samples for a network is an NP-hard prob-
lem for non-linearly separable problems and only approximations of the optimal
weight vector can be found. Relating classifier parameters to problem-dependent
attributes allows us to a priori estimate values for these parameters and employ
methods that reduces significantly the number of required experiments to achieve

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

76 G. Lappas

high classification rates. Our experimental results for parameter setting shows
that the VC-dimension bound from equation (7) for a sufficient number of samples
seems to be too large, or in other words we obtained, following parameter settings,
error rates ε having datasets with considerably much smaller number of available
training samples than the sufficient number of samples that equation (7) suggests.

To propose an upper bound for the size of threshold circuits is important
for the following reasons: Firstly, it allows us to a piori set one of the difficult
problem dependent parameters, and hence we can focus on the rest of problem
dependent parameters in a complex classification problem. Secondly, it is impor-
tant for parallel processing theory in terms of resources required to approximate
best classification rates. Thirdly, it shows that the number of nodes in neural
networks depends on the available number of training examples, and hence it
suggests that a constant size neural network is not appropriate for most of the
classification problems.

References

1. Albrecht, A., Lappas, G., Vinterbo, S.A., Wong, C.K., Ohno-Machado, L.: Two ap-
plications of the LSA machine. In: ICONIP’02. Proc. 9th International Conference
on Neural Information Processing, Singapore, pp. 184–189 (2002)

2. Albrecht, A., Wong, C.K.: Combining the perceptron algorithm with logarithmic
simulated annealing. Neural Processing Letters 14, 75–83 (2001)

3. Allender, E.: The permanent requires large uniform threshold circuits. In: Cai, J.-
Y., Wong, C.K. (eds.) COCOON 1996. LNCS, vol. 1090, pp. 127–135. Springer,
Heidelberg (1996)

4. Anthony, M.: Boolean Functions and Artificial Neural Networks. CDAM Research
Report LSE-CDAM-2003-01, Department of Mathematics and Centre for Discrete
and Applicable Mathematics, The London School of Economics and Political Sci-
ence, London, UK (2003)

5. Anthony, M., Bartlett, P.L.: Neural Network Learning. Cambridge University
Press, UK (1999)

6. Bartlett, P.L.: The Sample Complexity of Pattern Classification with Neural Net-
works: the Size of the Weights is More Important Than the Size of the Network.
IEEE Transactions on Information Theory 44(2), 525–536 (1998)

7. Bartlett, P.L., Maiorov, V., Meir, R.: Almost Linear VC-dimension Bounds for
Piecewise Polynomial Networks. Neural Computation 10, 2159–2173 (1998)

8. Baum, E.B.: On the Capabilities of Multilayer Perceptrons. Journal of Complex-
ity 4, 193–215 (1988)

9. Baum, E.B., Haussler, D.: What Size Net Gives Valid Generalization? Neural Com-
putation 1(1), 151–160 (1989)

10. Beiu, V.: Digital Integrated Circuit Implementations. In: Fiesler, E., Beale, R.
(eds.) Handbook on Neural Computation, Oxford University Press, Oxford (1997)

11. Blum, A., Rivest, R.L.: Training a 3-Node Neural Network is NP-Complete. Neural
Networks 5, 117–127 (1992)

12. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic NC1 com-
putation. J. Comput. System Sci. 57, 200–212 (1998)

13. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley-Interscience,
New York (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimating the Size of Neural Networks 77

14. Goldberg, P.W., Jerrum, M.R.: Bounding the Vapnik-Chervonenkis Dimension of
Concept Classes Parametrised by Real Numbers. Machine Learning 18(2/3), 131–
148 (1995)

15. Hajek, B.: Cooling schedules for optimal annealing. Mathem. Operat. Res 13, 311–
329 (1988)

16. Haussler, D., Kearns, M., Schapire, R.: Bounds on the Sample Complexity of
Bayesian Learning Usng Information Theory and the VC Dimension. Machine
Learning 14, 83–113 (1994)

17. Höffgen, K.-U., Simon, H.-U.: Robust Trainability of Single Neurons. In: Proc. 5th

Annual ACM Workshop on Computational Learning Theory, pp. 428–439. ACM
Press, New York (1992)

18. Karpinski, M., Macintyre, A.J.: Polynomial Bounds for VC Dimension of Sig-
moidal and General Pfaffian Neural Networks. Journal of Computer and System
Sciences 54(1), 169–176 (1997)

19. Koiran, P., Sontag, E.D.: Neural Networks with Quadratic VC Dimension. Journal
of Computer and System Sciences 54(1), 190–198 (1997)

20. Kolmogorov, A.N.: On the Representation of Continuous Functions of Several Vari-
ables by Superposition of Continuous Functions of one Variable and Addition.
Doklady Akademiia Nauk 114(5), 953–956 (1957)

21. Lappas,G.,Frank,R.J.,Albrecht,A.:AComputationalStudyonCircuitSizevs.Circuit
Depth. International Journal onArtificial IntelligenceTools 15(2), 143–162 (2006)

22. Lupanov, O.B.: On a Method to Design Control Systems - The Local Encoding
Approach (in Russian). Problemy Kibernetiki 14, 31–110 (1965)

23. Lupanov, O.B.: On the design of circuits by threshold elements (in Russian). Prob-
lemy Kibernetiki 26, 109–140 (1973)

24. Maass, W.: Bounds on the computational power and learning complexity of analog
neural nets. In: Proc. 25th Annual ACM Symp. on the Theory of Computing, pp.
335–344. ACM Press, New York (1993)

25. Maass, W.: On the complexity of learning on neural nets. In: Maass, W. (ed.)
EuroColt’93. Proc. Computational Learning Theory, pp. 1–17. Oxford University
Press, Oxford (1994)

26. Maass, W., Legenstein, R.A., Bertschinger, N.: Methods for estimating the compu-
tational power and generalization capability of neural microcircuits. In: Proc. Ad-
vances in Neural Information Processing Systems (2005)

27. Razborov, A., Wigderson, A.: nΩ(logn) Lower Bounds on the Size of Depth 3
Threshold Circuits with AND Gates at the Bottom. In: Inf. Proc. Letters, 45th
edn., pp. 303–307 (1993)

28. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)
29. Sontag, E.D.: VC-dimension of Neural Networks. In: Bishop, C.M. (ed.) Neural

Networks and Machine Learning, pp. 69–95. Springer Verlag, Berlin (1998)
30. Vapnik, V., Chervonenkis, A.Y.: On the Uniform Convergence of Relative Fre-

quencies of Events to their Probabilities. Theory of Probability and Its Applica-
tions 16(2), 264–280 (1971)

31. Vollmer, H.: Some Aspects of the Computational Power of Boolean Circuits of
Small Depth. University Würzburg, Habilitationsschrift (1999)

32. Wenocur, R.S., Dudley, R.M.: Some Special Vapnik-chervonenkis Classes. Discrete
Mathematics 33, 313–318 (1981)

33. Wolpert, D.H., Macready, W.G.: No Free Lunch Theorems for Optimization. IEEE
Trans. on Evolutionary Computation 1, 67–82 (1997)

34. Yannakakis, M.: Computational Complexity. In: Aarts, E.H.L., Lenstra, J.K. (eds.)
Local Search in Combinatorial Optimization, Wiley & Sons, Chichester (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Maximum Weighted Likelihood Approach to

Simultaneous Model Selection and Feature
Weighting in Gaussian Mixture

Yiu-ming Cheung and Hong Zeng

Department of Computer Science, Hong Kong Baptist University, Hong Kong
{ymc,hzeng}@comp.hkbu.edu.hk

Abstract. This paper is to identify the clustering structure and the rel-
evant features automatically and simultaneously in the context of Gaus-
sian mixture model. We perform this task by introducing two sets of
weight functions under the recently proposed Maximum Weighted Like-
lihood (MWL) learning framework. One set is to reward the significance
of each component in the mixture, and the other one is to discriminate
the relevance of each feature to the cluster structure. The experiments on
both the synthetic and real-world data show the efficacy of the proposed
algorithm.

1 Introduction

The finite mixture model has provided a formal approach to address the clus-
tering problems. In this unsupervised domain, there are two key issues. One is
the determination of an appropriate number of components (also called number
of clusters or model order interchangeably) in a mixture model. In general, the
true clustering structure may not be well described with too few components,
whereas the estimated model may “over-fit” the data if it uses too many com-
ponents. The other issue is how to identify the relevance of observation features
with respect to the clustering structure. From the practical viewpoint, some fea-
tures may not be so important, or even be irrelevant, to the clustering structure.
Their participation in the clustering process will prevent a clustering algorithm
from finding an appropriate partition. Hence, it is necessary to discriminate the
relevance of each feature with respect to the clustering structure in the clustering
analysis.

Clearly, the above two issues are closely related. However, most of the existing
approaches deal with these two issues separately or sequentially. Some methods
typically choose the most influential features prior to a clustering algorithm, e.g.,
see [1,2]. Although the success of their algorithms has been demonstrated in their
application domains, these pre-selected features may not be necessarily suitable
to the clustering algorithm that will be ultimately employed. Moreover, some
approaches [3,4] wrap the clustering algorithms in an outer layer to evaluate the
candidate feature subsets. The performance of such a method is superior to that
of the previous approaches, but their search strategies of generating the feature

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 78–87, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A MWL Approach to Simultaneous Model Selection and Feature Weighting 79

subset candidates are prone to find a local maxima. Recently, it has been be-
lieved that the above two issues should be jointly optimized in a single learning
paradigm. A typical example is the work of [5], which introduces the concept
of feature saliency to measure the relevance of each feature to the clustering
structure, as the feature weight . It then heuristically integrates the Minimum
Message Length (MML) criterion into the likelihood, and optimizes this penal-
ized likelihood using a modified Expectation-Maximization (EM) algorithm to
obtain the feature weights and the clustering results. Nevertheless, the penalty
terms given by the MML criterion are static and fixed for all components at each
EM iteration. As a result, they may not be robust enough under a certain envi-
ronment, in which it is more desirable to implement a dynamic and embedded
scheme to control the model complexity.

In this paper, we propose such an approach to Gaussian mixture clustering
by formulating the above two issues into a single Maximum Weighted Likelihood
(MWL) optimization function [6]. We introduce two sets of weight functions to
address these two issues, respectively. Consequently, both the model selection
and feature weighting are performed automatically and simultaneously. The ex-
periments on both the synthetic and real-world data have shown the efficacy of
the proposed algorithm.

2 The MWL Learning Framework

Suppose N i.i.d. observations, denoted as x1, x2, . . ., xN, come from the follow-
ing mixture model:

p(xt|Θ∗) =
k∗
∑

j=1

α∗
jp(xt|θ∗j) (1)

with

k∗∑

j=1
α∗

j = 1 and ∀1 ≤ j ≤ k∗, α∗
j > 0,

where each observation xt (1 ≤ t ≤ N) is a column vector of d-dimensional
features, i.e. xt = [x1t, . . . , xdt]T , and Θ∗ = {α∗

j , θ
∗
j }k∗

j=1. Furthermore, θ∗j denotes
the parameter set of the jth probability density function (pdf) p(xt|θ∗j) in the
mixture model, k∗ is the true cluster number, and α∗

j is the mixing proportion
of the jth component in the mixture. Θ∗ is estimated from these N observations
by:

Θ̂ML = argmax
Θ

{log p(XN|Θ)}. (2)

where XN = {x1,x2, . . . ,xN}, and Θ̂ML = {αj , θj}k
j=1 is a maximum likelihood

(ML) estimate of Θ∗.
When the number of components k is known, the ML estimate in (2) could

be obtained by the Expectation-Maximization (EM) algorithm. However, from
the practical viewpoint, it is difficult or even impossible to know the number

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

80 Y.-m. Cheung and H. Zeng

of components in advance. Recently, a promising approach called Rival Penal-
ized Expectation-Maximization (RPEM for short) [6], where the model order is
determined automatically and simultaneously with the parameter estimation,
has been developed under the MWL learning framework. The main idea of the
MWL framework is to introduce unequal weights in general into the conventional
maximum likelihood, which actually provides a new promising way for regular-
ization so that the weighted likelihood does not increase monotonically over the
candidate model complexity. Specifically, the weighted likelihood is given bellow:

Q(Θ,XN) =
1
N

N∑

t=1

log p(xt|Θ) =
1

Nζ

N∑

t=1

k∑

j=1

g(j|xt, Θ) log p(xt|Θ)

=
1

Nζ

N∑

t=1

M(Θ,xt) (3)

M(Θ,xt) =
k∑

j=1

g(j|xt, Θ) log[αjp(xt|θj)] −
k∑

j=1

g(j|xt, Θ) log h(j|xt, Θ) (4)

where h(j|xt, Θ) = αjp(xt|θj)
p(xt|Θ) is the posterior probability that xt belongs to the

jth component in the mixture, k is an estimate of k∗ with k ≥ k∗, and ζ is a
constant. The g(j|xt, Θ)’s are the weight functions, satisfying the constraints:

∀t, j,
k∑

j=1

g(j|xt, Θ) = ζ; lim
h(j|xt,Θ)→0

g(j|xt, Θ) log h(j|xt, Θ) = 0.

In the RPEM algorithm of [6], the weight functions are constructed as:

g(j|xt, Θ) = (1 + εt)I(j|xt, Θ) − εth(j|xt, Θ) (5)

with

I(j|x, Θ) =
{

1 if j = c ≡ arg max1≤i≤k h(i|x, Θ);
0 otherwise.

(6)

where εt is a small positive quantity. Under this weight construction, given an
observation xt, a positive weight g(c|xt, Θ) is assigned to the log-likelihood of the
winning component, i.e., the component with the maximum value of h(j|xt, Θ),
so that it is updated to adapt to xt, meanwhile all rival components are pe-
nalized with a negative weight. This intrinsic rival penalization mechanism of
the RPEM makes the genuine clusters survive, whereas the “pseudo-clusters”
gradually vanish. The updating details of Θ̂MWL = argmaxΘ{Q(Θ,XN)} can
be found in [6].

The numerical results have shown its outstanding performance on both of syn-
thetic and real-life data [6], where all features are equally useful in clustering pro-
cess. Nevertheless, analogous to the most of the existing clustering algorithms,
the performance of the RPEM may deteriorate provided that there exist some
irrelevant features in feature vectors. In the following, we will therefore perform
the feature relevancy analysis and further extend the RPEM accordingly within
the MWL framework.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A MWL Approach to Simultaneous Model Selection and Feature Weighting 81

3 Simultaneous Clustering and Feature Weighting

To discriminate the importance of each feature in the cluster structure, we utilize
the concept of feature saliency defined in [5] as our feature weight (i.e., wl, 0 ≤
wl ≤ 1, ∀1 ≤ l ≤ d): the lth feature is relevant with a probability wl that
the feature’s pdf is dependent of the pdf’s of components in the mixture. For
those features whose values are distributed among all clusters, we regard its
distribution as a common one. We suppose the features are independent of each
other, then the pdf of a more general mixture model can be written below as in
[5]:

p(xt|Θ) =
k∑

j=1

αj

d∏

l=1

p(xlt|Φ)

=
k∑

j=1

αj

d∏

l=1

[wlp(xlt|θlj) + (1 − wl)q(xlt|λl)] (7)

where p(xlt|θlj) = N (xl,t|mlj , s
2
lj) denotes a Gaussian density function of the

relevant feature xlt with the mean mlj , and the variance s2
lj ; q(xlt|λl) is the

common distribution of the irrelevant feature. In this paper, we shall limit it
to be a Gaussian as well for a general purpose, i.e., q(xlt|λl) = N (xlt|cml, cs

2
l).

Subsequently, the full parameter set of the general Gaussian mixture model is
redefined as Θ = {{αj}k

j=1, Φ} and Φ = {{θlj}d,k
l=1,j=1, {wl}d

l=1, {λl}d
l=1}. Note

that
p(xlt|Φ) = wlp(xlt|θlj) + (1 − wl)q(xlt|λl) (8)

is a linear mixture of two possible densities for each feature, and the feature
weight wl acts as a regulator to determine which distribution is more appropriate
to describe the feature. A new perspective is to regard this form as a lower level
Gaussian mixture, which resembles the higher level Gaussian mixture on which
the weights of the genuine clusters are estimated. Hence, the feature weight wl

can be considered as the counterpart of component weight αj . Subsequently, a
similar rewarding and penalizing scheme can be embedded into the likelihood
function of (3) for this lower level mixture. To this end, we re-write (3) as:

Q̃(Θ,XN) =
1
N

N∑

t=1

log p(xt|Θ) =
1

Nζ

N∑

t=1

M̃(Θ,xt). (9)

To control the complexity of the model to be estimated, we introduce two sets
of weight functions, i.e. g̃(.|xt, Θ) and f̃(.|xlt, Φ), into the log-likelihood for the
components in the higher level and lower level mixtures, respectively. Altogether,
by inserting the following formulas:

p(xt|Θ) =
αjp(xt|Φ)
h̃(j|xt, Θ)

; p(xlt|Φ) =
wlp(xlt|θlj)
h′(1|xlt, Φ)

=
(1 − wl)q(xlt|λl)

h′(0|xlt, Φ)
,

into (9), we obtain the weighted log-likelihood for the mixture model as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

82 Y.-m. Cheung and H. Zeng

M̃(Θ,xt) =
k∑

j=1

g̃(j|xt, Θ) log αj +

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)
{

f̃(1|xlt, Φ) log[wlp(xlt|θlj)] + f̃(0|xlt, Φ) log[(1 − wl)q(xlt|λl)]
}

−

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)f̃(1|xlt, Φ) log h
′
(1|xlt, Φ) −

k∑

j=1

d∑

l=1

g̃(j|xt, Θ)f̃(0|xlt, Φ) log h
′
(0|xlt, Φ)

−
k∑

j=1

g̃(j|xt, Θ) log h̃(j|xt, Θ)

(10)
where

h̃(j|xt, Θ) =
αjp(xt|Φ)
p(xt|Θ)

=
αj

d∏

l=1
[wlp(xlt|θlj) + (1 − wl)q(xlt|λl)]

k∑

i=1
αi

d∏

l=1
[wlp(xlt|θli) + (1 − wl)q(xlt|λl)]

,

h
′
(1|xlt, Φ) =

wlp(xlt|θlj)
wlp(xlt|θlj) + (1 − wl)q(xlt|λl)

, h
′
(0|xlt, Φ) = 1 − h

′
(1|xlt, Φ).

h̃(j|xt, Θ) indicates the probability that some features in the data points come
from the jth density component in the subspace. h

′
(1|xlt, Φ) represents the pos-

terior probability that the lth feature conforms to the mixture model. That is,
it reflects the prediction for the relevance of the lth feature to the clustering
structure.

We design the weight functions for the higher level mixture as follows:

g̃(j|xt, Θ
old) = I(j|xt, Θ) + h̃(j|xt, Θ), j = 1, . . . , kmax, (11)

where the I(j|xt, Θ) is the indicator function defined in (6). It is clear that this
form meets the requirements of weight functions under the MWL framework. The
rationale behind this form is that we give an award to the winning component,
i.e., the cth one, by assigning a weight whose value is larger than the corre-
sponding h̃(c|xt, Θ). In contrast, we keep the weights of those rival components
exactly equal to their corresponding h̃(j|xt, Θ)’s. That is, we give the winning
component an award, but the rival ones not. Hence, this is actually another kind
of award-penalization scheme. Such a scheme is able to make the genuine com-
ponents survive in the learning process, whereas those “pseudo-clusters” will be
faded out from the mixture gradually.

In (10), the new weight functions {f̃(1|xlt, Φ), f̃(0|xlt, Φ)} should satisfy the
following constraint:

lim
h′(i|xlt,Φ)→0

f̃(i|xt, Θ) log h
′
(i|xlt, Φ) = 0, i ∈ {0, 1}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A MWL Approach to Simultaneous Model Selection and Feature Weighting 83

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y
f(

y)

f(y)=0.5[1−cos(πy)]
s(y)=y

Fig. 1. f(y) vs. s(y). f(y) is plotted with “-”; s(y) is plotted with “.”;

Accordingly, an applicable form is presented below:

f̃(1|xlt, Φ) = f(h
′
(1|xlt, Φ)), f̃(0|xlt, Φ) = 1 − f(h

′
(1|xlt, Φ)),

with
f(y) = 0.5[1 − cos(πy)], y ∈ [0, 1]. (12)

f(y) is plotted in Fig. 1. An interesting property of f(y) can be observed from
Fig. 1:

y > f(y) > 0, for 0 < y < 0.5; y < f(y) < 1, for 0.5 < y < 1.

Hence, if h
′
(1|xlt, Φ) > h

′
(0|xlt, Φ), it implies that the feature seems useful

in the clustering. Subsequently, its log-likelihood log[wlp(xlt|θlj)] is amplified by
a larger coefficient f̃(1|xlt, Φ), meanwhile the log-likelihood of the “common”
distribution is suppressed by a smaller coefficient f̃(0|xlt, Φ). A reverse assigning
scheme is also held for the case when the feature seems less useful. In this sense,
the function f(y) rewards the important features that make the greater contribu-
tion to the likelihood, and penalizes those of insignificant features. Consequently,
the estimation for the whole parameter set is given by:

Θ̂MWL = argmax
Θ

{Q̃(Θ,XN)}. (13)

An EM-like iterative updating by gradient ascent technique is used to esti-
mate the parameter set. Algorithm 1 shows the pseudo-code description of the
proposed algorithm. In implementation of this algorithm, {αj}k

j=1s must sat-
isfy the constraint:

∑k
j=1 αj = 1 and 0 ≤ αj < 1. Hence, we also update

{βj}k
j=1s instead of {αj}k

j=1 as shown in [6], and {αj}k
j=1 are obtained by:

αj = eβj/
∑k

i=1 eβi , 1 ≤ j ≤ k. As for another parameter wl with the con-
straint: 0 ≤ wl ≤ 1, we update γl instead of wl, and wl is obtained by the
sigmoid function of γl: wl = 1

1+e−τ·γl
, 1 ≤ l ≤ d. The constant τ (τ > 0) is used

to tune the shape of the sigmoid function. To implement a moderate sensitivity
for wl, i.e., an approximately equal increasing or decreasing quantity in both γl

and wl, the slope of the sigmoid function around 0 with respect to (w.r.t.) γl

(namely, around 0.5 w.r.t. wl) should be roughly equal to 1. By rule of thumb,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

84 Y.-m. Cheung and H. Zeng

Algorithm 1. The complete algorithm.
input : {x1,x2, . . . ,xN}, kmax, η, epochmax, initial Θ
output: The converged Θ̂

count ← 0;
while count ≤ epochmax do

for t ← 1 to N do
step 1: Calculate h

′
, h̃ to obtain f̃ and g̃;

step 2:

Θ̂new = Θ̂old + ΔΘ = Θ̂old + η
∂M̃(xt; Θ)

∂Θ

�
�
�
�
Θ̂old

end
count ← count + 1;

end

we find that a linear fitting of the two curves: wl = 1
1+e−τ·γl

and wl = γl + 0.5
around 0 w.r.t γl occurs around τ = 4.5. In the following, we will therefore set
τ at 4.5.

For each observation xt, the changes in the parameters set are calculated as:

Δβj = ηβ
∂M̃(xt; Θ)

∂βj

∣
∣
∣
∣
∣
Θold

= ηβ

kmax∑

i=1

∂M̃(xt; Θ)
∂αi

· ∂αi

∂βj

∣
∣
∣
∣
∣
Θold

= ηβ(g̃(j|xt, Θ) − αold
j), (14)

Δmlj = η
∂M̃(xt; Θ)

∂mlj

∣
∣
∣
∣
∣
Θold

= ηg̃(j|xt, Θ)f̃ (1|xlt, Φ)
xlt − mold

lj

(sold
lj)2

, (15)

Δslj = η
∂M̃(xt; Θ)

∂slj

∣
∣
∣
∣
∣
Θold

= ηg̃(j|xt, Θ)f̃ (1|xlt, Φ)
[(xlt − mold

lj)2

(sold
lj)3

− 1
sold

lj

]

,

(16)

Δcml = η
∂M̃(xt; Θ)

∂cml

∣
∣
∣
∣
∣
Θold

= η

kmax∑

j=1

g̃(j|xt, Θ)f̃ (0|xlt, Φ)
xlt − cmold

l

(csold
l)2

, (17)

Δcsl = η
∂M̃(xt; Θ)

∂csl

∣
∣
∣
∣
∣
Θold

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A MWL Approach to Simultaneous Model Selection and Feature Weighting 85

= η

kmax∑

j=1

g̃(j|xt, Θ)f̃ (0|xlt, Φ)
[
(xlt − cmold

l)2

(csold
l)3

− 1
csold

l

]

, (18)

Δγl = η
∂M̃(xt; Θ)

∂γl

∣
∣
∣
∣
∣
Θold

= η
∂M̃(xt; Θ)

∂wl
· ∂wl

∂γl

∣
∣
∣
∣
∣
Θold

= η · τ ·
kmax∑

j=1

g̃(j|xt, Θ)
[

f̃(1|xlt, Φ)(1 − wold
l) − f̃(0|xlt, Φ)wold

l

]

. (19)

Generally speaking, the learning rate of βjs should be chosen as ηβ > η to help
eliminate the much smaller αj (we suggest η = 0.1ηβ).

4 Experimental Results

4.1 Synthetic Data

We generated 1, 000 2-dimensional data points from a Gaussian mixture of three
components:

0.3∗N
��

1.0
1.0

�
,

�
0.15 0
0 0.15

��
+0.4∗N

��
1.0
2.5

�
,

�
0.15 0
0 0.15

��
+0.3∗N

��
2.5
2.5

�
,

�
0.15 0
0 0.15

��
.

In order to illustrate the ability of the proposed algorithm to perform automatic
model selection and feature weighting jointly, we appended two additional features
to the original set to yield a 4-dimensional one. The last two features are sampled
independently from N (2; 2.52) as the Gaussian noise covering the entire data set.
Apparently, the last two dimensions do not hold the same mixture structure, thus
are not as significant as the first two dimensions in the partitioning process.

We initialized kmax to 15, and all βj ’s and γl’s to 0, which is equivalent to
setting each αj to 1/15 and wl to 0.5, the remaining parameters were randomly
initialized. The learning rates are η = 10−5, ηβ = 10−4. After 500 epochs, the
mixing coefficients and feature weights are obtained by the proposed algorithm:

α̂6 = 0.4251 α̂8 = 0.2893 α̂15 = 0.2856 α̂j = 0, j �= 6, 8, 15
ŵ1 = 0.9968 ŵ2 = 0.9964 ŵ3 = 0.0033 ŵ4 = 0.0036.

The feature weights of the first two dimensions converge close to 1, while those of
the last two dimensions are assigned close to 0. It can be seen that the algorithm
has accurately detected the underlying cluster structures in the first two dimen-
sions, and meanwhile the appropriate model order and component parameters
have been well estimated.

4.2 Real-World Data

We further investigated the performance of our proposed algorithm on serval
benchmark databases [7] for data mining. The partitional accuracy of the al-
gorithm without the prior knowledge of the underground class labels and the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

86 Y.-m. Cheung and H. Zeng

Table 1. Results of the 30-fold runs on the test sets for each algorithm, where each
data set has N data points with d features from k∗ classes

Data Set Method Model Order Error Rate
Mean ± Std Mean ± Std

wine RPEM 2.5 ± 0.7 0.0843 ± 0.0261
d = 13 EMFW 3.3 ± 1.4 0.0673 ± 0.0286

N = 178 NFW 2.8 ± 0.7 0.0955 ± 0.0186
k∗ = 3 proposed method 3.3 ± 0.4 0.0292± 0.0145
heart RPEM 1.7 ± 0.1 0.3167 ± 0.0526
d = 13 EMFW 2.5 ± 0.5 0.2958 ± 0.0936

N = 270 NFW 2.2 ± 0.4 0.2162 ± 0.0473
k∗ = 2 proposed method fixed at 2 0.2042± 0.0379
wdbc RPEM 1.7 ± 0.4 0.2610 ± 0.0781

d = 30 EMFW 6.0 ± 0.7 0.0939 ± 0.0349
N = 569 NFW 3.0 ± 0.8 0.4871 ± 0.2312
k∗ = 2 proposed method 2.6 ± 0.6 0.0834± 0.0386

ionosphere RPEM 1.8 ± 0.5 0.4056 ± 0.0121
d = 34 EMFW 3.2 ± 0.6 0.1968 ± 0.0386

N = 351 NFW 2.2 ± 0.5 0.3201 ± 0.0375
k∗ = 2 proposed method 2.9 ± 0.7 0.2029 ± 0.0667

relevancy of each features were measured by the error rate index. We randomly
split those raw data sets into equal size for the training sets and the testing
sets. The process was repeated 30 times, yielding 30 pairs of different training
and test sets. For comparison, we conducted the proposed algorithm, the RPEM
algorithm, as well as the approach in [5] (denoted as EMFW). To examine the
efficacy of the feature weight function f(.|xlt, Φ), we also conducted the algo-
rithm (denoted as NFW) with the feature weight function in (12) setting to
s(y) = y, y ∈ [0, 1], i.e., no penalization on the lower level Gaussian mixture in
feature relevancy estimation. The means and standard deviations of the results
obtained on the four sets are summarized in Table 1, from which we have the
three remarks as follows:

Table 2. The average weighting results of the 30 fold-runs on the real data, where
the feature weights for wdbc and ionosphere are not included as the number of their
features is too large to accommodate in this Table

Data set Feature
1 2 3 4 5 6 7 8 9 10 11 12 13

wine 0.9990 0.8799 0.0256 0.2831 0.2354 0.9990 0.9990 0.0010 0.9900 0.9869 0.7613 0.9990 0.0451
heart 0.0010 0.6776 0.5872 0.0010 0.0010 0.9332 0.5059 0.0010 0.8405 0.3880 0.3437 0.4998 0.7856

Remark 1: In Table 1, it is noted that the proposed method has much lower
error rates than the RPEM algorithm that is unable to perform the feature
discrimination. Table 2 lists the mean feature weights of the sets obtained by
the proposed algorithm in the 30 runs, indicating that only several features have
good discriminating power. Remark 2: Without the feature weight functions to
assign unequal emphases on the likelihood for the lower level Gaussian mixture,
it is found that the performance of the NFW algorithm is unstable because of no
enough penalization to the model complexity. It therefore validates the design of
the proposed weight functions for weighting features. Remark 3: It is observed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A MWL Approach to Simultaneous Model Selection and Feature Weighting 87

that the method in [5] tends to use more components for the mixture, whereas
the proposed algorithm not only gives general lower mismatch degrees, but also
produces much more parsimonious models.

5 Conclusion

In this paper, a novel approach to tackle the two challenges for Gaussian mixture
clustering, has been proposed under the Maximum Weighted Likelihood learning
framework. The model order for the mixture model and the feature weighting
are obtained simultaneously and automatically. Experimental results have shown
the promising performance of the proposed algorithm on both the synthetic and
the real-world data sets.

References

1. Liu, H., Yu, L.: Toward integrating feature selection algorithms for classification
and clustering. IEEE Transactions on Knowledge and Data Engineering 17, 491–
502 (2005)

2. Dash, M.C., Scheuermann, K., Liu, P.H.: Feature selection for clustering-A filter
solution. In: Proceedings of 2nd IEEE International Conference on Data Mining,
pp. 115–122. IEEE Computer Society Press, Los Alamitos (2002)

3. Dy, J., Brodley, C.: Feature selection for unsupervised learning. Joural of Machine
Learning Research 5, 845–889 (2004)

4. Figueiredo, M.A.T., Jain, A.K., Law, M.H.C.: A feature selection wrapper for mix-
tures. LNCS, vol. 1642, pp. 229–237. Springer, Heidelberg (2003)

5. Law, M.H.C., Figueiredo, M.A.T., Jain, A.K.: Simultaneous feature selection and
clustering using mixture models. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 26, 1154–1166 (2004)

6. Cheung, Y.M.: Maximum weighted likelihood via rival penalized EM for density
mixture clustering with automatic model selection. IEEE Transactions on Knowl-
edge and Data Engineering 17, 750–761 (2005)

7. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases (1998),
http://www.ics.uci.edu/mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/mlearn/MLRepository.html

Estimation of Poles of Zeta Function in Learning

Theory Using Padé Approximation

Ryosuke Iriguchi1 and Sumio Watanabe2

1 Department of Computational Intelligence and Systems Science, Tokyo Institute of
Technology, mailbox R2-5, Nagatsuta 4259, Midori-ku, Yokohama-shi,

226–8503 Japan
iri@cs.pi.titech.ac.jp

2 Precision and intelligence Laboratory, Tokyo Institute of Technology, mailbox R2-5,
Nagatsuta 4259, Midori-ku, Yokohama-shi, 226–8503 Japan

swatanab@pi.titech.ac.jp

Abstract. Learning machines such as neural networks, Gaussian mix-
tures, Bayes networks, hidden Markov models, and Boltzmann machines
are called singular learning machines, which have been applied to many
real problems such as pattern recognition, time-series prediction, and sys-
tem control. However, these learning machines have singular points which
are attributable to their hierarchical structures or symmetry properties.
Hence, the maximum likelihood estimators do not have asymptotic nor-
mality, and conventional asymptotic theory for statistical regular models
can not be applied. Therefore, theoretical optimal model selections or
designs involve algebraic geometrical analysis. The algebraic geometrical
analysis requires blowing up, which is to obtain maximum poles of zeta
functions in learning theory, however, it is hard for complex learning ma-
chines. In this paper, a new method which obtains the maximum poles of
zeta functions in learning theory by numerical computations is proposed,
and its effectiveness is shown by experimental results.

1 Introduction

Learning machines such as neural networks, Gaussian mixtures, Bayes networks,
hidden Markov models, and Boltzmann machines are called singular learning
machines, which have been applied to many real problems such as pattern
recognition, time-series prediction, and system control. However, these learning
machines have hierarchical structures or symmetry properties, which make corre-
spondence between the parameters and probabilistic distributions many-to-one.
Because of many-to-one correspondence, the parameters cannot be determined
only by the behaviour of the learning machines. In addition, the conventional
asymptotic theory of statistical regular models cannot be applied, and hence
mathematical basis to obtain predictive accuracy or optimal design of learning
models is not enough developed [1].

Furthermore, the parameter set that represents same probabilistic distribu-
tions of these learning machines has singular points in parameter space, hence

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 88–97, 2007.
� Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimation of Poles of Zeta Function in Learning Theory 89

theoretical optimal model selections or designs require blowing up, an algebraic
geometrical method to resolve singular points [2]. Blowing up is used to obtain
the poles of zeta functions in learning theory, and then an asymptotic form of
stochastic complexity or generalization error of Bayesian learning can be ob-
tained. It is known that the stochastic complexity and the generalization error
of Bayesian learning of singular models are smaller than the ones of statistical
regular models which have the same number of parameters. In this paper, a new
method by which we obtain the maximum poles of zeta functions in learning
theory by numerical computations is proposed, and its its effectiveness is shown
by experimental results.

2 Bayesian Learning

Assume that n samples Xn = (X1, . . . , Xn) are independently obtained from the
true distribution q(x). Let p(x | w) be a learning machine that has parameter
w, and ϕ(w) be a prior distribution of the parameter. In Bayesian learning, a
probabilistic distribution in parameter space called the posterior distribution is
defined as

p(w | Xn) def=
1

p(Xn)
ϕ(w)

n∏

i=1

p(Xi | w), (1)

where p(Xn) is the normalization constant (partition function) (2) which lets
integral of (1) by w be 1.

p(Xn) def=
∫

ϕ(w)
n∏

i=1

p(Xi | w) dw. (2)

Equation (2) represents the likelihood for the learning machine and prior distri-
bution under given samples, hence also called the marginal likelihood. Averaging
out the learning machine by (1), the predictive distribution is defined by

p(x | Xn) def=
∫

p(w | Xn)p(x | w) dw. (3)

Also, the Kullback distance between the true distribution q(x) and the predictive
distribution (3) is called generalization error G(Xn) (4), and its average is called
average generalization error G(n) (5). The generalization error is used to evaluate
the precision of learning.

G(Xn) def=
∫

q(x) log
q(x)

p(x | Xn)
dx, (4)

G(n) def=
∫

q(Xn)G(Xn) dXn. (5)

Equation (1) can be rewritten as

p(w | Xn) =
1

Z(Xn)
ϕ(w) exp (−nKn(w)) ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

90 R. Iriguchi and S. Watanabe

where Kn(w) is the empirical Kullback information

Kn(w) def=
1
n

n∑

i=1

log
q(Xi)

p(Xi | w)
, (6)

and Z(Xn) is the normalization constant,

Z(Xn) def=
∫

ϕ(w) exp (−nKn(w)) dw. (7)

Let the stochastic complexity (free energy) F (n) be

F (n) def= EXn [− log Z(Xn)] , (8)

then the average generalization error G(n) (5) is equal to the increase of F (n),

G(n) = F (n + 1) − F (n).

That is, to obtain the average generalization error, it is enough to obtain the
stochastic complexity. The stochastic complexity is a fundamental quantity used
for model selection or hyper-parameter optimization.

Let the Kullback information K(w) be

K(w) def=
∫

q(x) log
q(x)

p(x | w)
dx (9)

and F �(n) be

F �(n) def= − log
∫

ϕ(w) exp (−nK(w)) dw,

then there exists an n-independent constant C, such that

F �(n/2) − C ≤ F (n) ≤ F �(n)

holds [3].

2.1 Zeta Function in Learning Theory

The zeta function in learning theory ζ(z) is defined as

ζ(z) def=
∫

K(w)zϕ(w) dw. (10)

Then, if ϕ(w) has a compact support, ζ(z) is holomorphic in Re z > 0, and
has poles on the negative-real axis. Let the poles of ζ(z) be −λ1,−λ2, . . . (0 <
λ1 < λ2 < . . .) and its order be m1, m2, . . . respectively, then F �(n) has an
asymptotic expansion,

F �(n) = λ1 log n − (m1 − 1) log log n + O(1)

as n → ∞ [2]. Therefore, it is important to obtain the maximum pole of ζ(z).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimation of Poles of Zeta Function in Learning Theory 91

According to recent works, the following property of the zeta function has
been known [4].

Let −Λ(K, ϕ) be the maximum pole of the zeta function (10). Then if |K1| ≤
|K2| and supp ϕ1 ⊇ supp ϕ2,

Λ(K1, ϕ1) ≤ Λ(K2, ϕ2). (11)

Furthermore, for an arbitrary a �= 0,

Λ(aK, ϕ) = Λ(K, aϕ) = Λ(K, ϕ). (12)

3 The Proposed Method

In this section, we propose the method to obtain the maximum pole of the zeta
function in learning theory by approximating the function. The method is based
on Padé approximation with denominator primary expression.

3.1 Padé Approximation

The Padé approximation of degrees (n, m) with center z0 to given f(z) is the
rational function Rn,m(z) (13) which satisfies the conditions (14) [5, �5.12]. Note
that b0 = 1.

Rn,m(z) =
∑n

i=0 ai(z − z0)i

∑m
i=0 bi(z − z0)i

, (13)

R(k)
n,m(z0) = f (k)(z0) (k = 0, 1, . . . , m + n). (14)

The coefficients of Padé approximation ai (1 ≤ i ≤ n) and bi (1 ≤ i ≤ m)
are obtained by resolving a system of linear equations (15). These equations are
derived from differentiating (16) k = 0, 1, . . . , n + m times, and then substitute
z = z0.

ak −
k∑

j=0

f (k−j)(z0)
(k − j)!

bj = 0, (15)

n∑

i=0

ai(z − z0)i = Rn,m(z)
m∑

i=0

bi(z − z0)i, (16)

3.2 Proposal Method

We estimate the maximum pole λ1c of the zeta function ζ(z). Let Rn,1 be the
Padé approximant of degrees (n, 1) with center z0 to ζ(z). The estimated pole
is referred to as λ̂n, and it is the pole of Rn,1. The pole of Rn,1 is derived from
1 − b1(λ̂ + z0) = 0 (17).

λ̂n =
1
b1

− z0 = −
ζ(n)(z0)

n!
ζ(n+1)(z0)

(n+1)!

− z0. (17)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

92 R. Iriguchi and S. Watanabe

Thus λ̂n can be estimated using ζ(n)(z0) and ζ(n+1)(z0).
The Laurent series of ζ(z) about its maximum pole is

ζ(z) =
m1∑

m=1

c1m

(z + λ1)m
+ ζ̄(z),

where ζ̄(z) is a function holomorphic in Re(z)>−λ2 and has poles at−λ2,−λ3,
The Taylor series of ζ̄(z) about point z0 is

ζ̄(z) =
∞∑

i=0

di(z − z0)i. (18)

Then equation (17) can be rewritten as

λ̂n + z0 = −
(−1)n

∑m1
m=1

(
m+n−1

m−1

)
c1m

(z0+λ1)m+n + dn

(−1)n+1
∑m1

m=1

(
m+n
m−1

)
c1m

(z0+λ1)m+n+1 + dn+1

= (z0 + λ1)

∑m1
m=1

(
m+n−1

m−1

)
c1m

(z0+λ1)m + dn(−λ1 − z0)n

∑m1
m=1

(
m+n
m−1

)
c1m

(z0+λ1)m + dn+1(−λ1 − z0)n+1
.

(19)

The right side of (18) converges in the region |z − z0| < |z0 + λ2|, hence it
converges on z = −λ1. That is, dn(z0 + λ1)n → 0 as n → ∞. With that, we set
aside the term dn in (19),

λ̂n + z0 = (z0 + λ1)
c11

z0+λ1
+ c12

(z0+λ1)2 (n + 1) + · · ·
c11

z0+λ1
+ c12

(z0+λ1)2 (n + 2) + · · · . (20)

In specific, if the order of the maximum pole m1 = 1, it follows λ̂n = λ1.
Let the state density function v(t) be

v(t) def=
∫

δ(K(w) − t)ϕ(w) dw. (21)

Then, the nth-order derivative of ζ(z)(10) can be rewritten as

ζ(n)(z) =
∫ ∞

0
(log t)ntzv(t) dt (22)

The random samples {ti}N
i=1 subject to v(t) are obtained by ti = K(wi) if

random samples {wi}N
i=1 are subject to ϕ(w). With that, the nth-order derivative

of ζ(z) can be estimated by

ζ(n)(z) ≈ 1
N

N∑

i=1

(log ti)nti
z . (23)

From (12), the maximum pole of ζ(z) is invariant for constant multiplication to
t, hence {ti}N

i=0 is normalized to range 0 < ti < 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimation of Poles of Zeta Function in Learning Theory 93

3.3 Determination of z0 from n

From (20), the degree of the numerator of the Padé approximation n should be
set large enough. However, from (23) and denoting t1 = minN

i=1 ti, equation (17)
is rewritten as

λ̂n + z0 = − (n + 1)
∑N

i=1(log ti)nti
z0

∑N
i=1(log ti)n+1ti

z0

≈ − (n + 1)
(log t1)nt1

z0

(log t1)n+1t1
z0

= −(n + 1)
1

log t1

as n → ∞, hence correct integration cannot be obtained. This phenomenon can
be avoided by settling z0 from n appropriately. This technique is described in
following paragraphs.

Let si = − log ti, equation (23) is rewritten as

ζ(n)(z) ≈ (−1)n

N

N∑

i=1

exp(f(si)), (24)

where
f(s) def= log

[
sne−sz

]

and its saddle point f ′(s�) = 0 is

s� =
n

z
(25)

and
f ′′(s�) = − n

s�2 .

Hence if n is large enough,

f(s) ≈ f(s�) − 1
2

n

s�2 (s − s�)2 (26)

holds. Given samples {ti}N
i=1 subject to v(t) (21), equation (26) yields

1
N

N∑

i=1

exp(f(si)) ≈ exp [f(s�)]
N

N∑

i=1

exp

[

− 1
2

(si − s�)2
s�2

n

]

.

Therefore, given α > 0, denote

σ
def=

s�

√
n

and
t�

def= exp [−s� − ασ] , (27)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

94 R. Iriguchi and S. Watanabe

then it is necessary for (23) to hold that t� is greater than or equal to minN
i=1 ti.

Hence, substituting (27) and (25) to t� = minN
i=1 ti,

N
min
i=1

ti = t� = exp
[

−s� − α
s�

√
n

]

= exp
[

− n + α
√

n

z

]

,

and solving for z, we obtain

z =
n + α

√
n

− log minN
i=1 ti

(28)

which indicates that z0 is appropriate when it is set as (28).

4 Experiments

For some learning machines whose maximum poles λ1 have been theoretically ob-
tained, the experiments calculating λ̂n by the proposal method were performed.

4.1 Experimental Condition

We adopted reduced rank regressions, or three-layer neural networks with linear
hidden units, which is ones of singular learning machines. Let M be the input
dimension, N be the output dimension, and H be the number of hidden units.
The parameter w of the reduced rank regression is, letting A be an H×M matrix
and B be an N × H matrix,

w = (A, B). (29)

Let the probability distribution of output y be

p(y | x, w) def=
1

(2π)
N
2

exp
(

− ‖y − BAx‖2

2

)

,

and denote the true parameter N × M matrix R,

K̄(w) def= ‖BA − R‖,
then it is known that

Λ(K, ϕ) = Λ(K̄, ϕ).

Furthermore, let r denote the rank of R, assume N + r ≤ M + H, M + r ≤
N + H, H + r ≤ M + N , then if M + H + N + r is even, m1 = 1 and

λ1 =
2(H + r)(M + N) + 2MN − (H + r)2 − M2 − N2

8
.

If M + H + N + r is odd, m1 = 2 and

λ1 =
2(H + r)(M + N) + 2MN − (H + r)2 − M2 − N2 + 1

8

[6].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimation of Poles of Zeta Function in Learning Theory 95

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

λ n

Fig. 1. N = M = H = 1, R = R1

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n

λ n
Fig. 2. N = M = H = 1, R = R2

Let the prior distribution ϕ(w) be the standard normal distribution, the num-
ber of samples N (23) be N = 100000, the center of Padé approximation z0 (17)
be

z0 =
40 + 2

√
40

− log t1
(30)

from (28) with α = 2, n = 40.
We examined 4 cases.

1. The numbers of input, output, and hidden unit are all 1, the true parameter
is R1 = 0, then w = (w1, w2) and λ1 = 1/2, m1 = 2 (Fig. 1).

2. The numbers of input, output, and hidden unit are all 1, the true parameter
is R2 = 1, then w = (w1, w2) and λ1 = 1/2, m1 = 1 (Fig. 2).

3. The numbers of input, output and hidden units are all 2, the true parameter
is

R3 =
(

0 0
0 0

)

then w = (w1, . . . , w8) and λ1 = 3/2, m1 = 1 (Fig. 3).
4. The numbers of input, output, and hidden units are all 2, the true parameter

is

R4 =
(

1 0
0 0

)

then w = (w1, . . . , w8) and λ1 = 2, m1 = 1 (Fig. 4).

Experimental results of 4 cases are shown in Fig. 1–4.

4.2 Experimental Results

With the conditions described above, the experiments were performed 20 times
for each Ri (Fig. 1–4). The vertical and horizontal axes denote λ̂n and the
degree of Padé approximation n in (17) respectively. The horizontal dashed lines

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

96 R. Iriguchi and S. Watanabe

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

n

λ n

Fig. 3. N = M = H = 2, R = R3

0 10 20 30 40 50 60

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

n

λ n
Fig. 4. N = M = H = 2, R = R4

denote the theoretical value λ1, and the vertical dashed lines denote that z0 is
determined by (30) to obtain correct integral with n = 40. In addition, the error
bar and circle denote lower quartile, median, upper quartile of 20 experimental
results respectively.

We determined z0 to obtain correct integral on n = 40, hence for all Ri, the
variance is large in n > 40.

5 Discussion

With the true distribution q(x) unknown, let n training samples xj (1 ≤ j ≤ n)
be obtained and

Ln(w) def= − 1
n

n∑

j=1

log p(xj | w).

If n is large enough, let

c = − 1
n

n∑

j=1

log q(xj), (31)

then Kn(w) (6) and K(w) (9) have relationship

0 ≤ K(w) ≈ Kn(w) = Ln(w) − c,

therefore
Ln(w) � c. (32)

Assume that the random samples t1 < t2 < · · · < tN subject to v(t) (21) with
K(w) = Ln(w) be obtained. From equation (32), it can be thought c � t1, hence
from equation (11),

Λ(Kn, ϕ) � Λ(Ln − t1, ϕ)

holds. Therefore, let t′i
def= ti − t1 and apply the proposal method, the lower

bound of λ1 can be obtained.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Estimation of Poles of Zeta Function in Learning Theory 97

6 Conclusion

In this paper, the method to obtain the learning coefficient by approximating
the zeta function in learning theory with Padé approximation was proposed, and
its efficiency was validated. For future works, validation of the estimation of λ1
with unknown true distribution described �5 can be pointed.

Acknowledgement. This research was partially supported by the Ministry
of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research
18079007, 2007.

References

1. Amari, S., Park, H., Ozeki, T.: Geometrical singularities in the neuromanifold of
multilayer perceptrons. In: Dietterich, T.G., Becker, S., Ghahramani, Z. (eds.) NIPS,
pp. 343–350. MIT Press, Cambridge (2001)

2. Watanabe, S.: Algebraic analysis for nonidentifiable learning machines. Neural Com-
putation 13(4), 899–933 (2001)

3. Watanabe, S.: Algebraic geometrical methods for hierarchical learning machines.
Neural Networks 14(8), 1049–1060 (2001)

4. Watanabe, S.: Algebraic geometry of learning machines with singularities and their
prior distributions(technical papers: “ibis 2000”). Journal of Japanese Society of
Artificial Intelligence 16(2), 308–315 (2001)

5. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing, 2nd edn. Cambridge University Press, The
Pitt Building Trumpington Street, Cambridge CB2 1RP (1992)

6. Aoyagi, M., Watanabe, S.: Desingularization and the generalization error of reduced
rank regression in bayesian estimation. In: Workshop on Information-Based Induc-
tion Sciences, Institute of Electronics, Information and Communication Engineers,
pp. 237–244 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 98–108, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Neural Network Ensemble Training by Sequential
Interaction

M.A.H. Akhand and Kazuyuki Murase

Graduate School of Engineering, University of Fukui, Japan
{Akhand, Murase}@synapse.his.fukui-u.ac.jp

Abstract. Neural network ensemble (NNE) has been shown to outperform
single neural network (NN) in terms of generalization ability. The performance
of NNE is therefore depends on well diversity among component NNs. Popular
NNE methods, such as bagging and boosting, follow data sampling technique to
achieve diversity. In such methods, NN is trained independently with a
particular training set that is probabilistically created. Due to independent
training strategy there is a lack of interaction among component NNs. To
achieve training time interaction, negative correlation learning (NCL) has been
proposed for simultaneous training. NCL demands direct communication
among component NNs; which is not possible in bagging and boosting. In this
study, first we modify the NCL from simultaneous to sequential style and then
induce in bagging and boosting for interaction purpose. Empirical studies
exhibited that sequential training time interaction increased diversity among
component NNs and outperformed conventional methods in generalization
ability.

Keywords: Bagging, boosting, negative correlation learning, diversity and
generalization.

1 Introduction

Neural network ensemble (NNE) is a collection of several neural networks (NNs) that
are trained for the same task to achieve better performance. In order to achieve better
performance than single NN, component NNs in an NNE should be diverged to
compensate the failure of one NN by others. Because there is no advantage in
combining NNs that exhibit identical generalization ability, NNE performance
depends largely on the diversity among component NNs [1].

Considerable work has been done in the last decade in designing NNEs [1]-[8]. It
is argued that component NNs trained on different training sets are likely to produce
more diversity than other approaches [2]-[6]. The most popular methods for designing
NNEs based on such data sampling are bagging [4] and boosting [5]. Both the
methods create different training sets to train different component NNs in an NNE
[3]-[6].

The bagging algorithm [4] creates a new training set for each component NN by
forming bootstrap replicates of the original training set. Given a original training set T
consisted of m patterns, a new training set T’ is constructed by drawing m patterns

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Neural Network Ensemble Training by Sequential Interaction 99

uniformly (with replacement) from T. Due to random selection with same original
distribution, each training set T’ contains only about 63.2% unique patterns from T,
with many patterns appearing multiple times while others are left [6].

In boosting [5], the training set T’ for each component NN is chosen from the
original training set T based on the performance of earlier NN(s). Training patterns
that were incorrectly classified by previous component NN(s) are chosen more often
than patterns that were correctly classified for creating a new training set. From
various boosting algorithms in this study we only concern with most popular one i.e.,
ada boosting. So in this paper boosting simply means ada boosting [5].

For creating an NNE, both bagging and boosting train a user specified predefined
number of NNs. They use independent training strategy where the training of each
NN is performed independently with a particular generated training set. To combine
component NNs’ output for NNE output, bagging uses multiple voting technique,
while boosting follows weighted voting where the weight of a NN depends on the
accuracy of it [3],[6].

Since bagging and boosting use an independent training strategy, there is no
training time interaction among component NNs. In another word, they do not utilize
any feedback utilization system from other NNs to train a particular NN. So it is
possible that independently trained NNs are not necessarily negatively correlated [7]-
[8] and do not make much contribution to the integrated system like NNE. This
problem could be removed by introducing training time interaction in bagging and
boosting which will provide component NNs to communicate each other during train.

About training time interaction in NNE, negative correlation learning (NCL) [7]-
[8] is proposed for simultaneous training. NCL trains NNs simultaneously rather than
independently by introducing a correlation penalty term into the error function of a
NN, so that an error base training time interaction is established among component
NNs. In simultaneous training, NCL demands direct communication among
component NNs, that is, in order to train a particular component NN all other NNs
must be active to provide their response for this pattern. Also there might be
competitions among NNs since all NNs in an NNE are concerned with the whole
NNE error [9]. Finally NCL increase computational cost much more.

At present, communication among component NNs in bagging and boosting using
NCL scheme is not possible due to three reasons: (i) both the methods use
independent training strategy, (ii) training sets are different for different component
NNs, and (iii) arrangement of training patterns is different in different sets. In
addition, boosting produces training set based on the performance on existing NNs, so
that there is no chance to get information of coming NNs.

In this paper we made a modification over standard NCL to a sequential manner
instead of the simultaneous manner, and then induced it in bagging and boosting for
training time interaction among component NNs. The rest of this paper is organized
as follows. Section 2 explains the modification of NCL to implement in bagging and
boosting as an interactive process to get interactive bagging/boosting from standard
bagging/boosting. Section 3 experimentally explains the effect of training time
interaction on bagging and boosting on several benchmark problems. Finally, Section
4 concludes the paper with a brief summary and conclusions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

100 M.A.H. Akhand and K. Murase

2 Modification of Negative Correlation Learning (NCL) for
Interaction and Interactive Bagging/Boosting Methods

This section describes the modification technique of NCL to make it usable for
interaction purpose in bagging and boosting and describe interactive bagging and
boosting algorithm in detail.

At simultaneous training, NCL introduces a penalty function in error function of
individual NN. The error function Ei for the ith component NN in NCL is defined as:

∑ ∑
= ≠

⎥
⎦

⎤
⎢
⎣

⎡
−−+−=

N

n ij
jiii nFnFnFnFndnF

N
E

1

2)])()(())()([())()((
2

11 λ (1)

where N is the size of training set, Fi(n) is the output of the ith component NN and
d(n) is the desired output of the NNE for nth training pattern [8]. The first term of Eq.
(1) is the empirical risk function of the ith component NN and the second term is
known as the correlation penalty function. F(n) in Eq. (1) represents the output of the
NNE on the nth training pattern that can be obtained by averaging the outputs of all
component NNs in an NNE. If NNE consists with M NNs then F(n) will be:

∑
=

=
M

i
i nF

M
nF

1

)(
1

)((2)

To update the weights of the ith NN, the partial derivative of Ei with respect to Fi is as
follows [9].

))()((2)()(
)(

)(
nFnFndnF

nF

nE
ii

i

i −−−=
∂
∂ λ (3)

We may rearrange the Eq.(3) by placing the value of F(n) from Eq. (2). The Eq.
(3) now becomes

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−−=

∂
∂ ∑

≠

−

ij
jMiM

M
i

i

i nFnFndnF
nF

nE
)()(2)()(

)(

)(11λ (4)

According to Eq.(4) for nth pattern, is the contribution of other NNs (let
it FIC) in NCL and is independent of the current NN which is under training. Storing
FIC in an intermediate space communication among component NNs may establish
when they are trained one after another as like bagging and boosting. After training a
component NN, FIC will update for coming component NN(s).

Fig. 1 graphically represents standard NCL and modified NCL with information
centre(IC) for M number of NNs. Standard NCL in Fig. 1(a) is a closed loop because
at that time training is perform pattern by pattern basis and after training all the
component NNs for a particular pattern, again training of all the NNs is perform for
next pattern. Due to NNE’s output F(n) in Eq. (3) it demands all the exiting NNs’
output for a particular training pattern; which is the theme of direct communication.
On the other hand in modified NCL in Fig. 1(b), training is performed sequential
manner and a particular NN is trained independently based on Eq. (4) collecting FIC
from IC (i.e., the intermediate space) only, for the response of previously trained
NN(s). At the beginning IC will be empty, so first NN will train independently (for
M=1) and does not collect FIC from IC and only send its information after training.
On the other hand, last NN only collects FIC from IC and does not required to update.

∑
≠ ij

j nF)(

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Neural Network Ensemble Training by Sequential Interaction 101

If IC contains FIC(n) at the training of ith NN, then after training the IC will update
for original training set by the following way:

FIC(n)= FIC(n)+ Fi(n) (5)

NN 1 NN 1

NNM NN 2

NN 3

NNM NN 2
Information
Center(IC)

NN 3

(a) Standard NCL (b)Modified NCL with IC

Update FIC of IC in
modified NCL

Collect FIC from IC
 in modified NCL

 Interaction among
 NNs in standard NCL

Fig. 1. Graphical representation of component NNs training in standard NCL and in conjunction
with information center (IC) to maintain indirect communication in modified NCL

Inducing modified NCL based on IC, with sequential interaction in standard

bagging and boosting methods, the following Figs. 2-3 show the pseudo code for
interactive bagging and interactive boosting algorithms.

1. Let M as the number of NNs to be trained for NNE

Take original training set T= {(x1, d1),…, (xN, dN)} with class level },.....,2,1{ kKdi =∈ .

2. for i=1 to M {
a. Construct a NN, NNi
b. Make a new training set, Ti by sampling N patterns uniformly at random with

replacement from T.
c. Train NNi by Ti in conjunction with FIC of IC.
d. Update IC. }

3. NNE decision for a particular pattern n,

Fig. 2. Interactive bagging algorithm

It is seen that a particular NNi is trained in interactive bagging/boosting by a
particular training set Ti in conjunction with FIC of IC. This is different from standard
bagging/boosting where NNi is independently trained by only Ti. Due to the use of
FIC, NNi will maintain interaction indirectly with previously trained NNs. Both
interactive bagging and boosting method update FIC in IC after training a NN. So, step
2(c) in both Fig. 2 and Fig. 3 contain the modification over standard cases. Also, step

∑
=∈

=
dxNNiKd

n
i

nBaggingInt
)(:

1maxarg)(_

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

102 M.A.H. Akhand and K. Murase

2(d) in Fig. 2 and step 2(h) in Fig. 3 are the additional steps to update IC that are
absent in standard bagging/boosting.

1. Let M as the number of NNs to be trained for NNE.

 Take original training set T= {(x1, d1),…, (xN, dN)} with class level },.....,2,1{ kKdi =∈ .

 Assign weight for each pattern of T, initially weights are same, i.e., wi(n)=1/N
2. for i=1 to M {

a. Construct a NN, NNi
b. Make a new training set, Ti by sampling N patterns at random with replacement from

T based on weight distribution wi(n) .
c. Train NNi by Ti in conjunction with FIC of IC.

d. ∑
≠∈

=
nn

i
nn dxNNTdx

ii nw
)(:),(

)(ε (weighted error on training set)

e. iii εεβ /)1(−=

f. for each Tdx nn ∈),(,

 if nn
i dxNN ≠)(then iii nwnw β).()(1 =+ , otherwise)()(1 nwnw ii =+

g. Normalized the weights, wi+1(n).
h. Update IC. }

3. NNE decision for a particular pattern n,

Fig. 3. Interactive boosting algorithm

3 Experimental Studies

This section experimentally describes the effect of training time interaction through
IC among bagging/boosting component NNs on final NNE’s performance. For proper
observation we implemented two different sets of experiments, one is standard
bagging/boosting and another is bagging/boosting with training time interaction,
which we defined as interactive bagging/boosting. We have selected several
benchmark classification problems from the University of California, Irvine (UCI)
machine learning benchmark repository to evaluate performance. These are

Table 1. Characteristics of benchmark data sets

Input Attributes NN architecture Problem Total
Pattern Continuous Discrete Inputs Classes Hidden Node

ACC 690 6 9 51 2 10
CAR 1728 - 6 21 4 10
GCC 1000 7 13 63 2 10
HDC 303 6 7 22 2 5
LMP 148 - 18 18 4 10
PST 90 1 7 19 3 5
ZOO 101 15 1 16 7 10

∑
=∈

=
dxNNi

i
Kd

n
i

nBoostingInt
)(:

)log(maxarg)(_ β

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Neural Network Ensemble Training by Sequential Interaction 103

Australian Credit Card (ACC), Car (CAR), German Credit Card (GCC), Heart
Disease Cleveland (HDC), Lymphography (LMP), Postoperative (PST) and Zoo
(ZOO) problems. Detailed descriptions of the problems are available at the UCI web
site (www.ics.uci.edu/~mlearn/).

We followed benchmark methodology [12] for preprocessing UCI data to use in
our experiments. The characteristics of the problems are summarized in Table 1
which shows a diverse test bed. For NNE construction we trained 10 NNs that is
reported as standard number [3]. The logistic sigmoid function was used as an
activation function. Learning rate of back propagation learning was set 0.1 and NNs
was initialized by random weights between -0.5 and 0.5. For interactive
bagging/boosting cases λ was fixed as 0.5.

Standard 3-fold cross validations were used in our experiments, where initially
available training examples were partitioned into three equal or nearly equal sets and
by turn one set was reserved for test set while the remaining two sets were used for
training set. Training set is the main acting set on which training and other operation
was performed. Testing set was reserved to measure the final performance i.e.,
generalization ability and diversity, of produced NNE only and all the NNs were blind
for this during training. To make fair comparisons, both standard bagging/boosting
and interactive bagging/boosting used an equal fixed number of iteration to train all
component NNs of NNE and that was 50.

3.1 Experimental Results

Tables 2-3 show the average results of different problems over ten standard 3-fold
cross validations (i.e., 3*10 = 30) independent runs. The testing error rate (TER) in
the tables refers to the rate of wrong classification produced by the trained NNE on
the test set. The diversity in the tables indicates how predictions differ among
component NNs on the test set. We used the most commonly used pair wise plain
disagreement measure technique [10] to measure the diversity among component
NNs. For two NNs i and j, the plain disagreement is equal to the proportion of the
patterns on which the NNs make different predictions:

∑
=

=
N

k
kjkiji xCxCDiff

N
plaindiv

1
.)),(),((

1
_ (6)

Where N is the number of patterns in the testing set, Ci(xk) is the class assigned by NN
i to pattern k, and Diff(a, b) = 0, if a = b otherwise Diff(a, b) = 1. This measure is

Table 2. Experimental results of bagging

Standard bagging Interactive bagging Problem
TER Diversity TER Diversity

ACC 0.1481 0.0862 0.1371 0.1957
CAR 0.2688 0.0740 0.2461 0.1867
GCC 0.2500 0.1860 0.2382 0.3225
HDC 0.1693 0.1045 0.1534 0.2131
LMP 0.1700 0.1273 0.1563 0.3125
PST 0.3022 0.1042 0.2889 0.3141
ZOO 0.1487 0.1670 0.1262 0.3478

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

104 M.A.H. Akhand and K. Murase

equal to 0, when both NNs return the same class for each pattern, and it is equal to 1
when the predictions are different for all the cases. The total NNE diversity is the
average of all NN pairs in the NNE.

From Tables 2-3, it is observed that standard boosting achieved higher diversity
over standard bagging for all the cases because boosting itself enforce diversity by
design, whereas bagging has no such mechanism [13]. For ACC problem diversity
were 0.0862 and 0.2409 for standard bagging and standard boosting, respectively.
Again from Tables 2-3, it is found that in both bagging and boosting, interactive cases
achieved higher diversity with respect to standard cases. As an example, for ACC
problem, achieved diversity were 0.1957 and 0.4025, for interactive bagging and
interactive boosting, respectively, where as, diversity were 0.0862 and 0.2409 for
standard bagging and standard boosting, respectively. In addition for ACC problem,
due to interaction, with diversity improvement TER was also improved from 0.1481
to 0.1371 for bagging and 0.1677 to 0.1552 for boosting.

Table 3. Experimental results of boosting

Standard boosting Interactive boosting Problem
TER Diversity TER Diversity

ACC 0.1677 0.2409 0.1552 0.4025
CAR 0.2710 0.1418 0.2510 0.2786
GCC 0.2630 0.3288 0.2597 0.4389
HDC 0.1733 0.2554 0.1607 0.4276
LMP 0.1873 0.2603 0.1624 0.4585
PST 0.3419 0.3506 0.2900 0.4899
ZOO 0.0797 0.3112 0.0927 0.4613

Another important observation from Tables 2-3 is that due to sequential

interaction, TER did not improve with diversity improvement manner for both
bagging and boosting cases. In addition, for ZOO problem at boosting TER increased
slightly, i.e., decreased generalization ability. Although maintaining diversity among
component NNs is the important condition for improving the performance of NNEs, it
is seen from our results that this not true for all the problems. This indicates that the
maintenance of proper diversity is necessary for improving the generalization ability
of NNEs. This is something contradictory to the conventional belief, which suggests
that if the diversity is more the generalization ability will be better. The reason behind
this will clear from coming correct response set analysis in Section 3.2.1.

3.2 Experimental Analysis

This subsection first investigates actual reason to improve diversity and thus TER due
to interaction by correct response set analysis; which is introduced in NCL [8]. And
then presents variation effect of λ on TER and diversity.

3.2.1 The Effect of Interaction on Correct Response Set
The correct response set Si of ith individual NN on the testing set consists of all the
patterns in the testing set which are classified correctly by the individual NN i. Let Ωi

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Neural Network Ensemble Training by Sequential Interaction 105

denote the size of set Si, and Ωi1i2···ik denote the intersection size i.e., the size of set Si1
∩ Si2 ∩· · ·∩Sik .

For analysis purpose three problems were selected and Table 4 represents average
result of 15 (i.e., five 3-fold cross validations) independent runs on test set for that
problems for both standard and interactive bagging/boosting methods. ΩAll represents
Ωi1i2···i10, i.e., the size of test set patterns that’s truly classified by all 10 NNs in the
NNE and among 10 NNs, no one able to classify ΩNone test set patterns.

In bagging only about 28.8% (i.e., 100%-63.2%) patterns differs for different
training sets; which is the element to make different function by different NNs. This
implies higher values of ΩAll and ΩNone in standard bagging and achieved lower
diversity. For CAR problem, ΩAll and ΩNone were 374.40 and 110.13, respectively, but
for standard boosting these values were 319.80 and 78.20, respectively. Boosting
achieved lower values of ΩAll and ΩNone by creating training set emphasizing on the
previously misclassified patterns, and so that achieved higher diversity.

In interactive cases a NN is trained in conjunction with IC to maintain indirect
communication with other NNs. Finally, different individual NNs were able to
specialize on different parts of the testing set as like NCL, as a result common
functional space (ΩAll) decreased. At the same time interaction motivated some NNs
to unsolved space so that misclassified space by all the NNs (ΩNone) also reduced.
Finally diversity increased due to reduction of common functional space and accuracy
maintained/increased by covering additional space that was uncovered by standard
case. In interactive bagging for CAR problem, ΩAll and ΩNone were 304.07 and 51.40,
respectively; both the values are smaller than standard bagging case. For this problem,
due to iteration, TER improved 0.269 to 0.247.

Table 4. Correct response set analysis for bagging and boosting

 Standard Interactive
 ΩAll ΩNone TER Diver. ΩAll ΩNone TER Diver.
 ACC 163.47 13.6 0.148 0.087 92.47 5.00 0.138 0.198

Bagging CAR 374.40 110.13 0.269 0.072 304.07 51.40 0.247 0.188
 ZOO 22.93 2.47 0.142 0.159 13.2 0.93 0.134 0.330
 ACC 76.20 4.67 0.168 0.250 6.20 0.33 0.155 0.418

Boosting CAR 319.80 78.20 0.269 0.142 234.73 24.20 0.252 0.277
 ZOO 13.87 0.67 0.083 0.336 3.33 0.20 0.093 0.475

In the boosting due to interaction, ΩAll and ΩNone again reduced as like interactive

bagging, and some cases ΩAll and ΩNone closed to zero. For ACC problem, ΩAll
reduced from 76.20 to 6.20 and ΩNone reduced from 4.667 to 0.333. This effect
implies on NNE performance and TER improved 0.168 to 0.155 due to interaction.
On the other hand, for ZOO problem though ΩAll reduced from 13.87 to 3.33 but ΩNone
was not reduced much more because standard case also achieved lower value. For this
reason though diversity improved but TER degraded slightly for ZOO problem.

Finally the actions of interaction are: (i) to reduce the common functional space
(ΩAll); which promotes diversity and might reduce accuracy at some cases and (ii) to
motivate some NNs to cover additional space so that ΩNone also reduce; which is the
element to improve accuracy of NNE as well as increase diversity. Combining both

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

106 M.A.H. Akhand and K. Murase

actions the outcomes are: (i) improve diversity all the cases and (ii) improve TER
when ΩNone value is high at standard case.

3.2.2 The Variation Effect of λ Value on Interactive Training
Figure 4 presents the average results of 15 (i.e., five 3-fold cross validations) for
interactive bagging/boosting when λ varied from 0 to 1 as suggested in standard NCL
[8]. At Fig. 4, λ=0 is nothing but standard bagging or standard boosting. The meaning
and measuring procedure of TER and diversity are like as before.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25

Diversity for CAR

Diversity for ACC

TER for ACC

TER for CAR

0.5 0.75 1

 (a) Interactive bagging

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 0.25

TER for ACC

Diversity for ACC

TER for CAR

Diversity for CAR

0.5 0.75 1

(b) Interactive boosting

Fig. 4. Variation effect of λ on interactive bagging and boosting

From Fig. 4 it is observed that diversity increased with respect to λ value as like it
is reported for standard NCL [8]. Diversity was the lowest level for λ =0, and shown
highest value at around λ =1. As an example, for ACC problem, at λ =1 diversity were
0.492 and 0.543 for interactive bagging (Fig. 4(a)) and interactive boosting (Fig.
4(b)), respectively, these values were highest values in both the methods.

For bagging it is also found that for λ >0.5 though diversity improved much more,
but TER also increased for some cases, such as ACC problem in Fig. 4(a). For this
reason λ was selected as 0.5 for main experiments. On the other hand, boosting shown
stable TER with respect to λ variation. Also few cases, better TER was observed at
higher values of λ. As an example, for ACC problem at λ =1 TER was 0.156; which
was the lowest with respect to other values of λ.

4 Conclusions

Both bagging and boosting followed independent training strategy to train component
NNs and the difference in training sets among component NNs is the element to
produce diversity. To overcome the deficiency of communication among NNs, this
study introduced training time sequential interaction using modified NCL and
proposed interactive bagging/boosting. While NCL demands direct communication
among component NNs during training throughout, the proposed method utilizes an

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Neural Network Ensemble Training by Sequential Interaction 107

intermediate space (i.e., IC). The IC gathers the responses of trained NNs and a
particular NN is maintained indirect communication with other NNs when it is trained
in conjunction with IC only.

Liu [11] proposed bagging with NCL, where NNs are trained by NCL on different
training set that was created by bagging technique, i.e., bootstrap samples from
original training set. While he has only presented result for NCL and bagging with
NCL for a single problem. We embedded NCL in bagging and boosting in this study.

From the analysis of correct response set, we exhibited here the reason why
standard boosting shows more diversity with respect to standard bagging and how
interaction improves diversity in both methods, and also why TER did not improve
with diversity improvement manner. Now it is also noticeable that to improve TER
farther more it is required a special technique that covers full space by different NNs,
not reducing common functional space.

Another reason why diversity improvement is also appreciable in NNE is that in
higher diversity case different pattern will truly classified by different NNs and
reduce the chance to misclassify unknown patterns by all the NNs. In this point of
view, due to diversity improvement the interactive bagging/boosting is appeared as
more justified NNE methods, so that NNE will show stable performance in practical
situation when real world unseen patterns will come. In addition, due to simplicity, λ
value was fixed at 0.5 for main experiments, and from experimental analysis it was
observed that, TER varied with respect to λ. So it might be possible to get better TER
after problem-wise tuning of λ value.

Last of all, the main attraction of the proposed method is the training time indirect
communication among component NNs when direct communication is not possible,
and we successfully implemented it and presented the performance. Similar technique
may be applied for other methods where direct communication is not possible.

Acknowledgements. Supported by grants to KM from the Japanese Society for
promotion of Sciences, the Yazaki Memorial Foundation for Science and Technology,
and the University of Fukui.

References

1. Sharkey, A.J.C., Sharkey, N.E.: Combining Diverse Neural Nets. Knowledge Engineering
Review 12, 299–314 (1997)

2. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity Creation Methods: A Survey and
Categorization. Information Fusion 6, 99–111 (2005)

3. Opitz, D.W., Maclin, R.: Popular Ensemble Methods: An Empirical Study. Journal of
Artificial Intelligence Research 11, 169–198 (1999)

4. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
5. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proc. of the

13th International Conference on Machine Learning, pp. 148–156. Morgan Kaufmann, San
Francisco (1996)

6. Bauter, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms:
Bagging, Boosting, and Variants. Machine Learning 36, 105–142 (1999)

7. Liu, Y., Yao, X.: Simultaneous training of negatively correlated neural networks in an
ensemble. IEEE Trans. on Systems, Man, and Cybernetics 29, 716–725 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

108 M.A.H. Akhand and K. Murase

8. Liu, Y., Yao, X.: Ensemble Learning via Negative Correlation. Neural Networks 12,
1399–1404 (1999)

9. Islam, M.M., Yao, X., Murase, K.: A Constructive Algorithm for Training neural Network
Ensembles. IEEE Transactions on Neural Networks 14, 820–834 (2003)

10. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in Search Strategies for
Ensemble Feature Selection. Information Fusion 6, 83–98 (2005)

11. Liu, Y.: Generate Different Neural Networks by Negative Correlation Learning. In: Wang,
L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3610, pp. 149–156. Springer,
Heidelberg (2005)

12. Prechelt, L.: Proben1- A Set of Benchmarks and Benching Rules for Neural Network
Training Algorithms, Tech. Rep. 21/94, University of Karlsruhe, Germany (1994)

13. Kuncheva, L., Skurichina, M., Duin, R.: An experimental study on diversity for bagging
and boosting with linear classifiers. Information Fusion 3, 245–258 (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Optimality of Neural Rewards Regression for
Data-Efficient Batch Near-Optimal Policy Identification

Daniel Schneegaß1,2, Steffen Udluft1, and Thomas Martinetz2

1 Information & Communications, Learning Systems
Siemens AG, Corporate Technology, D-81739 Munich, Germany

2 Institute for Neuro- and Bioinformatics
University at Lübeck, D-23538 Lübeck, Germany
daniel.schneegass.ext@siemens.com

Abstract. In this paper we present two substantial extensions of Neural Re-
wards Regression (NRR) [1]. In order to give a less biased estimator of the Bell-
man Residual and to facilitate the regression character of NRR, we incorporate
an improved, Auxiliared Bellman Residual [2] and provide, to the best of our
knowledge, the first Neural Network based implementation of the novel Bellman
Residual minimisation technique. Furthermore, we extend NRR to Policy Gradi-
ent Neural Rewards Regression (PGNRR), where the strategy is directly encoded
by a policy network. PGNRR profits from both the data-efficiency of the Rewards
Regression approach and the directness of policy search methods. PGNRR fur-
ther overcomes a crucial drawback of NRR as it extends the accordant problem
class considerably by the applicability of continuous action spaces.

1 Introduction

Neural Rewards Regression [1] has been introduced as a generalisation of Temporal
Difference Learning (TD-Learning) and Approximate Q-Iteration with Neural Net-
works. It further offers the trade between minimising the Bellman Residual as well
as approaching the fixed point of the Bellman Iteration. The method works in a full
batch learning mode, explicitly finds a near-optimal Q-function without an algorith-
mic framework except Back Propagation for Neural Networks, and can, in connection
with Recurrent Neural Networks, also be used in higher-order Markovian and partially
observable environments. The approach is motivated by Kernel Rewards Regression
(KRR) [3] for data-efficient Reinforcement Learning (RL) [4]. The RL problem is con-
sidered as a regression task fitting a reward function on the observed signals, where the
regressor is chosen from a hypothesis space, such that the Q-function can be gained out
of the reward function. NRR is formulated similarly. The usage of shared weights with
Back Propagation [5,6] allows us to restrict the hypothesis space appropriately.

Policy Gradient (PG) methods [7] convince due to their capability to identify a near-
optimal policy without using the loop way through the Value Function. They are known
to be robust, convergence guarantees are given under mild conditions, and they be-
have well in partially observable domains. But PG methods usually base on Monte
Carlo and hence high variances estimations of the discounted future rewards. Recent
work addressing this problem are e.g. provided by Wang and Dietterich [8] as well as

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 109–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

110 D. Schneegaß, S. Udluft, and T. Martinetz

Ghavamzadeh and Engel [9]. We introduce Policy Gradient Neural Rewards Regression
(PGNRR), which, from the PG perspective, reduces the variance of the Value estimator
and, from the Rewards Regression perspective, improves the considered problem class
and enables generalisation over the policy space.

The remainder of this paper is arranged as follows. After a brief introduction to
Reinforcement Learning, we recapitulate NRR and explain the underlying idea in sec.
3. We describe, in which way the RL task is interpreted as a regression problem and how
the trade-off between either the two learning procedures as well as the two optimality
criteria is realised. Subsequently (sec. 4) we generalise further by applying the new
Bellman Residual minimisation technique to NRR. Finally we extend NRR by a policy
network for direct policy search (sec. 5) and motivate an advancement in data-efficiency
(sec. 6). Preliminary practical results (sec. 7) on a common benchmark problem and a
real-world application are shown for the purpose of supporting the theoretical model.

2 Markov Decision Processes and Reinforcement Learning

In RL the main objective is to achieve a policy, that optimally moves an agent within
an environment, which is defined by a Markov Decision Process (MDP) [4]. An MDP
is generally given by a state space S, a set of actions A selectable in the different
states, and the dynamics, defined by a transition probability distribution PT : S × A ×
S → [0, 1] depending on the current state, the chosen action, and the successor state.
The agent collects so-called rewards R(s, a, s′) while transiting. They are defined by a
reward probability distribution PR with the expected reward R =

∫
R

rPR(s, a, s′, r)dr,
s, s′ ∈ S, a ∈ A.

In most RL tasks one is interested in maximising the discounting Value Function

V π(s) = Eπ
s

(∞∑

i=0

γiR
(
s(i), π(s(i)), s(i+1)

)
)

for all possible states s where 0 < γ < 1 is the discount factor, s′ the successor state
of s, π : S → A the used policy, and s = {s′, s′′, . . . , s(i), . . . }. Since the dynamics
of the given state-action space cannot be modified by construction one has to maximise
V over the policy space. One typically takes one intermediate step and constructs a
so-called Q-function depending on the current state and the chosen action approaching

Qπ(s, a) = Es′(R(s, a, s′) + γQπ(s′, π(s′))).

We define V ∗ = V πopt as the Value Function of the optimal policy and Q∗ respectively.
This is the function we want to estimate. It is defined as

Q∗(s, a) = Es′(R(s, a, s′) + γV ∗(s′)) = Es′

(
R(s, a, s′) + γ max

a′
Q∗(s′, a′)

)
,

which is called the Bellman Optimality Equation. Therefore the best policy is appar-
ently the one using the action π(s) = arg maxa Q∗(s, a) maximising the (best) Q-
function. We define the Bellman Operator T and the variance of the discounted sum of
future rewards using T ′ as (TQ)(s, a) = Es′(R(s, a, s′) + γ maxa′ Q(s′, a′)) as well

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Optimality of Neural Rewards Regression 111

as (T ′Q)(s, a)2 = Vars′(R(s, a, s′) + γ maxa′ Q(s′, a′)) for any Q. There are several
optimality criteria as approximations to the optimal Q-function. In this work, we con-
cern the Bellman Residual minimisation, provided by the Q-function minimising the
distance ‖Q − TQ‖ (w.r.t. some appropriate norm) and the Temporal-Difference solu-
tion Q = Solve(TQ) given by the fixed point of the Bellman Operator followed by its
projection on the Q-function’s hypothesis space HQ. For details we refer to [4,10,11].

3 Neural Rewards Regression

In the standard setting for NRR [1], we describe the Q-function for each possible ac-
tion as Feed-Forward-Networks Na(s) = Q(s, a). The reward function to be fitted is
hence given as R(s, a, s′) = Na(s) − γ maxa′ Na′(s′), where the max-operator has to
be modelled by an appropriate architecture. Alternatively, a monolithic approach with
one network N(s, a) = Q(s, a) which takes the state and action as input R(s, a, s′) =
N(s, a) − γ maxa′ N(s′, a′), can also be applied. The second model has the advantage

�

Q

�

Q’1

�

Q’n

V’

max

R
-�

gradient flow
control �

…

1

s a

s’ 1 s’ n

�1

Q1

[if a=1]t

�n

Qn

Q
1 1

�1

Q’1

�n

Q’n

V’

max

R
-�

gradient flow
control �

[if a=n]t

x x
… …

1

s s s’ s’

Fig. 1. Both alternatives of the NRR architecture (left: one network for each action, right: the
monolithic approach). Connectors with the same parameters have shared weights.

of performing a generalisation over the action space as well. Using the Back Prop-
agation algorithm this problem setting approaches the minimum of the (regularised)
sampled Bellman Residual over all l observed transitions

L =
l∑

i=1

F (Li) + Ω(θ) =
l∑

i=1

F (Q(si, ai) − γV (si+1) − ri) + Ω(θ),

where θ are the network parameters, F an error function, and Ω an appropriate regu-
lariser. The observed ri and si+1 have to be unbiased estimates for their expectations.
The error function’s gradient dL

dθ =
∑l

i=1 F ′(Li) d
dθ (Q(si, ai) − γV (si+1)) + dΩ(θ)

dθ
depends on the current Q-function and the successor Value Function (fig. 1). To obtain
the fixed point of the Bellman Iteration instead, one retains yi := ri + γV (si+1) and
minimises iteratively L =

∑l
i=1 F (Q(si, ai) − yi)+Ω(θ), until convergence of Q. Its

gradient is then given as dL
dθ =

∑l
i=1 F ′(Li) d

dθQ(si, ai) + dΩ(θ)
dθ . It can be seen, that

both gradients differ only in their direction terms, but not in the error term. Blocking

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

112 D. Schneegaß, S. Udluft, and T. Martinetz

the gradient flow through the Value Function part of the network hence reconstructs the
latter gradient. Therefore, in the backward path of the Back Propagation algorithm, the
error propagation between the R-cluster and the V ′-cluster is multiplied by a constant
ρ (see fig. 1). The setting ρ = 1 leads to the sampled Bellman Residual minimisation,
while for ρ = 0 one obtains the Bellman Iteration. Any other compromise is a possi-
ble trade-off between these two error definitions [12]. Optimality is then defined as the
solution of the general equation system

Γ =
l∑

i=1

F ′ (Q(si, ai) − γV (si+1) − ri)
d

dθ
(Q(si, ai) − ργV (si+1)) +

dΩ(θ)
dθ

= 0.

A closer look at the approach reveals the similarities to TD-Learning [4,13]. Combining
ρ = 0, F (x) = x2, and an incremental learning scheme, NRR is identical to that clas-
sical approach. But the architecture allows us to apply the whole palette of established
learning algorithms for Neural Networks [14].

4 Auxiliared Bellman Residual

It is well-known, that minimising the Bellman Residual on the one hand has the advan-
tage of being a well-controllable learning problem as it is close to a Supervised Learn-
ing scheme, but on the other hand, tends to minimise terms of higher-order moments of
the discounted sum of future rewards in the stochastic case, if no further, uncorrelated
samples of every transition can be given [4,10]. In general the solutions are biased to Q-
functions which are smoother for successor states of stochastic transitions. Specifically,
if si+1 and ri are unbiased estimates for the successor states and rewards, respectively,
the expression (Q(si, ai) − γV (si+1) − ri)

2 is not an unbiased estimate for the true
squared Bellman Residual (Q(s, a) − (TQ)(s, a))2, but for (Q(s, a) − (TQ)(s, a))2+
(T ′Q)(s, a)2. As an alternative to the usage of doubled trajectories, which is no option
in our setting, Antos et. al. [2] introduced a modified squared Bellman Residual as a
better approximation of the true Bellman Residual. They left it unnamed, so that we
choose the working name Auxiliared Bellman Residual, defined as

Laux =
l∑

i=1

(Q(si, ai) − γV (si+1) − ri)
2 −

l∑

i=1

(h(si, ai) − γV (si+1) − ri)
2

The task is then to solve Q̂ = arg minQ∈HQ maxh∈Hh
Laux. The idea behind is to find

an h that fits the Bellman operator over the observations. Its unavoidable error cancels
the variance of the original expression down. We obtain

Z = Es′(Q(s, a) − γV (s′) − R(s, a, s′))2 − Es′(h(s, a) − γV (s′) − R(s, a, s′))2

= (Q(s, a) − (TQ)(s, a))2 − Err(h(s, a), (TQ)(s, a)),

which is the true loss function with an additional error term due to the suboptimal
approximation of h, if Hh is unable to fit the Bellman operator arbitrarily precisely.
This technique allows us to upper-bound the true Bellman Residual, if the error of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Optimality of Neural Rewards Regression 113

�1

Q1

[if a=1]t

�n

Qn

Q
1 1

�1

Q’1

�n

Q’n

V’

max

R
-�

gradient flow
control �

[if a=n]t

x x
… …

1

s s s’ s’

�1

h1

[if a=1]t

�n

hn

h
1 1

�1

Q’1

�n

Q’n

V’

max

R
-�

gradient flow
control ���

[if a=n]t

x x
… …

1

s s s’ s’

��

Fig. 2. The Auxiliared Bellman Residual NRR architecture. Both networks are trained simulta-
neously. The right network is used to obtain an approximation of T ′Q2.

h on TQ can be bounded. However, it is easy to see, that L̂ ≤ L within a sad-
dle point of Laux, if HQ = Hh. Otherwise h would not provide the minimum of L̂.
Therefore, an optimum of Laux would be provided by any Temporal-Difference fixed
point, if it exists, as only in that case Q can fit the Bellman Operator as well as h
and Laux = 0. In contrast to the original proposal [2], we hence choose Hh either
as a considerable richer function class than HQ or with prior knowledge of the true
Bellman Operator, such that L̂ basically provides a better estimate of T ′Q2. As any
such estimate of the variance is still biased, the method converges to a biased estima-
tor of the true Bellman Residual minimising function Q̂∗ ∈ HQ within its function
space only, but obviously provides a better approximation than the estimator given in
sec. 3. In the following we consider the standard setting F (x) = x2 and obtain the
gradients

Δθ = Γ + βργ
l∑

i=1

(h(si, ai) − γV (si+1) − ri)
d

dθ
V (si+1)

Δω = αβ
l∑

i=1

(h(si, ai) − γV (si+1) − ri)
d

dω
h(si, ai)

where ω are the accordant parameters describing h, 0 ≤ β ≤ 1 controlling the influence
of the auxiliary function h, and α ≥ 1 the strength of the optimisation of h in compar-
ison with Q. This is incorporated into the NRR architecture as follows. In addition to
the original NRR network, responsible for minimising L, we install a second similar,
but auxiliary network, where the Q-clusters are replaced by respective h-clusters while
the network part for Q′ remains the same (see fig. 2). All three Q-function networks are
still connected via shared weights. Finally, the auxiliary network has to fulfil two tasks,
maximising L̂ w.r.t. θ and minimising L̂ w.r.t. ω. Because of the negative sign of L̂,
the gradient through the Q′ part of the auxiliary network has to be sent in the opposite
direction. The parameter α has to be chosen sufficiently large, such that h can fit the
Bellman Operator almost instantaneously.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

114 D. Schneegaß, S. Udluft, and T. Martinetz

5 Policy Gradient Neural Rewards Regression

We now consider our second improvement, by introducing PGNRR, which is primarily
a further generalisation of NRR to continuous action spaces. In general it is feasible
for special function classes only to detect V (s) = maxa Q(s, a) in polynomial time.
One possibility is to apply the idea of wire-fitting [15] or comparable approaches to
NRR. Much more general and simpler is an approach combining the regression scheme
on the rewards with PG methods. Therefore we replace the ensembles of Q-function

�

s

Q V’

R

1 -�
gradient flow
control �

a

�

s’

a’

	

V’

�

a’

	

max

0 1/

Policy

� �

�

s

Q V’

R

1 -�
gradient flow
control �

a

�

s’

a’

	

V’

�

a’

	

max

0 1/

Policy

� �

�

s

h V’

R

1 -�

���

a

�

s’

a’

	

0

�

s

V’

R

1 -�

a

�

s’

a’

	

0

�

��

Fig. 3. The Policy Gradient NRR architecture. The additional architectural elements are used to
train the policy network, whose task is to perform a near-optimal policy.

networks for the discrete actions by a single network evaluating Q(s, a) for continuous
states and actions. For the successor states we evaluate Q(s′, π(s′)) where we assume
that π : S → A with parameters ψ tend to perform the optimal policy (see fig. 3).
Hence Q(s′, π(s′)) gets close to maxa′ Q(s′, a′). This is achieved by the maximisa-
tion of the Q-function for the successor states, simultaneously with the regression on
the rewards. Therefore, a kind of Batch On-Policy-Iteration or Batch Actor-Critic It-
eration is performed, by exploiting the intrinsic interrelationship between Q-function
and policy. The gradient flow control technique in connection with shared weights is
again sufficient to construct the appropriate architecture. In the standard network part
for the successor state, the gradient flow through the policy network is simply cut off,
such that the policy does not influence the regression on the rewards. In the extended
part, a sufficiently small ε enables that only the policy contributes to the Q-function’s
maximisation. The common gradients are given as

Δθ =
l∑

i=1

(
(Q(si, ai) − γQ(si+1, π(si+1)) − ri)

d

dθ
(Q(si, ai) − ργQ(si+1, π(si+1))) +

εd

dθ
Q(si+1, π(si+1))

+βργ (h(si, ai) − γQ(si+1, π(si+1)) − ri)
d

dθ
Q(si+1, π(si+1))

)
+

dΩ(θ)
dθ

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Optimality of Neural Rewards Regression 115

Δω = αβ

l∑

i=1

(h(si, ai) − γQ(si+1, π(si+1)) − ri)
d

dω
h(si, ai)

Δψ =
l∑

i=1

d

εdψ
π(si+1)

εd

dπ(si+1)
Q(si+1, π(si+1)) =

l∑

i=1

d

dψ
Q(si+1, π(si+1)).

Still, a near-optimal policy is found by using Back-Propagation with shared weights
only. After convergence, the policy can be evaluated by the network for π without using
the Q-function as interim result.

6 Improving Data-Efficiency

With the problem class extension, we obtain an advancement of data-efficiency as well.
This is based on two different arguments. The first one concerns the improvement w.r.t.
the approachable optimality criteria. As we are now able to find the solution of a less
biased Bellman Residual minimisation, we profit from that optimality criterion, which
has several advantages [11,13]. Secondly, it has often been stated in the literature, that
PG approaches are better able to profit from prior knowledge as the policies are usually
known to be much simpler than the Q-functions and hence appropriate function classes
can be given. Beside this argument, the question arises, if the combination of learning
a Q-function and a policy, provides an improvement w.r.t. the bias-variance-dilemma
[16] without special prior knowledge. This could be achieved by trading between the
complexity of both hypothesis spaces HQ ⊂ CQ and Hπ ⊂ Cπ, which are subsets
of assumed concept spaces. However, there exists a function Π : 2CQ → 2Cπ map-
ping from all possible Q-function hypothesis spaces to the set of all possible policy
hypothesis spaces and for Π(HQ) = Hπ it holds

∀Q ∈ HQ : ∃π ∈ Hπ : ∀s ∈ S : π(s) = argmax
a

Q(s, a)

∀π ∈ Hπ : ∃Q ∈ HQ : ∀s ∈ S : π(s) = argmax
a

Q(s, a).

That is, Π(HQ) contains a corresponding policy for any Q ∈ HQ and vice versa. For
illustration, we tested the Cerebellar Model Articulation Controller (CMAC) architec-
ture [4,17] as regressor for the true Q-function together with the Wet-Chicken bench-
mark problem [18]. The bias-variance-trade-off is controlled by the number of tiles.
The policy is chosen out of the respective function class Π(HQ), which can easily be
given for this example, and is fitted, such that the average of Q(s, π(s)) is maximal
over the observations. If we decrease the parameters of π, such that Hπ ⊂ Π(HQ),
then we additionally trade bias against variance over the policy space. In general, it is
indeed possible to obtain the maximal values at a point that does not lie on the diag-
onal, where Hπ = Π(HQ). Fig. 4 shows the results. However, a detailed theoretical
analysis, under which conditions an improvement can be obtained, is part of future
work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

116 D. Schneegaß, S. Udluft, and T. Martinetz

7 Benchmark Results

In order to support the theoretical considerations on data-efficiency with empirical ev-
idence, we tested the novel architecture on the Cart-Pole problem as described in [10]
and on a simulation of a gas turbine, which has been used for a Reinforcement Learn-
ing project to reduce acceleration and pressure intensities in the combustion chamber
(RMS) while maintaining high and stable load. A more detailed description can be
found in [20]. We have chosen these two benchmarks, because standard NRR already
shows competitive results in comparison with TD-Learning [13] on human-designed
as well as automatically trained local basis functions, the Adaptive Heuristic Critic
[4], Neural Fitted Q-Iteration [19], and the Recurrent Control Neural Network [20] as
a model-based approach exploiting the special properties of the considered problem
class. Unfortunately a fair comparison of NRR and PGNRR is difficult as each setting
redounds to one method’s advantage. We decided to rediscretise the continuous action
policy. But it is apparent that a better performance in comparison to the natural discrete
method is only a sufficient criterion for its prevalence as the continuous method could
have found a policy which especially exploits its continuous action character.

0

2

4

6

8

10

12 0
2

4
6

8
10

12

205

210

215

220

225

230

235

R
e
la

ti
v
e

N
u
m

b
e
r

o
f
S

u
c
c
e
s
s
fu

l
T

ri
a
ls

E(Q(s, (s)))�

|H |
� |H |Q

2 2.5 3 3.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

log N10 observations

Fig. 4. Left: Performance comparison on the Cart-Pole problem. The figure shows the number
of successful learning trials, where the controller balances the pole for at least 100000 steps,
dashed: NRR, solid: PGNRR, dotted: PGNRR rediscretised, and dash-dotted: Neural Fitted Q-
Iteration [19] for at least 3000 steps. Right: Bias-variance-trade-off for Q-function and policy for
a tile-coding example. The maximal values are averaged over 100 test trials.

Nevertheless, for the Cart-Pole problem (see fig. 4), it can be seen that PGNRR per-
forms considerably better than NRR and also its discretised version is quite comparable
to the standard NRR. Both methods were trained with 4-layer networks. The most suc-
cessful setting for NRR was already verified with Q-function networks with 16 and 8
neurons in the first and the second hidden layer, respectively. In accordance with our
observations w.r.t. the bias-variance-trade-off, for PGNRR we improved the complexity
of the Q-function (30 and 15 hidden neurons) and have chosen a smaller policy network
(10 and 5 hidden neurons). As learning algorithm we applied the Vario-Eta method [21],
where we observed best results for this problem. We have chosen a batch size of 5 and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving Optimality of Neural Rewards Regression 117

Table 1. Performance comparison on a controller for a gas turbine simulation. We opposed our
best NRR controller with a PGNRR controller for the same discrete action data set. As the under-
lying MDP’s action space is two-dimensional we applied each a one- and two-action discretisa-
tion. Interestingly, the performance of the two discretised controllers is indeed better than on the
natural discrete controller.

Gas Turbine NRR PGNRR PGNRR PGNRR
Discrete Simple Discretised Double Discretised Continuous

Average Reward 0.8511 ± 0.0005 0.8531 ± 0.0005 0.8560 ± 0.0005 0.8570 ± 0.0005

η = 0.05. The input data was rescaled to constrain the inputs between −1 and +1. The
net training was performed with an exponentially decreasing learning rate. For compar-
ison we plotted the number of successful learning trials with Neural Fitted Q-Iteration
[19], where the pole is balanced for at least 3000 steps, apparently the results are an
upper bound for the presented setting.

As a second benchmark we applied NRR and PGNRR on a gas turbine simulation
[20]. There are two different control variables, the so-called pilot gas and inlet guide
vane (IGV). These variables are, beside other control variables and measurements, part
of the state space. The actions are to wait and do nothing, to increase and decrease pilot
gas, and to increase and decrease IGV each by a certain amount. Only one of these five
actions is selectable in each time step. For the continuous version we allow a maxi-
mum of the discrete modification simultaneously for both control variables. We used
the Recurrent Neural Rewards Regression (RNRR) model as described in [1] and an
appropriate Recurrent PGNRR architecture for comparison. The recurrent substructure
is necessary, because the state space is not Markovian, specifically the underlying MDP
is of higher order.

For both architectures we used the same settings as described for the Cart-Pole prob-
lem, but additionally applied weight decay as regularisation with a factor λ = 0.001.
Applying this setting we obtained the best results with the NRR architecture and also
reproducible results with PGNRR. For comparison with the standard NRR, we redis-
cretised the continuous actions independent from each other as well as to the simple
discrete case, where the larger relative action was discretised and the appropriate other
action not executed. It can be seen in tbl. 1 that with both discretised versions indeed a
reward improvement could achieved. Note, that a reward difference of 0.002 and 0.006
corresponds to an additional power output of 0.14 and 0.42 MW, respectively, with
stable RMS for a power plant with a maximum power of 200 MW.

8 Conclusion

We introduced two generalisations of Neural Rewards Regression to extend the ap-
proachable optimality criteria and the considered problem class substantially. Of course,
PGNRR can also be combined with Recurrent Neural Networks [1], so that a very broad
problem class is addressed. Future work will mainly concern the broadening of its ap-
plication for gas turbine control and the theoretical analysis of the improvement of
data-efficiency.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

118 D. Schneegaß, S. Udluft, and T. Martinetz

References

1. Schneegass, D., Udluft, S., Martinetz, T.: Neural rewards regression for near-optimal policy
identification in markovian and partial observable environments. In: Verleysen, M. (ed.) Proc.
of the European Symposium on Artificial Neural Networks, pp. 301–306 (2007)

2. Antos, A., Szepesvári, C., Munos, R.: Learning near-optimal policies with bellman-residual
minimization based fitted policy iteration and a single sample path. In: Lugosi, G., Simon,
H.U. (eds.) COLT 2006. LNCS (LNAI), vol. 4005, pp. 574–588. Springer, Heidelberg (2006)

3. Schneegass, D., Udluft, S., Martinetz, T.: Kernel rewards regression: An information ef-
ficient batch policy iteration approach. In: Proc. of the IASTED Conference on Artificial
Intelligence and Applications, pp. 428–433 (2006)

4. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

5. Hinton, G.E., McClelland, J.L., Rumelhart, D.E.: Distributed representations. In: Parallel
Distributed Processing, pp. 77–109 (1986)

6. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)
7. Sutton, R.S., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for reinforce-

ment learning with function approximation. In: Advances in Neural Information Processing
Systems, vol. 12 (2000)

8. Wang, X., Dietterich, T.: Model-based policy gradient reinforcement learning. In: Interna-
tional Conference on Machine Learning (2003)

9. Ghavamzadeh, M., Engel, Y.: Bayesian policy gradient algorithms. In: Advances in Neural
Information Processing Systems (2006)

10. Lagoudakis, M.G., Parr, R.: Least-squares policy iteration. Journal of Machine Learning Re-
search, 1107–1149 (2003)

11. Munos, R.: Error bounds for approximate policy iteration. In: Proc. of the International Con-
ference on Machine Learning, pp. 560–567 (2003)

12. Baird III, L.C.: Residual algorithms: Reinforcement learning with function approximation.
In: Proc. of the International Conference on Machine Learning, pp. 30–37 (1995)

13. Tsitsikilis, J.N., Van Roy, B.: An analysis of temporal difference learning with function ap-
proximation. IEEE Transactions on Automatic Control 42(5), 674–690 (1997)

14. Pearlmutter, B.: Gradient calculations for dynamic recurrent neural networks: A survey. IEEE
Transactions on Neural Networks 6(5), 1212–1228 (1995)

15. Baird, L., Klopf, A.: Reinforcement learning with high-dimensional, continuous actions.
Technical Report WL-TR-93-1147, Wright Laboratory, Wright-Patterson Air Force Base,
OH 45433-7301 (1993)

16. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and the bias/variance dilemma.
Neural Computation 4(1), 1–58 (1992)

17. Timmer, S., Riedmiller, M.: Fitted q iteration with cmacs. In: ADPRL. Proceedings of the
IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pp. 1–8. IEEE Computer Society Press, Los Alamitos (2007)

18. Tresp, V.: The wet game of chicken. Siemens AG, CT IC 4, Technical Report (1994)
19. Riedmiller, M.: Neural fitted q-iteration - first experiences with a data efficient neural rein-

forcement learning method. In: Proceedings of the 16th European Conference on Machine
Learning, pp. 317–328 (2005)

20. Schaefer, A.M., Schneegass, D., Sterzing, V., Udluft, S.: A neural reinforcement learning
approach to gas turbine control. In: Proc. of the International Joint Conference on Neural
Networks (2007) (to appear)

21. Neuneier, R., Zimmermann, H.G.: How to train neural networks. In: Orr, G.B., Müller, K.-
R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524, pp. 373–423. Springer,
Heidelberg (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Structure Learning with Nonparametric

Decomposable Models

Anton Schwaighofer1, Mathäus Dejori2, Volker Tresp2, and Martin Stetter2

1 Fraunhofer FIRST, Intelligent Data Analysis Group, Kekulestr. 7,
12489 Berlin, Germany

http://ida.first.fraunhofer.de/~anton
2 Siemens Corporate Technology, 81730 Munich, Germany

Abstract. We present a novel approach to structure learning for graph-
ical models. By using nonparametric estimates to model clique densities
in decomposable models, both discrete and continuous distributions can
be handled in a unified framework. Also, consistency of the underlying
probabilistic model is guaranteed. Model selection is based on predictive
assessment, with efficient algorithms that allow fast greedy forward and
backward selection within the class of decomposable models. We show
the validity of this structure learning approach on toy data, and on two
large sets of gene expression data.

1 Introduction

Recent years have seen a wide range of new developments in the field of graphical
models [1,2], in particular in the area of Bayesian networks, and in the use
of graphical models for probabilistic inference in complex systems. Graphical
models can either be constructed manually, by referring to the (assumed) process
that underlies some system, or by learning the graphical model structure from
sample data [3]. In this article, we present a novel method for learning the
structure of a decomposable graphical model from sample data. This method
has been developed particularly for decomposable models on continuous random
variables. Yet, through its use of nonparametric density estimates, it can also
handle discrete random variables within the same framework.

The major motivation for this work was to develop a structure learning ap-
proach that can be used without discretization of the data, but does not make
strong distributional assumptions (most previous approaches assume joint Gaus-
sianity [1,4,5], exceptions are [6,7]). In Sec. 4, we will consider the problem of
learning the structure of functional modules in genetic networks from DNA mi-
croarray measurements. In this important application domain, it has been noted
that discretization needs to be conducted very carefully, and may lead to a large
loss of information [8].

In the field of molecular biology, it seems particularly reasonable to use de-
composable graphical models. Functional modules are considered to be a criti-
cal level of biological organization [9]. We see a close relationship between the
cliques of a decomposable model (that is, a fully connected subgraph) and the

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 119–128, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

120 A. Schwaighofer et al.

functional modules of the genetic network. A clique is interpreted as a set of
functionally correlated genes. The structure of cliques then describes the rela-
tionships between individual functional modules. As opposed to simple clustering
approaches, the graphical model structure can also represent the fact that some
genes contribute to many of these functional modules.

We proceed by first giving a brief introduction to decomposable models and
structure learning in Sec. 2. Sec. 3 presents nonparametric decomposable models,
which are decomposable models based on nonparametric density estimation, and
the according structure learning methodology. In Sec. 4 we demonstrate the
performance of the algorithm on toy data, and then apply it to estimate the
structure of functional modules in two different microarray data sets.

2 Decomposable Models

A graphical model (or, probabilistic network) describes a family of probabilistic
models, based on a directed or undirected graph G = (V, E). Nodes V in the
graph represent random variables, whereas the edges E stand for probabilistic
dependencies. Common classes of graphical models [1,2] are Bayesian networks
(based on graphs with directed edges), Markov networks (based on graphs with
undirected edges), decomposable models (undirected chordal graphs) and chain
graphs (graphs with both undirected and directed edges).

To define decomposable models, we assume a set of n random variables
{x1, . . . , xn}, represented in an undirected graphical model with nodes V =
{1, . . . , n}. The absence of an edge (i, j) between variables xi and xj implies
that xi and xj are independent, conditioned on all other random variables (con-
ditional independence), denoted by xi⊥⊥xj | x{1,...,n}\{i,j}, the pairwise Markov
property. If the graph G describes a decomposable model (see the definition
below), the joint density can be written in terms of marginal densities of the
random variables contained in cliques of the graph (fully connected subgraphs),

p(x) =
∏

C∈K p(xC)
∏

S∈S p(xS)
. (1)

Here, K denotes the set of cliques in graph V , and S the set of separators (that
is, the intersections of two neighboring cliques).

This factorization is only possible if and only if G describes a decomposable
model, that is, if and only if the graph G is a chordal graph (see Ch. 4 of [2]), or,
equivalently, if the graph G can be represented in the form of a join tree1 The
join tree of a graph G is a tree T = (K, F) with the clique set K as its node set
and edges F , that satisfies the clique intersection property: For any two cliques
C1, C2 ∈ K, the set C1 ∩ C2 is contained in every clique on the (unique) path
between C1 and C2 in T . From the adjacent cliques in the join tree, we can also
compute the separators S required in (1).

1 Also called the junction tree, or clique tree.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Structure Learning with Nonparametric Decomposable Models 121

Structure Learning: In general, the problem of finding optimal graphical models
from data under a non-trivial scoring function is NP-hard [10]. A large number
of (heuristic) approaches has been developed to estimate graphical models from
data, such as constraint-based methods [11], frequentist [1] and fully Bayesian ap-
proaches [12]. We will subsequently use a scoring function based method, where
we combine a function that estimates the model quality (the scoring function)
with a suitable search strategy through model space.

3 Nonparametric Decomposable Models

Previous structure learning approaches for continuous variables often assume
that all of the involved random variables have a joint multivariate Gaussian
distribution. While being computationally attractive, we believe that this can
only be observed in very limited domains, and thus wish to develop structure
learning for continuous variables with general probability distributions. In our
representation we employ kernel density estimates [13] for each clique in the
decomposable model.

This choice brings some specific advantages: Provided that a suitable kernel
function is chosen, no re-fitting of the density models is necessary after the model
structure has been changed. Also, clique density models will remain consistent
(that is, corresponding marginal distributions match, see [6] for an approach
where this caused numerous problems).

For a set of m samples D = {x1, . . . , xm} (each xi ∈ R
n) from a probability

distribution over random variables {x1, . . . , xn}, a kernel density estimate [13] is

p(x |D, θ) =
1
m

m∑

i=1

g(x; xi, θ). (2)

As the kernel function g, we chose a Gaussian,

g(x; xi, θ) = (2π)−n/2|diag θ|−1/2 exp
(

−1
2
(x − xi)�(diag θ)−1(x − xi)

)

, (3)

with the variance along the jth dimension given by θj , j = 1, . . . , n.
For the proposed nonparametric decomposable models, we require models for

each clique and separator in Eq. 1, and thus model all clique marginal distribu-
tions by nonparametric density estimates. Denoting by xC the vector of random
variables appearing in clique C, and DC = {x1

C , . . . , xm
C }, the clique marginal

model for clique C is

p(xC | DC , θC) =
1
m

m∑

i=1

g(xC ; xi
C , θC), (4)

Note that choosing this form of nonparametric density estimates in Eq. 1 au-
tomatically ensures an essential property of density models in this context: With

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

122 A. Schwaighofer et al.

constant parameter vector θ, all clique and separator marginal models are con-
sistent, by means of the properties of the Gaussian kernel function. Consistency
means that, when considering clique models p(x1, x2) ad p(x2, x3), the marginals
p(x2) that can be computed from both clique models will match.

Choosing Kernel Parameters: In our experiments, we choose the variance pa-
rameters θ for the nonparametric density models in Eq. 4 by maximizing the
leave-one-out log likelihood of the data D,

θ̂ = arg max
θ

m∑

i=1

log p(xi | D \ xi, θ), (5)

via a conjugate gradient algorithm. Setting the parameters θ is done once at the
beginning of structure learning, θ remains fixed thereafter.

3.1 Learning: Scoring Functions

For learning the structure of nonparametric decomposable models, we used a
scoring-based learning strategy, with model scoring based on predictive assess-
ment. The key idea of predictive assessment model scores is to evaluate the
model on data not used for model fitting. The advantage of such scores lies
in its computational simplicity (for example, marginal likelihood is most of-
ten very difficult and time-consuming to compute) and in its insensitivity to
possibly incorrect model assumptions. Commonly used variants of predictive as-
sessment are cross-validation (asymptotically equivalent to maximum likelihood
with AIC complexity term, [2]) and prequential validation (ML with BIC com-
plexity term). We chose predictive assessment with 5-fold cross-validation as our
scoring function.

The joint density function of a nonparametric decomposable model is given in
Eq. 1. Taking logs, Eq. 1 splits into the sum of clique and separator contributions,
such that the 5-fold cross-validation can be evaluated separately on cliques and
separators. The contribution of a single clique C (resp. separator S) to the total
cross-validation log-likelihood is denoted by the clique score L(C),

L(C) = L(DC) =
5∑

k=1

∑

xC∈Dk
C

log p
(
xC | DC \ Dk

C

)
(6)

By this we mean that data D = {x1, . . . , xm} are split into 5 disjoint sets
D1, . . . , D5. Parzen density estimates are built from all data apart from Dk,
and evaluated on the data in Dk. The subscript C denotes a restriction of all
quantities to the random variables contained in clique C.

The overall cross-validation log-likelihood (model score) for the decompos-
able model, given by its set of cliques K = {C1, . . . , CA} and separators S =
{S1, . . . , SB}, simply becomes

L(K, S) =
A∑

j=1

L(Cj) −
B∑

k=1

L(Sk) (7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Structure Learning with Nonparametric Decomposable Models 123

Scores after Model Change: Based on the model score in Eq. 7, it is straight-
forward to derive the change of model score if an edge is inserted into the model.
In particular, the difference of scores can be computed from local changes only,
i.e., it is only necessary to consider the cliques involved in the insert operation.

Consider inserting an edge (u, v), thereby connecting cliques Cu and Cv. In
the current model G, the contribution of these two cliques and their separator
Suv = Cu ∩ Cv to the model score is L(Cu) + L(Cv) − L(Suv). Inserting edge
(u, v) creates a model G′ with a new clique Cw = Suv ∪ {u, v} and separators
Suw = Cu ∩ Cw = Suv ∪ {u} and Svw = Cv ∩ Cw = Suv ∪ {v}. The change of
model score from G to G′ thus simply becomes

Δuv = L(Suv) + L(Suv ∪ {u, v}) − L(Suv ∪ {u}) − L(Suv ∪ {v}) (8)

One can easily verify that this equation also holds for the case of merging cliques,
i.e., the case when Cu and/or Cv are no longer maximal in G′ and merge with
Cw.

[14] prove that the number of edge scores that need to be re-computed after
inserting an edge has a worst case bound of O(n). In practice, most of the edge
scores remain unchanged after an edge insertion, and only few edge scores need
to be recomputed. For example, in a problem involving 100 variables, 5 edge
scores were recomputed on average. We observed in our experiments that the
average number of edge scores to recompute seems to grow under linear.

3.2 Learning: Search Strategy

In searching for a model that matches well with data (i.e., has a high scoring
function), we traverse the space of decomposable models using a particular search
strategy. Commonly used search strategies are greedy forward selection (start
from an initially empty graph, iteratively add edges that brings the highest
improvement in terms of scoring function) or greedy backward elimination (start
from a fully connected graph, iteratively delete edges). In our approach, we use
a combination of forward and backward search, starting from an empty graph.
We either add or delete edges, depending on which operation brings the largest
improvement of scoring function.

The search for candidate models still needs to be restricted to the class of
decomposable models: In the current decomposable model graph G = (V, E), we
can attempt to either insert or delete an edge (u, v) to obtain graph G′. Is edge
(u, v) a valid edge, in that the new model G′ is still a decomposable model? [14]
presented a method that is suitable for use with greedy forward selection. We use
an approach inspired by dynamic algorithms for chordal graphs [15]. With this
approach, enumerating all valid edges can be performed in O(n2 log n) amortized
time. As a further advantage over [14], the information about separators and
cliques of the graph (required for computing the model score) is always available.

Checking Decomposability of G′: To check chordality of G′, we define a weight
function w : K × K → N0, that assigns each edge e = (C1, C2) of the join tree

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

124 A. Schwaighofer et al.

a weight w(e) = w(C1, C2) = |C1 ∩ C2|. The following theorem [15] now checks
whether we can insert an edge (u, v) while maintaining decomposability:

Theorem 1. Let G be a chordal graph without edge (u, v). Let T be the join
tree of G, and let Cu, Cv be the closest nodes in T such that u ∈ Cu, v ∈ Cv.
Assume (Cu, Cv) �∈ T . There exists a clique tree T ′ of G′ with (Cu, Cv) ∈ T ′

iff the minimum weight edge e on the path between Cu and Cv in T satisfies
w(e) = w(Cu, Cv).

Checking whether deleting edge (u, v) maintains decomposability is a bit easier:

Theorem 2. Let G be a chordal graph with edge (u, v). G\(u, v) is decomposable
if and only if G has exactly one maximal clique containing (u, v).

Splay Tree Representation for the Join Tree: In the above theorems, the ma-
jor operation on the join tree is searching for the closest cliques that contain
the variables u and v. [16] present a representation for trees that allows a par-
ticularly efficient implementation of shortest path searches, with only O(log n)
operations per search. We use this data structure to maintain the join tree T .
The representation is based on self-adjusting binary search trees, the so-called
splay trees. It can be shown that all standard tree operations (in particular, the
link, cut and shortest path search operations required for the decomposability
check) have an amortized time bound of O(log n) for a splay tree with n nodes.
A chordal graph on n nodes has a join tree with at most n cliques, thus all join
tree operations can be implemented in O(log n).

4 Experiments

4.1 Toy Data

In a first experiment, we investigate whether the structure learning algorithm
presented in the previous sections can indeed recover the true structure of some
data. To this aim, we draw 50 samples from a decomposable model over 8 vari-
ables, where each clique is modelled by a randomly initialized Gaussian mix-
ture model with 10 components (with consistency between cliques ensured). In
Fig. 1 the model score L(D | K, S), as defined in Eq. 7, is plotted as more and
more edges are added to the model. We found that the algorithm recovers the
true structure of the generating decomposable model when L(D | K, S) is at its
maximum.

4.2 Learning from DNA Microarray Measurements

We used our method two learn the structure from two gene expression data
sets. To also estimate the confidence of each of the learned structures, we used
a 20-fold bootstrap scheme: For each of the perturbed bootstrap data sets D(i),
we use the structure obtained when the model score Eq. 7 is at its maximum.
In the analysis, we only consider edges that have a confidence of 90% or above

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Structure Learning with Nonparametric Decomposable Models 125

2

1

3 4

5

6

7

8

��

��

�
�

�
�

2

1

3 4

5

6

7

8

��

��

�
�

�
�

�
��

����������

�

�
�

�
�

�
�

�
�

���

Fig. 1. Test of the structure learning algorithm on a toy model, where 50 samples were
drawn from a decomposable model with known structure. The plot shows the model
score, as defined in Eq. 7, when edges are added successively. The structure found
when the model score is at its maximum is exactly the structure of the generating
model (shown top left). Shown bottom left is a structure that also obtains a high
model score.

(edges that were found in at least 18 out of the 20 runs). Yet, thresholding by
edge confidence may lead to a non-decomposable result model. To again obtain
a decomposable model, we implemented the following greedy insertion scheme:
Maintain a list L of all edges with a bootstrap confidence estimate of 90% or
above. Sort the list by ascending confidence value. Start with an empty re-built
model (denoted by G′ in the following). Consider now the highest confidence edge
in list L. If this edge can be inserted into G′ without loosing decomposability
of G′ (using the test described in Sec. 3.2), then insert the edge into G′ and
delete it from L. Otherwise, proceed with the next edge in L. The algorithm
terminates if L is empty, or if no edge can be inserted into G′ without loosing
decomposability.

St. Jude Leukemia Data Set. We first applied our approach on data obtained
from measuring gene-expression levels in human bone marrow cells of 7 different
pedriatric acute lymphoblastic leukemia (ALL) subtypes [17]. Out of the 12.000
measured genes, those are selected that best define the individual subtypes using
a Chi-square test. For each of the 7 subtypes the 40 most discriminative genes are
chosen yielding to a set of 280 genes. 9 genes show a discriminative behavior for
more than one subtype but were included only once resulting in a final dataset
of n = 327 samples and p = 271 genes.

The learned network topology [18] (with restriction to high confidence edges,
as described in the previous section) shows a few highly connected genes, with
most edges connecting genes that are known to belong to the same ALL sub-
type. Thus, most genes are conditionally independent from each other, given
one of these highly connected genes. Biologically speaking, the expression be-
havior of many genes only depends on a set of few genes, which therefore are
supposed to play a key role in the learned domain. Since the structure is inferred

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

126 A. Schwaighofer et al.

from leukemia data, a high connectivity may indicate a potential importance for
leukemogenesis or for tumor development in general. In fact, as shown in Tab. 1,
highly connected genes are either known to be genes with an oncogenic char-
acteristic or known to be involved in critical biological processes, like immune
response (HLA-DRA), protein degradation (PSMD10), DNA repair (PAPR1) or
embryogenesis (SCML2). PSMD10, for example, is known to act as a regulatory
subunit of the 26S proteasome. PSMD10 connects most cliques that contain
genes which are altered in ALL subtype hyperdipl>50. The dominant role of
PSMD10 in the hyperdipl>50 subtype seems reasonable, since the 26S protea-
some is involved in general protein degradation and its hyperactivity is likely to
be a response to the excessive protein production caused by the hyperdiploidy.
HLA-DRA, the most highly connected gene belongs to the major histocompati-
bility complex class 2 (MCH II) which has been reported to be associated with
leukemia and various other cancer types. The other seven members of the MCH
complex which are present in the analyzed data set are either part of the same
clique as HLA-DRA or part of an adjacent clique. The compact representation
of this functional module emphasizes the capability of our approach to learn
functional groups within a set of expression data.

Table 1. Genes with highest connectivity in the graphical model structure learned
from the ALL data set (expression patterns in bone marrow cells of leukemia)

Gene Affymetrix ID # of connections Annotation

HLA-DRA 37039 at 29 major histocompatibility complex, class
II, DR alpha

PSMD10 37350 at 23 proteasome (prosome, macropain) 26S
subunit, non-ATPase, 10

PAPR1 1287 at 17 poly (ADP-ribose) polymerase family,
member 1

SCML2 38518 at 15 sex comb on midleg-like 2 (Drosophila)

Spira Data Set. We next analyzed gene expression data derived from human
epithelial cells of current, former and never smoking subjects (101 in total) taken
from [19]. The 96 most discriminative probes were selected, then structure learn-
ing was applied as described in the previous section. Tab. 2 lists the three highest
degree genes in the learned decomposable model. All of the highest connected
genes have detoxifying and antioxidant properties. The NQO1 gene, for exam-
ple, serves as a quinone reductase in connection with conjugation reactions of
hydroquinons involved for example in detoxification pathways. Its high connec-
tivity seems reasonable as it prevents the generation of reactive oxygen radicals
and protects cells from oxidative challenges such as the exposure to cigarette
smoke. Fig. 2 shows the NQO1 subgraph, plotted with the radius of each gene
node proportional to its connectivity. Besides the central role of NQO1, note
that multiply appearing genes are grouped into cliques (for example, the three
probes that correspond to the UGTA1A6 gene are all put into one clique).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Structure Learning with Nonparametric Decomposable Models 127

Fig. 2. The NQO1 subgraph obtained from the Spira data set. The area of each gene
node is proportional to its degree.

Table 2. The three highest connected genes in the graphical model structure learned
from the Spira data set (expression patterns in epithelial cells of smokers and non-
smokers)

Gene Affymetrix ID # of connections Annotation

NQO1 210519 s at 8 NAD(P)H dehydrogenase, quinone 1
CX3CL1 823 at 4 chemokine (C-X3-C motif) ligand 1
MTX1 208581 x at 4 metaxin 1

5 Conclusions

We presented a novel approach to learning a decomposable graphical model
from data with continuous variables. Key issues for this algorithm are non-
parametric kernel density estimates for each clique, and an efficient method
for restricting search to the class of decomposable models. The method per-
mits working directly with continuous data, without discretization as a pre-
processing step. Our experiments on toy data and two gene expression data
sets confirmed that the structure learning method does find meaningful
structures.

We are currently applying our approach to larger sets of gene expression data.
Graphical models are used increasingly in bioinformatics, and we believe that
the structure learning approach presented in this article has a wide range of
applications there. In particular, we plan to use the results of decomposable
model learning as hypothesis structures for more detailed modelling. Currently,
detailed modelling of regulatory processes in cells (including dynamical effects) is
a very active research topic. These methods are often computationally intensive,
and can only be applied to networks with a small number of genes. Thus, it is
important to first find hypothesis networks, that are in turn modelled in more
detail. We believe that the structure learning method presented in this paper
can serve this purpose very well.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

128 A. Schwaighofer et al.

References

1. Lauritzen, S.L.: Graphical Models. Oxford Statistical Science Series, vol. 17.
Clarendon Press, Oxford (1996)

2. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Net-
works and Expert Systems. In: Statistics for Engineering and Information Science,
Springer, Heidelberg (1999)

3. Heckerman, D.: A tutorial on learning with Bayesian networks. In: Jordan, M.I.
(ed.) Learning in Graphical Models, MIT Press, Cambridge (1998)

4. Song, Y., Goncalves, L., Perona, P.: Unsupervised learning of human motion. IEEE
Transactions on Pattern Analysis and Machine Intelligence 25(7), 814–827 (2003)

5. Banerjee, O., El Ghaoui, L., d’Aspremont, A., Natsoulis, G.: Convex optimization
techniques for fitting sparse gaussian graphical models. In: De Raedt, L., Wrobel,
S. (eds.) Proceedings of ICML06, pp. 89–96. ACM Press, New York (2006)

6. Hofmann, R., Tresp, V.: Nonlinear Markov networks for continuous variable. In:
Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) Advances in Neural Information
Processing Systems, vol. 10, MIT Press, Cambridge (1998)

7. Friedman, N., Nachman, I.: Gaussian process networks. In: Proceedings of UAI
2000, pp. 211–219. Morgan Kaufmann, San Francisco (2000)

8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using bayesian networks to ana-
lyze expression data. Journal of Computational Biology 7, 601–620 (2000)

9. Hartwell, L.H., Hopfield, J.J., Leibler, S., Murray, A.W.: From molecular to mod-
ular cell biology. Nature 402, C47 (1999)

10. Bouckaert, R.R.: Properties of Bayesian belief network learning algorithms. In: de
Mantaras, R.L., Poole, D.L. (eds.) Proceedings of UAI 94, pp. 102–109. Morgan
Kaufmann, San Francisco (1994)

11. de Campos, L.M.: Characterizations of decomposable dependency models. Journal
of Artificial Intelligence Research 5, 289–300 (1996)

12. Giudici, P., Green, P.J.: Decomposable graphical Gaussian model determination.
Biometrika 86, 785–801 (1999)

13. Silverman, B.W.: Density Estimation for Statistics and Data Analysis. In: Mono-
graphs on Statistics and Applied Probability, vol. 26, Chapman & Hall, Sydney,
Australia (1986)

14. Deshpande, A., Garofalakis, M., Jordan, M.I.: Efficient stepwise selection in decom-
posable models. In: Breese, J., Koller, D. (eds.) Proceedings of UAI 2001, Morgan
Kaufmann, San Francisco (2001)

15. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. Technical
Report DCS-262-IR. Department of Computer Science, University of Victoria, CA
(2000)

16. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32(3), 652–686 (1985)

17. Yeoh, E.J., et al.: Classification, subtype discovery, and prediction of outcome
in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer
Cell 1(2), 133–143 (2002)

18. Dejori, M., Schwaighofer, A., Tresp, V., Stetter, M.: Mining functional modules
in genetic networks with decomposable graphical models. OMICS A Journal of
Integrative Biology 8(2), 176–188 (2004)

19. Spira, A., Beane, J., Shah, V., Liu, G., Schembri, F., Yang, X., Palma, J., Brody,
J.S.: Effects of cigarette smoke on the human airway epithelial cell transcriptome.
Proceedings of the National Academy of Sciences of the United States of Amer-
ica 101(27), 10143–10148 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Recurrent Bayesian Reasoning

in Probabilistic Neural Networks

Jǐŕı Grim and Jan Hora

1 Institute of Information Theory and Automation
of the Czech Academy of Sciences,

P.O. Box 18, 18208 Prague 8, Czech Republic
2 Faculty of Nuclear Science and Physical Engineering

Czech Technical University,
Trojanova 13, CZ-120 00 Prague 2, Czech Republic

Abstract. Considering the probabilistic approach to neural networks
in the framework of statistical pattern recognition we assume approxi-
mation of class-conditional probability distributions by finite mixtures
of product components. The mixture components can be interpreted as
probabilistic neurons in neurophysiological terms and, in this respect, the
fixed probabilistic description becomes conflicting with the well known
short-term dynamic properties of biological neurons. We show that some
parameters of PNN can be “released” for the sake of dynamic processes
without destroying the statistically correct decision making. In particu-
lar, we can iteratively adapt the mixture component weights or modify
the input pattern in order to facilitate the correct recognition.

1 Introduction

The concept of probabilistic neural networks (PNN) relates to the early work
of Specht [18] and others (cf. [13], [19], [15]). In this paper we consider the
probabilistic approach to neural networks based on distribution mixtures with
product components in the framework of statistical pattern recognition. We refer
mainly to our papers on PNN published in the last years (cf. [3] - [12]).

Let us recall that, given the class-conditional probability distributions, the
Bayes decision function minimizes the classification error. For this reason, in
order to design PNN for pattern recognition, we approximate the unknown class-
conditional distributions by finite mixtures of product components. In particular,
given a training data set for each class, we compute the estimates of mixture
parameters by means of the well known EM algorithm [17,2,16]. The main idea
of the considered PNN is to view the components of mixtures as formal neurons.
In this way there is a possibility to explain the properties of biological neurons
in terms of the component parameters. The mixture-based PNN do not provide
a new technique of statistical pattern recognition but, on the other hand, the
interpretation of a theoretically well justified statistical method is probably the
only way to better understanding of the functional principles of biological neural
networks.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 129–138, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

130 J. Grim and J. Hora

The primary motivation of our previous research has been to demonstrate dif-
ferent neuromorphic features of PNN. Simultaneously the underlying statistical
method has been modified in order to improve the compatibility with biological
neural networks. We have shown that the estimated mixture parameters can be
used to define information preserving transform with the aim to design multi-
layer PNN sequentially [3,4,20]. In case of long training data sequences the EM
algorithm can be realized as a sequential procedure which corresponds to one
“infinite” iteration of EM algorithm including periodical updating of the esti-
mated parameters [5,8]. In pattern recognition the classification accuracy can
be improved by parallel combination of independently trained PNN [9,10]. The
probabilistic neuron can be interpreted in neurophysiological terms at the level
of functional properties of a biological neuron [10,8] and the resulting synaptical
weights can be viewed as a theoretical counterpart of the well known Hebbian
principle of learning [14]. The PNN can be trained sequentially while assuming
strictly modular properties of the probabilistic neurons [8]. Weighting of training
data in PNN is compatible with the technique of boosting which is widely used
in pattern recognition [12]. In this sense the importance of training data vectors
may be evaluated selectively as it is assumed e.g. in connection with “emotional”
learning.

One of the most apparent limitations of the probabilistic approach to neu-
ral networks has been the biologically unnatural complete interconnection of
neurons with all input variables. The complete interconnection property follows
from the basic paradigms of probability theory. For the sake of Bayes formula
all class-conditional probability distributions must be defined on the same space
and therefore each neuron must be connected with the same (complete) set of
input variables. We have proposed a structural mixture model which avoids the
biologically unnatural condition of complete interconnection of neurons. The re-
sulting subspace approach to PNN is compatible with the statistically correct
decision making and, simultaneously, optimization of the interconnection struc-
ture of PNN can be included into the EM algorithm [11,10].

Another serious limitation of PNN arises from the conflicting properties of
the estimated mixture parameters and of the well known short-term dynamic
processes in biological neural networks. The mixture parameters computed by
means of EM algorithm reflect the statistical properties of training data and
uniquely determine the performance of PNN. Unfortunately the “static” role of
mixture parameters is sharply contrasting with the short-term dynamic proper-
ties of biological neurons. Motivated by this contradiction we apply in this paper
the recurrent Bayesian reasoning originally proposed in the framework of prob-
abilistic expert systems [7]. The statistical decision-making based on recurrent
Bayesian reasoning is invariant with respect to the a priori component weights
and makes PNN more compatible with the short-term dynamic properties of bi-
ological neural networks. In the following we first summarize basic properties of
PNN (Sec. 2) and discuss the biological interpretation of the probabilistic neuron
(Sec.3). Sec.4 describes the proposed principles of recurrent Bayesian reasoning
and in Sec.5 we apply the proposed PNN to recognition of handwritten numerals.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Recurrent Bayesian Reasoning in Probabilistic Neural Networks 131

2 Subspace Approach to Statistical Pattern Recognition

In the following sections we confine ourselves to the problem of statistical recog-
nition of binary data vectors

x = (x1, x2, . . . , xN) ∈ X , X = {0, 1}N

to be classified according to a finite set of classes Ω = {ω1, ω2, . . . , ωK}. Assum-
ing probabilistic description of classes we reduce the final decision-making to the
Bayes formula

p(ω|x) =
P (x|ω)p(ω)

P (x)
, P (x) =

∑

ω∈Ω

P (x|ω)p(ω), x ∈ X . (1)

where P (x|ω) represent the conditional probability distributions and p(ω), ω ∈ Ω
denote the related a priori probabilities of classes.

Considering PNN we approximate the conditional distributions P (x|ω) by
finite mixtures of product components

P (x|ω) =
∑

m∈Mω

F (x|m)f(m) =
∑

m∈Mω

f(m)
∏

n∈N
fn(xn|m). (2)

Here f(m) ≥ 0 are probabilistic weights, F (x|m) denote the component specific
product distributions, Mω are the component index sets of different classes and
N is the index set of variables. In case of binary data vectors we assume the
components F (x|m) to be multivariate Bernoulli distributions, i.e. we have

fn(xn|m) = θxn
mn(1 − θmn)1−xn , n ∈ N , N = {1, . . . , N}, (3)

F (x|m) =
∏

n∈N
fn(xn|m) =

∏

n∈N
θxn

mn(1 − θmn)1−xn , m ∈ Mω. (4)

In order to simplify notation we assume consecutive indexing of components.
Hence, for each component index m ∈ Mω the related class ω ∈ Ω is uniquely
determined and therefore the parameter ω can be partly omitted in Eq. (2).

The basic idea of PNN is to view the component distributions in Eq. (2) as for-
mal neurons. If we define the output of the m-th neuron in terms of the mixture
component F (x|m)f(m) then the posterior probabilities p(ω|x) are proportional
to partial sums of the neural outputs (cf. (1),(2)):

p(ω|x) =
p(ω)
P (x)

∑

m∈Mω

F (x|m)f(m). (5)

The well known “beauty defect” of the probabilistic approach to neural net-
works is the biologically unnatural complete interconnection of neurons with
all input variables. In order to avoid the undesirable complete interconnection
condition we have introduced the structural mixture model [5]. In particular we
make substitution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

132 J. Grim and J. Hora

F (x|m) = F (x|0)G(x|m, φm)f(m), m ∈ Mω (6)

where F (x|0) is a “background” probability distribution usually defined as a
fixed product of global marginals

F (x|0) =
∏

n∈N
fn(xn|0) =

∏

n∈N
θxn
0n (1 − θ0n)1−xn , (θ0n = P{xn = 1}) (7)

and the component functions G(x|m, φm) include additional binary structural
parameters φmn ∈ {0, 1}

G(x|m, φm) =
∏

n∈N

[
fn(xn|m)
fn(xn|0)

]φmn

=
∏

n∈N

[(
θmn

θ0n

)xn
(

1 − θmn

1 − θ0n

)1−xn
]φmn

.

(8)
An important feature of PNN is the possibility to optimize the mixture param-

eters f(m), θmn, and the structural parameters φmn simultaneously by means of
EM algorithm (cf. [17,5,11,10,16]). Given a training set of independent observa-
tions from the class ω ∈ Ω

Sω = {x(1), . . . , x(Kω)}, x(k) ∈ X ,

we obtain the maximum-likelihood estimates of the mixture (6) by maximizing
the log-likelihood function

L =
1

|Sω |
∑

x∈Sω

log

[
∑

m∈Mω

F (x|0)G(x|m, φm)f(m)

]

. (9)

For this purpose the EM algorithm can be modified as follows:

f(m| x) =
G(x| m, φm)f(m)

∑
j∈Mω

G(x|j, φj)f(j)
, m ∈ Mω, x ∈ Sω, (10)

f
′
(m) =

1
|Sω|

∑

x∈Sω

f(m| x), θ
′

mn =
1

|Sω |f ′(m)

∑

x∈Sω

xnf(m|x), n ∈ N (11)

γ
′

mn = f
′
(m)

[

θ
′

mn log
θ

′

mn

θ0n
+ (1 − θ

′

mn) log
(1 − θ

′

mn)
(1 − θ0n)

]

, (12)

φ
′

mn =
{

1, γ
′

mn ∈ Γ
′
,

0, γ
′

mn �∈ Γ
′
,

, Γ
′ ⊂ {γ

′

mn}m∈Mω n∈N , |Γ ′ | = r. (13)

Here f
′
(m), θ

′

mn, and φ
′

mn are the new iteration values of mixture parameters
and Γ

′
is the set of a given number of highest quantities γ

′

mn. The iterative
equations (10)-(13) generate a nondecreasing sequence {L(t)}∞0 converging to a
possibly local maximum of the log-likelihood function (9).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Recurrent Bayesian Reasoning in Probabilistic Neural Networks 133

3 Structural Probabilistic Neural Networks

The main advantage of the structural mixture model is the possibility to cancel
the background probability density F (x|0) in the Bayes formula since then the
decision making may be confined only to “relevant” variables. In particular,
making substitution (6) in (2) and introducing notation wm = p(ω)f(m) we can
express the unconditional probability distribution P (x) in the form

P (x) =
∑

ω∈Ω

∑

m∈Mω

F (x|m)wm =
∑

m∈M
F (x|0)G(x|m, φm)wm (14)

Further denoting

q(m|x) =
F (x|m)wm

P (x)
=

G(x|m, φm)wm∑
j∈M G(x|j, φj)wj

, m ∈ M, x ∈ X (15)

the conditional component weights, we can write

p(ω|x) =

∑
m∈Mω

G(x|m, φm)wm
∑

j∈M G(x|j, φj)wj
=

∑

m∈Mω

q(m|x). (16)

Thus the posterior probability p(ω|x) becomes proportional to a weighted sum of
the component functions G(x|m, φm) each of which can be defined on a different
subspace. In other words the input connections of a neuron can be confined to
an arbitrary subset of input neurons. In this sense the structural mixture model
represents a statistically correct subspace approach to Bayesian decision-making
which is directly applicable to the input space without any feature selection or
dimensionality reduction [10].

In multilayer neural networks each neuron of a hidden layer plays the role of
a coordinate function of a vector transform T mapping the input space X into
the space of output variables Y. We denote

T : X → Y , Y ⊂ RM , y = T (x) = (T 1(x), T2(x), . . . , TM (x)) ∈ Y. (17)

It has been shown (cf. [4], [20]) that the transform defined in terms of the pos-
terior probabilities f(m|x):

ym = Tm(x) = log q(m|x), x ∈ X , m ∈ M (18)

preserves the statistical decision information and minimizes the entropy of the
output space Y.

From the neurophysiological point of view the conditional probability q(m|x)
can be naturally interpreted as a measure of excitation or probability of firing of
the m-th neuron given the input pattern x ∈ X . The output signal ym (cf. (18))
is defined as logarithm of the excitation q(m|x) and therefore logarithm plays
the role of activation function of probabilistic neurons. In view of Eqs. (8), (16)
we can write

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

134 J. Grim and J. Hora

ym = Tm(x) = log q(m|x) =

= log wm +
∑

n∈N
φmn log

fn(xn|m)
fn(xn|0)

− log[
∑

j∈M
G(x|j, φj)f(j)]. (19)

Consequently, we may assume the first term on the right-hand side of Eq. (19)
to be responsible for the spontaneous activity of the m-th neuron. The second
term in Eq. (19) summarizes contributions of input variables xn (input neurons)
chosen by means of binary structural parameters φmn = 1. In this sense, the
term

gmn(xn) = log fn(xn|m) − log fn(xn|0) (20)

can be viewed as the current synaptic weight of the n-th neuron at input of
the m-th neuron - as a function of the input value xn. The effectiveness of the
synaptic transmission, as expressed by the formula (20), combines the statisti-
cal properties of the input variable xn with the activity of the “postsynaptic”
neuron “m”. In words, the synaptic weight (20) is high when the input signal
xn frequently takes part in excitation of the m-th neuron and, in turn, it is low
when the input signal xn usually doesn’t contribute to the excitation of the m-th
neuron. This formulation resembles the classical Hebb’s postulate of learning (cf.
[14], p.62):

“When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic changes take
place in one or both cells such that A’s efficiency as one of the cells firing B, is
increased.”

Note that the synaptic weight (20) is defined generally as a function of the
input variable and separates the weight gmn from the particular input values xn.
The last term in (19) includes the norming coefficient responsible for competitive
properties of neurons and therefore it can be interpreted as a cumulative effect
of special neural structures performing lateral inhibition. This term is identical
for all components of the underlying mixture and, for this reason, the Bayesian
decision-making would not be influenced by its accuracy.

Let us recall finally that the estimation of mixture parameters in Eq. (19) is
a long-term process reflecting the global statistical properties of training data.
Obviously, any modification of mixture parameters may strongly influence the
outputs of hidden layer neurons (19) and change the Bayes probabilities (16) with
the resulting unavoidable loss of decision-making optimality. Unfortunately the
“static” nature of the considered PNN strongly contradicts with the well known
short-term dynamic processes in biological neural networks related e.g. to short-
term synaptic plasticity or to complex transient states of neural assemblies.

In the next section we show that, in case of recurrent use of Bayes formula,
some parameters of PNN can be “released” for the sake of short-term processes
without destroying the statistically correct decision making. In particular, we
can adapt the component weights to a specific data vector on input or the input
pattern can be iteratively adapted in order to facilitate the correct recognition.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Recurrent Bayesian Reasoning in Probabilistic Neural Networks 135

4 Recurrent Bayesian Reasoning

Let us recall that the conditional distributions P (x|ω) in the form of mixtures
implicitly introduce an additional low-level “descriptive” decision problem [3]
with the mixture components F (x|m) corresponding to features, properties or
situations. Given a vector x ∈ X , the implicit presence of these “elementary”
properties can be characterized by the conditional probabilities q(m|x) related
to the a posteriori probabilities of classes by (16).

In Eq. (14) the component weights wm represent a priori knowledge of the
decision problem. Given a particular input vector x ∈ X , they could be replaced
by the more specific conditional weights q(m|x). In this way we obtain a recurrent
Bayes formula

q(t+1)(m|x) =
G(x|m, φm)q(t)(m|x)

∑
j∈M G(x|j, φj)q(t)(j|x)

, q(0)(m|x) = wm, m ∈ M. (21)

The recurrent computation of the conditional weights q(t)(m|x) resembles nat-
ural process of cognition as iteratively improving understanding of input infor-
mation. Formally it is related to the original convergence proof of EM algorithm
by Schlesinger [17]. Eq. (21) is a special case of the iterative inference mecha-
nism originally proposed in probabilistic expert systems [7]. In a simple form
restricted to two components the iterative weighting has been also considered in
pattern recognition [1].

It can be easily verified that the iterative procedure defined by (21) converges
[7]. In particular, considering a simple log-likelihood function corresponding to
a data vector x ∈ X

L(w, x) = log[
∑

m∈M
F (x|0)G(x|m, φm)wm] (22)

we can view the formula (21) as the EM iteration equations to maximize (22)
with respect to the component weights wm. If we set w

(t)
m = q(t)(m|x) then

the sequence of values L(w(t), x) is known to be nondecreasing and converging
to a unique limit L(w∗, x) since (22) is strictly concave as a function of w
(for details cf. [7]). Consequently, the limits of the conditional weights q∗(m|x)
are independent with respect to the initial values q(0)(m|x). Simultaneously we
remark that log-likelihood function L(w, x) achieves an obvious maximum by
setting the weight of the highest component function F (x|m0) to one, i.e. for
wm0 = 1. We illustrate both aspects of the recurrent Bayes formula (21) in
numerical experiments of Sec.5.

Let us note that, in a similar way, the log-likelihood criterion (22) can also be
maximized as a function of x by means of EM algorithm. If we denote

Q(t)
n = log

θ0n

1 − θ0n
+

∑

m∈M
φmnq(t)(m|x)log

θmn(1 − θ0n)
θ0n(1 − θmn)

(23)

then, in connection with (21), we can compute a sequence of data vectors x(t) :

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

136 J. Grim and J. Hora

x(t+1)
n =

{
1, Q

(t)
n ≥ 0,

0, Q
(t)
n < 0,

(24)

starting with an initial value x(0) and maximizing the criterion L(w, x). In
particular, the sequence L(w, x(t)) is nondecreasing and converges to a local
maximum of P (x). In other words, given an initial value of x, we obtain a
sequence of data vectors x(t) which are more probable than the initial data vector
and therefore they should be more easily classified. In numerical experiments we
have obtained slightly better recognition accuracy than with the exact Bayes
decision formula. By printing the iteratively modified input pattern we can see
that atypically written numerals quickly adapt to a standard form.

5 Numerical Example

In evaluation experiments we have applied the proposed PNN to the NIST Spe-
cial Database 19 (SD19) containing about 400000 handwritten digits. The SD19
numerals have been widely used for benchmarking of classification algorithms.
In our experiments we have normalized all digit patterns (about 40000 for each
numeral) to a 16x16 binary raster. Unfortunately there is no generally accepted
partition of SD19 into the training and testing data set. In order to guarantee
the same statistical properties of both data sets we have used the odd samples
of each class for training and the even samples for testing.

Table 1. Example: Recognition of numerals from the NIST SD19 database. Classifi-
cation error in % obtained by different methods and for differently complex mixtures.

Experiment No. 1 2 3 4 5 6 7 8

Number of Components 10 100 200 300 400 700 800 900

Number of Parameters 2005 16700 38340 41700 100100 105350 115880 133100

Exact Bayes Formula 16.55 6.87 5.02 4.80 3.84 3.77 3.61 3.50

Modified Weights 22.63 9.22 7.50 7.30 4.93 5.55 5.67 5.24

Iterated Weights 16.50 6.99 5.09 4.88 3.88 3.85 3.70 3.56

Adapted Input Vector 16.62 6.84 4.97 4.75 3.81 3.74 3.58 3.48

By using the training data we have estimated the class-conditional mixtures
of different complexity by means of EM algorithm of Sec. 2. In all experiments
the number of mixture components was chosen identically in all classes. The
corresponding total number of mixture components is given in the second row of
Tab.1. The EM algorithm has been stopped by relative increment threshold 10−5

implying several tens (10 ÷ 40) of EM iterations. Unlike Eq. (13) the structural
parameters φmn have been chosen by using the computationally more efficient
thresholding:

φ
′

mn =
{

1, γ
′

mn ≥ 0.1γ
′

0,

0, γ
′

mn < 0.1γ
′

0,
, γ

′

0 =
1

|Mω|N
∑

m∈Mω

∑

n∈N
γ

′

mn. (25)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Recurrent Bayesian Reasoning in Probabilistic Neural Networks 137

Here γ
′

0 is the mean value of the individual informativity of variables γ
′

mn. The
coefficient 0.1 is chosen relatively low because all variables are rather informative
and the training data set is large enough to get reliable estimates of all param-
eters. Hence, the threshold value 0.1γ

′

0 actually suppresses in each component
only the really superfluous variables. For each experiment the resulting total
number of component specific variables (

∑
m

∑
n φmn) is given in the third row

of Tab.1.
We have used four different versions of Bayes decision rule. The fourth row

correspond to the Bayes rule based on the estimated class-conditional mixtures.
The fifth row illustrates the influence of altered component weights. In particular,
approximately one half of weights (randomly chosen) has been almost suppressed
by setting wm = 10−8 with the remaining weights being equal to wm = 10
without any norming. Expectedly, the resulting classification accuracy is much
worse than the standard Bayes rule. The sixth row shows how the “spoiled”
weights can be repaired by using the iterative weighting (21). The achieved
accuracy illustrates that the classification based on iterated weights is actually
independent with respect to the initial weights. The last row illustrates the
performance of classification based on iteratively modified input vector. The
convergence of the iteration equations (21), (23) is achieved in three or four
steps. The classification accuracy of Bayes formula applied to the modified input
pattern is even slightly better that in the standard form.

6 Conclusion

Considering PNN in the framework of statistical pattern recognition we obtain
formal neurons strictly defined by means of parameters of the estimated class-
conditional mixtures. In this respect a serious disadvantage of PNN is the fixed
probabilistic description of the underlying decision problem which is not com-
patible with the well known short-term dynamic processes in biological neural
networks. We have shown that if we use the Bayes formula in a recurrent way
then some mixture parameters may take part in short term dynamic processes
without destroying the statistically correct decision making. In particular, the
mixture component weights can be iteratively adapted to a specific input pattern
or the input pattern can be iteratively modified in order to facilitate the correct
recognition.

Acknowledgement. This research was supported by the project GAČR No.
102/07/1594 of Czech Grant Agency, by the EC project FP6-507752 MUSCLE,
and partially by the projects 2C06019 ZIMOLEZ and MŠMT 1M0572 DAR.

References

1. Baram, Y.: Bayesian classification by iterated weighting. Neurocomputing 25, 73–
79 (1999)

2. Grim, J.: On numerical evaluation of maximum - likelihood estimates for finite
mixtures of distributions. Kybernetika 18, 173–190 (1982)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

138 J. Grim and J. Hora

3. Grim, J.: Maximum-likelihood design of layered neural networks. In: International
Conference on Pattern Recognition. Proceedings, pp. 85–89. IEEE Computer So-
ciety Press, Los Alamitos (1996)

4. Grim, J.: Design of multilayer neural networks by information preserving trans-
forms. In: Pessa, E., Penna, M.P., Montesanto, A. (eds.) Third European Congress
on Systems Science, pp. 977–982. Edizioni Kappa, Roma (1996)

5. Grim, J.: Information approach to structural optimization of probabilistic neural
networks. In: Ferrer, L., Caselles, A. (eds.) Fourth European Congress on Systems
Science, pp. 527–539. SESGE, Valencia (1999)

6. Grim, J.: A sequential modification of EM algorithm. In: Gaul, W., Locarek-Junge,
H. (eds.) Classification in the Information Age. Studies in Classif., Data Anal., and
Knowl. Organization, pp. 163–170. Springer, Berlin (1999)

7. Grim, J., Vejvalková, J.: An iterative inference mechanism for the probabilistic
expert system PES. International Journal of General Systems 27, 373–396 (1999)

8. Grim, J., Just, P., Pudil, P.: Strictly modular probabilistic neural networks for
pattern recognition. Neural Network World 13, 599–615 (2003)

9. Grim, J., Kittler, J., Pudil, P., Somol, P.: Combining multiple classifiers in proba-
bilistic neural networks. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857,
pp. 157–166. Springer, Heidelberg (2000)

10. Grim, J., Kittler, J., Pudil, P., Somol, P.: Multiple classifier fusion in probabilistic
neural networks. Pattern Analysis & Applications 5, 221–233 (2002)

11. Grim, J., Pudil, P., Somol, P.: Recognition of handwritten numerals by structural
probabilistic neural networks. In: Bothe, H., Rojas, R. (eds.) Proceedings of the
Second ICSC Symposium on Neural Computation, pp. 528–534. ICSC, Wetaskiwin
(2000)

12. Grim, J., Pudil, P., Somol, P.: Boosting in probabilistic neural networks. In: Kas-
turi, R., Laurendeau, D., Suen, C. (eds.) Proc. 16th International Conference on
Pattern Recognition, pp. 136–139. IEEE Comp. Soc, Los Alamitos (2002)

13. Haykin, S.: Neural Networks: a comprehensive foundation. Morgan Kaufman, San
Mateo, CA (1993)

14. Hebb, D.O.: The Organization of Behavior: A Neuropsychological Theory. Wiley,
New York (1949)

15. Hertz, J., Krogh, A., Palmer, R.G.: Introduction to the Theory of Neural Com-
putation. Addison-Wesley, New York, Menlo Park CA, Amsterdam (1991)

16. McLachlan, G.J., Peel, D.: Finite Mixture Models. John Wiley and Sons, New
York, Toronto (2000)

17. Schlesinger, M.I.: Relation between learning and self-learning in pattern recognition
(in Russian). Kibernetika (Kiev) 6, 81–88 (1968)

18. Specht, D.F.: Probabilistic neural networks for classification, mapping or associa-
tive memory. In: Proc. of the IEEE Intternational Conference on Neural Networks,
vol. I, pp. 525–532. IEEE Computer Society Press, Los Alamitos (1988)

19. Streit, L.R., Luginbuhl, T.E.: Maximum-likelihood training of probabilistic neural
networks. IEEE Trans. on Neural Networks 5, 764–783 (1994)

20. Vajda, I., Grim, J.: About the maximum information and maximum likelihood
principles in neural networks. Kybernetika 34, 485–494 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Resilient Approximation of Kernel Classifiers

Thorsten Suttorp and Christian Igel

Institut für Neuroinformatik
Ruhr-Universität Bochum, 44780 Bochum, Germany

{thorsten.suttorp, christian.igel}@neuroinformatik.rub.de

Abstract. Trained support vector machines (SVMs) have a slow run-
time classification speed if the classification problem is noisy and the
sample data set is large. Approximating the SVM by a more sparse func-
tion has been proposed to solve to this problem. In this study, differ-
ent variants of approximation algorithms are empirically compared. It
is shown that gradient descent using the improved Rprop algorithm in-
creases the robustness of the method compared to fixed-point iteration.
Three different heuristics for selecting the support vectors to be used in
the construction of the sparse approximation are proposed. It turns out
that none is superior to random selection. The effect of a finishing gra-
dient descent on all parameters of the sparse approximation is studied.

1 Introduction

Support vector machines (SVMs) show excellent classification performance across
a wide range of applications. Unfortunately, the good classification results often
come along with extremely slow execution times, which scale linearly with the
number of support vectors. As shown in [1], with probability tending to 1 with
increasing training sample size, the fraction of training patterns that become
support vectors is bounded from below by the Bayes optimal classification rate.
That is, for noisy data the run-time complexity of an SVM increases linearly
with the size of the training set. But in many real-world applications classifiers
have to meet strict real-time constraints. For this reason SVMs—although show-
ing superior classification performance—are frequently not considered. One way
to address this problem is to first train an SVM and then to approximate the
obtained solution by a more sparse kernel classifier [2, 3, 4, 5, 6]. The new solu-
tion is a weighted combination of a set of vectors mapped to the feature space
plus a bias parameter. The sparse classifier is build incrementally by adding a
(support) vector to the set of vectors, adjusting its position, and recomputing all
weighting coefficients. In this study, we empirically investigate variants of this
algorithm. First, we replace the fixed-point iteration suggested in previous work
for placing the new vectors by the improved Rprop algorithm [7], which is an
efficient and robust first order gradient method. Second, we propose different
heuristics for choosing the new vectors in the incremental procedure and inves-
tigate how these techniques influence the final solution. Third, we look at the
performance improvements achieved by a computationally expensive finishing

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 139–148, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

140 T. Suttorp and C. Igel

optimization of all parameters of the final sparse solution. In our experiments,
we monitor the correlation between the distance measure that serves as the opti-
mization criterion during approximation and the accuracy of the resulting sparse
solution on test data. Although a high correlation is assumed in the SVM ap-
proximation methods, to the best of our knowledge this has never been validated
systematically.

In the next section, we briefly review the basic principles for approximating
SVMs. In Sect. 3 different variants are proposed. The experiments for evaluating
these approximation algorithms are presented in Sect. 4. Finally, the results are
discussed.

2 Background

We first concisely describe soft margin SVMs and then the approximation tech-
nique proposed in [3, 4, 5, 6].

2.1 Support Vector Machines

We consider L1-norm soft margin SVMs for binary classification [8]. Let (xi, yi),
1 ≤ i ≤ �, be consistent training examples, where yi ∈ {−1, 1} is the label asso-
ciated with input pattern xi ∈ X . Support vector machines map input patterns
to a feature space F , in which the transformed data is linearly separated. The
transformation φ : X → F is implicitly done by a positive semi-definite ker-
nel function k : X × X → R computing a scalar product in the feature space
k(xi, xj) = 〈φ(xi), φ(xj)〉. Patterns are classified by the sign of a function f of
the form

f(x) = 〈w, φ(x)〉 + b =
�∑

i=1

αik(xi, x) + b . (1)

The coefficients αi ∈ R defining the weight vector w =
∑�

i=1 αiφ(xi) and b are
determined by solving the quadratic optimization problem

min
w,b

H [f] =
�∑

i=1

[1 − yif(xi)]+ +
1

2C
‖w‖2 , (2)

where [z]+ = 0 if z < 0 and [z]+ = z otherwise. The first part penalizes patterns
that are not classified correctly with a particular margin (i.e., distance from the
separating hyperplane in F). The second part regularizes the solution, in the
sense that minimizing the norm of the weight vector corresponds to minimizing
the norm of the function Ψ(x) = 〈w, φ(x)〉 in F . The regularization parameter
C ∈ R

+ controls the trade-off between the two objectives. The xi with αi �= 0 are
called support vectors (SVs), their number is denoted with #SV. For solving the
dual quadratic optimization problem we use a sequential minimal optimization
approach based on second order information as proposed in [9].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Resilient Approximation of Kernel Classifiers 141

2.2 Approximation of SVMs

For many practical applications the calculation of (1) obtained by SVM learning
is computationally too expensive. This problem is tackled in [3] by approximating
Ψ(·) =

∑�
i=1 αik(xi, ·) by a function Ψ ′(·) =

∑L
i=1 βik(zi, ·) with L 	 #SV and

βi ∈ R. The approximation technique proposed there is based on minimizing the
distance function

ρ2 := ‖Ψ − Ψ ′‖2
F . (3)

The reduced set {z1, . . . , zL} of approximating vectors (AVs) can be constructed
by iteratively adding single vectors to a given solution. The following algorithm
implements this idea. The different steps are discussed below.

Algorithm 1. Approximation of SVMs
initialize Ψ1 := Ψ1

for i = 1, . . . , L do2

determine zi by minimizing ρ2(zi) = ‖Ψi − βiφ(zi)‖2
F3

calculate optimal β1, . . . , βi4

Ψi+1 ← Ψ −
∑i

j=1 βjφ(zj)5

adjust z1, . . . , zL and β1, . . . , βL by global gradient descent6

determine optimal offset b′7

In [5] the authors note that instead of minimizing ρ2(z) it is possible to directly
minimize the distance between Ψ and its orthogonal projection onto span(φ(z)),

which is given by
∥
∥
∥

(Ψ ·φ(z))
φ(z)·φ(z)φ(z) − Ψ

∥
∥
∥

2

F
= ‖Ψ‖2

F − (Ψ ·φ(z))2

φ(z)·φ(z) , and it therefore

suffices to minimize − (Ψ ·φ(z))2

φ(z)·φ(z) . This expression reduces for kernels with k(z, z) =
1 for all z (e.g. Gaussian kernels) to

E(z) := −(Ψ · φ(z))2 = −
(

�∑

i=1

αik(xi, z)

)2

. (4)

Minimization of this distance measure can be realized using gradient methods
or fixed-point iteration [5,3,4]. For all of these techniques starting points for the
optimization have to be selected.

Fixed-Point Iteration. Determining a single approximation vector z can be
performed by means of fixed-point iteration as proposed in [4]. This method
is based on the observation that for an extremum of (Ψ · φ(z))2 the condition
∇z(Ψ · φ(z))2 = 0 has to be fulfilled, which implies

∑�
i=1 αi∇zk(xi, z) = 0. For

kernels with k(xi, z) = k(‖xi − z‖2), such as Gaussian kernels, this reduces to
∑�

i=1 αik
′(‖xi − z‖2)(xi − z) = 0, which is equivalent to

z =
∑�

i=1 αik
′(‖xi − z‖2)xi

∑�
i=1 αik′(‖xi − z‖2)

. (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

142 T. Suttorp and C. Igel

Based on this equation, the vector z is computed iteratively. For Gaussian kernels
k(xi, z) = exp(−γ‖xi − z‖2) with γ ∈ R

+ the iteration step t + 1 reads

z(t+1) =
∑�

i=1 αi exp(−γ‖xi − z(t)‖2)xi
∑�

i=1 αi exp(−γ‖xi − z(t)‖2)
. (6)

Determining Optimal Coefficients. In each iteration of the approxima-
tion algorithm the coefficients βi have to be determined anew. The optimal
coefficients β = (β1, . . . , βL) for approximating Ψ =

∑�
i=1 αik(xi, ·) by Ψ ′ =

∑L
i=1 βik(zi, ·) for linear independent φ(z1), . . . , φ(zL) can be computed as β =

(Kz)−1Kzxα, where Kz
ij := (φ(zi) · φ(zj)) and Kzx

ij := (φ(zi) · φ(xj)), see [4].

Global Gradient Descent. For further minimizing the distance function ρ2

gradient descent can be applied to all parameters of the sparse solution [5]. The
derivative of ρ2 with respect to a component of an AV is given by

∂ρ2

∂(zi)k
= 4γ

⎡

⎣
L∑

j=1

βjβiK
zz
ij ((zj)k − (zi)k) −

�∑

j=1

αjβiK
zx
ij ((xj)k − (zi)k)

⎤

⎦ (7)

and the derivative with respect to a coefficient βi by

∂ρ2

∂βi
= 2

L∑

j=1

βlK
zz
ij − 2

�∑

j=1

αjK
zx
ij . (8)

Determining Optimal Offset. The offset b used in the original SVM f(x) =
Ψ(x) + b is not necessarily optimal for the approximation f ′(x) = Ψ ′(x) + b′.
We consider the differences of f(x) and Ψ ′(x): b′(x) =

∑�
i=1 αik(xi, x) + b −

∑L
i=1 βik(zi, x) for all SVs of the original SVM and compute their mean

b′ =
1

#SV

∑

x∈{xi|1≤i≤�∧αi �=0}
b′(x) . (9)

3 Resilient Approximation of SVMs

In order to increase the performance of the SVM approximation algorithm, we
consider new heuristics for choosing the starting points for determining the vec-
tors in the reduced set. Further, we replace the fixed-point iteration by a more
robust gradient descent technique.

3.1 Techniques for Choosing Initial Vectors

Constructing a reduced set of AVs relies on the successive addition of single
vectors. The choice of initial vectors for gradient descent or fixed-point iteration

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Resilient Approximation of Kernel Classifiers 143

is crucial for the quality of the final solution. Here, three different techniques for
choosing initial vectors from the set of SVs of the original SVM are proposed.
The techniques random selection and kernel-clustering ensure that the fraction
of positive and negative SVs of the original SVM (i.e., xi with yi = 1 and
yi = −1, respectively) equals the fraction of positive and negative SVs chosen
for the incremental update of the approximation. Let npos denote the number of
positive SVs and nneg the number of negative SVs of the original SVM. Then,
the number of initial vectors to be chosen from the positive SVs is given by
Lpos := max{1, � npos

#SV · L} and the number from the negative ones by Lneg :=
L − Lpos.

Random Selection. The starting points are selected uniformly at random from
the original SVs. No particular assumptions about the order of drawing are
made.

α-proportional Selection. The α-proportional selection has its origin in stochas-
tic universal sampling, which is known from evolutionary algorithms [10]. A
weighted roulette wheel containing all original SVs is simulated. The slots are
sized according to the corresponding |αi|, and L equally spaced markers are
placed along the outside of the wheel. The wheel is spun once and the slots that
are hit by the markers define the L initial vectors. This heuristic is based on the
idea that vectors with big |αi| are more important than those with small ones.

Kernel-Clustering. Approximated SVMs realize qualitatively different solutions
compared to their original SVMs (see below). The AVs tend to lie rather in
the center of the training examples than on the boundaries. This inspires us
to choose initial vectors for incrementally updating the approximation by the
means of clustering.

The well-known K-means-algorithm generates K initial centers at the begin-
ning and then iterates the following procedure until convergence: All vectors are
assigned to their closest center, and the new center of each cluster is set to the
mean of the vectors assigned to it. In this process it can happen that one clus-
ter remains empty during the iterations. There are some techniques for dealing
with this situation. We choose the vector that has the greatest distance from its
cluster center to start a new cluster.

The K-means-algorithm can be transferred from clustering data in input space
to clustering data in kernel-induced feature space [11]. The kernel function de-
termines the distance of the vectors to the cluster centers. The preimage of
the centers cannot be calculated in general. Therefore, the algorithm finally
provides pseudo centers, which are given by the input vectors that are closest
to the real centers in the feature space. For approximating an SVM, positive
and negative SVs are clustered independently into the predetermined number of
clusters (Lpos and Lneg). In [12] the efficient clustering of a large sample set is
considered.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

144 T. Suttorp and C. Igel

3.2 Resilient Minimization of the Distance Function

Although fixed-point iteration has been favored, the optimization of E(z) can
also be done using a general gradient descent algorithm [2]. The partial deriva-
tives of E(z) are given by

∂E(z)
∂zk

= −2
�∑

i=1

αik(xi, z) ·
�∑

i=1

αi
∂k(xi, z)

∂zk
. (10)

We employ the efficient Rprop (resilient backpropagation) algorithm for
gradient-based optimization [13, 7]. It considers only the signs of the partial
derivatives of the error function E to be optimized and not their amount. In
each iteration t of Rprop, each objective parameter z

(t)
k is increased or decreased

depending on whether the sign of the partial derivative ∂E(z(t))/∂z
(t)
k of the

objective function with respect to the parameter is positive or negative. The
amount of the update is equal to the adaptive individual step size Δ

(t)
k , that is,

we have
z
(t+1)
k = z

(t)
k − sign

(
∂E(z(t))/∂z

(t)
k

)
· Δ(t)

k . (11)

Prior to this update, the step size is adjusted based on changes of sign of the
partial derivative in consecutive iterations. If the partial derivative changes its
sign, indicating that a local minimum has been overstepped, then the step size
is multiplicatively decreased; otherwise, it is increased: if ∂E(z(t−1))/∂z

(t−1)
k ·

∂E(z(t))/∂z
(t)
k is positive then Δ

(t)
k = η+Δ

(t−1)
k , if the expression is negative then

Δ
(t)
k = η−Δ

(t−1)
k , where η+ > 1 and η− ∈]0, 1[. The iRprop+ algorithm used in

this study implements weight backtracking. It partially retracts “unfavorable”
previous steps. Whether a parameter change was “unfavorable” is decided based
on the evolution of the partial derivatives and the overall error [7]. The standard
parameters η+ = 1.2 and η− = 0.5 reliably give good results and the initial
step sizes Δk can be chosen small, so that no parameter-tuning is required when
applying resilient backpropagation.

4 Experiments

Experimental Setup. We applied the algorithms to the banana data set
[14], which is ideal for visualizing the sparse SVM solutions. Optimal param-
eters (C, γ) for SVM learning were determined by grid search and 5-fold cross-
validation on the training data. Second, we used the spam-database data set
available from UCI repository [15] having 1,813 positive examples (spam) and
2,788 negative ones. We transformed every feature to zero mean and unit vari-
ance. Third, we considered the MNIST handwritten digit database [16], which
was split into two classes containing the digits {0,1,2,3,4} and {5,6,7,8,9}, respec-
tively. Forth, we used the connect-4 opening database containing 67,557 game
states [15]. For binary classification the “draw” examples were removed result-
ing in 61,108 data points. The data were split roughly into two halves making

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Resilient Approximation of Kernel Classifiers 145

up training and test data. Parameters (C, γ) for the problems spam-database,
MNIST and connect-4 were taken from [9].

For each benchmark problem, an SVM was trained and then a predefined
number of approximation trials was conducted for different numbers of AVs. All
three techniques for selecting initial vectors in combination with iRprop+ and
fixed-point iteration were considered. A final gradient descent was performed for
the two “small” problems banana and spam-database.

Results. We compared different SVM approximation techniques, which differ
in the method used for minimizing the distance function and the method for
choosing the initial vectors. Surprisingly, all techniques for selecting initial vec-
tors in combination with iRprop+ showed almost the same behavior. Because
no significant difference could be observed we confine ourselves to discussing the
results with random selection only. Fixed-point iteration performed badly on
spam-database, MNIST, and connect-4 in that way that the algorithm was not
able to reach the target number of approximation vectors without getting stuck.
The repeated choice of different initial vectors did not help.

The 2-dimensional banana data set provided insight into the characteristics of
the resulting SVM approximation. Compared to the original SVM qualitatively
different solutions (see Fig. 1) were realized. The vectors of the sparse solution
lay rather in the center of the training examples than on the boundaries.

Fig. 1. Approximation of an SVM on the banana data set. The shading codes for the
answer of the classifier. The colors white and black correspond to positive and negative
examples, respectively. The big points mark the SVs and AVs, respectively. Left image:
all training data and the 160 support vectors of the original SVM. Right image: typical
approximated SVM with 25 AVs.

The results of the SVM approximation are depicted in Figs. 2-5. In the left
and middle pictures the number of AVs is plotted against ρ2 and the accuracy
on the test data, respectively. In addition to the median selected quantiles are
given. The fraction of the number of AVs to the number of SVs of the original
SVM is reported in brackets. The horizontal line in the middle plots gives the
accuracy of the original SVM on the test data. The plots on the right show ρ2

against the accuracy on the training data. The clusters that can be recognized
correspond to solutions with the same number of AVs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

146 T. Suttorp and C. Igel

On the banana data set sparse solutions with 20 AVs (e.g., 1/8 of the original
amount of SVs) were obtained that performed better on the test data than the
original SVM. On spam-database, MNIST and connect-4 data the performance of
the original SVM was not fully achieved, but only a small fraction of the number
of original SVs led to competitive results (Figs. 3-5).

The final gradient descent on all parameters, which was only tested on banana
and spam-database, improved the quality of the approximation. Further, the gra-
dient descent decreased the variance of the solutions in both objectives, distance
and accuracy on the test data. As expected, the distance measure ρ2 was clearly
correlated to the accuracy of the approximated SVM on the test data.

0 (0) 10 (6.3) 20 (12.5) 30 (18.8) 40 (25) 50 (31.3)
0

5

10

15

20

25

30

35

40

45

50

#AV

ρ
2

with gradient descent
w/o gradient descent

0 (0) 10 (6.3) 20 (12.5) 30 (18.8) 40 (25) 50 (31.3)
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

#AV

a
cc

u
ra

cy

with gradient descent
w/o gradient descent

0 10 20 30 40 50
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

a
cc

u
ra

cy
ρ2

Fig. 2. Approximation results on banana (100 trials); median, 10% and 90% quantiles
are given. The fraction of AVs to SVs is reported in brackets.

0 (0) 10 (1.5) 20 (2.9) 30 (4.4) 40 (5.9) 50 (7.4)
0

1000

2000

3000

4000

5000

6000

#AV

ρ
2

with gradient descent
w/o gradient descent

0 (0) 10 (1.5) 20 (2.9) 30 (4.4) 40 (5.9) 50 (7.4)
0.88

0.89

0.9

0.91

0.92

0.93

0.94

#AV

a
cc

u
ra

cy

with gradient descent
w/o gradient descent

0 1000 2000 3000 4000 5000 6000
0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

a
cc

u
ra

cy

ρ2

Fig. 3. Approximation results on spam-database (25 trials); median, 10% and 90%
quantiles are given

0 (0) 20 (0.3) 40 (0.6) 60 (0.9) 80 (1.2) 100 (1.5)
6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

11

#AV

ρ
2
/
1
0
4

0 (0) 20 (0.3) 40 (0.6) 60 (0.9) 80 (1.2) 100 (1.5)
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

#AV

a
cc

u
ra

cy

6 7 8 9 10 11

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

a
cc

u
ra

cy

ρ2/104

Fig. 4. Approximation results on MNIST (10 trials); median, 20% and 80% quantiles
are given

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Resilient Approximation of Kernel Classifiers 147

25 (0.3) 50 (0.6) 75 (0.9) 100 (1.2) 125 (1.5)
1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

#AV

ρ
2
/
1
0
4

25 (0.3) 50 (0.6) 75 (0.9) 100 (1.2) 125 (1.5)
0.74

0.76

0.78

0.8

0.82

0.84

0.86

#AV

a
cc

u
ra

cy

1.2 1.3 1.4 1.5 1.6 1.7 1.8
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

a
cc

u
ra

cy

ρ2/104

Fig. 5. Approximation results on connect-4 (10 trials); median, 20% and 80% quantiles
are given

5 Discussion

The approximation of kernel classifiers allows for the use of SVM training to
build classifiers for real-world applications requiring fast decisions. The perfor-
mance of the sparse solution may stay behind the original classifier, but the
computational complexity is drastically reduced. We found that the SVM ap-
proximation provides qualitative different solutions compared to the original
SVM. The sparse classifiers are not built on vectors at the decision boundary.
The SVM strategy to consider the training patterns at the boundary fails to
produce sparse classifiers if the problem is noisy. The newly proposed variant
that utilizes the improved Rprop algorithm extends the applicability of SVM
approximation compared to fixed-point iteration. The latter technique totally
failed on some benchmark problems.

We considered different techniques for choosing initial vectors for the itera-
tions. It turned out that the choice of the selection method for initial vectors did
not affect the quality of the final solution. We further analyzed the correlation of
the distance function and the classification rates on the test data sets. These two
variables were correlated justifying the distance function used for minimization.
In accordance to the results in [5], in our experiments a final optimization of
all parameters of the sparse models increased the performance. Additionally, we
found that the variance of the results produced by the approximation algorithms
is reduced.

Thus, we recommend the improved Rprop algorithm for resilient minimization
of the distance function in combination with random selection of initial vectors.
This algorithm combines simplicity and reliability on all problems considered in
this paper. Wherever applicable, a finishing gradient descent on the final solution
is recommended to improve the results of the final classifier.

Acknowledgment

Part of the work was funded by L-1 Identity Solutions AG, Bochum, the Euro-
pean Commission, and the State of Northrhine-Westfalia (Germany) as part of
the project “Zukunftswettbewerb Ruhrgebiet” (contract no. 0403z010).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

148 T. Suttorp and C. Igel

References

1. Steinwart, I.: Sparseness of support vector machines. Journal of Machine Learning
Research 4, 1071–1105 (2003)

2. Burges, C.J.C.: Simplified support vector decision rules. In: ICML 1996. Proceed-
ings of the 13th International Conference on Machine Learning, pp. 71–77 (1996)

3. Burges, C.J.C., Schölkopf, B.: Improving the accuracy and speed of support vec-
tor machines. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Advances in Neural
Information Processing Systems, Cambridge, MA, vol. 9, pp. 375–381 (1997)

4. Schölkopf, B., Knirsch, P., Smola, A.J., Burges, C.J.C.: Fast approximation of
support vector kernel expansions, and an interpretation of clustering as approx-
imation in feature space. In: Levi, P., Ahlers, R.J., May, F., Schanz, M. (eds.)
DAGM-Symposium, pp. 124–132. Springer, Heidelberg (1998)

5. Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G.,
Smola, A.J.: Input space versus feature space in kernel-based methods. IEEE Trans-
actions on Neural Networks 10(5), 1000–1017 (1999)

6. Romdhani, S., Torr, P., Schölkopf, B., Blake, A.: Efficient face detection by a
cascaded support-vector machine expansion. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 460, 3283–3297 (2004)

7. Igel, C., Hüsken, M.: Empirical evaluation of the improved Rprop learning algo-
rithm. Neurocomputing 50(C), 105–123 (2003)

8. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20(3), 273–297
(1995)

9. Glasmachers, T., Igel, C.: Maximum-gain working set selection for support vector
machines. Journal of Machine Learning Research 7, 1437–1466 (2006)

10. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Grefen-
stette, J.J. (ed.) Proceedings of the Second International Conference on Genetic
Algorithms, pp. 14–21 (1987)

11. Girolami, M.: Mercer kernel-based clustering in feature space. IEEE Transactions
on Neural Networks 13(3), 780–784 (2002)

12. Zhang, R., Rudnicky, A.I.: A large scale clustering scheme for kernel k-means. In:
Proceedings of the International Conference on Pattern Recognition, pp. 289–292
(2002)

13. Riedmiller, M.: Advanced supervised learning in multi-layer perceptrons – From
backpropagation to adaptive learning algorithms. Computer Standards and Inter-
faces 16(5), 265–278 (1994)

14. Rätsch, G., Onoda, T., Müller, K.–R.: Soft margins for AdaBoost. Machine Learn-
ing 42(3), 287–320 (2001)

15. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine
learning databases (1998)

16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental Learning of Spatio-temporal

Patterns with Model Selection

Koichiro Yamauchi and Masayoshi Sato

Graduate School of Information Science and Technology, Hokkaido University,
Kita-ku, Kita, 14 Jyou Nishi 9 Chyou, Hokkaido Japan

Abstract. This paper proposes a biologically inspired incremental learn-
ing method for spatio-temporal patterns based on our recently reported
“Incremental learning through sleep (ILS)” method. This method alter-
nately repeats two learning phases: awake and sleep. During the awake
phase, the system learns new spatio-temporal patterns by rote, whereas
in the sleep phase, it rehearses the recorded new memories interleaved
with old memories. The rehearsal process is essential for reconstruct-
ing the internal representation of the neural network so as not only to
memorize the new patterns while keeping old memories but also to re-
duce redundant hidden units. By using this strategy, the neural network
achieves high generalization ability.

The most attractive property of the method is the incremental learn-
ing ability of non-independent distributed samples without catastrophic
forgetting despite using a small amount of resources. We applied our
method to an experiment on robot control signals, which vary depend-
ing on the context of the current situation.

Keywords: incremental learning, spatio-temporal patterns, model se-
lection, RBF

1 Introduction

Generally, a compact learning machine, which has no redundant parameters, con-
fers a high level of generalization [1] [2]. Moreover, a compact learning machine
also saves resources.

However, because the appropriate number of parameters is initially unknown,
it has to be found through trial and error learning using whole samples. This
trial and error learning task is usually called “model selection.”

To deal with spatio-temporal patterns practically, learning machines need
incremental learning in which they learn the temporal patterns in an on-line
manner. In this learning scheme, the machines are asked to memorize new in-
stances immediately after their presentation without forgetting old memories.
Moreover, the spatio-tempral patterns, such as sensory inputs, presented in an
on-line manner are never independently and identically distributed instances
(iid), which is an essential condition to approximate off-line learning effects in
an on-line manner. In such environments, learning with “model-selection” to get
the simplest data model is even harder.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 149–158, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

150 K. Yamauchi and M. Sato

We have reported a hybrid learning system, called Incremental Learning
through Sleep1 (ILS1), that is capable of both incremental learning and model
selection [3]. ILS1 employees a normal radial basis function network (RBF)[4] as
the core learning machine. The RBF allows nested internal representations using
several radial functions, so that the number of parameters is usually less than
in other learning architectures such as the generalized regression neural network
(GRNN) [5] [6], receptive field weighted regression (RFWR) [7] and normalized
gaussian networks (NGNet)[8]. Instead, ILS1 needs a rehearsal period, where the
RBF learns samples while pruning redundant hidden units.

ILS1 is, however, for learning static patterns, not spatio-temporal patterns.
In this paper, we extend ILS1 to the learning of spatio-temporal patterns and
show an example of such incremental learning.

Section 2 outlines extended ILS1 for learning of spatio-temporal patterns,
and Sections 3 and 4 explain the two phases in the learning procedure. Section
5 shows comparison our system with other systems and an example of system
behavior to an incremental learning task of spatio-temporal patterns.

2 Outline

The system consists of ILS1 with recurrent connections (see 1). ILS1 is designed
to build a compact data model through incremental learning. Note that the local
internal representation of RBF is suitable for the incremental learning[9]. More-
over, RBF enables a nested internal representation using several radial functions
so that it is also suitable for building a compact data model. Although other
models such as GRNN[5], EFuNN[10] and RFWR[7] are also suitable for incre-
mental learning, their internal representation makes it hard to build a nested
one so that the amount of resources they require is usually larger than that of
RBF.

Actually, the model selection of RBF is a time-consuming trial and error
process. To avoid this inconvenience, the system has two learning phases: awake
and sleep. During the awake phase, the system quickly learns new instances by
rote, while it achieves model-selection to get a compact RBF during the sleep
phase. We believe that the sleep phase can be made to coincide with the out-of-
service period so this time-consuming process should not cause inconvenience to
the user.

To perform the above tasks, the system consists of three networks: a main
network (M-Net), a fast-learning network (F-Net), and a slow-learning network
(S-Net) (Fig. 1). The M-Net and S-Net consist of radial basis function network.
The M-Net is a fixed network that keeps the network structure acquired during
the latest sleep phase. The M-Net is also used to get precise output values for the
recognition during the preceding awake phase and for getting pseudo instances
for the next sleep phase.

Spatio-temporal patterns are presented to the system during the awake phase,
whereas its outputs are feed back as part of the inputs of the network through a
“context-layer,” which consists of delay lines with taps. Therefore, past system

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental Learning of Spatio-temporal Patterns with Model Selection 151

Errors

Replace
Active cell’s
parameters
with S-Net’s

parameters

Awake phase

(Rehearsal)

F-Net(MGRNN)M-Net(RBF)

M-Net F-Net
S-Net

(MRAN)

S-Net M-Net F-Net pseudo inputs

pseudo outputs

gating

wM

wF

wM

wF

Sleep phasePost Sleep phase

remove F-Net
hidden units

z−1 z−1

Context layer

supervised signal

Active
Cell

time

Dimension

x(t)

D(t)

Fig. 1. Structure and behavior of system: The system achieves incremental learning of
spatio-temporal pattenrs

outputs are converted into spatial patterns representing the current context,
which are to be a part of inputs for the F- and M-Nets.

If the M-Net error for the current input exceeds a threshold, the F-Net learns
the current input-output pair. The F-Net consists of an MGRNN [6]. This pro-
cedure achieves one-pass learning of new inputs like that of nearest neighbors
and smoothly interpolates the outputs between instances.

The system output is the weighted sum of the F- and M-Net outputs. The
weight is determined according to the outputs of the F-Net’s hidden units. If the
outputs are large, the F-Net’s weight is large while M-Net’s weight is small. As
a result, the system output becomes close to the desired one immediately after
encountering the novel instance.

During the sleep phase, the S-Net should learn the instances stored in the
F- and M-Net with reduction its number of hidden units. To achieve this, the
S-Net learns the pseudo instances generated by the F- and M-Nets in online
manner. The desired output for the S-Net is the weighted sum of the M- and
F-Net outputs. The S-Net learns the pseudo instances so as to minimize not
only its error but also its parameters. Reducing the parameters in this way
should improve the S-Net’s generalization ability. The S-Net’s learning method
is a modified version of MRAN [11], which uses a growing strategy that prunes
redundant cells, as will be described later. The modified MRAN performs sta-
ble learning, even if the distribution of inputs is unstable. The S-Net continues

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

152 K. Yamauchi and M. Sato

learning until its outputs are sufficiently close to those of the pseudo outputs.
Note that the pseudo instances are generated as i.i.d samples.

After the S-Net learning(post sleep phase in Fig 1), the M-Net’s parameters
are basically replaced by the S-Net’s parameters. As a result, the M-Net becomes
a more suitable network for the recognition. After that, all hidden F- and S-Net
units are removed.

The F-Net then begins to learn new instances again. In the following, f∗
M [X(t),

θM], f∗
f [X(t), θf] and f∗

s[X(t), θs] denote the respective output vectors of the
M-Net, F-Net and S-Net. Here, θ∗ and X(t) denote the parameter vector of the
networks and the input vector assigned to the network at time t, respectively.
X(t) consists of the current input vector x(t) and past output vectors xd(t).
Therefore, X(t) = (xT (t), xT

d (t))T and xd(t) = (f∗[x(t − τ)]T , f∗[x(t − τ −
1)]T , · · · , f∗[x(t−1)]T)T , where f∗[x(t)] denotes the output vector of the system
explained in section 3.

The M-Net and S-Net outputs are the same as that of RBF. For example, the
i-th output of the M-Net is

f∗
Mi[X(t), θM] =

∑

Mα

cM
iαφMα [X(t)], φMα [X(t)] ≡ exp

(

−‖X(t) − uMα‖2

2σ2
Mα

)

.

(1)
Here, cM

iα is the connection strength between the Mα-th hidden unit and the
i-th output cell and φMα [x] denotes the output value from the Mα-th hidden
unit, tMα and σMα are the reference vector and kernel width.

On the other hand, the F-Net output is the MGRNN output:

f∗
Fi[X(t), θF] =

∑
Fα cF

iαφFα [X(t)]/σFα∑
Fj

φFj [X(t)]/σFj

(2)

where φFj (x) is the output of each hidden unit, which has the same form as
Eq(1).

3 Awake Phase

During the awake phase, the system recognizes familiar inputs by calculating
the sum of the outputs from the F-Net and M-Net while the F-Net learns novel
instances quickly. Let f∗[x(t)] and D[x(t)] be the final output vector of the
system and the desired output vector to x(t), respectively, where f∗[x(t)] is the
weighted sum of the F-Net and M-Net outputs:

f∗[x(t)] = wF [X(t)]f∗
F [X(t), θF] + wM [X(t)]f∗

M [X(t), θM] (3)

The weight wF [x] and wM [x] are the weights for the F- and M-Net outputs and
they vary depending on the activity of hidden F-Net units. Therefore,

wF [X] =
1

1 + exp(−A{
∑

Fj
φFj [X] − θd})

, wM [X] = 1 − wF [X] (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental Learning of Spatio-temporal Patterns with Model Selection 153

where A denotes a gain that determines the smoothness of the weighting func-
tion and θd is the threshold for determining the trusted input region for the
F-Net’s output. We set A and θd to 100 and 0.95, which are determined through
numerical tests.

The F-Net learns current new data (X(t), D(t)) by adding new N + 1-th
hidden unit if ‖D(t) − f∗[X(t)]‖ > εE , where εE is a threshold. The initial
parameters of the new hidden unit are

cF
iN+1 = Di(t), uFN+1 = X(t),

σFN+1 = λF min
{

min
α�=N+1

‖X(t) − uFα‖, min
β

‖X(t) − uMβ
‖
}

, (5)

where λF denotes overlap ratio for the F-Net. Note that the overlap ratio is for
determining the kernel width: σF

N+1. A larger λF makes σF
N+1 wider. According

to the MGRNN heuristic, λF is set to 0.5. The kernel width of the old F-Net
unit, which is the nearest to the new allocated hidden unit, needs to be the same
width as that of the new kernel. Therefore, if the Fj-th F-Net unit is the nearest
unit, σFj := σFN+1 else if the nearest unit is a M-Net unit, we do not touch the
M-Net kernel width to keep its memory.

The above equation is repeated whenever a novel instance appears.

4 Sleep Phase

The learning during the sleep phase aims to modify the M-Net’s parameters
using the S-Net so as to fit the new instances stored in the F-Net.

Actually, however, the M-Net itself plays the role of the buffer and the S-
Net learns the pseudo instances instead of the M-Net. This is for avoiding the
lost of old memory in the M-Net due to the learning. Therefore, the F-Net
and M-Net generate pseudo instance (X̂, D∗(X̂)) , where D∗(X̂) denotes the
pseudo desired output vector. Then the S-Net learn the pseudo instances in
online learning manner. This is for achieving buffer less learning. Therefore, if
the S-Net learning is offline learning, the system needs a buffer to store all the
pseudo instances. This is not suitable for our system in terms of saving storage
space. So, S-Net learns the pseudo instances in online learning manner.

Prior to the S-Net learning, this system copies all or some of the M-Net’s
parameters to the S-Net as the initial parameters. To avoid wasting compu-
tational power, the M-Net copies the parameters cM

j , uM
j , σM

j associated with
only the hidden units which are activated during the adjacent awake phase to
the S-Net. During the awake phase, each hidden unit in the M-Net checks its
“activated-flag” when the unit is activated. If φMα(X) exceeds the threshold εo,
then ActivatedF lagi = true. If ActivatedF lagi = true, then the i-th M-Net hid-
den unit is regarded as “active unit.” Below, we call the hidden unit an ’active
unit.’

Note that the active units in the M-Net represent the memory that will be
interfered with by the learning of the new instances in the F-Net. Therefore, the
system realizes effective learning using the pseudo instances generated from the
active units.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

154 K. Yamauchi and M. Sato

4.1 Pseudo Patterns

During the sleep phase, S-Net learns pseudo patterns. Note that the system
does not need to reconstruct the spatio-temporal patterns presented in previous
awake phases as the pseudo patterns. Instead, the system recalls (X̂, D∗(X̂))
as follows.

At first, the system randomly chooses one hidden unit from all the hidden
units of the F-Net and active units in the M-Net every time one pseudo input is
generated. Using this strategy, the system generates independent and identically
distributed (iid) pseudo inputs for the S-Net online learning. As a result, the S-
Net learning approximates offline learning which prevent catastrophic forgetting.

The pseudo input vector X̂ generation algorithm is varied depending on which
network, F- or M-Net the hidden unit belongs to:

X̂ =
{

uFj if F-Net’s hidden unit
uMj + l σM maxj κ if M-Net’s active unit (6)

where κ is a random vector with unit length, and l is a random value in the
interval [0,1]. Here, σM max j denotes maximum Euclid distance between the
j-th hidden unit center and instances. If the j-th M-Net hidden unit center
is the closest to the center of the k-th F-Net’s hidden unit and σM max j <
‖uMj −uFk‖, then σM max j is updated to be the current distance: σM max j :=
‖uMj −uFk‖. This parameter setting is achieved just before a removing process
for all F-Net hidden units at the end of sleep phase.

The output vector D∗(X̂) is basically the weighted sum of the F- and M-
Net outputs without non-active hidden units. Precisely, D∗(X̂) should be the
outputs minus the M-Net output without active hidden units:

D∗(X̂) ≡ wF [X̂]f∗
F [X̂]+wM [X̂]f∗

M [X̂, θMactive]−f∗
M [X̂, θMnon−active]. (7)

where θMactive and θMnon−active are the parameters of the M-Net associated with
the active and non-active hidden units, respectively. This is because, the param-
eters of the active M-Net’s hidden units are to be replaced by the parameters of
the S-Net (see 4.3), so the S-Net output must fit to the subtracted value.

4.2 S-Net Learning (Sleep Phase)

The S-Net learns the pseudo instances (X̂ , D∗(X̂)). Actually, we can employ
various learning methods for the S-Net. The conditions for the S-Net learning
method are

– It is an online learning method, and
– The method reduces redundant parameters by a pruning or merging strategy.

The first condition is needed for bufferless learning; and the second is the essential
condition for our system.

In this paper, we use a modified version of the MRAN learning algorithm [11],
which is an online learning with a pruning strategy. In the pruning strategy, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental Learning of Spatio-temporal Patterns with Model Selection 155

S-Net prunes any hidden units whose contribution ratio is smaller than a thresh-
old. The contribution ratio of the Sj-th hidden unit is the relative magnitude of
outputs, as per the equation below.

rj(X̂) = ‖cjφSj (X̂)‖/ max
i

‖ciφSi(X̂)‖, (8)

where cj is the connection strength vector between the Sj-th hidden unit and
the output units. Note that this equation estimates the contribution ratio for
only one input vector X̂. To estimate the contribution ratio for all input space
roughly, the Minimum RAN algorithm estimates Eq.(8) using several different
input vectors. Therefore, if rj(X̂) is less than a threshold for M consecutive
pseudo input X̂, the hidden unit is pruned. This estimation method is the same
as that of the original MRAN [11].

The summarized pruning algorithm is given in Fig 2. In the box, δ denotes
a performance-threshold and this is also determined through preliminary exper-
iments to minimize Akaike’s Information Criterion (AIC) [12], which evaluates
the statistical suitability of linear models for a dataset. According to AIC, the
model of minimal number of parameters which are essential for the learning of
the dataset is good. Although the AIC is for evaluating linear models, we can
use it for rough evaluation of the parameter δ.

for each pseudo instance (X̂ , D∗(X̂))
for each Sj-th hidden unit
if ‖X̂ − uSα‖ < σSα then

Calculate the contributing ratio rSj (X̂) with Eq. 8
if rSj (X̂) < δ for M consecutive X̂ then

prune the Sj-th hidden unit;

Fig. 2. Pruning algorithm

In the experiment, we set δ = 0.4, to which the averaged ILS1 performance is
almost the best over several datasets.

The S-Net’s learning method is that of M-RAN proposed by Yingwei et al.
[11] with the modified pruning algorithm, but the extended Kalman filter (EKF)
used in the original M-RAN is replaced by the standard gradient descent method.

The leaning process is repeated Noptimize times, where Noptimize is set No

times the number of hidden F-Net units and M-Net’s active units. In the exper-
iment described later, No was set to 200.

4.3 Post Sleep Phase

After learning with the S-Net, the system removes both active M-Net hidden
units and all F-Net hidden units and their associated parameters, after which
all parameters of the S-Net are moved to the M-Net. Then, the system restarts
the awake phase.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

156 K. Yamauchi and M. Sato

5 Experiments

5.1 Comparison ILS1 with Other Systems Using Static Patterns

First, we compared the original ILS1, which has no recurrent connection, with
other incremental learning systems, GRNN-editing, RFWR[7], EFuNN[10] and
AOSVR[13] on the servo dataset in the UCI machine learning repository 1. Note
that GRNN-editing corresponds to a variation of nearset-neighbor editing for
regression.

ILS1 learned 20 instances in each awake phase, and its performance was evalu-
ated with the mean error immediately after both awake- and sleep- phases. GRNN-
editing and EFuNN learned instances in the same manner, whereas AOSVR and
RFWR learned them one by one.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 20 40 60 80 100 120 140 160 180

immediate after awake phase

immediate after sleep phase

RFWR GRNN-editing

AOSVR

Number of observations

M
ea

n
S

qu
ar

e
E

rr
or

EFuNN

ILS1

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100 120 140 160 180

Number of observations

N
um

be
r

of
 h

id
de

n
un

its

RFWR
ILS1

AOSVR
GRNN-editing

EFuNN

Fig. 3. Mean square error (left) and number of hidden units (right) vs number of
observations in servo dataset: The error bars indicate 95% confidence intervals

Each instance was presented to the systems only once (one-pass learning).
We evaluated the performance of ILS1 immediately after every awake and sleep

phase with Eall(t) =
∑all samples

k SqureErr(xk, θ(t))/ Sample-Size. Note that
Eall(t) reflects both the ratio of forgetting and the generalization ability. Eall(t)
was also used to evaluate other systems. Fig.3 shows the error and cell-number vs
number of observations. We can see from figure that the number of ILS1 hidden
units became small immediately after each sleep phase. Although the number
was not the smallest, the error of ILS1 was the smallest of all.

5.2 Learning Spatio-temporal Patterns

The system was applied to a virtual robot control task. The experiment, used
a robot, with one front tire and two rear tires (see Fig.4). The rear tires were
always rotated at a fixed speed. The angle of the front tire was controlled by the
output value from the system. Therefore, the network controls the direction of
movement.
1 http://www.ics.uci.edu/ m̃learn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental Learning of Spatio-temporal Patterns with Model Selection 157

Rear tires

Front tire

RGB visual sensor

sensory inputs

M-Net F-Net

(a) (b)

Fig. 4. Structure of the robot (a) and routes for learning (b)

Route A Route B

(a) (b)

Fig. 5. Resultant routes after learning in the case of proposed system (a) and MRAN
with the context layer (b)

The robot has 17 sets of RBG visual sensors. Each visual sensor yields an
output value if an object is located in the corresponding direction. Our system
learned to drive the robot along the two routes shown in Fig. 4(b). Note that the
direction of the last corner depends on the starting point. Therefore, the system
has to recognize the differences in the contexts at the last corner.

The learning was executed in the order of routes A and B. For simplicity, the
system performances were examined after learning only by using the M-Net. The
new system executed one-pass learning of each route. During the 1st awake phase,
the system executed one-pass learning of route A, and it rehearsed the learned one
during the 1st sleep phase. After the learning of route A, the system executed the
learning and rehearsal of route B through the 2nd awake and sleep phases.

We also compared our method with a learning system using MRAN with a
context layer. In the case of MRAN, there was no rehearsal mechanism such as in
ILS1. The MRAN with the context layer repeated the learning of route A until
the mean square error was less than 0.015, and then, it repeated the learning
route B incrementally until the mean squared error was less than 0.015. Figure
5 shows the MRAN behaviors after learning. We can see that the MRAN with
the context layer cannot recall the first learned route A correctly but ours can
recall it correctly.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

158 K. Yamauchi and M. Sato

6 Conclusion

We presented a learning system for incremental learning of spatio-temporal pat-
terns. The system is based on our previous system ILS1, [3], that simultaneously
achieves quick adaptation and model selection by using two learning phases:
awake and sleep. The experimental results revealed that the system outperformed
other learning systems in solving function approximation problems. Using this
method, the system can reduce its resources for learning.

Incremental learning of spatio-temporal patterns usually interferes with past
learning results. Our method overcomes this problem despite using a small
amount of resources.

References

1. Murata, N., Yoshizawa, S., Amari, S.-i.: Network information criterion - deter-
mining the number of hidden units for an artificial neural network model. IEEE
Transctions on Neural Networks 5(6), 865–872 (1994)

2. van de Laar, P., Heskes, T.: Pruning using parameter and neuronal metrics. Neural
Computation 11, 977–993 (1999)

3. Yamauchi, K., Hayami, J.: Incremental learning and model selection for radial ba-
sis function network through sleep. IEICE Transactions on Information and Sys-
tems E90-D(4), 722–735 (2007)

4. Poggio, T., Girosi, F.: Networks for approximation and learning. In: Proceeding of
the IEEE International Conference on Neural Networks, vol. 78(9), pp. 1481–1497.
IEEE Computer Society Press, Los Alamitos (1990)

5. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2(6), 568–576 (1991)

6. Tomandl, D., Schober, A.: A modified generalized regression neural network
(mgrnn) with a new efficient training algorithm as a robust “black-box”-tool for
data analysis. Neural Networks 14, 1023–1034 (2001)

7. Schaal, S., Atkeson, C.G.: Constructive incremental learning from only local infor-
mation. Neural Computation 10(8), 2047–2084 (1998)

8. Moody, J., Darken, C.J.: Fast learning in neural networks of locally-tuned process-
ing units. Neural Computation 1, 281–294 (1989)

9. Yamauchi, K., Yamaguchi, N., Ishii, N.: Incremental learning methods with retriev-
ing interfered patterns. IEEE Transactions on Neural Networks 10(6), 1351–1365
(1999)

10. Kasabov, N.: Evolving fuzzy neural networks for supervised/unsupervised online
knowledge-based learning. IEEE Transactions on Systems, Man, and Cybernet-
ics 31(6), 902–918 (2001)

11. Yingwei, L., Sundararajan, N., Saratchandran, P.: A sequential learning scheme
for function approximation using minimal radial basis function neural networks.
Neural Computation 9, 461–478 (1997)

12. Akaike, H.: A new look at the statistical model identification. IEEE Transactions
on Automatic Control AC-19(6), 716–723 (1974)

13. Ma, J., Theiler, J., Perkins, S.: Accurate on-line support vector regression. Neural
Computation 15, 2683–2703 (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Accelerating Kernel Perceptron Learning

Daniel Garćıa, Ana González�, and José R. Dorronsoro�

Dpto. de Ingenieŕıa Informática and Instituto de Ingenieŕıa del Conocimiento
Universidad Autónoma de Madrid, 28049 Madrid, Spain

Abstract. Recently it has been shown that appropriate perceptron train-
ing methods, such as the Schlesinger–Kozinec (SK) algorithm, can pro-
vide maximal margin hyperplanes with training costs O(N ×T), with N
denoting sample size and T the number of training iterations. In this work
we shall relate SK training with the classical Rosenblatt rule and show
that, when the hyperplane vector is written in dual form, the support
vector (SV) coefficients determine their training appearance frequency; in
particular, large coefficient SVs penalize training costs. Under this light
we shall explore a training acceleration procedure in which large coef-
ficient and, hence, large cost SVs are removed from training and that
allows for a further stable large sample shrinking. As we shall see, this
results in a much faster training while not penalizing test classification.

1 Introduction

The standard formulation of SVM training seeks to maximize the margin of a
separating hyperplane by solving the problem

min
1
2
‖W‖2 subject to yi(W · Xi + b) ≥ 1, i = 1, . . . , N, (1)

where we assume a linearly separable training sample S = {(Xi, yi) : i =
1, . . . , N} with yi = ±1. Any pair (W, b) verifying the restrictions in (1) is said
to be in canonical form. However, in practice the problem actually solved is the
simpler dual problem of maximizing

LD(α) =
∑

i

αi − 1
2

∑

i,j

αiαjyiyjXi · Xj , (2)

subject to the restrictions αi ≥ 0,
∑

i αiyi = 0. The optimal weight W o can
be then written in the so–called dual form W o =

∑
αo

i yiXi and patterns for
which αo

i > 0 are called support vectors (SV). When the problem is not linearly
separable, the “hard” margins in (1) are replaced by “soft” margins where slack
variables ξi are introduced such that yi(W · Xi + b) ≥ 1 − ξi, i = 1, . . . , N ,
allowing for erroneously classified vectors when ξi > 1. A penalty term of the
form C

∑
i ξk

i , where C is an appropriately chosen parameter, is added to the
weight norm. Usual choices for k are 1 or 2.
� All authors have been partially supported by Spain’s TIN 2004–07676.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 159–168, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

160 D. Garćıa, A. González, and J.R. Dorronsoro

Problem (2) is in fact a quadratic programming problem, that may be solved
using quadratic programming algorithms, either of a general type or special-
ized for SVMS such as Platt’s SMO algorithm [9], its refinement LIBSVM [3]
or Joachim’s SVMlight [6] or, simply, by gradient ascent [13] in (2). Recently it
has been shown that (2) can also be solved by perceptron methods, such as the
Relaxed On–line Maximum Margin Algorithm (ROMMA, [7]) the Schlesinger–
Kozinec (SK) algorithm [4], the Huller, a related on–line algorithm [2], or even
“convex” versions of Rosenblatt’s standard perceptron [5]. All these methods
work iteratively selecting a single pattern that is used to update the current
weight. Although it seems that no exhaustive comparisons of training times
among these methods have been made, it may be said [6] that SVMlight outper-
forms LIBSVM and LIBSVM does so with SMO. The situation has been even
less studied for perceptron methods, but partial results in [4] seem to indicate
that the SK algorithm is faster than SMO for moderate precision computations
of the optimal hyperplane, while SMO may be slightly faster for greater preci-
sion. Both clearly outperform ROMMA but SVMlight may be faster by about
an order of magnitude. In any case, this larger speed comes at the cost of a
bigger complexity of the methods involved: SVMlight and LIBSVM are quite
costly to implement, SMO is less so and ROMMA and, particularly, SK are very
simple. Moreover, perceptron methods may be better suited for on–line learning,
an appealing possibility for very large training samples.

In this work we shall offer a proposal for a faster training of the SK algorithm.
As discussed in the next section, for a size N sample and a number T of iterations,
its training time measured in dot products or kernel operations is T ×N , as any
sample pattern may eventually become a support vector (SV). To speed things
up, both T and N should be reduced and, as in other methods, a simple way of
doing so is by shrinking the training sample, as the number of final SVs is usually
a fraction of the full sample size. This can be done, for instance, by removing at a
certain training iteration all patterns Xi for which αi = 0 at that time. However,
this will not reduce the number of iterations needed and, moreover, for this to
work, perceptron training may have to be at a rather advanced convergence stage
so that the number of SVs has stabilized: if done too early, it may result in a
bad test set accuracy; in turn, this implies that a potentially large number of
full sample iterations have to be performed.

A way to achieve an early stabilization of the number of SVs is to remove from
the training sample patterns whose coefficients become “too large”. In fact, a
reason for the appearance of “late” small coefficient SVs is the need to balance
large coefficient SVs that, as we shall see, cannot be correctly classified. Thus,
removing large coefficient patterns makes the initial problem linearly separable.
Recent results [1,8] on the so–called reduced convex hull show that the general-
ization capability of the resulting hyperplane is essentially the same of the one
obtained solving the original full sample non–linearly separable problem. More-
over, and as we shall also see, an SV coefficient measures how often it is selected
as an updating pattern in perceptron training and their removal results then in
a smaller number of iterations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Accelerating Kernel Perceptron Learning 161

The paper is organized as follows. In section 2 we shall briefly review both the
SK algorithm and the convex Rosenblatt rule for linear and non–linear problems
and consider kernel versions for them, while in section 3 we shall analyze the
coefficient structure of the final SVs and propose our acceleration procedure. Sec-
tion 4 will experimentally relate the coefficients of the SVs obtained by standard
SK training with the number of their training appearances and will numerically
compare the convergence speed of SK training with that of the proposed acceler-
ation procedure. The paper ends with some conclusions and pointers to further
work.

2 The SK Algorithm and Rosenblatt’s Rule

We consider first the linearly separable case. While in (1) the bias term b is
handled explicitly, we will work for simplicity in an alternative homogeneous
setting defining W̃ = (W, b), X̃i = (Xi, 1). Then W̃ · X̃i = W · Xi + b, and we
can consider the following minimization problem

min
1
2
‖W̃‖2 subject to yiW̃ X̃i ≥ 1. (3)

Although formally similar to (1), the solution of (3) is slightly different, as we try
to minimize ‖W̃‖2 = ‖W‖2 + b2 instead of just ‖W‖2. It can be shown, however,
that if W̃ o and W o, bo are the optimal values for (3) and (1) respectively, we
have ‖W̃ o‖2 = ‖W o‖2 + (bo)2. In particular, for large dimension vectors, ‖W̃ o‖2

should be a reasonably good approximation of ‖W o‖2. From now on we shall
work on this homogeneous setting, dropping for the time being the upper˜and
writing W , Xi instead of W̃ , X̃i.

Considering the dual formulation of (3) and writing the optimal W o as W o =∑
αo

i yiXi, it follows from the Karush–Kuhn–Tucker conditions that
∑

αo
i =

‖W o‖2. Setting now W ∗ = W o/‖W o‖2 =
∑

α∗
i yiXi, we have

∑
α∗

i = 1; that is,
W ∗ ∈ C(S̃), where C(A) denotes the convex hull of a set A and S̃ = {yiXi}.
Moreover, since W o is in canonical form, if W ′ =

∑
i αiyiXi is another vector

in C(S̃), we have

W o · W ′ =
∑

i

αiyiW
o · Xi ≥

∑

i

αi = 1,

and, as a consequence, 1 ≤ W o · W ′ ≤ ‖W o‖ · ‖W ′‖ = ‖W ′‖/‖W ∗‖. Thus,
‖W ∗‖ ≤ ‖W ′‖ for any W ′ ∈ C(S̃). In other words, if mo is the optimum margin,
W o the optimum margin vector in canonical form and we set W ∗ = W o/‖W o‖2,
W ∗ is the solution of

‖W ∗‖ = min{‖W‖ : W ∈ C(S̃)}, (4)

and we have mo = 1/‖W o‖ = ‖W ∗‖. A consequence of the above is that for
any vector W ∈ C(S̃) we have m(W) ≤ mo = m(W ∗) = ‖W ∗‖ ≤ ‖W‖ and,
therefore, defining g(W) = ‖W‖−m(W), we have 0 = g(W ∗) ≤ g(W) for all W .
Thus, a procedure that minimizes g(W) leads to a maximum margin hyperplane.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

162 D. Garćıa, A. González, and J.R. Dorronsoro

Algorithm 1. Standard kernel perceptron training
W0 = Xl; α0

l = 1; α0
j = 0; D0

j = yjW0 · Xj;
for t = 1, 2, . . . do

l(t) = select (S, Dt−1) ;
λt = lambda (Xl(t), ‖Wt−1‖2, Dt−1) ;
(αt, ‖Wt‖2, Dt) = update(λt, l(t), αt−1, ‖Wt−1‖2, Dt−1) ;

end for

We turn our attention to non–linearly separable problems. As mentioned in
the introduction, we will work with slack margin variables ξi for which we have
yiW ·Xi ≥ 1− ξi, i = 1, . . . , N , and with a quadratic penalty function J(W, ξ) =
‖W‖2 + C

∑
i ξ2

i . We will consider extended weight vectors W̃ , defined by W̃ =(
W,

√
Cξ1, . . . ,

√
CξN

)
, and extended patterns X̃i =

(
Xi, 0, . . . , yi√

C
, . . . , 0

)
. It

is then easy to check that J(W, ξ) = ‖W̃‖2 and yiW̃ ·X̃i = yiW ·Xi+ξi. Therefore,
minimizing J(W) under the restrictions yiW ·Xi ≥ 1−ξi is equivalent to solving

W̃ o = argmin{‖W̃‖2 : yiW̃ · X̃i ≥ 1, i = 1, . . . , N}, (5)

while the equivalent convex hull formulation would now be

W̃ ∗ = arg min{‖W̃‖2 : W̃ ∈ C(S̃)}. (6)

Let α∗
i denote the optimal coefficients obtained solving (6). Then (W ∗,

√
Cξ∗) =

W̃ ∗ =
∑

α∗
i yiX̃i = (W ∗, α∗

1/
√

C, . . . , α∗
N/

√
C) and, therefore,

√
Cξ∗i = α∗

i /
√

C;
that is, α∗

i = Cξ∗i . Moreover, the equivalence observed in the linear setting
between the solutions W̃ o and W̃ ∗ of (5) and (6) becomes now W̃ o = W̃ ∗/‖W̃ ∗‖2

and, hence, ξo
i = ξ∗i /‖W̃ ∗‖2 = α∗

i /C‖W̃ ∗‖2. As a consequence, the restrictions
yiW

o · Xi ≥ 1 − ξo
i can be also written as

yiW
o · Xi = yi

W ∗

‖W̃ ∗‖2
· Xi ≥ 1 − α∗

i

C‖W̃ ∗‖2
= 1 − α∗

i

C‖W ∗‖2 +
∑

(α∗
i)2

.

The SK and convex perceptron algorithms work in the above setting trying
to minimize either (4) or (6). Both start at a random W0 = Xl and the updating
pattern Xl = Xl(t) at step t is chosen so that

l = arg mini{yiWt−1 · Xi} = arg mini{m(Wt−1; Xi)}, (7)

where m(W ; X) = yW · X/‖W‖ denotes the margin of X with respect to W ;
the weight update has then the form

Wt = (1 − λt)Wt−1 + λtyl(t)Xl(t), (8)

that guarantees Wt ∈ C(S̃). For convex perceptrons [5] we just take λt = 1/t;
then t × Wt =

∑t
1 yl(i)Xl(i) is simply the weight vector given by the standard

Rosenblatt’s rule and (8) can be seen as a convex version of that rule. The

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Accelerating Kernel Perceptron Learning 163

Algorithm 2. Accelerated kernel perceptron training
W0 = Xl; α0

l = 1; α0
j = 0; D0

j = yjW0 · Xj; fl0 = fl1 = 0 ;
for t = 1, 2, . . . do

l(t) = select (S, Dt−1) ;
λt = lambda (Xl(t), ‖Wt−1‖2, Dt−1) ;
(αt, ‖Wt‖2, Dt) = update(λt, l(t), αt−1, ‖Wt−1‖2, Dt−1) ;
if (αt

l(t) > C‖Wt‖2) and (fl0 == 0) then
η = αl(t)/(αl(t) − 1) ;
(αt, ‖Wt‖2, Dt) = update(η, l(t), αt−1, ‖Wt−1‖2, Dt−1) ;
remove Xl(t) ; fl1 = 1 ;

end if
if (number of SVs is stable) and (fl1 == 1) then

remove all Xi for which αt
i == 0 ; fl0 = 1 ;

end if
end for

SK algorithm uses λt = arg minλ{‖(1 − λ)Wt−1 + λXl(t)‖}, that guarantees
‖Wt‖ ≤ ‖Wt−1‖. It can be easily seen that

λt = min
(

1,
‖Wt−1‖2 − yl(t)Wt−1 · Xl(t)

‖Wt−1‖2 − 2yl(t)Wt−1 · Xl(t) + ‖Xl(t)‖2

)

(9)

It is clear that the above formulation lends itself naturally to a kernel treat-
ment, as the only operations other than linear vector combinations are dot prod-
ucts. Thus, we will assume first that X = (φ(x), 1) is a nonlinear transformation
associated to a positive definite kernel k(x, x′); for the linearly separable case we
can write the dot products as X ·X ′ = 1+φ(x) ·φ(x′) = 1+ k(x, x′) = K(x, x′),
which we extend to K ′(x, x′) = K(x, x′)+δx,x′/C for the non–linearly separable
case. Working for instance in the non–linearly separable setting and writing now
the extended weight vector W̃t as W̃t =

∑
j αt

jyjX̃j =
∑

l α
t
jyjΦ̃(xj), we have

αt
j =

(
1 − λt

)
αt−1

j + λtδj l(t). (10)

Moreover, using the notation Dt
j = yjW̃t ·X̃j , the updating index l is then chosen

as l = l(t) = arg mini

{
Dt−1

i

}
and it can be seen that D0

j = yjK
′(xj , xl0).

Furthermore, ‖W̃0‖2 = K ′(xl0 , xl0) and it follows that

Dt
j = (1 − λt)Dt−1

j + λtylyjK
′(xl, xj),

‖W̃t‖2 = (1 − λt)2‖W̃t−1‖2 + 2(1 − λt)λtDt
l + (λt)2K ′(xl, xl). (11)

The memory requirements of the SK and convex perceptron algorithms are just
O(N) for a size N sample, even if we assume for simplicity that we cache the
self–dot products K ′(xl, xl), l = 1, . . . , N . It thus follows that at each iteration
the only kernel operations are those needed to update the Dt

j . If there is variable

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

164 D. Garćıa, A. González, and J.R. Dorronsoro

Table 1. Starting sample size, # of different SVs and coefficient correlation for the SK
and convex perceptron algorithms and correlation for the SK method between pattern
coefficients and # of updating appearances

Dataset sample s. # diff. SVs coeff. corr. coeff.–freq. corr.

Austral. Cr. 690 13 0.9961 0.9949

Breast C. W. 629 14 0.9966 0.9961

German Cr. 1000 19 0.9947 0.9883

Heart Dis. 240 9 0.9975 0.9903

Pima Diab. 622 6 0.9940 0.9793

Primary Tumor 678 2 0.9945 0.9915

Ripley 1125 19 0.9966 0.9868

Satimage 6436 101 0.9856 0.9772

Segment 2310 0 0.9994 0.9989

Sick 3773 29 0.9972 0.9947

Thyroid 7200 35 0.9925 0.9878

Vehicle 846 11 0.9968 0.9946

Vowel 990 2 0.9991 0.9986

sample size Nt at each iteration, the total number of kernel operations for a T
iteration training run is

∑T
1 Nt. In standard SK training, Nt = N for all t, which

results in T × N kernel operations.

3 Perceptron Training Acceleration

We have just seen that writing Λ∗ = C‖W̃ ∗‖2 = C‖W ∗‖2 +
∑

(α∗
i)

2, we then
have yiW

o · Xi = 1 − α∗
i

Λ∗ for any SV Xi. Therefore, large α∗
i patterns also

require large slacks and their classification will be wrong if α∗
i > Λ∗. We can

look to the α∗
i from another point of view. Notice that, for convex perceptrons

the coefficient of a given SV represents the number of times it has been selected
as the updating vector. In fact, if training requires T iterations, and each final
SV Xi has appeared Ti times as the updating pattern, the final weight obtained
through the convex Rosenblatt’s rule has the form

W ∗ =
1
T

T∑

1

ytXt =
N∑

1

Ti

T
yiXi =

∑
α∗

i yiXi;

thus, for convex perceptrons, the coefficient of a given SV represents the number
of times it has been selected as the updating vector. Therefore, large α∗ SVs
take up a large part of convex perceptron training. This interpretation cannot be
made in a straight way for SK perceptrons. However, and as we shall numerically
illustrate in section 4, both the SK and the convex Rosenblatt’s rule updates lead
to essentially the same final SVs and the same coefficients for them. Moreover,
there is a large correlation for SK perceptrons between the final α∗ and the
appearance frequency of their corresponding SVs. Hence, we can conclude that,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Accelerating Kernel Perceptron Learning 165

Table 2. Final test accuracies for the standard and accelerated SK algorithm with a
0.05 and 0.01 precisions

Dataset SK std. (0.05) SK acc. (0.05) SK std. (0.01) SK acc. (0.01)

Austral. Cr. 86.15 ± 4.26 85.31 ± 3.76 86.06 ± 4.10 85.28 ± 3.77

Breast C. W. 96.93 ± 2.01 96.50 ± 2.24 96.93 ± 2.01 96.53 ± 2.24

German Cr. 75.20 ± 4.09 75.70 ± 3.47 75.32 ± 4.06 75.82 ± 3.71

Heart Dis. 81.40 ± 6.58 82.42 ± 7.24 81.07 ± 6.42 82.82 ± 7.41

Pima Diab. 77.21 ± 4.41 76.02 ± 5.19 77.31 ± 4.30 76.07 ± 4.99

Primary Tumor 85.71 ± 4.08 84.44 ± 4.14 85.86 ± 4.14 84.50 ± 4.13

Ripley 88.88 ± 2.49 88.21 ± 2.36 88.69 ± 2.44 88.13 ± 2.36

Satimage 93.75 ± 0.79 93.16 ± 0.79 93.75 ± 0.82 93.15 ± 0.78

Segment 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

Sick 97.12 ± 0.67 97.29 ± 0.68 97.12 ± 0.65 97.22 ± 0.74

Thyroid 97.39 ± 0.54 97.53 ± 0.60 97.31 ± 0.59 97.47 ± 0.61

Vehicle 97.69 ± 1.40 97.52 ± 1.41 97.69 ± 1.40 97.54 ± 1.40

Vowel 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00

for them, large α∗ SVs also take up a large part of their training. This suggests
that SK training could be accelerated by removing from the training sample those
SVs Xi which attain a large αi coefficient. We will do so when at an iteration t the
coefficient αt

l of the Xl just used as the updating pattern verifies αt
l > C‖W̃t‖2;

notice that since C‖W̃t‖2 ≥ C‖W̃ ∗‖2 = Λ∗, the previous condition makes it
quite likely that α∗

l > Λ∗ when standard SK training ends.
Besides removing those costly to train SVs, a reduction in sample size also

makes successive weight updates faster, even if we take into account that any
SV removal requires to update the current weight vector so that it remains in
the sample’s convex hull. To do so, we observe that the αi updates required
by such a removal have the same form of the standard convex updates (10). In
fact, the removal of a certain Xl requires to change its weight αl to 0 and to
reassign the other weights as α′

i = αi/(1 − αl) so that we still have a convex
combination. If we choose η = αl/(αl − 1), we can write this as an update
α′

j = (1−η)αj +ηδj,l as in (10). As a consequence, the other required updates of
‖W̃t‖2 and Dt

j can be done too according to (11) Moreover, after the removal of
large coefficient patterns, the sample becomes linearly separable and the number
of SVs stabilizes, allowing to shrink the training sample by the removal of the
cero coefficient patterns. The pseudocode of the accelerated kernel perceptron
training can be seen in algorithm 2. The extra cost of a large coefficient SV
removal is of |St| kernel operations, with St the sample at iteration t, which
simply doubles the cost of a standard iteration. On the other hand, the removal
of a cero coefficient pattern requires no kernel operations. The gain derived from
a smaller number of overall iterations over a smaller sample clearly compensates
the previous extra cost, even if we take into account that, as the training sample
is changed, so is the maximum margin and some of the work done in the previous
iterations to maximize it may be lost.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

166 D. Garćıa, A. González, and J.R. Dorronsoro

Table 3. Number of kernels operations (in thousands) for the standard and accelerated
SK algorithm and γ = 0.05, and reduction achieved by the second method

Dataset # KOs std. SK # KOs acc. SK reduct. %

Austral. Cr. 8,141 ± 772 3,245 ± 437 39.86

Breast C. W. 2,761 ± 311 1,048 ± 169 37.98

German Cr. 20,324 ± 867 9,926 ± 804 48.84

Heart Dis. 1,662 ± 221 2,093 ± 912 125.93

Pima Diab. 18,317 ± 914 4,717 ± 402 25.76

Primary Tumor 9,427 ± 583 3,870 ± 518 41.05

Ripley 38,504 ± 1,423 9,039 ± 944 23.48

Satimage 404,812 ± 16,181 135,064 ± 10,344 33.36

Segment 639 ± 106 639 ± 106 100.00

Sick 63,507 ± 2,966 39,100 ± 5,695 61.57

Thyroid 253,926 ± 18,998 141,175 ± 36,585 55.60

Vehicle 3,946 ± 328 3,512 ± 465 89.01

Vowel 2,060 ± 314 2,057 ± 313 99.84

4 Numerical Experiments

In this section we shall explore the effect of the previous acceleration procedure
over 13 datasets (see table 1) taken from the UCI problem database [11] or from
the LIBSVM repository [3]. Some of these data sets, namely, those of the Heart
Disease, Wisconsin breast cancer or Thyroid disease, originally contain data from
more than two classes. We have reduced them to 2–class problems considering
their patterns as coming from either healthy or sick patients. We have also chosen
as the minority one class 1 in the Vehicle dataset, class 0 for the Vowel dataset,
class damp soil for the Satimage dataset, class 1 for the Segment database and
classes 1, 2, 3, 4 and 6 for the Primary Tumor database. We shall work with
the gaussian kernel k(x, x′) = exp

(
−‖x − x′‖2/σ2

)
, and normalize the original

patterns to componentwise 0 mean and 1 variance. We shall also use common
values σ2 = 50 and C = 10 for all datasets; the test accuracies reported here are
comparable with those achieved by other methods. We have stopped training
either at the first iteration t at which g(Wt) ≤ γ‖ Wt‖ or after a maximum
number Nmax of iterations. In our experiments we have used 0.05 and 0.01 for
the γ precision values and Nmax = 100, 000.

For each dataset we have performed a 5 × 10 cross validation procedure,
dividing 5 times the full datasets randomly into 10 subsets with approximately
equal sizes and using 9 of these subsets for training and the remaining one for
test. We check first that large coefficient SVs for the SK algorithm do correspond
to patterns appearing more often as updating vectors. Table 1, that also gives
the original training sample sizes, shows for each data set the difference between
the number of SVs obtained by the SK and convex perceptron algorithms, the
correlation between their final coefficients and, only for the SK method, the
correlation of the SV coefficients and their updating appearance frequencies.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Accelerating Kernel Perceptron Learning 167

Table 4. Number of kernels operations (in thousands) for the standard and accelerated
SK algorithm and γ = 0.01, and reduction achieved by the second method

Dataset # KOs std. SK # KOs acc. reduct. %

Austral. Cr. 42,240 ± 5,554 7,359 ± 994 17.42

Breast C. W. 14,318 ± 2,241 1,819 ± 254 12.71

German Cr. 89,371 ± 1,619 43,244 ± 3,655 48.39

Heart Dis. 8,531 ± 2,045 9,806 ± 896 114.95

Pima Diab. 69,093 ± 193 13,601 ± 1,837 19.69

Primary Tumor 43,105 ± 3,889 8,208 ± 1,297 19.04

Ripley 112,500 ± 96 17,502 ± 2,982 15.56

Satimage 579,150 ± 151 218,845 ± 9,034 37.79

Segment 3,969 ± 710 3,874 ± 713 97.62

Sick 318,105 ± 23,115 63,369 ± 5,283 19.92

Thyroid 648,000 ± 108 178,508 ± 25,882 27.55

Vehicle 21,937 ± 3,369 7,447 ± 1,019 33.95

Vowel 12,419 ± 2,755 4,137 ± 647 33.32

The table values have been computed over a single full sample training and for
γ = 0.01. As it can be seen, both methods give essentially the same final SVs
for all problems except, may be, Satimage, and there is a very high correlation
between the SV coefficients. It can be concluded that both methods give very
similar hyperplanes. Moreover, there is a high correlation between SK weight
coefficients and the number of appearances of the corresponding SVs.

The standard and accelerated SK methods’ behaviour is described in the next
three tables. For each dataset we have started removing large coefficient SVs as
soon as the margin of the separating hyperplane is > 0. Once at least one such
SV has been removed, we have considered the number of SVs as stable if it does
not change in 1,000 subsequent operations. Once this happen, we remove all cero
coefficient patterns and do not allow any further elimination of large coefficient
SVs. The first table, 2, gives a comparison of test accuracies and their standard
deviations for γ = 0.05 and 0.01. Both values are very similar and a t test fails to
reject an equal mean value hypothesis at levels above 20% for all datasets except
for the Primary Tumor, Satimage (both slightly in favour of standard SK) and
Thyroid (in favour of accelerated SK) problems. Therefore, it can be said that
the proposed acceleration method does not affect the generalization capability of
the resulting hyperplanes. Table 3 gives the number of kernel operations of each
method for the precision factor γ = 0.05, as well as the reduction percentage
of kernel operation (KOs). The number of KOs in the accelerated method is
60% below the number of KOs in standard training for 8 data sets and below
40% for 5 of them; there is no gain for the Segment and Vowel problems and
the accelerated method is actually slower for the relatively small Heart Disease
dataset. Table 4 gives similar results for γ = 0.01; now the number of KOs in
the accelerated method is below 40% for 10 of the 13 data sets and below 20%
for 6 of them. The situation does not change for the Heart Disease and Segment
problems but clearly improves for Vowel.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

168 D. Garćıa, A. González, and J.R. Dorronsoro

5 Conclusions

Although their overall speed is not yet comparable to the most advanced SVM
training methods (such as SVMlight), kernel perceptron methods, particularly
the SK algorithm, are much simpler to implement and may be better suited
to on–line applications. Moreover, there should be room to improve their speed
performance. We have proposed here a procedure to accelerate the SK algorithm
by removing from the training sample those SVs with large coefficients (that
will not be correctly classified anyway) and, later on, those training patterns
which are likely not to become SVs and, thus, that will not be part of the final
hyperplane. While very simple, the proposed method achieves a clear acceleration
on most of the datasets studied, particularly when a large precision for the
separating hyperplane is wanted, and points out that it may be worthwhile to
further pursue this research, particularly for on–line learning, exploring other
ideas, such as an updating vector selection that offers a larger reduction of the
weight norm or a working set more tightly controlled.

References

1. Bennett, K., Bredensteiner, E.: Geometry in learning. In: Gorini, C., Hart, E.,
Meyer, W., Phillips, T. (eds.) Geometry at Work. Mathematical Association of
America (1997)

2. Bordes, A., Bottou, L.: The Huller: a simple and efficient online SVM. In: Gama,
J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS
(LNAI), vol. 3720, pp. 505–512. Springer, Heidelberg (2005)

3. Chang, Ch., Lin, Ch.: LIBSVM: a library for support vector machines (2001),
http://www.csie.ntu.edu.tw/∼cjlin/LIBSVM

4. Franc, V., Hlavac, V.: An iterative algorithm learning the maximal margin classier.
Pattern Recognition 36, 1985–1996 (2003)

5. Garćıa, D., González, A., Dorronsoro, J.R.: Convex Perceptrons. In: Corchado, E.,
Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 578–585.
Springer, Heidelberg (2006)

6. Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical.
In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp.
169–184. MIT Press, Cambridge (1999)

7. Li, Y., Long, P.M.: The Relaxed Online Maximum Margin Algorithm. Machine
Learning 46, 361–387 (2002)

8. Mavroforakis, M., Theodoridis, S.: A Geometric Approach to Support Vector Clas-
sification. IEEE Trans. on Neural Networks 17, 671–682 (2006)

9. Platt, J.C.: Fast training of support vector machines using sequential minimal
optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel
methods, pp. 185–208. MIT Press, Cambridge (1999)

10. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)
11. UCI-benchmark repository of machine learning data sets: University of California

Irvine, http://www.ics.uci.edu
12. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)
13. Vijayakumar, S., Wu, S.: Sequential support vector classifiers and regression. Proc.

Int. Conf. Soft Computing, 610–619 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.csie.ntu.edu.tw/~cjlin/LIBSVM
http://www.ics.uci.edu

Analysis and Comparative Study of Source

Separation Performances in Feed-Forward and
Feed-Back BSSs Based on Propagation Delays in

Convolutive Mixture

Akihide Horita, Kenji Nakayama, and Akihiro Hirano

Graduate School of Natural Science and Technology, Kanazawa University
Kakuma-machi, Kanazawa, 920-1192 Japan

horita@leo.ec.t.kanazawa-u.ac.jp, nakayama@t.kanazawa-u.ac.jp

Abstract. Feed-Forward (FF-) and Feed-Back (FB-) structures have
been proposed for Blind Source Separation (BSS). The FF-BSS systems
have some degrees of freedom in the solution space, and signal distortion
is likely to occur in convolutive mixtures. On the other hand, the FB-
BSS structure does not cause signal distortion. However, it requires a
condition on the propagation delays in the mixing process. In this paper,
source separation performance in the FB-BSS is theoretically analyzed
taking the propagation delays into account. Simulation is carried out by
using white signals and speech signals as the signal sources. The FF-BSS
system and the FB-BSS system are compared. Even though the FB-BSS
can provide good separation performance, there exits some limitation on
location of the signal sources and the sensors.

1 Introduction

Two kinds of approaches have been proposed for Blind Source Separation (BSS).
One of them is a Feed-Forward (FF-) BSS, and the other is a Feed-Back (FB-)
BSS [1]-[3]. In the FF-BSS, there exits some degrees of freedom in determining
a separation block, and signal distortion is likely caused. Several methods have
been proposed to suppress the signal distortion [4],[6],[7],[8]. Mainly, additional
conditions are imposed on the learning process for source separation. On the
other hand, the FB-BSS has no degree of freedom, and distortion free outputs can
be obtained as a result of source separation. Therefore, the FB-BSS can provide
good performances in both source separation and signal distortion. However, the
FB-BSS requires some condition on propagation delays in a mixing process [5].
The source separation performance is degraded if the propagation delays do not
satisfy this condition.

In this paper, source separation performance of the FB-BSS is theoretically
analyzed based on the propagation delays. Simulation results obtained by using
white signals and speech signals will be shown to confirm the theoretical analysis
and to compare the FF-BSS and the FB-BSS. Finally, usefulness of the FB-BSS
is discussed based on relative locations of the sources and the sensors.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 169–179, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

170 A. Horita, K. Nakayama, and A. Hirano

2 Feed-Forward BSS

2.1 Network and Input-Output Equations

A block diagram of the FF-BSS is shown in Fig.1(Left). In the separation block,
an FIR filter, shown in Fig.1(Right), is used.

W22

W

12W

21

W11

H22

H

12H

21

H11S1

S2

(z)

(z)

(z)

(z)

(z)

(z)

X1

X2

(z)

(z)
Y2

Y1

(z)

(z)(z)

(z)

(z)

(z)

z

+

WkjWkj

x (z)
j

-1
z

-1
z

-1

(0) (1) (Kw-1)Wkj

Fig. 1. (Left) A block diagram of FF-BSS. (Right) FIR filter used for Wkj(z).

The sources si(n), i = 1, 2, · · · , N are convoluved with impulse responses of
the mixing block hji(n), and are observed as xj(n), j = 1, 2, · · · , N . The sepa-
ration block outputs yk(n) are convolution sums of wkj(n) and xj(n).

xj(n) =
N∑

i=1

Kh−1∑

m=0

hji(m)si(n − m) (1)

yk(n) =
N∑

j=1

Kw−1∑

l=0

wkj(l)xj(n − l) (2)

2.2 Learning Algorithm

The conventional learning algorithm [2],[3] is applied. wkj(n, l) are updated by

wkj(n + 1, l) = wkj(n, l) + Δwkj(n, l) (3)

Δwkj(n, l) = η{wkj(n, l) −
Kw−1∑

q=0

ϕ(yk(n))yp(n − l + q)wpj(n, q)}, p �= j (4)

ϕ(yk(n)) is a probability density function of yk(n). In the above algorithm, the
signal distortion is likely caused. A technique to suppress the signal distortion
has been proposed [8]. First, wkj(n+1, l) are updated following Eqs.(3) and (4).
Second, wjj(n + 1, l) are modified as follows:

wjj(n + 1, l) = (1 − α)w̃jj(n + 1, l) + αw̄jj(n + 1, l), 0 < α ≤ 1 (5)

w̃jj(n+1, l) are updated by Eqs.(3) and (4). w̄jj(n+1, l) are determined by the
conditions of complete source separation and signal distortion free [8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analysis and Comparative Study of Source Separation Performances 171

H22

H

12H

21

H11

12C-

21C-

S1

S2

X1

X2

Y2

Y1(z)

(z)

(z)

(z)

(z)

(z)

(z)

(z)
(z)

(z)

(z)

(z)

z

+

y (z)
j

c (1)kj c (2)kj c (K -1)
kj c

-1 z -1 z -1

Fig. 2. (Left) Block diagram of FB-BSS. (Right) FIR filter used for C21(z) and C12(z).

3 Feed-Back BSS

3.1 Block Diagram and Input-Output Relations

A block diagram of the FB-BSS is shown in Fig.2(Left) [1]. The separation block
employs an FIR filter shown in Fig.2(Right).

Since a feed-back loop in a discrete time system needs at least one sam-
ple delay, a direct path from the input to the output is not used in the FIR
filter, that is ckj(0) = 0. The outputs of the separation block are expressed
by

yk(n) = xk(n) −
N∑

j=1
�=k

Kc−1∑

l=1

ckj(l)yj(n − l) (6)

3.2 Learning Algorithm

The update equation of ckj(n, l) was proposed by Jutten et al by using the
Kullback-Leibler mutual information, and is shown here [1]. f(yk(n)) and g(yj

(n− l)) are different odd functions. One of them is at least a nonlinear function.

ckj(n + 1, l) = ckj(n, l) + Δckj(n, l) (7)
Δckj(n, l) = μf(yk(n))g(yj(n − l)) (8)

4 Derivation of Learning Algorithm for FB-BSS Based
on Propagation Delay

A learning algorithm is derived based on the propagation delays in the mixing
process [5]. For simplicity, the FB-BSS having 2 sources, 2 sensors and 2 outputs,
as shown in Fig.2(Left), is taken into account. It is assumed that the propagation
delays of H11(z) and H22(z) are less than those of H21(z) and H12(z). This means
that the sensor of X1(z) locates close to S1(z), and that of X2(z) locates close
to S2(z). Thus, this assumption is actually acceptable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

172 A. Horita, K. Nakayama, and A. Hirano

The outputs of the separation block can be expressed by [5]
[

Y1(z)
Y2(z)

]

=
1

1 − C12(z)C21(z)

[
1 −C12(z)

−C21(z) 1

] [
H11(z) H12(z)
H21(z) H22(z)

] [
S1(z)
S2(z)

]

=
1

1 − C12(z)C21(z)

[
H11(z) − C12(z)H21(z) H12(z) − C12(z)H22(z)
H21(z) − C21(z)H11(z) H22(z) − C21(z)H12(z)

] [
S1(z)
S2(z)

]

(9)

When source separation is complete, Ckj(z) and yk(n) have the following two
kinds of solutions (a) and (b).

hji = [hji(0), hji(1), · · · , hji(Kh − 1)]T (10)
si(n) = [si(n), si(n − 1), · · · , si(n − Kh + 1)]T (11)
(a) Non-diagonal elements are zero.

C12(z) =
H12(z)
H22(z)

C21(z) =
H21(z)
H11(z)

(12)

y1(n) = hT
11s1(n) y2(n) = hT

22s2(n) (13)
(b) Diagonal elements are zero.

C12(z) =
H11(z)
H21(z)

C21(z) =
H22(z)
H12(z)

(14)

y1(n) = hT
12s2(n) y2(n) = hT

21s1(n) (15)

From the assumption regarding the delay of Hji(z), C21(z) and C12(z) in (a)
have a positive delay, that is, they are causal systems. On the other hand, C21(z)
and C12(z) in (b) have a negative delay, resulting in non-causal systems, which
cannot be realizable. For this reason, S1(z) cannot be cancelled at X1(z). In
the same manner, S2(z) cannot be cancelled at X2(z). This means that the
diagonal elements of Eq.(9) cannot be cancelled by adjusting Cjk(z). On the
other hand, S2(z) and S1(z) can be cancelled at X1(z) and X2(z), respectively.
In other words, the non-diagonal elements of Eq.(9) can be cancelled. Combining
these properties, the power of the separation block outputs can be set as a cost
function. Applying the gradient method, the same learning algorithm as shown
in Eqs.(7) and (8) can be derived [5].

5 Analysis of Source Separation Based on Propagation
Delay in Mixing Process

5.1 Effects of Propagation Delay on Learning FB-BSS

It is also assumed that, in the FB-BSS shown in Fig.2, S1(z) and S2(z) are
separated at Y1(z) and Y2(z), respectively. This does not lose generality. Source
separation performance of the FB-BSS is determined by the following conditions.

1. S2(z) and S1(z) should be cancelled at X1(z) and X2(z), respectively.
2. S1(z) and S2(z) should be preserved at X1(z) and X2(z), respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analysis and Comparative Study of Source Separation Performances 173

As discussed in Sec.4, the learning of the FB-BSS is equivalent to minimize
the output powers. If the delay of C12(z)H21(z) is large enough compared to
that of H11(z), then the S1(z) component cannot be cancelled at X1(z), and can
be separated at Y1(z). This means that the power of Y1(z) can be minimized by
cancelling the S2(z) components at X1(z). Situation is the same as in minimizing
the power of Y2(z). In these cases, Ckj(z) converge to the optimal solutions given
by Eq.(12). When difference between the delays of C12(z)H21(z) and H11(z) is
not large enough, correlation between C12(z)H21(z)S1(z) and H11(z)S1(z) will
be increased. As a result, some cancellation between them can be possible. In
other words, the power of Y1(z) can be minimized by reducing not only the S2(z)
component but also the S1(z) component. In this situation, Ckj(z) are shifted
from the optimal solutions given by Eq.(12) toward the undesirable solutions
given by Eq.(14), resulting in poor source separation performances.

First, the condition (1) is taken into account. As shown in Fig.2, the transfer
functions Ckj(z) require at least one sample delay, corresponding to z−1. There-
fore, in order to cancel S2(z) at X1(z), the difference between the delays of H21
and H11(z) should be equal to or larger than one sample delay. If this condition
is not sufficiently satisfied, S2(z) cannot be well cancelled. The same situation
is held in X2(z).

Next, the condition (2) is taken into account. Preserving the S1(z) component
in X1(z), at the same time, in Y1(z), is highly dependent on the difference be-
tween the delays of C12(z)H12(z) and H11(z). Here, the signal is simply denoted
u(n) for convenience. The sampling frequency of u(n) is denoted fs. In order
to consider the delay difference less than the sampling period T = 1/fs, the
sampling frequency fs is converted to Kfs, K > 1. This up-sampling is carried
out by inserting zero samples and band limitation. Let uz(n) be the up-sampled
signal by inserting K −1 zero samples between the u(n) samples. The frequency
component of u(n) is assumed to be distributed in 0 ∼ fs/m. uz(n) is band
limited by using the ideal filter, whose pass band is 0 ∼ fs/m and the sampling
frequency is Kfs. An impulse response of this ideal filter is given by

φ(n) =
2

Km

sin
(2π

Kmn
)

2π
Kmn

(16)

φ(n) is regarded as an interpolation function. Let the band limited signal be
uK(n), which is a convolution sum of uz(n) and φ(n) as shown below.

uK(n) =
n∑

k=0

φ(n − k)uz(k) (17)

5.2 Canceling uK(n) by Using uK(n − l)

In this case, the delay difference is l samples under the sampling frequency
of Kfs. We will consider cancelation of S1(z) at X1(z) depending on delay
difference. In this case, uK(n) and uK(n − l) can be regarded as h11(n) ∗ s1(n)
and c12(n) ∗ h21(n) ∗ s1(n), respectively. The operation ∗ is a convolution sum.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

174 A. Horita, K. Nakayama, and A. Hirano

Since amplitude and phase responses of the signals can be adjusted by Cjk(z),
an effect of the delay difference is only taken into account in this section.

Cancelation of uK(n) by using uK(n − l) can be expressed by

uK(n) − uK(n − l) =
n∑

k=0

φ(n − k)uz(k) −
n∑

k=0

φ(n − k − l)uz(k)

=
n∑

k=0

[φ(n − k) − φ(n − k − l)]uz(k) (18)

From the above equation, the cancelation of uK(n) can be evaluated by [φ(n−
k)−φ(n−k−l)], which is equivalent to φ(l). φ(l) becomes zero at l = Km/2, and
takes small value after that. Therefore, as a rule of thumb, the delay difference,
with which uK(n) can be cancelled by using uK(n − l), is less than a Km/2
sample delay under the sampling frequency of Kfs, which is equivalent to an
m/2 sample delay with the fs sampling frequency.

An example of φ(n) is shown in Fig.3, in which m = 4 and K = 4. In this

-16 -12 -8 -4 0 4 8 12 16

φ(n)

Fig. 3. Example of interpolation function φ(n) with m = 4 and K = 4

figure, one scale on the horizontal axis indicates T/K sec and 4(= K) scales
corresponds to T sec. φ(n) takes zero at 8 samples(×T/K) and 2 samples(×T),
and takes small values after these points.

(Example 1)
Let fs = 8kHz and the frequency components of the signal are distributed un-
der 1kHz. Since fs/m = 1kHz and m = 8, if the delay difference between
C12(z)H12(z) and H11(z) is larger than m/2 = 4 samples, then cancellation of
S1(z) at X1(z) is small. Since Ckj(z) have 1 sample delay, by assigning 3 samples
delay between H21(z) and H11(z), the above conditions (1) and (2) can be si-
multaneously satisfied. In this case, the source separation performance is mainly
determined by the condition(2).

(Example 2)
Let fs = 8kHz and the frequency component of the signal is distributed un-
der 4kHz. Since fs/m = 4kHz and m = 2, if the delay difference between
C12(z)H12(z) and H11(z) is more than m/2 = 1 samples, then the cancelation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analysis and Comparative Study of Source Separation Performances 175

of S1(z) at X1(z) is small. Since Ckj(z) has 1 sample delay, the delay differ-
ence between H21(z) and H11(z) is not necessary. However, in order to satisfy
the condition(1), at least 1 sample delay is required. In this case, the source
separation performance is mainly determined by the condition(1).

5.3 Cancelation of uK(n) Evaluated by Correlation

The cancelation of uK(n) by using uK(n − l) can be also evaluated by the mean
square of φ(n − k) − φ(n − k − l) as follows:

E[(φ(n − k) − φ(n − k − l))2]
= E[φ2(n − k)] − 2E[φ(n − k)φ(n − k − l)] + E[φ2(n − k − l)] (19)

The delay difference of interest is a few samples delay, that is l is a small integer.
Therefore, E[φ2(n − k)] and E[φ2(n − k − l)] are almost the same. They are
denoted E[φ2(n − k)] here. The above equation is further rewritten as

2E[φ2(n − k)] − 2E[φ(n − k)φ(n − k − l)]

= 2E[φ2(n − k)]
(

1 − E[φ(n − k)φ(n − k − l)]
E[φ2(n − k)]

)

(20)

Since E[φ2(n − k)] is the signal power, it is not related to the cancelation of
uK(n). From the above equation, if a correlation of uK(n−k) and uK(n−k− l),
that is E[φ(n − k)φ(n − k − l)]/E[φ2(n − k)] is close to 1, then S1(z) is well
cancelled at X1(z). Simulations in Sec.6.2, the correlation of h11(n) ∗ s1(n) and
h21(n) ∗ s1(n) is used to evaluate the cancelation of S1(z) at X1(z).

On the contrary, in the FF-BSS, the propagation delays in the mixing process
do not affect the source separation performance.

5.4 Effects of Fractional Propagation Delays

The propagation delay in the mixing process is not always an integer times of
the sampling period T = 1/fs. It may be sometime a fractional period. This
means the transfer functions Hji(z) in the mixing process cannot be expressed
by a rational function of z−1. On the other hand, the FIR filters used in the
separation block are implemented with the sampling frequency of fs = 1/T ,
and their transfer function are expressed by a power series of z−1. Therefore, if
the propagation delay is not an integer times of T , the FIR filter cannot realize
the inverse function of the mixing process, as a result, the source separation
performance is degraded. This point is also investigated through simulation.

6 Simulations and Discussions

6.1 Simulation Setup

2-channel and 3-channel models are used. Simulation results only for the 2-
channel model are demonstrated due to page limitation. The sampling frequency

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

176 A. Horita, K. Nakayama, and A. Hirano

z -τ

z -τ

H11

H12

H21

H22

S 1

S 2

X1

X2

Fig. 4. (Left) Spectrum of speech signal. (Right) Mixing process with delay difference.

is fs = 8kHz. White signals and speech signals, whose spectrum is shown in
Fig.4(Left), are used as the sources. Figure 4(Right) shows a mixing process.

The delay difference between Hjj(z) and Hji(z), j �= i is realized by τ . Two
kinds models for Hji(z) are used. One of them is an instantaneous mixing process
shown in Eq.(21) and the other is an approximately actual room environment.
The source separation is evaluated by the Signal-to-Interference Ratio (SIR [dB])
given by Eq.(24). Aki(z) is a transfer function from the ith signal source to the
kth output of the separation block.

H(z) =
[

1 0.9
0.9 1

]

(21)

σ2
s =

1
2π

N∑

i=1

∫ π

−π

|Aii(ejω)Si(ejω)|2dω (22)

σ2
i =

1
2π

N∑

k=1

N∑

i=1
�=k

∫ π

−π

|Aki(ejω)Si(ejω)|2dω (23)

SIR = 10 log10
σ2

s

σ2
i

[dB] (24)

6.2 Instantaneous and Propagation Delay Model

Figure 5 shows the SIR and the correlation by using Eq.(21) and the white
signal sources. ’Delay difference’ means τ in Fig.4. C12(z) has one sample delay
as shown in Fig.2(Right), the delay difference at X1(z) becomes τ + 125μs. The
cancelation of S1(z) at X1(z) should be evaluated by τ +125μs. The band width
of the white signal is 4kHz, and m = 2 as discussed in Sec.5.1. The interpolation
function is given by

φ(n) =
1
K

sin
(2π

2K n
)

2π
2K n

(25)

φ(n) takes zero at every K samples, which correspond to one sample with the
8kHz sampling frequency. Since the white signals are sampled by 8kHz, there is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analysis and Comparative Study of Source Separation Performances 177

Fig. 5. White signal sources. (Left) Correlation between h11(n) ∗ s1(n) and h21(n) ∗
s1(n). (Right) SIR with respect to τ .

no correlation between the samples. The correlation shown in Fig.5(Left) is also
similar to φ(n) given by Eq.(25). As described in Sec.5.1, the rule of thumb for
the delay difference, with which the condition(2) is satisfied, is the m/2 sample
delay, which is one sample delay under the 8kHz sampling frequency. Since C12(z)
and C21(z) include one sample delay, the condition(2) is satisfied by using τ=0.
However, the condition(1) requires τ ≥ one sample delay. Therefore, the SIR
converges to high level at τ=125μs. Like this, in the case of the white signals,
the condition(1) is dominant to achieve a high SIR. This situation is exactly the
same as Example 2 in Sec.5.1.

The SIR has peaks at every τ = 125μs. This is due to no correlation at these
points. Furthermore, the mixing process can be expressed as a rational function
of z−1, whose inverse function can be approximated by the separation block,
which is implemented with the 8kHz sampling frequency.

6.3 Convolutive and Propagation Delay Model

The mixing process similar to actual audio environment is used. Hji(z) have no
delay difference. The delay difference is also realized by τ in Fig.4.

Figure 6 shows simulation results for the speech signal sources. The correla-
tion becomes zero around 400μs. From the analysis in Sec.5.1, 125μs × (m/2) =
400μs, and m � 6.4. This is due to the frequency component of the speech
signals, which is mainly distributed under 8kHz/6.4� 1.25kHz as shown in
Fig.4(Left). The SIR is gradually increased until τ=350μs. The delay difference
at X1(z) becomes (350 + 125)μs = 475μs, which approximately corresponds to
m/2 sample delay difference. In this case, the condition(2) is dominant. This
case corresponds to Example 1 in Sec.5.1.

The SIR of the FF-BSS is not affected by the delay difference τ , and it is
almost constant with respect to τ .

The simulation results for the 3-channel model are almost similar to those of
the 2-channel model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

178 A. Horita, K. Nakayama, and A. Hirano

Fig. 6. Speech signal sources. (Left) Correlation between h11(n) ∗ s1(n) and h21(n) ∗
s1(n). (Right) SIR with respect to τ .

6.4 Delay Difference Based on Location of Signal Sources and
Sensors

A relation between the delay difference and location of the sources and the
sensors is investigated taking sound propagation time into account. A layout of
them shown in Fig.7(Left) is taken into account. Relations of the delay differences
and the layouts are shown in Fig.7(Right). The FB-BSS can provide better
performances with τ=125μs, which is generated by L2 = 5, 9, 25cm for (L1, D) =
(300, 100)cm, (100, 100)cm and (100, 300)cm, respectively.

LD 2
L
1

0 5 10 15 20
0

50

100

150

200

250

300

350

400

450

500

Distance between sensors L
2
 [cm]

D
el

ay
 d

if
fe

re
nc

e
τ

[μ
s]

L
1
=100cm D=100cm

L
1
=100cm D=300cm

L
1
=300cm D=100cm

Fig. 7. (Left) Layout of signal sources and sensors. (Right) Delay difference τ depend-
ing on layout of signal sources and sensors.

7 Conclusions

The source separation performance of the FB-BSS is theoretically analyzed based
on the propagation delay difference in the mixing process. It is determined by
two conditions, canceling the interferences and preserving the desired source,
which are highly dependent on the delay difference in the mixing process. Sim-
ulation results using white signal sources and speech signal sources support the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Analysis and Comparative Study of Source Separation Performances 179

theoretical analysis. Furthermore, a relation between the delay difference and
the layout of the sources and sensors is discussed. The layout conditions, which
are useful for the FB-BSS or the FF-BSS, are derived.

References

1. Nguyen Thi, H.L., Jutten, C.: Blind source separation for convolutive mixtures.
Signal Processing 45(2), 209–229 (1995)

2. Cichocki, A., Amari, S., Adachi, M., Kasprzak, W.: Self-adaptive neural networks
for blind separation of sources. In: Proc. ISCAS’96, Atlanta, pp. 157–161 (1996)

3. Amari, S., Chen, T., Cichocki, A.: Stability analysis of learning algorithms for blind
source separation. Neural Networks 10(8), 1345–1351 (1997)

4. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on
temporal structure of speech signals. Neurocomputing 41, 1–24 (2001)

5. Nakayama, K., Hirano, A., Horita, A.: A learning algorithm for convolutive blind
source separation with transmission delay constraint. In: Proc. IJCNN’2002, pp.
1287–1292 (May 2002)

6. Saruwatari, H., Takatani, T., Yamajo, H., Sishikawa, T., Shikano, K.: Blind separa-
tion and deconvolution for real convolutive mixture of temporally correlated acoustic
signals using SIMO-model-based ICA. In: ICA’03, pp. 549–554 (April 2003)

7. Horita, A., Nakayama, K., Hirano, A., Dejima, Y.: Analysis of signal separation
and signal distortion in feedforward and feedback blind source separation based
on source spectra. In: IEEE&INNS, Proc., IJCNN2005, Montreal, July-August, pp.
1257–1262 (2005)

8. Horita, A., Nakayama, K., Hirano, A., Dejima, Y.: A learning algorithm with dis-
tortion free constraint and comparative study for feedforward and feedback BSS.
In: Proc. EUSIPCO2006, Florence, Italy (September 2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean

Functions Using Constructive Feedforward
Neural Network

Marek Grochowski and W�lodzis�law Duch

Department of Informatics, Nicolaus Copernicus University,
Grudzia̧dzka 5, Toruń, Poland

grochu@is.umk.pl

Abstract. Learning problems with inherent non-separable Boolean
logic is still a challenge that has not been addressed by neural or kernel
classifiers. The k-separability concept introduced recently allows for char-
acterization of complexity of non-separable learning problems. A simple
constructive feedforward network that uses a modified form of the error
function and a window-like functions to localize outputs after projec-
tions on a line has been tested on such problems with quite good results.
The computational cost of training is low because most nodes and con-
nections are fixed and only weights of one node are modified at each
training step. Several examples of learning Boolean functions and results
of classification tests on real-world multiclass datasets are presented.

1 Introduction

Many algorithms and neural network architectures for learning parity problem
and other difficult Boolean functions were presented in [1,2,3,4,5]. These meth-
ods are suitable only for the parity problem and will not work for other complex
problems. Biological neural networks are able to solve quite complex learning
problems inherent in optimization of behavior or understanding linguistic pat-
terns. Finding general algorithm capable of solving a larger set of problems of
similar complexity as the parity problem is still a challenge. Sequential construc-
tive methods using computational geometry algorithms are the most promising
in this respect. Several interesting algorithms of this type, including the irregu-
lar partitioning, Carve, target switch, oil spot, and sequential window learning
algorithm, have been reviewed and compared in [6]. Most of them work only for
binary problems and therefore pre-processing using Gray coding is used.

As shown recently [7] complexity of classification problems may be charac-
terized by the concept of k-separability: the dataset x of points belonging to
two classes is called k-separable if a direction w exist such that k is the min-
imum number of intervals containing data from a single class after projection
on a line yi = xi · wi. For example, linearly separable two-class data points
form just two intervals (open-ended on left and right side), while the data that
cannot be linearly separated may require 3 or more intervals containing vectors

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 180–189, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean Functions 181

from a single class only. The n-bit parity problems require at least k = n + 1
intervals. This concept allows for precise characterization of the complexity of
learning. Although usually the smallest k is of interest sometimes higher k’s may
be preferred if the margins between projected clusters are larger, or if among k
clusters some have very small number of elements. Problems that may be solved
by linear projection on at least k-clusters belonging to alternating classes are
called k-separability problems [7]. For the parity k = n + 1 is sufficient and it
is quite likely (although it has not been proven) that all Boolean functions may
be learned using linear projection on no more than n + 1 intervals.

The difficulty of learning Boolean functions grows quickly with the minimum
k required to solve a given problem. Linear (2-separable) problems are quite sim-
ple and may be solved with linear SVM or any other variant of LDA model. Ker-
nel transformations may convert some data distributions into linearly separable
distributions in higher dimensional space. This strategy does not work for parity-
like and other difficult Boolean functions, with virtually no generalization from
learned examples. Gaussian-based kernels set each data point as a separate sup-
port vector, and in case of parity all points have closest neighbors from the oppo-
site class. Nearest neighbor methods and decision trees have the same problem,
linear methods fail completely while multilayer perceptrons, although in princi-
ple may be used [1,2,3,4,5], in practice require special network architectures and
convergence of the learning procedure is almost impossible to achieve. As already
shown in [8] (see also [9,10]) some problems require at least O(n2) parameters us-
ing networks with localized functions and only O(n) parameters when non-local
functions are used. The n-parity problem may be trivially solved using a periodic
function with a single parameter [7] while the multilayer perceptron (MLP) net-
works need O(n2) parameters and learn it only with great difficulty.

For many complicated problems often a simple linear mapping exists that
leaves only trivial non-linearities that may be separated using window-like neu-
rons. For example XOR, the simplest non-linearly separable problem, is solved
by a network with one node implementing window-like transfer function:

M̃i(x; w, a, b) =
{

1 if wx ∈ [a, b]
0 if wx /∈ [a, b] (1)

This function is suitable for learning all 3-separable data, and the number of
such Boolean functions for 3 or more bits is much greater than of the linearly
separable functions [7]. There are many advantages of using window-type func-
tions in neural networks, especially in difficult, highly non-separable classification
problems [8].

Problems requiring k = 3 are already slightly more difficult for non-local
transformations (for example MLPs) and problems with high k quickly become
intractable for general classification algorithms. Although some k-separable
problems may also be solved using complex models it is rather obvious that
simplest linear solutions, or solutions involving smooth minimal-complexity non-
linear mappings combined with interval non-linearities, should show better gen-
eralization and such solutions should be easier to comprehend.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

182 M. Grochowski and W. Duch

An initial data transformation by the hidden layer may create an image of the
data that projected on some direction w will produce pure clusters of samples
that belong to a single class and can be easily separated from vectors from the
opposite class. Unfortunately the standard learning algorithm cannot be used
because it is not known a priori to which interval a given vector should be
assigned, so labels cannot be used directly as targets for learning. In this paper
a simple and fast network with constructive algorithm and hidden nodes with
transfer functions of type (1) is proposed to solve this problem. This network
is described in the next section, and the Section 3 contains some experimental
results on learning the parity problem and other difficult Boolean functions.
Some cross-validation test results on benchmark multiclass problems are also
presented.

2 The Network Architecture and Training

Different neural network approaches may be used to search for k-separable so-
lutions [7,11]. For difficult Boolean functions what is needed is a combination of
projection and clustering, with localized functions capturing interesting clusters
in projections. For 3-separable two-class problems the transformation provided
by the network should lead to 3 intervals: [−∞, a], [a, b], [b, +∞] to −1, +1, −1
values. This may be implemented using a single transfer function of type (1) that
separates instances from the interval [a, b] from the rest, grouping vectors from
a single class into a cluster. For backpropagation algorithm (and other gradi-
ent descent based methods) soft windowed-type functions should be used. Many
types of transfer functions can be used for realization of (1) (for taxonomy of a
neural transfer functions see [12], [8]). For example, the bicentral function may
be used in a product form:

Mi(x; w, t, a, β) = σ(β(wx − t − a))(1 − σ(β(wx − t + a))

or taken as a difference of two sigmoidal functions:

Mi(x; w, a, b, β) = σ(β(wx − a)) − σ(β(wx − b))

.
These two functions differ for b < a, with the second one producing negative

output M(b < a) < 0. This property may be useful for “unlearning” instances
misclassified by previous hidden nodes. Hard-window type function (1) is ob-
tained by setting large value of the slope β of sigmoidal functions at end of the
learning process.

Mi(x; Γi)
β→∞−→ M̃i(x; Γi)

or by introduction of an additional threshold parameter:
M̃i(x; Γi) = sgn (Mi(x; Γi) − ti). An interesting new window-type function that
may be used as a transfer function is:

Mi(x; w, a, b, β) =
1
2
(
1 − tanh(β(wx − a)) tanh(β(wx − b))

)
. (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean Functions 183

It is easy to show that for all possible values of β there is M(wx = b) =
M(wx = a) = 0.5. Hence the interval boundaries during the learning phase,
when the slope β is small, are exactly the same as boundaries taken when the
value of β reaches large values – in the bicentral function case interval boundaries
for β → ∞ may be different than [t − a, t + a].

For more complex problems (k > 3) the network with weight sharing based
on several such nodes may be used. A standard network with window functions
should minimize an error measure:

E(x; Γ) = Ex||y(x; Γ) − c(x))|| (3)

where y(x; Γ) is network output, c(x) ∈ {0, 1} denote class of given vector x and
Γ is a set of all parameters that are changed during training (weights, biases,
etc.). This expectation is calculated over all vectors, and any norm may be used,
including the most popular mean square error or cross entropy measures. The
minimum is reached for parameters Γ and if we could find good solution for the
whole network the problem would be solved. For complex problems (larger k) this
would require global minimization. This form of error does not give any control
over purity of the clusters, but adding for each hidden node with window-like
transfer function an extra term:

E(x; Γ ; a, b, λ) = Ex||y(x; Γ) − c(x))|| + λEy∈[a,b]||y(x; Γ) − c(x))|| (4)

will allow to get minimum error for a pure cluster, with λ controlling the tradeoff
between the covering and the purity. This approach requires constructive net-
work, with nodes trained one at a time. All experiments described below were
done with the following error function:

E(x; Γ, λ1, λ2) =
1
2

∑

x

(y(x; Γ) − c(x))2 +

+λ1

∑

x

(1 − c(x))y(x; Γ) − λ2

∑

x

c(x)y(x; Γ) (5)

First term in (5) is the standard mean square error (MSE) measure, second
term with λ1 (penalty factor) increases the total error for vectors xi from class
c(xi) = 0 that falls into group of vectors from class 1 (it is a penalty for ”unclean”
clusters), third term with λ2 (reward factor) decreases the value of total error
for every vector xi from class 1 that was correctly placed inside created clusters
(it is a reward for large clusters).

The network used here has one hidden layer and one sigmoidal or linear node
in the output layer; it’s architecture is shown in Fig. 1.

All connection weights between the output and the hidden layer have fixed
strength 1, simply summing the outputs filtered through the window functions.
Every hidden node should separate a large group of vectors from class c = 1. The
weight sharing requirement to obtain linear projections may relaxed, allowing
different projection directions for different neurons, although initialization from

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

184 M. Grochowski and W. Duch

M̃1 M2

y

1 1

x

Fig. 1. Example of a network with two hidden neurons. Only parameters of the second
node are adapted (dotted line), the first node M1 has been frozen with large value of β.

the same direction may frequently need to linear k-separable solution. Learn-
ing starts with an empty hidden layer and in every phase of the training one
new unit is added, initialized and trained using the backpropagation algorithm
until convergence is reached. Weight sharing is not used to allow for different
projections that may lead to partially overlapping clusters. Node weights are
initialized with small random values, while biases a and b (for sigmoidal type
of neurons) are estimated using a = (wx)min + 1

3 |(wx)max − (wx)min| and
b = (wx)min + 2

3 |(wx)max − (wx)min|. The input vectors correctly handled
by the first neuron do not contribute to the error, therefore the weights of this
neuron are kept frozen during further learning. Next node is added and learning
procedure is repeated on the remaining data. If number of cases correctly classi-
fied by a given new node drops below certain minimum the learning procedure
stops and this node is removed from the network.

3 Results

Reward and Penalty. There are 65536 possible 4 dimensional Boolean func-
tions and 192 of them are 6-separable functions [7]. The remaining functions
are k-separable with k < 6. Hence for learning this functions at least 2 hidden
nodes of type (1) are needed. The network have been applied to 192 functions
that are 6-separable, using various values of λ1 and λ2. Figure 2 shows the effect
of reward and penalty on average error, the number of learning cycles and the
numbers of nodes needed in the final network to find a perfect solution. While
reward λ2 grows the error becomes larger. Penalty factor has less drastic influ-
ence on error, only for values close to zero the error slightly grows but for almost
all λ1 there was no training error. By increasing the penalty factor the learning
procedure becomes slower, more cycles are needed for convergence. Reward and
penalty factors effect also the complexity of evolved network architecture. With

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean Functions 185

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
penalty 0

 0.1
 0.2

 0.3
 0.4

 0.5
 0.6

 0.7
 0.8

 0.9

reward

 0

 1

 2

 3

 4

 5

 6

error (average)

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

penalty

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

reward

 200
 250
 300
 350
 400
 450
 500
 550
 600
 650

cycles (average)

 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

penalty

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

reward

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2
 2.4
 2.6
 2.8

 3

neurons (average)

Fig. 2. Influence of penalty and reward factor on error (left), number of cycles (right)
and number of neurons (bottom)

small values of λ1 and λ2 the network ends with more neurons to achieve perfect
solution. For values of penalty and reward λ1 ∈ [0.4, 0.8] and λ2 ∈ [0.1, 0.3] the
network makes no mistakes, the convergence is fast and the network needs less
neurons than the network without additional penalty and reward terms. Hence
for further experiments λ1 = 0.5 and λ2 = 0.2 was taken.

Parity. Many models were presented to handle parity problem [1,2,3] but these
models cannot be applied to other problems of similar complexity. Our network
has easily learned all parity problems with dimensions less then 8, producing a
very simple model in a small number of trials (initializations). For functions with
higher dimension greater number of network initializations are needed to find the
best solution (lowest k, with smallest number of clusters). In most cases weights
of a single hidden unit converges to direction parallel to diagonal of n-dimension
hypercube. Input vectors projected on this direction for parity problem gives
well separated clusters of ones and zeros, thus this direction seems to be the
desired solution. First hidden unit usually finds the largest cluster of ones. For
example for the 6-dimensional parity problem projection of data on diagonal
direction gives the following order of labels:

0111111000000000000000111111111111111111110000000000000001111110
The line placed above the middle sequence of 1 shows the range of interval
[a, b] created by the first hidden node. Next node tries to find another direction
and similar interval that contain remaining vectors from class 1. Projection on

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

186 M. Grochowski and W. Duch

weights of the second and the third hidden neuron give

1000001111111111000000000001111111111000000000001111111111000001
0111110000000000111111111100000110000011111111110000000000111110.

This is not k-separability solution as the projection directions were not aligned
by weight sharing. With the increased dimension of the problem complexity
of created network grows and the correct solution are harder to find. This is
presented in Fig 3 where results of the training on parity problems are compared
with results obtained for parity-like functions created from the parity function
by perturbation of a few labels, and for the randomly generated labels with a
probability p(C = 1|x) = 0.5 for a given vector x. Results were averaged over
100 randomly generated Boolean functions. While optimal solutions for some
parity functions have not been found increasing the number of initializations
should eventually find it.

In [6] sequential constructive methods based on computational geometry al-
gorithms have been applied to the parity problems up to 9 bits. Computational
time for all of them grows exponentially with the size of the problem. Most algo-
rithms need a large number of neurons and may not generalize well. The sequen-
tial window learning algorithm was able to find models of minimal complexity.
This algorithm also uses window-like neurons, but works only for binary data and
employs learning algorithm based on computational learning techniques. While
a detailed comparison of our approach with sequential constructive methods is
certainly worthwhile the lack of software implementations for these methods
makes such comparison a longer-term project.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16

ac
cu

ra
cy

dimension

parity
parity with 5% perturbation

average over 100 random functions
 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16

ne
ur

on
s

dimension

parity
parity with 5% perturbation

average over 100 random functions

Fig. 3. Influence of dimensionality on the average training accuracy (left) and the
average number of neurons (right) for some Boolean problems

Monk 1 Problem. The three monk problems are artificial, small problems de-
signed to test machine learning algorithms [13]. The task is to determine whether
an object described by six symbolic features is “a monk” or not. The first prob-
lem defines “being a monk” as having the head shape = body shape, or jacket
color = red, independent of the value of other features. There are 432 combi-
nations of the 6 symbolic attributes, and for the first problem 124 cases were

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean Functions 187

Table 1. Accuracy of the 10x10CV tests. Network parameters are λ1 = 0.5 , λ2 = 0.2.

dataset 1-NN Naive Bayes SVM c3sep

Appendicitis 81.3±1.5 85.3±1.0 86.5±0.3 85.3±1.0

Australian 78.0±0.2 80.0±0.3 85.0±0.1 86.3±0.6

Flag 50.1±1.1 41.1±1.1 51.1±1.1 53.6±1.8

Glass 68.2±1.7 47.4±1.7 66.7±0.9 61.1±1.3

Ionosphere 85.2±1.2 82.2±0.2 85.2±0.2 85.1±1.5

Iris 95.9±0.5 94.9±0.2 95.5±0.3 95.7±1.0

Pima-diabetes 70.5±0.5 75.2±0.5 70.3±1.0 76.3±0.4

Promoters 78.5±1.8 85.81±1.3 93.1±1.5 74.7±5.6

Sonar 86.8±1.8 67.8±1.2 84.2±1.1 77.9±2.4

Wine 95.1±0.8 98.1±0.3 95.1±0.2 97.1±0.8

Table 2. Average number of hidden neurons created in the 10x10CV classification
test, and the number of support vectors used by SVM

support
vectors

neurons
(total) average number of neurons per class

Appendicitis 32.1 4.2 2.2 2.0
Australian 207.2 8.8 4.5 4.3

Flag 315.2 26.7 5.1 6.1 4.0 2.1 2.7 3.6 1.1 1.6
Glass 295.8 14.0 1.4 3.9 1.0 2.8 1.9 2.8

Ionosphere 63.9 7.9 3.0 4.9
Iris 43.4 5.0 1.0 2.0 2.0

Pima-diabetes 365.3 9.1 4.2 4.8
Promotores 77.2 3.69 1.91 1.78

Sonar 109.7 8.5 4.5 4.0
Wine 63.3 4.0 1.0 2.0 1.0

randomly selected for the training set. In [14] an MLP network solution of this
problem requiring 4 neurons has been presented. Our network required only two
window-like neurons to learn this problem and achieved 100% accuracy on the
test. Among sequential constructive methods only the sequential window learn-
ing algorithm with Hamming clustering has correct solution, but this required
conversion of 6 symbolic features to 15 binary ones.

Real World Problems. Creation of a separate network classifier for each class
of data allows to handle real-world multi-class datasets. The classification test was
performed on a few datasets obtained from UCI repository [15]. Three other well
known classifiers were used for comparison of results. Table 3 presents averaged
results over 10 runs of 10-fold cross-validation tests. Accuracy of our networks is
listed in the last column of the table called “c3sep”. Every node in the hidden layer
was initialized 10 times and the data was normalized before training.

Table 2 shows the number of neurons that were created for a given datasets for
each of the classes. For most datasets the network was able to find very simple

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

188 M. Grochowski and W. Duch

solutions with only a few neurons, achieving quite good accuracy, comparable to
much more complex systems. It should be stressed that the goal here is to find
the simplest model, not the highest accuracy solution. The number of support
vectors for SVM models with comparable accuracy is much higher.

4 Discussion and Further Work

The approach presented here has been able to learn quite difficult Boolean func-
tions using a very simple model. Other learning systems, such as SVMs, decision
trees or similarity-based methods (including RBF networks) cannot deal with
such problems. There is a widespread belief that neural networks and kernel
classifiers, being universal approximators, should be able to learn any difficult
problem. They may learn it but will not be able to generalize, turning them-
selves into look-up tables, because they do not use the correct underlying model
to represent data.

The error function Eq. 5 with additional penalty and reward terms used to
train the constructive network shows more advantages when dealing with com-
plex logical problems. For many benchmark classification problems linear solu-
tions are almost optimal and there is not much to be gained. Small computational
costs of the constructive network training are a great advantage and allow for
exploration of many models created from different initializations, enabling search
for the simplest models (in the k-separability sense) that can solve the problem.
Results obtained for the parity problem and the real-world data are encouraging,
although the real power of solutions based on k-separability targets for learning
should be seen only for data with inherent complex logics, such as those arising
from the natural language processing and problems in bioinformatics (in prepa-
ration). The ability to solve such problems should open the door to many new
applications.

Efficient learning of Boolean functions of high complexity (large k) is still a
great challenge, although first steps towards this goal have been made here. Sub-
stitution of back-propagation learning by global minimization algorithms may
lead to better results for complex functions with large number of bits. One dis-
advantage of the present approach based on constructive network architecture
with modified error function is that the network is forced to create pure clusters
only for vectors from class c(x) = 1, while for many Boolean problems a better
solution may be obtained by looking for clusters of both classes simultaneously.
Another approach to improve learning is by additional transformation of input
data before training, for example extracting new features using the kernel func-
tions approach and adding them to the original dataset. The network trained on
such data should be able to choose original or transformed features of the data.
Many more ideas and applications are being currently explored.

Acknowledgments. We are grateful for the support by the Polish Committee
for Scientific Research, research grant 2005-2007.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Learning Highly Non-separable Boolean Functions 189

References

1. Iyoda, E., Nobuhara, H., Hirota, K.: A solution for the n-bit parity problem using
a single translated multiplicative neuron. Neural Processing Letters 18(3), 233–238
(2003)

2. Stork, D.G., Allen, J.: How to solve the n-bit parity problem with two hidden units.
Neural Networks 5, 923–926 (1992)

3. Wilamowski, B., Hunter, D.: Solving parity-n problems with feedforward neural
network. In: Proc. of the Int. Joint Conf. on Neural Networks (IJCNN’03), Port-
land, Oregon, vol. I, pp. 2546–2551. IEEE Computer Society Press, Los Alamitos
(2003)

4. Sahami, M.: Learning non-linearly separable boolean functions with linear thresh-
old unit trees and madaline-style networks. In: National Conference on Artificial
Intelligence, pp. 335–341 (1993)

5. Liu, D., Hohil, M.E., Smith, S.H.: N-bit parity neural networks: new solutions
based on linear programming. Neurocomputing 48, 477–488 (2002)

6. Muselli, M.: Sequential constructive techniques. In: Leondes, C. (ed.) Optimization
Techniques of Neural Network Systems, Techniques and Applications, vol. 2, pp.
81–144. Academic Press, San Diego, CA (1998)

7. Duch, W.: k-separability. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.)
ICANN 2006. LNCS, vol. 4131, pp. 188–197. Springer, Heidelberg (2006)

8. Duch, W., Jankowski, N.: Survey of neural transfer functions. Neural Computing
Surveys (1999)

9. Bengio, Y., Delalleau, O., Roux, N.L.: The curse of highly variable functions for
local kernel machines. Advances in Neural Information Processing Systems 18,
107–114 (2006)

10. Bengio, Y., Monperrus, M., Larochelle, H.: Non-local estimation of manifold struc-
ture. Neural Computation 18, 2509–2528 (2006)

11. Duch, W.: Towards comprehensive foundations of computational intelligence. In:
Duch, W., Mandziuk, J. (eds.) Challenges for Computational Intelligence, Springer,
Heidelberg (2007) (in print)

12. Duch, W., Jankowski, N.: Taxonomy of neural transfer functions. In: International
Joint Conference on Neural Networks, Como, Italy, vol. III, pp. 477–484. IEEE
Computer Society Press, Los Alamitos (2000)

13. S.T., et al.: The monk’s problems: a performance comparison of different learning
algorithms. Technical Report CMU-CS-91-197, Carnegie Mellon University (1991)

14. Duch, W., Adamczak, R., Gra̧bczewski, K.: A new methodology of extraction,
optimization and application of crisp and fuzzy logical rules. IEEE Transactions
on Neural Networks 12, 277–306 (2001)

15. Merz, C., Murphy, P.: UCI repository of machine learning databases (1998-2004),
http://www.ics.uci.edu/∼{}mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/~{}mlearn/MLRepository.html

A Fast Semi-linear Backpropagation Learning

Algorithm

Bertha Guijarro-Berdiñas, Oscar Fontenla-Romero, Beatriz Pérez-Sánchez,
and Paula Fraguela

Facultad de Informática, Universidad de A Coruña, Campus de Elviña 5, 15071 A
Coruña, Spain

Abstract. Ever since the first gradient-based algorithm, the brilliant
backpropagation proposed by Rumelhart, a variety of new training algo-
rithms have emerged to improve different aspects of the learning process
for feed-forward neural networks. One of these aspects is the learning
speed. In this paper, we present a learning algorithm that combines linear-
least-squares with gradient descent. The theoretical basis for the method
is given and its performance is illustrated by its application to several
examples in which it is compared with other learning algorithms and
well known data sets. Results show the proposed algorithm improves the
learning speed of the basic backpropagation algorithm in several orders
of magnitude, while maintaining good optimization accuracy. Its perfor-
mance and low computational cost makes it an interesting alternative
even for second order methods, specially when dealing large networks
and training sets.

1 Motivation

Among the many variants of neural network architectures that exist, feed-
forward neural networks, and particular those based on the MultiLayer Per-
ceptron (MLP), are one of the most popular models with successful applications
in many fields. It is well-known that the power of these networks comes from
having several layers of adaptive weights and nonlinear activation functions such
as the sigmoid or hyperbolic tangent. Moreover, usually the performance of a
network is evaluated with the sum-of-squares error function that compares the
network’s output with a desired signal. Under these circumstances there is not a
closed-form solution to find the weight values that minimizes the sum-of-squares
error function [9]. Therefore the usual approach is to use the derivatives of the
error function with respect to the weight parameters in gradient-based optimiza-
tion algorithms for finding the minimum of the error function.

Ever since the first gradient-based algorithm, the brilliant backpropagation
proposed by Rumelhart [1], a variety of new training algorithms have emerged
to improve different aspects of the learning process for feed-forward neural net-
works. One of these aspects is the learning speed (i.e, the velocity during learning
towards the convergence to the minimum error), which is generally slow. Some

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 190–198, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Fast Semi-linear Backpropagation Learning Algorithm 191

of the newly proposed algorithms that try to improve this aspect are modifica-
tions of the classic backpropagation such as adding a momentum term [1,2], an
adaptive step size [3] or using stochastic learning [4].

Others are second order methods that use the second derivatives of the error
function. Some of the most relevant examples of these types of methods are the
quasi-Newton, Levenberg-Marquardt [5] and the conjugate gradient algorithms
[6]. Although second order methods are among the fastest learning algorithms,
they are not practical for large neural networks trained in batch mode due to
their computational cost.

Finally, it is also possible to find methods based on linear least-squares
[7,8,9,10,11]. These methods are mostly based on measuring the error of an
output neuron before the nonlinear transfer function instead of after it, as is the
usual approach. Usually, they are proposed as initialization methods for multi-
layer networks or as training methods for one-layer networks.

Specifically, in [10] a method is described to solve a one-layer non-linear neu-
ral network using linear least squares. In this paper, we extend this approach
to networks consisting of multiple layers of weights (MLPs) by using the al-
gorithm in [10] for the output layer and optimizing the preceding layers using
gradient descent. As a consequence, we improve the learning speed of the basic
backpropagation algorithm in several orders of magnitude, while maintaining its
optimization accuracy.

In section 2, the method for learning the weights of the network is presented.
Section 3 compares the performance of the proposed method with some other
well-known training methods. In Section 4 these results are discussed. Finally,
section 5 offers some conclusions and recommendations.

2 The Proposed Algorithm

Without loss of generality, in this article we will consider a two-layer MLP like
the one shown in Fig. 1 with the variable names described below.

Constants I, K, J and S denote respectively, the number of inputs, hidden
units, outputs and training samples. Each layer of the network consists of a
linear matrix W(n) of weights w

(n)
ji connecting neuron j in layer n with neuron

i in layer n − 1, thus the superscript n = 1, . . . , N is used to refer to each layer.
These weight matrices are followed by nonlinear mappings f

(n)
j , usually chosen

to be sigmoid-type functions.
The input vectors to each layer n of the MLP are represented by x(n). Notice

that the bias of each layer has been incorporated into the weight matrix by
adding constant inputs x

(n)
0s = 1, ∀n.

In addition, for all j = 1, ..., J ; s = 1, ..., S, we will denote by zjs the inputs
to the non-linearities of the output layer; yjs the real output produced by the
network, and by djs the desired response provided in the training set. Finally,
in the following we will consider the MSE between the real y and the desired
output d of the network as the training optimization criterion.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

192 B. Guijarro-Berdiñas et al.

linear subnetwork

fK
(1)

f2
(1)

f1
(1)w ki

(1)

f1
(2)

fJ
(2)

x1s
(1)

x0s
(1)=1

xIs
(1)

y1s

yJs

w jk
(2)x1s

(2)

x2s
(2)

xKs
(2)

+

+

+

+

+

x0s
(2)=1

d1s

dJs

z1s

zJs

Fig. 1. Architecture of a two-Layer MLP

2.1 One-Layer Linear Learning

Take, for instance, the one-layer neural network corresponding to the shadowy
part of Fig. 1. In [10,11,12], the authors considered the approximate least squares
optimization of a one-layer nonlinear network assuming the MSE before the
nonlinearity as the criterion to be optimized by means of the following theorem:

Theorem 1. Minimization of the MSE between d and y at the output of the
nonlinearity f is equivalent (up to first order) to minimizing a MSE between z
and d̄ = f−1(d), where the inverse function is evaluated at each entry separately.
Mathematically, this is given by

min
W

S∑

s=1

J∑

j=1

(

fj

(
K∑

k=0

wjkxks

)

− djs

)2

≈ min
W

S∑

s=1

J∑

j=1

(
K∑

k=0

wjkxks − f
(−1)
j (djs)

)2

.

() (1)

According to this new error criterion the weights can be optimized by solving a
system of J × S linear equations defined by:

∂MSE

∂wjp
= 2

S∑

s=1

(
K∑

k=0

wjkxks − f
(−1)
j (djs)

)

xps = 0; p = 0, 1, . . . , K; ∀j .

(2)
The use of this system presents two main advantages: 1) the global optimum

of the training set is obtained, and 2) there is a considerable savings in training
time with respect to other gradient-based optimization techniques.

2.2 Combining Linear and Non-linear Learning

Theorem 1 can be used as a basis to provide the desired signal before the non-
linearity for every layer of the network and, therefore, linearly find the optimal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Fast Semi-linear Backpropagation Learning Algorithm 193

weights for each layer. However, such an algorithm can only be used as an ini-
tialization method and not as a learning method. The reason is that it would
calculate the weight matrices independently for each layer, and therefore it would
jump from one region to another of the weight space instead of smoothly con-
verging to the solution [12]. The problem arises when both nonlinear layers must
be optimized at the same time.

As an alternative, in this research, only the last layer of the network is op-
timized using the linear method previously described whereas the other layers
are optimized using a standard backpropagation gradient descent with momen-
tum and an adaptive learning rate. The proposed algorithm for a multilayer
feedforward neural network is as follows:

Step 1: Set the initial weights W(n)∀n.
Step 2: Using the current weights, propagate the signal forward to calculate the
outputs of each layer.
Step 3: Evaluate the value of the MSE between y and d and calculate the
gradient of the network’s performance with respect to its weights, that is, δ

(n)
jp =

∂MSE

∂w
(n)
jp

, ∀j, p, n.

Step 4: Convergence checking. If |MSEprevious−MSE| < ε or ||δ|| < ε′ stop and
return the weights1 The constants ε and ε′ are thresholds to control convergence.
Step 5: Obtain the adjustment of each weight according to the gradient descent
with momentum, i.e.:

Δw
(n)
jp (t) = μ×Δw

(n)
jp (t−1)+ρ× (1−μ)× δ

(n)
jp ; n = 1, . . . , N −1; ∀j, p (3)

where μ is the momentum constant, and ρ is the learning rate.
Step 6: Evaluate the value of MSE′ (MSE between z and d̄) and update W(N)

using the linear system of equations in 2.
Step 7: Update the weights of the hidden layers W(n), n = 1, . . . , N−1 according
to the increments calculated in Step 5:

W (n) = W (n) + ΔW (n), n = 1, . . .N − 1 (4)

Step 8: Adapt the learning rate ρ and continue from Step 2.

3 Experimental Results

In this section the proposed method (newGDX) is illustrated by its applica-
tion to two system identification problems of different size, and its performance
is compared with four popular learning methods. Two of these methods are of
complexity O(n): the gradient descent (GD) and the gradient descent with adap-
tive momentum and step sizes (GDX), in which the proposed method is based.
The other two methods are the scaled conjugated gradient (SCG) (complexity
of O(n2)), and the Levenberg-Marquardt (LM) (complexity of O(n3)).
1 Some other stopping criteria are allowed such as a maximum time or number of

training epochs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

194 B. Guijarro-Berdiñas et al.

For each experiment all the learning methods shared the following conditions:

– They were carried out in MATLAB R©.
– The logistic function was used for hidden neurons, while for output neurons

the linear function was used.
– The input data set was normalized.
– Each experiment was repeated five times, using a different set of initial

weights for each one. This initial set was the same for all the algorithms,
and was obtained by the Nguyen-Widrow [13] initialization method.

3.1 K.U. Leuven Competition Data

In this case, we compare the algorithms over a small size problem. The K.U. Leu-
ven time series [14] prediction competition data were generated from a computer
simulated 5-scroll attractor, resulting from a generalized Chua’s circuit which is
a paradigm for chaos. The aim of the neural network is to predict the current
sample using only 4 previous data points. For this problem a 4-8-1 topology
was used. The number of available training patterns was 2000 and the learning
process was allowed to run for a maximum of 3000 epochs.

In this case, the experiments were run on a 2.60GHz Pentium 4 processor
with 512MB of RAM memory.

Fig. 2a shows the mean MSE training error curves obtained by each of the
tested methods for the 5 simulations. As can observed, already in the second
epoch the proposed method obtains an error very close to its minimum. Also,
in Fig. 2b are shown the box-whisker plots corresponding to the minimum MSE
values obtained by each method during training. In this graphic the box corre-
sponds to the interquartile range, the bar inside the box represents the median,
the whiskers extend to the farthest points that are not outliers, and outliers are
represented by the plus sign.

Also, in table 1 some performance measures are shown that allows for the
comparison of the algorithms. The first column (M1) measures corresponds to
the MSE of each method at the 2nd epoch of training. The second column (M2)
is the number of epochs it takes the other methods to obtain the MSE that the
newGDX algorithm exhibits at the 2nd epoch. As these measures are calculated
over the 5 simulations they all are provided in terms of mean and corresponding
standard deviation.

Finally, table 2 shows the mean time Tepochmean (in seconds) per epoch of ev-
ery algorithm. The Ratio column contains the relation between the Tepochmean

of each algorithm and the one proposed.

3.2 Lorenz Time Series

In this second experiment, the Lorenz Time Series [15] corresponding to a system
with chaotic dynamics was employed to test the algorithm over a large size
problem. In this case, the goal of the network is to predict the current sample
based on the eight previous samples. For this data set a 8-100-1 topology was

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Fast Semi-linear Backpropagation Learning Algorithm 195

10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

epoch

m
ea

n
M

S
E

GD

GDX

NewGDX

SCGLM

(a) Mean MSE training error curves.

GD GDX newGDX SCG LM
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

M
S

E

(b) Boxplot of the minimum MSE values
obtained during training.

Fig. 2. Results of the learning process for the K.U. Leuven Competition Data

Table 1. Performance measures for the K.U. Leuven Competition Data

Algorithm M1 M2

GD 1.53 ± 2.07 NaN1

GDX 1.09 ± 1.42 504 ± 489
newGDX 2.72 × 10−4 ± 2.24 × 10−4 2 ± 0
SCG 1.10 × 10−1 ± 1.03 × 10−1 31.1 ± 21.5
LM 6.88 × 10−2 ± 1.03 × 10−1 4.70 ± 1.30

1 Not a Number: the algorithm never reaches this minimum along the 1000 iterations

used. It is important to remark here that the objective was not to obtain the
network’s topology that best solves the problem, but rather, to deal with large
networks. Also, 150000 samples were employed for the learning process. In this
case, and due to the large size of both the data set and the neural networks,
the number of iterations was reduced to 1000. Neither the GD nor the LM
methods were used. The results of the GD will not be presented because the
method performed poorly, and the LM is impractical in these cases as it is
computationally highly demanding.

In this case, the experiments were run on a Compaq HPC 320 with an Alpha
EV68 1 GHz processor and 4GB of memory.

Fig. 3.2 shows the mean MSE training error curves obtained by each of the
tested methods for the 5 simulations. As can observed, in this case the proposed
method obtains an error very near to its minimum around the 20th epoch. Fig.
3.2 shows the boxplot corresponding to the minimum MSE values obtained by
each method during training.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

196 B. Guijarro-Berdiñas et al.

Table 2. CPU time comparison for the K.U. Leuven Competition Data

Algorithm Tepochmean Tepochstd Ratio

GD 0.0140 1.05 × 10−2 0.96
GDX 0.0147 1.50 × 10−2 1.01
newGDX 0.0146 1.12 × 10−2 —
SCG 0.0276 1.18 × 10−2 1.89
LM 0.0402 1.22 × 10−2 2.75

10
0

10
1

10
2

10
3

10
−15

10
−10

10
−5

10
0

10
5

epoch

M
ea

n
M

S
E

GDX

SCG

newGDX

(a) Mean MSE training error curves.

GDX newGDX SCG

10
−10

10
−8

10
−6

10
−4

M
S

E

(b) Boxplot of the minimum MSE values
obtained during training.

Fig. 3. Results of the learning process for the Lorenz Time Series

Table 3. Performance measures for the Lorenz Time Series

Algorithm M1 M2

GDX 5.61 ± 1.70 NaN
newGDX 1.83 × 10−10 ± 2.24 × 10−10 18.8 ± 1.64
SCG 4.26 × 10−2 ± 1.98 × 10−2 NaN

Also, in table 3 the M1 and M2 performance measures are shown that allows
the comparison of the algorithms. In this case, they refer to the 20th epoch of
training.

Finally, table 4 shows the mean time (in seconds) per epoch of every algorithm.

4 Discussion

From Figs. 2 and 3 we can see that the proposed method obtains its minimum
error (or an approximate one) at a very early epoch. Regarding its accuracy,
it improves the one exhibited by the first order methods in which it is based.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Fast Semi-linear Backpropagation Learning Algorithm 197

Table 4. CPU time comparison for the Lorenz Time Series

Algorithm Tepochmean Tepochstd Ratio

GDX 9.75 0.04 —
newGDX 10.03 0.06 1.03
SCG 21.01 0.63 2.15

Although in the Leuven experiments the second order methods overcome the
proposed one, it is important to notice what happens when the size of the prob-
lem increases, like in the Lorenz experiment. In this case, the Scale Conjugate
Gradient would probably need much more training time, and the Levenberg-
Marquardt algorithm is not directly applicable due to its high computational
request.

Also from tables 1 and 3, it can be concluded that when our method reaches
an error value near its minimum the other algorithms are in a minimum several
orders of magnitude higher. In the Leuven experiment, as shown by measure
M2, only the Levenberg-Marquardt can quickly reach (and even improve) the
proposed algorithm. This is not the case in the Lorenz experiment where none
reach our minimum along the 1000 iterations used. This conclusion, together
with the short time per epoch needed by the proposed method, as shown in
tables 2 and 4, definitely makes it a fast learning algorithm.

5 Conclusions and Future Work

The analyzed results allow us to confirm that the proposed method offers an
interesting combination of speed, reliability and simplicity. Although on occa-
sions its accuracy is improvable, it generally obtains good approximations that
even overcome those provided by classic or second algorithms. These features
makes the proposed algorithm suitable for those situations when the speed of
the method is important in reaching a good solution, although it might not be
the best one.

Acknowledgements

We would like to acknowledge support for this project from the Xunta de Galicia
(project PGIDT05TIC10502PR). Also, we thank the Supercomputing Center of
Galicia (CESGA) for allowing us the use of the high performance computing
servers.

References

1. Rumelhart, D.E., Hinton, G.E., William, R.J.: Learning representations of back-
propagation errors. Nature 323, 533–536 (1986)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

198 B. Guijarro-Berdiñas et al.

2. Vogl, T.P., Mangis, J.K., Rigler, A.K., Zink, W.T., Alkon, D.L.: Accelerating
the convergence of back-propagation method. Biological Cybernetics 59, 257–263
(1988)

3. Jacobs, R.A.: Increased rates of convergence through learning rate adaptation.
Neural Networks 1(4), 295–308 (1988)

4. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient BackProp. In: Orr,
G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524,
Springer, Heidelberg (1998)

5. Hagan, M.T., Menhaj, M.: Training feedforward networks with the Marquardt
algorithm. IEEE Transactions on Neural Networks 5(6), 989–993 (1994)

6. Beale, E.M.L.: A derivation of conjugate gradients. In: Lootsma, F.A. (ed.) Nu-
merical methods for nonlinear optimization, pp. 39–43. Academic Press, London
(1972)

7. Biegler-König, F., Bärmann, F.: A Learning Algorithm for Multilayered Neural
Networks Based on Linear Least-Squares Problems. Neural Networks 6, 127–131
(1993)

8. Yam, J.Y.F., Chow, T.W.S, Leung, C.T.: A New method in determining the initial
weights of feedforward neural networks. Neurocomputing 16(1), 23–32 (1997)

9. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
New York (1995)

10. Castillo, E., Fontenla-Romero, O., Alonso Betanzos, A., Guijarro-Berdiñas, B.: A
global optimum approach for one-layer neural networks. Neural Computation 14(6),
1429–1449 (2002)

11. Fontenla-Romero, O., Erdogmus, D., Principe, J.C., Alonso-Betanzos, A., Castillo,
E.: Linear least-squares based methods for neural networks learning. In: Kaynak,
O., Alpaydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS,
vol. 2714, pp. 84–91. Springer, Heidelberg (2003)

12. Erdogmus, D., Fontenla-Romero, O., Principe, J.C., Alonso-Betanzos, A., Castillo,
E.: Linear-Least-Squares Initialization of Multilayer Perceptrons Through Back-
propagation of the Desired Response. IEEE Transactions on Neural Net-
works 16(2), 325–337 (2005)

13. Nguyen, D., Widrow, B.: Improving the learning speed of 2-layer neural networks by
choosing initial values of the adaptive weights. In: Proceedings of the International
Joint Conference on Neural Networks. vol. 3, pp. 21–26 (1990)

14. Suykens, J.A.K., Vandewalle, J. (eds.): Nonlinear Modeling: advanced black-box
techniques. Kluwer Academic Publishers, Boston (1998)

15. Lorenz, E.N.: Deterministic nonperiodic flow. Journal of the Atmospheric Sci-
ences 20, 130–141 (1963)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the GRLVQ Algorithm by the Cross

Entropy Method

Abderrahmane Boubezoul, Sébastien Paris, and Mustapha Ouladsine

Laboratory of Sciences of Information’s and of System, LSIS UMR 6168, University
Paul Cézanne, Aix-Marseille III Av Escadrille de Normandie Niemen 13397 Marseille

Cedex 20, France
{abderrahmane.boubezoul,sebastien.paris,mustapha.ouladsine}@lsis.org

Abstract. This paper discusses an alternative approach to parameter
optimization of prototype-based learning algorithms that aim to mini-
mize an objective function based on gradient search. The proposed ap-
proach is a stochastic optimization method called the Cross Entropy
(CE) method. The CE method is used to tackle the initialization sensi-
tiveness problem associated with the original generalized Learning Vec-
tor Quantization (GLVQ) algorithm and its variants and to locate the
globally optimal solutions. We will focus our study on a variant which
deals with a weighted norm instead of the Euclidean norm in order to
select the most relevant features. The results in this paper indicate that
the CE method can successfully be applied to this kind of problems and
efficiently generate high quality solutions. Also, highly competitive nu-
merical results on real world data sets are reported.

1 Introduction

Prototype based learning has been an ongoing research problem for last decades
and it has been approached in various ways. It has been gaining more interest
lately due to its ability to generate fast and intuitive classification models with
good generalization capabilities. One prominent algorithm of Prototype based
learning algorithms is a Learning Vector Quantization (LVQ) introduced by Ko-
honen ([1]), this algorithm and its variants have been intensively studied because
of their robustness, adaptivity and efficiency. The idea of LVQ is to define class
boundaries based on prototypes, a nearest neighbor rule and a winner-takes-it-all
paradigm. The standard LVQ has some drawbacks: i) basically LVQ adjusts the
prototypes using heuristic error correction rules, ii) it does not directly minimize
an objective function, thus it cannot guarantee the convergence of the algorithm
which leads to instability behavior especially in the case of overlapped data, iii)
the results are strongly dependent on the initial positions of the prototypes. In
order to improve the standard LVQ algorithm several modifications were pro-
posed by Kohonen and by other researchers (see[2]). Standard LVQ does not
distinguish between more or less informative features due to the usage of the
Euclidean distance, to improve that, extensions from various authors are sug-
gested (see [2] [3] and [4]). The previous approaches obey to heuristic update for

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 199–208, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

200 A. Boubezoul, S. Paris, and M. Ouladsine

relevance and prototypes vectors are adapted using simple perceptron learning
which may cause problems for non linear separable data. For these reasons an-
other variant based on minimisation of cost function using stochastic gradient
descent method was proposed by Sato and Yamada (see [5]). Hammer and al
suggested to modify the GLVQ cost function by using weighted norm instead of
Euclidean distance. This algorithm, called Generalized Relevances LVQ, showed
in several tasks competitive results compare to SVM and it had been proved
that GLRVQ can be considered as a large margin classifier (see [6]).

Although the GRLVQ algorithm guarantees convergence and shows better
classification performances than other LVQ algorithms, it suffers from initializa-
tion sensitiveness due to the presence of numerous local minima incurred as a
result of the use of gradient descent method especially for multi-modal problems.
The same authors proposed another algorithm (Supervised Relevance Neural Gas
SRNG) to tackle initialization sensitiveness (see[7]). They propose to combine
the GRLVQ with the neighborhood oriented learning in the neural gas (NG).
The algorithm mnetionned above required choosing several parameters such as
learning rate, size of an update neighborhood. A suitable choice of these param-
eters values may not always be evident and also changed from one data set to
another. In this paper, we present an initialization insensitive GRLVQ which is
based on the well-known and efficient cross entropy (CE) method [8]. We refer
to this new algorithm as the Cross Entropy Method GLVQ (CEMGRLVQ).

The rest of the paper is structured as follows. In section 2, we introduce the
basics of classification and prototype learning; we review both the formulation of
GLVQ and GRLVQ. In section 3, we explain how the CE method can be considered
as a stochastic global optimization procedure for GRLVQ algorithm, In section
4, we present the results of numerical experiments using our proposed algorithm
on some benchmark data sets and compare with the results obtained using the
GRLVQ and GLVQ stochastic gradient descent method. We conclude in section 5.

2 Problem Statement

Machine learning can be formulated as searching for the most adequate model
describing a given data. A learning machine may be seen as a function f (X ; θ)
which transforms objects from the the input space X to the output space Y :
f(X ; θ) : X −→ Y .

The data domain X and the set of target values Y are determined by the
definition of the problem for which f(X ; θ) is constructed. The output of the
function can be a continuous value (for regression application) or can predict a
class label of the input object (for classification application). The learning model
f(X ; θ) usually depends on some adaptive parameters θ sometimes also called
free parameters. In this context, learning can be seen as a process in which a
learning algorithm searches for these parameters θ, which solve a given task.

In supervised learning, the algorithm learns form the data set S often called
the ”training set” and consists of N samples, (x, y) pairs, drawn independently
identically from a probability distribution p(x, y). We define the collected data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the GRLVQ Algorithm by the Cross Entropy Method 201

by S � {(x1, y1), (x2, y2), . . . , (xN , yN)} where xi � [x1i, x2i, . . . , xdi]
T ∈ X and

y � {yi}i=1,...,N , yi ∈ {1, . . . , L}. N , L denote the number of records in the data
set and the number of classes respectively. In real applications xi ∈ X ⊂ R

d is
a multidimensional real vector.

In the Bayes decision theory the sanity behavior of the classifier is usually
measured by classification error, the so-called overall loss (see [?]):

�(θ) � EX [L(f(x; θ)|x)] =
∫

x∈X
L(f(x; θ)|x)p(x)dx, (1)

where L(f(x; θ)|x) is the expected loss defined by:

L(f(x; θ)|x) �
∫

y∈Y
�(f(x; θ)|y)p(y|x)dy, (2)

where �(f(x; θ)|y) denotes the individual loss.We assume training data drawn by
some underlying joint distribution p(x, y) which is in practice unknown. In real
applications, only a finite number of samples are available. The loss functional
�(θ) is usually replaced by the so-called empirical loss functional computed as
follows:

�emp(θ) =
1
N

N∑

i=1

L∑

k=1

�(f(xi; θ)|yi = k)1(yi = k), (3)

1(.) is an indicator function such that 1(true) = 1 if the condition between the
parentheses is satisfied or 1(false) = 0 if not.

2.1 GLVQ Algorithm

It has been shown by Diamantini in [9] that traditional LVQ (LVQ1) proposed
by Kohonen does not minimize neither explicit risk function, nor the Bayes
risk. In [10] Juang proposed a learning scheme called minimum classification
error (MCE) approach that minimizes the expected loss in Bayes decision theory
by a gradient-descent procedure (Generalized Probabilistic Descent). The MCE
criterion is defined using specific discriminant functions.

Let us consider wkj ∈ X is the jth prototype among Pk vectors associated to
class k = 1, . . . , L and θk � {wkj |j = 1, . . . , Pk} = W k is the collection of all
prototypes of the class k. The collection of all prototypes representing all classes

are defined as θ �
L⋃

k=1
θk = W and P =

L∑

l=1
Pl denotes the total number of

prototypes.
As proposed by Sato and Yamada, the generalized LVQ learning algorithm

use the following discriminant function μk(x; θ) defined by:

μk(x; θ) � dk(x; θ) − dl(x; θ)
dk(x; θ) + dl(x; θ)

, (4)

where dk(x; θ) is the square euclidean distance between x and the closest pro-
totype belonging to the same class of x and dl(x; θ) is the squared Euclidean

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

202 A. Boubezoul, S. Paris, and M. Ouladsine

distance between the input vector x and its best matching prototype vector wlr

with a different class label. This discriminant function μk(x; θ) ∈ [−1, 1] ensure
that if x is correctly classified to class k then μk(x; θ) ≤ 0.

Introducing (4) in (3), the empirical loss minimized by the MCE criterion is
rewritten by:

�emp(θ) =
1
N

N∑

i=1

L∑

k=1

�(μk(xi; θ))1(yi = k), (5)

where �(μk(xi; θ)) = �(f(xi; θ)|y = k).
�(μk(x; θ)) is a smoothed loss function instead of the 0 − 1 loss function of

the Bayes decision theory, for example the sigmoid function defined by:

�(z; ξ) � 1
1 + e−ξz

, (6)

where ξ is a scalar (which usually increases with time). From (5), the general
GLVQ cost function is expressed as:

FGLV Q(X; θ) =
N∑

i=1

�(μk(xi; θ)) =
N∑

i=1

1

1 + e−ξ(t)μk(xi;θ)
, (7)

where X � {xi}i=1,...,N . Although the GLVQ algorithm ensures convergence
and exhibits better classification performance than other LVQ algorithms.

2.2 Attribute Weighing and GRLVQ Algorithm

In general, prototype based classifiers are dependant on the metric which is
used to measure proximity, the performance of this type of algorithms depends
essentially on that choice. The usual choice is the euclidean metric which is
not always appropriate because it supposes that all the attributes contribute
equally in the classification. We will use the same idea as Hammer and al in [9],
they suggested to replace the Euclidean metric by Weighted Euclidean metric by
introducing input weights λ � [λ1, λ2, . . . , λd]T ∈ R

d, λi ≥ 0 to allow a different
scaling of the inputs. They substitute the Euclidean metric by its scaled variant
in the GLVQ formulation

dλ(a, b) � (a − b)T λI(a − b), (8)

where (a, b) ∈ X are two column vectors, I is identity matrix.
From (7) the new formulation of the misclassification measure μλ

k(x; θ) can
be expressed as

μλ
k(x; θ) =

dλ
k(x; θ) − dλ

l (x; θ)
dλ

k(x; θ) + dλ
l (x; θ)

, (9)

where dλ
k(x; θ) and dλ

l (x; θ) are now the corresponding weighted distances. Now
the GRLVQ cost function is computed as follows

FGRLV Q(X; θ) =
N∑

i=1

1

1 + e−ξ(t)μλ
k(xi;θ)

. (10)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the GRLVQ Algorithm by the Cross Entropy Method 203

In the next section we will present the Cross Entropy method to tackle the
initialization sensitiveness problem and to estimate the attribute’s weights.

3 Cross Entropy Method

The general optimization problem introduced in the GLVQ and GRLVQ for-
mulation can be viewed as a task of finding the best set of parameters W and
λ that minimize the corresponding objective function. Optimization problems
are typically quite difficult to solve; they are often NP-hard, i.e. min

θ∈Θ
{F (θ)},

where θ ∈ Θ represents the vector of the input variables, F (θ) is the scalar ob-
jective function and Θ is the constraint set. Many approaches exist to solve this
kind of problems (Gradient based procedures, random search, Meta heuristics,
model-based methods,. . .) (see [11]). As an alternative to the stochastic gradi-
ent descent algorithm we consider the CE method approach because it offers
good results for multi-extremal functional optimization (see [12]). This method
requires neither special form of the objective function and its derivatives nor
heuristic assumptions.

We view the problem of minimization of the cost function (7) as a continu-
ous multi-extremal optimization problem with constraints. The Cross Entropy
method was introduced by Rubinstein (see [8]) as an efficient method for the es-
timation of rare-event probabilities and has been successfully applied to a great
variety of research areas (see for example [13]. The main ideas of the CE method
are described in [13] and [14]. For this reason, in this paper we only present
features of CE that are relevant to the problem hereby studied.

The central idea of CE method is related to the association of a stochastic
problem to the original optimization problem, called parameterized associated
stochastic problem (ASP) characterized by a density function p(.; v), v ∈ V .
The stochastic problem is solved by identifying the optimal importance sampling
density p∗ which minimizes the Kullback-Leibler distance (also called the cross-
entropy) between p and p∗. The CE method can be viewed as an iterative method
that involves two major steps until convergence is reached:

1. Generating samples according to p(.; v) and choosing the elite of these sam-
ples.

2. Updating the parameter v of the distribution family on the basis of the elite
samples, in order to produce a better solution in the next iteration.

In this paper we will give a brief introduction of the CE method, the reader
can refer to [14] for a more detailed description of the CE method.

Consider the following general cost function minimization problem. Let Θ be
a constraint set and θ ∈ Θ is a given vector. Let us denote the desired minimum
of the function F (θ) by γ�. The cost function minimization problem can be
formulated by:

γ� = min
θ∈Θ

{F (θ)}. (11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

204 A. Boubezoul, S. Paris, and M. Ouladsine

In other words, we seek an optimal solution γ� satisfying F (θ�) ≤ F (θ), ∀θ ∈
Θ. The CE method transforms the deterministic optimisation problem (11) to
stochastic problem using a family of probability density functions (pdfs) p (.; v)
which depends on a reference parameter v ∈ V . Consequently, the associated
stochastic estimation problem is

l(γ) � Pv (F (Θ) ≤ γ) = Ev

[
IF (Θ)≤γ

]
=

∫

IF (θ)≤γp (.; v) dθ. (12)

At each iteration t of the CE method algorithm V random samples are drawn
on the basis of p (.; vt−1), then the new value of vt is updated according to vt−1
and the best elite samples. The update formula is especially simple if p (.; v)
belongs to Natural Exponential Function (NEF)(Gaussian, Truncated Gaussian,
Binomial,. . .).

Instead of updating the parameter vector v̂t−1 to v̂t directly the smoothed
updating procedure is often used:

v̂t = αṽt + (1 − α)v̂t−1, (13)

with 0 ≤ α ≤ 1 and ṽt is the solution of (12). This smoothed adaptation (13) is
used to reduce the probability of the algorithm to get stuck in a local minima.

3.1 Cross Entropy Method for GRLVQ Optimisation

In order to link the GRLVQ cost function minimization (10) with the CE theory,
we define the parameter θ as θ � {W , λ}. Both W and λ are sampled from
two sampling distributions which belong to the NEF family in order to simplify
parameters update.

In this paper we consider a Truncated Gaussian and Dirichlet distributions
to estimate the prototypes and attribute’s weights, respectively. That is, for
each W l � {wl

pq} p=1,...,d
q=1,...,P

(a d × P matrix) with l = 1, . . . , V , each components

wl
pq are drawn from a Truncated Gaussian such wl

pq ∼ N t
(
mt

pq, (σt
pq)2, ap, bp

)

where mt
pq denotes the average of pqth components at iteration t, (σt

pq)
2 the

variance and ap, bp denote a lower and upper bounding box for each dimension
containing all data respectively. In practice, we choose ap = C min

j=1,...,N
{xjp}

and bp = C max
j=1,...,N

{xjp} with C ≥ 1. To sample attribute’s weights we use the

Dirichlet distribution. Let λ � [λ1, λ2, . . . , λd]T a random vector whose elements
sum to 1. The density function of the Dirichlet distribution with the parameter
vector δ is:

λ(δ) ∼ Dir(δ1, δ2, . . . , δd) =
Γ (

∑
d δd)∏

d Γ (δd)

∏

d

λδd−1
d , (14)

where λd > 0,
∑

d λd = 1. The parameters δ of the Dirichlet distribution can be es-
timatedbymaximizing the log-likelihood function of givendata.The log-likelihood

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the GRLVQ Algorithm by the Cross Entropy Method 205

is convex in δ which guarantee a unique optimum. To estimate δ, we consider the
simple and efficient iterative gradient descent method described in minka’s paper
(see [15]). The parameters

(
M t � {mt

pq}, δt � {δt
p}, Σt � {(σt

pq)
2}

)
at iteration

t are updated via the sample mean and sample standard deviation of elite samples.
The algorithm is summarized as follows:

1. Choose some initial
{
M 0, Σ0, δ0} for p = 1, . . . , d, q = 1, . . . , P . Set t = 1 (level

counter).

2. Draw samples W l ∼ N t
(
M (t−1), Σ(t−1), ap, bp

)
, λl ∼ Dir(δ(t−1)), l = 1, . . . , V .

3. Compute Sl = FGRLV Q(X ; θl) scores by applying eq.(10) ∀l.
4. Sort Sl in ascending order and denote by I the set of corresponding indices. Let us

denote
(
m̃

(t−1)
pq , (σ̃

(t−1)
pq)2

)
the mean and the variance of the best �ρV � prototypes

elite samples of {W I(l)}, l = 1, . . . , �ρV � respectively. The δ̃
t

is the corresponding
the Dirichlet parameter fitted on {δI(l)}.

5. M̂
t
= αM̃

t
+(1−α)M̂

t−1
, Σ̂

t
= βtΣ̃

t
+(1−βt)Σ̂

(t−1)
and δ̂

t
= αδ̃

t
+(1−α)δ̂

(t−1)

6. If convergence is reached or t = T (T denote the final iteration), then stop;
otherwise set t = t + 1 and reiterate from step 2.

Fig. 1. Cross Entropy Method for GRLVQ optimisation: CEMGRLVQ

According to Rubinstein et al in [13] it is found empirically that the algorithm
is quite robust under the choice of the initial parameters N ,ρ and β, as long as
ρ is not too small, provided that the initial variances are chosen large enough,
ensuring at the beginning to cover all solutions space.

To prevent the algorithm from being trapped in local optima Kroese in [12]
proposed to use dynamic smoothing (15) where at each iteration the variance
(σt

pq)
2 is updated using a smoothing parameter:

βt = β0 − β0

(

1 − 1
t

)c

, (15)

where c is a small integer (typically between 5 and 15) and β0 is a large smoothing
constant (typically between 0.8 and 0.99). By using β instead of α the conver-
gence to the degenerate case has polynomial speed instead of exponential.

4 Experimental Results

In this section, we applied both the CEMGLVQ(λ are not updated and keept con-
stant)/CEMGRLVQ algorithm with some machine learning algorithms (GLVQ,
GRLVQ) to show the effectiveness of the proposed method. Following standard
procedure in experiments with other published works, each data set is initially

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

206 A. Boubezoul, S. Paris, and M. Ouladsine

normalized and algorithm parameters are selected as described in the papers re-
lated to the algorithmsdescribed above.To obtainmeaningful comparisons against
other published algorithms and to assess the effectiveness of the proposed algo-
rithm, we used a stratified 10 fold cross-validation. We tested these algorithms
in real world data sets taken from the public UCI repository [16] (see Table
1). For comparison we used different data sets which cover a broad spectrum
of properties occurring frequently in real world applications. In particulary, we
used waveform data set because it contains features with only noise and intrinsic
within-class multi-modal structure. The parameters in the algorithms were set
as follows:

• GLVQ: ξ = 0.5, εk = 0.05, εl = 0.01 where εk and εl are learning rates for
nearest correct and wrong prototype, respectively.

• GRLVQ: ξ = 0.1, εk = 0.05, εl = 0.01, ελ = 1e − 5. ελ is the weights
learning rate. For these two algorithms, the prototypes for different classes
were randomly initialized around the center of the corresponding classes.
Number of prototypes per class is indicated in Table.1.

• For the CEMGLVQ: V = 5N where N denote the number of train samples,
ξ = 0.1, ρ = 3.10e − 3, β0 = 0.95, h = 5.10e − 6, q = 10, ε = 5.10e − 9 et
c = 10, C = 1.2. It is found empirically that when α is between 0.6 and 0.9
it gives best results in our case we choose α = 0.7.

For all algorithms the number of iterations is set to K = 600. We based our
comparison on two criteria: the error rate and optimal value of the cost func-
tion. Results are presented in Tables (2 and 3) respectively. We see in the Table
2 that our algorithm outperforms the GLVQ algorithm and shows slightly better
performances than GRLVQ. In Table 3 we see that the CEMGRLVQ gives the
lowest value of the cost function which leads to high quality solutions of the
optimization problem. Compared to other algorithms based on gradient descent,
the CEMGRLVQ is more demanding on computational cost of running. The
theoretical complexity of CE is an open problem still under investigation, this
complexity is partially depending on the studied problem (see [17]). The com-
putational complexity of our algorithm is O(KV N) in each iteration, However,
the CE method can be accelerated by parallelizing all cost function evaluations.

Table 1. List real world data sets used in comparaison between algorithms. Data sets
indicated by † contain features with only noise, while indicating by ∗ contain intrinsic
within-class multi-modal structure.

Name # Features # Patterns # Classes # Prototypes per class

Liver 6 345 2 4
Pima 8 768 2 4
Glass 9 214 6 4
WBC 10 699 2 4

Waveform∗† 21 500 3 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improving the GRLVQ Algorithm by the Cross Entropy Method 207

Table 2. Recognition rates on real data sets. The format of the numbers in this table
is M ± S, where M is the mean recognition rate, S is the standard deviation. For each
data set, the best method is described by the boldface.

Name GLVQ (%) CEMGLVQ (%) GRLVQ (%) CEMGRLVQ (%)

Liver 57.35±6.82 65.28±4.42 56.17±7.26 68.38±4.04
Pima 70.65±4.56 72.5±5.16 75.65±3.57 74.60±4.20
Glass 60.55±9.60 61.11±9.77 51.66±12.29 64.11±4.19
WBC 92.94±4.08 96.08±3.98 94.65±4.21 96.23±2.64
Waveform∗† 79.00±6.09 79.33±6.62 79.66±8.43 83.33±3.54

Table 3. Optimal Cost Function Values. The format of the numbers in this table is
M ± S, where M is the mean Cost Function Value, S is standard deviation.

Name GRLVQ CEMGRLVQ

Liver 154.7883±0.1351 153.8191±0.0495
Pima 341.2171±0.2107 338.9825±0.1580
Glass 97.4918±0.1792 95.9039±0.0770
WBC 302.2815±0.0933 301.9468±0.0722
Waveform∗† 133.9954±0.0826 133.3087±0.0502

5 Attribute Weighing Estimation

Feature ranking is hard to compare because of the differences in data interpre-
tation. In this section, we will be concerned with the Iris data set. This is one
of the best known databases in the pattern recognition literature. The data set
contains three classes (Iris Setosa, Iris Versicolour, and Iris Virginica) of 50 in-
stances each. There are four input attributes (sepal length, sepal width, petal
length, and petal width). The relevance vector that resulted after the experi-
ment is [.2294 .1516 .2483 .3708] this result points out that the most important
features are the latest two features. Our ranking is similar to GRLVQ results
[.2353 .2193 .2704 .2750].

6 Conclusion

In this paper we considered solving the GRLVQ initialization sensitiveness prob-
lem. We formulated it as a stochastic optimization problem and applied the Cross
Entropy method to solve it. The suggested method was shown to be apt to deal
well with such problems. It produced recognition rates that were fairly superior
to other proposed methods. The main benefit of the proposed method is its ro-
bustness to the exact choice of its hyper parameters which is not the case of the
other methods (learning rate and size of an update neighborhood (SRNG)). In
general, the CE method is efficient and easy to implement. The CE method can
be seen as a stochastic method, which gives CE method the ability to find more

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

208 A. Boubezoul, S. Paris, and M. Ouladsine

global optima than deterministic methods. In future work we will concentrate
on the investigation of more appropriate cost function which do not only take
into account the two best matching prototypes (form the correct and the wrong
class) but prototypes cooperation (for example H2MGLVQ [18]).

References

1. Kohonen, T.: Learning vector quantization for pattern recognition. Technical Re-
port TKK-F-A601 (1986)

2. Kohones, T.: Bibliography on the self-organizing map (som) and learning vector
quantization(lvq) (2002)

3. Bojer, T., Hammer, B., Schunk, D., Toschanowitz, K.V.: Releavance determination
in learning vector quantization. In: the European Symposium on Artificial Neural
networks, pp. 271–276 (2001)

4. Hammer, B., Villman, T.: Estimating relevant input dimensions for self-organizing
algorithms. Advances in Self-Organizing Maps, 173–180 (2001)

5. Sato, A.S., Yamada, K.: A formulation of learning vector quantization using a
new misclassification measure. In: The 14th International Conference on Pattern
Recognition (1998)

6. Hammer, B., Strickert, M., Villmann, T.: Relevance lvq versus svm. In: Rutkowski,
L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS
(LNAI), vol. 3070, pp. 592–597. Springer, Heidelberg (2004)

7. Hammer, B., Strickert, M., Villmann, T.: Supervised neural gas with general sim-
ilarity measure. Neural Processing Letters (2004)

8. Rubinstein, R.Y.: Optimization of computer simulation models with rare events.
European Journal of operational Research 99, 89–112 (1997)

9. Diamantini, C., Spalvieri, A.: Certain facts about kohonen’s lvq1 algorithm. IEEE
Transactions on Circuits and Systems I(47), 425–427 (1996)

10. Juang, B.H., Katagiri, S.: Discriminative learning for minimum error classification.
IEEE Transactions on Signal Processing 40(2), 3043–3054 (1992)

11. Fu, M.C., Glover, F.W., April, J.: Simulation optimization: A review, new develope-
ments, and applications. In: WSC2005. The 37th Winter Simulation Conference,
pp. 83–95 (2005)

12. Kroese, D., Porotsky, S., Rubinstein, R.: The cross-entropy method for continuous
multi-extremal optimization. Methodology and Computing in Applied Probabil-
ity 8, 383–407 (2006)

13. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method: A Unified Approach
to Combinatorial Method, Monte-Carlo Simulation, Randomized Optimization and
Machine Learning. Springer, Heidelberg (2004)

14. Boer, P.D., Kroese, D., Mannor, S., Rubinstein, R.Y.: A tutorial on the cross-
entropy method. Annals of Operations Research, 19–67 (2005)

15. Minka, T.: Estimating a dirichlet distribution (2003)
16. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: Uci repository of machine

learning databases (1998)
17. Wu, J., Chung, A.: Cross entropy: A new solver for markov random field modeling

and applications to medical image segmentation. In: Duncan, J.S., Gerig, G. (eds.)
MICCAI 2005. LNCS, vol. 3749, pp. 229–237. Springer, Heidelberg (2005)

18. Qin, A., Suganthan, P.: Initialization insensitive lvq algorithm based on cost-
function adaptation. Pattern Recognition 38(5), 773–776 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental and Decremental Learning for

Linear Support Vector Machines

Enrique Romero, Ignacio Barrio, and Llúıs Belanche

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. We present a method to find the exact maximal margin hy-
perplane for linear Support Vector Machines when a new (existing) com-
ponent is added (removed) to (from) the inner product. The maximal
margin hyperplane with the new inner product is obtained in terms of
that for the old inner product, without re-computing it from scratch
and the procedure is reversible. An algorithm to implement the pro-
posed method is presented, which avoids matrix inversions from scratch.
Among the possible applications, we find feature selection and the design
of kernels out of similarity measures.

1 Introduction

Support Vector Machines (SVMs) are widely used tools for classification and re-
gression problems based on margin maximization [1]. The standard formulation
of SVMs uses a fixed data set to construct a linear combination of simple func-
tions depending on the data. In many application domains, however, the number
of examples or the number of variables may vary with time. In these cases, adap-
tive solutions that efficiently work in these changing environments are of great
interest. Procedures for exact incremental (on-line) learning for Support Vector
Machines (SVMs) have been introduced in [2,3] for classification and regression
problems respectively. In [4,5], the dynamic adaptation of the kernel parameter
was studied. In [6], the entire SVM solution path is obtained for every value of
the regularization parameter.

In this work the situation is that of adapting the inner product for linear SVMs
in an incremental manner. Specifically, suppose that we have obtained the max-
imal margin hyperplane of a linear SVM, and we would like to add/remove a
new/existing component to/from the inner product. Can the maximal margin
hyperplane with the new inner product be obtained in terms of that for the
old inner product? A positive answer to this question would allow to add new
variables to the data and obtain the linear SVM solution with these new vari-
ables without computing it from scratch. Analogously, existing variables could
be removed from the SVM solution.

Similar to previous works [2,5], the main idea is the preservation of the Karush-
Kuhn-Tucker (KKT) conditions to find the (exact) solution and guide the pro-
cess. The solution will be updated in response to the perturbation

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 209–218, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

210 E. Romero, I. Barrio, and L. Belanche

induced by the addition/removal of the new/existing component to/from the
inner product. The new/existing component will not be added/removed at once,
but it will be added/removed in suitable increments that allow to control the
migrations among the subsets of support vectors (vectors in the margin, violat-
ing the margin or exceeding the margin). For small increments (no migrations
among the subsets of support vectors), the analysis leads to the solution of a
linear equations system. When a migration occurs, the dimensions of the ma-
trices involved in this linear equations system must be modified. The addition
and removal of the new/existing component can be treated in the same way, so
that the procedure is reversible. Direct applications include time-varying learn-
ing environments, feature selection and kernel design from arbitrary similarity
measures.

2 Background

To fix notation, let X = {(x1, y1), . . . , (xL, yL)} be a data set, and consider
the classification task given by X , where each instance xi = (x1

i , . . . , x
N
i) ∈ R

N

and yi ∈ {−1, +1}. SVMs can be described as follows [1]: the input vectors are
mapped into a (usually high-dimensional) inner product space through some
non-linear mapping φ, chosen a priori. In this space (the feature space), an op-
timal separating hyperplane is constructed. By using a (positive definite) kernel
function K(u, v) the mapping can be implicit, since the inner product defining
the hyperplane can be evaluated as 〈φ(u), φ(v)〉 = K(u, v) for every two vectors
u, v ∈ R

N . In the SVM framework, an optimal hyperplane means a hyperplane
with maximal normalized margin for the examples of every class. The normalized
margin is the minimum distance to the hyperplane.

When the data set is not linearly separable (neither in the input space nor
in the feature space), some tolerance to noise is introduced in the model. Using
Lagrangian theory, the maximal margin hyperplane for a binary classification
problem given by a data set X is a linear combination of simple functions de-

pending on the data: f(x) = b +
L∑

i=1
yiαiK(xi, x), where K(u, v) is a kernel

function and the coefficients vector (αi)L
i=1 is the (1-norm soft margin) solution

of a constrained optimization problem in the dual space [1,2]:

Minimize(α, b) W = 1
2

L∑

i,j=1
yiαiyjαjK(xi, xj) + b

L∑

i=1
yiαi −

L∑

i=1
αi

subject to 0 � αi � C i = 1, . . . , L

(1)

for a certain constant C. Note this is not the standard formulation, since dual
and primal variables are present at the same time. This allows to deal with the
bias term in a similar way than with the rest of the variables. The regularization
parameter C allows to control the trade-off between the margin and the training
errors. The hard margin hyperplane is obtained with C = ∞.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental and Decremental Learning for Linear SVMs 211

An example is well classified if and only if its functional margin yif(xi) with
respect to f is positive. The KKT conditions uniquely define the solution {α, b}
of (1):

gi =
∂W

∂αi
= yif(xi) − 1

⎧
⎨

⎩

> 0 αi = 0
= 0 0 � αi � C
< 0 αi = C

(2)

h=
∂W

∂b
=

L∑

i=1

yiαi = 0 (3)

Following [2,5], the training examples can be partitioned into three different
categories: the set S of margin support vectors on the margin (gi = 0), the set E
of error support vectors violating the margin (gi < 0) and the set R of reserve
vectors exceeding the margin (gi > 0).

An incremental algorithm for on-line training of SVMs for classification prob-
lems (1) was presented in [2]. When new examples are considered, the KKT
conditions are preserved on all previously seen data and satisfied for the new
data. This is done in a sequence of analytically computable steps. The whole
procedure is reversible, thus allowing “decremental unlearning” and leave-one-
out error estimation. In [5], the model is extended to adapt the SVM solution
to changes in regularization and kernel parameters. A similar method for con-
structing ε-insensitive SVMs for regression problems is described in [3]. In [6],
the entire path of the solutions of SVMs is obtained for every value of the regu-
larization parameter in a similar way, exploting the fact that the coefficients αi

in the solution of (1) are piece-wise linear in C.

3 Incremental and Decremental Inner Product Learning
for Linear SVMs

3.1 Problem Setting

Suppose that we are working with linear SVMs (wherein K(xi, xj) is the inner

product 〈xi, xj〉 =
m∑

k=1
xk

i xk
j) and we would like to solve the following situations:

1. We have m < N components in our inner product and we want to add a

new component: 〈xi, xj〉new =
m+1∑

k=1
xk

i xk
j = 〈xi, xj〉 + xm+1

i xm+1
j .

2. We have m+1 ≤ N components in our inner product and we want to remove

an existing component: 〈xi, xj〉new =
m∑

k=1
xk

i xk
j = 〈xi, xj〉 − xm+1

i xm+1
j .

The problem in both cases is to obtain the solution of (1) with the new inner
product 〈xi, xj〉new in terms of that for the old one 〈xi, xj〉 (i.e., without re-
computing it from scratch). A solution to these problems is described in the
next sections.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

212 E. Romero, I. Barrio, and L. Belanche

3.2 Sketch of the Solution

We start from the solution {α, b} of (1) with 〈xi, xj〉 (which satisfy the KKT
conditions). In order to obtain the solution of (1) with the new inner product, we
follow the strategy of computing the increments {Δα, Δb} such that {α+Δα, b+
Δb} satisfy the KKT conditions of (1) with 〈xi, xj〉new. The KKT conditions
will be preserved by changing the parameters in response to the perturbation
induced by the addition/removal of the new/existing component to/from the
inner product. In this process, examples of the different categories (S, E and
R) may change their state. In order to control these changes, the new/existing
component will not be added/removed at once, but added/removed in steps of
a certain amplitude Δp such that it leads to the minimum number of category
changes, which can be controlled. With the previous notation, the addition and
removal of the new/existing component can be treated in the same way. During
the process, the inner product will be

〈xi, xj〉′ = 〈xi, xj〉 + p · xm+1
i xm+1

j . (4)

Initially, p = 0. When adding a new component, p must reach p = 1 with
increments Δp > 0. When removing an existing component, p must reach p = −1
with increments Δp < 0. For every Δp (different at every step), the solution will
be recalculated so that the KKT conditions (2,3) are preserved on all data (thus
controlling the migrations among S, E and R).

Therefore, for a given perturbation Δp, our objective is to determine the
necessary changes in the solution of (1) and the migrations among S, E and R
so that the KKT conditions are preserved on all data. Let us define

W ′ =
1
2

L∑

i,j=1

yiαiyjαj 〈xi, xj〉′ + b

L∑

i=1

yiαi −
L∑

i=1

αi

with {α, b} satisfying (2,3), and

W+ =
1
2

L∑

i,j=1

yiα
+
i yjα

+
j 〈xi, xj〉+ + b+

L∑

i=1

yiα
+
i −

L∑

i=1

α+
i

with α+
i = αi + Δαi, b+ = b + Δb and 〈xi, xj〉+ = 〈xi, xj〉′ + Δp xm+1

i xm+1
j .

3.3 Calculation of the Increments

The increments {Δα, Δb} can be computed as a function of Δp, as explained
next. Two situations may arise, tackled in the rest of the section:

1. The solution changes, but no example changes its state among the different
categories (S, E and R). This is the typical situation when |Δp| is small. In
this case, only the coefficients of the support vectors and the bias term must
be updated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental and Decremental Learning for Linear SVMs 213

2. There exists one or more examples that migrate among S, E and R. These
changes can be controlled if Δp is chosen so that the minimum number of mi-
grations occurs. In this case, S, E and R must be updated, but recalculating
the solution is not necessary.

1. Small |Δp| (no migrations among S, E and R). Suppose that |Δp| is
small enough so that no example changes its state: Δαi = 0 for every i �∈ S,
αi = 0 for every i∈R and αi = C for every i∈E .

Since the new solution must satisfy the KKT conditions, we have:

g+
i =

∂W+

∂α+
i

= yif
+(xi) − 1 = yi

⎛

⎝
L∑

j=1

yjα
+
j 〈xi, xj〉+ + b+

⎞

⎠ − 1 = 0 ∀i∈S

h+ =
∂W+

∂b+ =
L∑

i=1

yiα
+
i = 0.

Therefore, for every i∈S (recall that also g′i = ∂W ′

∂αi
= 0)

g+
i − g′i = yi

⎛

⎝
L∑

j=1

yjαjΔp xm+1
i xm+1

j

⎞

⎠ + yi

⎛

⎝
L∑

j=1

yjΔαj 〈xi, xj〉+
⎞

⎠ + yiΔb = 0.

Since no example changes its state, we have

0=yi

⎛

⎝
∑

j∈S
yjαjΔp xm+1

i xm+1
j

⎞

⎠ + yi

⎛

⎝
∑

j∈E
yjCΔp xm+1

i xm+1
j

⎞

⎠+

yi

⎛

⎝
∑

j∈S
yjΔαj 〈xi, xj〉+

⎞

⎠ + yiΔb.

In addition (recall that also h′ = ∂W ′

∂b = 0),

h+ − h′ =
L∑

i=1

yiΔαi =
∑

i∈S
yiΔαi = 0.

The above analysis can be summarized as (xS1 , . . . , xSLS
are the examples in S)

(
Q′

Δp
+ U

)

·

⎛

⎜
⎜
⎜
⎝

Δb
ΔαS1

...
ΔαSLS

⎞

⎟
⎟
⎟
⎠

= − U ·

⎛

⎜
⎜
⎜
⎝

0
αS1

...
αSLS

⎞

⎟
⎟
⎟
⎠

− V (5)

where Q′, U are (LS + 1) × (LS + 1) symmetric matrices

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

214 E. Romero, I. Barrio, and L. Belanche

Q′ =

⎛

⎜
⎜
⎜
⎝

0 yS1 · · · ySLS
yS1 Q′

S1S1
· · · Q′

S1SLS
...

...
. . .

...
ySLS

Q′
SLS S1

· · · Q′
SLS SLS

⎞

⎟
⎟
⎟
⎠

U =

⎛

⎜
⎜
⎜
⎝

0 0 · · · 0
0 US1S1 · · · US1SLS
...

...
. . .

...
0 USLS S1 · · · USLS SLS

⎞

⎟
⎟
⎟
⎠

(6)

Q′
SiSj

= ySiySj

〈
xSi , xSj

〉′ USiSj = ySiySj x
m+1
Si

xm+1
Sj

(7)

and V is the vector

V =
(
0, VS1, · · · , VSLS

)t

VSi = C ySix
m+1
Si

∑

j∈E
yjx

m+1
j . (8)

Therefore, given Δp, the increments of the parameters can be computed by
solving the linear equations system (5). Note that, contrary to the situation in
[2,5], the solution of (5) is not a linear function of Δp.

2. Large |Δp| (controlling the migrations among S, E and R). When
|Δp| is large, migrations among S, E and R may occur after solving (5). However,
we can choose Δp such that the minimum number of migrations occurs. In
this case several migrations may occur simultaneously, but an example can only
migrate from its current set to a neighbor set (that is, between S and E or
between S and R). These migrations are determined by the KKT conditions:

1. From E to S: One error support vector becomes a margin support vector.
This happens when gi (that was negative) becomes 0.

2. From S to E : One margin support vector becomes an error support vector.
This happens when its coefficient becomes C.

3. From R to S: One reserve vector becomes a margin support vector. This
happens when gi (that was positive) becomes 0.

4. From S to R: One margin support vector becomes a reserve vector. This
happens when its coefficient becomes 0.

When a migration occurs, Q′, U and V must be updated, since not only their
components but also their dimension change. However, recomputing the solution
is not necessary as a consequence of the migration: if a new support vector is
inserted in S, its coefficient remains the same (0 if migrated from R or C if
migrated from E); if an example is deleted from S, its coefficient (which also
equals 0 or C) will not vary until it is inserted in S again.

4 Implementation

4.1 Efficient Computation of the Linear Equations System

An efficient way to solve (5) would be desirable. This section describes an efficient
way to update (Q′/Δp + U)−1 when:

1. |Δp| is small enough so that no example changes its state.
2. Migrations among S, E and R occur.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental and Decremental Learning for Linear SVMs 215

1. Small |Δp| (no changes in the dimension). Note that U = u · ut, with

u =
(
0, yS1x

m+1
S1

, · · · , ySLS
xm+1
SLS

)t

. Therefore, the inverse of Q′/Δp + U can
be efficiently computed by applying the Sherman-Morrison-Woodbury matrix
inversion formula:

(Q′/Δp + U)−1 = (Q′/Δp + u · ut)−1 = Δp

(

Q′−1 − Δp Q′−1uutQ′−1

1 + Δp utQ′−1u

)

(9)

As a consequence, for every Δp such that S does not change, only Q′−1 is
needed to compute (Q′/Δp + U)−1. Note that Q′−1 can also be updated in the
same way when pnew = p + Δp, since Q′

new = Q′ + Δp U . Thus,

(Q′
new)−1 = Q′−1 − Δp Q′−1

uutQ′−1

1 + Δp utQ′−1u
(10)

2. Large |Δp| (inserting/deleting examples in/from S). When a new ex-
ample is inserted/deleted in/from S, matrix Q′−1 can be updated incrementally
using block matrices techniques, thus avoiding the computation of Q′−1 from
scratch, as explained next.

When a new margin support vector xSLS+1 is inserted in S, matrix Q′−1 is
expanded as

Q′−1 ←

⎛

⎜
⎜
⎜
⎝

0

Q′−1 ...

0 · · · 0

⎞

⎟
⎟
⎟
⎠

+
1
γ

(
B
1

)

·
(
Bt 1

)
(11)

where

B = −Q′−1 · Q′∗LS+1

γ = Q′SLS+1SLS+1 − (Q′∗LS+1)t · Q′−1 · Q′∗LS+1

with

Q′∗LS+1 =
(
yLS+1, Q′S1SLS+1 , . . . , Q′SLS SLS+1

)t

.

When an example xSk
is deleted from S, matrix Q′−1 is contracted as

Q′−1
SiSj

← Q′−1
SiSj

−
Q′−1

SiSk
Q′−1

SkSj

Q′−1
SkSk

(12)

for every Si, Sj ∈ {0, S1, . . . , SLS } such that Si, Sj �= Sk. The index 0 refers to
the first row/column.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

216 E. Romero, I. Barrio, and L. Belanche

AddRemoveComponent (data set X , partitions {S ,E ,R}, {α, b} satisfying (2,3))
p ← 0

Compute Q′−1

repeat
Find the maximum |Δp| (addition: Δp ∈ (0, 1 − p]; removal: Δp ∈ [−1 − p, 0))

such that, after solving (5) with (9), the number M of migrations among
S , E and R is minimum

Update Q′−1
with (10)

{α, b} ← {α, b} + {Δα, Δb}, where {Δα, Δb} is the solution of (5)
if M �= 0 then

Update Q′−1
with (11) or (12) depending on whether it must be expanded

or contracted (i.e., an example must be inserted/deleted in/from S)
end if
p ← p + Δp

until |p | = 1
end AddRemoveComponent

Fig. 1. An algorithm to add/remove a component to/from the inner product

4.2 A Complete Algorithm

The previous analysis leads to algorithm in figure 1. Several remarks are in order:

1. If succesive additions/removals have to be done, the first computation of
Q′−1 is only necessary in the first step (for the rest, it can be a parameter).

2. The minimum number M of migrations among S, E and R may be 0. In this
case, |p + Δp| = 1 and the algorithm stops.

3. After updating Q′−1, recomputing the solution is not necessary (section 3.3).
4. After adding/removing one component, the values of {S,E ,R}, {α, b} and

Q′−1 can be used as parameters to a new call to AddRemoveComponent.
Therefore, in the whole process of adding/removing iteratively several com-
ponents to the inner product, only one matrix inversion has to be made from
scratch (the one previous to the first call to the function).

5. To find the maximum |Δp| we perform a binary (dichotomous) search in the
corresponding real interval. The first cut-point is 1−p

2 (addition) or −1−p
2

(removal). If no migrations occur, the search continues in the left subinterval,
otherwise in the right subinterval. This process iterates until the value of |Δp|
converges to machine precision.

5 Applications

5.1 Feature Selection

A first and direct application of the algorithm described in section 4.2 is to
perform feature selection with linear SVMs. Classical search algorithms for fea-
ture selection, like forward selection, backward elimination, or plus-l take-away-r

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Incremental and Decremental Learning for Linear SVMs 217

work by adding and removing features one at a time. Therefore, the algorithm
described in section 4.2 can be easily used to add and remove input features in
a prescribed way. Explicit feature selection search methods for linear SVMs (see
[7], for example), can also benefit from this algorithm.

5.2 Basis Selection Guided by the Margin

Suppose that an explicit transformation of the input space is performed with
a set of predefined basis functions Φ = {φj | φj : R

N → R}M
j=1: for every

(xi, yi)∈X , consider the vector (zi, yi)∈R
M ×R, with zi = (φ1(xi), . . . , φM (xi)).

The solution of a linear SVM in this new space would give a non-linear model in
the original input space based on margin maximization. The problem, however,
would be to select an appropiate subset of basis functions from Φ, since it seems
clear that some of them may be useless for the problem at hand. In order to
select this subset, a search process can be performed, which is equivalent to
perform feature selection in the new space. The algorithm described in section
4.2 can be used to that end, adding and removing basis functions to/from the
partially obtained solutions.

5.3 Kernel Out of a Similarity

A kernel function K(x, y) can be seen as a form of similarity measure between
objects x and y. There is a vast literature in the design of similarity measures
in data analysis [8]. One of the main advantages is to be able to cope with
data heterogeneity and special values (like missing values) with a clear seman-
tics. However, the need to fulfill the positivity condition prevents their use with
SVMs. Though there are some works on proving positivity for certain similar-
ity measures [9], they are limited to certain simple measures and even then the
property may be spoiled in presence of missing data.

A kernel can be defined from a similarity as follows. Given a similariry s :
X × X → R and Z a finite subset of X , the function

K(x, y) =
∑

zi∈Z

s(x, zi) s(y, zi) (13)

is a positive kernel. The kernel defined in (13) is the sum-product aggregation
of the similarities between x, y by using their respective similarities to a third
object zi ∈ Z ⊆ X . The semantics is then that x, y are similar if both are
consistently similar to a set of reference objects Z. We call the elements of this
set Z the kernel vectors. This process can be expressed in terms of the data,
if X = {x1, . . . , xL} is the set of training vectors. In practice, the elements
in Z (the kernel vectors) can be chosen to minimize (1) while keeping their
number at a minimum, allowing more compact and computationally cheaper
models. This can be done explicitly with a search algorithm that progressively
adds/removes vectors to/from Z ⊆ X . In fact, this search process is similar to
a feature selection search process.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

218 E. Romero, I. Barrio, and L. Belanche

6 Conclusions and Future Work

A method to find the exact maximal margin hyperplane for linear Support Vector
Machines when a new (existing) component is added (removed) to (from) the
inner product has been presented. The maximal margin hyperplane with the new
inner product is obtained from the solution using the old inner product and the
procedure is reversible. We have presented a full algorithm that implements the
proposed method. Applications of the algorithm include time-varying learning
environments wherein descriptive variables arrive one at a time, basis function
selection with linear SVMs and kernel design from similarity measures, avoiding
the need for positivity.

As future work, the method can be extended to non-linear SVMs where the
objective would be to find solutions combining several kernels. In this new sce-
nario, starting from the SVM solution with a certain kernel K1, and given a
function K2 such that K1 + K2 is a kernel, we would like to obtain the solution
with the new kernel Knew = K1 + K2. Similarly to the addition of components
for linear kernels presented in this work, the new “component” K2 can be added
in suitable increments controlling the migrations among the support vectors.

Acknowledgments

This work was supported by the Consejo Interministerial de Ciencia y Tecnoloǵıa
(CICYT), under projects CGL2004-04702-C02-02 and TIN2006-08114.

References

1. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)
2. Cauwenberghs, G., Poggio, T.: Incremental and Decremental Support Vector Ma-

chine Learning. In: Advances in Neural Information Processing Systems, vol. 12, pp.
409–415. MIT Press, Cambridge (2000)

3. Mart́ın, M.: On-Line Support Vector Machine Regression. In: Elomaa, T., Mannila,
H., Toivonen, H. (eds.) ECML 2002. LNCS (LNAI), vol. 2430, pp. 282–294. Springer,
Heidelberg (2002)

4. Cristianini, N., Campbell, C., Shawe-Taylor, J.: Dynamically Adapting Kernels in
Support Vector Machines. In: Advances in Neural Information Processing Systems,
vol. 11, pp. 204–210. MIT Press, Cambridge (1999)

5. Diel, C., Cauwenberghs, G.: SVM Incremental Learning, Adaptation and Optimiza-
tion. In: International Joint Conference on Neural Networks, vol. 4, pp. 2685–2690
(2003)

6. Hastie, T., Rosset, S., Tibshirani, R., Zhun, J.: The Entire Regularization Path for
the Support Vector Machine. Journal of Machine Learning Research 5, 1391–1415
(2006)

7. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.N.: Gene Selection for Cancer Classi-
fication using Support Vector Machines. Machine Learning 46(1-3), 389–422 (2002)

8. Chandon, J.L., Pinson, S.: Analyse Typologique. Théorie et Applications. Masson
(1981)

9. Gower, J.C., Legendre, P.: Metric and Euclidean Properties of Dissimilarity Coeffi-
cients. Journal of Classification 3, 5–48 (1986)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Method for Pruning the Multilayer

Perceptron Based on the Correlation of Errors

Cláudio M.S. Medeiros and Guilherme A. Barreto

1Department of Mechatronics, Federal Center of Technological Education (CEFET),
Av. 13 de Maio, 2081, Fortaleza, Ceará, Brazil

2Department of Teleinformatics Engineering, Federal University of Ceará (UFC), Av.
Mister Hull, S/N, Center of Technology, Campus of Pici, Fortaleza, Ceará, Brazil

Abstract. In this paper we present a novel method for pruning redun-
dant weights of a trained multilayer Perceptron (MLP). The proposed
method is based on the correlation analysis of the errors produced by the
output neurons and the backpropagated errors associated with the hid-
den neurons. Repeated applications of it leads eventually to the complete
elimination of all connections of a neuron. Simulations using real-world
data indicate that, in terms of performance, the proposed method com-
pares favorably with standard pruning techniques, such as the Optimal
Brain Surgeon (OBS) and Weight Decay and Elimination (WDE), but
with much lower computational costs.

1 Introduction

Even nowadays, two decades after the rediscovery of the back-propagation algo-
rithm, and despite all the available literature on the MLP network, a beginner
soon becomes aware of the difficulties in finding an optimal architecture for real-
world applications. In fact, this is a hard task also for an experienced practitioner.
An architecture that is too small will not be able to learn from data properly,
no matter what training algorithm is used for this purpose. Otherwise, an archi-
tecture having too many hidden neurons (and, hence, weight connections) are
prone to fit too much of the noise on the training data.

Hence, a crucial step in the design of a MLP is related with the network
model selection problem [1]. This problem, which still is a research topic of
interest [2,3,4,5], can be roughly defined as the task of finding the smallest ar-
chitecture that generalizes well, making good predictions for new data. The
generalization of a neural network architecture can be assessed by changing the
number of adaptive parameters (weights and biases) in the network.

Among the several ways to implement this in practice, we list the following
three as possibly the commonest approaches. (i) Exhaustive search plus early
stopping: the performances of several networks having different number of hid-
den neurons are evaluated during training on an independent validation set.
Training of each network is stopped as soon as its generalization error begins
to increase. The optimal architecture is the one providing the smallest general-
ization error. (ii) Growing algorithms: one can start training a network with a

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 219–228, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

220 C.M.S. Medeiros and G.A. Barreto

small number of hidden neurons and add neurons during the training process,
with the goal of arriving at an optimal network structure. This is the approach
used by the Cascade-Correlation architecture [6]. (iii) Pruning algorithms, we
can train a network with a relatively large number of hidden neurons and then
prune out the least significant connections, either by removing individual weights
or by removing complete units. This is the approach used by the Optimal Brain
Surgeon (OBS) and the Weight Decay and Elimination (WDE).

The OBS method [7] performs weight pruning based on the so-called weight
saliencies, defined as Si = 1

2
ω2

i

[H−1]ii
, where ωi denotes the i-th weight (or bias)

and [H−1]ii is the i-th diagonal entry of the inverse of the Hessian matrix. The
WDE algorithm originates from a regularization method that modifies the error
function by the introduction of a term that penalize large weights [8].

These methods require significant computational efforts. For example, even
if we restrict the exhaustive search to a specific class of architectures (e.g. one-
hidden-layered MLP) it is still a burdensome task. The OBS algorithm demands
the computationally-intensive inversion of the Hessian matrix of the error func-
tion. The WDE algorithm, by its turn, requires the specification of a user-defined
regularization parameter (λ) [1]. In this paper, we introduce an efficient method
for pruning unnecessary weights of a trained multilayer Perceptron (MLP) with-
out the need of matrix inversions and any additional regularization parameter.
The proposed method is based on the correlation analysis between the errors of
the output neurons and the errors backpropagated to the hidden neurons. Re-
peated application of the method leads eventually to the complete elimination
of all connections of a neuron. Computer simulations using real-world data are
carried out to compare the proposed method with OBS and WDE algorithms.

The remainder of the paper is organized as follows. In Section 2 we briefly
review the back-propagation algorithm. In the section 3 the proposed method
is introduced and its main properties are discussed. Simulations are then pre-
sented in Section 4. We conclude the paper in Section 5 with a summary of the
achievements and suggestions for further developments.

2 The Back-Propagation Algorithm in a Nutshell

We describe next the backpropagation algorithm used for training a fully con-
nected, one-hidden-layered MLP. At time step t, the activation of a hidden neu-
ron is computed as

u
(h)
i (t) =

P∑

j=1

wij(t)xj(t) − θi(t) =
P∑

j=0

wij(t)xj(t), i = 1, . . . , Q (1)

where wij is the synaptic weight connecting the input j to the hidden neuron
i, θi(t) is the threshold of the hidden neuron i, Q (2 ≤ Q < ∞) is the number
of hidden neurons and P is the dimension of the input vector (excluding the
threshold). For simplicity, we set x0(t) = −1 and wi0 = θ

(h)
i (t).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Method for Pruning the Multilayer Perceptron 221

The output of neuron i is then defined by

y
(h)
i (t) = ϕi

[
u

(h)
i (t)

]
= ϕi

⎡

⎣
P∑

j=0

wij(t)xj(t)

⎤

⎦ , (2)

where ϕi(·) is a sigmoidal function. Similarly, the output values of the output
neurons are given by

y
(o)
k (t) = ϕk

[
u

(o)
k (t)

]
= ϕk

[
Q∑

i=0

mki(t)y
(h)
i (t)

]

, (3)

where mki is the synaptic weight connecting the hidden neuron i to the output
neuron k (k = 1, . . . , M), and M ≥ 1 is the number of output neurons. We set
y0(t) = −1 and mk0 = θ

(o)
k (t), where θ

(o)
k (t) is the threshold of neuron k.

The backward pass starts at the output layer by propagating the error signals,
e
(o)
k (t) = dk(t) − y

(o)
k (t), where dk(t) is the target output value for neuron k,

toward the hidden layer. The so called local gradient of neuron k is given by

δ
(o)
k (t) = ϕ′

k

[
u

(o)
k (t)

]
e
(o)
k (t). (4)

where ϕ′
k

[
u

(o)
k (t)

]
= ∂ϕk/∂u

(o)
k . Similarly, the local gradient δ

(h)
i (t) of the hidden

neuron i is computed as

δ
(h)
i (t) = ϕ′

i

[
u

(h)
i (t)

] M∑

k=1

mki(t)δ
(o)
k (t) = ϕ′

i

[
u

(h)
i (t)

]
e
(h)
i (t), i = 0, . . . , Q,

(5)
where the term e

(h)
i (t) plays the role of a backpropagated or projected error signal

for the hidden neuron i, since such “hidden” error signals are linear combinations
of the “true” error signals computed for the output neurons.

Finally, the synaptic weights of the output neurons are updated according to
the following rule

mki(t + 1) = mki(t) + ηδ
(o)
k (t)y(h)

i (t), i = 0, . . . , Q, (6)

where 0 < η � 1 is the learning rate. The weights of the hidden neurons are, by
their turn, adjusted through a similar learning rule

wij(t + 1) = wij(t) + ηδ
(h)
i (t)xj(t), j = 0, . . . , P. (7)

One complete presentation of the entire training set during the learning process
is called an epoch. Many epochs may be required until the convergence of the
back-propagation algorithm is verified. Thus, it is good practice to randomize
the order of presentation of training examples from one epoch to the next, in
order to make the search in the weight space stochastic over the learning cycles.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

222 C.M.S. Medeiros and G.A. Barreto

A simple (and naive) way of evaluating convergence is through the average
squared error

εtrain =
1

2N

N∑

t=1

M∑

k=1

[
e
(o)
k (t)

]2
=

1
2N

N∑

t=1

M∑

k=1

[
dk(t) − y

(o)
k (t)

]2
, (8)

computed at the end of a training run using the training data vectors. If it
falls below a prespecified value then convergence is achieved. The generalization
performance of the MLP should be evaluated on a testing set, which contains
examples not seen before by the network.

3 The Proposed Methodology

Initially, the user should train a MLP network with a relative large number of
hidden neurons. The network is trained to give the lowest possible value for
εtrain. Recall that large MLPs are prone to overfitting due to local optimization
of their cost function, which can lead to a poor generalization performance.
In principle, the application of a pruning procedure would discard redundant
connections of an overparameterized network, thus providing a smaller model
with equivalent or better generalization performance than the original one.

The main idea behind the pruning procedure to be described is to maintain
those connections that produce higher correlations between the errors in a given
layer and the errors that are backpropagated to the preceding layer. Connections
associated to lower error correlations are candidates to be discarded.

3.1 Pruning Hidden-to-Output Layer Weights

The method starts with the training data set being submitted once again to the
trained network. No weight updating is allowed from this stage on. Once all the
N training examples are presented, construct the following error matrices

Eo =

⎡

⎢
⎢
⎢
⎢
⎣

e
(o)
1 (1) e

(o)
2 (1) · · · e

(o)
M (1)

e
(o)
1 (2) e

(o)
2 (2) · · · e

(o)
M (2)

...
...

...
...

e
(o)
1 (N) e

(o)
2 (N) · · · e

(o)
M (N)

⎤

⎥
⎥
⎥
⎥
⎦

and Eh =

⎡

⎢
⎢
⎢
⎢
⎣

e
(h)
0 (1) e

(h)
1 (1) · · · e

(h)
Q (1)

e
(h)
0 (2) e

(h)
1 (2) · · · e

(h)
Q (2)

...
...

...
...

e
(h)
0 (N) e

(h)
1 (N) · · · e

(h)
Q (N)

⎤

⎥
⎥
⎥
⎥
⎦

(9)
The rows of the matrix Eo correspond to the errors generated by the output

neurons for a given training example. Hence, this matrix is denoted the ma-
trix of output errors, in contrast to the matrix Eh, whose rows correspond to
the backpropagated errors associated to the hidden neurons. In particular, the
first column of Eh corresponds to backpropagated errors associated with the
thresholds mk0 = θ

(o)
k , k = 1, . . . , M .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Method for Pruning the Multilayer Perceptron 223

Table 1. Procedure for Pruning Hidden-to-Output Layer Weights

1. Set l = 1; // set the ranking index to 1
2. WHILE l ≤ L DO // begin the pruning loop

2.1. Set a = mrl ; // save current value
2.2. Set mrl = 0; // set the weight to zero
2.3. Compute Jtrain; // Performance Index on training set
2.4. IF Jtrain < Jtol, // We set Jtrain = CRtrain

THEN Set mrl = a; // recover former value
Set l = L + 1; // stop pruning

ENDIF
2.5. Set l = l + 1; // continue pruning

ENDWHILE

The second step consists in the computation of the following matrix product

Coh = ET
o Eh, (10)

where the superscript T denotes the transpose of a matrix. Note that the (k, i)-th
entry of Coh, denoted by Coh[k, i], corresponds to the scalar product (correla-
tion) of the k-th column of Eo with the i-th column of Eh,

Coh[k, i] =
N∑

t=1

e
(o)
k (t)e(h)

i (t), (11)

for k = 1, . . . , M , and i = 0, . . . , Q.
The third step requires the sorting of the entries Coh[k, i] in ascending order

Coh[r1] < Coh[r2] < · · · < Coh[rL], (12)

wherethevectorrl =(kl, il)contains thecoordinatesof theentryoccupyingposition
l in the ranking, and L=dim(Coh)=M × (Q + 1) is the number of entries in Coh.

The fourth step involves the execution of the pruning procedure shown in
Table 1. In this table, Jtrain denotes a given index used to evaluate the network
performance on the training data, such as the average squared error εtrain or
the classification rate CRtrain. The constant Jtol is a user-defined value.

If Jtrain = εtrain, then Jtol is the maximum error value permitted for the
training data. So, we eliminate a given connection mrl

only if the value of Jtrain,
computed after the elimination of that connection, remains lower than Jtol.

If Jtrain = CRtrain instead, then Jtol is the minimum recognition rate allowed
for the training data. In this case, we eliminate a given connection mrl

only if the
value of Jtrain, computed after the elimination of that connection, still remains
higher than the prespecified Jtol. This is our choice for Table 1.

3.2 Pruning Input-to-Hidden Layer Weights

For pruning the weights that connect the input units to the hidden neurons,
wij , we need to propagate backwards the errors of the hidden neurons, e(h)(t),
in order to obtain the errors projected onto the input units

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

224 C.M.S. Medeiros and G.A. Barreto

Table 2. Procedure for Pruning Input-to-Hidden Layer Weights

1. Set l = 1; // set the ranking index to 1
2. WHILE l ≤ L DO // begin the pruning loop

2.1. Set b = wrl ; // save current value
2.2. Set wrl = 0; // set the weight to zero
2.3. Compute Jtrain; // Performance Index on training set
2.4. IF Jtrain < Jtol, // We set Jtrain = CRtrain

THEN Set wrl = b; // recover former value
Set l = L + 1; // stop pruning

ENDIF
2.5. Set l = l + 1; // continue pruning

ENDWHILE

e
(i)
j (t) =

Q∑

i=1

wij(t)δ
(h)
i (t), j = 0, . . . , P. (13)

After the presentation of N training vectors, the resulting errors can be orga-
nized into an error matrix

Ei =

⎡

⎢
⎢
⎢
⎢
⎣

e
(i)
0 (1) e

(i)
1 (1) · · · e

(i)
P (1)

e
(i)
0 (2) e

(i)
1 (2) · · · e

(i)
P (2)

...
...

...
...

e
(i)
0 (N) e

(i)
1 (N) · · · e

(i)
P (N)

⎤

⎥
⎥
⎥
⎥
⎦

N×(P+1)

. (14)

Similarly to the procedure described in the previous section, we need to com-
pute the following matrix product

Chi = ET
h Ei, (15)

where the (i, j)-th entry of Chi, denoted by Chi[i, j], is given by

Chi[i, j] =
N∑

t=1

e
(h)
i (t)e(i)

j (t), (16)

for i = 1, . . . , Q, and j = 0, . . . , P . Then, we sort the entries Chi[i, j] in ascending
order

Chi[s1] < Chi[s2] < · · · < Chi[sL], (17)

where the vector sl = (il, jl) contains the coordinates of the entry occupying
position l in the ranking, and L = dim(Chi) = M × (P + 1) is the number of
entries in Chi.

The final step involves the execution of the pruning procedure shown in Ta-
ble 2. For this table, we also use Jtrain = CRtrain.

For obvious reasons, from now on we refer to the proposed method as the
CAPE method (Correlation Analysis of back-Propagated Errors).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Method for Pruning the Multilayer Perceptron 225

Table 3. Numerical results of the application of the pruning methods

Data Set Architecture Q Nc CRtrain CRtest εtrain εtest

Original 9 75 99.05 93.33 0.0127 0.0858
Iris CAPE 4 16 99.05 93.33 0.1765 0.2422

OBS 4 18 99.05 93.33 0.1969 0.2105
WDE 9 75 99.05 93.33 0.3277 0.3274

Original 9 156 100 97.47 0.0007 0.0403
Wine CAPE 4 30 100 94.94 0.2573 0.3569

OBS 4 39 100 89.87 0.1836 0.2696
WDE 3 53 100 94.94 0.0025 0.0594

4 Simulations and Discussion

For evaluating the proposed pruning method, initially we have made some pre-
liminary tests using two benchmarking pattern classification data sets (Iris and
Wine). The Iris data set is composed of 150 4-dimensional pattern vectors dis-
tributed into 3 classes. The Wine data set is composed of 178 13-dimensional
vectors also distributed into 3 classes. For the Iris (Wine) data set, 35 (33) pat-
terns per class are randomly selected for training purposes and the remaining
ones are used for testing.

Weights and biases are randomly initialized within the range −0.5 to +0.5.
All neurons use the hyperbolic tangent activation function and the inputs are
normalized to the range of network activations. The output target vectors use
the 1-out-of-M binary encoding. The learning rate was set to η = 0.001 for all
simulations.

Network pruning is carried out through application of the CAPE method, as
described in Section 3. Numerical results are shown in Table 3. In this table, Nc

is the number of connections, CRtrain and CRtest stand for the classification
rate for the training and testing data, respectively.

For the Iris problem, CRtrain and CRtest were preserved with the application
of CAPE. For the Wine data set, only CRtrain was preserved, but the achieved
CRtest is still acceptable. It is worth noting that the CAPE method effectively
reduced the number of connections (Nc) in both cases, achieving equivalent or
better generalization performances than the standard OBS and WDE methods.

As a more demanding classification task, we have used a biomedical data
set kindly made available for this research by the Group of Applied Research
in Orthopaedics (GARO) of the Centre Médico-Chirurgical de Réadaptation des
Massues, Lyon, France. The task consists in classifying patients as belonging to
one out of three categories: Normal (100 patients), Disk Hernia (60 patients) or
Spondylolisthesis (150 patients).

Each patient is represented in the database by six biomechanical attributes
derived from the shape and orientation of the pelvis and cervical, thoracic,
and lumbar spine: pelvic incidence, pelvic tilt, sacral slope, pelvic radius, lum-
bar lordosis angle and grade of spondylolisthesis. Readers interested in more

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

226 C.M.S. Medeiros and G.A. Barreto

Table 4. Numerical results of the successive application of the pruning methods

Q Nc CRtrain CRtest εtrain εtest AIC

Architecture 1 24 243 89.68 87.50 0.1132 0.1274 490.36
CAPE 19 126 92.06 86.96 0.1662 0.1273 255.59
OBS 22 134 92.06 86.96 0.1777 0.1598 271.46
PWM 21 121 89.68 84.24 0.1733 0.1544 245.51
WDE 24 219 78.57 80.98 0.4237 0.4176 439.72

Architecture 2 18 183 96.03 86.41 0.0616 0.1891 371.57
CAPE 14 98 95.24 88.59 0.1089 0.1632 200.43
OBS 14 91 95.24 87.50 0.1529 0.1827 185.76
PWM 16 96 96.03 88.59 0.1453 0.1918 195.86
WDE 16 158 85.71 90.76 0.1747 0.1132 319.49

Architecture 3 13 133 93.65 81.52 0.0765 0.2311 271.14
CAPE 13 103 93.65 83.70 0.1211 0.2113 210.22
OBS 13 102 93.65 80.43 0.1267 0.2410 208.13
PWM 13 96 93.65 78.80 0.1356 0.2348 196.00
WDE 12 108 65.08 69.02 0.4323 0.4292 217.68

details about these and other related attributes as well as their relationships to
pathologies of the vertebral column are referred to [9].

Numerical features were measured by an orthopedic specialist from X-ray
images of the vertebral column. From a total of 310 resulting pattern vectors,
the training set is formed by randomly selecting 42 pattern vectors per class
and the remaining 184 examples are used for testing purposes. The learning rate
is set to 0.001. For this simulation, we set PItol = CRtol = 85%. This value
serves as a reference for the minimum acceptable recognition rate for training
and testing purposes. That is, even if a pruned network has produced a CRtrain

value higher than CRtol, its CRtest value should also be higher than CRtol.
Network pruning is carried out progressively through successive applications

of the CAPE method. Numerical results are shown in Table 4. In this table,
AIC stands for Akaike’s Information criterion1 and the acronym PWM stands
for Pruning by Weight Magnitude, which is a pruning method based on the
elimination of small magnitude weights [1]. Weights are sort in increasing order
of magnitude. Starting from the smallest weight, a given weight is pruned as
long as its elimination does not decrease CRtrain to a value below CRtol.

The CAPE algorithm has achieved a “pruned Architecture 1” with Q = 19
hidden neurons and Nc = 126 connections, but with less connections than a
fully-connected MLP architecture with the same number of hidden neurons (i.e.
Nc = 193). The OBS method has ended with a pruned network with Q = 22
hidden neurons and Nc = 134. The final classification rates (CRtrain and CRtest)
of both methods were coincidentally the same.

Important facts are worth mentioning with respect to the PWM method.
Firstly, despite the fact that it has ended with the network with the smallest
1 The AIC has the follow structure AIC = −2 ln(εtrain) + 2Nc [8].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Efficient Method for Pruning the Multilayer Perceptron 227

number of connections (Nc = 121) for Q = 21 hidden neurons, its CRtrain and
CRtest values were the worst ones. Secondly, due the small number of connections
it has achieved the lowest AIC value, wrongly indicating this architecture as the
best one for this problem. These results indicate that the AIC index is possibly
not the best model selection method for classification problems, since it is based
on the average squared error only, not on classification rates.

Since the performance of the Architecture 1 pruned by the CAPE method
remained at acceptable levels, we start to wonder what would have happened if
we had started the pruning process with a fully-connected, one-hidden-layered
MLP, denoted Architecture 2, with a number of hidden neurons close to the final
value achieved for Architecture 1 pruned by the CAPE method. Our rationale in
doing that is to verify if there were still room for further pruning of connections.
The training parameters for the Architecture 2 are the same as before.

The application of the CAPE and the OBS method to Architecture 2 led
to the same number of hidden neurons (Q = 14), with the latter achieving
less connections than the former. However, the classification rate CRtest for the
CAPE method was higher. The AIC model, in this case, indicated the OBS
method as the one providing the best pruned architecture, despite the fact that
the CAPE method has produced the highest classification rate. This was mainly
due to the smaller number of connections achieved by the OBS method.

The PWM method did quite well in terms of classification rates, ending with
a pruned architecture with Q = 16 number of neurons and Nc = 96 connections.
It is worth mentioning, however, that the PWM is highly sensitive to weight
initialization, and the numerical results shown in Table 4 corresponds to the
best one obtained after 10 training trials. The CAPE and the OBS method are
much less sensitive to weight initialization.

As the recognition rate CRtest for the pruned Architecture 2, irrespective of
the pruning method, also remained above the permitted value CRtol = 85%,
we decided to start pruning from another fully-connected, one-hidden-layered
MLP, with Q = 13. However, no method was able to reduce the number of hid-
den neurons, only the number of connections. Anyway, all the pruned networks
achieved recognition rates CRtrain and CRtest below the permitted value. Thus,
one can infer that the architectures best suited to the problem are the pruned
ones obtained from Architecture 2.

The best results obtained for the application of the WDE algorithm to the
Architectures 1 and 2 are also shown in Table 4. We set λ = 0.001 after some
experimentation. The performance of the WDE algorithm was very poor for
all the architectures. For the sake of completeness, we also implemented the
Exhaustive search plus early stopping method for model selection purposes of a
fully-connected one-hidden-layered MLP. After a long period of trials we ended
with a network with Q = 12 (Nc = 123) and CRtest = 83.57. Despite the fact
that the number of hidden neurons found by this method is lower than the one
provided by the CAPE method (Q = 14 and Nc = 98), the latter achieved an
equivalent recognition rate with less connection weights.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

228 C.M.S. Medeiros and G.A. Barreto

5 Conclusions

In this paper we introduced the CAPE method, an easy-to-apply and efficient
procedure for pruning unnecessary weights of a trained multilayer Perceptron
(MLP). The CAPE method is based on the correlation analysis of the errors
produced by the output neurons and the backpropagated errors associated with
the hidden neurons.

Simulations using real-world data indicate that, in terms of performance, the
CAPE method compares favorably with standard pruning techniques, such as the
OBS, WDE and Early Stopping, but demands much lower computational efforts.
A pruning method based on the magnitude of the weights was also evaluated. It
can give good results sometimes, but it is highly sensitive to weight initialization
in comparison with the OBS and the CAPE methods.

Currently, we are evaluating the CAPE method in a number of benchmarking
classification problems, in order to gather more evidence of its superior perfor-
mance for model selection.

Acknowledgements. The authors thank CAPES for its financial support via
a PRODOC grant.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

2. Seghouane, A.-K., Amari, S.-I.: The AIC criterion and symmetrizing the Kullback-
Leibler divergence. IEEE Transactions on Neural Networks 18(1), 97–106 (2007)

3. Curry, B., Morgan, P.H.: Model selection in neural networks: Some dificulties. Eu-
ropean Journal of Operational Research 170(2), 567–577 (2006)

4. Nakamura, T., Judd, K., Mees, A.I., Small, M.: A comparative study of information
criteria for model selection. International Journal of Bifurcation and Chaos 16(8),
2153–2175 (2006)

5. Xiang, C., Ding, S.Q., Lee, T.H.: Geometric interpretation and architecture selection
of the MLP. IEEE Transactions on Neural Networks 16(1), 84–96 (2005)

6. Fahlman, S.E., Lebiere, C.: The cascade-correlation learning architecture. In:
Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems, vol. 2,
pp. 524–532. Morgan Kaufmann, San Mateo (1990)

7. Hassibi, B., Stork, D.G.: Second order derivatives for network pruning: Optimal
brain surgeon. In: Hanson, S.J., Cowan, J.D., Giles, C.L. (eds.) Advances in Neural
Information Processing Systems, vol. 5, pp. 164–171. Morgan Kaufmann, San Mateo,
CA (1993)

8. Principe, J.C., Euliano, N.R., Lefebvre, W.C.: Neural and Adaptive Systems. John
Wiley & Sons, West Sussex, England (2000)

9. Berthonnaud, E., Dimnet, J., Roussouly, P., Labelle, H.: Analysis of the sagittal
balance of the spine and pelvis using shape and orientation parameters. Journal of
Spinal Disorders & Techniques 18(1), 40–47 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reinforcement Learning for Cooperative Actions

in a Partially Observable Multi-agent System

Yuki Taniguchi, Takeshi Mori, and Shin Ishii

Graduate School of Information Science,
Nara Institute of Science and Technology (NAIST)

Takayama 8916-5, Ikoma, 630-0192, Japan
{yuki-t, tak-mori, ishii}@is.naist.jp

Abstract. In this article, we apply a policy gradient-based reinforce-
ment learning to allowing multiple agents to perform cooperative ac-
tions in a partially observable environment. We introduce an auxiliary
state variable, an internal state, whose stochastic process is Markov, for
extracting important features of multi-agent’s dynamics. Computer sim-
ulations show that every agent can identify an appropriate internal state
model and acquire a good policy; this approach is shown to be more
effective than a traditional memory-based method.

1 Introduction

The achievement of cooperative actions in multi-agent systems by machine learn-
ing techniques is an interesting problem both in technological and biological
viewpoints [7]. Reinforcement learning (RL) [8] is one possible approach to this
problem, in which the agents are modeled to acquire cooperative policies au-
tonomously through the interactions with other agents, and has been widely
studied recently [5] [11]. Many RL techniques applied to multi-agent systems
assume completely observable environments, formulated as Markov decision pro-
cesses (MDPs), where every agent can perceive the complete state of other agents
and select actions depending on the state [5] [11] [6]. Many real-world problems
such as autonomous control of multiple robots cannot be formulated as MDPs,
however, because the robot sensors are often attached only to each robot so that
the robot cannot perceive the complete state of the other robots.

Such problems can be formulated as partially observable Markov decision
processes (POMDPs) [4], and have often been solved by RL using belief state
techniques, in which the value function that represents the goodness of the state
is estimated over the belief space [9] [12]. However, those techniques suffer from
several difficulties even with an effective approximation [3]; the dimensionality
of the belief space is usually high. Moreover, the state transition model is nec-
essary for estimation of the belief state, but the state transition (dynamics) of
other agents are often unknown in many real-world multi-agent problems. These
difficulties make the RL process unstable and inefficient.

Recently, a policy gradient algorithm with finite state controllers (FSCs) has
been proposed for solving POMDPs, called IState-GPOMDP [1]. The FSC is a

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 229–238, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

230 Y. Taniguchi, T. Mori, and S. Ishii

probabilistic policy possessing an internal state; it is a probabilistic automaton
which represents the probability of an action selection (controller) and a next
internal-state (own dynamics). In the IState-GPOMDP, the transition probabil-
ity of the internal state embedded in the FSC is identified by the policy gradient
algorithm together with the optimization of the policy. The important dynamic
characters of the target state space are extracted by learning of the transition
probability of the internal-state, which is performed in an irrelevant manner
to the underlying dimensionality of the target state space. Such a feature ex-
traction is favorable especially in a multi-agent setting, in which the true state
space has often high dimensionality. In the robotic soccer problem [6], for ex-
ample, the state space is composed of the relative location (distance and angle)
between the soccer players. Then, the dimensionality of the state space can be
huge as the number of players increases. Because the effective dimensionality of
such a high dimensional system is often much smaller than the dimensionality of
the whole state space, as to reflect the dependence between the state valiables,
feature extraction by the IState-GPOMDP can be more effective than directly
reconstructing the true state space as done by the belief state-based methods.

In this article, in order to allow multiple agents to perform cooperative ac-
tions in a partially observable multi-agent environment, we apply the IState-
GPOMDP and show that its learning process is faster and stabler than that by a
memory-based policy gradient method. Moreover, we show the important char-
acters of the agent’s reward-maximization can be extracted from interactions
with other agents as the transition models of the internal state. The IState-
GPOMDP has been applied only to single-agent partially observable systems or
multi-agent problems where the internal state is unnecessary to be resolved [1].
This is the first study to apply the policy gradient algorithm with FSCs to a
partially observable multi-agent system.

2 Partially Observable Multi-agent Systems and FSCs

Each agent is assumed to select its actions according to its own parameterized
policy, which is optimized so as to maximize the long term average reward.
As a natural model for multi-agent cooperative problems, we consider a finite
POMDP, consisting of a set of real states S , a set of actions A which agent can
take, a set of observations O which each agent can perceive, and a numerical
reward r ∈ R. For simplicity, real states, actions, observations and rewards are
represented individually for each agent. In the partially observable multi-agent
setting, at time t, the real state st ∈ S cannot be perceived directly by the agent,
but instead, the observation ot is drawn from the probability P (ot|st) conditioned
on the state st ∈ S. Because the uncertainty is introduced by this observation
process, the reactive policy, which depends only on the observation, does not
exhibit the best performance. Then, we employ the model in which an internal
state yt ∈ Y is added to the POMDP definition above as an additional input
to the policy; such a policy (controller) is called a finite state controller (FSC).
The stochastic process over the internal state is represented by the transition

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reinforcement Learning for Cooperative Actions 231

probability P (yt+1|yt, ot), where yt and yt+1 are the internal states at time t and
t + 1, respectively. In this case, the policy is the mapping from observation ot

and internal state yt to action at. Figure 1(a) represents the graphical model of
a single-agent POMDP employing an internal state. In this model, the colored
nodes: the observation, the action and the internal state, can be observed at each
time by the agent. On the other hand, Figure 1(b) shows the graphical model of a

y0 y1 y2

a0 a1 a2

s0 s1 s2

o0 o1 o2

y0 y1 y2

a0 a1 a2

s0 s1 s2

c0 c1 c2

o0 o1 o2

x0 x1 x2

(a) (b)

Fig. 1. (a) Graphical model of a POMDP with an internal state for a single agent
system. The current action at and the following internal state yt+1 depend on the
current internal state yt and the observation ot. (b) Graphical model modified to deal
with a multi-agent system. The current action at and the following internal state yt+1

depend not only on the current internal state yt and the observation ot but also on the
relative observation ct.

two-agents POMDP, which is the simplest control model of partially observable
multi-agent systems. In this model, a ‘relative’ observation of the other agent
c ∈ C and a real state of the other agent x ∈ X are added to the model in Figure
1(a). Here, the relative observation is assumed to be dependent on the real states
of the two agents, so that at time t ct is drawn from the relative observation
probability P (ct|st, xt). According to the graphical model in Figure 1(b), the
FSC is represented by the internal-state transition probability P (yt+1|yt, ot, ct)
and the action selection probability P (at|yt, ot, ct).

3 IState-GPOMDP for Cooperative Actions

In this section, we explain the IState-GPOMDP proposed by Aberdeen and
Baxter [1], and apply it to our partially observable multi-agent system. The
IState-GPOMDP is a policy gradient-based RL method which does not seek
to estimate the value function, but it adjusts the policy parameters θ and the
internal-state transition parameters φ directly to maximize the average reward.
In our particular setting, two agents learn the parameters individually. For each

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

232 Y. Taniguchi, T. Mori, and S. Ishii

agent, the internal-state transition probability and the action selection proba-
bility are represented as

P (yt+1|yt, ot, ct; φ)
P (at|yt, ot, ct; θ).

(1)

The objective of each agent is to seek the parameters φ and θ that maximize the
long term average reward:

η(φ, θ) := lim
T→∞

1
T

E φ,θ

[
T∑

t=1

rt

]

, (2)

where Eφ,θ denotes the expectation with respect to the trajectory (s0, y0, o0,
c0, a0), (s1, y1, o1, c1, a1), . . . prescribed by the parameters φ and θ. The internal
state and the action are assumed to be drawn from the parametrized Bolzmann
probabilities as

P (yt+1 = l|yt = i, ot = j, ct = k) := exp(φi,j,k,l)�
y∈|Y| exp(φi,j,k,y)

P (at = m|yt = i, ot = j, ct = k) := exp(θi,j,k,m)�
a∈|A| exp(θi,j,k,a) .

(3)

In this method, the policy gradient ∇η is estimated by gathering information
through the interactions with the other agent along the trajectory. The gradient
estimate Δt at time t is given by the product of the immediate reward rt and
the eligibility trace at that time. The following table shows the pseudocode
of the IState-GPOMDP applied to the multi-agent control problem to achieve
cooperative actions by an agent A and an agent B.

0: while
1: until the terminal condition, i.e., while t < T
2: For agent A, observe ot from P (ot|st) and ct from P (ct|st, xt).
3: Draw yt+1 from P (yt+1|yt, ot, ct, φ) and at from P (at|yt, ot, ct, θ).
4: Update the estimation of the policy gradient Δt with respect to φ and θ.
5: Repeat 2 ∼ 4 for agent B.
6: Perform action at for agent A and one for agent B.
7: t + +.
8: end
9: εΔt is added to the parameters φ and θ, where ε is the learning rate.
10: end

In this algorithm, the convergence of φ and θ to a global or local optimum
is guaranteed under some moderate conditions [10] [1]. The number of possible
values of the multinomial internal-state is the hyperparameter of this RL scheme
and is set for each agent in advance.

4 Computer Simulation

In this section, we propose an instance of partially observable multi-agent con-
trol problems, called the synchronized-cooperative goal (SCG) problem. In this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reinforcement Learning for Cooperative Actions 233

problem, the agent needs to synchronize with the other agent by taking coop-
erative actions, in order to maximize the long term reward. Then, we apply the
IState-GPOMDP with the multi-agent setting to this problem.

4.1 Synchronized-Cooperative Goal Problem

In the SCG problem, depicted in Figure 2, each agent is required to synchro-
nize with the other agent to receive the positive reward. Two agents move from
a start column to a goal column. Agent A moves on the upper passage, and
agent B on the lower passage. There are three passage settings whose start and

start1start2start3

start3 start2 start1 goal1

goal1

goal2 goal3

goal2 goal3agent_A

agent_B

Fig. 2. The synchronized-cooperative goal problem. A agent A moves on the upper
passage and a agent B moves on the lower passage.

goal columns are (start1, goal1), (start2, goal2) and (start3, goal3). The upper
and lower passages are independently and randomly selected from these pas-
sage settings before each learning episode starts. A= {GO, WAIT} is the set
of actions of the two agents. When the agent takes the GO action, it moves
to the right column, and when it takes the WAIT action, it stays at the same
column. When the start and the goal are (start2, goal2) for example, the agent
must take the GO action four times to reach the goal. Each agent cannot ob-
serve the passage setting and the current state of either agent, but can observe
their own observation and the ‘relative’ observation at each time step as fol-
lows. O= {NOT CENTER, CENTER} is the set of observations about their
own state. The agent can observe CENTER when being at the central column,
or NOT CENTER at another column. C= {NOT SYNCH, SYNCH} is the set
of relative observations; the two agents can observe SYNCH when they are si-
multaneously at the central column on their passage, or NOT SYNCH when
either agent is at another column. When either agent reaches the goal, a single
episode ends. In this case, if both agents reach the goal at the same time after
they have observed SYNCH, the reward rt = +1 is given to both agents. If one
agent has reached the goal before the other agent reaches or has reached without
having observed SYNCH, the reward rt = −0.1 is given to both agents. After
that, a new setting is selected randomly for both agents, and the agents are ini-
tialized to be placed at their start columns to start the next episode. Since the
observations of the agents are restricted, this problem is an imperfect perception
problem, which is difficult to be solved especially in multi-agent settings [7].

Figure 3 shows an example of optimal control in a single episode. In this opti-
mal control, each agent continues to select the GO action until reaching the cen-
tral column, that is, whenever the pair of observations (ot, ct) is (NOT CENTER,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

234 Y. Taniguchi, T. Mori, and S. Ishii

(a)

(b)

(c)

Fig. 3. Example cooperative actions based on an optimal policy for the synchronized-
cooperative goal problem. (a) The upper and lower passages are selected randomly.
Then, both agents are initialized to be at their start columns. (b) Both agents move to
their central columns. The agent A waits at the central column and collects information
to synchronize the following actions. (c) The terminal state of this episode. Both agents
reach the goal at the same time, then both agents receive the positive reward.

NOT SYNCH). Once the agent observes (CENTER, NOT SYNCH) or (CEN-
TER, SYNCH), it should select the GO action or the WAIT action appropriately.
When agent A arrives at the central column earlier than agent B, agent A should
wait and collect information of the number of time steps until agent B comes.
While agent B takes the GO action after observing SYNCH at the central col-
umn, agent A should take the WAIT action to reach the goal simultaneously
with agent B based on the counting of time steps before observing SYNCH. To
successfully complete the task, each agent has to extract the characters of the
task, namely, what kind of passage settings the two agents are performing, and
where they are.

4.2 Experimental Results

We introduce the internal state model (section 2), and apply the IState-GPOMDP
(section 3), to our SCG problem above. We examine the performance of the
IState-GPODP of various numbers of internal-state values and that of a tradi-
tional POMDP-RL method. In the following simulation experiments, the number
of training episodes in a single RL run was set to T = 105. The initial state of
the internal state was not a learning parameter, but set randomly before each
learning episode. The multinomial internal state has full connectivity between
the multinomial elements (see Figures 5 and 6), and the parameters represent-
ing the connectivity were estimated. To achieve the SCG problem optimally, the
number of internal-state values should be four or more.

Figure 4 shows the learning processes of the IState-GPOMDP and a memory-
based policy gradient method. According to the latter approach, the stochastic
policy with memories: P (at|ot, ct, ot−1, ct−1, . . . , ot−|G|, ct−|G|; θ) is optimized by
GPOMDP [2], where |G| is the number of memories, that is, the policy is set
to be dependent on observations and relative observations in the previous time

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reinforcement Learning for Cooperative Actions 235

steps. In this case, the policy was also parametrized as the Bolzmann proba-
bility, similar to equation (3). In Figure 4, the learning processes are averaged
over 50 runs and smoothed over every 1000 time steps, showing the IState-
GPOMDPs was superior to the memory-based policy gradient method. In the
IState-GPOMDP, the larger the number of internal-state values became, the
larger the average reward became whereas slightly heavier the computation cost
was. In the memory-based method, on the other hand, the increase in the num-
ber of memories made the computation effort large but did not increase the
average reward. Table 1 shows the comparison of the success rates among 50
learning runs; the success rate is the ratio of episodes in all of which the agents
received positive rewards in 1000 time steps with the learned parameters. In the
IState-GPOMDP, as the number of internal-state values increased, the success
rate increased. In contrast, the memory-based policy gradient method could not
achieve the optimal policy with any number of memories.

0 5 10 15 20 25 30 35 40 45 50
−20

0

20

40

60

80

100

120

140

160

180

*10
3

*10

|Y|=3

|Y|=4

|Y|=6

|Y|=8

|Y|=20

|Y|=50

|g|=6

|g|=5

|g|=4
|g|=3

|g|=2

Time steps

A
v
e
r
a
g
e

r
e
w
a
r
d

-3

Fig. 4. The learning processes of the IState-GPOMDP and the memory-based reactive
policy method with various numbers of internal-state values and memories, respectively

Figure 5 shows example internal-state transition models of agent A and
agent B acquired by the IState-GPOMDP with four internal-state values (nodes),
i.e., |Y| = 4. Each arrow expresses the transition to the internal state with a
maximum probability: yt+1 = argmaxyt+1P (yt+1|yt, ot, ct). The label (·, ·) at-
tached to the arrow such as (α, GO) means the pair of observation and action,
where the first argument, α, β, or γ, simply denotes the pair of observations
(ot, ct): α ≡ (NOT CENTER, NOT SYNCH), β ≡(CENTER, NOT SYNCH),
or γ ≡(CENTER, SYNCH), and the second argument, GO or WAIT, means
the action with maximum probability: at = argmaxatP (at|yt, ot, ct). For exam-
ple, the label (γ, GO) attached to the arrow from the internal state 1 to 2 in
Figure 5(a) means the quintuplet of the internal-state: yt = 1, the observations
(ot, ct) =(CENTER, SYNCH), the action at =GO, and the next internal-state:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

236 Y. Taniguchi, T. Mori, and S. Ishii

Table 1. The performance comparison in terms of success rate by the IState-GPOMDP
and the memory-based method. |G| denotes the number of memories, and ‘average’ and
‘maximum’ denote respectively the average and the maximum of the success rate after
105 learning episodes over the 50 runs.

Method |Y| or |G| average maximum standard deviation

3 0.4772 0.9263 0.2715
4 0.5379 1.0 0.2413

IState-GPOMDP 6 0.7064 1.0 0.2040
8 0.7791 1.0 0.1576
20 0.8683 1.0 0.1366
50 0.9406 1.0 0.1040

2 0.4641 0.8517 0.3261
3 0.4993 0.7308 0.1912

memory-based method 4 0.4918 0.8187 0.2161
5 0.4456 0.8145 0.2037
6 0.3517 0.6989 0.2035

1

2

3

4

(,GO)

(,WAIT)

(,GO)

(,WAIT)

(,WAIT)

(,WAIT)

(,GO)

(,GO)

(,GO)

(,GO)

(,WAIT)

α

γ

β

γ

γ

α

α

α

β

β

β 1

2

3

4

(,GO)

(,GO)

(,GO)

(,WAIT)
(,WAIT)

(,GO)

(,GO)

(,WAIT)

(,WAIT)

(,WAIT)

α

γ

β
γ

γ

β

β

β

α

γ

(a)agent A (b)agent B

Fig. 5. Example internal state transition models when each agent observed
(ot, ct), yt+1 =argmaxyt+1P (yt+1|yt, ot, ct) and at =argmaxatP (at|yt, ot, ct), in the
synchronized-cooperative goal problem. {α, β, γ} represents the pair of observa-
tions, i.e., α≡ (ot, ct) =(NOT CENTER, NOT SYNCH), β≡ (ot, ct) =(CENTER,
NOT SYNCH), and γ≡ (ot, ct) =(CENTER, SYNCH).

yt+1 = 2. In this figure, internal-state transitions whose probability was less than
0.01 are omitted. These models realize one of the optimal policy pairs.

Figure 6 shows example internal-state models with 6 internal-state values
(nodes), i.e., |Y| = 6. The model of agent A uses all 6 nodes, but that of agent B
uses effectively 5 nodes, by isolating the 6-th node.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Reinforcement Learning for Cooperative Actions 237

1

(,GO)

(,GO)
(,GO)

2 3

4 5

6

(,WAIT)

(,WAIT)

(,WAIT)

(,WAIT)(,GO) (,GO)

(,GO) (,GO)

β

α

γ

γ

γ β

βα

α

α

β

1

2 3

4 5

6

(,GO)

(,WAIT)

(,WAIT)

(,GO)

(,GO)

(,GO)

(,WAIT)

(,GO)

(,WAIT)

(,WAIT)

α

β

γ

γ

γ

β

β

α

α

β

(a)agent A (b)agent B

Fig. 6. Example internal state transition models with 6 internal-state values (nodes)

5 Discussion

We applied the IState-GPOMDP to the SCG problem, which is a partially
observable multi-agent control problem. We compared the performance of the
IState-GPOMDPs with various numbers of internal-state values and that of the
memory-based policy gradient method with various numbers of memories, and
showed that learning processes of the IState-GPOMDP were faster and stabler
than those by the memory-based policy gradient method. According to our ex-
periments, as the number of internal-state values increased, the policy obtained
by the IState-GPOMDP was improved, while the learning speed became slightly
slow. In the memory-based approach, on the other hand, the performance was
not improved by the increase in the number of memories.

When using the Boltzmann policy, the numbers of learning parameters are
of O(|Y|2) in the IState-GPOMDP and of O((|O + C|)|G|) in the memory-based
method. In the latter method, the large number of parameters makes the learn-
ing slow as depicted in Figure 4. Actually, in the SCG problem, setting of |G| =
10 makes the number of parameters be 118,098, which would lead to the com-
putational difficulty. Accordingly, the IState-GPOMDP has much scalability to
deal with high-dimensional multi-agent systems such as the robotic soccer prob-
lem [6].

In our present SCG problem, to receive this, the agents need to have
observed SYNCH, which is a type of subgoal setting. When we relaxed the
positive reward condition into just reaching the goal at the same time, the
IState-GPOMDPs could hardly achieve the optimal policies, because the lack
of the subgoal setting would make the search space of the optimal policies much
larger. We will study an algorithm to achieve optimal policies even without
such a subgoal setting.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

238 Y. Taniguchi, T. Mori, and S. Ishii

6 Concluding Remarks

In this article, we applied an RL technique to solving multi-agent control prob-
lems based on the formulation of POMDPs. We showed that important fea-
tures for the agent’s reward-maximization can be extracted from interactions
with other agents as the transition models of the internal state. We applied this
method to a newly-proposed SCG problem and showed the learning process is
faster and stabler than that by a memory-based policy gradient method.

Although the objective of the two agents was symmetric in the current SCG
problem, our method can be applied to asymmetric problems in which two agents
have asymmetric reward settings. Moreover, our method can be applied to con-
trol problems constituted by three or more agents. Such extension of the appli-
cability will be shown in our future study.

References

1. Aberdeen, D., Baxter, J.: Scaling Internal State Policy-Gradient Methods for
POMDPs. In: Proceedings of the 19th International Conference on Machine Learn-
ing, pp. 3–10 (2002)

2. Baxter, J., Bartlett, P.L.: Infinite-Horizon Policy-Gradient Estimation. Journal of
Artificial Intelligence Research 15, 229–256 (2001)

3. Hauskrecht, M.: Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research 13, 33–99 (2000)

4. Kaelbling, L.P., Littman, M.L, Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artificial Intelligence 101, 99–134 (1998)

5. Littman, M.L.: Markov games as a framework for multi-agent reinforcement learn-
ing. In: Proceedings of the 11th International Conference on Machine Learning,
pp. 157–163 (1994)

6. Stone, P., Sutton, R., Singh, S.: Reinforcement Learning for 3 vs. 2 Keepaway.
RoboCup-2000: Robot soccer world cup IV 249–258 (2000)

7. Stone, P., Veloso, M.: Multiagent Systems: A Survey from a Machine Learning
Perspective. Autonomous Robotics 8(3) (2000)

8. Sutton, R., Barto, A.: An introduction to reinforcement learning. MIT Press, Cam-
bridge (1998)

9. Thrun, S.: Monte Carlo POMDPs. Advances in Neural Information Processing
Systems 12, 1064–1070 (2000)

10. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8, 229–256 (1992)

11. Whitehead, S.D.: A complexity analysis of cooperative mechanisms in reinforce-
ment leaning. In: Proc. of the 9th National Conf. on Artificial Intelligence, vol. 2,
pp. 607–613 (1991)

12. Yoshimoto, J., Ishii, S., Sato, M.: System identification based on on-line variational
Bayes method and its application to reinforcement learning. In: Kaynak, O., Al-
paydın, E., Oja, E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714,
pp. 123–131. Springer, Heidelberg (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Input Selection for Radial Basis Function

Networks by Constrained Optimization

Jarkko Tikka

Helsinki University of Technology, Laboratory of Computer and
Information Science, P.O. Box 5400, FI-02015 HUT, Finland

tikka@mail.cis.hut.fi
http://www.cis.hut.fi/tikka

Abstract. Input selection in the nonlinear function approximation is
important and difficult problem. Neural networks provide good general-
ization in many cases, but their interpretability is usually limited. How-
ever, the contributions of input variables in the prediction of output
would be valuable information in many real world applications. In this
work, an input selection algorithm for Radial basis function networks is
proposed. The selection of input variables is achieved using a constrained
cost function, in which each input dimension is weighted. The constraints
are imposed on the values of weights. The proposed algorithm solves a
log-barrier reformulation of the original optimization problem. The input
selection algorithm was applied to both simulated and benchmark data
and obtained results were compelling.

1 Introduction

Radial basis function (RBF) networks have been widely utilized in regression
problems. The advantages of RBF networks are that the training of networks
is relatively fast and they are capable on universal approximation with non-
restrictive assumptions [1]. Fastness of the training is a consequence of simple
structure of the RBF networks. They have only one hidden layer, in which each
node corresponds to a basis function and a mapping from the hidden layer to the
output layer is linear. The activation of hidden node is evaluated by the distance
between an input vector and a center of the basis function. The usual choice for
the basis function is the radially symmetric Gaussian function.

Many approaches are proposed to optimize the number of basis functions
and widths of the Gaussian functions. In [2], the widths are fixed to be same
and centers of the basis functions are selected from the input vectors using
a regularized forward selection. Unsupervised clustering techniques, such as k-
means and Gaussian mixture models trained with the EM algorithm, are another
alternative to determine the centers of basis functions [3,4]. After the centers are
selected, the widths of the Gaussian functions are found, for example, using the
p-nearest neighbor rule [3] or weighting the standard deviation of the data in
each cluster [5]. Nevertheless, these studies do not consider the input selection
at all.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 239–248, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

240 J. Tikka

The disadvantage of RBF networks is their black-box characteristics. Basi-
cally, the network includes all the input variables and, in addition, importances
of the inputs are not clear at all. However, interpretation or understanding of
the underlying process can be increased by selecting the input variables. In addi-
tion to interpretability, the rejection of non-informative inputs can improve the
generalization capability of the network [6].

Several approaches exist to perform input selection [6]. In the filter approach,
the input selection procedure is independent from the final non-linear model. The
inputs can be selected, for example, based on mutual information [7] or linear
models [8,9], and the final non-linear model is trained using the selected subset
of inputs. The wrapper methodology takes into account the nonlinear model in
the input selection [10]. Time consuming strategy is to fix the number of input
variables and search through all the possible combinations. Computationally
more efficient search strategies are presented in [10]. In the embedded methods,
the input selection and training of the model are carried out simultaneously
[6]. For instance, in the case of classification and support vector machines, a
radius margin bound is used as a cost function and weights of the inputs are
optimized by gradient descent algorithm [11]. Another alternative is to built the
model using all the available inputs and use the backward elimination of the
least significant inputs. In [12], several different criteria for the ranking of inputs
are suggested.

In this work, an input selection algorithm for RBF networks is proposed. The
algorithm is based on the weighted Euclidean distance, thus each input dimension
has its own weight. The sum of weights are constrained such that some of the
weights tend to be zero and corresponding inputs are rejected from the final
model. The optimal weights are calculated by solving a constrained optimization
problem, which takes into account the non-linear dependency between the inputs
and the output. The proposed algorithm belongs to the class of embedded input
selection methods.

The article is organized as follows. The ordinary RBF networks are briefly
presented in Sect. 2 followed by the input selection algorithm for RBF networks
in Sect. 3. The results of experiments on a simulated data set and Boston Housing
benchmark data set are shown in Sect. 4. Finally, conclusions are given in Sect. 5.

2 Radial Basis Function Networks

Let us assume that there are N measurements available from an output vari-
able yj and input variables xj = [xj,1, . . . , xj,d], j = 1, . . . , N . In a regression
problem, the task is to estimate the values of output yj as accurately as possible
using the inputs xj . If the dependency is presumed to be non-linear, an unknown
function can be estimated using artificial neural networks. In the case of RBF
networks with Gaussian basis functions the model can be written as

ŷj =
N∑

n=1

αnK(cn, xj) + α0, where K(cn, xj) = exp
(

−‖cn − xj‖2

σ2
n

)

. (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Input Selection for RBF Networks by Constrained Optimization 241

Usually, the training of RBF networks consists of three stages. First, the cen-
ters of Gaussian basis functions cn are placed using some unsupervised learning
algorithm. Second, the widths of basis functions σn are computed. Third, the pa-
rameters α0 and αn, n = 1, . . . , N are estimated by minimizing the mean squared
error (MSE). However, in this work the basis function is placed on each training
data point xn, n = 1, . . . , N and the widths of Gaussian basis functions have
common value σn = σ. The parameters α0 and αn, n = 1, . . . , N are estimated
by minimizing the regularized cost function

J =
1
N

N∑

j=1

(yj − ŷj)2 + γ
N∑

n=1

α2
n , (2)

where the second term controls the smoothness of nonlinear mapping. For the
given values of σ and γ the parameters α0 and αn are found by solving the
system of linear equations.

3 Input Selection for RBF Networks

The disadvantage of model (1) is that it includes all the available input variables.
In addition, it is nearly impossible to distinguish irrelevant and relevant inputs
from each other. In [13], the problem is circumvented by using a Mahalanobis-
like distance in place of the Euclidean distance. The distance is evaluated using
a genetic algorithm in order to minimize the error criterion of the network.
Nevertheless, the approach does not necessarily select inputs.

In this work, a weighted Euclidean distance is used

dw(cn, xj) =

√
√
√
√

d∑

i=1

wi(cn,i − xj,i)2, wi ≥ 0, i = 1, . . . , d . (3)

The constraints wi ≥ 0 guarantee that the distance dw(cn, xj) is real-valued and
nonnegative. The output of RBF network with distance (3) is

ŷj(w) =
N∑

n=1

αnKw(cn, xj) + α0 and Kw(cn, xj) = exp
(
−dw(cn, xj)2

)
. (4)

Same weights wi are used in all the basis functions. The basis functions are
ellipsoidal, whose principal axes are parallel to the coordinate axes. The basis
function is located to each training data point as in (1).

The goal is to estimate the weights wi by minimizing the MSE between the
observations yj and the outputs of network ŷj(w). However, if w → 0 the
output of network is constant α0, which equals to the mean of the observations
yj . On the other hand, if w → ∞ the output of network interpolates exactly
the observations yj . In order to achieve a smooth mapping there has to be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

242 J. Tikka

a constraint on the values of weights wi. This leads to consider the following
optimization problem

minimize
w

E(w) =
1
N

N∑

j=1

(yj − ŷj(w))2 + γ

N∑

n=1

α2
n

such that
d∑

i=1

wi ≤ t and wi ≥ 0, i = 1, . . . , d .

(5)

The regularization term for the parameters αn is also needed in this case, since
the basis function is located to each data point. The constraint

∑d
i=1 wi < t

shrinks the values of weights toward zero. It is known that the constraint of
this type tends to set some of the coefficients wi exactly to zero with appropri-
ate choice of the parameter t [14,15]. This means that the corresponding input
variables xi are dropped from the model.

Problem (5) can be transformed into an unconstrained problem using the
barrier function method [15]. With a logarithmic barrier function, it can be
written as

minimize
w

J(w) = E(w) + μB(w), where μ > 0 and

B(w) = − log

(

t −
d∑

i=1

wi

)

− 1
d

d∑

i=1

log(wi) ,
(6)

where μ is a predefined small constant. The objective function J(w) is differ-
entiable with respect to all the parameters α0, αn, n = 1, . . . , N , and wi, i =
1, . . . , d.

In this work, the unconstrained problem (6) is solved in two phases. First, the
values of weights wi are fixed and the parameters α0 and αn are optimized by
solving the system of linear equations. Second, the obtained values of α0 and αn

are fixed and the weights wi are optimized. These two steps are repeated until
the convergence is achieved.

The objective function J(w) cannot be solved in the closed from with re-
spect to the weights wi. The solution is determined using Levenberg-Marquardt
optimization algorithm [4,16]. The derivative of J(w) with respect to wk is

∇J(w)k = − 2
N

N∑

j=1

ej
∂ŷj(w)

∂wk
+ μ

∂B(w)
∂wk

, (7)

where ej = yj − ŷj(w). The second partial derivative of the MSE part E(w)
with respect wk and wl is

∂2E(w)
∂wl∂wk

= − 2
N

N∑

j=1

∂ej

∂wl

∂ŷj(w)
∂wk

+ ej
∂2ŷj(w)
∂wl∂wk

. (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Input Selection for RBF Networks by Constrained Optimization 243

Algorithm 1
1: Set k = 0, λk = 1, μ = 10−6, and initialize wk

2: Evaluate the search direction pk by solving�
H̃(wk) + λkI

�
pk = −∇J(wk)

3: Determine the step length

δ = max
�

0 ≤ δ ≤ 1 :
�d

i=1 wk
i + δpk

i < t, wk
i + δpk

i > 0, i = 1, . . . , d
�

4: Calculate the ratio

rk =
J(wk) − J(wk + δpk)

J(wk) − J̃(wk + δpk)

5: If rk > 0.75, set λk = λk/2

6: If rk < 0.25, set λk = 2λk

7: If J(wk + δpk) < J(wk), set wk+1 = wk + δpk, λk+1 = λk, and k = k + 1

8: Go to step 2 or terminate if the stopping criterion is fulfilled

Following [4,16], the second term is neglected and the element (l, k) of the ap-
proximated Hessian matrix is

H̃(w)l,k =
2
N

N∑

j=1

∂ŷj(w)
∂wl

∂ŷj(w)
∂wk

+ μ
∂2B(w)
∂wl∂wk

. (9)

Only the first partial derivatives of model (4) are required in the evaluation of
(7) and (9), which reduces the computational complexity.

The algorithm to optimize weights w for the given values of γ and t and the
fixed values of parameters α0 and αn is summarized in Algorithm 1. It starts by
initializing the trust region parameter λ0 and weights w0

i such that the starting
point is strictly feasible, i.e.

∑
w0

i < t, and w0
i > 0. The algorithm continues by

evaluating the search direction pk and determining the step length δ such that
the next iterate wk +δpk stays strictly in the feasible region (steps 2 and 3). The
trust region parameter λ is adjusted according to the ratio rk, which is the ratio
between the actual and the predicted decrease in the value of objective function
J(w). In step 7, the new iterate is accepted if it leads to reduction in the value
of objective function. Steps 2-7 are repeated as long as a stopping criterion is
fulfilled, which can be the maximum number of iterations or a relative change
in the value of objective function.

3.1 Input Selection Algorithm for RBF Network

The two phase algorithm for solving the optimization problem is summarized
in Algorithm 2. Let us assume that the regularization parameter γ and the
shrinking parameter t are given. The algorithm starts by initializing the values
of weights wm

i , m = 0 and evaluating the kernel matrix Kwm . The initialization
wm

i = 0.9t/d corresponds to model (1) with the width σ2 = d/0.9t. The next

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

244 J. Tikka

Algorithm 2. Input selection algorithm for RBF network
1: Set m = 0, initialize the weights wm

i = 0.9t/d, i = 1, . . . , d, and evaluate the
values of kernel matrix Kwm (xn, xj), n = 1, . . . , N and j = 1, . . . , N

2: Use the weights wm
i to determine the values of αm+1

0 and αm+1
n , n = 1, . . . , N by

minimizing

E(w) =
1

N

N�
j=1

(yj − ŷj(w))2 + γ
N�

n=1

α2
n

3: Use the obtained values αm+1
0 and αm+1

n , n = 1, . . . , N to determine the weights
wm+1

i by Algorithm 1

4: Update the values of kernel matrix Kwm+1(xn, xj) and evaluate the value of cost
function (6) using the the parameters αm+1

0 , αm+1
n , and wm+1

i , set m = m + 1

5: Go to step 2 or terminate if the stopping criterion is fulfilled

step is to estimate the parameters αm+1
0 and αm+1

n by minimizing the regu-
larized error function E(w) for the fixed values of weights wm

i . New values for
the weights wm+1

i are computed using Algorithm 1 using in the previous step
obtained values of αm+1

0 and αm+1
n (step 3). Algorithm 1 is terminated if the

relative decrease in the value of objective function during the last five iterations
is less than 10−4. The maximum number of iterations is 10 in Algorithm 1. Al-
gorithm 2 continues by updating the kernel matrix Kwm+1 and evaluating the
value of objective function (6) using the new values of parameters αm+1

0 , αm+1
n

and the weights wm+1
i (step 4). Steps 2-4 are repeated until the stopping crite-

rion is achieved. The iteration is terminated if the relative decrement is less than
10−4 during the last five iterations or 200 iterations are performed. Algorithm 2
produces the sequence of decreasing values for the objective function.

4 Experiments

4.1 Simulated Data

In this experiment, the performance of Algorithm 2 is illustrated using a simu-
lated data set. In the case of simulated data, the assessment of quality of results
is straightforward, since the underlying phenomenon is completely known. The
values of each of five input variables x = [x1, . . . , x5] were independently drawn
from the uniform distribution in the range xi ∈ [−3, 3]. The target was one di-
mensional sinc function and noisy samples from that model were generated as

yj = sinc(xj,1) + εj , j = 1, . . . , N , (10)

where εj were independent samples from the normal distribution εj ∼ N(0, 0.152).
Thus, only first input was relevant. The sizes of the training and the validation sets
were Nt = 200 and Nv = 2000, respectively.

Algorithm 2 is evaluated in twenty points of the regularization parameter γ
and the shrinking parameter t, which were logarithmically equally spaced in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Input Selection for RBF Networks by Constrained Optimization 245

ranges γ ∈ [10−4, 1] and t ∈ [0.3, 4], respectively. In all, 400 RBF networks were
trained using Algorithm 2. The validation error was the MSE for the validation
set and the minimum was achieved using the parameter values γ = 0.013 and
t = 0.779. The standard deviation of the validation errors ej = yj − ŷj(w) was
0.133, which corresponds very well to the standard deviation of the noise.

On the left panel of Fig. 1, the evolution of the weights wi, i = 1, . . . , 5 during
the training are presented as a function of the iterations m in Algorithm 2. The
stopping criterion was fulfilled after 62 iterations. In the end, only the weight
w1 was nonzero, which corresponds to the input variable x1. This means that
Algorithm 2 detected the relevant input and discarded irrelevant ones from the
model. The right panel of Fig. 1 presents the samples of the first dimension of
input variables (gray dots), the target sinc function (solid line), and estimated
function (dashed line). The peak of the sinc function is slightly underestimated
and there is also visible overestimation with large values of x1. Otherwise the
approximation is nearly perfect.

−3 −2 −1 0 1 2 3

−0.4

0

0.4

0.8

1.2

x1

y

0 10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

Iteration

wi

w1

Fig. 1. Development of weights wi as a function of iterations in Algorithm 2 for the
simulated data (left panel) using the values of parameters γ and t, which produce the
minimum validation error. On the right panel, the training samples x1 (gray dots), the
unnoisy sinc function (solid line), and the estimated sinc function (dashed line).

4.2 Boston Housing Data

The purpose of this experiment is to illustrate the performance of Algorithm 2
and compare it to the ordinary RBF networks defined by (1) using a real data
set. The used data are called Boston Housing data set and it can be downloaded
from the UCI Machine Learning Repository1. The data contain 506 samples
from d = 13 input variables xi, i = 1, . . . , 13 and from a single output y. The
data set was randomly divided to the training set (Nt = 400) and to the test set
(Ntest = 106). All the inputs and the output were scaled to have zero mean and
unit variance to make the weights comparable.

The training of RBF networks was carried out using a 10-fold cross validation
(CV). The ordinary RBF was evaluated using 20 values of the regularization

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

246 J. Tikka

Table 1. MSEs for Boston Housing data. Minimum CV error (2. column), the test error
of the minimum CV error model (3.column), and the optimal test error (4. colum).

Model CV error Test error Opt. test error

Ordinary RBF 0.127 0.143 0.126

Sparse RBF 0.130 0.149 0.112

−2 −1 0 1 2 3

−2

−1

0

1

2

3

y

ŷ

Training data

−2 −1 0 1 2 3

−2

−1

0

1

2

3

y

ŷ

Test data

Fig. 2. The values of estimated output ŷj(w) plotted versus the actual values yj for
the training data (left) and the test data (right)

parameter γo and the widths of Gaussian basis function σ2, which were loga-
rithmically equally spaced in the ranges γo ∈ [10−9, 5 · 10−5] and σ2 ∈ [4, 500].
Algorithm 2 was calculated using 20 logarithmically equally spaced points of the
regularization parameter γa and the shrinking parameter t (γa ∈ [2 · 10−6, 0.03]
and t ∈ [0.2, 7]).

The minimum CV errors and the corresponding test errors for the ordinary
RBF network and the sparse RBF network, i.e. Algorithm 2, are shown in the
second and in the third column of Table 1. The test errors were also calculated for
all the combinations of parameters and the results are shown in the last column
of Table 1. In practice, the both methods are equally accurate in the prediction.
However, it is notable that the most accurate CV model did not produce the
best possible test error in either model.

In Fig. 2, the estimated outputs versus the actual outputs are shown for the
minimum CV error model for the training data (left) and the test data (right).
The predictions are overall very good in the training data. In the test set, some
of the highest values of the output are evidently underestimated otherwise the
approximation is excellent.

On the left panel of Fig. 3, the weights wi of the minimum CV error model
are shown. All the weights are non-zero, but the values are not equal. Thus, the
model highlights differences in importances of the inputs in the prediction. In
[9] proposed method selects also all the input variables in the case of Boston

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Input Selection for RBF Networks by Constrained Optimization 247

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.1

0.2

i

wi

1 2 3 4 5 6 7 8 9 10 11 12 13
0

0.5

1

i

wi

Fig. 3. The values of weights wi in the minimum CV error model (left) and in the
model producing the optimal test error (right)

Housing data. On the right panel of Fig. 3, the weights wi of the optimal test
error model are illustrated. The inputs x2 and x3 are rejected from this model.
Also, the weights of the first and fourth inputs w1 and w4 are nearly zero. The
validation error of the optimal test error model (0.146) was just slightly worse
than the minimum CV error (0.130). Thus, it would probably be reasonable to
make compromise between the CV error and number of selected inputs in the
model selection as it is done in [8].

5 Summary and Conclusions

In this work, an input selection algorithm for the RBF networks was proposed.
The algorithm solves a constrained optimization problem. The weighted Eu-
clidean distance is used in the basis functions and the constraint structure on
weights favors sparsity in terms of the input variables. The proposed algorithm
solves the weights and the parameters of the output layer in two phases. Spar-
sity in terms of the inputs makes the models more interpretable compared to
the ordinary RBF networks. The method was applied to the simulated and real
world data set and the results were convincing in both cases.

In the case of large training data, it is not feasible to place the basis function
in each training data point. The centers of basis functions can then be selected
using some unsupervised technique. After that, the centers are kept fixed and
the proposed algorithm can be applied without any modifications. However,
the regularization parameter γ is not necessarily needed anymore. That would
decrease computational complexity in the model selection phase, since only the
value of shrinking parameter t would have to be validated. The disadvantage
of unsupervised approach is that the selection of centers are based only on the
input data. The resulting centers may be suboptimal solution with respect to
the prediction accuracy. Probably better results would be achieved if the centers
of the basis functions were optimized using the embedded approach. That is, the
selection of centers of basis functions would be incorporated into the training

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

248 J. Tikka

process. Further work is also required that the weights and the parameters of
output layer would be optimized simultaneously.

References

1. Park, J., Sandberg, I.W.: Approximation and Radial-Basis-Function Networks.
Neural Computation 5, 305–316 (1993)

2. Orr, M.J.L.: Regularization in the Selection of Radial Basis Function Centers.
Neural Computation 7, 606–623 (1995)

3. Moody, J., Darken, C.J.: Fast Learning in Networks of Locally-Tuned Processing
Units. Neural Computation 1, 218–294 (1989)

4. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

5. Benoudjit, N., Verleysen, M.: On the Kernel Widths in Radial-Basis Function Net-
works. Neural Processing Letters 18, 139–154 (2003)

6. Guyon, I., Elisseeff, A.: An Introduction to Variable and Feature Selection. Journal
of Machine Learning Reasearh 3, 1157–1182 (2003)

7. Herrera, L.J., Pomares, H., Rojas, I., Verleysen, M., Guilén, A.: Effective Input
Variable Selection for Function Approximation. In: Kollias, S., Stafylopatis, A.,
Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 41–50. Springer,
Heidelberg (2006)

8. Tikka, J., Lendasse, A., Hollmén, J.: Analysis of Fast Input Selection: Application
in Time Series Prediction. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.)
ICANN 2006. LNCS, vol. 4132, pp. 161–170. Springer, Heidelberg (2006)

9. Bi, J., Bennett, K.P., Embrechts, M., Breneman, C.M., Song, M.: Dimensional-
ity Reduction via Sparse Support Vector Machines. Journal of Machine Learning
Research 3, 1229–1243 (2003)

10. Kohavi, R., John, G.H.: Wrappers for Feature Selection. Artificial Intelligence 97,
273–324 (1997)

11. Weston, J., Mukherjee, S., Chapelle, O., Pontil, M., Poggio, T., Vapnik, V.: Feature
Selection for SVMs. Advances in Neural Information Processing Systems 13 (2000)

12. Rakotomamonjy, A.: Variable Selection Using SVM-based Criteria. Journal of Ma-
chine Learning Research 3, 1357–1370 (2003)

13. Valls, J.M., Aler, R., Fernández, O.: Using a Mahalanobis-Like Distance to Train
Radial Basis Neural Networks. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.)
IWANN 2005. LNCS, vol. 3512, pp. 257–263. Springer, Heidelberg (2005)

14. Tibshirani, R.: Regression Shrinkage and Selection via the LASSO. Journal of the
Royal Statistical Society, Series B (Methodological) 58, 267–288 (1996)

15. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming Theory and
Algorithms. John Wiley & Sons, Inc., West Sussex, England (1979)

16. Nørgaard, M., Ravn, O., Poulsen, N.K., Hansen, L.K.: Neural Networks for Mod-
elling and Control of Dynamic Systems. Springer, Heidelberg (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Online Backpropagation Algorithm with

Validation Error-Based Adaptive Learning Rate

Stefan Duffner and Christophe Garcia

Orange Labs, 4, Rue du Clos Courtel, 35512 Cesson-Sévigné, France
{stefan.duffner,christophe.garcia}@orange-ftgroup.com

Abstract. We present a new learning algorithm for feed-forward neu-
ral networks based on the standard Backpropagation method using an
adaptive global learning rate. The adaption is based on the evolution of
the error criteria but in contrast to most other approaches, our method
uses the error measured on the validation set instead of the training set
to dynamically adjust the global learning rate. At no time the examples
of the validation set are directly used for training the network in order to
maintain its original purpose of validating the training and to perform
”early stopping”. The proposed algorithm is a heuristic method consist-
ing of two phases. In the first phase the learning rate is adjusted after
each iteration such that a minimum of the error criteria on the validation
set is quickly attained. In the second phase, this search is refined by re-
peatedly reverting to previous weight configurations and decreasing the
global learning rate. We experimentally show that the proposed method
rapidly converges and that it outperforms standard Backpropagation in
terms of generalization when the size of the training set is reduced.

1 Introduction

The Backpropagation (BP) algorithm [1] is probably the most popular learn-
ing algorithm for multilayer perceptron (MLP)-type neural architectures due to
its simplicity and effectiveness. However, the choice of the learning rate used
when updating the weights is crucial for the successful convergence and the
generalization capacity of the network. A too small learning rate leads to slow
convergence and a too high learning rate to divergence. Moreover, in the latter
case the network is likely to overfit to the training data when using an online
Backpropagation algorithm as it might specialize to the examples presented at
the beginning of the training. Numerous solutions for the dynamic adaptation
of the learning rate have been proposed in the literature. Most of them focus on
the acceleration of the training process rather than their generalization perfor-
mance. They can roughly be divided into two groups: global and local adaption
techniques. The former is referring to methods adjusting an overall learning rate
for the whole network and the latter to the adaptation of independent learning
rates for each weight.

A method for global adaptation has been proposed by Chan et al. [2] where the
angle between the last weight update and the current gradient is calculated. If it

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 249–258, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

250 S. Duffner and C. Garcia

is less than 90◦ the learning rate is increased otherwise it is decreased. Salomon
et al. [3] proposed an evolutionary based adaption of the learning rate. At each
iteration, two weight updates, one with increased and with decreased learning
rate, are performed separately. The resulting network that performs better is
retained and used as a starting point for the next iteration. A heuristic method,
the so-called ”bold driver” method, has been employed by Battiti et al. [4] and
Vogl et al. [5]. Here the learning rate is adjusted according to the evolution of the
error criteria E. If E decreases the learning rate is slightly increased, otherwise
it is drastically decreased. Hsin et al. [6] propose to use a weighted average
of the cosines between successive weight updates, and Plagianakos et al. [7]
calculate a two point approximation to the secant equation underlying quasi-
Newton methods in order to obtain a dynamic learning rate and additionally
make use of an acceptability condition to ensure convergence. LeCun et al. [8]
calculate a global learning rate by an online estimation of the largest eigenvalue
of the Hessian matrix. They show that the optimal learning rate is approximately
the inverse of this largest eigenvalue. Finally, the approach of Magoulas et al. [9]
estimate the local shape of the error surface by the Lipschitz constant and set
the learning rate accordingly. They also applied this technique to calculate a
separate dynamic learning rate for each weight [10].

Local learning rate adjustment methods have been very popular due to their
efficiency and generally higher convergence speed. A very well-know technique is
the Delta-Bar-Delta method introduces by Jacobs et al. [11]. Here, the learning
rates are adjusted according to sign changes of the exponential averaged gradient.
Similarly, Silva and Almeida [12] proposed a method where the learning rates
are increased if the respective gradients of the last two iterations have the same
size and decreased otherwise. The RPROP method introduced by Riedmiller et
al. [13] uses a step size which doesn’t depend on the gradient magnitude but
which is increased or decreased according to gradient sign changes.

Finally, many methods do not use an explicit learning rate but first calculate
a descent gradient direction and then perform a line search such that the error
criteria is minimized in the direction of the gradient [14, 15, 16].

Note that most of the existing adaptive learning algorithms are batch learning
algorithms, i.e. the weights are updated after all examples have been presented
to the network. On the other hand, online algorithms update the weights af-
ter the presentation of each example. They generally converge faster when the
input space is large compared to the number of examples (e.g. in image process-
ing tasks) or in more complex architectures like convolutional neural networks
(CNN) that use shared weights. Thus, for many real world applications the on-
line Backpropagation algorithm or its variants are still the best choice. There
are also some adaptive online algorithms in the literature. For example Schrau-
dolph [17], Harmon et al. [18] and Almeida et al. [19] proposed methods similar
to the Incremental Delta-Bar-Delta approach introduced by Sutton et al. [20],
an extension of the Delta-Bar-Delta technique for stochastic training. However,
these algorithms mainly aim at a faster convergence rather than an increased
generalization capacity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Online Backpropagation Algorithm 251

We present a heuristic learning algorithm that improves generalization capac-
ity and shows good convergence speed. It is an online Backpropagation method
with adaptive global learning rate. The learning rate adaption is based on the
idea of the so-called ”bold driver” method [5, 4], i.e. the learning rate is initialised
with a very small value and increased or decreased according to the evolution
of the error criteria E of the past iterations. The main difference with respect
to previous works is that the error is not measured on the training but on the
validation set. Some further optimizations have been made in order to ensure
fast convergence. The aim of this heuristic approach is not only to accelerate
convergence compared to standard online Backpropagation but also to improve
generalization.

The remainder of this paper is organized as follows: Section 2 describes the
training algorithm with its two phases. In section 3, experimental results are
presented and finally in section 4 we draw our conclusions.

2 The Training Algorithm

The proposed training method is an extension of the standard Backpropagation
algorithm [1]. Backpropagation is a gradient descent technique that minimizes
an error criteria E which is usually the mean squared error (MSE) of the N
output values oij with respect to its desired values dij of the neural network:

E =
1

NP

P∑

j=1

N∑

i=1

(oij − dij)2 , (1)

where P is the number of examples in the training set.
Training is performed online, i.e. the weights of the neural network are up-

dated after presentation of each training example. Classically, at iteration t a
given weight wij(t) is updated by adding a Δwij(t) to it:

Δwij(t) = −ε(t) · ∂E(t)
∂wij(t)

, (2)

where ε is the learning rate.
The training database is usually divided into a training set and a validation

set. The training, i.e. the Backpropagation, is only performed on the training set.
The purpose of the validation set is to determine when to stop training in order
to obtain a neural network that generalizes sufficiently well. This technique is
commonly known as ”early stopping”. In the proposed algorithm the validation
set has a second role. It is used to control the adjustment of the learning rate
ε(t) after each training iteration t. Note, that the learning rate adjustment is
performed only once per iteration. Our approach basically consists of two phases:

1. the main learning phase and
2. the refinement phase.

In the following sections we will detail these steps.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

252 S. Duffner and C. Garcia

2.1 The Main Learning Phase

The adaption of the learning rate in our approach is similar to the ”bold driver”
method [5, 4] where the learning rate is initialized with a very small value
(e.g. 10−10) and adjusted after each training iteration according the difference
of the error criteria E between the current and the preceding iteration.

The proposed method applies this idea to the validation set instead of the
training set in order to reduce overfitting. Moreover, the procedure is slightly
modified to be more tolerant to error increases as the validation error is more
likely to oscillate than the training error. Let us consider the typical runs of the
error curves of a training and validation set when using standard Backpropaga-
tion. Fig. 1 illustrates this in a simplified manner. When applying the technique

training error

validation error

iteration

error

tmin

Fig. 1. The typical evolution of the error criteria evaluated on the training and vali-
dation set

of ”early stopping” the weight configuration at iteration tmin, i.e. where the val-
idation error is minimal, is retained as the network is supposed to show the
highest generalization performance at this point. Further training likely leads to
overfitting. The purpose of the first phase of the proposed algorithm is thus to
reach the point tmin more quickly.

To this end, the normalized difference between the error criteria of the current
and the preceding iteration is calculated:

δ(t) =
Ev(t) − Ev(t − 1)

Ev(t)
. (3)

Ev(t) is the error criteria at iteration t calculated on the whole validation set
(cf. Eqn. 1).

The algorithm further requires a running average δ̄(t) of the preceding values
of δ:

δ̄(t) = α · δ(t) + (1 − α) · δ̄(t − 1) , (4)

where 0 < α ≤ 1 (e.g. α = 0.1).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Online Backpropagation Algorithm 253

The principal learning rate updating rule is the following:

ε(t) =

{
d · ε(t − 1) if δ(t) · δ̄(t − 1) < 0 and |δ̄(t − 1)| > θ ,

u · ε(t − 1) otherwise .
(5)

where u and d are positive constants, 0 < d < 1 < u, and θ is a threshold to
allow for small error oscillations. In our experiments we used u = 1.1, d = 0.5
and θ = 0.01. Thus, the learning rate adaption is based on the signs of the
error differences of the current and the preceding iterations. If the sign changes
the learning rate is decreased otherwise it is increased. The principle of this
procedure is similar to the Delta-Bar-Delta method [11] but the calculation is
not based on gradients.

2.2 Refinement Phase

If the training has passed iteration tmin where Ev is minimal the network is
likely to overtrain. In fact, as the gradient descent is performed in discrete steps
the actual minimum Emin of the error surface of the validation set is likely to
be missed and lies between the weight configurations of two successive training
iterations. Fig. 2 illustrates this. Clearly, there are two cases to differentiate:

iterationtmin − 1 tminEmin

Ev

(a) The actual minimum has been missed
before iteration tmin

iterationtmin tmin + 1Emin

Ev

(b) The actual minimum has been missed
after iteration tmin

Fig. 2. The two possible cases that can occur when the minimum on the validation set
is reached

either the minimum Emin has been missed before or after iteration tmin. Now we
assume that the validation error surface is relatively smooth and that no other
local minimum lies between iterations tmin − 1 and tmin or between iterations
tmin and tmin + 1 respectively. In order to try to attain a smaller error the
network reverts to the weight configuration at iteration tmin − 1, decreases the
learning rate and training is continued. Note that for training only the examples
of the training set are used. Thus, it is uncertain if the actual minimum can
be attained at all. If no smaller error has been found for a certain number of
iterations T the ”real” minimum is more likely to have occurred ”after” iteration

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

254 S. Duffner and C. Garcia

tmin, (see Fig. 2(b)). In this case, the network reverts to iteration tmin, the
learning rate is again decreased and training continues. If a smaller error is
reached during this process the temporary minimum is retained and the training
continues normally. Otherwise the reverting procedure is repeated while always
retaining the absolute minimum and the respective weight configuration found
so far. Algorithm 1 summarizes the overall training procedure. Note that the
computational overhead of the algorithm compared to standard backpropagation
with fixed learning rate is negligible as the error on the validation set needs to
be calculated anyway to do the ”early stopping”.

Fig.3 illustrates a typical evolution of the error criteria Ev(t) during the train-
ing process using the proposed learning algorithm. Because of the initialization
with a very small value the error stays nearly constant at the beginning but
drops very quickly at some point due to the exponential increase of the learning
rate, and finally it converges to a minimum. In general, the main part of the
minimization is done in the first phase and the error decrease in the refinement
phase is relatively small.

Algorithm 1. The basic learning algorithm
1: Initialize weights and individual learning rates

2: Set ε(0) := 10−10, δ(0) := 0 and δ̄(0) := 0

3: Calculate Ev(0)

4: t := 0

5: repeat
6: Do one training iteration

7: t := t + 1

8: Calculate δ(t) = Ev(t)−Ev(t−1)
Ev(t)

9: if δ(t) · δ̄(t − 1) < 0 and |δ̄(t − 1)| > θ then
10: ε(t) = d · ε(t − 1)

11: else
12: ε(t) = u · ε(t − 1)

13: end if
14: δ̄(t) = α · δ(t) + (1 − α) · δ̄(t − 1)

15: if Ev(t) < Emin(t) then
16: save the current weight configuration

17: tmin := t

18: end if
19: if t − tmin > T then
20: Revert to weight configuration at tmin − 1 (or tmin)

21: end if
22: until t = tmax

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Online Backpropagation Algorithm 255

refinementmain learning

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 400 500 600
iteration

 300

E
v

Fig. 3. A typical evolution of the error criteria on the validation set using the proposed
learning algorithm

3 Experimental Results

We evaluated the proposed learning algorithm on a MLP trained to classify the
examples of the well-known NIST database of handwritten digits. The database
contains 3823 training and 1797 test examples of 8x8 matrices. From the training
set 500 examples were selected randomly and used for validation. The MLP we
used for the experiments had 64 input, 10 hidden and 10 output neurons, fully
inter-connected. The neurons all had sigmoid activation functions.

To ensure that the neural network is well-conditioned we additionally use
fixed local learning rates that are distributed stepwise from the last layer to
the first layer according to the incoming connections of each neuron. Thus, the
output neuron(s) have the highest and the input the lowest local learning rate.
The overall learning rate is just the product of the fixed local and the dynamic
global learning rate.

In the first experiment, we compare the convergence properties of the pro-
posed algorithm to the ones of standard Backpropagation. Fig. 4 shows the
resulting error curves evaluated on the validation set. The different curves for
the Backpropagation algorithm have been obtained by using different global
learning rates (10−3, 10−4 and 10−5). The global learning rate of the proposed
method was initialized with the value 10−7. Note that our approach converges
more slowly at the beginning but catches up quickly and finishes stable on the
same level or even lower than Backpropagation.

Fig. 5 illustrates 0that our method is not sensitive to different initializations
of the global learning rate. The curves show the validation error curves for three
different runs with initial learning rates of 10−6, 10−8 and 10−10 respectively. Note
that the point of time where the minimum is reach increases only linearly when
the initial learning rate is decreased exponentially. This is another side effect of
the exponential learning rate update rule. All the runs converge to approximately
the same solution, and the recognition rates are about the same for all networks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

256 S. Duffner and C. Garcia

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

iteration

E
v

Backpropagation (LR = 10−5)
Backpropagation (LR = 10−4)
Backpropagation (LR = 10−3)

proposed algorithm (LR = 10−7)

Fig. 4. The evolution of the validation error on the NIST database using Backpropa-
gation and the proposed algorithm

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 100 200 300 400 500 600

iteration

1e-06

1e-08

1e-10

E
v

Fig. 5. The validation error curves with different initial global learning rates

The final experiment demonstrates that the algorithm not only converges
faster but also improves the generalization performance of the resulting neural
networks. To this end the training set was gradually reduced and the respective
recognition rates on the test set were calculated and compared to the standard
Backpropagation as well as to the bold driver method [5, 4]. Table 1 shows
the overall results. One can see that the proposed method performs slightly
better with training set sizes 3323 and 1000 and clearly outperforms the other
algorithms when only 600 and 100 training examples are used.

Table 2 shows the respective results with a neural network with 40 hidden
neurons. The recognition rates of the proposed method are slightly better then

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Online Backpropagation Algorithm 257

Table 1. Recognition rate (in %) with varying training set size (10 hidden neurons)

training set size 3323 1000 600 100
algorithm

Backpropagation 94.30 93.42 78.31 73.88

bold driver [5, 4] 93.41 91.32 83.74 72.75

proposed algorithm 94.50 93.71 85.29 78.10

Table 2. Recognition rate (in %) with varying training set size (40 hidden neurons)

training set size 3323 1000 600 100
algorithm

Backpropagation 95.71 93.89 86.58 80.31

bold driver [5, 4] 94.97 93.20 86.45 79.96

proposed algorithm 95.77 93.81 87.06 80.47

for the other algorithms albeit the difference is less significant. However, conver-
gence speed is still superior as illustrated in Fig. 4.

4 Conclusion

We presented a learning algorithm with adaptive global learning rate based on
the online Backpropagation method. The adaption is performed in two successive
phases, the main learning and a refinement phase. In the main learning phase
the learning rate is increased or decreased according to the evolution of the
validation error. This leads to a fast and robust convergence to the minimum
where ”early stopping” is performed. In the second phase the network reverts
to preceding weight configurations in order to find a minimum close to the one
found in the first step. We experimentally show that this method converges faster
than Backpropagation while exhibiting a superior generalization capacity.

References

[1] Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations
in the Microstructure of Cognition. Foundations, vol. 1. MIT Press, Cambridge,
MA, USA (1986)

[2] Chan, L.W., Fallside, F.: An adaptive learning algorithm for backpropagation
networks. Computer Speech and Language 2, 205–218 (1987)

[3] Salomon, R.: Improved convergence rate of back-propagation with dynamic adap-
tation of the learning rate. In: Schwefel, H.-P., Männer, R. (eds.) Parallel Problem
Solving from Nature. LNCS, vol. 496, pp. 269–273. Springer, Heidelberg (1991)

[4] Battiti, R.: Accelerated backpropagation learning: Two optimization methods.
Complex Systems 3, 331–342 (1989)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

258 S. Duffner and C. Garcia

[5] Vogl, T., Mangis, J., Rigler, J., Zink, W., Alkon, D.: Accelerating the convergence
of the back-propagation method. Biological Cybernetics 59, 257–263 (1988)

[6] Hsin, H.C., Li, C.C., Sun, M., Sclabassi, R.: An adaptive training algorithm for
back-propagation neural networks. In: International Conference on Systems, Man
and Cybernetics, vol. 2, pp. 1049–1052 (1992)

[7] Palgianakos, V., Vrahatis, M., Magoulas, G.: Nonmonotone methods for backprop-
agation training with adaptive learning rate. In: International Joint Conference
on Neural Networks, vol. 3, pp. 1762–1767 (1999)

[8] LeCun, Y., Simard, P., Pearlmutter, B.: Automatic learning rate maximization by
on-line estimation of the hessian’s eigenvectors. In: Hanson, S., Cowan, J., Giles,
L. (eds.) Advances in Neural Information Processing Systems, vol. 5, Morgan
Kaufmann Publishers, San Mateo, CA (1993)

[9] Magoulas, G.D., Vrahatis, M.N., Androulakis, G.S.: Effective back-propagation
with variable stepsize. Neural Networks 10, 69–82 (1997)

[10] Magoulas, G.D., Vrahatis, M.N., Androulakis, G.S.: Improving the convergence
of the backpropagation algorithm using learning rate adaptation methods. Neural
Computation 11(7), 1769–1796 (1999)

[11] Jacobs, R.A.: Increased rates of convergence through learning rate adaption. Neu-
ral Networks 1, 295–307 (1988)

[12] Silva, F.M., Almeida, L.B.: Acceleration techniques for the backpropagation al-
gorithm. In: Proceedings of the EURASIP Workshop 1990 on Neural Networks,
London, UK, pp. 110–119. Springer, Heidelberg (1990)

[13] Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation
learning: The RPROP algorithm. In: Proc. of the IEEE Intl. Conf. on Neural
Networks, San Francisco, CA, pp. 586–591. IEEE Computer Society Press, Los
Alamitos (1993)

[14] Luenberger, D.G.: Introduction to linear and nonlinear programming. Addison-
Wesley, Reading (1973)

[15] Fahlman, S.E.: Faster-learning variations on back-propagation: An empirical
study. In: Touretzky, D.S., Hinton, G.E., Sejnowski, T.J. (eds.) Connectionist
Models Summer School, pp. 38–51. Morgan Kaufmann Publishers, San Mateo,
CA (1988)

[16] Leonard, J., Kramer, M.: Improvement of the backpropagation algorithm for train-
ing neural networks. Computers & Chemical Engineering 14(3), 337–341 (1990)

[17] Schraudolph, N.: Local gain adaptation in stochastic gradient descent. In: ICANN.
Ninth International Conference on Artificial Neural Networks, vol. 2, pp. 569–574
(1999)

[18] Harmon, M., Baird III, L.: Multi-player residual advantage learning with gen-
eral function approximation. Technical report, Wright Laboratory, WL/AACF,
Wright-Patterson Air Force Base, OH (1996)

[19] Almeida, L.B., Langlois, T., Amaral, J.D., Plakhov, A.: Parameter adaptation in
stochastic optimization. In: Saad, D. (ed.) On-Line Learning in Neural Networks,
Cambridge University Press, Cambridge (1999)

[20] Sutton, R.S.: Adapting bias by gradient descent: an incremental version of belta-
bar-delta. In: Proceedings of the Tenth International Conference on Machine
Learning, Cambridge, MA, pp. 171–176 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 259–268, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Adaptive Self-scaling Non-monotone BFGS Training
Algorithm for Recurrent Neural Networks

Chun-Cheng Peng and George D. Magoulas

School of Computer Science and Information Systems
Birkbeck College, University of London
Malet Street, London WC1E 7HX, UK

{ccpeng, gmagoulas}@dcs.bbk.ac.uk

Abstract. In this paper, we propose an adaptive BFGS, which uses a self-
adaptive scaling factor for the Hessian matrix and is equipped with
nonmonotone strategy. Our experimental evaluation using different recurrent
networks architectures provides evidence that the proposed approach trains
successfully recurrent networks of various architectures, inheriting the benefits
of the BFGS and, at the same time, alleviating some of its limitations.

Keywords: BFGS, self-scaling factor, nonmonotone strategy, line-search,
adaptive learning, recurrent networks.

1 Introduction

There are a relatively large number of applications, where Quasi-Newton (QN)
methods have been used for training static Artificial Neural Networks (ANNs), e.g.
[1][3][4][9][12]-[15][21][22][25]-[27][30][31][33][35]-[37][40][41][44]-[47][48][50].
QN methods exploit the idea of building up curvature information as the iterations of
the training method are progressing. This is achieved by using the objective function
values and its gradient to estimate the Hessian matrix. Thus, a new approximated
Hessian matrix 1kB + is required at each iteration to satisfy the quasi-Newton

condition 1 ,
k k k

B s y+ = where sk and yk are the changes in function variable and in
gradient, respectively.

There are several techniques in neural networks to update 1k
B + such as the Powell-

Symmetric-Broyden update formula:

() ()() ()
()1 1 2

1
+ +

−
= + − + − −

k

T

TT Tk k k k

k k k k k k k k k k kT T
k k k k

y B s s
B B y B s s s y B s s s

s s s s
, (1)

the Davidon-Fletcher-Powell formula:

()1 1

1 1

1 1

,+ += + + +

= −

T T

k k k k k kT T

k k k k k

k kT T

k k k k k

T T
k k k k k k k

k k

B B s s y y
s B s y s

y s
y s s B s

B B s B s w w

w B

 (2)

and the Broyden-Fletcher-Goldfarb-Shanno (BFGS) update [21]:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

260 C.-C. Peng and G.D. Magoulas

1 1

1 1
,+ += − +T T

k k k k k kT T

k k k k k

k kB B s s y y
s B s y s

B B (3)

which is the most commonly used update rule for training neural networks [19].
There are several scaling approaches in the optimisation literature, such as those

presented in [2][38], where the scaling factor kρ can be defined as [50]

ρ = k

k

T

k

k T

k k

y s

s B s
 (4)

The aim of scaled BFGS is to tune the Hessian approximations at each iteration
when eigenvalues become large. Numerical evidence shows that methods that apply a

scaling factor for
1k

B + are superior to the original QN methods. In other words,

when ρ
k
is sufficiently large, the eigenvalues of

1k
B + are relative small, with strong

self-correcting property [50].
As indicated in [24][44][45] the QN method for training ANNs is very fast to

converge but in many cases it converges to a local minimum; the same holds for the
BFGS method. Although several efforts have been made to reduce the memory
requirement of updating the Hessian approximation [5][26][31][35][43][48], the
limitations caused by monotone line search still exists and the problem of local
minima still limits the applicability of these methods. Furthermore, despite the
theoretical advantages of the self-scaling approaches for the Hessian approximation in
numerical optimisation, these are rarely introduced to training ANNs [37].

Lastly, the literature of Recurrent Neural Networks (RNNs) includes very few
attempts to train RNNs using QN methods with limited results [5][7][8][17][24][28].
In [49], the drawbacks of first-order gradient learning algorithms for RNNs were
discussed and second-order approaches to speed up the convergence and to tackle the
issue of weight vanishing were proposed. In [10], RNNs for sequence processing
were discussed. Local methods combined with Back-Propagation-Through-Time
(BPTT) proved efficient only for some local feedback RNNs and for short-term
memorisation tasks [10][11]. When the task requires learning long-term
dependencies, i.e. a late output depends on a very early input which has to be
remembered, RNNs trained with gradient-descent methods treat past information as
noise and gradually ignore it. Time-weighted pseudo-Newton has been proposed as an
alternative but it remains to be verified whether it would work on other more general
situation [10]. Learning algorithms for fixed point and nonfixed point RNNs were
discussed in [39] and an extended Real-time Recurrent Learning (RTRL) was
proposed. Ref [29] summarises ten different kinds of weight updating based on
gradient descent that could be applied to RNNs, while [18] reviews twelve methods
from optimisation and global minimisation but not all of them appear to be suitable
for RNNs. In the area of time-series modelling, BPTT and RTRL for learning RNNs
have been popular choices [6][16], while simulated annealing has provided promising
results but training time is relatively higher [16].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Self-scaling Non-monotone BFGS Training Algorithm 261

In this paper we propose an adaptive BFGS, which uses a self-adaptive scaling
factor for the Hessian matrix and is equipped with nonmonotone strategy. The rest of
this paper is organised as follows. Section 2 presents the new algorithm, while Section
3 presents the datasets used in our experiments. Section 4 discusses our experimental
results and, finally, Section 5 presents concluding remarks and future works.

2 The Adaptive Self-scaling Nonmonotone BFGS

Training a neural network architecture can be expressed as an unconstrained
optimisation problem

()min , ,nf x x R∈ (5)

where : nf R R→ represents the cost function and its gradient ()g f x= ∇ is available.

Let us consider the current approximation to the solution of the above problem
is kx and if 0,g ≠ then, in some way, a line-search method finds a step-

lengthαk along a search direction kd , and computes the next approximation 1+kx as

follows:

1 .α+ = +k k k kx x d (6)

Traditional optimisation strategies for RNNs are monotone, i.e. they compute a
step length that reduces the function value at each iteration. Unfortunately, even when
an algorithm is globally convergent, there is no guarantee that the method would be
efficient in the sense that it may be trapped in a local minimum point and never jump
out to a better one under ill conditions [20], such as poorly initialised weights in the
case of RNNs. To overcome the disadvantages and accelerate convergence, we
explore the use of a nonmonotone approach, which was first proposed in [22]. Taking
the M previous f values into consideration, the following condition can be set:

() ()1
0
max γα+ −≤ ≤

⎡ ⎤≤ +⎣ ⎦ k
k

T
k k j k k

j M
f x f x g d , (7)

where Mk is named nonmonotone learning horizon [41] and constant ()0,1γ ∈ .

Furthermore, [41] proposed a dynamic and efficient way to determine the size of M,
by a local estimation of the Lipschitz constant, which could provide helpful
information on the morphology of a function. Thus, a poorly user-defined value for
the nonmonotone learning horizon could be avoided by applying this approach.

A high level description of the proposed algorithm follows:

Algorithm: Adaptive Self-scaling Non-monotone BFGS (ASCNMBFGS)

STEP 0. Initialize a point
0
,x counter k=0, a symmetric positive definite matrix 0 ,B and boundary of

nonmonotone learning horizon M;
STEP 1. If 0,kg = stop;

STEP 2. Determine the line search direction by
1

;k k kd gB−= −

STEP 3. Adapt
k

M by the following conditions:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

262 C.-C. Peng and G.D. Magoulas

1 1 2

1 1 2

1

1, if

1, if ,

 , otherwise,

k k k k

k k k k k

k

M

M M

M

− − −

− − −

−

+ Λ < Λ < Λ

= − Λ > Λ > Λ

⎧
⎪
⎨
⎪
⎩

 where 1

1

k k k

k k

g g

x x

−

−

−
Λ =

−
;

STEP 4. Find a step length
k

α by the line search approach below:

() ()
0

1 2

1 2

For 0 and , (0,1), at each iteration, one chooses a parameter

such that the step length , where (,), satisfies

max

k

j M

k

l
k k k

T
k k k k j k k kk

l

f x d f x dg

λ λ σ δ

α α σ α λ λ

α δ α
≤ ≤

−

< < ∈

= ∈

+ ≤ + ⋅ ⋅ ⋅

⋅

⎡ ⎤⎣ ⎦

STEP 5. Generate a new iteration point by ;k k k kx x dα= +

STEP 6. Update the Hessian approximation
k

B by the following self-scaling BFGS

1 ,

T T
k k k k k k

k k k T T
k k k k k

B s s B y y
B B

s B s y s
ρ+ = − +
⎡ ⎤
⎢ ⎥⎣ ⎦

where 1 1, and k k k k k k ks x x y g g ρ+ += − = − is the self-scaling factor which satisfies Eq.

(4)
STEP 7. Let 1,k k= + go to STEP 1.

There are three heuristic parameters in the above algorithm, i.e. kM in Step 3
and ,σ δ in Step 4. In practice, the nonmonotone learning horizon of Step 3 requires
accumulating information from a few iterations in order to be initialised; in the
meantime, our approach uses the Charalambous line-search method [11]. We also set
an upper boundary of Mk. In Step 4, σ plays the role of tuning parameter for the step
length, while δ controls the amount of change which is defined by the current
gradient and search direction.

The proposed algorithm is a modified version of BFGS, which combines the usage
of adaptive nonmonotone learning [41] with the self-scaling utility proposed in [50];
where the former takes the benefits of Lipschitz constant taking into account the local
shape of a given function, while the latter has been proved to have the ability of
solving unconstrained nonconvex optimisation problems; these characteristics look
eminently suitable for training RNNs.

In order to illustrate the differences between the classic BFGS and our approach,
we visualise the learning behaviour of the two methods in the parity-5 problem using
two well-known RNN architectures, a Feedforward Time Delay (FFTD) network and
Elman’s Layered Recurrent Network (LRN). Figure 1 shows convergence behaviours
of our algorithm, ASCNMBFGS, and of the original BFGS, by solid-red and dashed-
blue lines, respectively. In this example, we see the BFGS is trapped in
neighbourhoods of local minima but the ASCNMBFGS manages to reach lower
function values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Self-scaling Non-monotone BFGS Training Algorithm 263

0 50 100 150 200 250 300
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Epochs

Tr
ai

ni
ng

 E
rro

rs

BFGS

ASCNMBFGS

0 100 200 300 400 500 600 700 800
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

T
ra

in
in

g
E

rr
or

s

BFGS
ASCNMBFGS

Fig. 1. Convergence behaviour of BFGS and ASCNMBFGS for training a FFTD network (left)
and a LRN (right) on the parity-5 problem

3 Description of Applications

The first application is the well-known class of n-bit parity problems, which are
typically nonlinear separable and have been widely used to verify performances of
novel training algorithms [9][12]-[15][23][25][27][30][33][37][42][46]. We have also
focused on temporal sequence processing tasks, and we have chosen two
representative applications [32][42] in order to compare the algorithms generalisation
performance, i.e. the ability of the various RNNs trained with these algorithms to
perform well when tested on unknown input patterns.

(1) Parity-N Problem: given one two-valued, such as{0,1} (or {-1,1}), N-bit long
input string I and an appropriate parity function, a one-bit output string O should be
generated containing either 0 (-1) or 1 (+1). For example, assuming the input range is
{0,1}, if there is an odd number of bits of 1s in I, then O = 1; otherwise, O= 0. We
have tested the parity-5 and the parity-10 with input range {0,1}.

(2) Sequence Learning: given a grammar consisting of a set of letters, we could
derive different length of sequences. In the particular application, the letter sequences
consist of combinations of the strings {ba}, {dii} and {guuu} and all possible
permutations of these 3 strings are legal, with each letter represented by 4-bits [32].
The task is to predict successive letters in a random sequence of 1000 words and each
word consists of one of the above 3 consonant-vowel combinations. A sequence of
2993 letters is used for training and a sequence of 9 letters for testing as in [32].

(3) Reading Aloud: this task concerns learning the mapping of a set of
orthographic representation to their phonological forms [42]. Both subsets of
orthography and phonology have 3 different parts, i.e., onset, vowel and coda, with
30, 27 and 48, and 23, 14 and 24 possible characters, respectively. There are 105-
dimensional input patterns and 61-dimensional output patterns, while the training
dataset has 2998 patterns. Ideally, a specially designed RNN architecture with 100
hidden nodes, which is described in detail in [42], is needed to solve this problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

264 C.-C. Peng and G.D. Magoulas

4 Presentation of Experimental Results

All simulations in this paper were coded in Matlab 7.2 running on Windows XP
platform. In this section, Conv. stands for the number of runs that reached the
termination criteria and Epochs denotes the average number of epochs.

(1) Parity-N Problem: The stopping criterion for both parity-5 and parity-10 was
set to a mean-squared error (MSE) of 0.01 within 2000 epochs and 4000 epochs
respectively. In all cases, we made 100 runs from different initial weights using three
different RNN architectures, i.e. FFTD, LRN and NARX. All RNNs used 7 hidden
nodes for the parity-5 and 10 hidden nodes for the parity-10, and the heuristic

parameters of the ASCNMBFGS were set to 3 15,≤ ≤kM 0.9σ = and 0.01.δ =

Table 1. Average performance of the two algorithms on the parity-5

FFTD LRN NARX
Algorithm

Conv. Epoch Conv. Epoch Conv. Epoch
BFGS 20 220 16 419 98 37

ASCNMBFGS 73 561 73 407 99 79

Table 2. Average performance of the two algorithms on the parity-10

FFTD LRN NARX
Algorithm

Conv. Epoch Conv. Epoch Conv. Epoch
BFGS 6 1230 5 1483 67 244

ASCNMBFGS 58 1945 52 1736 90 283

As shown in Tables 1 and 2, the new method exhibit good average performance. It
requires on average more epochs than the BFGS to train the RNNs but it always
outperforms with regards to the number of converged runs out of 100.

(2) Sequence Learning (SL): in this case, we adopted the approach followed in [32]
and trained the networks within 23 epochs keeping the same settings for the BFGS
and ASCNMBFGS heuristic parameters as in the parity-N problem (in order to test
the robustness of the method). We made 100 different runs for each of the three RNN
architectures to estimate the average generalisation performance of the two
algorithms. It is worth mentioning that the results in Table 3 were achieved using
RNNs with 10 hidden nodes, while [32] requires 16 hidden nodes to produce an
average MSE of 25% using a first-order training method.

(3) Reading Aloud (RA): this task requires a special RNN architecture and is
computationally expensive in training. As our purpose was to test the new method on
standard RNN architectures, we didn’t deploy the special architecture proposed in
[42], neither 1900 training epochs. Instead, we used a NARX network with only 5
hidden nodes that produced good results in previous tests, and trained it for 500
epochs. Fig 2 presents examples of convergence behaviour for BFGS and the
ASCNMBFGS. The computational cost was still very high but we produced good
solutions (see Table 4) using the ASCNMBFGS and BFGS algorithms. The heuristic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Self-scaling Non-monotone BFGS Training Algorithm 265

parameters were set to the same values as in the parity problems. It is worth
mentioning the error reported in [42] is about 0.83 %, using 100 hidden nodes and 3
times more training epochs.

Table 3. Simulation results for the SL problem using 3 different RNN architectures

Nets Algorithms Average MSE generalisation (%)
(testing on unknown data)

ASCNMBFGS 15.457
FFTD

BFGS 17.437
ASCNMBFGS 15.070

LRN
BFGS 16.492

ASCNMBFGS 14.902
NARX

BFGS 18.673

Table 4. Results (%) for the RA problem

Generalisation MSE (testing on unknown data)
ASCNMBFGS BFGS

0.1039 1.4355
0.4255 1.8626

0 50 100 150 200 250 300 350 400 450 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Epochs

T
ra

in
in

g
E

rr
or

s
(M

S
E

)

BFGS

ASCNMBFGS

0 50 100 150 200 250 300 350 400 450 500

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Epochs

T
ra

in
in

g
E

rr
or

s
(M

S
E

)

BFGS

ASCNMBFGS

Fig. 2. Behaviours of BFGS and our method for training NARX networks on the reading aloud
problem

5 Conclusion and Future Works

In this paper, we proposed a modified BFGS algorithm, called Adaptive Self-sCaling
NonMonotone BFGS (ASCNMBFGS) that employs a self-scaling factor and adaptive
nonmonotone learning. Simulation results show that our algorithm improves the
convergence of the classic BFGS on three different recurrent neural network
architectures, i.e. FFTD, LRN and NARX. We are currently working on fine tuning
the heuristic parameters of our method and on performing a large scale study to fully
explore the behaviour of the new algorithm and identify possible limitations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

266 C.-C. Peng and G.D. Magoulas

References

1. Abraham, A.: Meta learning evolutionary artificial neural networks. Neurocomputing 56,
1–38 (2004)

2. Al-Baali, M.: Numerical experience with a class of self-scaling quasi-Newton algorithms.
J. Optim. Theory Appl. 96, 533–553 (1998)

3. Alpsan, D., Towsey, M., Ozdamar, O., Tsoi, A.C., Ghista, D.N.: Efficiency of modified
backpropagation and optimisation methods on a real-world medical problem. Neural
Networks 8(6), 945–962 (1995)

4. Asirvadam, V.S., McLoone, S.F., Irwin, G.W.: Memory efficient BFGS neural-network
learning algorithms using MLP-network: a survey. In: Proc. IEEE Int’l Conf. Control
Application, pp. 586–591. IEEE Computer Society Press, Los Alamitos (2004)

5. Bajramovic, F., Gruber, C., Sick, B.: A comparison of first- and second- order training
algorithms for dynamic neural networks. In: Proc. IEEE Int’l Joint Conf. Neural Networks,
pp. 837–842. IEEE Computer Society Press, Los Alamitos (2004)

6. Baldi, P.: Gradient descent learning algorithm overview: a general dynamical systems
perspective. IEEE Trans. Neural Networks 6(1), 182–195 (1993)

7. Becerikli, Y., Konar, A.F., Samad, T.: Intelligent optimal control with dynamic neural
networks. Neural Networks 16, 251–259 (2003)

8. Becerikli, Y., Oysal, Y., Konar, A.F.: Trajectory priming with dynamic fuzzy networks in
nonlinear optimal control. IEEE Tr. Neu. Net. 15(2), 383–394 (2004)

9. Beigi, H.S.M.: Neural networks learning through optimally conditioned quadratically
convergent methods requiring no line search. In: Proc. 36th Midwest Symposium on
Circuits and Systems, pp. 109–112 (1993)

10. Bengio, Y., Simard, P., Frasconi, P.: Learning long-term dependencies with gradient
descent is difficult. IEEE Trans. Neural Networks 5(2), 157–166 (1994)

11. Charalambous, C.: A conjugate gradient algorithm for the efficient training of artificial
neural networks. IEE Proceedings Part G 139, 301–310 (1992)

12. Chella, A., Gentile, A., Sorbello, F., Tarantino, A.: Supervised learning for feed-forward
neural networks: a new minimax approach for fast convergence. In: Proc. IEEE Int’l Conf.
Neural Networks, pp. 605–609. IEEE Computer Society Press, Los Alamitos (1993)

13. Chen, O.T.-C., Sheu, B.J.: Optimization schemes for neural network training. In: Proc.
IEEE Int’l Conf. Neural Networks, pp. 817–822. IEEE Computer Society Press, Los
Alamitos (1994)

14. Chen, K., Xu, L., Chi, H.: Improved learning algorithms for mixture of experts in
multiclass classification. Neural Networks 12, 1229–1252 (1999)

15. Denton, J.W., Hung, M.S.: A comparison of nonlinear methods for supervised learning in
multilayer feedforward neural nets. Eu. J. Ope. Res. 93, 358–368 (1996)

16. Dietterich, T.G.: Machine learning for sequential data: a review. In: Caelli, T.M., Amin,
A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS,
vol. 2396, pp. 15–30. Springer, Heidelberg (2002)

17. dos Santos, E.P., von Zuben, F.J.: Efficient second-order learning algorithms for discrete-
time recurrent neural networks. In: Medsker, L.R., Jain, L.C. (eds.) Rec. neural nets:
design and applications, pp. 47–75. CRC Press, USA (2000)

18. Duch, W., Korczak, J.: Optimisation and global minimisation methods suitable for neural
networks. Neural Computing Surveys 2, 163–212 (1999)

19. Fischer, M.M., Staufer, P.: Optimisation in an error backpropagation neural network
environment with a performance test on a spectral pattern classification problem.
Geographical Analysis 31(2), 89–108 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Adaptive Self-scaling Non-monotone BFGS Training Algorithm 267

20. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London
(1981)

21. Gordienko, P.: Construction of efficient neural networks: algorithms and tests. In: Proc.
IEEE Int’l Joint Conf. Neural Networks, pp. 313–316. IEEE Computer Society Press, Los
Alamitos (1993)

22. Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s
method. SIAM J. Numerical Analysis 23, 707–716 (1986)

23. Gruber, C., Sick, B.: Fast and efficient second-order training of the dynamic neural
network paradigm. In: Proc IEEE Int’l J. Conf. Neu. Nets., vol. 4, pp. 2482–2487. IEEE
Computer Society Press, Los Alamitos (2003)

24. Hui, L.C.K., Lam, K.-Y., Chea, C.W.: Global optimisation in neural network training.
Neural Computing and Applications 5, 58–64 (1997)

25. Irwin, G., Lightbody, G., McLoone, S.: Comparison of gradient based training algorithms
for multilayer perceptrons. In: Proc. IEE Colloquium Advances in Neural Networks for
Control and Systems, 11/1-11/6 (1994)

26. Ishikawa, T., Tsukui, Y., Matsunami, M.: Optimization of electromagnetic devices using
artificial neural network with quasi-Newton algorithm. IEEE Trans. Magnetics 32(3),
1226–1229 (1996)

27. Karjala, T.W., Himmelblau, D.M., Miikkulainen, R.: Data rectification using recurrent
(Elman) neu. nets. In: Proc. IEEE Int’l J. Conf. Neu. Nets., pp. 901–906. IEEE Computer
Society Press, Los Alamitos (1992)

28. Kremer, S.C.: Spatiotemporal connectionist networks: a taxonomy and review. Neural
Computation 13, 249–306 (2001)

29. Lightbody, G., Irwin, G.W.: A novel neural internal model control structure. In: Proc.
American Control Conf., pp. 350–354 (1995)

30. Lightbody, G., Irwin, G.W.: Multi-layer perceptron based modelling of nonlinear systems.
Fuzzy Sets and Systems 79, 93–112 (1996)

31. Likas, A., Stafylopatis, A.: Training the random neural network using quasi-Newton
methods. European J. Operational Research 126, 331–339 (2000)

32. McLeod, P., Plunkett, K., Rolls, E.T.: Introduction to connectionist modelling of cognitive
processes, pp. 148–151. Oxford University Press, Oxford (1998)

33. McLoone, S., Asirvadam, V.S., Irwin, G.W.: A memory optimal BFGS neural network
training algorithm. In: Proc. IEEE Int’l J. Conf. Neu. Nets., pp. 513–518. IEEE Computer
Society Press, Los Alamitos (2002)

34. McLoone, S., Irwin, G.W.: Fast parallel off-line training of multilayer perceptrons. IEEE
Tr. Neural Networks 8(3), 646–653 (1997)

35. McLoone, S., Irwin, G.: A variable memory quasi-Newton training algorithm. Neural
Processing Letters 9, 77–89 (1999)

36. Mizutani, E.: Powell’s dogleg trust-region steps with the quasi-Newton augmented Hessian
for neural nonlinear least-squares learning. In: Proc. IEEE Int’l Joint Conf. Neural
Networks, pp. 1239–1244. IEEE Computer Society Press, Los Alamitos (1999)

37. Nawi, N.M., Ransing, M.R., Ransing, R.S.: An improved learning algorithm based on the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks.
In: Proc. 6th Int’l Conf. Intel. Sys. Design and Applications, pp. 152–157 (2006)

38. Nocedal, J., Yuan, Y.: Analysis of a self-scaling quasi-Newton method. Math. Program 61,
19–37 (1993)

39. Pearlmutter, B.A.: Gradient calculations for dynamic recurrent neural networks: a survey.
IEEE Trans. Neural Networks 6(5), 1212–1228 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

268 C.-C. Peng and G.D. Magoulas

40. Phua, P.K.H., Ming, D.: Parallel nonlinear optimization techniques for training neural
networks. IEEE Trans. Neural Networks 14(6), 1460–1468 (2003)

41. Plagianakos, V.P., Magoulas, G.D., Vrahatis, M.N.: Deterministic nonmonotone strategies
for effective training of multi-layer perceptrons. IEEE Trans. Neural Networks 13(6),
1268–1284 (2002)

42. Plaut, D., McClelland, J., Seidenberg, M., Patterson, K.: Understanding normal and
impaired reading: computational principles in quasi-regular domains. Psychological
Review 103, 56–115 (1993)

43. Saini, L.M., Soni, M.K.: Artificial neural network based peak load forecasting using
Levenberg-Marquardt and quasi-Newton methods. In: Proc. Generation, Transmission and
Distribution, pp. 578–584 (2002)

44. Setiono, R., Hui, L.C.K.: Some n-bit parity problems are solvable by feed-forward
networks with less than n hidden units. In: Proc. IEEE Int’l Joint Conf. Neural Networks,
pp. 305–308. IEEE Computer Society Press, Los Alamitos (1993)

45. Setiono, R., Hui, L.C.K.: Use of a quasi-Newton in a feedforward neural network
construction algorithm. IEEE Trans. Neural Networks 6(1), 273–277 (1995)

46. Sorensen, P.H., Norgaard, M., Ravn, O., Poulsen, N.K.: Implementation of neural network
based non-linear predictive control. Neurocomputing 28, 37–51 (1999)

47. Sperduti, A., Starita, A.: Supervised neural networks for the classification of structures.
IEEE Trans. Neural Networks 8(3), 714–735 (1997)

48. Tsoi, A.C.: Recurrent neural network architectures: an overview. In: Giles, C.L., Gori, M.
(eds.) Adaptive Processing of Sequences and Data Structures. LNCS (LNAI), vol. 1387,
pp. 1–26. Springer, Heidelberg (1998)

49. Tsoi, A.C.: Gradient based learning algorithms. In: Giles, C.L., Gori, M. (eds.) Adaptive
Processing of Sequences and Data Structures. LNCS (LNAI), vol. 1387, pp. 27–62.
Springer, Heidelberg (1998)

50. Yin, H.X., Du, D.L.: The global convergence of self-scaling BFGS algorithm with
nonmonotone line search for unconstrained nonconvex optimization problems. Acta
Mathematica Sinica, Springer, Heidelberg (2006), (Online) http://www.springerlink.com/
content/l7h30w8t42l7mh64/fulltext.pdf

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Some Properties of the Gaussian Kernel for One

Class Learning

Paul F. Evangelista1, Mark J. Embrechts2, and Boleslaw K. Szymanski2

1 United States Military Academy, West Point, NY 10996
2 Rensselaer Polytechnic Institute, Troy, NY 12180

Abstract. This paper proposes a novel approach for directly tuning
the gaussian kernel matrix for one class learning. The popular gaussian
kernel includes a free parameter, σ, that requires tuning typically per-
formed through validation. The value of this parameter impacts model
performance significantly. This paper explores an automated method for
tuning this kernel based upon a hill climbing optimization of statistics
obtained from the kernel matrix.

1 Introduction

Kernel based pattern recognition has gained much popularity in the machine
learning and data mining communities, largely based upon proven performance
and broad applicability. Clustering, anomaly detection, classification, regression,
and kernel based principal component analysis are just a few of the techniques
that use kernels for some type of pattern recognition. The kernel is a critical
component of these algorithms - arguably the most important component.

The gaussian kernel is a popular and powerful kernel used in pattern recogni-
tion. Theoretical statistical properties of this kernel provide potential approaches
for the tuning of this kernel and potential directions for future research. Several
heuristics which have been employed with this kernel will be introduced and
discussed.

Assume a given data set X ∈ R
N×m. X contains N instances or observations,

x1,x2, ...,xN , where xi ∈ R
1×m. There are m variables to represent each instance

i. For every instance there is a label or class, yi ∈ {−1, +1}. Equation 1 illustrates
the formula to calculate a gaussian kernel.

κ(i, j) = e
−‖xi−xj‖2

2σ2 (1)

This kernel requires tuning for the proper value of σ. Manual tuning or brute
force search are alternative approaches. An brute force technique could involve
stepping through a range of values for σ, perhaps in a gradient ascent optimiza-
tion, seeking optimal performance of a model with training data. Regardless of
the method utilized to find a proper value for σ, this type of model validation is
common and necessary when using the gaussian kernel. Although this approach
is feasible with supervised learning, it is much more difficult to tune σ for unsu-
pervised learning methods. The one-class SVM, originally proposed by Tax and

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 269–278, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

270 P.F. Evangelista, M.J. Embrechts, and B.K. Szymanski

Duin [16] and also detailed by Scholkopf et. al. [12], is a good example of an
unsupervised learning algorithm where training validation is difficult due to the
lack of positive instances. The one-class SVM trains with all negative instances
or observations, and based upon the estimated support of the negative instances,
new observations are classified as either inside the support (predicted negative
instance) or outside of the support (predicted positive instance). It is quite pos-
sible, however, that there are very few or no positive instances available. This
poses a validation problem. Both Tax and Duin [16] and Scholkopf et. al. [12]
state that tuning the gaussian kernel for the one-class SVM is an open problem.

2 Recent Work

Tax and Duin [16] and Scholkopf et. al. [12] performed the groundbreaking work
with the one-class SVM. Stolfo and Wang [15] successfully apply the one-class
SVM to the intrusion data set that we use in this paper. Chen et. al. [3] uses
the one-class SVM for image retrieval. Shawe-Taylor and Cristianini [14] provide
the theoretical background for this method.

Tax and Duin [17] discuss selection of the σ parameter for the one-class SVM,
selecting σ based upon a predefined error rate and desired fraction of support
vectors. This requires solving the one-class SVM for various values of σ and the
parameter C, referred to in this paper as 1/νN = C. This method relies on
the fraction of support vectors as an indicator of future generalization. Tuning
of the parameter C does not significantly impact the ordering of the decision
values created by the one-class SVM; tuning of σ influences the shape of the
decision function and profoundly impacts the ordering of the decision values.
When seeking to maximize the area under the ROC curve (AUC), the ordering
of the decision values is all that matters. The technique in this paper is very
different from the one which is mentioned in [17]. We use the kernel matrix
directly, therefore the one-class SVM does not need to be solved for each change
in value of σ. Furthermore, tuning the kernel matrix directly requires the tuning
of only one parameter.

3 The One-Class SVM

The one-class SVM is an anomaly detection model solved by the following opti-
mization problem:

min
R∈R,ζ∈RN ,c∈F

R2 +
1

vN

∑

i

ζi (2)

subject to ‖ Φ(xi) − c ‖2≤ R2 + ζi and ζi ≥ 0 for i = 1, ..., N

The lagrangian dual is shown below in equation 3.

max
α

∑

i

αiκ(xi,xi) −
∑

i,j

αiαjκ(xi,xj) (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Some Properties of the Gaussian Kernel for One Class Learning 271

subject to 0 ≤ αi ≤ 1
vN

and
∑

i

αi = 1

Scholkopf et. al. point out the following reduction of the dual formulation
when modeling with gaussian kernels:

min
α

∑

i,j

αiαjκ(xi,xj) (4)

subject to 0 ≤ αi ≤ 1
vN

and
∑

i

αi = 1

This reduction occurs since we know that κ(xi,xi) = 1 and
∑

i αi = 1. Equa-
tion 4 can also be written as minα′Kα. Shawe-Taylor and Cristianini [14] ex-
plain that α′Kα is the weight vector norm, and controlling the size of this value
improves the statistical stability, or regularization of the model.

All training examples with αi > 0 are support vectors, and the examples
which also have a strict inequality of αi < 1

vN are considered non-bounded
support vectors.

In order to classify a new test instance, v, we would evaluate the following
decision function:

f(v) = κ(v,v) − 2
∑

j

αjκ(v,xj) +
∑

j,k

αkαjκ(xk,xj) − R2

Before evaluating for a new point, R2 must be found. This is done by finding a
non-bounded support vector training example and setting the decision function
equal to 0 as detailed by Bennett and Campbell [1]. If the decision function is
negative for a new test instance, this indicates a negative or healthy prediction. A
positive evaluation is an unhealthy or positive prediction, and the magnitude of
the decision function in either direction is an indication of the model’s confidence.
It is useful to visualize the decision function of the one class SVM with a small
two dimensional dataset, shown in figure 1. The plots corresponding to a small σ
value clearly illustrate that overtraining is occurring, with the decision function
wrapped tightly around the data points. Large values of sigma simply draw an
oval around the points without defining the shape or pattern.

4 Method

The behavior of the gaussian kernel is apparent when examined in detail. The
values lie within the (0,1) interval. A gaussian kernel matrix will have ones along
the diagonal (because ‖ xi − xi ‖= 0). Additionally, a value too small for σ will
force the matrix entries towards 0, and a value too large for σ will force matrix
entries towards 1. There is also a property of all kernels, which we will refer to
as the fundamental premise of pattern recognition, which simply indicates that
for good models, the following relationship consistently holds true:

(κ(i, j)|(yi = yj)) > (κ(i, j)|(yi �= yj)) (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

272 P.F. Evangelista, M.J. Embrechts, and B.K. Szymanski

Fig. 1. Visualization of one class SVM for three different values for σ. The source data,
named the cross data due to its pattern, is shown in the top left.

Consistent performance and generalization of the fundamental premise of pat-
tern recognition is the goal of all kernel based learning. Given a supervised
dataset, a training and validation split of the data is often used to tune a model
which seems to consistently observe the fundamental premise. However, in an
unsupervised learning scenario positive labeled data is limited or non-existent,
and furthermore, models such as the one-class SVM have no use for positive
labeled data in the training data.

A first approach towards tuning a kernel matrix for the one-class SVM might
lead one to believe that the matrix should take on very high values, indicating
that all of the kernel entries for the training data is of one class and there-
fore should take on high values. Although this approach would first seem to be
consistent with the fundamental premise in equation 5, this approach would be
misguided. The magnitude of the values within the kernel matrix is not an im-
portant attribute. The important attribute is actually the spread or the variance
of the entries in the kernel matrix. At first this may seem to be anomalous with
equation 5, however a closer examination of the statistics of a kernel matrix
illustrates why the variance of the kernel matrix is such a critical element in
model performance.

Shawe-Taylor and Cristianini point out that small values of σ allow classi-
fiers to fit any set of labels, and therefore overfitting occurs [14]. They also
state that large values for σ impede a classifiers ability to detect non-trivial pat-
terns because the kernel gradually reduces to a constant function. The following

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Some Properties of the Gaussian Kernel for One Class Learning 273

mathematical discussion supports these comments for the one-class SVM. Con-
sidering again the one-class SVM optimization problem, posed as minα′Kα as-
suming the a gaussian kernel, if the sigma parameter is too small and κ(i, j) → 0,
the optimal solution is αi = 1/N . Equation 4, the objective function, will equate
to 1/N (since

∑
i(1/N)2 = 1/N). If the sigma parameter is too large and

κ(i, j) → 1, the optimal solution is the entire feasible set for α. Given these
values for the variables and parameters, the objective function will now equate
to 1. The brief derivation for the case when κ(i, j) → 1 follows:

α′Kα =
N∑

i=1

α2
i +

N∑

i=1

N∑

j=i+1

2αiαjκ(i, j)

=
N∑

i=1

α2
i +

N∑

i=1

αi

∑

j=1...i−1,i+1...N

αj

=
N∑

i=1

α2
i +

N∑

i=1

αi(1 − αi) =
N∑

i=1

α2
i +

N∑

i=1

αi −
N∑

i=1

α2
i =

N∑

i=1

αi = 1

The objective function bounds are (1/N, 1), and the choice of σ greatly influ-
ences where in this bound the solution lies.

4.1 The Coefficient of Variance

In order to find the best value for σ, a heuristic is employed. This heuristic takes
advantage of the behavior of the one-class SVM when using the gaussian kernel.
The mean and the variance of the non-diagonal kernel entries, κ(i, j)|i �= j, play
a crucial role in this heuristic. We will refer to the mean as κ̄ and the variance as
s2. For any kernel matrix where i, j ∈ {1, ..., N}, there are N2 − N off diagonal
kernel entries. Furthermore, since all kernel matrices are symmetrical, either the
upper or lower diagonal entries only need to be stored in memory, of which there
are l = (N2−N)/2. From here forward, the number of unique off diagonal kernel
entries will be referred to as l.

It is first necessary to understand the statistic used in this heuristic, the
coefficient of variance. The coefficient of variance is commonly referred to as
100 times the sample standard deviation divided by its mean, or 100s

x̄ . This
statistic describes the relative spread of a distribution, regardless of the unit
of scale. Due to the scale and behavior of κ̄ and s, this coefficient of variance
monotonically increases for gaussian kernels as σ ranges from 0 to ∞. Using the
sample variance rather than the standard deviation, different behavior occurs.
The monotonic increase of the coefficient of variance occurs because when σ
is small, s > κ̄; however, as σ increases, there is a cross-over point and then
s < κ̄. However, the variance of κ(i, j)|i �= j is always smaller than the mean of
κ(i, j)|i �= j. This property is what makes the variance of a kernel matrix such
a critical component for the direct tuning method. The proof follows. For the
sake of notation simplicity, xk ∈ (0, 1), k ∈ [l], will represent off diagonal kernel
entries, that is entries κ(i, j)|i �= j.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

274 P.F. Evangelista, M.J. Embrechts, and B.K. Szymanski

V AR(xk) ≤ x̄ =⇒
∑

k x2
k − 2x̄

∑
k xk + lx̄2

l − 1
≤ (l − 1)x̄

l − 1

=⇒ lx̄2 − 2lx̄2 − (l − 1)x̄ +
∑

k xk
2

l − 1
≤ 0

=⇒
∑

k

x2
k − lx̄2 − (l − 1)x̄ ≤ 0 =⇒

∑

k

x2
k −

∑

k

xk +
∑

k xk

l
(1 −

∑

k

xk) ≤ 0

=⇒ l
∑

k

x2
k −

∑

k

xk(l − 1) − (
∑

k

xk)2 ≤ 0

=⇒
∑

k

x2
k − (

∑

k

xk)2 + (l − 1)
∑

k

x2
k − (l − 1)

∑

k

xk ≤ 0

=⇒
∑

k

x2
k − (

∑

k

xk)2

︸ ︷︷ ︸
always ≤0

+(l − 1)
(∑

k

x2
k −

∑

k

xk

)

︸ ︷︷ ︸
always ≤0 for 0≤xk≤1

≤ 0

The fact that the variance of κ(i, j)|i �= j is always smaller than the mean of
κ(i, j)|i �= j indicates that s2/κ̄ is a fraction. Furthermore, as σ ranges from 0 to
∞, this fraction ascends to a global max. In order to protect against division by
zero and roundoff error, a small value, ε, can be added to the denominator. The
results in the following objective function for optimization which can be solved
quickly with a gradient ascent algorithm. Solving the optimization problem in
equation 6 leads to the best choice for σ.

max
σ

s2

κ̄ + ε
∀(i �= j) (6)

such that

κ(i, j) = e
−‖xi−xj‖2

2σ2 , κ̄ =

∑N
i=1

∑N
j=i+1 κ(i, j)
l

, s2 =

∑N
i=1

∑N
j=i+1(κ(i, j) − κ̄)2

l − 1

Figure 2 illustrates the impact of sigma on the kernel matrix. The dataset
used to create figure 2 was the ionosphere data which is available from the
UCI repository. These data are all of the negative class, and it is evident that
both the kernel element values and the dispersion of these values changes as σ
changes. The optimal value for σ for this dataset is 1, and the color visualization
of the kernel matrix when σ = 1 clearly indicates that there is dispersion in the
kernel matrix. However, it is also noticeable that the central tendency of the
kernel entries for this optimal σ is a small value, closer to zero than one. This
is consistent for all of the datasets. This is why it is important to use a metric
that detects relative dispersion and is not biased by the magnitude of the kernel
entries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Some Properties of the Gaussian Kernel for One Class Learning 275

Fig. 2. Color visualization of a kernel matrix with various values for σ. This visualiza-
tion involves 100 observations where kernel entries close to 0 are light; darker entries
represent values closer to unity.

4.2 Why Direct Tuning of the Kernel Matrix Works

As mentioned previously, it is desirable to minimize α′Kα. α is sparse when
there are few support vectors, and this sparseness is typically desirable to mini-
mize complexity and improve regularization. However, meaningless sparse solu-
tions for α can occur as all κ(i, j) → 0. Meaningful sparse solutions for α occur
when the kernel matrix entries are not concentrated either towards 0 or 1, but
are showing good dispersion and there is payoff in the optimization to select the
few instances which clearly define the margin of the density approximated by
the one-class SVM. Although the variance, s2, is a good indicator of the dis-
persion in the kernel matrix, it is biased towards a larger σ since variance is
affected by unit of scale or magnitude. s2/(κ̄ + ε) is robust against unit of scale.
This statistic illustrates the dispersion of a distribution regardless of scale. For
the one class SVM, the optimal value for σ and maximum value for s2/(κ̄ + ε)
typically occurs as σ increases from 0 and the kernel entries first begin to il-
lustrate dispersion. When there is maximal dispersion in the kernel matrix, the
values assigned to α will reflect the behavior and relationships of observations,
which is the purpose of the statistical learning. Maximal dispersion of the kernel
matrix also supports the fundamental premise of pattern recognition. When σ
is not properly tuned, the values assigned to α will be erroneously based upon
the behavior of the optimization problem or the optimization algorithm used to
solve the problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

276 P.F. Evangelista, M.J. Embrechts, and B.K. Szymanski

5 Experimental Results

In order to evaluate the performance of the direct tuning heuristic, several ex-
periments were conducted. The data included three benchmark sets: banana,
chessboard, and ionosphere (from UCI repository). Additionally, two computer
intrusion datasets named Schonlau and Sick, after their respective creators, are
also examined. The Schonlau data involves determining authenticity of a user
based on UNIX commands. This data was originally discussed in ([4,5,13]) and
the actual data used in this paper was also discussed in ([6,7,8]). The Sick data
was originally examined in [11]. The parameter ν is set to .5 for every experiment.

Dataset dimensions positive negative comment

Banana 2 50 50 see ([9])

Chessboard 2 50 50 www.cs.wisc.edu/
∼olvi/data/check1.txt

Ionosphere 34 126 225 UCI Repository

Schonlau 26 231 4769 www.schonlau.net

Sick 137 250 5143 see ([11])

For each dataset, one half of the negative class was used for training the one-
class SVM and the test data comprised of the other half of the negative class
and all members of the positive class. The same split remained consistent for
all experiments for the purposes of control and consistency. The performance
measure utilized is the area under the receiver operating characteristic curve
(AUC).

The three benchmark datasets clearly illustrated optimal performance when
s2/(κ̄ + ε) is optimal. For each of the benchmark solutions, a gradient ascent
algorithm was tested and converged on the optimal σ within 4-6 iterations de-
pending on the initial values and dataset. An initial value of 1 for σ seemed to
work well since most of the optimal values for σ ranged between .1 and 10.

The two computer intrusion datasets did not clearly indicate this same type
of ideal performance. The Schonlau dataset performed the worst by far, and the
Sick dataset did indicate a region of good performance. The value of σ seemed
indifferent for the Sick data.

Fig. 3. Experimental results for three benchmark datasets

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Some Properties of the Gaussian Kernel for One Class Learning 277

Fig. 4. Experimental results for two computer intrusion datasets

6 Conclusions

Direct tuning of the gaussian kernel matrix is a novel and promising approach
for the necessary tuning of the powerful gaussian kernel. The heuristic proposed
is grounded and supported with underlying theory. The significance of tuning
the gaussian kernel for unsupervised learning applies directly to ensemble meth-
ods. Techniques such as bagging [2], random subspace selection [10], and fuzzy
aggregation techniques [6,7] can be employed for unsupervised learning with the
gaussian kernel.

Future research could involve automated tuning approaches for supervised
learning, however this approach will clearly have to outperform the traditional
technique of validation. Direct tuning for supervised learning would be faster,
but first it needs to be shown that it is also just as accurate as validation.

References

1. Bennett, K.P., Campbell, C.: Support Vector Machines: Hype or Hallelujah.
SIGKDD Explorations 2(2) (2001)

2. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

3. Chen, Y., Zhou, X., Huang, T.S.: One-Class SVM for Learning in Image Retrieval.
In: Proceedings of IEEE International Conference on Image Processing, Thessa-
loniki, Greece, IEEE Computer Society Press, Los Alamitos (2001)

4. DuMouchel, W., Ju, W.H., Karr, A.F., Schonlau, M., Theus, M., Vardi, Y.: Com-
puter Intrusion: Detecting Masquerades. Statistical Science 16(1), 1–17 (2001)

5. DuMouchel, W., Schonlau, M.: A Fast Computer Intrusion Detection Algorithm
Based on Hypothesis Testing of Command Transition Probabilities. In: The Fourth
International Conference of Knowledge Discovery and Data Mining, August 1998,
pp. 189–193 (1998)

6. Evangelista, P.F., Bonissone, P., Embrechts, M.J., Szymanski, B.K.: Fuzzy ROC
Curves for the One Class SVM: Application to Intrusion Detection. In: Proceed-
ings of the International Joint Conference on Neural Networks, Montreal, Canada,
August 2005 (2005)

7. Evangelista, P.F., Bonissone, P., Embrechts, M.J., Szymanski, B.K.: Unsupervised
Fuzzy Ensembles and Their Use in Intrusion Detection. In: Proceedings of the
European Symposium on Artificial Neural Networks, Bruges, Belgium, April 2005
(2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

278 P.F. Evangelista, M.J. Embrechts, and B.K. Szymanski

8. Evangelista, P.F., Embrechts, M.J., Szymanski, B.K.: Computer Intrusion Detec-
tion Through Predictive Models. Smart Engineering System Design: Neural Net-
works, Fuzzy Logic, Evolutionary Programming, Data Mining and Complex Sys-
tems, St. Louis, Missouri, November 2004, pp. 489–494 (2004)

9. Frossyniotis, D., Likas, A., Stafylopatis, A.: A Clustering Method Based on Boost-
ing. Pattern Recognition Letters 25, 641–654 (2004)

10. Ho, T.K.: The Random Subspace Method for Constructing Decision Forests. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

11. Hofmann, A., Horeis, T., Sick, B.: Feature Selection for Intrusion Detection: An
Evolutionary Wrapper Approach. In: International Joint Conference on Neural
Networks, Budapest, Hungary (2004)

12. Schölkopf, B., Platt, J.C., Taylor, J.S., Smola, A.J., Williamson, R.C.: Estimating
the Support of a High Dimensional Distribution. Neural Computation 13, 1443–
1471 (2001)

13. Schonlau, M., Theus, M.: Detecting Masquerades in Intrusion Detection Based on
Unpopular Commands. Information Processing Letters 76(1-2), 33–38 (2000)

14. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge (2004)

15. Stolfo, S., Wang, K.: One Class Training for Masquerade Detection. In: 3rd IEEE
Conference Data Mining Workshop on Data Mining for Computer Security, Florida,
19 November 2003, IEEE Computer Society Press, Los Alamitos (2003)

16. Tax, D.M.J., Duin, R.P.W.: Support Vector Domain Description. Pattern Recog-
nition Letters 20, 1191–1199 (1999)

17. Tax, D.M.J., Duin, R.P.W.: Support Vector Data Description. Machine Learn-
ing 54, 45–66 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved SOM Learning Using Simulated

Annealing

Antonino Fiannaca1, Giuseppe Di Fatta2, Salvatore Gaglio1,3,
Riccardo Rizzo1, and Alfonso M. Urso1

1ICAR-CNR, Consiglio Nazionale delle Ricerche, Palermo, Italy
2School of Systems Engineering, Univeristy of Reading, UK

3Dipartimento di Ingegneria Informatica, Universitá di Palermo, Italy

Abstract. Self-Organizing Map (SOM) algorithm has been extensively
used for analysis and classification problems. For this kind of problems,
datasets become more and more large and it is necessary to speed up the
SOM learning. In this paper we present an application of the Simulated
Annealing (SA) procedure to the SOM learning algorithm. The goal of
the algorithm is to obtain fast learning and better performance in terms
of matching of input data and regularity of the obtained map. An ad-
vantage of the proposed technique is that it preserves the simplicity of
the basic algorithm. Several tests, carried out on different large datasets,
demonstrate the effectiveness of the proposed algorithm in comparison
with the original SOM and with some of its modification introduced to
speed-up the learning.

1 Introduction

The Self-Organizing Map (SOM) algorithm is used to build a mapping from an
high dimensional data space to a low-dimensional representation space. A spe-
cific characteristic, distinguishing SOM from other data mining techniques, is
the neighborhood preservation of lattice map. Nowadays, datasets used in data
mining become larger time after time and a fast analysis is required. Typically,
techniques used for speeding up SOM algorithm, work in two different ways:
modifying the characteristic of neurons to adjust influence of input in the lat-
tice map [1] [2] or modifying the standard algorithm to address the variation of
learning parameters [3] [4]. The first approach acts on lower abstraction layer
than second ones, because they redefine the SOM neurones; otherwise the sec-
ond one changes only the learning rule depending on network evolution. This
work deals with an application for unsupervised clustering of high dimensional
datasets using a technique preserving the simplicity and the functionality of clas-
sic SOM algorithm: in this point of view, the proposed approach works at the
higher abstraction level. Our solution, during training phase, introduces an op-
timization technique, the simulated annealing (SA), to drive the system toward
the global minimum. Then we have carried out studies both on the shapes and
on the ideal values that learning rate factor α could assume during the training
phase. However the variation of learning rate factor can not satisfy the previous

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 279–288, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

280 A. Fiannaca et al.

goal, thus an optimization technique, driving the system to final optimal solu-
tion, is been used. The simulated annealing [5] [6] could be an attempt to find
global optimum with respect to above-mentioned constraints. SA has been also
adopted in SOM to improve the detection of winning neurons [7] or to select a
representative pattern for each update during training phase [8]. In [7] the SA,
replaced by a deterministic implementation (Deterministic Annealing), does not
imply an improvement in term of computational complexity but just with regard
to quality of learning; that happens because the selection of winning neurons,
solved by Kohonen in simplest way, here is steered by a minimization of a cost
function where the SA is strongly used. Instead, in [8], learning process requires
nearly the same execution time than standard SOM and, moreover, the evolution
of training should avoid local minima even though the learning could advantage
a few patterns. In this work we introduce a SOM learning algorithm that adds
SA as evaluation and directional criterion for the map evolution. The proposed
algorithm, called Fast Learning SOM (FLSOM) is faster than the regular SOM
and it is compared with SOM, PLSOM, HabSOM and ConsSOM(see section 2).

The paper has the following structure: the next section describes some related
works aiming to speed up learning of SOM; the section 3 reports the basic
SOM algorithm and describes the proposed algorithm; the section 4 reports the
experimental results. Finally some conclusions are reported in section 5.

2 Related Work

Many different mechanisms have been proposed in the literature for improving
SOM performances. The key issue is to determine which parameters need to be
considered, in order to obtain a SOM that both achieves a clustering in a short
time and creates a data projection strongly related to the distribution of data
in the input space. One such attempt was done in auto-SOM [4], introducing a
complex algorithm, based on Kalman filters coupled with a recursive parameter
estimation method depending on [9] [10], to guide the weight vectors toward the
center of their respective Voronoi cells in input spaces. Using this algorithm, it is
possible to automatically estimate the learning parameters during the training
of SOMs. Indeed the introduction of Kalman filters leads the network to a good
training, but it is more computationally expensive than the classic SOM. Notice
that in [4] authors confirm that the incremental learning SOM algorithm is faster
than the auto-SOM, because the former needs fewer learning steps than the lat-
ter during training process. Moreover, they also assert that standard techniques
often get stuck in local minima. A recent improvement to the SOM original
algorithm is the parameterless SOM (PLSOM) [3] [11]: this technique is based
on the standard SOM algorithm and removes both classic learning rate func-
tion and neighborhood size function. Usually these functions are decreased over
time and do not take into account the evolution of the network during learning
process. PLSOM evaluates the adaptation of input stimuli and calculates the
learning factor and neighborhood size depending on the local quadratic fitting
error of the map to the input space. Unfortunately only the local error is used

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved SOM Learning Using Simulated Annealing 281

during the evolution of the map; this means that both the first data inputs and
the initialization of the map, play a key role in map evolution and, moreover,
the selection of the learning rate is modified without evaluating weights in most
of neurons. An adaptation of habituation mechanism in SOMs was proposed
in [1] and results was compared to conscience algorithm [2]. These algorithms
are based mainly on the identification of neurons that win frequently and thus
on the introduction of an handicap for these neurons. This way, each neuron
is selected with almost the same probability of the other ones. In this context,
the habituation mechanism is more flexible than conscience-learning because it
can be used to manage the learning processing a fine grain way. Otherwise, the
conscience mechanism speed up learning process using an a priori knowledge to
estimate a value of probability in order to catch winning neuron. The algorithm
presented in [1], compared to standard SOM implementation, is not more com-
putationally expensive, although the algorithm adds an habituation parameter.
This parameter is a function of a local error so that the habituation is increased
when the network is not ordered. The introduction of the habituation causes the
deceleration of the training during the refinement phase of the learning.

3 SOM Adaptive Learning Rate Algorithm

In this section the learning algorithm of the FLSOM is introduced. Although the
SOM learning procedure is well known it is necessary to briefly highlight some
points of the original algorithm to better understand the proposed one.

3.1 Self-Organizing Map Basic Algorithm

Self-Organizing Maps [12] are neural structures capable of building maps of
the input data, which preserve neighborhood relationships. Although the SOM
algorithm is well known, it is necessary to report some formulas in order to
better understand the modified algorithms. The incremental learning algorithm
[13] trained for epochs is used; this version of the learning algorithm is reported
in table 1.

The main formulas of the standard SOM are reported below. In (step 3.(a).ii)
of Table 1 the winner unit, called best matching unit (bmu) is selected according
to:

bmu = arg
(

min
i∈N

‖x − wi‖
)

. (1)

In (step 3.(a).iii) neural weights are updated using the following rule:

wi(t + 1) = wi(t) + α(t)hci(t) [x − wi(t)] , (2)

where hci is the neighborhood kernel around the best matching unit. One of the
most common shapes of the kernel is the gaussian shape:

hci(t) = exp
(

d (rbmu, ri)
2σ2(t)

)

, (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

282 A. Fiannaca et al.

where the term d (rbmu, ri) stands for the distance between the bmu unit and
the generic unit i on the SOM lattice.

Table 1. Incremental learning algorithm trained for epochs

1. Initialize the SOM neurons with random weights.
2. Set epoch counter p = 1 and step counter t = 1.
3. If stop condition is not verified

(a) If learning dataset is not empty

i. Get randomly a pattern x(t) from learning dataset.
ii. Find bmu(x(t)).
iii. Train / Update weights of bmu and its neighborhood.
iv. Remove x(t) from input learning dataset.
v. t = t + 1.

(b) p = p + 1.

4. End of learning after p epochs.

The learning parameter α(t) and the neighborhood radius σ(t) are decreasing
functions of time of the same kind and follow the same law.

α(t) = αMAX

(
αMIN

αMAX

)(t
tmax

)

, (4)

σ(t) = σMAX

(
σMIN

σMAX

)(t
tmax

)

. (5)

3.2 The Fast Learning SOM Algorithm (FLSOM)

Simulated annealing (SA) is an optimization method typically used for large
scale problems, where a global minimum is hidden by many local minima. In
the present work, we use this heuristic to improve the quality of learning process
of the SOM, preserving its unsupervised characteristic. The adopted approach
provides an adaptive learning rate factor α(t, QE), steered by the simulated
annealing heuristic over the current resolution of the map. Using a SOM trained
for epochs, at the end of each learning epoch, the Quantization Error (QE)
can be identified with the parameter “temperature” T and the evolution of the
network can be identified with a perturbation of the system. Notice that the
algorithm parameter that control temperature schedule is automatically adjusted
according to algorithm progress; an analogous criterion, the adaptive simulated
annealing, was widely analysed and developed in [14] and [15]. The QE of a
SOM is defined as the euclidean distance between a data vector and its best
matching unit according to:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved SOM Learning Using Simulated Annealing 283

QE = ‖x − mc(x)‖ , (6)

where x is the data vector input and mc(x) is the bmu. The system evolution
can be delineated by the QE progression because, if the QE at the end of each
learning epoch is smaller than the QE computed in previous epoch, then the
projection of the samples on the SOM map is closer to the original positions in the
input space. Thus we obtain a linear cooling schedule as QEnew = QEold−ΔQE,
where ΔQE is the variation of the total energy of the system.

The pseudocode of the algorithm is given in table 2. In this algorithm the
term Training(SOM) refers to a learning epoch shown in table 1; the result of
the training is a candidate SOM that is tested using QE. At the beginning all
parameters, including the range of the learning rate, are initialized and the first
epoch of the algorithm is executed (steps 1, 2). At the end of each learning
epoch the QE is calculated and if the difference between this QE and that one
calculated at the end of previous epoch is under a threshold δ then the learning
process stops (steps 5, 5.(d)). Each learning epoch generates a perturbation of
the status of neurons in the map. If this perturbation satisfies low-energy criteria
according to the simulated annealing (step 5.(f)), then the current configuration
is accepted and a new perturbation is calculated. Otherwise, if the perturbation
does not satisfy low-energy criteria, then the first perturbation will be used
for the next epoch (step 5.(g).i). If the previous configuration is better than
the current one, then the previous one is restored (step 5.(g).ii). The size of
perturbations depends on the evolution of network resolution or, in other words,
by the ratio of the current QE and the maximum QE (step 5.(f).2). The values of
the learning rate factor are adapted according to these equations (steps 5.(f).iii,
5.(f).iv).

4 Experimental Results

The proposed FLSOM is evaluated against the standard SOM and most of its
variations as PLSOM , HabSOM and ConsSOM . In order to compare the
five different algorithms, five data set have been tested and the quality of the
approximation, the “smoothness” of the lattice and the entropy are used for
comparison.

4.1 Quality Criteria

Three evaluation criteria are used to measure the quality of the map and to
compare the results of the algorithms: quantization error (QE) already defined,
regularity degree [16] (RD) and maximization of entropy (EN). The first one
measures the resolution of the map, the second one the local distortion and
the last one the frequency of input distribution over the map. The RD can
be calculated at the end of each learning epoch and it is useful for evaluating
the topological organization of the lattice during the training. This parameter
is easily calculated as the position of neurons with respect to their neighbours.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

284 A. Fiannaca et al.

Table 2. FLSOM algorithm

1. Initialize the SOMcurrent with random weights, the SOM parameters:
αMAX , αMIN , and the epoch counter p = 1

2. Start with first learning epoch: SOM(p) = Training(SOMcurrent)
3. Set QEMAX = QE(p)
4. Initialize ΔQE(p) = QEMAX

5. While ΔQE(p) ≥ δ

(a) p = p + 1
(b) Run a new learning epoch:

SOM(p) = Training(SOMcurrent)
(c) Calculate QE(p)
(d) Calculate ΔQE(p) = QE(p) − QE(p − 1)
(e) Get a random value 0 < rand < 1

(f) if the configuration satisfies low-energy criteria (i.e. e− ΔQE
QE < rand), or the

configuration is better than the one of previous epoch (ΔQE(p−1) > ΔQE(p))

i. use current state i.e. set SOMcurrent = SOM(p)

ii. Calculate αinc(QE) = Δα ∗
�
�
�1 − QE(p)

QEMAX

�
�
�

iii. Set αMAX = αMAX + αinc(QE)
iv. Set αMIN = αMIN + αinc(QE)

(g) Else

i. if (e
− ΔQE

QE > rand)) i.e. configuration does not satisfy low-energy cri-
teria
Use the initial vales of αMAX and αMIN in eq. 4

ii. if (ΔQE(p − 1) < ΔQE(p)) i.e. previous configuration is better than
the current configuration
Set SOMcurrent = SOM(p − 1)

6. End of learning after p epochs

According to this criterion, an ideal value of the regularity degree should be close
to zero (true for a quite flat map). In real applications configurations with low
values of degree of regularity are better. The EN ensures us that the quantization
intervals are used with the same frequency during the quantization of the input
signal. If we have N neural units, we obtain a input manifold divided into Vi

intervals where i = 0, 1, ..., N . After the training, the input pattern v should fall
in interval Vi with a probability:

p(Vi) =
1
N

. (7)

So that information-theoretic entropy will be maximized:

H = −
N∑

i=1

p(Vi) ∗ log(p(Vi)) = logN. (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved SOM Learning Using Simulated Annealing 285

(a) Ring (b) Two-C (c) Blobs-3D

Fig. 1. Artificial datasets

4.2 Evaluation of the Proposed Algorithm

The approach is evaluated using the five SOMs algorithms cited in previous
subsection. To allow comparison among SOM implementations, the algorithm
shown in table 2 has been modified in step 5, where the stop condition depending
on δ has been replaced by a stop condition depending on maximum number of
learning epochs. To choose this number, several tries have been run over all used
datasets. The number selected, 18 epochs, was sufficient to approximate a nearly
complete evolution, for all SOMs implementations and for all datasets, according
to algorithm shown in table 2 with a very little δ = 0.05. The weights of all SOM
networks are initialized with random values over the input space and all maps
have a 80 × 80 square lattice. The training phase for each epoch is done with
αMAX = 0.75, αMIN = 0.15, σMAX = 7, σMIN = 2. In the FLSOM algorithm
the values of the learning parameters are dynamically increased up to αMAX = 1
and αMIN = 0.75; the HabSOM has β = 0.99, abMAX = 1.0 and tr =3.0E-5;
the ConsSOM has B =1.0E-4 and C = 5.0. These parameter values are those
that give the best results for the datasets used.

4.3 Validation of the Proposed Learning Process

The validation of the FLSOM has been carried out using three artificial datasets,
shown in figure 1, and two datasets from real world. In detail the first one,
here called Ring (fig. 1(a)), and the second one, here called Two − C (fig.
1(b)), are artificial datasets in two-dimensional space and provide two thousand
input signals; the third one Blobs − 3D (fig. 1(c)) is an artificial dataset that
draws eight blobs in three-dimensional space and provide two thousand and
four hundred input signals; the fourth one, the well know Iris, is a real dataset
in four-dimensional space and provide one hundred fifty instances and there
are three clusters, each has 50 instances; the last dataset [17] is a real dataset
reduced according to [18] in twenty-dimensional space and provide three hundred
twenty-five input signals. All the reported figures are averaged over 100 runs of
the algorithms. For each epoch of each SOM implementation, the means of QE
and EN have been calculated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

286 A. Fiannaca et al.

0 2 4 6 8 10 12 14 16 18
8

9

10

11

12

13

14

15

16

17

18

Epochs

Q
ua

nt
iz

at
io

n
E

rr
or

SOM
FLSOM
PLSOM
HabSOM
ConsSOM

Fig. 2. Quantization error versus number of epochs in Ring dataset. The FLSOM
algorithm reaches the stop condition with the smallest value of QE in 117.65 s, while
the standard algorithm stops on epoch 18 in 128.60 s.

Figure 2 shows the average evolution of quantization error during the training
process of Ring dataset for all SOMs. The chart clearly shows the effectiveness of
the FLSOM algorithm: it reaches a lower QE value in a smaller number of epochs.
Moreover execution time is not strongly influenced by the proposed algorithm:
in fact the FLSOM learning process stops in 117.65 s, while the standard SOM
stops in 128.60 s. Results of QE and RD for all datasets are given in table 3.
In this table are shown, for all SOMs, the number of epochs (≤ 18) necessary
to reach the required values scored by the worst of all SOMs implementations.
The best values for each dataset are emphasized with bold type. These results

Table 3. For all SOMs, the number of epochs necessary to reach required QE value
and required RD value

Ring Two-C Blobs-3D Iris NCI-325
Required QE 9.50 8.60 15.80 6.10 8.10

SOM 16 17 17 17 17

FLSOM 9 10 3 5 5
PLSOM 18+ 13 18+ 8 18+

HabSOM 16 18 15 17 16

ConsSOM 18 18+ 18+ 17 18+

Required RD 0.00045 0.00043 0.00046 0.120 0.075

SOM 10 8 8 18 18

FLSOM 16 14 13 10 9
PLSOM 7 8 9 18+ 18+

HabSOM 10 9 7 18 17

ConsSOM 10 9 18 18 18

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Improved SOM Learning Using Simulated Annealing 287

Table 4. For all SOMs, the value of Entropy reached after 18 epochs

Ideal Entropy for all SOMs: 8.764

Ring Two-C Blobs-3D Iris NCI-325

SOM 5.489 5.485 5.805 4.808 5.166

FLSOM 5.489 5.490 5.809 4.807 5.547
PLSOM 5.474 5.477 5.773 4.794 5.012

HabSOM 5.493 5.480 5.810 4.801 5.172

ConsSOM 5.483 5.481 5.772 4.803 5.169

state that the FLSOM is better than the other implementations with regard to
resolution of the map (i.e. QE value). In other words, the FLSOM is faster than
the other algorithms.

Regarding RD measure, FLSOM appears to performing worse than the others
SOMs, because it needs the highest number of epochs to reach the same value
of RD. Actually, this result is not as bad as it seems: analyzing the values of RD
reached after 18 epochs by all the SOM implementation.

The average entropies calculated after 18 epochs, for all SOMs, are shown in
table 4. The best values for each dataset are emphasized with bold type. Even
though values of entropy are closer for all implementations, the FLSOM scores
always one of highest results.

5 Conclusions

In this paper FLSOM, a technique that uses the Simulated Annealing as a
method to select a candidate SOM during the training process, has been pro-
posed. The SOM training process modifies the learning rate factor in an adap-
tive way. Results of experimental tests, carried out on both artificial and real
datasets, comparing the proposed method with standard and modified SOMs
demonstrate the good performances obtained by FLSOM in terms of conver-
gence time, and resolution of the maps. On the other hand, the performances
obtained by FLSOM in terms of local distortion and frequency of input distribu-
tion over the map are comparable with those obtained by standard and modified
SOMs, especially when real world datasets are considered.

References

1. Rizzo, R., Chella, A.: A Comparison between Habituation and Conscience Mecha-
nism in Self-Organizing Maps. IEEE Transactions on neural networks 17(3), 807–
810 (2006)

2. DeSieno, D.: Adding a conscience to copetitive learning. In: Proc. ICNN’88, Inter-
national conference on Neuroal Networks, pp. 117–124. IEEE Computer Society
Press, Piscataway, NJ (1988)

3. Berglund, E., Sitte, J.: The parameterless self-organizing map algorithm. IEEE
Transactions on neural networks 17(2), 305–316 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

288 A. Fiannaca et al.

4. Haese, K.: Auto-SOM: recursive parameter estimation for guidance of self-
organizing feature maps. Neural Comput. 13(3), 595–619 (2001)

5. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Sci-
ence 220(4598), 671–680 (1983)

6. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–
1092 (1953)

7. Graepel, T., Burger, M., Obermayer, K.: Self-organizing maps: generalizations and
new optimization techniques. Neurocomputing 21, 173–190 (1998)

8. Douzono, H., Hara, S., Noguchi, Y.: A Clustering Method of Chromosome Flu-
orescence Profiles Using Modified Self Organizing Map Controlled by Simulated
Annealing. In: IJCNN’00. IEEE-INNS-ENNS International Joint Conference on
Neural Networks, vol. 4 (2000)

9. Haese, K.: Kalman filter implementation of self-organizing feature maps. Neural
Comput. 11(5), 1211–1233 (1999)

10. Haese, K.: Self-organizing feature map with self-adjusting learning parameters.
IEEE Transactions on Neural Network 9(6), 1270–1278 (1998)

11. Berglund, E., Sitte, J.: The parameter-less SOM algorithm. In: Proc. ANZIIS, pp.
159–164 (2003)

12. Kohonen, T.: Self-Organizing Maps. Springer Verlag, Berlin (1995)
13. Van Hulle, M. (ed.): Faithful Representations and Topographic Maps: From

Distortion- to Information-Based Self-Organization. John Wiley, New York (2000)
14. Ingber, L.: Very fast simulated re-annealing. Journal of Mathl. Comput. Mod-

elling 12(8), 967–973 (1989)
15. Ingber, L.: Adaptive simulated annealing (ASA): lessons learned. J. Control and

Cybernetics 25(1), 33–54 (1996)
16. Goppert, J., Rosenstiel, W.: Regularized SOM-Training: A Solution to the

Topology-Approximation dilemma, University of Tbingen (1996)
17. National Cancer Institute, DTP AIDS antiviral screen dataset [online],

http://dtp.nci.nih.gov/docs/aids/aids/data.html
18. Di Fatta, G., Fiannaca, A., Rizzo, R., Urso, A., Berthold, M.R., Gaglio, S.: Context-

Aware Visual Exploration of Molecular Databases. In: Perner, P. (ed.) ICDM 2006.
LNCS (LNAI), vol. 4065, pp. 136–141. Springer, Heidelberg (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://dtp.nci.nih.gov/docs/aids/aids/data.html

The Usage of Golden Section in Calculating the Efficient
Solution in Artificial Neural Networks Training by

Multi-objective Optimization

Roselito A. Teixeira1, Antônio P. Braga2, Rodney R. Saldanha3,
Ricardo H.C. Takahashi4, and Talles H. Medeiros2

1 Centro Universitário do Leste de Minas Gerais,
Coronel Fabriciano, MG, Brazil
roselito@unilestemg.br

2 Federal University of Minas Gerais - Department of Electronic Engineering
Belo Horizonte, MG, Brazil

talles, apbraga@cpdee.ufmg.br
3 Federal University of Minas Gerais - Department of Electrical Engineering

Belo Horizonte, MG, Brazil
rodney@cpdee.ufmg.br

4 Federal University of Minas Gerais - Department of Mathematics
Belo Horizonte - MG, Brazil
taka@mat.ufmg.br

Abstract. In this work a modification was made on the algorithm of Artificial
Neural Networks (NN) Training of the Multilayer Perceptron type (MLP) based
on multi-objective optimization (MOBJ), to increase its computational efficiency.
Usually, the number of efficient solutions to be generated is a parameter that must
be provided by the user. In this work, this number is automatically determined by
an algorithm, through the usage of golden section, being generally less when
specified, showing a sensible reduction in the processing time and keeping the
high generalization capability of the obtained solution from the original method.

1 Introduction

The process of obtaining a well trained NN, is not always a simple task, and generally
requires a great effort from the designer in determining the parameters that will make
the Neural Network present high generalization capability. Typically, NN can suffer
from the effect of over-fitting or under-fitting. This effect appears to under or oversize
the NN, which minimizes its generalization capability. To maximize this characteristic,
it is necessary to establish a trade-off between bias and variance of the models, bias ×
variance dilemma [1].

The reduction of a neural model variance can even be minimized by the number of
free parameters or controlling the weight vector variance norm. Some algorithms such
as pruning [2] adjust the neural architecture, others, penalize the solution of high norms,
like regularization techniques [3]. In the latter case, a cost function given in addition to
Eq. (1) must be minimized:

J(x; w) = ED(w,x) + λES(w), (1)

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 289–298, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

290 R.A. Teixeira et al.

denoted w, the weight vector, x is a input pattern, ED(w,x) is training error, ES(w) is
a regulated term and λ is a regulated parameter. This must be adjusted in accord to the
data quality, being less for noiseless data or bigger when the data is contaminated by
noise. However, to attain this value is not a simple task and an incorrect value can make
it be to under or over-fitting. A common regulated term is the weight vector norm, as
Eq. (2),

ES(w) = ||w||2 (2)

it results in the function of cost given for the Eq. 3

J(x; w) =
1

NT

NT∑

j=1

[dj − f(w,xj)]2 + λ
1
2
||w||2 (3)

being NT the size of training set, xj and dj are, respectively, j-the input and output
pattern of this set.

Differently from the methods above, the multi-objective method consists originally
in [4] controlling the weight vector norm through the simultaneous minimization of two
cost functions, described in the Equations (4) and (5), solving a problem of multiple
objectives. It is noticed the absence of regulated parameter.

J1(x; w) =
1

NT

NT∑

i=1

[di − f(w,xi)]2 (4)

J2(w) = ||w|| (5)

The generated solution shows under-fitting solution in one extreme and over-fitting
solution on the other extreme. The best solution is located between the two extremi-
ties [4]. The chosen solution combined with the best trade-off between the norm ‖w‖
and the error e2 is performed on the next stage of the multi-objective method, after de-
termining some Pareto-optimal solution. The chosen solution is expected to present a
suitable adjustment to the underlying function fg(x), resulting in high generalization
capability. The formal procedure employed in choosing the best solution is named the
decider.

Whenever the method is capable to find a solution with high generalization capabil-
ity, the computational cost is high because it has to generate a great number of efficient
solution, from the multi-objective optimization point. From this solutions, only one is
chosen as final one, and the others are discarded. Therefore, the implementation of a
strategy capable of generating a reduced number of efficient solutions can significantly
reduce the training time of the method originally considered. In this work, a technique
called golden section is used to reduce the number of solutions obtained in MOBJ al-
gorithms, reducing the training time and keeping the quality of the final solution. The
original (MOBJ) and golden section (MOBJgs) algorithms are described as follows.

2 The MOBJ Algorithm

The MOBJ algorithm employs an approach for neural model complexity control which
is independent from dimension, trading-off the bias and variance. The first phase in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Usage of Golden Section in Calculating the Efficient Solution 291

multi-objective optimization, is to get the Pareto-optimal set [5], which is constituted
of efficient solution w∗. The following phase is to choose the best solution (high gen-
eralization capability). The formal procedure employed in choosing the best solution
is named the decider. In literature, many algorithms can be found to deal with multi-
objective problems [5].

Following these phases, a description is made of the implemented method to solve
the multi-objective optimization problem for training the Neural Networks.

2.1 Description of MOBJ Algorithm

The multi-objective algorithm is implemented using the method ε-constraint [5] and
through this, the optimization is rewritten in the form of mono-objective being solved by
the elipsoidal algorithm [6]. Soon, a constrained mono-objective optimization problem
is solved for different values for ε. The parametric variation of ε allows the generation
of the Pareto-optimal set.

The MOBJ algorithm obtains a number ζ of solutions, were ζ is provided by the user.
Each one of these solutions is a non-dominated or efficient solution, constituting the
Pareto optimal set. The method ε-constraint to problem of training of Neural Networks
formula is developed as follows:

min
w∈W

J1(x; w)

sunbectto a : J2 (w) ≤ ε
(6)

where W is an espace of weight vector. Through the problem (Pε) described in the Eq.
(6) it is possible to generate w∗ completely, even for non-convex Pareto set. As

J1(x; w) =
1

NT

NT∑

j=1

(dj − f(xj ; w))2

and

J2(w) = ‖w‖,

Eq. (6) it’s

min
w∈W

1
NT

NT∑

j=1
(dj − f(xj ; w))2

subjectto a : ‖w‖ ≤ ε

(7)

For MOBJ algorithm (Pε) to calculate ζ solution, it is necessary that the user in-
forms this number and this will have to be made into the parametric variation ε. This
is made originally from linearly form spaced one δε to be informed. Also, the number
of neurons in the hidden layer must be informed. After that, a decider must choose be-
tween the candidates, the final solution, using a validation set. The MOBJ algorithm
originally proposed uses an efficient decider, being briefly described in the following
subsection.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

292 R.A. Teixeira et al.

2.2 The Decision Process

In the previous sub-section a method to attain the Pareto-optimal set w∗ was presented.
The next phase is to choose the best solution w∗ ∈ W∗ as final solution. This solution,
therefore, allows an adequate fit to the underlying function fg(x), resulting in high
generalization capability.

The decider is based on the validation set error for decision making. A validation
set �v = {xVi , dVi + ξi}NV

i=1
1 with NV patterns is presented for efficient solution set

obtained in the first phase, and the decider picks up the solution with smallest validation
error from the available Pareto set samples. The efficiency of the decider is proven in [7],
through a theorem which shows that the Pareto-optimal set has a solution that makes
the adequate fit and that this solution can be selected using a validation set.

The decision rule is given by the Eq. (8),

w∗ = arg
w∈W∗

min eV (8)

where eV is given by the Eq. (9).

eV =
1

NV

NV∑

i=1

[(dVi + ξi) − f(xVi ; w)]2 (9)

being ξ the present noise in the data and f(xV ; w) the output of the Neural Network.
The vectorw∗ to minimize the function given for the Eq. (9) is the best solution of

the Pareto-optimal set and its high generalization capability is guaranteed.

2.3 Computational Aspects for the MOBJ Algorithm

In the described approach in the Sub-section 2.1, the user must inform the number of
desired efficient solution ζ and the difference of norm δε between them. For example,
for ζ = 30 and δε = 0.5, one gets 30 solution, of norm 0 until norm 15, spaced of
0.5. Thus, the computational cost of generating 30 solutions, (30 neural networks). One
knows that it is between that where high generalization capability can be found, which
must be chosen by the decider.

However, alternatives for reducing the number of solution generated can significantly
reduce the computational cost of the algorithm. With this objective, an alteration of the
original method is considered in this work using golden section, as it details in the
following section.

3 The MOBJ Algorithm with Golden Section

This proposal should act according to the generation of norm values ε to optimize Eq.
(7). In the method originally considered,

ε = kδε, k = 1, 2, . . . , ζ

which it always brings to a number ζ of solution to be generated.

1 xVi , dVi is, respectively, input an ouput validation pattern and ξi is a gaussian noise.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Usage of Golden Section in Calculating the Efficient Solution 293

According to the new proposal, the user must inform only the maximum limit of
norm and the algorithm will have to look for the optimal value norm using validation
data set, generating the smallest possible number of efficient solution. The best solu-
tion must have to be of an inferior norm to a specified maximum limit. The values are
generated according to the described algorithm in the following sub-section.

3.1 Description of Algorithm

Considering a validation data set with NV patterns, the error relating these patterns for
a weight vector w is given by the Eq. (9):

eV =
1

NV

NV∑

i=1

[(dVi + ξi) − f(xVi ; w)]2.

Considering α and β the minimum limit and the maximum for a norm. Here, α it is
always equal to zero and β is specified by the user.

With these limits, one more calculates two values of norm according to the Equations
(10) and (11).

ε1 = α + (β − α) ∗ 0, 382 (10)

ε2 = α + (β − α) ∗ 0, 618 (11)

The optimization process is carried through according to Eq. (7) for ε = ε1 and
ε = ε2, obtaining two NN, denoted here for w1 and w2.

It is evaluated Eq. (9) in the points w1 and w2 considering the validation set, obtain-
ing eV 1 and eV 2. The following process is repeated until ε1 ≈ ε2:

if eV 1 > eV 2 then
α = ε1, ε1 = ε2, eV 1 = eV 2
ε2 = α + (β − α) ∗ 0, 618
It is effected according to optimization Eq. (7) for ε = ε2, obtaining a eficient
solution w;
Evaluate Eq. (9) to w, obtaining a new eV 2;

else
β = ε2, ε2 = ε1, eV 2 = eV 1
ε1 = α + (β − α) ∗ 0, 382
It is effected according to optimization Eq. (7) for ε = ε1, obtaining a eficient
solution w;
Evaluate Eq. (9) to w, obtaining a new eV 1;

end if

With this proposal, a reduced number of solution is generated and the distance be-
tween the efficient solution is not more uniform. After the generation of the efficient
solution, comes the decision process already described in subsection 2.2.

The next step, the method with golden section (MOBJgs) is compared with the orig-
inal method (MOBJ) in different learning tasks.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

294 R.A. Teixeira et al.

4 Classification and Regression Problems

In this section, the original and gold section methods were applied to the classification
and regression problems. The objective of this section is to verify the computational
cost of each method and to compare the generalization capability of these solution.

4.1 Classification Problem

In this simulation, a classification problem of two classes is boarded, whose patterns
had been random sampled in two normal distributions with two variables being that,
the first class is centered in the point (2, 2) and second in the point (4, 4). Both classes
present variances equal to 0.82. Each class is constituted by 100 patterns being 60 for
training and 40 for the validation. Neural Network with architecture 2 × 50 × 1 and
activation functions fa(·) = tanh(·) for hidden and output neurons.

For the training by MOBJ algorithm, the following parameters had been specified:
δε = 0.5 and ζ = 30. For the MOBJgs algorithm, only the upper bound of norm was
specified, being β = 15. The Figure 1 illustrate the obtained solutions for the methods.

−1 0 1 2 3 4 5 6
0

1

2

3

4

5

6

MOBJ
MOBJ GS

x1

x
2

Class 1
Class 2

Fig. 1. Decision Frontiers obtained by MOBJ method with and without Golden Section

The Figure 2 shows the efficient solution generated by each method. One notices
that MOBJ solution is linearly spaced and the MOBJgs solution (with golden section)
is inferior and has concentrated number next to the final solution. The Figure 3 shows
a zoom of the region of concentration of the MOBJgs solution which are next to final
solution MOBJ.

4.2 Regression Problem

In this section, a regression problem is solved with NN of architecture 1-50-1 and acti-
vation functions fa(·) = tanh(·) and linear for, respectively, hidden and output layers.
The training and validation sets used in each case are constituted of 80 samples made

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Usage of Golden Section in Calculating the Efficient Solution 295

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

‖
w
‖

MSE

MOBJ Solutions
MOBJ GS Solutions
Best MOBJ Solution
Best MOBJ GS Solution
Minimal Norm Solution

Fig. 2. Pareto set obtained by MOBJ method with and without Golden Section

0.118 0.12 0.122 0.124 0.126 0.128 0.13

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

‖
w
‖

MSE

MOBJ Solutions
MOBJ GS Solutions
Best MOBJ Solution
Best MOBJ GS Solution
Minimal Norm Solution

Fig. 3. Zoom in the region of concentration of the MOBJgs solutions

on the underlying function given by the Eq. (12) and to these samples were added a
noise term normally distributed with mean zero and variance σ2 = 0.152.

f(x) = 4.26(e−x − 4e−2x + 3e−3x) + ξ; (12)

The Figure 4 illustrates the solutions for the methods MOBJ and MOBJgs. The Fig-
ure 5 illustrates the efficient solution generated by the methods. The Figure 6 brings a
magnifying part of the concentration region of the MOBJgs solution. It is noticed the
proximity of the final solution generated by the methods.

5 Discussions

Considers the training and validation sets previously used in Section 4.1, referring to
the classification problem. Comparing the algorithms, 05 tests for each user, parameters
set and the length of time taken to obtain the solution, calculated the processing time,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

296 R.A. Teixeira et al.

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

x

MOBJ Solution
MOBJ GS Solution
Training Set
Real Function

Fig. 4. Solution obtained by MOBJ method with and without Golden Section

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

5

10

15

‖
w
‖

MSE

MOBJ Solutions

MOBJ GS Solutions
Best MOBJ Solution

Best MOBJ GS Solution
Minimal Norm Solution

Fig. 5. Pareto set obtained by MOBJ method with and without Golden Section

the shunting line standard of this time σt, the Error in relation to a test set with 500
patterns and the shunting line standard of the error σe. The Table 1 show results for
MOBJ algorithm. One notices that in each in case, the solution of the greater norm
presents this equal value δε × ζ.

With the shown results above it can be verified, as he expected it was , that the
training time increases with the number of solution ζ gotten and also with the distance
between the norms δε. This justifies the fact that the generation of 20 solution with
increment of equal norm the 1 (maximum norm=20) to be faster than the generation of
30 solution by increasing the equal norm to 0.5 (maximum norm=15).

The Table 2 show results for MOBJgs algorithm, whose parameter has limited norm
β must be informed. One notices that in each in case, this value was equal to the fact
δε × ζ to facilitate the comparison with the original method. It can be noticed in the
Table 2 that the number of solution N generated for the method was always around
12, which decreases the training time for the method with golden section. However, for
higher values of β, the time increases in relation to the smallest values of β for the same

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Usage of Golden Section in Calculating the Efficient Solution 297

0.0172 0.0174 0.0176 0.0178 0.018 0.0182

4.5

5

5.5

6

6.5

‖
w
‖

MSE

MOBJ Solutions

MOBJ GS Solutions
Best MOBJ Solution

Best MOBJ GS Solution
Minimal Norm Solution

Fig. 6. Zoom in the region of concentration of the MOBJgs solution

Table 1. Simulation for MOBJ algorithm without golden section

δε ζ Tm σT Error σE

0,5 10 7.5842 0.1931 4.70 0.1871
1,0 10 18.8624 0.1266 5.10 0.2000
0,5 30 59.3906 1.0710 4.66 0.1517
1,0 15 42.0690 0.8642 4.92 0.0837
0,5 40 107.6530 4.6660 4.82 0.3701
1,0 20 68.4126 6.4909 5.12 0.2168

Table 2. Simulation for MOBJ algorithm with golden section

β N Tm σT Error σE

5 10 9.0816 1.0529 4.48 0.2049
10 11 26.7938 2.9598 4.70 0.1225
15 12 35.6750 1.3244 4.58 0.2387
15 12 35.7096 4.2527 4.64 0.1673
20 13 46.0844 4.6654 4.56 0.2074
20 13 50.5968 6.8982 4.62 0.1924

method, due to the interval being bigger. One also notices in the two tables that the test
errors are close, which shows the efficiency in attaining solution of high generalization
capability of both methods.

The MOBJ algorithm with golden section was capable to generate final solution with
norms close to the generated ones for the original algorithm. This comparison can be
made observing the Figure 2 for the classification problem and the Figure 5 for the
regression problem.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

298 R.A. Teixeira et al.

6 Conclusions

– Reduction of the training time of NN with high generalization capability:
In the original method, the user must inform the number ζ of solution to be gen-
erated and in the modified method, this number is automatically determined gener-
ally, is less than the one adjusted by the user. The training time increases on increase
in the number of solution to be generated. Therefore, few solution imply reduced
time to get them.

– Reduction for a parameter user only, in relation to MOBJ method, originally con-
sidered with two parameters:
In the original method, the user must inform the number ζ of solution to be gener-
ated and the difference δε of norm between them. For the MOBJgs method, only the
limit β of norm for the solution must be informed, which eliminates the necessity
of having to adjust the two parameters. As can be seen in the Table 2, the quality
of the final solution regarding its generalization capability is a little sensible to the
value of β, which demonstrates the robustness of the algorithm in relation to this
parameter.

It stands out in the method MOBJgs, the solution quality generated in relation to the
statistics representation of the validation set. One notices that the attainment of ε in the
optimization process makes use of this set and these values are guided by the point of
the minimum function given for the Eq. (9). This does not occur in the original MOBJ
algorithm, where the validation set is used only in the decision phase, not intervening
in the solution generation process, which only depends on the training set.

References

1. Geman, S., Bienenstock, E., Doursat, R.: Neural networks and bias/variance dilemma. Neural
Computing 4(1), 1–58 (1992)

2. Hinton, G.E.: Deterministic boltzmann machine learning performs steepest descent in weight-
space. Neural Computation 1, 143–150 (1989)

3. Girosi, F., Jones, M., Poggio, T.: Regularization theory and neural networks architectures.
Neural Computation 7(2), 219–269 (1995)

4. Teixeira, R.A., Braga, A.P., Saldanha, R.R., Takahashi, R.H.C.: Improving generalization of
mlps with multi-objective optimization. Neurocomputing 35(1-4), 189–194 (2000)

5. Chankong, V., Haimes, Y.Y.: Multiobjective Decision Making: Theory and Methodoly, vol. 8.
Elsevier, Horth-Holland (1983)

6. Shor, N.Z.: Cut-off method with space extension in convex programming problems. Cyber-
netics 12, 94–96 (1977)

7. Teixeira, R A.: Treinamento de Redes Neurais Artificiais Atravs de Otimizao Multi-Objetivo:
Uma Nova Abordagem para o Equilbrio entre a Polarizao e a Varincia. PhD thesis, Escola de
Engenharia da UFMG, Agosto (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 299–308, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Designing Modular Artificial Neural Network
Through Evolution

Eva Volna

Faculty of Science, University of Ostrava, 30th dubna st. 22, 70103 Ostrava 1,
Czech Republic

eva.volna@osu.cz

Abstract. The purpose of this article is to make a contribution to the study of
modular structure of neural nets, in particular to describe a method of automatic
neural net modularization. The problem specific modularizations of the
representation emerge through the iterations of the evolutionary algorithm
directly with the problem. We used the probability vector to construct n – bit
vectors, which represented individuals in the population (in our approach they
describe an architecture of a neural network). All individuals in every
generation are pseudorandomly generated from the probability vector that is
associated with this generation. The probability vector is updated on the basis of
best individuals in a population, so that next generations are getting
progressively closer to best solutions. The process is repeated until the
probability vector entries are close to zero or to one. The resulting probability
vector then determines an optimal solution of the given optimization task.

Keywords: Adaptation, modular neural network architecture, probability
vector, evolutionary algorithms.

1 Introduction

The presented method is a method of automatic neural net modularization. The
method is based on principles of evolutionary algorithms and builds a modular
architecture of the neural network. The problem specific modularizations of the
representation emerge through the iteration of the evolutionary algorithm directly
with the problem. The method is based on the article [5] and uses a population of
chromosomes and there is an evolution of the probability vector on the basis of the
best evaluated individuals in this algorithm, which are selected on the ground of the
speed and quality of learning of the given tasks. New individuals in the next
generation are generated from the updating probability vector. The best individual is
included to the next generation automatically. The termination condition is depended
on the saturation parameter. The modular network for a given task emerges as a
winning architecture, since it has only a small interference between modules, which
otherwise inhibits the convergence to a good solution.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

300 E. Volna

2 Evolutionary Algorithm with Hill – Climbing

Population P consists of p individuals: P = {α1, α2,...,αp}, where p is a cardinality
of a population, e.g. p is equal to a number of chromosomes in P. Every individual
in a population represents one (multilayer) neural network with one hidden layer of
units and it is described by its chromosome, which is a binary vector with a constant
length:

αi = (e11, ..., e1n, ..., em1, ..., emn)i ∈{0,1}mn, (i=1,...p), (1)

where

There is every chromosome randomly generated with probability 0.5 in the initial

population. Chromosome of the individual (e.g the neural network architecture with m
hidden units a n output units) is shown in Fig. 1, where eij = 0, if the connection
between the i-th hidden unit and the j-th output unit doesn’t exist and eij = 1, if one
exists (i = 1,…,m; j = 1,…n). Connections between input and hidden units are not
included in the chromosomes, because they are not necessary for a creation of
modular network architecture.

Population P:

individual: α1 ... individual: αk ... individual: αp

indiviual αk:

e11, …e1n, ... em1, …emn

Fig. 1. A population of individuals

Every individual (e.g. its neural architecture) is then partially adapted by
backpropagation [2] and evaluated on basis of its adaptation. There is number of
epochs a very important criterion in the described method, because modular
architectures start to learn faster than single connectionist networks with the same
architecture of units [3]. Our goal is a composing such neural network architecture
that is able to learn a given problem in the best quality and fast.

Our task is to look for such mn – bit vector αopt∈{0,1}mn over the domain
(e.g. a search space S = {0,1}mn) that corresponds to a global minimum of the function

f ({ } Rf mn →1,0:). An objective function f assigns to mn – bit vector

α = (e11, ..., emn) a real number E ∈ R (E is error after a partial adaptation of
backpropagation):

m is a number of hidden units;
n is a number of output units;
eij = 0, if a connection between the i-th hidden unit and j-th

output unit does not exist;
eij = 1, if a connection between the i-th hidden unit and j-th

output unit exists.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Designing Modular Artificial Neural Network Through Evolution 301

{ }
()αα

α
opt f

mn1,0
minarg
∈

= .
(2)

Function f „represents“ a background, where chromosomes (= individuals) exist.
A successfulness rate of each individual is its function value. We look for a minimum
of the object function, because chromosome is more successful, when this function
value is smaller. Because of it we define a fitness evaluation (F) of population
P ⊆ {0,1}mn with p chromosomes (R+ represents positive real numbers)

+→ RPF : that qualifies the following:

() () () () .0: ≥≥⇒≤∈∀ 212121 ααααα,α FFffP (3)

A backpropagation error is a fitness function parameter. A fitness function value of
the i-th individual Fi is calculated as follows:

con

f
F

con

k
ik

i

∑
== 1

(4)

where

Constanta con guarantees that a fitness value Fi is calculated from the statistical
significant number of partial network adaptations, therefore one should be adequately
great value [4].

There are not crossover and mutation operators used in the described method, this
algorithm looks like hillclimbing algorithms [5]. This algorithm is based on the
probability vector emergency. The probability vector is updated on the basis of well-
evaluated individuals in the population. Entries 0 ≤ wij ≤ 1 of the probability vector

w = (w11,…, w1n,..., wm1,..., wmn) ∈ [0,1]mn , (5)

(m is a number of hidden units; n is a number of output units) determine probabilities
of appearance of ‘1‘ entries in given positions. A solution R of the optimization
problem can be expressed by respect to the evolution of a probabilistic vector
w ∈ [0,1]mn as follows: R: [0,1]mn → {0,1}mn

. The solution has a limit as t → ∞ :

()⎟
⎠
⎞⎜

⎝
⎛==

∈∞→
ααw

αoptopt f
tPt

minarglim , (6)

where Pt is a population of individuals αi (i = 1, ..., p) in the time t.
If the probability vector entries are close either to zero or to one, then this resulting

probability vector w ∈ [0,1]mn determines an binary vector α ∈{0,1}mn and we can

i = 1, …, p, p is number of individuals in a population;

ik
ik E

f
1= is a fitness value of the i-th individual

in the k-th adaptation;
k = 1, …, con, con is a define natural constant, con>1;

ikE is the backpropagation error of the i-th individual
in the k-th adaptation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

302 E. Volna

write: w‘ ← w + λ (α - w) , e.g. the new probability vector w‘ is near upon the best
solution α.

Entries of the probability vector are calculated in every next generation as follows:

1. We calculate Favg , e.g the average fitness value of the population in the given
generation:

,1

p

F
F

p

i
i

avg

∑
== (7)

where

2. We choose a set of q individuals with Fi ≥ Favg , e.g. α1, α2, …, αq (1 ≤ q≤ p),
where p is a number of individual in the population.

3. Entries of the probability vector of the population in the given w’k ∈ [0,1] are
calculated as follows:

() kkk www ′′+−=′ λλ1 (8)

where

()

q

e
w

q

i
ik

k

∑
==′′ 1 (9)

If the best solution α is in time t → ∞, e.g. αw =
∞→t

lim , then we can write

w‘ ← (1 -λ) w + λ α , which is after edits: w‘ ← w + λ (α - w) . The best individual
in the population is included to the next population automatically. Values of the
chromosomes of the rest of individuals αi (i = 2, …,p) are calculated for the next
generation as follows: for instance if wk = 0(1), then (ek)i = 0(1); for 0 < wk < 1 the
corresponding (ek)i is determined randomly by

p is a number of individual in the population;
Fi is a fitness function value of the i-th individual,

see (4).

k = 1, …, mn mn is a number of the probability vector w entries;
λ is a constant (0 < λ< 1);
wk is a value of the k-th entry of the probability vector

in the last generation.

kw ′′ is a value of the k-th bit of the probability vector w
that is calculated as follows:

 where (ek)i is a value of the k-th bit of the
chromosome of the individual αi (i = 1, ...,q) and it
is true Fi ≥ Favg for these individuals.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Designing Modular Artificial Neural Network Through Evolution 303

()
⎩
⎨
⎧ <

=
otherwise0

i1 k
ik

wrandomf
e (10)

where random is a random number with uniform distribution from the interval [0, 1).
The process of the evolutionary algorithm is ended, if the saturation parameter

τ(w)1 is greater then defined value.

3 An Outline of the Convergence Manner of the Method

The differential equation (8) determines an evolution time of the probability vector.
Its structure is relatively simple and therefore it is possible to derive from its solutions
general properties that are independent on the type of optimized objective functions.
First, we introduce some simplifications of (8). Let us postulate that only one best
solution is recorded, e.g. the saturation parameter τ(w) is greater than define value and
the population P = {α1, ..., αp} consists from almost identical individuals. Then the
components of the probability vector w = (w1, ..., wk, ..., wmn) can be expressed as
following:

()
() ()

()ik

q

i
ik

q

i
ik

kk e
q

e

q

e
ww ~1 11

∑∑
== ∧+−← λλ (11)

where αI = (e1, ..., ek, ..., emn)i ∈ P; and after modification: w ← w + λ (α - w) ∧
α1 ~ α2 ~ ... ~ αq = α.. We get a difference scheme of updating of the probability
vector initiated at t = 0 by w(0) = (1/2, ..., 1/2). The time derivation of the probability
vector w(t) can be expressed this way [5]

t

w
w

∂
∂=′ . (12)

The initial condition is w(0) = (1/2,...,1/2). Let more at time t is

w = (w1, ..., wk, ..., wmn), and
()

q

e
w

q

i
ik

k

∑
== 1 is the average value of the best q

individuals αi = (e1, ..., ek, ...,emn)i in the population P = {α1, ..., αp} and it is true
Fi ≥ Favg (i = 1, ...,q ≤ p), where Favg is calculated by the formula (7) a Fi by the
formula (4).

The differential equation (12) determines the time of evolution probability vector w
starting from t = 0. Since entries of w are not mutually coupled, it can be solved
independently for each entry wi. Therefore, without loss of generality, we shall
postulate mn = 1 (mn is a number of the probability vector w entries), that is

1 τ(w) = a number of entries (wi) of the probability vector w that are less than or equals weff ;

greater than or equals (1- weff), where weff is a small positive number.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

304 E. Volna

differential equation (12) corresponds to single unknown variable w = w(t) specified
by the initial condition w(0) = 1/2. Let us assume that α is a constant, then we can
solve the differential equation (12) as follows:

(13)

For α = 0(1) we get two different solutions [5]:

()

() t

t

etw

etw

λ

λ

−

−

−=

=

2

1
1

2

1

1

0
 (14)

Both of solutions satisfy the same initial condition w(0) = 1/2, but asymptotically

they are different, while the solution w0(t) converges to zero (e.g. () 0lim 0 =
∞→

tw
t

),

the second solution w1(t) converges to one (e.g. () 1lim 1 =
∞→

tw
t

), so

() .lim αα =
∞→

tw
t

 The assumption that vector α is kept constant in the course of

the whole evolution of system is very restrictive, it does not correspond to real
situations, at best it may be satisfied only for some of its entries starting from some
time t0.

Therefore, we turn our attention to the forthcoming more complex situation when
the assumption of the constant character is not use. Let us solve the differential
equation (12) as follows:

()()

()
()()
()

()() ()()
()() ()()
() ()() ()()
() ()() ()

() t

t

twt

t

etw

wwetw

weetw

wttw

twtw

etw

ttw

tw
dt

dw

tw
dt

dw

λ

λ

λαλ

λ

αα

αα

αα
αλα

λαα
α

λα

λ
α

αλ

−

−

−−+−

−

⎟
⎠
⎞

⎜
⎝
⎛ −+=

=∧+−=

−==−
−+−=−

−=−−−
=−

−=−

=
−

−=

2

1
2

1
00

0

0lnln

0lnln

ln

0ln

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Designing Modular Artificial Neural Network Through Evolution 305

(15)

We used a mean-value theorem of integral calculus [7] during solution (15):

() () () dxxgfdxxgxf
b

a

b

a

a

a
∫∫ = (16)

where
a

a
f is the mean value of function f on the interval [a, b]:

()∫−
=

b

a

a

a
dxxf

ab
f .

1

Two different types of transformation are used. Therefore, we get two different

solutions of () () ττλαλ λτλλ deeetw
t

tt ∫−− +=
02

1
 [5]:

• The first type (denoted by A) of transformation is achieved straightforwardly by

applying the mean-value theorem, we get () ()ttt
A eetw λλ α −− −+= 1

2

1
0

, and

t

0
α denotes mean value α on the time interval [0, t], where 0 ≤ t ≤ t0. The

solution randomly changes its values on the time interval [0, t0] by the formula

q

e
w

q

i
i∑

== 1 , where ei is a value of positions in the i-th chromosome for given

(independent) entry of the probability vector w (1 ≤ i ≤ q ≤ p), q is number of best

() ()()

() ()

() ()

()() ()

() () ()

() () () ()

() () ττλαλ

ττλα

ττλα

λα

αλλ

λαλ

αλ

λτλλ

λτλ

λτλ

λ
λ

λλλ

deeetw

wdewetw

dewetw

et
dt

etwd

ettwee
dt

dw

ttw
dt

dw

twt
dt

dw

t
tt

t
t

t
t

t
t

ttt

∫

∫

∫

−−

−

+=

=∧⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

=−⋅

=⋅

=⋅+

=+

−=

0

0

0

2

1

2

1
00

0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

306 E. Volna

individuals in the population P, and it is true Fi ≥ Favg i = 1, ...,q ≤ p), where
Favg is calculated by the formula (7) a Fi by the formula (4).

• The second type (denoted by B) of transformation can be derived for the time t

greater or equal to the time t0, t ≥ t0, and we get the following solution:

() () ()()0

0

00 11
2

1
0

tttt

t

tttt
B eeeeetw −−−−−− ++−+= λλλλλ αα , where

t

t0
α

is the mean value of α on the time interval [t0, t], and the solution is determined

for 0tt ≥∀ .

These two different forms of the general solution have the same functional value

for t = t0, wA(t0) = wB(t0). Time evolution of the probability vector w(t) is fully

determined by the mean value 0

0

tα and
t

t0
α , and moreover its asymptotic

properties are determined by the existence or nonexistence of
∞

0t
α ,

e.g. () ∞

∞→∞→
=

00
~limlim

t

t

tt
B

t
tw αα . If the entity does not exist, then the

probability w(t) asymptotically manifests chaotic oscillations.

4 Experiments

The illustrative calculations are presented for two tasks: (1) the shift detection task,
and (2) the rotation problem. The method produced a good separation of models in
neural network but not only for the presented tasks.

In the shift detection task, a system is shown a binary pattern and the same pattern
shifted one bit to the left or right. The system must detect (a) the pattern, and (b) the
direction of the shift. The model is a feed-forward network with nine input nodes,
nine hidden nodes, and seven output nodes. Nine input nodes are organized into 3x3
matrix, and patterns are represented by selectively activating specific input nodes.
Four shapes are formed by activating different combinations of input nodes. These
shapes are defined as different combinations of cells within grid that is for each shape
shifted one bit to left or right. If the input layer is considered to be a one dimensional
retina, then the shapes are nine bits long and the first and last bits concur. Thus, there
were twelve different combinations of shape and its shift directions, and each
combination is represented by a binary pattern. The seven output nodes are divided
into two subsets of four and three nodes. Nodes in the “shape” subset are responsible
for indicating the identity of the input. Each input is associated with one of the four
“shape” nodes, and one of the three directions: (a) to left, (b) without shift, (c) to
right. The system is considered to correctly recognize and locate an input.

The second model is also a feed-forward network with nine input nodes that are
organized into 3x3 matrix, nine hidden nodes, and eight output nodes. Four shapes are
also formed by activating different combinations of cells within grid that is for each
shape rotated 0°, 90°, 180°, or 270°. Thus, there were sixteen different combinations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Designing Modular Artificial Neural Network Through Evolution 307

of shape and their rotations, where each combination is represented by a binary
pattern. The eight output nodes are divided into two subsets of fours nodes. Nodes in
the “shape” subset are responsible for indicating the identity of the input. Each input
is associated with one of the four “shape” nodes, and one of the four rotations: (a) 0°,
(b) 90°, (c) 180°, (d) 270°. The system is considered to correctly recognize and locate
an input.

Parameters of the experimental part are the following: number of individuals is
100; partial training if backpropagation are 150 epochs; learning rate is 1; momentum
is 0; con from the formula (4) is 100, λ from the formula (8) is 0.2; the saturation
parameter τ(w) = 0.99.

The evolution of the best individuals in the population is shown in Tab. I, from
which is evidently seen, the emergence of modularity of the best individual from the
population during a calculation. These results support also the fact that the system
was created dynamically during a learning process. Calculation was terminated in the
moment, when a saturation parameter was greater than the defined value, e.g. for this
particular task was calculation terminated in the 498-th generation (the shift detection
task) and in the 353-th generation (the rotation problem), see Table 1. Other
numerical simulations give similar results.

Table 1. Number of modules during calculation

 the shift detection task the rotation problem

generation
number of
modules

solving the
problem
„shape“

number of
modules

solving the
problem
„shift“

number of
interferences

between
modules

number of
modules

solving the
problem
„shape“

number of
modules

solving the
problem

„rotation“

number of
interferences

between
modules

1 1 1 12 0 0 13
100 3 4 7 1 3 9
200 4 2 8 4 3 6
300 4 3 7 6 3 4
400 5 4 5 generation: 353

 generation: 498 7 4 2
 6 4 4

5 Conclusion

Both the theoretical discussion and numerical simulation reflect the modular structure
significance as a tool of a negative influence interference rejection on neural network
adaptation. As the hidden units in the unsplit network are perceived as some input
information processing (e.g. from a retina) for output units, where a multiple pattern
classification is realized on the basis of diametrically distinct criteria (e.g. neural
network has to classify patterns according to their form, location, colors, ...), so in the
beginning of an adaptation process the interference can be the reason that output units
also get further information about an object classification than the one which is
desired from them. This negative interference influence on running the adaptive
process is removed just at the modular neural network architecture, which is proved
also by results of the performed experiment. The winning modular network

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

308 E. Volna

architecture was the product of emergence using evolutional algorithms. The neural
network serves here as a special way of solving the evolutional algorithm, because of
its structure and properties it can be slightly transformed into an individual in
evolutionary algorithm.

The method is like a mix between a genetic algorithm [6] and a hill-climbing with
learning [5]. The method uses a population of chromosomes (genetic algorithm), but
there is an evolution of this population (genetic algorithm) and the probability vector
too (hill-climbing with learning) on the basis of the best evaluated individuals
(genetic algorithm) in this algorithm. New individuals in the next generation are
generated from the updating probability vector. The best individual is included to the
next generation automatically (elitism in genetic algorithm). The ending condition is
depends on the saturation parameter (hill-climbing with learning).

Acknowledgements

This work was supported by internal grant of the Faculty of Science of the University
of Ostrava 31/1079.

References

1. Volna, E.: Neural structure as a modular developmental system. In: Sinčák, P., Vaščák, J.,
Kvasnička, V., Pospíchal, J. (eds.) Intelligent technologies – theory and applications, pp.
55–60. IOS Press, Amsterdam (2002)

2. Fausett, L.V.: Fundamentals of neural networks. Prentice-Hall, Inc., Englewood Cliffs, New
Jersey (1994)

3. Rueckl, J.G.: Why are “What” and “Where” processed by separate cortical visual systems?
A computational investigation. Journal of Cognitive Neuroscience 2, 171–186 (1989)

4. Anděl, J.: Matematická statistika. I. vydání. SNTL Praha (in Czech) (1978)
5. Kvasnička, V., Pelikán, M., Pospíchal, J.: Hill climbing with learning (an abstraction of

genetic algorithm). Neural network world 5, 773–796 (1996)
6. Goldberg, D.E.: Genetic algorithm in search optimalization and machine learning. Addison-

Wesley, Reading, Massachusets (1989)
7. Rektorys, K.: Přehled užité matematiky. SNTL Praha (in Czech) (1981)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Averaged Conservative Boosting: Introducing a New
Method to Build Ensembles of Neural Networks

Joaquı́n Torres-Sospedra, Carlos Hernández-Espinosa,
and Mercedes Fernández-Redondo

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{jtorres, espinosa, redondo}@icc.uji.es

Abstract. In this paper, a new algorithm called Averaged Conservative Boost-
ing (ACB) is presented to build ensembles of neural networks. In ACB we mix
the improvements that Averaged Boosting (Aveboost) and Conservative Boost-
ing (Conserboost) made to Adaptive Boosting (Adaboost). In the algorithm we
propose we have applied the conservative equation used in Conserboost along
with the averaged procedure used in Aveboost in order to update the sampling
distribution used in the training of Adaboost. We have tested the methods with
seven databases from the UCI repository. The results show that the best results
are provided by our method, Averaged Conservative Boosting.

1 Introduction

One technique commonly used to create a classification system based on artificial neu-
ral networks (ANN) consists on training different networks and combine their output
vectors in a suitable manner. This procedure, known as ensemble of neural networks,
increases the generalization capability [1] and [2]. Figure 1 shows a basic ensemble of
neural networks diagram.

combination module

x x x

y1(x)

x={x
1
,x

2
, ... ,x

n
}

h(x)

y2(x) yk(x)

Fig. 1. Basic Ensemble Diagram

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 309–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

310 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Adaptive Boosting (Adaboost) is one of the best performing methods to create an
ensemble of neural networks [3]. Adaboost is a method that constructs a sequence of
networks which overfits the training set used to train a neural network with hard to
learn patterns. A sampling distribution is used to select the patterns we use to train
the network. After training a network the values of the sampling distribution are up-
dated. The probability of selecting a pattern increases if the network that has been
trained does not classify correctly the pattern whereas the probability is decreased if
the pattern is correctly classified. We can see a Adaboost basic training diagram in
figure 2.

T1

D2

T2

D3

TnDn

Tn

Fig. 2. Adaboost training basic diagram

Adaboost has been deeply studied and successfully improved by authors like
Breiman [4], Kuncheva [5] or Oza [6]. Better ensembles have been built by modifying
the equation used to update the sampling distribution or by adding new constraints to
the original algorithm. Oza proposed an averaged version of Adaboost called Averaged
Boosting (Aveboost) in [6]. This version applied an averaged equation which depends
on the equation used in Adaboost, on the distribution values of the previous network
and on the number of networks that have been trained. Kuncheva proposed a relaxed
version of Adaboost called Conservative Boosting (Conserboost) [5]. In addition, this
method allows the reinitialitation of the Sampling Distribution when a constraint is not
reached. Although these variants of boosting performed better than Adaboost in general,
the results depended on the database and on the ensemble size.

We propose a method called Averaged Conservative Boosting (ACB) which mixes
Aveboost [6] and Conserboost [5] in order to get a more robust boosting method. We
introduce a version of Adaboost in which the sampling distribution is updated mixing
the averaged equation of Aveboost and the relaxed equation of Conserboost. For this
reason, we have built ensembles of 3, 9, 20 and 40 multilayer feedforward (MF) net-
works on seven databases from the UCI repository to test the performance of (ACB).
The methods are described in 2 whereas the experimental setup and results are in sub-
section 3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Averaged Conservative Boosting 311

2 Theory

In this section we briefly review Adaptive Boosting, Averaged Boosting and Conserva-
tive Boosting. Finally we describe the Averaged Conservative Boosting algorithm.

2.1 Adaboost Review

In Adaboost, the successive networks are trained with a training data set T ′ selected at
random from the original training data set T , the probability of selecting a pattern from
T is given by the sampling distribution associated to the network distnet. The sampling
distribution associated to a network is calculated when the previous network learning
process has finished. Adaboost is described in algorithm 1.

Algorithm 1. AdaBoost {T , V , k}
Initialize Sampling Distribution Dist:

Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
1 if hnet(xx) �= d(xx) x is incorrecly classified
0 otherwise x is correcly classified

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

Update sampling distribution:

Distnet+1
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

end for

Adaboost uses a specific method to combine the output provided by the networks of
the ensemble. This combination method is described in equation 1 (boosting combiner).

h(x) = arg max
c=1,...,classes

k∑

net:hnet(x)=c

log
1 − εnet

εnet
(1)

2.2 Averaged Boosting and Conservative Boosting

Oza proposed in [6] Averaged Boosting (Aveboost). Aveboost is a method based on
Adaboost in which the sampling distribution related to a neural network is based on
the sampling distribution of the previous network, on the equation used to update the
distribution on Adaboost and on the number of networks previously trained.

Conservative Boosting (Conserboost), the method proposed by Kuncheva [5], uses a
softer equation to update the sampling distribution in which the value of the sampling

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

312 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

distribution is only updated for the missclassified patterns. In addition, this method
allows the reinitialization of the sampling distribution.

The step related to update the sampling distribution is described in algorithm 2 for
the case of Aveboost whereas 3 shows it for the case of Conserboost.

Algorithm 2. Aveboost {T , V , k}
...
Update sampling distribution:

Cnet
x = Distnet

x ·
�

1
(2εnet)

if missnet
x

1
2(1−εnet)

otherwise

Distnet+1
x =

t·Distnet
x +Cnet

x
t+1

...

Algorithm 3. Conserboost {T , V , k}
...
Update sampling distribution:
if εnet ≥ 0.5 then

Reinitialize the sampling distribution:
Distnet

x = 1/m ∀x ∈ T
end if
Calculate the β coefficient:

βnet =
�

1−εnet
εnet

Update the sampling distribution:

Distnet+1
x = Distnet

x · (βnet)
missnet

x

Normalize the sampling distribution�Npat
x=1 Distnet+1

x = 1
...

2.3 The ACB Algorithm

The new algorithm proposed, Averaged Conservative Boosting (ACB), is based on
Adaptive Boosting, on Averaged Boosting and on Conservative Boosting. Since we have
got good results with Aveboost and Conserboost separately, we have mixed them in or-
der to get a robuster method. We have build an averaged equation to update the sampling
distribution based on the relaxed equation of Conserboost. Moreover we have allowed
the reinitialitation of the sampling distribution.

To construct an ensemble with the ACB algorithm we have used the algorithm de-
scribed in algorithm 4.

As we can see in algorithm 4, we have mixed the equation to update the sampling dis-
tribution of Aveboost with the equation of Conserboost. In each iteration, the sampling
distribution is increased for the missclassified patterns with the averaged conservative
equation whereas the probability value is kept for the correctly classified patterns. More-
over, we can also see that the sampling distribution is reinitialized when εnet ≥ 0.5 so

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Averaged Conservative Boosting 313

Algorithm 4. ACB {T , V , k}
Initialize Sampling Distribution Dist:

Dist1x = 1/m ∀x ∈ T
for net = 1 to k do

Create T
′

sampling from T using Distnet

MF Network Training T ′ , V
Calculate missclassified vector:

missnet
x =

�
1 if hnet(xx) �= d(xx)
0 otherwise

Calculate error:
εnet =

�m
x=1 Distnet

x · missnet
x

if εnet ≥ 0.5 then
Reinitialize the sampling distribution:

Distnet
x = 1/m ∀x ∈ T

end if
Calculate the β coefficient:

βnet =
�

1−εnet
εnet

Update the sampling distribution:

Cnet
x = Distnet

x · (βnet)
missnet

x

Distnet+1
x =

t·Distnet
x +Cnet

x
t+1

Normalize the sampling distribution�Npat
x=1 Distnet+1

x = 1
end for

the distribution is not overfitted with hard to learn patterns. Then, the sampling dis-
tribution is updated with the averaged conservative equation we propose in this paper.
Finally, the sampling distribution is normalized to get a [0..1]-ranged probability distri-
bution.

In our experiments we have used the Boosting combiner (1) and the Average Com-
biner (2) to combine the networks of the ensembles generated by the Averaged Conser-
vative Boosting algorithm.

h = argmax
class=1...Nclasses

{ȳclass} (2)

where,

ȳ =
1
k

k∑

net=1

ynet
class (3)

3 Experimental Testing

In this section, we firtsly describe the experimental setup and the datasets we have used
in our experiments. Then, we show the results we have obtained with all the boost-
ing methods previously described on the different datasets. Finally, we compare these
results in order to get the best performing method.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

314 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

In our experiments we have trained ensembles of 3, 9, 20 and 40 MF networks with
Adaptive Boosting, Averaged Boosting, Conservative Boosting and Averaged Conser-
vative Boosting on the seven problems described in subsection 3.1 using the training
parameters described in table 1.

Moreover, we have generated 10 different partitions of data at random in training,
validation and test sets and repeat the whole learning process 10 times. With this proce-
dure we can obtain a mean performance of the ensemble for each database and an error
in the performance calculated by standard error theory.

3.1 Datasets

We have used seven different classification problems from the UCI repository of ma-
chine learning databases [7] to test the performance of the methods. The seven
databases we have used are: Balance Scale Database (bala), Australian Credit Approval
(cred), Ecoli Database (ecoli), Solar Flare Databases (flare), Heart Disease Databases
(hear), Haberman’s Survival Data (survi) and Wisconsin Breast Cancer Database
(wdbc).

The seven databases we have selected for our experiments are commonly used in the
bibliography.

Table 1 shows the MF training parameters (number of hidden units, maximum num-
ber of iterations, the adaptation step and the momentum rate) used in our experiments
along with the results we obtained with a single Multilayer Feedforward network. These
parameters has been set after carrying out a trial and error procedure in which we have
tested some configurations of the MF network on the validation set.

Table 1. MF training parameters

Database Hidden Nodes Iterations Step Momentum Performance
bala 20 5000 0.1 0.05 87.6 ± 0.6
cred 15 8500 0.1 0.05 85.6 ± 0.5
ecoli 5 10000 0.1 0.05 84.4 ± 0.7
flare 11 10000 0.6 0.05 82.1 ± 0.3
hear 2 5000 0.1 0.05 82.0 ± 0.9
survi 9 20000 0.1 0.2 74.2 ± 0.8
wdbc 6 4000 0.1 0.05 97.4 ± 0.3

3.2 Results

In this subsection we present the results we have obtained with the ensembles of MF
networks trained with the boosting methods described in Section 2. In the case of ACB
we have applied two different combiners: the Average combiner and the Boosting com-
biner. Table 2-6 show the results we have obtained with ensembles of 3, 9, 20 and 40
networks trained with Adaboost, Aveboost, Conserboost and ACB respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Averaged Conservative Boosting 315

Table 2. Adaptive Boosting results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 94.5 ± 0.8 95.3 ± 0.5 96.1 ± 0.4 95.7 ± 0.5
cred 84.9 ± 1.4 84.2 ± 0.9 84.5 ± 0.8 85.1 ± 0.9
ecoli 85.9 ± 1.2 84.7 ± 1.4 86 ± 1.3 85.7 ± 1.4
flare 81.7 ± 0.6 81.1 ± 0.7 81.1 ± 0.8 81.1 ± 0.7
hear 80.5 ± 1.8 81.2 ± 1.4 82 ± 1.9 82.2 ± 1.8
survi 75.4 ± 1.6 74.3 ± 1.4 74.3 ± 1.5 73 ± 2
wdbc 95.7 ± 0.6 95.7 ± 0.7 96.3 ± 0.5 96.7 ± 0.9

Table 3. Averaged Boosting results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 95.8 ± 0.4 96.1 ± 0.6 96.2 ± 0.4 96.5 ± 0.5
cred 85.9 ± 0.7 86.4 ± 0.4 86.6 ± 0.8 85.5 ± 0.9
ecoli 85.3 ± 1 86.5 ± 1.2 86.2 ± 1.2 86 ± 1.1
flare 81.8 ± 0.8 82 ± 0.7 82.4 ± 0.7 80.7 ± 1.1
hear 83.2 ± 1.6 84.9 ± 1.3 83.9 ± 1.4 83.6 ± 1.5
survi 75.1 ± 1.2 74.4 ± 1.2 74.8 ± 1.2 74.6 ± 1.1
wdbc 95.6 ± 0.5 96.6 ± 0.4 95.8 ± 0.6 96 ± 0.5

Table 4. Conservative Boosting results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 94.7 ± 0.8 95.4 ± 0.6 95.7 ± 0.6 96.2 ± 0.7
cred 86.5 ± 0.6 87.1 ± 0.7 85.9 ± 0.7 86 ± 0.7
ecoli 85.4 ± 1.3 86.2 ± 1.2 86.9 ± 1.2 87.8 ± 1.1
flare 82.1 ± 1 82.2 ± 0.9 82.8 ± 0.6 82.4 ± 0.6
hear 83.2 ± 1.4 83.2 ± 1.3 83.1 ± 1.6 83.9 ± 0.9
survi 75.6 ± 1.1 74.4 ± 1.5 72.8 ± 1.3 73.3 ± 1.5
wdbc 97 ± 0.6 96.6 ± 0.7 96.4 ± 0.6 96.3 ± 0.5

Table 5. The new Averaged Conservative Boosting with the average combiner results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 95.8 ± 0.4 96.2 ± 0.5 96.2 ± 0.4 96.5 ± 0.6
cred 86.9 ± 0.9 87.2 ± 0.6 86.6 ± 0.8 86.4 ± 0.9
ecoli 86 ± 1 87.5 ± 0.6 88.4 ± 0.7 86.9 ± 1.2
flare 82 ± 0.8 82.4 ± 0.7 82.4 ± 0.7 82.4 ± 0.7
hear 82.7 ± 1.5 84.6 ± 1.3 84.2 ± 1.4 83.9 ± 1.3
survi 75.6 ± 1.2 74.6 ± 1.3 74.8 ± 1.4 74.8 ± 1.6
wdbc 96.9 ± 0.4 96.9 ± 0.6 96.7 ± 0.6 96.6 ± 0.4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

316 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Table 6. The new Averaged Conservative Boosting with the boosting combiner results

Database 3 Nets 9 Nets 20 Nets 40 Nets
bala 95.8 ± 0.4 96.6 ± 0.4 96 ± 0.5 96.1 ± 0.5
cred 87.1 ± 0.8 87 ± 0.6 86.7 ± 0.7 86.5 ± 0.7
ecoli 86.3 ± 0.9 87.4 ± 0.7 87.4 ± 0.5 87.8 ± 0.7
flare 82.1 ± 0.7 82.1 ± 0.6 82.7 ± 0.6 82.9 ± 0.6
hear 82.9 ± 1.5 84.1 ± 1.3 84.1 ± 1.4 84.1 ± 1.4
survi 74.6 ± 1.5 73.9 ± 1.5 74.9 ± 1.4 75.1 ± 1.5
wdbc 96.2 ± 0.6 96.5 ± 0.6 96.5 ± 0.6 96.4 ± 0.5

3.3 General Measurements

We have also calculated the Increase of Performance (IoP) and the Percentage of Error
Reduction (PER) of the ensembles with respect to a single network. The IoP is an
absolute measurement whereas the PER is a relative one. We have used equation 4 to
calculate the ensemble IoP value and equation 5 to calculate the ensemble PER value.

IoP = Errorsinglenet − Errorensemble (4)

PER = 100 · Errorsinglenet − Errorensemble

Errorsinglenet
(5)

A positive value of the IoP means that the performance of the ensembles is better
than the performance of a single network on the dataset. The PER value ranges from
0%, where there is no improvement by the use of a particular ensemble method with
respect to a single network, to 100%. There can also be negative values on the IoP
and on the PER, which means that the performance of the ensemble is worse than the
performance of the single network.

Furthermore, we have calculated the mean IoP and the mean PER with respect to
the Single Network across all databases for each method to get some global measure-
ments to compare the methods. The results are shown on table 7.

Table 7. Mean IoP and mean PER among all databases

mean IoP mean PER
method 3 Nets 9 Nets 20 Nets 40 Nets 3 Nets 9 Nets 20 Nets 40 Nets

adaboost 0.75 0.45 0.99 0.73 −1.56 −2.97 3.34 −0.67
conserboost 1.61 1.68 1.44 1.78 9.64 8.62 6.74 8.36

aveboost 1.34 1.92 1.78 1.36 2.09 10.08 5.79 4.22
acb-averaging 1.82 2.29 2.28 2.01 10.96 14.11 13.17 10.7
acb-boosting 1.68 2.02 2.12 2.21 7.01 10.67 10.76 10.84

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Averaged Conservative Boosting 317

3.4 Discussion

The main results show that Averaged Conservative Boosting performs better than Ad-
aboost, Aveboost and Conserboost. Moreover, we can also see that the error in perfor-
mance among the ten experiments tends to be lower in most of the cases in ACB. In
figure 3 we can graphically see an example.

±
±
±
±
±
±

±

Fig. 3. Comparing the results - 20-network ensemble for database ecoli

According to the global measurements, ACB is the best performing method being the
Average Combiner the most appropriate combiner when we have an ensemble of 3, 9
or 20 networks whereas the Boosting combiner should be used to combine 40-network
ensembles.

4 Conclusions

In this paper we have presented Averaged Conservative Boosting, a boosting algorithm
based on Adaboost, Aveboost and Conserboost. We have trained ensembles of 3, 9, 20
and 40 networks with Adaboost, Aveboost, Conserboost and ACB to cover a wide spec-
trum of the number of networks in the ensemble. Moreover, we have applied to ACB
two different combiners to get the final hypothesis of the ensemble.

The main results and the global measurements show that ACB is the best perform-
ing method. Although there are some cases in which Aveboost and Conserboost
performs worse than Adaboost, our results show that ACB with the Output Average
performs better than Adaboost in all the cases. The most appropriate method to com-
bine the outputs in ACB is the Average combiner for the ensembles of 3, 9 and 20
networks and the Boosting combiner is the best choice for the 40-network
ensembles.

Moreover, we can see that Adaboost, Aveboost and Conserboost clearly depend on
the number of networks in the ensemble whereas in ACB the number of networks has a
lower impact on the ensemble performance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

318 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Acknowledgments

This research was supported by the project number P1·1B2004-03 entitled ‘Desarrollo
de métodos de diseño de conjuntos de redes neuronales’ of Universitat Jaume I - Ban-
caja in Castellón de la Plana, Spain.

References

1. Tumer, K., Ghosh, J.: Error correlation and error reduction in ensemble classifiers. Connection
Science 8(3-4), 385–403 (1996)

2. Raviv, Y., Intratorr, N.: Bootstrapping with noise: An effective regularization technique. Con-
nection Science, Special issue on Combining Estimators 8, 356–372 (1996)

3. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: International Con-
ference on Machine Learning, pp. 148–156 (1996)

4. Breiman, L.: Arcing classifiers. The Annals of Statistics 26(3), 801–849 (1998)
5. Kuncheva, L., Whitaker, C.J.: Using diversity with three variants of boosting: Aggressive. In:

Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, Springer, Heidelberg (2002)
6. Oza, N.C.: Boosting with averaged weight vectors. In: Windeatt, T., Roli, F. (eds.) MCS 2003.

LNCS, vol. 2709, pp. 15–24. Springer, Heidelberg (2003)
7. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning

databases (1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 http://www.ics.uci.edu/~mlearn/MLRepository.html

Selection of Decision Stumps in Bagging

Ensembles�

Gonzalo Mart́ınez-Muñoz, Daniel Hernández-Lobato, and Alberto Suárez

Computer Science Department, Universidad Autónoma de Madrid
C/ Francisco Tomás y Valiente, 11

Madrid 28049, Spain
gonzalo.martinez@uam.es,daniel.hernandez@uam.es,alberto.suarez@uam.es

Abstract. This article presents a comprehensive study of different en-
semble pruning techniques applied to a bagging ensemble composed of
decision stumps. Six different ensemble pruning methods are tested. Four
of these are greedy strategies based on first reordering the elements of
the ensemble according to some rule that takes into account the com-
plementarity of the predictors with respect to the classification task.
Subensembles of increasing size are then constructed by incorporating
the ordered classifiers one by one. A halting criterion stops the aggre-
gation process before the complete original ensemble is recovered. The
other two approaches are selection techniques that attempt to identify
optimal subensembles using either genetic algorithms or semidefinite pro-
gramming. Experiments performed on 24 benchmark classification tasks
show that the selection of a small subset (≈ 10−15%) of the original pool
of stumps generated with bagging can significantly increase the accuracy
and reduce the complexity of the ensemble.

1 Introduction

Numerous experimental studies show that pooling the decisions of classifiers in
an ensemble can lead to improvements in the generalization performance of weak
learners. Ensemble methods take advantage of instabilities in the algorithm used
to induce a base learner. These instabilities are exploited to generate a collection
of diverse classifiers that are expected to be complementary with respect to
the classification task considered. Ensemble classification is then achieved by a
majority voting scheme. In this context, complementarity means that the errors
of the different hypothesis are not correlated, so that, when the classifiers are
pooled, correct decisions are amplified. In this manner, the ensemble can achieve
a better classification accuracy than a single learner.

In bagging ensembles [1] diverse classifiers are built by inducing each hypothe-
sis from of a different bootstrap sample from the training data [2]. Typically, the

� This work has been supported by Consejeŕıa de Educación de la Comunidad
Autónoma de Madrid, European Social Fund, and the Dirección General de Investi-
gación, grant TIN2004-07676-C02-02.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 319–328, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

mailto:gonzalo.martinez@uam.es
mailto:daniel.hernandez@uam.es
mailto:alberto.suarez@uam.es

320 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez

generalization error of a bagging classification ensemble decreases monotonically
with the size of the ensemble. Asymptotically, this error tends to a constant
level, which is considered the best result bagging can achieve. Nevertheless, this
asymptotic level is reached only after a large number of hypotheses are included
in the ensemble. To reduce the memory and processing requirements, the selec-
tion of a subset of classifiers from the original ensemble was first proposed in
[3]. Several later investigations show that ensemble pruning can produce very
good results [3,4,5,6,7,8,9]. In particular, by pruning the original ensemble, the
speed and storage requirements can be significantly reduced without a signifi-
cant deterioration, and sometimes with an improvement, of the generalization
performance.

This article presents an empirical study of several ensemble pruning techniques
applied to bagged decision stumps. Decision stumps are binary classification trees
consisting in a single decision (i.e., the tree has a single internal node, the root
node and two leaves). Stumps can be seen as classification rules based on one
question with only two possible answers. Classification is achieved by making a
class assignment for each different answer.

The paper is organized as follows: In Section 2 a short review of the different
pruning techniques used in the experiments is given. In Section 3 we describe
the experimental procedure carried out to compare the pruning procedures in
the different classification problems considered and present the results of these
experiments. Finally, Section 4 summarizes the conclusions of this work.

2 Methods

In this section we describe several heuristics designed to extract a subensemble
with good generalization properties from an initial bagging ensemble. The en-
semble pruning methods considered are of two types. A first family of methods
is based on altering the order in which the classifiers in the original ensemble are
aggregated. The original bagging ensemble is used as a pool of hypothesis from
which a sequence of subensembles of increasing size is constructed. Starting from
a subensemble of size u − 1, a subensemble of size u is built by incorporating the
classifier from the original bagging ensemble that is expected to maximize the gen-
eralization performance of the augmented subensemble. The final subensemble is
obtained by selecting the first τ classifiers from the ordered ensemble. The value
of τ is either fixed beforehand to achieve the desired amount of pruning or is esti-
mated using the training data. The various pruning techniques considered differ
by the heuristic rule that is used to guide the ordered aggregation.Heuristics based
on individual properties of the classifiers have been proved not useful. Successful
ordering heuristics need to take into account the complementarity between clas-
sifiers with respect to the classification task. The following is a description of the
four different ordering heuristics that have been investigated in this work.

Reduce Error (RE): This heuristic was first proposed in [3]. It first selects the
classifier with the lowest classification error on the training set. Then, classifiers
are sequentially incorporated one by one, in such a way that the classification

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Decision Stumps in Bagging Ensembles 321

error of the partially aggregated subensemble estimated on the training set is as
low as possible. The algorithm designed in [3] includes the possibility of backfit-
ting to correct the mistakes made by this greedy strategy. Nonetheless, backfitting
has been shown not to reduce the generalization error significantly in bagging
ensembles [7]. Furthermore, it dramatically increases the running time of the
algorithm. For these reasons no backfitting was implemented in this study.

Complementariness Measure (CC): The heuristic introduced in [5] prefer-
entially incorporates classifiers whose predictions are complementary to those of
the existing subensemble. At each step in the aggregation this criterion selects
the classifier that correctly classifies more examples in which the partially aggre-
gated subensemble errs. This measure of disagreement is in fact the amount by
which that classifier shifts the ensemble decision toward the correct classification.

Margin Distance Minimization (MD): This heuristic was first proposed in
[5]. It is based on defining a signature vector ct for each classifier t in the original
ensemble. This vector has as many components as there are instances in the
training set. Component ct

i is 1 if classifier t correctly classifies the ith instance,
and −1 otherwise. The average signature vector of the ensemble is defined as
〈c〉 = T−1 ∑T

t=1 ct. Note that the ith training example is correctly classified if
the ith component of 〈c〉 is strictly positive. As a result, if the average signature
vector of a subensemble is in the first quadrant (all its components are strictly
positive), it will correctly classify all examples in the training set. The greedy
strategy progressively incorporates into the partially aggregated subensemble
those classifiers that reduce the most the distance of the subensemble signature
vector 〈c〉 to a fixed point o. This point is set to be in the first quadrant with
all components equal to a small value p (e.g. p ≈ 0.1) so that vector components
corresponding to examples that are simple to classify quickly reach a value close
to p and hence have less influence in future aggregation decisions. The value of
the parameter p does not significantly affect the performance of the algorithm
provided that it is small p ∈ [0.05, 0.2] [5].

Boosting Based Ordering (BB): This approach was introduced in [8] and is
based on the instance reweighting scheme proposed in the Adaboost algorithm
[10]. The method is similar to boosting, except that, instead of generating new
hypotheses from the weighted data at each iteration, the classifier with the lowest
weighted error over the training set is chosen and aggregated to the partial
subensemble. If there is no classifier whose weighted training error is below 50%
the weights are set to be uniform. Unlike Adaboost, if the selected classifier
has zero error over the training set the algorithm still continues to aggregate
classifiers until all elements have been incorporated.

A second family of methods attempts to directly identify optimal subensem-
bles using either global optimization heuristics, such as genetic algorithms, or
semidefinite programming on a relaxed version of the problem:

Genetic Algorithm (GA): Following the approach described in [4], a pop-
ulation of individuals is evolved to identify quasi-optimal subensembles. The
individuals in the population represent candidate solutions to the optimization

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

322 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez

problem. A subensemble is represented by a binary string chromosome whose
length is equal to the number of classifiers in the original ensemble, T : b ∈
{0, 1}T . The allele value bt indicates whether classifier t is included in the
subensemble (bt = 1) or not (bt = 0). The configuration parameters of the GA
were adjusted following the recommendations of [11], using the values proposed
in [4] and information from exploratory experiments. A population of 100 indi-
viduals with diagonal initialization is considered. Uniform crossover (probability
0.65) and single bit-flip mutation (probability 5 ·10−3) are used to generate vari-
ability in the population. The fitness of an individual is measured as the accuracy
of the corresponding subensemble on the training set. The probability that an
individual is selected for reproduction is proportional to its fitness. Elitism is
used. The GA is halted after a fixed number of epochs (200) have elapsed.

Semi-definite Programming (SDP): This pruning technique has been re-
cently introduced in [6]. It is based on building a matrix G whose element Gij

is the number of common errors between classifiers with labels i and j. The di-
agonal term Gii is the error of the ith classifier. The elements on this matrix are
then normalized G̃ii = N−1Gii and G̃ij, i�=j = 1

2

(
GijG

−1
ii + GjiG

−1
jj

)
, where N

is the size of the training set. Intuitively,
∑

i G̃ii measures the ensemble strength
and

∑
i�=j G̃ij measures its diversity. The subensemble selection problem of size

k is formulated as an integer programming problem. The goal is to minimize
argx minxT G̃x s.t.

∑
i xi = k and xi ∈ {0, 1}, where the binary variable xi

indicates whether classifier ith should be included or not in the subensemble.
The solution to this problem can be approximated very accurately by carrying
out a convex semi-definite programming (SDP) relaxation.

3 Experiments

Experiments on 24 datasets from the UCI repository [12] have been performed
to compare the performance of the different ensemble pruning methods when ap-
plied to bagged decision stumps. These datasets include synthetic and real-world
problems from different fields of application, with different numbers of classes
and attributes. Since stumps produce a binary decision, they are at a disad-
vantage when applied to multiclass problems, even when used in combination
with bagging. In any case, it is interesting to investigate whether the pruned en-
sembles can achieve significant error reduction on the multiclass problems. The
characteristics of the classification tasks are summarized in Table 1.

The results reported are averages over 100 executions. For each real-world
dataset, these 100 executions correspond to 10 × 10-fold cross-validation. For
the synthetic datasets (Led24, Ringnorm, Twonorm and Waveform) random
sampling was applied to generate each of the training and testing sets. Specif-
ically, for each dataset, the following steps were carried out: (i) Generate the
training and testing sets by 10-fold-cv or random sampling (see Table 1) and
generate 100 bagged decision stumps. The stumps were created using the CART
growing tree algorithm [13] and bootstrap samples. The full ensemble general-
ization error is estimated in the unseen test set. (ii) Order the decision stumps

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Decision Stumps in Bagging Ensembles 323

using: reduce-error (RE), complementariness measure (CC), Margin Distance
Minimization using p = 0.075 (MD75) and boosting based pruning (BB). The
values of the heuristics are calculaded using information only from the training
set. (iii) The error of ordered ensembles is computed on the training and the test
set for subensembles of sizes 1 to 100. (iv) Apply to the same original ensemble
the selection approaches: GA and SDP. The SDP algorithm is set to select 21 de-
cision stumps. Pruned subensembles with this number of stumps generally have
a good performance in the classification problems investigated. The number of
decision stumps selected by GA is not fixed.

Fig. 1 displays the curves that trace the dependence of the ensemble gener-
alization error with respect to the number of stumps for randomly ordered bag-
ging ensembles and for ensembles ordered with the different heuristics: RE, CC,
MD75 and BB. The plots on the left (right) correspond to training (test) error
curves. Note that in (randomly-ordered) bagging the error exhibits a monotonic
decrease and eventual saturation at a constant level as the number of classifiers
included in the ensemble increases. The effect of ordered aggregation is that the
error initially decreases faster than in the original curve, it attains a minimum at
intermediate subensemble sizes and then increases to the asymptotic error level
of the complete bagging ensemble. If the aggregation process is stopped at the
minimum of the error curve, the corresponding subensemble is smaller and has
a better generalization accuracy than the original complete bagging ensemble.
Plots are shown only for a selection of datasets, but they are representative of
the qualitative behavior of error curves in all the problems investigated. The
average error of the optimal subensembles with 21 classifiers selected by SDP
approach is displayed in the same figure for comparison. Finally, the average
error and the average size of the subensemble selected by GA are reported. Fig.
1 shows that the learning curves exhibit a qualitatively similar evolution of the
error as a function of the number of stumps in both the training and test sets. In
particular, the position of the minimum error for the ordering heuristics in the

Table 1. Characteristics of the datasets and testing method

Dataset Train Test Attr. Cls. Dataset Train Test Attr. Cls.
Audio 226 10-fold-cv 69 24 Liver 345 10-fold-cv 6 2
Australian 690 10-fold-cv 14 2 New-thyroid 215 10-fold-cv 5 3
Breast W. 699 10-fold-cv 9 2 Ringnorm 300 5000 cases 20 2
Diabetes 768 10-fold-cv 8 2 Segment 2310 10-fold-cv 19 7
Ecoli 336 10-fold-cv 7 8 Sonar 208 10-fold-cv 60 2
German 1000 10-fold-cv 20 2 Tic-tac-toe 958 10-fold-cv 9 2
Glass 214 10-fold-cv 9 6 Twonorm 300 5000 cases 20 2
Heart 270 10-fold-cv 13 2 Vehicle 846 10-fold-cv 18 4
Horse-Colic 368 10-fold-cv 21 2 Votes 435 10-fold-cv 16 2
Ionosphere 351 10-fold-cv 34 2 Vowel 990 10-fold-cv 10 11
Labor 57 10-fold-cv 16 2 Waveform 300 5000 cases 21 3
Led24 200 5000 cases 24 10 Wine 178 10-fold-cv 13 3

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

324 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 heart train

bagging
re
cc

md75
bb
ga

spd

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 heart test

bagging
re
cc

md75
bb
ga

spd

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 labor train

bagging
re
cc

md75
bb
ga

spd

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0.3

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 labor test

bagging
re
cc

md75
bb
ga

spd

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 twonorm train

bagging
re
cc

md75
bb
ga

spd

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 twonorm test

bagging
re
cc

md75
bb
ga

spd

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 wine train

bagging
re
cc

md75
bb
ga

spd

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 10 20 30 40 50 60 70 80 90 100

er
ro

r

number of classifiers

 wine test

bagging
re
cc

md75
bb
ga

spd

Fig. 1. Average train (left column) and test (right column) errors for Heart (top row),
Labor Negotiations (second row), Twonorm (third row) and Wine (last row) datasets

training error curves tends to coincide with the position of the minimum in the
test error curves. This fact makes it possible to estimate the optimum number of
stumps to use in the final subensemble using information only from the training
set. Note that the curves shown in Fig. 1 correspond to average values and not
to single executions. Nonetheless, the proximity of the positions of the minima in
the training and in the test sets is also observed in single runs. The coincidence of
the minima is apparent in problems where data is abundant, which implies that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Decision Stumps in Bagging Ensembles 325

T
ab

le
2.

E
rr

o
rs

fo
r

fu
ll

b
a
g
g
in

g
(1

0
0

st
u
m

p
s)

a
n
d

th
e

d
iff

er
en

t
o
rd

er
in

g
h
eu

ri
st

ic
s

a
n
d

se
le

ct
io

n
p
ro

ce
d
u
re

s

D
at

as
et

b
ag

gi
n
g

R
E

C
C

M
D

75
B

B
G

A
S
D

P
M

in
21

M
in

21
M

in
21

M
in

21

au
d
io

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

53
.5
±

2.
8

au
st

ra
li
an

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

14
.5
±

3.
8

b
re

as
t

7.
0±

3.
7

5.
5±

3.
0

5.
6±

3.
0

4.
9±

2.
9

5.
4±

2.
9

5.
5±

2.
8

5.
4±

2.
9

5.
4±

3.
0

6.
0±

2.
9

5.
9±

3.
2

5.
4±

2.
8

d
ia

b
et

es
27

.8
±

4.
1

26
.3
±

4.
3

26
.2
±

4.
3

26
.4
±

4.
1

28
.5
±

5.
5

26
.3
±

4.
2

26
.0
±

4.
4

26
.5
±

4.
1

26
.9
±

4.
7

27
.0
±

4.
3

26
.9
±

4.
7

ec
ol

i
35

.4
±

1.
8

35
.5
±

2.
0

35
.4
±

1.
8

35
.3
±

2.
3

37
.6
±

5.
1

35
.4
±

1.
9

35
.5
±

1.
9

35
.5
±

2.
0

35
.4
±

1.
8

35
.4
±

1.
8

36
.6
±

4.
1

ge
rm

an
30

.0
±

0.
0

31
.0
±

2.
8

30
.0
±

0.
0

31
.0
±

2.
9

30
.0
±

0.
0

31
.0
±

2.
9

30
.0
±

0.
0

31
.0
±

2.
9

30
.0
±

0.
0

30
.0
±

0.
0

30
.0
±

0.
0

gl
as

s
51

.4
±

6.
7

38
.0
±

7.
8

37
.8
±

8.
0

36
.4
±

7.
4

52
.1
±

5.
2

36
.0
±

7.
5

36
.0
±

8.
1

38
.9
±

8.
4

48
.1
±

9.
8

38
.3
±

8.
2

39
.2
±

8.
2

h
ea

rt
24

.2
±

10
.1

18
.0
±

8.
2

18
.1
±

8.
1

16
.9
±

6.
6

16
.9
±

6.
4

16
.7
±

6.
8

17
.0
±

6.
8

17
.1
±

7.
2

19
.0
±

7.
4

18
.7
±

9.
2

17
.3
±

6.
9

h
or

se
-c

ol
ic

18
.6
±

6.
3

18
.7
±

6.
2

18
.6
±

6.
3

18
.7
±

6.
2

18
.6
±

6.
3

18
.6
±

6.
3

18
.6
±

6.
3

18
.7
±

6.
2

18
.6
±

6.
3

18
.6
±

6.
3

18
.6
±

6.
3

io
n
os

p
h
er

e
17

.2
±

5.
2

10
.3
±

4.
8

17
.0
±

4.
7

10
.4
±

4.
8

16
.4
±

5.
1

13
.5
±

5.
1

17
.3
±

5.
1

10
.3
±

4.
8

17
.2
±

5.
2

16
.4
±

5.
5

17
.5
±

5.
3

la
b
or

18
.5
±

15
11

.4
±

13
13

.8
±

13
13

.5
±

13
15

.0
±

13
12

.3
±

14
12

.2
±

13
9.

9±
12

12
.5
±

14
15

.2
±

14
10

.4
±

12
le

d
24

77
.6
±

4.
8

55
.2
±

8.
4

58
.0
±

8.
4

60
.7
±

7.
2

71
.0
±

8.
1

67
.4
±

6.
4

74
.5
±

5.
8

72
.2
±

4.
8

78
.0
±

4.
6

63
.8
±

8.
7

60
.6
±

8.
0

li
ve

r
37

.3
±

7.
6

33
.3
±

8.
2

33
.6
±

8.
1

32
.5
±

7.
5

30
.9
±

7.
1

33
.1
±

7.
5

32
.1
±

7.
4

32
.2
±

8.
0

32
.7
±

7.
8

34
.3
±

7.
7

32
.4
±

8.
3

n
ew

-t
h
y
ro

id
22

.9
±

4.
4

18
.7
±

5.
0

19
.1
±

5.
0

18
.2
±

4.
1

18
.3
±

4.
1

19
.2
±

4.
6

20
.7
±

4.
5

19
.3
±

4.
3

21
.7
±

4.
5

19
.3
±

4.
7

19
.6
±

4.
2

ri
n
gn

or
m

43
.9
±

2.
6

34
.5
±

1.
5

40
.3
±

1.
2

35
.2
±

1.
5

43
.0
±

1.
5

35
.5
±

1.
5

42
.7
±

1.
7

35
.0
±

1.
6

42
.9
±

1.
4

39
.8
±

1.
7

43
.3
±

1.
6

se
gm

en
t

55
.0
±

5.
2

44
.0
±

4.
0

45
.2
±

5.
3

43
.3
±

2.
5

50
.1
±

7.
4

43
.3
±

2.
5

52
.6
±

6.
6

50
.8
±

7.
0

57
.4
±

4.
7

43
.1
±

2.
1

44
.9
±

5.
3

so
n
ar

25
.7
±

9.
6

27
.4
±

11
.0

27
.1
±

9.
9

27
.6
±

9.
6

28
.3
±

9.
7

26
.8
±

10
.3

27
.0
±

10
.0

27
.1
±

10
.1

27
.7
±

9.
4

26
.8
±

9.
2

27
.5
±

9.
7

ti
c-

ta
c-

to
e

30
.1
±

4.
8

30
.1
±

4.
8

30
.1
±

4.
8

30
.2
±

4.
7

30
.5
±

4.
6

30
.1
±

4.
8

30
.1
±

4.
8

30
.2
±

4.
7

30
.4
±

4.
7

30
.1
±

4.
8

30
.4
±

4.
7

tw
on

or
m

20
.6
±

5.
5

12
.2
±

2.
0

12
.4
±

2.
0

11
.6
±

1.
9

12
.0
±

1.
8

11
.3
±

2.
2

11
.6
±

1.
8

11
.3
±

1.
9

11
.5
±

2.
2

13
.4
±

2.
9

11
.2
±

1.
8

ve
h
ic

le
59

.6
±

2.
7

44
.8
±

4.
8

45
.3
±

5.
3

45
.3
±

5.
1

54
.3
±

6.
1

44
.8
±

4.
7

49
.1
±

4.
9

53
.1
±

7.
1

58
.2
±

3.
8

48
.3
±

7.
8

45
.7
±

5.
3

vo
te

s
4.

4±
3.

0
4.

4±
3.

0
4.

4±
3.

0
4.

4±
3.

0
5.

5 ±
3.

4
4.

4±
3.

0
4.

4±
3.

0
4.

4±
3.

0
4.

6±
3.

1
4.

4±
3.

0
4.

8±
3.

3
vo

w
el

74
.6
±

2.
1

67
.2
±

3.
2

68
.3
±

3.
1

70
.8
±

3.
7

75
.8
±

4.
5

69
.5
±

3.
1

72
.9
±

3.
4

72
.9
±

2.
9

77
.6
±

4.
3

67
.5
±

4.
2

70
.5
±

3.
8

w
av

ef
or

m
39

.2
±

5.
0

27
.5
±

4.
8

29
.1
±

6.
2

27
.8
±

5.
0

29
.2
±

5.
9

28
.9
±

5.
0

30
.3
±

5.
2

28
.0
±

4.
9

30
.4
±

6.
7

32
.4
±

7.
1

29
.3
±

6.
3

w
in

e
32

.4
±

7.
6

8.
6±

9.
5

9.
2±

10
.2

5.
2±

5.
2

9.
7±

11
.9

7.
0±

6.
1

9.
2±

6.
7

6.
2±

5.
5

6.
5±

5.
6

11
.5
±

11
.7

5.
4±

5.
2

A
ve

ra
ge

34
.2
±

5.
2

27
.9
±

5.
4

28
.9
±

5.
4

28
.1
±

4.
9

31
.1
±

5.
5

28
.5
±

5.
0

30
.1
±

5.
0

29
.3
±

5.
1

31
.7
±

5.
1

29
.5
±

5.
6

29
.0
±

5.
2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

326 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez

Table 3. Number of selected stumps for the different datasets and algorithms

Dataset RE CC MD75 BB GA
audio 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 50.0±5.0
australian 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 49.9±4.7
breast 12.2±19.3 8.8±9.3 11.7±10.0 6.6±5.9 49.0±5.0
diabetes 1.8±1.6 4.9±8.3 3.9±7.8 2.6±5.0 46.7±6.3
ecoli 1.0±0.0 1.1±0.4 1.0±0.0 1.0±0.0 50.8±4.7
german 1.0±0.1 1.1±0.6 1.1±0.5 1.1±0.4 50.6±4.5
glass 12.6±16.1 14.4±17.5 16.9±15.0 42.5±24.1 47.7±5.4
heart 14.4±12.0 20.0±14.0 19.4±13.9 14.0±18.2 46.1±5.7
horse-colic 1.0±0.1 1.0±0.1 1.0±0.0 1.0±0.1 50.0±4.8
ionosphere 2.0±0.2 2.2±2.0 8.8±8.6 2.1±0.6 44.4±6.3
labor 5.8±5.6 8.4±7.7 17.4±9.9 5.9±3.6 47.8±5.6
led24 22.7±11.7 34.0±18.8 37.6±20.8 23.6±23.1 45.3±6.3
liver 26.6±13.6 28.3±12.9 24.6±7.3 19.5±10.9 42.9±6.5
new-thyroid 3.3±2.4 14.7±26.7 17.2±28.0 11.7±23.9 46.9±6.2
ringnorm 3.7±5.6 3.6±1.6 3.8±2.9 3.4±1.3 41.1±7.5
segment 32.5±25.1 26.5±21.3 33.0±19.8 35.2±28.6 49.2±5.0
sonar 11.3±6.8 12.9±13.0 14.7±5.8 8.9±4.6 45.2±5.7
tic-tac-toe 1.0±0.0 1.0±0.2 1.0±0.0 1.0±0.2 50.0±5.2
twonorm 24.8±8.9 24.8±9.5 26.4±6.7 20.1±6.7 42.3±7.1
vehicle 14.4±11.5 24.9±17.2 18.8±16.0 19.0±19.8 41.0±7.1
votes 1.0±0.0 1.0±0.0 1.0±0.0 1.0±0.0 49.6±5.3
vowel 32.0±19.4 38.8±26.7 26.7±20.7 50.0±26.8 46.5±5.2
waveform 18.2±11.2 22.1±14.5 23.8±13.9 16.6±11.8 41.3±7.2
wine 16.9±10.4 22.3±9.1 33.4±10.2 20.0±7.7 38.3±7.7

Average 10.9±7.6 13.3±9.6 14.4±9.1 12.9±9.3 46.4±5.8

the sampling fluctuations are small (e.g. Twonorm). It is less clear in problems
where few examples are available for either training or testing (e.g. Labor). This
is in contrast with ensembles composed of more complex classifiers (e.g. CART
trees). In such ensembles, the minimum in the training error curves is generally
achieved for smaller subensembles than in the test curves [7].

Table 2 displays the test error in the different classification tasks, averaged
over the 100 executions. The results obtained with the ordering heuristics, which
produce a collection of subensembles of increasing size (i.e. RE, CC, MD75 and
BB), are presented in two columns: the leftmost column indicates the test error
for subensembles of a fixed size (21 stumps). The column immediately to the right
displays the average test error of subensembles whose size is determined from
the position of the minimum of the training error (column labeled with Min).
Note that the values displayed in columns Min of the Table and the values of the
test curves shown in Fig. 1 do not generally coincide: the former is an average
for different subensemble sizes and the latter is an average for a fixed number
of classifiers. Results for the selection approaches GA and SDP are also shown
in Table 2. Values of the test error that are significantly better than bagging
(using a paired t-test with p − value < 0.01) are highlighted in boldface. Errors

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Decision Stumps in Bagging Ensembles 327

for cases where bagging performs significantly better (at a p − value < 0.01) are
underlined. In general, pruned bagging ensembles composed of decision stumps
perform better than the complete original ensemble. The largest improvements
are obtained using the reduce error and complementariness ordering heuristics to
aggregate decision stumps until a minimum in the training error is reached. The
improvements in accuracy are fairly large in some domains: In Wine the error
drops from 32.4 of full bagging to 5.2 of complementariness. In Twonorm the
generalization error nearly halves. In Heart the error achieved by MD75 (Min)
is 16.7 and bagging obtains 24.2, etc. As anticipated, the generalization error
in classification tasks with more than 2 classes is rather large. Notwithstanding,
the pruning procedures manage to significantly reduce the generalization error
in multiclass classification tasks: Glass, Led24, New-thyroid, Segment, Vehicle,
Vowel, Waveform and Wine. In any case, the performance in multiclass problems
generally remains rather poor.

Table 3 presents the average number of stumps selected for each problem by
the different ordering heuristics, using the minimum error in the training dataset
and by the GA stumps selection approach. SDP subensembles have a fixed pre-
specified size of 21 decision stumps. The tabulated figures show that the amount
of pruning varies accross methods and datasets. However, on average, the num-
ber of selected stumps is fairly small (10–15%) for all ordering heuristics. The
smallest subensembles are generally obtained using the reduce error ordering
heuristic. This method also obtains low generalization errors. Note that for sev-
eral datasets (Audio, Australian, E-coli, ...) the number of selected stumps is on
average 1 and that, on these problems, the average generalization error of full
bagging and just one stump is very similar. For these classification tasks bag-
ging in not able to generate enough diversity and most of the decision stumps in
the ensemble are actually equal. For most of the problems analyzed the genetic
approach selects subensembles with approximately 50% of the original bagged
stumps. Thus, GA tends to select suboptimal subsensembles that are too large.

4 Conclusions

This paper presents an empirical evaluation of different techniques used to prune
ensembles of decision stumps generated with bagging. Six ensemble pruning
heuristics are tested: reduce error (RE), complementariness (CC), margin dis-
tance minimization (MD75), boosting based pruning (BB), genetic algorithms
(GA) and semidefinite programing (SDP). The first four heuristics are greedy
approaches that determine the order in which the classifiers generated in bag-
ging are incorporated into the ensemble according to some rule that exploits the
complementarity of the base learners. Pruning is performed by selecting the first
τ classifiers in the ordered ensemble either by specifying a fixed subemsemble
size (21 in this investigation) or by estimating the optimum number of classifiers
in some manner. For decision stumps the minimum of the curve that displays
the dependence of the test error with the size of the subensemble is fairly close to
the minimum in the corresponding curve for the training error. This is probably

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

328 G. Mart́ınez-Muñoz, D. Hernández-Lobato, and A. Suárez

related to the fact that decision stumps are simple classifiers and do not tend to
overfit the data. Hence, the optimal stopping point for the ordered aggregation
is close to the minimum of the error curve in the training dataset. The GA and
SDP approaches attempt to identify a single subensemble that is optimal ac-
cording to some estimate of the generalization performance. The GA approach
solves the selection problem by a genetic algorithm without prescribing a target
size for the optimal subensemble. In SDP a convex semi-definite programming
relaxation is used to approximately maximize a goal function dependent on both
accuracy and diversity for a prespecified ensemble size. For most of the datasets
the pruning techniques investigated significantly reduce the generalization error
of bagged decision stumps by selecting a fairly small subset of classifiers. The
best performances are for ordered bagging, where the order of aggregation is
determined by either the reduce error or complementariness heuristic, and ag-
gregation stops at the minimum of the error curve for the training data. SDP
obtains good overall results despite the fact that the number of classifiers needs
to be fixed a priori. The performance of GA in terms of generalization error and
percentage of pruning achieved is significantly worse than the other methods.

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Efron, B., Tibshirani, R.J.: An Introduction to the Bootstrap. Chapman &

Hall/CRC (1994)
3. Margineantu, D.D., Dietterich, T.G.: Pruning adaptive boosting. In: Proc. 14th

International Conference on Machine Learning, pp. 211–218. Morgan Kaufmann,
San Francisco (1997)

4. Zhou, Z.H., Tang, W.: Selective ensemble of decision trees. In: Wang, G., Liu, Q.,
Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 476–483.
Springer, Heidelberg (2003)

5. Mart́ınez-Muñoz, G., Suárez, A.: Aggregation ordering in bagging. In: Proc. of the
IASTED International Conference on Artificial Intelligence and Applications, pp.
258–263. Acta Press (2004)

6. Zhang, Y., Burer, S., Street, W.N.: Ensemble pruning via semi-definite program-
ming. Journal of Machine Learning Research 7, 1315–1338 (2006)

7. Mart́ınez-Muñoz, G., Suárez, A.: Pruning in ordered bagging ensembles. In: Proceed-
ings of the 23rd International Conference on Machine Learning, pp. 609–616 (2006)

8. Mart́ınez-Muñoz, G., Suárez, A.: Using boosting to prune bagging ensembles. Pat-
tern Recognition Letters 28(1), 156–165 (2007)

9. Zhou, Z.H., Wu, J., Tang, W.: Ensembling neural networks: Many could be better
than all. Artificial Intelligence 137(1-2), 239–263 (2002)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. In: Proc. 2nd European Conference on Computa-
tional Learning Theory, pp. 23–37 (1995)

11. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer, Berlin
(2003)

12. Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
13. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regres-

sion Trees. Chapman & Hall, New York (1984)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Ensemble Dependence Measure

Matthew Prior and Terry Windeatt

Centre for Vision Speech and Signal Processing
University of Surrey, Surrey, GU2 7XH, UK

{m.prior,t.windeatt}@surrey.ac.uk

Abstract. Ensemble methods in supervised classification problems have
been shown to be superior to single base classifiers of comparable perfor-
mance, particularly when used in conjunction with multi-layer percep-
tron base classifiers. An ensemble’s performance is related to the accuracy
and diversity of its component classifiers. Intuitively, diversity seems to
be a desirable quality for a collection of non-optimal classifiers. Despite
much interest being shown in diversity, little progress has been made in
linking generalisation performance to any specific diversity metric.

With the agglomeration of even modestly accurate statistically inde-
pendent classifiers it can be shown theoretically that ensemble accuracy
can be forced close to optimality. Despite this theoretical benchmark,
real world ensembles fall far short of this performance. The root of this
problem is the lack of statistical independence amongst the base classi-
fiers. We investigate a measure of statistical dependence in ensembles,
D, and its relationship to the Q diversity metric and pairwise correla-
tion and also examine voting patterns in real world ensembles. We show
that, whilst Q is relatively insensitive to changes in the ensemble config-
uration D measures correlations between the base classifiers effectively.
The experiments are based on several two class problems from the UCI
data sets and use bootstrapped ensembles of relatively weak, multi-layer
perceptron, base classifiers.

1 Introduction

Most theoretical studies of multiple classifier ensemble performance base their
analysis on ensembles of homogeneous accuracy and assume statistical indepen-
dence for the base classifiers. Though the output of each individual classifier in
the ensemble is unaffected by the output of any other, the classifiers share a
common derivation through their training sets. This commonality undermines
their independence. The result is that, for real world ensembles, performance
falls far short of that which theory predicts.

We let the random variables, χ = {X1, X2, ...XI}, represent the probability
of individual base classifiers correctly classifying an input pattern n. For a ma-
jority vote ensemble E, containing I statistically independent base classifiers, all
with the probability of correct classification equal to p, then the we can model
the classification behaviour of the ensemble as a sequence of I Bernoulli trials
through the use of the property of ergodicity. The probability that the ensemble

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 329–338, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

330 M. Prior and T. Windeatt

correctly classifies an input pattern is the value for the binomial cumulative dis-
tribution function at the point where more than half of of the ensemble correctly
classifies an input pattern,

Pr
Ehomogenous

(correct|E) =
I∑

j=� I
2 �

(
I
j

)

pj(1 − p)I−j, (1)

where Pr(•) is the probability of an event, �•� represents the first integer value

larger than • and
(

b
c

)

= b!
c!(b−c)! .

Our work is motivated from the perspective of investigating the diversity and
independence of classifier ensembles under those conditions where base classifiers
of only relatively weak performance are available.

To describe the situation where an ensemble performs optimally, Kuncheva
coins the phrase: pattern of success[7]. Under the pattern of success, performance
exceeds that predicted by the assumption of independence of the base classifiers.
With the characteristic that none of the voting patterns of the classifiers need-
lessly re-enforce an already correct decision. The maximum level of performance
gain attainable given the pattern of success is considerable. In the case of a 3
member homogeneous majority vote ensemble with base classifier accuracy of
0.6, the ensemble performance is 0.7 for independent classifiers, but can rise to
0.9 under the pattern of success. We can also see that the ensemble can outper-
form the independence level of accuracy without achieving the ultimate pattern
of success, we call ensembles with this quality supra-independent.

There is no known method for generating classifiers that match the pattern
of success. In the absence of such a method, we observe that given a sufficient
number of independent classifiers it is theoretically possible, though in practice
difficult, to construct ensembles of arbitrary accuracy. If the weaker condition
of independence in ensemble construction can be achieved, then good results
should be obtainable. To this end we have propose a measure, D, of dependence
that can be applied to ensembles to quantify their proximity to independence.
We further investigate the behaviour of this and other metrics when base clas-
sifier complexity is modulated within varying sized ensembles of bootstrapped,
randomly initialised, multi-layer perceptrons (MLP).

2 The Ensemble Dependence Measure, D

If we extend the model of theoretical ensemble performance to allow for ensem-
bles with heterogeneous accuracies, we can calculate the probability of a correct
ensemble prediction as follows:

Pr
Eheterogeneous

(correct|E) =
∑

m∈M

∏

i

pmi . (2)

Where, M = {m :
∑I

i=1 V (ei) ≥
⌈

I
2

⌉
} and is the set of all voting patterns of the

ensemble for which the majority vote correctly labels the input pattern. V (ei)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Ensemble Dependence Measure 331

is the truth vote output for the ith classifier in the ensemble. The truth vote
is 1 if the classifier votes for the correct label for the input pattern and 0 if it
votes incorrectly. pmi is the probability that the ith classifier in voting pattern
m correctly labels the input.

If we relate this theoretical model to the more common real world situation
of having dependence between the classifiers we get

Pr(correct|E) = Pr
Eheterogeneous

(correct|E) − D(E), (3)

where D(•) represents a term whose value is the difference between
PrEheterogeneous

and the empirical accuracy of the ensemble, Pr(correct|E). D is
thus a measure of the statistical dependence present in the ensemble.

Where

D(•) is

⎧
⎨

⎩

< 0 if the ensemble is supra − independent
0 if the ensemble is independent
> 0 if the ensemble is dependent

⎫
⎬

⎭
.

D is related to the Kullback-Leibler divergence in that it is a measure of
the difference between the maximum entropy approximation of the ensemble
accuracy and the estimated value of the actual ensemble accuracy.

3 Out-of-Bootstrap Estimation

In order to inject diversity into the ensembles there must be some mechanisms
to generate base classifier boundaries that are dissimilar[2]. This was achieved
by using bagging[1] to manipulate the distribution of the training set and by
random initialisation of network weights in the MLP base classifiers.

Bagging brings with it the inclusion of bootstrapping into the training pro-
cess. By training each base classifier on a sample with replacement, B, of the
same size as the training set, Tr, each classifier, on average, sees a training set
which contains examples of around two thirds of all the available training pat-
terns. Such classifiers can be treated as being derived from a set of i.i.d. random
variables. This leads to an improvement in error rate of the ensemble over the
base classifiers, primarily through the action of variance reduction [4].

Bootstrapping offers a second advantage, namely the availability of an out-of-
bootstrap estimate[10] of the generalisation error of the base classifier. This is
derived from those samples not in its training set and is found by applying the
learned base classifier, ei, to Tr /∈ Bi. Though this itself is not directly useful for
assessing ensemble performance, an ensemble out-of-bootstrap estimate based
on a set of classifiers of about 1

3 of the ensemble size. By selectively applying
patterns from the training set only to those classifiers which did not see that
pattern during the training phase it is possible to form a generalisation error
predictor, G.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

332 M. Prior and T. Windeatt

G(E) =
1
I

I∑

i = 1

⎛

⎜
⎜
⎝1 −

∑

T rn /∈Bi

Ω(ei(T rn), Ln)

|{Tr \ Bi}|

⎞

⎟
⎟
⎠ , (4)

where I is the number of members in the ensemble, |•| represents the cardinality

of a set, Ω is a membership indicator function such that Ω(w, z) =

�
1 : w ∈ z
0 : w /∈ z

,

\ indicates set subtraction and Ln is the true label for pattern n. This out-
of-bootstrap estimator, G, has been shown to be useful in predicting ensemble
generalisation performance[3,9,8].

4 Diversity Measures

In the absence of a known Bayesian optimal classifier, ensembles succeed in im-
proving performance only if the classifiers within the ensemble exhibit diversity
[5]. That is to say that the individuals should offer differing opinions on the
classification applicable to a given set of input patterns. Ensembles exhibiting
values at the extremes of diversity, those in which all members exhibit so little
diversity that the same classification is given by each base classifier and those for
which the members voting patterns approximate randomness across the input
set, are clearly suboptimal. There is however no agreement on how to set an
optimal level of diversity or on which measure of diversity is most appropriate.

Q is highlighted in [6] as being the diversity measure that exhibits the greatest
number of desirable properties so we selected this to compare with D. ρ is the
pairwise correlation coefficient and was used to provide a comparative measure
of dependence. The pairwise diversity measures are shown in Table 2, they are
based on the probabilities of the output predictions of a pair of classifiers.

Consider two classifiers {e1, e2}, the likelihoods for the four possible outcomes
from the result of classification of an input pattern are shown in Table 1. We

Table 1. Probabilities of paired classifier outputs

e1 correct e1 incorrect

e2 correct a b

e2 incorrect c d

can then define the following measures between pairs of classifiers {ej , ek} as
shown in Table 2. Values of these measures for ensembles are generated from the
average value across all pairs of classifiers in the ensemble, for instance in the
case of Q for an ensemble with size I:

Qensemble =
�

{(j,k):j �=k}
Qj,k�

� I
2

�
�

,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Ensemble Dependence Measure 333

Table 2. Pairwise Diversity Measures

Name Symbol Definition

Q measure Q Qj,k = ad−bc
ad+bc

Correlation coefficient ρ ρj,k = ad−bc√
(a+b)(c+d)(a+c)(b+d)

5 Experimental Method

We took six two class data sets from the UCI repository , {Cylinder Bands
[BAN], Ionosphere [ION], Promoters [PRO], Sonar [SON], Wisconsin [WIS] and
Vote [VOT] } and used these to investigate the behaviour of the various measures.
Because the difference between D and the empirical training accuracy, ATrain,
can converge rapidly to 1 − ATrain when base classifier error rates are low and
the ensemble size increases, we added label noise to the following data sets to
make the behaviour of D more observable, { ION,VOT,WIS }.

To see how the measures responded to classifiers of differing complexity, we
constructed bootstrapped ensembles of varying sizes. These were comprised of
base classifiers formed from relatively simple neural networks. The individual
classifiers were combined by majority voting. The architecture and number of
iterations of training for these networks were also varied to further adjust the
range of complexity of the final classifiers. The networks were trained with the
Levenberg-Marquardt algorithm and random initialisation was applied. The pro-
cedure was as follows.

1. If necessary, 20% label noise was added to the data set. The labelled data set
S = {s1, s2, ...sN} was randomly divided into two equal parts, these formed
the training and test sets, {Tr, Te}. This was repeated 10 times, to form
paired training and test sets.

2. Ensembles of classifiers, E = {e1, e2...eI}, were constructed from neural net-
works, e, with each network being randomly initialised and trained on a
bootstrap sample T ∗

r . This was repeated to form an ensemble of size I trained
from bootstrap samples {T ∗

r1
, ..., T ∗

rI
} for all training/test set pairs.

3. An out of bootstrap generalisation estimate, G(E), was formed using the
ensemble E with each of the members ei only voting on those samples,
approximately 1

3 of the total, which were not used to train them, i.e. the
training samples omitted from the ith bootstrap, Tr/T ∗

ri
as defined in eqn.

3. Ties were broken randomly.
4. A measure of the dependence present in the ensemble, D(E), was constructed

from the empirical probabilities of the eth
i base classifiers correctly classifying

the members of Tr, as indicated in eqn. 2.
5. The diversity measures indicated in Table 2 were calculated from Tr.

This procedure was then repeated 50 times on the 10 train/test sets pairs, giving
500 results for each combination of ensemble size, network architecture and num-
ber of iterations. Ensembles with the parameters given in Table 3 were tested.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

334 M. Prior and T. Windeatt

Table 3. Multi-layer Perceptron Ensemble Specifications

Hidden Neurons Iterations Ensemble Size Designation

1 1 {3,5,7,11,15} {E1, E2, E3, E4, E5}
1 3 {3,5,7,11,15} {E6, E7, E8, E9, E10}
2 3 {3,5,7,11,15} {E11, E12, E13, E14, E15}

6 Results

The theoretical accuracy of the ensemble converges to a value of 1 as the base
classifiers become more accurate and as the ensemble size grows. Beyond this
point of convergence D reduces to the training error and has no more useful
information to give. It is should be noted that this would be true for any other
derived measure, or theoretical assumption, which relies on the independence of
the base classifiers.

The graphs in Figure 1 show D, G, Q and the test and training errors. For
small ensembles, {E1, E6, E11}, D indicates suitably low values of dependence.
As the ensemble size is increased D clearly records the growth in dependence. For
the highest complexity ensembles, such as, {E13, E14, E15}, D begins to suffer
from some observable saturation. This is particularly noticeable in the case of
the SON data set where the training accuracy approaches 0.90 on a data set
with 20% label noise and the theoretical ensemble accuracy approaches 1, with
the result that the plot of D exhibits a pronounced knee at the 0.1 level.

We also measured the correlation, on a per trial basis, between the diversity
measures D, G, Q,ρ and the test set accuracy at each of the complexity levels.
For the correlation measurements we stratified the correlations with the training
sets. The average mean stratified correlation figures, Table 4, suggest that the
training error, followed by D and then G are the most accurate predictors of
generalisation performance, with Q and ρ having almost no correlation at all with
test error. This said, none of the predictors showed a strong overall correlation.
The explanation for these may lie in the correlation graphs.

For all the data sets we observe that in general the mean stratified correlation
coefficient for all the measures tends to drop significantly as the complexity of
the classifier ensembles increase, Figure 2 shows the results for the ION and
SON data sets. Ultimately these seem to converge towards zero, resulting in the
situation where there is little correlation at all with the test error.

A case in point is G, in Figure 1 it can be seen that this measure tracks the
test error very well indeed, but the resulting correlation figures are not indicative
of this. It is our conjecture that, as the base classifiers become more powerful
there is a reduction in the bias component of the error for the ensemble. This
leaves the dominant error mechanism to be the variance of the classifiers, which
begins to approximate a constant summed with a noise process and hence the
correlation tends towards zero, with the result that the generated errors correlate
poorly between test and training sets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Ensemble Dependence Measure 335

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

A
cc

ur
ac

y/
Q

/G

D

MLP Ensemble ID

Bands - 20% Label Noise - 50/50 Test/Train

Training
Test

D
Q
G

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

A
cc

ur
ac

y/
Q

/G

D

MLP Ensemble ID

Ionosphere - 20% Label Noise - 50/50 Test/Train

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

A
cc

ur
ac

y/
G

D
/Q

MLP Ensemble ID

Promoters - 50/50 Test/Train

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

A
cc

ur
ac

y/
Q

/G

D

MLP Ensemble ID

Sonar - 20% Label Noise - 50/50 Test/Train

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.05

 0.1

 0.15

 0.2

A
cc

ur
ac

y/
Q

/G

D

MLP Ensemble ID

Vote - 20% Label Noise - 50/50 Test/Train

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

 0

 0.05

 0.1

 0.15

 0.2

A
cc

ur
ac

y/
Q

/G

D

MLP Ensemble ID

Wisconsin - 20% Label Noise - 50/50 Test/Train

Fig. 1. The mean value of D, G, Q, training and test accuracies for the series of ensem-
ble configurations, {E1...E5},{E6...E10}, {E11...E15}. Values for G, Q and training and
test accuracies are shown on the left hand Y-axes, except in the case of the promoters
data set where Q is shown on the right hand axis. Values for D are shown on the right
hand Y-axes. Each data-point is calculated from the results for 500 ensembles. Bars
show the standard error of the mean and are generally close enough to the mean as to
be not visible.

We also examined the ensemble voting performance. In [7] Kuncheva presents
a theoretical analysis of a 3 member majority vote ensemble with homogeneous
accuracy. In that example all voting patterns of the ensemble are examined, in
about 43% of the cases the ensemble outperforms the accuracy of the major-
ity vote independent classifiers and so can be said to show supra-independent
performance. As D is the difference between the independence based theoretical

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

336 M. Prior and T. Windeatt

Table 4. Mean stratified Pearson correlation coefficients for test error with measures
D, G, Q, ρ and training error, TR, on the three series of classifiers {E1..5, E6..10, E11..15}.
The three series means are on the first row of each cell, the overall mean is beneath
the series mean.

TR D G Q ρ

BAN 0.66,0.68,0.37 0.45,0.53,0.37 0.25,0.31,0.24 -0.42,-0.44,0.11 0.47,0.46,-0.21

0.57 0.45 0.27 -0.25 -0.24

ION 0.67,0.52,0.22 0.55,0.45,0.22 0.41,0.36,0.10 -0.02,0.05,0.02 -0.01,-0.11,-0.03

0.47 0.41 0.29 0.02 -0.05

PRO 0.18,0.10,0.01 0.15,0.09,0.02 0.07,0.05,0.02 -0.07,-0.05,0.00 0.02,-0.00,0.00

0.09 0.09 0.05 -0.04 -0.01

SON 0.64,0.51,0.16 0.44,0.39,0.15 0.34,0.29,0.08 -0.18,-0.11,-0.05 0.14,-0.01,-0.04

0.43 0.33 0.24 -0.12 0.03

VOT 0.56,0.39,-0.05 0.39,0.36,0.12 0.36,0.31,0.13 0.15,0.20,0.18 -0.19,-0.23,-0.211

0.30 0.29 0.27 0.18 -0.21

WIS 0.95,0.81,0.29 0.81,0.71,0.32 0.77,0.64,0.25 -0.29,0.18,0.19 0.51,-0.04,-0.25

0.68 0.62 0.55 0.02 0.07

All 0.42 0.37 0.28 -0.03 -0.07

accuracy and the measured accuracy it can be used to detect those ensembles in
which better than independent voting patterns have occurred.

Table 5. Probability of bootstrapped, randomly initialised MLP ensembles of sizes
{3,5,7,11,15} and {3}, exhibiting measured values of D which indicate independence
or supra-independence. Based on 7,500 ensembles for each data set.

Size BAN ION PRO SON VOT WIS Mean

independent {3,5,7,11,15} 0.003 0.002 0.051 0.009 0.001 0.001 0.011

supra-independent {3,5,7,11,15} 0.007 0.010 0.240 0.073 0.003 0.005 0.056

combined {3,5,7,11,15} 0.010 0.012 0.291 0.082 0.004 0.006 0.067

independent {3} 0.010 0.005 0.037 0.021 0.003 0.005 0.014

supra-independent {3} 0.031 0.039 0.383 0.182 0.015 0.023 0.112

combined {3} 0.041 0.044 0.420 0.203 0.018 0.028 0.126

Our empirical results in Table 5 show that the real world likelihood for these
patterns of voting is highly dependent on the data set and classifier character-
istics. Generally these supra-independent classifiers are rare, averaging out at
around 7% on a wider range of ensemble sizes. But the results for the PRO
data set strongly affect this value, which would otherwise be much lower. PRO
manages to reach values in line with the theoretical predictions for 3 member
ensembles. Looking at the graph of test error, Figure 1, suggests that the en-
semble classification performance is generally poor on this sparse data set even
though the classifiers have nearly perfectly learned the training set.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Ensemble Dependence Measure 337

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

C
or

re
la

tio
n

w
ith

 T
es

t A
cc

ur
ac

y

MLP Ensemble ID

Ionosphere - 20% Label Noise 50/50 - Test/Train

Training
D
Q
G

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

E15E14E13E12E11E10E9E8E7E6E5E4E3E2E1

C
or

re
la

tio
n

w
ith

 T
es

t A
cc

ur
ac

y

MLP Ensemble ID

Sonar - 50/50 Test/Train

Fig. 2. The mean stratified Pearson correlation coefficient of D, G, Q and Training
Accuracy with the Test Error for all ensemble configurations, {E1, E2, ...E15}. Each
data-point is calculated from the results for 500 ensembles. Bars show the standard
error of the mean.

7 Conclusions

Theoretically both Q and D have a value of zero when an ensemble exhibits
independence, but away from this common point their behaviour is very different.
Figure 1 shows that Q shows little, if any, response to changes in ensemble size for
a given base classifier complexity. Yet D climbs rapidly as the ensemble enlarges
and fails to achieve the exponential increase in accuracy predicted by theory.
This highlights that diversity and independence are two different quantities. We
might expect that given a sample from a population of base classifiers, Q would
estimate the diversity present in the population. As the sample, or ensemble, size
is increased we would expect that the estimate would become more accurate, but
not that the underlying value of diversity would change. Thus Q is useful for
estimating the diversity present in a classifier generation mechanism, but less
so for characterising the performance of an ensemble as we vary its size. On
the other hand, D measures the departure from theoretical independence of an
ensemble and can directly show the degradation caused by dependence as the
ensemble is increased. When measuring correlations, D has the advantage over ρ
that it is able to capture all higher order interactions between the base classifiers
and is not limited to characterising pairwise effects. From this perspective we
feel that D represents a useful measure to understand the relationship between
size and accuracy for ensembles.

During our experimental trials on some 45,000 bagged MLP ensembles cover-
ing six data sets, we recorded the percentages of voting patterns which exhibited
the property of supra-independence, or independence. For 3 member ensembles
the average is around 10%, significantly lower than the 43% projected from a
theoretical analysis based on a uniform distribution of voting patterns. Further
work is required to see if these beneficial patterns of voting can be used to
increase ensemble accuracy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

338 M. Prior and T. Windeatt

References

1. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)
2. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey

and categorisation. Information Fusion 6(1), 5–20 (2005)
3. Bylander, T.: Estimating generalization error on two-class datasets using out-of-

bag estimates. Machine Learning 48(1-3), 287–297 (2002)
4. Fumera, G., Roli, F., Serrau, A.: Dynamics of variance reduction in bagging and

other techniques based on randomisation. In: Oza, N.C., Polikar, R., Kittler, J.,
Roli, F. (eds.) MCS 2005. LNCS, vol. 3541, pp. 316–325. Springer, Heidelberg
(2005)

5. Kuncheva, L.: That elusive diversity in classifier ensembles. In: Perales, F.J.,
Campilho, A., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS, vol. 2652,
Springer, Heidelberg (2003)

6. Kuncheva, L., Whitaker, C.: Ten measures of diversity in classifier ensembles: limits
for two classifiers. In: Proc. IEE Workshop on Intelligent Sensor Processing vol. 6,
pp. 1–6 (2001)

7. Kuncheva, L., Whitaker, C., Shipp, C., Duin, R.: Limits on the majority vote
accuracy in classier fusion. IEEE Transactions on Pattern Analysis and Machine
Intelligence (2000)

8. Prior, M., Windeatt, T.: Over-fitting in ensembles of neural network classifiers
within ecoc frameworks. In: Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.) MCS
2005. LNCS, vol. 3541, pp. 286–295. Springer, Heidelberg (2005)

9. Prior, M., Windeatt, T.: Parameter tuning using the out-of-bootstrap generalisa-
tion error estimate for stochastic discrimination and random forests. In: Interna-
tional Conference on Pattern Recognition, pp. 498–501 (2006)

10. Rao, J., Tibshirani, R.: The out-of-bootstrap method for model averaging and
selection. Prepint, University of Toronto Statistics Department (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 339–348, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Boosting Unsupervised Competitive Learning
Ensembles

Emilio Corchado1, Bruno Baruque1, and Hujun Yin2

1 Department of Civil Engineering. University of Burgos, Spain
escorchado@ubu.es, bbaruque@ubu.es

2 School of Electrical and Electronic Engineering. University of Manchester, UK
h.yin@manchester.ac.uk

Abstract. Topology preserving mappings are great tools for data visualization
and inspection in large datasets. This research presents a combination of several
topology preserving mapping models with some basic classifier ensemble and
boosting techniques in order to increase the stability conditions and, as an
extension, the classification capabilities of the former. A study and comparison
of the performance of some novel and classical ensemble techniques are
presented in this paper to test their suitability, both in the fields of data
visualization and classification when combined with topology preserving
models such as the SOM, ViSOM or ML-SIM.

Keywords: topology preserving mappings, boosting, bagging, unsupervised
learning.

1 Introduction

Several tools can be used to treat the high amounts of data that industrial and business
operations processes. A very useful one is the unsupervised leaning, in the field of
artificial neural networks (ANNs). For unsupervised learning only the input and the
network’s internal dynamics are the two elements required. No external mechanism is
used to check on the weight setting mechanism.

This paper is based in one of the two major methods of unsupervised learning:
competitive learning, where the output neurons of a neural network compete among
themselves for being the one to be active. This too mirrors the reality of what happens
in the brain in that there are finite resources for learning and so one neuron’s gain
means another’s loss.

The principal problem of the models based on competitive learning is, as happens
with all ANNs, their instability. This research is focused on the comparison and study
of some novel and classical ensemble extension versions of some competitive
learning models based on the topology preserving concept. Therefore the extended
models are the Self-organising Map (SOM) [1], the Visualization-induced Self-
Organizing Maps (ViSOM) [2] and the Maximum Likelihood Scale Invariant Map
(ML-SIM) [3] in combination with some simple ensemble techniques such as the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

340 E. Corchado, B. Baruque, and H. Yin

Bagging [4] or the AdaBoost [5]. The aim is to verify if the performance of these
unsupervised connectionist models can be improved by means of these ensemble
meta-algorithms.

2 Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm [1] is based on a type of unsupervised
learning called competitive learning; an adaptive process in which the neurons in a
neural network gradually become sensitive to different input categories, sets of
samples in a specific domain of the input space [6]. Its aim is to produce a low
dimensional representation of the training samples while preserving the topological
properties of the input space.

This study focuses on an interesting extension of this algorithm. It is called
Visualization Induced SOM (ViSOM) [2] and it is proposed to directly preserve the
local distance information on the map, along with the topology. The ViSOM
constrains the lateral contraction forces between neurons and hence regularises the
interneuron distances so that distances between neurons in the data space are in
proportion to those in the input space [7].

The difference between the SOM and the ViSOM hence lies in the update of the
weights of the neighbours of the winner neuron as can be seen from Eqs (1) and (2).

Update of neighbourhood neurons in SOM:

())()(),,()()()1(twtxtkvttwtw vkk −+=+ ηα (1)

Update of neighbourhood neurons in ViSOM:

[] [] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Δ
−+−+=+ 1)()()()(),,()()()1(

λ
ηα

vk

vk
kvvkk

d
twtwtwtxtkvttwtw (2)

where vw is the winning neuron, α the learning rate of the algorithm,),,(tkvη is the

neighbourhood function where v represents the position of the winning neuron in the
lattice and k the positions of the neurons in the neighbourhood of this one, x is the
input to the network and λ is a “resolution” parameter, vkd and vkΔ are the

distances between the neurons in the data space and in the map space respectively.
Another example of a topographic mapping algorithm is the Maximum Likelihood

Scale Invariant Map (ML-SIM) [3]. It is similar to the SOM but in this case training is
based on the use of a particular Exploratory Projection Pursuit (EPP) model [9] called
Maximum Likelihood Hebbian Learning (MLHL) Network [9] [10]. The competitive
learning and a neighbourhood function are then used in a similar way as in the SOM.
The distinctiveness is that in this case the winner’s activation is then fed back through
its weights and this is subtracted from the inputs to calculate the error or residual.
Then the MLHL algorithm is used to update the weights of all nodes in the
neighbourhood of the winner, which can be expressed as,

)1(,)()()(=⋅−= vvv yytwtxte (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Boosting Unsupervised Competitive Learning Ensembles 341

c
p

vvk Nitwttwtsigntkvttw ∈∀−−⋅⋅=+ − ,|)()(|))()((),,()()1(1eeηα (4)

These three models can be adapted for classification of new samples using a semi-
supervised procedure [11]. This added feature can also serve as a measure of the
stability of the trained network. A high accuracy in the classification rate implies that
the neurons of the network are reacting in a more consistent way to the classes of the
samples that are presented. As a consequence, the map should represent the data
distribution more accurately.

3 Unsupervised Competitive Learning Ensembles

The ultimate goal of constructing an ensemble is to improve the performance obtained
of a single working unit. When talking about classification it is generally accepted
that the sets of patterns misclassified by the different classifiers would not necessarily
overlap. This suggests that different classifier designs potentially offer
complementary information about the patterns to be classified and could be harnessed
to improve the performance of the selected classifier [12]. Many ensemble models
and theories have been developed in the previous years that range from a quite simple
technique like Bagging [4] or AdaBoost [5] to the more sophisticated ones such as
LPBoost [13] or and many other variants. These techniques have been mainly applied
to models designed specifically for classification, specially supervised classifiers [14].
In the present study the central idea is to verify the improvements that an ensemble
technique can provide in the multi-dimensional data visualization field over an
unsupervised learning process such as the Competitive Learning.

3.1 Bagging and AdaBoosting

Boosting meta-algorithms consists on training a simple classifier in several stages by
incrementally adding new capacities to the current learned function. In the case of the
present work the decision taken was to begin by implementing simpler boosting
algorithm to initially study its effect on some topology preserving algorithms.
Bagging and AdaBoost are the two boosting algorithms for ensemble training applied
in this work.

Bagging (or bootstrap aggregating) [4] is one of the simplest techniques for
ensemble construction. Its aim is to improve classification and regression models in
terms of stability and classification accuracy, also reducing variance and helping to
avoid overfitting. It consists on training each of the classifiers composing the
ensemble separately using a different subset of the main training dataset. This is
accomplished by using re-sampling with replacement over the training set. The
classification results are obtained by (weighted or majority) voting among its
composing classifiers. The technique provides the ensemble with a balance between
variability and similarity.

The idea of AdaBoost [5] is to train several different classifiers, one each stage, in
slightly different datasets by re-sampling with replacement. The difference is that it is
taken into accounts which of the training samples are not correctly classified by the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

342 E. Corchado, B. Baruque, and H. Yin

current classifier. When a sample is not well classified its probability is increased, so
there are more chances that it will be presented to the next trained classifier as input.
That way, the ensemble concentrates in the samples that are harder to classify,
improving its learning capabilities. There have been proposed two slightly different
versions of the algorithm [15]. AdaBoost.M1 is recommended for datasets with
samples that only belong to two different classes while AdaBoost.M2 is
recommended for dataset with more than two different classes. Although this meta-
algorithm has been previously used for supervised classification [14], a short number
of studies [16], [17], [19] involve unsupervised one such as in the present work.

3.2 Summarizing Some Applied Ensembles Techniques

The models used in this work are mainly designed as visualization tools. Constructing
classical ensembles can be considered as a good option when trying to boost their
classification capabilities, stabilizing its learning algorithm and avoiding overfitting;
but when dealing with its visualization feature an ensemble is not directly displayable
[18]. Representing all the networks in a simple image can only be useful when dealing
with only 1-dimensional maps [17] but gets messy when visualizing 2-D maps. To
overcome this problem some “ensemble combination” algorithms have been devised
during this work in order to obtain a unique network that somewhat represents the
information contained in the different networks composing the ensemble. Our
objective is that this “combination” unites good classification accuracy with truthful
representation of data for visual inspection. This part of the work has two approaches,
which were inspired by SOM bagging [19] in one hand and by SOM fusion [20] on
the other.

For all the tests involving this combination of networks the procedure is the same.
A simple n-fold cross-validation is used in order to employ all data available for
training and testing the model and having several executions to calculate an average
of its performance. In each step of the cross-validation first, an ensemble of networks
must be obtained. The way the ensemble is trained does not affect the way the
combination is computed. In the case of this study this has been done using the
bagging or the adaboost meta-algorithm. Then the computation of the combination is
performed. Finally, both the ensemble and the combination generated from it are
tested employing the test fold.

The different options studied for combining the network of the ensemble into a
single network, summarizing its main characteristics are described in the following
paragraphs. The first version is an existing one while the second and third,
‘Superposition’ and ’Superposition + Re-labelling’, are novel techniques presented
for the first time in this study.

Fusion: This method involves comparing the networks neuron by neuron in the input
space [20]. This implies that all the networks in the ensemble must have the same
size. First, it searches for the neurons that are closer in the input space (selecting only
one neuron in each network of the ensemble), then it “fuses” them to obtain the final
neuron in the “fused” map. This process is repeated until all the neurons have been
fused. A more detailed description of this procedure can be found in [20]. Here the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Boosting Unsupervised Competitive Learning Ensembles 343

labelling of the neurons of the fused network, employing again the training dataset, is
done in order to get a clear visualization of the map.

Superposition: In order to obtain a visual illustration (in the form of a 2-dimensional
map) of the information the whole ensemble contains, this procedure has been
designed during the development of this work. It consists of “superposing” the maps
formed by the networks composing the ensemble into a final map, on a neuron by
neuron comparison (as is done in fusion). Note that the weights of each network in the
ensemble are initialized in a way that makes the neurons in the same position of two
(or more) networks comparables. A description of the process could be:

1. Selection of the neuron in the same position in all maps (1 neuron for each map).
2. Creation of a neuron in the same position in the final map. Its inter-neuronal

weights are the average of the inter-neuronal weights of the neurons selected in 1.
Its frequency in recognizing a class is the addition of the frequency of the neurons
selected in 1 for each class recognized (This is used in the classification stage).

3. Labelling the neuron in that position according to its most frequently recognized
class (This is used in the representation of the map).

4. Repeating 1-3 until all the neurons have been processed.

This way ensures that the resultant “summarized” or “superposed” map represents
visually what the majority of the maps composing the ensemble represent in a neuron-
by-neuron basis. When using the resultant “superposed” map for classification
purposes it returns the class represented by the neuron that is activated when the new
sample is presented to the network.

Superposition + Re-labelling: This method has two main phases. The first one is the
superposition explained before. The second one consists of testing which class
actually recognizes better each neuron after the superposition, instead of relying on
the recognition of the neurons in the same position done previously in the individual
testing of each of the ensemble networks. So, after the superposition phase, the same
dataset used for training is presented to the resultant network of the superposition to
check which class is more consistently recognized by each neuron. Usually less
number of neurons responds to this re-labelling, giving as a result a more compact
map.

4 Experiment Details

Several experiments have been performed to check the suitability of using the
previously described boosting and combining techniques under the frame of the
mentioned topology preserving models. The datasets selected, the very well known
Iris dataset and Wisconsin Breast Cancer dataset, were obtained from the UCI
repository [20]. Visualization results are displayed in Fig.1 and Fig.2.

Fig. 1 displays maps representing the iris dataset. The circles represents “iris-
setosa”, the squares the “iris-virginica” and the triangles the “iris-versicolor”. As it
can be seen, the dataset’s inner structure remains the same in the single map and in
the three combinations having a clearly separable group (circles) and two non-linearly
separable groups (triangles and squares).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

344 E. Corchado, B. Baruque, and H. Yin

(a)

(b)

(c)

(d)

Fig. 1. Iris dataset represented by a ViSOM of 20x20 neurons. Fig 1(a) is obtained from a
single ViSOM. Fig 1(b) is obtained from the ‘superposition’ of an ensemble of 10 maps with
the same characteristics as Fig 1(a). Fig (c) and (d) are respectively the ‘superposition+re-
labelling’ and the ‘fusion’ of the same ensemble.

(a)

(b)

Fig. 2. Wisconsin Breast Cancer dataset represented by a ViSOM of 30x30 neurons. Fig 2(a) is
obtained from a single ViSOM. Fig 2(b) is obtained from the ‘superposition’ of an ensemble
of 10 maps with the same characteristics as Fig 2(a). Fig 2(c) and Fig 2(d) are respectively the
‘superposition+re-labelling’ and the ‘fusion’ of the same ensemble as Fig 2(b).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Boosting Unsupervised Competitive Learning Ensembles 345

(c)

(d)

Fig. 2. (continued)

Fig. 2 displays maps representing the Wisconsin breast cancer dataset. The circles
represent the “benign” cases, while the squares represent the “malignant” cases. As it
can be seen a very condensed cloud of points corresponding to the “benign” cases
appears at the bottom of all images, while a much more sparse cloud representing the
“malignant” cases occupies the rest of the map.

As it can be seen, the visualization obtained by the combination methods (Fig. 1
b,c,d, Fig.2 b,c,d) keeps the internal structure of the dataset, being able to
reproduce that structure with minor variations. The advantage of using an
ensemble (by bagging or boosting) is the added stability to the analysis. This
means that when dealing with few and scattered data points disposed over the input
space the ensemble of maps should be able to reconstruct the structure of the
dataset by combining the same “areas” of the different maps that compose the
ensemble. If there is an area where no neurons (or very few) were activated in one
map, but the neurons in the same position were activated in another map (because
those maps were trained in slightly different dataset), there will not be a blank
space (or very scattered disposition of neurons) in the resultant combination. This
can be easily seen in the “superposition” combination where each neuron
represents the data that activated that same neuron in all the maps of the ensemble.
The “superposition + re-labelling” makes possible to obtain a map with the same
main disposition but much reduced in complexity, as fewer neurons are now
represented. This can serve to eliminate some distortions that can appear when are
simply superposing all the maps in the ensemble, at cost of lower definition in the
representation. This is more obvious in the cancer dataset in Fig 2. The “fusion”
combination obtains very similar results to this second technique, as it follows the
same combination and then re-labelling idea. The only difference comes by the
criteria used to combine the neurons of each map. The classification accuracy
obtained in the experiments is shown in Tables 1 – 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

346 E. Corchado, B. Baruque, and H. Yin

Table 1. Percentage of correct recognition of samples of the Iris dataset using ensembles of 10
networks employing a 10-fold cross validation for the tests. All ensembles were trained using
the bagging meta-algorithm.

Model Best Single
Netwk.

Ensemble
(weighted voting)

Superp. Superp. +
ReLabelling

Fusion

SOM (5x5) 94% 97.33% 84% 94% 94.6%
SOM (10x10) 73.3% 97.3% 80.6% 82% 83.3%
SOM (20x20) 48.6% 90.6% 66.6% 69.3% 58%
ViSOM (10x10) 93.3% 92.6% 61.3% 87.3% 94%
ViSOM (20x20) 87.3% 97.3% 80.6% 89.3% 94%
ViSOM (30x30) 75.3% 94.6% 80.6% 82.6% 85.3%
ML-SIM (20x20) 75.3% 76% 45% 74% 76.6%

Table 2. Percentage of correct recognition of samples of the Iris dataset using ensembles of 10
networks employing a 10-fold cross validation for the tests. All ensembles were trained using
the AdaBoost.M2 meta-algorithm.

Model Best Single
Netwk.

Ensemble
(weighted voting) Superp. Superp. +

ReLabelling Fusion

SOM (5x5) 95.3% 97.3% 77.3% 90.6% 96.0%
SOM (10x10) 75.3% 95.3% 80.6% 83.3% 83.3%
SOM (20x20) 58% 90% 71.3% 71.3% 61.3%
ViSOM (10x10) 92% 94.6% 79.3% 97.3% 90.6
ViSOM (20x20) 86.6% 94.6% 86.6% 88.6% 88.6%
ML-SIM (20x20) 75.3% 77.3% 44% 79.3% 78.6%

Table 3. Percentage of correct recognition of samples of the Wisconsin Breast Cancer dataset
using ensembles of 10 networks employing a 10-fold cross validation for the tests. All
ensembles were trained using the bagging meta-algorithm.

Model Best Single
Netwk.

Ensemble
(weighted voting)

Superp. Superp. +
ReLabelling

Fusion

SOM (5x5) 97% 97% 89.4% 96.1% 96.2%
SOM (10x10) 93% 96% 93.4% 93.3% 94.7%
SOM (20x20) 77.6% 96% 83.4% 90% 82.4%
ViSOM (10x10) 94.1% 97% 96.1% 93.6% 94.4%
ViSOM (20x20) 80.9% 95.3% 92.3% 83% 84%
ViSOM (30x30) 77.3% 93.3% 91.7% 78.3% 79.6%
ML-SIM (20x20) 73.9% 94.5% 70.1% 85.7% 89.2%

Table 4. Percentage of correct recognition of samples of the Wisconsin Breast Cancer dataset
using ensembles of 10 networks employing a 10-fold cross validation for the tests. All
ensembles were trained using the AdaBoost.M1 meta-algorithm.

Model Best Single
Netwk.

Ensemble
 (weighted voting) Superp. Superp. +

ReLabelling Fusion

SOM (5x5) 96% 95.8% 93.8% 96% 96.7%
SOM (10x10) 91.6% 96.4% 94.3% 92.8% 94.5%
SOM (20x20) 79.6% 96.6% 94.4% 86.1% 89.3%
ViSOM (10x10) 85.4% 96.9% 93.8% 94% 93.6%
ViSOM (20x20) 84.9% 96.3% 95.1% 86.8% 87.7%
ViSOM (30x30) 77.9% 95.1% 93.3% 83.8% 84.5%
ML-SIM (20x20) 73% 95.4% 66.1% 87.2% 87.5%

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Boosting Unsupervised Competitive Learning Ensembles 347

There are several aspects worth of noting in relation with these experiments and
the results presented from Table 1 to Table 4. The most obvious one is that the best
model, both for visualization and for classification is the ViSOM. The second best
model is the SOM and the last one the ML-SIM. This was expected, taking into
account that the ViSOM was specially developed for data visualization while ML-
SIM was specially designed for working with radial-based datasets. The second
conclusion is that the amount of neurons composing the map is directly proportional
to the clarity and definition of the map, but inversely proportional to the classification
accuracy of the network.

Talking about the ensemble algorithms, it can be concluded that the visualization
capabilities of the models are slightly enhanced when using the simple superposition
technique, as more neurons are represented in only one map, although this can
sometimes make the data structures in the map a little less defined. On the contrary,
the classification side of the models is really benefited from the ensemble inclusion.
Even when the ensemble is constructed using networks of low classification accuracy
the ensemble is able to obtain a greater accuracy. This was expected from all the
previous work done in ensemble and classification. The combinations of the ensemble
networks into a unique one are far more dependant of the accuracy of the networks
employed to create them but still they manage to get a classification accuracy that is
most of the times equal or superior to the accuracy of the better network of the
ensemble, specially the superposition + re-labeling. This can be taken into account
when a unique, but more stable network is needed; both for classification and
visualization.

5 Conclusions and Future work

This study presents an interesting mixture of techniques for representation of multi-
dimensional data in 2-D maps. They are based in the combination of several maps
trained over slightly different datasets to form an ensemble of networks with self-
organizing capabilities. The training of the ensemble of networks has been tested by
using the bagging and boosting techniques for their comparison. The purpose of this
combination of maps is to avoid the overfitting and to improve the stability of
previously developed models based in unsupervised and competitive learning. They
can be especially useful when a reduced dataset is available. As an ensemble of maps
is impossible to represent, several different combination algorithms are proposed and
tested. They have been applied for the first time in the case of the ViSOM and
compared with the SOM and the ML-SIM performance. A novel ensemble
combination technique has also been presented, and tested in a very successfully way.
As an added effect, the classification capabilities of the models are also increased.
These techniques have been tested in two widely known real datasets. Future work
will include far exhaustive testing of the presented combination of techniques using
several more complex datasets, as well as adapting the present model to other novel
boosting meta-algorithms to check if more improvements can be obtained.

Acknowledgments

This research has been supported by the MCyT project TIN2004-07033.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

348 E. Corchado, B. Baruque, and H. Yin

References

1. Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)
2. Yin, H.: Data Visualisation and Manifold Mapping Using the Visom. Neural Networks 15,

1005–1016 (2002)
3. Corchado, E., Fyfe, C.: The Scale Invariant Map and Maximum Likelihood Hebbian

Learning. In: International Conference on Knowledge-Based & Intelligent Information &
Engineering System (KES) (2002)

4. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
5. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and

an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
6. Kohonen, T., Lehtio, P., Rovamo, J., Hyvarinen, J., Bry, K., Vainio, L.: A Principle of

Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)
7. Yin, H.: Visom - a Novel Method for Multivariate Data Projection and Structure

Visualization. Neural Networks, IEEE Transactions on 13, 237–243 (2002)
8. Corchado, E., MacDonald, D., Fyfe, C.: Maximum and Minimum Likelihood Hebbian

Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8,
203–225 (2004)

9. Fyfe, C., Corchado, E.: Maximum Likelihood Hebbian Rules. In: European Symposium on
Artificial Neural Networks (ESANN) (2002)

10. Kraaijveld, M.A., Mao, J., Jain, A.K.: A Nonlinear Projection Method Based on
Kohonen’s Topology Preserving Maps. Neural Networks, IEEE Transactions on 6, 548–
559 (1995)

11. Heskes, T.: Balancing between Bagging and Bumping. In: Advances in Neural Information
Processing Systems 9 - Proceedings of the 1996 Conference vol. 9, pp. 466–472 (1997)

12. Demiriz, A., Bennett, K.P., Shawe-Taylor, J.: Linear Programming Boosting via Column
Generation. Machine Learning 46(1-3), 225–254 (2002)

13. Schwenk, H., Bengio, Y.: Boosting Neural Networks. Neural Computation 12, 1869–1887
(2000)

14. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: International
Conference on Machine Learning, pp.148–156 (1996)

15. Gabrys, B., Baruque, B., Corchado, E.: Outlier Resistant PCA Ensembles. In: Gabrys, B.,
Howlett, R.J., Jain, L.C. (eds.) KES 2006. LNCS (LNAI), vol. 4253, pp. 432–440.
Springer, Heidelberg (2006)

16. Corchado, E., Baruque, B., Gabrys, B.: Maximum Likelihood Topology Preserving
Ensembles. In: Corchado, E., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS,
vol. 4224, pp. 1434–1442. Springer, Heidelberg (2006)

17. Kaski, S.: Data Exploration Using Self-Organizing Maps. Department of Computer
Science and Engineering. Helsinki University of Technology. Espoo, Finland (1997)

18. Petrakieva, L., Fyfe, C.: Bagging and Bumping Self Organising Maps. Computing and
Information Systems (2003)

19. Georgakis, A., Li, H., Gordan, M.: An Ensemble of SOM Networks for Document
Organization and Retrieval. In: Int. Conf. on Adaptive Knowledge Representation and
Reasoning (AKRR’05), p. 6 (2005)

20. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning
Databases. University of California, Irvine, Dept. of Information and Computer Sciences
(1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 349–359, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Using Fuzzy, Neural and Fuzzy-Neural Combination
Methods in Ensembles with Different Levels of Diversity

Anne M.P. Canuto and Marjory C.C. Abreu

Informatics and Applied Mathematics Department, Federal University of RN Natal,
RN - Brazil, 59072-970 Telephone:+55-84-3215-3813

anne@dimap.ufrn.br, marjory.abreu@gmail.com

Abstract. Classifier Combination has been investigated as an alternative to
obtain improvements in design and/or accuracy for difficult pattern recognition
problems. In the literature, many combination methods and algorithms have
been developed, including methods based on computational Intelligence, such
as: fuzzy sets, neural networks and fuzzy neural networks. This paper presents
an evaluation of how different levels of diversity reached by the choice of the
components can affect the accuracy of some combination methods. The aim of
this analysis is to investigate whether or not fuzzy, neural and fuzzy-neural
combination methods are affected by the choice of the ensemble members.

Keywords: Ensembles, Diversity in Ensembles, Fuzzy Sets, Neural Networks
and Fuzzy Neural Networks.

1 Introduction

In the literature, the use of multi-classifier system (MCS), also known as committees
or ensembles, has been widely used for several pattern recognition tasks. In the last
decade, for instance, a large number of papers [2,12] have proposed the combination
of multiple classifiers for designing high performance classification systems. Several
combination methods and algorithms have been developed in the literature, including
methods based on computational intelligence [5,9,15,16,18].

One of the most important steps in the design of a multi-classifier system (MCS) is
the choice of the components (classifiers). This step is very important to the overall
performance of a MCS since the combination of a set of identical classifiers will not
outperform the individual members. The ideal situation would be an ensemble that
should have diversity among its base classifiers. Diversity has been recognized as a
very important feature in classifier combination and has been addressed by several
authors, as in [11,13,17]. According to [4], there is a tendency to decrease diversity
when using ensembles with the same type of classifiers, when compared with
heterogeneous ensembles. In addition, in [4], it has been detected that some
combination methods are more sensible to variations of the choice of the ensemble
members than others.

In this paper, it is aimed to investigate the importance of the choice of the
components of an ensemble (ensemble members) in the accuracy of ensembles

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

350 A.M.P. Canuto and M.C.C. Abreu

combined by computational intelligence (CI-based) methods (fuzzy connectives,
neural networks and fuzzy neural networks). In order to do this, these combination
methods will be analyzed, when using ensembles with different levels of diversity
(variation in the ensemble members). As a result of this analysis, it is aimed to define
which combination methods are strongly affected by the choice of the ensemble
members.

2 Related Works

The use of Computational Intelligence (CI) as an aggregation (combination) tool
provides several advantages due to these methods can inherit several important
features of the CI methods. In the literature, some papers have proposed the
combination of multiple classifiers using CI-based combination methods, such as in
[2,4,5,8,9,15,16,18].

The use of neural networks as a combination method in an ensemble has been
widely used in the literature [2,4,18]. The most common neural network model used
as a combination method is Multi-layer Perceptron (MlP). In [18], for instance, an
investigation of MlP-based combiner applied to a neural-based ensemble was
presented. On the other hand, in [4], a MlP-based combiner was applied in a non-
neural ensemble.

The use of fuzzy connectives as a tool to combine the outputs of classifiers was
first proposed in [7]. Lately, some combination methods and algorithms based on
fuzzy sets have been developed in the literature [5,8,9,15,16]. In [9,15,16], some
fuzzy combination methods were compared with some non-fuzzy methods in
ensembles of classifiers. In [9], the authors studied the potential of fuzzy combination
methods for ensembles of classifiers designed by AdaBoost. The results involving
sums of ranks and statistical comparisons showed that, in general, fuzzy methods
fared better than non-fuzzy methods. In the literature, fuzzy neural network is rarely
used as a combination method in ensembles.

In [2], a MLP-based fuzzy neural network has been used as a combination method
and it has shown to overcome the accuracy of a MlP neural network and some fuzzy
combiners.

Unlike the aforementioned works, the main focus of this paper is not to analysis the
benefits, in terms of accuracy, of using CI-based combination methods in ensembles.
But it is aimed to analyze the influence of the choice of the ensemble members in the
accuracy of CI-based combination methods. As already mentioned, one of the most
important steps in the design of an ensemble is the choice of the components
(classifiers). In doing this analysis, it is aimed to help designers in the choice of the
individual classifiers and combination methods of an ensemble.

3 Ensembles

The goal of using ensembles is to improve the performance of a pattern recognition
system in terms of better generalization and/or in terms of increased efficiency and
clearer design [2,10]. There are two main issues in the design of an ensemble: the
ensemble components and the combination methods that will be used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Using Fuzzy, Neural and Fuzzy-Neural Combination Methods 351

With respect to the first issue, the correct choice of the set of base classifiers is
fundamental to the overall performance of an ensemble. The ideal situation would be
a set of base classifiers with uncorrelated errors - they would be combined in such a
way to minimize the effect of these failures. In other words, the base classifiers
should be diverse among themselves. Once a set of classifiers has been created, the
next step is to choose an effective way of combining their outputs. There are a great
number of combination methods reported in the literature [2,3,10]. According to their
functioning, there are in the literature, three main strategies of combination methods:
fusion-based, selection-based, and hybrid methods [10]. CI-based methods are
considered as fusion-based combination methods.

3.1 Diversity in Ensembles

As already mentioned, there is no gain in the combination (MCS) that is composed of
a set of identical classifiers. The ideal situation, in terms of combining classifiers,
would be a set of classifiers that present uncorrelated errors. In other words, the
ensemble must show diversity among the members in order to improve the
performance of the individual classifiers. Diversity can be reached in three different
ways:

• Variations of the parameters of the classifiers (e.g., varying the initial
parameters, such as the weights and topology, of a neural network model).

• Variations of the training dataset of the classifiers (e.g., the use of learning
strategies such as Bagging and Boosting or the use of feature selection
methods).

• Variations of the types of classifier (e.g., the use of different types of classifiers,
such neural networks and decision trees, as members of an ensemble - hybrid
ensembles).

In this paper, variations of the diversity are captured using different types of
classifiers and different parameters.

4 CI-Based Combination Methods

4.1 Neural Networks

This combination method employs neural networks to combine the output of the
classifiers. The neural network combiner (NNC) uses the output generated by each
classifier as its input. The input of the neural network combiner can contain either
only the top output or all the outputs of the classifiers. When used as a non-
confidence based method, only the outputs of the classifiers are used as input while
the confidence measures are included as input when used as a confidence based
method. Usually, the choice of the configuration for the NNC (number of layers,
number of neurons per layer, initial parameters) is performed in the same way as a
neural network model, through checking its performance for individual test cases.

In this paper, a MlP-based combination method will be used. In this method, only
the outputs of the classifiers will be used and a validation set is used to train the
neural network combiner.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

352 A.M.P. Canuto and M.C.C. Abreu

4.2 Fuzzy Neural Networks

As already mentioned, very little effort has been done to combine the output of
classifiers using fuzzy neural networks. In this paper, the fuzzy Multi-layer
Perceptron (F-MlP) proposed in [2] will be used as a combination method: As the
neural network combiner, all the outputs of the classifiers will be used as input for the
fuzzy neural combiner. Also, this combiner will be trained using a validation set.

This fuzzy multilayer perceptron clamps desired membership values to the output
nodes during the training phase instead of choosing binary values as in a winner-take-
all method. Then, the errors may be back-propagated with respect to the desired
membership values as the fuzzy desired output. In addition, this fuzzy Multi-layer
Perceptron added a parameter in the weight update equation. This parameter describes
the degree of ambiguity of a pattern during training and hence allows avoidance of a
situation where ambiguous patterns exert too great a degree of influence in the weight
updating process.

4.3 Fuzzy Connectives

The use of fuzzy connectives as a tool to combine the outputs of classifiers started to
be investigated in [7]. Since then, some fuzzy set connectives have been used for the
purpose of aggregation, which can vary from very simple connectives, such as: fuzzy
min or max, to more complex ones, such as: Zimmermann operators [19], fuzzy
integral [8,7], among others. The next subsections will describe some fuzzy
connectives that will be used in this paper, which are: fuzzy integral (Sugeno and
Choquet), Zimmermann operators as well as BADD defuzzyfication.

4.3.1 Sugeno Fuzzy Integral
The Sugeno integral combines objective evidence scores for a hypothesis with the
priori expectation (importance) of that evidence to the hypothesis. Assuming that: h:
X → [0,1] is a Ω-measurable function, the Sugeno fuzzy integral, ε, with respect to a
fuzzy measure μ over an arbitrary set X of the function h can be computed by:

)](),([minmax ,...,1 iiAxni AXh με ∉==

where: Ai = {x1, x2, ..., xi}; μ(A1) = μ1; μ(Ai) = μi + μ(Ai-1) + λμiμ(Ai-1) and h(x1) ≤ h(x2)
≤ ... ≤ h(xi)

In an intuitive way, fuzzy integral elements can be seen as: h(x) is the degree to

which the concept of h is satisfied by x;)(min xhAx∈ is the degree to which the

concept h is satisfied by all the elements in A;)(iAμ is the degree to which the

subset of objects A satisfies the concept measured by μ (densities of the elements of

the subset A);)(),(min iAx Axh μ∈ indicates the degree to which A satisfies both

the criteria of the measure μ and)(min xhAx∈ and max takes the largest value of

)(),(min iAx Axh μ∈ .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Using Fuzzy, Neural and Fuzzy-Neural Combination Methods 353

4.3.2 Choquet Integral
Unlike the Sugeno integral, the Choquet integral uses a measure which is additive. So
it is defined as:

∑
=

−−=
n

i

n
iii xhxh

1
1)]()([μρ

where:

Incorporating Choquet and Sugeno fuzzy integral as a combination method, X

corresponds to the set of classifiers, where each classifier xi produces a partial
evaluation (classifier’s outputs) for each class k in accordance to an input pattern A,
which are represented by hk(xi); μ is the importance (confidence) of each classifier for
each class. The class with the largest integral value is considered as the final decision.

4.3.3 Zimmermann and Zysno Operator
Zimmermann and Zysno have introduced the so-called γ-operators in [19]. It is a
compensatory operator and it can be defined as follows.

γγ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛= ∏∏
=

−

=

C

i
i

C

i
i xyxyxy

1

1

1

)(1(1)()(

where yi(xi) is the output of the ith classifier. The parameter γ controls the degree of
compensation between the union and intersection parts of the operator. If γ = 0, no
compensation is present, then it equals to the product and provides the truth values for
the connective and. If γ = 1, full compensation is present, then this formula equals the
generalized algebraic sum and provides the truth values for the connective or.

4.3.4 BADD
The BADD defuzzification strategy [18] assumes that data space is partitioned into L
overlapping regions and each classifier is associated with one of these regions.
Decisions from the classifiers are combined to the following rule:

∑

∑

=

=
⎟
⎠

⎞
⎜
⎝

⎛

=
L

i

z
i

L

i
i

z
i

xm

xyxm

xy

1

1

))((

)())((

)(

where z is a parameter, and m is the membership degree of given x in the ith region of
the data space. The membership degrees are calculated based on the Euclidian
distance between the weight vector and the input pattern.

5 Experimental Setting Up

In order to analyze the influence of the ensemble members in the accuracy of the CI-
based combination methods, an empirical comparison of ensembles using several

}),...,,({ 1 jii xxx +μ if i ≤ j
h(x0) = 0 and

⎩
⎨
⎧

=j
iμ

 0 otherwise

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

354 A.M.P. Canuto and M.C.C. Abreu

structures and sizes is performed. As it can be seen, all combination methods are
trainable methods. In order to define the training set of these combination methods,
approximately 10% of the instances of a database were taken out to create a validation
set. These combination methods were then trained using the validation set. All
methods were trained using a 10-fold cross validation method. Also, two different
databases are used in this investigation, which are described as follows.

 Database A: It is a protein database which represents a hierarchical classification,
manually detailed, and represents known structures of proteins. The main protein
classes are all-α, all-β, α/β, α+β and small. It is an unbalanced database, which has
a total of 582 patterns, in which 111 patterns belong to class all-α, 177 patterns to
class all-β, 203 patterns to α/β, 46 patterns to class α+β and 45 patterns to class
small.

 Database B: It is a primate splice-junction gene sequences (DNA) with associated
imperfect domain theory, obtained from [1]. A total of 3190 Instances using 60
attributes were used. These attributes describe sequences of DNA used in the
process of creation of proteins.

Among other aspect, in this experimental work, the impact of the size of the
ensembles and the types of its base classifiers are investigated. With respect to this
first issue, experiments were conducted using three different ensemble sizes, using 3,
5 and 7 base classifiers. The choice of a small number of classifiers is due to the fact
that diversity strongly affects the accuracy of ensembles when using less than ten
classifiers [10]. In this sense, it is believed that the accuracy of the combination
methods used in ensembles with few members is more sensitive to variations in the
ensemble members than using larger numbers of members. Regarding the second
aspect, seven different types of learning algorithms are used, which are: MLP (Multi-
layer Perceptron), Fuzzy MLP, K-NN (nearest neighbor), RBF (radial basis function),
SVM (Support Vector Machine), J48 decision tree and JRIP (Optimized IREP). The
choice of the aforementioned classifiers was due to the different learning bias that
they use during their functioning.

For each ensemble size, different configurations were used, some of them using
base classifiers built with the same type of learning algorithm (homogeneous
structures or non-hybrid systems - NH) and the remaining ones employed base
classifier generated with different learning methods (heterogeneous structures or
hybrid systems - HYB). In order to make the choice of the heterogeneous structures of
the ensembles more systematic, ensembles 3 (HYB 3), 5 (HYB 5) and 7 (HYB 7)
different types of classifiers were taken into consideration (for ensembles sizes 3, 5
and 7). As there are several possibilities for each hybrid structure, this paper presents
the average of the accuracy delivered by all possibilities of the corresponding hybrid
structure. In this way, it becomes easier to make a better analysis of the results.

All the classification methods used in this study, apart from Fuzzy MLP,
were obtained from the WEKA machine learning visual package
(http:\\www.cs.waikato.ac.nz/~ml/weka/). All combination methods were
implemented in Java language.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Using Fuzzy, Neural and Fuzzy-Neural Combination Methods 355

6 Results

Before starting the investigation of the accuracy of the ensembles, it is important to
analyze the accuracy of the individual classifiers. As already mentioned, variations of
the same classifiers were obtained using different setting parameters. As seven
variations of each classifier were used in this investigation, for simplicity reasons,
only the average accuracies of classifiers are shown in Table 1.

Table 1. Classifier accuracy (CA) and standard deviation (SD) of the Individual Classifiers

 K-NN SVM MLP F-MLP RBF DT JRIP

A 69.45±6.19 83.90±5.55 78.71±3.45 83.67±3.46 81.86±3.63 78.17±4.52 74.51±5.21
B 75.85±2.81 81.89±3.84 84.69±4.11 85.13±2.68 81.73±2.65 79.99±3.64 81.88±3.67

According to the average accuracy provided by the classifiers, it can be seen that all
classifiers have delivered a similar pattern of accuracy for both databases. The SVM
classifier has provided the largest accuracy for database A, while Fuzzy MLP has
delivered the largest accuracy for database B.

6.1 Ensembles with Three Base Classifiers

Table 2 shows accuracy and standard deviation of ensembles with three base
classifiers applied to both databases. In this Table, six different combination methods
were analyzed, in which four of them are fuzzy (Sugeno and Choquet integrals,
Zimmermann operators and BADD defuzzyfication), one Multi-layer Perceptron and
one Fuzzy Multi-layer Perceptron.

For each combination method, their performance using one type of classifier (non-
hybrid structure - NH) and three types of classifiers (hybrid structure – HYB 3) are
investigated. As already mentioned, values presented in Table 2 represents the
average accuracy and standard deviation of all possibilities. The third column of
Table 2 shows the difference in accuracy (Dif) delivered by the combination method
when varying the ensemble members. It is calculated by the difference between the
largest and the smallest accuracies. This value aims to define the variation in accuracy
when using different ensemble members. In this sense, the methods which have high
values of Dif have a strong variation when using different ensemble members. As a
consequence, it can be stated that they are strongly affected by the choice of the
ensemble members.

 Table 2. Accuracy (Acc) and standard deviation (SD) of Hybrid and Non-hybrid Ensembles
with three base classifiers

 Acc±SD Acc±SD Acc±SD Acc±SD
 NH HYB 3 Dif NH HYB 3 Dif

MlP 88.33±7.31 90.25±2.82 1.92 90.92±2.12 92.73±2.77 1.81
F-MlP 92.69±6.14 93.16±3.53 0.47 95.02±3.01 95.34±2.28 0.32
Choquet 94.74±2.98 93.17±2.34 1.57 95.36±2.48 95.47±2.56 0.11
Sugeno 95.28±3.24 95.66±3.62 0.38 91.23±2.33 92.33±2.13 1.10
BADD 95.36±3.26 95.48±3.14 0.12 94.89±2.66 94.67±2.33 0.22
Zimmermann 91.23±2.13 91.58±2.36 0.35 93.58±2.61 93.47±2.81 0.11

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

356 A.M.P. Canuto and M.C.C. Abreu

As it can be observed from Table 2, the accuracies of the ensembles were, on
average, larger than the corresponding individual classifiers. In analyzing the
accuracy of the combination methods, the largest accuracies delivered by all
combination methods were reached when using a hybrid structure (HYB 3), in most
of the cases.

Of the combination methods, the largest average accuracy (both databases) was
provided by ensembles combined by BADD, followed by Choquet, Fuzzy MlP,
Zimmermann, Sugeno and MlP.

When analyzing the difference in accuracy delivered by the combination methods,
the smallest difference was always reached by a fuzzy combination method. Finally,
the smallest average difference in accuracy (both databases) delivered by the
combination methods is reached by BADD (0.17), followed by Zimmermann (0.23),
Fuzzy MlP (0.4), Sugeno (0.74), Choquet (0.84) and MlP (1.87). Based on this result,
it is possible to state that ensembles with fuzzy combiners are less affected by
variations in the ensemble members than the neural combiner. Ensembles with fuzzy-
neural combiner are less affected by variations in the ensemble members than neural
ensembles and it is in a similar situation than fuzzy combiners.

6.2 Ensembles with Five Base Classifiers

Table 3 shows accuracy and standard deviation of ensembles with five base classifiers
applied to both databases. For each combination method, their accuracy using one
type of classifier (NH), three types of classifiers (HYB 3) and five types of classifiers
(HYB 5) will be investigated.

The accuracies of the ensembles were, on average, larger than the corresponding
ensembles with three base classifiers. As in the previous section, the largest
accuracies delivered by all combination methods were always reached when using the
totally hybrid structure (HYB 5), followed by the partial hybrid structure (HYB 3)
and by the non-hybrid structure (NH), for both databases.

Table 3. Accuracy (Acu) and standard deviation (SD) of Hybrid and Non-hybrid Ensembles
with five base classifiers

Ensembles with Five Base Classifiers
 MlP F-MlP Choquet Fuzzy BADD Zimmermann

NH 88.47±4.88 92.27±4.48 93.96±3.14 96.12±3.57 95.28±3.24 91.84±2.24
HYB3 89.19±2.56 93.61±3.9 95.74±2.67 96.33±3.49 95.66±3.62 91.37±2.53
HYB5 92.28±2.75 94.38±3.37 93.74±3.75 91.36±4.56 96.12±3.57 91.76±2.18

Dif 3.81 2.11 2.00 4.97 0.84 0.47
 Database B

NH 92.99±2.11 94.97±2.23 95.64±2.77 92.47±2.26 94.81±2.51 93.48±2.67
HYB3 93.45±2.35 95.33±2.19 95.74±2.99 92.56±2.28 95.12±2.39 93.86±2.69
HYB5 94.15±2.44 95.64±2.2 95.65±2.81 92.87±2.74 95.22±2.51 93.18±2.15

Dif 1.06 0.67 0.10 0.40 0.41 0.68

In relation to the fuzzy combiners, a similar scenario to the previous section
happened here, in which the largest accuracy was reached by the same fuzzy
combiner (BADD). Also, the smallest difference in accuracy was reached by a fuzzy
combiner (Zimmermann), although it is not the same combiner of the previous
section. In relation to the neural and fuzzy-neural combiners, the scenario was similar

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Using Fuzzy, Neural and Fuzzy-Neural Combination Methods 357

to the previous section, in which the neural combiner provided the worst accuracy and
the second largest difference in accuracy (it was the highest difference in the previous
section). In the same way, the fuzzy-neural combiner provided the third largest
accuracy and the fourth smallest difference in accuracy (it was the third smallest
difference in the previous section).

6.3 Ensembles with Seven Base Classifiers

Table 4 shows the accuracy and standard deviation of ensembles with seven base
classifiers applied to both databases. For each combination method, their accuracy
using one type of classifier (NH), three types of classifiers (HYB 3), five types of
classifiers (HYB 5) and seven types of classifiers (HYB 7) will be investigated.

The accuracies of the ensembles were, on average, larger than the corresponding
ensembles with five base classifiers. As in the prev99ious section, the largest
accuracies delivered by all combination methods were reached when using a totally
hybrid structure (HYB 7), followed by the two partially hybrid structures (HYB 5 and
HYB 3) and by the non-hybrid structure (NH).

Table 4. Accuracy (Acu) and standard deviation (SD) of Hybrid and Non-hybrid Ensembles
with seven base classifiers

Ensembles with Seven Base Classifiers
 MlP F-MlP Choquet Fuzzy BADD Zimmermann

NH 85.64±5.98 92.25±4.16 95.84±2.36 92.58±2.56 95.24±2.74 93.96±2.61
HYB3 86.55±2.59 92.48±2.33 95.86±2.69 92.33±2.74 96.49±2.19 93.15±3.61
HYB5 88.94±2.66 92.34±3.17 95.1±1.96 93.49±2.12 96.77±2.14 97.05±3.12
HYB 7 92.64±4.3 94.36±3.59 93.49±2.11 92.99±2.61 93.49±2.11 95.34±1.54

Dif 7.0 2.11 1.61 1.16 3.28 3.90
 Database B

NH 92.64±2.85 95.56±2.95 97.17±2.74 91.28±4.3 96.33±3.49 91.56±2.2
HYB3 94.04±2.53 95.8±2.59 91.74±2.94 91.89±4.91 91.36±4.56 91.26±2.66
HYB5 94.98±2.5 95.94±1.97 96.39±2.31 91.64±4.85 91.28±4.3 91.39±2.94
HYB 7 95.19±1.97 96.66±2.68 91.68±2.19 92.33±2.12 91.89±4.91 91.79±2.91

Dif 2.55 1.1 5.49 1.05 5.05 0.53

In relation to the fuzzy combiners, the largest accuracy was again reached by a
fuzzy combiner (Choquet), which is not the same of the previous sections. In this
context, the smallest difference in accuracy was again reached by a fuzzy combiner
(Sugeno), although it is not the same combiner of the previous sections.

There is an increase in the accuracy of the fuzzy-neural combiner, when compared
with ensembles with fewer members, reaching the second highest accuracy. In
addition, the fuzzy-neural combiner reached the third largest accuracy (similar to
ensembles with three base classifiers). In relation to the neural combiner, it had a
similar behavior than ensembles using fewer members.

7 Conclusion

In this paper, an investigation of different ensemble structures and sizes was
performed. The main aim of this paper was to investigate which combination methods

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

358 A.M.P. Canuto and M.C.C. Abreu

are strongly affected by the choice of the ensemble members. This investigation was
done using two different datasets. Through this analysis, it could be observed that the
largest accuracies were almost always reached by the hybrid structures, for all three
ensemble sizes analyzed. Of the combination methods, the largest average accuracy
was reached by ensembles combined by Fuzzy methods. In addition to this,
ensembles combined by neural network are more sensitive to variations in the
ensemble members (higher Dif values) than the fuzzy and fuzzy neural methods, for
all ensemble sizes. However, the use of fuzzy theory on a neural network model
(fuzzy MlP) was important to smooth this problem, making this type of ensemble
equally affected by variation in the ensemble members than the fuzzy combiners.

References

1. Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of
California, Department of Information and Computer Science, Irvine, CA (1998),
http://www.ics.uci.edu/~mlearn/MLRepository.html

2. Canuto, A.: Combining neural networks and fuzzy logic for applications in character
recognition. PhD thesis, University of Kent (2001)

3. Canuto, A.M.P., Oliveira, L., Xavier Jr., J., Santos, A., Abreu, M.: Performance and
Diversity Evaluation in Hybrid and non-hybrid Structures of Ensembles. In: 5th Int. Conf.
on Hybrid Intelligent Systems, pp. 285–290 (2005)

4. Canuto, A.M.P., Abreu, M., Oliveira, L.M., Xavier Jr., J.C., Santos, A.M.: Investigating
the influence of the choice of the ensemble members in accuracy and diversity of
selection-based and fusion-based methods for ensembles. Pattern Recognition Letters 28,
472–486 (2007)

5. Canuto, A.M.P., Fairhurst, M., Howells, G.: Fuzzy Connectives as a Combination Tool in
a Hybrid Multi-Neural System. Int. Journal of Neural Systems 13(2), 67–76 (2003)

6. Choquet, G.: Cooperation of modularized neural networks by fuzzy integral with owa
operators. Ann. Inst. Fourier 5, 131–295 (1953)

7. Cho, S.-B., Kim, J.H.: Multiple network fusion using fuzzy logic. IEEE Transactions on
Neural Networks 6(2), 497–501 (1995)

8. Czyz, J., Sadeghi, M., Kittler, J., Vandendorpe, L.: Decision fusion for face authentication.
In: Proc. First Int. Conf. on Biometric Authentication, pp. 686–693 (2004)

9. Grabisch, M.: Fuzzy integral in multicriteria decision making. Fuzzy Sets and Systems 69,
279–298 (1995)

10. Kuncheva, L.I.: ‘Fuzzy’ vs ‘Non-fuzzy’ in combining classifiers designed by boosting.
IEEE Transactions on Fuzzy Systems 11(6), 729–741 (2003)

11. Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. Wiley,
Chichester (2004)

12. Kuncheva, L., Whitaker, C.: Measures of diversity in classifier ensembles. M. Learning 51,
181–207 (2003)

13. Lemieux, A., Parizeau, M.: Flexible multi-classifier architecture for face recognition
systems. In: The 16th International Conference on Vision Interface (2003)

14. Shipp, C.A., Kuncheva, L.I.: Relationships between combination methods and measures of
diversity in combining classifiers. Inf. Fusion 3(2), 135–148 (2002)

15. Sugeno, M.: Theory of Fuzzy Integrals and its Applications. PhD thesis, Tokyo Institute of
Technology (1974)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Using Fuzzy, Neural and Fuzzy-Neural Combination Methods 359

16. Torres-Sospedra, J., Hernandes-Espinosa, C., Fernandes-Redondo, M.: A Comparison of
Combination Methods for Ensembles of RBF Networks. In: IJCNN 2005, pp. 1137–1141
(2005)

17. Torres-Sospedra, J., Hernandes-Espinosa, C., Fernandes-Redondo, M.: A Research on
Combination Methods for Ensembles of Multilayer Feedforward. In: IJCNN 2005, pp.
1125–1130 (2005)

18. Tsymbal, A., Pechenizkiy, M., Cunningham, P.: Diversity in search strategies for ensemble
feature selection. Inf. Fusion, Special issue on Diversity in MCSs 6(1), 83–98 (2005)

19. Verikas, A., Lipnickas, A., Malmqvist, K., Bacauskiene, M., Gelzinis, A.: Soft
Combination of neural classifiers: A comparative study. Pattern Recognition Letters 20,
429–444 (1999)

20. Zimmermann, H., Zysno, P.: Latent connectives in human decision making. Fuzzy Sets
and Systems 4, 37–51 (1980)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 360–369, 2007.
© Springer-Verlag Berlin Heidelberg 2007

SpikeStream: A Fast and Flexible Simulator of Spiking
Neural Networks

David Gamez

Department of Computer Science, University of Essex, Colchester, C04 3SQ, UK
daogam@essex.ac.uk

Abstract. SpikeStream is a new simulator of biologically structured spiking
neural networks that can be used to edit, display and simulate up to 100,000
neurons. This simulator uses a combination of event-based and synchronous
simulation and stores most of its information in databases, which makes it easy
to run simulations across an arbitrary number of machines. A comprehensive
graphical interface is included and SpikeStream can send and receive spikes to
and from real and virtual robots across a network. The architecture is highly
modular, and so other researchers can use its graphical editing facilities to set
up their own simulation networks or apply genetic algorithms to the
SpikeStream databases. SpikeStream is available for free download under the
terms of the GPL.

Keywords: Spiking neural networks, SpikeStream, event-based simulation,
synchronous simulation, biologically inspired robotics.

1 Introduction

SpikeStream is a new fast and flexible neural simulator with the following key
features:

• Written in C++ using Qt for the graphical user interface.
• Database storage.
• Parallel distributed operation.
• Sophisticated visualisation, editing and monitoring tools.
• Modular architecture.
• Variable delays.
• Dynamic synapses.
• Dynamic class loading.
• Live operation.
• Spike exchange with external devices over a network.

The first part of this paper outlines the different components of the SpikeStream
architecture and sets out the features of the GUI in more detail. Next, the performance
of SpikeStream is documented along with its communication with external devices.
The last part of this paper suggests some applications for SpikeStream, compares it
with other simulators and describes its limitations. Documentation and source code
for SpikeStream are available for free download at http://spikestream.sourceforge.net.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks 361

2 Architecture

SpikeStream is built with a modular architecture that enables it to operate across an
arbitrary number of machines and allows third party applications to make use of its
editing, archiving and simulation functions. The main components of this architecture
are a number of databases, the graphical SpikeStream Application, programs to carry
out simulation and archiving functions, and dynamically loaded neuron and synapse
classes.

2.1 Databases

SpikeStream is based around a number of databases that hold information about the
network model, patterns and devices. This makes it very easy to launch simulations
across a variable number of machines and provides a great deal of flexibility in the
creation of connection patterns. The SpikeStream databases are as follows:

• Neural Network. Each neuron has a unique ID and connections between neurons
are recorded as a combination of the presynaptic and postsynaptic neuron IDs. The
available neuron and synapse types along with their parameters and class libraries
are also held in this database.

• Patterns. Holds patterns that can be applied to the network for training or testing.
• Neural Archive. Stores archived neuron firing patterns. Each archive contains an

XML representation of the network and data in XML format.
• Devices. The devices that SpikeStream can exchange spikes with over the network.

These databases are edited by SpikeStream Application and used to set up the
simulation run. They could also be edited by third party applications - to create
custom connection patterns or neuron arrangements, for example - without affecting
SpikeStream’s ability to visualise and simulate the network.

2.2 SpikeStream Application

An intuitive graphical user interface has been written for SpikeStream (see Fig. 1)
with the following features:

• Editing. Neuron and connection groups can be created and deleted.
• 3D Visualisation. Neuron and connection groups are rendered in 3D using OpenGL

and they can be rotated, selectively hidden or shown, and their individual details
displayed. The user can drill down to information about a single synapse or view
all of the connections simultaneously.

• Simulation. The simulation tab has controls to start and stop simulations and vary
the speed at which they run. Neuron and synapse parameters can be set, patterns
and external devices connected and noise injected into the system.

• Monitoring. Firing and spiking patterns can be monitored and variables, such as the
membrane potential, graphically displayed.

• Archiving. Archived simulation runs can be loaded and played back.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

362 D. Gamez

Fig. 1. SpikeStream graphical user interface

2.3 SpikeStream Simulation

The SpikeStream simulator consists of a number of processes that are launched and
coordinated using PVM, with each process simulating an individual neuron group
using a combination of event-based and synchronous simulation based on SpikeNET
[7]. In common with synchronous simulations, the simulation period is divided into
steps with an arbitrarily small time resolution and each neuron group receives lists of
spikes from other layers at each time step. However, only the neuron and synapse
classes that receive a spike are updated, which substantially cuts down on the amount
of processing required. Since the main overhead is calculating the neurons’ state and
sending the spikes, the simulator’s update speed depends heavily on the level of
network activity and at high levels the performance becomes the same as a
synchronous simulator. In theory, SpikeStream’s run speed should be relatively
independent of the time step resolution, since the calculation of each time step is
efficient and the network should emit the same number of spikes per second
independently of the time step resolution. In practice, the setting of this value can
affect the number of spikes emitted by the network because higher values reduce the
number of spikes arriving during a neuron’s refractory period and alter the network
dynamics (see Table 2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks 363

One difference between SpikeStream and SpikeNET is that messages are sent
rather than requested at each time step, which cuts down the message passing by 50%
in a fully recurrent architecture. The spikes themselves are a compressed version of
the presynaptic and postsynaptic neuron IDs, which enables each spike to be uniquely
routed to an individual synapse class. Variable delays are created by copying emitted
spikes into one of 250 buffers and at each time step only the spikes in the current
buffer are sent. Unlike the majority of neural simulation tools, SpikeStream is
designed to operate in live as well as simulation time so that it can control real and
virtual robots in close to real time and process input from live data sources (see
section 4). Although SpikeStream is primarily an event-driven simulator, it can be run
synchronously to accommodate neuron models that generate spontaneous activity.

2.4 SpikeStream Archiver

During a simulation run, the firing patterns of the network can be recorded by
SpikeStream Archiver, which stores spike messages or lists of firing neurons in XML
format along with a simple version of the network model.

2.5 Neuron and Synapse Classes

Neuron and synapse classes are implemented as dynamically loaded libraries, which
makes it easy to experiment with different neuron and synapse models without
recompiling the whole application. Each dynamically loadable class is associated with
a parameter table in the database, which makes it easy to change parameters during a
simulation run. The current distribution of SpikeStream includes neuron and synapse
classes implementing Brader et al.’s STDP learning rule [3].

3 Performance

3.1 Tests

The performance of SpikeStream was measured using three networks based on the
benchmarks put forward by Brette et. al. [4]. The size and connectivity of these
networks is given in Table 1 and they were divided into four layers containing 80%
excitatory and 20% inhibitory neurons. At the beginning of each simulation run the
networks were driven by a random external current until their activity became self
sustaining and then their performance was measured over repeated runs of 300
seconds. A certain amount of fine tuning was required to make each network enter a
self-sustaining state that was not highly synchronized.

The neuron model for these tests was based on the Spike Response Model [11],
with the voltage Vi at time t for a neuron i that last fired at t̂ being given by:

∑∑ −Η−= −−

−
−

j
i

ttn

tt

f
iji tteewtV

m
im

f
j

)ˆ(')()ˆ(

)()(

τ
, (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

364 D. Gamez

where ωij is the synaptic weight between i and j, f is the last firing time of neuron j
and H’ is given by:

{ ρ<−≤∞=−Η)ˆ(0,
,1)ˆ(' ittif

otherwiseitt . (2)

For all networks the membrane time constant, τm, was set to 3, the refractory
parameters m and n were set to 0.8 and 3, the connection delay was set to 1 ms and
the absolute refractory period, ρ, was set to 3. Vi had a resting vale of 0 and when it
exceeded the threshold the neuron was fired and the contributions from previous
spikes were reset. The remaining neuron and synapse parameters are given in
Table 1.

Table 1. Size of test networks and their parameters

Parameter Small network Medium network Large network

Neurons 4000 10,000 19,880

Connections 321985 1,999,360 19,760,878

ωij (excitatory) 0.11 0.11 0.11

ωij (inhibitory) -1.0 -0.6 -0.6

Threshold 0.1 0.15 0.25

The first two networks were tested on one and two Pentium IV 3.2 GHz machines
connected using a megabit switch with time step values of 0.1 and 1.0 ms. The third
network could only be tested on two machines because its memory requirements
exceeded that available on a single machine. All of the tests were run without any
learning, monitoring or archiving.

3.2 Results

Fig. 2 plots the amount of time taken to simulate one second of biological time for
each of the test networks. In this graph the performance difference between 0.1 and
1.0 ms time step resolution is partly due to the fact that ten times more time steps
were processed at 0.1 ms resolution, but since SpikeStream is an event-based
simulator, the processing of a time step is not a particularly expensive operation. The
main cause of this speed up were changes in the networks’ dynamics brought about
by the lower time step resolution, which reduced the average firing frequency of the
networks by the amounts given in Table 2.

Table 2. Average firing frequencies in biological time at different time step resolutions

Time step resolution Small network Medium network Large network

0.1 ms 109 Hz 72 Hz 40 Hz

1.0 ms 79 Hz 58 Hz 30 Hz

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks 365

The differences in average firing frequency shown in Table 2 suggest that the
relationship between real and biological time needs to be combined with other
performance measurements for event-based simulators.

Fig. 2. Time taken to compute one second of
biological time for one and two machines
using time step resolutions of 0.1 and 1 ms

Fig. 3. Number of spikes processed per
second of real time for one and two machines
using time step resolutions of 0.1 and 1 ms

To address this issue, the number of spikes processed in each second of real time
was also measured and plotted in Fig. 3. This graph shows that SpikeStream can
handle between 800,000 and 1.2 million spike events per second on a single machine
and between 1.2 million and 1.8 million spike events per second on two machines - an
observation that should stay reasonably constant with different networks and activity
levels. Fig. 2 and Fig. 3 both show that the performance increased when the
processing load was distributed over multiple machines, but with network speed as a
key limiting factor, multiple cores are likely to work better than multiple networked
machines.1

4 External Devices

SpikeStream can pass spikes over a network to and from external devices, such as
cameras and real and virtual robots, in a number of different ways:

1. Synchronized TCP. Spikes are exchanged with the device at each time step and
both only move forward when they have received their spikes.

1 Brette et. al. [4] give the performance of other neural simulators on their benchmark networks,

which can be compared with the SpikeStream results in Fig. 2 and Fig. 3. It is worth noting
that the run time of a SpikeStream simulation is not affected by the speed of its databases.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

366 D. Gamez

2. Loosely synchronized UDP. Spikes are sent and received continuously to and from
the external device with the rate of the simulation controlled by the rate of arrival
of the spike messages.

3. Unsynchronized UDP. Spikes are sent and received continuously from the external
device. This option is designed for live work with robots.2

The main external device that has been used and tested with SpikeStream is the
SIMNOS virtual robot created by Newcombe [9]. SIMNOS is a humanoid robot with
an internal structure inspired by the human musculoskeletal system and it is simulated
in soft real time using Ageia PhysX [1]. Within this physics simulation environment
SIMNOS’ skeletal body components are modelled as jointed rigid bodies and its
muscles are modelled using spring-damper systems.

Visual data (available with a wide variety of pre-processing methods) and muscle
lengths and joint angles are encoded by SIMNOS into spikes using a selection of
methods developed by Newcombe [9] and passed across the network to SpikeStream
using synchronized TCP. SIMNOS also receives muscle length data from
SpikeStream in the form of spiking neural events, which are used to control the virtual
robot. Together SIMNOS and SpikeStream provide an extremely powerful way of
exploring sensory and motor processing and integration. More information about
SIMNOS is available at www.cronosproject.net.

5 Applications

5.1 General Application Areas

Some potential applications of SpikeStream are as follows:

• Biologically inspired robotics. Spiking neural networks developed in SpikeStream
can be used to process sensory data from real or virtual robots and generate motor
patterns. A good example of this type of work is that carried out by Krichmar et. al.
on the Darwin series of robots [12].

• Genetic algorithms. The openness of SpikeStream’s architecture makes it easy to
write genetic algorithms that edit the database and run simulations using PVM.

• Models of consciousness and cognition. Dehaene and Changeux [6] and Shanahan
[17] have built models of consciousness and cognition based on the brain that
could be implemented in SpikeStream.

• Neuromorphic engineering. SpikeStream’s dynamic class loading architecture
makes it easy to test neuron and synapse models prior to their implementation in
silicon. Initial work has also been done on enabling SpikeStream to read and write
AER events, which would enable it to be integrated into AER chains, such as those
developed by the CAVIAR project [5].

• Teaching. Once installed SpikeStream is well documented and easy to use, which
makes it a good tool for teaching students about biologically structured neural
networks and robotics.

2 This method of spike streaming has not been fully implemented in SpikeStream 0.1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks 367

5.2 Recent Experiments

SpikeStream is currently being used to develop a neural network that uses analogues
of imagination, emotion and sensory motor integration to control the eye movements
of the SIMNOS virtual robot. When this network is online it spontaneously generates
eye movements to different parts of its visual field and learns the association between
an eye movement and a visual stimulus using Brader et. al.'s [3] spike time dependent
learning rule. When it has learnt these associations, its emotion system is hardwired
so that blue objects inhibit motor output and visual input. This switches the network
into 'imagination' mode, in which it explores sensory motor patterns until it finds one
that positively stimulates its emotional system. This removes the inhibition, and
SIMNOS' eye is then moved to look at the red stimulus. This work is inspired by
other simulations of the neural correlates of consciousness, such as Dehaene and
Changeux [6] and Shanahan [17].3

6 Other Spiking Simulators

SpikeStream simulates biologically structured spiking networks of up to 100,000
neurons with each neuron treated as a point without the complex dendritic structure of
a biological neuron. This sets it apart from simulators, such as NEURON [16],
GENESIS [10] and NCS [15], that work with complex dendritic trees. SpikeStream
also differs from rate-based simulators, such as Topographica [19], and synchronous
simulators, such as NEST [8], which update all the neurons at each time step and
often run for a fixed period of simulation time. The spiking biological aspect of
SpikeStream also differentiates it from the many simulators written for conventional
neural networks, which are often trained by back-propagation and have input, output
and hidden layers.

The closest simulator to SpikeStream is Delorme and Thorpe’s SpikeNET [7]. This
simulator runs substantially faster than SpikeStream,4 but its extra performance comes
at the cost of a number of limitations These include a lack of synaptic delay, the fact
that each neuron can only fire once, a lack of recurrent connections, no graphical
interface, a simple and inflexible neural model and synaptic weights that are shared
between neurons in an array. All of these limitations were the motivation for creating
a new simulator based on the SpikeNET architecture that was more flexible and easier
to use.

SpikeStream also has similarities with SpikeSNNS [13], which is a spiking version
of the Stuttgart Neural Network Simulator. This was also influenced by SpikeNET,
but has a much slower performance and the SNNS interface is somewhat outdated and
difficult to use.

3 Videos of this network in operation are available at www.davidgamez.eu/videos/index.html.
4 SpikeStream can simulate 100,000 neurons firing at 1Hz in real time with 10 connections per

neuron and SpikeNET can simulate approximately 400,000 neurons firing at 1Hz in real time
with 50 connections per neuron. These measurements for SpikeNET were obtained using a
substantially slower machine and so the performance of SpikeNET would probably be at least
800,000 neurons per second firing at 1 Hz today.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

368 D. Gamez

Other spiking simulators include the Amygdala library [2] and Mvaspike [14],
which lack graphical interfaces and are not designed for robotic use, and the Spiking
Neural Simulator developed by Smith [18], which can simulate a spiking network for
a fixed period of time, but lacks many of the features included with SpikeStream.
With many of these simulators it would be possible to use parts of SpikeStream, for
example its graphical interface and database, to set up and run simulations on a
different simulation engine.

7 Limitations

The flexibility and speed of SpikeStream come at the price of a number of limitations,
some of which will be resolved in future releases of the software:

1. Neurons are treated as points. Each connection can have a unique delay, but there
is none of the complexity of a full dendritic tree.

2. The connection delay is a function of the time step, not an absolute value, and the
maximum number of time steps is limited to 250. This design was motivated by a
desire to keep the Connections table in the database as small as possible.

3. SpikeStream currently only works with rectangular layers of neurons. Although the
editing and visualisation have been partly extended to deal with three-dimensional
neuron groups, more work is required to enable three dimensional live monitoring.

4. Any two neurons can only have a single connection between them. This restriction
exists because the ID of each connection in the database is formed from a
combination of the presynaptic and postsynaptic neuron IDs.

8 Conclusion

This paper has outlined the architecture and performance of SpikeStream, which
can simulate medium sized networks of up to 100,000 neurons. This simulator is
modular, flexible and easy to use and can interface with real and virtual robots
over a network. SpikeStream is available for free download under the terms of the
GPL licence.

Acknowledgements

Many thanks to Owen Holland for feedback, support and advice about SpikeStream
and to the blind reviewers for their helpful comments and suggestions. The interface
between SIMNOS and SpikeStream was developed in collaboration with Richard
Newcombe, who designed the spike conversion methods. Thanks also to Renzo De
Nardi and Hugo Gravato Marques in the Machine Consciousness lab at Essex and to
everyone at the 2006 Telluride workshop. This work was funded by the Engineering
and Physical Science Research Council Adventure Fund (GR/S47946/01).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks 369

References

1. Ageia PhysX, http://www.ageia.com/developers/api.html
2. Amygdala simulator, http://amygdala.sourceforge.net/
3. Brader, J.M., Senn, W., Fusi, S.: Learning real world stimuli in a neural network with

spike-driven synaptic dynamics. Neural Computation (submitted, 2006)
4. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann,

M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschlaeger, T., Pecevski,
D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E.,
Davison, A.P., El Boustani, S., Destexhe, A.: Simulation of networks of spiking neurons:
A review of tools and strategies. J. Comp. Neurosci (in press)

5. CAVIAR project, http://www.imse.cnm.es/caviar/
6. Dehaene, S., Changeux, J.P.: Ongoing Spontaneous Activity Controls Access to

Consciousness: A Neuronal Model for Inattentional Blindness. Public Library of Science
Biology 3(5), e141 (2005)

7. Delorme, A., Thorpe, S.J.: SpikeNET: An Event-driven Simulation Package for Modeling
Large Networks of Spiking Neurons. Network: Computational in Neural Systems 14, 613–
627 (2003)

8. Diesmann, M., Gewaltig, M.-O.: NEST: An Environment for Neural Systems Simulations.
In: Macho, V. (ed.) Forschung und wissenschaftliches Rechnen, Heinz-Billing-Preis,
GWDG-Bericht (2001)

9. Gamez, D., Newcombe, R., Holland, O., Knight, R.: Two Simulation Tools for
Biologically Inspired Virtual Robotics. In: Proceedings of the IEEE 5th Chapter
Conference on Advances in Cybernetic Systems, Sheffield, pp. 85–90. IEEE Computer
Society Press, Los Alamitos (2006)

10. GENESIS simulator, http://www.genesis-sim.org/GENESIS/
11. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press,

Cambridge (2002)
12. Krichmar, J.L., Seth, A.K., Nitz, D.A., Fleischer, J.G., Edelman, G.M.: Spatial navigation

and causal analysis in a brain-based device modeling cortical-hippocampal interactions.
Neuroinformatics 3, 197–221 (2005)

13. Marian, I.: A biologically inspired computational model of motor control development.
MSc Thesis, Department of Computer Science, University College Dublin, Ireland (2003)

14. Mvaspike simulator, http://www-sop.inria.fr/odyssee/softwares/mvaspike/
15. NCS simulator, http://brain.cse.unr.edu/ncsDocs/
16. NEURON simulator, http://www.neuron.yale.edu/neuron/
17. Shanahan, M.P.: A Cognitive Architecture that Combines Internal Simulation with a

Global Workspace. Consciousness and Cognition 15, 433–449 (2006)
18. Spiking Neural Simulator, http://www.cs.stir.ac.uk/~lss/spikes/snn/index.html
19. Topographica Neural Simulator, http://topographica.org/Home/index.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking
Neural Networks

Yaochu Jin1, Ruojing Wen2, and Bernhard Sendhoff1

1 Honda Research Institute Europe
Carl-Legien-Str. 30, 63073 Offenbach, Germany

2 Department of Computer Science, University of Karlsruhe
Zirkel 2, 76131 Karlsruhe, Germany

Abstract. Evolutionary multi-objective optimization of spiking neural networks
for solving classification problems is studied in this paper. By means of a Pareto-
based multi-objective genetic algorithm, we are able to optimize both classifica-
tion performance and connectivity of spiking neural networks with the latency
coding. During optimization, the connectivity between two neurons, i.e., whether
two neurons are connected, and if connected, both weight and delay between the
two neurons, are evolved. We minimize the the classification error in percent-
age or the root mean square error for optimizing performance, and minimize the
number of connections or the sum of delays for connectivity to investigate the
influence of the objectives on the performance and connectivity of spiking neural
networks. Simulation results on two benchmarks show that Pareto-based evolu-
tionary optimization of spiking neural networks is able to offer a deeper insight
into the properties of the spiking neural networks and the problem at hand.

1 Introduction

Spiking neural networks (SNNs) are believed to be biologically more plausible [1,2] and
computationally more powerful than analog neural networks [3]. However, the compu-
tational power of SNNs has yet to be demonstrated, mainly due to the fact that an ef-
ficient supervised learning algorithm still lacks. In contrast to analog neural networks,
for which various sophisticated supervised learning algorithms have been developed [4],
only a very limited number of supervised learning algorithms are available for training
SNNs, which can be attributed to the discontinuous nature of spiking neurons.

SpikePop [5] is the first supervised learning algorithm that has been developed based
on the error backpropagation principle widely used in training analog neural networks.
However, SpikeProp has several weaknesses. First, the performance of the learning al-
gorithm is quite sensitive to parameter initialization. If a neuron is silent after initializa-
tion, no training is possible for the weights of its incoming connections. As a result, the
neuron will never be able to produce any spikes. Second, SpikeProp is only applicable
to latency-based coding. Third, SpikeProp works only for SNNs where neurons spike
only once in the simulation time. Fourth, SpikeProp has been developed for training the
weights only. To address these weaknesses, a few algorithms extending the SpikeProp
have been suggested [6,7,8].

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 370–379, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking Neural Networks 371

Both SpikeProp and its variants are gradient-based learning algorithms, where sim-
plifications have to be made to apply the gradient method. To resolve this problem
inherent to the SpikeProp learning algorithms, evolutionary algorithms [9,10], which
have shown to be very successful in training analog neural networks [11], have also
been employed for training spiking neural networks. For example, the connectivity and
the sign of the connectivity (the neuron is excitatory if the sign is positive and inhibitory
if negative) of a spike response model (SRM) [12] are evolved for vision-based robot
control using a genetic algorithm (GA). Similar work has been reported in [13] and
[14]. In [13], an adaptive GA is adopted to evolve the weights of the SRM model for
robot navigation, while in [14], a parallel deferential evolution has been employed to
evolve the weights of the SRM. Both weights and delays of an integrate-and-fire (IAF)
model with dynamic synapses [15] and a SRM are evolved using an evolution strat-
egy [16]. It is found that the performance of the SNNs are comparable to that of the
analog feedforward neural network on two benchmark problems.

Encouraged by the success of the Pareto-based approach to machine learning [17], this
work employs a Pareto-based multi-objective genetic algorithm to evolve the connectiv-
ity, weights and delays of the SRM. Different to single objective optimization, Pareto-
based multi-objective learning using multi-objective evolutionary algorithms [18] is able
to achieve a number of Pareto-optimal solutions rather than one single optimal solution.
By analyzing the trade-off between different learning objectives, such as the performance
and complexity, we are able to gain a deeper insight into the neural network model as
well as the problem to learn [19], by, e.g., identifying interpretable models and models
that can generalize on unseen data from the Pareto-optimal solutions.

Several objectives concerning learning performance and connectivity can be taken
into account in optimizing spiking neural networks for supervised learning such as
classification. In addition to minimizing the classification error, we can also minimize
the number of connections, or the total length of synaptic connections, which can be
replaced by the sum of the delays in the SNN, assuming that the delay between two
neurons is proportional to the connection length between them.

2 Spiking Neural Network Model

The spiking network model adopted in this work is the same as the one in [5], which
has a feedforward architecture consisting of neurons described by the SRM [12]. The
network architecture is shown in Fig. 1(a), where multiple synaptic terminals can exist
between two neurons, refer to Fig. 1(b). For clarity, we assume that the network has
only one output neuron.

Assume neuron k receives spikes from N pre-synaptic neurons that fire at time in-
stant tik . For the sake of simplicity, we assume each neuron emit at most one spike
during the simulation interval, though this is not a restriction from our evolutionary
learning method. The internal state of neuron k at time t, xk(t), which represents the
membrane potential, can be described by

xk(t) =
N∑

i=1

mi
∑

l=1

wl
ikyl

i(t), (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

372 Y. Jin, R. Wen, and B. Sendhoff

Connection consisting of multiple terminals

i

j

k

θ

dik
1

djk
1

d

wik
1

wik
m

wjk
1

wjk
m

t

i

j

dik
mi

m
jk

j

(a) (b)

Fig. 1. Feedforward spiking neural networks with multiple synaptic terminals between two neu-
rons (a) The feedforward architecture. (b) Two synaptic connections with multiple terminals.

where mi is the number of synaptic terminals between neurons i and k, wl
ik is the

synaptic strength, and yl
i(t) is the unweighted contribution of neuron i to neuron k

through the l-th synaptic terminal, which can be expressed by

yl
i(t) = ε(t − ti − dl

ik), (2)

where ε is a spike response function modeling the post-synaptic potential, ti is the firing
time of neuron i, and dl

ik is the synaptic delay of the l-th synaptic terminal. The spike
response function can be described as follows:

ε(t) =
{

t
τ e1− t

τ , if t ≥ 0
0, if t < 0

, (3)

where τ is the membrane potential decay time constant.
When the membrane potential of neuron k crosses a predefined threshold θ, it will

emit a spike. After firing, there is a refractory time during which no spikes can be
generated again. As we assumed that at most one spike will be generated during the
simulation interval, the refractory time is set to be larger than the simulation interval.

3 A Multi-objective Genetic Algorithm for Pareto Learning

Evolutionary algorithms (EAs) are well suited for Pareto-based multi-objective learn-
ing of spiking neural networks for several reasons. First, EAs do not require explicit
gradient information for updating weights, unlike most supervised learning methods.
Second, not only weights, but synaptic delays and connectivity of the network such as
the number of terminals between two neurons can also be evolved. Third, evolutionary
algorithms have shown to be very powerful for multi-objective optimization [18], thus
for multi-objective learning.

3.1 Genetic Representation of SNNs

In this work, a genetic algorithm using gray coding has been adopted. Each individual
consists of two chromosomes encoding a connection matrix and a weight matrix, re-
spectively. An element in the connection matrix (cik) is an integer equal to or greater

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking Neural Networks 373

than zero, representing the connectivity from neuron i to neuron k. We investigate both
single-terminal and multi-terminal synaptic connections. In case of single-terminal con-
nections, there is at most one connection between two neurons. There is no connection
from neuron i to neuron k if cik = 0. If cik > 0, then it represents the synaptic de-
lay between two neurons. In the multi-terminal case, cik > 0 represents the number
of terminals between two neurons, and the synaptic delays of the terminals range from
1tocik. The weight matrix (wik) encodes the strength of the connections between neu-
ron i and neuron j.

3.2 Objectives

Existing supervised learning algorithms for training spiking neural networks minimize
the error on training data only. In contrast, a multi-objective learning algorithm can
take into account more than one objective with respect to training performance as well
as the connectivity of the SNN. In this work, we adopt one of the two error functions,
i.e., either the root mean square error (RMSE) or the classification error in percentage,
to optimize the performance of the SNN. Besides, either the number of connections or
the sum of delays is minimized for optimizing the connectivity of the SNN.

3.3 Genetic Variations and Pareto-based Selection

The uniform crossover and bit-flip mutation are applied at a probability of pc and pm,
respectively, to evolve the connectivity and weights of the SNN. To select parent indi-
viduals for the next generation, we employ the crowded tournament selection method
proposed in NSGA-II [20]. First, the offspring and the parent populations are com-
bined. Then, a non-dominated rank and a local crowding distance are assigned to each
individual in the combined population. In non-dominated ranking, the non-dominated
solutions are found out and assigned a rank of 1. These solutions consist of the first
non-dominated front. After that, the non-dominated solutions with rank 1 are removed
temporarily from the combined population. Then, non-dominated solutions of the rest
individuals in the population are identified, which consist of the second non-dominated
front. A rank of 2 is assigned to these solutions. This procedure repeats until all indi-
viduals are assigned to a non-dominated front. In the next step, a crowding distance is
calculated for each individual with regard to the non-dominated front it belongs to. The
crowding distance of a solution is the distance between its two neighboring solutions
on the same non-dominated front in the objective space. A large distance is assigned to
the two boundary solutions on each non-dominated front. Here, the larger the crowding
distance is, the less crowded around the solution.

After non-dominated sorting and calculation of the crowding distance, selection be-
gins. During selection, two solutions are chosen randomly. The solution with the better
(lower) rank wins the tournament. If the two solutions have the same rank, the one with
the larger crowding distance wins. If two solutions have the same rank and the same
crowding distance, choose a winner randomly. This tournament procedure continues
until the parent population for the next generation is filled up.

A diagram of the multi-objective genetic algorithm for optimization of the connec-
tivity and weight of SNNs is shown in Fig. 2. The code of our algorithm is developed
within the SHARK environment [21].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

374 Y. Jin, R. Wen, and B. Sendhoff

Initialization

Evaluation

Loop

Parent

Offspring

Terminate
Combine parent
and offspring

Non−dominated

selection

sorting

Crowding distance

Crowded tournament

Uniform crossover

Bit−flip mutation

calculation

Evaluation

Fig. 2. A multi-objective GA for optimizing the connectivity and weights of SNNs

4 Empirical Studies

4.1 Experimental Setup

The multi-objective learning algorithm has been tested on two benchmark problems
from the UCI Machine Learning Repository, namely, the Wisconsin breast cancer diag-
nosis data set and the Prima Indian diabetes data set. The cancer data consists of 699
instances with 9 input attributes, and the diabetes data contains 768 examples with 8
inputs, all of which are normalized between 0 and 1. The output of both data sets is
either 0 or 1, meaning benign (negative) or malignant (positive). The data are divided
into training and test sets. Of the cancer data, 525 data pairs are used for training and
174 pairs for test. Of the diabetes data, 576 examples for training and 192 for test.

Temporal coding is used for both inputs and output, where the inputs are scaled
between 0 ms and 6 ms, and the outputs are normalized between 10 ms and 16 ms for
the cancer data, while for the diabetes data, the input is scaled between 0 ms and 16 ms,
and the output is set to 20 ms for negative cases and 26 for positive ones. For example,
given an input value of 0.1, a spike is generated at time 0.6 ms after the reference time.
For setting the reference time, an reference input is included in the network, which
serves as the clock, as in [5]. Thus, the number of input neurons equals the number of
attributes plus one. For an output value of 0, the output neuron should emit a spike at
time 16 ms, while for an output value of 1, the neuron should emit a spike at time 10
ms. The simulation period is set to 50 ms with a step-size of 0.1 ms, the membrane
potential decay time constant (τ) is set to 11, and the threshold θ is set to 1000.

Both parent and offspring populations consist of 100 individuals, each of which is
composed of two chromosomes, one representing the connectivity and the other the
weights. In the single-terminal case, each element of the connection matrix is repre-
sented by a 4-bit gray-coded string, which means that the value of the connectivity
elements is between 0 and 15. As mentioned in the previous section, a connection value
of 0 means that the two neurons are not connected, while a non-zero integer encodes
the delay in millisecond between the two neurons. In other words, the maximum delay

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking Neural Networks 375

the genetic algorithm can evolve is 15 ms. In the multi-terminal case, the 4-bit string
means that a minimum of zero to a maximum of 15 terminals exist between two neu-
rons. For example, if this value is zero, no terminals exist between the corresponding
two neurons. If this value is three, there are three terminals between the neurons, and
the synaptic delay of the three terminals is 1 ms, 2 ms, and 3 ms, respectively. Each
synaptic weight is encoded by a 10-bit gray-coded string that is initialized between -10
and 40. The maximum number of hidden neurons is set to 10.

The crossover probability is set to 0.6, and the mutation rate is set to be inversely
proportional to the total length of the chromosome. Each evolutionary optimization has
been run for 300 generations and the results are averaged over ten independent runs.

4.2 Results from Networks with Single-Terminal Connections

We first perform simulation studies for the cancer data when the network has single-
terminal connections. We consider four different objective setups, where the two ob-
jectives are: Number of connections and classification error (Case 1), number of con-
nections and root mean square error (RMSE) (Case 2), sum of delays and classification
error (Case 3), and sum of delays and RMSE (Case 4). The learning results for cases 1)
and 2) are presented in Fig. 3(a), where the asterisks denote the results for case 1) and

0 20 40 60 80
0

10

20

30

40

50

60

70

Number of connections

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

0 20 40 60 80
0

10

20

30

40

50

60

70

Number of connections

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

(a) (b)

Fig. 3. Results from 10 independent runs for Case 1 (denoted by asterisks), and Case 2 (denoted
by circles) from the cancer data. (a) Training, and (b) test.

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

Sum of delay

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

0 50 100 150 200 250 300 350
0

10

20

30

40

50

60

70

Sum of delays

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

(a) (b)

Fig. 4. Results from 10 independent runs for Case 3 (denoted by asterisks), and Case 4 (denoted
by circles) from the cancer data. (a) Training, and (b) test.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

376 Y. Jin, R. Wen, and B. Sendhoff

the circles the results for case 2). We can see from the figure that, different to single
objective learning, we obtain a number of non-dominated solutions in each run, which
trade the complexity against the performance. Besides, we note that smaller classifi-
cation errors have been obtained in case 1) than in case 2). This is also true on the
test data, refer to Fig. 3(b). In case the RMSE is used as the second objective, the al-
gorithm tends to obtain more complex networks. We also notice that there is a clear
knee point on the Pareto front, i.e., the classification error decreases rapidly when the
number of connections increases to about 5. After that, improvement in performance is
minor as the complexity further increases. Thus, the achievement of the non-dominated
front helps us to choose the most economic network for a given problem. Note that in
the figures, results from 10 independent runs are merged, thus some of the solutions
become dominated by others, though the results from different runs do not vary much.
The minimal classification error we obtained on the test data is 1.2%, which is a lit-
tle better than those reported in [5] and [16], where the test error is 1.8% and 2.4%,
respectively. Our results are also comparable to those of analog neural networks with
two hidden layers [22], where the mean classification error on the test data is 1.15%
and 2.87%, respectively, when direct connections between input and output nodes are
present or absent. In [22], the analog neural networks are trained by RPROP, which is a
very efficient gradient-based learning algorithm [23].

The results for case 3) and case 4) are given in Fig. 4. The performance of the
achieved non-dominated NNs is quite similar to cases 1) and 2). To get an impression
on the relationship between the two different measures for performance and connectiv-
ity, we re-plot the results of Fig. 3 and Fig. 4 in terms of RMSE in Fig. 5 and Fig. 6,
respectively. From the figures, the following observations can be made. First, it does
not make much difference whether RMSE or classification error is used for optimizing
the performance, neither does it, whether the number of connections or the sum of de-
lays is adopted for optimizing the connectivity. Second, in all cases, no overfitting has
occurred, which is of great interest compared to serious overfittings in analog networks
with high complexity [19].

Simulations have also been conducted for the diabetes data. For this data set, we
show only the results for Cases 1 and 2, refer to Fig. 7(a) for the training and Fig. 7(b)
for the test data. We note that for the diabetes data, the discrepancy between the results

0 20 40 60 80
0

5

10

15

20

25

30

35

40

Number of connections

R
M

S
E

0 20 40 60 80
0

5

10

15

20

25

30

35

40

Number of connections

R
M

S
E

(a) (b)

Fig. 5. Re-plots of the results from the cancer data for Case 1 (denoted by asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking Neural Networks 377

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Number of connections

R
M

S
E

0 10 20 30 40 50 60 70
0

5

10

15

20

25

30

35

40

Number of connections

R
M

S
E

(a) (b)

Fig. 6. Re-plots of the results from the cancer data for Case 1 (denoted by asterisks), and Case 2
(denoted by circles). (a) Training, and (b) test.

0 20 40 60 80
20

25

30

35

40

Number of connections

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

0 20 40 60 80
20

25

30

35

40

Number of connections

C
la

ss
ifi

ca
tio

n
er

ro
r

(%
)

(a) (b)

Fig. 7. Results from 10 independent runs from the diabetes data for Case 1 (denoted by asterisks),
and Case 2 (denoted by circles). (a) Training, and (b) test.

from different runs is much larger than that of the cancer data, which suggests that
the diabetes data is more difficult to classify than the cancer data. Since results on the
diabetes data using SNNs have not been reported elsewhere, we compare our results
with those in [22]. In that work, the mean classification error over 60 runs on the test
data is 25.83% when an analog network with two hidden layers are used. Thus, the
performance of the SNN is better than that of the analog neural network in some of the
runs are. Finally, similar to the cancer data, no serious overfitting has been observed for
the diabetes data as the complexity of the network increases.

4.3 Results from Networks with Multi-terminal Connections

We now discuss briefly the results on SNNs with multiple terminals between two con-
nections. The results for the cancer data are presented in Fig. 8, where the number
of connections and the classification error are minimized. Since there can be multi-
ple terminals between two neurons, the number of connections becomes much smaller
than the single terminal cases, though the performance on the training and test data is
similar.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

378 Y. Jin, R. Wen, and B. Sendhoff

0 2 4 6 8 10 12
0

10

20

30

40

50

60

70

Number of connections
C

la
ss

ifi
ca

tio
n

er
ro

r
(%

)

Fig. 8. Results on the cancer data from SNNs with multiple terminals. Asterisks denote the train-
ing data and circles the test data.

5 Conclusion

In this paper, we suggest a method for optimizing the performance and connectivity of
SNNs using a Pareto-based genetic algorithm. Compared to existing supervised learn-
ing algorithms for SNNs, the Pareto-based approach considers both learning perfor-
mance and connectivity of the SNNs without aggregating the two objectives. Either the
RMSE or classification error has been minimized for optimizing the performance, and
either the number of connections or the sum of delays has been minimized for optimiz-
ing connectivity.

One main merit to use the Pareto-based learning is that we can obtain a number of
Pareto-optimal solutions that trade off performance against complexity. By exploiting
the tradeoff solutions, we are able to gain an insight into the learning properties of
SNNs, e.g., the minimal complexity needed for a given problem. Besides, we are able
to investigate whether overfitting occurs when the complexity of the network increases.
In our study, no overfitting has been observed, no matter how high the complexity of
the network is. This is a very interesting finding, however, further experiments must be
performed to confirm this observation.

No conclusion can be made on whether the RMSE or classification error should be
used for classification. We have also shown that complexity of the SNNs are comparable,
when the number of connections or the sum of delays is used to optimize connectivity.

One of the future work is to compare SNNs using other coding schemes than tem-
poral coding and to consider SNNs that can emit multiple spikes within the simula-
tion time. In addition, studying the relationship between functionality and connectivity
of large scale spiking networks using sophisticated network simulation software like
NEST [24] is our further research target.

References

1. Thorpe, S.J., Delorme, A., Van Rullen, R.: Spike-based strategies for rapid processing. Neu-
ral Networks 14(6-7), 715–726 (2001)

2. Bohte, S.M.: The evidence for neural information processing with precise spike-timing: A
survey. Natural Computing 3(2), 195–206 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Evolutionary Multi-objective Optimization of Spiking Neural Networks 379

3. Maass, W.: Networks of spiking neurons: The throd generation of neural network models.
Neural Networks 10(9), 1659–1671 (1997)

4. Reed, R.D., Marks II, R.J.: Neural Smithing - Supervised Leanring in Feedforward Artificial
Neural Networks. MIT Press, Cambridge (1999)

5. Bohte, S.M.: Error-backpropagation in temporally encoded networks of spiking neurons.
Neurocomputing 48, 17–37 (2002)

6. Booij, O., Nguyen, H.: A gradient decent rule for spiking neurons emiiting multiple spikes.
Information Processing Letters 95(6), 552–558 (2005)

7. Schrauwen, B., Van Campenhout, J.: Extending SpikeProp. In: IJCNN, pp. 471–476 (2004)
8. Schrauwen, B., Van Campenhout, J.: Backpropagation for population-temporal coded spik-

ing neural networks. In: IJCNN, pp. 3463–3470 (2006)
9. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley, Reading (1989)
10. Schwefel, H.-P.: Evolution and Optimum Search. John Wiley, Chichester (1994)
11. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447

(1999)
12. Gerstner, W.: Time structure of the activity in neural networks models. Physical Re-

view 51(1), 738–758 (1995)
13. Hagras, H., et al.: Evolving spiking neural network controllers for autonoumous robots. In:

IEEE Intternational Conference on Robotics and Automation, vol. 5, pp. 4620–4626. IEEE
Computer Society Press, Los Alamitos (2004)

14. Pavlidis, N.G., et al.: Spiking neural network training using evolutionary algorithms. In:
IJCNN, pp. 2190–2194 (2005)

15. Tsodyks, M., Pawelzik, K., Markram, H.: Neural networks with dynamic synapses. Neural
Computation 10, 821–835 (1998)

16. Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking
neural networks. Soft Computing 11, 239–248 (2007)

17. Jin, Y. (ed.): Multi-Objective Machine Learning. Springer, Heidelberg (2006)
18. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester

(2001)
19. Jin, Y., Sendhoff, B.: Pareto-based multi-objective machine learning: An overview and case

studies. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews (accepted, 2007)

20. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II. In: Parallel Problem Solving from Na-
ture, vol. VI, pp. 849–858 (2000)

21. http://shark-project.sourceforge.net/
22. Prechelt, L.: Proben1 - A set of neural network benchmark problems and benchmark rules.

Technical report, Falkutät für Informatik, Universität Karlsruhe (1994)
23. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropgation learning: The

RPROP algorithm. In: IEEE International Conference on Neural Networks, vol. 1, pp. 586–
591. IEEE Computer Society Press, Los Alamitos (1993)

24. http://www.nest-initiative.org/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://shark-project.sourceforge.net/
http://www.nest-initiative.org/

Building a Bridge Between Spiking and Artificial Neural
Networks

Florian Kaiser and Fridtjof Feldbusch

University of Karlsruhe
CES – Chair for Embedded Systems

Karlsruhe, Germany
{fkaiser,feldbusch}@ira.uka.de

Abstract. Spiking neural networks (SNN) are a promising approach for the de-
tection of patterns with a temporal component. However they provide more pa-
rameters than conventional artificial neural networks (ANN) which make them
hard to handle. Many error-gradient-based approaches work with a time-to-first-
spike code because the explicit calculation of a gradient in SNN is - due to the
nature of spikes - very difficult. In this paper, we present the estimation of such
an error-gradient based on the gain function of the neurons. This is done by in-
terpreting spike trains as rate codes in a given time interval. This way a bridge
is built between SNN and ANN. This bridge allows us to train the SNN with the
well-known error back-propagation algorithm for ANN.

1 Introduction

Neural networks are a mainstream tool within machine learning for solving classifi-
cation and regression problems. They provide very good results for pattern detection
on static input like objects in pictures. Spiking neurons are biophysical models of real
neurons that exchange information via spikes. Coming from biology, spiking neural
networks (SNN) give rise to high expectations for pattern detection on input with a tem-
poral component like speech. However learning in SNN is a difficult task. First, there
is the number of different parameters that have to be adjusted like weight and delay
of synapses, threshold, membrane time constant, etc. Second, there is the difficulty to
compute an error-gradient due to spike trains. A good overview of different approaches
is given in [1]. Often [2,3,4] learning algorithms use the ’time-to-first-spike’ code be-
cause here the spike time of a single spike is a continuous function of time and thus an
error-gradient can be used for learning.

In this paper we approach learning in SNN from a rate code view and we present
an estimation of the error-gradient based on a gain function. Furthermore we use the
well known error gradient back-propagation algorithm [5] to train a multilayer feed-
forward SNN. To derive the algorithm, we need to know - speaking in terms of ANN -
what the base and transfer function of the SNN is. If we use the term activity instead of
spike rate, both functions together are known as the gain function of a neuron. The gain
function depends on the model describing the spiking neuron. In our work, we use the
Spike Response Model (SRM) [6] with an abstract epsilon kernel.

Our aim for the future is to learn the number of spikes in a sequence of time intervals
and thus to reintroduce time into the code.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 380–389, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Building a Bridge Between Spiking and Artificial Neural Networks 381

2 The Neuron Model

As neuron model we use a variant of the simplified Spike Response Model SRM0 [6]
without the linear response to externally induced currents known as κ0 kernel. The ε0
kernel describes the post-synaptic potentials (PSP), the η0 kernel the re-polarization
(reset) and hyper-polarization (relative refractory period).

ui (t) =
∑

tf
i

η0

(
t − tfi

)
+

∑

j

wij

∑

tf
j

ε0

(
t − tfj − dij

)
(1)

The spike times of the post-synaptic neuron i are denoted by tfi , the pre-synaptic ones
by tfj . The axonal and synaptic delay between neurons j and i is described by dij , the
synaptic strength by wij . In contrast to the SRM0 described in [6], we use the sum of
the η kernel over all past fire times tfi and not just the last fire time.

The neuron i fires a spike if its current potential ui, the sum over all kernels, exceeds
the threshold ϑi.

t = tfi ⇔ ui (t) ≥ ϑi (t)

After firing the neuron is reset (see below) and enters an absolute refractory state, where
it can not fire again for some time Δarp. This is modeled by setting the threshold to
infinity for this period.

ϑi (t) =

{
∞ if 0 < t < Δarp

ϑ0 otherwise

Mind that it is possible, if Δarp = 0 and the membrane potential is high enough, that
the neuron fires two or more spikes at exactly the same time. Gerstner and Kistler [6]
prevents this by the additional requirement for firing ∂ui(t)

∂t ≥ 0. We however prevent it
by setting Δarp > 0.

As PSP we use the exponential function

ε0 (t) = exp
(

−t

τm

)

θ (t)

where τm is the membrane time constant and θ the Heaviside function. An example for
a similar shaped ε kernel can be found in [7]. This simple definition of the PSP makes
the derivation of the gain function in section 3 easier.

For the η0 kernel, we use the fixed threshold interpretation according to [6] resulting
in the subtraction of a reset potential ureset from the membrane potential ui.

η0 (t) = −ureset exp
(

−t

τm

)

θ (t)

When ureset > ϑi the neuron has a relative refractory period, because in this case more
incoming spikes (or PSP) are required to trigger a spike again after firing. The reset
”decays” over time like the PSP. Usually this is parameterized by the time constant
τrecov. In our model we choose τrecov = τm. This is not necessary for the derivation of
the gain function, but as before it makes the derivation easier. In the following we refer
to the time constant as τ instead of τm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

382 F. Kaiser and F. Feldbusch

3 The Gain Function

The gain function of a neuron describes its output spike rate according to some input
activity. We define the input activity as the spike count n in a certain time interval T .

Before starting to develop the gain function we have to discuss the computation mode
of the neurons. According to König [8] a neuron can operate in two ways: As integrator
or as coincidence detector. This behavior is defined by the membrane time constant τ .
For instance if τ is much smaller than the inter-spike interval then the neuron only fires
a spike if enough spikes arrive at the more or less same time. On the opposite side if
τ is larger than the inter-spike interval the exact timing of the spikes does not matter.
The neuron is then sensitive to activity but looses its role as coincidence detector. Since
we want the spiking neurons to be sensitive to the activity, we have to do the following
fuzzy simplifications leading to a loss of timing information. This information has to be
reintroduced later.

Simplification. The computation mode of the neuron is integration only.

Or in other words, the membrane time constant τ has to be high enough.
With this in mind the first step in developing the gain function is to rewrite the func-

tion describing the membrane potential u (see eq. (1)) to use the spike count instead of
spike trains. Because the spike count n says nothing about the spike distribution, we
make the following simplification.

Simplification. All spikes have the same distance Δisi = T/n to their neighbors. A
spike train s is then given by s = { 1

2Δisi + k · Δisi|k = 0, . . . , n − 1}.

Additionally and without loss of generality we set the synaptic delay to zero, dij = 0.
With the simplifications above and using geometric series, the temporal summation of
all PSP from a synapse can be written as follows:

∑
tf
j
ε0

(
t − tfj

)
=

∑
tf
j

exp
(

− t−tf
j

τi

)

= exp
(

− t−Δisi
j (nj− 1

2)
τi

)
∑nj−1

f=0 exp
(

− fΔisi
j

τi

)

geo
= exp

(

− t−Δisi
j (nj− 1

2)
τi

)
1−exp

�
−njΔisi

j
τi

�

1−exp
�
−Δisi

j
τi

�

= exp
(

− t−(T− 1
2 Δisi

j)
τi

)
1−exp

�
− T

τi

�

1−exp
�
− T

njτi

� .

(2)

The indices i and j refer to the post- and pre-synaptic neurons. The same transformation
can be applied to the sum of η kernels. The geometric series can clearly be seen in
Figure (1).

With this transformation and for t = T , equation (1) can then be rewritten as

ui(T)=−ureset exp(−1
2

Δisi
i

τi
)

1 − exp(− T
τi

)

1 − exp(− T
niτi

)
+

∑

j

wij exp(−1
2

Δisi
j

τi
)

1−exp(−T
τi

)

1−exp(− T
njτi

)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Building a Bridge Between Spiking and Artificial Neural Networks 383

t

u

maximum

geometric series

added up ε kernels

Fig. 1. Sum of equidistant ε kernels. The maximum line (··) denotes the limit of the local maxima
for infinite many spikes. The right part on the right side of equation (2) describes the maxima of
the added up ε kernels (–), while the left part the decrease between such two maxima. The maxima
lie on the geometric series function (--).

and with the approximations gotten from limit analysis

a
1
2n

1 − a
1
n

≈ − 1
ln (a)

n , 0 < a < 1 (3)

1
1 − a

1
n

≈ − 1
ln (a)

n +
1
2

, 0 < a < 1 (4)

and Δisi = T/n further simplified to

ui (T)
(3)
≈ −ureset

1−exp(−T/τi)
T/τi

ni +
∑

j wij
1−exp(−T/τi)

T/τi
nj

(4)
≈ −ureset

1
1+ 1

2
T
τi

ni +
∑

j wij
1

1+ 1
2

T
τi

nj .
(5)

Equation (5) can now easily be solved for the output spike count ni. However, ni de-
pends not only on the input spike counts nj but on the membrane potential ui of the
neuron as well. To get rid of the membrane potential we have to do several estimations.

Let us temporarily assume, that all PSP are excitatory, the reset potential is equal to
the threshold and that the absolute refractory period is small enough to ensure that the
neuron is not refractory at time T. Then the following conditions hold:

ui (T) ≥ 0 (6)

ui (T) < ϑi (7)

Based on these conditions and given the input activities nj , we can compute an upper
and a lower bound for the output activity ni

ui (T) ≥ 0 ⇔ ni ≤
∑

j

wij

ureset
nj

ui (T) < ϑ ⇔ ni > − ϑi

ureset

(

1 +
1
2

T

τi

)

+
∑

j

wij

ureset
nj

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

384 F. Kaiser and F. Feldbusch

However, to give a good estimation based on these boundaries and to minimize the
average failure, we choose as gain function the function

ni = −1
2

ϑi

ureset
i

(

1 +
1
2

T

τi

)

+
∑

j

wij

ureset
i

nj (8)

that lies exactly in the middle between those bounds.
In practice there will be inhibitory PSP, arbitrary reset potentials and non-equidistant

distributed spikes. Hence we have to discuss their effects. Reset potentials greater than
the threshold and inhibitory PSP behave nearly in the same way as excitatory PSP ac-
cording to equation (2), but with a reversed algebraic sign. With inhibitory PSP and
larger reset potentials, condition (6) and its associated upper bound can not strictly be
uphold, because the membrane potential ui can of course be smaller than zero. This
would mean, that ni is negative. However, since ni can not be smaller than 0, this situa-
tion is easy to deal with. A further problem is the timing of inhibitory PSP, because they
only have an effect on succeeding PSP, not preceding ones. In the case that all excitatory
PSP take place at the beginning of an interval and the inhibitory ones at the end, this
would lead to false approximation of ni. The effect of non-equidistant spikes is a timing
problem as well and analytical hard to grasp too. However, the simulated output ni of a
neuron where inhibitory PSP, arbitrary reset potentials and non-equidistant distributed
spikes were used, shown in Figure 2, indicate that the approximation (8) of the gain
function is quite robust. Mind that the assumption about the computation mode is still
uphold.

Speaking in terms of artificial neural networks, equation (8) describes a linear base
function (LBF) quite similar to the one used in sigmoidal neurons. Artificial neurons

0 10 20 30 40 50
0

10

20

30

40

50

Modeled Output Spikecount

S
im

ul
at

ed
 O

ut
pu

t S
pi

ke
co

un
t

Whiskers
Quartiles
Median

Fig. 2. Simulated spike count of the output neuron vs. modeled spike count according to equation
(8). Five input neurons were connected to one output neuron. The parameters were randomly
chosen to match equation (8) for a given ni. The simulation results are given as ”continuous”
box plot. The whiskers were set for 2.75 · inter-quartile range so that the number of outliers is
less then 5%. The input spikes were randomly distributed in a T = 200 time interval. Further
parameters: Input spike rate nj ∈ [1, 50], j = 1 . . . 5, membrane time constant τ ∈ [20, 200],
threshold ϑ ∈ (0.5, 1.5), reset potential ureset ∈ (0.5, 2.0) and synaptic weight wij ∈ [−2, 2].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Building a Bridge Between Spiking and Artificial Neural Networks 385

also have a squashing function often called transfer function. Here, this is implemented
by the absolute refractory period Δarp. For a given time interval T and a Δarp, the
maximum spike rate can not exceed

⌊
T

Δarp

⌋
+1. The result is a saturated limited function

as squashing function.

4 The Back-Propagation Algorithm

The back-propagation algorithm developed in the following is an online version of the
gradient descent error back-propagation algorithm proposed by [5].

Given a training example
(
tin, tout

)
, an output spike rate nout from the simulation and

the error function E (tout, nout), a parameter is adapted in the opposite direction of the
error gradient ∂E

∂param

paramnew = paramold − ηparam
∂E

∂param
(9)

where ηparam is the learning rate. The error gradient for neuron i is computed as

∂E

∂parami

= δi
∂ neti

∂parami

(10)

with

δi =
∂s

∂ neti

⎧
⎨

⎩

2(nout
i −tout

i)
nmax

, if i output neuron
∑

k∈succ(i) δk
wki

ureset
k

, otherwise
(11)

neti is the net (or base) function of neuron i according to equation (8), s the squashing
function, nout

i and ni the output after the transfer function and tout
i the desired target

output. The division by the maximal possible output rate nmax normalizes the back-
propagated error.

Before computing ∂ neti

∂parami
and the resulting changes, we use the transformations

ûreset
i =

1
ureset

i

and τ̂i =
T

τi

to avoid problems with nonlinear changes and complicated derivatives. Now, we get the
formulas

∂ neti

∂wij
= ûreset

i nj (12)

∂ neti

∂ûreset
i

= −1
2
ϑi

(

1 +
1
2
τ̂i

)

+
∑

j

wijnj (13)

∂ neti

∂τ̂i
= −1

4
ϑiû

reset
i (14)

∂ neti

∂ϑi
= −1

2
ûreset

i

(

1 +
1
2
τ̂i

)

(15)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

386 F. Kaiser and F. Feldbusch

that allow us to compute error gradient for a specific parameter according to equa-
tion (10).

As the net function, eq. (8), indicates we have to normalize the resulting error gra-
dients with nmax to make the training independent of the chosen coding range. This
normalization of the net function is additional to the normalization of the error in equa-
tion (11). After computing the changes ureset

i and τi have to be transformed back again.
In contrast to the back-propagation algorithm in ANN the presented algorithm adapts

not only synaptic weights wij but other neural parameters (ûreset
i , τ̂i and ϑi) of the SRM

as well.

5 Experimental Setup

The benchmark suite PROBEN1 [9] was used for the test of the back-propagation algo-
rithm. PROBEN1 is a collection of revised benchmarks from the UCI Machine Learning
Repository consisting of classification and regression problems.

Input attributes of a benchmark problem can be real-valued, integer-valued, ordinal,
nominal or even missing. Luckily in PROBEN1 each input data is already overhauled
to fit a coding range of [0, 1]. For the rate coding SNN the input and output data had to
be rescaled to fit a coding range [0, nmax] based on spike counts. Since spike counts are
integer-valued the scaled data were rounded. We set nmax to 25. The spikes in the spike
trains were equidistant distributed.

To test the classification performance we chose three different problems: The ”Wis-
consin breast cancer” (cancer), ”Pima Indian diabetes” (diabetes) and ”splice junction”
(gene) problem.

In the cancer problem a diagnosis of breast cancer has to be made based on 9 real-
valued inputs. The benchmark consists of 699 examples where 65.5% of the examples
are benign. The diabetes problem deals with the diagnosis of diabetes of Pima Indians
based on 8 real-valued inputs. It consists of 768 examples where 65.1% are diabetes
positive. In the last classification problem gene, the job is to detect intron/exon bound-
aries in nucleotide sequences of length 60. There are three classification outcomes:
Intron/exon (donor), exon/intron (acceptor) and none. Each nucleotide is a 4-valued
nominal attribute, therefore each example has 120 binary inputs. The benchmark con-
sists of 3175 examples where 25% are donors and 25% are acceptors.

For the purpose of cross-validation to prevent over-fitting, the data for each bench-
mark problem was split in three disjoint sets for training, validation and test. The train-
ing set got 50% of the data and the validation and test set each 25%. Where the data
size was not divisible by 4 the training and validation set were prioritized.

In his paper about PROBEN1 L. Prechelt used the RPROP back-propagation algo-
rithm [10] to train the networks. However in this case it makes no sense to use RPROP,
because all neural and synaptic parameters except the weights can not be negative. The
adaptation would only depend on the back-propagation term δi which is the same for
all parameters of a given neuron. Therefore we used the simple back-propagation algo-
rithm described in the previous section in equation (9). The learning rates were set to
ητ = 1, ηw = 0.01, ηϑ = 1 and ηureset = 0.01. Further the domains were restricted to
(0, ∞) for τ and [0.5, 1.5] for ureset and ϑ to keep these parameters in reasonable ranges.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Building a Bridge Between Spiking and Artificial Neural Networks 387

Table 1. Classification results for networks with shortcuts. Rows with white background show
the results for the SNN, rows with gray background the results reported in [9]. Architecture:
network topology input-hidden1-. . . -hiddenN-output, error: error function of the best run, class.:
related classification error, epochs: range of epochs over 10% best runs.

Architecture Validation Test Epochs
error class. error class.

cancer1 9-4-2-2 3.90 2.29 2.82 1.15 92 - 111
[9] 1.53 1.71 1.05 1.15 75 - 205
diabetes1 8-2-2-2 20.24 33.33 22.59 37.50 3 - 36
[9] 15.07 19.79 16.47 25.00 65 - 525
gene1 120-2-3 8.03 11.08 8.63 13.24 1 - 11
[9] 9.71 12.72 10.11 13.37 30 - 1245

Table 2. Classification results for networks w/o shortcuts. Explanation from Table 1 applies.

Architecture Validation Test Epochs
error class. error class.

cancer1 9-4-2-2 4.64 4.00 2.83 2.87 13 - 28
[9] 1.89 - 1.32 1.38 116 ± 123
diabetes1 8-2-2-2 23.10 36.98 22.93 36.46 3 - 44
[9] 15.93 - 16.99 24.10 201 ± 119
gene1 120-2-3 14.91 47.23 14.87 46.78 2 - 13
[9] 8.19 - 8.66 16.67 124 ± 53

Table 3. Classification results for networks w/o hidden layers. Explanation from Table 1 applies.

Architecture Validation Test Epochs
error class. error class.

cancer1 9-2 12.41 4.57 10.16 6.32 7 - 17
[9] 2.91 - 3.52 2.93 129 ± 13
diabetes1 8-2 20.18 32.81 22.35 36.46 4 - 36
[9] 16.30 - 17.22 25.83 209 ± 50
gene1 120-3 8.10 11.34 8.39 12.48 1 - 11
[9] 9.58 - 9.92 13.64 47 ± 6

We used the mean squared error (MSE) as error function. The learning stopped after
maximal 300 epochs or if for ten epochs no new best validation error was achieved. In
[9] a ”generalization loss” criterion was applied instead. However in this case it led to
premature stops, so the simpler stopping criterion above was chosen.

The net topologies were taken from [9]. We tested three different types of multilayer
feed-forward topologies for each benchmark. One topology with all possible shortcuts,
one without any shortcut and the last without any hidden layers at all (linear network).

To get reliable results we performed 60 runs for each experiment.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

388 F. Kaiser and F. Feldbusch

Fig. 3. Break-up of a spike count on a time interval in several smaller spike counts. For infinites-
imal small time intervals one get the single spikes.

6 Results and Discussion

The classification results are shown in Tables 1 to 3. The column ”Architecture” de-
scribes the layer topology including input and output layer. For instance the neural
network with shortcuts for the cancer classification problem (Table 1) has two hidden
layers. For the validation set there are two columns in the tables. One for the validation
error computed by the MSE function depending on the number of spikes and one for the
classification error in percent on the validation set. Only the results for the best run are
shown where the best run is the one with the best validation error. The same description
holds for the test set. The last column shows the range of the training epochs of the 10%
best results over the 60 runs. The shown epochs are short by 10 because the stopping
criterion is considered.

The tables show a mixture of successful and failed classification results compared
to the benchmark results from PROBEN1. For instance, the linear network and the
network with shortcuts perform on the gene benchmark even better than the ANN in
PROBEN1. However, the neural network without shortcuts utterly fails on this bench-
mark. Then, why did some classifications fail? The approximation of the gain function
can not be the only reason. First because there are successful classifications, e.g. the
cancer problem on the NN with shortcuts. And secondly, because there are successful
classifications on the linear neural network and the neural network without shortcuts. So
the reason can not be the error back-propagation over several layers based on a skewed
error provoked by the approximation. Looking at the number of training epochs, poorly
chosen training parameters ηparam and initialization of network parameters seems more
plausible. Whether this guess is correct or not is part of our current research.

7 Conclusion

In this paper we showed an approximation of the gain function of a simplified ver-
sion of the Spike Response Model as used by an other group [7]. Based on this gain
function a spiking neural network was trained under the assumption that information
is encoded by rate or frequency of spikes. This approach allowed the usage of an error
back-propagation algorithm for the training.

The results showed that this approach for learning works in principle. However there
are some open questions. For instance, how does a different discretization, a conse-
quence of a different chosen absolute refractory period, affect the learning and clas-
sification performance? How much contributes the approximation error to the training
error? What are good training parameters and initialization values? Can this approach
applied to other neuron models like the Leaky-Integrate-&-Fire Model as well? To find
the answer to these questions is the goal of our future work.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Building a Bridge Between Spiking and Artificial Neural Networks 389

The project does not end here however. Even the possible improvements of the back-
propagation algorithm will result in quite rough estimations of the position of single
spikes due to used rate coding. To achieve better estimations of exact positions of spikes
we have to bring time back in game. Our idea is to split up the single interval where
spikes are counted in a sequence of smaller intervals. The result is a sequence of spike
rates and, if the intervals get small enough, even single spikes (see Figure 3). If we
consider the synaptic delays we will get a neural network similar to time-delayed neural
networks (TDNN) [11] but based on spiking neurons. For TDNN there already exists
a back-propagation algorithm [12] that does not unfold the network like Waibel et al.
[11] did. Combining our findings with this algorithm, the result will be a powerful back-
propagation algorithm for the estimation of neural and synaptic parameters.

References

1. Kasinski, A., Ponulak, F.: Comparison of supervised learning methods for spike time coding
in spiking neural networks. Int. J. of Applied Mathematics and Computer Science, University
of Z.Gora 16, 101–113 (2006)

2. Bohte, S.M., Poutre, H.L., Kok, J.N.: Error-backpropagation in temporally encoded networks
of spiking neurons. Neurocomputing 48, 17–37 (2002)

3. Belatreche, A., Maguire, M.M.L.P., Wu, Q.X.: A method for supervised learning of spiking
neural networks. In: Proc. of IEEE Cybernatics Intelligence - Challenges and Advances, pp.
39–44. IEEE Computer Society Press, Los Alamitos (2003)

4. Ruf, B., Schmitt, M.: Learning temporally encoded patterns in networks of spiking neurons.
Neural Processing Letters 5, 9–18 (1997)

5. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating
errors. Nature 323, 533–536 (1986)

6. Gerstner, W., Kistler, W.: Spiking Neuron Models. Cambridge University Press, Cambridge
(2002)

7. Marian, I.: A biologically inspired model of motor control of direction. Master’s thesis, De-
partment of Computer Science, University College Dublin (2002)

8. König, P., Engel, A.K., Singer, W.: Integrator or coincidence detector? the role of the cortical
neuron revisited. Trends in Neuroscience 19, 130–137 (1996)

9. Prechelt, L.: Proben1 - a set of neural network benchmark problems and benchmarking rules.
Technical report, Fakultät für Informatik, Universität Karlsruhe (1994)

10. Riedmiller, M., Braun, H.: Rprop - a fast adaptive learning algorithm. Technical report,
Fakultät für Informatik, Universität Karlsruhe (1992)

11. Waibel, A., Hanazawa, T., Hilton, G., Shikano, K., Lang, K.J.: Phoneme recognition using
time-delay neural networks. IEEE Transactions on Acoustics, Speach, and Signal Process-
ing 37, 328–339 (1989)

12. Wan, E.A.: Finite impulse response neural networks for autoregressive time series prediction.
In: Weigend, A., Gershenfeld, N. (eds.) Proceedings of the NATO Advanced Workshop on
Time Series Prediction and Analysis, Santa Fe, NM, May 14-17, 1993, Addison-Wesley,
Reading (1993)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking
Neural Networks

Lakshmi Narayana Panuku and C. Chandra Sekhar

Department of Computer Science and Engineering,
Indian Institute of Technology Madras, Chennai 600 036, India

{panuku,chandra}@cs.iitm.ernet.in

Abstract. In this paper, we study the clustering capabilities of spiking neural
networks. We first study the working of spiking neural networks for clustering lin-
early separable data. Also, a biological interpretation has been given to the delay
selection in spiking neural networks. We show that by varying the firing thresh-
old of spiking neurons during the training, nonlinearly separable data like the ring
data can be clustered. When a multi-layer spiking neural network is trained for
clustering, subclusters are formed in the hidden layer and these subclusters are
combined in the output layer, resulting in hierarchical clustering of the data. A
spiking neural network with a hidden layer is generally trained by modifying the
weights of the connections to the nodes in the hidden layer and the output layer
simultaneously. We propose a two-stage learning method for training a spiking
neural network model for clustering. In the proposed method, the weights for the
connections to the nodes in the hidden layer are learnt first, and then the weights
for the connections to the nodes in the output layer are learnt. We show that the
proposed two-stage learning method can cluster complex data such as the inter-
locking cluster data, without using lateral connections.

1 Introduction

Spiking neural networks (SNNs) are a class of ANNs that is increasingly receiving
the attention as both a computationally powerful and biologically plausible mode of
computation [1] [2]. SNNs model the precise time of the spikes fired by a neuron, as
opposed to the conventional neural networks which model only the average firing rate
of the neurons. It is proved that the neurons that convey information by individual spike
times are computationally more powerful than the neurons with sigmoidal activation
functions [3]. In particular, a computational model in which the values of the input
variables are represented by the explicit times at which action potentials occur, rather
than by the firing rates of neurons, has been proposed [4]. This model has successfully
been used to give simple interpretation to mammalian olfactory systems.

In [5], a Hebbian based learning mechanism has been proposed for SNNs with multi-
delay paths between neurons in adjacent layers. This learning mechanism has been
observed to select the connections with matching delays. This approach was extended in
[6] by considering the firing times, and a learning algorithm that performs unsupervised
clustering was proposed. This model encodes the input patterns in the delays of its
synapses and is shown to reliably find the centers of clusters in high dimensional spaces.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 390–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking Neural Networks 391

However, this method is limited in both cluster capacity as well as precision. Bohte et
al. [7], presented a method for encoding the input data to enhance the precision, capacity
and clustering capability of a network of spiking neurons similar to [6] in a flexible and
scalable manner. With such encoding, it has been shown that SNNs are able to form
clusters at low cost in terms of neurons while enhancing capacity and precision. By
extending the network to multiple layers and adding lateral excitatory connections with
a self-organizing map like learning rule, it has been shown that correct clustering of
nonlinearly separable data such as the interlocking cluster data can be achieved.

In this paper, we first give a biological interpretation to the working of SNNs, while
presenting our studies on clustering linearly separable data. When an SNN with multiple
delay paths between neurons in adjacent layers is trained to cluster linearly separable
data, the Hebbian based winner-takes-all learning rule is observed to select the appro-
priate delays by driving the weights of those delay terminals to wmax and the weights
of the remaining delay terminals to 0. This observation is in agreement with the fact
that, in biological neural networks different axonal connections will have different sig-
nal transmission delays [8]. This observation also re-emphasizes the studies made by
Gerstner et al. [5], on the auditory system of barn owl, where the unsupervised Heb-
bian learning rule selects connections with matching delays from a broad distribution
of axons with random delays. When an SNN with fixed threshold units (as in [7]) is
trained to cluster the nonlinearly separable data like the ring data and the interlock-
ing cluster data, all the examples have been clustered into one group. We propose a
model in which the threshold of a spiking neuron is initialized to a small, positive value
and is increased gradually as the learning proceeds until it reaches a maximum value.
It is demonstrated that the proposed method properly clusters the ring data. When a
three-layer SNN is trained to cluster the ring data, it is observed that a multi-layer SNN
with a suitable choice of neurons in the layers could perform hierarchical clustering. By
decreasing the neuronal population for subsequent layers, hierarchical clustering with
decreasing granularity is achieved. A three-layer SNN with lateral connections in the
hidden layer is trained in [7] for clustering the interlocking cluster data. We propose,
a two-stage learning method to cluster the interlocking cluster data without using lat-
eral connections , there by gaining computational advantage over [7]. In general, in a
multi-layer SNN all the layers are trained simultaneously. In the proposed method the
layers are trained sequentially. The performance of these two methods for clustering the
interlocking cluster data is studied.

This paper is organized as follows: The architecture of a spiking neural network with
multiple delay connections is described in Section 2. The learning rule for clustering
and the encoding mechanism for converting the real valued inputs into time vectors are
also presented in this section. Clustering of linearly separable data using the population
encoding and the SNN model is described in Section 3. In Section 4, an adaptive thresh-
old based method is proposed for clustering the nonlinearly separable data. The results
of the proposed method on the ring data and the interlocking cluster data are presented.
Section 5 discusses the hierarchical clustering capabilities of the multi-layer SNN and
a two-stage learning method, and presents the results for clustering the interlocking
cluster data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

392 L.N. Panuku and C.C. Sekhar

2 Networks of Spiking Neurons with Multiple Delay Connections

The spiking neural network architecture consists of a fully connected feedforward net-
work of spiking neurons with connections implemented as multiple delayed synaptic
terminals, as shown in Fig. 1(a). A connection from pre-synaptic neuron i to post-
synaptic neuron j consists of a fixed number of synaptic terminals. Each terminal serves
as a subconnection that is associated with a different delay and weight. The delay dk

of a synaptic terminal k is the difference between the firing time of the pre-synaptic
neuron, and the time when the post-synaptic potential (PSP) resulting from terminal k
starts raising.

The time varying impact of the pre-synaptic spike on a post-synaptic neuron is de-
scribed by a spike response function, ε(.), also referred to as the PSP. A neuron j in the
network generates a spike when the value of its internal state variable xj , the “mem-
brane potential”, crosses a threshold ϑ. The internal state variable xj(t) is defined as
follows:

xj(t) =
∑

i∈Γj

m∑

k=1

wk
ij ε

(
t − ti − dk

)
(1)

where Γj is the set of pre-synaptic neurons for the neuron j, m is the number of synaptic
terminals between the neurons i and j, wk

ij is the weight of the kth synaptic terminal
between the neurons i and j, and ti is the firing time of the pre-synaptic neuron i. The
time at which xj(t) crosses the threshold ϑ with a positive slope is the firing time of the
neuron j, denoted by tj .

2.1 Learning

For clustering, the weights of the terminals of the connections between the input neu-
rons and the winning neuron, i.e., the output neuron that fires first, are modified using
a time-variant of Hebbian learning. The learning rule for the weight wk

ij of the synaptic
terminal with delay dk is as follows:

Δwk
ij = ηL(Δt) = η

[
(1 − b) exp

(
−(Δt − c)2/β2) + b

]
, (2)

where Δt denotes the time difference between the onset of PSP at the kth synaptic
terminal, tPSP , and the firing time of the winning neuron, tj , i.e, Δt = tPSP − tj =
(ti + dk) − tj . The parameter c determines the position of the peak, b determines the
negative update given to a neuron for which Δt is significantly different from c and
β sets the width of the positive part of the learning function (Fig. 1(b)). The weights
are limited to the range 0 to wmax, the maximum value that a weight can take. For
a connection, the number of consecutive delayed synaptic weights that are positively
reinforced is determined by the parameter β.

2.2 Encoding

When the input variables are continuous valued attributes, it is necessary to encode
the values of an input variable into firing times of neurons in the input layer of SNN.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking Neural Networks 393

�
�
�

�
�
�

���
���
���
���

���
���
���
���

�
�
�

�
�
�

�
�
�
�

i

j

j

i

1d+it

t i d+ m

wij
1

wij
m

1 J

1 I

Input Layer

Output Layer

b

L(Δt)

Δtc

β

0

(a) (b)

1

T
4

T
6

T
5

T
3

t=0

t=9

T(a)=[NF, NF, 9, 1, 0, 8, NF,NF]

f(a) 2 3 4 5 76 8

threshold

a Value of Variable

(c)

Fig. 1. (a) Architecture of a spiking neural network. (b) Learning function L(Δt). (c) Encoding
an input variable with value a into firing times, T (a), using overlapping GRFs.

Bohte et al. [7], proposed the population coding method that encodes an input variable
using multiple overlapping Gaussian receptive fields (GRFs). Each GRF has a center
and a width. Let the value of an input variable be a. The activation value of the GRF
with center μ and width σ is given by

f(a) = exp
(
−(a − μ)2/(2 ∗ σ2)

)
(3)

The firing time of the neuron associated with this GRF is inversely proportional to f(a).
In our experiments the firing time of an input neuron is in the range 0 to 9. For a highly
stimulated GRF, with value of f(a) close to 1.0, the firing time t = 0 is assigned. When
the activation value of the GRF is small, the firing time t is high indicating that the
neuron fires later. The firing times of the neurons associated with different GRFs for an
input variable with the value a are shown in Fig. 1(c). The population coding is helpful
in increasing the distance between the encoded time vectors associated with the input
data, and hence the separability of the clusters in the data. For multi-dimensional data,
the value of each input variable is encoded separately.

The range of values for each input variable is determined. Each of the input vari-
ables is encoded using GRFs covering the range of values for that variable. For a range
[Imin...Imax] of a variable, n(> 2) GRFs are used. For the ith GRF, the center of
the Gaussian is set to μ = Imin + ((2i − 3)/2)((Imax − Imin)/(n − 2)). One GRF
is placed outside the range at each of the two ends. The width of the GRF is set to
σ = (1/γ)((Imax − Imin)/(n − 2)), where γ controls the extent of overlap between
the GRFs. By decreasing the width of the receptive field and increasing the number of
GRFs, narrow clusters can also be separated.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

394 L.N. Panuku and C.C. Sekhar

While converting the activation values of GRFs into firing times, a threshold has
been imposed on the activation value. A receptive field that gives an activation value
less than this threshold will be marked as not-firing (NF) and the corresponding input
neuron will not contribute to the post-synaptic potential.

For clustering the data with different scales (i.e., data containing wide and nar-
row clusters), GRFs with different widths have been used for encoding. This tech-
nique is called multi-scale encoding. The width σt of the narrow Gaussians is set to
(1/γ)(Imax − Imin)/(n − 2), with γ = 1.5. The width σb of the broad Gaussians
is set to (1/γ)(Imax − Imin)/(n + 1), with γ = 0.5. The narrow Gaussians are dis-
tributed as outlined earlier. The broad Gaussians are all evenly placed with their cen-
ters inside the respective data ranges, with the center of the ith Gaussian placed at
Imin + i.((Imax − Imin)/(n + 1)).

3 Clustering of Linearly Separable Data Using SNN

To understand how the Hebbian based winner-takes-all learning selects the matching
delays, an SNN with multiple delay connections has been trained to cluster two lin-
early separable clusters. The data is encoded with three Gaussians along the x-axis and
three Gaussians along the y-axis, resulting in a six dimensional encoded time vector,
as shown in Fig. 2(a). The encoded time vectors for some randomly selected examples
are shown in Table 1. An SNN having six input neurons, two output neurons and nine
delay connections (with 1 milli-second resolution) has been trained to cluster the data.
The resulting weights of the multi-delay connections from the first three input neurons
(i1, i2, i3) to the two output neurons (j1, j2) are shown in Fig. 2(b).

Let us consider the input neurons i1, i2, and i3. The observations can be extended to
i4, i5, and i6. Input neuron i2 fires first for the points belonging to cluster1 and also
for the points belonging to cluster2, providing no discriminatory information. Hence
the final weight distributions of the connections from i2 to both the output neurons are
similar (see Fig. 2(b)). For the points of cluster1, i1 fires earlier than i3 and for the
points of cluster2, i3 fires earlier than i1. After training, this pattern is seen in the final
weights of the connections, resulting in proper clustering of the data.

In biological neural networks, the signal transmission delays occur because con-
siderable portions of the axons are very fine myelinated or unmyelinated. Therefore,
the signal transmission delays are different for different axonal connections [8]. From

Table 1. Encoded firing time vectors for some examples

Cluster Example No. i1 i2 i3 i4 i5 i6

1 3 1 8 5 0 8
1 2 4 1 8 5 0 7

3 3 1 8 3 1 NF
4 8 1 3 8 1 4

2 5 8 1 3 8 1 3
6 NF 1 3 8 0 4

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking Neural Networks 395

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

i2i1 i3

i4

i5

i6

cluster1

cluster2

(a)

output neuron j1 output neuronj2

input neuron i1

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

i1

cluster1

cluster2

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delay

W
eig

ht
s

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delay

W
eig

ht
s

W
min

WW

W
max

weights(1,1) weights(1,2)

input neuron i2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

i2

cluster1

cluster2

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delays

W
eig

ht
s

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delays

W
eig

ht
s

weights(2,1) weights(2,2)

input neuron i3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

i3

cluster1

cluster2

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delays

W
eig

ht
s

1 2 3 4 5 6 7 8 9
−0.5

0

0.5

1

1.5

2

2.5

Delays

W
eig

ht
s

weights(3,1) weights(3,2)

(b)

Fig. 2. (a) GRFs for encoding the attributes of 2-D linearly separable clusters. (b) Final weights
of the delay connections from input neurons to output neurons.

Fig. 2(b), it is observed that the Hebbian based winner-takes-all learning selects the
appropriate delays for every connection, effectively storing the patterns present in the
data. It is also seen that the learning rule is driving the individual weights of the synaptic
terminals to one of the extremes, 0 or wmax. It has also been observed that the forma-
tion of final clusters depends on the encoding mechanism, i.e., how well the Gaussians
represent the input data.

4 Clustering of Nonlinearly Separable Data Using SNN

Clustering is an unsupervised method for grouping similar data. Clustering algorithms
attempt to organize unlabeled feature vectors into clusters or natural groups such that
samples within a cluster are more similar to each other than to samples belonging to
different clusters. Many clustering algorithms have been proposed in the literature [9].
Most of them work well when the underlying clusters exhibit linearly separable shapes
[10]. We consider two examples of highly nonlinearly separable data to demonstrate the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

396 L.N. Panuku and C.C. Sekhar

Table 2. Performance of a two-layer SNN in clustering (a) the ring data and (b) the interlocking
cluster data

(a)

c Δϑ ϑmax Performance
(in %)

-2.0 0.01 5.0 80.47
-2.0 0.001 5.0 82.30
-2.0 0.01 10.0 100.0
-2.0 0.001 10.0 77.73
-2.5 0.01 5.0 100.0
-2.5 0.001 5.0 78.27

(b)

c Δϑ ϑmax Performance
(in %)

-2.0 0.001 30.0 66.9
-2.0 0.001 40.0 67.0
-2.5 0.01 30.0 70.6
-2.5 0.01 40.0 67.0
-2.5 0.001 30.0 82.9
-2.5 0.001 40.0 83.0

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(a)
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

(b) −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c)
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

(d)

Fig. 3. Scatter plot of (a) the ring data and (b) the interlocking clusters data. Clusters formed by a
two-layer SNN for (c) the ring data and (d) the interlocking cluster data.

capabilities of the SNNs in clustering nonlinearly separable data. In the first example,
we consider the ring data consisting of data points in 2-dimensional space as shown in
Fig. 3(a). The data points in the inner cluster are centered at origin and the points in
the outer cluster form an annular ring. The variance of the data in the two clusters is
different and the mean of the data in each of the clusters is almost the same. It is seen
that the inner and outer clusters of the ring data can be separated by a circular shaped
curve. We consider another example of nonlinearly separable data corresponding to two
interlocking clusters, shown in Fig. 3(b). The data of two clusters is separable by an ’S’
shaped curve.

In [7], an SNN model with fixed threshold units is considered for the task of cluster-
ing. This model could cluster linearly separable data. However for clustering the inter-
locking cluster data, Bohte et al. used lateral connections in the hidden layer. When an
SNN without lateral connections and having fixed threshold units is trained to cluster
nonlinearly separable data like the ring data and the interlocking cluster data, all the
examples have got clustered into one group. To overcome this limitation, we propose a
varying threshold method. Using this method, we are able to cluster the ring data and
the interlocking cluster data without using lateral connections, there by reducing the
computational cost. In the proposed method, the threshold of a spiking neuron is initial-
ized to a small, positive value. During learning, the threshold of the wining neuron is
increased by Δϑ. The threshold of all the neurons in a layer are limited to a maximum
value, ϑmax. Here Δϑ is a tunable parameter. High values of Δϑ make the spiking
neurons equivalent to fixed threshold spiking neurons. On the other hand, very low val-
ues of Δϑ require large number of iterations to train the network. In our studies, three
values of Δϑ (0.01, 0.001 and 0.0001) have been used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking Neural Networks 397

An SNN with two layers (input layer and output layer) has been considered for clus-
tering the ring data and the interlocking cluster data. The ring data is encoded using 5
Gaussians along each dimension and an SNN with 10 neurons in the input layer and 2
neurons in the output layer is trained to cluster this data. The performance of the pro-
posed method for different parameter values is given as the accuracy of assigning the
data points to their clusters, in Table 2(a). By empirically selecting the suitable param-
eters, the ring data is properly clustered as shown in Fig. 3(c). The interlocking cluster
data is encoded using 9 narrow and 3 broad Gaussians along each dimension. An SNN
with 24 neurons in the input layer and 2 neurons in the output layer is trained on this
data. It has been observed that the interlocking cluster data is not properly clustered (see
Fig. 3(d)) and the best performance is given by the parameters c = −2.5, ϑ = 0.001
and ϑmax = 40 (Table 2(b)). This suggests the need for considering a multi-layer SNN.
In the following section, we consider a multi-layer SNN and propose a two-stage learn-
ing method to cluster the interlocking cluster data, and also explore the hierarchical
clustering in SNNs.

5 Hierarchical Clustering Using SNN

We study how a three-layer SNN can perform hierarchical clustering. In a three-layer
SNN, it is shown that the neurons in the hidden layer represent the subclusters of the
clusters. These subclusters are combined in the output layer to form final clusters,
yielding a decreasing level of granularity. A three-layer SNN with 10 neurons in the
hidden layer and 2 neurons in the output layer is trained to cluster the ring data. Each
neuron in the hidden layer represents a subcluster, as shown with a different colour in
Fig. 4(a). The average firing times of the neighbouring neurons for the boundary points
are also given in Fig. 4(a). It is observed that the neighbouring neurons are firing in
synchrony, in terms of firing times, for the boundary points between the subclusters rep-
resented by these neurons. This synchronization information is used in the next layer
to bind the subclusters together to form the final clusters (Fig. 4(b)). The parameters
used in training the network and the performance are given in Table 3(a). In [7], lateral
connections with a self-organizing map like learning rule have been used in the hidden
layer to bind the neurons together. Here we demonstrate that using the proposed varying
threshold method, the binding of neurons in the hidden layer can be done without using
the lateral connections.

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(a)

3.94

3.93

4.05

4.11

3.95
3.943.93

3.93

4.12
3.91

3.95
3.96

4.28
3.92 3.87

4.15

−2 −1 0 1 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

(b)

Fig. 4. Hierarchical clustering for the ring data in a three-layer SNN: (a) formation of subclusters
in the hidden layer and (b) formation of clusters in the output layer

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

398 L.N. Panuku and C.C. Sekhar

Table 3. Parameters used in training SNN and the performance for clustering (a) the ring data
and (b) the interlocking clusters data

(a)

Data Parame Hidden Output Performa
-ters Layer Layer -nce (%)

neurons 10 2
c -2.85 -2.5

Ring β 1.60 1.67 100.00
data ϑmax 5.0 15.0

Δϑ 0.005 0.0001

(b)

Data Parame Hidden Output Performa
-ters Layer Layer -nce (%)

neurons 10 2
Inter- c -2.0 -1.0

locking β 1.50 1.50 87.10
cluster ϑmax 30.0 3.0
data Δϑ 0.005 0.0001

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

(a)
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

(b) −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

(c)
−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3

−1.5

−1

−0.5

0

0.5

1

1.5

(d)

Fig. 5. Clustering the interlocking cluster data using a three-layer SNN with parameters as in
Table 4. (a) subclusters formed for two-stage learning, (b) clusters formed for two-stage learning,
(c) subclusters formed for one-stage learning, (b) clusters formed for one-stage learning.

Table 4. Parameters used and the performance obtained by two-stage learning and one-stage
learning for clustering the interlocking cluster data

Data Parameters Hidden Output Performance (%)
Layer Layer one-stage two-stage

neurons 8 2
Inter- c -2.0 -1.0

locking β 1.67 1.50 77.33 99.30
cluster ϑmax 56.0 3.0
data Δϑ 0.005 0.0001

A three-layer SNN is generally trained by modifying the weights of the connections
to the nodes in the hidden layer and the connections to the nodes in the output layer
simultaneously. Following this method, when a three-layer SNN, with 8 neurons in the
hidden layer and 2 neurons in the output layer, is trained to cluster the interlocking
cluster data, proper clusters are not formed (Table 3(b)). To overcome this limitation,
we propose a two-stage learning method for training a spiking neural network model
for clustering. In the proposed method, the weights of the connections to the nodes in
the hidden layer are learnt first. Once the subclusters are formed, the weights of the
connections to the nodes in the output layer are learnt to form the final clusters. Using
this method, the interlocking cluster data is properly clustered (see Figs. 5(a)&(b)). The
parameters that have given the best performance for one-stage learning may not give
the best performance for the two-stage learning. The parameters used in the two-stage

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering of Nonlinearly Separable Data Using Spiking Neural Networks 399

learning are given in Table 4. To compare the performance, layers of the three-layer
SNN, with the same parameters, are trained simultaneously and the resulting clusters
are shown in Figs. 5(c)&(d) and the performance is given in Table 4. Though the sub-
clusters are formed in the hidden layer, proper clusters are not formed in the output
layer.

6 Conclusions

In this work, we have proposed a method in which the firing threshold of a spiking
neuron is gradually increased, starting with a small positive value, until they reach a
maximum value. Using this method, it is possible to cluster nonlinearly separable data
like the ring data. A biological interpretation to the delay selection in SNNs has been
given. Hierarchical clustering in spiking neural networks has been demonstrated by
training a multi-layer spiking neural network. A two-stage learning method has been
proposed to cluster complex data like the interlocking cluster data without using lateral
connections. In the two-stage learning, the formation of subclusters for 2-dimensional
data is manually verified. However, for higher dimensional data, it is necessary to ensure
the formation of subclusters automatically.

References

1. Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT-Press, London (1999)
2. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cam-

bridge (2002)
3. Maass, W.: Fast Sigmoidal Networks via Spiking Neurons. Neural Computation 9, 279–304

(1997)
4. Hopfield, J.J.: Pattern Recognition Computation using Action Potential Timing for Stimulus

Representations. Nature 376, 33–36 (1995)
5. Gerstner, W., Kempter, R., Van Hemmen, J.L., Wagner, H.: A Neuronal Learning Rule for

Sub-millisecond Temporal Coding. Nature 383, 76–78 (1996)
6. Natschlager, T., Ruf, B.: Spatial and Temporal Pattern Analysis via Spiking Neurons. Net-

work: Comp. Neural Systems 9, 319–332 (1998)
7. Bohte, S.M., Poutre, H.L., Kok, J.N.: Unsupervised Clustering with Spiking Neurons by

Sparse Temporal Coding and Multilayer RBF Networks. IEEE Transactions on Neural Net-
works 13, 426–435 (2002)

8. Wu, J.: Introduction to Neural Dynamics and Signal Transmission Delay. Walther de Gruyter,
Berlin (2001)

9. Jain, A.K., Dubes, R.C.: Algorithms for Clustering Data. Prentice-Hall, Englewood Cliffs
(1988)

10. Yang, X., Song, Q., Cao, A.: Clustering Nonlinearly Separable and Unbalanced Data Set. In:
International Conference on Intelligent Systems, pp. 491–496 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with

Spiking Neurons

Chong Liu and Jonathan Shapiro

School of Computer Science
The University of Manchester

Oxford Road, Manchester M13 9PL, United Kingdom
chong.liu@cs.manchester.ac.uk, jonathan.shapiro@manchester.ac.uk

Abstract. In this paper, we attempt to implement classical conditioning
with spiking neurons instead of connectionist neural networks. The neu-
ron model used is a leaky linear integrate-and-fire model with a learning
algorithm combining spike-time dependent Hebbian learning and spike-
time dependent anti-Hebbian learning. Experimental results show that
the major phenomena of classical conditioning, including Pavlovian con-
ditioning, extinction, partial conditioning, blocking, inhibitory condition-
ing, overshadow and secondary conditioning, can be implemented by the
spiking neuron model proposed here and further indicate that spiking
neuron models are well suited to implementing classical conditioning.

1 Introduction

Traditionally, classical conditioning [1] is mainly modelled by connectionist neu-
ral networks, e.g. Rescorla-Wagner model [2] and Sutton-Barto model [3]. These
models are high level abstraction of neuron models which ignore the temporal
dynamics of real neurons. However, the dynamics of biological neurons may of-
fer more powerful computational abilities [4]. In this paper, we attempt to see if
“more biological” neuron models can be used to implement classical condition-
ing.

Experiments of Rao and Sejnowski [5] show that the temporally asymmetric
window of Hebbian plasticity can be reproduced by a Temporal Difference (TD)
learning rule in conjunction with dendritic backpropagating action potentials.

In this paper, we explore the possibility of the inverse problem, viz. is it pos-
sible to use spike-time dependent Hebbian learning and spiking neuron models
to realize TD learning and further to model classical conditioning?

The neuron model and learning algorithm used to implement classical con-
ditioning in our experiment are introduced in Sec. 2. Then, the results of the
simulation are shown in Sec. 3. Finally, Sec. 4 concludes the paper by discussing
the robustness of the model and pointing out possible future work.

1.1 Classical Conditioning

Classical conditioning [1] involves different training and testing procedures and
various behavioral phenomena. Its study begins with Pavlov’s experiments on

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 400–410, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with Spiking Neurons 401

dogs in 1890s. Normally, dogs will salivate (Unconditional Response, UR) when
they receive food (Unconditional Stimulus, US). After repeatedly fed just after
a bell (Conditional Stimulus, CS) is rung, the dog salivates whenever the bell
sounds (Pavlovian classical conditioning or Conditional Response, CR). Follow-
ing Pavlov’s experiments, a great number of scientists did similar experiments
and found a variety of other phenomena, e.g. extinction, partial conditioning,
blocking, inhibitory conditioning, overshadow and secondary conditioning.

Since the discovery of classical conditioning, a lot of researchers attempted
to model it. In 1972, Rescorla and Wagner [2] proposed the Rescorla-Wagner
rule, which has successfully explained Pavlovian conditioning, extinction and
blocking, but failed in the secondary conditioning. In 1988, Sutton and Barto [3]
used TD learning to provide a successful explanation of various phenomena of
classical conditioning including secondary conditioning.

Both of these two models used connectionist neural networks. The input and
output of the neurons in connectionist paradigm are represented as numbers,
which change instantaneously in discrete time and are usually thought to repre-
sent the firing rate of neurons.

1.2 Spiking Neuron Models

The goal of this paper is to represent classical conditioning using spiking neuron
models. The spiking neuron model [4,6] is a kind of neuron model which empha-
sizes that the timing of spikes may carry information that is lost in connectionist
firing rate models. Data gathered in recent years from neurobiological experi-
ments [7, 8, 9] also support that information is transmitted through spikes and
the timing of these spikes is used to transmit information and perform compu-
tation. This realization has stimulated a significant growth of research activity
in spiking neuron models.

2 Model

In this section, we use a spiking neuron model, which will be described in Sec. 2.1,
and a learning algorithm combining both spike-time dependent Hebbian learn-
ing and spike-time dependent anti-Hebbian learning, which will be described in
Sec. 2.2, to simulate classical conditioning.

2.1 Neuron Structure

In this model, we use only one neuron and regard both US and CS as inputs of
the neuron.

1. Neuron Architecture
There is a single neuron whose output represents the response to stimuli as
shown in Fig. 1. Both CS and US are considered as inputs of the neuron.
US is regarded as a special stimulus with a big fixed weight (set to 1 in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

402 C. Liu and J. Shapiro

Fig. 1. Neuron architecture. Only one neuron is used. The inputs of the neuron are
comprised by both CS and US; the output of the neuron is UR/ CR.

simulation). The output of the neuron is UR/ CR depending on whether it
is produced by US or CS. All of these inputs and outputs are expressed in
the form of spikes.

2. Neuron Model
Leaky linear integrate-and-fire model is used to represent the dynamics of
the neuron in the simulation for simplicity. In leaky linear integrate-and-fire
model, the membrane potential of the postsynaptic neuron u(t) before firing
can be expressed as

τm
du(t)

dt
= −u(t) + RI(t) (1)

where τm refers to the membrane time constant of the postsynaptic neuron,
I(t) is the current triggered by spikes from other neurons or external sources
at time t and R measures the resistance of the neuron.

When the the membrane potential u(t) of the postsynaptic neuron reaches
the firing threshold υ at time t̂, a spike will be fired by the postsynaptic
neuron. Immediately after the firing moment, its membrane potential is reset
to ur < υ. Then, the dynamics of the postsynaptic neuron develop along the
trajectory described by (1) until its next spike.

In the numerical simulation, these parameters of the neuron model are set
as follows: τm = 10ms, R = 10kΩ, υ = 1mV, ur = 0mV.

3. Synapse Model
An α-function [6] is used in the simulation to model neuron synapse. Sup-
pose I(t) is the current triggered by spikes from other neurons or external
sources at time t, also the current that charges the membrane potential of
the postsynaptic neuron, then it can be expressed as

I(t) =
1
τs

∑

j

∑

k

wje
− t−tk

j −dj

τs θ(t − tkj − dj) (2)

where, τs is time constant, wj and dj are respectively synaptic weight and
transmission delay of the jth connection, and tkj is the kth input spike time
from the jth synapse. θ(s) is the Heaviside step function and satisfies,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with Spiking Neurons 403

θ(s) =
{

0 if s ≤ 0
1 if s > 0

In the numerical experiment, set τs = 10msec, dj = 0msec.

2.2 Learning Algorithm

To achieve results of classical conditioning, spike-time dependent Hebbian learn-
ing is used between inputs, while spike-time dependent anti-Hebbian learning is
used between input and output.

It has been found that long-term potentiation (LTP) [10] of the cortico-striatal
synapse is induced given the coincident occurrence of cortical input and postsy-
naptic depolarization in a striatal neuron with a phasic dopamine release, and
long-term depression (LTD) [11] given the coincident occurrence of cortical input
and postsynaptic depolarization in a striatal neuron without a phasic dopamine
release. Since it is generally believed that dopamine is involved in reward learn-
ing, this suggests that Hebbian learning happens when rewards are present and
anti-Hebbian learning happens when rewards are not present.

Although spike-time dependent Hebbian learning is well-known in the biolog-
ical neural system, the curve of spike-time dependent anti-Hebbian learning is
also observed in the cerebellum of electric fish [12,13], viz. if a presynaptic spike
arrives at the synapse before the postsynaptic action potential, the synapse is
depressed; if the timing is reversed the synapse is potentiated.

For simplicity, we use a square learning window as shown in Fig. 2 to simulate
the curves of spike-time dependent Hebbian learning and spike-time dependent
anti-Hebbian learning. US has a big fixed weight affected neither by CS nor by
UR/ CR. CS has a small weight at the beginning but it can be either potentiated
or depressed by US, UR/ CR and other CS.

Suppose there are N stimuli including both CS and US. W in and W out denote
the learning window of input Hebbian learning and that of output anti-Hebbian
learning respectively as Fig. 2 shows. The weight increment of the ith stimulus
between time t and time t+T (T is a period of time) is denoted as Δwi(t, t+T).
Then, the mathematic formula of our learning algorithm can be expressed as (3)
for CS and (4) for US. If the ith stimulus is a CS, then

Δwi(t, t + T) =
N∑

j=1∩j �=i

α

∫ t+T

t

dt′
∫ t+T

t

dt′′wj(t)W in(t′′ − t′)Sin
i (t′′)Sin

j (t′)

+ α

∫ t+T

t

dt′
∫ t+T

t

dt′′W out(t′′ − t′)Sin
i (t′′)Sout(t′)

(3)

The first term is the weight update due to the Hebbian learning effect of other
inputs as shown by the solid line in Fig. 2, and the second term is the weight
update due to the anti-Hebbian learning effect of the output as shown by the
dashed line in Fig. 2. Where α is the learning rate (set to 0.01 in the simulation),
and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

404 C. Liu and J. Shapiro

Fig. 2. Square learning window. As the solid line shows, the weight associated with an
input (excluding US) will be reinforced if a spike of the input is followed by spikes of
other inputs; it will be weakened if a spike of the input is preceded by spikes of other
inputs. As the dashed line shows, the weight associated with an input (excluding US)
will be weakened if a spike of the input is followed by spikes of the output; it will be
reinforced if a spike of the input is preceded by spikes of the output.

Sin(t) =
{

1 if t = t̂ (t̂ is the arrival time of spikes of inputs)
0 otherwise

Sout(t) =
{

1 if u(t) ≥ υ
0 otherwise

where u(t) is the membrane potential and υ is the firing threshold of the neuron.
If the ith stimulus is a US, then

Δwi(t, t + T) = 0 (4)

3 Simulation Results

Although we have successfully simulated a variety of classical conditioning phe-
nomena, we only discuss the four most important of them here, viz. Pavlovian
conditioning, extinction, blocking and secondary conditioning, due to the limi-
tation of the length of the paper.

3.1 Pavlovian Conditioning

In the setting of Pavlovian conditioning experiment, CS1 has 15 spikes from the
16th millisecond to the 30th millisecond, followed by US which also has 15 spikes
from the 31st millisecond to the 45th millisecond, and no CS2 is presented as
Fig. 3a & b depict. Before learning, UR, induced by US, is shown in Fig. 3c; the
initial weights respectively associated with CS1 and associated with CS2 are both

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with Spiking Neurons 405

Fig. 3. Inputs and output (Pavlovian conditioning). a;b) CS1 is followed by US; CS2
is not present. c) The output spikes of the neuron when only US is present before
learning. d) The output spikes of the neuron without the presence of US after learning.

Fig. 4. Weight updates during learning (Pavlovian conditioning). The weight associ-
ated with CS1 keeps increasing until it reaches a saturation value near 0.7 and the
weight associated with CS2 keeps unchanged. CS1 has been successfully associated
with US after learning.

set to 0. During learning, the weight associated with CS1 keeps increasing until
it reaches a saturation value near 0.7 and the weight associated with CS2 keeps
unchanged as Figure 4 presents. After learning, CS1 alone can produce output
spikes (CR) which precedes UR and predicts the approach of US as shown in
Fig. 3d: Pavlovian conditioning has been formed.

3.2 Extinction

Before the experiment of extinction, Pavlovian learning was first conducted for
10 trials to associate CS1 with US. Then US is removed. During learning, the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

406 C. Liu and J. Shapiro

Fig. 5. Weight updates during learning (extinction). The weight associated with CS1
gradually decreases until it arrives at about 0.15. The association of CS1 with US has
been extincted after learning.

weight associated with CS1 gradually decreases until it arrives at about 0.15 as
Fig. 5 presents. Although the final weight associated with CS1 after learning has
not gone down to 0, the extinction of conditioning has been realized because no
output spikes are produced at this point, viz. the association of CS1 with US
has been extincted.

3.3 Blocking

Like the experiment of extinction, CS1 was first associated with US by using
Pavlovian learning for 10 trials before the simulation of blocking. Then CS2,
which has the exact same time trajectory with CS1, is presented as Fig. 6a, b &
c depict. During learning, the weight associated with CS1 slightly goes down and
the weight associated with CS2 slightly goes up, but blocking has been realized
because CS2 cannot produce any spikes with a maximum weight about 0.2 as
shown in Fig. 7. Comparing Fig. 6d with Fig. 3d, we can see CR produced by
both CS1 and CS2 in blocking is almost the same with that produced by CS1
alone in Pavlovian conditioning after learning, which further demonstrates that
CS2 has been blocked.

3.4 Secondary Conditioning

Like the experiment of blocking and extinction, Pavlovian learning was first
used for 10 trials to associate CS1 with US. Then CS2, which precedes CS1,
is presented and at the same time US is removed as shown in Fig. 8. From
the learning curve depicted in Fig. 9, it can be seen that the weight associated
with CS1 gradually reduces until to zero, and the weight associated with CS2
goes up at the beginning but goes down to a very small amount (about 0.2)
eventually. After learning, there are no output spikes: both CS1 and CS2 get
extincted.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with Spiking Neurons 407

Fig. 6. Inputs and output (blocking). a-c) The two CS, which have the exact same
time trajectory, are followed by US. d) The output spikes of the neuron without the
presence of US after learning.

Fig. 7. Weight updates during learning (blocking). The weights associated with CS1
and CS2 slightly change, but blocking has been realized because CS2 cannot produce
any spikes with a maximum weight about 0.2.

4 Discussion and Future Work

In this paper, we have used a very simple spiking neuron model to success-
fully implement the four most important classical conditioning. Because of the
simplicity and effectiveness of the spiking neuron model, it seems that spiking
neuron models are well suited to implement classical conditioning.

4.1 Robustness

Although only one set of experimental scenario is presented in the paper, the
results still hold with different settings of inputs and different initial weights. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

408 C. Liu and J. Shapiro

Fig. 8. Inputs and output (secondary conditioning). CS1 is followed by CS2; US is not
present. There are no output spikes after learning.

Fig. 9. Weight updates during learning (secondary conditioning). The weight associ-
ated with CS1 gradually reduces until to zero, and the weight associated with CS2
goes up at the beginning but goes down to a very small amount (about 0.2) eventually:
both CS1 and CS2 get extincted after learning.

the simulation of Pavlovian conditioning, for instance, all spikes of CS1 precede
all spikes of US and the first spike of US is just after the last spike of CS1. In
fact, spikes of CS1 and US may be overlapped or uncontigeous. As long as some
spikes of CS1 precede spikes of US within the learning window, the result does
not change, though the weight associated with CS1 may be more or less. As far
as the initial weights associated with conditional stimuli are concerned, they are
set to 0 in the simulation. However, they could be very small positive values or
very big positive values (even more than 1). The value of initial weights only
affects the speed of learning but has no influence on the result.

4.2 Future Work

The classical conditioning is a simple and typical example of general reinforce-
ment learning scenarios. Since this work has proved the effectiveness of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Implementing Classical Conditioning with Spiking Neurons 409

spiking neuron models to implement classical conditioning, a straightforward fu-
ture work is to expand it to model more complex reinforcement learning scenarios
with wider range of action, richer input sets and more complicated input-output
relations.

On the other hand, not only does the amount of rewards matter, the timing
of rewards is also important, especially in a dynamic environment. For example,
only when a predator can predict the timing of the appearance of its preys in one
place will it be able to make an optimal decision, whether continuing waiting in
the place or giving up and trying other places. In contrast, it may wait too long
time in a hopeless place or leave just before the arrival of its preys if it cannot
predict the timing of rewards. However, the timing information of rewards is lost
in classical reinforcement learning algorithms because they use a value function
as target instead of a reward function. While discounted functions used in present
reinforcement learning algorithms can discount future rewards, it fails to predict
even the rough timing of rewards. It may be possible to utilize the temporal
feature of the learning dynamics of spiking neuron models to predict the time
to rewards.

References

1. Dayan, P., Abbott, L.F.: Theoretical Neuroscience: Computational and Mathemat-
ical Modeling of Neural Systems. MIT Press, Cambridge (2001)

2. Rescorla, R.A., Wagner, A.R.: A theory of pavlovian conditioning: The effective-
ness of reinforcement and non-reinforcement. In: Black, A.H., Prokasy, W.F. (eds.)
Classical Conditioning II: Current Research and Theory, Aleton-Century-Crofts,
pp. 64–69 (1972)

3. Sutton, R.S., Barto, A.G.: Time-derivative models of pavlovian conditioning. In:
Gabriel, M., Moore, J.W. (eds.) Learning and Computational Neuroscience, pp.
497–537. MIT Press, Cambridge (1990)

4. Maass, W., Bishop, C.M.: Pulsed Neural Networks. MIT Press, Cambridge (1998)
5. Rao, R.P.N., Sejnowski, T.J.: Spike-timing-dependent hebbian plasticity as tem-

poral difference learning. Neural Computation 13, 2221–2237 (2001)
6. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press,

Cambridge (2002)
7. Thorpe, S.J., Imbert, M.: Biological constraints on connectionist models. In:

Pfeifer, R., Schreter, Z., Fogelman-Soulié, F., Steels, L. (eds.) Connectionism in
Perspective, pp. 63–92. Elsevier, Amsterdam (1989)

8. Jen, P.H., Sun, X.D., Lin, P.J.: Frequency and space representation in the pri-
mary auditory cortex of the frequency modulating bat Eptesicus fuscus. Journal
of Comparative Physiology 165(1), 1–14 (1989)

9. Rieke, F., Warland, D., de Ruyter van Steveninck, R., Bialek, W.: Spikes — Ex-
ploring the Neural Code. MIT Press, Cambridge (1996)

10. Wickens, J.R., Begg, A.J., Arbuthnott, G.W.: Dopamine reverses the depression
of rat corticostriatal synapses which normally follows high-frequency stimulation
of cortex in vitro. Neuroscience 70(1), 1–5 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

410 C. Liu and J. Shapiro

11. Calabresi, P., Pisani, A., Mercuri, N.B., Bernardi, G.: The corticostriatal pro-
jection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends in
Neurosciences 19(1), 19–24 (1996)

12. Bell, C.C., Han, V.Z., Sugawara, Y., Grankt, K.: Synaptic plasticity in a
cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997)

13. Han, V.Z., Grant, K., Bell, C.C.: Reversible associative depression and nonasso-
ciative potentiation at a parallel fiber synapse. Neuron 27, 611–622 (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deformable Radial Basis Functions

Wolfgang Hübner and Hanspeter A. Mallot

Eberhard–Karls University, Tübingen, Germany
wolfgang.huebner@uni-tuebingen.de

Abstract. Radial basis function networks (RBF) are efficient general
function approximators. They show good generalization performance and
they are easy to train. Due to theoretical considerations RBFs commonly
use Gaussian activation functions. It has been shown that these tight re-
strictions on the choice of possible activation functions can be relaxed
in practical applications. As an alternative difference of sigmoidal func-
tions (SRBF) have been proposed. SRBFs have an additional parameter
which increases the ability of a network node to adapt its shape to input
patterns, even in cases where Gaussian functions fail.

In this paper we follow the idea of incorporating greater flexibility into
radial basis functions. We propose to use splines as localized deformable
radial basis functions (DRBF). We present initial results which show
that DRBFs can be evaluated more effectively then SRBFs. We show
that even with enhanced flexibility the network is easy to train and
convergences robustly towards smooth solutions.

1 Introduction

Radial basis functions (RBF) have been used as general function approximators
with great success. The learning (approximation) problem is to derive an esti-
mate of an unknown function f from a set of noisy observations yi = f(xi) +
η(σ)1. The radial basis solution is given by a function expansion of the form

f(x) ≈
N∑

j

wjφ(s2
j (x − xj)2, pj) =

N∑

j

wjφj(x) . (1)

Unknowns in equation (1) are the (synaptic) weights (wj), the number of nodes
(N), the parameters of the affine transform (sj , xj), and additional node pa-
rameters (pj). It is also necessary to make a choice on the activation function
φ and the estimator used to determine the network parameters. Commonly a
least–square estimator is used which leads to the objective function

E(X, P) =
∑

i

[yi −
∑

j

wjφ(xi, pj)]2, X = {(xi, yi)}, P = {pj} . (2)

1 η(σ) is a normally distributed noise term with standard deviation σ.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 411–420, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

412 W. Hübner and H.A. Mallot

Least–square estimators are known to be strongly affected by outliers. In order
to overcome this limitation robust estimators, e.g. M–estimators, have been used
in combination with radial basis networks [3]. M-estimators reject samples that
strongly disagree with the current net state provided the estimated net state
becomes increasingly certain.

Determination of the net parameters requires non–linear optimization2. Usu-
ally this step is divided into two parts. First, the number of nodes and an initial
guess about node parameters is determined by some heuristic or cluster algo-
rithm. In a second step equation (2) is minimized in order to adapt the nodes
locally to the input samples. Examples are selforganized growing networks [8]
for batch learning or the GAP (”Growing and Pruning”) algorithm for iterative
learning [4,5]. In [10] a third step has been proposed for RBF–learning. In the
third step the net parameters are determined by minimizing the net equation
with respect to all parameters simultaneously.

The choice of φ is mainly guided by the ability of the activation func-
tion to act as a local predictor, i.e. the function must converge towards a
smooth solution. Smoothness means that the solution gives a good approxi-
mation of the generating function f and does not interpolate noisy samples.
For practical applications mostly Gaussians are used. The use of Gaussians
is justified by theoretical considerations originating from approximation the-
ory [2]. Although Gaussians work well in many situations they are ineffective
when discontinuities or partially constant functions have to approximated. In
these cases networks grow unnecessarily large and the solution is corrupted by
ripples.

In order to overcome these limitations it has been proposed to use a difference
of two sigmoid functions (SRBF) [6,3],

φ(x, ν) =
1

1 + e−(x+ν) − 1
1 + e−(x−ν) = f+(x, ν) − f−(x, ν) . (3)

Equation (3) includes an additional shape parameter ν. Depending on ν, φ can
take the form of a Gauss–function as well as the shape of a box–function. Ex-
amples are shown in figure 1c.

Here we extend the idea of shape adaption to add more flexibility to radial
basis functions. We use localized splines as activation functions, referred to as
deformable radial basis functions (DRBF). Compared to SRBFs DRBFs have
less computational load and a larger repertoire of shapes (see figure 1b). The
aim of the paper is to investigate the possibility of adding more flexibility to
radial basis functions without loosing generalization performance. The paper
is structured as follows. In section 2 we describe the construction of localized
splines and discuss the necessity to restrict flexibility in order to generate smooth
solutions. Section 3 shows initial results from the DRBF algorithm. The paper
closes with a discussion about potential pitfalls and future steps.

2 The term generalized radial basis functions (GRBF) has been introduced in [2] es-
pecially because of this non–linear optimization step.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deformable Radial Basis Functions 413

a. b. c.

Fig. 1. Construction of deformable radial basis functions using a cubic spline with
three control points (dots in figure a and b). a) The free control point is forced on the
path shown in the middle (c = 0.7, see equation 20). Gray paths result from changing
c about ±0.2. As can be seen the path is quite insensitive to c when y2 is close to −1.
The slope at the control point is illustrated by line segments. b) The function shape
transforms smoothly from wave forms to a box function when the control point moves
along the trajectory shown in a. c) Shapes generated by a difference of sigmoid function
when varying the shape factor ν in equation (3).

2 Construction of Deformable Radial Basis Functions

2.1 C1 Splines

In this section we describe the construction of deformable radial basis functions
based on localized splines. Splines are piecewise concatenated functions (usually
polynoms). In general a spline consists of n polynomials of degree m

Spk(x) =
m∑

i=0

ak,i(x − xk)i xk ≤ x < xk+1, k = 1, . . . , n . (4)

For n polynomials n+1 control (support) points are required to determine the
shape of the function. At the control point locations (xk) the interpolation con-
ditions

Spk(xk) = ak,0 = yk and (5)

Spk(xk+1) =
m∑

i=0

ak,i(xk+1 − xk)i = yk+1 (6)

must be fulfilled. Additional conditions are defined for the differentiability of the
spline function,

Sp′
k(xk) = ak,1 = y′

k and (7)

Sp′
k(xk+1) =

m∑

i=1

iak,i(xk+1 − xk)i−1 = y′
k+1 . (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

414 W. Hübner and H.A. Mallot

If necessary higher order derivatives can be defined analog to equations (7) and
(8). The spline has n(m + 1) degrees of freedom which are determined by a
system of linear equations setup through equations (5-8). It is common practice
to determine some of the differentiation conditions implicitly, e.g. the inclusion
of second derivatives in cubic splines [7]. As a drawback the increased differen-
tiability can produce solutions with high curvature (”oscillations”). Therefore,
implicit conditions are not helpful for our application.

For building radial basis functions we first define the control point locations
(xk) and the control point intervals hk = xk+1 −xk. Since the control points will
be determined by least–square–optimization, it is necessary to preserve the point
order during optimization, i.e. x1 < x2 < . . . xn+1, i.e. the location intervals need
to be positive3.

Next we define the boundary conditions for the spline. At the left boundary
the control points are fixed at x1 = 0, y1 = 1 and y′

1 = 0. This ensures that
x1 can be used as the center of symmetry, which allows the combination of
the function with affine transformations without generating discontinuities. The
right boundary is used to generate a local support function. Therefore control
values are set to yn+1 = 0 and y′

n+1 = 0. Altogether, the free parameters for a
C1–spline are given by (x2, . . . , xn, y2, . . . , yn, y′

2, . . . , y
′
n).

In order to adapt the shape of the spline it is necessary to express the poly-
nomial coefficients as a function of the control points. This can be done inde-
pendently for each polynomial by solving a system of linear equations. Here we
give the solution for a cubic spline.

νk = Hkak → ak = H−1
k νk (9)

νk
� = (yk+1, y

′
k+1, y

′
k, yk)�, ak = (ak,3, ak,2, ak,1, ak,0)� (10)

Hk =

⎛

⎜
⎜
⎝

h3
k h2

k hk 1
3h2

k 2hk 1 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ H−1

k =

⎛

⎜
⎜
⎝

−2h−3
k h−2

k h−2
k 2h−3

k

3h−2
k −h−1

k −2h−1
k −3h−2

k

0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ (11)

Equation (9) describes the coefficients of polynom k as a function of the con-
trol points and the desired derivative at the control point. A C2 spline can be
calculated in the same way using polynomials of degree 5.

Now it is possible to calculate the partial derivatives used to minimize objec-
tive function (2) defined in the previous section,

∂Spk

∂.
=

∂ak,0

∂.
+

3∑

i=1

∂ak,i

∂.
(x − xk)i + iak,i(x − xk)i−1 ∂xk

∂.
. (12)

∂. is a placeholder for the parameters used to define the spline shape, i.e. the
elements of νk. Partial derivatives with respect to the control point locations
3 In practice this is not a big problem. Otherwise this condition can be enforced by

directly optimizing the interval lengths hk and ensuring them to be strictly greater 0.
The control point locations have then to be calculated iteratively from the intervals.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deformable Radial Basis Functions 415

Fig. 2. Approximation of basic shapes with one node. The results show that the solu-
tions greatly differ in the Δx value. This suggests that there exists no simple path in
parameter space where all shapes are equally well represented. Samples are illustrated
as gray dots. The sample distance is 0.25. Solutions are illustrated by black lines.

(xk) are required because the control point locations are a function of the control
point intervals. Partial derivatives for the coefficients of polynom k are calculated
from equation (9),

∂ak,i

∂.
=

∂H−1
k

∂.
νk + H−1 ∂νk

∂.
. (13)

The matrix formulation is used here only for simplifying the notation. With
respect to computational complexity it is worth to expand the derivatives to
their full length, which can save a lot of unnecessary multiplications. Depending
on the choice of νk most derivatives are 0.

From the construction of the spline it follows directly that the derivative of
the spline is continuous in x ∈ [0, ∞), but not necessarily smooth. The differ-
entiability at the control point location with respect to yk and y′

k is guaranteed
by

∂Spk

∂yk
(xk) =

∂ak,0

∂yk
= 1 , (14)

∂Spk−1

∂yk
(xk) =

∂ak,1

∂yk
h2

k +
∂ak,2

∂yk
h3

k = 3h−2
k h2

k − 2h−3
k h3

k = 1 , (15)

∂Spk

∂y′
k

(xk) =
∂ak,0

∂y′
k

= 0 , (16)

∂Spk−1

∂y′
k

(xk) =
∂ak,1

∂y′
k

h2
k +

∂ak,2

∂y′
k

h3
k = −h−1

k h2
k + 2h−2

k h3
k = 0 . (17)

2.2 Generating Smooth Shapes

In the following we only consider the case of three control points, i.e. only one
control point determines the shape of the function (p = (x2, y2, y

′
2)

�). The
spline construction is illustrated in figure 1. A direct estimation of the free pa-
rameters is not a practical way, especially because the parameter space includes
many shapes which are not smooth. These shapes can lead to a local oscillat-
ing behavior where samples are correctly interpolated but the solution shows

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

416 W. Hübner and H.A. Mallot

high curvature between sample locations4. A second problem is that the high
degree of flexibility leads to a large number of local minima. As a consequence
local adaptation becomes sensitive to the start solution which can lead to an
unpredictable behavior when combined with iterative learning methods.

Usually the problem of high curvature is addressed by adding a regularizer. In
terms of Bayesian–inference the regularizer comes in in form of a prior penalizing
non–smooth solutions. In radial basis function networks the prior is needed to
control the effective number of nodes [9]. With respect to the spline functions,
it would become necessary to combine two different prior terms, one controlling
the network growth and a second one controlling the variability of single nodes.

Instead of using a regularizer we directly restrict the variability of the spline
function. There are several possibilities for the spline to generate high curvatures
(see figure 1a). If x2 is moved close to x1, i.e. h1 → 0, a strong peak is generated
close to the center. If x2 is moved close to x3, i.e. h2 → 0, the shape depends on
y2. In case y2 is close to 1 a box function is produced, which is a shape we want
the spline to show. On the other hand, if y2 is smaller than y1 again a peaked
shape is generated. Similar problems occur if y2 takes large values. In order to
exclude these extreme cases we restrict the parameter space in the following way.
The first derivative at the control point is calculated from the position of the
control point and the control point to the left, i.e. the slope is similar to a linear
spline,

y′
2 =

y2 − y1

x2 − x1
=

y2 − 1
x2

. (18)

The control point location (x2) is restricted to the interval [Δx, l + Δx],

x2(λ) = Δx + t(λ), t(λ) = l(
1
2

+
1
2

sin(
πλ

l
− π

2
)) , (19)

with l = x3 − Δx − ε (see figure 1a). The control point value (y2) also becomes
dependent on t,

y2(λ) = 1 − 2e−(t
σ)2 , σ =

cl
√

2
3

, c = const. (20)

Equations (19) and (20) force the control point on a curve shown in figure 1a.
According to equation (19) x2 moves periodically through the interval when λ is
increased or decreased. We choose the periodic function instead of an asymptotic
function in order to make the numerical optimization more stable5. If an asymp-
totic function is used the shape of the spline does not change with respect to λ
if the constant section of the function is reached. If λ becomes large once during
optimization it is very likely that the conjugate gradient method is trapped in
this solution. Another critical variable is the choice of the constant x3. If x3

4 It is important to note that also networks with Gaussian or sigmoidal activation
functions can show oscillating behavior, in case the scale factor becomes too small.
Usually, nodes which converge to such a solution are removed in a pruning step, e.g.
using the significance measure described in [4] or by using prior knowledge [9].

5 For optimization we use the conjugate gradient algorithm [7].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deformable Radial Basis Functions 417

Fig. 3. Convergence of a single node without sample noise. a) Test function. b) Re-
maining training error after a single node has been initialized with a Gaussian shape
and than locally adapted to the samples. c,d) Two examples of DRBF nodes with good
error reduction. The examples are taken from the highlighted positions in the bottom
row in panel b.

is too small it can happen that the optimization misses several local minima.
Here we set x3 to 100 which resulted in a stable convergence, also the number
of iterations is increased.

In general it is not guaranteed (as shown in the result section) that a good
solution has to be located on one path in parameter space. Therefore, the above
description is too restrictive. Allowing some tolerance on c does not help, as
illustrated in figure 1a, because if y2 is close to −1 the shape is not very sensitive
on c. A better way to increase the variety of shapes is to also adjust Δx6.
Therefore the spline function is controlled by two parameters, i.e. p = (Δx, λ)�

which are determined by optimization. As shown in figure 1b, possible shapes
are smooth. The only exception is in the upper right corner, where the spline
converges towards a box function.

3 Results

Before turning to the full network equation we first examine the convergence of a
single node. As has been shown in the previous section it is not guaranteed that
every possible shape is equally well represented in the restricted parameter space.
Therefore we fitted the shape of a single node to three different basic shapes, a
Gaussian function, a cosine function, and a box function. These three shapes are
considered as primitive shapes since the spline smoothly changes between these
forms when passing through the control path. The results are shown in figure
2. As has been expected the very different solutions for Δx illustrate that there
exists no path on which all shapes are represented equally well.
6 With respect to figure 1a it seems necessary to ensure that Δx stays in a certain

interval. This can be achieved in the same way as e.g. x2 is bounded. Here we let
Δx move freely, which doesn’t caused problems during the experiments shown in the
following section.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

418 W. Hübner and H.A. Mallot

a. b.

Fig. 4. a) Learning rate for different network types using the test function shown
in figure 3. b) Evaluation time of networks with different sizes. As can be seen the
computational complexity to evaluate a DRBF is comparable to the Gaussian. The
speedup between DRBF and SRBF is approximately 1.5.

Next we tested if a single node converges to a stable and smooth solution under
varying start conditions. This point is crucial when the method is combined with
growing network algorithms or iterative learning methods. In order to make
the test comparable between the three network types, we fitted the sigmoidal
function and the spline function to a Gaussian with standard deviation of 1.
The Gaussian shape and a scale factor of 0.5 is used as a start condition in all
following tests. The training set consists of equally distributed samples taken
from f(x) = 0.5x sin(x) + cos2(x) without noise (see figure 3a)7. In order to
test the local convergence we shifted one node for each network type through
the interval [−12, 12] and evaluated the remaining training error (residuum)
after minimizing equation (2). Results for the three network types are shown
in figure 3b. The spline function is comparable in the learning progress to the
Gaussian and the sigmoidal. In some cases, the spline outperforms the other
networks. As can be seen in figures 3c and 3d, the reason for the improved
learning performance is the increased flexibility of the spline function.

Next we tested the learning progress when using a network composed of mul-
tiple nodes. In order to test the learning progress we used a quite simple growing
criterion. We placed a node at the location of the sample with the highest re-
maining training error. After adding a new node, equation (2) is minimized until
the full network has converged. This cycle has been repeated 16 times. As shown
in figure 4a the spline functions adapt faster to the samples. Figure 4b shows the
computational load necessary to evaluate networks of different sizes. The spline
net offers a speedup of approximately 1.5 compared to the sigmoid functions,
i.e. the runtime complexity of the spline net is comparable to the Gaussians.

Finally we tested the behavior of the spline function for approximating the
test function from noisy samples. As a training set we generated samples at
150 randomly chosen locations and added normally distributed noise with a

7 The function has been used in [3] as a test function.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deformable Radial Basis Functions 419

a. Gaussians b. Sigmoidals c. Splines

Fig. 5. Approximation of the test function using noisy samples. The networks consisted
of 4 nodes (top row) or 12 nodes (bottom row). As can be seen all network types
generate comparable smooth solutions or fail under the same conditions.

standard deviation of 1. The maximum network size has been fixed to 4 and 12
neurons using the same growing criterion as above. Figure 5 shows one example
per network type. It can be seen that the spline net, also it has greater flexibil-
ity, produces smooth solutions. Overfitting occurs in all networks. The negative
example is added here to illustrate that this is not an effect of the increased
flexibility of the spline functions.

4 Summary and Discussion

We presented a method to use splines as a basis to define deformable radial
basis functions (DRBF). By restricting the variability of the spline function we
could show that the DRBF converges towards smooth solutions comparable to
Gaussian and sigmoid activation functions. The presented data also suggests that
DRBFs can improve the learning performance of radial basis function networks
without loosing generalization performance.

We presented initial data and case examples to illustrate the behavior of
DRBFs. Next steps include the expansion to multiple dimensions and a more
extensive evaluation with real world problems and benchmark tests. In princi-
pal there are two alternatives to apply the method to multidimensional input
spaces. In [3] a multidimensional function is generated by taking a product of
one sigmoid function per dimension. The drawback of this method is that the
number of parameters required grows very fast with the number of dimensions.
An alternative is to stick to affine transforms. This method offers another option

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

420 W. Hübner and H.A. Mallot

to increase the flexibility of radial basis functions by modifying the distance cal-
culation in the affine transform (distance modifier functions). A discussion and
initial results about this idea have been presented in [1].

Acknowledgement. This work is part of the GNOSYS project, funded by the
Comission of the European Union (FP6–003835–GNOSYS).

References

1. Falcao, A., Langlois, T., Wichert, A.: Flexible kernels for RBF networks - Brain
inspired cognitive systems - selected papers from the 1st international conference
on brain inspired cognitive systems. Neurocomputing 69, 2356–2359 (2006)

2. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. A.I.
Memo No.1140 (1989)

3. Lee, C., Chung, P., Tsai, J., Chang, C.: Robust radial basis function neural net-
works. Systems, Man and Cybernetics, Part B, IEEE Transactions on 29, 674–685
(1999)

4. Huang, G.B., Saratchandran, P., Sundararajan, N.: An efficient sequential learning
algorithm for growing and pruning RBF (GAP-RBF) networks. IEEE Transactions
on Systems, Man and Cybernetics, Part B 34(6), 2284–2292 (2004)

5. Huang, G., Saratchandran, P., Sundararajan, N.: A generalized growing and prun-
ing RBF (GGAP-RBF) neural network for function approximation. IEEE Trans.
on Neural Networks 16(1), 57–67 (2005)

6. Geva, S., Sitte, J.: A constructive method for multivariate function approximation
by multilayer perceptrons. IEEE Trans. on Neural Networks 3(4), 621–624 (1991)

7. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C++, 2nd edn. Cambridge Unviversity Press, Cambridge (2002)

8. Marsland, S., Shapiro, J., Nehmzow, U.: A self-organising network that grows when
required. Neural Networks 15, 1041–1058 (2002)

9. MacKay, D.: Bayesian interpolation. Neural Computation 4(3), 415–447 (1992)
10. Schwenker, F., Kestler, H., Palm, G.: Three learning phases for radial–basis–

function networks. Neural Networks 14(4-5), 439–458 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Basis Functions Guided by the L2 Soft
Margin

Ignacio Barrio, Enrique Romero, and Lluı́s Belanche

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. Support Vector Machines (SVMs) for classification tasks produce
sparse models by maximizing the margin. Two limitations of this technique are
considered in this work: firstly, the number of support vectors can be large and,
secondly, the model requires the use of (Mercer) kernel functions. Recently, some
works have proposed to maximize the margin while controlling the sparsity.
These works also require the use of kernels. We propose a search process to select
a subset of basis functions that maximize the margin without the requirement of
being kernel functions. The sparsity of the model can be explicitly controlled. Ex-
perimental results show that accuracy close to SVMs can be achieved with much
higher sparsity. Further, given the same level of sparsity, more powerful search
strategies tend to obtain better generalization rates than simpler ones.

1 Introduction

Margin maximization has proven a good approach for classification tasks, and the Sup-
port Vector Machine (SVM) [1] is a state-of-the-art technique that shows very good per-
formance. Given a training set {xi, ti}N

i=1 where xi ∈ R
D and ti ∈ {+1, −1}, linear

SVMs find a hyperplane that maximizes the margin in the input space. Nonlinearities
can be added to these linear SVMs by mapping the input data with a set of basis func-
tions into a feature space, with as many dimensions as basis functions, where the plane
is found. The most usual way to add nonlinearities is by means of kernel functions.

An advantage of using (Mercer) kernels in SVMs is that an induced set of basis func-
tions can be used without the need to explicitly consider them. The kernel is usually
designed to serve as a good similarity function for a given problem [2]. This advantage
sometimes involves a drawback, since the most natural similarity function for a given
problem may not satisfy Mercer’s condition, therefore designing a specific kernel, be-
sides requiring some expertise, may reduce the quality of the function [3].

Another drawback of SVMs is that, although the solution is sparse in the number
of support vectors, this number tends to grow with the number of data [4]. This is
problematic for applications requiring high classification speed, since the cost of each
prediction is proportional to the number of support vectors.

A number of methods have been proposed to overcome these drawbacks while main-
taining identical functional form to SVMs [5,6,7]. Basically, these methods consider a
finite set of basis functions (features) and they select a subset of those basis functions so
that the solution is sparse in the feature space. These works have shown that very good

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 421–430, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

422 I. Barrio, E. Romero, and L. Belanche

performance can be achieved without the requirement of kernel functions. However
these methods do not maximize the Euclidean margin.

In order to maximize the margin and find a sparser representation than SVMs, a new
constraint can be added to the SVM training problem [8], so that the number of expan-
sion vectors1 is preset by the user. This approach is similar to finding a “constrained”
feature space where the margin of the training data is maximized. Another method [9]
has been proposed to select the expansion vectors with forward selection while maxi-
mizing the L2 soft margin (penalizing the square of slack variables). Both works require
the use of kernels.

The objective of this work is to find sparse models that maximize the margin without
the requirement of using kernels. To overcome the requirement of kernels, unlike clas-
sical SVMs, we will consider an explicit finite set of basis functions (features). Then
we could compute the parameters of a linear SVM where the inputs to the SVM are the
inputs of the problem non-linearly mapped into the feature space, but the solution of
this linear SVM would not be sparse.

In order to find sparse models, similar to [9], we propose the use of Search Strategies
Guided by the L2 soft margin (SSGL2) to select a subset from a set of candidate basis
functions without the requirement of using kernels. Although the optimization problem
posed is minimized when the whole set of basis functions is included, we seek a tradeoff
between margin maximization and subset size. The solution is sparse in the feature
space. In fact, we are trying to solve a feature selection problem where each feature is
the output of a basis function. The search strategies used require the addition or removal
of one basis function at a time. Based on an algorithm recently proposed to train linear
L2 soft margin SVMs [10], we can make use of the current solution to efficiently select
the next basis function to add or remove.

Experiments using kernel functions show that, with a much reduced subset of basis
functions, the model can be competitive and perform very similar to a linear SVM with
the whole set of basis functions as features and to classical nonlinear SVMs. This way,
the cost of predictions is much lower. Regarding the search strategies, more complex
ones require fewer basis functions to achieve good performance than simpler ones.

This work is organized as follows. In section 2 we mention some alternatives to
SVMs that tackle the aforementioned drawbacks. In section 3, we briefly review a
method to solve linear L2 soft margin SVMs. In section 4 we enumerate two popular
search strategies. In section 5 we propose the SSGL2 for the selection of basis func-
tions. An experimental study is carried out in section 6, comparing the SSGL2 to other
methods. Finally, we draw some conclusions in section 7.

2 Related Methods

A number of methods have been proposed to select a subset of basis functions from a
set of candidates without the need of being kernels. These candidates are usually, but
not necessarily, centered at the input data. Some of these methods are the Relevance
Vector Machine (RVM) [5], 1-norm SVMs (1-NSVM) [7] or Kernel Matching Pursuits

1 Expansion vectors is the term used in [8] to refer to the vectors associated with each kernel
evaluation in the model.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Basis Functions Guided by the L2 Soft Margin 423

(KMP) [6]. On the one hand, RVM and 1-NSVM consider the whole set of basis func-
tions and minimize a cost function that makes most of the weights become zero. On
the other hand, KMP follows a search process to select a subset of basis functions that
minimize some cost function (usually the sum-of-squares error). None of these methods
maximizes the Euclidean margin.

Two methods have recently been proposed to maximize the margin using a reduced
number of expansion vectors. Both methods require the use of kernels. The first method
[8] adds a new constraint to the SVM problem so that the number of expansion vectors
is preset by the user. The new problem is non-convex and a local minimum is found
with a gradient based algorithm.

The second method [9] uses forward selection to select a subset of vectors that max-
imize the L2 soft margin or, equivalently, optimize

min
β

f(β) =
λ

2
βT Kβ +

1
2

∑

i∈I(β)

(yi(β) − ti)2, (1)

where K is the N × N kernel matrix and yi(β) =
∑N

j=1 βjK(xi, xj) and I(β) = {i :
tiyi(β) < 1} is the active set. The bias term is omitted for simplicity. The selection
technique is based on previous work on optimizing linear L2 soft margin SVMs [10].

3 Optimizing Linear L2 Soft Margin SVMs

Linear SVMs find a hyperplane that maximizes the margin in the input space R
D. The

objective is to find the parameters w = (ω1, ω2, .., ωD)T that solve the problem:2

min
w

1
2
‖w‖2 +

C

2

N∑

i=1

ξ2
i

subject to ti(wT xi) ≥ 1 − ξi ∀i ∈ {1, .., N}, (2)

where C is a regularization parameter and xi = (xi1, xi2, .., xiD)T are the input vec-
tors. The output function is y(x) = wT x.

This problem has an equivalent formulation as

min
w

f(w) =
λ

2
wT w +

1
2

∑

i∈I(w)

(wT xi − ti)2, (3)

where λ = 1/C and I(w) = {i : tiwT xi < 1}. The active set in the final solution,
I(w), corresponds to the support vectors. Note that f is a piecewise quadratic function
strictly convex, thus it has a unique minimizer. Furthermore, f is continuously differ-
entiable [10]. An iterative algorithm has been proposed [10] to optimize (3). Basically,
each iteration k consists of two steps. In the first one, the optimal parameters w for
the current active set I(wk) can be found as a regularized least squares solution. In the
second step a line search is done, following wk+1 = wk + δ∗(w − wk), to decrease the
“full” objective function f . The algorithm has been theoretically shown to converge to
the solution of (2) in a finite number of steps.

2 For the sake of simplicity we will treat the bias term as part of the parameters, w.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

424 I. Barrio, E. Romero, and L. Belanche

4 Search Strategies

A search process has four main elements: an objective function which directs the search,
a search strategy that decides how to continue exploring new states, an initial state where
the search starts from and a stopping criterion. Two popular search strategies are:

– PTA(l, r): Plus l and Take Away r [11]. At every step, l elements are added one at
a time (always the one that maximizes the objective function) and then r elements
are removed one at a time (always the one that, after removing it, the objective
function is maximized). When l > r, it is an increasing method, and when l < r, it
is a decreasing one. Note that Forward Selection (FS) is PTA(1,0).

– SFFS: Sequential Forward Floating Selection [12] was originally designed for fea-
ture selection. At every step, an element is added and then zero or more elements
are removed one at a time while the value of the objective function is better than
the best value achieved until this moment with the same number of elements.

5 Search Strategies Guided by the L2 Soft Margin

If we transform the input data into a new feature space φ(x)=(φ1(x), φ2(x), ..φm(x))T ,
the hyperplane that maximizes the margin in this new space can be found by extend-
ing (3):

min
w

f(w)=
λ

2
wT w +

1
2

∑

i∈I(w)

(yi(w) − ti)2, (4)

where w = (ω1, ω2, .., ωm)T , yi(w) = wT φ(xi) and I(w) = {i : tiyi(w) < 1} is the
active set. Given a set of M candidate basis functions, we could tackle the classification
problem by including in the model all of them (i.e. m = M) and solving (4). Since
the model with the whole set of candidate basis functions has more flexibility than all
the other subsets, the loss function (4) is minimized further. Although that solution
can obtain good generalization rates, the cost of the predictions is very high when M
is large. In order to reduce the cost, we could select a random subset of m < M basis
functions, obtanining a Reduced SVM [13,14], but that subset could be very suboptimal.

In order to obtain good generalization at a low prediction cost, we intend to fulfill
a tradeoff between the maximization of the L2 soft margin and the number of basis
functions. As a practical approach to achieve this goal we propose to use a search pro-
cess, following some search strategy (section 4) guided by the maximization of the L2
soft margin or, equivalently, the minimization of (4). We will refer to these methods
as Search Strategies Guided by the L2 soft margin (SSGL2). More powerful search
strategies like SFFS should reduce (4) more than simpler ones like FS. Therefore, a
better generalization is expected. However, they will also require more additions and
removals, so the learning stage will be slower.

The L1 soft margin is more commonly used with SVMs than the L2 soft margin.
One of the reasons for the common use of the L1 soft margin is that it produces sparser
solutions in the number of support vectors. This reason does not affect this work, be-
cause we are working in the feature space and the sparsity in the number of features

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Basis Functions Guided by the L2 Soft Margin 425

is explicitly controlled during the search process. We propose to maximize the L2 soft
margin for computational convenience.

Note that the SSGL2 are guided by (4), and not by (1) as proposed in [9]. The main
difference is that the regularization term is simpler in (4) and only depends on the values
of the coefficients. This allows the use of non-kernel basis functions.

5.1 Implementation

The search strategies described in section 4 only require the addition and removal of
elements (the “best” element at every step). Following is the pseudocode for addition
and removal of basis functions with SSGL2 based on the algorithm proposed in [10]
and described in section 3.

AddBestBasisFunction (a subset of m basis functions φ, the parameters w,
a set of candidate basis functions {ϕi})
1. for each candidate basis function ϕi not in φ do
2. set φ+ the subset obtained by adding ϕi to φ and compute the parameters w

for the current active set I(w) as a regularized least squares solution
3. w+ := LineSearch(φ+, w, w)
4. compute (4) for φ+, w+

5. end for
6. set φ, w the subset and parameters obtained by adding to φ the ϕi that

minimizes (4) in the previous loop
7. w:=TrainSVMKeerthiDeCoste(φ, w)
8. return (φ, w)

end AddBestBasisFunction

RemoveWorstBasisFunction (a subset of m basis functions φ, the parameters w)
9. for each basis function φi in φ

10. set φ− the subset obtained by removing φi from φ and compute the parameters w
that minimize (4) for the current I(w) as a regularized least squares solution

11. set w′ the parameters obtained by removing ωi from w
12. w− := LineSearch(φ−, w′, w)
13. compute (4) for φ−, w−
14. end for
15. set φ, w the subset and parameters obtained by removing from φ the φi

that minimizes (4) in the previous loop
16. w:=TrainSVMKeerthiDeCoste(φ, w)
17. return (φ, w)
end RemoveWorstBasisFunction

TrainSVMKeerthiDeCoste (a subset of basis functions φ,
the parameters w)

18. while not convergence do
19. compute the parameters w that minimize (4) for the current I(w)
20. w:=LineSearch(φ, w, w)
21. end while
22. return(w)
end TrainSVMKeerthiDeCoste

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

426 I. Barrio, E. Romero, and L. Belanche

For each candidate basis function, for efficiency reasons, the optimal parameters are
approximated (steps 2-3 or 10-12 in the pseudocode) by performing only one iteration
of the algorithm in section 3: the regularized least squares stage is computed incremen-
tally (steps 2 or 10) and the cost of the line search (steps 3 or 12) is O(N log N) [10].
After a basis function has been included, the whole algorithm in section 3 is run until
convergence (steps 7 or 16).

Next we explain how to perform steps 2 and 3 incrementally. Suppose the current
model has m basis functions and the active set I(w) has NSV elements and denote
d : {1, .., NSV } → {1, .., N} the function that given an index k in the active set returns
the corresponding index in the training set. Denote Φ the NSV × m design matrix
with elements Φkj = φj(xd(k)) and denote φ∗ the column vector corresponding to
a new basis function with elements φ∗k = φm+1(xd(k)). Let Σ = (λI + ΦT Φ)−1.
Under a fixed active set, Σ−1 is a partitioned matrix. In that case, we can compute
the parameters after adding φ∗ (step 2) as w = ((w − ω∗ΣΦT φ∗)T , ω∗)T where ω∗ =
(λ+φT

∗ φ∗−φT
∗ ΦΣΦT φ∗)−1. Similarly, we can compute the parameters decrementally

after removing φi (step 10) as w = w − ωiΣ
−1
ii Σi. The parameter ωi, which is now

zero, should be removed.
The cost of an addition is O(NSV × m × M + N × log N × M), where M is the

number of candidate basis functions. The cost of a removal is O(NSV × m2 + N ×
log N × m) —note that we have to compute (4) for each candidate removal (step 13 in
the pseudocode).

5.2 Stopping Criteria

The addition of more basis functions, when using the appropiate regularization param-
eter, is usually beneficial for the accuracy of the model, but some heuristic stopping
criterion should be used to decide when to stop the search.

A first stopping criterion comes when the requirements of memory are strict and
precise: the size of the subset is fixed beforehand, and when the model first reaches that
number of basis functions, the process is stopped.

However, in many cases, the user will prefer the method to automatically select the
number of basis functions. For those cases, we propose this second stopping criterion:
let Fn be the error (4) of the best model found with n basis function; given some k, ε,
if the current model has m + k basis functions and Fm − Fm+k < εN the process is
stopped. By modifying k and ε one can roughly control the size of the subset.

6 Experimental Study

The goal of the following experiments is threefold: to observe the size of the subsets
required to achieve good results, to confirm that more powerful SSGL2 produce better
solutions than simpler ones and to compare the performance of SSGL2 to other related
methods.

Although the use of kernels is not necessary in the proposed model, in order to com-
pare the SSGL2 to the SVM, M = N candidate Radial Basis Functions (RBF) centered
at the training set input vectors were considered. We used ϕi(x) = exp(−γ‖x− xi‖2).
Furthermore, a bias candidate, ϕ0(x) = 1, was used.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Basis Functions Guided by the L2 Soft Margin 427

A) SSGL2 (FS 6 BF) C) SSGL2 (FS 11 BF) E) SVM

B) SSGL2 (SFFS 6 BF) D) SSGL2 (SFFS 11 BF) F) 1-NSVM

Fig. 1. Basis functions selected by different methods on the toy problem

6.1 Toy Example

In a first experiment, we created a toy data set with two input dimensions and some
nonlinearities. C was set to a high value: 10000.

Figure 1 shows the centers of the basis functions selected in the solutions of different
methods. The decision boundary generated is also shown. Figures 1A to 1D correspond
to SSGL2, concretely FS and SFFS. FS required 11 basis functions to classify all the
data correctly, while SFFS required only 6 (both solutions are shown in the figure).
For illustrative purposes, Figure 1E shows the solution of a L1 soft margin SVM using
Gaussian kernels (the selected basis functions are the support vectors), and Figure 1F
shows the solution of a 1-NSVM. The classical SVM selects points that are close to the
decission surface, but that is not the case for the SSGL2 and 1-NSVM.

6.2 Benchmark Comparisons

We used 12 classification benchmark problems, provided by G. Rätsch and available at
http://ida.first.fraunhofer.de/projects/bench. These data sets are split in 100 training/test
partitions. The results reported in this work show averages over the first 10 partitions.

Settings. The input vectors were linearly scaled to [−1, +1]. The RBF width was the
same for all the methods: we set γ = (0.3D)−1, following [15], where D is the dimen-
sion of the input vectors.

We used the second stopping criterion described in section 5.2. We set k = 10 and
ε = 0.005. These values were chosen after some preliminary experiments. Furthermore,
if the model reached 100 basis functions, the process was also stopped.

In order to choose the regularizer parameter, C, a 5-fold cross-validation process was
performed on each training set partition. Values for C were tried ranging from 2−4 to
214 multiplying by 22 (that is, {2−4, 2−2, 20, .., 212, 214}).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

428 I. Barrio, E. Romero, and L. Belanche

Table 1. For each data set: average accuracy obtained in the test sets (upper row) and number of
basis functions of the model (lower row)

Data set N D FS PTA(2,1) SFFS ABF SVM 1-NSVM SpSVM-2

Banana 400 2 89.0 89.0 89.0 89.1 89.0 88.7 88.9
29.3 27.2 22.0 400 99.3 18.8 19.8

Breast Cancer 200 9 72.9 72.5 72.4 71.8 70.7 69.7 71.9
43.6 44.3 42.6 200 130 43.6 7.6

Diabetis 468 8 76.7 76.9 76.8 76.5 75.2 75.8 75.8
32.3 28.5 25.0 468 267 31.7 18.3

Flare-Solar 666 9 66.5 66.3 66.2 65.4 66.5 66.3 66.6
24.6 24.2 21.6 666 494 13.9 11.6

German 700 20 76.3 76.8 76.7 76.8 76.3 76.5 76.2
52.2 46.8 44.1 700 459 108 43.6

Heart 170 13 79.1 79.6 79.0 79.0 79.8 78.7 80.0
64.4 62.8 56.6 170 116 39.9 22.6

Image 1300 18 96.5 96.6 96.3 96.7 97.2 96.6 96.6
65.9 55.9 35.6 1300 147 71.7 96

Ringnorm 400 20 97.8 97.7 97.6 98.0 97.5 97.8 97.7
16.2 15.9 15.1 400 86.7 18.7 15.1

Titanic 150 3 77.8 77.8 77.8 77.8 77.8 77.9 77.3
23.4 22.7 21.4 150 74.6 8.8 5.3

Waveform 400 21 89.8 89.6 89.5 89.6 89.6 89.1 89.4
38.6 41.3 37.3 400 134 39.1 15.1

Splice 1000 60 86.8 86.6 86.4 88.6 88.9 85.1 85.1
99.6 95.8 90.6 1000 841 540 86.1

Twonorm 400 20 97.2 97.1 97.1 97.2 97.3 97.0 96.9
40.8 43.9 38.9 400 155 15.9 11.6

Models. We run three SSGL2 (FS, PTA(2,1) and SFFS) and compared them to a linear
(in the explicit feature space) L2 soft margin SVM, where the features φi are all the
candidate basis functions (ABF). In other words, ABF is a model minimizing (4) with
m = N (plus the bias term). We also compared them to classical L1 soft margin SVM
with Gaussian kernels (labelled SVM) and to 1-NSVM.

Finally, we compared them to SVMs with reduced complexity [9] (labelled SpSVM-
2). We used the code provided at http://www.kyb.tuebingen.mpg.de/bs/people/chapelle/primal/
by O. Chapelle. The whole set of candidates was considered for addition at each iteration.
The number of basis functions (up to 100) for this method was selected with 5-fold cross-
validation.

Results. For each task, the upper row in Table 1 shows the percentages of correctly
classified test data (the average over the 10 partitions) and the lower row shows the
number of basis functions used by each method. The number of training data N and
the number of input variables D for each task are also shown. The SSGL2 obtained, in
most cases, very similar accuracy than ABF while using only a subset of basis func-
tions. Their performance was also very similar to SVM, 1-NSVM and SpSVM-2. The
SSGL2 found more compact models than SVM and similar to 1-NSVM and SpSVM-2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Selection of Basis Functions Guided by the L2 Soft Margin 429

10 20 30 40 50 60 70 80
0

100

200

300

400

500

600

Num. Basis Functions

Lo
ss

 (
2)

FS
PTA(2,1)
SFFS

10 20 30 40 50 60 70 80
50

60

70

80

90

100

Num. Basis Functions

T
es

t a
cc

ur
ac

y

FS
PTA(2,1)
SFFS

Fig. 2. The vertical axes show L2 soft margin loss (4) (left) and test accuracy (right) on a partition
of the Image data set. The horizontal axes show the number of basis functions of the model.

Table 2. Average number of additions plus removals required by the SSGL2

Ban. Bre. Dia. Fla. Ger. Hea. Ima. Rin. Tit. Wav. Spl. Two.
FS 29 44 32 25 52 64 66 16 23 39 100 41

PTA(2,1) 82 133 86 73 140 188 168 48 68 124 287 132
SFFS 269 272 180 118 412 456 540 83 115 264 1066 168

Comparing the search strategies of SSGL2, SFFS usually required a lower number of
basis functions to obtain similar accuracy than FS and PTA(2,1).

Figure 2 shows the performance of the models found by the SSGL2 on the first
partition of the Image data set. The plot on the left shows the L2 soft margin loss (4) in
the training set, while the plot on the right shows the accuracy of the models on the test
set. Similar results were obtained for the rest of the data sets. Given the same number
of basis functions, the models found by SFFS performed better than those found by FS.
Again, we can see that the number of basis functions of the final solution is lower for
SFFS than for FS. In contrast, the number of additions and removals required by SFFS
was much higher than by FS (see Table 2). PTA(2,1) was in an intermediate position.

7 Conclusions and Future Work

A method has been described to select a subset of basis functions from a set of can-
didates by means of a search process guided by the L2 soft margin. Being an explicit
search, we can explicitly control the sparsity of the solution.

In the experiments, the SSGL2 found compact and competitive models. SFFS found
very good subsets but it required a high number of operations. PTA(2,1) and FS required
much less operations but their subsets were not so good. Choosing the search strategy
implies a tradeoff between accuracy and computational cost. In orther to satisfy this
tradeoff, other search strategies may be considered.

The SSGL2 can be extended in two ways that kernel methods cannot (or at least not
so easily). First, any similarity function can be used without the restriction to be a kernel
function. Second, a set of candidate basis functions (and a model) can contain different
sorts of basis functions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

430 I. Barrio, E. Romero, and L. Belanche

Acknowledgments

This work was supported by the Consejo Interministerial de Ciencia y Tecnologı́a (CI-
CYT), under projects CGL2004-04702-C02-02 and TIN2006-08114.

References

1. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
2. Schölkopf, B., Tsuda, J.P.V.K.: Kernel methods in computational biology. MIT Press, Cam-

bridge (2004)
3. Balcan, M.F., Blum, A.: On a theory of learning with similarity functions. In: Proceedings of

the 23rd International Conference on Machine Learning, pp. 73–80. ACM Press, New York
(2006)

4. Steinwart, I.: Sparseness of support vector machines. Journal of Machine Learning Re-
search 4, 1071–1105 (2003)

5. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research 1, 211–244 (2001)

6. Vincent, P., Bengio, Y.: Kernel matching pursuit. Machine Learning 48(1-3), 165–187 (2002)
7. Bradley, P.S., Mangasarian, O.L.: Feature selection via concave minimization and support

vector machines. In: 15th International Conf. on Machine Learning, pp. 82–90. Morgan
Kaufmann, San Francisco (1998)

8. Wu, M., Schölkopf, B., Bakir, G.: Building sparse large margin classifiers. In: 22nd Interna-
tional Conf. on Machine learning, pp. 996–1003. ACM Press, New York (2005)

9. Keerthi, S., Chapelle, O., DeCoste, D.: Building Support Vector Machines with Reduced
Classifier Complexity. Journal of Machine Learning Research 8, 1–22 (2006)

10. Keerthi, S., DeCoste, D.: A modified finite Newton method for fast solution of large scale
linear SVMs. Journal of Machine Learning Research 6, 341–361 (2005)

11. Kittler, J.: Feature selection and extraction. In: Young, F. (ed.) Handbook of Pattern Recog-
nition and Image Processing, Academic Press, London (1986)

12. Pudil, P., Novovičová, J., Kittler, J.: Floating Search Methods in Feature Selection. Pattern
Recognition Letters 15(11), 1119–1125 (1994)

13. Lee, Y.J., Mangasarian, O.L.: Rsvm: Reduced support vector machines. In: SIAM Interna-
tional Conference on Data Mining (2001)

14. Lin, K.M., Lin, C.J.: A study on reduced support vector machines. IEEE Transactions on
Neural Networks 14(6), 1449–1559 (2003)

15. Schölkopf, B., Sung, K., Burges, C., Girosi, F., Niyogi, P., Poggio, T., Vapnik, V.: Compar-
ing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE
Transactions on Signal Processing 45(11), 2758–2765 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extended Linear Models with Gaussian Prior on the
Parameters and Adaptive Expansion Vectors

Ignacio Barrio, Enrique Romero, and Lluı́s Belanche

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya, Barcelona, Spain

Abstract. We present an approximate Bayesian method for regression and clas-
sification with models linear in the parameters. Similar to the Relevance Vector
Machine (RVM), each parameter is associated with an expansion vector. Unlike
the RVM, the number of expansion vectors is specified beforehand. We assume
an overall Gaussian prior on the parameters and find, with a gradient based pro-
cess, the expansion vectors that (locally) maximize the evidence. This approach
has lower computational demands than the RVM, and has the advantage that the
vectors do not necessarily belong to the training set. Therefore, in principle, better
vectors can be found. Furthermore, other hyperparameters can be learned in the
same smooth joint optimization. Experimental results show that the freedom of
the expansion vectors to be located away from the training data causes overfitting
problems. These problems are alleviated by including a hyperprior that penalizes
expansion vectors located far away from the input data.

1 Introduction

In supervised learning, we are given a set of training data {xi, ti}N
i=1 where xi ∈ RD.

We will consider regression tasks, where ti ∈ R, and binary classification tasks where
ti ∈ {+1, −1}. The objective is to infer a function y(x) that underlies the training
data and makes good predictions on unseen input vectors. It is common to express this
function as an extended linear model with M fixed basis functions:

y(x; w) = wT φ(x), (1)

where φ(x) = (φ1(x), φ2(x), .., φM (x))T are the outputs of the basis functions and
w = (ω1, ω2, .., ωM)T are the model parameters. When each basis function is associ-
ated with a vector, we can write

φ(x) = (k(x, x̂1), k(x, x̂2), .., k(x, x̂M))T , (2)

where x̂i are the expansion vectors.
Within Bayesian learning, the Relevance Vector Machine (RVM) [1] considers a

model where the expansion vectors correspond with all the training input vectors. An
individual Gaussian prior distribution is assumed on each parameter, so that following
approximate Bayesian inference leads to sparse solutions. The expansion vectors asso-
ciated to non-zero parameters (known as relevance vectors) belong to the training set,

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 431–440, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

432 I. Barrio, E. Romero, and L. Belanche

and are found by marginal likelihood maximization. The η-RVM is an extension of the
RVM that, besides selecting the relevance vectors, adapts the hyperparameters of the
basis functions— e.g. the widths of Radial Basis Functions (RBF)— by marginal like-
lihood maximization. As Tipping stated, there is an important limitation in the η-RVM,
since the learning stage requires an interleaved two-stage training procedure that leaves
open the question of how to combine the optimization.

We present a method that finds a model with the form (1, 2) where the expansion
vectors (the number of which is fixed beforehand) do not belong to the training set.
We place an overall Gaussian prior on the parameters, and find the expansion vectors
by marginal likelihood maximization with a gradient based process. We will refer to
this method as Linear Model with Adaptive expansion Vectors maximizing the Evidence
(LMAVE). One might argue that, since the expansion vectors are adaptive, the model is
no longer linear. However, we use the term linear model because the expansion vectors
are not parameters but hyperparameters. This work is inspired in previous works on
sparsification of Support Vector Machines [2] and Gaussian processes [3]. These works
do not require the expansion vectors to be part of the training data.

This manner of finding the expansion vectors has been suggested in [4,5], but it has
not been studied in depth. However, it should include a number of enhancements with
respect to the RVM, for example, the expansion vectors do not necessarily belong to
the training data, so better estimates can be found. Furthermore, the expansion vectors
and other hyperparameters are learned in one joint optimization. The computational
demands are lower than for the RVM, which makes this method suitable for large data
sets. However, experimental results show that, at least for RBFs, the freedom of the
expansion vectors to be away from the training data can cause overfitting problems.

We propose a hyperprior that penalizes expansion vectors located far away from the
input data and show that a substantial improvement is achieved. We refer to this method
as Linear Model with Adaptive expansion Vectors maximizing the Posterior (LMAVP).

2 Linear Models with Overall Gaussian Prior

This section introduces inference with extended linear models where an overall Gaus-
sian prior distribution is assumed on the parameters. For regression we follow previous
work on Bayesian interpolation [6]. For classification we use a generalization of the
linear model.

2.1 Regression

Consider the targets to be deviated from the real underlying function by i.i.d. additive
zero-mean Gaussian noise with variance σ2

ν . The likelihood of the parameters follows
a Gaussian distribution: (to save notation, we omit the conditioning on the input vec-
tors, x)

p(t|w, σ2
ν) ∼ N (Φw, σ2

ν), (3)

where Φ is the N × M design matrix with elements Φij = k(xi, x̂j).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extended Linear Models with Gaussian Prior 433

In order to control the smoothness of y(x; w), we assume a zero-mean overall
Gaussian prior distribution over w with variance σ2

w:

p(w|σ2
w) ∼ N (0, σ2

w), (4)

Following Bayes’ rule, the posteriorparameterdistribution is writtenp(w|t, σ2
ν, σ

2
w) =

p(t|w, σ2
ν)p(w|σ2

w)/p(t|σ2
w, σ2

ν). This is a product of two Gaussians (the likelihood and
the prior) divided by a normalizing constant (the marginal likelihood) and it can be
rewritten as

p(w|t, σ2
ν , σ2

w) ∼ N (μ, Σ), (5)

where
Σ = (σ−2

ν ΦT Φ + σ−2
w I)−1 and μ = σ−2

ν ΣΦT t. (6)

The marginal likelihood (also known as the evidence) is given by p(t|σ2
w, σ2

ν) =∫
p(t|w, σ2

ν)p(w|σ2
w)dw. This is a convolution of Gaussians, which is also a Gaussian:

p(t|σ2
w , σ2

ν) = N (0, C) = (2π)−N/2|C|−1/2 exp
(

− 1
2
tT C−1t

)
, (7)

where C = σ2
νI + σ2

wΦΦT . Since matrix C is sized N × N , it is convenient to use
established matrix identities and rewrite the logarithm of the marginal likelihood as

log p(t|σ2
w , σ2

ν) = − 1
2
[
N log 2π − log |Σ| + N log σ2

ν+

+ M log σ2
w + σ−2

ν ‖t − Φμ‖2 + σ−2
w ‖μ‖2].

It is common to include extra hyperparameters controlling some aspect of the basis
functions (e.g. RBF widths). We will refer to all the hyperparameters (including also
σ2

w and σ2
ν) as Θ.

In order to estimate the most probable hyperparameters, ΘMP , we can use Bayes’
rule: p(Θ|t) ∝ p(t|Θ)p(Θ). If a flat (improper) hyperprior p(Θ) is assumed for all the
hyperparameters, then the marginal likelihood p(t|Θ) (7) should be maximized.

2.2 Binary Classification

In binary classification we model the probability of success p(ti = +1|w). We map
y(x; w) to the unit interval by applying the cumulative distribution function for a Gaus-
sian (probit), Ψ(z) =

∫ z

−∞ N (x|0, 1)dx. The likelihood is

p(t|w) =
N∏

i=1

p(ti|wT φ(xi)) =
N∏

i=1

Ψ(tiwT φ(xi)). (8)

We use an overall Gaussian prior for the parameters (4). Since the likelihood is not
Gaussian, unlike the regression case, we cannot arrive at analytical solutions for the
posterior. Instead, we approximate the posterior distribution as1

p(w|t, σ2
w) ∝ p(w|σ2

w)
∏

i

p(ti|w) ≈ p(w|σ2
w)

∏

i

q(ti|w). (9)

1 We use p to denote exact quantities and q to denote approximations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

434 I. Barrio, E. Romero, and L. Belanche

We follow Expectation Propagation (EP) [7] and choose the approximation terms to be
Gaussian, parameterized by (mi, vi, si): q(ti|w) = si exp(− 1

2vi
(tiwT φ(xi) − mi)2).

Then the approximate posterior is also Gaussian: q(w|t, σ2
w) = N (mw, Vw).

EP chooses the approximation terms such that the posterior using the exact terms and
the posterior using the approximation terms are close in Kullback-Leibler (KL) diver-
gence. Qi et al. [8] presented an iterative algorithm to choose the approximation terms
following EP in O(INM2) complexity (I is the number of iterations). The algorithm
was designed for the RVM, but it is also applicable to linear models with an overall
Gaussian prior. It is omitted here for brevity.

Once the approximation terms are found, the marginal likelihood can be approxi-
mated by:

p(t|Θ) ≈ q(t|Θ) =
∫ ∏

i

p(w|σ2
w)q(ti|w)dw = |Vw|1/2σ−M

w exp(B/2)
∏

i

si (10)

where B = (mw)T V −1
w mw −

∑
i(m

2
i /vi).

3 Linear Models with Adaptive Expansion Vectors

The Linear Model with Adaptive expansion Vectors (LMAV) can be seen as a linear
model with an overall Gaussian prior (section 2) where the expansion vectors are con-
sidered as hyperparameters. The number of expansion vectors is fixed beforehand. In
order to optimize the expansion vectors and the rest of hyperparameters, the LMAV
maximizing the evidence (LMAVE) uses a gradient based algorithm that maximizes the
evidence (7, 10).

3.1 Derivatives with Respect to the Expansion Vectors

Regression Tasks. For regression tasks, we can decompose the computation of the
derivatives of the marginal likelihood (7) with respect to the expansion vectors into two
steps [1]. For convenience we compute the derivative of the logarithm L = log p(t|Θ):

∂L
∂x̂ij

=
N∑

n=1

M∑

m=1

∂L
∂φnm

∂φnm

∂x̂ij
=

N∑

n=1

M∑

m=1

Anm
∂φnm

∂x̂ij
,

where x̂i = (x̂i1, x̂i2, .., x̂iD), A = σ−2
ν [(t − Φμ)μT − ΦΣ] and φnm = k(xn, x̂m).

Classification Tasks. For classification tasks, the approximation terms q(ti|w) have
the same form as a likelihood term in a regression problem (3), that is, we convert the
classification problem into a regression problem with targets mi and input dependent
(heteroscedastic) noise with variances vi. Following this interpretation, the covariance
matrix and the mean for the posterior q(w|t, σw) can be rewritten as

Vw = (σ−2
w I + HT Λ−1H)−1 and mw = VwHT Λ−1mo, (11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extended Linear Models with Gaussian Prior 435

where mo = (m1, .., mN)T , Λ = diag(v1, .., vN)T and H is an N × M matrix with
elements Hij = tik(xi, x̂j).

We can use (11) to compute the derivatives of the marginal likelihood (10) with
respect to the hyperparameters. For the gradient computation, the parameters mi, vi, si

can be considered fixed [9] and we can write: (notice L = log q(t|Θ))

∂L
∂x̂ij

= − 1
2
tr(VwE

∂H

∂x̂ij
) +

1
2
mT

wE
∂H

∂x̂ij
mw−

− 1
2
mT

wE
∂H

∂x̂ij
VwEmo + mT

w

∂HT

∂x̂ij
Λ−1mo, (12)

where E = 2HT Λ−1.

3.2 Computational Cost

In regression tasks, computing the gradient requires the matrix multiplication ΦΣ in the
calculation of matrix A, which has complexity O(M2 × N). In addition, the optimiza-
tion of M expansion vectors has M × D dimensions. However, the matrix ∂Φ/∂x̂ij

only has one non-zero column, which lowers the cost of some computations. The cost
of LMAVE for regression is O(n × (N × M × D + M2 × N)), where n is the number
of epochs of the gradient based algorithm.

In classification tasks, each epoch requires the EP approximation and the computa-
tion of the gradient. Computing the gradient requires the matrix multiplication VwE in
(12), which has complexity O(M2 ×N). This complexity is lower than the EP approxi-
mation O(I×M2×N), where I is the number of iterations of the EP algorithm (usually
less than 10, so it can be considered as a constant). The optimization of M expansion
vectors has M × D dimensions, but again the matrix ∂H/∂x̂ij only has one non-zero
column. The cost of LMAVE for binary classification is O(n × (N × M × D + I ×
M2 × N)). We have not included the cost of optimizing additional hyperparameters.

3.3 Introducing a Non-flat Hyperprior

The plot on the left in Figure 1 shows an illustrative example of LMAVE with ten
expansion vectors. The data are shown with dots. The initial and the final locations of
the expansion vectors are marked with crosses (lower and upper row respectively). The
function produced by the LMAVE is also shown. We trained the LMAVE with RBFs
k(x, x̂i) = exp(−γ

∑D
j=1(xj − x̂ij)2) with adaptive inverse squared width, γ. There is

an input range where no data are provided. We find that an expansion vector is located
precisely in that range and the function values become large near that expansion vector.
A similar effect happens with the expansion vector located on the right of the data.

Where the data are scarce, the prior assumptions should take high importance. The
Gaussian prior assumption on the parameters favours small function values, but the
freedom of the expansion vectors to be located anywhere can produce large function
values. That is, the prior assumption on the parameters is not enough to control the
smoothness.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

436 I. Barrio, E. Romero, and L. Belanche

Fig. 1. Comparison between LMAVE (left) and LMAVP (right). See text.

The LMAVE assumes a flat hyperprior on the expansion vectors. To tackle situations
like the one in Figure 1 we can include a hyperprior that penalizes expansion vectors lo-
cated far away from the input data. Taking advantage of k(x, x̂i) ∈ [0, 1] being bounded
and localized at the expansion vectors, we propose the following hyperprior (note that
k(x, x̂i) depends on γ):

p(x̂i, γ) ∝ exp
(

− 1
2

(1 − maxN
j=1(k(xj , x̂i)))2

s2

)
. (13)

It is exclusively designed for the RBFs described above. Note that we have saved no-
tation and this hyperprior should be written p(x̂i, γ|{xj}N

j=1, k(·, ·)). This hyperprior
satisfies a tradeoff2 between flexibility on the expansion vectors to model the data and
constraint to be located near the input data (the concept ’near’ depends on the RBF
width). Throughout this work we set s = 0.1. This value was chosen after some pre-
liminary experiments.

In order to find maximum a posteriori estimates of the hyperparameters we maximize
log p(t|Θ)+

∑M
i=1 log p(x̂i, γ). The complexity of computing the gradient of the hyper-

priors is negligible when compared to the gradient of the evidence, therefore the cost is
the same as LMAVE. We call this method LMAV maximizing the posterior (LMAVP).
The plot on the right in Figure 1 shows the performance of LMAVP on the same data
set. The expansion vectors are located near the training data and large function values
are avoided.

4 Comparison with Related Methods

4.1 Relevance Vector Machines

The RVM [1] considers a linear model with one expansion vector coincident with each
input vector. Unlike the LMAV, an individual Gaussian prior is assumed for each pa-
rameter, and following approximate Bayesian inference, most of the parameters tend
to zero, so in practice the model can be expressed as an expansion of a subset of input
vectors. Unlike the LMAV, the size of the model adapts to the problem at hand. This
can be an advantage, but it can become a drawback for applications very restrictive in
prediction time and memory, where the level of sparsity may be not enough.

2 The term s2 in the denominator controls this tradeoff.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extended Linear Models with Gaussian Prior 437

Unlike the RVM, the expansion vectors in LMAV do not necessarily belong to the
training data, so better estimates can be found —but if they are located far away, prob-
lems can appear (see Figure 1). Furthermore, the optimization of expansion vectors and
other hyperparameters can be performed in a smooth joint optimization.

RVM implementations [10,11,12] either store the entire N × N design matrix or re-
compute all its columns at each iteration, while the LMAV recomputes an N×M design
matrix at each iteration. Furthermore, the cost of an iteration of LMAV depends only
linearly on the number of training data (it depends on other variables, see section 3.2),
while this dependence is at least quadratic in RVM implementations. This makes the
LMAV especially interesting for large data sets (and low number of expansion vectors).

Unlike the RVM, the LMAV requires the basis functions to be differentiable with
respect to the expansion vectors. Furthermore, a bad initialization of the expansion vec-
tors may lead to a bad local maximum.

4.2 Other Related Methods

Sparse large margin classifiers (SLMC) [2] are a sparse alternative to Support Vector
Machines (SVMs) [13] for classification. A gradient based algorithm learns the loca-
tions of the expansion vectors (the number of which is set beforehand) so that the mar-
gin in some feature space is maximized. SLMC makes use of kernels, which allows to
work in infinite feature spaces. Unlike SLMC, the LMAV does not use kernels, and it is
limited to finite feature spaces. This limitation sometimes turns into an advantage, since
the LMAV can use basis functions that do not satisfy Mercer’s condition (required to
be kernel). Furthermore, the Bayesian framework allows to tune other hyperparameters,
such as RBF widths, that are not easily tuned for SLMC.

A Sparse Pseudo-input Gaussian process (SPGP) [3] is a Gaussian process (GP) with
a particular covariance function parameterized by the pseudo-inputs (the counterpart to
the expansion vectors). This covariance defines a prior over functions. Following ap-
proximate Bayesian inference, the pseudo-inputs are optimized by marginal likelihood
maximization. The pseudo-inputs and the hyperparameters are found in a gradient based
smooth joint optimization. The LMAV is closely related to SPGP, but it is based on a
different prior over functions (a different covariance matrix C in (7)), with the advan-
tage that the basis functions k(x, x̂i) do not need to be covariance functions.

Much work in the literature has been devoted to the location of RBF centers. Gen-
eralized radial basis functions (GRBF) [14] find the centers with a gradient based al-
gorithm minimizing some cost function based on regularization techniques. In [15] not
only the centers are found with this method but also the RBF widths. The authors report
overfitting problems. Similarly, the hidden parameters in a feed-forward neural network
are commonly trained with gradient based algorithms [16]. LMAV can be considered as
a sort of neural network. However, the main difference between both methods is that in
neural networks all the parameters (output and hidden ones) are usually trained to min-
imize the same cost function, whereas in LMAV the expansion vectors (the counterpart
to hidden layer parameters) are found by integrating out the (output) parameters. This
should bring an improvement over maximum likelihood approaches.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

438 I. Barrio, E. Romero, and L. Belanche

Table 1. Results on regression benchmarks. The test MSE is shown for each method.

Data set CPU bank-32nh pumadyn-32nh kin-40k kin-40k
N 1024 1024 1024 2000 30000
D 21 32 32 8 8

η-RVM M/N (%) 1.8 40.7 2.5 12.6 -
Error (MSE) 0.090 1.707 0.602 0.0043 -

SPGP 0.080 1.262 0.586 0.0071 0.0061
M/N = 2% LMAVE 0.110 2.570 0.704 0.0054 M = 50 0.0043

LMAVP 0.093 1.458 0.627 0.0054 0.0045

SPGP 0.083 1.259 0.597 0.0054 0.0039
M/N = 5% LMAVE 0.086 3.944 0.846 0.0043 M = 100 0.0030

LMAVP 0.077 1.861 0.642 0.0041 0.0029

SPGP 0.079 1.264 0.616 0.0045 0.0033
M/N = 10% LMAVE 0.088 3.032 0.987 0.0040 M = 200 0.0015

LMAVP 0.072 2.058 0.636 0.0031 0.0016

5 Experimental Study

In this section we compared the LMAVE and LMAVP to some related methods. Conju-
gate gradients was used to optimize all the hyperparameters. We used n = 200 epochs.

5.1 Regression Benchmarks

We used four benchmark data sets.3 To check performance, for the kin-40k task we used
20 disjoint sets with 2000 cases each. Ten sets were used for training and ten for test.
For each of the other tasks we used eight disjoint sets with 1024 cases each (four sets
for training and four for test). To show the utility of LMAV on large data sets, we also
split the kin-40k data set into 30000 training cases and 10000 test cases.

We used RBFs with multiple adaptive widths k(x, x̂i) = exp(−
∑D

j=1 γj(xj −
x̂ij)2). We compared the LMAVE and LMAVP to SPGP with covariance function
K(x1, x2) = θ0k(x1, x2) and to η-RVM (RVM with adaptive RBF widths). The num-
ber of expansion vectors for LMAV and SPGP was 2%, 5% and 10% of the number of
training data (except for the large data set). For SPGP we used the code provided by
E. Snelson at www.gatsby.ucl.ac.uk/∼snelson. For the η-RVM we followed the imple-
mentation proposed by Tipping [1].

Table 1 shows the results. For each task, the number of training data, N , and the
input dimension, D, are shown. The mean squared error (MSE) is reported for each
method. LMAVP was competitive with SPGP and the RVM, and it outperformed the
LMAVE. The hyperprior alleviated overfitting problems in most cases but it was not
strong enough for the bank-32nh problem. In the large data set, the RVM is hopeless,
since it requires too much storage and computation, while the LMAV required from 16
minutes (with M = 50) to 110 minutes (with M = 200) on a Pentium IV 3.0 GHz.

3 The kin-40k data set is available at http://ida.first.fraunhofer.de/∼anton/data.html. The rest of
data sets are available at http://www.cs.toronto.edu/∼delve

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Extended Linear Models with Gaussian Prior 439

Table 2. Results on classification tasks. The test error rates are shown for each method.

Data set Banana Breast Titanic Waveform Image
N 400 200 150 400 1300
D 2 9 3 21 18

SVM NSV 86.7 112.8 70.6 158.9 172.1
Error(%) 11.8 28.6 22.1 9.9 2.8

SLMC 16.5 27.9 26.4 9.9 5.2
M/NSV = 5% LMAVE 26.3 30.8 22.6 12.8 2.9

LMAVP 26.1 29.9 22.7 12.5 3.5

SLMC 11.0 27.9 22.4 9.9 3.6
M/NSV = 10% LMAVE 11.5 29.5 22.7 12.5 2.6

LMAVP 11.0 28.7 22.8 12.1 3.0

RVM M/NSV (%) 13.2 5.6 92.5 9.2 20.1
Error(%) 10.8 29.9 23.0 10.9 3.9

5.2 Classification Benchmarks

Five classification tasks available at http://ida.first.fraunhofer.de/projects/bench were
used. These data sets were split in 100 training/test partitions. Similar to [1,2] the results
reported in this work show averages over the first 10 partitions of each data set.

In this experiment we used RBFs with a single width k(x, x̂i) = exp(−γ
∑D

j=1(xj−
x̂ij)2). We compared the LMAVE and LMAVP to the RVM, SLMC and SVM. The
number of expansion vectors for SLMC, LMAVE and LMAVP is 5% and 10% of the
number of support vectors found by the SVM.

Results are shown in Table 2. The results for RVM are taken from [1], where cross-
validation was used to find the RBF width. The results for SVM and SLMC are taken
from [2], where the regularization parameter and the RBF width were the ones provided
by G. Rätsch at the aforementioned website. For LMAVE and LMAVP, the RBF width
was jointly optimized with the expansion vectors (see section 3).

The LMAVE and LMAVP were competitive both with the RVM and SLMC. The
difference in accuracy between LMAVP and LMAVE was not as notable as in regression
tasks.

6 Conclusions

Experimental results show that the freedom of the expansion vectors to be located away
from the training data can cause overfitting problems to the LMAVE. Since the prior
on the parameters is not enough to tackle overfitting, we have included a particular
hyperprior (designed for radial basis functions) penalizing expansion vectors located far
away from the input data. This approach (LMAVP) results in a significant improvement
over the LMAVE, especially in regression tasks, and is competitive with the RVM. The
number of expansion vectors required to achieve good performance is usually very low.
This fact makes this method very interesting for large data sets, since the memory and
computational demands are lower than for the RVM. A study on different hyperpriors
may be potentially interesting (also for non-radial basis functions).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

440 I. Barrio, E. Romero, and L. Belanche

In this work, the expansion vectors are initialized to random training input vectors,
but other scenarios are possible, for example we could use a clustering algorithm such
as K-means.

The (Gaussian) noise and (probit) ’slack’ assumptions taken can be rather stringent,
and the presence of outliers can decrease performance. Furthermore, the optimization
of hyperparameters based on the evidence (LMAVE) and on maximum a posteriori
estimates (LMAVP) are just approximations to full Bayesian inference, which consists
on integrating out all the hyperparameters. As such, they are not inmune to overfitting.

Acknowledgments

The authors thank Joaquı́n Quiñonero Candela for providing the code for the η-RVM.
This work was supported by the Consejo Interministerial de Ciencia y Tecnologı́a (CI-
CYT), under projects CGL2004-04702-C02-02 and TIN2006-08114.

References

1. Tipping, M.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine
Learning Research 1, 211–244 (2001)

2. Wu, M., Schölkopf, B., Bakir, G.: Building sparse large margin classifiers. In: 22nd Interna-
tional Conf. on Machine learning, pp. 996–1003. ACM Press, New York (2005)

3. Snelson, E., Ghahramani, Z.: Sparse Gaussian Processes using Pseudo-inputs. Advances in
Neural Information Processing Systems 18, 1257–1264 (2006)

4. Minka, T.: Bayesian linear regression (1998), note obtainable from
http://research.microsoft.com/∼minka/papers/

5. Quiñonero Candela, J., Rasmussen, C.E.: A Unifying View of Sparse Approximate Gaussian
Process Regression. Journal of Machine Learning Research 6, 1935–1959 (2005)

6. MacKay, D.J.C.: Bayesian Interpolation. Neural Computation 4, 415–447 (1992)
7. Minka, T.P.: Expectation Propagation for approximate Bayesian inference. In: 17th Confer-

ence in Uncertainty in Artificial Intelligence, pp. 362–369 (2001)
8. Qi, Y.A., Minka, T.P., Picard, R.W., Ghahramani, Z.: Predictive automatic relevance determi-

nation by expectation propagation. In: 21st International Conference on Machine Learning
(2004)

9. Seeger, M.: Expectation propagation for exponential families (2005), note obtainable from
www.kyb.tuebingen.mpg.de/∼seeger/

10. Quiñonero Candela, J., Winther, O.: Incremental Gaussian processes. Advances in Neural
Information Processing Systems 15, 1001–1008 (2003)

11. Tipping, M., Faul, A.: Fast Marginal Likelihood Maximisation for Sparse Bayesian Models.
In: Ninth International Workshop on Artificial Intelligence and Statistics (2003)

12. D’Souza, A., Vijayakumar, S., Schaal, S.: The Bayesian backfitting relevance vector ma-
chine. In: 21st International Conference on Machine Learning (2004)

13. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)
14. Poggio, T., Girosi, F.: A theory of networks for approximation and learning. Technical Report

AI-1140, MIT Artificial Intelligence Laboratory, Cambridge, MA (1989)
15. Wettschereck, D., Dietterich, T.G.: Improving the performance of radial basis function net-

works by learning center locations. Advances in Neural Information Processing Systems 4,
1133–1140 (1992)

16. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press Inc., New
York (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://research.microsoft.com/~minka/papers/
www.kyb.tuebingen.mpg.de/~seeger/

Functional Modelling of Large Scattered Data

Sets Using Neural Networks

Q. Meng1, B. Li2, N. Costen2, and H. Holstein3

1 Dept. of Computer Science,Loughborough Univ.
q.meng@lboro.ac.uk

2 Dept. of Computing and Mathematics, Manchester Metropolitan Univ.
b.li@mmu.ac.uk

3 Dept. of Computer Science, Univ. of Wales, Aberystwyth

Abstract. We propose a self-organising hierarchical Radial Basis Func-
tion (RBF) network for functional modelling of large amounts of scat-
tered unstructured point data. The network employs an error-driven
active learning algorithm and a multi-layer architecture, allowing pro-
gressive bottom-up reinforcement of local features in subdivisions of error
clusters. For each RBF subnet, neurons can be inserted, removed or up-
dated iteratively with full dimensionality adapting to the complexity and
distribution of the underlying data. This flexibility is particularly desir-
able for highly variable spatial frequencies. Experimental results demon-
strate that the network representation is conducive to geometric data
formulation and simplification, and therefore to manageable computa-
tion and compact storage.

1 Introduction

Digitalisation techniques such as range scanning devices are widely used for
3D model acquisition. Laser scanners can acquire a cloud of millions of irreg-
ularly distributed 3D points from the surface of a digitised object. However,
sampling complex geometry almost always yields surface imperfections, in par-
ticular “holes” such as shown in Fig. 2. Faithful reproduction of incomplete
meshes in the presence of holes and data noise is an ubiquitous problem for
scientific visualisation and engineering modelling.

Inspired by advances of using Radial Basis Functions (RBFs) for solving func-
tion approximation and pattern classification problems, implicit modelling with
RBFs has recently emerged as an effective technique in computer graphics for
3D modelling [1,5,6,9]. However, because RBFs are often globally supported in
nature, functional approximation has to be calculated by solving a dense non-
linear system with a high order of computation complexity. This limited earlier
RBF approaches as they failed to interpret large data sets of several thousands
of points typical of real-world applications. Ferrari et al. [2] introduced an alter-
native solution to the problem by using an RBF network. However, the network
structure and neuron location were fixed a priori, based on pre-knowledge of the
training data. The lack of adaptivity to the underlying data could necessitate

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 441–449, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

442 Q. Meng et al.

large numbers of fine-scale neurons to meet a desired accuracy. A dynamic Ko-
honen network has also been proposed [10]. It allows some structural flexibility,
but with a high cost on neuron number which is unfeasible for modelling millions
of point data.

To solve the problem of surface reconstruction from a large collection of irreg-
ularly sampled noisy range data, we propose a new error-driven self-organising
hierarchical RBF network. The network has a multi-layer structure allowing a
bottom-up coarse-to-fine approximation. However, this hierarchy is not fixed a
priori. Multi-layer subnets are constructed by error-driven active learning. They
aim to achieve global optimality as well as conquer large mapping errors in subdi-
visions. For each subnet, neurons can be located, removed or adjusted iteratively
in full dimension according to the distribution and complexity of the underlying
data. Such adaptivity is preferable to a pre-fixed grid structure [2], particularly
for highly varying spatial frequencies. Adaptive sequential learning has benefit-
ted from concepts found in the self-organising resource allocating network [7].
Additionally, a greedy neighbourhood extended Kalman filter (NEKF) method
introduced for network updating leads to a significant computation reduction.
The algorithm is straightforward to implement.

2 The Self-organising Hierarchical RBF Network

A typical RBF network has one hidden layer composed of K Gaussian kernels
φk(x). The network output f(x) takes the form

f(x) = a0 +
K∑

k=1

akφk(x) , (1)

where φk(x) = exp
(
− 1

σ2
k

‖x − μk‖2
)
, ‖.‖ denotes the Euclidean norm, μk lo-

cates the centre of the kth neuron, standard deviation σk indicates its width
(coverage), ak is its weight connecting to the output and a0 is the bias term.

2.1 Hierarchical Architecture

Approximation by a single RBF network leaves nonuniform mapping errors
across the data space, requiring a large dynamic range and number of neurons
to model the smooth bases as well as the finest local features. For modelling
efficiency, we propose a multi-layer RBF network using an error-driven active
learning strategy, as shown in Fig. 1.

The network can be described as a hierarchical pool of multi-layer RBFs.
If there are Ml subnets at the lth layer, an L-layer hierarchical RBF network
operates as the sum of RBF subnets fl,m(x),

HL(x) =
L∑

l=0

Ml∑

m=1

fl,m(x) . (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Functional Modelling of Large Scattered Data Sets Using Neural Networks 443

∑
=

=

0

1
,0)(

M

m
mlf x

error clustering

∑
=

=

1

1
,1)(

M

m
mlf x

∑
=

=

LM

m
mLlf

1
,)(x

)x(Llr =)x(Llr =

error clustering

)(ˆ xz

Lll ...,,1,0),(xH =

_

)x(0=lr)x(0=lr

)x(1=lr)x(1=lr

Fig. 1. Architecture of the error-driven hierarchical RBF network

The network facilitates a bottom-up coarse-to-fine approximation in the hi-
erarchy. Neuron resolution scale increases towards high layers. The base layer
contains one RBF network which is constructed using the entire training data
and covers the whole data space. Higher layer RBFs are constructed by error-
driven active learning. First, we calculate mapping errors remaining at the lth
layer as

rl(x) = ẑ(x) − Hl(x) , (3)

where ẑ(x) stands for actual measurement values. Then, significant error resid-
uals are clustered and merged into Ml+1 subdivisions [3]. Subsequently, these
clusters are used to train Ml+1 subnets in the higher layer l + 1. At this stage,
the targeted data space is largely reduced into a set of subregions, and the error
residuals are used for the high layer training which reduces the dynamic range
of neurons.

Each RBF subnet in the hierarchy is constructed by self-organising adaptive
learning as described in Section 2.2. When the mapping accuracy of a subnet
tends to a steady value, the subnet training stops. After construction of all RBF
subnets in a current layer, mapping error residuals will be recalculated from all
obtained layers, and new error clusters will be generated for training the next
layer. Such hierarchical RBF construction terminates when a desired mapping
accuracy is achieved.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

444 Q. Meng et al.

2.2 Adaptivity of the RBFs

The adaptivity of the network derives from the flexibility in the process of net-
work construction. To achieve network adaption to the underlying data, for each
subnet, at each learning step: 1) the network grows one neuron, where neces-
sary, based on the “novelty” of the input observation; 2) if the “novelty” criteria
are not satisfied, resulting in no newly added neuron at this instance, a sub-
set of neurons are adjusted in full parameter dimensions in accordance with a
neighbourhood extended Kalman filter (NEKF) algorithm; 3) “pseudo” neurons,
that consistently make little contribution to the network output, are pruned for
network compactness.

Network growth. A RBF subnet starts by adopting the first training point as
the first neuron. It grows by inserting a new neuron if the current observation
satisfies the following three novelty conditions:

Condition 1: the input of the observation is far away from all existing neurons.
Condition 2: the network prediction error for the current observation is
significant.
Condition 3: the RMS prediction error within a sliding window is significant.

When the three conditions are met, a new neuron is inserted into the current
network of K units, with the following parameters at the position coincident at
input xn:

μK+1 = xn

aK+1 = en

σK+1 = ψ ‖xn − μnr‖ ,
(4)

where ψ is an overlap factor between the newly inserted neuron and its nearest
neighbour. If an observation does not satisfy one of the novelty criteria, no new
neuron is added. Instead, a neighbourhood EKF algorithm, described below, is
utilised to adjust the network parameters to best fit the current observation.

Parameter updating. For updating network parameters, the Extended
Kalman filters (EKF) [8] are preferable to the classical LMS or gradient de-
scent (GD) methods [4]. The EKF usually updates all network parameters for
all neurons at each learning step; we therefore refer to it as global EKF (GEKF).
The computational complexity of the GEKF is O(A2) per learning step, where
A denotes the number of parameters [8].

To minimise computational cost of the global EKF, we utilise a local approach
named neighbourhood EKF (NEKF). At each learning step, only a subset of
Kn neighbouring neuron(s) around the nth observation have their parameters
updated. A neighbouring neuron is selected if it is 1) the nearest neighbour
to the current observation, or it is 2) within a distance threshold, scaled by
neuron resolution ηn, from the current nth observation. The computational cost
of NEKF is reduced from O((4K)2) to a subset O

(
(4Kn)2

)
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Functional Modelling of Large Scattered Data Sets Using Neural Networks 445

Neuron pruning. Network size can become too great under this growth strat-
egy alone, possibly leading to overfiting. To avoid this, we promote network
compactness by applying a pruning strategy. Pruning removes those neurons
that make an insignificant contribution to the network output over a number of
consecutive training observations. The pruning process is defined as follows:

For the current observation (xn, zn), compute the outputs of each hidden unit
on

k , k = 1, 2, ..., K:

on
k = ak exp

(

−‖xn − μk‖2

σ2
k

)

. (5)

Calculate the normalised output values rn
k over the largest absolute hidden unit

output:

rn
k =

on
k

max(on
1 , on

2 , ..., on
K)

. (6)

If rn
k < ρ for W consecutive observations, then the kth node is removed, where

ρ is the pruning threshold.

3 Application to 3D Point-Cloud Surface Reconstruction

The proposed hierarchical RBF network was implemented in C++. Testing was
conducted on 3D surface reconstruction from range images [11]. The images were
acquired at pixel resolution of 200×200. The scattered data are typically irregu-
larly sampled with arbitrary topology and varying spatial densities. They contain
measurement noise and holes. In order to apply the hierarchical RBF network,
valid surface data stored in a 200 × 200 matrix associated with their locations
were normalised and re-sampled into a random order. Such a normalised random
sequence was used as a training set of N 2D observation inputs xn = [xn, yn]
and outputs zn.

3.1 Surface Reconstruction and Mesh Repair

Fig. 2 shows examples of surface reconstruction. The Gaussian RBF networks pro-
vide extraordinary interpolation and extrapolation capabilities to: 1) smoothly
reconstruct surfaces from non-uniformly sampled data with highly variable spa-
tial frequencies; 2) smoothly blend and repair raw noisy data to fill irregular holes
that are large compared to the geometric variation in surfaces; 3) smoothly extend
surfaces where there is no data, by extrapolation.

3.2 Progressive Reconstruction by Error-Driven Active Learning

The top row of Fig. 3 shows the angel reconstruction with three progressive layers
of error-driven active learning. Corresponding error clusters, presented as error
bars in different colours, are shown underneath. Un-clustered small mapping

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

446 Q. Meng et al.

(a) angel

Fig. 2. Incomplete mesh and reconstructed RBF mesh

errors are displayed in black. The quality of reconstruction increases with the
number of layers. Incremental surface optimization is obvious in most difficult
regions with significant local errors in relation to residual clusters. Remarkable
non-uniformly distributed mapping errors exist at layer 1, especially at the edges,
due to data discontinuity. These are largely mended in layer 2, using 13 subnets
and further reduced by layer 3, with 8 subnets.

3.3 Neuron Adaptivity

Neurons can be added or removed according to the novelty criteria. They are
adjustable on all parameters: location, width and weight. Fig. 4 illustrates neu-
ron distribution with three layers of the angel image reconstruction. Neurons
are represented by circles in normalised space with a display ratio of 3:1. For
intuitive visualisation, the neurons are displayed in 3D space with their cor-
responding vertical z-values evaluated from the network. The distribution and
density of neurons in layer 1 are highly adaptive to the spatial complexity of
the underlying angel data. For layer 2 and 3, neurons in subnets are located
in subregions associated with error clusters in Fig. 3. Layer 1 contains more of

(a) RBF meshes on layer 1, 2 and 3

−50

0

50 −60
−40

−20
0

20
40

60
−1360

−1340

−1320

−1300

13 clusters

E
rr

or

−60
−40

−20
0

20
40

60

−50

0

50
−1360

−1340

−1320

−1300

8 clusters

E
rr

or

−60
−40

−20
0

20
40

60
−60

−40
−20

0
20

40
60

−1360

−1340

−1320

−1300

E
rr

or

(b) error clusters on layer 1, 2 and 3

Fig. 3. Progressive surface reconstruction

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Functional Modelling of Large Scattered Data Sets Using Neural Networks 447

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

neuron width

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

neuron width

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

neuron width

(a) neuron width

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

neuron weight

0

0.2

0.4

0.6

0.8

1 0

0.2

0.4

0.6

0.8

1
0

0.5

1

neuron weight

0
0.2

0.4
0.6

0.8
1 0

0.2

0.4

0.6

0.8

1

0

0.5

1

neuron weight

(b) neuron weight

Fig. 4. Adaptive neuron distribution of angel reconstruction in normalised space: 711,
405 and 176 Gaussians in layer 1, 2 and 3 respectively

the larger neurons than layers 2 and 3 to produce a coarse global base. Within
each subnet, neurons with large widths or high weights can often be generated
initially for smooth bases. Although there is an inherent tendency by the greedy
algorithm to favour absorption of lower frequencies before higher ones, smaller
neurons consistently refine the smoothness towards fidelity to local data so as to
guarantee a coarse-to-fine optimality for high frequency details.

3.4 Pruning Effectiveness

Fig. 5 illustrates the pruning effectiveness using the example of angel recon-
struction at layer 1. As shown in Fig.5(a), at the start of training, neurons are
consistently added to the network, and the training error is reduced rapidly, as
shown in Fig.5(b). As the RMS error tends to a steady value after 5000 training
steps with about 520 neurons, the pruning strategy works effectively to remove
“pseudo” neurons, so overcoming the risk of overfiting.

3.5 Data Compression

Table 1 presents data compression from the reconstruction examples in Fig. 2,
in which N stands for the number of 3D points in each range scan, and K
denotes the number of Gaussian neurons in the resulting hierarchical RBF
network. Storage compression ratio is calculated from 3N : 4K, since each
Gaussian neuron has 4 parameters. Reconstruction accuracy achieved by the
resulting RBF network is indicated through the average mapping error ē =
1
N

N∑

n=1
|zn − H([xn, yn])| of all scan data in normalised space.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

448 Q. Meng et al.

0 5000 10000 15000
0

200

400

600

800

training steps
nu

m
. o

f n
eu

ro
ns

(a) neuron adding and pruning

0 5000 10000 15000
10

−3

10
−2

10
−1

10
0

training steps

R
M

S
 m

ap
pi

ng
 e

rr
or

(b) RMS mapping error

Fig. 5. Sequential training of the angel data

Table 1. Data compression and accuracy

range num. of points N num. of Gaussians K storage compression normalised
image in range image in RBF network ratio mapping error ē
angel 14,089 1292 8.2 .0052

teletubby 6841 685 7.5 .0044

4 Conclusion

We have presented an adaptive hierarchical RBF network for functional mod-
elling of large amounts of unstructured data. The network employs error-driven
multi-layer active learning to achieve global optimality as well as conquer large
mapping errors in subdivisions. RBFs are used as the computational substrate.
Each RBF subnet is constructed by heuristic adaptive learning. Neurons are dy-
namically located, adapting to the fidelity of underlying data. The full range of
network parameters, corresponding to location, weight and width of each neu-
ron, are refined iteratively. A pruning strategy is used to promote network com-
pactness. Compared to approaches using pre-defined fixed network structures,
adaptive learning provides significant flexibility, particularly suited to data with
highly variable spatial frequencies. In addition, we developed a neighbourhood
EKF method for network updating which led to a remarkable computation re-
duction.

The hierarchical RBF network has been tested in a real-world application
of water-tight point-cloud surface reconstruction. Experimental results demon-
strate the proposed network offers a new approach to the problems of mesh
reconstruction, geometric formulation, data simplification and compression.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Functional Modelling of Large Scattered Data Sets Using Neural Networks 449

References

1. Carr, J., Beatson, R., Cherrie, J., Mitchell, T., Fright, W., McCallum, B., Evans,
T.: Reconstruction and representation of 3D objects with radial basis functions.
In: ACM SIGGRAPH, pp. 67–76. ACM Press, New York (2001)

2. Ferrari, S., Maggioni, M., Borghese, N.A.: Multiscale approximation with hierar-
chical radial basis functions networks, IEEE Trans. on Neural Networks 15(1),
178–188 (2004)

3. Johnson, S.C.: Hierarchical clustering schemes. Psychometrika 32, 241–254 (1967)
4. Karayiannis, N.: Reformulated radial basis neural networks trained by gradient

descent. IEEE Trans. on Neural Networks 10(3), 657–671 (1999)
5. Kojekine, N., Hagiwara, I., Savchenko, V.: Software tools using CSRBF for pro-

cessing scattered data. Computer & Graphics 27(2), 463–470 (2003)
6. Morse, B., Yoo, T., Rheingans, P., Chen, D.T., Subramanian, K.R.: Interpolating

implicit surfaces from scattered surface data using compactly supported radial
basis functions. In: Proceedings of Shape Modeling International (2001)

7. Platt, J.: A resource-allocating network for function interpolation. Neural Com-
put. 3(2), 213–225 (1991)

8. Simon, D.: Training radial basis neural networks with the extended Kalman filter.
Neurocomputing 48, 455–475 (2002)

9. Turk, G., O’Brien, J.: Modelling with implicit surfaces that interpolate. ACM
Trans. on Graphics 21(4), 855–873 (2002)

10. Varady, L., Hoffmann, M., Kovacs, E.: Improved free-form modelling of scattered
data by dynamic neural networks. Journal for Geometry and Graphics 3(2), 177–
181 (1999)

11. http://sampl.ece.ohio-state.edu/data/3ddb/rid/minolta , range image
database at Ohio SAMPL

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://sampl.ece.ohio-state.edu/data/3ddb/rid/minolta

Stacking MF Networks to Combine the Outputs
Provided by RBF Networks

Joaquı́n Torres-Sospedra, Carlos Hernández-Espinosa,
and Mercedes Fernández-Redondo

Departamento de Ingenieria y Ciencia de los Computadores, Universitat Jaume I,
Avda. Sos Baynat s/n, C.P. 12071, Castellon, Spain

{jtorres, espinosa, redondo}@icc.uji.es

Abstract. The performance of a Radial Basis Functions network (RBF) can be
increased with the use of an ensemble of RBF networks because the RBF net-
works are successfully applied to solve classification problems and they can be
trained by gradient descent algorithms. Reviewing the bibliography we can see
that the performance of ensembles of Multilayer Feedforward (MF) networks can
be improved by the use of the two combination methods based on Stacked Gen-
eralization described in [1]. We think that we could get a better classification
system if we applied these combiners to an RBF ensemble. In this paper we sat-
isfactory apply these two new methods, Stacked and Stacked+, on ensembles of
RBF networks. Increasing the number of networks used in the combination mod-
ule is also successfully proposed in this paper. The results show that training 3
MF networks to combine an RBF ensemble is the best alternative.

1 Introduction

A Radial Basis Functions (RBF) network is a commonly applied architecture which
is used to solve classification problems. This network can also be trained by gradient
descent [2,3]. So with a fully supervised training, it can be an element of an ensem-
ble of neural networks. Previouses comparisons showed that the performance of RBF
networks was better than Multilayer Feedforward (MF) networks. Being the Simple
Ensemble the best method to train an ensemble of RBF networks.

Among the methods of combining the outputs of an ensemble of neural networks,
the two most popular are the Majority voting and the Output average [4]. Last year, two
new combination methods based on the idea of Stacked Generalization called Stacked
and Stacked+ were successfully proposed in [1]. These new methods consist of training
a single MF to combine the networks.

In this paper, we want to apply these combiners to a ensemble of Radial Basis Func-
tions trained with the Simple Ensemble. Moreover, we want to increase the number of
networks used to combine the ensemble in our experiments in order get a better com-
biner. Finally, we compare the results we have got with these two new combiners with
the results we previously got with other classical combiners.

To test Stacked and Stacked+ with RBF ensembles, we have selected nine databases
from the UCI repository. This paper is organized as follows. The concepts related to
the ensembles training and combination are briefly commented in section 2 whereas the
experimental setup, results and the discussion are in section 3.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 450–459, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stacking MF Networks to Combine the Outputs Provided by RBF Networks 451

2 Theory

2.1 Training a Neural Network

There are conceptual similarities in the training process of an RBF network and an MF
network since a gradient descent method can be applied to train both networks [5,6].

In our experiments we have trained the networks for few iterations. In each iteration,
the network trainable parameters have been adapted with BackPropagation over the
training set. These parameters are the weights for the case of the MF networks whereas
the weigths and the centers of the gaussian units are the trainable parameters for the
case of the RBF network. At the end of the iteration the Mean Square Error (MSE)
has been calculated over the Validation set. When the learning process has finished,
we assign the network configuration of the iteration with minimum MSE to the final
network.

For this reason the original learning set L used in the learning process is divided into
two subsets: The first set is the training set T which is used to train the networks and
the second set is the validation set V which is used to finish the training process.

Algorithm 1. Neural Network Training {T ,V }
for i = 1 to iterations do

Train the network with the patterns from the training set T
Calculate MSE over validation set V
Save epoch weights and calculated MSE

end for
Select epoch with minimum MSE
Assign best epoch configuration to the network
Save network configuration

2.2 The Multilayer Feedforward Network

The Multilayer Feedforward architecture is the most known neural network architec-
ture. This kind of networks consists of three layers of computational units. The neurons
of the first layer apply the identity function whereas the neurons of the second and third
layer apply the sigmoid function. It has been proved that MF networks with one hid-
den layer and threshold nodes can approximate any function with a specified precision
[7,8]. Figure 1 shows the diagram of the Multilayer Feedforward network.

2.3 The Radial Basis Function Network

An RBF network has two layer of neurons. The first one, in its usual form, is composed
of neurons with Gaussian transfer functions (GF). The second layer is composed of
neurons with linear transfer functions. This network can be the base classifier of an
ensemble of neural networks since gradient descent can be applied to train it [2,3]. A
basic RBF network can be seen in figure 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

452 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

y
1

y
2

y
q

x
1

x
2

x
n

Output
layer

Input
layer

Hidden
layer

Fig. 1. A MF network

y
1

y
2

y
q

x
1

x
2

x
n

Linear units

Gaussian units

Fig. 2. An RBF network

2.4 Combining Networks with Stacked Generalization

Stacked Generalization was introduced by Wolpert [9]. Some authors have adapted the
Wolpert’s method to use with neural networks [10,11,12]. In [1] two combination meth-
ods based on Stacked Generalization were proposed, Stacked and Stacked+. In these
methods a single combination network was trained to combine the expert networks of
the ensemble. In both kinds of networks, expert and combination, the neural network
architecture choosen was the MF network.

The use of the original pattern input vector is the difference between Stacked and
Stacked+. Stacked uses the output provided by the expert networks on patterns from the
training set whereas Stacked+ uses the output provided by the experts along with the
original pattern input vector to train the combination network.

In this paper we want to combine ensembles of RBF networks with Stacked and
Stacked+. Moreover we want to increase the number of combination networks from one

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stacking MF Networks to Combine the Outputs Provided by RBF Networks 453

to three and nine as an ensemble of combiners to test if the system could be improved by
adding more combination networks. With this procedure we want to combine the expert
networks of an ensemble of RBF networks with an ensemble of MF networks. Finally,
we have applied the output average in order to combine the combination networks.
Figure 3 show the diagram of Stacked and Stacked+ we have used in our experiments.

x={x
1
,x

2
, ... ,x

n
}

ysg(x)

xsg

x x x

y1(x) y2(x)

EN
1

EN
2

EN
k

x x x

y1(x) y2(x) yk(x)

CN
1

CN
2

CN
ksg

xsg

yc1(x) yc2(x) yck(x)

xsg xsg

x={x
1
,x

2
, ... ,x

n
}

ysg+(x)

xsg+

x x x

y1(x) y2(x)

EN
1

EN
2

EN
k

x x x

y1(x) y2(x) yk(x)

CN
1

CN
2

CN
ksg+

xsg+

yc1(x) yc2(x) yck(x)

xsg+ xsg+

Fig. 3. Stacked and Stacked+ diagrams

3 Experimental Setup

In this section we describe the experimental setup and the datasets we have used in our
experiments. Then, we show the main results we have obtained with the combination
methods on the different datasets. Moreover, we calculate two general measurements in
order to compare the methods. Finally, we discus about the results we have got.

In our experiments we have used ensembles of 3 and 9 RBF networks previously
trained with Simple ensemble on nine different classification problems. Moreover, we
have trained 1, 3 and 9 MF networks with Stacked and Stacked+ in order to combine the
networks of the ensemble. In addition, we have generated 10 different partitions of data
at random in training, validation and test sets and repeat the whole learning process 10
times in order to get a mean performance of the ensemble an error in the performance
by standard error theory.

3.1 Databases

The datasets we have used in our experiments and their characteristics are described in
this subsection. We have applied the new combination methods, Stacked and Stacked+,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

454 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

to nine classification problems from the UCI repository [13]. The datasets we have used
are the following ones:

Balance Scale Database (bala)
The aim is to determine if a balance is scaled tip to the right, tip to the left, or balanced.
This dataset contains 625 instances, 4 attributes and 3 classes.

Cylinder Bands Database (band)
Used in decision tree induction for mitigating process delays know as “cylinder bands”
in rotogravure printing. This dataset contains 512 instances, 19 attributes and 2 classes.

BUPA liver disorders (bupa)
The aim of this dataset is to try to detect liver disorders. This dataset contains 345
instances, 6 attributes and 2 classes.

Australian Credit Approval (cred)
This dataset concerns credit card applications. This dataset contains 653 instances, 15
attributes and 2 classes.

Glass Identification Database (glas)
The aim of the dataset is to determinate if the glass analysed was a type of ‘float’ glass
or not for Forensic Science. This dataset contains 2311 instances, 34 attributes and 2
classes.

Heart Disease Databases (hear) The aim of the dataset is to determinate the presence
of heart disease in the patient. This dataset contains 297 instances, 13 attributes and 2
classes.

The Monk’s Problem 1 (mok1)
Artificial problem with binary inputs. This dataset contains 432 instances, 6 attributes
and 2 classes.

The Monk’s Problem 2 (mok2)
Artificial problem with binary inputs. This dataset contains 432 instances, 6 attributes
and 2 classes.

Congressional Voting Records Database (Vote)
Classification between Republican or Democrat. All attributes are boolean. This dataset
contains 432 instances, 6 attributes and 2 classes.

Table 1 shows the training parameters (number of clusters, iterations, adaptation step
and the width of the gaussian units) of the expert networks and the performance of a
single network on each database. Moreover we have added to this table the performance
of the ensembles of 3 and 9 RBF networks previously trained with Simple Ensemble in
order to see if the new combination methods proposed increase the performance of the
classification systems.

Table 2 shows the training parameters we have used to train the combination net-
works (hidden units, adaptation step, momentum rate and number of iterations) with
the new two combiners, Stacked and with Stacked+.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stacking MF Networks to Combine the Outputs Provided by RBF Networks 455

Table 1. Expert networks training parameters

Experts - RBF parameters Experts performance
clusters iterations step width 1 net 3 nets 9 nets

bala 60 6000 0.005 0.6 90.2 89.68 89.68
band 40 10000 0.01 1 74 73.82 73.27
bupa 40 8000 0.01 0.4 70.1 71.86 72.43
cred 30 10000 0.005 2 86 87.15 87.23
glas 110 20000 0.01 0.4 93 93.2 93
hear 20 15000 0.005 2 82 83.9 83.9
mok1 30 20000 0.005 0.8 98.5 99.63 99.63
mok2 45 60000 0.005 0.6 91.3 91.5 91.38
vote 5 5000 0.01 1.8 95.4 96.25 96.25

Table 2. Combination network parameters - Stacked and Stacked+

Stacked - MF parameters Stacked+ - MF parameters
dataset experts hidden step mom ite hidden step mom ite

bala
3 22 0.4 0.2 1500 10 0.4 0.05 3500
9 3 0.1 0.01 3000 11 0.1 0.01 6500

band
3 7 0.4 0.1 500 26 0.05 0.01 2500
9 30 0.1 0.1 500 30 0.05 0.05 500

bupa
3 3 0.4 0.1 750 4 0.2 0.1 750
9 6 0.2 0.05 750 19 0.4 0.05 750

cred
3 21 0.4 0.2 500 27 0.05 0.01 750
9 21 0.4 0.2 500 25 0.4 0.1 3500

glas
3 4 0.1 0.001 7500 4 0.4 0.1 7500
9 4 0.4 0.2 7500 4 0.4 0.2 7500

hear
3 4 0.4 0.2 5000 2 0.2 0.05 3500
9 17 0.1 0.2 1500 3 0.4 0.1 7500

mok1
3 2 0.4 0.2 7500 4 0.4 0.2 7500
9 2 0.4 0.2 7500 3 0.4 0.2 7500

mok2
3 2 0.1 0.1 1000 2 0.4 0.1 7500
9 9 0.4 0.1 7500 1 0.4 0.1 7500

vote
3 28 0.4 0.2 500 30 0.05 0.01 750
9 26 0.4 0.1 500 12 0.4 0.05 500

3.2 Results

The main results we have obtained with the application of stacking methods are pre-
sented in this subsection. Tables 3 and 4 shows the results we have obtained combining
ensembles of 3 and 9 networks with Stacked and Stacked+.

In [14] the complete results of the combination of RBF ensembles with 14 different
combination methods are published. Although we have omitted these results to keep
the length of the paper short, the general measurements related to these combination
methods appear in subsection 3.3. These methods are: Majority Vote (vote), Winner

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

456 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

Table 3. Results of the 3 RBF Network Ensemble

stacked stacked3 stacked9 stacked+ stacked3+ stacked9+
bala 92.88±0.72 92.96±0.70 92.96±0.70 93.44±0.70 93.36±0.70 93.44±0.68
band 74.36±1.03 74.55±0.94 74.36±0.88 74.73±1.03 75.27±0.95 75.45±0.99
bupa 72.00±1.15 71.43±1.09 71.00±1.11 72.00±1.21 72.14±1.19 72.29±1.19
cred 86.85±0.58 86.85±0.58 86.85±0.58 87.23±0.74 87.00±0.75 87.15±0.73
glas 93.80±1.25 93.20±1.04 93.40±1.08 93.00±1.09 93.00±1.09 93.00±1.09
hear 83.22±1.63 82.88±1.68 83.05±1.64 83.39±1.36 83.73±1.34 83.22±1.44
mok1 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38
mok2 91.25±1.26 91.25±1.26 91.25±1.26 91.50±1.15 91.38±1.13 91.38±1.13
vote 95.38±0.88 95.50±0.84 95.63±0.77 96.13±0.44 96.13±0.44 96.13±0.44

Table 4. Results of the 9 RBF Network Ensemble

stacked stacked3 stacked9 stacked+ stacked3+ stacked9+
bala 92.88±0.70 93.04±0.66 92.88±0.69 94.08±0.64 93.84±0.66 93.76±0.66
band 73.82±1.02 74.00±1.27 74.00±1.27 74.73±1.20 74.73±1.20 74.55±1.21
bupa 72.29±1.21 71.86±1.31 72.14±1.21 71.57±1.12 71.71±1.16 71.29±1.19
cred 86.46±0.63 86.46±0.63 86.46±0.63 86.46±0.63 86.38±0.64 86.38±0.62
glas 92.80±0.85 93.40±0.90 93.20±1.04 93.60±0.93 93.60±0.93 93.40±0.90
bala 82.88±1.78 82.88±1.78 83.05±1.60 83.22±1.39 83.22±1.37 82.88±1.42
band 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38 99.63±0.38
bupa 91.25±1.24 91.25±1.24 91.25±1.24 91.63±1.24 91.63±1.24 91.75±1.18
cred 96.13±0.68 96.13±0.68 96.13±0.68 95.88±0.46 96.00±0.49 96.00±0.49

Takes All (wta), Borda Count (borda), Bayesian Combination (bayesian), Weighted Av-
erage (w.ave), Choquet Integral (choquet), Choquet Integral with Data-Depend Den-
sities (choquet.dd), Weighted Average with Data-Depend Densities (w.ave.dd), BADD
Defuzzification Startegy (badd), Zimmermann’s Compensatory Operator (zimm), Di-
namically Averaged Networks versions 1 and 2 (dan and dan2), Nash vote (nash).

3.3 General Measurements

We have also calculated the percentage of error reduction (PER) of the results with
respect to a single network to get a general value for the comparison among all the
methods we have studied. We have used equation 1 to calculate the PER value.

PER = 100 · Errorsinglenetwork − Errorensemble

Errorsinglenetwork
(1)

IoP = Performanceensemble − Performancesinglenet (2)

The PER value ranges from 0%, where there is no improvement by the use of a
particular ensemble method with respect to a single network, to 100%. There can also
be negative values, which means that the performance of the ensemble is worse.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stacking MF Networks to Combine the Outputs Provided by RBF Networks 457

Furthermore, we have calculated the mean increase of performance (IoP) with re-
spect to Single Network and the mean percentatge of error reduction (PER) across
all databases for the methods proposed in this paper, Stacked and Stacked+, and for the
combination methods that appear in [14]. The PER is calculated by equation 1 whereas
the IoP with respect a single network is calculated by equation 2. Table 5 shows the
results of the mean PER and the mean IoP .

Table 5. General Measurements

mean PER mean IoP
combiner 3 experts 9 experts 3 experts 9 experts
average 13.06 12.63 0.72 0.69
stacked 14.85 14.43 0.98 0.84
stacked3 13.85 15.48 0.85 0.9
stacked9 14.34 15.19 0.83 0.91
stacked+ 16.27 17.27 1.11 1.14

stacked3+ 16.43 17.28 1.18 1.13
stacked9+ 16.37 16.58 1.18 1.01

vote 13.51 13.92 0.83 0.85
wta 12.71 12.63 0.57 0.62

borda 13.42 13.83 0.82 0.84
bayesian 11.65 12.91 0.8 0.88

w.ave 14.16 13.61 0.71 0.57
choquet 12.47 11.7 0.55 0.62

choquet.dd 11.77 12.09 0.51 0.65
w.ave.dd 13.86 12.42 0.81 0.66

badd 13.06 12.63 0.72 0.69
zimm −146.23 −168.3 −10.53 −11.72
dan 11.02 6.46 0.58 0.24
dan2 12.27 7.44 0.55 0.28
nash 13.57 12.67 0.82 0.69

3.4 Discussion

The main results (tables 3-4) show that Stacked and Stacked+ get an improvement in a
wide majority of problems: bupa, cred, glas, hear, mok1 and vote.

The results show that the improvement in performance of training an ensemble of
nine combination networks Stacked9/Stacked9+ (instead of three Stacked3/Stacked3+)
is low. Taking into account the computational cost the best alternative might be an
ensemble of three combination networks Stacked3/Stacked3+.

Comparing the results of the different traditional combination methods with Stacked
and Stacked+, we can see that there is an improvement by the use of these new methods.
For example, in databases band and bala the results with the methods based on Stacked
Generalization are quite good. The largest difference between simple average and other
method is around 4.0% in the problem bala and around 1.5% in the problem band.

Comparing the general measurements, the mean PER and the mean IoP, we can
see that Stacked and Stacked+ are the best alternative to combine an ensemble of RBF

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

458 J. Torres-Sospedra, C. Hernández-Espinosa, and M. Fernández-Redondo

networks. Stacked+ with 3 combination networks is the best way to combine ensembles
of 3 and 9 RBF networks according to the values of the general measurements.

4 Conclusions

In this paper, we have presented experimental results by the use of Stacked and Stacked+,
two new methods based on Stacked Generalization, in order to combine the outputs of
an ensemble of RBF networks, using nine different databases.

We have trained ensembles of 3 and 9 combination networks (MF) to combine a
previously trained ensemble of expert networks (RBF). The results show that, in gen-
eral, there is a reasonable improvement by the use of Stacked and Stacked+ in a wide
majority of databases.

In addition, we have calculated the mean percentage of error reduction over all
databases. According to the values of the mean performance of error reduction, the
new combination methods, Stacked and Stacked+ are the best methods to combine en-
sembles of RBF networks.

Finally, taking into account the computational cost and the values of the general
measuremensts we can conclude that training 3 combination networks, as an ensemble
of MF networks, should be considered to be the best alternative when we combine
ensembles of RBF networks.

Acknowledgments

This research was supported by the project number P1·1B2004-03 entitled ‘Desarrollo
de métodos de diseño de conjuntos de redes neuronales’ of Universitat Jaume I - Ban-
caja in Castellón de la Plana, Spain.

References

1. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: Combining MF net-
works: A comparison among statistical methods and stacked generalization. In: Schwenker,
F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 302–9743. Springer, Hei-
delberg (2006)

2. Hernndez-Espinosa, C., Fernndez-Redondo, M., Torres-Sospedra, J.: First experiments on
ensembles of radial basis functions. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004.
LNCS, vol. 3077, pp. 253–262. Springer, Heidelberg (2004)

3. Torres-Sospedra, J., Hernndez-Espinosa, C., Fernndez-Redondo, M.: An experimental study
on training radial basis functions by gradient descent. In: Schwenker, F., Marinai, S. (eds.)
ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 302–9743. Springer, Heidelberg (2006)

4. Drucker, H., Cortes, C., Jackel, L.D., LeCun, Y., Vapnik, V.: Boosting and other ensemble
methods. Neural Computation 6, 1289–1301 (1994)

5. Karayiannis, N.B.: Reformulated radial basis neural networks trained by gradient descent.
IEEE Transactions on Neural Networks 10, 657–671 (1999)

6. Karayiannis, N.B., Randoph-Gips, M.M.: On the construction and training of reformulated
radial basis function neural networks. IEEE Transactions on Neural Networks 14, 835–846
(2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stacking MF Networks to Combine the Outputs Provided by RBF Networks 459

7. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Inc., New
York, NY, USA (1995)

8. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley-Interscience,
Chichester (2004)

9. Wolpert, D.H.: Stacked generalization. Neural Networks 5, 1289–1301 (1994)
10. Ghorbani, A.A., Owrangh, K.: Stacked generalization in neural networks: Generalization

on statistically neutral problems. In: IJCNN 2001. Proceedings of the International Joint
conference on Neural Networks, Washington DC, USA, pp. 1715–1720. IEEE Computer
Society Press, Los Alamitos (2001)

11. Ting, K.M., Witten, I.H.: Stacked generalizations: When does it work? In: International Joint
Conference on Artificial Intelligence proceedings, vol. 2, pp. 866–873 (1997)

12. Ting, K.M., Witten, I.H.: Issues in stacked generalization. Journal of Artificial Intelligence
Research 10, 271–289 (1999)

13. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning
databases (1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

14. Torres-Sospedra, J., Hernandez-Espinosa, C., Fernandez-Redondo, M.: A comparison of
combination methods for ensembles of RBF networks. In: IJCNN 2005. Proceedings of In-
ternational Conference on Neural Networks, Montreal, Canada, vol. 2, pp. 1137–1141 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 http://www.ics.uci.edu/~mlearn/MLRepository.html

Neural Network Processing for Multiset Data

Simon McGregor

Centre for Computational Neuroscience and Robotics, UK
sm66@sussex.ac.uk

Abstract. This paper introduces the notion of the variadic neural net-
work (VNN). The inputs to a variadic network are an arbitrary-length
list of n-tuples of real numbers, where n is fixed. In contrast to a re-
current network which processes a list sequentially, typically being af-
fected more by more recent list elements, a variadic network processes
the list simultaneously and is affected equally by all list elements. For-
mally speaking, the network can be seen as instantiating a function on
a multiset along with a member of that multiset. I describe a simple im-
plementation of a variadic network architecture, the multi-layer variadic
perceptron (MLVP), and present experimental results showing that such
a network can learn various variadic functions by back-propagation.

1 Introduction

Consider the following imaginary scenario. You are considering an individual for
a loan; this person has been rated by a number of credit rating agencies (who
do not all agree on a single credit rating) and you want to decide whether or
not they are likely to repay the loan, based on those credit ratings. Fortunately,
you have some preexisting data on loan repayment, linked to credit ratings;
unfortunately, individuals are rated by different numbers of agencies and your
system doesn’t record which credit agency gave which rating - all you have is a
list of different ratings for each individual.

In problems like this one, the data points are multisets : variable-size, un-
ordered lists with possible repetition (also known as bags). Computer science
uses the term variadic to describe a function v is on a variable-length list of
inputs. I will define a symmetric variadic function v : S∗ → T ∗ as one where
each element of its input is drawn from the same set S, where its output is a list
of the same length as its input, and where permutation of its input results only
in like permutation of its output.

Existing machine learning methods tend to treat multisets as vectors in a
finite-dimensional space [2,5] (for instance, the multisets of credit ratings de-
scribed above would be treated as vectors in a 5-dimensional space, if credit rat-
ings can take one of 5 separate values; a “bag of words” approach to document
processing treats a document as a high-dimensional vector with each dimension
representing a word stem). However, this approach suffers from a problem when
the multisets are drawn from the real numbers; the dimensionality of the implied
vector space becomes infinite and the natural metric on real numbers is ignored

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 460–470, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Network Processing for Multiset Data 461

by the vectorisation. This paper describes an approach which operates directly
on multisets of real numbers (or tuples of real numbers) allowing standard neural
network learning methods to be applied. The approach is a prelimary exploration
both of new methods for machine learning on multisets and of new data domains
for neural network methods.

I discuss the limitations of conventional networks, propose a modified ar-
chitecture specifically for multiset data, describe a training algorithm for this
architecture based on backpropagation, present experimental results indicating
the new architecture can learn, and in the conclusion outline future work which
should be done on this topic. An appendix contains the derivation of the back-
prop algorithm.

2 Limitations of Conventional Neural Networks

In a conventional feed-forward neural network the signals between nodes are
real numbers and the architecture of the network dictates how many real inputs
and outputs the network has. To provide additional inputs to the network, new
links have to be added and the network must be retrained. How could one go
about training a conventional network on multiset data? Below are some possible
approaches.

1. Choose a maximum number nmax of ratings per individual and train a dis-
criminator network with nmax separate inputs. When an individual has fewer
ratings than nmax, feed the unused inputs with a −1 signal to denote that
they are null; alternatively, have an additional nmax inputs which denote
whether the corresponding rating exists or not.

2. Put the ratings for an individual in an arbitrary sequential order and train
a recurrent discriminator network using these sequences.

3. Perform some sort of preprocessing which collapses an individual’s ratings
into a fixed number nk of indicator variables, e.g. the mean, standard de-
viation and count of ratings for each individual. Then train a discriminator
network with nk inputs.

Unfortunately, each of the above described solutions comes with significant
drawbacks:

1. If a new individual is encountered with n′ > nmax ratings, a new network
with n′ inputs must be trained or some of the ratings simply ignored, be-
cause there is no way for the existing network to process the additional
inputs. Furthermore, the network will probably not generalise between dif-
ferent numbers of inputs and will be influenced by the order in which the
inputs are presented.

2. Recurrent networks tend to be more strongly influenced by recent inputs
than older ones and to be influenced by the order of presentation of the
inputs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

462 S. McGregor

3. There is no guarantee that the preprocessing will capture all the relevant
information about the data: for instance, two sets of credit ratings can have
the same mean, standard distribution and count, but still be significantly
different from one another.

Kernel-based learning methods are often more flexible than conventional ones
in the structure of the data they can process (e.g. string [3] and tree [1] kernels
exist for learning with structured data) but this author is not aware of any known
kernels developed specifically to respect the properties of multisets.

3 The Variadic Network

This paper proposes an alternative solution for applying neural network learning
methods to multiset data. A variation of the standard multi-layer perceptron
architecture is presented which allows a network to process an arbitrary-size
multiset of real input tuples using a fixed network topology and a fixed number
of network parameters. Unlike recurrent networks, which are affected by the
order of presentation of input elements, the proposed architecture is constrained
to treat all input elements symmetrically.

Most network training methods take advantage of the continuous nature of
their signal domain, but there is nothing in principle to limit the signals carried
by a network’s links to being real scalars. This paper will consider the case where
the network’s signal domain is R∗, i.e. arbitrary-length lists of real numbers.

Fig. 1. Above: a scalar network with two real scalar inputs and one real scalar output.
Below: a variadic network with two real vector inputs, both of arbitrary but identical
dimension, and one real vector output of the same dimension. In the variadic network,
each link has an extra scalar parameter θ.

I will use the term scalar network to describe a conventional feedforward sig-
moidal network with scalar value signals. When a variadic network as described
below is provided only with scalar input (i.e. vectors of length 1) it behaves like
a scalar network, except that the interaction-weight parameters are redundant
equivalents of the weight parameters. In other words, scalar networks are a sort of
special case of variadic networks, where the data are always of dimensionality 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Network Processing for Multiset Data 463

Fig. 2. The interior of a variadic link. The multiplicative weight parameter w is the
same as in a conventional network but there is also an interaction-weight parameter θ
which allows interaction between different elements of the signal vector.

3.1 The Multiplicative Link, Variadicised

In the MVLP, an interaction term between vector elements is introduced into the
network links. In order to allow for interaction between the different elements of
a vector, the link’s vector output is set equal to a scalar multiple of its input,
plus for each element a scalar multiple of the L1-norm (i.e. the simple sum
of elements) of its input. This new sort of link allows for the construction of
networks which perform non-trivial variadic computations.

3.2 The Sigmoidal Neuron, Variadicised

A conventional sigmoidal neuron takes a number of real inputs (typically includ-
ing a constant bias term), sums them to give an activation and outputs some
sigmoidal function of the activation. Suppose instead that the inputs to the neu-
ron were vectors of real numbers. In this paper we will consider neurons which
simply sum the vectors to give a vector activation, add a bias, and output a
vector of “squashed” (sigmoided) activations. Note that the vector inputs of the
neuron can be of arbitrary dimension, providing all are of the same dimension.

Fig. 3. The interior of a variadic neuron. The neuron performs a pointwise biased
sigmoidal function such as tanh(·) like an array of conventional neurons.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

464 S. McGregor

Consequently, for a variadic neuron with n vector inputs {x1,x2, ...} each of
dimension d, corresponding scalar weights {w1, w2, ...} and interaction-weights
{θ1, θ2, ...}, and neuron bias b, the activation A and output y are given by: -

A =
n∑

i=1

(
wnxn + θn(1d · xn)1d + b1d

)

y = (y1, y2, ...yd) : yi = f(Ai)

where 1d is the d-dimensional vector consisting only of ones, and f is some
sigmoidal function such as tanh(·).

3.3 Scalar Outputs from Variadic Networks

Functions such as mean and standard deviation, or the credit rating loan re-
payment example, have a scalar range, whereas variadic networks as described
above produce vector outputs. Scalar training data is provided by setting every
element of a target vector to the desired scalar target value, and scalar output
is considered to be the mean of the vector output.

4 Backprop Training a MLVP

Backpropagation training requires only that the partial derivative of network
error with respect to each parameter of the network can be calculated. This is
easy for MLVPs; if network error is defined as sum-square error over all individual
vector elements, the partial derivative of network error with respect to node bias
and link weight is effectively the same as for a scalar network, as per [7]. We need
only do a little additional work to determine the partial derivative of network
error with respect to each interaction-weight parameter.

The basic backprop algorithm is given below; the mathematical calculation of
the partial derivative terms is given in an appendix. For the algorithm below, a
simple 3-layer architecture is assumed with only input nodes, sigmoidal hidden
nodes and linear output nodes. The network’s cost function is assumed to be the
sum-squared error over all elements of all output nodes.

5 Algorithm

As in a scalar MLP, the network’s output is calculated using a forward pass
through the network which is also used as part of the training process.

k = dimensionality of inputs
foreach node in hidden nodes and output nodes

for i = 0 to k-1
node.activation[i] = node.bias

foreach node in input nodes and hidden nodes
// calculate the sum of the output for this node

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Network Processing for Multiset Data 465

sum = 0
for i = 0 to k-1

if node is an input
node.output[i] = respective network input element

else
// f is node transfer function
node.output[i] = f(node.activation[i])

sum += node.output[i]
foreach link in node.output links

target = link’s target node
for i = 0 to k-1

target.activation[i] += sum * link.θ
target.activation[i] += node.output[i] * link.w

foreach node in output nodes
for i = 0 to k-1

node.output[i] = f(node.activation[i])

Again, as for the scalar MLP, in order to calculate partial derivatives of net-
work cost with respect to network parameters, a backward pass is made through
the network based on comparing the actual network output to its target output.

k = dimensionality of inputs
foreach node in output nodes

// calculate partial derivative of error wrt activation vector
// EBG = error / bias gradient, i.e. ∂E

∂B

node.EBG = 0
for i = 0 to k-1

// EAG = error / activation gradient, i.e. ∂E
∂A

node.EAG[i] = node.output[i] - node.target[i]
node.EBG += node.EAG[i]

foreach node in hidden nodes
for i = 0 to k-1

// EOG = error / output gradient, i.e. ∂E
∂y

node.EOG[i] = 0
foreach link in node.output links

target = link’s target node
for i = 0 to k-1

node.EOG[i] += target.EBG * link.θ
node.EOG[i] += target.EAG[i] * link.w

// EBG = error / bias gradient, i.e. ∂E
∂B

node.EBG = 0
for i = 0 to k-1

// EAG = error / activation gradient, i.e. ∂E
∂A

// f ′ is derivative of transfer function
node.EAG[i] = node.EOG[i] * f ′(node.activation)
node.EBG += node.EAG[i]

foreach link in network links
// EWG = error / weight gradient, i.e. ∂E

∂w

link.EWG = 0
// EθG = error / interaction-weight gradient, i.e. ∂E

∂θ

link.EθG = 0

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

466 S. McGregor

for i = 0 to k-1
link.EWG += link.to node.EAG[i] * link.from node.output[i]
link.EθG += link.to node.EBG * link.from node.output[i]

Once the derivative terms have been calculated, the network’s weights,
interaction-weights and biases can be updated using any gradient-based optimi-
sation method, such as simple gradient descent with momentum, RPROP [6], or
scaled conjugate gradients (SCG) [4]. Training can be done in online or batch mode
as preferred.

6 Training on Sample Problems

The variadic network architecture as described above was tested on several sam-
ple function approximation problems as a proof of concept. The results presented
here are based on a single hidden layer with 10 nodes, in batch mode training
using the RPROP algorithm [6], which is a simple second-order gradient method.
The training algorithm parameters were as follows: η0 = 0.05, η− = 0.5, η+ =
1.2, Lmin = 10−8, Lmax = 50. Bias, weight and interaction-weight parameters
were initialised with a normal distribution whose mean was zero and whose vari-
ance was inversely proportional to the node fan-in. The sample problems were
chosen as being well-known interesting statistical or geometric variadic functions.

6.1 Sample Problem Descriptions

Each sample problem had 500 randomly generated points as inputs. Each point
consisted of an n-dimensional vector (or in the case of the angle problem, 2 n-
dimensional vectors) with n uniformly chosen between 2 and 10, and the vectors
uniformly chosen from the n-dimensional 2-unit hypercube centred on the origin
(i.e. their elements were uniformly chosen between -1 and 1).

Standard deviation. The target output was the overall standard deviation of
the network input X , treated as a statistical sample, i.e.

f(xi) =
√

E(X2) − E(X)2

Softmax. The target output was the softmax (multiple logistic) function ap-
plied to the network input, i.e.

f(xi) =
exi

∑n
j=1 exj

Angle. The target output was the angle in radians between the two network
inputs x and y, treated as n-dimensional vectors, i.e.

f(xi) = arccos
(

x · y
|x||y|

)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Network Processing for Multiset Data 467

6.2 Sample Problem Results

30 runs of 200 training epochs each were performed for each sample training
problem. During each run, network generalisation was tested on another 500-
point randomly generated dataset. For all three problems, training mean square
training error (MSE) fell significantly (by 2-3 orders of magnitude) over training
runs, and test MSE was very close to training MSE (the dataset seems to have
been too large for significant overfitting).

0 50 100 150 200

10
−2

10
0

10
2

Training Epochs

Softmax

0 50 100 150 200
10

−1

10
0

10
1

10
2

Training Epochs

Angle

0 50 100 150 200
10

−2

10
0

10
2

Training Epochs

M
ea

n
Sq

ua
re

 T
ra

in
in

g
E

rr
or

Standard Deviation

Fig. 4. Training error over time for the three target functions, averaged over 30 runs.
Note logarithmic y axis. Circles represents generalisation error of the trained network.
Left: standard deviation target function. Centre: softmax target function. Right: angle
target function.

7 Conclusion

I have defined a type of network, variadic networks, in which the signals are
vectors of arbitrary dimension, the network has a fixed number of parameters
independent of the dimension of the vector, the vector elements are treated
symmetrically, and the signals can interact across dimensions. A simple MLP
extension based on this idea - the MVLP - has been shown capable of learning
sample problems.

This approach is a novel and promising method for learning on data compris-
ing variable-length but unordered “bags” of tuples of real numbers.

8 Future Work

Space limitations preclude detailed discussion, but some preliminary work is
underway on the following topics: universality and convergence behaviour of
the proposed architecture; improved training performance using more sophis-
ticated training methods and network topologies; construction of multiset ker-
nels for kernel learning methods; generalisation behaviour for different input
dimension.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

468 S. McGregor

References

1. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Dietterich,
T.G., Becker, S., Ghahramani, Z. (eds.) Advances in Neural Information Processing
Systems 14, MIT Press, Cambridge,MA (2002)

2. Joachims, T.: Text categorization with support vector machines: learning with many
relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Machine Learning: ECML-98.
LNCS, vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

3. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text classi-
fication using string kernels. J. Mach. Learn. Res. 2, 419–444 (2002)

4. Møller, M.F.: A scaled conjugate gradient algorithm for fast supervised learning.
Neural Netw. 6(4), 525–533 (1993)

5. Petrovsky, A.: Multi-attribute classification of credit cardholders: multiset approach.
International Journal of Management and Decision Making (IJMDM) 7(2-3), 166–
179 (2006)

6. Riedmiller, M., Braun, H.: Rprop- a fast adaptive learning algorithm (1992)

7. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back–
propagating errors. Nature 323, 533–536 (1986)

A Derivation of Backprop Algorithm

Unfortunately the use of vector signals makes the standard matrix notation for
network algebra somewhat unwieldy.

Instead, consider every network parameter and signal as a function on nodes
or links. Each node n has a vector activation A(n) ∈ R

k, where k is the dimen-
sionality of the current network input, a vector output y(n) ∈ R

k, and a scalar
bias B(n) ∈ R. Each link l has y(a) as its input, a signal S(l) ∈ R

k as its output,
a weight w(l) and interaction-weight θ(l).

The activation function A is defined differently for input and non-input nodes.
For each input node nin, A(nin) is set to some arbitrary input vector with com-
mon dimensionality k. (These inputs determine the dimensionality of every other
signal in the network.) For a non-input node n,

A(n) = B(n)1k +
∑

l∈inp(n)

S(l)

where 1k is the k-dimensional vector whose every element is 1, and inp(n) is the
set of links coming into node n.

We’ll assume that the input and output nodes are linear, i.e. that y(nin/out) =
A(nin/out). For hidden nodes nhid the output is defined by a node transfer func-
tion f : R

k → R
k based on a pointwise application of a sigmoidal scalar transfer

function f : R → R such as the logistic or hyperbolic tangent function:

f(x)i = f(xi), i ∈ {1 . . . k}

y(nhid) = f(A(nhid))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Network Processing for Multiset Data 469

The output signal S(l) for a link l from node a to b is defined as

S(l) = w(l)y(a) + θ(l)1k(y(a) · 1k)

Assigning vector targets t(nout) for every output neuron, we can define a
sum-squared network error function E

E =
1
2

∑

nout

(t(nout) − y(nout)) · (t(nout) − y(nout))

and calculate partial derivatives of error with respect to all biases, weights and
interaction-weights as follows.

As in classical backprop, calculating the derivative of network error with re-
spect to each node’s activation and applying the chain rule allow us to determine
the derivative of error with respect to the network’s modifiable parameters.

For the output y(nout) of an output node nout, we have

∂E

∂y(nout)
= y(nout) − t(nout)

and since y(nout) = A(nout) for linear output nodes,

∂E

∂A(nout)
= y(nout) − t(nout)

For elements of the signal S(l) on an arbitrary link l between node a and node
b, we have (

∂E

∂S(l)

)

i

=
(

∂E

∂A(b)

)

i

∂A(b)i

∂S(l)i

=
(

∂E

∂A(b)

)

i

So far this is essentially the same as classical backprop. Where the difference
arises is in the chaining back to hidden nodes nhid.

(
∂E

∂y(nhid)

)

i

=
∑

l∈outp(nhid)

k∑

j=1

(
∂E

∂S(l)j

∂S(l)j

∂y(nhid)i

)

where
∂S(l)j

∂y(nhid)i
= w(l)δi j + θ(l)

with δi j here being the Kronecker delta function, so that

k∑

j=1

(
∂E

∂S(l)j

∂S(l)j

∂y(nhid)i

)

= θ(l)
k∑

j=1

∂E

∂S(l)j
+ w(l)

∂E

∂S(l)i

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

470 S. McGregor

The activation function f in all nodes is pointwise, which gives us
(

∂E

∂A(nhid)

)

i

=
(

∂E

∂y(nhid)

)

i

f ′(A(nhid)i

)

And finally, the ∂E
∂A and ∂E

∂S terms can be used to calculate the partial deriva-
tives of error with respect to the network bias, weight and interaction-weight
parameters.

∂E

∂B(n)
=

k∑

i=1

(
∂E

∂A(n)

)

i

∂A(n)i

∂B(n)
=

k∑

i=1

∂E

∂A(n)i

∂E

∂w(l)
=

k∑

i=1

(
∂E

∂S(l)

)

i

∂S(l)i

∂w(l)
=

k∑

i=1

(
∂E

∂S(l)

)

i

y(a)i

∂E

∂θ(l)
=

k∑

i=1

(
∂E

∂S(l)

)

i

∂S(l)i

∂θ(l)
=

k∑

i=1

∂E

∂S(l)i

k∑

j=1

y(a)j

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Introduction of Time-Scales in Reservoir

Computing, Applied to Isolated Digits
Recognition�

Benjamin Schrauwen��, Jeroen Defour, David Verstraeten,
and Jan Van Campenhout

Electronics and Information Systems Department, Ghent University, Belgium
Benjamin.Schrauwen@UGent.be

Abstract. Reservoir Computing (RC) is a recent research area, in which
a untrained recurrent network of nodes is used for the recognition of tem-
poral patterns. Contrary to Recurrent Neural Networks (RNN), where
the weights of the connections between the nodes are trained, only a lin-
ear output layer is trained. We will introduce three different time-scales
and show that the performance and computational complexity are highly
dependent on these time-scales. This is demonstrated on an isolated spo-
ken digits task.

1 Introduction

Many real-world difficult tasks that one would like to solve using machine learn-
ing are temporal in nature. In the field of neural networks, several approaches
have been proposed that introduce the notion of time into the basic concept of
stateless, feed-forward networks, where the main objective is of course to give
the network access to information from the past as well as the present. One well
known method is to feed the signals of interest through a delay line, which is
then used as input to the network (Time Delay Neural Networks). These how-
ever introduce additional parameters into the model and impose an artificial
constraint on the time window. A more natural way of dealing with temporal
input signals is the introduction of recurrent, delayed connections in the net-
work, which allow the network to store information internally. These Recurrent
Neural Networks (RNN) are a theoretically very powerful framework, capable of
approximating arbitrary finite state automata [1] or even Turing machines [2].
Still, wide-scale deployment of these networks is hindered by the difficult and
computationally costly training, caused in part by the fact that the temporal
gradient information gets washed out as it is back-propagated into the past [3].

Reservoir Computing (RC) offers an intuitive methodology for using the tem-
poral processing power of RNN without the hassle of training them. Originally
introduced independently as the Liquid State Machine [4] or Echo State Net-
works [5], the basic concept is to randomly construct an RNN and to leave the
� This research is partially funded by FWO Flanders project G.0317.05.

�� Corresponding author.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 471–479, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

472 B. Schrauwen et al.

weights unchanged. A separate linear regression function is trained on the re-
sponse of the reservoir to the input signals using pseudo-inverse. The underlying
idea is that a randomly constructed reservoir offers a complex nonlinear dy-
namic transformation of the input signals which allows the readout to extract
the desired output using a simple linear mapping.

Evidently, the temporal nonlinear mapping done by the reservoir is of key
importance for its performance. One of the appealing properties of this type of
networks is the fact that they are governed by only a few global parameters.
Generally, when solving a task using RC, the search for optimal reservoir dy-
namics is done by adjusting global scaling parameters such as the input scaling
or spectral radius1. However, as we will show, optimizing the temporal proper-
ties of the entire system can also be very influential to the performance and the
computational complexity. Since a reservoir is a dynamic system that operates
at a certain time-scale, the precise adjustment of the internal temporal behavior
of the reservoir to both the input signal and the desired output signal is im-
portant. In this contribution, we present an overview of the different ways in
which the dynamic behavior of reservoirs has been described in literature, and
we investigate the interplay between different temporal parameters for each of
these models when applied to signal classification tasks.

2 Reservoir Computing and Time-Scales

Although there exist some variations on the global description of an RC system,
we use this setup:

x [t + 1] = f
(
W res

res x [t] + W res
inpu [t]

)

ŷ [t + 1] = W out
res x [t + 1] + W out

inp u [t] + W out
bias,

with u [t] denoting the input, x [t + 1] the reservoir state, y [t + 1] the expected
output, and ŷ [t + 1] the actual output2. All weights matrices to the reservoir
(W res

�) are initialized at random, while all connections to the output (W out
�) are

trained. The non-linearity f is a hyperbolic tangent.
In this system we can define three different time-scales: the time-scale of the

input, the internal state, and the output. Traditionally these are all the same,
but in this paper we will show that performance can be improved and that
computational demands can be decreased by setting these time-scales correctly.

2.1 Input Time-Scale and Integrator Nodes

In [6], the notion of input time-scales and the link to node integration was
introduced. In this contribution we will look at three ways to add an integrator
to a node: after the non-linearity (as used in [6]), before the non-linearity (as

1 The largest absolute eigenvalue of the connection matrix.
2 We denote discrete time with [t] and continuous time with (t).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Introduction of Time-Scales in Reservoir Computing 473

used in continuous time RNN), and over the non-linearity (which we introduce).
We will first discuss the integrator after the non-linearity.

The input time-scale and integrator can be introduced by starting from a
continuous time differential equation:

ẋ =
1
c

(
−ax + f

(
W res

inpu + W res
res x

))

where a denotes the retainment rate (which in this work we set to 1, meaning that
no information is leaked), and c is a scaling factor for the temporal dynamics. If
this is discretely approximated by using Euler discretization we get:

x((t + 1)δ2) = (1 − λ)x(tδ2) + λf
(
W res

inpu(tδ2) + W res
res x(tδ2)

)

where δ2 is the Euler step and λ = δ2/c. Note that the Euler time step δ2
determines the sample rate of the input, while c can be used to scale the speed
of the dynamics.

Although the retainment rate was the major research topic of [6] and λ was
ignored, this work focuses on λ and sets the retainment rate to 1. This is because
that parameter was previously not thoroughly investigated, and when changing
λ the effective spectral radius of the reservoir does not change, while, when
changing a, it does. When changing the spectral radius, the dynamic regime
of the reservoir, which is very important for the performance of the reservoir,
changes. This coupling between time-scale settings and dynamic regime settings
is not desired.

When the integrator is placed before the non-linearity, which is common prac-
tice in continuous time RNN, we end up with these equations:

z((t + 1)δ2) = (1 − λ)z(tδ2) + λ
(
W res

inpu(tδ2) + W res
res x(tδ2)

)

x((t + 1)δ2) = f(z((t + 1)δ2)).

This has the advantage of being stable: if an integrator starts to blow up, it is
constrained by the non-linearity, which is not the case in the previous model.

Yet another, empirical model, is possible by placing the integrator over the
non-linearity:

x((t + 1)δ2) = f
(
(1 − λ)x(tδ2) + λ

(
W res

inpu(tδ2) + W res
res x(tδ2)

))
.

The advantage of this is that an integrator can never blow up and that it has
no computational overhead since the integrators can be incorporated in the W
matrix by increasing the diagonal elements. But a drawback is that the integrator
does leak away even with a = 1. The leak is due to the contracting property
of the non-linear mapping of the hyperbolic tangent upon itself. This has as a
consequence that the overall amplitude of the reservoir dynamics scales down
when λ goes to 0.

Theoretically there are some strong and weak points concerning these three
possible models, but we will have to experimentally investigate which of these is
somehow ‘optimal’.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

474 B. Schrauwen et al.

The input of the reservoir is in practice always a sampled signal. We denote
the sampling time-scale of the input δ1. The resampling factor from input to in-
ternal time-scale is thus equal to δ2/δ1. This resampling should approximate the
ideal Nyquist, non-aliasing resampling operation. We use the Matlab resample
operation for this.

2.2 Output Time-Scale

In this work we also introduce an output time-scale

ŷ((t + 1)δ3) = W out
res x((t + 1)δ3) + W out

inp u(tδ3) + W out
bias.

The reservoir states and inputs are thus resampled to this new time-scale before
training and applying the linear readout. The resampling factor from internal to
output is δ3/δ2. We will call this reservoir resampling.

At a first glance this time-scale does not seem to be very important, but as we
will show in the experiments, changing this time-scale can have a drastic effect
on performance.

3 Experimental Setup and Results

For all of the following experiments, we used the Reservoir Computing Toolbox3

[7], which allows us to do all the simulations in the Matlab environment. With
this toolbox, we will study the task of speech recognition of isolated digits. The
Lyon passive ear model [8] is used to frequency-convert the spoken digits into
77 frequency channels. The task of recognizing isolated spoken digits by RC has
already been studied [7], and the results have been very positive. The dataset we
will use (a subset of the TI48 dataset) contains 500 spoken isolated digits, the
digits 0 to 9, where every digit is spoken 10 times by 5 female speakers. We can
evaluate the performance of the reservoir by calculating the Word Error Rate
(WER), which is the fraction of incorrectly classified words as a percentage of
the total number of presented words. Because of the randomness of the reser-
voirs, we will do every simulation 20 times with different stochastically generated
reservoirs, and use 10-fold cross validation to obtain a decent statistical result.

Ridge regression (least squares optimization where the norm of the weights
is added as a penalty) was used to train the readout, where the regularization
parameter was set by doing a grid search. To classify the ten different digits, ten
outputs are trained which should be 1 when the digit is uttered, -1 if not. The
temporal mean of the ten classifiers is taken over the complete sample, and a
Winner-Take-All is applied to this. The winner output represents the classified
digit.

The settings of the reservoir, like reservoir size which is 200 and spectral
radius which is 0.7, are in this paper intentionally chosen to be non-optimal so
3 Which is an open-source Matlab toolbox for Reservoir Computing, freely available

at http://www.elis.ugent.be/rct .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Introduction of Time-Scales in Reservoir Computing 475

Table 1. Minimal classification errors for all cases

input resampling reservoir resampling

integrator after non-linearity 2.15% 0.48%

integrator before non-linearity 2.32% 0.48%

integrator over non-linearity 1.36% 0.40%

we still have a margin of error left to evaluate the resampling techniques on. If
everything is set optimally we can very easily get zero training error!

In [6] the intricate interplay between optimal values of a and the spectral
radius is investigated. When changing λ, we notices that there is no such intri-
cate dependency to the spectral radius. The optimal spectral radius is not very
dependent on the value of λ.

3.1 Input Resampling vs. Integration

First we will study the influence of input resampling versus integration for the
different integrator options on the performance of the reservoir. To be able to
handle a broad range of parameters, we vary both these parameters in a loga-
rithmic way, with base 10. Figure 1 shows the results of this experiment.

For these experiments, the internal time-scale δ2 is set to 1 and the input
time-scale δ1 is changed. This is similar to keeping δ1 constant and changing δ2.
Note that when keeping λ constant and changing δ2, c changes. We can observe
a diagonal area on Figure 1 which corresponds to an optimal performance. This
optimal performance is actually achieved with a fixed value of c, but we perceive
it as a λ value which changes linearly with δ1, but this is due to the fact that
log10(λ) = log10(δ2)/ log10(c).

For all three integrator cases we see that the optimal performance is attained
with the least resampling (bottom of the plots). However, if we resample more,
the error only slightly increases. This creates a trade-off between computational
complexity and performance.

The optimal performance for the three different integrator settings are given
in Table 1. We see that the integrator over the non-linearity performs optimally,
which is nice, because this introduces no extra computational requirements.

3.2 Reservoir Resampling vs. Integration

The second experiment studies the output time-scale compared to the internal
integrator. The results of this experiment are shown in Figure 2. For these exper-
iments, the input time-scale is set to log10(δ1) = −2 and the internal time-scale
δ1 = 1. The setting of the input time-scale is not critical since the conclusions
of the results also apply to other input time-scale settings.

These figures are a bit more complex to interpret. The upper part, with
log10(δ3) = 0, has no reservoir resampling and is thus equal to a slice of Figure 1
where log10(δ1) = −2. When increasing the resampling of the reservoir states,
we see that for the region of low integration (close to 0) there is a significant

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

476 B. Schrauwen et al.

−4

−2

0
−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 1)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(a) integrator after the non-linearity

−4

−2

0
−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 1)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(b) integrator before the non-linearity

−4

−2
0

−3

−2

−1

0

0.05

0.1

log(δ
1
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 1)

−4−3−2−10

−3

−2.5

−2

−1.5

−1

(c) integrator over the non-linearity

Fig. 1. WER results for input resampling versus integration for the three integrator
options. The small squares denote minimal error.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Introduction of Time-Scales in Reservoir Computing 477

−4
−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

log(λ)

Testing error

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(a) integrator after the non-linearity

−4
−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(b) integrator before the non-linearity

−4

−2

0

0

1

2

0

0.02

0.04

0.06

0.08

0.1

log(δ
3
)

Testing error

log(λ)

W
E

R

Testing error

log(λ)

lo
g(

δ 3)

−4−3−2−10

0

0.5

1

1.5

2

(c) integrator over the non-linearity

Fig. 2. WER results for reservoir resampling versus integration for the three integrator
options. The small squares denote minimal error.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

478 B. Schrauwen et al.

10 20 30 40

0.02

0.04

0.06

0.08

0.1

0.12

0.14

reservoir resampling

er
ro

r

Training error
Testing error

Fig. 3. Classification error for a signal classification task with respect to the output
time-scale. Note that the time-scale is not logarithmic in this figure.

decrease of the error. But in the region where the integration is optimal there is
initially no improvement.

The bottom part of the figures show a drastic drop in performance when
log10(δ3) is larger than 1.5. With such a high input and reservoir resampling,
there is actually just one time step left! For this task we thus have optimal
performance when reducing all the reservoir’s dynamics to a single point in
state space: the centroid of the dynamics in state space. This is not completely
awkward since the post-processing of the linear classifier’s output is anyway by
taking its temporal mean before applying Winner-Take-All. The major drawback
of this drastic reservoir resampling is that all temporal information is lost. With
less reservoir resampling, the reservoir is able to already give a prediction of the
uttered word even if it is for example only partially uttered. We thus trade-off
performance to the ability of on-line computation.

One might think that when averaging out all the reservoir’s dynamics, it has
no real purpose. But when training a linear classifier to operate on the temporal
average of the frequency-transformed input, so without using a reservoir, we end
up with an error of 3%. This is quite good, but still an order of a magnitude
worse than when using a reservoir of only 200 neurons.

These conclusions are, however, partly due to the fact that here the desired
class output remains constant during the whole input signal. Figure 3 shows that
this is not generally the case. Here, the task is to do signal classification, whereby
the input signal is constructed by concatenating short signal pieces of 50 time
steps, whereby every piece is either a noisy sawtooth or a noisy square wave
with the same period. The task is then to classify the signal type at every time
step. As the results show, in this case there is a trade-off between the amount of
resampling of the reservoir responses and the amount of information available
to the linear readout to do the classification. In this case only a small amount of
reservoir resampling is needed to attain optimal performance. In state space this
can be seen as taking the centroid of a small temporal region of the trajectory.
This temporal averaging out of the dynamics seems to significantly increase the
classification performance of the RC system.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Introduction of Time-Scales in Reservoir Computing 479

4 Conclusion and Future Work

It was previously already mentioned that setting input time-scales is possible
[6], however, in this work we show that setting this time-scale is critical for
getting optimal performance. We showed that there is a clear link between node
integration and resampling. When using input resampling the computational
complexity decreases linearly with resampling, while only slightly influencing
the performance. We introduced three types of node integration and showed
how they perform on an isolated spoken digits classification task. The integrator
scheme introduced in this work performs optimally and can be implemented
without overhead.

Next we showed that an output time-scale can also be introduced. Although
that initially this might not seem to be influential on performance, we experimen-
tally show that a large performance gain can be achieved by optimally setting
this resampling. Here we get a speed-up and an improvement in performance.
This result suggests that for classification tasks it is not the actual precise dy-
namics that are important, but more the temporally filtered dynamics which is
the local centroid of the dynamics in state space.

There are many other options for future research based on this work. We will
investigate how this resampling scheme is applicable to more complex tasks like
continuous speech, where classification needs to be performed on-line, and where
there are multiple time-scales presents. To solve this we might need to introduce
hierarchical or heterogeneous reservoirs with different parts working at different
time-scales. Ultimately these temporal modules should be created autonomously.

References

1. Omlin, C.W., Giles, C.L.: Constructing deterministic finite-state automata in sparse
recurrent neural networks. In: IEEE International Conference on Neural Networks
(ICNN’94), Piscataway, NJ, pp. 1732–1737. IEEE Computer Society Press, Los
Alamitos (1994)

2. Kilian, J., Siegelmann, H.T.: The dynamic universality of sigmoidal neural networks.
Information and Computation 128, 48–56 (1996)

3. Hammer, B., Steil, J.J.: Perspectives on learning with recurrent neural networks.
In: Proceedings of ESANN (2002)

4. Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
computation 14(11), 2531–2560 (2002)

5. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD
Report 152, German National Research Center for Information Technology (2001)

6. Jaeger, H., Lukosevicius, M., Popovici, D.: Optimization and applications of echo
state networks with leaky integrator neurons. Neural Networks (to appear, 2007)

7. Verstraeten, D., Schrauwen, B., D’Haene, M., Stroobandt, D.: A unifying compari-
son of reservoir computing methods. Neural Networks (to appear, 2007)

8. Lyon, R.: A computational model of filtering, detection and compression in the
cochlea. In: Proceedings of the IEEE ICASSP, pp. 1282–1285. IEEE Computer So-
ciety Press, Los Alamitos (1982)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling
Information

Ryotaro Kamimura

Information Science Laboratory, Information Technology Center, Tokai University,
1117 Kitakaname Hiratsuka Kanagawa 259-1292, Japan

ryo@cc.u-tokai.ac.jp

Abstract. In this paper, we propose partial activation to simplify complex neu-
ral networks. For choosing important elements in a network, we develop a fully
supervised competitive learning that can deal with any targets. This approach is
an extension of competitive learning to a more general one, including supervised
learning. Because competitive learning focuses on an important competitive unit,
all the other competitive units are of no use. Thus, the number of connection
weights to be updated can be reduced to a minimum point when we use compet-
itive learning. We apply the method to the XOR problem to show that learning
is possible with good interpretability of internal representations. Then, we ap-
ply the method to a student survey. In the problem, we try to show that the new
method can produce connection weights that are more stable than those produced
by BP. In addition, we show that, though connection weights are quite similar to
those produced by linear regression analysis, generalization performance can be
improved by changing the number of competitive units.

1 Introduction

A hierarchical neural network is a very powerful architecture in learning complex pat-
terns. However, as the complexity of a network is larger, the complexity in learning
becomes intractable. Thus, we need to focus upon some important elements or parts
of networks to make learning easier. We introduce here a partially activated network
in which a smaller number of units as well as connection weights are actually used or
activated in learning. With this partially activated network, the complexity of neural
networks can be significantly reduced.

Partial activation is realized by condensing information content into a smaller num-
ber of elements. Information condensation or maximization can be realized by com-
petitive learning; that is, competitive learning can be introduced to simplify networks,
because it is a method that focuses upon important units. By having them focus on a
single competitive unit, complex neural networks can be significantly simplified. Com-
petitive learning has been one of the most important techniques in neural networks.
Many problems have been pointed out, and a number of studies have proposed meth-
ods to overcome those problems: [1], [2], conscience learning [3], frequency-sensitive
learning [4], rival penalized competitive learning [5], lotto-type competitive learning
[6] and entropy maximization [7]. We have so far applied competitive learning to ac-
tual problems with good interpretation of connection weights [8], [9]. However, the

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 480–489, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling Information 481

method is limited to unsupervised learning, and it cannot be used to estimate continu-
ous targets. In this context, we extend competitive learning to supervised hierarchical
network architecture and propose a new supervised competitive learning method called
controlled competitive learning (CCL). The new method includes the property of hierar-
chical networks to train continuous targets as well as the property of good interpretation
of connection weights originating from competitive learning. In this CCL, conventional
competitive learning is guided by error signals transferred from output layers. Thus, we
can incorporate teacher information into a framework of competitive learning.

(a) Pruning

(b) Growing

(c) Partially activated

(d1) Partially
 activated

(d2) Information max

(d3) Information min(d) Information control

Fig. 1. Three types of network simplification and information control

2 Partially Activated Networks

2.1 Concept of Partially Activated Networks

In neural networks, the simplification of network complexity has been one of the most
important issues, because simplification makes networks generalize better and thus
learning is accelerated. There have been three types of simplification procedures. As
shown in Figure 1(a), network pruning is one of the major approaches to simplification
[10]. Figure 1(b) shows a concept of network growing in which the number of neurons
gradually increases [11]. In Figure 1(c), a simplification procedure is shown that is not
very popular for use in neural networks. A network keeps its architecture throughout the
learning and testing mode. However, only elements necessary for given situations are
actually used or activated; that is, a network activates a small number of units as well
as connection weights absolutely necessary in learning. We call this type of network a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

482 R. Kamimura

L input units

Competitive layer

Testing component

N output units

M competitive

s

w

O T
jk

Wij

j

i i

j

x
k

s

s

s

s
v

j

units

σ

δ

L input units

Competitive layer

N output units

M competitive

s

w

W O T
jk

ij

j

i ix
k

s s

s
v

j

units

Winner

σ

(b2) Pattern No.2

L input units

Competitive layer

N output units

M competitive

s

w
W O T

jk

ij

j

i ix
k

s s

s
v

j

units

Winner

σ

(b1) Pattern No.1

Νο.2 δ s
j

No.1 sign(δ s
j)

(b) Partially active

(a) Network architecture

Fig. 2. A concept of partial activation and an implementation of controlled competitive learning
by a hierarchical network

partially activated network. In this paper, we try to build this type of network. One of
the major merits of this method is that, because elements are not completely deleted in a
network, they are immediately activated when necessary. In Figure 2(b), we try to show
that a procedure of information control is applied to partially activated elements in a
network. In Figure 1(b), information is maximized for the partially activated elements.

2.2 Information Acquisition Procedure

We consider information content stored in competitive unit activation patterns. For this
purpose, let us define information to be stored in a neural system. As shown in Figure
2(a), a network is composed of a competitive and an output layer. In the competitive
layer, information is maximized to realize competitive processes. In the output layer,
errors between targets and outputs are minimized. Information stored in a system is
represented by decrease in uncertainty [12]. Uncertainty decrease, that is, information
I , is defined by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling Information 483

I = −
∑

∀j

p(j) log p(j) +
∑

∀s

∑

∀j

p(s)p(j | s) log p(j | s), (1)

where p(j), p(s) and p(j|s) denote the probability of firing of the jth unit, the proba-
bility of firing of the sth input pattern and the conditional probability of firing of the jth
unit, given the sth input pattern, respectively.

Let us define mutual information in a neural network. As shown in Figure 2(a), a
network is composed of input units xs

k and competitive units vs
j . The jth competitive

unit receives a net input from input units, and an output from the jth competitive unit
can be computed by

vs
j = exp

(

−
∑L

k=1(x
s
k − wjk)2

σ2
j

)

, (2)

where σ represents the Gaussian width, L is the number of input units, and wjk de-
note connection weights from the kth input unit to the jth competitive unit. The output
is increased as connection weights come closer to input patterns. To compute mutual
information, we suppose that the normalized activity vs

j represents a probability with
which a neuron fires. The conditional probability p(j | s) is approximated by

p(j | s) ≈
vs

j
∑M

m=1 vs
m

, (3)

where M denotes the number of competitive units. Since input patterns are supposed to
be given uniformly to networks, the probability of the jth competitive unit is computed
by

p(j) =
1
S

S∑

s=1

p(j | s), (4)

where S is the number of input patterns. Information I is computed by

I = −
M∑

j=1

p(j) log p(j) +
1
S

S∑

s=1

M∑

j=1

p(j | s) log p(j | s). (5)

As information becomes larger, specific pairs of input patterns and competitive units
become strongly correlated.

2.3 Information Maximization Procedure

In actual learning, we must focus upon a winning neuron. Figure 2(b1) and (b2) show
the second and the third neuron win the competition. For this purpose, we must com-
pletely maximize information content by update rules obtained by directly differentiat-
ing mutual information. However, the computation of the direct method is heavy, and
we try to use a simplified version of information maximization with the winner-takes-
all algorithm. We now realize competitive processes, that is, information maximization

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

484 R. Kamimura

processes in competitive layers. As shown in Figure 2(a), a network is composed of a
competitive and an output layer. In the competitive layer, a competitive unit becomes
a winner by the winner-take-all algorithm. For this, at least, we need a mechanism to
increase competitive unit activations. The jth competitive unit receives a net input from
input units, and an output from the jth competitive unit can be computed by

vj = exp

(

−
∑L

k=1(xk − wjk)2

σ2
j

)

, (6)

where σ represents the Gaussian width, L is the number of input units, and wjk denotes
connection weights from the kth input unit to the jth competitive unit. In the following
formulation, we omit the superscript s to simplify the equations. We must increase this
unit activity vj as much as possible. For that, we must differentiate this unit function.
We have

Δwjk = φj(xk − wjk), (7)

where

φj =
2vj

σ2
j

. (8)

With this equation, all competitive units gradually reach a maximum point. For the
selection of a winner, we must introduce the winner-take-all algorithm. For the winner
j∗, only this update rule is applied.

Δwjk =
{

φj(xk − wjk), if j = j∗

0, otherwise.

We think that competitive learning is a special computational method in which infor-
mation is supposed to be maximized (winner-takes-all).

2.4 Information Control Procedure

We extend competitive learning to supervised learning. For this, we need to control
information content in competitive units; that is, information should be maximized or
minimized, depending upon input-target relations. The output from the output unit is
computed by

Os
i =

N∑

i=1

Wijvj , (9)

where Wij denotes connection weights from the jth competitive unit to the ith out-
put unit, Os

i represents the actual outputs from the ith output unit, given the sth input
pattern, and T s

i denotes corresponding targets. We now compute the error δ

δi = Ti − Oi. (10)

The error is computed by

E =
N∑

i=1

δ2
i , (11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling Information 485

where Ti denotes targets for the ith output unit. For hidden-output connections, con-
nections only to a winner, j∗, are updated by

ΔWij∗ = δiv
∗
j . (12)

For input-hidden connections, only connections to the winner j∗ are also to be updated.
Thus, we have update rules for the winner:

Δwjk = Φj(xk − wjk). (13)

In the equation, φj is set to zero for losers, and for the winner we have

Φj = sign(δj))φj (14)

, where

δj =
N∑

i=1

δiWij (15)

. For the bias, we update them to decrease errors:

Δσj = Φj

L∑

k=1

(xk − wjk)2/σ3 (16)

Thus, connection weighs to the winner are updated according to the error signals from
the output layer: if the signal is positive, information can be maximized; if the signal is
negative, information is minimized.

3 Results and Discussion

3.1 XOR Problem

We first applied our method to the well-known XOR problem to make certain that our
method could really acquire input-target relations. When the number of competitive

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

Epoch Epoch

In
fo

rm
at

io
n

T
ra

in
in

g
er

ro
r

(a) Information (b) Training error

Fig. 3. Information content (a) and training error in MSE (b) as a function of the number of
epochs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

486 R. Kamimura

units was larger than two, the network could immediately learn the relations; however,
when the number of competitive units was set to two, the network could not learn re-
lations without difficulty. Figure 3(a) shows information as a function of the number
of epochs. Information rapidly increases and is close to 0.7. Figure 3(b) shows training
errors in error rates. As can be seen in the figure, error rates become zero only with
11 epochs. Figure 4(b) shows an example of rates obtained by our method. The result
shows that a network can, with difficulty, learn the XOR problem and information is
increased.

3.2 Application to a Student Survey

Next, we conducted a survey on the content of an elemental information processing
class. Because information technology changes rapidly, universities must carefully take
into account students’ preferences regarding such technology and related subjects; and,
especially since the students’ preferences seem to vary widely, there is an urgent need
to determine what the students’ preferences or needs are for information science edu-
cation. In the survey, we presented several examples of new courses, and the students
were asked to make decisions on taking the given courses. Because of the the limited
number of pages of this paper, the detailed procedures of the experiments are omitted.

0.910

Input unit Competitive unit

Output unit

0.438

0 1 0 1

 0 0 1 1

0 1 1 0

0.210

0.867

0.107

0.337

1.375

1.325

Fig. 4. A network architecture with final connection weights for the XOR problem

Figure 5(a) and (b) show information and training errors in MSE. We can see that in-
formation fluctuates in the first place and comes close to zero in the later stage of learn-
ing. Because information is controlled to acquire input-target relations, information is
not necessarily increased. As shown in Figure 5(b), training errors in MSE rapidly de-
crease and are close to zero at the end. Figure 5(c) shows connection weights obtained
by the new method and correlation coefficients obtained by regression analysis. As can
be seen in the figure, two coefficients are quite similar to each other, and connection
weights are significantly stable. On the other hand, as shown in Figure 5(d), connection
weights by the back-propagation method are greatly different from regression coeffi-
cients. The correlation coefficient is 0.008. In addition, learning is quite unstable, and
final connection weights are completely different for each trial.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling Information 487

T
ra

in
in

g
 e

rr
o
r(

M
S

E
)

Epoch

(a) Information

(c) Weights(0.726)

0 50 1000

20

40

(b) Training error

5 10 15 20
-2

0

2

Variable

C
o
n
n
e
c
ti

o
n
 w

e
ig

h
t

0 10 20

-20

0

20

Variable

C
o

n
n

e
c
ti

o
n

 w
e
ig

h
t

(d) Weights(0.008)

0 50 100

4

6

x 10 -3

Epoch

In
fo

rm
at

io
n

Fig. 5. Information (a) and typical training errors in MSE (b) as a function of the number of
epochs. Connection weights and regression coefficients by the new method (c) and by back-
propagation (d).

Figure 6 shows generalization errors in MSE. Because the number of input patterns
is small, we use one-leave-out cross validation, and generalization errors are averaged
over 18 patterns. As can be seen in the figure, back-propagation provides the worst case,
and the partially activated network shows the best performance. On the other hand, the
radial basis function network ranks in the middle.

We applied the method to another student survey for a new sub-major on informa-
tion processing. As discussed for the previous results, information is not increased, but
decreased in this case. Training errors are close to zero with about 50 epochs. Con-
nection weights are quite similar to regression coefficients by regression analysis. On
the other hand, connection weights by the radial-basis network with stochastic gradient
and the regression analysis are quit different from the regression coefficients in terms
of the magnitude of connection weights. Because only little improvement can be seen
in generalization, we tried to increase the number of competitive units. Figure 7 shows
generalization errors as a function of the number of epochs. Generalization errors are
decreased as the number of competitive units is increased and reach their lowest value
when the number of competitive units is eight. Figure 7(b) shows regression coefficients
and connection weights for the largest competitive unit. As can be seen in the figure,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

488 R. Kamimura

0.2

0.3

0.4

0.5

0.6

0.7

G
en

er
al

iz
at

io
n

er
ro

rs

PAN RBF BP

Fig. 6. Generalization errors by three methods

connection weights are significantly similar to regression coefficients. This means that,
even if the number of competitive units is increased, similar connection weights are
kept in a network.

5 10 15 20
0

0.5

1

1.5

2

2.5

Variable

C
o
n
n
e
c
ti

o
n
 w

e
ig

h
t

(a) Generalization (b) Weights and coefficients

2 4 6 8 10
0.16

0.18

0.2

0.22

0.24

0.26

Number of epochs

G
en

er
al

iz
at

io
n

er
ro

rs

Fig. 7. Generalization errors as a function of the number of competitive units (a) and connection
weights (b)

4 Conclusion

In this paper, we have introduced a partially activated network in which only a fraction
of elements in a neural network is used in learning. For choosing important elements,
we have proposed a new competitive learning called controlled competitive learning.
This is an extension of conventional competitive learning to supervised hierarchical
networks. In addition, we extend competitive learning to continuous targets. By this ex-
tension, we can broaden the scope of competitive learning and apply it to many practical
problems. These competitive learning methods have been used to control information
content in competitive units. Information-theoretic methods have been exclusively re-
lated to information maximization or information minimization. Now it is possible to
control information content, depending upon given problems. By applying the method

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Partially Activated Neural Networks by Controlling Information 489

to a student survey, we have found that representations obtained by our methods are
quite similar to those obtained by regression analysis. In addition, our method can pro-
duce very stable learning processes compared with back-propagation approaches to this
problem. For generalization, we have shown the possibility that performance can be im-
proved by using partially activated networks. We have borrowed a concept of competi-
tive learning to activate important elements. However, if we can broaden the concept of
competitive learning to include more realistic situations, the new approach presented in
this paper can certainly be more practically useful.

References

1. Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. In: Rumelhart, D.E.,
G.E.H., et al. (eds.) Parallel Distributed Processing vol. 1, pp. 151–193, MIT Press, Cam-
bridge (1986)

2. Grossberg, S.: Competitive learning: from interactive activation to adaptive resonance. Cog-
nitive Science 11, 23–63 (1987)

3. DeSieno, D.: Adding a conscience to competitive learning. In: Proceedings of IEEE Inter-
national Conference on Neural Networks, San Diego, pp. 117–124. IEEE Computer Society
Press, Los Alamitos (1988)

4. Ahalt, S.C., Krishnamurthy, A.K., Chen, P., Melton, D.E.: Competitive learning algorithms
for vector quantization. Neural Networks 3, 277–290 (1990)

5. Xu, L.: Rival penalized competitive learning for clustering analysis, RBF net, and curve
detection. IEEE Transaction on Neural Networks 4(4), 636–649 (1993)

6. Luk, A., Lien, S.: Properties of the generalized lotto-type competitive learning. In: Proceed-
ings of International conference on neural information processing, pp. 1180–1185. Morgan
Kaufmann Publishers, San Mateo, CA (2000)

7. Hulle, M.M.V.: The formation of topographic maps that maximize the average mutual infor-
mation of the output responses to noiseless input signals. Neural Computation 9(3), 595–606
(1997)

8. Kamimura, R.: Information theoretic competitive learning in self-adaptive multi-layered net-
works. Connection Science 13(4), 323–347 (2003)

9. Kamimura, R.: Information-theoretic competitive learning with inverse euclidean distance.
Neural Processing Letters 18, 163–184 (2003)

10. Reed, R.: Pruning algorithms-a survey. IEEE Transactions on Neural Networks 5, 740–747
(1993)

11. Fritzke, B.: Growing cell structures – a self-organizing network for unsupervised and super-
vised learning. Neural Networks 7(9), 1441–1460 (1994)

12. Gatlin, L.L.: Information Theory and Living Systems. Columbia University Press (1972)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 490–500, 2007.
© Springer-Verlag Berlin Heidelberg 2007

CNN Based Hole Filler Template Design Using
Numerical Integration Techniques

K. Murugesan1 and P. Elango2,*

1 Department of Mathematics, National Institute of Technology
Tiruchirappalli – 620 015, Tamil Nadu, India

murugu@nitt.edu
2 Research Scholar, Department of Computer Applications

National Institute of Technology
Tiruchirapppalli - 620 015, Tamil Nadu, India

elanalin_74@yahoo.com

Abstract. This paper presents, a design method for the template of a hole-filler
used to improve the pe rformance of the handwritten character recognition
using numerical integration algorithms, based on the dynamic analysis of a
cellular neural network (CNN). This is done by analyzing the features of the
hole-filler template and the dynamic process of CNN using popular numerical
integration algorithms to obtain a set of inequalities satisfying its output
characteristics as well as the parameter range of the hole-filler template.
Simulation results are presented for Euler, Modified Euler and RK methods and
compared. It was found that RK Method performs well in terms of settling time
and computation time for all step sizes.

Keywords: Cellular neural network, Hole-filler template, Numerical
Integration algorithms, Euler method, Modified – Euler method, RK-method.

1 Introduction

Cellular Neural Networks (CNN) is analog, continuous time, nonlinear dynamic
systems and formally belongs to the class of recurrent neural networks. Since their
introduction in 1988 by Chua and Yang[10], they have been the subjects of intense
research. The Cellular Neural Network (CNN) is an artificial neural network of the
nearest neighbour interaction type. It has been widely used [11-19] for image
processing, pattern recognition, moving object detection, target classification signal
processing, augmented reality and solving partial differential equations etc. The
cellular neural network CMOS array was implemented by Anguita et al [1-5] and
Dalla Betta et al [6]. The design of a cellular neural network template is an important
problem, and has received wide attention [7-9] in the recent past. This paper reports
an efficient algorithm exploiting the latency properties of Cellular Neural Networks
along with popular numerical integration algorithms. Here, simulation results are also
presented and a compared with three different algorithms.

* Corresponding author.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CNN Based Hole Filler Template Design Using Numerical Integration Techniques 491

In this article, we describe the dynamic behavior of CNN in section II, Hole-filler
template design ideas in Section III, Numerical Integration algorithms and its
description is given in Section IV, and simulation results in Section V.

2 Dynamic Analysis of CNN

The dynamic equation of cell ()jiC , in an M x N cellular neural network is given by

Chua and Yang [10] and is shown in Figure-1.(a)-(b).

() () ()
() ()

() ()
() ()

IulkjiBtylkjiAtx
Rdt

tdx
C kl

jiNlkC
kl

jiNlkC
ij

x

ij

rr

+++−= ∑∑
∈∈ ,,,,

,;,,;,
1

(1)

() () ()[] njMitxtxty ijijij ≤≤≤≤−−+= 1,1,112
1 (2)

 (a)

 (b)

Fig. 1. CNN cell

where ijx , ijy and iju are the state voltage, output voltage and input voltage

respectively and they are functions of time t. xR is a linear resistance, C is a linear

capacitor, and ()lkjiA ,;, and ()lkjiB ,;, are the transconductances of the output

and input voltages of ()lkC , with respect to ()jiC , called the cloning templates of

CNN. ()jiNr , denotes the thr -neighbour of ()jiC , and I is an independent

current source. From equation (2) one can discern that the output voltage is nonlinear.
Now let us rewrite the cell equation (1) as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

492 K. Murugesan and P. Elango

() ()[] ()tgtxf
dt

tdx
C ij

ij +−= (3)

where

()[] (),1
tx

R
txf ij

x
ij = (4)

() ()
() ()
() ()

() ()
()

IulkjiBtylkjiAtg kl
lkC

kl

jiClkC
jiNlkC r

++= ∑∑
≠
∈ ,

,,
,,

,;,,;,
(5)

3 Hole-Filler Template Design

The Hole-Filler is a cellular neural network, which fills up all the holes and remains

unaltered outside the holes in a bipolar image. Let 1=xR , 1=C and let +1 stand

for the black pixel and –1 for the white one. We shall discuss the images having holes

enclosed by the black pixels, when the bipolar image is input with { }ijuU = into

CNN. The initial state values are set as () 10 =ijx . From the equation (2) the output

values are () NjMiyij ≤≤≤≤= 1,1,10

Now let us consider the templates A, B and the independent current source I are

given as

1,

000

040

000

,0,0,

00

00

−=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=>>

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= IBba

a

aba

a

A (6)

Where the template parameters a and b are to be determined. In order to make the
outer edge cells become the inner ones, normally auxiliary cells are added along the
outer boundary of the image, and their state values are set to zeros by circuit
realization, resulting in the zero output values. The state equation (1) can be rewritten
as

() () ()
() ()

() () ItutylkjiAtx
dt

tdx
ijij

jiNlkC
ij

ij

r

−++−= ∑
∈

4,;,
,,

 (7)

For the cell ()jiC , , we call the cells () () ()1,,,1,,1 +−+ jiCjiCjiC and

()1, −jiC to be the non-diagonal cells. Here, several possible cases are to be

considered

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CNN Based Hole Filler Template Design Using Numerical Integration Techniques 493

Case 1: The input value 1+=iju for cell ()jiC , , signaling the black pixel. Because

the initial state value of the cell ()jiC , has been set to 1, () 10 =ijx , and from

equation (2) its initial output value is also () 10 =ijy . According to the hole-filler

demands, its eventual output should be () 1=∞ijy . To obtain this result we set

()
0≥

dt

tdxij
 (8)

Substituting this input 1=iju and equation (6) into equation (7), we obtain

() () () () () () () () () ()[] () 31111 ++++++−= +−+− tbytytytytyatx
dt

tdx
ijjijijijiij

ij
 (9)

Combining equations (8) and (9) and considering the minimum value of () 1=txij

this case yields

() () () () () () () ()[] () 021111 ≥+++++ +−+− tbytytytytya ijjijijiji (10)

To facilitate our discussion, two sub cases namely cell ()jiC , inside as well as

outside the hole (boundary) are distinguished.

Sub case 1.1: The cell ()jiC , is inside the holes. Since () 10 =ijx , from equation

(2) its initial output value () 10 =ijy . Considering equations (8) and (2), () 1≥tyij .

According to the hole-filler demands, its initial output of non-diagonal black pixels
(grey level) should not be changed inside the holes. The weighting coefficients of a

and b are equal to +4 and +1, respectively. Since () ,1,;,
xRjijiA > the parameter

b is found to be 1>b , that is

1

024

>
≥++

b

ba
 (11a)

Sub case 1.2: The cell ()jiC , is outside the holes. To satisfy equation (10), we need

to check only the minimum value on the left-hand side of equation (10). This is true

when there are four non-diagonal white pixels around the cell ()jiC , , where the

weighting coefficient of a in equation (10) is –4. Since () 1≥tyij , the weight of b is

equal to 1. Combining this with 1>b gives

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

494 K. Murugesan and P. Elango

1

024

>
≥++−

b

ba
 (11b)

Case 2: The input value of cell ()jiC , is 1=iju , signaling the white pixel.

Substituting this input value in equation (7) gives

() () () () () () () () () ()[] () 51111 −+++++−= +−+− tbytytytytyatx
dt

tdx
ijjijijijiij

ij
 (12)

Sub case 2.1: The cell ()jiC , is inside the holes. Since () 10 =ijx , from equation (2)

its initial output value is () 10 =ijy . According to the hole-filler demands, the holes

should be filled by the black pixels, whereas its initial black pixels remain unaltered:

()
0≥

dt

tdxij
 (13)

Combining equations (12) and (13) and considering () 1≥txij yields

() () () () () () () ()[] () 061111 ≥−++++ +−+− tbytytytytya ijjijijiji (14)

where we use the minimum value of ()txij in equation (12). Since the cell is inside

the holes, its initial output of non-diagonal black pixels remain unchanged. The
coefficients of a and b are equal to +4 and +1, respectively. Combining this with

1>b gives

1

064

>
≥−+

b

ba
 (15)

Sub case 2.2: The cell ()jiC , is outside the holes. Since () 10 =ijx , from equation

(2) its initial output value is () 10 =ijy . According to the hole-filler demands, the

final output of this cell should be white, and in this case () 1−≤∞ijy .

()
0<

dt

tdxij
 (16)

Combining equations (12) and (16) and considering () 1≤txij we get

() () () () () () () ()[] () 061111 <−++++ +−+− tbytytytytya ijjijijiji (17)

where we use the maximum value of ()txij in equation (12)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CNN Based Hole Filler Template Design Using Numerical Integration Techniques 495

The initial condition is () 10 =ijy . Now the problem arises how the output of cell

()jiC , be changed to -1 and where does this change to begin. First we consider the

situation where the change begins from the inside of the bipolar image. If the
maximum value on the left-hand side in equation (17) is less than zero, equation (17)
holds. Inside the image and outside the holes, the maximum weights of a and b are +4
and +1, respectively. This case was described by equation (15). In fact, the change of

the output of the cell ()jiC , is like a wave propagating from the edges to the inside

of the image and it is verified from the simulated result. Therefore, we should first

consider the edge cell () 1,, =ijiC or 1, =jM or N. For this the maximum weight

of a in equation (17) is +3, which is also the maximum weight of a outside the holes.
The maximum weight of b is +1, occurring at the initial time:

1

063

>
<−+

b

ba
 (18)

Combining Cases 1 and 2, we obtain

,063 <−+ ba

,064 ≥−+ ba

,024 ≥++ ba

(19)

4 Numerical Integration Algorithms

The CNN is amenable to a system of nonlinear differential equations. Therefore, it is
necessary to discretize the differential equation for performing simulations. For
computational purpose, a normalized time differential equations describing CNN is
used by Nossek et al [17].

()() () () ()
() ()

()πτπτ
πτ

πτ kl
jiNlkC

ij
ij ylkjiAx
dt

dx
xf

r

∑
∈

+−==
,,

,;,:'

()
() ()

IulkjiB kl
jiNlkC r

++ ∑
∈ ,,

,;,

(20)

 () () ()()11
2

1 −−+= πτπτπτ ijijij xxy

Where τ is the normalised time. Well-established numerical integration techniques
are used for implementing hole-filler template design. These methods can be derived
using the definition of the definite integral

 ()() () ()() ()πτπτπττ
τ

τ

dxfxnx
n

n

ijij ∫
+

′=−+
1

1 (21)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

496 K. Murugesan and P. Elango

Euler Method
Euler’s method is the simplest of all algorithms for solving ODEs. It is an explicit
formula which uses the Taylor-Series expansion to calculate the approximation. We
divide the time interval [a, b] into N – steps with ti = a + hi where i = 0, 1.…N and
with initial condition y(0) = y0.

),(1 iiii wthfww +=+ (22)

Where steps size
N

ab
h

−=

Modified - Euler Method
The modified Euler method starts with an Euler step, giving a provisional value for
wi+1 at the next time ti+1

),(' 1 iiii wthfww +=+ (23)

The step actually taken looks like an Euler step, but with f replaced by the average
of f at the starting point of the step and f at the provisional point

)]',(),([
2

111 +++ ++= iiiiii wtfwtf
h

ww (24)

Runge – Kutta Method
The Runge-Kutta methods have become very popular, both as computational
techniques as well as subject for research. This method was derived by Runge about
the year 1894 and extended by Kutta a few years later. Runge-Kutta (RK) algorithms
have always been considered superb tools for numerical integration of Ordinary
Differential Equations (ODE’s). The fact that RK methods are self-starting, easy to
program, and show extreme accuracy and versatility in ODE problems has led to their
continuous analysis and use in computational research.

))22(
6

1
(

,(
2

1
,

2
(

2

1
,

2
(

),(

43211

)314

)23

)12

1

kkkkww

kwthfk

kw
h

thfk

kw
h

thfk

wthfk

ii

ii

ii

ii

ii

++++=

+=

++=

++=

=

+

+

 (25)

Notice that the first two steps look like the modified Euler method for reaching the

mid point
2

h
tt i += .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CNN Based Hole Filler Template Design Using Numerical Integration Techniques 497

5 Simulated Results

This Hole-filler template has been simulated using Pentium IV Machine with 3.0
GHz. speed using different Numerical integration algorithms of hand written
character / images given in Figures-3 and Figure-4. The Settling time Ts and
computation time Tc for different step sizes are presented in the Table-1 for
comparison. The settling time Ts is the time from start of computation until the last
cell leaves the interval [-1.0, 1.0] which is based on a specified limit (e.g., |dx / dt|
< 0.01). The computation time Tc is the time taken for settling the network and
adjusting the cell for proper position once the network is settled. The simulation
shows the desired output for every cell. We use +1 and -1 to indicate the black and
white pixels, respectively. We have marked the selected template parameters a
 and b, which are restricted to the shaded area as shown in Figure-2 for the
simulation.

Fig. 2. The parameter range of template

 (a) (b)

Fig. 3. Image before and after hole-filling

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

498 K. Murugesan and P. Elango

 (a) (b)

Fig. 4. Image before and after hole filling (with Cell)

Table 1. Simulated results of hole-filler template design

Euler Method Modified Euler RK-Method Step
size (h) Settling

Time (Ts)
Computation

Time (Tc)
Settling

Time (Ts)
Computation

Time (Tc)
Settling

Time (Ts)
Computation

Time (Tc)
0.5 2.5 6.5 2.4 6.0 2.4 5.8
0.6 14.7 15.5 13.7 15.0 12.5 11.4
0.7 28.3 32.5 27.4 32.0 27.2 30.0
0.8 30.7 35.0 30.0 34.6 29.6 32.4
0.9 32.6 36.8 32.0 36.6 31.6 34.2
1.0 33.6 37.9 33.0 37.6 32.8 36.0
1.5 36.8 44.8 36.2 44.7 36.0 43.1
2.0 43.2 47.4 43.0 46.4 42.8 46.2
2.5 45.6 50.6 44.5 50.4 44.3 49.3
3.0 49.3 53.5 49.0 52.1 48.2 52.0

Example
The template A, whose parameters are within the shaded area of Figure-2, and
template B and I are given as follows:

 ,

00.10

0.130.1

00.10

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=A

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

000

040

000

B , 1−=I .0

For the simulation, the input images are given in Figure-3(a), Figure-4(a) with cell
and the output images for the CNN based image edge template are shown in Figure-
3(b), Figure-4(b). The simulated results are represented in the form of a graph in
Figure- 5 for comparison and conclusion. From the simulation results, the following
conclusions are drawn. RK algorithm always takes least settling time and computation
time for all step sizes compared to the other two algorithms. Modified-Euler method
is comparatively better than Euler method for settling time as well as computation
time. Hence where ever we need a simple algorithm, Modified Euler method serves as
a good candidate. RK method exhibits superiority over the other the rest of the
algorithms with little more complexity in the algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 CNN Based Hole Filler Template Design Using Numerical Integration Techniques 499

0

10

20

30

40

50

60

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5 2.7 2.9

Step size(h)

C
o

m
p

u
ta

ti
o

n
 t

im
e(

T
c)

Euler

Modified-Euler

RK-Method

Fig. 5. Comparison of algorithms

6 Conclusion

It is shown that the cellular neural network based hole-filler template could be
designed from its dynamic behavior using different numerical algorithms, and also the
template for other cellular neural network can similarly be designed. The hole is filled
and the outside image remains unaffected that is, the edge of the images are preserved
in tact. The templates of the cellular neural network are not unique and this is
important in its implementation. From the graph in Figure-5 one can conclude that
RK-method always yields less settling time and computation time for all step sizes
compared to Euler and Modified-Euler Method. These algorithms has wide
application for image/ character recognition.

References

1. Anguita, M., Pelayo, F.J., Ros, E., Palomar, D., Prieto, A.: VLSI implementations of
CNNs for image processing and vision tasks: single and multiple chip approaches. In:
IEEE International Workshop on Cellular Neural Networks and their Applications, pp.
479–484. IEEE Computer Society Press, Los Alamitos (1996)

2. Anguita, M., Pelayo, F.J., Fernandez, F.J., Prieto, A.: A low-power CMOS implementation
of programmable CNN’s with embedded photosensors. IEEE Transactions on Circuits
Systems I: Fundamental Theory and Applications 44(2), 149–153 (1997)

3. Anguita, M., Pelayo, F.J., Ros, E., Palomar, D., Prieto, A.: Focal-plane and multiple chip
VLSI approaches to CNNs. Analog Integrated Circuits and Signal Processing 15(3), 263–
275 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

500 K. Murugesan and P. Elango

4. Anguita, M., Pelayo, F.J., Rojas, I., Prieto, A.: Area efficient implementations of fixed
template CNN’s. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 45(9), 968–973 (1997)

5. Anguita, M., Fernandez, F.J., Diaz, A.F., Canas, A., Pelayo, F.J.: Parameter configurations
for hole extraction in cellular neural networks. Analog Integrated Circuits and Signal
Processing 32(2), 149–155 (2002)

6. Dalla Betta, G.F., Graffi, S., Kovacs, M., Masetti, G.: CMOS implementation of an
analogy programmed cellular neural network. IEEE Transactions on Circuits and Sysems -
part–II 40(3), 206–214 (1993)

7. Boroushaki, M., Ghofrani, M.B., Lucas, C.: Simulation of nuclear reactor core kinetics
using multilayer 3-D cellular neural networks. IEEE Transactions on Nuclear
Science 52(3), 719–728 (2005)

8. Chua, L.O., Thiran, P.: An analytic method for designing simple cellular neural networks.
IEEE Transactions on Circuits and Systems 38(11), 1332–1341 (1991)

9. Fajfar, F., Bratkovic, T., Tuma, T., Puhan, J.: A rigorous design method for binary cellular
neural networks. International Journal of Circuit Theory and Applications 26(4), 365–373
(1998)

10. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Transactions on Circuits and
Systems 35(10), 1257–1272 (1988)

11. Crounse, K.R., Chua, L.O.: Methods for image processing and pattern formation in cellular
neural networks. IEEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications 51(5), 939–947 (2004)

12. Dogaru, R., Julian, P., Chua, L.O., Glesner, M.: The simplicial neural cell and its mixed-
signal circuit implementation: an efficient neural-network architecture for intelligent signal
processing in portable multimedia applications. IEEE Transactions on Neural
Networks 13(4), 995–1008 (2002)

13. Galan, R.C., Jimenez-Garrido, F., Dominguez-Castro, R., Espejo, S., Roska, T., Rekeczky,
C., Petras, I., Rodriguez-Vazquez, A.: A bio-inspired two-layer mixed-signal flexible
programmable chip for early vision. IEEE Transactions on Neural Networks 14(5), 1313–
1336 (2003)

14. Kozek, T., Roska, T., Chua, L.O.: Genetic algorithm for CNN template learning. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 40(6), 392–
402 (1993)

15. Lee, C.C., de Pineda, J.: Time-multiplexing CNN simulator. In: IEEE International
Symposium on Circuits and Systems, pp. 407–410. IEEE Computer Society Press, Los
Alamitos (1994)

16. Lee, C.C., de Pineda, J.: Single-layer CNN simulator. In: International Symposium on
Circuits and Systems, vol. 6, pp. 217–220 (1994)

17. Nossek, J.A., Seiler, G., Roska, T., Chua, L.O.: Cellular neural networks: theory and
circuit design. International Journal of Circuit Theory and Applications 20, 533–553
(1992)

18. Murugesh, V., Murugesan, K.: Comparison of Numerical Integration in Raster CNN
Simulation. In: Manandhar, S., Austin, J., Desai, U., Oyanagi, Y., Talukder, A.K. (eds.)
AACC 2004. LNCS, vol. 3285, pp. 115–122. Springer, Heidelberg (2004)

19. Murugesan, K., Gopalan, N.P., Gopal, D.: Error free Butcher algorithm for linear electrical
circuits. ETRI journal 27(2), 195–205 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Impact of Shrinking Technologies on the

Activation Function of Neurons�

Ralf Eickhoff1, Tim Kaulmann2, and Ulrich Rückert2

1 Chair of Circuit Design and Network Theory, Dresden University
of Technology, Germany

ralf.eickhoff@tu-dresden.de
2 Heinz Nixdorf Institute, System and Circuit Technology, University

of Paderborn, Germany
kaulmann,rueckert@hni.upb.de

Abstract. Artificial neural networks are able to solve a great variety of
different applications, e.g. classification or approximation tasks. To utilize
their advantages in technical systems various hardware realizations do
exist. In this work, the impact of shrinking device sizes on the activation
function of neurons is investigated with respect to area demands, power
consumption and the maximum resolution in their information process-
ing. Furthermore, analog and digital implementations are compared in
emerging silicon technologies beyond 100 nm feature size.

1 Introduction

As device dimensions are continuously shrinking more complex systems can be
integrated on a single chip in emerging technologies than today and these sys-
tems can benefit from neural inspired processing techniques in several aspects.
For shrinking device dimensions the requirements during fabrication extremely
increase because more and more quantum mechanical effects impact the device
characteristics [1]. However, classical designed systems strongly depend on reli-
able devices with small parameter deviations in order to operate according to
their specifications. Here, neural inspired methodologies can relax these tech-
nology requirements, e.g. reducing the high demands for lithography [1], and
can significantly reduce production costs if these novel design techniques allow
changes and deviations in the device characteristics. Therefore, neural processing
techniques can help to overcome the challenges of emerging technologies such as
fault tolerant and robust operation due to more unreliable devices than today
[2]. Moreover, these techniques also allow the implementation of novel classes of
circuits with reduced complexity, i.e. less transistors per function compared to
classical circuits [3].

Many popular models of biological neurons apply a nonlinear function on the
neuron activation potential [4], where the activation is achieved by a weighted

� This work was supported by the Graduate College 776 - Automatic Configuration
in Open Systems - funded by the German Research Foundation (DFG).

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 501–510, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

502 R. Eickhoff, T. Kaulmann, and U. Rückert

sum of the input signals. By using this computing technique various problems,
e.g. approximation and classification tasks or synthesis of Boolean functions, can
be accomplished and due to its simplicity and its direct representation by dif-
ferential amplifiers or threshold logic, this model is highly suitable for hardware
integration. In this work, the effects of shrinking device dimensions and tech-
nology scaling on the activation function of neurons are investigated where, es-
pecially, the processing resolution within different Complementary Metal Oxide
Semiconductor (CMOS) technologies is analyzed. To analyze the scaling impact
on neural processing, analog and digital representations of the activation func-
tion are investigated in CMOS technologies beyond 100 nm. These digital and
analog realizations are compared to each other with respect to their size, the
power consumption and the maximal processing resolution.

The remainder is organized as follows. Section 2 briefly introduces scaling
trends of actual and future CMOS technologies whereby in Section 3 the scaling
impact on analog and digital implementations of activation functions is investi-
gated. Section 4 concludes the paper.

2 CMOS Scaling Theory

CMOS technology is the most popular today’s technology in which many in-
tegrated circuits are fabricated. This results from its high integration density
allowing low cost fabrication. Especially, as device dimension is continuously
shrinking more complex system, e.g. large neural networks, multi-processor sys-
tems or several systems, can be integrated on a single chip. The basic idea of
scaling a Metal Oxide Semiconductor Field Effect Transistor (MOSFET) was
developed by [5] in 1974 where all geometrical dimensions and voltages of a
transistor are scaled down by a factor αL > 1 whereas the doping and charge
densities are increased by the same factor. Applying this scaling behavior to the
device, all electrical fields in the transistor remain constant1 why this theory is
called ideal scaling.

However, the observed scaling behavior of CMOS processes deviates from the
ideal scaling theory because several effects are influencing the MOSFET device
characteristics. Because in early processes the carrier velocities and, thus, the
operation speed could be increased with larger electrical fields, the voltages have
been scaled down much slower than the geometrical dimensions in order to keep
the electrical field as high as possible. This improved the operation speed of
MOSFETs at the beginning. Moreover, in actual CMOS processes the gate oxide
thickness cannot be scaled down with the same factor anymore because only a
few atomic layers are used and, therefore, scaling reaches its limit for the oxide
thickness. Also other effects such as leakage currents or quantum-mechanical
effects have let to a deviation from ideal scaling behavior [6]. Thus, besides
a geometrical scaling factor αL a scaling factor αU > 1 for the voltages and
the gate oxide thickness can be introduced in order to accommodate this trend
1 Therefore, the device characteristic does not change although one obtains smaller

transistors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Impact of Shrinking Technologies on the Activation Function of Neurons 503

which leads to a more generalized scaling theory [6]. For further information
about scaling theory, its limits and impacts the reader is referred to [6,7,1].

3 Shrinking Threshold Elements

If artificial models of neurons are integrated in hardware, several noise sources
in analog implementations or the limited resolution in digital systems affect
their nonlinear transfer functions and their behavior will deviate from the origi-
nal modeling. Often these effects can be included in parameter variations. E.g. ,
Fig. 1 shows these effects of limited resolution and additional noise sources on a
classification problem where as a neural network a multilayer perceptron with
sigmoidal transfer functions [8] is used. The limited resolution of the activa-
tion function integrated in hardware causes an uncertainty region, in which an
element cannot be reliable assign to one class and which may lead to misclas-
sification. This effect additionally contributes to the error criteria and impacts
system performance where ideal system performs would operate exactly accord-
ing to the initial design (in Fig. 1 the solid line in the middle of uncertainty).
Therefore, besides area and power requirements each neuron obtains a maximal
processing resolution, which is affected by the used technology and the architec-
ture of the threshold function.

Fig. 2 shows the sigmoidal transfer function of a neuron realized by MOSFETs.
For this purpose, a simple differential amplifier is used, whose transfer function
provides the sigmoidal shape and its transfer function Vout = f(Vin) can be
described by the tanh function [9]. This threshold element can be used in a
multilayer perceptron to perform the threshold operation of a neuron. Besides the
popular sigmoidal function, the architecture in Fig. 2 is also able to approximate
the Heaviside function if a sufficient large gain A of the amplifier is achieved.
Because the activation functions typically use small slopes A (A ≈ 1 − 10), only
small gains are needed for the differential amplifier avoiding cascode stages [9]
that might be necessary for the Heaviside function.

If the circuit of Fig. 2 obtains sufficiently high gain and, therefore, acts as
comparator, it can also be used in pulsed neural networks [4,10], where infor-
mation is processed by pulses. The pulse shape is usually generated by using a
comparator if the membrane potential of the neuron exceeds a threshold [10].
Furthermore, the circuit of Fig. 2 also allows to act as a two quadrant multi-
plier if Vbi is not hold constant but driven by an input as well. In this case,
the weight adaption of the synapse functionality can be performed by the el-
ement additionally. Therefore, the circuit of Fig. 2 is one of the most essential
elements for integrated hardware of neural networks because it can be used for
time-dependent and time-independent models of their biological counterparts.

The overall area, the power consumption and the speed depend of the thresh-
old element in Fig. 2 is primary determined by the operating conditions and its
requirements. Because MOSFETs introduce thermal noise sources and flicker
noise, also the processing resolution is affected and will deteriorate by scaling.
For this analysis, flicker and thermal noise are considered which can be modeled

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

504 R. Eickhoff, T. Kaulmann, and U. Rückert

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Uncertainty

Fig. 1. Affine transformation by a
neuron and its uncertainty

Vdd

Vb

Ve1 Ve2

Vbi

Va1 Va2

M1 M2

Mi

M3 M4

P

Fig. 2. Performing an activation
function using MOS transistors

as additional voltage and current sources between gate and source or drain and
source of each transistor Mj, j ∈ {1, 2, 3, 4, i} in Fig. 2 [9].

In order to determine the resolution of the threshold element the noise power
at the input has to be calculated. For this analysis it is assumed that the dif-
ferential amplifier is ideally symmetrical and this leads to input referred noise
voltage V 2

n of

V 2
n = 2V 2

n1 +
2g2

m3(ro1‖ro3)2

A2 V 2
n3 = 2V 2

n1 +
2g2

m3

g2
m1

V 2
n3. (1)

In (1) V 2
n describes the power density spectrum of the input noise. V 2

nj denotes
the noise voltage originating from the corresponding transistor j ∈ {1, 2, 3, 4, i}
including thermal and flicker noise2. Further, gmj denotes its transconductance,
roj is the drain-source resistance of the equivalent transistor and A is the small-
signal gain of the threshold element where for this configuration holds

A =
Vout

Vin
=

Va1 − Va2

Ve1 − Ve2
= −gm1(ro1‖ro3) (2)

Usually, the small signal gain A can be set to the slope of the activation function
of the threshold element for x = 0.

Additionally, the signal power at the input has to be determined and leads to a
signal-to-noise-ratio (SNR) that can be transferred in a corresponding processing
resolution using information theory [11]. Assuming a sinusoidal input signal with
amplitude vm the SNR at the input is proportional to

SNR ∝ gm1CL resp. SNR ∝ 1/gm3 (3)

In (3) the load capacitance of the threshold element is also influencing the SNR.
As devices dimensions scale down also the load capacitance scales with tech-
nology and impacts on the SNR. But this load can be evaluated if a layered
2 Additional noise sources such as shot noise or avalanche noise can be considered by

this term too.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Impact of Shrinking Technologies on the Activation Function of Neurons 505

structure of identical threshold elements is assumed. This is fulfilled if the archi-
tecture in Fig. 2 is used for the threshold operation in a multilayer perceptron.
Thus, the load CL is determined by the output capacitance of the threshold ele-
ment and the input capacitance of the following stage. The output capacitance of
the threshold element is primary determined by the drain-bulk capacitance CDB

of the transistors, whereas the input capacitance of the following stage depends
on the used architecture. In a multilayer perceptron the output of the threshold
element is usually multiplied by a weight in order to determine the output of
the whole network as a linear weighed superposition or to weight the output and
to serve as an input for the next hidden layer. Therefore, a multiplication stage
has to be provided and it can be assumed that for this multiplication a Gilbert
cell is used [9]. The input capacitance of the Gilbert cell is determined by the
gate-source capacitance CGSn of the n-channel transistors and their gate-drain
capacitance CGDn. If the gain of the Gilbert cell remains low, input capacitance
is dominated by the gate-source capacitance and, at all, the load capacitance CL

can be approximated by
CL ≈ 2CDB + CGSn. (4)

Consequently, the total SNR at the output can be calculated and can be trans-
ferred in a corresponding resolution using information theory. To keep track of
the scaling impact, only thermal noise is considered during the analysis presented
here, whereas the later shown results do include flicker noise too. Further it is
assumed that the threshold element of Fig. 2 is operating in a layered network,
where its output signal is multiplied by a weight in order to apply (4). Taken
all these conditions into account, the SNR at the output can be calculated and
the impact of scaling technology can be investigated. A generalized scaling with
two different scaling factors (cf. Section 2), αL for geometrical dimensions and
αU for the voltage and the gate oxide length respectively, is considered where
these scaling factors are derived from data in [12]. This leads to the ŜNR at the
output that includes the impact of downscaling technologies

ŜNR =
V 2

ddgm1(ro1 ‖ ro3)CLαu

16α2
uα2

LγkBT
(5)

=
1

αuα2
L

· SNR (6)

≈ k − 0, 5542 (7)

where kB denotes the Boltzmann constant, T the absolute temperature, γ models
the noise influence and k represents the equivalent resolution in bit. SNR rep-
resent the initially noise performance of the circuit without any down-scaling,
whereas ŜNR depicts the noise properties of the same circuit if it is scaled down
or implemented in a new technology. The corresponding resolution in (7) can
be obtained from information theory [11] where the SNR is transferred in a
resolution by

SNR
∣
∣
db = 10 log2

(
3
2

)

+ 10 log2
(
22k

)
≈ 1.76 + 6 · k (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

506 R. Eickhoff, T. Kaulmann, and U. Rückert

with k the corresponding resolution. The results of (7) are obtained if the mean
of the scaling factors derived from the data in [12] is applied to (6) and (8) is
used to determine the corresponding resolution.

As can be concluded from (7), the maximal resolution is decreased by 0.5 bit
in every technology generation. This degradation increases only slightly and
the resolution decreases by 0.6 bit per technology process if flicker noise is also
considered where the flicker noise model from [9] has been used for this analysis.

Table 1. Simulation results of an analog neuron using transistor model of [12]

CMOS [nm] 130 90 65 45 32

Vdd [V] 1,3 1,2 1,1 1,0 0,9

Area [μm2] 5,89 1,84 0,74 0,18 0,05

Power [mW] 1,2038 0,4416 0,1837 0,0480 0,0153

Gain (A) 6,76 4,82 4,35 3,17 2,08

SNR (output) 4, 99 · 106 1, 70 · 106 7, 95 · 105 1, 82 · 105 4, 46 · 104

SNR (input) 2, 50 · 106 8, 48 · 105 3, 98 · 105 9, 10 · 104 2, 23 · 104

k (theory) [bit] 10,54 9,72 9,13 8,27 7,37

k [bit] 11,13 10,35 9,80 8,74 7,72

Δk (theory) [bit] - 0,58 0,52 0,63 0,60

Δk [bit] - 0,78 0,55 1,06 1,01

FOM = k/(P · A) 1,6 12,7 71,6 1013 9226

Moreover, to verify the theoretical results simulations are performed under
HSpice using the predictive technology models from [12]. The threshold element
of Fig. 2 is designed to drive an expected load capacitance within a specified time
interval and to achieve an output swing of the full supply voltage. Therefore, the
area consumption of the neuron can be calculated from the geometrical dimen-
sion of all transistors. Table 1 shows the simulation results for several technology
generations and the theoretically derived resolution where these results do in-
clude the impact of flicker noise. The gain A denotes the slope of the activation
function for x = 0 and two different SNR are mentioned in Table 1. The SNR
at the output is transferred in its corresponding resolution k and its decrease
Δk for every technology process. Because the neurons obtain different gains, the
SNR at the output is also transferred to a SNR at the input where the different
designs can be compared to each other with respect to their noise properties by
this measurement [9].

As can be concluded from Table 1, the power and area consumption signif-
icantly decreases over the technology generations due to shrinking device di-
mensions. Nevertheless, the SNR at the input is reduced, which degrades the
resolution of the neural processing. The theoretically derived resolution was too
conservative whereas its reduction over the technology processes was assumed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Impact of Shrinking Technologies on the Activation Function of Neurons 507

too optimistically. This discrepancy results from the fact that during the analy-
sis of (7) it is assumed that the transconductance of transistor M1 and M3 are
equal. However, for the simulations the transconductance of M1 was designed
to be larger than the one of M3, which leads to an improved SNR and, thus,
higher resolutions. Moreover, HSpice utilizes more complex models for flicker
noise [13] and the technology processes do not follow the scaling rules ideally,
e.g. the threshold voltage remains nearly constant over technologies. Therefore,
a larger degradation of Δk between technologies arises compared to the theo-
retical derived results. Nonetheless, the neuron benefits from shrinking device
dimensions because the area and power consumptions are significantly decreased
whereas only slight degradation of the resolution occurs.

Furthermore, the impact of the technology scaling on digital implementations
of the activation function has been analyzed in comparison to the implementa-
tion in Fig. 2. For this investigation, the threshold element has been implemented
by the transfer function in [14] on an actual 0.12 μm CMOS technology by ST.
The sigmoidal shape of the activation function is achieved by a piece-wise linear
approximation in two different sections. Table 2 compares the impact of technol-
ogy scaling on the digital and analog implementation of a sigmoidal activation
function in terms of their area consumption, their electrical power and the res-
olution k. As figure-of-merit (FOM) also the same quantity FOM = K/(A · P)
as in Table 1 is been used.

Table 2. Properties of analog and digital neurons

Area [μm2] Power [mW] max. k [bit] FOM

CMOS [nm] analog digital analog digital analog digital analog digital

130 5,89 7140,89 1,2038 3,2946 11 5 1.56 1.70 · 10−4

90 1,84 3422,56 0,4416 1,4576 10 5 12.3 8.02 · 10−4

65 0,74 1785,22 0,1837 0,6969 9 5 65.8 3.21 · 10−3

45 0,18 855,64 0,0480 0,3037 8 5 928.3 1.54 · 10−2

32 0,05 432,68 0,0153 0,1382 7 5 8363.2 6.69 · 10−2

As can be concluded from Table 2, the analog version significantly outper-
forms the digital realization with respect to the consumed area and power. As
the FOM shows, the analog system performs much better than the digital sys-
tem. Especially, less area is consumed by the analog version, which is based on
the very simple design (see Fig. 2) and the circuit needs only a few transistors.
In comparison, the digital part needs at least one multiplier, which increases
the area demands significantly although the needed resolution and, thus, the
number of transistors can be very low compared to other implementations [14].
At all, much more transistors are utilized in the digital design and, therefore,
more power is been consumed. However, the difference in power consumption is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

508 R. Eickhoff, T. Kaulmann, and U. Rückert

essentially smaller than for the area gap. In the analog realization of the thresh-
old element, its power is primary determined by the static current flowing from
supply voltage to ground. This current can be neglected in a digital design where
the power consumption is essentially determined by recharging the load capaci-
tances. Therefore, the difference in power consumption is much smaller compared
to the area demands. However, this domination of dynamic power consumption
will change with the technologies where the leakage currents become more im-
portant in CMOS technology [15]. Here, the digital design will make up if the
leakage power dominates the whole amount of power consumption.

Nevertheless, for both implementations, the overall system performance in-
creases with emerging technologies that can be concluded from the figure-of-
merit. The total size and the power of the threshold element mainly benefit
from device scaling which completely cancels the effect of decreasing resolution
for analog systems with respect to this quality measurement. For digital sys-
tems, the resolution remains constant that further improves the FOM. However,
if scaling comes to its limits [15] and leakage power significantly increases, the
FOM can become also saturated.

The resolution of the digital activation function remains constant over the
technology processes, which results from the approximation type of the thresh-
old element from [14]. Because of the piece-wise linear approximation of the
sigmoidal function, there exists a lower bound of the absolute error between the
implemented function and the logistic function, which cannot be decreased even
if high resolutions are used inside the architecture for calculating the activation
values digitally. Thus, this minimum absolute error results into a maximum reso-
lution of 5 bit. For a comparison to additional types of digital realized activation
functions, the digital implementation of the logistic function is also realized by
a memory representation and by Boolean functions. For these realizations, the
analog version achieves less area and consumes less power as well possessing
an equal resolution. But in contrast to [14], these digital implementations can
achieve an arbitrary high resolution, which is only limited by the area and power
constraints because both implementations have no theoretical minimum of the
absolute error. Therefore, an analog neuron outperforms its digital counterparts
in emerging technology processes and represents the most efficient realization
form of an artificial neuron in terms of area, power and resolution even if device
dimensions are shrinking further and systems become more susceptible to noise
and parameter variations.

4 Conclusion

In this work, the scaling effects of emerging CMOS technologies on the acti-
vation functions of neurons are investigated. Shrinking device size allows inte-
grating more transistors on the same area than in today’s technology, which
enables the realization of highly complex systems. Because neural principles op-
erate massively parallel and consist of elementary building blocks, these concepts
are intended to provide ideas for novel architectures in those technologies that

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Impact of Shrinking Technologies on the Activation Function of Neurons 509

are able to handle this complexity and also to provide low power and reliable
operation.

One drawback of the scaling process is the increased susceptibility of sys-
tems to noise because signal amplitudes are shrinking too. As was shown in this
work, the scaling trend has only limited impact on the analog representation of
activation functions with respect to their achievable processing resolution. The
signal-to-noise-ratio decreases much slower than the scaling process improves
area and power consumption. Consequently, the results identify the limits of
neural systems and determine the maximum resolution, which analog imple-
mented threshold functions can process. Therefore, the weight storage can be
adapted to these limited processing capabilities of the activation function and
inherent training techniques have to be used to guarantee certain processing
qualities.

Moreover, analog implementations outperform their digital realizations, which
cannot provide such low power operation and area requirements. However, digi-
tal neurons show their benefits in their processing resolution. In contrast to their
analog counterparts the resolution is not significantly affected by the scaling pro-
cess and it can be hold constant over technology generations. As was also shown,
the performance of the digital systems mainly depends on the used architecture
of the activation function.

References

1. Isaac, R.D.: The future of cmos technology. IBM Journal of Research and Devel-
opment 44(3), 369–378 (2000)

2. Compañó, R.: Technology roadmap for nanoelectronics. Technical Report 2nd edn.
European Commission (2000)

3. Beiu, V., Taylor, J.G.: On the circuit complexity of sigmoid feedforward neural
networks. Neural Netw. 9(7), 1155–1171 (1996)

4. Arbib, M.A.: The Handbook of Brain Theory and Neural Networks, 2nd edn. The
MIT Press, Cambridge, MA, USA (2002)

5. Dennard, R.H., Gaensslen, F.H., Rideout, V.L., Bassous, E., LeBlanc, A.R.: Design
of ion-implanted MOSFET’s with very small physical dimensions. IEEE Journal
of Solid-State Circuits 9(5), 256–268 (1974)

6. Frank, D., Dennard, R., Nowak, E., Solomon, P., Taur, Y., Wong, H.S.P.: Device
scaling limits of Si MOSFETs and their application dependencies. Proceedings of
the IEEE 89, 259–288 (2001)

7. Taur, Y.: CMOS design near the limit of scaling. IBM Journal of Research and
Development 46(2/3), 213–222 (2002)

8. Haykin, S.: Neural Networks. A Comprehensive Foundation, 2nd edn. Prentice
Hall, New Jersey, USA (1999)

9. Razavi, B.: Design of Analog CMOS Integrated Circuits. McGraw-Hill, New York
(2000)

10. Mead, C.: Analog VLSI and neural systems. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA (1989)

11. Shannon, C.E.: A mathematical theory of communication. Bell System Technical
Journal 27, 379–423, 623–656 (1948)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

510 R. Eickhoff, T. Kaulmann, and U. Rückert

12. Zhao, W., Cao, Y.: New generation of predictive technology model for sub-45nm
design exploration. In: ISQED ’06: Proceedings of the 7th International Symposium
on Quality Electronic Design, Washington, DC, USA, pp. 585–590. IEEE Computer
Society Press, Los Alamitos (2006)

13. Simoen, E., Claeys, C.: On the flicker noise in submicron silicon MOSFETs. Solid-
State Electronics 43(5), 865–882 (1999)

14. Beiu, V., Peperstraete, J.A., Vandewalle, J., Lauwereins, R.: VLSI Complexity
Reduction by Piece-Wise Approximation of the Sigmoid Function. In: Verleysen,
M. (ed.) Proc. of the ESANN, Bruges, Belgium, pp. 181–186 (April 1994)

15. Semiconductor Industry Association: International Technology Roadmap for Semi-
conductors - Edition (2005), http://public.itrs.net/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://public.itrs.net/

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 511–519, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Rectangular Basis Functions Applied to Imbalanced
Datasets

Vicenç Soler and Marta Prim

Dept. MiSE, Universitat Autònoma de Barcelona, Campus UAB
08193 Bellaterra, Spain

{vicenc.soler, marta.prim}@uab.cat

Abstract. Rectangular Basis Functions Networks (RecBFN) come from RBF
Networks, and are composed by a set of Fuzzy Points which describe the
network. In this paper, a set of characteristics of the RecBF are proposed to be
used in imbalanced datasets, especially the order of the training patterns. We
will demonstrate that it is an important factor to improve the generalization of
the solution, which is the main problem in imbalanced datasets. Finally, this
solution is compared with other important methods to work with imbalanced
datasets, showing our method works well with this type of datasets and that an
understandable set of rules can be extracted.

Keywords: RecBF, Imbalanced Datasets, Fuzzy Logic.

1 Introduction

Working with imbalanced datasets [1] is always difficult due to the problem of
generalization. Except for problems with a very clear difference between the classes,
it is not easy to define a boundary to separate the different classes involved in.

Rectangular Basis Function Networks (RecBFN) come from RBF Networks and
were presented by M.Berthold and K.P.Huber in several papers, e.g. [3][4]. They refer
to a system that is able to obtain a fuzzy model from the training data, by means of the
execution of an algorithm called DDA/RecBF. Just defining the fuzzy output variable
and the training data, the system can extract a set of fuzzy variables and rules. Every
neuron is represented by a Fuzzy Point (FP).

The RecBFN has been used to build function approximators and precise classifiers,
and good results are obtained under a set of balanced data, but no so good under
conditions of low or very low balancing of the data. As happen with the common
learning methods, learning an imbalanced dataset often produces a system that is not
able to generalize the minor-class patterns in the test phase, just memorize them. In
the case of the RecBF, due to the existence of conflicting areas, the RecBFN classify
much better the major-class patterns (patterns belonging to the class with bigger
quantity of patterns in the training dataset) than the minor-class ones (the less
representative class in the dataset).

The focus of this paper will be in finding characteristics of the RecBF which can
be applied to work with imbalanced datasets.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

512 V. Soler and M. Prim

This paper is structured in the following sections: in section 2 RecBF is explained,
in section 3 we can see how to apply RecBF to the imbalanced datasets, in section 4
the results are compared with other methods as in section 5 (with a real dataset), and
finally the conclusions are exposed.

2 The Rectangular Basis Function

The DDA/RecBF[3] constructs a set of Membership Functions (MF) from datasets
that provide a set of linguistic labels that can be used to concisely express
relationships and dependencies in the dataset. The algorithm creates hyper-rectangles
(called Fuzzy Points –FP-) belonging to every class, from the input dataset and a
defined fuzzy output variable. From these FPs, a set of MFs will be extracted for
every variable.

Each FP created by the DDA/RecBF[3] algorithm is characterized by being
composed by a support-region and a core-region. In terms of MF, a trapezoidal MF is
composed of four points (a,b,c,d): the interval [a,d] defines the support-region and the
[b,c] one, the core-region.

FPk

i { //reset the CR
 (a,b,c,d)k

i = (a,-,-,d)k
i

}
pattern x {

 k = determine the class of x
 IF FPk that covers x THEN
 Call covered (FPk

, X)
 ELSE Call commit(x,k)

FPi
j of another class that covers x

 Call shrink (FPi
j , X)

 }
}

(a) (b)

Fig. 1. (a) One Epoch in the DDA/RecBF algorithm. The shrink operation reduces the support-
region of that FPi

j to not include the pattern x. (b) An example of the execution of the
DDA/RecBF algorithm. (1) shows 3 patterns from one class: 1 RecBF, (2) shows 2 patterns
from another class: creation of a new RecBF and shrink the existing one, (3) and (4) show the
different RecBFs created when the inclusion of new pattern is done, just varying the x
coordinate: outside and inside the core-region of the other class. The x and y axis show the
different MF created.

DDA/RecBF algorithm (shown in Fig. 1(a)) is based on three procedures, which
are executed for every training pattern: covered is executed when the support-region
of a RecBF covers a pattern, commit creates a new pattern if the previous condition is
false and, finally, the procedure shrink solve possible conflicts of the pattern with
respect to RecBFs of a different class. Fig. 1(b) shows how the patterns are passed to

Support Region
Core Region(1) (2)

(3) (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Rectangular Basis Functions Applied to Imbalanced Datasets 513

the DDA/RecBF algorithm and how the different FPs are created. However, in our
case we work with imbalanced datasets, and to avoid granulation of the membership
functions of the minor-class, it is absolutely necessary to generalize this class,
because the main problem is when the method has to classify/test patterns belonging
to the minor-class, not shown during the training process.

3 RecBF Applied to Imbalanced Problems

In this section a set of characteristics to use RecBF with imbalanced datasets are
exposed.

From now on, the imbalanced problems will be restricted to a 2-class problem. The
major-class will be the class with higher number of patterns and the minor-class the
other one (reflecting the quantity of examples in the imbalanced dataset included in
every class).

3.1 Patterns Ordered by Class

As a result of out research, we can affirm that an important factor is the order of the
training dataset. If the dataset is ordered by class, the number of FPs of the second
one decreases. This produces more general membership functions and, thus, the fuzzy
system will try to generalize the solution rather than to specialize some FPs in the
patterns of the minor-class.

To see the difference between ordered or not ordered patterns, an example of the
execution of the DDA/RecBF algorithm with unordered and ordered patterns is shown
in the lines of Fig.2.

In the case of unordered patterns (Fig.2 (a)), as the FPs of the minor-class are being
shrunk, new FPs are being created if needed. Therefore, a high number of FPs of the
minor-class is created.

In Fig.2 (b) (sorted patterns by class), the core-region restricts the support-region
of new FPs, and the support-region determines if the action covered or commit is
applied. Therefore, after one epoch (the core-regions are reset at every epoch), when
the patterns of the major-class are trained again, there are not core-regions defined
(reset) anywhere. Thus, with ordered patterns by class, the DDA/RecBF minimizes
the quantity of FPs of the second class and let the first class organize itself from the
restrictions imposed by the FPs of the second class.

3.2 The Shrink Operation

As mentioned above, the order of the training patterns has influence on the output. If
we have a 2-class problem, when the patterns of the 2nd class are showed, only the FPs
of the 1st class are shrunk. This fact produces a reduced number of FPs of the 2nd class
and a big overlapping of the core-regions.

This problem can be solved with a last shrink over every input pattern. This action
reduces the overlapping area between the core-regions of the FPs. That is, for every

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

514 V. Soler and M. Prim

epoch, at the final, a new shrink operation for every pattern and every FP will be
done. This operation is called reshrink and consists on applying the shrink operation
once more at the final of every epoch in order to reduce one degree the overlapping
between classes.

1. One pattern of the major-class is shown.
1.1. New FP of the major-class.

2. One pattern of the minor-class is shown:
2.1. New FP of the minor-class and
2.2. The FP of the major class is shrunk.

3. More patterns of the major-class:
3.1. New FP if the pattern is outside the

support-region of the existing FP of
the major-class.

3.2. The FP of the minor-class is shrunk.

1. Patterns of the major-class are shown.
1.1. A new FP of the first class is created.

2. Patterns of the minor-class are shown:
2.1. If exists overlapping:

2.1.1. A new FP is created of the minor-
class inside the FP of the major-class.

2.2. If does not exist overlapping:
2.2.1. A new FP is created outside the
limits of the major-class.

2.3. The FP of the major-class is shrunk if
necessary.

2.4. Thus, just a FP is created inside the
overlapping area.

3. Complete the epoch.
4. More patterns of the major-class:

4.1. New FPs are created of the major-
class depending on the new support-
region.

4.2. The FPs of the minor-class are shrunk
(a) (b)

Fig. 2. (a) Execution of the DDA/RecBF algorithm with unordered patterns, and (b) execution
of the DDA/RecBF algorithm with patterns sorted by class

The proof will be done in the following lines, first without including the reshrink
operation, and later including it. In this proof, we suppose that we start the 2nd epoch,
because the 1st epoch always produces just 1 FP for every class.

1) Without reshrink. The only way to shrink the core-regions of the FPs of the 2nd
class is when the patterns of the 1st class are shown. If the limits are
commanded by patterns of the 1st class, the shrinking of the FP of the 2nd class
will set its support-region outside the limits of the patterns of the 2nd (as show
Fig.3 (a)), and this fact will produce the execution of the commit operation
rather than the covered one. The old FP will be deleted in the next epoch,
because it will not contain any pattern (A=0). If in any limit of any variable
exist patterns of the 2nd class, this FP will have its A≠0 and will not be deleted
(Fig.3 (b)). Depending on the factor of loosing less volume, the FPs will be
shrunk to one of both limits of the variable.

2) With reshrink. As Fig.4 shows, the only difference respect to Fig. 3 is in both
(a). The main difference consists on a new FP of the 2nd class created thanks to
the reshrink operation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Rectangular Basis Functions Applied to Imbalanced Datasets 515

 (a) (b)

Fig. 3. DDA 2-class after 2 epochs with ordered patterns by class. (a) 1 FP is created and
pointed by the arrow (b) The x value of one pattern of the 2nd class is changed and set to the
right limit (i.e., just with x value > patterns of the 1st class). Then, 2 FP are created and pointed
by the arrows.

(a) (b)

Fig. 4. DDA 2-class after 2 epochs with ordered patterns by class and applying a new shrink at
the end of each epoch. (a) and (b) contain the same datasets than the respective graphics in
figure 4. The only difference is that a new FP is created in (a) due to (6) at the end of each
epoch.

Finally, the number of FP created corresponding to every graphic, has been: Fig. 3
(a): (3 of 1st class, 1 of 2nd class), and (b): (3,2), Fig. 4 (a): (3,2) and (b): (3,3) . So,
applying reshrink creates more FP, but just to decrease the overlapping between the
existing FPs.

3.3 Results in Number of Fuzzy Points

In this section, the characteristics explained above are summarized in the Table 1, in
order to show the number of FPs created at the different scenarios. The scenarios
planned are 3: unordered patterns, sorted by class and sorted by class plus adding the
reshrink operation. The reshrink operation only has sense with ordered patterns,
because it is used to reduce the overlapping produced in this case.

We have chosen 19 datasets, shown in Table 1. These datasets were chosen by
other authors and we will use them to compare our results with other methods. The
datasets are taken from the UCI repository and some of them have more than 2
classes. To convert them to a 2-class dataset, one class is chosen as the minor one and
the rest of them are joined. Between parentheses is reflected the chosen class, as was
chosen by other authors.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

516 V. Soler and M. Prim

Table 1. Datasets properties: the number of patterns belonging to each class, the imbalanced
rate and the number of attributes. Between parentheses is shown the class chosen to be the
minor one.

dataset #major #minor rate #attrib. dataset #major #minor Rate #attrib.
Abalone(19) 4145 32 1:130 8 Hepatitis(1) 123 32 1:4 19
Abalone’(9/18) 689 42 1:16 8 Ionosphere 225 126 1:2 34
Anneal(5) 831 67 1:12 31 Segmentation(1) 180 30 1:6 19
BC 201 85 1:2 9 Segment(1) 1980 330 1:6 19
BCW 444 239 1:2 9 Soybean(12) 639 44 1:15 35
Car(3) 1659 69 1:24 6 Vehicle(1) 634 212 1:3 18
Diabetes 500 268 1:2 8 Vehicle’(4) 647 199 1:3 18
Glass(7) 185 29 1:6 9 Yeast(ME2) 1433 51 1:28 8
Haberman 225 81 1:3 3 Yeast’(CYT/POX) 463 20 1:23 8
Heart dis. 150 120 1:1 13

Table 2 shows the average and standard deviation of the number of FPs created for
every scenario and class, under different selection of the patterns for training/testing.
As the goal is to reduce the number of FP of the minor-class to improve the final
generalization in imbalanced datasets, the first class is the major-class and the second
one is the minor-class. In Table 2 it is shown that ordering the patterns by class
reduces in a high degree the quantity of FPs created for every class, and that the
introduction of the reshrink operation increases the quantity of FPs of just the minor-
class in order to reduce the existing overlapping.

Table 2. Number of FPs created for every scenario and class. μ is the average and σ is the
standard deviation.

scenario: unordered ordered ordered+reshrink
class: major-class minor-class major-class minor-class major-class minor-class
dataset μ σ μ σ μ σ μ σ μ σ μ σ
abalone 22.3 2.4 21.5 2.6 4.8 2.6 1 0 4.7 1.7 1.6 1.0
bc 6.7 0.4 6.2 0.6 8.5 1.0 1.6 0.4 8.9 0.7 7.0 2.4
bcw 10.0 1.2 11.8 1.6 4.0 1.3 1 0 3.8 1.3 3.5 0.5
car 2.4 0.4 2.4 0.9 2 0 2 0 2 0 2.5 0.8
diabetes 47.2 2.7 48.3 3.5 5.0 1.9 2 0 4.2 2.1 5.8 1.9
glass 14.0 1.5 13.1 2.0 5.2 2.3 1 0 5.8 2.4 1.8 0.6
hepatitis 7.2 1.3 6.4 1.4 6.2 1.8 1 0 5.6 1.4 3.5 2.1
hypothyroid 17.7 1.9 2.5 0.8 3.8 2.6 1 0 3.7 2.9 1.5 0.7
ionosphere 27.5 5.0 18.9 3.0 2.4 1.4 1 0 2.3 1.0 3.1 1.0
segmentation 19.6 2.0 17.1 2.2 5.1 2.8 1 0 5.3 2.4 3.1 1.9
sick 54.3 8.9 19.1 2.0 6.5 3.3 1.8 0.3 6.4 2.7 1.8 0.3
soybean 5.4 0.6 4.9 0.6 5.6 1.1 1.8 0.3 6.1 0.9 4 2.2
vehicle 72.3 4.4 70.6 4.5 4.9 2.5 1 0 4.3 1.7 3.6 1.8
yeast 23.7 1.5 23.2 1.7 4.3 1.1 1.1 0.3 4.3 1.2 3.7 2.1
average: 23.6 2.5 19.0 2.0 4.9 1.8 1.3 0.1 4.8 1.6 3.3 1.4

So, the conclusions are that it is better to sort the patterns by class, first the major-
class and then the minor-class and the reshrink operation will be chosen depending on
the overlapping existing in a dataset.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Rectangular Basis Functions Applied to Imbalanced Datasets 517

4 Comparison with Other Methods for Imbalanced Datasets

In this section, the conclusions achieved in section 3 will be applied and compared
with other methods for imbalanced datasets.

The conclusions from the previous section address the problem of generalization in
imbalanced datasets to train the DDA/RecBF algorithm using patterns sorted by class
(first the major-class and second the minor-class) and the reshrink operation if the
overlapping degree is too high.

These conclusions will be applied to the method explained in [5] and in [6], which
was developed by the authors of this paper to work with imbalanced datasets. This
method creates a fuzzy system able to work with imbalanced datasets by means of a
recombination of the membership functions of every class and finding the fuzzy rules
by means of a genetic algorithm.

The metric used to compare the results with other specialized methods is the g-
means metric (1), suggested by [2], which is the most used measure to evaluate results
in imbalanced datasets, where acc+ is the accuracy classification on the positive
instances, and acc- the accuracy on the negative ones.

accaccg
(1)

Table 3. (a) Results of our method for different datasets splitting the dataset either randomly or
with cross-validation. (b) The quantity of datasets which results were improved, for every
compared method.

(a) (b)
 random CV

Dataset (trainnig:test) µ(g) σ(g) µ(g) σ(g)
Abalone(7:3) 72.23 5.72
Abalone’ 69.68 1.56
Anneal(7:3) 99.95 0.05
BC(7:3) 62.32 2.10 60.59 0.67
BCW 94.46 0.46
Car(7:3) 96.19 0.37
Diabetes 70.85 0.98
Glass(7:3) 91.90 2.13 90.34 2.32
Glass(6:1) 89.89 10.39
Haberman(7:3) 67.07 1.02
Heart dis. (9:1) 80.64 8.97 79.84 1.24
Hepatitis(7:3) 74.55 6.11
Hepatitis_avg(7:3) 78.57 2.63
Ionosphere(9:1) 79.33 7.16 83.67 0.53
Segmentation(6:1) 99.95 0.15
Segment(7:3) 94.85 1.16 95.83 0.25
Soybean(7:3) 100 0
Soybean_avg(7:3) 100 0
Vehicle(7:3) 68.13 2.56 67.09 0.82
Vehicle’ 86.71 1.28
Yeast(6:1) 82.34 3.44
Yeast’ 63.72 4.25

Method improved
SDC(7:3) 1 of 7
KBA(6:1) 3 of 5
PP(CV10) 2 of 6
aPP(CV10) 1 of 5
EAg 1 of 5
Databoost-IM(CV10) 2 of 7
kNN et al.(CV5) 2 of 2
RD(CV5) 2 of 2

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

518 V. Soler and M. Prim

Table 3 shows the final results for the g-means metric. Table 3(a) shows the results
of the fuzzy system of the method exposed in [5] and [6]. There are different results
depending on the type of splitting data (training/test): by a random selection or cross-
validation (CV). The comparison of our method with the results of each other method
was done under the same conditions that were provided by the authors of the other
methods. Table 3(b) compares those results with the 8 specialized methods: SDC [7],
KBA [8], Parallel Perceptrons [9], alternative PP [10], Expert Agents [11], Databoost-
IM [12], kNN (et al.) [13] and Restricted Decontamination [14]. The column
improved shows the quantity of datasets which results have been improved by our
method using the characteristics explained in section 3.

5 Application on a Real Dataset

In this section we will apply our method to a well-known imbalanced problem in
medicine: the Down syndrome detection in fetus. It is known by everybody that the
number of fetus born with Down syndrome is significantly smaller than the ones born
without that syndrome. The ratio is about 1:300 and the current method used in
medicine detects up to 60-70’% of true positives with an 8-10% of false positives. In
our case, it was used a dataset of 8995 cases with just 30 positive ones, 5 input
variables (maternal age, maternal weight, age of the fetus (FA) expressed in days and
2 hormonal markers: AFP and hCG). The results of applying our method produced a
fuzzy system of just 9 rules (7 negatives and 2 positives) and a rate of 66% of true
positives with a 4% of false positives.

This result is better than the obtained by the current methods for this dataset, which
was similar to the usual success rates. In addition, thanks to the reduced set of rules
obtained, clear information about the system found could be given to the medical
staff. We transformed the fuzzy sets involved in every rule in an understandable way.
The trapezoidal fuzzy sets, with their points a,b,c,d, have been transformed to
“approximately among b & c” and the triangular ones (a,b,c) to “approximately
around b”. In Figure 5 an example of rule is shown.

R1: if Age is approximately among 43 & 44 &
 Weight is approximately among 41 & 42.5 &
 FA is approximately among 134 & 135 &
 AFP is approximately among 41.91 & 41.99 &
 hCG is approximately among 2.32 & 2.59 then Down=yes

Fig. 5. Rule 1 of the system found. It is one of the two positive rules.

Finally, the medical staff agreed with the meaning of the rules and it was
comprehensible for them.

6 Conclusions

In this paper have been exposed some characteristics of the Rectangular Basis
Function that could be used to work with imbalanced datasets in a fuzzy system

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Rectangular Basis Functions Applied to Imbalanced Datasets 519

environment. The study done reflects that the RecBF can be used as a first
approximator of the fuzzy variables of the final fuzzy system, and that the order of the
patterns is basic to achieve a general solution, that is, having a low quantity of
membership functions of the minor class avoids specialization and improves
generalization in the testing phase.

These characteristics have been applied to a developed method, implemented by
us, which is able to find a fuzzy system that works well with imbalanced datasets. The
results show that the solution approximates the results of other methods designed to
work with imbalanced datasets. In addition, it have been tested to a real problem
(Down syndrome detection in fetus), with excellent results both in improving the
results of the method used by hospitals and in extracting a set of understandable rules.

References

1. Japkowicz, N., Stephen, S.: The Class Imbalance Problem: A Systematic Study. Intelligent
Data Analysis 6(5), 429–450 (2002)

2. Kubat, M., Matwin, S.: Addressing the Curse of Imbalanced Training Sets: One-Sided
Selection”. In: Proceedings of the 14th International Conference on Machine Learning
(1997)

3. Berthold, M., Huber, K.P.: Constructing Fuzzy Graphs from Examples. Intelligent Data
Analysis 3, 37–53 (1999)

4. Berthold, M., Huber, K.P.: Introduction of Mixed Fuzzy Rules. International Journal of
Fuzzy Systems 3, 289–382 (2001)

5. Soler, V., Roig, J., Prim, M.: Fuzzy Rule Extraction using Recombined RecBF for Very-
Imbalanced Datasets. In: ICANN-2005, Warsaw, Poland, vol. 2, pp. 685–690 (2005)

6. Soler, V., Cerquides, J., Sabrià, J., Roig, J., Prim, M.: Imbalanced Datasets Classification
by Fuzzy Rule Extraction and Genetic Algorithms

7. Akbani, R., Kwek, S., Japkowicz, N.: Applying Support Vector Machines to Imbalanced
Datasets. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004.
LNCS (LNAI), vol. 3201, pp. 39–50. Springer, Heidelberg (2004)

8. Wu, G., Chang, E.Y.: KBA: Kernel Boundary Alignment Considering Imbalanced Data
Distribution. IEEE Trans. on knowledge and data eng. 17(6), 786–795 (2005)

9. González, A., Cantadory, I., Dorronsoro, J.R.: Discriminant Parallel Perceptrons.
ICANN 2, 13–18 (2005)

10. Cantador, I., Dorronsoro, J.R.: Balanced Boosting with Parallel Perceptrons. In:
Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 208–
216. Springer, Heidelberg (2005)

11. Kotsiantis, S., Pintelas, P.: Mixture of expert agents for handling imbalanced data sets.
Annals of Mathematics, Computing & TeleInformatics 1(1), 46–55 (2003)

12. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data
generation: the DataBoost-IM approach. SIGKDD Explorations 6(1), 30–39 (2004)

13. Barandela, R., Sánchez, J.S., García, V., Rangel, E.: Strategies for learning in class
imbalance problems. Pattern Recognition 36(3), 849–851 (2003)

14. Barandela, R., Rangel, E., Sánchez, J.S., Ferri, F.J.: Restricted decontamination for the
imbalanced training sample problem. In: Sanfeliu, A., Ruiz-Shulcloper, J. (eds.) CIARP
2003. LNCS, vol. 2905, pp. 424–431. Springer, Heidelberg (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Qualitative Radial Basis Function Networks

Based on Distance Discretization for
Classification Problems

Xavier Parra and Andreu Català

Knowledge Engineering Research Group - GREC
Technical University of Catalonia - UPC

Av. Vı́ctor Balaguer, s/n - 08800 Vilanova i la Geltrú - Spain
{xavier.parra,andreu.catala}@upc.edu

Abstract. This paper presents a radial basis function neural network
which leads to classifiers of lower complexity by using a qualitative radial
function based on distance discretization. The proposed neural network
model generates smaller solutions for a similar generalization perfor-
mance, rising to classifiers with reduced complexity in the sense of fewer
radial basis functions. Classification experiments on real world data sets
show that the number of radial basis functions can be reduced in some
cases significantly without affecting the classification accuracy.

1 Introduction

Qualitative Reasoning is a scientific discipline that has developed techniques that
allow, until a certain degree, the formalization of several human capacities that
are useful to perceive, analyze, understand and model real problems. In addition,
measurements are often crucial during the process of understanding the world
around us. Moreover, the use of numbers, orders of magnitude and categories are
needed to measure and represent the reality. It is precisely in this sense that one
of the goals of qualitative reasoning is to obtain models that allow the treatment
of problems where they appear variables described in different scales. The work
presented is related with the establishment of a relationship between Qualitative
Reasoning and the Radial Basis Function Networks (RBF). In this paper it is
shown that the classifier’s complexity can be reduced when using qualitative
information.

Indeed, it is quite difficult to get this aim because neural networks use to treat
data in a purely numerical way; weights and bias are represented by real numbers,
activation functions (usually Gaussian or linear for RBFs) give a real value as
response, patterns are normally represented by real values and, in general, all
the variables and elements involved in the learning and test processes have a
real value [1]. Besides, in some cases the learning algorithms work with a degree
of accuracy that it is not needed by the problem. This can be the case of some
classification problems, in which inputs and outputs are qualitative.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 520–528, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Qualitative RBF Networks Based on Distance Discretization 521

The main interest of this work is related with the study of the effect that
certain qualitative transformations have on the performance of the neural net-
works. A qualitative version of the RBF networks is proposed through the use
of a qualitative radial function. This version allows obtaining good results when
working with classification problems, in which the relationships among the dif-
ferent elements can be established from qualitative comparisons. Obviously, it
can be expected that more difficulties turn up if we attempt to approximate a
continuous function with this qualitative version of RBF networks because of
the accuracy that normally it is required in this type of problem.

This paper is organized as follows: section 2 gives the basic concepts of RBF
networks, highlights the importance of stepwise activation functions for these
kinds of learning algorithms, and describes the forward selection algorithm to
determine the centers for the treatment of qualitative information. An example
of the proposed method is given in Section 3, and results obtained from quanti-
tative and qualitative methods are compared. The qualitative model of the RBF
networks for classification tasks is tested with different benchmark data sets from
[2] and [3]. Finally, the paper ends with several conclusions that synthesize the
present work and briefly outlines some proposals for future research.

2 Qualitative Radial Functions

In this section a methodology, allowing Radial Basis Function networks (RBF)
to be used with qualitative radial functions, is proposed. Before building appro-
priate radial functions for this kind of discrete spaces, let us remind ourselves of
the basic concepts of Radial Basic Function networks, introduced in [4].

2.1 Radial Basis Function Networks

RBF are a type of artificial neural network for application to problems of super-
vised learning. RBF can be applied to problems of regression, classification and
times series prediction. In this paper only the case of classification is considered.

Several reasons make RBF especially interesting. On the one hand, they are
universal classifiers, and on the other, the training process associated to these
kind of neural networks is usually much faster than for other neural architectures,
such as MLP or SVM, and, in addition, it is possible to extract rules from RBF
architecture. RBF are associated with a simple architecture of three layers [4] as
shown in Fig. 1:

Each layer is fully connected to the following one and the hidden layer is
composed of a number of nodes with radial activation functions called radial
basis functions. Each of the input components fits forward to the radial functions,
whereas the outputs of these functions are linearly combined with a set of weights
into the output of the network.

The characteristic feature of radial functions is that their response decreases,
or increases, monotonically with distance from a central point named center of
the radial function. These functions involve two parameters, the center and a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

522 X. Parra and A. Català

Fig. 1. Radial Basis Function Network Architecture

distance scale. Radial functions in the hidden layer have a structure represented
as follows:

Φi(x) = ϕ((x − ci)T R(x − ci)) (1)

where ϕ is the radial function used, {ci|i = 1, . . . , c} is the set of radial function
centers and R is a metric. So, the term (x − c)T R(x − c) denotes the square
of the distance between the input x and the center c according to the metric
defined by R.

Usual radial functions are Gaussian, Cauchy’s, multiquadric, inverse multi-
quadric, spline and logarithm. The most widely used radial function is the Gaus-
sian one, in the particular case when the metric is R = I/r2, with I being the
identity matrix and r the radius of the radial function:

Φ(x) = exp
(

− (x − c)T (x − c)
r2

)

= exp
(

−d2(x, c)
r2

)

(2)

where d is the Euclidean distance in IRn. Gaussian function monotonically de-
creases with distance from the centre c, and in this sense, it is said that its
response is local. The output of the RBF network is:

F (x) = w0 +
c∑

i=1

exp
(

−d2(x, ci)
r2

)

(3)

2.2 Distance Discretization

In order to simplify the complexity of the classical RBF networks, it is established
a qualitative alternative to the classical Gaussian function used during the learn-
ing process. This new type of radial function will be called Qualitative Gaussian
Radial Function (Fig. 2.) and depends on two parameters α and β. These two pa-
rameters allow converting the range of inputs into a finite set of intervals, where
variables will be defined in a common absolute orders of magnitude space with
granularity 3, OM(3) [5]. The absolute orders of magnitude models works with
a finite set of symbols or qualitative labels obtained via a partition of the real

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Qualitative RBF Networks Based on Distance Discretization 523

line, where any element of the partition is a basic label (e.g. negative large, pos-
itive small or positive medium). These models provide a mathematical structure
which unifies sign algebra and interval algebra through a continuum of qualitative
structures built from the rougher to the finest partition of the real line.

Fig. 2. Qualitative Gaussian Radial Function

A Gaussian function can be expressed as:

y = exp
(

−x2

r2

)

(4)

where r is a radial width (in Fig. 2., r takes a value equal to 1). The values of
α and β depend on the radial width value, and for the study presented in this
paper, they have been determined as those values for which the function declines
a 20% and a 80%, respectively.

Furthermore, in these points, the first derivative of the Gaussian function is
equal to 0.5. Thus, with the positive and negative value of α and β, the space of
distances between the pattern selected as centre and the rest of patterns is split
up into six qualitative classes (large, medium and small, negative or positive).
So that, the following expressions for α and β from (4) can be obtained:

x = ±r
√

− ln y ⇒
{

if y = 0.8 → α = 0.47r
if y = 0.2 → β = 1.26r

(5)

2.3 Forward Selection Algorithm

There are several methods to determine the parameters for a RBF [4][6]; it is the
set of centers for the basis functions within the entire set of patterns, their radii

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

524 X. Parra and A. Català

and the weights. Standard ways of optimizing networks involve the optimization
by gradient descent, which needs differentiability and a fixed architecture in ad-
vance (number of layers and nodes). Nevertheless RBF has a simpler alternative
based in subset selection. Subset selection compares the errors produced when
different subsets of centers are chosen. Usually the entire set of patterns has too
many subsets, so a heuristic method must be implemented. One of these is the
forward selection method. It consists in starting with an empty subset, to which
is added one center at a time, the one that most reduces the approximation
error. Forward selection ends when some chosen criterion, such as Generalized
Cross Validation, stops decreasing. In forward selection method, weights are not
selected, because they are directly determined by the chosen centers and radii.

The learning algorithm used during the RBF network training is based on the
optimization of the variance increase explained by the desired output [6]. This
algorithm sets up the pattern that will be included as new center of radial basis
function after quantifying the group of outputs depending on the dispersion of
the inputs; in this way determines the patterns goodness and then selects the
largest one.

The forward selection advantages in front of standard ways of optimizing
networks are that a fixed number of centers in advance is not required, and,
moreover, it is a model easily tractable in the case of qualitative input data, and
its computational requirements are lower. In addition, forward selection does
not require differentiability, and this is crucial when considering a qualitative
patterns description by means of orders of magnitude. In such a discrete structure
the radial functions are neither continuous nor differentiable.

The aim of the learning algorithm is to fix an RBF network as smaller as pos-
sible, and if that learning algorithm converges then the resulting RBF network
is unique and perfectly determined. However, it is not possible to ensure that
this solution is smaller than any other, so it is possible that a different set of
training patterns rises to a smaller RBF network.

3 Experiments and Results

In order to evaluate the performance of the neural network model proposed,
we perform simulations over four classification problems and compare RBF net-
works with the original Gaussian function and RBF networks with the Quali-
tative Gaussian function. First, the four classification problems and the exper-
iments setup will be shortly introduced. Further on, the results obtained from
the experiments will be presented and discussed.

3.1 Classification Problems

For the experiments we use four benchmark data sets namely iris from [2], and
breast cancer1, thyroid and heart from [3]. Each data set corresponds to a
1 This breast cancer domain was obtained from the University Medical Centre, Insti-

tute of Oncology, Ljubljana, Yugoslavia. Thanks go to M. Zwitter and M. Soklic for
providing the data.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Qualitative RBF Networks Based on Distance Discretization 525

Table 1. Pattern distribution over data subsets

Data set Training Test Total
Iris 95 52 147
Breast Cancer 189 77 266
Thyroid 140 75 215
Heart 170 100 270

real world classification problem. The iris data set contains 147 instances with
four inputs and one output. All four input attribute are real-valued while the out-
put variable, i.e. the type of iris plant, is a nominal variable with three different
classes: Setosa, Versicolour and Virginica. These classes have been represented
using 0, 1 and 2, respectively. One class is linearly separable from the other two;
the later are not linearly separable from each other. The breast cancer data set
contains 266 instances with nine inputs and one output. Some of the nine input
attributes are linear and some are nominal, while the output variable, i.e. the
presence of recurrence events, is a binary attribute: no-recurrence-events and
recurrence-events. These two classes have been represented using +1 and −1,
respectively. Each class is not linearly separable from each other. The thyroid
data set contains 215 instances with five inputs and one output. All five input
attributes are real-valued while the output variable, i.e. the type of thyroidism, is
a binary attribute: euthyroidism and hyperthyroidism or hypothyroidism. These
two classes have been represented using +1 and −1, respectively. Each class
is not linearly separable from each other. The heart data set contains 270 in-
stances with thirteen inputs and one output. All thirteen input attributes are
continuously valued, while the output variable, i.e. the presence of heart disease,
is a binary attribute: healthy and sick. These two classes have been represented
using +1 and −1, respectively. Each class is not linearly separable from each
other.

Several simulations have been carried out for each classification problem. The
data set available has been partitioned into two subsets: training set and test
set, with a relation of mostly 60% and 40% respectively. Table 1 shows the
pattern distribution in each data subset. We use thirty different realizations2 for
each data set. On each realization we train 100 classifiers with different radial
widths (100 logarithmically equally spaced values between 1 and 100) and then
compute its test classification accuracy. The performance function used to stop
the training process is the mean squared error (MSE). For all the simulations
the goal value for the average squarred error has been fixed to 0.001.

To study and analyze the effect that the use of Qualitative Gaussian functions
has over RBF performance, two different kinds of trainings have been done. The
first one corresponding to the use of a standard Gaussian function (GRBF), and
the second related with the use of the qualitative version of the Gaussian function
proposed in this work (QGRBF). In summary, for each classification problem

2 For the breast cancer, thyroid and heart data sets we use the first thirty realiza-
tions from [3]; for the iris data set we randomly generate thirty realizations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

526 X. Parra and A. Català

10
0

10
1

10
2

10

20

30

40

50

60

70

80

90
Neurons

10
0

10
1

10
2
0

10

20

30

40

50

60

70

80

90

100
Classification Accuracy (%)

(a) iris

10
0

10
1

10
2

40

60

80

100

120

140

160

180
Neurons

10
0

10
1

10
2
0

10

20

30

40

50

60

70

80

90

100
Classification Accuracy (%)

(b) breast cancer

Fig. 3. Number of neurons (left) and classification accuracy (right) using RBF networks
with Qualitative Gaussian functions (solid line) and Gaussian functions (dashed
line) for (a) iris and (b) breast cancer classification problems

we simulate 6000 different classifiers, corresponding to 2 radial functions, 30
realizations and 100 radial widths.

3.2 Results and Discussion

The criterion used to compare the results obtained with the GRBF and the
QGRBF networks is the classifier’s complexity. The complexity of a classifier
is directly related with the size, i.e. the number of neurons or processing ele-
ments, of the classifier. Figures 3 and 4 show the relationship between the radial
width used during training and the number of processing elements determined by
the training process for the GRBF and QGRBF networks3. Our experimental re-
sults suggest that the Qualitative Gaussian function is in some cases a promising
3 Mean values over the thirty different realizations are used to generate the figures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Qualitative RBF Networks Based on Distance Discretization 527

10
0

10
1

10
2

40

50

60

70

80

90

100

110

120

130

140
Neurons

10
0

10
1

10
2
0

10

20

30

40

50

60

70

80

90

100
Classification Accuracy (%)

(c) thyroid

10
0

10
1

10
2

100

110

120

130

140

150

160

170
Neurons

10
0

10
1

10
2
0

10

20

30

40

50

60

70

80

90

100
Classification Accuracy (%)

(d) heart

Fig. 4. Number of neurons (left) and classification accuracy (right) using RBF networks
with Qualitative Gaussian functions (solid line) and Gaussian functions (dashed
line) for (c) thyroid and (d) heart classification problems

approach for classifier complexity reduction in RBF networks. Moreover, given
that the Qualitative Gaussian function is less computational complex4, the RBF
networks obtained by using such a qualitative function are less computational
complex too. Finally, a lower computational complexity means an easier imple-
mentation, given that hardware requirements can be significantly lower too.

In general, the number of neurons needed when the width is approximately less
than 1.1 is smaller if it is used a GRBF network. However, for a GRBF network
and when the width value is larger than this value, the number of neurons is in
many cases larger than using the QGRBF network. In general, the classification
accuracy over the test data subset is lower for larger networks, probably due to

4 Note that the activation of a Qualitative Gaussian function can be completely deter-
mined with at most three comparisons in front of a Gaussian function which needs
an exponential function assessment.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

528 X. Parra and A. Català

overfitting during training. At this point it is important to note that the only
difference between the GRBF nets and the QGRBF nets is in the radial function
used, so that, if it is used the Qualitative Gaussian function it is possible in some
cases to get a better RBF network in the sense of better classifier’s complexity
(smaller size and easier implementation).

4 Summary

In this work we have proposed a qualitative version of the Gaussian radial func-
tion used in RBF networks. We have found that the use of such a qualitative
radial function works quite well without adversely affecting generalization perfor-
mance in a significant way, but reduces in some cases the classifier’s complexity.
This has been shown through experiments on four benchmark data sets. The use
of qualitative reasoning techniques as an alternative methodology in front of the
common quantitative techniques can improve the general system performance
in classification tasks as shown by the preceding experiments. The qualitative
techniques applied to the learning algorithm of the RBF networks with regard
to the qualitative selection of new centers, improve in many cases the general
performance of the classical algorithm, e.g. getting better networks in the sense
of a reduced classifier’s complexity.

Our future work will concentrate on applying the same method to other clas-
sification problems and real world applications. We will use different model se-
lection criteria (i.e. estimates of the prediction error) to avoid or to limit the
overtraining. Moreover, it is interesting to see how the qualitative radial func-
tion can be applied in different scenarios (e.g. regression problems o time series).
Continuing in the area of the qualitative reasoning also we will study and analyze
the application of input discretization methods and the use of absolute orders
of magnitude and qualitative distance measures.

References

1. Català, A., Morcego, B.: Qualitative Aspects of Connectionist Systems. Current
Trends in Qualitative Reasoning and Applications. CIMNE Monograph 33 (1995)

2. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine
learning databases. University of California, Dept. of Information and Computer Sci-
ence, Irvine, CA (1998), http://www.ics.uci.edu/∼mlearn/MLRepository.html

3. Rätsch, G.: Benchmark Repository. Technical report, Intelligent Data Analysis
Group, Fraunhofer-FIRST (2005)

4. Broomhead, D.S., Lowe, D.: Multivariable Functional Interpolation and Adaptive.
Network. Complex Systems 2, 321–355 (1988)

5. Piera, N.: Current Trends in Qualitative Reasoning and Applications. CIMNE
Monograph 33 (1995)

6. Chen, S., Cowan, C.F.N., Grant, P.M.: Orthogonal least square learning algorithm
for radial basis function networks. IEEE Transactions on Neural Networks 2(2),
302–309 (1991)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.ics.uci.edu/~mlearn/MLRepository.html

A Control Approach to a Biophysical Neuron

Model

Tim Kaulmann1, Axel Löffler2, and Ulrich Rückert1

1 Heinz Nixdorf Institute, Dept. System and Circuit Technology, University of
Paderborn, Fuerstenallee 11, 33102 Paderborn, Germany

{kaulmann, rueckert}@hni.upb.de
2 Robert Bosch GmbH, Robert-Bosch-Strasse 2, 71701 Schwieberdingen, Germany

axel.loeffler@de.bosch.com

Abstract. In this paper we present a neuron model based on the de-
scription of biophysical mechanisms combined with a regulatory mech-
anism from control theory. The aim of this work is to provide a neuron
model that is capable of describing the main features of biological neurons
such as maintaining an equilibrium potential using the NaK-ATPase and
the generation of action potentials as well as to provide an estimation of
the energy consumption of a single cell in a) quiescent mode (or equilib-
rium state) and b) firing state, when excited by other neurons. The same
mechanism has also been used to model the synaptic excitation used in
the simulated system.

1 Introduction

Neuron models describe the behaviour of the biological nervous cell at vari-
ous levels of abstraction. The models available today have different accuracy –
from simple integrate and fire neurons to highly complex compartment models
– depending on the task that has to be investigated and on computing power.
Electrical models as described by Koch and Segev [1] or MacGregor [3] can be
used to simulate compartments of a neural network and provide good results
compared to biophysical measurements.

These models do not directly predict the energy consumption for the informa-
tion processing in neural networks. Thus, other approaches have been published.
Laughlin et. al. [2] published a model of an energy consuming cell, depending on
the data rate of neural information transmission. The energy can be estimated
by the rate of ATP transduction derived from ion-currents. Destexhe et. al. [5]
used a kinetic model for receptor-binding and provided an analytical solution
for the energy consumption in case of a rect-impulse as transmitter profile. A
publication from Daut [4] uses known models from neural computation with
physiological measurements and describes the energy consumption of a cardiac
cell based on the most important processes. This work already uses coupled
control loops which are also utilised in this paper.

This publication takes some ideas from the publication cited above but instead
uses a bottom-up approach to describe the energy consumption of a neuron.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 529–538, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

530 T. Kaulmann, A. Löffler, and U. Rückert

Therefore, a system model is developed from the basic biophysical equations in
Sec. 2. Afterwards, we extend the basic model to a model for a weak and a strong
synapse, later used in our simulations as well as to the capability of the action
potential generation. The simulation results of a small neural system are shown
in Sec. 3.

Although there are many different sodium- and potassium-channels involved
in the generation of the steady-state membrane voltage as well as other types of
ions, we will mainly focus on two channels. One reason for omitting Ca2+, Mg2+

and anions in this first approach is their small contribution to the membrane
potential (compared to the influence of sodium and potassium). The other reason
is that the action potential generation can be described by the two channels by
extending their model to voltage-gated channels sufficiently (see Sec. 2.3). Of
course, this model can also be extended to incorporate the effect of calcium
channels.

2 Neuron Model

Starting from the Nernst equation in (1) where parameter P denotes a relative
permeability of sodium channels compared to potassium channels, we can also
give the Nernst-potentials of the single ion types (2), where n can either be Na
or K.

V = −RT
F

ln
PcNa,int + cK,int

PcNa,ext + cK,ext
(1)

Vn = −RT
F

ln
cn,int

cn,ext
(2)

Parameter R = kBNA describes the universal gas constant, derived from the
Boltzmann constant kB and the Avogadro constant NA. The absolute tempera-
ture is denoted with T, and F = qNA describes the Faraday constant, where q
is the charge of a single electron. cn,ext and cn,int describe the extracellular and
the intracellular concentration of the different ion types. For further calculations
we assume the extracellular ion concentration as constant.

The value for the relative permeability P will be determined after the deriva-
tion of the system equations.

Let In be the inward current of potassium and sodium ions passing through
a cell membrane (by passive transport), we can write the currents according to
Ohm’s law with their specific conductances gNa and gK (3)

In = −gn · (V − Vn) (3)

where n can either be Na or K.
From a biophysical point of view, the change in intracellular ion concentrations

cn can be expressed by (4), which links to the electrical view from (3), where Vi

is the intracellular volume of a single cell,

In = qNAVi
d

dt
cn (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Control Approach to a Biophysical Neuron Model 531

and leads to the expression of change in concentration depending on the equi-
librium potentials (5).

d

dt
cn = − gn

qNAVi
(V − Vn) (5)

The Nernst-potential can be linearised by Taylor expansion at the operating
point cn,0 of the neuron (6), (7). The concentration cn,0 represents the intracel-
lular ion concentration at the steady-state.

Vn,0 ≈ −RT

F
ln

(
cn,0

cn,ext

)

− RT

F

1
cn,0

(cn − cn,0) (6)

V ≈ −RT

F
ln

(
cK,0 + PcNa,0

cK,ext + PcNa,ext

)

−RT

F

1
cK,0 + PcNa,0

· [(cK − cK,0) + P (cNa − cNa,0)] (7)

We can reduce these equations further with the Taylor-coefficients given in
(9) to the following compact form

VK = VK,0 + VK,1 · (cK − cK,0)

VNa = VNa,0 + VNa,1 · (cNa − cNa,0)

V = V0 + V1 · [(cK − cK,0) + P (cNa − cNa,0)]

(8)

VK,0 = −RT
F ln

(
cK,0

cK,ext

)
VK,1 = −RT

F
1

cK,0

VNa,0 = −RT
F ln

(
cNa,0

cNa,ext

)
VNa,1 = −RT

F
1

cNa,0

V0 = −RT
F ln

(
cK,0+PcNa,0

cK,ext+PcNa,ext

)
V1 = −RT

F
1

cK,0+PcNa,0

(9)

and give a simple equation of the passive ion transport mechanisms in vector
notation (10)

d

dt
c = M · (c − c0) + I0 (10)

M =

⎡

⎢
⎢
⎢
⎢
⎣

− gK

qNAVi
(V1 − VK,1) − gK

qNAVi
(PV1)

− gNa

qNAVi
(V1) − gNa

qNAVi
(PV1 − VNa,1)

⎤

⎥
⎥
⎥
⎥
⎦

(11)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

532 T. Kaulmann, A. Löffler, and U. Rückert

I0 =
1

qNAVi

⎡

⎣
−gK (V0 − VK,0)

−gNa (V0 − VNa,0)

⎤

⎦ (12)

where c =
[
cK cNa

]T. The potential V0 describes the equilibrium potential. As
(10) describes the passive transport mechanisms at equilibrium, we receive the
vector I0 that describes the quiescent current of sodium and potassium ions
diffusing through the cell membrane. This current has to be compensated by
the NaK-ATPase to keep the membrane voltage stable. This will be discussed in
Sec. 2.1.

The relative permeability P can be derived from the requirement for the ion
currents in equilibrium state. The passive potassium current flowing from the
intracellular space to the extracellular space has to be approx. 2/3 of the sodium
current, flowing from extracellular space to intracellular space, when the NaK-
ATPase shall be able to balance the concentration gradient by active transport
of 3 Na+ ions to the extracellular space and of 2 K+ ions to the intracellular
space (13).

3IK,0 + 2INa,0 = 0 (13)

With (13) and (3) we receive an additional formula for determining the equi-
librium potential V0 from an electrical point of view (14).

V0 =
gKVK,0 + 2

3gNaVNa,0

gK + 2
3gNa

(14)

Both solutions for the equilibrium potential – (9) and (14) – can be combined
and solved for the relative permeability P which is mainly dependent on the
ion conductances gn. This enables us to model the action potential generation
by modulation of the ion channel permeability and to implement voltage-gated
channels in our model.

P

(
gNa

gK

)

= −
cK,0 − cK,ext · exp(−V0F

RT)
cNa,0 − cNa,ext · exp(−V0F

RT)
with V0 =

VK,0 + 2
3

gNa
gK

VNa,0

1 + 2
3

gNa
gK

(15)

2.1 NaK-ATPase as a Controller

In this section, we will look at the NaK-ATPase as a controller of a closed loop
controlled system, given by the neuron. The nomenclature of the control theory
in this section is taken from [6] with the difference that we use matrix M as the
system matrix and not as preliminary filter (see Fig. 1). As the neuron has two
control variables (Na and K ion flow), the system is stabilised by means of a
state control using the pole placement method.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Control Approach to a Biophysical Neuron Model 533

c = M (c-c0) + I0 + u

-(R (c-c0)+I0)

c(t)u(t)

c0

(a) Linearised system.

c =

-(R (c-c0)+I0)

c(t)u(t)

n
i

VV
Vq

g

AN
)/ln(F/RT

ext,int, nnn ccV

(b) Nonlinear system.

Fig. 1. Nomenclature for control unit design of the closed loop control system

We can directly derive the control vector R from the eigenvalues and eigen-
vectors of system matrix M

R = V · (diag(λ1, λ2) − diag(λR1, λR2)) · V −1 (16)

where V is the matrix of eigenvectors of system matrix M and λn denotes the
eigenvalues of M . To stabilise the system, the dominant poles are moved to the
left half-plane by setting λRn to appropriate values. These values can be chosen
by numerical simulation (e. g. λ = −5 · 104 in the following simulations).

In Fig. 2a, the trajectories of the ion concentration of the neuron model with
closed control loop are shown. Starting from different initial ion concentrations,
the controller derived from the linear system stabilises the nonlinear system
at the operating point cK,0, cNa,0. Figure 2b shows the trajectory of the ion
concentration with the open control loop.

2.2 Modeling the Synapse

The synapse model discussed in this section is based upon the basic model al-
ready discussed in Sec. 2. The excitation of a synapse leads to an increased

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

c
K
 [mol / l]

c N
a [m

ol
 /

l]

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

c
K
 [mol / l]

c N
a [m

ol
 /

l]

(b)

Fig. 2. Trajectories of the ion concentration in the basic nonlinear neuron model with
a) closed control loop and b) open control loop, starting from different initial values

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

534 T. Kaulmann, A. Löffler, and U. Rückert

amount of neurotransmitter available at the receptors with the effect of a con-
ductance change in the Na and K channels at the neuron. In this model, the
additionally opened channels are assumed to be not ion specific, which can be
expressed by (17)

ĝK(t) = gK + G(t)
ĝNa(t) = gNa + G(t)

G(t) = gcA(t) (17)

where gc denotes the conductivity of a single channel and A(t) denotes the time-
dependent amount of additionally opened channels. The additionally opened (or
closed) channels depend on the amount of ligated or free neurotransmitter. The
transmitter(T)-receptor(R) binding can be described by the reaction kinetics
given in (18).

(free transmitter) R + T = B
α−⇀↽−
β

A = RT � (ligated transmitter) (18)

We further receive differential equations for A and B:

d

dt
A = αB − βA (19)

d

dt
B = βA − αB (20)

Now we change the probability α of the transition by introducing a time-
dependent neurotransmitter profile. The term α is replaced by α · q(t), where
q(t) describes the time response of the transmitter profile.

d

dt
A = αq(t) (A + B − A) − βA (21)

Multiplication of (21) with gc and application of G(t) = gcA(t) results in a
differential equation with time-variant coefficients for the additional conductance
G(t) mainly depending on the transmitter profile

d

dt
G(t) = αq(t)

⎛

⎜
⎝gc (A + B)

︸ ︷︷ ︸
GS

− gcA(t)
︸ ︷︷ ︸

G(t)

⎞

⎟
⎠ − β gcA(t)

︸ ︷︷ ︸
G(t)

(22)

where GS is a saturation conductance of the channels, which describes the con-
ductance when all channels are in open state. The solution to this differential
equation is given in (23).

G(t) =

[

G0 + αGS

∫ t

0
q(t′′) exp

(

βt′′ + α

∫ t′′

0
q(t′)dt′

)

dt′′
]

· exp
(

−
(

βt + α

∫ t

0
q(t′)dt′

))

(23)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Control Approach to a Biophysical Neuron Model 535

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−13

Time [s]

C
on

du
ct

an
ce

 [Ω
−

1]

g
K, strong

g
K, weak

g
Na, strong

g
Na, weak

Fig. 3. The time dependent conductances gK and gNa at the synapse. At t = 1ms,
the strong synapse is excited, at t = 3ms, the weak synapse is excited.

In our simulations we are using the α-function for the shape of the neuro-
transmitter pulse. For a fast synapse [9], we use the parameters α = 2 ms−1 and
β = 1 ms−1.

2.3 Action Potential Generation

The action potential is generated by a change in ion conductance, which is
dependent on the membrane potential (voltage-gated channels). Thus, time de-
pendent ion specific conductances are introduced (24) which can be derived from
a Hodgkin-Huxley model [7]. This is in fact an approximation of the Hodgkin-
Huxley model, but it preserves the basic functionality.

ĝK(t) = gK + GK(t) with GK(t) = ḡKn4

ĝNa(t) = gNa + GNa(t) with GK(t) = ḡNam
3h (24)

where m, n, h = f(t)

The time dynamics of the coefficients m(t), n(t) and h(t) can be represented
as inhomogeneous differential equations which are similar in their structure but
different in their parameters. Thus, only the solution for coefficient m(t) will be
shown here as an example. Similar to the discussion in the previous section, we
can start from a biochemical reaction with the reaction kinetics shown in (25)
where αm and βm describe the probability for the transition from the open
state of an ion channel to the closed state and VTh describes the threshold
voltage.

1 − m
αm(V −VTh)−−−−−−−⇀↽−−−−−−−
βm(V −VTh)

m (25)

This leads to the inhomogeneous differential equation (with piecewise constant
coefficients αm and βm) given in (26)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

536 T. Kaulmann, A. Löffler, and U. Rückert

d

dt
m = αm (V (t) − VTh) − m [αm (V (t) − VTh) + βm (V (t) − VTh)] (26)

with its solution given in (27).

m(t) = m0e−(αm+βm)t +
αm

αm + βm
(27)

As parameters αm and βm are also voltage dependent, these equations have
to be solved partially. The parameters for determining the functions m, n and
h are taken from [8]. A typical time-course for m(t), n(t), and h(t) is given in
Fig. 4a. The resulting conductance of the K channels and the Na channels is
shown in Fig. 4b.

0 0.002 0.004 0.006 0.008 0.01

0

0.2

0.4

0.6

0.8

1

Time [s]

m(t)
h(t)
n(t)

(a)

0 0.002 0.004 0.006 0.008 0.01
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−12

Time [s]

C
on

du
ct

an
ce

 [Ω
−

1]

g
K

g
Na

(b)

Fig. 4. Time course of a) m(t), n(t) and h(t) and b) the resulting K channel and Na
channel conductance for an action potential generated at t = 3.7 ms

3 Simulation Results

The biophysical neuron model has been set up as a Matlab/Simulink model,
where we integrated the basic neuron model as presented in Sec. 2 with the NaK-
ATPase as active transport mechanism, implemented as a closed loop controller.
Additionally, two synapses and their response to a pre-synaptic action potential
have been modeled to show the effect of the voltage-gated ion channels and the
action potential generation of our model. Both synapses have been connected
to a small dendritic tree. The strength of each synapse can be adjusted by the
conductance parameter gc for each individual block. All of the implemented
blocks (neuron, synapses and dendrite) are based upon the basic closed control
loop model. Only small adaptations have to be made for the synapse and the
dendrite (see discussion in previous sections).

Figure 5a depicts the trajectory of the sodium and potassium concentration for
a neuron without action potential generation. The neuron is excited by external
stimulus with an α-function at a weak and a strong synapse. In Fig. 5b the
trajectory for a system with activated action potential generation is shown.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Control Approach to a Biophysical Neuron Model 537

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

c
K
 [mol / l]

c N
a [m

ol
 /

l]

(a) System without AP generation.

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

c
K
 [mol / l]

c N
a [m

ol
 /

l]

(b) System with AP generation.

Fig. 5. Trajectories of the sodium and potassium concentration in a neuron model a)
without action potential generation and b) with action potential generation

Figure 6a shows the membrane potential of the full neuron model with axonal
element and small dendritic tree is shown on a timescale of 10 ms. The neuron
is fed by two synapses, one weak and one strong connection, which are excited
with an α-function at 1 ms and 3 ms. The crossing of the threshold voltage leads
to action potential generation by voltage-gated ion channels as described in
Sec. 2.3. In Fig. 6b, the corresponding power dissipation is depicted. As it can
be expected, the power dissipation from the NaK-ATPase reaches its maximum
at the action potential generation, when the pump has to counterbalance the
voltage-induced ion influx and efflux. We received a dissipation power of 2.4 fW
for the steady state and a peak of 87 nW for an action potential. This, of course,
is linear adjustable by changing the geometry and conductance parameters.

0 0.002 0.004 0.006 0.008 0.01
−80

−60

−40

−20

0

20

40

60

Time [s]

M
em

br
an

e
P

ot
en

tia
l [

m
V

]

(a) Membrane potential.

0 0.002 0.004 0.006 0.008 0.01
0

10

20

30

40

50

60

70

80

90

Time [s]

P
ow

er
 [n

W
]

(b) Dissipation Power.

Fig. 6. Simulation result of a neuron with two synapses (one weak and one strong
synapse) on a small dendritic tree. Excitation of the neuron occurs at t = 1 ms and
t = 3ms with an α-function at the synaptic inputs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

538 T. Kaulmann, A. Löffler, and U. Rückert

4 Conclusion

We have presented a neuron model that incorporates a control approach to the
mechanism provided by the NaK-ATPase in biological neurons. This model can
also be used to estimate the power that a single neuron dissipates for maintaining
the steady-state as well as for the generation of action potentials. We could show
by simulation that the chosen control approach for the NaK-ATPase is capable of
not only stabilising the linearised system, but also the nonlinear system described
by diffusion equations. The same mechanism as in the basic model has also
been used to model the synaptic excitation by introducing additionally opened
channels to the basic model. We have integrated the basic model as well as
its extensions for synaptic excitation and the action potential generation into
Matlab/Simulink to provide an easy interface for further research on biophysical
models. Future work is going to extend this model to incorporate the Ca2+

channel and to use this model for building networks within the Matlab/Simulink
environment.

References

1. Koch, C., Segev, I.: Methods in Neuronal Modeling (1998)
2. Laughlin, S.B., de Ruyter van Steveninck, R.R., Anderson, J.C.: The metabolic cost

of neural information. Nature Neuroscience 1, 36–41 (1998)
3. MacGregor, R., Lewis, E.: Neural Modeling (1977)
4. Daut, J.: The living cell as an energy-transducing machine. A minimal model of

myocardial metabolism. Biochimica et Biophysica Acta (BBA) - Reviews on Bioen-
ergetics 895, 41–62 (1987)

5. Destexhe, A., Mainen, Z.F., Sejnowski, T.J.: An efficient Method for Computing
Synaptic Conductances Based on a Kinetic Model of Receptor Binding. Neural
Computation 6, 14–18 (1994)

6. Föllinger, O.: Regelungstechnik (1994)
7. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its

application to conduction and excitation in nerve. J. Phys. 117, 500–544 (1952)
8. Destexhe, A.: Conductance-based integrate-and-fire models. Neural Computation 9,

503–514 (1997)
9. Chapeau-Blondeau, F., Chambet, N.: Synapse Models for Neural Networks: From

Ion Channel Kinetics to Multiplicative Coefficient wij . Neural Computation 7, 713–
734 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrate-and-Fire Neural Networks with

Monosynaptic-Like Correlated Activity

Héctor Mesa and Francisco J. Veredas

Dpto. Lenguajes y Ciencias de la Computación,
Universidad de Málaga, Málaga 29071, Spain

fvn@lcc.uma.es

Abstract. To study the physiology of the central nervous system it is
necessary to understand the properties of the neural networks that inte-
grate it and conform its functional substratum. Modeling and simulation
of neural networks allow us to face this problem and consider it from the
point of view of the analysis of activity correlation between pairs of neu-
rons. In this paper, we define an optimized integrate-and-fire model of
the simplest network possible, the monosynaptic circuit, and we raise
the problem of searching for alternative non-monosynaptic circuits that
generate monosynaptic-like correlated activity. For this purpose, we de-
sign an evolutionary algorithm with a crossover-with-speciation operator
that works on populations of neural networks. The optimization of the
neuronal model and the concurrent execution of the simulations allow
us to efficiently cover the search space to finally obtain networks with
monosynaptic-like correlated activity.

1 Searching for Monosynaptic-Like Circuits

To understand the functionality of the central nervous system (CNS) it is pre-
cise to comprehend the characteristics of the neural circuits that support its
properties. As it has been demonstrated by neurophysiological studies, across
the visual pathway of mammals the properties of the neural responses undergo
several important transformations: neuronal receptive fields become more com-
plex [8], averaged firing rates decrease, neural activity becomes more variable
[10] and the correlated activity among neurons becomes less precise [11,12,15].
To identify the factors responsible of these transformations, it is necessary to
analyze the connectivity into the different neuronal networks disposed from the
retina to the visual cortex.

To attack the problem in a progressive way, we started from the simplest
neuronal net: the excitatory monosynaptic circuit, i.e. a direct excitatory con-
nection beetween two neurons, without any other neuron intermediating them.
The starting point for the afterward studies of more complex networks is the un-
derstanding of the different physiological and topological factors that determine
the correlated activity between these two monosynaptically connected neurons.
Physiological studies on correlated activity in the visual pathway of mammals

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 539–548, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

540 H. Mesa and F.J. Veredas

conclude that strong monosynaptic connections present a precise correlated ac-
tivity. This correlation can be shown by cross-correlation analysis. The cross-
correlogram of spikes of two neurons with a strong monosynaptic connection is
well characterized by the presence of a significant peak displaced to the right of
0 ms [6] as a direct consequence of the synaptic transmission delay (see figure
1). Other way, in physiological experiments of simultaneous intracellular record-
ing of two neurons, the presence of a significant peak in their cross-correlogram
is usually interpreted as revealing the existence of a monosynaptic connection
[2,1]. Different neurophysiological features imply variations in that correlogram
[11,12,15,17] across the visual pathway.

−50 −40 −30 −20 −10 0 10 20 30 40 50
0

10

20

30

40

50

60

time (ms)

sp
ik

es

Fig. 1. Cross-correlogram from a simulation of a strong monosynaptic connection be-
tween two IAF neurons. This is the histogram of the time difference between pre- and
post-synaptic spikes.

The question that arises now is the following: is it likely to find a non-
monosynaptic connection between two neurons that gives a correlogram simi-
lar to the monosynaptic correlogram? The answer to this question would have
important implications for the concern of which are the circuits that give sup-
port to some properties found in the CNS, as the shape of the receptive fields
of neurons in talamo-cortical or cortico-cortical pathways of the visual system
[2,1]. Could a monosynaptic-like correlogram gotten in the analysis of the neural
activity in those pathways be generated by some sort of polysynaptic circuit? If
so, maybe some conclusions about the circuitry holding some properties in the
visual system should be revisited. To discard or consider this possibility, in this
article we present the results of searching for circuits of integrate-and-fire (IAF)
neurons with monosynaptic-like correlated activity. For this purpose, we used
an evolutionary approach and designed specific genetic operators adapted to the
peculiarities of this problem. As a main result, giving an initial set of biological

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrate-and-Fire Neural Networks 541

and computational restrictions, it was possible to reach the purposed objective
of finding a polysynaptic network with monosynaptic-like correlation.

1.1 Problem Description

To deal with the search of circuits with monosynaptic correlated activity, the
physiological and topologycal factors that contribute to this correlated activity
should be established. In [17] it was concluded that, in agreement with previous
physiological studies [5,14], it is the time-course of the EPSPs (Excitatory Post-
Synaptic Potentials) the main factor that determines the shape of the monosy-
naptic peak: rise and decay times of the EPSP, and jitter of transmission delay.
To these factors we added other two topological issues: the synaptic efficacy (con-
nection weight) which influences the peak amplitude, and the synaptic latency
that affects to the position of the peak.

On the other way, in [18] some evolutionary and genetic strategies were used
to search for circuits with monosynaptic-like correlated activity but, giving a
set of realistic biological and computational restrictions, it was not possible to
find a circuit alternative to the monosynaptic one. In that study the problem of
crossover disruption in the genetic algorithm was raised as a severe impediment
for the effective evolution of the populations of IAF networks.

In this paper, we use specific methods to 1) increase the computational ef-
ficiency in searching for circuits, by means of the optimization of the neuron
model, the calculation of the cross-correlogram by Fast Fourier Transforma-
tion (FFT) and the use of techniques of parallel programming; and 2) avoid
crossover disruption in the genetic algorithm. For the latter, we have designed
a new crossover operator with speciation that allows, for each generation, to
cluster the population into species of individuals —i.e. IAF networks— with
the enough genotypic similarity to avoid crossover disruption. Besides, we have
designed an evolutionary strategy in batch mode that applies each genetic oper-
ator in independent stages, starting from the best results of each previous stage,
to ensure the convergence of the population towards good solutions. Finally,
heuristic techniques have allowed us to refine the populations of IAF networks
and ensure their convergence to solutions nearer to the objective.

2 The Integrate-and-Fire Neuron Model

IAF models are a particular case of simplified neuronal models. In their earlier
designs they derived from the pioneering work of Louis Lapicque. Alternative
versions of this first original model have been proposed in the literature [9,13].
The traditional form of an IAF neuron consists of a first order differential equa-
tion (eq. 1) with a subthreshold integration domain [where the neuron integrates
its inputs I(t)] and a threshold potential (not explicitly represented in the equa-
tions) for action potential generation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

542 H. Mesa and F.J. Veredas

Cm
dVm(t)

dt
= I(t) − [Vm(t) − Vrest]

Rm
, (1)

where Cm is the neuronal membrane capacitance, Vm the membrane potential,
Rm the membrane resistance, Vrest the resting potential and I(t) the synaptic
input current. For the purposes of this paper, I(t) has been modeled as in eq. 2.

I(t) =
∑

j

ωjg(t̂j)[Esyn − Vm(t)] + noise, (2)

where ωj represents the connection weight (or synaptic efficacy) between neuron
j (presynaptic) and the current neuron (postsynaptic), g(s) is the synaptic con-
ductance, t̂j is the time relative to the last spike of the presynaptic neuron j (also
taking into account the existence of a synaptic latency and jitter of transmission
delay), Esyn is the reversal potential or synaptic equilibrium and, finally, noise
represents the background synaptic noise [following a Gaussian distribution with
parameters (μn, σn)].

Synaptic conductance has been modeled (eq. 3) by a two-fold equation con-
sisting of two alpha functions with different time-constants, τr and τd, for inde-
pendently determining its rise and decay time, respectively.

g(t) =

{
t

τr
e1− t

τr if t ≤ τr

τd−τr+t
τd

e
1− τd−τr+t

τd if t > τr.
(3)

To complete the neuron model, it was included an absolute refractory period
(of 2.5 ms) and an after-hyperpolarization potential where the membrane po-
tential decays to after an action potential occurs. This after-hyperpolarization
potential is calculated as a factor of 0.2 times the membrane potential before
the spike initiation. These two physiological parameters are not shown in the
equations for the sake of legibility.

In computer simulations of the neuron model above, synaptic conductances
have to be updated at each simulation step, which constitutes a crucial task
from the point of view of computational efficiency. The basic problem consists
of computing the overall conductance gtotal in a more efficient manner than the
simple convolution of spike trains si with conductance functions gi of all synapses
at time tx:

gtotal(tx) =
N∑

i=0

ωi

∫ tx

0
si(τ)gi(tx − τ)dτ (4)

s(t) =
N∑

i=0

ωisi(t), (5)

where N is the total number of synapses.
Starting from conductance equation 3, in [16] the Z-transformation of the

discretization of g(t) was used to get a recursive expression of g[n] as a function
of only a few previous terms. This recursive function allows us to state each

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrate-and-Fire Neural Networks 543

value of the overall conductance at step n as a function of a reduced number of
the previous values of the conductance and the presynaptic spike trains, which
significantly increases the computational efficiency of the model [16].

3 An Evolutionary Algorithm to Search for IAF Circuits

Starting from the biological and parametric restrictions supported in [17,18], for
this article we applied four genetic operators —selection, mutation, crossover-
with-speciation and heuristics— for the evolution of populations of IAF neural
networks modelled as in section 2. Each network consisted of up to six IAF neu-
rons, of which one neuron was fixed as the reference neuron and another one
was established as the target neuron for cross-correlation analysis between both.
Networks were fully connected, with no self-connectivity, and the monosynaptic
connection from the reference neuron to the target neuron was strictly removed.
Only one neuron of each network, distinct of the reference and target neurons,
was assigned an inhibitory nature; the rest had an excitatory nature. This ex-
citatory/inhibitory nature of the neurons was not changed during the evolution
of the searching algorithm.

In each generation of the evolutionary algorithm (EA), each IAF network —an
individual of the population— was simulated to get 2, 000 spikes from the tar-
get neuron and the cross-correlogram (from reference to target) was computed.
To increase the efficiency of these computations, the correlogram was calculated
by the FFT of the spike trains of the neurons, which reduced the computa-
tional costs in a 20% of time spent with classical methods. The fitness value of
each network was computed as a function of the Euclidean distance to a refer-
ence monosinaptic correlogram —obtained by an average of ten simulations of
a strong monosynaptic connection between two IAF neurons. In different stages
of this evolutionary algorithm we used diverse fitness functions —with simple
or weighted (at the region of the monosynaptic peak) Euclidean distances— to
facilitate the convergence of the population.

The genome of each individual (IAF network) of the population was encoded
as a vector of real numbers that stores the weights of the network, the rise and
decay times of the synaptic conductance curves, the synaptic latencies and trans-
mission jitters (see table 1). These parameters constitute the principal factors
that contribute to the shape of the monosynaptic correlogram [17]. The initial
population of the EA was generated in a random manner, with the only restric-
tion of filtering those random individuals producing less than 2, 000 spikes in
the target neuron for a simulation of 300, 000 steps (30, 000 ms).

As the selection operator for crossover we used a type of the roulette wheel
method [7]. The mutation operator was applied to the genome by establishing a
mutation rate for each factor (weight, rise and decay time of the conductance,
delay and jitter).

One of the main genetic operators designed in this study is the crossover
operator with a speciation method. The high complexity of the individuals of
the populations makes classical crossover operators prevent convergence [18]. To

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

544 H. Mesa and F.J. Veredas

Table 1. Scheme of the genome of one individual (IAF network) of the population, for
n neurons, with n ≥ 3. ωij is the synaptic weight from neuron i to neuron j; τ i

r and τ i
d

are the rise and decay times of synaptic conductance of neuron i, respectively; δi and ξi

represent the mean and standard deviation of a Gaussian distribution of transmission
delays for neuron i, i.e. its latency and jitter.

←− n(n − 1) − 1 −→
w13 . . . w1n w21 w23 . . . w2n . . . wn(n−1) �1

← n → ← n →
�1 τ 1

r . . . τn
r τ 1

d . . . τn
d �2

← n → ← n →
�2 δ1 . . . δn ξ1 . . . ξn

avoid this problem, we used a set of techniques known as speciation [4] consisting
in forming groups or species of individuals with similar genotypes or phenotypes
and restricting the crossover operator to be held between individuals in the
same group. To implement this crossover-with-speciation operator, a genotypic
distance was chosen to conform the groups and three essential tools were specifi-
cally designed for this problem: 1) an evaluation function to estimate the overall
fitness of a group; 2) a function to compute the size of a group as being propor-
tional to the fitness of the individuals constituting it; and 3) a cluster function
to classify the individuals of the population into species. As the cluster function
for this problem it was selected a modality of the ART2 network [3].

Finally, a set of specific heuristic operators was designed with the main ob-
jective of affecting the synaptic weights of the IAF networks in a supervised
manner. In this way, we tried to control the overall activity of the network —i.e.
its excitation/inhibition ratio— to affect the levels of basal background activity,
as well as the correlogram peak amplitude, and approach them to the shape of
the reference monosynaptic correlogram.

4 Executions and Results

To search for circuits with monosynaptic-like correlated activity, we launched
four batches of executions of the EA applying each different genetic operator in
an independent manner: for batch #1 we started from a random population and
applied mutation and heuristics; on the best 150 individuals resulting from batch
#1, in batch #2 we used mutation, crossover-with-speciation and heuristics; on
the best 150 individuals obtained from batch #2, in batch #3 we applied again
mutation, crossover-with-speciation and heuristics; finally, starting from the best
150 individuals of batch #3 we used mutation and crossover-with-speciation in
batch #4 to get the resultant final individuals. In this way, we pretended the pop-
ulation converged towards better solutions over generations —batch by batch—
in a controlled manner. The programming source of the EA was written in C++

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrate-and-Fire Neural Networks 545

(with GSL 1.0 library) and it was paralleled to allow the concurrent evaluation
of each individual (IAF network) as an independent process. The executions of
the different batches were launched in a cluster of computers with OpenMosix
consisting of three AMD R©Athlon XP 2400+ computers, giving an averaged com-
putation time of 3 hours for 100 generations of the EA with populations of 150
individuals.

1 50 100 150 200

6500

7000

7500

8000

8500

9000

9500

Best IAF network

generations

w
ei

gh
te

d
di

st
an

ce

1 50 100 150 200

6500

7000

7500

8000

8500

9000

9500

Median IAF network

generations

w
ei

gh
te

d
di

st
an

ce

distance
lineal regression

Fig. 2. Execution of the EA with the crossover-with-speciation operator (see text)

Best results with respect to population convergence were obtained with the
crossover-with-speciation operator. In figure 2 we show the results of an execu-
tion of this operator at batch #2, i.e. over a population of individuals previously
refined by mutation and heuristics (batch #1). Figure 2 (left) shows the evolu-
tion of the weighted distance from the correlogram of the best IAF network at
each generation to the reference monosynaptic circuit, as well as a linear regres-
sion to illustrate the convergence to better solutions. On the right of the figure
the evolution of the median IAF network of the population is shown. The initial
rise at both distance curves is a consequence of the preliminary genetic diversity
of the population, which tends to be homogenized along the generations.

After executing the different genetic operators designed as in batches above,
we have got a polysynaptic circuit with a correlogram (figure 3, left) very simi-
lar to the reference monosynaptic correlogram (figure 3, right). Although subtle
differences between both correlograms can be noticed visually, the computed
absolute distance between them falls into the range of mutual distance among
correlograms from different executions of exactly the same reference monosynap-
tic circuit (so that the effect of background synaptic noise introduces variability).
For both correlograms in figure 3, the peak position, amplitude and width are
almost identical, and also their basal line amplitudes coincide.

In figure 4 a scheme of the resulting circuit (best individual at the final pop-
ulation) of the EA is shown. This IAF network produces the correlogram of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

546 H. Mesa and F.J. Veredas

−50 0 50
0

10

20

30

40

50

60

time (ms)

sp
ik

es
EA solution

−50 0 50
0

10

20

30

40

50

60

time (ms)
sp

ik
es

Reference corrrelogram

Fig. 3. Correlogram of the best IAF network of the final population (left) and the
monosynaptic reference correlogram (right)

Fig. 4. Scheme of the resultant polysynaptic IAF network with monosynaptic-like cor-
related activity between neurons #0 (reference) and #1 (target). Little empty circles
on a postsynaptic neuron represent excitatory synapses arriving it; solid circles stand
for inhibitory synapses —being #2 the only inhibitory neuron. Line thickness means
synaptic weight. Length of white and black rectangles near a presynaptic neuron is
proportional to synaptic latency and jitter, respectively. Time-course (125 ms) of the
synaptic conductance curve is also shown next to each postsynaptic neuron.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Integrate-and-Fire Neural Networks 547

Table 2. Parameters of an IAF polysynaptic network with monosynaptic-like corre-
lated activity (see figure 4 for a scheme of the circuit). τm represents the membrane
time-constant; Vthres is the threshold potential; ϑ is an after-hyperpolarization factor;
ρ is an absolute refractory period (see text for details and explanations for the rest of
the parameters).

Neuronal parameters
Δt (ms) τm (ms) Cm (nF) Vrest (mV) Vthres (mV) ϑ ρ (ms)

0.1 1 0.1 -70 -40 0.2 2.5

Synaptic parameters
#neuron δ (ms) ξ (ms) τr (ms) τd (ms) μn (nA) σn (nA)

0 1.01172 0.922166 0.91984 16.1245 2.8 0.5
1 0.601871 0.950428 0.358214 3.77895 2.6 0.5
2 1.28104 0.060946 0.33425 7.25367 2.6 0.5
3 0.693697 0.588336 2.04599 3.94252 2.6 0.5
4 6.49785 2.73206 2.11559 18.583 2.6 0.5
5 4.04503 2.86628 3.50525 4.98314 2.6 0.5

Synaptic weights (μSiemens)

pre �post 0 1 2 3 4 5
0 - - 0 0 0.744677 0.055858
1 0.100444 - 3.39608 0 0 0.047406
2 −4.51582 −5 - −3.2723 −0.967395 −4.56097
3 1.29592 1.98352 0 - 0.126307 0
4 2.03464 0 1.32564 3.36806 - 0.491359
5 1.01654 4.91448 0.367558 2.03333 1.16246 -

figure 3 (left) in the absence of a monosynaptic connection between the refer-
ence neuron (#0, in the figure) and the target neuron (#1, in the figure). In table
2 the physiological and topological parameters for this circuit are illustrated.

5 Conclusions

In this paper we have shown the results of using evolutionary algorithms to search
for polysynaptic circuits that generate correlated activity with a monosynaptic-
like cross-correlogram shape. We used a set of optimization techniques to design
an efficient IAF neuron model. Moreover, the use of parallel programming meth-
ods and the increase of the efficiency in computing the cross-correlogram, allowed
us to extend the efficacy in inspection of the search space for this problem.

The design of some specific genetic operators —specially that of crossover-
with-speciation— and the use of heuristics as well as the execution of the evo-
lutionary algorithms in a batch supervised mode, concluded with the finding of
a polysynaptic network configuration that fulfills ours main proposed objective
of giving a monosynaptic-like correlated activity. Although severe biological re-
strictions were initially considered to set a realistic range for each physiological
and topological parameter in the search space, a pair of open questions remains
for future work: the biological plausibility of the resultant IAF network and its
implications in the study of the circuitry of the central nervous system. These
questions could have important implications for the concern of which are the cir-
cuits that give support to some properties found in the CNS: up to this moment,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

548 H. Mesa and F.J. Veredas

in physiological experiments of intracellular recordings the presence of a signif-
icant peak in a cross-correlogram has been usually interpreted as revealing the
existence of a monosynaptic connection. From the findings of this article we can
conclude that at least an alternative polysinaptic circuitry could be responsible
of getting that sort of correlated activity.

References

1. Alonso, J., Mart́ınez, L.: Functional connectivity between simple cells and complex
cells in cat striate cortex. Nat. Neurosci. 1, 95–403 (1998)

2. Alonso, J.M., Usrey, W.M., Reid, R.C.: Precisely correlated firing in cells of the
lateral geniculate nucleus. Nature 383, 815–819 (1996)

3. Carpenter, G., Grossberg, S.: ART 2: Self-organization of stable category recogni-
tion codes for analog input patterns. Applied Optics 26, 4919–4930 (1987)

4. Deb, K., Spears, W.M.: Speciation methods. In: Bäck, T., Fogel, D.B., Michalewicz,
Z. (eds.) Evolutionary Computation 2. Advanced algorithms and operators, ch. 4,
pp. 93–100. Institute of Physics Publishing, Bristol, United Kingdom (2000)

5. Fetz, E., Gustafsson, B.: Relation between shapes of post-synaptic potentials and
changes in firing probability of cat motoneurones. J. Physiol. 341, 387–410 (1983)

6. Gerstein, G., Perkel, D.: Mutual temporal relationships among neuronal spike
trains. Statistic techniques for display and analysis. Biophys. J. 12, 453–473 (1972)

7. Goldberg, D.: Genetic algorithms in search, optimization and machine learning.
Addison-Wesley, Reading (1989)

8. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional
architecture in the cat’s visual cortex. J. Physiol (Lond.) 160, 106–154 (1962)

9. Jack, J., Nobel, D., Tsien, R.: Electric current flow in excitable cells. Oxford Uni-
versity Press, Oxford, United Kingdom, revised paperback (1983) edition (1975)

10. Kara, P., Reinagel, P., Reid, R.C.: Low response variability in simultaneously
recorded retinal, thalamic, and cortical neurons. neuron 27, 635–646 (2000)

11. Levick, W., Cleland, B., Dubin, M.: Lateral geniculate neurons of cat: retinal inputs
and physiology. Invest. Ophthalmol. 11, 302–311 (1972)

12. Mastronarde, D.N.: Two clases of single-input X-cells in cat lateral geniculate nu-
cleus. II. Retinal inputs and the generation of receptive-field properties. J. Neuro-
physiol. 57, 7757–7767 (1987)

13. Stein, R.: The frequency of nerve action potentials generated by applied currents.
Proc. Roy. Soc. Lond. B 167, 64–86 (1967)

14. Surmeier, D., Weinberg, R.: The relationship between cross-correlation measures
and underlying synaptic events. Brain Research 331(1), 180–184 (1985)

15. Usrey, W., Reppas, J., Reid, R.: Specificity and strength of retinogeniculate con-
nections. J. Neurophysiol. 82, 3527–3540 (1999)

16. Veredas, F., Mesa, H.: Optimized synaptic conductance model for integrate-and-
fire neurons. In: 10th IASTED International Conference Artificial Intelligence and
Soft Computing, Palma de Mallorca, Spain, August 2006, pp. 97–102 (2006)

17. Veredas, F., Vico, F., Alonso, J.: Factors determining the precision of the corre-
lated firing generated by a monosynaptic connection in the cat visual pathway. J.
Physiol. 567(3), 1057–1078 (2005)

18. Veredas, F., Vico, F., Alonso, J.: Evolving networks of integrate-and-fire neurons.
Neurocomputing 69(13–15), 1561–1569 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-dimensional Recurrent Neural Networks

Alex Graves1, Santiago Fernández1, and Jürgen Schmidhuber1,2

1 IDSIA , Galleria 2, 6928 Manno-Lugano, Switzerland
2 TU Munich, Boltzmannstr. 3, 85748 Garching, Munich, Germany

{alex,santiago,juergen}@idsia.ch

Abstract. Recurrent neural networks (RNNs) have proved effective at one di-
mensional sequence learning tasks, such as speech and online handwriting recog-
nition. Some of the properties that make RNNs suitable for such tasks, for
example robustness to input warping, and the ability to access contextual informa-
tion, are also desirable in multi-dimensional domains. However, there has so far
been no direct way of applying RNNs to data with more than one spatio-temporal
dimension. This paper introduces multi-dimensional recurrent neural networks,
thereby extending the potential applicability of RNNs to vision, video process-
ing, medical imaging and many other areas, while avoiding the scaling problems
that have plagued other multi-dimensional models. Experimental results are pro-
vided for two image segmentation tasks.

1 Introduction

Recurrent neural networks (RNNs) were originally developed as a way of extending
neural networks to sequential data. The addition of recurrent connections allows RNNs
to make use of previous context, as well as making them more more robust to warping
along the time axis than non-recursive models [15]. Access to contextual information
and robustness to warping are also important when dealing with multi-dimensional data.
For example, a face recognition algorithm should use the entire face as context, and
should be robust to changes in perspective, distance etc. It therefore seems desirable to
apply RNNs to such tasks.

However, the standard RNN architectures are explicitly one dimensional, meaning
that in order to use them for multi-dimensional tasks, the data must be pre-processed
to one dimension, for example by presenting one vertical line of an image at a time
to the network. One successful use of neural networks for multi-dimensional data has
been the application of convolution networks [10] to image processing tasks such as
digit recognition [14]. One disadvantage of convolution nets is that because they are
not recurrent, they rely on hand specified kernel sizes to introduce context. Another
disadvantage is that they do not scale well to large images. For example, sequences of
handwritten digits must be pre-segmented into individual characters before they can be
recognised by convolution networks [10].

Various statistical models have been proposed for multi-dimensional data, notably
multi-dimensional HMMs. However, multi-dimensional HMMs suffer from two serious
drawbacks: (1) the time required to run the Viterbi algorithm, and thereby calculate the
optimal state sequences, grows exponentially with the size of the data exemplars; (2) the

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 549–558, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

550 A. Graves, S. Fernández, and J. Schmidhuber

Fig. 1. 2D RNN Forward pass Fig. 2. 2D RNN Backward pass

number of transition probabilities, and hence the required memory, grows exponentially
with the data dimensionality. Numerous approximate methods have been proposed to
alleviate one or both of these problems, including pseudo 2D and 3D HMMs [7], isolat-
ing elements [11], approximate Viterbi algorithms [9], and dependency tree HMMs [8].
However, none of these methods exploit the full multi-dimensional structure of the data.

As we will see, multi dimensional recurrent neural networks (MDRNNs) bring the
benefits of RNNs to multi-dimensional data, without suffering from the scaling prob-
lems described above.

Section 2 describes the MDRNN architecture, Section 3 presents two experiments
on image segmentation, and concluding remarks are given in Section 4.

2 Multi-dimensional Recurrent Neural Networks

The basic idea of MDRNNs is to replace the single recurrent connection found in stan-
dard RNNs with as many recurrent connections as there are dimensions in the data.
During the forward pass, at each point in the data sequence, the hidden layer of the net-
work receives both an external input and its own activations from one step back along
all dimensions. Figure 1 illustrates the two dimensional case.

Note that, although the word sequence usually denotes one dimensional data, we will
use it to refer to data examplars of any dimensionality. For example, an image is a two
dimensional sequence, a video is a three dimensional sequence, and a series of fMRI
brain scans is a four dimensional sequence.

Clearly, the data must be processed in such a way that when the network reaches a
point in an n-dimensional sequence, it has already passed through all the points from
which it will receive its previous activations. This can be ensured by following a suitable
ordering on the set of points {(x1, x2, ..., xn)}. One example of a suitable ordering is
(x1, . . . , xn) < (x′

1, . . . , x
′
n) if ∃ m ∈ (1, . . . , n) such that xm < x′

m and xi = x′
i ∀ i ∈

(1, . . . , m − 1). Note that this is not the only possible ordering, and that its realisation
for a particular sequence depends on an arbitrary choice of axes. We will return to this
point in Section 2.1. Figure 3 illustrates the ordering for a 2 dimensional sequence.

The forward pass of an MDRNN can then be carried out by feeding forward the input
and the n previous hidden layer activations at each point in the ordered input sequence,
and storing the resulting hidden layer activations. Care must be taken at the sequence
boundaries not to feed forward activations from points outside the sequence.

Note that the ‘points’ in the input sequence will in general be multivalued vectors.
For example, in a two dimensional colour image, the inputs could be single

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-dimensional Recurrent Neural Networks 551

Fig. 3. 2D sequence ordering. The MDRNN forward pass starts at the origin and follows the
direction of the arrows. The point (i,j) is never reached before both (i-1,j) and (i,j-1).

pixels represented by RGB triples, or blocks of pixels, or the outputs of a preprocessing
method such as a discrete cosine transform.

The error gradient of an MDRNN (that is, the derivative of some objective function
with respect to the network weights) can be calculated with an n-dimensional extension
of backpropagation through time (BPTT) [15]. As with one dimensional BPTT, the
sequence is processed in the reverse order of the forward pass. At each timestep, the
hidden layer receives both the output error derivatives and its own n ‘future’ derivatives.
Figure 2 illustrates the BPTT backward pass for two dimensions. Again, care must be
taken at the sequence boundaries.

At a point x = (x1, . . . , xn) in an n-dimensional sequence, define ixj and hx
k respec-

tively as the activations of the jth input unit and the kth hidden unit. Define wkj as
the weight of the connection going from unit j to unit k. Then for an n-dimensional
MDRNN whose hidden layer consists of H summation units, where θk is the acti-
vation function of hidden unit k, the forward pass for a sequence with dimensions
(X1, X2, . . . , Xn) can be summarised as follows:

for x1 = 0 to X1 − 1 do
for x2 = 0 to X2 − 1 do

. . .
for xn = 0 to Xn − 1 do

for k = 1 to H do
ak =

�
j in

(x1,...,xn)
j wkj

for i = 1 to n do
if xi > 0 then

ak +=
�

j h
(x1,...,xi−1,...,xn)
j wkj

hx
k = θk(ak)

Algorithm 1. MDRNN Forward Pass

Defining ôx
j and ĥx

k respectively as the derivatives of the objective function with
respect to the activations of the jth output unit and the kth hidden unit at point x, the
backward pass is:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

552 A. Graves, S. Fernández, and J. Schmidhuber

for x1 = X1 − 1 to 0 do
for x2 = X2 − 1 to 0 do

. . .
for xn = Xn − 1 to 0 do

for k = 1 to H do
ek ←

�
j ô

(x1,...,xn)
j wjk

for i = 1 to n do
if xi < Xi − 1 then

ek +=
�

j ĥ
(x1,...,xi+1,...,xn)
j wjk

ĥx
k ← θ′

k(ek)

Algorithm 2. MDRNN Backward Pass

Fig. 4. Context available at (i,j) to a 2D
RNN with a single hidden layer

Fig. 5. Context available at (i,j) to a multi-
directional 2D RNN

Since the forward and backward pass require one pass each through the data se-
quence, the overall complexity of MDRNN training is linear in the number of data
points and the number of network weights.

2.1 Multi-directional MDRNNs

At a point (x1, ..., xn) in the input sequence, the network described above has access to
all points (x′

1, ..., x
′
n) such that x′

i ≤ xi∀ i ∈ (1, ..., n). This defines an n-dimensional
‘context region’ of the full sequence, as illustrated in Figure 4. For some tasks, such as
object recognition, this would in principle be sufficient. The network could process the
image as usual, and output the object label at a point when the object to be recognized
is entirely contained in the context region.

Intuitively however, we would prefer the network to have access to the surrounding
context in all directions. This is particularly true for tasks where precise localization
is required, such as image segmentation. For one dimensional RNNs, the problem of
multi-directional context was solved by the introduction of bidirectional recurrent neu-
ral networks (BRNNs) [13]. BRNNs contain two separate hidden layers that process
the input sequence in the forward and reverse directions. The two hidden layers are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-dimensional Recurrent Neural Networks 553

Fig. 6. Axes used by the 4 hidden layers in a multi-directional 2D network. The arrows inside the
rectangle indicate the direction of propagation during the forward pass.

connected to a single output layer, thereby providing the network with access to both
past and future context.

BRNNs can be extended to n-dimensional data by using 2n separate hidden layers,
each of which processes the sequence using the ordering defined above, but with a
different choice of axes. The axes are chosen so that each one has its origin on a distinct
vertex of the sequence. The 2 dimensional case is illustrated in Figure 6. As before,
the hidden layers are connected to a single output layer, which now has access to all
surrounding context (see Figure 5).

If the size of the hidden layers is held constant, the multi-directional MDRNN ar-
chitecture scales as O(2n) for n-dimensional data. In practice however, the comput-
ing power of the network tends to be governed by the overall number of weights,
rather than the size of the hidden layers. This is presumably because the data pro-
cessing is shared between the layers. Since the complexity of the algorithm is linear
in the number of parameters, the O(2n) scaling factor can be removed by simply us-
ing smaller hidden layers for higher dimensions. Furthermore, the complexity of a task,
and therefore the number of weights likely to be needed for it, does not necessarily
increase with the dimensionality of the data. For example, both the networks described
in this paper have less than half the weights than the one dimensional networks we
have previously applied to speech recognition [4,3]. For a given task, we have also
found that using a multi-directional MDRNN gives better results than a uni-directional
MDRNN with the same overall number of weights, as previously demonstrated in one
dimension [4].

For a multi-directional MDRNN, the forward and backward passes through an n-
dimensional sequence can be summarised as follows:

1: For each of the 2n hidden layers choose a distinct vertex of the sequence, then define a set
of axes such that the vertex is the origin and all sequence co-ordinates are ≥ 0

2: Repeat Algorithm 1 for each hidden layer
3: At each point in the sequence, feed forward all hidden layers to the output layer

Algorithm 3. Multi-Directional MDRNN Forward Pass

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

554 A. Graves, S. Fernández, and J. Schmidhuber

1: At each point in the sequence, calculate the derivative of the objective function with respect
to the activations of output layer

2: With the same axes as above, repeat Algorithm 2 for each hidden layer

Algorithm 4. Multi-Directional MDRNN Backward Pass

2.2 Multi-dimensional Long Short-Term Memory

So far we have implicitly assumed that the network can make use of all context to
which it has access. For standard RNN architectures however, the range of context that
can practically be used is limited. The problem is that the influence of a given input
on the hidden layer, and therefore on the network output, either decays or blows up
exponentially as it cycles around the network’s recurrent connections. This is usually
referred to as the vanishing gradient problem [5].

Long Short-Term Memory (LSTM) [6,2] is an RNN architecture specifically de-
signed to address the vanishing gradient problem. An LSTM hidden layer consists of
multiple recurrently connected subnets, known as memory blocks. Each block contains
a set of internal units, known as cells, whose activation is controlled by three multiplica-
tive units: the input gate, forget gate and output gate. The effect of the gates is to allow
the cells to store and access information over long periods of time, thereby avoiding the
vanishing gradient problem.

The standard formulation of LSTM is explicitly one-dimensional, since the cell con-
tains a single self connection, whose activation is controlled by a single forget gate.
However we can easily extend this to n dimensions by using instead n self connections
(one for each of the cell’s previous states along every dimension) with n forget gates.

3 Experiments

3.1 Air Freight Data

The Air Freight database [12] is a ray-traced colour image sequence that comes with a
ground truth segmentation based on textural characteristics (Figure 7). The sequence is
455 frames long and contains 155 distinct textures. Each frame is 120 pixels high and
160 pixels wide.

The advantage of ray-traced data is the true segmentation can be defined directly
from the 3D models. Although the images are not real, they are realistic in the sense
that they have significant lighting, specular effects etc.

We used the sequence to define a 2D image segmentation task, where the aim was
to assign each pixel in the input data to the correct texture class. We divided the data
at random into a 250 frame train set, a 150 frame test set and a 55 frame validation
set. Note that we could have instead defined a 3D task where the network processed
the entire video as one sequence. However, this would have left us with only one
exemplar.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-dimensional Recurrent Neural Networks 555

Fig. 7. Frame from the Air Freight database, showing the original image (left) and the colour-
coded texture segmentation (right)

For this task we used a multi-directional MDRNN with 4 LSTM hidden layers. Each
layer consisted of 25 memory blocks, each containing 1 cell, 2 forget gates, 1 input
gate, 1 output gate and 5 peephole weights. This gave a total 600 hidden units. The
input and output activation functions of the cells were both tanh, and the activation
function for the gates was the logistic sigmoid in the range [0, 1]. The input layer was
size 3 (one each for the red, green and blue components of the pixels) and the output
layer was size 155 (one unit for each textural class). The network contained 43,257
trainable weights in total. As is standard for classification tasks, the softmax activation
function was used at the output layer, with the cross-entropy objective function [1]. The
network was trained using online gradient descent (weight updates after every training
sequence) with a learning rate of 10−6 and a momentum of 0.9.

The final pixel classification error rate was 7.1 % on the test set.

3.2 MNIST Data

The MNIST database [10] of isolated handwritten digits is a subset of a larger database
available from NIST. It consists of size-normalized, centered images, each of which
is 28 pixels high and 28 pixels wide and contains a single handwritten digit. The data
comes divided into a training set with 60,000 images and a test set with 10,000 images.
We used 10,000 of the training images for validation, leaving 50,000 for training.

The usual task on MNIST is to label the images with the corresponding digits. This
is benchmark task for which many algorithms have been evaluated.

We carried out a slightly modified task where each pixel was classified according to
the digit it belonged to, with an additional class for background pixels. However, the
original task can be recovered by simply choosing the digit whose corresponding output
unit had the highest cumulative activation for the entire sequence.

To test the network’s robustness to input warping, we also evaluated it on an altered
version of the MNIST test set, where elastic deformations had been applied to every
image (see Figure 8).

We compared our results with the convolution neural network that has achieved the
best results so far on MNIST [14]. Note that we re-implemented the convolution net-
work ourselves, and we did not augment the training set with elastic distortions, which
gives a substantial improvement in performance.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

556 A. Graves, S. Fernández, and J. Schmidhuber

Fig. 8. MNIST image before and after deformation

The MDRNN for this task was identical to that for the Air Freight task with the
following exceptions: the sizes of the input and output layers were now 1 (for grayscale
pixels) and 11 (one for each digit, plus background) respectively, giving 27,511 weights
in total, and the gradient descent learning rate was 10−5.

For the distorted test set, we used the same degree of elastic deformation used by
Simard [14] to augment the training set (σ = 4.0, α = 34.0), with a different initial
random field for every sample image.

Table 1 shows that the MDRNN matched the convolution net on the clean test set,
and was considerably better on the warped test set. This suggests that MDRNNs are
more robust to input warping than convolution networks.

Table 1. Image error rates on MNIST (pixel error rates in brackets)

Algorithm Clean Test Set Warped Test Set

MDRNN 0.9 % (0.4 %) 7.1 % (3.8 %)
Convolution 0.9 % 11.3 %

3.3 Analysis

One benefit of two dimensional tasks is that the operation of the network can be eas-
ily visualised. Figure 9 shows the network activations during a frames from the Air
Freight database. As can be seen, the network segments this image almost perfectly,
in spite of difficult, reflective surfaces such as the glass and metal tube running from
left to right. Clearly, classifying individual pixels in such a surface requires the use of
context.

An indication of the network’s sensitivity to context can be found by analysing the
derivatives of the network outputs at a particular point in the sequence with respect to
the inputs at all other points. Collectively, we refer to these derivatives as the sequential
Jacobian. Figure 10 shows the absolute value of the sequential Jacobian of an output
during classification of an image from the MNIST database. It can be seen that the net-
work responds to context from across the entire image, and seems particularly attuned
to the outline of the digit.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Multi-dimensional Recurrent Neural Networks 557

Fig. 9. 2D MDRNN applied to an image from the Air Freight database. The hidden layer activa-
tions display one unit from each of the layers. A common behaviour is to ‘mask off’ parts of the
image, exhibited here by layers 2 and 3.

Fig. 10. Sequential Jacobian of a 2D RNN for an image from the MNIST database. The white
outputs correspond to the class ‘background’ and the light grey ones to ‘8’. The black outputs
represent misclassifications. The output pixel for which the Jacobian is calculated is marked with
a cross. Absolute values are plotted for the Jacobian, and lighter colours are used for higher
values.

4 Conclusion

We have introduced multi-dimensional recurrent neural networks (MDRNNs), thereby
extending the applicabilty of RNNs to n-dimensional data. We have added multi-
directional hidden layers that provide the network with access to all contextual infor-
mation, and we have developed a multi-dimensional variant of the Long Short-Term
Memory RNN architecture. We have tested MDRNNs on two image segmentation
tasks, and found that it was more robust to input warping than a state-of-the-art digit
recognition algorithm.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

558 A. Graves, S. Fernández, and J. Schmidhuber

Acknowledgments

This research was funded by SNF grant 200021-111968/1.

References

1. Bridle, J.S.: Probabilistic interpretation of feedforward classification network outputs, with
relationships to statistical pattern recognition. In: Fogleman-Soulie, F., Herault, J. (eds.) Neu-
rocomputing: Algorithms, Architectures and Applications, pp. 227–236. Springer, Berlin
(1990)

2. Gers, F., Schraudolph, N., Schmidhuber, J.: Learning precise timing with LSTM recurrent
networks. Journal of Machine Learning Research 3, 115–143 (2002)

3. Graves, A., Fernández, S., Gomez, F., Schmidhuber, J.: Connectionist temporal classifica-
tion: Labelling unsegmented sequence data with recurrent neural networks. In: Proceedings
of the International Conference on Machine Learning, ICML 2006, Pittsburgh, USA (2006)

4. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM
and other neural network architectures. Neural Networks 18(5-6), 602–610 (2005)

5. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent nets: the
difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F. (eds.) A Field
Guide to Dynamical Recurrent Neural Networks, IEEE Computer Society Press, Los Alami-
tos (2001)

6. Hochreiter, S., Schmidhuber, J.: Long Short-Term Memory. Neural Computation 9(8), 1735–
1780 (1997)

7. Hülsken, F., Wallhoff, F., Rigoll, G.: Facial expression recognition with pseudo-3d hidden
markov models. In: Proceedings of the 23rd DAGM-Symposium on Pattern Recognition,
London, UK, pp. 291–297. Springer, Heidelberg (2001)

8. Jiten, J., Mérialdo, B., Huet, B.: Multi-dimensional dependency-tree hidden Markov models.
In: ICASSP 2006, 31st IEEE International Conference on Acoustics, Speech, and Signal Pro-
cessing, Toulouse, France, May 14-19, 2006, IEEE Computer Society Press, Los Alamitos
(2006)

9. Joshi, D., Li, J., Wang, J.Z.: Parameter estimation of multi-dimensional hidden markov mod-
els: A scalable approach. p. III, pp. 149–152 (2005)

10. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

11. Li, J., Najmi, A., Gray, R.M.: Image classification by a two-dimensional hidden markov
model. IEEE Transactions on Signal Processing 48(2), 517–533 (2000)

12. McCarter, G., Storkey, A.: Air Freight Image Segmentation Database,
http://homepages.inf.ed.ac.uk/amos/afreightdata.html

13. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing 45, 2673–2681 (1997)

14. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks ap-
plied to visual document analysis. In: ICDAR ’03: Proceedings of the Seventh International
Conference on Document Analysis and Recognition, Washington, DC, USA, p. 958. IEEE
Computer Society Press, Los Alamitos (2003)

15. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and
their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Back-propagation:
Theory, Architectures and Applications, pp. 433–486. Lawrence Erlbaum Publishers, Hills-
dale, NJ (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://homepages.inf.ed.ac.uk/amos/afreightdata.html

FPGA Implementation of an Adaptive

Stochastic Neural Model

Giuliano Grossi and Federico Pedersini

Dipartimento di Scienze dell’Informazione
Università degli Studi di Milano

Via Comelico 39, I-20135 Milano, Italy
{grossi,pedersini}@dsi.unimi.it

Abstract. In this paper a FPGA implementation of a novel neural
stochastic model for solving constrained NP-hard problems is proposed
and developed. The hardware implementation allows to obtain high com-
putation speed by exploiting parallelism, as the neuron update and the
constraint violation check phases can be performed simultaneously.

The neural system has been tested on random and benchmark graphs,
showing good performance with respect to the same heuristic for the
same problems. Furthermore, the computational speed of the FPGA
implementation has been measured and compared to software imple-
mentation. The developed architecture features dramatically faster com-
putations with respect to the software implementation, even adopting a
low-cost FPGA chip.

1 Introduction

The recent advances in design and manufacturing of integrated circuits, such as
the programmable chips for fast prototyping (FPGA), allow to design hardware
architectures that synthesize large neural networks consisting of hundreds of
neural units. A direct consequence of these technological advances is the growing
interest in computational models that take advantage of the massive parallelism
achievable in hardware.

Here we derive a circuit of a neural model [1] based on a stochastic state
transition mechanism and we apply it to the optimization of the cost function of
particular NP-hard constrained combinatorial optimization problems ([2,3]). The
model considers quadratic pseudo-boolean cost functions, i.e., mappings from the
family of subsets of a finite ground set to the set of integers or reals. It focuses on
such functions because there are a large number of combinatorial optimization
problems which arise naturally or can be formulated easily as pseudo-boolean
optimization problems [4].

The proposed model, described in Section 2, is based on a penalization strat-
egy which adaptively modifies the weights, in such a way that the probability
to find non-admissible solutions continuously decreases up to negligible values.
The network performs a constraint-satisfaction search process that begins with
“weak” constraints and then proceeds by gradually strengthening them with a

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 559–568, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

560 G. Grossi and F. Pedersini

penalty mechanism. We show that the network evolves, according to this strat-
egy, until a solution is reached, that satisfies the problem constraints.

A simplified version of the algorithm has been developed in order to synthesize
a hardware architecture implementing the algorithm. The designed hardware ar-
chitecture is customizable to the network size and to the kind of problem. An
implementation of this architecture, for the solution of the Maximum Indepen-
dent Set on networks of up to 256 neurons, has been developed on a low-cost
FPGA chip (Xilinx Spartan 3). The hardware design and some performance
evaluation are presented in Section 3.

2 The Model

In this section we recall the adaptive stochastic recurrent network model pre-
sented in [1] starting from some preliminaries and definition on the contrained
optimization.

2.1 Constrained Pseudo-Boolean Optimization

A family of functions that often plays an important role in optimization models
are the so-called pseudo-Boolean functions [4]. Their polynomial representation,
with particular regard to the quadratic and symmetric one, corresponds in a nat-
ural way to the objective (or cost) function of many optimization problems. Our
aim is twofold: to use these functions as cost, but also to discriminate admissi-
ble solutions from non-admissible ones, by introducing suitable pseudo-Boolean
penalty functions. To this purpose, we will use equality quadratic constraints
based on two independent variables and expressed as Boolean functions.

Let Bn be a vector space of n-tuples of elements from B = {0, 1}. Mappings
f : Bn → R are called pseudo-Boolean functions. Let V = {1, . . . , n} be a set
containing n elements: since there is a one-to-one correspondence between the
subsets of V and the binary vectors of Bn, these functions are set functions, that
is, mappings that associate a real value to every subset S of V .

In the following, we will represent such pseudo-Boolean functions by means
of multi-linear polynomials having the form:

f(x1, . . . , xn) =
∑

S⊆V

cS

∏

k∈S

xk,

where cS are integer coefficients and, by convention,
∏

k∈∅
xk = 1. The size of

the largest subset S ⊆ V for which cS �= 0 is called the degree of f , and is denoted
by deg (f). Naturally, a pseudo-Boolean function f is quadratic if deg (f) ≤ 2.

For many optimization problems P the set of admissible solutions SolP is a
proper subset of the search space Bn on which the pseudo-Boolean functions are
defined, i.e., SolP ⊂ Bn. In order to use our space-independent general technique
to find optima, we need to introduce constraints as base ingredients to succeed
in finding an admissible solution.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

FPGA Implementation of an Adaptive Stochastic Neural Model 561

Frequently, for an admissible solution S ∈ SolP , the constraints are given
in terms of binary Boolean functions φ : B2 → B evaluated on a fixed set of
pairs TS = {(xi, xj)|(xi, xj) ∈ B2 ∧ i �= j ∈ [1 . . n]} of size m. Thus, a given
constraint for S is satisfied when the following conjunction:

∧

bk∈TS

φ(bk) = true.

By denoting with g the multi-linear polynomial associated to φ, such that g :
B2 → B and g(bk) = 1 ⇔ φ(bk) = true, the previous satisfiability condition is
transformed into the following maximization condition:

∑

(xi,xj)∈TS

g(xi, xj) = m, (1)

In order to illustrate the feasibility of mapping a broad class of combinatorial
problems into a discrete neural model, we formalize a maximization version of
a problem P with the following linear objective function subject to quadratic
constraints:

maximize
n∑

i=1

xi

subject to
∑

(xi,xj)∈TS

g(xi, xj) = m.

The same can be easily derived for minimization problems.
To derive an energy function whose maximum value corresponds to the “best”

solution for P , we combine both the cost and the penalty function in the same
objective function, obtaining the general form

f(x1, . . . , xn) = α

n∑

i=1

xi +
∑

(xi,xj)∈TS

γkgk(xi, xj)

= α

n∑

i=1

xi +
∑

(xi,xj)∈TS

γk(akxi + bkxj + ckxixj + dk)

=
n∑

i=1

λixi +
∑

i<j

wijxixj + C, (2)

where α,γ1, . . . , γm are positive integer parameters, useful in finding better so-
lutions (we will explain their role later) while preserving optima;

(
wij

)
n×n

is an
integer symmetric matrix with null diagonal, λ is an integer vector and C an
integer constant.

In the next section, we will interpret
(
wij

)
n×n

and λ, respectively, as weights
and thresholds of a neural network used to find optimal solutions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

562 G. Grossi and F. Pedersini

2.2 Examples

In this section we recall some combinatorial optimization problems, which arise
naturally in the area of algorithmic graph theory, and can be easily formulated
as pseudo-Boolean optimization problems.

All graphs G = 〈V, E〉 considered are arbitrary undirected graphs, where
V = {1, . . . , n} is the set of vertices and E ⊆ V ⊕ V (not ordered pairs) is
the set of edges. Two distinct vertices i and j are called adjacent if they are
connected by an edge; the set N (i) denotes the neighbours of vertex i, i.e., the
vertices that are adjacent to i.

Max Clique (Max Independent Set). It consists in finding the largest cardinality
subset of vertices which are pairwise connected, i.e., adjacent. This problem can
be formulated as

maximize α
∑

i∈V

xi

subject to
∑

{i,j}∈Ec

(x̄i ∨ x̄j) = |Ec|,

where Ec denotes the complement of E.

Min Vertex Cover. A vertex cover for a graph G is a subset of vertices such that
each edge has at least one end-point in the subset. The objective function of this
problem is:

minimize α
∑

i∈V

xi

subject to
∑

{i,j}∈E

(xi ∨ xj) = |E|.

Max k-colorable Induced Subgraph. This problem can be translated into the
search of a maximum independent set (problem (3)) on the expanded graph
G̃ = 〈Ṽ , Ẽ〉 built as follows: for each i ∈ V the set {i1, . . . , ik} ⊆ Ṽ and for each
{i, j} ∈ E the sets {{ip, jp} | 1 ≤ p ≤ k}, and {{ip, iq} | 1 ≤ p, q ≤ k ∧ p �= q}
belong to Ẽ (see Fig. 1 for an example).

2.3 Architecture and Dynamics

The network architecture is derived from the problem (for instance, the graph
topology), with the set of neurons (or units) isomorphic to the set of binary vari-
ables representing the solutions, and the connections between neurons derived
according to the logical dependencies between variable pairs. The absence of such
a connection between a variable pair implies neither strength in the synaptic
connection between neurons, nor constraints between the variables themselves.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

FPGA Implementation of an Adaptive Stochastic Neural Model 563

B1

R1

G1

1 2

4 3
R4

B4

G4
G3

B3
R3

R

B

G2

2

2

Fig. 1. Graph 3-colorable problem mapped into the maximum independent set problem

Each unit i (1 ≤ i ≤ n) is stochastic, assuming the state xi = 1 with proba-
bility φβ(hi) and xi = 0 with probability 1 − φβ(hi), where

hi = λi +
∑

j∈N (i)

wijxj and φβ(h) =
1

1 + e−βh
, (3)

which is the usual Glauber [5] or logistic sigmoid-shaped function with parameter
β > 0.

We adopt as energy the quadratic function expressed in (2) and we use the
stochastic activation function described above, in order to derive stochastic dy-
namics able to lead the system status in the saturation region of the sigmoid
function.

We can therefore interpret the pseudo-Boolean quadratic function

E(x1, . . . , xn) =
∑

i∈V

λixi +
∑

i<j

wijxixj (4)

as energy of the network that must be maximized by means of “thermal fluctu-
ations”.

By adopting the saturated-nonlinear activation function (3) and letting the
network evolve with asynchronous dynamics, the resulting dynamic system lo-
cally minimizes the network energy with high probability. However, we are in-
terested in a process that, while minimizing the energy, also guarantees that the
final stable state corresponds to a valid solution. For this reason, the proposed
process alternates the following two phases called units updating and weights
strengthening:

Units updating (Phase 1.). Asynchronously update the units i ∈ [1 . . n] with
the following stochastic dynamics:

xi =
{

1 with probability φβ(hi)
0 with probability 1 − φβ(hi)

.

Weights strengthening (Phase 2.). Increase the weights wij and the thresh-
olds λi, λj of the connections between the units i and j that violate the
problem constraints g(xi, xj). Many different penalization strategies can be

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

564 G. Grossi and F. Pedersini

defined: here we update only those connections that cause violations in the
current state. This strategy can be formalized as follows (k ∈ [1 . .m]):

if g(xi, xj) = 0 ⇒ γk = γk + 1. (5)

Since for each i, the relationship between the (3) and the (4) is expressed by

hi(x1, . . . , xn) = ΔEi =
∂

∂xi
E(x1, . . . , xn)

= E(x1, . . . , xi−1, 1, xi+1, . . . , xn) − E(x1, . . . , xi−1, 0, xi+1, . . . , xn).

thus, flipping the state of the unit i produces a variation of energy ΔEi =
hi(x1, . . . , xn), which does not depend on xi. This energy dependency from hi

is just used to force the convergence toward feasible solution, because hi is
a function of those constraints containing the variable xi. Thus, changing the
absolute value of γk (as in (5)) results in a changing of the sign of hi.

The algorithm ASNM (Adaptive Stochastic Neural Model), that iterates the
simulation of the neural network behaviour and the penalization, is sketched in
the Algorithm 1.

Algorithm 1. ASNM
Require: An initial matrix W , a vector λ and an integer α > 0

while (there are violations) do
for all i = 1 to n do

hi = λi −
�

k∈N (i)

wik xk;

xi =

�
1, with probability φ(hi)
0, with probability 1 − φ(hi)

end for
for all k = 1 to m do

if (gk not satisfied) then
γk = γk + 1

end if
end for

end while
Ensure: admissible solution (characteristic vector) x

It has to be proved that this algorithm stops when a stable state of a suitable
network is reached, where the related subset of vertices is a maximal solution of
the problem.

This statement is summarized in the following

Theorem 1. Let x(t) be the state found by the algorithm at time t and let Z(t)
be the random variable denoting the number of violations at the same time. Then,

lim
t→+∞E[Z(t)] = 0,

where E[·] denotes the expectation of a random variable.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

FPGA Implementation of an Adaptive Stochastic Neural Model 565

Moreover, regarding the optimality of the feasible solution found it can be stated
that:

Corollary 1. Let x be the stable state of the network found by the ASNM al-
gorithm. Then x represents, with high probability, an optimal solution, i.e., a
suboptimal solution but not subset of another one.

3 The Hardware Architecture

3.1 Description of the Architecture

Figure 2 shows the block diagram of the proposed architecture. Depending on
the kind of problem to be solved, a different Violation Detection Logic has to be
used, according to the problem’s constraints. Figure 3 shows the circuit used to
detect the constraint violations for Maximum Independent Set problems. The
instance of the particular problem to be solved is represented by the Adjacency
Matrix A = {aij}. In this architecture, A is stored in a memory bank organized
as a N-by-N matrix. The coefficients aij have to be stored in the matrix before
the algorithm starts. The dynamically-evolving solution vector is stored in the
Status Register (statusreg), a N -bit register containing the value of each node,

Fig. 2. Block diagram of the proposed architecture. Depending on the kind of problem
to solve, the corresponding Violation Detection Logic has to be inserted. The Adjacency
Matrix and α are provided as input, prior to algorithm execution.

Fig. 3. The Violation Detection Logic corresponding to the Maximum Independent
Set problem

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

566 G. Grossi and F. Pedersini

xi. The solution vector initalization depends on the problem to solve: for the
MIS, it is initialized to xi = 1, ∀i.

Each iteration of the main computation cycle (the “while” cycle in the ASNM
algorithm) is carried out by scanning twice the graph nodes. The first scanning
corresponds to the Units Updating phase: the current solution is updated, com-
puting a new value for xi, ∀i. In the second one, called Violation Test phase,
the whole graph is visited, in order to detect any constraint violation. The scan-
nings are performed by letting the Node Selector range from 0 to N −1, whereby
representing i.

During the Units Updating phase, a bank of N 2-input AND gates computes
the N products aijxj , ∀j. These signals are fed to the Addition Unit, that com-
putes

∑
j aijxj by counting the “1”s contained in the input. Since the result of

the sum can range from 0 to N = 2m, the output of this unit needs m+1 bit for
its representation. The multiplier then computes

∑
j Waijxj , where the value

of W is stored in an m-bit register-counter. At each iteration, the value of W
is incremented by 1, thus increasing the weight for all nodes. As the computed
product is represented by 2m bits, the constant α is 2m bits wide as well. α is
provided as a constant in input, like the matrix A. The subtractor computes then
hi = α−

∑
j Waijxj , for the i−th node. From the 2m-bit representation of hi, an

8-bit representation is extracted, that best represents the range of the transition
zone in the sigmoid function g(hi); by using 8 bits, the significant range of hi is
therefore quantized into 256 intervals, largely enough for an accurate evaluation
of g(·). hi is the input of the Look-up Table (implemented with a 256x8 ROM)
containing a sampling of the function g(·). Its output represents the value of
g(hi), also quantized into 256 steps. Each value of g(hi) is then compared to an
8-bit random value generated by a pseudo-random sequence generator. The pe-
riod of the generator has to be large enough to avoid repetition of the sequences
before the end of the computation. This is anyway not critical at all, as the
complexity of the circuit increases as log2 P , being P the period. The result of
the comparator corresponds to the new value for the i − th node x∗

i and will be
then stored in the Status Register.

After completion of the Units Updating phase, the Control Unit starts the
Violation Test phase: for each i ranging from 0 to N −1, the Violation Detection
logic checks for constraint satisfaction. Considering the case of the MIS problem,
the Violation Detection logic, shown if Figure 3, computes xi

∨
j aijxj , that

results to be 1 in case of violation. If this happens, the Control Unit stops the
violation test, performs the Weights Strengthening phase, by incrementing the
value of W by 1, and starts a new iteration of the main computation cycle.
Otherwise, if the violation test phase completes without violation, the Control
Unit stops the process: this means that the algorithm is done and the Register
Status contains a valid solution.

3.2 FPGA Implementation

The proposed architecture has been developed on a low-cost FPGA chip (Xil-
inx’s Spartan 3 series); the adopted chip (XC3S-400) contains 400,000 system

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

FPGA Implementation of an Adaptive Stochastic Neural Model 567

gates. Figure 4 shows the schematic of an implementation of the architecture.
On this chip, the largest architecture that could be hosted is capable to handle a
maximum graph size of 256 nodes (N = 256), as reported in Table 1. However,
being the architecture design almost completely scalable, it is very simple to
extend the architecture to larger values of N , in order to solve the problem on
larger graphs. Considering for instance the adoption of high-end FPGA chips,
like Xilinx’s Virtex series, the proposed architecture can be easily extended to
N = 1024 or more [6]. In fact, the main bottleneck on complexity, in terms of
number of gates, is the memory bank containing A, whose size increases as N2.
The complexity of the other circuits grows at most linearly with N .

Fig. 4. The schematic of the implemented architecture, for MIS problems, N = 256,
as implemented on a Xilinx FPGA chip

3.3 Computational Performance

The timing constraints of the implemented circuit, computed by the place&route
process on the Spartan 3 chip, allow a maximum clock frequency fMAX =
21.578MHz. The circuit has been therefore tested with a conservative clock
frequency fC = 20MHz. In order to evaluate the computational speed of the
developed architecture, the computation times have been compared to those ob-
tained with a software implementation of the algorithm on a PC (Pentium P4,
2.8 GHz). The values reported in Table 2 are mean values obtained over 100
randomly-generated graphs with 256 nodes and different densities. As the table
shows, the proposed architecture featured a speed-up ratio, over the software
execution, of about 90 times.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

568 G. Grossi and F. Pedersini

Table 1. Synthesis report corresponding to the implementation of the described ar-
chitecture (MIS problem, N = 256) on a Xilinx Spartan3-XC400 FPGA chip

Table 2. Computing times of the algorithm (MIS, N = 256), executed by software
and by the implemented architecture. The average speed-up ratio is about 90.

N Graph Density Iterations Time (SW) Time (FPGA@20MHz)

256 0.2 5.09 8.73 ms 0.097 ms

256 0.5 9.71 16.7 ms 0.186 ms

256 0.8 24.72 42.4 ms 0.475 ms

References

1. Grossi, G.: A discrete adaptive stochastic neural model for constrained optimization.
In: International Conference on Artificial Neural Networks - ICANN (1), pp. 641–650
(2006)

2. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., San Francisco, CA (1979)

3. Karp, R.M.: Complexity of Computer Computations. In: Reducibility among Com-
binatorial Problems, pp. 85–103. Plenum Press, New York (1972)

4. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. DAMATH: Discrete Ap-
plied Mathematics and Combinatorial Operations Research and Computer Sci-
ence 123 (2002)

5. Glauber, R.J.: Time-dependent statistics of the Ising model. Journal of Mathemat-
ical Physics 4(2), 294–307 (1963)

6. Patel, H.: Synthesis and implementation strategies to accelerate design perfor-
mances. Technical report, Xilinx (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Global Robust Stability of Competitive Neural

Networks with Continuously Distributed Delays
and Different Time Scales

Yonggui Kao� and QingHe Ming

Department of Mathematics, ZaoZhuang University,
Zaozhuang 277160, People’s Republic of China

ygkao2006@yahoo.com.cn

Abstract. The dynamics of cortical cognitive maps developed by self-
organization must include the aspects of long and short-term memory.
The behavior of such a neural network is characterized by an equation
of neural activity as a fast phenomenon and an equation of synaptic
modification as a slow part of the neural system, besides, this model bases
on unsupervised synaptic learning algorithm. In this paper, using theory
of the topological degree and strict Liapunov functional methods, we
prove existence and uniqueness of the equilibrium of competitive neural
networks with continuously distributed delays and different time scales,
and present some new criteria for its global robust stability.

1 Introduction

Dynamic neural networks, which contain both feedforward and feedback connec-
tions between the neural layers, play an important role in visual processing, pat-
tern recognition, neural computing, and control. Moreover, biological networks
possess synapses whose synaptic weights vary in time. Thus, a competitive neural
network model with a combined activity and weight dynamics have been paid
much attention [1−4]. These neural network models describe the dynamics of
both the neural activity levels, the short-term memory (STM), and the dynam-
ics of unsupervised synaptic modifications, the long-term memory (LTM). That
is, there are two time scales in these neural networks, one corresponds to the fast
changes of the neural network states, another corresponds to the slow changes
of the synapses by external stimuli. The neural network can be mathematically
expressed as

STM : εẋj(t) = −ajxj(t) +
N∑

i=1
Dijf(xi(t)) + Bj

p∑

i=1
mij(t)yi (1)

LTM : ṁij(t) = −mij(t) + yif(xj(t)) (2)
i = 1, 2, · · · , p, j = 1, 2, · · · , N

� Corresponding author.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 569–578, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

570 Y. Kao and Q. Ming

where xj(t) is the neuron current activity level, f(xj(t)) is the output of neu-
rons, mij(t) is the synaptic efficiency, yi is the constant external stimulus, Dij

represents the connection weight between the ith neuron and the jth neuron,
aj > 0 is a positive function, representing the time constant of the neuron, Bj

is the strength of the external stimulus, ε is the time scale of STM state[2].
The competitive neural networks with different time scales are extensions

of Grossbergs shunting network [5] and Amaris model for primitive neuronal
competition [6]. For neural network models without considering the synaptic
dynamics, their stability have been extensively analyzed, Cohen and Grossberg
[7] found a Lyapunov function for such a neural network, and derived some suffi-
cient conditions ensuring absolute stability. For the competitive neural network
with two time scales, the stability was studied in [1-4]. In [1], the theory of sin-
gular perturbations was employed to derive a condition for global asymptotic
stability of the neural networka (1) and (2). In [2], the theory of flow invariance
was used to prove the boundedness of solutions of the neural network, and a
sufficient condition was derived based on Lyapunov method. A special case of
these neural networks was given in [8]. In [4], a single discrete delay was intro-
duced into a generalized multi-time scale competitive neural network model with
nonsmooth functions, and the conditions for global exponential stability of the
neural networks were derived.

In the applications and designs of neural networks, neural networks usually
has a spatial extent due to the presence of an amount of parallel pathways with
a variety of axon sizes and lengths. Thus, the delays in artificial neural networks
are usually continuously distributed [9-11, 24-32]. Moreover, there are often some
unavoidable uncertainties such as modelling errors, external perturbations and
parameter fluctuations, which can cause the network to be unstable. So, it is
essential to investigate the globally robust stability of the network with errors
and perturbations. To the best of our knowledge, only some limited works are
done on this problem [12-20]. In [12], the authors derived a novel result based
on a new matrix-norm inequality technique and Lyapunov method, and gave
some comments on those in [17]. In [13], the authors viewed the uncertain pa-
rameters as perturbations and gave some testable results for robust stability. In
[14], several criteria are presented for global robust stability of neural networks
without delay. In [15,16], global robust stability of delayed interval Hopfield neu-
ral networks is investigated with respect to the bounded and strictly increasing
activation functions. Several M-matrix conditions to ensure the robust stability
are given for delayed interval Hopfield neural networks. But, in all these models,
only neural activation dynamics is considered, the synaptic dynamics has not
involved.

So, in this paper, we introduce the continuously distributed delays into the
competitive neural networks (1) and (2) with different time scales, where both
neural activation and synaptic dynamics are taken into consideration. To our
knowledge, such neural networks with continuously distributed delays have never
been reported in the literature. We allow the model has non-differentiable and
unbounded functions, and use the theory of the topological degree and strict

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Global Robust Stability of Competitive Neural Networks 571

Liapunov functional methods to prove the existence and uniqueness of the equi-
librium, and derive a new sufficient condition ensuring global robust stability of
the networks.

Consider a competitive neural network model with continuously distributed
delays described by the following differential-difference equations

STM : εẋi(t) = −aixi(t) +
N∑

j=1
Dijfj(xj(t))

+
N∑

j=1
DT

ijfj(
∫ t

−∞ Kij(t − s)xj(s)ds) + Bi

p∑

j=1
mij(t)yj (3)

LTM : ṁij(t) = −mij(t) + yjfi(
∫ t

−∞ Kij(t − s)xi(s)ds) (4)
i = 1, 2, · · · , N, j = 1, 2, · · · , p

where mij is the synaptic efficiency, yi is the external stimulus, DT
ij represents

the synaptic weight of delayed feedback. For convenience of expression, we in-
terchange the indexes i and j in (1) and (2), symbols appeared in (1) and (2)
have the same meaning, but the output of each neuron is allowed to have differ-
ent relations fj(xj(t)), and the delay kernels Kij : [0, ∞) → R are continuous,
integrable and there exit nonnegative constants kij such that

∫ ∞

0
|Kij(u)|du ≤ kij ,

∫ ∞

0
uKij(u)du < ∞.

After setting Si(t) =
N∑

j=1
mij(t)yj = yT mi(t), y = (y1, y2, · · · , yp)T , mi(t) =

(m1i, m2i, · · · , mpi)T , and summing up the LTM (4) over j, the network (3) and
(4) can be rewritten as the state-space form

STM : εẋi(t) = −aixi(t) +
N∑

j=1
Dijfj(xj(t))

+
N∑

j=1
DT

ijfj(
∫ t

−∞ Kij(t − s)xj(s)ds) + BiSi(t) (5)

LTM : Ṡij(t) = −Si(t) + |y|2fi(
∫ t

−∞ Kij(t − s)xi(s)ds) (6)
i = 1, 2, · · · , N, j = 1, 2, · · · , N

without loss of generality, the input stimulus vector y is assumed to be normal-
ized with unit magnitude |y|2 = 1. , and the fast time scale parameter ε is also
assumed to be unit, then the network is simplified to

STM : ẋi(t) = −aixi(t) +
N∑

j=1
Dijfj(xj(t))

+
N∑

j=1
DT

ijfj(
∫ t

−∞ Kij(t − s)xj(s)ds) + BiSi(t) (7)

LTM : Ṡi(t) = −Si(t) + fi(
∫ t

−∞ Kij(t − s)xi(s)ds) (8)
i = 1, 2, · · · , N, j = 1, 2, · · · , N

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

572 Y. Kao and Q. Ming

For convenience, Let

xi+N (t) = si(t), i = 1, 2, · · · , N

Wij =

⎧
⎨

⎩

Dij , 1 ≤ i, j ≤ N ;
Bi, 1 ≤ i ≤ N, j = N + i;
0, else

WT
ij =

⎧
⎨

⎩

DT
ij , 1 ≤ i, j ≤ N ;

1, N < i ≤ 2N, i = N + j;
0, else

ai =
{

ai, 1 ≤ i ≤ N ;
1, N + 1 ≤ i ≤ 2N,

fi(x) =
{

fi(x), 1 ≤ i ≤ N ;
xi, N + 1 ≤ i ≤ 2N

then we can rewrite the system (7) and (8) as the following models:

ẋi(t) = −aixi(t) +
2N∑

j=1
Wijfj(xj(t)) +

2N∑

j=1
WT

ij fj(
∫ t

−∞ Kij(t − s)xj(s)ds)

i = 1, 2, · · · , 2N.

(9)

Throughout this paper,we always suppose that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

AI = {A = diag(a1, a2, · · · , a2N) : A ≤ A ≤ A, i,e,
ai ≤ ai ≤ ai, i = 1, 2, · · · , 2N, ∀ A ∈ AI , }

WI = {W = (Wij)2N×2N : W ≤ W ≤ W, i,e,
W ij ≤ Wij ≤ W ij , i = 1, 2, · · · , 2N, ∀ W ∈ WI , }

WT
I =

{
WT = (WT

ij)2N×2N : WT ≤ WT ≤ W
T
, i,e,

WT
ij ≤ WT

ij ≤ W
T

ij , i = 1, 2, · · · , 2N, ∀ WT ∈ WT
I , }

(10)

In the sequel, we first apply the theory of the topological degree to derive a
sufficient condition guaranteeing existence of the equilibrium for the competitive
neural networks with distributed delays, then we prove that the condition for
existence and uniqueness of equilibrium also ensure the global robust stability
of the competitive neural networks. In the remaining sections of this paper, we
need the following matrix notations:

x = (x1, x2, · · · , x2N)T , [x]+ = (|x1|, |x2|, · · · .|x2N |)T , B+ = (|bij |)2N×2N ,
B = (bij)2N×2N > 0; bij > 0. B = (bij)2N×2N ≥ 0; bij ≥ 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Global Robust Stability of Competitive Neural Networks 573

2 Main Results and Proof

Definition1. system (7) with (8) is called robust stable or global robust stable if
its unique equilibrium x∗ = (x∗

1, x
∗
2, · · · , x∗

2N)T is stable or global stable for each
A = diag(a1, a2, · · · , a2N) ∈ AI , W = (wij)2N×2N ∈ WI , WT = (wT

ij)2N×2N ∈
WT

I .

Theorem 1. Assume that
(T1) |fj(y1) − fj(y2)| ≤ σi|y1 − y2|, for all y1, y2 ∈ R, i = 1, 2, · · · , 2N ;
(T2) C = A0 − W+

0 σ − WT
0 σK is an M-matrix, where W+

0 = (|(W+
0)ij |)2N×2N ,

WT
0 = (|(WT

0)ij |)2N×2N , |(W+
0)ij | = max{|W ij |, |W ij |}, |(WT

0)ij | = max{|WT
ij |,

|WT

ij |}, i, j = 1, 2, · · · , 2N, A0 = diag(a1, a2, · · · , a2N), K = (kij)2N×2N . Then,
the system (7) with (8) has a unique equilibrium which is global robust
stable.

Proof. Part 1 The existence of the equilibrium.
By (T1), it follows that

|fj(y)| ≤ σj |y|+|fj(0)| j = 1, 2, · · · , 2N, ∀y ∈ R. (11)

Let h(x) = Ax−Wf(x)−WT f(x) = 0 (12)

where A ∈ AI , W ∈ WI , WT ∈ WT
I . It is obvious that the solutions of (12) are

the equilibria of system of (7) with (8). Let we define homotopic mapping

H(x, λ) = λh(x)+(1−λ)x λ ∈ J = [0, 1] (13)

We have

|Hi(x, λ)| = |λ(aixi −
2N∑

j=1
Wijfj(xj) −

2N∑

j=1
WT

ij fj(
∫ t

−∞ Kij(t − s)xj(s)ds))

+ (1 − λ)xi|

≥ [1 + λ(ai − 1)]|xi| − λ[
2N∑

j=1
(|Wij |σj + |WT

ij |σjkij)|xj |

+
2N∑

j=1
(|Wij | + |WT

ij |)|fj(0)|]

(14)

That is

H+ ≥ [E + λ(A0 − E)][x]+ − λ(W+
0 σ + WT

0 σK)[x]+ − λ(W+
0 + WT

0)[f(0)]+)
= (1 − λ)[x]+ + λ(A0 − W+

0 σ − WT
0 σK)[x]+ − λ(W+

0 + WT
0)[f(0)]+

where H+ = (|H1|, |H2| · · · , |H2N |)T , [x]+ = (|x1|, |x2|, · · · , |x2N |)T , [f(0)]+ =
(|f1(0)|, |f2(0)|, · · · , |f2N (x)|)T , E is an identity matrix.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

574 Y. Kao and Q. Ming

Since C = A0 − W+
0 σ − WT

0 σK is an M -matrix [21], we have (A0 − W+
0 σ −

WT
0 σK)−1 ≥ 0 (nonnegative matrix) and there exists a Q = (Q1, Q2, · · · , Q2N)T

> 0, namely Qi > 0, i = 1, 2, · · · , 2N , such that (A0 − W+
0 σ − WT

0 σK)Q > 0.
Let

U(R0)={x : [x]+ ≤ R0 = Q+(A0−W+
0 σ−WT

0 σK)−1(W+
0 +WT

0)[f(0)]+}, (15)

then, U(R0) is not empty and it follows from (15) that for any x ∈ ∂U(R0)
(boundary of U(R0))

H+ ≥ (1 − λ)[x]+ + λ(A0 − W+
0 σ − WT

0 σK)[x]+ − λ(W+
0 + WT

0)[f(0)]+

= (1 − λ)[x]+ + λ(A0 − W+
0 σ − WT

0 σK)([x]+

− (A0 − W+
0 σ − WT

0 σK)−1(W+
0 + WT

0)[f(0)]+)
= (1 − λ)[x]+ + λ(A0 − W+

0 σ − WT
0 σK)Q > 0, λ ∈ [0, 1]

(16)

That is
H(x, λ) �= 0 for x ∈ ∂U(R0), λ ∈ [0, 1]

So, from homotopy invariance theorem [22], we have

d(h, U(R0), 0) = d(H(x, 1), U(R0), 0) = d(H(x, 0), U(R0), 0) = 1

where d(h, U(R0), 0) denotes topological degree [23]. By topological degree the-
ory, we can conclude that equation (12) has at least one solution in U(R0). That
is, system (7) with (8) has at least an equilibrium.

Part 2 Uniqueness of equilibrium and its global robust stability.
Let x∗ = (x∗

1, x
∗
2, · · · , x∗

2N)T be an equilibrium of system (7) with (8) and
x(t) = (x1(t), x2(t), · · · , x2N (t))T �= (x∗

1, x
∗
2, · · · , x∗

2N)T is any solution of system
(7) with (8). Rewrite system (9) as

d
dt (xi(t) − x∗) = −ai(xi(t) − x∗

i) +
2N∑

j=1
Wij [fj(xj(t)) − fj(x∗

j)]

+
2N∑

j=1
WT

ij [fj(
∫ t

−∞ Kij(t − s)xj(s)ds) − fj(
∫ t

−∞ Kij(t − s)x∗
jds)]

i = 1, 2, · · · , 2N.

(17)

Since C = A0 − W+
0 σ − WT

0 σK is an M-matrix, there exists ri > 0, i =
1, 2, · · · , 2N, such that

riai −
2N∑

j=1

rj(|(W+
0)ji|σi + |(WT

0)ji|σikji) > 0.

Define a Lyapunov function

V (t)=
2N∑

i=1

ri{|xi(t)−x∗
i |+

2N∑

j=1

|WT
ij |

∫ ∞

0
Kij(s)

∫ t

t−s

|fj(xj(s))−fj(x∗
j)|dtds} (18)

its upper right Dini-derivative along the solution of (9) can be calculated as

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Global Robust Stability of Competitive Neural Networks 575

D+ V (t) |(3) ≤
2N∑

i=1
ri{−ai|xi(t) − x∗

i | +
2N∑

j=1
|Wij | · |fj(xj(t)) − fj(x∗

j)|

+
2N∑

j=1
|WT

ij | · |[fj(
∫ t

−∞ Kij(t − s)xj(s)ds) − fj(
∫ t

−∞ Kij(t − s)x∗
jds)|

+
2N∑

j=1
|WT

ij |
∫ ∞
0 Kij(s)|fj(xj(t)) − fj(x∗

j)|ds

−
2N∑

j=1
|WT

ij |
∫ ∞
0 Kij(s)|fj(xj(t − s)) − fj(x∗

j (t − s))|ds}

=
2N∑

i=1
ri{−ai|xi(t) − x∗

i | +
2N∑

j=1
|Wij ||fj(xj(t)) − fj(x∗

j)|

+
2N∑

j=1
|WT

ij |
∫ ∞
0 Kij(s)|fj(xj(t)) − fj(x∗

j)|ds}

≤
2N∑

i=1
ri{−ai|xi(t) − x∗

i | +
2N∑

j=1
(|Wij |σj + |WT

ij |σjkij)|(xj(t)) − (x∗
j)|}

= −
2N∑

i=1
{riai|xi(t) − x∗

i | −
2N∑

j=1
rj(|Wji|σi + |WT

ji |σikji)|xi(t) − x∗
i |}

= −
2N∑

i=1
{riai −

2N∑

j=1
rj(|Wji|σi + |WT

ji |σikji)}|xi(t) − x∗
i |

≤ −
2N∑

i=1
{riai −

2N∑

j=1
rj(|(W+

o)ji|σi + |(WT
0)ji|σikji)}|xi(t) − x∗

i |

≤ −m
2N∑

i=1
|xi(t) − x∗

i | < 0

(19)

where m = min
1≤i≤2N

{riai −
2N∑

i=1
rj(|(W+

0)ji|σi + |(WT
0)ji|σikji)} > 0.

From (19), we know that equilibrium x∗ is stable, and we have

V (t) + m

∫ t

0

2N∑

i=1

|xi(s) − x∗
i |ds ≤ V (0) (t ≥ 0)

which means that
∫ t

0

2N∑

i=1

|xi(s) − x∗
i |ds < ∞ and

∫ t

0
|xi(s) − x∗

i |ds < ∞, t ∈ [0, ∞]

Hence, there exists a constant M∗ > 0, such that

|xi(t)−x∗
i | ≤ M∗, i = 1, 2, · · · , 2N. t ∈ [0, ∞). (20)

From (17) and (20), we obtain that

−(|ai| + |ai| +
2N∑

j=1
(|(W+

0)ij |σj + |(WT
0)ij |σjkij))M∗ ≤ d

dt |xi(t) − x∗
i |≤

(|ai| + |ai| +
2N∑

j=1
(|(W+

0)ij |σj + |(WT
0)ij |σjkij))M∗

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

576 Y. Kao and Q. Ming

That is d
dt |xi(t) − x∗

i | (i = 1, 2, · · · , 2N) is upper bounded on [0, ∞), |xi(t) −
x∗

i | (i = 1, 2, · · · , 2N) is uniformly continuous on [0, ∞). By Barbalat’s
Lemma[24], we have

lim
t→+∞

2N∑

i=1

|xi(t) − x∗
i | = 0.

That is lim
t→∞ |xi(t) − x∗

i | = 0, lim
t→∞ xi(t) = x∗

i , i = 1, 2, · · · , 2N. Since all the

solutions of system (9) tend to x∗ as t → ∞ for any values of the coefficients in
(9), i.e, the system described by (7) with (8) has a unique equilibrium which is
global robust stable and the theorem is proved.

Corollary 1. If system (7) with (8) satisfies (T1) and one of the following
(T3) C = A0 − W+

0 σ − WT
0 σK is a matrix with strictly diagonal dominance

of column (or row);

(T4) ai −|(w+
0)ii|σi −|(wT

0)ii|σikii > 1
ri

2N∑

j=1,j �=i

rj(|(w+
0)ji|σi + |(w+

0)ji|σikji),

ai > 0, ri > 0, σi > 0, kij > 0, γi > 0, i = 1, 2, . . . , 2N, i = 1, 2, · · · , 2N ;

(T5) max
1≤i≤2N

1
ai

2N∑

j=1
(|(w+

0)ij |σi + |(w+
0)ij |σikij) < 1 (ai > 0);

(T6) 1
2ai

2N∑

i=1
[|(w+

0)ij |σj + |(w+
0)ji|σi + |(wT

0)ij |σjkij + |(wT
0)ji|σikji] < 1, i =

1, 2, · · · , 2N ; then, there is a unique equilibrium of system (7) with (8), which is
global robust stable.

In fact, any one of the condition (T3), (T4), (T5) or (T6) implies that C =
A0 − W+

0 σ − WT
0 σK is an M-matrix.

3 Conclusion

In this paper, we have presented some simple and new sufficient conditions for ex-
istence, uniqueness of the equilibrium point, and its global robust stability of the
equilibrium point of competitive neural networks with continuously distributed
delays and different time scales by means of the topological degree theory and
Lyapunov-functional method [21, 22]. The sufficient conditions, which are easily
verifiable, have a wider adaptive range. These have an important of leadings
significance in the design and application of reaction-diffusion neural networks
with delays. Furthermore, This method can easily be extended to competitive
neural networks with different time scales and S-type distributed delays.

References

1. Meyer-Base, A., Ohl, F., Scheich, H.: Singular perturbation analysis of competi-
tive neural networks with different time-scales. Neural Computation 8, 1731–1742
(1996)

2. Meyer-Baese, A., Pilyugin, S.S., Chen, Y.: Global Exponential Stability of Com-
petitive Neural Networks With Different Time Scale. IEEE Tran. Neural Net-
works 14, 716–719 (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Global Robust Stability of Competitive Neural Networks 577

3. Meyer-Baese, A., et al.: Local exponential stability of competitive neural networks
with different time scales. Engineering Applications of Artificial Intelligence 17,
227–232 (2004)

4. Lu, H., He, Z.: Global exponential stability of delayed competitive neural networks
with different time scales. Neural Networks 18, 243–250 (2005)

5. Grossberg, S.: Competition,Decision and Consensus. J.Math.Anal.Applicat 66,
470–493 (1978)

6. Amari, S.: Competitive and Cooperater Aspects in Dynamics of Neural Excition
and Self-organization. Competition Cooperation Neural Networks 20, 1–28 (1982)

7. Cohen, A.M., Grossberg, S.: Absolute stability of global pattern formation and
parallel memory storage by competitive neural networks. IEEE Transactions on
Systems, Man, and Cybernetics 13, 815–826 (1983)

8. Lemmon, M., Kumar, M.: Emulating the dynamics for a class of laterally inhibited
neural networks. Neural Networks 2, 193–214 (1989)

9. Zhang, Q., Wei, X.P., Xu, J.: Global exponential stability of Hopfield neural net-
works with continuously distributed delays. Phys.Lett. A 315(6), 431–436 (2003)

10. Zhang, Q., MA, R.N., XU, J.: Global Exponential Convergence Analysis of Hop-
field Neural Networks with Continuously Distributed Delays. Communications in
Theoretical Physics 39(3), 381–384 (2003)

11. Zhang, Q., MA, R.N., XU, J.: Global stability of bidirectional associative mem-
ory neural networks with continuously distributed delays. Science in China,
Ser.F 46(5), 327–334 (2003)

12. Cao, J., Huang, D.S., Qu, Y.: Global robust stability of delayed recurrent neural
networks. Chaos Solitons Fractals 23(1), 221–229 (2005)

13. Ye, H., Michel, A.N.: Robust stability of nonlinear time-delay systems with ap-
plications to neural networks. IEEE Trans. Circuits Syst. I 43, 532–543 (1996)

14. Hu, S.Q., Wang, J.: Global exponential stability of continuous-time interval neural
networks. Phys. Rev. E 65, 36–133 (2002)

15. Liao, X.F., Yu, J.B.: Robust stability for interval Hopfield neural networks with
time delay. IEEE Trans. Neural Netw. 9, 1042–1045 (1998)

16. Liao, X.F., Wong, K.W., Wu, Z., Chen, G.: Novel robust stability for interval-
delayed hopfield neural networks. IEEE Trans. Circuits Syst. I 48, 1355–1359
(2001)

17. Arik, S.: Global robust stability of delayed neural networks. IEEE Trans. Circuits
Syst. I 50(1), 156–160 (2003)

18. Cao, J., Chen, T.: Globally exponentially robust stability and periodicity of de-
layed neural networks. Chaos Solitons Fractals 22(4), 957–963 (2004)

19. Wang, L., Gao, Y.: Global exponential robust stability of reaction-diffuion internal
neural networks with time-varing delays. Physics letters A 350, 342–348 (2006)

20. Wang, L.S., Gao, Y.Y: On global robust stability for interval Hopfield neural
networks with time delays. Ann. Differential Equations 19(3), 421–426 (2003)

21. Liao, X.X.: Theory,Methods and Analysis of Stability, Huazhong University of
Science and Technology Publishing House, Wuhan (1996)

22. Guo, D.J., Sun, J.X., liu, Z.L.: Functional Methods of Nonlinear Ordinary Differ-
ential Equations. Shangdong Science Press, Jinan (1995)

23. Gopalsamy, K.: Stability and Oscillation in Delay Differential Equation of Pop-
ulation Dynamics, Dordrecht Netherlands. Kluwer Academic Publishers, Boston,
MA (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

578 Y. Kao and Q. Ming

24. Kao, Y., Gao, C.: Global Stability of Bidirectional Associative Memory Neural
Networks with Variable Coecients and S-Type Distributed Delays. In: King, I.,
Wang, J., Chan, L., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4232, pp. 598–607.
Springer, Heidelberg (2006)

25. Kao, Y., Gao, C. (eds.): Global Asymptotic Stability of Cellular Neutral Networks
With Variable Coefficients and Time-Varying Delays. LNCS, vol. 4491, pp. 923–
924. Springer, Heidelberg (2007)

26. Zhang, Q., Wei, X., Xu, J.: Asymptotic stability of transiently chaotic neural
networks. Nonlinear Dynamics 42(4), 339–346 (2005)

27. Zhang, Q., Wei, X., Xu, J.: A new global stability result for delayed neural net-
works. Nonlinear Analysis: Real World Applications 8(3), 1024–1028 (2007)

28. Zhang, Q., Wei, X., Xu, J.: Global exponential stability for nonautonomous cel-
lular neural networks with delays. Phys.Lett. A 351, 153–160 (2005)

29. Zhang, Q., Wei, X., Xu, J.: An improved result for complete stability of delayed
cellular neural networks. Automatica 41(2), 333–337 (2005)

30. Zhang, Q., Ma, R., Xu, J.: Delay-independent stability in cellular neural networks
with infinite delays. Chinese Journal of Electronics 12(2), 189–192 (2003)

31. Zhang, Q., Wei, X., Xu, J.: Global asymptotic stability of cellular neural networks
with infinite delay. Neural Network World 15(6), 579–589 (2005)

32. Zhang, Q., Zhou, C.: Dynamics of Hopfield neural networks with continuously
distributed delays. Dynamics of Continuous, Discrete and Impulsive Systems-
Series A-Mathematical Analysis, Part 2 Suppl. S 13, 541–544 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Nonlinear Dynamics Emerging in Large Scale

Neural Networks with Ontogenetic and
Epigenetic Processes

Javier Iglesias, Olga K. Chibirova, and Alessandro E.P. Villa

Grenoble Institut des Neurosciences-GIN, Centre de Recherche
Inserm U 836-UJF-CEA-CHU

NeuroHeuristic Research Group, University Joseph Fourier, Grenoble, France
{Javier.Iglesias, Olga.Chibirova, Alessandro.Villa}@ujf-grenoble.fr

http://www.neuroheuristic.org/

Abstract. We simulated a large scale spiking neural network charac-
terized by an initial developmental phase featuring cell death driven by
an excessive firing rate, followed by the onset of spike-timing-dependent
synaptic plasticity (STDP), driven by spatiotemporal patterns of stim-
ulation. The network activity stabilized such that recurrent preferred
firing sequences appeared along the STDP phase. The analysis of the
statistical properties of these patterns give hints to the hypothesis that
a neural network may be characterized by a particular state of an un-
derlying dynamical system that produces recurrent firing patterns.

1 Introduction

The adult pattern of neuronal connectivity in the cerebral cortex is determined
by the expression of genetic information, developmental differentiation and by
epigenetic processes associated to plasticity and learning. During the early stages
of development, excessive branches and synapses are initially formed and dis-
tributed somewhat diffusely (Innocenti, 1995). This over-growth phase is gener-
ally followed by massive synaptic pruning (Rakic et al., 1986) of only a selected
subset of the connections initially established by a neuron. Trigger signals able to
induce selective synaptic pruning could be associated to patterns of activity that
depend on the timing of action potentials (Catalano and Shatz, 1998). Spike tim-
ing dependent synaptic plasticity (STDP) is a change in the synaptic strength
based on the ordering of pre- and post-synaptic spikes. It has been proposed as a
mechanism to explain the reinforcement of synapses repeatedly activated shortly
before the occurrence of a post-synaptic spike (Bell et al., 1997). An equivalent
mechanism is keen to explain the weakening of synapses strength whenever the
pre-synaptic cell is repeatedly activated shortly after the occurrence of a post-
synaptic spike (Karmarkar and Buonomano, 2002).

The study of the relation between synaptic efficacy and synaptic pruning
suggests that the weak synapses may be modified and removed through com-
petitive “learning” rules (Chechik et al., 1999). Despite the plasticity of these

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 579–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

580 J. Iglesias, O.K. Chibirova, and A.E.P. Villa

phenomena it is rationale to suppose that whenever the same information is
presented in the network the same pattern of activity is evoked in a circuit
of functionally interconnected neurons, referred to as “cell assembly”. Cell as-
semblies interconnected in this way would be characterized by recurrent, above
chance levels, ordered sequences of precise (in the order of few ms) interspike
intervals referred to as spatiotemporal patterns of discharges or preferred firing
sequences (Abeles, 1991). Such precise firing patterns have been associated with
specific behavioral processes in rats (Villa et al., 1999) and primates (Shmiel
et al., 2006). Precise firing patterns have also been associated to deterministic
nonlinear dynamics (Villa, 2000) and their detection in noisy time series could
be performed by selected algorithms (Tetko and Villa, 1997; Asai et al., 2006).

In the current study we assume that developmental and/or learning processes
are likely to potentiate or weaken certain pathways through the network and let
emerge cell assemblies characterized by recurrent firing patterns. We investigate
whether or not deterministic dynamics can be observed in the activity of a
network by the analysis of the preferred firing sequences. The rationale is that
a certain network, here identified by the simulation run, may be characterized
by a particular state of an underlying dynamical system that produces recurrent
firing patterns.

2 Neural Network Model

The complete neural network model is described in details elsewhere (Iglesias,
Eriksson, Grize, Tomassini and Villa, 2005). A sketch description of the model
with specific model parameters related to the current study follows below.

We assume that at time zero of the simulation the network is characterized
by two types of integrate-and-fire units and by its maximum over growth in
terms of connectivity. The total amount of units is 10,000 (8,000 excitatory
and 2,000 inhibitory) laid down on a 100×100 2D lattice according to a space-
filling quasi-random Sobol distribution. Two sets of 400 excitatory units (i.e.,
800 units overall) were randomly selected among the 8,000 excitatory units of
the network. The units belonging to these sets are the “sensory units” of the
network, meaning that in addition to sending and receiving connections from
the other units of both types they receive an input from the external stimulus.

The model features cell death mechanisms that may be provoked by: (i) an
excessive firing rate and (ii) the loss of all excitatory inputs. An excessive fir-
ing rate is assumed to correspond to the biological effect known as glutamate
neurotoxicity (Choi, 1988). During an initial phase called “early developmental
phase”, at each time step and for each unit a maximum firing rate was arbitrar-
ily determined following a parameter search procedure described in (Iglesias and
Villa, 2006). Whenever the rate of discharges of a unit exceeds the maximum
allowed rate the cell had a probability to die according to a “genetically” deter-
mined probability function. A dead unit is characterized by the absence of any
spiking activity.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Nonlinear Dynamics Emerging in Large Scale Neural Networks 581

At the end of the early developmental phase, the synaptic plasticity (Iglesias,
Eriksson, Pardo, Tomassini and Villa, 2005) is enabled. It is assumed a priori
that modifiable synapses are characterized by discrete activation levels
(Montgomery and Madison, 2004) that could be interpreted as a combination of
two factors: the number of synaptic boutons between the pre- and post-synaptic
units and the changes in synaptic conductance. In the current study we at-
tributed a fixed activation level (meaning no synaptic modification) Aji(t) = 1,
to (inh, exc) and (inh, inh) synapses while activation levels were allowed to take
one of Aji(t) = {0, 1, 2, 4} for (exc, exc) and (exc, inh), Aji(t) = 0 meaning that
the projection was permanently pruned out. For Aji(t) = 1, the post-synaptic
potentials were set to 0.84 mV and −0.8 mV for excitatory and inhibitory units,
respectively. The projections from and to “dead” units undergo a decay of their
synapses leading eventually to their pruning when Aji(t) = 0. Other projections
may be pruned due to synaptic depression driven by STDP and also leading
to Aji(t) = 0. Thus, some units that survived the early phase can also remain
without any excitatory input. The loss of all excitatory inputs also provokes the
cell death and these units stop firing (even in presence of background activity)
immediately after the pruning of the last excitatory afference from within the
network.

Two sets of 400 “sensory units” are stimulated by patterned activity orga-
nized both in time and space described elsewhere (Iglesias and Villa, 2006). This
stimulus is assumed to correspond to content-related activity generated else-
where in the brain. The overall stimulus duration is set to 100 ms, followed by
a period without stimulation that lasted 1900 ms. Thus, the rate of stimulation
was 0.5 stim/s.

3 Simulations

The values of the set of parameters specified above were kept constant through-
out all this study. Because of a high sensitivity to the initial conditions of the
pattern of connectivity we repeated the very same analysis with 30 different ran-
dom generator seeds. Thus, each different seed generated a different connectivity
(although keeping the same rules), different stimulus patterns and spontaneous
activity patterns. Each simulation run lasted 105 discrete time steps (Tend), with
1 time step corresponding to 1 ms in the model, that means 100, 000 ms as to-
tal duration of a simulation run. The states (spiking/not spiking) of all units
were updated synchronously. After spiking, the membrane potential was reset to
its resting potential, and the unit entered an absolute refractory period lasting
3 and 2 time steps for excitatory and inhibitory units, respectively. Starting at
time zero and throughout all the simulation run each unit received a background
activity following an independent Poisson process of 5 spikes/s on average.

The early developmental phase, characterized by cell death provoked by ex-
cessive firing rate, begins at time t = 0 and lasts until t = Tedp, that was fixed
at 700 ms for this study. The spike timing dependent plasticity is enabled at
t = Tedp +1. At time t = 1001 ms the first stimulation is applied, lasting 100 ms

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

582 J. Iglesias, O.K. Chibirova, and A.E.P. Villa

until t = 1100 ms. Between t = 1101 ms and t = 3000 ms only the background
activity is getting into the network. At time t = 3001 ms another stimulation is
applied and so forth until the end of the simulation run. Overall this corresponds
to 50 presentations of the stimulus along one simulation run.

The events belonging to the univariate time series corresponding to the spike
train may have two different origins. Spikes may be simply associated to the
Poisson background noise whenever the cell excitability is high and close enough
to the threshold of activation. The other spikes can be produced by the con-
vergence of synchronous activity (i.e., temporal summation of excitatory post-
synaptic potentials) generated within the network. In order to study the time
series of the spikes associated to the network activity those spikes associated to
the background process were discarded from the spike trains and the so-called
“effective spike trains” were extracted (Hill and Villa, 1997). Such effective spike
trains were searched for the occurrence of spatiotemporal firing patterns, also
called preferred firing sequences, by means of the “pattern grouping algorithm”
(PGA) (Tetko and Villa, 2001). For the present study PGA was set to find pat-
terns formed by three (triplets) or four spikes (quadruplets), with a significance
level p = 0.10, provided the entire pattern did not last more than 800 ms and
was repeated with a jitter accuracy of ±5 ms.

All occurrences of all patterns detected by PGA within the same simulation
run were merged together even if they were found in different units. This op-
eration is aimed at detecting a possible underlying dynamical system that is
associated to a specific network, thus encompassing the activity of several units
belonging to the functional cell assembly. Such particular time series is referred
to as “network patterned spike train”, NP-spike train.

4 Results

At time t = Tend = 100, 000 ms the units characterized by more than four active
excitatory input projections that did not belong to the sets of “sensory units”
were selected and their effective spike trains were analyzed. In one out of the
30 simulations, no spatiotemporal firing patterns could be found. In the other
29 simulations, 147 spatiotemporal firing patterns were detected, corresponding
to 5672 spikes distributed into 61 triplets and 86 quadruplets. A single pattern
could repeat between 5 (the minimum rate set in the algorithm) and 185 times.
The vast majority of the patterns were composed by events belonging to the
same neuron. We found only 3 triplets and 2 quadruplets composed by spikes
produced by two different units.

Figure 1 illustrate two examples of patterns detected in the simulation run
S008. The pattern < 23E5, 23E5, 23E5 ; 154± 3.5, 364± 3.0 > was composed
by spikes produced by one unit labeled here #23E5 (Fig. 1a). This notation
means that the pattern starts with a spike of unit #23E5, followed 154±3.5 ms
later by a second spike of the same unit, and followed by a third spike 364±3.0 ms
after the pattern onset. We observed 15 repetitions of this pattern during the
whole simulation run, but their occurrence was limited to the first half of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Nonlinear Dynamics Emerging in Large Scale Neural Networks 583

Fig. 1. (a): Spatiotemporal pattern < 23E5, 23E5, 23E5 ; 154 ± 3.5, 364 ± 3.0 >.
Raster plot showing 15 repetitions of the pattern aligned on the pattern start; (b):
Pattern occurrence timing plot of pattern (a) : each vertical tick represents the timing
of the pattern onset; (c): Spatiotemporal pattern < B9B, B9B, B9B, B9B ; 68 ±
2.0, 556 ± 1.0, 655 ± 4.0 > Raster plot showing 12 repetitions of the pattern aligned
on the pattern start; (d): Pattern occurrence timing plot of pattern (c)

simulation, and in particular in the period [15−28] seconds (Fig. 1b). No corre-
lation could be found between the timing of the spatiotemporal pattern and the
stimulation onset. Figure 1c shows the occurrences of another pattern observed
in the same network. This pattern labeled as < B9B, B9B, B9B, B9B ; 68 ±
2.0, 556±1.0, 655±4.0 > corresponds to a quadruplet that occurred only during
the second half of the simulation.

Figure 2 shows the distribution of the onset times of all 147 patterns along
the simulation duration. This histogram shows that patterns could start any
time after the simulation onset. However, the majority of the patterns tended
to appear and repeat above chance levels only during specific periods of the
network life, thus suggesting the possibility of shifts in the temporally organized
dynamics.

We investigated the distribution of the intra-pattern intervals, corresponding
to the interval between the first and second event of the pattern (Figure 3a) and
between the second and third event of the pattern (Figure 3b). In the case of
quadruplets the intervals of the corresponding sub-patterns (the triplets) were
considered for this analysis.

After detecting all patterns the NP-spike trains were constructed for each
simulation run. In 19/30 simulation runs we found at least 4 different patterns,
each of them repeating many times (Table 1). In these cases it appeared in-
teresting to analyze the patterns that overlapped each other. For each pattern,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

584 J. Iglesias, O.K. Chibirova, and A.E.P. Villa

Fig. 2. Relative histogram of the onset time of all 147 patterns. Bin size: 2000 ms.

Fig. 3. Normalized distribution of the intervals among the triplets and quadruplets
spikes. (a): intervals between the first and the second spike; (b): intervals between the
second and the third spike. Bin size: 50 ms.

an overlapping factor was calculated to describe the probability for a pattern
occurrence to overlap another occurrence from the same (self-overlap) or a dif-
ferent (cross-overlap) pattern. The number of overlaps oi of each pattern i was
incremented each time the onset spike of the jth pattern appeared between the
first and the last spike of ith pattern. Then, for each kth network (i.e., for each
simulation run), the normalized overlapping factor Ok was calculated as follows:

Ok =

√∑
oi

nk
(1)

where oi is the number of overlaps for each pattern i and nk is the total number
of occurrences for all the patterns found in the kth network. Table 1 shows that
on average the overlapping factor was higher in the networks characterized by

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Nonlinear Dynamics Emerging in Large Scale Neural Networks 585

Table 1. 147 patterns were observed in the activity of NTOT = 30 distinct networks.
Networks are arbitrarily divided into four classes clusterized by the number of different
patterns found in each one. Class 1 : less than 4 patterns; Class 2 : between 4 an 6
patterns; Class 3 : between 7 an 9 patterns; Class 4 : at least 10 patterns. N : number of
networks; Ô: average overlapping factor for each class; R̂: average number of pattern
repetitions.

N �O �R

Class 1 11 0.04 57.5
Class 2 13 0.06 41.0
Class 3 3 0.08 17.2
Class 4 3 0.07 33.8

7 to 9 different patterns. However, this result should not be considered too
strongly because many more simulation runs are needed in order to extract
significant statistical information.

The network S008 belonging to Class 3 was selected for the plot of the con-
secutive interspike intervals. Return maps correspond to the plots of the nth

interspike-interval against the (n − 1)th interspike-interval. Figure 4 shows, for
two different time scales, the return map computed on the simulation NP-spike
train as scatter plots (fig. 4a,b) and trajectories (fig. 4c,d). Notice the appearance
of an ordered structure in the panels with scales [0 − 250] ms (fig. 4b,d).

5 Discussion

We simulated a large scale spiking neural network, with the time resolution of
1 ms, characterized by a brief initial phase of cell death (Iglesias and Villa, 2006).
The addition of this feature greatly improved the stability of the network while
maintaining its ability to produce spatiotemporal firing patterns as shown in this
study. During this phase the units that exceeded a certain threshold of firing had
an increasing probability to die with the passing of time until 700 time units. Af-
ter the stop of the massive cell death, spike timing dependent plasticity (STDP)
and synaptic pruning were made active. Selected sets of units were activated by
regular repetitions of a spatiotemporal pattern of stimulation. During the STDP
phase, the cell death could occur only if a unit became deafferented, i.e. it lost
all its excitatory afferences because of synaptic pruning.

We recorded the spike trains of all excitatory units that were not directly
stimulated and that were surviving at the arbitrary end of the simulation set at
t = 100 seconds. In these spike trains we searched for preferred firing sequences
that occurred beyond random expectation (Tetko and Villa, 2001). We found 147
patterns in 30 different network configurations determined by different random
seeds. It is interesting to notice that the effect of the initialization is important
because only 6/30 networks were characterized by at least 7 detectable firing
patterns. Moreover, we often observed patterns that occurred only during a lim-
ited time of the network life, usually in the order of 30 to 50 seconds. Such

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

586 J. Iglesias, O.K. Chibirova, and A.E.P. Villa

250200150100500
duration [ms]

250

200

150

100

50

0

du
ra

tio
n

[m
s]

b

duration [ms]
8006004002000

800

600

400

200

0

du
ra

tio
n

[m
s]

c
8006004002000

duration [ms]

800

600

400

200

0

du
ra

tio
n

[m
s]

a

d
250

200

150

100

50

0

du
ra

tio
n

[m
s]

250200150100500
duration [ms]

Fig. 4. Fingerprint of the dynamical activity of network S008 characterized by an
overlapping factor equal to 0.09. (a): Return map computed for intervals between (a)
0 and 800 ms and (b) focusing around 0 and 250 ms; (c,d): Trajectories for the same
data and intervals.

an example is illustrated by onset dynamics of the two patterns of Fig. 1. This
observation might suggest that the network dynamics giving rise to a pattern
occurrence may be suddenly disrupted by the continuous STDP-driven pruning.
However, there is an extended overlap between patterns occurrence as shown by
the overlapping factor described in this study. The process of patterns appear-
ance looks more like a pattern giving the hand to another pattern but keeping
the transition rather smooth.

The results presented here give some hints to the hypothesis that an under-
lying deterministic dynamical system, detected by the observation of an excess
of preferred firing sequences, may appear under the drive of differentiation and
learning processes. The fingerprints of the system observed in the return maps
are suggestive of the presence of attractors and closed loops (Fig. 4). We believe
that the current study opens new perspectives in this investigation but we are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Nonlinear Dynamics Emerging in Large Scale Neural Networks 587

aware of the necessity of future studies before any firm conclusion on the rela-
tions between preferred firing sequences and deterministic nonlinear dynamical
systems.

Acknowledgments. This work was partially funded by the European Com-
munity Future and Emerging Technologies Complex Systems program, grant
#034632 (PERPLEXUS), and New and Emerging Science and Technology pro-
gram, grant #043309 (GABA).

References

Abeles, M.: Corticonics: Neural Circuits of the Cerebral Cortex, 1st edn. Cambridge
University Press, Cambridge (1991)

Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a dynamical system attractor from spike
train analysis. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN
2006. LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

Bell, C.C., Han, V.Z., Sugawara, Y., Grant, K.: Synaptic plasticity in a cerebellum-like
structure depends on temporal order. Nature 387(6630), 278–281 (1997)

Catalano, S.M., Shatz, C.J.: Activity-dependent cortical target selection by thalamic
axons. Science 281(5376), 559–562 (1998)

Chechik, G., Meilijson, I., Ruppin, E.: Neuronal regulation: A mechanism for synaptic
pruning during brain maturation. Neural Computation 11, 2061–2080 (1999)

Choi, D.W.: Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8),
623–634 (1988)

Hill, S., Villa, A.E.: Dynamic transitions in global network activity influenced by the
balance of excitation and inhibtion. Network: computational neural networks 8,
165–184 (1997)

Iglesias, J., Eriksson, J., Grize, F., Tomassini, M., Villa, A.E.: Dynamics of pruning in
simulated large-scale spiking neural networks. BioSystems 79(1), 11–20 (2005)

Iglesias, J., Eriksson, J., Pardo, B., Tomassini, M., Villa, A.E.: Emergence of oriented
cell assemblies associated with spike-timing-dependent plasticity. In: Duch, W.,
Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3696, pp.
127–132. Springer, Heidelberg (2005)

Iglesias, J., Villa, A.: Neuronal cell death and synaptic pruning driven by spike-timing
dependent plasticity. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.)
ICANN 2006. LNCS, vol. 4131, pp. 953–962. Springer, Heidelberg (2006)

Innocenti, G.M.: Exuberant development of connections, and its possible permissive
role in cortical evolution. Trends in Neurosciences 18(9), 397–402 (1995)

Karmarkar, U.R., Buonomano, D.V.: A model of spike-timing dependent plasticity:
one or two coincidence detectors? J. Neurophysiol. 88(1), 507–513 (2002)

Montgomery, J.M., Madison, D.V.: Discrete synaptic states define a major mechanism
of synapse plasticity. Trends in Neurosciences 27(12), 744–750 (2004)

Rakic, P., Bourgeois, J., Eckenhoff, M.F., Zecevic, N., Goldman-Rakic, P.S.: Concur-
rent overproduction of synapses in diverse regions of the primate cerebral cortex.
Science 232(4747), 232–235 (1986)

Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y.: Temporally precise cortical firing
patterns are associated with distinct action segments. Journal of Neurophysiol-
ogy 96(5), 2645–2652 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

588 J. Iglesias, O.K. Chibirova, and A.E.P. Villa

Tetko, I.V., Villa, A.E.: A comparative study of pattern detection algorithm and dy-
namical system approach using simulated spike trains. In: Gerstner, W., Hasler,
M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 37–42.
Springer, Heidelberg (1997)

Tetko, I.V., Villa, A.E.: A pattern grouping algorithm for analysis of spatiotemporal
patterns in neuronal spike trains. 1. detection of repeated patterns. Journal of
Neuroscience Methods 105, 1–14 (2001)

Villa, A.E.: Time and the Brain. vol. 2. Harwood Academic Publishers (2000)
Villa, A.E., Tetko, I., Hyland, B., Najem, A.: Spatiotemporal activity patterns of rat

cortical neurons predict responses in a conditioned task. Proc. Natl. Acad. Sci.
USA 96, 1106–1111 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Modeling of Dynamics Using Process State

Projection on the Self Organizing Map

Juan J. Fuertes-Mart́ınez, Miguel A. Prada�, Manuel Domı́nguez-González,
Perfecto Reguera-Acevedo1, Ignacio Dı́az-Blanco, and Abel A. Cuadrado-Vega2

1 Instituto de Automática y Fabricación, Universidad de León, Escuela de
Ingenieŕıas. Campus Universitario de Vegazana, León, 24071, Spain

{jjfuem,mapram,mdomg,prega}@unileon.es
2 Departamento de Ingenieŕıa Eléctrica, Electrónica de Computadores y Sistemas,
Universidad de Oviedo, Edificio Departamental 2 - Campus de Viesques, Gijón,

33204, Spain
{idiaz,cuadrado}@isa.uniovi.es

Abstract. In this paper, an approach to model the dynamics of mul-
tivariable processes based on the motion analysis of the process state
trajectory is presented. The trajectory followed by the projection of the
process state onto the 2D neural lattice of a Self-Organizing Map (SOM)
is used as the starting point of the analysis. In a first approach, a coarse
grain cluster-level model is proposed to identify the possible transitions
among process operating conditions (clusters). Alternatively, in a finer
grain neuron-level approach, a SOM neural network whose inputs are 6-
dimensional vectors which encode the trajectory (T-SOM), is defined in a
top level, where the KR-SOM, a generalization of the SOM algorithm to
the continuous case, is used in the bottom level for continuous trajectory
generation in order to avoid the problems caused in trajectory analysis
by the discrete nature of SOM. Experimental results on the application
of the proposed modeling method to supervise a real industrial plant are
included.

Keywords: Self–organizing maps; trajectory analysis; clustering; visu-
alization techniques; process dynamics.

1 Introduction

Visualization and dimension reduction techniques [1,2] are successfully used to
process and interpret vast amounts of data with a high dimensionality. The aim
of these techniques is to project those data onto a visualizable low-dimensional
space where humans can reason using images. It makes possible to take advantage
of the human ability to detect patterns, characteristics, trends, etc. A suitable
dimension-reduction technique is based on the Self-Organizing Maps (SOM).

� M. A. Prada was supported by a grant from the Consejeŕıa de Educación de la Junta
de Castilla y León and the European Social Fund.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 589–598, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

590 J.J. Fuertes-Mart́ınez et al.

The SOM [3] is a self-organized unsupervised neural network where neurons
are organized in a low dimensional (2D or 3D) grid. Each neuron is represented
by a d−dimensional weight vector mi, which can be seen as a coordinate vector
in the d−dimensional input space, and a position gi in the low-dimensional grid
of the output space. Neurons are connected to the adjacent ones according to
a neighborhood relationship that defines the topology or structure of the map.
During training, the SOM grid folds onto the input data sets like a flexible
net. As a consequence, the d−dimensional coordinates of the grid neurons are
modified and the zones with a higher density data gather a larger quantity of
neurons. The neurons act as codebook vectors that divide the space in a finite
collection of Voronoi regions.

The 2-dimensional structure of the neural grid makes the SOM an outstanding
visualization tool to extract knowledge about the static nature of the input space
data. For instance, the distance maps [4] reveal the intrinsic structure of the data.
The average distance is closely related with the neuron density and, therefore, the
data density in a certain region of the input space. The component planes [5] are
another example that is used to describe process variables and to visually detect
correlations between variables. An overview and categorization of visualization
methods applied to SOM is presented in [6].

The dynamic features of multivariable data, when they represent the time-
variable state of a process, can also be analyzed using SOM [7,8]. The successive
projection of the best matching unit (BMU) of the current process state onto the
neural grid defines a trajectory on a 2D space. According to the usual projection
algorithm, an input vector x(t) is projected onto a neuron using equation:

S(x(t)) = gc(t) (1)

where
c(t) = argmin

i
‖x(t) − mi‖ (2)

and mi are the neuron weights in the input space.
It is possible to define models associated to the dynamic behavior of the pro-

cess by means of the interpretation of the trajectory. Information about velocity,
acceleration, direction changes and transitions between process conditions is im-
plicit in the trajectory. A suitable learning mechanism must be selected in order
to transform this unstructured information in useful knowledge. This has been
one of the research efforts of this paper, which has resulted in a method to model
the process dynamics. The obtained models have been used to supervise a real
industrial installation and to detect fault trends.

2 Cluster-Level Dynamic Model

Some authors have used SOM as a clustering algorithm, using a two-level ap-
proach [9,10]. In this approach, the data set is first clustered using the SOM
(first abstraction level). The SOM neurons represent near datasets in the input
space after the training stage. As the set of neurons is much larger than the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Modeling of Dynamics Using Process State Projection on the SOM 591

0
5

10

0

5

10

0

5

10

º

0.5

1

1.5

2

2.5

3

3.5

T3

p2

p3

p1p4

T1

T2

T4

T5

p1

p2

p4p3

T1

T2 T3
T4

T5

p1

p3p2

p4

0

0

0

3T

5T

2T

0

0

0
1T 0

4T

Fig. 1. Cluster-level dynamic model. In the topmost figure, a SOM trained with exam-
ple data and distance map with transitions among clusters. On the bottom, equivalent
Petri net and Markov chain.

expected number of clusters, the SOM is clustered (second abstraction level)
using visual inspection or algorithms for agglomerative or partitive clustering.
A first approach to the dynamic model can be achieved from the analysis of the
process trajectory on the neural lattice, when it represents a cluster structure.
These clusters of neurons can be considered operating conditions of the process.

The transitions among clusters experienced by the process trajectory in the 2D
visualization space are conceptually related to widespread models such as Petri
nets [11] or Markov chains [12]. And thus, these models can be used to store
information about the process conditions (clusters) and the transition probabili-
ties among them. These probabilities of transition between every pair of clusters
are proportional to the number of times that a trajectory passes from a cluster
to another. In Fig. 1, this idea is shown schematically using the mere observa-
tion of the distance map as clustering mechanism. Map areas with a high neural
density (“valleys”) indicate process clusters, whereas high values of the distance
matrix (“mountain ranges”) define cluster borders.

Although these models are simple, they have a wide applicability for process
supervision and anomaly detection purposes. For instance, the simultaneous vi-
sualization of the distance map, the transition probabilities among clusters, and
the current state of a process (defined by its current BMU) facilitates online
supervision, helping to predict future behaviors (those process conditions with a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

592 J.J. Fuertes-Mart́ınez et al.

non-null transition probability), and to detect faults and deviations, caused by
abrupt changes in the temporal evolution of process variables with regard to the
ones used to obtain the model. These faults are detected because they produce
accesses of the system to inaccessible conditions with a null probability in the
model.

Nevertheless, even though these models provide useful information about
cluster-level process transitions, they do not give information about neuron-
level transitions. A learning mechanism of the neuron transitions would make
possible to extend the supervision capabilities by detecting small faults which
are not easily detectable by the cluster-level model. These faults are subtle vari-
ations in the velocity and/or acceleration of change in some process variables.
These faults may be detectable because they form trajectories inside each cluster
which differ from the ones defined by the training data, even when the process
has the same transition dynamics among clusters.

3 Neuron-Level Dynamic Model

This section presents the proposed model for neuron-level trajectory learning.
The 2D trajectories generated by the SOM from the process data are encoded
as sequences of 6−dimensional vectors, and a top level SOM neural network
(from now on T-SOM) is used as a learning module. The election of this kind of
network is supported by its ability to create new visualization tools.

3.1 Trajectory Encoding

Some authors [13,14,15] have developed trajectory learning modules, where the
trajectories are represented by means of discrete state sequences (called flow vec-
tors). These vectors represent either the current position (x, y) on the 2D map;
or position and velocity (x, y, dx, dy); or position, velocity and any additional in-
formation (x, y, dx, dy, a1, a2, ..., an). The flow vectors constitute the input space
of the trajectory learning module. In the supervision stage, if this model identi-
fies unusual behaviors (e.g. trajectory vectors not found in the training stage),
the operator is informed.

In the most immediate approach to obtain the movement flow vectors on the
neural grid, the coordinates of the vector would be determined by the BMU
position whereas velocity and acceleration would be computed from two and
three consecutive BMUs, respectively. However, the processing of these vectors
presents serious problems. Due to the intrinsic discrete nature of the SOM and
its magnification property (areas with a high density of data are amplified),
the trajectory created by this projection algorithm (2) is discontinuous and,
sometimes, apparently random when the samples are highly concentrated in the
input space. Furthermore, although the discontinuous trajectory describes the
global behavior of the process, it is not suitable to describe small changes. This is
a serious drawback, since the modeling method exposed in this paper has been
used for supervision of industrial processes, which are essentially continuous

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Modeling of Dynamics Using Process State Projection on the SOM 593

Fig. 2. Sequence of acquisition of the trajectory and T-SOM network structure

and have tendencies or limit cycles that play a crucial role to determine their
condition.

The discontinuity problem of the SOM can be minimized by increasing the
number of neurons in the map. Nevertheless, this solution would also increase
the computational requirements of the system. Another solution to this problem
would be the use of a continuous generalization of the SOM projection algorithm,
such as the ones presented in [16] or [17]. In these continuous generalizations of
the SOM algorithm, the discrete grid of neurons is replaced by a continuous
manifold. Thus, new process data are not exclusively mapped to nodes on grid,
but to any points of the continuous 2D space spanned by the neural grid.

The Kernel Regression SOM (KR-SOM), defined in [16], has been used in this
work to obtain the 2-dimensional continuous trajectory that is used to define
the flow vectors which encode the process dynamics. These vectors form the
input space of the T-SOM learning module, defined in section 3.2. The KR-
SOM is a continuous extension of the SOM projection algorithm using a General
Regression Neural Network (GRNN) [18]. The GRNN makes a mapping Sxi→yi :
X → Y from an input space X to an output space Y , using the following
equation:

y(x) = Sxi→yi(x) =

∑n
i=1 exp

(
− (x−xi)T (x−xi)

2σ2

)
yi

∑n
i=1 exp

(
− (x−xi)T (x−xi)

2σ2

) =
∑

i Φ(x − xi)yi∑
i Φ(x − xi)

(3)

where σ is the kernel bandwidth. Using this approach, it is possible to obtain a
continuous mapping of the input space onto the visualization space of SOM.

y(x) = Smi→gi(x) =
∑

i Φ(x − mi)gi∑
i Φ(x − mi)

(4)

where y(x) is a point of the visualization space V and x is a point of the input
space F. In a similar way, it is possible to do a mapping from the visualization
space to the input space Sgi→mi : V → F.

x(y) = Sgi→mi(y) =
∑

i Φ(y − gi)mi∑
i Φ(y − gi)

(5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

594 J.J. Fuertes-Mart́ınez et al.

0.
2

0.
4

0.
6

0.
8

1.
2

1.
4

1.
6

1.
8

2.
2

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35
1

2

3

4
5

6

7

8

9

10

11

12

14
16

17

13

15

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Fig. 3. Distance map of the industrial process with continuous and discrete trajectories,
and cluster-level dynamic model

Equations (4) and (5) provide a method to link the input and the visualization
space in a continuous way that is the basis to define the continuous trajectories.

3.2 T-SOM Learning Module

The proposed approach for trajectory learning is similar to the ones described
in [13] and [14]. Fig. 2 schematically shows the sequence followed to obtain the
flow vectors which represent the trajectory, and the network architecture.

The input layer of the T-SOM is composed by six neurons: the four ones used
in [13] (both the system position in the 2D space and its velocity unit vector in
the KR-SOM algorithm), and two new neurons, one for the inverse of the module
of the velocity vector, and another one for the module of the system velocity
in the input space. The flow vector that encodes the trajectory is, therefore,
(x, y, dx, dy, |1/v|, D). The inverse of the velocity in the fifth component of the
vector is used to give more weight to small displacements than to abrupt ones,
which are already considered by global models, such as the cluster-level model
presented in section 2. The sixth component of the vector provides information
about a feature that is not implicit in the projection map: the velocity of the
process in the d−dimensional input space. Since the SOM magnifies regions
with a high density of data, an abrupt displacement in the 2-dimensional output
space might correspond to a minimum one in the d−dimensional input space
and vice versa. For that reason, the sixth component must be considered. It is
obtained by subtracting two consecutive positions in the d−dimensional input
space, assuming a fixed sampling time.

D(t) = ‖x(t) − x(t − 1)‖ (6)

The learning method of the decision module is a SOM neural network that
models all the possible instantaneous displacements on the map. The information
about the difference between the correct trajectory, learnt by the model, and the
current one is very useful for online supervision. The selection of a SOM network
for the learning module makes it easier to visually interpret the results, thanks
to the visualization tools that can be used:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Modeling of Dynamics Using Process State Projection on the SOM 595

– Component planes of variables x, y, dx, dy, |1/v| and D.
– Visual representation of the residuals of the flow vectors. The residual, in

this case, will represent the deviation between the approximation of the flow
vector in the T-SOM model and the real vector. The residual will be non-null
when the process follows new non-modeled trajectories.

The simultaneous observation of the component planes, the visual representa-
tion of residuals and the current trajectory, contrasted to the one approximated
by the model, projected on the distance map, will allow us to deduce if the
process is going through a significant change of state and detect erroneous flow
vectors in the trajectory, which reveal a potential fault. In section 4, these vi-
sualization tools and their associated interpretation are used for an experiment
with an industrial plant.

4 Experimental Results

The modeling method proposed in this paper has been tested with some exper-
iments carried out on an industrial plant [19]. This plant manages 30 physical
variables (the main ones are level, pressure, flow and temperature) sampled each
20 ms. The SOM was trained using the batch training algorithm with a 30-
dimensional input space. The training lenght was 50 epochs. A 40×40 grid with

a rectangular topology and a gaussian neighborhood hij(t) = e
−d(i,j)

σ(t)2 , where σ(t)
was made to decrease monotonically from 10 to 1, was used. In the rightmost
picture of Fig. 3, the cluster structure of the plant and the possible transi-
tions between clusters (cluster-level model) are represented on a distance map.
The transitions are represented using arrows. The trajectories followed by the
process, when the SOM (leftmost picture) and the KR-SOM (center picture)
projection algorithms are used, are also represented in Fig. 4. In the first case,
the figure shows the discontinuities caused by the discrete nature of the SOM
and the apparently random movement within process conditions, such as con-
dition 1 or 4, due to the magnification property of the SOM algorithm. In the
second case, the trajectory is continuous, except for the characteristic disconti-
nuities of the process. These discontinuities are due to the hybrid nature of the
industrial process and appear when the process moves to another process con-
dition (or cluster). Some examples of these intrinsic discontinuities are: opening
or shutting off electric valves, start or stop of pumps or resistors, etc.

Fig. 4 shows portions of the KR-SOM trajectories followed by the industrial
process in the presence of two fault situations, which were induced by varying
the flow rate (during the level control stage, cluster 3) and the dynamics of the
frequency converter (during the pressure control stage, clusters 12-13) in the
abovementioned industrial plant. The trajectories followed by the projection of
the process state in the training stage are different from the ones observed when
the process experiences these faults. This experiment illustrates the usefulness
of this analysis. The graphs that show the temporal development of the variable
that causes the fault are also presented on the leftmost pictures of Fig. 4.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

596 J.J. Fuertes-Mart́ınez et al.

0 500 1000 1500 2000 2500 3000 35000

20

40

60

80

100

120
LT21

0 500 1000 1500 2000 2500 3000 35000

10

20

30

40

50

60

70

80
PT21

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Mapa de distancias

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

35

Distance map

Fig. 4. Detection of two faults by means of the visualization of the trajectory followed
by the industrial process. The variable LT21, which causes the first fault, is depicted
in the top left chart. The variable PT21, which causes the second fault, is depicted in
the bottom left chart.

The flow vectors that constitute the input space of T-SOM were obtained from
the trajectory followed by the process, according to the KR-SOM model. The
trajectory learning module was trained, using a 20 × 20 grid with a rectangular
topology and a GRNN kernel width σ = 1.

The information about residuals is also a valuable tool. A graphic representa-
tion of residuals can be used to facilitate the visualizations. This representation
uses a color code (such as blue tones for negative values, green tones for null
values, and red tones for positive ones) in a graph where the vertical axis corre-
sponds with the vector components and the horizontal axis represents time. The
colored bands will therefore correspond with the deviation of variables x, y, dx,
dy, |1/v| and D through time. This tool is a useful method for semi-automatic

0 500 1000 1500 2000 2500 3000 3500 40000

20

40

60

80

100

120
LT21

0 500 1000 1500 2000 2500 3000 3500 400024

26

28

30

32

34

36

38
TT21

50 100 150 200 250

x

y

dx

dy

|1/v|

D

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time

x

y

dx

dy

|1/v|

D

Fig. 5. Detection of two faults by means of residual visualization. The variable LT21,
which causes the first fault, is depicted in the top left chart. The variable TT21, which
causes the second fault, is depicted in the bottom left chart.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Modeling of Dynamics Using Process State Projection on the SOM 597

anomaly detection, as it can be used online to represent the current residual for
every sample. Fig. 5 shows how the T-SOM model detects a slight deviation in
the process behavior caused by a change of dynamics in the temperature control
stage. This change is, in turn, the consequence of a loss of power in the heating
resistors. It can be inferred, after observing the band corresponding to compo-
nent |1/v| in the residual representation, that the heating velocity decreases.
Similar results are observed when the fault is caused by a change in the setting
time of the controlled level variable.

5 Conclusions

In this paper, a method for modeling of the dynamics of multivariable processes,
focused on the motion analysis of the state projected on the neural SOM grid,
is presented. A first cluster-level approach uses discrete event models, such as
Petri nets or Markov chains. Even though these models contain useful informa-
tion about the possible transitions among clusters, they do not provide detailed
information about transitions inside a cluster (transitions among neurons).

This reason led us to define the T-SOM model, used for trajectory learning.
These trajectories are the ones followed by the processes on the KR-SOM maps
(a continuous generalization of SOM), and they are encoded as 6-dimensional
flow vectors. The visualization tools obtained from this model are especially
useful for process supervision. Particularly, the visual representation of residuals,
calculated as the difference between the modeled flow vector and the real one,
is useful to detect changes in the process dynamics.

The proposed method was applied to a real industrial plant, where some
changes were induced in the dynamics of some of the most representative vari-
ables (flow, level, pressure and temperature), allowing to detect and characterize
changes in the process dynamics.

Acknowledgements. This research has been financed by the Spanish Ministerio
de Educación y Ciencia under grant DPI2006-13477-C02-02.

References

1. Keim, D.A.: Information visualization and visual data mining. IEEE Trans. Vis.
Comput. Graph. 8(1), 1–8 (2002)

2. de Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data
mining: A survey. IEEE Transactions on Visualization and Computer Graph-
ics 9(3), 378–394 (2003)

3. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications
of the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)

4. Ultsch, A., Siemon, H.P.: Kohonen’s Self Organizing Feature Maps for Exploratory
Data Analysis. In: INNC Paris 90, pp. 305–308. Universitat Dortmund (1990)

5. Tryba, V., Metzen, S., Goser, K.: Designing basic integrated circuits by self-
organizing feature maps. In: Neuro-Nı̂mes ’89. Int. Workshop on Neural Networks
and their Applications, Nanterre, France, ARC; SEE, EC2, pp. 225–235 (1989)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

598 J.J. Fuertes-Mart́ınez et al.

6. Vesanto, J.: SOM-based data visualization methods. Intelligent Data Analysis 3(2),
111–126 (1999)

7. Kasslin, M., Kangas, J., Simula, O.: Process state monitoring using self-organizing
maps. In: Aleksander, I., Taylor, J. (eds.) Artificial Neural Networks, 2, vol. II, pp.
1531–1534. North-Holland, Amsterdam, Netherlands (1992)

8. Domı́nguez, M., Reguera, P., Fuertes, J.J., Dı́az, I., Cuadrado, A.A.: Internet-based
remote supervision of industrial processes using Self-organizing maps. Engineering
Applications of Artificial Intelligence (2007) (articl. in press)

9. Vesanto, J., Alhoniemi, E.: Clustering of the self-organizing map. IEEE Transac-
tions on Neural Networks 11(3), 586–600 (2000)

10. Flexer, A.: On the use of self-organizing maps for clustering and visualization.
Intelligent-Data-Analysis 5, 373–384 (2001)

11. Murata, T.: Petri nets: properties, analysis, and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

12. Rabiner, L.: A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE 77, 257–286 (1989)

13. Johnson, N., Hogg, D.: Learning the distribution of object trajectories for event
recognition. Image Vision Comput. 14(8), 609–615 (1996)

14. Owens, J., Hunter, A.: Application of the self-organising map to trajectory classifi-
cation. In: Proceedings Third IEEE International Workshop on Visual Surveillance,
pp. 77–83. IEEE Computer Society Press, Los Alamitos, CA, USA (2000)

15. Hu, W., Xie, D., Tan, T.: A hierarchical self-organizing approach for learning the
patterns of motion trajectories. IEEE-NN 15, 135–144 (2004)

16. Dı́az Blanco, I., Dı́ez González, A.B., Cuadrado Vega, A.A.: Complex process visu-
alization through continuous feature maps using radial basis functions. In: Dorffner,
G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS, vol. 2130, pp. 443–449.
Springer, Heidelberg (2001)

17. Walter, J., Nölker, C., Ritter, H.: The psom algorithm and applications. In: Proc.
Symposion Neural Computation 2000, Berlin, pp. 758–764 (2000)

18. Specht, D.F.: A general regression neural network. IEEE Transactions on Neural
Networks 2(6), 568–576 (1991)

19. Domı́nguez, M., Fuertes, J.J., Reguera, P., González, J.J., Ramón, J.M.: Maqueta
industrial para docencia e investigación [Industrial scale model for training and
research]. Revista Iberoamericana de Automática e Informática Industrial 1(2),
58–63 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fixed Points of the Abe Formulation of

Stochastic Hopfield Networks�

Marie Kratz1, Miguel Atencia2, and Gonzalo Joya3

1 SAMOS-MATISSE. Université Paris I (France)
2 Departamento de Matemática Aplicada. Universidad de Málaga (Spain)
3 Departamento de Tecnoloǵıa Electrónica. Universidad de Málaga (Spain)

Campus de Teatinos, 29071 Málaga, Spain
matencia@ctima.uma.es

Abstract. The stability of stochastic Hopfield neural networks, in the
Abe formulation, is studied. The aim is to determine whether the ability
of the deterministic system to solve combinatorial optimization problems
is preserved after the addition of random noise. In particular, the stochas-
tic stability of the attractor set is analyzed: vertices, which are feasible
points of the problem, should be stable, whereas interior points, which
are unfeasible, should be unstable. Conditions on the noise intensity are
stated, so that these properties are guaranteed. This theoretical investi-
gation establishes the foundations for practical application of stochastic
networks to combinatorial optimization.

1 Introduction

Hopfield neural networks [1,2] have been studied for decades, both as a the-
oretical model and as a practical solver of important problems. In particular,
continuous Hopfield networks [2] were successfully applied to the solution of
combinatorial optimization problems [3]. Although this success was controver-
sial [4], several enhancements of the original model were proposed, among which
the Abe formulation [5] was proved to present favourable properties [6]: under
mild assumptions, the only stable fixed points of the system are vertices, whereas
interior points, which are unfeasible, cannot be stable. This theoretical result has
obvious implications concerning the practical application of the network as an
efficient algorithm.

In this paper we consider the Abe formulation, but now the eventual presence
of random noise in weights and biases is considered. The aim is to establish
results that are parallel to those of the deterministic case. The interest of this
research is twofold: on one hand, stochastic noise could model inaccuracies in
the components of a hardware implementation; on the other hand, the stochastic
model could present a dynamical behaviour that would be more favourable for
combinatorial optimization.
� This work has been partially supported by the Spanish Ministerio de Educación y

Ciencia, Project No. TIN2005-01359. The comments of the anonymous reviewers are
gratefully acknowledged.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 599–608, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

600 M. Kratz, M. Atencia, and G. Joya

A considerable number of recent contributions have dealt with the stochastic
Hopfield formulation (e.g. [7,8] and references therein), which is in sharp contrast
with the almost unexplored analysis of the Abe formulation. Only in [9], the
conditions for stochastic convergence of the Abe formulation were stated, but
the determination of the form of the attractor set was not pursued. In this
work, the stability of the system is guaranteed, by defining the same Lyapunov
function as in the deterministic case. From the computational point of view, this
is a favourable property, that results in optimization of the target function being
preserved under stochastic perturbations.

In Section 2, the main properties of the deterministic model are recalled,
emphasizing the consequences for combinatorial optimization applications. The
main results of the paper are comprised in Section 3, stating the conditions on the
noise intensity, so that vertices belong to the attractor set whereas interior points
are unstable. Finally, Section 4 includes the conclusions and some directions for
further research.

2 Deterministic Model

2.1 Hopfield Networks and the Abe Formulation

The continuous Hopfield network [2] is a bio-inspired system, which is mathe-
matically formulated as a system of Ordinary Differential Equations (ODEs). A
slightly modified formulation was proposed by Abe [5], leading to the following
definition:

d ui

d t
= neti ; si(t) = tanh

(
ui(t)

β

)

; i = 1, . . . , n (1)

where the constant β regulates the slope of the hyperbolic tangent function and
the term neti is linear—affine, to be more precise—in each of the variables si:

neti =
n∑

j=1

wij sj − bi (2)

where the weights wij and the biases bi are constant parameters. The Abe formu-
lation has been suggested to be better suited to solve combinatorial optimization
problems [6], thus it is the object of this contribution.

2.2 Stability of Fixed Points and Combinatorial Optimization

From a dynamical viewpoint, Hopfield networks are systems that can be proved
to be stable by defining a suitable Lyapunov function. Assume that the weight
matrix is symmetric (wij = wji) and no self-weights exist (wii = 0), then the
following is a Lyapunov function of the system given by Equations (1) and (2):

V (s) = −1
2

n∑

i=1

n∑

j=1

wij si sj +
n∑

i=1

bi si = −1
2
s� As + b� s (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fixed Points of the Abe Formulation of Stochastic Hopfield Networks 601

The critical condition for V being a Lyapunov function is dV
dt ≤ 0, which results

from the straightforward computation of the chain rule.
One of the first practical applications of Hopfield networks was the solution

of combinatorial optimization problems [3]. The procedure for optimization pro-
ceeds by formally matching the target function and the Lyapunov function given
by Equation (3), which allows to compute the weights and biases. Then, the re-
sulting system is allowed to evolve, while the condition dV

dt ≤ 0 implies that the
network converges towards a—possibly local—minimum of the target function.
When the function V is regarded as a target function, the assumption of symme-
try (wij = wji) is not restrictive, since both weights correspond to the coefficient
of the same term si sj .

In combinatorial optimization problems, the feasible points are placed at ver-
tices of the hypercube, i.e. vectors s so that |si| = 1 ∀i. Note that, as far as the
feasible set is concerned, the assumption that self weights wii vanish is sensible,
since self weights would correspond to constant terms s2

i = 1 that are negligible
in the target function. The crucial advantage of the Abe formulation consists in
the fact that vertices are fixed points, so that dsi

dt = 0 ∀i, whereas additional
fixed points may occur at interior points, which satisfy neti = 0; further, with
some mild assumptions, vertices are the only stable fixed points of the system
[6]. In particular, in non-trivial systems, vertices and interior points are disjoint
sets, i.e. |si| = 1 and neti = 0 cannot occur simultaneously. We will keep this
assumption in the rest of the paper.

In short, the aim of this paper is to determine if the characterization of stable
fixed points is preserved after the addition of random noise to the system.

3 Stochastic Stability of Fixed Points

Roughly speaking, the aim of this section is proving that the function given
by Equation (3) is a Lyapunov function of the Hopfield network, defined in
Equation (1), when the presence of stochastic noise is considered. Once the
convergence to some set is proved, the form of this attractor set is ascertained.

3.1 Stochastic Model

In order to carry out the stochastic analysis, the presence of random noise must
be formalized, by means of the techniques of Stochastic Differential Equations
(SDEs) [10,11]. Let (Ω, F , P) be a complete probability space, on which an m-
dimensional Brownian motion or Wiener process W is defined W = {W (t), t ≥
0} and let F = (Ft, t ≥ 0) denote the corresponding natural filtration, i.e. Ft is
the σ-algebra generated by the processes W (s) with 0 ≤ s ≤ t. Then an additive
stochastic perturbation, as in [7], can be considered in Equation (1), resulting
in the following SDE:

d ui = neti dt + (σ(u) dWt)i (4)

where σ(x) = (σij(x))n×m is the noise intensity matrix defined on R
n. As in

the deterministic case, it is convenient to rewrite Equation (4) in terms of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

602 M. Kratz, M. Atencia, and G. Joya

variables si, which remain bounded. This reformulation is performed by means
of the stochastic analogue of the chain rule, namely the general Itô formula,
resulting in the following expression:

d si =
1
β

(1 − s2
i) d ui − 1

β2 si (1 − s2
i)

(
σ�(u)σ(u)

)
ii

d t,

=
1
β

(1 − s2
i)

{[

neti − si

β

m∑

k=1

σ2
ik (u)

]

dt +
m∑

k=1

σik (u) dWk(t)

} (5)

where u(t) = β argtanh(s(t)) and x� denotes the vector transpose. The explicit
statement of Equation (5) is more compact and results in simpler proofs than
the ones used for Hopfield SDEs.

The differential operator L associated to Equation (5) is defined by:

L =
1
β

n∑

i=1

(1 − s2
i)

(

neti − si

β

m∑

k=1

σ2
ik (u)

)
∂

∂si

+
1

2 β2

n∑

i=1

n∑

j=1

(1 − s2
i)(1 − s2

j)

(
m∑

k=1

σik(u)σjk(u)

)
∂2

∂sisj

(6)

Hence, for the function V defined in Equation (3), which was the Lyapunov
function of the deterministic system, we obtain:

LV (s) = − 1
β

n∑

i=1

(1 − s2
i)net2i

− 1
2 β2

∑

i�=j

(1 − s2
i)(1 − s2

j)wij

m∑

k=1

σik σjk

+
1
β2

n∑

i=1

si(1 − s2
i)neti

m∑

k=1

σ2
ik

(7)

In the deterministic case, i.e. when σ ≡ 0, as recalled in Section 2 above, it
has been proved [12] that, under some assumptions, the state s converges to the
vertices: |si| = 1. Therefore, our aim is to prove, in the stochastic case defined
by Equation (5), that the system still exhibits some kind of convergence to some
set K, to be determined.

3.2 Stochastic Stability and Existence of Attractor

The conditions for convergence, which were stated in [9], are here reproduced
for completeness, in a slightly more organized way. First of all, it must be deter-
mined whether we can assure LV ≤ 0, which is the stochastic equivalent of the
Lyapunov condition dV

dt ≤ 0 of the deterministic case. The required result stems
from the following lemma:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fixed Points of the Abe Formulation of Stochastic Hopfield Networks 603

Lemma 1. Let (λi)i be the eigenvalues of the symmetric weight matrix W and
define the extreme eigenvalues λmin = mini λi, λmax = maxi λi. Assume λmin ≤
0. If the following condition holds:

(σ�σ)ii ≤ 2 β net2i
|λmin| (1 − s2

i) + 2 |si neti|
∀i, ∀s ∈ R

n (8)

then LV (s) ≤ 0.

The proof results from a direct algebraic calculation and it is therefore omitted.
Note that we will only be concerned by the case λmin ≤ 0 since the matrix
W = (wij)ij associated to the weights satisfies by hypothesis trace(A) = 0
which implies that λmin < 0 < λmax.

Stochastic convergence, unlike standard Lyapunov stability, requires further
technicalities in addition to the condition LV ≤ 0, in order to guarantee the
convergence to the limit set {s : LV (s) = 0}. Hence, consider the function
V defined by Equation (3) and observe that (st)t is an Itô diffusion, whereas
the corresponding L is defined by Equation (7). Then, the following relation
results [10]:

V (s(t)) = V (s0) +
∫ t

0
LV (s(r))dr + Mt (9)

where Mt is defined by

Mt = − 1
β

∫ t

0

n∑

i=1

(1−s2
i (r))neti

m∑

k=1

σik (ur) dWk(r) = −
m∑

k=1

∫ t

0
Hk(s(r)) dWk(r)

(10)

with Hk(s(r)) =
1
β

n∑

i=1

(1 − s2
i (r))neti σik (u). Consequently, the limit set K can

be defined as:

K = {s : LV (s) = 0} ∩ {s : Hk(s) = 0 , ∀ 1 ≤ k ≤ m} (11)

The analogue of Theorem 2.1 in [7], for the Abe formulation, is stated now:

Theorem 1. Assume LV (s) ≤ 0, ∀s ∈ R
n. Then the set K defined in Equation

(11) is not empty and for any initial value s0 ∈ [−1, 1], the solution s(t; s0) =
s(t, ω; s0) of Equation (5) satisfies

lim inf
t→∞ d(s(t; s0), K) = 0 a.s. (12)

with d(y, K) = min
z∈K

|y − z|. Moreover, if for any s ∈ K, there exists a neighbour-

hood of s such that every point r �= s of this neighbourhood satisfies V (r) �= V (s),
then, for any initial value s0,

lim
t→∞ s(t; s0) ∈ K a.s. (13)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

604 M. Kratz, M. Atencia, and G. Joya

3.3 Comparison of the Limit Sets of the Deterministic and the
Stochastic Systems

The next step in this research is to compare the attractors of the determinis-
tic and the stochastic cases. Note that, strictly speaking, the attractor of the
stochastic network, as defined by Equation (11), is a random set, since the tra-
jectories s(w, t) are stochastic processes, so it is defined in a different space as
the deterministic attractor. However, for simplicity of notation, we drop the de-
pendance on w and refer to the stochastic attractor as a normal set, whereas
the conditions on the noise will be explicitly stated when necessary. Recall from
Section 2 above that the fixed points of the deterministic case are either vertices
or interior points, which leads to defining the following set K0:

K0 = {s : |s| = 1} ∪ {s : neti = 0, ∀i ∈ J ⊂ {1, · · · , n}, |sj| = 1, ∀j ∈ Jc} (14)

where Jc is the complementary set of J . It is also noticeable that, due to the
hyperbolicity assumption, si can not satisfy at the same time both condition
neti = 0 and |si| = 1. As mentioned above, it has been proved that, under
certain conditions, the vertices are the only stable fixed points of the system
defined by Equation (1), which is a favourable property as far as combinatorial
optimization is concerned.

In the following, we analyze the relationship between the stochastic limit set
K, as defined in Equation (11), and the deterministic set K0, given by Equa-
tion (14). In particular, a long term goal is to find a condition on the noise in
order to obtain K = K0. Notice that K0 ⊂ {s : Hk(s) = 0, ∀k} holds.

– Consider first the case of the vertices Kv = {s : |si| = 1, ∀i}. From the
definition of the deterministic attractor, Equation (14), it is obvious that
Kv ⊂ K0.

Consider a vertex s ∈ Kv and assume that the noise intensity σ is bounded
in a neighbourhood of s:

(σ�σ)ii ≤ β net2i
ε + |neti|

∼ β |neti| ∀i, ∀s ∈ R
n (15)

with 0 ≤ ε < 1. Such condition implies LV (s) ≤ 0, through the application
of Lemma 1. Now, since LV (s) = 0 and Hk(s) = 0, ∀k, when s is a vertex,
we deduce:

Kv ⊂ K (16)

Note that the condition given by Equation (15) is very weak since the pa-
rameter β can always be chosen according to the noise in order to satisfy it.
Moreover, it could be weakened by taking different parameters βi for each i.

– Consider next the interior points KJ = K0 −Kv. Given a subset of indices
J ⊂ {1, 2, · · · , n}, the interior points s are defined by KJ = {s : neti =
0, ∀i ∈ J and |sj | = 1, ∀j ∈ Jc}. When J is a proper subset, these interior
points are referred to as mixed points, since |si| = 1 for some indices i.
Anyway, the analysis for mixed and interior points is identical.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fixed Points of the Abe Formulation of Stochastic Hopfield Networks 605

Assume that the noise satisfies the condition of Lemma 1, given by Equa-
tion (8), so that LV (s) ≤ 0 holds. In the neighbourhood of interior points,
this condition reduces to:

(σ�σ)ii ≤ 2β

|λmin| |neti|2 ∀i ∈ J (17)

Then, this assumption on the noise results in (σ�σ)ii = 0, ∀j ∈ J . From the
definition of LV (s), in Equation (7), upper and lower bounds of LV (s) can
be computed:

−λmax

2β2

∑

i∈J

(1 − s2
i)(σ

�σ)ii ≤ LV (s) ≤ 0 ≤ λmin

2β2

∑

i∈J

(1 − s2
i)(σ

�σ)ii, (18)

Combining these bounds with the previous assumption on the noise at an
interior point, the identity LV (s) = 0 results. To summarize, the following
holds:

σik = 0, ∀i ∈ J, ∀k = 1, · · · , n ⇒ KJ ∈ K (19)

Note that this condition on the noise was anyway necessary, for these interior
points s to satisfy dst = 0.

– Finally, combining the two previous items, we have proved:

K0 ⊂ K (20)

In other words, under stated conditions on the noise, fixed points of the
system are also stochastic equilibria of the network.

3.4 Stability of the Fixed Points of the Network

Once proved that the property of a point being an equilibrium is preserved under
the addition of stochastic noise, it remains to consider whether the same can be
said on stability. That is, we study if a stable (respectively unstable) fixed point
of the network is stochastically stable (respectively unstable).

Exponential Instability

Consider again the stochastic network given by Equation (4), which we rewrite
for convenience as:

d ut = f(ut) dt + σut dWt, (21)

where f(x) = netx = W tanh
(

x
β

)
− b. Let e denote an equilibrium point, i.e.

which satisfies f(e) = 0 and σe = 0. Firstly, let us give a useful lemma, which is a
direct application of known results ([13], Theorem 4.3.5) by choosing a Lyapunov
function V (x) = (x − e)�Q(x − e):

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

606 M. Kratz, M. Atencia, and G. Joya

Lemma 2. Assume there exists a positive definite diagonal matrix Q =
diag(qi; 1 ≤ i ≤ n). Let μ and ρ > 0 be real numbers, such that, ∀x ∈ R

n,

2(x − e)�Q f(x) + trace(σxQσ�
x) ≥ μ(x − e)�Q(x − e) (22)

and
|(x − e)�Q σx|2 ≤ ρ

(
(x − e)�Q(x − e)

)2
(23)

Then, the solution of the system defined by Equation (21) satisfies

lim inf
t→∞

log |x(t; x0) − e|
t

≥ μ

2
− ρ a.s., whenever x0 �= e. (24)

In particular, if ρ < μ/2, then the stochastic neural network given by Equation
(21) is a.s. exponentially unstable.

Now, since we have

(x − e)�Q f(x) =
n∑

i=1

(xi − ei) qi

(

W tanh
(

x

β

)

− b

)

i

=
n∑

i=1

n∑

j=1

(xi − ei) qi wij

(

tanh
(

xj

β

)

− tanh
(

ej

β

))

≥ −
n∑

i=1

n∑

j=1

|wij | qi (xi − ei)
(

tanh
(

xj

β

)

− tanh
(

ej

β

))

≥ − 1
β

n∑

i=1

n∑

j=1

|wij | qi (xi − ei) (xj − ej)

= − 1
2β

∑

i,j

(xi − ei)|wij |(qi + qj)(xj − ej)

≥ −λmax(W̃)
2β

(x − e)�(x − e),

≥ − λmax(Ã)
2β min

1≤i≤n
qi

V (x)

(25)

where W̃ = (w̃ij), w̃ij = |wij |(qi + qj) and the second inequality stems from the
mean value theorem and from the fact that 0 ≤ g′(x) ≤ 1

β . Consequently, one
can conclude that:

LV (ut) ≥ − λmax(W̃)
β min

1≤i≤n
qi

V (ut) + trace(σutQ σ�
ut

). (26)

Assume also the following condition:

∃μ ≥ 0 s.t. trace(σxQσ�
x) ≥ μV (x), ∀x ∈ R

n, (27)

which, together with the conditions given by Equations (23) and (26), allows for
the application of Lemma 2, leading to the following theorem:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Fixed Points of the Abe Formulation of Stochastic Hopfield Networks 607

Theorem 2. Under the above conditions, whenever u0 �= e,

lim inf
t→∞

log |u(t; u0) − e|
t

≥ 1
2

(

μ − λmax(Ã)
β min1≤i≤n qi

)

− ρ a.s. (28)

Our ongoing task is to obtain explicit conditions on the noise under which this
last result applies when considering points of KJ .

Exponential Stability

Similarly as in the previous paragraph, the following lemma can be stated:

Lemma 3. Assume there exists a positive definite diagonal matrix Q =
diag(qi; 1 ≤ i ≤ n). Let μ and ρ > 0 be real numbers, such that, ∀x ∈ R

n,

2(x − e)�Q f(x) + trace(σxQσ�
x) ≤ μ(x − e)�Q(x − e) (29)

and
|(x − e)�Q σx|2 ≥ ρ

(
(x − e)�Q(x − e)

)2
. (30)

Then, the solution of the system given by Equation (21) satisfies

lim sup
t→∞

log |x(t; x0) − e|
t

≤ μ

2
− ρ a.s., whenever x0 �= e. (31)

In particular, if ρ > μ/2, then the stochastic neural network given by Equation
(21) is a.s. exponentially stable.

Applying this lemma to our network provides, under the conditions of Lemma
3 and the equivalent of Equation (26), the following theorem:

Theorem 3. Whenever u0 �= e,

lim sup
t→∞

log |u(t; u0) − e|
t

≤ 1
2

(

μ − λmin(Ã)
β min1≤i≤n qi

)

− ρ a.s. (32)

Our ongoing task is to prove that this last result applies to the points of Kv.

4 Conclusions

In this paper, the stability analysis of continuous Hopfield networks, in the Abe
formulation, is replicated when the presence of random noise is considered. The
analysis of stochastic terms requires the formalism of Stochastic Differential
Equations. With these techniques, the form of the attractor set is ascertained,
and the analysis clarifies the relation between the stability of fixed points of the
deterministic network and the stochastic stability of the equilibria of the stochas-
tic network. It is proved that the vertices, which are feasible points of combi-
natorial optimization problems, belong to the attractor set, whereas interior,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

608 M. Kratz, M. Atencia, and G. Joya

unfeasible, points, become unstable. The conditions required on the stochastic
noise, in order to prove these results, are stated in the paper, and they are not
particularly strong.

We are currently developing this theoretical research in order to weaken the
requirements of the theorems and provide conditions that are more applicable
and more explicit. Also, the form of the attractor set should be more precisely
established. However, the main direction for further research is the practical ap-
plication of the results to a real-world problem. On one hand, in a computational
implementation, the stochastic equations should be discretized by means of nu-
merical methods, which require the analysis of the preservation of the dynamical
properties under discretization. On the other hand, a hardware implementation
could be an efficient optimization algorithm for large size problems, as long as
the influence of random noise on analog electric circuitry is considered. Thus, the
stochastic formulation will be carefully considered in order to determine whether
it is an accurate model of electric circuits. In particular, the presence of multi-
plicative, rather than additive, noise, is an appealing direction of research, since
it could result in a more realistic representation of actual devices.

References

1. Hopfield, J.: Neural Networks and physical systems with emergent collective com-
putational abilities. Proc. Natl. Acad. Sci. USA 79, 2554–2558 (1982)

2. Hopfield, J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proc. Natl. Acad. Sci. USA 81, 3088–3092
(1984)

3. Tank, D., Hopfield, J.: ’Neural’ Computation of Decisions in Optimization Prob-
lems. Biological Cybernetics 52, 141–152 (1985)

4. Wilson, G., Pawley, G.: On the Stability of the Travelling Salesman Problem Al-
gorithm of Hopfield and Tank. Biological Cybernetics 58(1), 63–70 (1988)

5. Abe, S.: Theories on the Hopfield Neural Networks. In: International Joint Con-
ference on Neural Networks, vol. 1, pp. 557–564 (1989)

6. Joya, G., Atencia, M.A., Sandoval, F.: Hopfield Neural Networks for Optimization:
Study of the Different Dynamics. Neurocomputing 43(1-4), 219–237 (2002)

7. Hu, S., Liao, X., Mao, X.: Stochastic Hopfield neural networks. Journal of Physics
A: Mathematical and General 36(9), 2235–2249 (2003)

8. Liu, Y., Wang, Z., Liu, X.: On global exponential stability of generalized stochastic
neural networks with mixed time-delays. Neurocomputing 70, 314–326 (2006)

9. Kratz, M., Atencia, M.A., Joya, G.: Stochastic analysis of the Abe formulation
of Hopfield networks. In: ESANN 2005. Proc. European Symposium on Artificial
Neural Networks, pp. 55–60 (2005)

10. Øksendal, B.: Stochastic Differential Equations. Springer, Heidelberg (2003)
11. Kushner, H.J.: Stochastic Stability and Control. Academic Press, London (1967)
12. Atencia, M.A., Joya, G., Sandoval, F.: Dynamical Analysis of Continuous Higher

Order Hopfield Networks for Combinatorial Optimization. Neural Computa-
tion 17(8), 1802–1819 (2005)

13. Mao, X.: Stochastic Differential Equations and Applications. Horwood (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visualization of Dynamics Using Local Dynamic

Modelling with Self Organizing Maps

Ignacio Dı́az-Blanco1, Abel A. Cuadrado-Vega1, Alberto B. Diez-González1,
Juan J. Fuertes-Mart́ınez2, Manuel Domı́nguez-González2,

and Perfecto Reguera-Acevedo2

1 University of Oviedo, Area de Ingenieŕıa de Sistemas y Automática, Campus de
Viesques s/n, 33204, Gijón, Asturias, Spain

2 Instituto de Automática y Fabricación, Universidad de León, Escuela de
Ingenieŕıas. Campus Universitario de Vegazana, León, 24071, Spain

Abstract. In this work, we describe a procedure to visualize nonlinear
process dynamics using a self-organizing map based local model dynam-
ical estimator. The proposed method exploits the topology preserving
nature of the resulting estimator to extract visualizations (planes) of
insightful dynamical features, that allow to explore nonlinear systems
whose behavior changes with the operating point. Since the visualiza-
tions are obtained from a dynamical model of the process, measures on
the goodness of this estimator (such as RMSE or AIC) are also appli-
cable as a measure of the trustfulness of the visualizations. To illustrate
the application of the proposed method, an experiment to analyze the
dynamics of a nonlinear system on different operating points is included.

Keywords: System identification, self-organizing map, information vi-
sualization.

1 Introduction

Information Visualization techniques have experienced a growing interest for
the analysis and interpretation of large volumes of multidimensional data. Bor-
rowed from other areas, such as bioinformatics, socioeconomics or medicine, in
last years these techniques have been also used for modelling and supervision of
industrial processes from data and previous knowledge. One powerful data vi-
sualization method is the self-organizing map (SOM), [1] that allows to project
data in a smooth manner on a 2D (or 3D) space that can be subject of graphical
representation. This link between process data and a 2D space may be used to
obtain 2D maps of the process states that allow to represent different features
of the process in an insightful manner, helping to exploit available data and
knowledge in an efficient way for process understanding [2].

However, while the SOM has been mostly used to model static relationships
among the input variables, it can also be used to model nonlinear dynamical
processes using local models that describe the dynamical behavior in a small re-
gion in which the process behavior can be considered approximately linear. The

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 609–617, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

610 I. Dı́az-Blanco et al.

idea of assigning a dynamical model to each unit was already described in the
early 90’s by Kohonen as operator maps in [3], and variations of it using differ-
ent training approaches were later proposed in [4,5,6]. One particularly efficient
variant of this approach was proposed in [7] and later, with slight modifications,
in [8], with excellent results, for identification and control problems in systems
whose dynamics change over the operating regime.

Surprisingly, while the basic SOM has proven to be an excellent tool for ex-
ploratory data analysis, very little work has been published on using it to vi-
sualize the dynamical behavior of processes in an explicit way. In this paper,
we suggest the use of the local linear modelling approach proposed in [8] intro-
ducing the notion of selectors of dynamics for the visualization of meaningful
dynamical features of the local models, exploiting two major characteristics of
this approach: the superior estimation accuracy of this method with respect to
global approaches, that supports the accuracy of the resulting visualizations, and
the topological order of the resulting local models –which occurs under certain
mild hypotheses– that ensures a proper visualization.

2 Local Linear Modelling of Dynamics

Let’s consider the following parametric Nonlinear AutoRegresive with eXogenous
inputs (p-NARX) system that express the present output as a function of past
outputs and inputs as well as of a set of parameters.

y(k) = f(y(k − 1), ..., y(k − ny), u(k), ..., u(k − nu), p1(k), ..., pp(k)) (1)

This model can be expressed in a more compact way as

y(k) = f(ϕ(k),p(k)) (2)

where ϕ(k) = [y(k − 1), · · · , y(k − n), u(k), · · · , u(k − m)]T is a vector of known
data at sample k, p = [p1(k), · · · , pp(k)]T is a vector of parameters, and f(·, ·) is a
given functional relationship that may be linear or nonlinear. Model (2) describes
a dynamic relationship between the process inputs and outputs determined by
the values of p1(k), ..., pp(k).

2.1 Clustering Dynamics

Let’s consider a set of available process variables s(k) = [s1(k), · · · , ss(k)]T ∈ S
that are known to discriminate different dynamical process behaviors, that is,
such that p(i) �= p(j) =⇒ s(i) �= s(j); under this hypothesis, these variables can
be regarded as selectors of dynamics, since information regarding the dynamic
relationship between the process’ inputs and outputs is preserved in the selectors.

In a first stage, a SOM with N units is trained in the selectors space S
to cluster the process dynamics. Each unit i is associated to a s-dimensional
prototype vector mi in S and a position vector on a low dimensional regular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visualization of Dynamics Using Local Dynamic Modelling with SOMs 611

grid, gi, in the output space. For each vector s(k) the best matching unit is
computed as

c(k) = arg min
i

{s(k) − mi(t)} (3)

Then, an adaptation stage is performed according to

mi(t + 1) = mi(t) + α(t)h(c(k), i) [s(k) − mi(t)] (4)

where α(t) is the learning rate and h(., .) is the neighborhood function. After
convergence, the result is a set of prototype vectors that divide S into a finite
set of Voronoi regions each of which defines a different dynamic behavior.

2.2 Local Model Estimation

Once a SOM has been trained with the {s(k)}, a model i may be estimated for
each prototype mi using all the pairs {y(k), ϕ(k)} such that

‖g(c(k)) − g(i)‖ ≤ σloc where c(k) = argmin
i

{s(k) − mi(t)} (5)

that is, those pairs whose corresponding selectors s(k) are mapped onto a neigh-
borhood of mi of width σloc. A particular choice can be a linear model

y(k) = pT
i ϕ(k) + ε(k), for neuron i (6)

whose parameters pi can be obtained using least squares to fit the aforemen-
tioned pairs {y(k), ϕ(k)}. This corresponds to a local ARX model associated to
neuron i, that can be rewritten using the difference equation notation

y(k) =
ny∑

j=1

ai
jy(k − j) +

nu∑

j=0

bi
ju(k − j) + ε(k) (7)

or as a transfer function

G(z,pi) =
Y (z)
U(z)

=

∑nu

j=0 bi
jz

−j

1 −
∑ny

j=1 ai
jz

−j
(8)

being pi = [ai
1, ..., a

i
ny

, bi
0, b

i
1, ..., b

i
nu

]

2.3 Retrieval

Once the model is trained, a local model f(ϕ(k),pi) is assigned to each neuron i.
The problem of retrieval is stated as to get y(k) given ϕ(k) and the dynamic se-
lectors s(k). This is accomplished in two steps: 1) obtain the best matching unit,
c(k) = argmini{s(k)−mi(t)} and 2) apply the local model y(k) = f(ϕ(k),pc(k)).
Note that depending on the problem (one or multiple step ahead prediction) data
vector ϕ(k) may contain real or estimated past outputs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

612 I. Dı́az-Blanco et al.

3 Visualization of Dynamics

3.1 Election of the Dynamic Selectors

After the steps outlined in sections 2.1 and 2.2, the result is a set of prototype
vectors mi in the space of dynamic selectors, along with companion vectors pi

containing the model parameters, {mi,pi}.
A key issue for visualization is topology preservation. Since the prototype

vectors mi have been directly obtained from the SOM algorithm (3),(4), they
may be expected to be properly ordered for visualization as largely seen in the
literature [1,9]. But, what about the pi?. Under the hypothesis of discriminating
dynamic selectors stated in sec. 2.1 –i.e., different dynamical behaviors never
occur for the same values of the dynamic selectors– and requiring a somewhat
smooth relationship between the selectors and the process dynamics, the SOM
topology preservation will maintain this smoothness on the maps by transitivity.
In other words, smooth transitions between the dynamics of nearby prototypes
will emerge. This means that not only component planes obtained from proto-
type vectors mi but also planes of the elements of pi, or physically insightful
transformations of them, will be smooth and susceptible to be visualized.

Despite these apparently restrictive conditions a proper choice of the dynamic
selectors can be often done from problem domain knowledge. This is often the
case for nonlinear processes whose local dynamics at sample k, (say, p(k)) depend
on the current working point (say, s(k)). Also, proper choices can be made with
little prior knowledge inspired on the Takens embedding theorem, as suggested
in [7] and [8], such as using an embedded vector with delayed versions of one or
more process outputs as dynamic selectors

s(k) = [y(k − 1), y(k − 2), ..., y(k − q)]T (9)

Note however, that the dynamic selectors do not need to be restricted to the em-
bedding space of the outputs as suggested in [8]. Indeed, other process variables
–specially those suspected to define working points with different dynamics– may
be included in s(k) to evaluate their influence on the process dynamics by means
of the SOM visualizations.

3.2 Visualization of Dynamic Features

The parameter vectors pi convey information about the process dynamics. As
seen in eqs. (7) and (8), in the linear case the pi is equivalent to a difference equa-
tion or a transfer function. A trivial approach to visualize the process dynamics
is to visualize the component planes of the elements of pi. Each component
plane [1] is obtained by assigning to each node gi in the SOM grid a gray or
color level proportional to the scalar values of the elements ai

j and bi
j of pi asso-

ciated to node i. To get some insight on the dynamics, however, there are other
possible representations that can be expressed as parametric transformations

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visualization of Dynamics Using Local Dynamic Modelling with SOMs 613

T (pi, θ1, θ2, ...) of the elements of pi. A useful representation, for instance, is the
power density of a transfer function at normalized frequency θ

T (pi, θ) =

∣
∣
∣
∣
∣

∑nu

j=0 bi
je

−jθ

1 −
∑ny

j=1 ai
je

−jθ

∣
∣
∣
∣
∣

2

(10)

Of course any other straightforward transformations in the same idea of (10) are
suitable such as peak gains, resonant frequencies, bandwidth, etc.

4 Experimental Results

The proposed method was tested on simulated data of a nonlinear system con-
sisting of a pendulum of mass m and length l mounted on a car whose basis is
subject to an acceleration u (see fig. 1).

u

mg

θ

l

m

0 100 200 300 400 500 600 700
0

1

2

3

4

5

6

t

θ
 v

s
 θ

lin

RMSE lineal = 0.221, RMSE mloc = 0.0652

real
lin

0 100 200 300 400 500 600 700
1

2

3

4

5

t

θ
 v

s
 θ

lo
c

real
loc

Fig. 1. On the left, the schematics of the pendulum; on the right, comparison of global
linear model against local models on test data

Jθ̈ + Bθ̇ = mgl sin θ + mlu cos θ (11)

where J is the moment of inertia w.r.t. the pivot, B is the friction coefficient
and g = 9.8m/s2 is gravity acceleration. Choosing x = [x1, x2]T = [θ, θ̇]T , and
y = θ, it can be expressed in state space form

ẋ1 = x2 (12)

ẋ2 =
1
J

(mgl sinx1 + mlu cosx1 − Bx2) (13)

y = x1 (14)

that reveals a nonlinear state space dynamics of the type ẋ = f(x, u) showing
different local behaviors on different state space regions. The linearized model for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

614 I. Dı́az-Blanco et al.

Table 1. Comparison of different model orders against validation data

nu ny σloc RMSE (loc) RMSE (lin) AIC (loc)

1 1 1 2 0.163 0.252 −3.59
2 1 1 3 0.143 0.252 −3.84
3 1 2 2 0.168 0.328 −3.52
4 1 2 3 0.145 0.328 −3.81
5 1 3 2 1.18 0.532 0.396
6 1 3 3 0.231 0.532 −2.87
7 2 1 2 0.0557 0.222 −5.72
8 2 1 3 0.06 0.222 −5.58
9 2 2 2 0.0545 0.223 −5.76

→ 10 2 2 3 0.0528 0.223 −5.86
11 2 3 2 18.8 0.493 5.94
12 2 3 3 0.534 0.493 −1.18
13 3 1 2 0.0528 0.235 −5.82
14 3 1 3 0.0645 0.235 −5.46
15 3 2 2 0.108 0.26 −4.38
16 3 2 3 0.451 0.26 −1.57
17 3 3 2 1.18 0.257 0.418
18 3 3 3 100 0.257 100

small movements around an equilibrium point defined by θ0, in transfer function
form is

G(s, θ0) =
ml cos θ0

Js2 + Bs − mgl cos θ0
(15)

that, as seen, depends on θ0. This system is nonlinear and exhibits different local
dynamic behaviors depending on the working point defined by θ. An embedded
vector with delayed versions of the output, as shown in eq. (9), was selected as
dynamic selectors, as suggested in [7]. As in [8], good results were achieved with
low values of q, and we finally selected q = 2 to yield

s(k) = [θ(k − 1), θ(k − 2)]T (16)

Conceptually, this allows to take into account both the current angle and speed
of the pendulum, [θ, θ̇]T , since both states can be derived through linear trans-
formations of the elements of s(k) as θ ≈ θ(k − 1) and θ̇ ≈ θ(k−1)−θ(k−2)

Δt
To evaluate the proposed method, the system was simulated under random

steps of the car acceleration u of 5 seconds duration each, with a sample time
ts = 0.5 sec. and a total simulation time of 5000 sec., resulting in vectors θ(k)
and u(k) of 10000 samples. A 20×20 SOM was trained using the batch algorithm
on vectors s(k) = [θ(k − 1), θ(k − 2)]T with a PCA normalization and a gaussian

neighborhood hij(t) = e
− d(i,j)

σ(t)2 where σ(t) was made to decrease monotonically
from 7 to 0.3.

Once the SOM was trained, local ARX models in the form (7) were trained for
all combination of orders ny = {1, 2, 3} and nu = {1, 2, 3} and using local model

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visualization of Dynamics Using Local Dynamic Modelling with SOMs 615

f/f
s
 = 0 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.05 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.1 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.15 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.2 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.25 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.3 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.35 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.4 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.45 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.5 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.55 (p.u.)

0 5 10 15
0

5

10

15

f/f
s
 = 0.6 (p.u.)

0 5 10 15
0

5

10

15

y(k−1)

0 5 10 15
0

5

10

15

y(k−2)

0 5 10 15
0

5

10

15

Δ y(k−1)

0 5 10 15
0

5

10

15

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

−60

−40

−20

2

3

4

5

2

3

4

5

−1

0

1

Fig. 2. Frequency response maps. Frequencies are expressed in p.u. with respect to the
sample rate fs; gains at each frequency are expressed in dB.

widths σloc = {2, 3} in eq. (5). For each pair (ny, nu) the model was evaluated
against validation data, and the Akaike’s information criterion (AIC)

AIC = log

(
1
N

N∑

i=1

[y(i) − ŷ(i)]2
)

+ 2d/N (17)

was computed for all the local models to select the best model order, where d =
ny +nu+2 is the total number of model parameters including a bias term, and N
is the number of estimation data. From table 1 the best performance is achieved
by the 10th model type consisting of ARX(2,2) using a local model width σloc =
3. The prediction ability of this model on test data is compared to the global
linear model in fig. 1, showing that it clearly outperforms the global linear model.
This suggests that information regarding the system’s dynamical behavior is
present in the dynamical model based on the local approach. Since the local
models are topologically ordered by the SOM, meaningful properties for single
local ARX models (such as e.g. spectral densities at given frequencies) can be
visualized for all the models by means of SOM maps, providing a comprehensive
description of all the dynamic modes of the nonlinear system –see fig. 2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

616 I. Dı́az-Blanco et al.

As a matter of fact, the dc gain can be computed at s = 0 in the linearized
model (15) for all equilibrium points as G(0) = −1/g, regardless the value of
the equilibrium point θ0. However, in the nonlinear system, the angle θ for a
constant acceleration u0 can be shown to be θ0 = arctan (−u0/g) at steady
state, that is, the dc gain is arctan(−u0/g)

u0
, that approximately coincides with

−1/g for small values of u0, near the working point θ0 = π. This real behavior is
shown in the frequency map for ω = 0 (dc gain), where the dc gain of the system
is approximately -20 dB (= 0.1 ≈ 1/g) for values of θ around π, but decreases
as the pendulum approaches to the horizontal positions θ around π/2 or 3π/2.

Finally, other more subtle dynamical relationships can also be observed, such
as the relationship between map of angular speed (Δy(k−1) def= y(k−1)−y(k−2))
and the harmonics at 0.3fs and 0.35fs, for which it seems that the nonlinear
model of the pendulum exhibits surprisingly lower gains for large angular speeds
regardless the sign of this speed.

5 Conclusions

In this work we have proposed a method to visualize the local dynamical be-
haviors of nonlinear processes using the SOM local linear approach described in
[8] with some assumptions that require some prior knowledge –usually available
from problem domain– about the variables that can have an influence on the
process dynamics. Since the visualizations are derived from a dynamical model
used for estimation, the accuracy of the visual descriptions of dynamics may be
measurable, in some sense, using standard performance indices (such as RMSE
or AIC) of the estimator on test data. Experimental results with simulated data
of a nonlinear system are included to show its application.

While the proposed method has proven to work well under reasonable con-
ditions in other problems, some unsolved questions still remain, such as the
requirable conditions for adequate persistence of excitation of the training data,
as well as the interpretability of deficient rank or locally unstable models, that
may arise even for a good accuracy of the underlying estimator.

Acknowledgement. This research has been financed by the Spanish Ministerio
de Educación y Ciencia under grant DPI2006-13477-C02-01.

References

1. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990)

2. Alhoniemi, E., Hollmén, J., Simula, O., Vesanto, J.: Process monitoring and mod-
eling using the self-organizing map. Integrated Computer Aided Engineering 6(1),
3–14 (1999)

3. Kohonen, T.: Generalizations of the self-organizing map. In: IJCNN’93-Nagoya. Pro-
ceedings of 1993 International Joint Conference on Neural Networks, vol. 1, pp.
457–462 (1993)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Visualization of Dynamics Using Local Dynamic Modelling with SOMs 617

4. Vesanto, J.: Using the SOM and local models in time-series prediction. In: WSOM.
Proceedings of the Workshop Self-Organizing Maps, June 4-6, pp. 209–214. Helsinki
University of Technology, Finland (1997)

5. Fontenla-Romero, O., Alonso-Betanzos, A., Castillo, E., Principe, J., Guijarro-
Berdinas, B.: Local Modeling Using Self-Organizing Maps and Single Layer Neural
Networks. In: Proceedings of the International Conference on Artificial Neural Net-
works, pp. 945–950 (2002)

6. Barreto, G., Araujo, A.: Identification and control of dynamical systems using the
self-organizing map. Neural Networks, IEEE Transactions 15(5), 1244–1259 (2004)

7. Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing
maps and applications to nonlinear system identification and control. Proceedings
of the IEEE 86(11), 2240–2258 (1998)

8. Cho, J., Principe, J.C., Erdogmus, D., Motter, M.A.: Modeling and inverse con-
troller design for an unmanned aerial vehicle based on the self-organizing map.
IEEE Transactions on Neural Networks 17(2), 445–460 (2006)

9. Kohonen, T., Oja, E., Simula, O., Visa, A., Kangas, J.: Engineering applications of
the self-organizing map. Proceedings of the IEEE 84(10), 1358–1384 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of Echo State Networks with Simple
Recurrent Networks and Variable-Length Markov

Models on Symbolic Sequences�

Michal Čerňanský1 and Peter Tiňo2

1 Faculty of Informatics and Information Technologies, STU Bratislava, Slovakia
2 School of Computer Science, University of Birmingham, United Kingdom

cernansky@fiit.stuba.sk, P.Tino@cs.bham.ac.uk

Abstract. A lot of attention is now being focused on connectionist models
known under the name “reservoir computing”. The most prominent example of
these approaches is a recurrent neural network architecture called an echo state
network (ESN). ESNs were successfully applied in more real-valued time series
modeling tasks and performed exceptionally well. Also using ESNs for process-
ing symbolic sequences seems to be attractive. In this work we experimentally
support the claim that the state space of ESN is organized according to the Marko-
vian architectural bias principles when processing symbolic sequences. We com-
pare performance of ESNs with connectionist models explicitly using Markovian
architectural bias property, with variable length Markov models and with recur-
rent neural networks trained by advanced training algorithms. Moreover we show
that the number of reservoir units plays a similar role as the number of contexts
in variable length Markov models.

1 Introduction

Echo state network (ESN) [1,2] is a novel recurrent neural network (RNN) architecture
based on a rich reservoir of potentially interesting behavior. The reservoir of ESN is
the recurrent layer formed of a large number of sparsely interconnected units with non-
trainable weights. Under certain conditions RNN state is a function of finite history of
inputs presented to the network - the state is the “echo” of the input history. ESN training
procedure is a simple adjustment of output weights to fit training data. ESNs were
successfully applied in some sequence modeling tasks and performed exceptionally
well [3,4]. On the other side part of the community is skeptic about ESNs being used
for practical applications [5]. There are many open questions, as noted for example by
the author of ESNs [6]. It is still unclear how to prepare the reservoir with respect to
the task, what topologies should be used and how to measure the reservoir quality for
example.

Many commonly used real-world data with a time structure can be expressed as a
sequence of symbols from finite alphabet - symbolic time series. Since their emergence
the neural networks were applied to symbolic time series analysis. Especially popular is
to use connectionist models for processing of complex language structures. Other works

� This work was supported by the grants APVT-20-030204 and VG-1/4053/07.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 618–627, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of ESNs with Simple Recurrent Networks 619

study what kind of dynamical behavior has to be acquired by RNNs to solve particular
tasks such as processing strings of context-free languages, where counting mechanism
is needed [7,8]. Some researchers realized that even in an untrained randomly initialized
recurrent network considerable amount of clustering is present. This was first explained
in [9] and correspondence to a class of variable length Markov models was shown in
[10].

Some attempts were made to process symbolic time series using ESNs with interest-
ing results. ESNs were trained to stochastic symbolic sequences and a short English text
in [2] and ESNs were compared with other approaches including Elman’s SRN trained
by simple BP algorithm in [11]. Promising resulting performance was achieved, supe-
rior to the SRN. In both works results of ESNs weren’t compared with RNNs trained
by advanced algorithms.

2 Methods

2.1 Recurrent Neural Networks

RNNs were successfully applied in many real-life applications where processing time-
dependent information was necessary. Unlike feedforward neural networks, units in
RNNs are fed by activities from previous time steps through recurrent connections.
In this way contextual information can be kept in units’ activities, enabling RNNs to
process time series.

Elman’s simple recurrent network (SRN) proposed in [12] is probably the most
widely used RNN architecture. Context layer keeps activities of hidden (recurrent) layer
from previous time step. Input layer together with context layer form extended input to
the hidden layer. Elman’s SRN composed of 5 input, 4 hidden a 3 output units is shown
in Fig. 1a.

Common algorithms usually used for RNN training are based on gradient mini-
mization of the output error. Backpropagation through time (BPTT) [13,14] consists
of unfolding a recurrent network in time and applying the well-known backpropagation
algorithm directly. Another gradient descent approach, where estimates of derivatives
needed for evaluating error gradient are calculated in every time step in forward manner,

z-1 z-1 z-1

C6 C8C7 C9I1 I2 I4

O11

I3

O10

I5

O12

z-1

T0

H8H7 H9H6

Fig. 1. (a) Elman’s SRN and (b) Jaeger’s ESN architectures

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

620 M. Cerňanský and P. Tiňo

is the real-time recurrent learning (RTRL) [15,14]. Probably the most successful train-
ing algorithms are based on the Kalman filtration (KF) [16]. The standard KF can be
applied to a linear system with Gaussian noise. A nonlinear system such as RNNs with
sigmoidal units can be handled by extended KF (EKF). In EKF, linearization around
current working point is performed and then standard KF is applied. In case of RNNs,
algorithms similar to BPTT or RTRL can be used for linearization. Methods based
on the Kalman filtration outperform common gradient-based algorithms in terms of in
terms of robustness, stability, final performance and convergence, but their computa-
tional requirements are usually much higher.

2.2 Echo State Networks

Echo state networks represent a new powerful approach in recurrent neural network
research [1,3]. Instead of difficult learning process, ESNs are based on the property of
untrained randomly initialized RNN to reflect history of seen inputs - here referred to
as “echo state property”. ESN can be considered as a SRN with a large and sparsely
interconnected recurrent layer - “reservoir” of complex contractive dynamics. Output
units are used to extract interesting features from this dynamics, thus only network’s
output connections are modified during learning process. A significant advantage of
this approach is that computationally effective linear regression algorithms can be used
for adjusting output weights.

The network includes input, hidden and output “classical” sigmoid units (Fig. 1b).
The reservoir of the ESN dynamics is represented by hidden layer with partially con-
nected hidden units. Main and essential condition for successful using of the ESNs is the
“echo state” property of their state space. The network state is required to be an “echo”
of the input history. If this condition is met, only network output weights adaptation is
sufficient to obtain RNN with high performance. However, for large and rich reservoir
of dynamics, hundreds of hidden units are needed. When u(t) is an input vector at time
step t, activations of internal units are updated according to

x(t) = f
(
Win · u(t) + W · x(t − 1) + Wback · y(t − 1)

)
, (1)

where f is the internal unit’s activation function, W, Win and Wback are hidden-
hidden, input-hidden, and output-hidden connections’ matrices, respectively. Activa-
tions of output units are calculated as

y(t) = f
(
Wout · [u(t),x(t),y(t − 1)]

)
, (2)

where Wout is output connections’ matrix.
Echo state property means that for each internal unit xi there exists an echo function

ei such that the current state can be written as xi(t) = ei(u(t), u(t − 1), . . .) [1]. The
recent input presented to the network has more influence to the network state than an
older input, the input influence gradually fades out. So the same input signal history
u(t), u(t − 1), will drive the network to the same state xi(t) in time t regardless the
network initial state.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of ESNs with Simple Recurrent Networks 621

2.3 Variable Length Markov Models

As pointed out in [10], the state space of RNNs initialized with small weights is orga-
nized in Markovian way prior to any training. To assess, what has been actually learnt
during the training process it is always necessary to compare performance of the trained
RNNs with Markov models.

Fixed order Markov model is based on the assumption that the probability of symbol
occurrence depends only on the finite number of m previous symbols. In the case of
the predictions task all possible substrings of length m are maintained by the model.
Substrings are prediction contexts of the model and for every prediction context the
table of the next symbol probabilities is associated. Hence the memory requirements
grow exponentially with the model order m.

To solve some limitations of fixed order Markov models variable length Markov
models (VLMMs) were proposed [17,18]. The construction of the VLMM is a more
complex task, contexts of various lengths are allowed. The probability of the context is
estimated from the training sequence and rare and other unimportant contexts are not
included in the model.

2.4 Models Using Architectural Bias Property

Several connectionist models directly using Markovian organization [10] of the RNN’s
state space were suggested. Activities of recurrent neurons in an recurrent neural net-
work initialized with small weights are grouped in clusters [9]. The structure of clusters
reflects the history of inputs presented to the network. This behavior has led to the idea
described in [19] where prediction models called neural prediction machine (NPM) and
fractal prediction machine (FPM) were suggested. Both use Markovian dynamics of
untrained recurrent network. In FPM, activation function of recurrent units is linear and
weights are set deterministically in order to create well-defined state space dynamics. In
NPM, activation functions are nonlinear and weights are randomly initialized to small
values as in regular RNN. Instead of using classical output layer readout mechanism,
NPM and FPM use prediction model that is created by extracting clusters from the net-
work state space. Each cluster corresponds to different prediction context with the next
symbol probabilities.

More precisely, symbol presented to the network drives the network to some state
(activities on hidden units). The state belongs to some cluster and the context corre-
sponding to this cluster is used for the prediction. The context’s next symbol proba-
bilities are estimated during training process by relating the number of times that the
corresponding cluster is encountered and the given next symbol is observed.

Described prediction model can be created also using activities on recurrent units of
the trained RNN. In this article we will refer to this model as NPM built over the trained
RNN. RNN training process is computationally demanding and should be justified.
More complex dynamics than simple fixed point attractor-based one should be acquired.
Hence prediction context of NPM built over the trained RNN usually do not follow
Markovian architectural bias principles.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

622 M. Cerňanský and P. Tiňo

3 Experiments

3.1 Datasets

We present experiments with two symbolic sequences. The first one was created by
symbolization of activations of laser in chaotic regime and chaotic nature of the origi-
nal “real-world” sequence is also present in the symbolic sequence. The second dataset
contains words generated by simple context free grammar. The structure and the recur-
sion depths are fully controlled by the designer [10] in this case.

The Laser dataset was obtained by quantizing activity changes of laser in chaotic
regime, where relatively predictable subsequences are followed by hardly predictable
events. The original real-valued time series was composed of 10000 differences be-
tween the successive activations of a real laser. The series was quantized into a sym-
bolic sequence over four symbols corresponding to low and high positive/negative laser
activity change. The first 8000 symbols are used as the training set and the remaining
2000 symbols form the test data set [20].

Deep recursion data set is composed of strings of context-free language LG. Its gen-
erating grammar is G = ({R}, {a, b, A, B}, P, R), where R is the single non-terminal
symbol that is also the starting symbol, and a, b, A, B are terminal symbols. The set of
production rules P is composed of three simple rules: R → aRb|R → ARB|R → e
where e is the empty string. This language is in [7] called palindrome language. The
training and testing data sets consist of 1000 randomly generated concatenated strings.
No end-of-string symbol was used. Shorter strings were more frequent in the training
set than the longer ones. The total length of the training set was 6156 symbols and the
length of the testing set was 6190 symbols.

3.2 Performance of ESNs

In this section the predictive performance of ESNs is evaluated on the two datasets.
Symbols were encoded using one-hot-encoding, i.e. all input or target activities were
set to 0, except the one corresponding to given symbol, which was set to 1. Predictive
performance was evaluated by means of a normalized negative log-likelihood (NNL)
calculated over the test symbol sequence S = s1s2 . . . sT from time step t = 1 to T as

NNL = − 1
T

T∑

t=1

log|A| p(t), (3)

where the base of the logarithm is the alphabet size, and the p(t) is the probability
of predicting symbol st in the time step t. For NNL error calculation the activities on
output units were first adjusted to chosen minimal activity omin set to 0.001 in this
experiment, then the output probability p(t) for NNL calculation could be evaluated:

ôi(t) =
{

omin if oi(t) < omin
oi(t) otherwise

, p(t) =
ôi(t)∑

j

ôj(t)
, (4)

where oi(t) is the activity of the output unit i in time t.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of ESNs with Simple Recurrent Networks 623

Laser ESN

1000
100

10
Units

 5.0

 1.0

 0.1
Scale

0.20

0.40

0.60

0.80

1.00

1.20

NNL

DeepRec ESN

1000
100

10
Units

 5.0

 1.0

 0.1
Scale

0.60
0.70
0.80
0.90
1.00
1.10
1.20
1.30

NNL

Fig. 2. Performance of ESNs with different unit counts and different values of spectral radius

ESNs with hidden unit count varying from 1 to 1000 were trained using recursive
least squares algorithm. Symbols were encoded using one-hot-encoding, i.e. all input
or target activities were set to 0, except the one corresponding to given symbol, which
was set to 1. Hidden units had sigmoidal activation function and linear activation func-
tion was used for output units. Reservoir weight matrix was rescaled to different values
of spectral radius from 0.01 to 5. The probability of creating input and threshold connec-
tions was set to 1.0 in all experiments and input weights were initialized from interval
(−0.5, 0.5). Probability of creating recurrent weights was 1.0 for smaller reservoirs and
0.01 for larger reservoirs. It was found that this parameter has very small influence to
the ESN performance (but significantly affects simulation time).

As can be seen from the plots in Fig. 2 results are very similar for wide range of
spectral radii. More units in the reservoir results in better prediction. To better asses the
importance of reservoir parameterization several intervals for reservoir weights’ val-
ues were tested starting from (−0.01, 0.01) and ending by (−1.0, 1.0). Also several
probabilities of recurrent weight existence were tested from 0.01 to 1.00. Of course no
spectral radius rescaling was done in this type of experiments. Various probabilities and
intervals for reservoir weights did not influence the resulting performance a lot, hence
no figures are shown in the paper. For small weight range and low probability the in-
formation stored in the reservoir faded too quickly so the differentiation between points
corresponding to long contexts was not possible. This effect was more prominent for
the Laser dataset where storing long contexts is necessary to achieve good prediction
and hence resulting performance of ESN with weight range of (−0.1, 0.1) and proba-
bility 0.01 are worse for higher unit count in the reservoir. Also high probability and
wide interval are not appropriate. In this case ESN units are working in the saturated
part of its working range very closed to 0.0 and 1.0. Differentiating between states is
difficult and hence for example for weight range of (−1.0, 1.0) and probability of 1.0
and higher unit count such as 300 unsatisfactory performance is achieved. For higher
values of unit count the performance is worse since the saturation is higher, not because
of the overtraining. But for wide range of combinations of these parameters very similar
results were obtained. This observation is in accordance with the principles of Marko-
vian architectural bias. Fractal organization of the recurrent neural network state space
is scale free and as long as the state space dynamics remains contractive the clusters
reflecting the history of the symbols presented to the network are still present.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

624 M. Cerňanský and P. Tiňo

3.3 Recurrent Neural Networks

In the experiments of this section we show how classical RNNs represented by Elman’s
SRN perform on the two datasets. Gradient descent approaches such as backpropagation
through time or real-time recurrent learning algorithms are widely used by researchers
working with symbolic sequences. In some cases even simple backpropagation algo-
rithm is used to RNN adaptation [11,21]. On the other hand, techniques based on the
Kalman filtration used for recurrent neural network training on real-valued time series
have already shown their potential.

We provide results for standard gradient descent training techniques represented by
simple backpropagation and backpropagation through time algorithms and for extended
Kalman filter adopted for RNN training with derivatives calculated by BPTT-like algo-
rithm. 10 training epochs (one epoch – one presentation of the training set) for EKF
were sufficient for reaching the steady state, no significant NNL improvement has oc-
curred after 10 epochs in any experiment. 100 training epochs for BP and BPTT were
done. We improved training by using scheduled learning rate. We used linearly decreas-
ing learning rate in predefined intervals. But no improvements made the training as sta-
ble and fast as the EKF training (taking into account the number of epochs). Although
it may seem that further training (beyond 100 epochs) may result in better performance,
most of BPTT runs started to diverge in higher epochs.

For NNL calculation the value p(t) is obtained by normalizing activities of output
units and choosing normalized output activity corresponding to the symbol st. NNL
performance was evaluated on the test dataset every 1000 training steps.

We present mean and standard deviations of 10 simulations for Elman’s SRN with 16
hidden units in Fig. 3. Unsatisfactory simulations with significantly low performance
were thrown away. This was usually the case of BP and BPTT algorithms that seems
to be much more influenced by initial weight setting and are sensitive to get stuck in
local minima or to diverge in later training phase. Generally for all architectures, NNL
performances of RNNs trained by EKF are better. It seems to be possible to train RNN
by BPTT to have similar performance as the networks trained by EKF, but it usually re-
quired much more overhead (i.e. choosing only few from many simulations, more than

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1e61e51e41e30

N
N

L

Step

Laser - Elman - 16 HU

BP
BPTT

EKF-BPTT

0.50

0.60

0.70

0.80

0.90

1.00

1.10

1e71e61e51e41e30

N
N

L

Step

DeepRec - Elman - 16 HU

BP
BPTT

EKF-BPTT

Fig. 3. Performance of Elman’s SRN with 16 hidden units trained by BP, BPTT and EKF-BPTT
training algorithms

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of ESNs with Simple Recurrent Networks 625

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

 1 10 100 1000

N
N

L

Context Count

Laser - NPM,FPM,ESN,VLMM

ESN
NPM - UNTRAINED

NPM - TRAINED
FPM

VLMM

0.50

0.60

0.70

0.80

0.90

1.00

1.10

 1 10 100 1000

N
N

L

Context Count

DeepRec - NPM,FPM,ESN,VLMM

ESN
NPM - UNTRAINED

NPM - TRAINED
FPM

VLMM

Fig. 4. Performance of ESNs compared to FPMs, NPMs and VLMMs

one thousand of training epochs, extensive experimenting with learning and momentum
rates). Also EKF approach to training RNNs on symbolic sequences shows higher ro-
bustness and better resulting performance. BP algorithm is too week to give satisfactory
results. NNL performances are significantly worse in comparing with algorithms that
take into account the recurrent nature of network architectures.

Extended Kalman filter shows much faster convergence in terms of number of epochs
and resulting NNLs are better. Standard deviation of results obtained by BPTT algo-
rithm are high revealing BPTT’s sensitivity to initial weight setting and to get stuck to
local minimum. Although computationally more difficult, extended Kalman filter ap-
proach to training recurrent networks on symbolic sequences shows higher robustness
and better resulting performance.

3.4 Markov Models and Methods Explicitly Using Architectural Bias Property

To assess what has been actually learnt by the recurrent network it is interesting to
compare the network performance with Markov models and models directly using ar-
chitectural bias of RNNs. Fractal prediction machines were trained for the next symbol
prediction task on the two datasets. Also neural prediction machines built over the un-
trained SRN and also SRN trained by EKF-BPTT with 16 hidden units are tested and
results are compared with VLMMs and ESNs. Prediction contexts for all prediction ma-
chines (FPMs and NPMs) were identified using K-means clustering with cluster count
varying from 1 to 1000.

10 simulation were performed and mean and standard deviation are shown in plots.
Neural prediction machines uses dynamics of different networks from previous exper-
iments for each simulation. For fractal prediction machines internal dynamics is deter-
ministic. Initial clusters are set randomly by K-menas clustering hence slightly different
results are obtained for each simulation also for FPMs. VLMMs were constructed with
the number of context smoothly varying from 1 context (corresponding to the empty
string) to 1000 contexts. Results are shown in Fig. 4.

The first observation is that the ESNs have the same performance as other models
using architectural bias properties and that the number of hidden units plays very sim-
ilar role as the number of contexts of FPMs and NPMs built over untrained SRN. For
Laser dataset incrementing the number of units resulted in prediction improvement. For

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

626 M. Cerňanský and P. Tiňo

Deep recursion dataset and higher units count (unit counts above 300) ESN model is
overtrained exactly as other models. ESN uses linear readout mechanism and the more
dimensional state space we have the better hyper-plane can be found with respect to the
desired output.

Training can improve the state space organization so better NPM models can be
extracted form the recurrent part of the SRN. For Laser dataset the improvement is
present for models with small number of context. For higher values of context count
the performance of the NPMs created over the trained SRN is the same as for other
models. But the carefully performed training process using advanced training algorithm
significantly improves the performance of NPMs built over the trained SRN for the
Deep recursion dataset.

Significantly better results were achieved by VLMMs on Deep recursion dataset than
with ESN or methods based on Markovian architectural bias properties. The reason is
in a way how a VLMM tree is constructed. VLMM is built incrementally and the con-
text importance is influenced by Kullback-Leibler divergence between the next symbol
distributions of the context and its parent context, context being extended by symbol
concatenation. No such mechanism that would take into account the next symbol dis-
tribution of the context exists in models based on Markovian architectural bias. Pre-
diction contexts correspond to the clusters that are identified by quantizing the state
space. Clustering is based on vectors occurrences (or probabilities) and the distances
between vectors. To prove this idea experiments with modified VLMM were performed.
Node importance was given by its probability and its length and this type of VLMMs
achieved results almost identical to methods based on Markovian architectural bias
properties.

4 Conclusion

Extensive simulation using ESNs were made and ESNs were compared with the care-
fully trained SRNs, with other connectionist models using Markovian architectural bias
property and with VLMMs. Multiple parameters for ESN reservoir initialization were
tested and the resulting performance wasn’t significantly affected. Correspondence be-
tween the number of units in ESN reservoir and the context count of FPM, NPM mod-
els and Markov models was shown. According to our results ESNs are not able to
beat Markov barrier when processing symbolic time series. Carefully trained RNNs or
VLMMs can achieve better results on certain datasets. On the other side computational
expensive training process may not be justified on other datasets and models such as
ESNs can perform just as well as thoroughly trained RNNs.

References

1. Jaeger, H.: The “echo state” approach to analysing and training recurrent neural networks.
Technical Report GMD 148, German National Research Center for Information Technology
(2001)

2. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD 152, German
National Research Center for Information Technology (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Comparison of ESNs with Simple Recurrent Networks 627

3. Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Becker,
S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems,
vol. 15, pp. 593–600. MIT Press, Cambridge, MA (2003)

4. Jaeger, H., Haas, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy
in wireless communication. Science 304(5667), 78–80 (2004)

5. Prokhorov, D.: Echo state networks: Appeal and challenges. In: IJCNN 2005. Proceedings
of International Joint Conference on Neural Networks, Montreal, Canada, pp. 1463–1466
(2005)

6. Jaeger, H.: Reservoir riddles: Suggestions for echo state network research. In: IJCNN 2005.
Proceedings of International Joint Conference on Neural Networks, Montreal, Canada, pp.
1460–1462 (2005)

7. Rodriguez, P.: Simple recurrent networks learn contex-free and contex-sensitive languages
by counting. Neural Computation 13, 2093–2118 (2001)

8. Bodén, M., Wiles, J.: On learning context free and context sensitive languages. IEEE Trans-
actions on Neural Networks 13(2), 491–493 (2002)

9. Kolen, J.: The origin of clusters in recurrent neural network state space. In: Proceedings from
the Sixteenth Annual Conference of the Cognitive Science Society, pp. 508–513. Lawrence
Erlbaum Associates, Hillsdale, NJ (1994)

10. Tiňo, P., Čerňanský, M., Beňušková, Ľ.: Markovian architectural bias of recurrent neural
networks. IEEE Transactions on Neural Networks 15(1), 6–15 (2004)

11. Frank, S.L.: Learn more by training less: Systematicity in sentence processing by recurrent
networks. Connection Science (2006) (in press)

12. Elman, J.L.: Finding structure in time. Cognitive Science 14(2), 179–211 (1990)
13. Werbos, P.: Backpropagation through time; what it does and how to do it. Proceedings of the

IEEE 78, 1550–1560 (1990)
14. Williams, R.J., Zipser, D.: Gradient-based learning algorithms for recurrent networks and

their computational complexity. In: Chauvin, Y., Rumelhart, D.E. (eds.) Back-propagation:
Theory, Architectures and Applications, pp. 433–486. Lawrence Erlbaum Publishers, Hills-
dale, N.J (1995)

15. Williams, R.J., Zipser, D.: A learning algorithm for continually running fully recurrent neural
networks. Neural Computation 1, 270–280 (1989)

16. Williams, R.J.: Training recurrent networks using the extended Kalman filter. In: IJCNN
1992. Proceedings of International Joint Conference on Neural Networks, Baltimore, vol. 4,
pp. 241–246 (1992)

17. Ron, D., Singer, Y., Tishby, N.: The power of amnesia. Machine Learning 25, 117–149 (1996)
18. Machler, M., Bühlmann, P.: Variable length Markov chains: methodology, computing and

software. Journal of Computational and Graphical Statistics 13, 435–455 (2004)
19. Tiňo, P., Dorffner, G.: Recurrent neural networks with iterated function systems dynamics.

In: International ICSC/IFAC Symposium on Neural Computation (1998)
20. Tiňo, P., Dorffner, G.: Predicting the future of discrete sequences from fractal representations

of the past. Machine Learning 45(2), 187–218 (2001)
21. Farkaš, I., Crocker, M.: Recurrent networks and natural language: exploiting self-

organization. In: Proceedings of the 28th Cognitive Science Conference, Vancouver, Canada,
pp. 1275–1280 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for Quantitative

Structure-Activity Relationship (QSAR)

Changjian Huang, Mark J. Embrechts, N. Sukumar, and Curt M. Breneman

RECCR Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA

Abstract. Data fusion originally referred to the process of combining
multi-sensor data from different sources such that the resulting informa-
tion/model is in some sense better than would be possible when these
sources where used individually. In this paper the data fusion concept is
extended to molecular drug design. Rather than using data from differ-
ent sensor sources, different descriptor sets are used to predict activities
or responses for a set of molecules. Data fusion techniques are applied
in order to improve the predictive (QSAR) model on test data. In this
case this type of data fusion is referred to as auto-fusion. An effective
auto-fusion functional model and alternative architectures are proposed
for a predictive molecular design or QSAR model to model and predict
the binding affinity to the human serum albumin.

1 Introduction

Data fusion is an emerging engineering discipline [1] to integrate data from
different sources in a predictive model. The basic idea of data fusion is to leverage
redundant multi-source data or multi-algorithms to achieve a better performance
with the fused system as could be obtained by merging the performance of each
system individually, i.e. the whole is better than the sum of the parts.

A commonly referenced data fusion model is the Joint Directors of Labora-
tories (JDL) model [2] which provides a function-oriented model that was first
applied to military projects. Subsequent revisions to the original model refine
the fusion terms and function levels [3,4].Although the JDL model has been com-
monly applied in various different applications, there is no common one-fits-all
architecture for these systems because of their diverse nature. Recent data fusion
research addressed time series and image based data analysis, but only a few pub-
lications concern biometrics or chemometrics. Roussel introduces a data fusion
method employing Bayesian inference and shows a significant improvement for
a French grape wine classification [5]. Ginn [6] and Hert [7] apply data fusion to
combine molecular similarity measures in chemical structure database searches
leading to an enhanced performance. With the wide availability of several physi-
cally different descriptor sets for the same molecules, and the rapid development
of novel predictive QSAR methods, data fusion is a promising methodology that
can lead to improved QSAR models. The purpose of this paper is to estab-
lish a general data fusion framework for QSAR and to establish procedures and
guidelines for data fusion in QSAR modeling.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 628–637, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for (QSAR) 629

This paper is organized as follows: section 2 provides an overview of QSAR and
data fusion, followed by Sect. 3 describing the performance metrics used in this
study. Section 4 proposes an auto-fusion functional model and three alternative
architectures for QSAR applications. Section 5 describes a data fusion case study
relevant to QSAR for the prediction of the binding affinity to the human serum
albumin. Section 6 summarizes findings and conclusions.

2 Background

2.1 QSAR

QSAR refers to a discipline in computational chemistry that addresses the mod-
eling of biological activities or chemical reactivity based on the quantitative
description for the chemical structure of molecules. QSAR relies on the basic
assumption that molecules with similar physiochemical properties or structures
will have similar activities. This is the so called Structure-Activity Relation-
ship (SAR) principle. A key issue is how to formulate quantitative descriptions
for molecular structures from which activities or responses can be inferred. The
problem is complex because there are several activities such as toxicity, solubility,
reaction ability and etc.

A second assumption inherent to QSAR modeling is that molecular properties
can be calculated or measured more accurately and cheaply than activities. This
is the key motivation for QSAR requiring a mathematical model to infer molec-
ular properties from physical and quantum properties. Once a tentative model
is created, all available physicochemical properties such as electronic, steric and
hydrophobic properties can be generated by existing programs. Molecular com-
pounds can be described by a vector of properties or descriptors. Associated
activities or responses can be modeled or predicted for these compounds based
on multivariate statistical and machine learning methods. Popular methods in
chemometrics are partial-least squares (PLS), support vector machines (SVM)
and kernel-based methods such as kernel partial-least squares (K-PLS).

2.2 Data Fusion

From the late 1970s and throughout the 1980s, automation of data fusion have
been intensively studied mainly for defense related applications [8,9,10]. In 1986,
the U.S. Joint Directors of Laboratories (JDL) Data Fusion Working Group
(DFS) was established to unify the terminology and procedures used in data
fusion and resulted in the popular JDL model citeWhite1987-Fusion,White1988-
model,White1991-Fusion,Kessler1992-Functional. The JDL model creates a com-
mon data fusion framework and categorizes different types of fusion processes
based on their functionality.Therefore it is referred to as a functional model
rather than an architectural paradigm. The practical implementation of a data
fusion system varies depending on the particular nature of the application prob-
lem of interest. For that reason there is a need to integrate, tail or further

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

630 C. Huang et al.

decompose function levels into an overall processing flow that is appropriate for
a particular application area.

In 1998, Steinberg [3] proposed extensions to the JDL model [11], including
a standardized performance evaluation and other methods related to a system
engineering approach and architectural paradigms for data fusion. In 2004, Stein-
berg and Bowman [4], Llinas and Bowman [12] further refined the definition of
the functional data fusion levels to capture the significant differences and to
broaden the applicability of a formalized data fusion approach to a wider variety
of different problem areas.

3 Performance Metrics

The R2 and root mean squared error (RMSE) are general measures for as-
sessing the multivariate regression models for QSAR. A typical QSAR problem
can involve a relative small number of molecules, in which case a leave-one-out
cross validation(LOO CV) or Monte-Carlo cross validation (MCCV) [13] can be
employed for model selection. The R2 and RMSE metrics are defined below:

R2
cv = 1 − PRESS

SST
= 1 −

∑

i∈V

(yi − ŷi)
2

∑

i∈V

(yi − ȳi)
2 , R2

cv ∈ [0, 1] (1)

RMSEcv =

√
√
√
√

∑

i∈V

(yi − ŷi)
2

n
, RMSEcv ∈ [0, ∞] (2)

where ŷi is the predicted value of the ith object in validation set V , and n is the
number of objects in V . For external test, R2 and RMSE are defined similarly,
but i belongs to the test set. We will also use the metric of r2, the squared
correlation coefficient between vectors of response yi and the predicted value
ŷi. Unlike r2, R2 actually includes additional bias information. Two alternative
metrics q2 = 1 − r2 and Q2 = 1 − R2 will be used to assess the performance of
cross validation data or external test data. For most datasets and good models,
the q2 value is very close to the Q2 metric. When q2 < 0.4, Q2 < 0.4 and the
RMSE is small enough, the model is considered to have predictive power.

4 Auto-fusion Method for QSAR

QSAR models are often built for data sets with limited number of data. Modern
descriptor generation algorithms, such as RECON, PEST and MOE, can be
employed to extract different descriptor sets for the same set of molecules. These
descriptor sets can then be used with appropriate data fusion techniques. The
concept where different descriptor sets are used for the same molecules in a data
fusion procedure is referred to as an auto-fusion system. The challenge for data
fusion is to determine how to combine varying quality data in terms of value for
modeling to generate reliable and accurate predictions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for (QSAR) 631

4.1 Functional Model for Data Fusion

Similar to the JDL model, QSAR predictive modeling can be decomposed in
several independent levels of functionalities as illustrated in Fig.1:

Level 0: Data alignment - Data standardization process with transformation
of x′

i = xi−x̄
Sx

, where x̄ and Sx are sample mean and sample standard deviation
respectively;

Level 1: Feature extraction - Feature extraction algorithm and processing
which extracts features from the input data and transfers to other functionalities,
such as data alignment and modeling.

Level 2: Modeling - Machine learning methods used for modeling of the avail-
able data set, such as SVM, PLS and K-PLS.

Level 3: Model selection and performance estimation (MS&PE) - MS is mainly
used for selecting appropriate parameters for learning algorithms in order to
maximize the generalization power of the final model. As mentioned in Sect. 3,
different cross-validation methods can be used for the MS task. With respect to
PE, several different performance metrics are used to assess the performance on
external test data or the cross-validation sets.

Level 4: Prediction - the prediction process is mainly used for external test
or prediction of unseen data. Training, validation, and test data should be han-
dled consistently with regard to standardization, variable selection and feature
extraction. Predicted results need to be restored into the original data space.

4.2 Architectural Paradigm for Data Fusion

Architecture in data fusion addresses the issue of deciding where the fusion must
take place in the data flow of the whole system. Analogous with the general
JDL model, three alternative auto-fusion architectures are defined for QSAR
applications as illustrated in Fig. 2. A detailed description of each follows:

Data level fusion - Fig. 2(a) shows the combination of several sources of
raw data generated by different descriptor generation algorithms, such as PEST
and MOE, to produce new (raw) data. There is empirical evidence that merely
concatenating multidimensional descriptors often only marginally improves the
model performance. Data alignment is necessary before implementing predictive
modeling for multi-source data.

Feature level fusion - as illustrated in Fig. 2(b), each descriptor generator
algorithm provides calculated descriptors from which a feature vector is extracted
right after the data alignment. Feature level fusion combines various feature
vectors from different descriptors into a new single data set followed by a common
model selection, modeling and prediction procedure. The feature extraction can
be based on PCA, PLS and/or independent component analysis (ICA).

Hybrid data-decision level fusion - this architecture follows a hybrid scheme,
combining data and decision level fusion as illustrated in Fig. 2(c). The proce-
dure from beginning till model selection is identical with the data level fusion.
Bagging methods (Breiman 1996b) as a decision level fusion method can now be
incorporated in the combined new raw data set.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

632 C. Huang et al.

RECON

PEST

MOE

QSAR
descriptor
generation
algorithms

Sources

Human/
Computer
Interface

Level 0
Data

Alignment

Level 1
Feature

Extraction

Level 3
MS &

PE

Level 4
Prediction

DBMS

Level 2
Modeling

AUTO-FUSION DOMAIN

Fig. 1. Functional model of auto-fusion for QSAR

(a)

(b)

(c)

Data Level Fusion Feature
Selection

Modeling Prediction

Data
Alignment

Data
Alignment

Data
1

Data
n

… …

Data
Alignment

Data
2

Model
Selection

Data Level Fusion

Data
Alignment

Modeling Prediction

Data
Alignment

Data
1

Data
n

…
Feature

Extraction

Feature
Extraction

… …

Data
Alignment

Data
2

Feature
Extraction Model

Selection

Decision Level Fusion
Data Level Fusion

Data
Alignment

Data
Alignment

Data
1

Data
n

… …

Data
Alignment

Data
2

Replicate
1

Replicate
2

Bootstrap
Resampling
Replicates

…

Replicate
m

Modeling Prediction

Modeling Prediction

Modeling Prediction

… …

Feature
Selection

Model
Selection

Fig. 2. Three alternative auto-fusion architectures for QSAR

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for (QSAR) 633

5 Experimental Results

5.1 Problem Description

The binding strength of molecules with the human serum albumin (HSA), a
main transporter in the bloodstream, is regarded as the main indicator for the
effectiveness for a molecule or drug to reach the target. QSAR models to predict
the binding affinities to HSA are part of a computer-aided drug design process
[14]. In this study, auto-fusion methods are applied to boost the performance of
a QSAR model for the same compounds used in [14], but different descriptor
sets were generated as detailed in the next section.

5.2 Albumin Data Set: Description

The original data set includes 95 drugs and druglike compounds. 94 are used
in the modeling procedure: captopril is excluded from this study as motivated
by [14]. There are two types of descriptors sets that were calculated for the
selected molecules: property-encoded surface translator (PEST) descriptors and
QuaSAR descriptors [15].

PEST descriptors are an extension of transferable atom equivalent (TAE) and
wavelet coefficient descriptors (WCD). TAE descriptors are electron-density de-
rived descriptors, such as kinetic energy density and gradient, local average ion-
ization potential, electrostatic potentials etc. [15]. WCD descriptors are derived
from RECON descriptors [16] and are the discrete wavelet transform represen-
tation of the atomic RECON histogram properties of the molecule. PEST is a
group of hybrid shape/property descriptors which encoded both TAE and shape
information. PEST descriptors can be split up into wavelet, histogram, shape
and statistics based descriptors. In addition to the PEST descriptors, 2D and
i3D MOE (molecular operating environment) descriptors are calculated by the
QuaSAR package, the QSAR/QSPR functions in the MOE software.

The generated descriptors sorted by category are: Histogram (100), Wavelet
(320), Shape (396), Statistics (80) and MOE (189). The HSA response is the
same as in [14]. The data is split into a training set of 84 molecules and an
external test set of 10 molecules following [14].

5.3 Classical QSAR Solutions

Classical PLS and K-PLS algorithms are applied to generate a QSAR model for
each individual group of descriptors. The experimental results including both
cross-validation and external test results as summarized in Tab. 2. Table 1 sum-
marizes the used acronyms. It can be concluded that:

1. The sorted sigma value for each individual group of descriptors are Statistics
(σ = 5) < MOE(σ = 12) = Shape(σ = 12) < Histogram(σ = 25) <
Wavelet(σ = 100). The large σ-value used for the wavelet descriptors implies
that the Wavelet descriptors have an almost linear relationship with the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

634 C. Huang et al.

Table 1. Acronyms of performance results

Acronym Description
csThrd Cousin feature threshold;
olThrd Times of sigma threshold. ’N’ denotes no such preprocessing;
nlvs Number of latent variables for modeling;
sig Sigma value of Gaussian kernel;
nrun For MCCV, nrun represents the number of iterations;
nv Size of validation set;
Ext Test External test

Table 2. Performance of classical QSAR modeling (csThrd=85%, olThrd=N; MCCV:
nv=10, nrun=100)

Descriptors q2 Q2 RMSE Mode Parameters
Histogram 0.5187 0.5323 0.4065 PLS,LOO CV nlvs = 4

0.5331 0.5449 0.4113 PLS,MCCV nlvs = 4
0.4332 0.5402 0.476 PLS,Ext Test olThrd=4, nlvs = 4
0.523 0.5375 0.4084 KPLS,LOO CV nlvs = 4, sig = 25
0.5493 0.5717 0.4237 KPLS,MCCV nlvs = 4, sig = 25
0.3288 0.4562 0.4374 KPLS,Ext Test nlvs = 4, sig = 25

Wavelet 0.5227 0.5233 0.403 PLS,LOO CV CV nlvs = 2
0.5558 0.5563 0.4156 PLS,MCCV nlvs = 2
0.3735 0.3828 0.4006 PLS,Ext Test nlvs = 2
0.5292 0.5296 0.4054 KPLS,LOO CV nlvs = 2, sig = 100
0.5237 0.5244 0.4 KPLS,MCCV nlvs = 2, sig = 100
0.3748 0.3845 0.4016 KPLS,Ext Test nlvs = 2, sig = 100

Shape 0.5291 0.5307 0.4058 PLS,LOO CV nlvs = 2
0.4815 0.4812 0.3869 PLS,MCCV nlvs = 3, nv =10, nrun = 100
0.5448 0.5731 0.4903 PLS,Ext Test nlvs = 2
0.532 0.5658 0.4871 PLS,Ext Test nlvs = 3
0.5141 0.5147 0.3997 KPLS,LOO CV nlvs = 2, sig = 12
0.4573 0.4564 0.3767 KPLS,LOO CV nlvs = 3, sig = 13
0.5133 0.5148 0.3963 KPLS,MCCV nlvs = 2, sig = 11
0.4519 0.4524 0.3678 KPLS,MCCV nlvs = 3, sig = 15
0.4905 0.5229 0.4683 KPLS,Ext Test nlvs = 2, sig = 12
0.5414 0.5746 0.4909 KPLS,Ext Test nlvs = 3, sig = 13

Statistics 0.7312 0.7344 0.4774 PLS,LOO CV nlvs = 1
0.7437 0.7456 0.4811 PLS,MCCV nlvs = 1
0.544 0.5778 0.4923 PLS,Ext Test nlvs = 1
0.7284 0.7324 0.4768 KPLS,LOO CV nlvs = 1, sig = 7
0.681 0.6993 0.4619 KPLS,MCCV nlvs = 2, sig = 5
0.5977 0.6112 0.5063 KPLS,Ext Test nlvs = 1, sig = 7
0.2876 0.3073 0.359 KPLS,Ext Test nlvs = 2, sig = 5

MOE 0.3055 0.3064 0.3084 PLS,LOO CV nlvs = 3
0.3223 0.3236 0.317 PLS,MCCV nlvs = 3
0.2242 0.4496 0.4342 PLS,Ext Test nlvs = 3
0.2891 0.2893 0.2997 KPLS,LOO CV nlvs = 3, sig = 12
0.3294 0.3326 0.3154 KPLS,MCCV nlvs = 3, sig = 12
0.166 0.1672 0.2648 KPLS,Ext Test nlvs = 3, sig = 12

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for (QSAR) 635

Table 3. Additional acronyms of performance results

Acronym Description
H Histogram descriptors;
W Wavelet descriptors;
B Shape descriptors;
S Statistics descriptors;
PEST The combination of H, W, B and S descriptors;
M MOE descriptors;
nrun For MCCV, nrun represents the number of iterations;

For Bagging, nrun represents the number of resampling bootstrap replicates;
Bagging Bagging method

Table 4. Performance of auto-fusion for albumin data (csThrd=85%, olThrd=N;
MCCV: nv=10, nrun=100; Bagging: nrun=25). B(4) denotes 4 features extracted from
Shape descriptors, M(9) denotes 9 features extracted from MOE descriptors and so on.

Fusion Level q2 Q2 RMSE Mode Parameters
Data Level 0.3457 0.3472 0.3283 PLS,LOO CV PEST+M, nlvs=3

0.3761 0.3769 0.3421 PLS,MCCV PEST+M, nlvs=3
0.1526 0.2022 0.2912 PLS,Ext Test PEST+M, nlvs=3
0.3385 0.3412 0.3254 KPLS,LOO CV PEST+M, nlvs=3, sig=42
0.3529 0.3586 0.3275 KPLS,MCCV PEST+M, nlvs=3, sig=42
0.1887 0.192 0.2838 KPLS,Ext Test PEST+M, nlvs=3, sig=42
0.2944 0.2975 0.3039 PLS,LOO CV B+M, nlvs=3
0.3153 0.3154 0.3129 PLS,MCCV B+M, nlvs=3
0.1817 0.2406 0.3177 PLS,Ext Test B+M, nlvs=3
0.2712 0.2736 0.2914 KPLS,LOO CV B+M, nlvs=3, sig=25
0.2989 0.3011 0.3001 KPLS,MCCV B+M, nlvs=3, sig=25
0.135 0.1537 0.2539 KPLS,Ext Test B+M, nlvs=3, sig=25

Feature Level 0.3216 0.3226 0.3164 PLS,LOO CV B(4)+M(9), nlvs=3
0.3195 0.3239 0.3275 PLS,MCCV B(4)+M(9), nlvs=3
0.2059 0.2496 0.3236 PLS,Ext Test B(4)+M(9), nlvs=4
0.2919 0.2922 0.3011 KPLS,LOO CV B(4)+M(9), nlvs=3, sig=12
0.3195 0.3239 0.3112 KPLS,MCCV B(4)+M(9), nlvs=3, sig=12
0.1275 0.1372 0.2399 KPLS,Ext Test B(4)+M(9), nlvs=3, sig=12
0.2879 0.2885 0.2992 KPLS,LOO CV B(4)+M(17), nlvs=3, sig=12
0.3194 0.3224 0.3105 KPLS,MCCV B(4)+M(17), nlvs=3, sig=12
0.1233 0.1267 0.2305 KPLS,Ext Test B(4)+M(17), nlvs=3, sig=12
0.3037 0.3046 0.3075 KPLS,LOO CV B(4)+S(2)+M(17), nlvs=3, sig=12
0.3147 0.3153 0.3146 KPLS,MCCV B(4)+S(2)+M(17), nlvs=4, sig=12,
0.1108 0.1241 0.2281 KPLS,Ext Test B(4)+S(2)+M(17), nlvs=4, sig=12
0.45 0.4521 0.3746 KPLS,LOO CV H(10)+W(8), nlvs=3, sig=30
0.4444 0.453 0.3681 KPLS,MCCV H(10)+W(8), nlvs=3, sig=30
0.236 0.2809 0.3432 KPLS,Ext Test H(10)+W(8), nlvs=3, sig=30

Hybrid Data- 0.1379 0.1413 0.2435 PLS,Bagging PEST+M, nlvs=3
Decision Level 0.2642 0.3438 0.3797 KPLS,Bagging PEST+M, nlvs=3, sig=42

0.1616 0.1795 0.2743 PLS,Bagging B+M, nlvs=3
0.122 0.1517 0.2522 KPLS,Bagging B+M, nlvs=3, sig=25

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

636 C. Huang et al.

response. This can be validated by comparing the performance of a PLS
model with a K-PLS model for the Wavelet descriptors. In this case the PLS
model actually gives a better performance than the K-PLS model.

2. The sorted best generalization power of each model in terms of Q2 are: MOE
(0.1672) > Statistics (0.2876) > Wavelet (0.3828) > Histogram (0.4562) >
Shape (0.5229).

3. When σ < 25, K-PLS has generally better performance than PLS. This also
implies that the corresponding descriptors have a nonlinear relationship with
the response.

5.4 Auto-fusion for Albumin

The auto-fusion experiments are conducted for three architectures respectively.
Specifically, PCA is used for feature extraction. Both cross validation and ex-
ternal test results are summarized in Tab. 4. Table 3 lists additional acronyms
used. It is evident that:

1. When combining Shape and MOE descriptors under data level and hybrid
data-decision level fusion architectures, the performance is better than the
best performance based on the individual descriptors, i.e. MOE descriptors
in this case. However, this is not the case when combining PEST and MOE
descriptors. How to combine different data sets with different predictive qual-
ities is crucial for the data fusion system;

2. In most cases, a hybrid data-decision level fusion shows a better performance
than that of a data level fusion. Feature level fusion is consistently better
than either one of them, and consequently better than any individual group
of descriptors;

3. The optimal number of latent variables and the Parzen window σ can change
while combining descriptor sets. Combining descriptors with similar perfor-
mance and similar σ-values generally improves the overall performance. In
feature level fusion, the number of latent variables selected for each group
of descriptors is related to the number of latent variables for the individ-
ual experiment. In the experiment for both Shape and MOE descriptors the
same number of latent variables and similar σ-values were used in the indi-
vidual experiments. The data fusion model leads to an improved prediction
performance for the same parameter settings.

6 Conclusion

In this paper, an auto-fusion framework for QSAR applications is proposed. By
examining the performance of the HSA data set, we draw the following conclu-
sions: 1) Auto-fusion method consistently yield an improved prediction perfor-
mance; 2) Selecting specific descriptors sets to be combined is crucial for fusion
systems; 3) Among the five generated descriptors mentioned in Sect. 5.2, Statis-
tics, MOE and Shape descriptors show a strong nonlinear relationship with the
response, while the Histogram and Wavelet descriptors exhibit a linear relation-
ship.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Data Fusion and Auto-fusion for (QSAR) 637

Acknowledgment

This publication was made possible by Roadmap Grant Number 1 P20 HG003899-
01 from the National Human Genome Research Institute (NGHRI) at the Na-
tional Institutes of Health (NIH). Its contents are solely the responsibility of the
authors and do not necessarily represent the official views of NGHRI.

References

1. Hall, D.L., McMullen, S.A.H.: Mathematical Techniques in Multisensor Data Fu-
sion, 2nd edn. Artech House Publishers (2004)

2. Kessler, et. al.: Functional description of the data fusion process. Technical report
(1992)

3. Steinberg, A.N., Bowman, C.L., White, F.E.: Revisions to the JDL data fusion
model. In: Joint NATO/IRIS Conference Proceedings, Quebec, October (1998),
In: Sensor Fusion: Architectures, Algorithms, and Applications, Proceedings of the
SPIE, Vol.3719, 1999 (1998)

4. Steinberg, A.N., Bowman, C.L.: Rethinking the JDL data fusion model. In: Pro-
ceedings of the 2004 MSS National Symposium Sensor on Sensor and Data Fusion,
vol. 1 (2004)

5. Roussel, S., Bellon-Maurel, V., Roger, J.M., Grenier, P.: Fusion of aroma, FT-IR
and UV sensor data based on the bayesian inference. application to the discrimina-
tion of white grape varieties. Chemometrics and Intelligent Laboratory Systems 65,
209–219 (2003)

6. Ginn, C.M.R., Willett, P., Bradshaw, J.: Combination of molecular similarity mea-
sures using data fusion. Perspectives in Drug Discovery and Design 20 (2000)

7. Hert, J., Willett, P., Wilton, D.J.: New methods for ligand-based virtual screening:
Use of data fusion and machine learning to enhance the effectiveness of similarity
searching. Journal of Chemical Information and Modeling 46, 462–470 (2006)

8. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press,
Princeton (1976)

9. Rogers, W.: An evaluation of statistical matching. Journal of Business and Eco-
nomic Statistics 2(1), 91–102 (1984)

10. Hall, D.L., Llinas, J.: Handbook of Multisensor Data Fusion. CRC Press, USA (2001)
11. White, F.: A model for data fusion. In: Proc. 1st National Symposium on Sensor

Fusion (1988)
12. Llinas, J., Bowman, C., Rogova, G., Steinberg, A., Waltz, E., White, F.: Revisiting

the JDL data fusion model II. In: Proceedings 7th International Conference on
Information Fusion, Stockholm, Sweden (2004)

13. Xu, Q.S., Liang, Y.Z., Du, Y.P.: Monte Carlo cross-validation for selecting a model
and estimating the prediction error in multivariate calibration. Journal of Chemo-
metrics 18(2), 112–120 (2004)

14. Colmenarejo, G., Alvarez-Pedraglio, A., Lavandera, J.L.: Cheminformatic models
to predict binding affinities to human serum albumin. Journal of Medicinal Chem-
istry 44, 4370–4378 (2001)

15. Breneman, C.M., Sundling, C.M., Sukumar, N., Shen, L., Katt, W.P., Embrechts,
M.J.: New developments in PEST shape/property hybrid descriptors. Journal of
Computer-Aided Molecular Design 17, 231–240 (2003)

16. Rhem, M.O.: RECON: An Algorithm for Molecular Charge Density Reconstruc-
tion Using Atomic Charge Density Fragments. PhD thesis, Rensselaer Polytechnic
Institute (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 638–647, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Cluster Domains in Binary Minimization Problems

Leonid B. Litinskii

Centre of Optical Neural Technologies SRISS RAS, Moscow
litin@mail.ru

Abstract. Previously it was found that when minimizing a quadratic functional
depending on a great number of binary variables, it is reasonable to use
aggregated variables, joining together independent binary variables in blocks
(domains). Then one succeeds in finding deeper local minima of the functional.
In the present publication we investigate an algorithm of the domains formation
based on the clustering of the connection matrix.

Keywords: Neural networks, discrete minimization, domain dynamics.

1 Introduction

We discuss the problem of minimization of a quadratic functional depending on N
binary variables { 1}is = ± :

() (,) min .

i,j 1

N
E J s sij i j= − = − ⎯⎯→

=
∑s Js s

s
 (1)

We suppose that the connection matrix 1()N
ijJ=J is a symmetric one with zero

diagonal elements: , 0.J J Jij ji ii= = We make use of physical terminology [1]: the

binary variables { 1}is = ± will be called spins, N-dimensional vectors

1 2(, ,...,)Ns s s=s will be called configurations, and the characteristic E(s), which has

to be minimized will be called the energy of the state s.
The commonly known procedure of minimization of the functional (1) is as

follows: one randomly searches through N spins, and to each spin the sign of the local
field ()ih t acting on this spin is assigned, where

1

() ().
N

i ij j
j

h t J s t
=

=∑ (2)

In other words, if the current state of the spin ()is t coincides with the sign of ()ih t (if

the spin is satisfied: () () 0i is t h t ≥), one does not change the value of the spin:

(1) ()i is t s t+ = ; but if ()is t and ()ih t are of opposite signs (if the spin is unsatisfied:

() () 0i is t h t <), in the next moment one turns the spin over: (1) ()i is t s t+ = − .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Cluster Domains in Binary Minimization Problems 639

It is well known that the energy of the state decreases when an unsatisfied spin
turns over: (()) ((1))E t E t> +s s . Sooner or later the system finds itself in the state,

which is an energy minimum (may be this is a local minimum). In this state all the
spins are satisfied and evolution of the system ends. In what follows the
aforementioned algorithm will be called the random dynamics (in the neural networks
theory it is called the asynchronous dynamics [2]).

Another well known minimization procedure is the synchronous dynamics, when
each time all the unsatisfied spins turn over simultaneously [2]. This approach is
rarely used in minimization problems. First, this is because it is impossible to
guarantee the monotonous decrease of the functional ()E s . Second, synchronous

dynamics is characterized by the presence of limit cycles of the length 2 (the system
sequentially finds itself in one of the two states 1s and 2s). Due to limit cycles the

basin of attraction of local minima decreases.
In the papers [3], [4] a generalization of random dynamics, the domain dynamics,

was proposed. The essence of the generalization is joining the spins together in larger
blocks or, as they were called by the authors, domains. During the evolution not
single spin turns over, but the whole block/domain. As for the rest the domain
approach is the same as the standard random dynamics. It was found that the domain
dynamics offers a lot of advantages comparing with other dynamic approaches. The
domain dynamics is 2k times quicker than the random dynamics, where k is the
averaged length of a domain (the number of spins joined in one block). Moreover,
when using the domain dynamics the energy E(s) decreases monotonically, and no
limit cycles appear. Computer simulations [4] showed that the domain dynamics
allowed one to obtain deeper local minima of the functional (1) than the standard
random dynamics. However, there is an open question: how one has to choose the
domains to obtain the deepest minima? In the paper we discuss this question.

Note. The idea of the domain dynamics is so natural that, probably, it was
proposed more than once by different authors. In particular, preparing this publication
we found out that the domain dynamics is practically equivalent to the block-
sequential dynamics presented in [5]. We note that in [5] the block-sequential
dynamics was analyzed with regard to the problem of increasing the storage capacity
of the Hopfield model. As far as we know, in [3], [4] the domain dynamics was used
for minimization of the functional (1) for the first time.

2 The Domain Dynamics

For simplicity of presentation all definitions are given for the case when the first k
spins are joined in the 1st domain, the k following spins are joined in the 2nd domain
and so on; the last k spins are joined in the last nth domain:

1 1 2 (1) 1

1st domain 2nd domain th domain

(,..., , ,..., ,..., ,...,).k k k n k N

n

s s s s s s+ − +=s
14243 14243 1442443

(3)

In Eq. (3) N=kn, and s is an arbitrary configuration.
The total action onto the first domain from all other domains is the superposition of

all interactions of the spins, which do not belong to the first domain, with the spins of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

640 L.B. Litinskii

the first domain. Then the local domain field acting onto the spin belonging to the
first domain is equal to

()

1 1

() () () (), ,
N k

d
i ij j i ij j

j k j

h t J s t h t J s t i k
= + =

= = − ∀ ≤∑ ∑ (4)

where ()ih t is the local field (2). In other words, the local domain field acting on the

ith spin is obtained by means of elimination of the influence of the spins belonging to
the same domain from the local field ()ih t (2). It is clear that the energy of interaction

of the first domain with all other domains is equal to

()
1 1

1

() () () ().
k

d
i i

i

E t F t s t h t
=

= − = −∑

In the same way we define the local domain field acting onto the spins belonging
to the lth domain,

()

(1) 1

() () (), 1 (1) , [2,].
lk

d
i i ij j

j l k

h t h t J s t l k i lk l n
= − +

= − ∀ + − ≤ ≤ ∈∑

The energy of interaction of the lth domain with other domains is:

()

(1) 1

() () () (), 2,.., .
lk

d
l l i i

i l k

E t F t s t h t l n
= − +

= − = − =∑

Then the domain energy of the state ()ts is

()

1 1

() () ().
n n

d
l l

l l

E t E t F t
= =

= = −∑ ∑ (5)

The energy (1), which we have to minimize, differs from the domain energy by the
sum of the energies ()in

lE that characterize the inter-domain interactions only:

() () ()

1 1 (1) 1 (1) 1

() () () () () (),
n n lk lk

d in d
l ij i j

l l i l k j l k

E t E t E t E t J s t s t
= = = − + = − +

= + = −∑ ∑ ∑ ∑ (6)

After that we can define the domain dynamics [3],[4]: one randomly searches
through n domains, and if for the lth domain the inequality () 0lF t ≥ is fulfilled, the

domain remains unchanged; but if () 0lF t < , in the next moment one turns over the

lth domain – all the spins of the domain receive the opposite sings simultaneously:
(1) (), [1 (1) ,].i is t s t i l k lk+ = − ∈ + −

From Eq. (5) it is easy to obtain that when using the domain dynamics, the domain
energy of the state decreases monotonically: if in the moment t the mth domain is
turned over, the domain energy goes down by the value 4 ()mF t :

() ()(1) () 4 ()d d
mE t E t F t+ = − . Note, in the same time the energy E(s(t)) (1) goes

down just by the same value. This follows from Eq. (6) and the obvious fact that
simultaneous overturn of all spins belonging to the mth domain does not change the
inter-domain energy ()in

mE .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Cluster Domains in Binary Minimization Problems 641

As a result of the aforementioned procedure sooner or later the system finds itself
in the domain local minimum. In this state for all the domains the inequality

() 0lF t ≥ is fulfilled, and the domain evolution ends. However, the local domain

minimum is not necessarily a minimum of the functional (1). That is why in this state
one has “to defrost” the domains and use the standard random dynamics. The
dynamic system has the possibility to descend deeper into the minimum of the
functional (1).

The successive use of the domain dynamics and after that the standard random
dynamics is connected with the following argumentation. Minimization of the
functional (1) can be interpreted as the sliding of the dynamic system down a hillside
that is dug up by shallow local minima. In the case of the random dynamics two
successive states of the system differ by an opposite sign of only one binary
coordinate, namely those that is turned over during the given step of evolution. It is
evident that under this dynamics the system sticks in the first occurring local
minimum. On the contrary, under the domain dynamics two successive states of the
system differ by opposite signs of some spin coordinates at once. The domain
dynamics can be likening to sliding down by more “large-scale steps”. It can be
expected that such way of motion allows the system to leave aside a lot of shallow
local minima, where it can stick in the case of standard random dynamics.

As noted above, for simplicity we gave all the definitions supposing that all the
domains are of the same length k. In the general case domains can be of different
lengths lk , and any spins can be joined in a domain. In this connection there are some

questions: does the choice of the domains influence the results of minimization? How
the domains have to be organized? Have they been invariable for a given matrix J, or
have they been organized randomly at every step of evolution? Generally, are there
any argumentations, which can help? In the next section we formulate our recipe of
the domain formation and present arguments proving it. In Section 4 we show the
results of computer simulation.

3 Cluster Approach of Domain Formation

For the Hopfield model it is known the situation when domains are naturally appeared
due to specific properties of the Hebbian connection matrix J [6]. Let us cite the
corresponding results, accentuating the points we need. In the end of this Section we
formulate the recipe of the domain formation for the general case.

Let us have N M-dimensional vector-columns with binary coordinates i ∈ Mx R ,
() 1ix μ = ± , 1,...,i N= , 1,.., .Mμ = Vector-columns ix are numerated by subscripts

[1,]i N∈ , and their coordinates by superscripts [1,]Mμ ∈ .

Let us construct (MxN)-matrix X, whose columns are M-dimensional vectors ix :

()1...i N= →N MX x x x : R R

In the theory of neural networks X is called the pattern matrix. It is used to
construct the Hebbian matrix that is (NxN)-matrix of scalar products of the vectors ix :

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

642 L.B. Litinskii

() ()

1

(1) (1)
(,) , 1 , .

M
ij ij

ij i j i jJ x x i j N
M M

μ μ

μ

δ δ

=

− −
= = ≤ ≤∑x x

The matrix elements ijJ are cosines of the angles between the corresponding

vectors: | | 1.ijJ ≤

We shall examine a special case, when the number of different vector-columns in
the matrix X is not N, but a smaller number n: 1... ,l n n N≠ ≠ <x x x . Then each

vector-column ix will be repeated some times. Let lk be the number of repetitions of

the vector-column lx :
1

n

lk N=∑ . (The subscripts l, m are used to numerate different

vector-columns and related characteristics.) Without loss of generality it can be
assumed that the first 1k vector-columns of the matrix X coincide with each other, the

next 2k vector-columns coincide with each other, and so on; the last nk vector-

columns coincide with each other too:

1 2

(1) (1)(1) (1) (1) (1)
1 1 2 2

(2) (2)(2) (2) (2) (2)
1 1 2 2

() ()() () () ()
1 1 2 2

...... ...

...... ...
... , 1.

...

...... ...

n

n n

n n
l

M MM M M M
n n

k k k

x xx x x x

x xx x x x
k

x xx x x x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟= ≥⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

X

1442443 1442443 1442443

 (7)

The corresponding Hebbian matrix consists of n n× blocks. The dimensionality of
the (lm)th block is equal to ()l mk k× , and all its elements are equal to the same

number lmJ that is the cosine of the angle between vectors lx and mx (, 1,...,l m n=).

On the main diagonal there are quadratic ()l lk k× -blocks; these blocks consist of ones

only (with the exception of the diagonal, where all the elements are equal to zero):

1 2

12 12 1 1

12 1

12 12 1 1

21 21 2 2

21 2

21 21 2 2

1 1 2 2

1 2

1 1 2 2

0 1 1

1 1 ...

1 1 0

... 0 1 1 ...

1 1 ...

... 1 1 0 ...

... ... 0 1 1

... 1

... ...

nkk k

n n

n

n n

n n

n

n n

n n n n

n n

n n n n

J J J J

J J

J J J J

J J J J

J J

J J J J

J J J J

J J

J J J J

=J

64748 6447448 6447448

O M M M M

M M O M M

M M O M

M M M M

, 1.

1

1 1 0

lmJ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

<⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

O

(8)

It was found out [6] that such organization of the connection matrix imposes the
form of local minima of the functional (1), namely: local minima certainly have the
block-constant form

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Cluster Domains in Binary Minimization Problems 643

1 2

1 1 2 2(... , ... ,..., ...), 1, 1,..., .

n

n n l

k k k

s s s s s s s l n= = ± =s
14243 14243 14243

(9)

In other words, the first 1k coordinates of the local minimum have to be identical;

the next 2k coordinates have to be equal to each other, and so on. In Eq. (9)

fragmentation into blocks of constant signs is defined by the block structure of the
Hebbian matrix (or, and that is the same, by the structure of the repeating columns in
the pattern matrix X (7)). The proof that the local minima have the block-constant
form (9) is based on the fact that spins from one block have the same connections
with all other spins, and under the action of the local fields they behave in the same
way [6].

Not all configurations of the form (9) are the local minima of the functional (1), but
it is necessary to look for the local minima among these configurations only. In other
words, for minimization of the functional (1) it is senseless to examine configurations
with different signs inside blocks of constant signs. It makes sense to examine
configurations of the form (9) only. All spins from the same block are satisfied or
unsatisfied simultaneously. In the last case it is senseless to turn over unsatisfied spins
from the block separately, because this leads to a nonsensical configuration (for which
inside a block of constant sign there are coordinates with different signs). It turned
out, that in this case it is possible to turn over the whole unsatisfied block
simultaneously. This leads to a decrease of the energy (1). In other words, here the
blocks of the constant signs play the role of natural domains.

Let us formulate the general rule of “the correct domains” formation: A domain
consists of spins whose inter-connections are stronger, then their connections with
other spins. The values of spins belonging to the same domain have to be equal.

Due to evident relation of the general rule to the well known problem of the
clustering of the symmetric matrix [7], [8], this recipe will be called the cluster
principle of the domains formation. The validity of the cluster principle is based on
the fact that strongly connected spins have to interact with the rest of the spins
similarly. Therefore, we have a good chance that under action of an external field the
strongly connected spins will behave themselves similarly.

4 The Results of Computer Simulations

1. In first series of the computer experiments we used the Hebbian matrices of the
form (8) with extremely strong inter-group connections. The external parameters of
the problem were as follows: the dimensionality of the problem was N=1000, the
number of patterns was M=60, the number of domains was n=40, sizes of domains lk

were random numbers from the interval [1, 45]:
40

1
1000ll

k
=

=∑ ; the coordinates ()
lx μ

in the matrix (7) took on the values 1± equiprobable.
On the main diagonal of the Hebbian matrix (8) there were 40 ()l lk k× -blocks

from the ones only: () 1in
llJ = . Matrix elements outside these blocks were random

quantities with the mean values equal to 0 and the dispersions equal to 1/M:
() 0out
lmJ< >= , ()() 1/out

lmJ Mσ = . The cluster principle of the domains formation

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

644 L.B. Litinskii

provides us with 40 domains of the type (9) generated by 40 groups of strongly
connected spins.

Altogether 200 such matrices J were generated, and for each matrix the functional
(1) was minimized using 3 dynamic approaches:

1) RANDOM: the standard random dynamics was set going from 1000 random
start configurations;

2) Random Domains (DM-RND): the domain dynamics was set going from the
same random configurations with n=40 random domains of the identical size k=25
(25 spins with random numbers were included in a domain; inside a domain the spins
had the values 1± equiprobable);

3) Cluster Domains (DM-CLS): the domain dynamics was set going from 1000
random start configurations of block-constant form (9).

When a domain local minimum was achieved, the domains were “defrosted” and
under the random dynamics the system went down to a deeper local minimum of the
functional (1). Thus, for each matrix we obtained 3000 local minima. Then we found
the deepest among them and calculated the frequency of the deepest minimum
determination for each of the three dynamics: RANDOM, DM-RND and DM-CLS.
The dynamics, for which the frequency of the deepest local minimum determination is
the largest, has to be declared the best.

Fig. 1. The average frequency of the deepest local minimum determination for all dynamics

In Fig.1 the results averaged over 200 random matrices are shown for all the three

dynamics. Along the abscissa axis the three dynamics are marked off, along the
ordinate axis we show the averaged frequency of the deepest minimum determination

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Cluster Domains in Binary Minimization Problems 645

(in percentages). It is seen that in average the domain dynamics with cluster domains
(DM-CLS) leads to the deepest minimum more then 30 times frequently than the
random domain dynamics (DM-RND) or the standard random dynamics (RANDOM).
Here the preference of the cluster domain approach is evident.

2. In the described experiments the connections between spins inside “the correct”
groups were equal to one, because all lk vector-columns lx in one group were the

same. What happens if these groups of vectors are slightly “diluted”: If the vector-
columns inside “the correct” groups are not identical, but differ slightly? How this
affects the result of minimization?

The aforementioned experiments were repeated for “diluted” groups of vector-
columns lx . In this case the first 1k vector-columns of the matrix (7) were not

identical, but they were obtained as a result of multiplicative distortion of the
vector 1x : with the probability b the coordinates of the vector 1x (independently and

randomly) were multiplied by -1. Analogously, the next 2k vector-columns of the

matrix X were obtained by multiplicative distortion of random vector 2x , and so on.

Then the connections between spins inside “the correct” groups were random
quantities with the mean value () 2(1 2)in

ijJ b< >= − . Thus, the distortion probability b

characterized the level of inhomogeneity of “the correct” spin groups: the larger b, the
less the mean value of the inter-group connection, the greater the inhomogeneity of
“the correct” group of spins.

Table 1. The mean value ()in
ijJ< > of the inter-group connection as function of b

b 0.02 0.05 0.1 0.2
()in
ijJ< > 0.92 0.81 0.64 0.36

The values of b and corresponding mean values of the inter-group connections are

given in Table 1. Note, only for b=0.02 and b=0.05 “the correct” groups of spins can
be regarded as strongly connected. Indeed, in these cases the mean values of the inter-
group connections are () 0.9in

ijJ< >≈ and () 0.8in
ijJ< >≈ respectively. In other words,

the angles between M-dimensional vectors xi from “the correct” groups are less than
45o . Such groups of vectors still can be regarded as compact, and the relative spins
can be regarded as strongly connected. However, already for b=0.1 we
have () 0.64in

ijJ< >= , and for b=0.2 the mean value of the inter-group connection

becomes entirely small: () 0.36in
ijJ< >= . For such mean values of the matrix

elements, the groups we mechanically continue to consider as “correct” groups, in
fact are aggregations of slightly connected spin sub-groups. The spins inside these
sub-groups can be strongly connected, but in the same time the sub-groups are
connected rather slightly. Note, when combining some slightly connected sub-groups
into one large group, in fact we organize random domains. One might expect that the
more b, the more the results for cluster domain dynamics resemble the results for
random domain dynamics.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

646 L.B. Litinskii

In Fig.2 for all three types of the dynamics it is shown how the mean frequency of
the deepest minimum determination depends on the parameter b. We see that when b
increases, the results for the cluster domain dynamics (DM-CLS) progressively less
differ from the results for the random domain dynamics (DM-RND), particularly
beginning from b=0.1. It can be expected, since when b increases, “the correct”
groups of spins resemble the random domains progressively.

The obtained results are the evidence of the productivity of the cluster principle of
domains formation. The number and the structure of domains are defined as a result
of the connection matrix clustering. A review of clustering methods can be found in
[7], [8].

Fig. 2. The mean frequency of the deepest minimum detecting as function of the distortion
parameter b for all the three dynamics

Acknowledgments. Author is grateful to Artem Murashkin, who realized computer
experiments for this paper. The work was done in the framework of the project
«Intellectual computer systems» (the program 2.45) under financial support of
Russian Basic Research Foundation (grant 06-01-00109).

References

1. Hartmann, A.K., Rieger, H.: Optimization Algorithms in Physics. Wiley-VCH, Berlin
(2001)

2. Hertz, J., Krogh, A., Palmer, R.: Introduction to the Theory of Neural Computation.
Addison-Wesley, Reading (1991)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Cluster Domains in Binary Minimization Problems 647

3. Kryzhanovskii, B.V., Magomedov, B.M., Mikaelyan, A.L.: A Domain Model of a Neural
Network. Doklady Mathematics 71(2), 310–314 (2005)

4. Kryzhanovsky, B., Magomedov, B.: On the Probability of Finding Local Minima in
Optimization Problems. In: Proceedings of IJCNN’2006, Vancouver, pp. 5882–5887 (2006)

5. Herz, A.V.M., Marcus, C.M.: Distributed dynamics in neural networks. Physical
Review E47, 2155–2161 (1993)

6. Litinskii, L.B.: Direct calculation of the stable points of a neural network. Theoretical and
Mathematical Physics 101(3), 1492–1501 (1994)

7. Xu, R., Wunsh II, D.: Survey of Clustering Algorithms. IEEE Transactions on Neural
Networks 16(3), 645–678 (2005)

8. Li, T., Zhu, S., Ogihara, M.: Algorithms for clustering high dimensional and distributed
data. Intelligent Data Analysis 7, 305–326 (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

MaxSet: An Algorithm for Finding a Good

Approximation for the Largest Linearly
Separable Set

Leonardo Franco, José Luis Subirats, and José M. Jerez

Departamento de Lenguajes y Ciencias de la Computación,
Universidad de Málaga,

Campus de Teatinos S/N, 29071 Málaga, Spain
{lfranco, jlsubirats, jja} @lcc.uma.es

Abstract. Finding the largest linearly separable set of examples for a
given Boolean function is a NP-hard problem, that is relevant to neural
network learning algorithms and to several problems that can be for-
mulated as the minimization of a set of inequalities. We propose in this
work a new algorithm that is based on finding a unate subset of the input
examples, with which then train a perceptron to find an approximation
for the largest linearly separable subset. The results from the new algo-
rithm are compared to those obtained by the application of the Pocket
learning algorithm directly with the whole set of inputs, and show a clear
improvement in the size of the linearly separable subset obtained, using
a large set of benchmark functions.

1 Introduction

We propose in this work a new algorithm for finding a linearly separable (LS)
subset of examples for a non-linearly separable problem. Related versions of this
problem appears in different contexts as machine learning, computational geom-
etry, operation research, etc. [1,2,3,4]. In particular, the problem is very relevant
in the field of neural networks given that individual neurons can only compute
linearly separable functions. Many constructive algorithms for the design of neu-
ral architectures are based on algorithms to find a maximum cardinality set of
linearly separable examples [4]. Within the neural networks community, the very
well known perceptron algorithm [5], that works well for finding the synaptic
weights for a linearly separable problem, has been adapted several times in or-
der to be applied to the case of non-linearly separable problems [6,7]. Among
the different modifications, the most popular is the Pocket algorithm introduced
by Gallant [6]. The problem of finding the largest LS subset is NP-hard and
thus different approximate solutions and heuristics have been proposed to deal
with it [3,4,8]. In this paper we introduce an algorithm for finding an approx-
imation to the largest linearly separable subset that is based on finding a set
of unate examples. The algorithm then use this subset to train a perceptron
using the Pocket algorithm. The new and original contribution of the algorithm

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 648–656, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

MaxSet: An Algorithm for Finding a Good Approximation 649

consists in a method for finding an unate approximation of the input function
to speed up and improve the process of obtaining a LS set, working as a kind
of preprocessing step before applying the Pocket algorithm,. In agreement with
this previous idea, it has been shown by Jacob & Mishchenko [9] that obtaining
a unate decomposition of a function improves its synthesis procedure in logic
design. We have compared the results of the MaxSet algorithm against the most
popular of the used algorithms, the Pocket algorithm, trained with the whole
sets of examples.

2 Mathematical Preliminaries

A Boolean function of n variables is defined as a mapping f : {0, 1}n → {0, 1}.
A Boolean function is completely specified by the output of the function, f(x),
in response to each of the 2n input examples.

A Boolean function is unate if all its variables are unate. A variable is unate
if it is only positive or negative unate but not both. A variable is positive or
negative unate according to the change on the output of the function that
a change in the variable produces, i.e., if a variable xi is positive unate then
f(x0, . . . , xi = 0, . . . , xn−1) ≤ f(x0, . . . , xi = 1, . . . , xn−1) for all xj with j �= i
(conversely, for a negative unate variable). The influence of a variable xi is
defined as the number of inputs vectors x ∈ {0, 1}n such that when the ith com-
ponent is negated (flipped from 0 to 1 or viceversa) the output of the function
changes its value. Unate variables have positive or negative influences but not
both, case in which are named binate.

It has been demonstrated that all threshold functions are unate but the con-
verse is not true (for example, the function F (x0, x1, x2, x3) = x0 x1 + x2 x3 is
unate but it is not threshold).

3 The MaxSet Algorithm

The general idea of the algorithm is to construct an unate approximation of the
input function that is as similar as possible to the original function. In order to
construct this approximation the algorithm selects a variable at a time, adding
to the unate set pair of examples those that produce a positive (or negative)
influence. The selection of the variable and the sign of the influence is decided
according to the largest number of pairs available at that time with the same
influence, in order to maximize the cardinality of the selected set. The opti-
mal solution for obtaining the unate approximation, consists in maximizing the
whole set of variables simultaneously, and it is a NP-hard multiple optimization
problem. Our method, instead, select variables each at a time, searching for the
largest possible subset at each step.

For a clear explanation of the algorithm we will follow a flow diagram shown
in Fig. 2 and an example of the application of the algorithm on a non-LS func-
tion of 4 variables. The Boolean function selected for the example is shown in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

650 L. Franco, J.L. Subirats, and J.M. Jerez

0000

0010 01000001 1000

1111

0101 10010011 0110

1011 11010111 1110

1010 1100

0

1 2 4 8

3 5 9 6

7

10 12

14

15

11 13

Fig. 1. The partially ordered set (Poset) of the Boolean function used as an example in
the text to illustrate the application of the algorithm. The input bits of the examples
are shown inside the ovals and the corresponding outputs are indicated by the color of
the oval (white corresponds to 0 and grey indicates 1). The decimal value of the inputs
is indicated outside the ovals, as it is used in the text. Links between examples connect
pair of nearest neighboring examples, whose input bits are at Hamming distance of 1.

partially ordered set (Poset) depicted in Figure 1. The Poset shows the examples
ordered in levels according to the weight of the input (number of 1’s) where links
between nearest neighboring examples are also shown. In the figure (Fig. 1), the
output value of each of the examples is indicated by the color of the boxes
(white:0, grey:1). It is also shown below each of the examples, the decimal order
of the examples used to refer to the examples.

The first step of the algorithm consists in allocating all pairs of nearest neigh-
boring examples (pairs of examples at Hamming distance 1) to one of the 4
variables of the function (the one in which the examples of the pair differ) and
to one of the three possible sets : positive, negative and neutral influence sets.
The pair is included in a given set according to the influence of the variable in
which the pair differs. For example, the pair of examples with decimal indexes
0 and 1 (inputs 0000 and 0001), with output value 0 and 1 respectively will be
included in the positive set corresponding to the the last bit variable, x0. This is
because the pair of examples defines the variable x0 as having positive influence,
because a change in the variable from 0 to 1 makes the output of the example
to change in an increasing way (positive).

As mentioned, the algorithm starts with the allocation of all possible pairs of
neighboring examples to a table in which every pair is assigned to a variable and
to a category out of the three possible ones: positive, negative and neutral, indi-
cated by (+, −, N). The allocation of the pairs of neighboring examples for the
case of the function that we are using to illustrate the method is shown in Table

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

MaxSet: An Algorithm for Finding a Good Approximation 651

Begin

End

Return

Unate Set

 If

(Free variables

= null ?)

Yes

No

Select & mark

 a variable

Add correct examples

to LS Set

Obtain confl icting examples

and add to non-LS Set

Add neutral

examples

Check for pairs of non-mar-

ked variables already pre-

sent in the solution set and

premark these variables

 Allocate pairs of

examples to variables

Return

Solution Set

Apply Pocket

algorithm

 Read input Function

Fig. 2. Flow diagram of the MaxSet algorithm introduced in this work to find an
approximation to the largest LS subset of a non-LS input function

1. The function is defined by the truth vector (0,1,0,1,0,1,1,1,1,0,1,1,0,1,0,1), that
contains the output values of the function in response to the 16 inputs arranged
in decimal order. The table has 4 columns corresponding to the four variables
of the function and three rows for the three types of influences.

After all the pairs have been allocated into the table, the algorithm contin-
ues by selecting a set of examples belonging to a positive or negative category
with the largest cardinality. The neutral sets are only considered at the end of
the algorithm after all variables have been defined as positive or negative. For
the function that we are considering, the first selected set is the examples with
positive influence corresponding to the variable x0, as this is the largest set con-
taining 10 examples. The selected examples are then included in the LS set. For
the function of the example, this step means that examples 0,1,2,3,4,5,12,13,14
and 15 are included in the LS set. After a set of examples have been selected,
the algorithm normally checks if there are possible conflicting examples, but this

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

652 L. Franco, J.L. Subirats, and J.M. Jerez

checking step is only applied after a second variable has been selected and the
process is described below. Thus, the algorithm continues by selecting a second
variable in the same way as it was done for the first one, selecting the largest sub-
set corresponding to a negative or positive non-selected variable. For the example
under analysis, the new selected subset is the positive examples corresponding
to variable x1 that will add to the LS set a total of 3 new examples (the exam-
ples 6,9 and 11, as example 4 is already included). After the second subset (and
variable) have been selected, a checking procedure is applied in order to avoid
possible future conflicts. The checking procedure analyzes the non-selected pairs
of example with opposite influence of the selected sets that have an example
included in the LS set. For the Boolean function of the example, the variables
x0 and x1 have been already selected with positive influence, implying that we
should look for the negative sets of these two variables for probable conflicting
examples. The way to look for conflicts is to search for pairs included in these
non selected sets of variables x0 and x1 in which one of the examples of the
pair belongs to the LS set. For example, the pair 8 − 9 with negative influence
on variable x0 contains the example number 9 that has been already included
in the LS set. The checking procedure marks example 8 as a forbidden exam-
ple and includes it in the Non-LS set (avoiding its future selection), because an
eventual selection of example 8 will imply that the variable x0 would have both
positive and negative influence, and this is not possible for a unate or a LS set
of examples. The algorithm also checks for pairs of examples already included
in the LS set, that belong to non-marked variables. In the example, the pairs
3-6 and 9-13 belonging to the variable x2 with positive influence are already
included in the solution set, and also the pairs 1-9 and 6-14 corresponding to
the variable x3 with negative influence. On the contrary, the example 8 that
has been marked as a conflictive example, makes the algorithm to eliminate the
pairs 8-12 and 0-8 in the negative x2 variable and in the positive x3 variable
respectively. The main loop of the algorithm is applied again, but this time can
only consider the pre-marked variables, and thus the pre-marked positive part of
variable x2 is included to the LS set. No new examples are added to the LS set
as the examples of the pairs with positive influence for variable x2 are already
part of it. Any of the variables x2 or x3 could have been selected as they contain
the same number of possible examples, but the algorithm is set to select the
first one, in this case the x2. The checking procedure now marks example 10 as
forbidden example and thus the pair 2-10 is deleted from the positive part of
variable x3. Lastly, the algorithm marks the only left variable, x3 as negative
as it has been already pre-marked, and the main loop of the procedure finishes.
The unate set contains the examples 0, 1, 2, 3, 4, 5, 6, 9, 12, 13, 14, 15, while the
forbidden examples 8 and 10 belong to the non-LS set. Examples 7 and 11 are
not yet selected, meaning that we can include them in the unate set, as they
only involve neutral influence pairs, and thus the final solution set includes the
14 examples 0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15.

The procedure then finishes by applying the pocket algorithm with the se-
lected unate set that as a result will give a linearly separable set. If the unate

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

MaxSet: An Algorithm for Finding a Good Approximation 653

test set was, indeed, linearly separable the pocket algorithm will then indicate so
but if the unate set happened to be unate but not linearly separable the pocket
algorithm will select only some examples of this candidate set. The procedure
ends by giving as output the LS separable set found by the pocket algorithm. If
a LS function is needed instead of a LS subset, all that is needed is just to test
the examples not already included in the LS set to find their outputs. In the case
of the function of the example, the unate set found is also linearly separable and
thus the pocket algorithm is able to learn it all.

Table 1. An example of the application of the MaxSet algorithm to a non-LS Boolean
function of 4 variables. All the 32 possible pairs of neighboring examples are included
in the table. (See text for details).

x0 x1 x2 x3

0 − 1 4 − 6 3 − 6 0 − 8
2 − 3 9 − 11 9 − 13 2 − 10

+ 4 − 5
12 − 13
14 − 15

− 8 − 9 8 − 12 1 − 9
10 − 14 6 − 14

6 − 7 0 − 2 0 − 4 3 − 11
10 − 11 1 − 3 1 − 5 4 − 12

N 5 − 7 4 − 7 5 − 13
8 − 10 11 − 15 7 − 15
12 − 14
13 − 15

4 Testing the Algorithm on a Set of Benchmark
Functions

The algorithm described above was implemented in C# and tested on different
sets of Boolean function. The efficiency of the algorithm to find large LS sets
and the computational time required for the implementation was compared to
the results obtained using the pocket algorithm applied to the original set of
examples. An initial test was carried out with all the 65536 Boolean functions of
4 variables with the aim of checking that the implementations of the algorithms
used in the test was working properly, and also to see how the new algorithms
perform with LS functions. The test confirmed that both algorithms found the
correct solution (i.e., the whole set of input examples was LS) for the 1881 LS
functions of 4 variables that exist in this case. The average size of the LS subset
across all the functions of 4 variables was 12.72 (79.5 % of the 16 examples) for
the new algorithm, while 10.79 (67.4 %) examples resulted from the application
of the Pocket algorithm (16 examples constitute the whole set of inputs for
functions of 4 variables). The Pocket algorithm was implemented for this case
setting a maximum of 200 iterations each time a new set of weights was found.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

654 L. Franco, J.L. Subirats, and J.M. Jerez

Table 2. Results of the implementation of the MaxSet and Pocket algorithms on a set
of 54 non-LS Boolean functions used in logic synthesis (See text for details)

Function Inputs Fraction LS CPU Time Fraction LS CPU Time
MaxSet (Seconds) Pocket (Seconds)

cm82af 5 0.75 0 0.50 1
cm82ag 5 0.75 0 0.50 1
parity5 5 0.50 0 0.50 1
z4ml25 7 0.75 0 0.50 1
z4ml26 7 0.75 0 0.52 1
z4ml27 7 0.75 0 0.50 1
f51m44 8 0.80 0 0.50 1
f51m45 8 0.80 0 0.54 1
f51m46 8 0.80 0 0.53 1
f51m47 8 0.78 0 0.47 1
f51m48 8 0.81 0 0.53 1
f51m49 8 0.88 0 0.56 1
f51m50 8 0.75 0 0.50 1

9symml52 9 0.82 0 0.74 1
alu2k 10 0.53 0 0.54 1
alu2l 10 0.51 0 0.52 1
alu2m 10 0.75 0 0.50 1
alu2p 10 0.75 0 0.72 1
x2l 10 0.88 0 0.79 1
x2p 10 0.94 4 0.80 4
x2q 10 0.83 1 0.82 1

cm85am 11 0.65 3 0.96 3
cm152al 11 0.55 1 0.58 1
cm151am 12 0.79 5 0.79 5
cm151an 12 0.75 4 0.77 4

alu4o 14 0.50 59 0.46 60
alu4p 14 0.56 70 0.51 71
alu4r 14 0.53 64 0.50 65
alu4s 14 0.75 42 0.51 43
alu4u 14 0.78 90 0.73 91
alu4v 14 0.38 85 0.94 87

cm162ao 14 0.92 56 0.84 57
cm162ap 14 0.92 69 0.85 70
cm162aq 14 0.93 63 0.86 64
cm162ar 14 0.93 87 0.87 89

cup 14 0.81 41 0.88 43
cuq 14 0.81 41 0.87 43
cuv 14 0.94 380 0.93 382
cux 14 0.83 118 0.96 120

cm163aq 16 0.92 757 0.83 773
cm163ar 16 0.93 774 0.79 793
cm163as 16 0.93 793 0.86 811
cm163at 16 0.94 931 0.86 948
parityq 16 0.50 983 0.50 1000
pm1a0 16 0.94 741 0.88 758
pm1c0 16 0.97 788 0.94 806
tcona0 17 0.75 5645 0.76 5712
tconb0 17 0.79 7441 0.75 7513
tconc0 17 0.76 5294 0.75 5368
tcond0 17 0.75 6212 0.75 6287
tcone0 17 0.72 5256 0.75 5331
tconf0 17 0.75 7476 0.75 7548
tcong0 17 0.76 5877 0.75 5952
tconh0 17 0.75 5952 0.75 6015

Average 0.77 1041 0.70 1054

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

MaxSet: An Algorithm for Finding a Good Approximation 655

0 500 1000 1500 2000 2500 3000
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Iterations

F
ra

ct
io

n
of

 w
ro

ng
ly

 c
la

ss
ifi

ed
 e

xa
m

pl
es

MaxSet
Pocket

Fig. 3. The fraction of incorrect classified examples vs. the number of iterations for
the function cm163aq using the MaxSet and Pocket algorithms

A further test was carried out using a set of 54 benchmarks functions used in
logic synthesis. The functions considered where all non-linearly separable, and
have a number of input variables ranging from 5 to 17. In Table 2, we report
the results for the 54 functions indicating in the first column the name of the
function, followed by the number of input variables. The rest of the columns
shows the results for the size of the linearly separable set found, indicated as
a fraction of the whole set of examples, and the CPU time in seconds used for
the calculations for the case of the new algorithm and for the application of the
Pocket algorithm directly with the whole set of examples. In 40 out of the 54
cases considered, the MaxSet algorithm found the largest LS set, while in 11
cases the best results were obtained with the original dataset using the Pocket
algorithm (In the remaining 3 functions the results were the same.) On average
the application of the MaxSet algorithm leads to LS sets that cover on average
76.7% of the total set of examples, while the result from the application of the
Pocket algorithm was 70%, this means a 10.00% improvement on the size of
the LS subset found (equivalent to a 23% reduction on the average fraction of
errors). The previous comparisons were done by selecting similar computational
times for both algorithms (1041 and 1054 seconds on average per function).

We also shown in Fig. 3 an example of the learning process for both al-
gorithms (MaxSet and Pocket) for the case of the 16 input variables Boolean
function cm163aq. It can be shown from the graph, that the MaxSet algorithm
performs better both in terms of size of the obtained set and in terms of the
number of iterations needed. Fig. 3 shows the result of the fraction of wrongly
classified examples as a function of the number of iterations, where the values
have been averaged across 100 repetitions of the learning process to eliminate
random fluctuations. Moreover, it can be seen that the dynamic of the learn-
ing process for the case of the MaxSet has a similar shape to the one obtained

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

656 L. Franco, J.L. Subirats, and J.M. Jerez

from the Pocket algorithm (trained with the whole sets of examples), but it is
a re-scaled version of it, where both the fraction of errors and the number of
iterations are reduced approximately by half.

5 Discussion

We introduced in this work a new algorithm for the problem of finding a large
subset of LS examples from a non-LS set. The new procedure works by finding
first a unate set of examples (the new contribution of this work), to then train
a perceptron through the Pocket algorithm with this unate set. The results over
a large set of benchmark functions show that for similar computational times
the MaxSet algorithm outperforms in most cases the standard Pocket algorithm
and lead to an average 11.94% improvement on the size of the LS subset found
(equivalent to a 24% reduction in the fraction of errors made). An important
aspect of the introduced MaxSet algorithm, regarding the obtention of an unate
subset, is that this part of the method can in principle be combined with any
other alternative method in order to obtain the final linearly separable solution
set.

The extension of the method to partially defined Boolean functions is not
straightforward but it is being developed under similar lines and it will be re-
ported elsewhere.

References

1. Johnson, D.S., Preparata, F.P.: The densest hemisphere problem. Theoretical Com-
puter Science 6, 93–107 (1978)

2. Greer, R.: Trees and hills: Methodology for maximizing functions of systems of linear
relations. Annals Discrete Mathematics 22 (1984)

3. Amaldi, E., Pfetsch, M.E., Trotter, L.E.: On the maximum feasible subsystem prob-
lem, IISs and IIS-hypergraphs. Mathematical Programming 95, 533–554 (2003)

4. Elizondo, D.: Searching for linearly separable subsets using the class of linear sep-
arability method. In: Proceedings of the IEEE International Joint Conference on
Neural Networks, pp. 955–960. IEEE Computer Society Press, Los Alamitos (2004)

5. Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, New York (1962)
6. Gallant, S.I.: Perceptron-based learning algorithms. IEEE Trans. on Neural Net-

works 1, 179–192 (1990)
7. Frean, M.: Thermal perceptron learning rule. Neural Computation 4, 946–957 (1992)
8. Marchand, M., Golea, M.: An Approximation Algorithm to Find the Largest Lin-

early Separable Subset of Training Examples. In: Proceedings of the 1993 Annual
Meeting of the International Neural Network Society, vol. 3, pp. 556–559. Erlbaum
Associates, Hillsdale, NJ (1993)

9. Jacob, J., Mischenko, A.: Unate Decomposition of Boolean Functions. In: Proceed-
ings of the International Workshop on Logic and Synthesis, California (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks
for Non-linear Component Extraction

Jörg Lücke and Maneesh Sahani

Gatsby Computational Neuroscience Unit, UCL, London WC1N 3AR, UK

Abstract. We develop a probabilistic interpretation of non-linear component ex-
traction in neural networks that activate their hidden units according to a softmax-
like mechanism. On the basis of a generative model that combines hidden causes
using the max-function, we show how the extraction of input components in
such networks can be interpreted as maximum likelihood parameter optimization.
A simple and neurally plausible Hebbian Δ-rule is derived. For approximately-
optimal learning, the activity of the hidden neural units is described by a gen-
eralized softmax function and the classical softmax is recovered for very sparse
input. We use the bars benchmark test to numerically verify our analytical results
and to show competitiveness of the derived learning algorithms.

1 Introduction

Neural network models that can be applied to unsupervised data classification, i.e. clus-
tering, have been well understood in terms of generative models. For mixture models
[1], the learning rule was shown to involve the softmax (see, e.g., [2] for an overview)
as activation function for the hidden units. Other than clustering, recent neural network
models have been shown to be competitive in extracting input components. These net-
works, e.g. [3,4,5], also use softmax-like mechanisms but a probabilistic understanding
in terms of multiple causes models has not yet been developed. In this paper we will
show how and under which conditions learning in feed-forward networks with Hebbian
plasticity can be understood as maximization of the data likelihood under a non-linear
generative model.

2 The Neural Network Model

Consider the network of Fig. 1 which consists of D input units with values y1, . . . , yD

and H hidden units with values g1, . . . , gH . An input y to the system is represented by
activities of input units. Via connections between the input and hidden layer that are
parameterized by (Wid) the input unit activities determine the activities of the hidden
units, gi = gi(y, W). The parameters (Wid) will be called weights.

Given a set of input patterns we want to adjust the weights W such that the activities
of the hidden units appropriately represent the input patterns. Learning will thus depend
on the distribution of input patterns. A standard approach in neural network modeling is
to use a Δ-rule with divisive normalization. In the case of Hebbian learning the Δ-rule
reads:

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 657–667, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

658 J. Lücke and M. Sahani

Wid

yd

gi(W, y)

Fig. 1. Architecture of a two layer neural network. Input is represented by values y1 to yD of D
input units (small black circles). Depending on the input and on the parameters W the activities
of the hidden units g1 to gH (big black circles) are computed. The dotted horizontal arrows
symbolize lateral information exchange that is in general required to compute the functions g1 to
gH . After the gi are computed the parameters (Wid) are modified using a Δ-rule.

ΔWid = ε gi(y, W) yd and W new
id = C

W ′
id + ΔWid∑

d′(W ′
id′ + ΔWid′)

, (1)

where W ′
id denote the old values. Divisive normalization (right-hand-side equation)

prevents the weights from growing infinitely and represents the most commonly used
constraint for learning in artificial neural networks. The learning rule (1) can directly
be associated with Hebbian learning between neural units g1 to gH and input units y1
to yD. The dotted horizontal arrows in Fig. 1 symbolize lateral information transfer that
is generally required to compute the activities gi(y, W). Neural networks that fit into
the framework of Fig. 1 and use a learning rule like (1) or similar are frequently found
in the literature and their application domains typically lie in the fields of clustering
and component extraction [2,3,4,5,6]. Especially since generative models are used to
study unsupervised learning, the class of neural network models that perform cluster-
ing could be embedded into a probabilistic framework. Learning in these networks can
be regarded as optimization of the data likelihood under a generative model. This re-
lationship in turn determines the function gi(y, W) in (1) which has to be used for
optimal learning. For clustering tasks the related generative models are mixture models
and the function gi(y, W) is the softmax operation, see e.g. [1,2]. A limit case of the
softmax is a winner-take-all mechanisms which is likewise frequently applied to clus-
tering tasks [2]. For networks such as [3,4] that extract input components, the situation
is different. Linear systems such as independent (ICA) or principal component analysis
(PCA) do not seem to represent the right correlates. ICA and PCA have been shown
to fail in non-linear tasks, see [7], in which neural network models consistent with the
above framework, e.g. [3,4,5], succeed in extracting the elementary input components.
The learning dynamics used in these networks are manifold and comparison with other
component extraction systems is usually only possible on the basis of benchmark tests.
A probabilistic understanding similar to that for mixture models has not yet been de-
veloped. Furthermore, some network models perform clustering if data is generated by
single causes, and component extraction if input consists of combinations of compo-
nents, e.g. [3,4]. From the generative point of view this seems contradictory.

For a probabilistic analysis of networks (1), a generative model will be defined whose
parameter update rules for likelihood maximization can be related to the delta rule in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks for Non-linear Component Extraction 659

(1). Before we define a generative model in the next section let us express the on-
line update rule (1) in terms of a batch mode update for a set of N input patterns
y(1), . . . , y(N). By repeatedly applying (1) we get for slowly changing W :

Wid ≈ W ′
id + ε

∑
n gi(W, y(n)) y

(n)
d

1
C

∑
d′

(
W ′

id′ + ε
∑

n gi(W, y(n)) y
(n)
d′

) ≈ C

∑
n gi(W, y(n)) y

(n)
d

∑
d′

∑
n gi(W, y(n)) y

(n)
d′

. (2)

The smaller the change of W the better the Δ-rule (1) is approximating (2).

3 A Non-linear Generative Model

Consider a generative model with D input units y1, . . . , yD and H hidden units
s1, . . . , sh. The model is parameterized by Θ = (π, W). The scalar π parameterizes
the distributions of the hidden units which are assumed to be independent and Bernoulli
distributed:

p(s | π) =
∏

h p(sh | π), where p(sh | π) = πsh (1 − π)1−sh . (3)

For given s we take the activities of the input units to be independent. The parameters
W determine the influence of a particular s on the distributions of the input units. The
values of yd we take to be independent given s and distributed according to a Poisson
distributions:

p(y | s, W) =
∏

d p(yd | W d(s, W)), where p(yd | w) = e−w wyd

yd! . (4)

The Poisson distribution is a natural choice for non-negative and noisy input. E.g., if we
take the causes to be objects with gray values Wid, all input patterns are non-negative.
Furthermore, in the context of neural networks and Hebbian learning (1), a represen-
tation of non-negative values is straightforward. For the function W d in (4) the most
common choice is a linear superposition of the weights multiplied by the activities of
the hidden units, W d(s, W) =

∑
h sh Whd. Algebraically, this kind of superposition

is advantageous for the computation of derivatives of p(y | s, W) as required for opti-
mization methods. However, for many applications linear superposition is difficult to
motivate. E.g., for visual input it does not seem natural to assume linearity because
occlusion is not modeled appropriately. For instance, if the causes are objects with the
same gray value, linear superposition results in an error in the region where the objects
overlap. Alternatively, the maximum function would represent the right model in this
case and seems to be a better approximation for occlusion-like scenarios in general.
Neural network models that fit into the framework (1) have been shown to be compet-
itive in occlusion-like scenarios [3,4,5]. For our purposes the max-operation therefore
seems to be preferable to linear superposition and we use as function W d in (4):

W d(s, W) := maxh{shWhd} . (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

660 J. Lücke and M. Sahani

Using the equality W d(s, W) = lim
ρ→∞ W

ρ

d(s, W) = lim
ρ→∞ (

∑

h

(shWhd)ρ)
1
ρ we define:

Aid(s, W) := lim
ρ→∞

(
∂

∂Wid
W

ρ

d(s, W)
)

= lim
ρ→∞

si (Wid)ρ

∑
h sh(Whd)ρ , (6)

which implies: Aid(s, W) f(W d(s, W)) = Aid(s, W) f(Wid) . (7)

f can be any well-behaved function. Equation (7) holds because both sides are zero
whenever W d(s, W) �= Wid.

4 Maximum Likelihood

Given a set of data Y = {y(n)}n=1,...,N we want to find the set of parameters W that
maximizes the likelihood of the data under the above generative model. Finding the
optimal π is straightforward but for the purposes of this paper we will concentrate on
the difficult part of optimizing the parameters W . Following the EM procedure, this
amounts to maximizing the lower bound Q(W, W ′):

Q(W, W ′) =
∑N

n=1
∑

s p(s | y(n), Θ′) log
(
p(y(n) | s, W) p(s | W)

)
, (8)

where Θ′ are the old parameters and where
∑

s is the sum over all binary vectors of
length H . Using Bayes’ rule the posterior probabilities are given by:

p(s | y(n), Θ′) =
p(s | π) p(y(n) | s, W ′)

∑
s̃ p(s̃ | π) p(y(n) | s̃, W ′)

(E-step) , (9)

where p(s | π) and p(y(n) | s, W ′) are given by (3) and (4), respectively. To account for
divisive normalization we use constraint optimization of Q(W):

∂
∂Wid′

Q(W, W ′) +
∑H

h=1 λh
∂

∂Wid′
Gh(W) != 0 , (10)

where Gh(W) :=
∑D

d=1 Whd − C = 0 is a constraint that keeps the sum over the
weights for each hidden unit h constant. If we insert (8) with (4) into (10), we obtain by
using (6) and (7):

∑

n

∑

s

p(s | y(n), Θ′) Aid′(s, W)
y
(n)
d′ − Wid′

Wid′
+ λi = 0 . (11)

Equations (11) can be solved for the Lagrange multipliers by summing over d′ and
by using

∑
d Whd = C. Applying some straightforward algebra, we obtain a set of

non-linear equations for the parameter update:

(12)

Wid =

�
n

〈Aid(s, W)〉 y
(n)
d

1

C

�
n,d′

〈Aid(s, W)〉 y
(n)
d′ −

�
n

�
(
�
d′

〈Aid′(s, W)〉 Wid′

C
) − 〈Aid(s, W)〉

� ,

where 〈Aid(s, W)〉 =
∑

s p(s | y(n), Θ′) Aid(s, W). (13)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks for Non-linear Component Extraction 661

Equation (12) can be simplified if we assume that the hidden causes are relatively ho-
mogeneously covering the input space. More precisely, if we parameterize the actually
generating causes by W gen, let us assume that all W gen

id > 0 of cause i can be covered
by the same number of W gen

cd ≥ W gen
id :

W gen
id > 0 ⇒

∑
c �=i H(W gen

cd − W gen
id) ≈ bi , (14)

where H is the Heaviside function. bi is the number of causes that can cover cause i.
Fig. 2C,D illustrate this condition. For both examples condition (14) is fulfilled. E.g. for
Fig. 2D bi = 0 for all horizontal causes and bi = 1 for the vertically oriented cause. If
the model parameters W satisfy condition (14), which can be expected at least close to
the maximum likelihood solution, we obtain with (12) and after rearranging terms:

Wid = C

∑
n 〈Aid(s, W)〉 y

(n)
d

∑
d′

∑
n 〈Aid′(s, W)〉 y

(n)
d′

(M-step). (15)

Equation (15) can be used as a fixed point equation. Inserting the old values of W on the
right-hand-side to obtain new values of W , approaches the right solution in numerical
simulations.

5 E-Step Approximation

The M-step (15) together with expectations (13) represent an optimization algorithm
for the generative model (3) to (5). However, for practical applications we are still con-
fronted with the problem of an exponential cost for computing the sufficient statistics
(13). For our model let us assume that most inputs have been generated by just few
hidden causes. To approximate for sparse input we first group terms in (13) according
to the number of active hidden units:

〈Aid(s, W)〉 =
∑

s

p(s | y(n), Θ′)Aid(s, W) (16)

=
∑

h

p(sh | y(n), Θ′)Aid(sh, W) +
∑

a, b
a < b

p(sab | y(n), Θ′)Aid(sab, W) +
∑

a, b, c
a < b < c

. . . , (17)

where sh := (0, . . . , 0, 1, 0, . . . , 0) 1 at h’s position,

sab := (0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) 1 at a’s and b’s position a �= b ,

and analogously for sabc etc. Note that Aid(0, W) = 0 because of (6). Each of the
posterior probabilities p(s | y(n), Θ′) above implicitly contains a similar sum over s for
normalization whose terms may be grouped in the same way:

p(s | y(n), Θ′) =
p(s, y(n) | Θ′)

∑

a

p(sa, y(n) | Θ′) +
∑

a, b
a < b

p(sab, y
(n) | Θ′) +

∑

a, b, c
a < b < c

. . .
, (18)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

662 J. Lücke and M. Sahani

where we have used that fact that the update rule (15) remains unchanged if we remove
all inputs equal to zero, i.e., all inputs with

∑
d y

(n)
d = 0. Combining (16) and (18) yields:

〈Aid(s, W)〉 = (19)
∑

a p(sa, y(n) | Θ′)Aid(sa, W) +
∑

a,b
a<b

p(sab, y
(n) | Θ′)Aid(sab, W) + . . .

∑
a p(sa, y(n) | Θ′) +

∑
a,b
a<b

p(sab, y(n) | Θ′) + . . .
.

If we assume that the significant posterior probability mass will concentrate on vectors,
s, with only a limited number of non-zero entries, the expanded sums in both numer-
ator and denominator of (19) may be truncated without significant loss. We will use
an approximation of 〈Aid(s, W)〉 that corresponds to a truncation of (19) after terms
of order two in the denominator and first order terms in the numerator. As numerical
simulations show, this is the approximation of lowest possible order which still results
in a system that can be used for component extraction. After inserting (3) to (5) into
(19) and by using Aid(sh, W) = δih the approximation reads:

〈Aid(s, W)〉 ≈ exp(I(n)
i)

∑

h

exp(I(n)
h) + π

2

∑
a, b

a �= b

exp(I(n)
ab)

, π :=
(

π

1 − π

)β

, (20)

I
(n)
i = β

∑

d

(
log(Wid) y

(n)
d − Wid

)
, I

(n)
ab = β

∑

d

(
log(W̃ ab

d) y
(n)
d − W̃ ab

d

)

(21)

where W̃ ab
d = max(Wad, Wbd).The parameter β has been introduced to implement an

annealing procedure [8] in later simulations. The M-step (15) together with the approx-
imate E-step (20) is a learning algorithm that we will refer to as approximate EM.

If we now compare (15) with (2), we find that a neural network (1) can be used for
parameter optimization by choosing gi(W, y(n)) = 〈Aid(s, W)〉. Note that in general
gi would have to depend on d. However, if we use approximation (20), 〈Aid(s, W)〉
only depends on i. For the neural network this implies that the change of the weight
Wid only depends on the activities of the pre- and post-synaptic units:

ΔWid = ε gi yd with gi =
exp(Ii)

∑

h

exp(Ih) + π
2

∑

a, b
a �= b

exp(Iab)
(22)

and divisive normalization (
∑

d Wid = C). Note that the function gi in (22) is similar to
the classical softmax [2] but has an additional term in the denominator. For very sparse
input, i.e. π � 1, the classical softmax is recovered.

The intuition for the learning rule is as follows: The system tries to explain a given
input pattern using its current state of the model parameters W . If one hidden unit
explains the input better than any combination of two units, this unit is modified. If the
input is better explained by a combination of two units, learning is penalized. Eqns. (22)
describe an easy and computationally efficient method to maximize the data likelihood
under the generative model (3) to (5).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks for Non-linear Component Extraction 663

6 Simulations

It remains to be shown that the approximations we have introduced result in parameter
updates that indeed approximately maximize the data likelihood. That the likelihood is
always increased is only guaranteed if we use the exact M-step (12) and the exact suf-
ficient statistics (13). Although our approximations are derived from the exact M- and
E-steps there is no guarantee that they always result in an increase of the likelihood.
Furthermore, even in the case of exact EM, learning can converge to local optima. To

W5dW4dW3dW2dW1dB

A C

D
10

40

75

W9d W10dW8dW7dW6d

patterns
103

0

Input patterns

Fig. 2. Bars test with 5x5 pixels, 10 bars, and π = 2
10 . A 12 input patterns from the set of

N = 500 input patterns used. B Update of the parameters W using the neural network NNslow .
C Sketch of the hidden causes of a bars test with 8 bars. The black squares symbolize the pixels.
The bars test satisfies condition (14). D Exemplarily another distribution of hidden causes that
satisfies the condition.

verify that the derived approximate EM and neural networks with Δ-rule (22) are indeed
able to extract hidden causes, we use the bars benchmark test for component extraction
[3,4,5,6]. In the bars test a bar appears with fixed probability at one of, e.g., 10 posi-
tions. To test the algorithms we use generative parameters W gen in the form of H = 10
horizontal and vertical bars. Values W gen

id that correspond to a bar are set to W gen
id = 10,

values that correspond to the background are zero, W gen
id = 0. We generate N = 500

input patterns according to the generative model (3) to (5) with π = 2
10 . A subset of

the resulting input patterns is displayed in Fig. 2A. The Poisson distribution (4) results
in noisy bars. In Fig. 2B the parameters W are displayed in the case of using a neu-
ral network (22) with ε = 0.1, which we will refer to as NNslow. As can be seen, the
system’s parameters W converge from randomly initialized values to values similar to
those of the generating parameters W gen. In Fig. 2B learning time is measured in terms
of the number of patterns that are randomly drawn from a set of N = 500. For the same
bars test settings, the development of the data likelihood is plotted in Fig. 3 for ten trials
with NNslow(back lines). Note that for the likelihood plots we have used the same set of
N = 500 input patterns for all trials. In all other simulations we use a newly generated
set of 500 patterns for each trial. In Fig. 3 it can be observed that the network increases
the likelihood up to a value that closely corresponds to the likelihood of the generating
weights W gen. The likelihoods of ten trials using approximate EM, (15) and (20), are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

664 J. Lücke and M. Sahani

-30
-40
-50

-40

-30

-20

L(Θ)
103

-50

20 40 600

W gen approx. EM NNslow

patterns
103

1 20

L(Θ)
103

no noise

added noise

NNfast

patterns
103

Fig. 3. Development of log-likelihood values during learning for the same bars test as in Fig. 2.
Time courses for approximate EM (broad grey lines) and NNslow (black lines) approach the
likelhood value of the actually generating weights W gen (dashed line). Note that one EM iteration
corresponds to N = 500 patterns. The small plot shows log-likelihood values for NNfast (black).
Likelihoods for NNfast without Gaussian noise on the weights is plotted for comparison (gray).
The table shows the probability of each system to extract all bars in a given trial, i.e., its reliability.
Values are given for bars with Poisson noise and without noise.

plotted for comparison (broad gray lines). Note that EM and NNslow essentially behave
in the same way as could be expected on the basis of our analytical results. NNslow
updates W after every pattern presentation whereas EM uses all N = 500 patterns for
each update. In Fig. 3, N = 500 patterns therefore correspond to one EM iteration. For
NNslow the online update introduces stochasticity. This effects learning only marginally,
however. Compared to approx. EM, the likelihoods are slightly noisier and convergence
times seem to vary less.

For learning we use an annealing proceedure, i.e., we use β < 1 in (21) and in-
crease β to one in the course of learning. For EM and NNslow we use the same cooling
schedule, which remains unchanged throughout this paper. We increase β in (21) by de-
creasing a ‘temperature’ T using β = 1

T . We use T1 = 18 for the first 50 iterations and
linearly cool to T = 1 in the subsequent 100 iterations1. For later comparison we in-
troduce another neural network version based on (22). Instead of a cooling schedule we
use a fixed temperature T = 16 and add Gaussian noise for each weight at each update:
ΔWid = ε gi yd + σ η. Using ε = 1.0 and σ = 0.02 we obtain a neural network that
requires relatively few pattern presentations for learning (< 1, 000). We therefore refer
to the network as NNfast. Ten time-courses of likelihood values are shown for NNfast in
Fig. 3 (small plot, black lines). Because of the additional noise the final likelihood val-
ues are somewhat lower than those of the generating weights. If a network with the same

1 For NNslow this translates to: 25 × 103 pattern presentations with T1 = 18 and linear cooling
to T = 1 within the next 50 × 103 patterns.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks for Non-linear Component Extraction 665

Input CausesA Input patternsB Learned WC

Fig. 4. Bars test with different bar intesities and widths. A Scematic visualization of the six bars.
B 12 examples of the N = 500 input patterns used. C Learned parameters W using NNslow

(from black for Wid = 0 to white for Wid = 10). Note that
�

d Wid = 50 for all weights.

parameters as NNfast but without added noise (σ = 0) is used, likelihood values are
higher (small plot, gray lines) but the system converges to local optima relatively often.

For comparison with other systems in the literature we will use the same bars test
as above but instead of bars with Poisson noise we use non-noisy bars. In the bars
test, a very prominent criterion for comparison is the so called reliablity of the sys-
tem [3,4,5,6,9,10]. It is defined as the probability to find all bars in a given trial. If a
system tends to converge to local optima, its reliability is low. The table in Fig. 3 sum-
marizes the reliability values for approx. EM, NNslow, and NNfast for bars with and
without Poisson noise. Each reliability value was computed on the basis of 100 trials
and each trail starts with a different randomly initialized W . For both bars test versions
the same algorithms and the same cooling schedule were used (the same fixed T in the
case of NNfast). Using the criterion of reliability, NNfast shows the best performance.
The reason is the additional Gaussian noise and noise introduced by updating online.
The combination of both sources of noise drives the system out of shallow optima.
Furthermore, NNfast is the fastest system in terms of required pattern presentations. It
needs less than 1, 000 patterns to find all bars in the majority of 100 simulations2. Note,
however, that in some trials learning time is much longer. In terms of likelihood values,
approx. EM and NNslow are to be preferred. These system also have the advantage of a
well defined stopping criterion.

Regarding values of reliability, the systems’ performance is very robust if their pa-
rameter π in (20) or (22) is chosen very different from the actually generating parameter
πgen = 2

10 (note that it was not neccessary to distinguished between π and πgen, so far).
In the beginning of learning the small exponent β ≈ 0.05 in (20) results in π values
close to one for a large range of different π. Close to the end of the cooling schedule, for
β ≈ 1, different π values do likewise only marginally effect learning because the sec-
ond term in the denominator of (20) is either very small or very large compared to the
first. In contrast, the likelihoods are relatively sensitive to different values of π. Using
an EM approach similar to the one for W , the value for π can, however, be infered.

Finally, the reliabilities of the algorithms are found to be robust w.r.t. violations of
assumptions (14) and

∑
d W gen

id = C for the generating weights. An example of a bars
test that violates both assumptions is shown in Fig. 4. NNslow finds all bars with 96%
reliability in this case.

2 The system is taken to have found all bars if each hidden unit represents a different bar. This
is usually already the case for intermediate likelihood values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

666 J. Lücke and M. Sahani

7 Discussion

Generative model and neural network approaches have both been suggested for the ex-
traction of non-linear components. In this paper we have analytically shown that Heb-
bian learning in feed-forward neural networks can correspond to parameter updates in
a generative model using approximate EM. The distinguishing feature of this genera-
tive model is an explicit non-linearity in the form of a max operation.The appropriate
activation rule for the networks turns out to be the generalized softmax rule (20). The
generalization drops back to the classical softmax for very sparse input.

The analytical results were verified in numerical simulations using the bars bench-
mark test. We found that the derived neural networks increase the likelihood under
the generative model and avoid local optima in the great majority of trials. The de-
rived learning algorithm NNfast performs best if learning time and system reliability
are used for comparison. Using a high learning rate and additional noise the network
model NNfast avoids all local optima and needs few pattern presentations for learn-
ing. The same is reported, e.g., for the networks [3,4] which both fit into the frame-
work considered here (Eqn. 1 and Fig. 1). Furthermore, the generalized softmax (20)
offers an explanation of why networks such as [3] and [4] can also be successfully
applied to clustering tasks. In contrast to many neural networks, algorithms that are
based on generative models are by definition well interpretable probabilistically. They
have, however, been criticized [3,4,7] for frequently failing to extract the true causes.
E.g., for the same bars test as used here, the models [9] and [10] find all bars in just
27% and 69% (even though bar overlap is excluded) of trials, respectively. Instead of
treating them as separate or competing approaches, we have in this paper shown that
generative and neural network approaches can come together in the form of competi-
tive learning algorithms that are neurally plausible, reliable, and probabilistically fully
interpretable.

Acknowledgment. This work was funded by the Gatsby Charitable Foundation.

References

1. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Chichester (2000)
2. Yuille, A.L., Geiger, D.: Winner-take-all networks. In: Arbib, M.A. (ed.) The handbook of

brain theory and neural networks, pp. 1228–1231. MIT Press, Cambridge (2003)
3. Spratling, M.W., Johnson, M.H.: Preintegration lateral inhibition enhances unsupervised

learning. Neural Computation 14, 2157–2179 (2002)
4. Lücke, J., von der Malsburg, C.: Rapid processing and unsupervised learning in a model of

the cortical macrocolumn. Neural Computation 16, 501–533 (2004)
5. Spratling, M.W.: Learning image components for object recognition. Journal of Machine

Learning Research 7, 793–815 (2006)
6. O’Reilly, R.C.: Generalization in interactive networks: The benefits of inhibitory competition

and Hebbian learning. Neural Computation 13, 1199–1241 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Generalized Softmax Networks for Non-linear Component Extraction 667

7. Hochreiter, S., Schmidhuber, J.: Feature extraction through LOCOCODE. Neural Computa-
tion 11, 679–714 (1999)

8. Ueda, N., Nakano, R.: Deterministic annealing EM algorithm. Neural Networks 11(2), 271–
282 (1998)

9. Saund, E.: A multiple cause mixture model for unsupervised learning. Neural Computation 7,
51–71 (1995)

10. Dayan, P., Zemel, R.S.: Competition and multiple cause models. Neural Computation 7,
565–579 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stochastic Weights Reinforcement Learning for

Exploratory Data Analysis

Ying Wu1, Colin Fyfe1, and Pei Ling Lai2

1 Applied Computational Intelligence Research Unit,
The University of Paisley, Scotland
ying.wu,colin.fyfe@paisley.ac.uk

2 Southern Taiwan University of Technology, Tainan, Taiwan
pei ling lai@hotmail.com

Abstract. We review a new form of immediate reward reinforcement
learning in which the individual unit is deterministic but has stochastic
synapses. 4 learning rules have been developed from this perspective and
we investigate the use of these learning rules to perform linear projection
techniques such as principal component analysis, exploratory projection
pursuit and canonical correlation analysis. The method is very general
and simply requires a reward function which is specific to the function
we require the unit to perform. We also discuss how the method can be
used to learn kernel mappings and conclude by illustrating its use on a
topology preserving mapping.

1 Introduction

Reinforcement learning describes a group of techniques for parameter adapta-
tion based on a methodology which envisages an agent making an exploratory
investigation of its environment with a view to identifying the optimal strategy
for actions within the environment where optimal is defined in terms of the re-
ward which an agent can gain from taking actions in the environment. It is often
thought of as lying between the extremes of supervised learning in which the
best action to take is known and the parameters are adjusted to make this more
likely in future and unsupervised learning in which the learning algorithm must
self-organize the parameters in order to perform the specific exploratory data
analysis task at hand.

However there has always been a stream of research which has described
methods of performing supervised learning tasks using reinforcement learning
methods [13] and more recently, [10]. A somewhat less prominent stream has been
using reinforcement learning methods for unsupervised learning tasks [9]. The
REINFORCE method of [13] has recently been used for unsupervised projection
techniques [4], for kernel projection techniques [3] and for topology preserving
mappings [7]. In this paper, we investigate the reinforcement learning method of
[10] for unsupervised projection techniques.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 668–676, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stochastic Weights Reinforcement Learning for Exploratory Data Analysis 669

2 Immediate Reward Reinforcement Learning

[14,13] investigated a particular form of reinforcement learning in which reward
for an action is immediate which is somewhat different from mainstream rein-
forcement learning [12,5]. Williams [13] considered a stochastic learning unit in
which the probability of any specific output was a parameterised function of its
input, x. For the ith unit, this gives

P (yi = ζ|wi,x) = f(wi,x) (1)

where, for example,

f(wi,x) =
1

1 + exp(− ‖ wi − x ‖2)
(2)

Williams [13] considers the learning rule

Δwij = αij(ri,ζ − bij)
∂ ln P (yi = ζ|wi,x)

∂wij
(3)

where αij is the learning rate, ri,ζ is the reward for the unit outputting ζ and bij is
a reinforcement baseline which in the following we will take as the reinforcement
comparison, bij = r = 1

K

∑
ri,ζ where K is the number of times this unit has

output ζ. ([13], Theorem 1) shows that the above learning rule causes weight
changes which maximises the expected reward.

[13] gave the example of a Bernoulli unit in which P (yi = 1) = pi and so
P (yi = 0) = 1 − pi. Therefore

∂ ln P (yi)
∂pi

=
{− 1

1−pi
if yi = 0

1
pi

if yi = 1 =
yi − pi

pi(1 − pi)
(4)

[9] applies the Bernoulli model to (unsupervised) clustering with

pi = 2(1 − f(wi,x)) = 2(1 − 1
1 + exp(− ‖ wi − x ‖2)

) (5)

The environment identifies the pi∗ which is maximum over all output units and
yi∗ is then drawn from this distribution. Rewards are given such that

ri =

⎧
⎨

⎩

1 if i = i∗ and yi = 1
−1 if i = i∗ and yi = 0
0 if i �= i∗

(6)

This is used in the update rule

Δwij = αri(yi − pi)(xj − wij) (7)
= α|yi − pi|(xj − wij) for i = i∗ (8)

which is shown to perform clustering of the data set. Such methods have recently
been used for unsupervised projection techniques [4], for kernel projection tech-
niques [3] and for topology preserving mappings [7].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

670 Y. Wu, C. Fyfe, and P.L. Lai

3 Stochastic Weights

An alternative view of supervised networks with reinforcement learning is given
in [10]: the networks are composed of deterministic nodes but stochastic synapses.
There are two variants of this method: in the first, [10] uses a set of weights, wij ,
each of which is drawn from a Gaussian distribution N(μij , σ

2
ij) with mean μij

and variance, σ2
ij . Then the output of this deterministic neuron is also a Gaussian

random variable with mean μyi =
∑

j μijxj and variance σ2
yi

=
∑

j σ2
ijx

2
j . With

this model, [10] shows that the learning rule

Δμij = ηr
(yi − μyi)xj

σ2
yi

(9)

where η is the learning rate, follows the gradient of r, the reward given to the
neuron. i.e. we are performing gradient ascent on the reward function by changing
the parameters using (9). Often a simplified form is used by incorporating σ2

yi

into the learning rate:
Δμij = ηr(yi − μyi)xj (10)

[10] also investigate an additional term which they say enables the rule to
escape from local optima:

Δμij = η[r(yi − μyi) + λ(1 − r)(−yi − μyi)]xj (11)

[10] denotes (10) and (11) by rules A1 and A2 respectively.
In this first view, the neuron’s output is a function of two independent sets of

variables, the inputs and the weights. In the second view, the input is deemed
to be fixed and only the synapses are thought of as stochastic. Then p(wij) =
Z exp(− (wij−μij)2

2σ2
ij

) which leads to a second set of learning rules:

Δμij = ηr(wij − μij) (12)

which again may include the local optima avoidance term to give

Δμij = η[r(wij − μij) + λ(1 − r)(wij − μij)] (13)

[10] denotes (12) and (13) by rules B1 and B2 respectively. These rules are tested
on a number of standard problems in [10]. In this paper, we use these rules for
exploratory data analysis.

4 Exploratory Data Analysis

The method is quite general: each agent is deemed to be taking actions in the
environment (which consists of the data to be explored) in order to maximise his
reward in this environment. Each agent has a set of parameters which determine
the Gaussian distribution from which the actions will be drawn. We illustrate
the method with Principal Component Analysis (PCA) and then discuss the
reward functions for other linear projections. We then discuss Kernel methods
and illustrate with Kernel Canonical Correlation Analysis. We finally illustrate
a topology preserving mapping.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stochastic Weights Reinforcement Learning for Exploratory Data Analysis 671

4.1 Principal Component Analysis

Principal Component Analysis (PCA) finds the linear filter onto which projec-
tions of a data set have greatest variance. Thus the agent is rewarded in propor-
tion to its variance. Let the agent currently select actions from N(μt, σ

2
t) and

let wt be the action which the agent has selected at time instant t. For centered
data, x ∈ X , we can simply take r = (wT

t x)2 for principal component analysis
or the more complex but equally effective r = 1

1+exp(−γ(wT
t x)2) . In Figure 1, we

illustrate convergence with the first of these on an artificial data set in which
each element of x, xi, i = 1, ..., 5, is drawn from N(0, i2) i.e. the first principal
component filter is (0,0,0,0,1). Note that in (10), y = wT

t x while μyi = μT
t x

0 2000 4000 6000 8000 10000
0.7

0.75

0.8

0.85

0.9

0.95

1

iterations *100

co
si

ne
 o

f a
ng

le
 b

et
w

ee
n

fo
un

d
fil

te
r

an
d

co
rr

ec
t v

al
ue

0 2000 4000 6000 8000 10000
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

iterations *100

co
si

ne
 o

f a
ng

le
 w

ith
 c

or
re

ct
 v

al
ue

0 2000 4000 6000 8000 10000
−1

−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

iterations *100

co
si

ne
 o

f a
ng

le
 w

ith
 c

or
re

ct
 v

al
ue

0 2000 4000 6000 8000 10000

0.4

0.5

0.6

0.7

0.8

0.9

1

Iterations *100

co
si

ne
 o

f a
ng

le
 w

ith
 c

or
re

ct
 v

al
ue

Fig. 1. Convergence with PCA reward function r = (wT
t x)2. Top left: convergence

with rule A1 (10). Top Right:convergence with rule A2 (11). Bottom left: convergence
with rule B1 (12). Bottom Right: convergence with rule B2 (13).

The method clearly finds the first principal component in all cases, however
the A rules seem to be more efficient than the B rules.

However we are often interested in finding more than the first principal com-
ponent of a data set. This may be easily done by this method by incorporating a
Gram-Schmidt orthogonalisation into the reward function rather than the learn-
ing rule. Thus we have

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

672 Y. Wu, C. Fyfe, and P.L. Lai

rk = (wT
k x)2 − γ

k−1∑

j=1

(wT
k μj)2 (14)

where we have used the subscript k to denote the kth filter. Results from a similar
data set as before and using the rule A2 are shown in Table 1. Again we see all
principal components have been found with great accuracy. The reward function
for this table was

rk =
1

1 + exp(−(wT
k x)2 − γ

∑k−1
j=1 ()wT

k μj)2)
(15)

Table 1. Each column corresponds to one of the principal component filters found by
the method. The principal components have been found in order of magnitude of the
variance of their projections.

-0.0152 0.0212 0.0747 0.0502 0.9947
0.0012 -0.0370 -0.0192 0.9952 0.0209
0.0222 0.0393 0.9932 0.0174 -0.0399
-0.0305 0.9974 -0.0341 -0.0073 -0.0397

-0.9992 0.0418 -0.0803 -0.0819 0.0839

Note also that we could have used minimization of the mean squared error as
the basis of our reward function for PCA.

4.2 Other Linear Projections

The method is quite general. We have used the method to perform

– Minor Component Analysis: finding the filter with least variance has been
used in regression and in spectral clustering. The reward function is then
r = exp(−(wT

t x)2). Exemplar convergence for the first minor component is
shown in Figure 2.

– Exploratory Projection Pursuit (EPP): this method searches for the filter
which produces the most “interesting” filter where “interesting” is defined
in terms of the statistics of the data. If we are seeking outliers (which will be
identified by positive kurtosis) we may use r = (wT

t x)4. If we are seeking a
projection which will reveal clusters, this is often shown by negative kurtosis.

– Independent Component Analysis (ICA): this method relies on the fact that
mixtures of signals are more Gaussian than the independent signals and so
again a measure like kurtosis can be used as the reward function.

– Canonical Correlation Analysis (CCA): this method searches for the lin-
ear filter within two data sets simultaneously which maximises the correla-
tions between the respective projections. Thus we may use r = (wT

1 x1 −
μT

1 x1)(wT
2 x2 − μT

2 x2) where we have used the subscripts 1 and 2 to identify

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stochastic Weights Reinforcement Learning for Exploratory Data Analysis 673

the two data streams. Similar to PCA, we can extend the reward function
to ensure that the output variance is 1 and to ensure orthogonality in the
vectors. This leads to reward functions such as

rk =
1

1 + exp(− ‖ w1,kx1 − w2,kx2) ‖2 +γ1(‖ w1,kx1 ‖2 −1) + γ2
∑k−1

j=1 (wk,1wj,1)2)

(16)
where the second term in the denominator is ensuring the variance is 1 while
the last term ensures that the new canonical vectors are orthogonal to the
old. We illustrate this learning rule on an artificial data set similar to that
used in [8]: we create two random Gaussian vectors, one 4 dimensional, the
other 3 dimensional where all samples are drawn iid from N(0,1). We add an
additional sample from N(0,1) to the first elements of each vector to create a
correlation and then normalise so that there are no variance effects. Similarly
we add a second sample from N(0,0.5) to the second element of each data
set so that there is most correlation between the first element of each data
set and the remaining correlation is found in the second elements of the data
sets. Results using (16) are shown in Table 2.

0 2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MCA rule A1, learning rate 0.001

iterations *100

co
si

ne
 o

f a
ng

le
 b

et
w

ee
n

fil
te

r
fo

un
d

an
d

op
tim

al
 fi

lte
r

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

co
si

ne
 o

f a
ng

le
 w

ith
 m

in
or

 p
c

fil
te

r

iterations * 100

0 2000 4000 6000 8000 10000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iterations *100

co
si

ne
 o

f a
ng

le
 w

ith
 m

in
or

 p
c

fil
te

r

0 2000 4000 6000 8000 10000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Fig. 2. Convergence of the minor component algorithm. Top left: convergence with
rule A1. Top Right:convergence with rule A2. Bottom left: convergence with rule B1.
Bottom Right: convergence with rule B2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

674 Y. Wu, C. Fyfe, and P.L. Lai

Table 2. The first two canonical correlation vectors for the artificial data

μ1 μ2

1st CC 0.9979 0.9998
0.0087 0.0142
-0.0592 -0.0136
0.0235

2nd CC -0.0029 -0.0221
0.9989 0.9990
-0.0402 0.0399
0.0109

4.3 Kernel Mappings

Kernel methods are a recent addition to the data analysts tool package. The data is
first mapped to a feature space using some (nonlinear) mapping φ(). In this feature
space a linear operation is performed which because of the nonlinear mapping is
equivalent to some nonlinear operation on the original data. The most interesting
part of kernel methods is that you do not need to ever work with or even know
the mapping φ(); the whole operation can be performed with the scalar product
matrix K = φ(x)T φ(x). Examples include Kernel Principal Component Analysis
(KPCA) [11] and Kernel Canonical Correlation Analysis [8].

All of the above methods can be performed in Kernel spaces and so the mean
vector is of length N as are the samples from this vector. To perform Kernel
Principal Component Analysis (KPCA) a batch algorithm uses r = wT Kw,
where K is the kernel matrix.

To perform Kernel Canonical Correlation Analysis, we have two kernel ma-
trices each of size N × N . If we decide to use an online reward function (taking
each data sample as it comes), we may use r = wT

1 K1(current)T K2(current)w2,
where we have used Ki(current) to denote the column of the appropriate kernel
matrix corresponding to the current sample.

4.4 Topology Preserving Manifolds

Topology preserving maps [6] can also be thought of as clustering techniques but
clustering techniques which attempt to capture some structure in a data set by
creating a visible relationship between nearby clusters. Most research has been
into methods which modify an adaptive clustering rule in a way that preserves
neighbouring relationships. However an alternative [1,2] is to create a latent space
of points t1, ..., tK which a priori have some structure such as lying equidistantly
placed on a line or at the corners of a grid. These are then mapped non-linearly
to the data space; the nonlinearity is essential since the data clusters need not
be constrained to lie on a line. Thus we [1,2] map the latent points through a set
of basis functions, typically squared exponentials centered in latent space, and
then map the output of the basis functions through a set of weights to points,
m1, ...,mK , in data space. Let there be M basis functions, φj(), j = 1, ..., M ,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Stochastic Weights Reinforcement Learning for Exploratory Data Analysis 675

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

Fig. 3. The data are shown by red ’+’s; the latent points’ projections are shown by
black ’*’s

with centres, μj in latent space; therefore, using wj as the weight from the jth

basis function to data space,

mk =
M∑

j=1

wjφj(tk) =
M∑

j=1

wj exp(−β ‖ μj − tk ‖2), ∀k ∈ {1, ..., K} (17)

Since ∂mk

∂wij
= φj(tk), with the Gaussian model A1 above

Δμi∗ = ηr(w − μyi∗)φ(i∗) (18)

where i∗ identifies the agent with closest centre, mi∗ to the current data point,
x. w is a sample from μyi∗ and the reward is r = exp(− ‖ x − w ‖).

We illustrate (Figure 3) a one dimensional latent space mapped to a two
dimensional data set, x = (x1,x2), in which x1 evenly divides the interval
[−π/2, π/2] and x2 = x1 + 1.25 sin(x1) + μ where μ is noise from a uniform
distribtion in [0,0.5]; we see that the one dimensional nature of the manifold
has been identified and the latent points’ projections into data space have main-
tained their ordering. This simulation used rule A2 and we can see one of the
effects of the local minimum avoidance term which is a drawing in of the map
to the centre of the data. However there are local optima with these maps (the
Kohonen SOM often exhibits twists across the data) and so in practice it is
bestto use this term but with a decay of the λ parameter during the course of
the simulation till rule A1 is reached.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

676 Y. Wu, C. Fyfe, and P.L. Lai

5 Conclusion

We have extended our previous work on using immediate reward reinforcement
learning for exploratory data analysis with a new set of learning rules which
have been shown to optimise a reward function. The new rules are based on a
view of the reinforcement learning unit as a deterministic unit but with stochas-
tic parameters. We have illustrated our new set of rules performing principal
component analysis, minor component analysis, exploratory projection pursuit,
canonical correlation analysis, independent component analysis and kernel ver-
sions of these linear exploratory data methods. We have further illustrated how
to create a topology-preserving mapping with these methods.

It is an open question as to whether these new rules perform better or worse
than the existing immediate reward reinforcement learning rules (or indeed stan-
dard temporal difference methods). This will be the subject of future investiga-
tions. However the long term promise is of a set of automata which investigate
a data set using trial and error reinforcement methods just as a human analyst
would when presented with a new data set. The integration of these methods into
a single reinforcement learning system is also a topic we are currently studying.

References

1. Bishop, C.M., Svensen, M., Williams, C.K.I.: Gtm: The generative topographic
mapping. Neural Computation (1997)

2. Fyfe, C.: Two topographic maps for data visualization. Data Mining and Knowl-
edge Discovery (2007) ISSN 1384-5810

3. Fyfe, C., Lai, P.L.: Immediate reward reinforcement learning for projective kernel
methods. In: ESANN2007. 14th European Symposium on Artificial Neural Net-
works (2007)

4. Fyfe, C., Lai, P.L.: Reinforcement learning reward functions for unsupervised learn-
ing. In: ISNN 2007. 4th International Symposium on Neural Networks (2007)

5. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement learning: A survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

6. Kohonen, T.: Self-Organising Maps. Springer, Heidelberg (1995)
7. Lai, P.L., Fyfe, C.: Reinforcement learning for topographic mappings. In: 20th

International Joint Conference on Artificial Neural Networks (2007)
8. Lai, P.L., Fyfe, C.: Kernel and nonlinear canonical correlation analysis. Interna-

tional Journal of Neural Systems 10(5), 365–377 (2001)
9. Likas, A.: A reinforcement learning approach to on-line clustering. Neural Compu-

tation (2000)
10. Ma, X., Likharev, K.K.: Global reinforcement learning in neural networks with

stochastic synapses. IEEE Transactions on Neural Networks 18(2), 573–577 (2007)
11. Scholkopf, B., Smola, A., Muller, K.-R.: Nonlinear component analysis as a kernel

eigenvalue problem. Neural Computation 10, 1299–1319 (1998)
12. Sutton, R.S., Barto, A.G.: Reinforcement Learning: an Introduction. MIT Press,

Cambridge (1998)
13. Williams, R.: Simple statistical gradient-following algorithms for connectionist re-

inforcement learning. Machine Learning 8, 229–256 (1992)
14. Williams, R.J., Pong, J.: Function optimization using connectionist reinforcement

learning networks. Connection Science 3, 241–268 (1991)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Post Nonlinear Independent Subspace Analysis

Zoltán Szabó, Barnabás Póczos, Gábor Szirtes, and András Lőrincz

Department of Information Systems, Eötvös Loránd University,
Pázmány P. sétány 1/C, Budapest H-1117, Hungary

{szzoli,pbarn}@cs.elte.hu,szirtes@inf.elte.hu,andras.lorincz@elte.hu

Abstract. In this paper a generalization of Post Nonlinear Indepen-
dent Component Analysis (PNL-ICA) to Post Nonlinear Independent
Subspace Analysis (PNL-ISA) is presented. In this framework sources to
be identified can be multidimensional as well. For this generalization we
prove a separability theorem: the ambiguities of this problem are essen-
tially the same as for the linear Independent Subspace Analysis (ISA).
By applying this result we derive an algorithm using the mirror structure
of the mixing system. Numerical simulations are presented to illustrate
the efficiency of the algorithm.

1 Introduction

Independent Component Analysis (ICA) has become one of the most popular re-
search line in signal processing. It aims to solve the following (so called ‘cocktail
party’) problem: let us assume there are D 1-dimensional, independent hidden
sources and we can only observe their linear mixture through D microphones.
The goal is to recover the original sources from the mixed signals. In spite of
its simplicity this model has been successfully applied to, for example, feature
extraction problems, denoising or biomedical signal processing. For a recent re-
view on ICA see e.g. [1,2]. The strong assumption on the linearity can be relaxed
by assuming component-wise distortion resulting in a post nonlinear extension
(PNL-ICA) of the ICA [3]. This direction has recently gained much attention,
for a review see [4]. Another generalization of the original ICA problem is called
Multidimensional Independent Component Analysis (MICA) [5], or Independent
Subspace Analysis (ISA) (in this paper we use the latter abbreviation). In the
ISA framework the assumption on independence is relaxed in the sense that it
only requires that groups of the sources be independent so the hidden compo-
nents can now be multidimensional. Several methods have already been proposed
to solve this problem [5,6,7,8,9,10,11,12,13,14,15,16], and it has also been used
in EEG analysis [6].

In this paper we show that both generalizations can be treated at the same
time (Post Nonlinear Independent Subspace Analysis, PNL-ISA). PNL-ISA prob-
lem arises, for example, if the world is observed through a layer of artificial neural
networks: neurons mix and sum input signals and then pass the sums through
non-linearities.

We prove that multidimensional sources can still be recovered even if the
observations are component-wise nonlinear distortions of the linear mixtures. To

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 677–686, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

678 Z. Szabó et al.

do so, first we introduce the PNL-ISA problem in Section 2. The ambiguities of
the problem are analyzed in Section 3, where a theorem about the separability
of the components is proven. Applying this theorem we propose an efficient
algorithm in Section 4 that solves the PNL-ISA task. In Section 5 the efficiency
of the algorithm is illustrated on several problems. Our results are recapped in
Section 6.

2 The PNL-ISA Model

Let us define the PNL-ISA task. Let us assume the observations are post non-
linear mixtures of multidimensional independent sources:

x(t) = f [As(t)], (1)

where s(t) is the concatenation of the components sm(t) ∈ R
d that is s(t) =

[s1(t); . . . ; sM (t)] ∈ R
D, (D = dM). (For simplicity let the dimension of each

component be the same d.) Our assumptions are the following:

1. Source s is d-independent, that is I(s1, . . . , sM) = 0, where I denotes the
mutual information, and s(t) is i.i.d in t.

2. matrix A ∈ Gl(D) (that is it is of size D × D and it is invertible) and it
is ‘mixing’. By ‘mixing’ we mean the following: decomposing matrix A into
blocks of size d × d (A = [Aij]i,j=1,...,M ,Aij ∈ R

d×d), then for any index
i ∈ {1, . . . , M} there exist a pair of indices j �= k ∈ {1, . . . , M} for which
matrices Aij and Aik are invertible.

3. function f : R
D → R

D is a component-wise transformation that is f(z) =
[f1(z1); . . . ; fD(zD)] and f is invertible.

The PNL-ISA problem is to estimate the hidden source components sm knowing
only the observations x(t) (t = 1, . . . , T). For d = 1 we get back the PNL-ICA
problem, while for choosing f as identity the ISA problem is recovered.

3 Ambiguities of PNL-ISA

To solve the PNL-ISA problem it is important to see to what extent we can
expect to regain the true sources. The ambiguities of the ICA, PNL-ICA and
the ISA problems are well known: in ICA, hidden sources can be recovered up to
a scalar multiplier and permutation [17]. In addition to these ambiguities there is
an additive scalar term in the PNL-ICA problem [18], while in the ISA problem
the sm components can be recovered up to the permutation ambiguity between
the components and invertible transformations within each subspace [19].

Because of the PNL assumption the hidden sources can be estimated using
the mirror structure of the mixing system, that is ŝ = Wg(x) (W ∈ Gl(D),
g : R

D → R
D, where g is a component-wise transformation). It has to be shown,

however, that the d-independence of the resulting ŝ unequivocally means that
the true s has been found. The following separability theorem shows that indeed

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Post Nonlinear Independent Subspace Analysis 679

this is the case. This statement can be considered as an extension of the results
in [20] for the case d ≥ 1. The proof of the theorem will be based on Lemmas 3.4
and 3.5 of [21]. Due to the limited space these lemmas will only be cited. Let
C2(V, R) and Cω(V, R) denote the V (open) ⊆ R

n → R 2-times continuously
differentiable and analytic functions, respectively.

Theorem 1 (PNL-ISA Ambiguities with Locally-Constant Nonzero C2

Densities). Let (i) A,W ∈ Gl(D), be mixing matrices; (ii) let s be as above,
with at most one sm gaussian component, with existing covariance matrix, with
somewhere locally constant density function pS ∈ C2(RD, R), (iii) h : R

D → R
D

is a component-wise bijection with coordinate functions in Cω(R, R). In this case,
if e := [e1; . . . ; eM] = Wh(As) is d-independent (em ∈ R

d) with somewhere
locally constant density function, then (i) h(x) = Lx +p, where L ∈ Gl(D) is a
diagonal matrix and p ∈ R

D, and (ii) components em (m = 1, . . . , M) recover
the hidden sources up to permutation and invertible transformations within each
subspace (and maybe up to a constant translation).

Proof. To prove the first statement it suffices to show that if e := Wh(As)
is d-independent then derivatives h′

mi are constant for ∀(i, m) ∈ {1, . . . , d} ×
{1, . . . , M} where hm is part of h that belongs to subspace m and hmi is the
ith coordinate function of hm : R

d → R
d. It directly implies the second part

of the statement as if Bs + Wp (where B denotes the matrix product WLA)
is d-independent then Bs is also d-independent. In turn, because of the sepa-
rability properties of the linear ISA, B can recover the hidden components up
to permutation and invertible transformations within the subspaces (and maybe
up to a constant translation within the subspaces).

To prove the first part, let pE and pS denote the density functions of e and s,
respectively. Based on the transformation rule of the density functions, pE can
be given as

pE [Wh(As)] = | det(W)|−1

(
M∏

m=1

| det(h′
m[(As)m])|−1

)

| det(A)|−1pS(s), (2)

where (As)m ∈ R
d is part of As belonging to subspace m. In addition, e is

d-independent implying that pE(·) is d-separated, that is it can be rewritten as

pE = ⊗M
m=1pm, (3)

where functions pm are of R
d → R. Let us choose point s0, for which pS(s0) > 0.

Then, there exists an open neighborhood U ⊆ R
D of this point, where pS |U > 0,

and pS |U ∈ C2(U, R). Let us define r(s) := ln
[
| det(W)|−1| det(A)|−1pS(s)

]
on

set U . It can be shown using Eqs. (2)-(3) that the following relation holds

r(s) = ln

[(
M∏

m=1

| det(h′
m[(As)m])|

) (
M∏

m=1

pm([Wh(As)]m)

)]

(4)

=
M∑

m=1

ln[| det(h′
m[(As)m])|] + ξm([Wh(As)]m), (s ∈ U) (5)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

680 Z. Szabó et al.

where ξm := ln(pm), locally at s0
m. pS is d-separated, thus function r ∈ C2(U, R)

is linearly d-separated. In other words, it can be written as a direct sum, so
∂i∂jr ≡ 0, where

⌊
i
d

⌋
�=

⌊
j
d

⌋
(i,j correspond to indices in different subspaces).

However, since pm and therefore ξm = ln(pm) is locally constant, this rela-
tion holds (without loss of generality on set U) when ignoring terms ξm, since
their derivatives are 0. Now, following the reasoning of Lemma 3.5 [21] for the
d-separated function

[
⊗M

m=1 det(h′
m)

]
(As), where A is mixing (|·|s were dropped

since functions hm were assumed to be invertible), we can see that each function
gm(v) = det[h′

m(v)](�≡ 0) satisfies a differential equation

gmHgm − ∇gm(∇gm)∗ ≡ Cmg2
m (6)

on set Um := Am(U), where Am := [Am1, . . . ,AmM], Cm ∈ R
d×d, ∇ stands

for the gradient, H is the Hessian and * denotes transposition. For this reason
- similarly to Lemma 3.4 [21] – functions gm can be given in the form gm(v) =
ev∗Dmv+b∗

mv+cm (v ∈ Um) with suitable Dm ∈ R
d×d,bm ∈ R

d, cm ∈ R. Fur-
thermore, as functions hm are assumed to act on each coordinate separately as
hmi, gm can be written as gm = ⊗d

i=1h
′
mi, we arrive at

h′
mi(t) = ±edmit

2+bmit+cmi (dmi, bmi, cmi ∈ R) (7)

locally, exploiting that h′
mi ≡ 0 is not allowed. Based on our assumption on hmi

it holds on all R(� t).
Let us introduce the following notation: y = [y1; . . . ;yM] = As, where y ∈

A(U). Following the above reasoning for the inverse system s = A−1h−1(W−1y),
h−1

mi can be given similar to (7), with other constants. However, if both hmi
′ and

(h−1
mi)

′ are of exponential type then it follows that dmi = 0 and bmi = 0 [∀(m, i) ∈
{1, . . . , M}×{1, . . . , d}]. Therefore, hmis are affine, that is hmi(z) = lmi(z)+pmi

(lmi, pmi ∈ R), what we wanted to demonstrate. �

4 Algorithm (Sketch)

The theorem proven above implies that by using an appropriate transformation
g acting on each coordinate separately, the d-independence of the estimation
ŝ = Wg(x) solves the PNL-ISA task. The estimation can be done in two steps:

1. Estimate g: according to the d-dependent central limit theorem [22], term
As can be considered as an approximately gaussian variable, so g can be
approximated as a ‘gaussianization’ transformation (see [23,24] for d = 1).

2. Estimate W: apply a linear ISA method on the result of the ‘gaussianization’
transformation.

5 Illustrations

Now we illustrate the efficiency of the algorithm presented in Section 4. Test
databases are described in Section 5.1. To evaluate the solutions we use a per-
formance measure given in Section 5.2. The numerical results are summarized
in Section 5.3.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Post Nonlinear Independent Subspace Analysis 681

5.1 Databases

To test our PNL-ISA method, we have created 4 datasets (s) shown in Fig. 1.
In dataset 3D-geom (see Fig. 1(a)) the components sm were random variables

uniformly distributed over 3-dimensional geometrical shapes (d = 3). There were
6 hidden components (M = 6), so the total dimension of the hidden source s
was D = 18. In dataset celebrities the components sm were generated using
cartoons of celebrities.1 The cartoons were interpreted as density functions and
the 2-dimensional coordinate pairs (d = 2) were sampled with frequency propor-
tional to the pixel intensity at the given coordinates. We used 10 hidden sources
(M = 10), resulting in D = 20 (see Fig. 1(c)). The dataset Aω is scalable, the
number of components (M) can be set within a quite broad interval. Here, com-
ponents sm are random variables of uniform distribution over the letters of the
English and the Greek alphabets (M ≤ 26+24 = 50, d = 2), see Fig. 1(b). While
in the datasets defined so far variable s was i.i.d in accord with the PNL-ISA
model, in the dataset IFS this constraint has been relaxed.2 Here, components
sm are realizations of IFS based 2-dimensional (d = 2) self-similar structures. For
all m we have chosen the following triple: ({hk}k=1,...,K ,p = (p1, . . . , pK),v1},
where (i) hk : R

2 → R
2 are affine transformations in the form hk(z) = Ckz+dk

(Ck ∈ R
2×2,dk ∈ R

2), (ii) p is a distribution over the indices {1, . . . , K}
(
∑K

k=1 pk = 1, pk ≥ 0), and (iii) for the initial value we chose v1 := (1
2 , 1

2).
We generated T samples in the following way: (i) v1 is given (t = 1), (ii) an
index k(t) ∈ {1, . . . , K} was drawn according to the distribution p and the next
sample is generated as vt+1 := hk(t)(vt). The resulting series {v1, . . . ,vT } was
taken as a hidden source component sm and this way we generated 9 components
(M = 9, D = 18) to make the IFS dataset (see Fig. 1(d)).

5.2 Performance Measure

Let E[·] denote the expectation. In the sense of Theorem 1, in ideal case s ∈
R

D �→ ŝ = Wg[f(As)] ∈ R
D is an affine transformation residing within the sub-

spaces. For this reason, the linear transformation G that optimally approximates
the relation s − E[s] �→ ŝ − E[ŝ], resides also within the subspaces and so it is a
block-permutation matrix. This block-permutation structure can be measured by
the normalized version of the Amari-error [25] adapted to the ISA task [21]. Let
us decompose matrix G ∈ R

D×D into blocks of size d × d: G = [Gij]i,j=1,...,M .
Let gij denote the sum of the absolute values of matrix Gij ∈ R

d×d. Now, the
following term

r(G) :=
1

2M(M − 1)

⎡

⎣
M∑

i=1

(∑M
j=1 gij

maxj gij
− 1

)

+
M∑

j=1

(∑M
i=1 gij

maxi gij
− 1

)⎤

⎦ (8)

denotes the Amari-index that takes values in [0,1]: for an ideal block-permutation
matrix G it takes 0; for the worst case it takes 1.
1 http://www.smileyworld.com
2 IFS stands for Iterated Function System.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

682 Z. Szabó et al.

(a) (b)

(c)

(d)

Fig. 1. Illustration of the test datasets. (a): 3D-geom set. The hidden components
sm are random variables of uniform distribution over 3-dimensional geometric shapes:
d = 3, M = 6, D = 18. (b): Aω set. Here, components sm are 2-dimensional variables of
uniform distribution over the shape of the letters of the English and Greek alphabets:
d = 2, M ≤ 50. (c): celebrities dataset. The components are 2-dimensional variables
with sampling frequency proportional to the pixel intensity of the corresponding co-
ordinates of ‘celebrities’ cartoons: d = 2, M = 10, D = 20. (d): IFS dataset. Here
components sm are not i.i.d. variables anymore, instead they are self-similar structures
generated from iterated function systems: d = 2, M = 9, D = 18.

5.3 Simulations

In this section the results of our numerical simulations on the above defined
datasets are presented. We focused on the following questions:

1. The error of the source estimation as a function of (i) the sample size, (ii)
the dimension (D) of the task.

2. Estimation of D when it is not known beforehand.

The gaussianization (see Section 4) was based on the ranks of samples [23],
in the solution of the ISA task we followed the method described in [14]. The
goodness of the estimation was measured by the Amari-index introduced in
Section 5.2. For a given sample size T the goodness of 50 random runs (A, s, f)
were averaged. A was a random orthogonal matrix. The nonlinear functions fi

have been generated as

fi(z) = ci[aiz + tanh(biz)] + di, (9)

that is they are mixtures of random, scaled and translated id and tanh func-
tions. Here ai ∈ [0, 0.5], bi ∈ [0, 5], di ∈ [0, 2] are random variables of uniform
distribution, ci take ±1 values with probability 1

2 , 1
2 .

First we studied the Amari-index as a function of the sample size. For 3D-geom ,
celebrities and IFS the dimension and the number of the components d, M and the
dimension of the task D were fixed while for Aω M has been chosen as 2, 3, 4, 10,
20, 50. As for small M the gaussian assumption on As is less likely, we expect

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Post Nonlinear Independent Subspace Analysis 683

1 2 5 10 20 50 100
10

−3

10
−2

10
−1

10
0

Number of samples (T)

A
m

ar
i−

in
de

x
(r

)
3D−geom, celebrities, IFS

3D−geom
celebrities
IFS

x103

(a)

1 2 5 10 20 50 100
10

−3

10
−2

10
−1

10
0

Number of samples (T)

A
m

ar
i−

in
de

x
(r

)

Aω

M=2
M=3
M=4
M=10
M=20
M=50

x103

(b)

Fig. 2. Average Amari-index as a function of the sample size, on loglog scale. (a):
datasets 3D-geom, celebrities and IFS. (b): Aω with different number of components
(M). For T = 100, 000, the exact errors are shown in Table 1 and Table 2.

to see deterioration of the goodness of the estimation in this range. In all cases
the sample size T was chosen between 1, 000 and 100, 000. The Amari-index as a
function of the sample size is shown in Fig. 2. For T = 100, 000, the exact errors
are shown in Table 1 and Table 2. As an example, the estimation results for IFS
and 3D-geom datasets are illustrated in Fig. 3.

Table 1. Amari-index for 3D-geom, celebrities and IFS datasets: average ± std. Sample
size: T = 100, 000. The error as a function of sample size T is plotted in Fig. 2(a).

3D-geom celebrities IFS

0.29%(±0.05) 0.40%(±0.03) 0.46%(±0.06)

Table 2. Amari-index for dataset Aω, as a function of the number of components M :
values shown are average ± std. Sample size: T = 100, 000. The error as a function of
sample size T is plotted in Fig. 2(b).

M = 2 M = 3 M = 4 M = 10 M = 20 M = 50

33.20%(±39.42) 5.37%(±8.82)1.71%(±0.52) 0.56%(±0.50) 0.30%(±0.03) 0.30%(±0.01)

As Fig. 2(a) shows, the dependency of the Amari-index on the sample size
T follows a power-law for datasets 3D-geom, celebrities and IFS, r(T) ∝ T−c

(c > 0). This can be seen as a linear decrease on the loglog scale. The slope of
the lines are about the same for the different datasets. Table 1 summarizes the
average estimation errors for sample size 100, 000.

In Fig. 2(b) similar power law relation can be found for dataset Aω as well,
with increasing D. For M ≥ 3, (that is when D ≥ 6) the PNL-ISA solution
is already efficient. It can also be seen that for the case of M = 50 number of
components (that is the dimension of the task is D = 100) we need at least 10,000

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

684 Z. Szabó et al.

(a)

−8 −6 −4 −2 0 2 4 6 8
−6

−4

−2

0

2

4

6

8

Functions f
i

(b) (c) (d)

(e)

Fig. 3. Illustration of the PNL-ISA estimation on the dataset IFS and 3D-geom, in (a)-
(d) and (e), respectively. Sample size: T = 100, 000. (a): the observed mixed x signal.
(b): the nonlinear fi functions. (c) the Hinton-diagram of G, ideally it is a block-
permutation matrix with blocks of size 2 × 2. (d): the estimated hidden components
(ŝm). (e): the same as (d), but for the 3D-geom dataset.

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3
Distribution of Eigenvalues: celebrities (3D−geom, IFS)

E
ig

en
va

lu
es

: M
ea

n
±

D
ev

ia
tio

n

Number of Eigenvalue

(a)

2 3 4
0

0.5

1

1.5

2

2.5

3

Number of Components (M)

E
ig

en
va

lu
es

: M
ea

n
±

D
ev

ia
tio

n

Distribution of Eigenvalues: Aω

(b)

Fig. 4. Estimation of the dimension of the hidden source s. The ordered eigenvalues of
the covariance matrix of the transformed signal g(x) are plotted. Results are averaged
over 50 runs. (a): dataset celebrities; results for 3D-geom and IFS are similar. (b):
eigenvalues for the dataset Aω, at different number of components M .

samples to get a more reliable estimation, while for 3 ≤ M < 50 2, 000 − 5, 000
samples are sufficient.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Post Nonlinear Independent Subspace Analysis 685

Next we studied to what extent we can guess the overall dimension D of
the hidden source s when it is not given beforehand. The dimension of the
observation x was set to Dx = 2D (D of course is not available for the al-
gorithm). The mixing matrix A ∈ R

Dx×D was generated by first creating a
random orthogonal matrix of size Dx × Dx then choosing its first D columns.
Gaussianization has been done on the observations and then we studied the
eigenvalues of the covariance matrix of the resulting transformed signal g(x):
ideally there are D positive and Dx − D (almost) 0 values. We show the or-
dered eigenvalues on dataset celebrities averaged over 50 runs in Fig. 4. It can
be seen that exactly half of the eigenvalues are near 0, then there is a big leap.
(For datasets 3D-geom IFS we have got similar results, data is not shown.) Fig-
ure 4(b) shows the results corresponding to dataset Aω for different number of
components M : only the M ≤ 4 cases are illustrated, but in the whole range
of 2 ≤ M ≤ 50 there is a sharp transition similar to the results gained for the
other 3 datasets.

6 Conclusions

In this paper we introduced the PNL-ISA problem as a common extension of the
Post Nonlinear Independent Component Analysis (PNL-ICA) and the Indepen-
dent Subspace Analysis (ISA). We have shown the ambiguities of the PNL-ISA
task are essentially the same as in the linear ISA task (up to a constant transla-
tion in each subspace). We derived an algorithm based on our separability results.
We also demonstrated the efficiency of the algorithm on different datasets. Our
simulations revealed that the error of the estimation of the hidden sources de-
creases in a power law fashion as the sample size increases. This tendency is
even more characteristic when the overall dimension of the task (D) increases.
Interestingly, our algorithm can recover the sources in cases when the assump-
tions of the PNL-ISA problem are violated: even non i.i.d self-similar hidden
components can be recovered. In addition, we demonstrated that the dimension
of the hidden source can also be estimated.

References

1. Cichocki, A., Amari, S.: Adaptive blind signal and image processing. John Wiley
& Sons, West Sussex, England (2002)

2. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John
Wiley & Sons, West Sussex, England (2001)

3. Taleb, A., Jutten, C.: Source separation in post-nonlinear mixtures. IEEE Trans-
actions on Signal Processing 10(47), 2807–2820 (1999)

4. Jutten, C., Karhunen, J.: Advances in blind source separation (BSS) and inde-
pendent component analysis (ICA) for nonlinear systems. International Journal of
Neural Systems 14(5), 267–292 (2004)

5. Cardoso, J.: Multidimensional independent component analysis. In: Proc. of
ICASSP 1998, vol. 4, pp. 1941–1944 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

686 Z. Szabó et al.

6. Akaho, S., Kiuchi, Y., Umeyama, S.: MICA: Multimodal independent component
analysis. In: Proc. of IJCNN 1999, vol. 2, pp. 927–932 (1999)

7. Hyvärinen, A., Hoyer, P.O.: Emergence of phase and shift invariant features by
decomposition of natural images into independent feature subspaces. Neural Com-
putation 12, 1705–1720 (2000)

8. Hyvärinen, A., Köster, U.: FastISA: A fast fixed-point algorithm for independent
subspace analysis. In: Proc. of ESANN, pp. 371–376 (2006)

9. Vollgraf, R., Obermayer, K.: Multi-dimensional ICA to separate correlated sources.
In: Proc. of NIPS 2001, vol. 14, pp. 993–1000 (2001)

10. Bach, F.R., Jordan, M.I.: Beyond independent components: Trees and clusters.
Journal of Machine Learning Research 4, 1205–1233 (2003)

11. Póczos, B., Lőrincz, A.: Independent subspace analysis using k-nearest neighbor-
hood distances. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN
2005. LNCS, vol. 3697, pp. 163–168. Springer, Heidelberg (2005)

12. Póczos, B., Lőrincz, A.: Independent subspace analysis using geodesic spanning
trees. In: Proc. of ICML 2005, vol. 119, pp. 673–680 (2005)

13. Theis, F.J.: Blind signal separation into groups of dependent signals using joint
block diagonalization. In: Proc. of ISCAS 2005, vol. 6, pp. 5878–5881 (2005)

14. Szabó, Z., Lőrincz, A.: Real and complex independent subspace analysis by gener-
alized variance. In: Proc. of ICARN, pp. 85–88 (2006)

15. Nolte, G., Meinecke, F.C., Ziehe, A., Müller, K.-R.: Identifying interactions in
mixed and noisy complex systems. Physical Review E 73(051913) (2006)

16. Theis, F.J.: Towards a general independent subspace analysis. In: Proc. of NIPS,
vol. 19 (2006)

17. Comon, P.: Independent component analysis, a new concept? Signal Processing 36,
287–314 (1994)

18. Achard, S., Jutten, C.: Identifiability of post nonlinear mixtures. IEEE Signal Pro-
cessing Letters 12(5), 423–426 (2005)

19. Theis, F.J.: Uniqueness of complex and multidimensional independent component
analysis. Signal Processing 84(5), 951–956 (2004)

20. Theis, F.J.: A new concept for separability problems in source separation. Neural
Computation 16, 1827–1850 (2004)

21. Theis, F.J.: Multidimensional independent component analysis using characteristic
functions. In: Proc. of EUSIPCO (2005)

22. Petrov, V.: Central limit theorem for m-dependent variables. In: Proc. of the All-
Union Conf. on Probability Theory and Mathematical Statistics, pp. 38–44 (1958)

23. Ziehe, A., Kawanabe, M., Harmeling, S., Müller, K.-R.: Blind separation of post-
nonlinear mixtures using linearizing transformations and temporal decorrelation.
Journal of Machine Learning Research 4(7-8), 1319–1338 (2004)

24. Solé-Casals, J., Jutten, C., Pham, D.: Fast approximation of nonlinearities for
improving inversion algorithms of PNL mixtures and wiener systems. Signal Pro-
cessing 85, 1780–1786 (2005)

25. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal
separation. Advances in Neural Information Processing Systems 8, 757–763 (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Algebraic Geometric Study of Exchange Monte

Carlo Method

Kenji Nagata1 and Sumio Watanabe2

1 Department of Computational Intelligence and Systems Science, Tokyo Institute of
Technology, MailBox R2-5,4259, Nagatsuta, Midori-ku, Yokohama, 226-8503 Japan

kenji.nagata@cs.pi.titech.ac.jp
2 P&I Lab.,Tokyo Institute of Technology

swatanab@pi.titech.ac.jp

Abstract. In hierarchical learning machines such as neural networks,
Bayesian learning provides better generalization performance than max-
imum likelihood estimation. However, its accurate approximation using
Markov chain Monte Carlo (MCMC) method requires huge computa-
tional cost. The exchange Monte Carlo (EMC) method was proposed as
an improved algorithm of MCMC method. Although its effectiveness has
been shown not only in Bayesian learning but also in many fields, the
mathematical foundation of EMC method has not yet been established.
In this paper, we clarify the asymptotic behavior of symmetrized Kull-
back divergence and average exchange ratio, which are used as criteria
for designing the EMC method.

1 Introduction

A lot of learning machines with hierarchical structures such as neural networks,
hidden Markov models are widely used for pattern recognition, gene analysis
and many other applications. For these hierarchical learning machines, Bayesian
learning is proven to provide better generalization performance than maximum
likelihood estimation [12][13].

In Bayesian learning, we need to compute the expectation over the Bayesian
posterior distribution, which cannot be performed exactly. Therefore, Bayesian
learning requires some approximation methods. One of the well-known approx-
imation methods is Markov chain Monte Carlo (MCMC) method. The MCMC
method is well-known algorithm to generate a sample sequence which converges
to a target distribution. However, it requires huge computational cost to gener-
ate the sample sequence, in particular, in the Bayesian posterior distribution for
a hierarchical learning machine.

Recently, various improvements of MCMC methods have been developed
based on the idea of extended ensemble, which are surveyed in [6]. Multicanon-
ical method [2] and simulated tempering [8] belong to this category called the
extended ensemble method. This idea gives us a general strategy to overcome the
problem of huge computational cost. The exchange Monte Carlo (EMC) method
is well known as one of the extended ensemble methods [4]. This method is to

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 687–696, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

688 K. Nagata and S. Watanabe

generate a sample sequence from the joint distribution, which consists of many
distributions with different temperatures. Its algorithm is based on two steps of
MCMC simulations. One is the conventional update of MCMC simulation for
each distribution. The other is the exchange process between two neighboring
sequences with a certain probability. The EMC method has been successfully
applied to not only Bayesian neural network learning in the literature [7] but
also an optimization problem [5][10] and a protein-folding problem [11].

When we design the EMC method, the setting of temperature is very impor-
tant to make this algorithm efficient [3]. The values of temperatures have close
relation to the exchange ratio and its average, which is the acceptance ratio
of exchange process. The symmetrized Kullback divergence between two neigh-
boring distributions is used as a criterion for setting temperatures because this
Kullback divergence has relation to the average exchange ratio [6]. However, the
mathematical relation between the symmetrized Kullback divergence and the
average exchange ratio has not been clarified. Moreover, there are two types of
exchange ratio, Metropolis type and heat bath type. It often becomes a problem
which type should be used.

In this paper, we mathematically clarify the symmetrized Kullback divergence
and the average exchange ratio for Metropolis type and for heat bath type. This
analytic result gives us the mathematical relation between the symmetrized Kull-
back divergence and the average exchange ratio, the optimal setting of temper-
atures, and the properties of the average exchange ratio for Metropolis type and
for heat bath type.

This paper consists of five chapters. In Chapter 2, we explain the framework
of EMC method and the design of EMC method. In Chapter 3, the main result
of analysis for the EMC method is described. Discussion and Conclusion are
followed in Chapter 4 and 5.

2 Background

2.1 Exchange Monte Carlo Method

In this section, we introduce the well-known EMC method.
Suppose that w ∈ Rd and our aim is to generate a sample sequence from

the following target probability distribution with a energy function H(w) and a
probability distribution ϕ(w),

p(w) =
1

Z(n)
exp(−nH(w))ϕ(w),

where Z(n) is the normalization constant. In Bayesian learning, in order to calcu-
late the expectation over the Bayesian posterior distribution, a sample sequence
from the posterior distribution is needed. Then, the number n, the function
H(w) and the probability distribution ϕ(w) respectively correspond to the num-
ber of training data, the log likelihood and the prior distribution. The EMC
method treats a compound system which consists of K non-interacting sample

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Algebraic Geometric Study of Exchange Monte Carlo Method 689

sequences from the system concerned. The k-th sample sequence {wk} converges
to the following probability distribution

p(w|tk) =
1

Z(ntk)
exp(−ntkH(w))ϕ(w) (1 ≤ k ≤ K),

where t1 < t2 < · · · < tK . Given a set of the temperatures {t} = {t1, · · · , tK}, the
joint distribution of {w} = {w1, w2, · · · , wK} is expressed by a simple product
formula,

p({w}) =
K∏

k=1

p(wk|tk). (1)

The EMC method is based on two types of updating in constructing a Markov
chain. One is the conventional updates based on the Metropolis algorithm for
each target distribution p(wk|tk). The other is the position exchange between
two sequences, that is, {wk, wk+1} → {wk+1, wk}. The transition probability u
is determined by the detailed balance condition for the joint distribution (1). We
have two types of position exchange. One is the Metropolis type as follows,

u1 = min(1, r)

r =
p(wk+1|tk)p(wk|tk+1)
p(wk|tk)p(wk+1|tk+1)

= exp(n(tk+1 − tk)(H(wk+1) − H(wk))). (2)

The other is the heat bath type,

u2 =
p(wk+1|tk)p(wk|tk+1)

p(wk|tk)p(wk+1|tk+1) + p(wk+1|tk)p(wk|tk+1)

=
1
2

{

1 + tanh
(

1
2
n (tk+1 − tk) (H(wk+1) − H(wk))

)}

. (3)

Hereafter, we call u1 and u2 exchange ratios. Under these updates, the joint
distribution of Eq.(1) is invariant because these updates satisfy the detailed
balance condition for the distribution of Eq.(1) [4].

Consequently, the following two steps are carried out alternately:

1. Each sequence is generated simultaneously and independently for a few it-
eration by a conventional MCMC method.

2. Two positions are exchanged with the exchange ratio u1 or u2.

The advantage of EMC method is to accelerate the convergence of sample se-
quence comparing the conventional MCMC method. The conventional MCMC
method requires huge computational cost to generate a sample sequence from
the target distribution because this algorithm is based on local updating. The
EMC method can realize the efficient sampling by preparing a simple distribu-
tion such as a normal distribution, which is easy for sample sequence to converge.
In practical, we set the temperature of target distribution as tK = 1, and ϕ(w)
is sought to be a simple distribution that is easy to sample from and t1 = 0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

690 K. Nagata and S. Watanabe

2.2 Exchange Ratios for EMC Method

When we design the EMC method, the setting of temperatures is very impor-
tant to make the EMC method efficient. As we can see in Eq.(2) and Eq.(3),
temperature has close relation to the exchange ratio. Therefore, temperatures
are very important parameters in adjusting the exchange ratio and its average.

For the efficient EMC method, each sample needs to wander over the whole
temperature region. Moreover, the time for a sample to move from end to end
(from t1 to tK) is good to be short. Therefore, it is not efficient for the interval of
neighboring temperatures to be large, which leads to the low average exchange
ratio. On the contrary, in order to make the average exchange ratio high, the
interval of neighboring temperatures has to be very small, that is, the total
number K of temperature needs to be large. Therefore, this setting is not also
efficient because it needs huge cost to generate a sample from each distribution.
Consequently, the set of temperatures needs to optimize so that the average
exchange ratios for any neighboring temperatures become not low and not too
high.

As a criterion for the setting of temperature, the following symmetrized Kull-
back divergence I(tk, tk+1) is used [6],

I(tk, tk+1) =
∫

p(wk|tk) log
p(wk|tk)

p(wk|tk+1)
dwk

+
∫

p(wk+1|tk+1) log
p(wk+1|tk+1)
p(wk+1|tk)

dwk+1.

This function has the following property, E[log r] = −I(tk, tk+1), where E[log r]
means the average of log r over the joint distribution p(wk|tk) × p(wk+1|tk+1).
Moreover, when the free energy F (nt) is defined by

F (nt) = − log
∫

exp(−ntH(w))ϕ(w)dw,

the following equation is satisfied in small interval of temperatures, I(tk, tk+1) =
∂2F
∂t2

∣
∣
∣
t=tk

(tk+1 − tk)2. By using these properties, the implementation approach of

temperatures based on the value of
√

∂2F/∂t2 has been proposed.
As above mentioned, the average exchange ratio, the symmetrized Kullback

divergence and the free energy are used as criteria for the setting of temperatures.
However, the theoretical properties of these functions are not clarified. Hence,
in practical, the simulations of EMC method have to be carried out in order to
obtain the value of each function. However, since it is typically difficult to check
the convergence of EMC simulation, the accuracy of experimental value of each
function is not clear.

In this paper, we show the analytical results for the symmetrized Kullback
divergence and for the average exchange ratio in the low temperature limit, that
is, n → ∞. This result gives us the criteria for the setting of temperature and
for checking the convergence of EMC simulations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Algebraic Geometric Study of Exchange Monte Carlo Method 691

3 Main Result

In this section, we show the main result of this paper. We assume that t > 0
and t + Δt > 0, and consider the EMC method between the two distributions,
p1(w) = p(w|t) and p2(w) = p(w|t + Δt), where the real number Δt is not
necessarily small. For these distributions, the symmetrized Kullback divergence
I is rewritten as follows,

I =

�
p1(w1) log

p1(w1)

p2(w1)
dw1 +

�
p2(w2) log

p2(w2)

p1(w2)
dw2.

As we can see in Eq.(2) and Eq.(3), the exchange ratios u1 and u2 are functions
of w1 and w2. Hence, we define the average exchange ratios J1 and J2 as the
expectations of exchange ratios u1 and u2 over the joint distribution p1(w1) ×
p2(w2) as follows,

J1 =
∫ ∫

u1p1(w1)p2(w2)dw1dw2

J2 =
∫ ∫

u2p1(w1)p2(w2)dw1dw2.

In a lot of learning machines such as neural networks, normal mixtures and
hidden Markov models, the Bayesian posterior distribution does not converge
to the normal distribution as n → ∞ because the Hessian of log likelihood
H(w) is not positive definite. We can assume H(w) ≥ 0 and H(w0) = 0(∃w0)
without loss of generality. The zeta function of H(w) and ϕ(w) is defined by
ζ(z) =

∫
H(w)zϕ(w)dw, where z is a one complex variable. Then ζ(z) is a holo-

morphic function in the region of Re(z) > 0, and can be analytically continued
to the meromorphic function on the entire complex plane, whose poles are all
real, negative, and rational numbers [1]. We also define the rational number −λ
as the largest pole of zeta function ζ(z) and the natural number m as its order.
If the Hessian matrix

(
∂2H(w)
∂wi∂wj

)
is positive definite for arbitrary w, it holds that

λ = d
2 , m = 1. Otherwise, λ and m can be calculated by using the resolution

of singularities in algebraic geometry [1]. In fact, there are some studies to cal-
culate the value λ and m for a certain energy function H(w) and a probability
distribution ϕ(w) [13].

Then, the following lemma holds [12].

Lemma 1. The state density function V (s) (s > 0) has the following asymptotic
expansion for s → 0,

V (s) =
∫

δ(s − H(w))ϕ(w)dw ∼= csλ−1(− log s)m−1,

where c is a constant.

In our previous work, we analyzed the symmetrized Kullback divergence and the
average exchange ratio for Metropolis type [9]. However, the condition Δt 	 t is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

692 K. Nagata and S. Watanabe

assumed in this analysis. In this paper, we analyze these functions without this
assumption.

Firstly, we show the theorem about the symmetrized Kullback divergence and
the average exchange ratio for Metropolis type.

Theorem 1. The symmetrized Kullback divergence I and the average exchange
ratio J1 for Metropolis type respectively converge to the following values as n →
∞,

I → λ
(Δt)2

t(t + Δt)

J1 →

⎧
⎨

⎩

(
1 + Δt

t

)λ 2Γ (2λ)
Γ (λ)2 A(λ, Δt

t) (if Δt ≥ 0)
(
1 − Δt

t+Δt

)λ 2Γ (2λ)
Γ (λ)2 A(λ, − Δt

t+Δt) (if Δt < 0),

where A(λ, Δt
t) is defined by

A

(

λ,
Δt

t

)

=
∫ 1

0

sλ−1

(1 + Δt
t + s)2λ

ds.

(outline of the proof) This theorem is simply proven by using the almost same
analysis of [9] without applying the Taylor expansion about Δt

t = 0. (Q.E.D)

From Theorem 1, we can make the symmetrized Kullback divergence constant
over the various temperatures by the temperature setting that the value Δt

t or
Δt

t+Δt is constant, that is, the set {tk} of temperature is set as geometric pro-
gression. Moreover, under this setting, the average exchange ratio for Metropolis
type becomes constant over the various temperatures.

Secondly, we reveal the average exchange ratio J2 for heat bath type. We show
its proof in Appendix.

Theorem 2. The average exchange ratio J2 for heat bath type converges to the
following value as n → ∞,

J2 →

⎧
⎪⎪⎨

⎪⎪⎩

1
2

(

1 +
(
1 + Δt

t

)λ B(λ, Δt
t)

Γ (λ)2

)

(if Δt ≥ 0)

1
2

(

1 +
(
1 − Δt

t+Δt

)λ B(λ,− Δt
t+Δt)

Γ (λ)2

)

(if Δt < 0),

where the function B
(
λ, Δt

t

)
is defined by,

B

(

λ,
Δt

t

)

=
∫ ∞

0
ds1

∫ ∞

0
ds2 tanh

(
1
2

Δt

t
(s2 − s1)

)

e−s1e−(1+ Δt
t)s2sλ−1

1 sλ−1
2 .

Theorem 2 claims that the average exchange ratio for heat bath type is also
constant over the various temperatures by setting the value Δt

t constant. Con-
sequently, if we set the value Δt

t constant, the symmetrized Kullback divergence
and the average exchange ratio for both type are clarified to be constant over
the various temperatures.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Algebraic Geometric Study of Exchange Monte Carlo Method 693

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10

Lo
g(

ra
tio

)

Delta_t/t

Metropolis type
heat bath type

-8

-7

-6

-5

-4

-3

-2

-1

 0

 0 2 4 6 8 10 12 14 16 18 20

Lo
g(

ra
tio

)

Lambda

Metropolis type
heat bath type

(a) (b)

Fig. 1. The theoretical value of average exchange ratio (a) for the value λ with Δt
t

=
2.0, and (b) for the value Δt

t
with λ = 5.0. The solid line is for Metropolis type and

the dashed line is for heat bath type.

4 Discussion

In this paper, we analyzed the symmetrized Kullback divergence and the av-
erage exchange ratio for Metropolis type and for heat bath type in the low
temperature limit. As above mentioned, the EMC simulations have to be car-
ried out in order to obtain the value of these functions. However, the accuracy
of these experimental values are not clear because of the difficulty of checking
the convergence of EMC simulations. Our result gives us the accurate value of
these functions without the EMC simulations, which leads to the criteria for
the setting of temperature. Moreover, since the accuracy of the experimental
values of these functions can be evaluated by using our result, we can check the
convergence of EMC simulation, which is very important for the EMC method.

Let us discuss three points in association to this paper.
Firstly, we discuss the relation between the shape of target distribution and set-

ting of temperature. Figure 1(a) shows the relation between the value λ and the
theoretical value of average exchange ratio for each type with Δt

t = 2.0. According
to this figure, the EMC method works efficiently for the target distribution with
small value λ, which requires high average exchange ratio. On the other hand, by
comparing two distributions whose ground states are one point and analytic set in
the sample space, the latter distribution is well known to have smaller value λ than
the former distribution [13]. Consequently, the EMC method works efficiently for
the target distribution with the energy function whose ground state is an analytic
set. As an example of such distributions, the Bayesian posterior distribution in hi-
erarchical learning machines such as neural networks and normal mixtures is well
known, and this theorem shows the availability of EMC method for the Bayesian
learning in hierarchical learning machines.

Secondly, we discuss the properties of average exchange ratio for both type.
When we design the EMC method, which type should be used as the exchange
ratio, Metropolis type or heat bath type, often becomes a problem. By comparing
each exchange ratio, the computational cost is almost equal. Therefore, we should

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

694 K. Nagata and S. Watanabe

select the type to make the average exchange ratio high for the same setting
of temperature. Figure 1(b) shows the relation between the value Δt

t and the
theoretical value of average exchange ratio for each type with λ = 5.0. According
to Figure 1(a) and 1(b), the average exchange ratio for Metropolis type is clarified
to be higher than that for heat bath type in the low temperature limit. This
claims the effectiveness of Metropolis type for the EMC method.

Finally, we discuss the implementation of EMC method. This theorem gives
us the implementation approach of optimal temperatures in order to make the
average exchange ratio constant over the various temperatures. However, the
optimum value of average exchange ratio is not clarified, which leads to the im-
plementation of optimal number K of temperature. Moreover, since the EMC
method includes the algorithm of conventional MCMC method, the implemen-
tation of conventional MCMC method should be considered in the future.

5 Conclusion

In this paper, we analytically calculated the symmetrized Kullback divergence
and the average of exchange ratio, and clarified the relation between the sym-
metrized Kullback divergence and the exchange ratio. as a result, the following
properties are clarified,

1. When the symmetrized Kullback divergence for arbitrary temperature t is
constant, the average exchange ratio is also constant over the various tem-
peratures.

2. Then, the set of temperature {tk} is set as geometric progression.

As the future works, verifying the theoretical result in this study by some experi-
ments, constructing the implementation approach of EMC method, and applying
these results to the practical problems such as the Bayesian learning should be
addressed.

Acknowledgement

This work was supported by the Ministry of Education, Science, Sports and Cul-
ture, Grant-in-Aid for JSPS Research Fellows 18-5809 and for Scientific Research
18079007.

References

1. Atiyah, M.F.: Resolution of singularities and division of distributions. Communi-
cations of Pure and Applied Mathematics 13, 145–150 (1970)

2. Berg, B.A., Neuhaus, T.: Multicanonical algorithms for first order phase transi-
tions. Physics Letter B 267(2), 249–253 (1991)

3. Hukushima, K.: Domain Wall Free Energy of Spin Glass Models: Numerical Method
and Boundary Conditions. Physical Review E 60, 3606–3613 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Algebraic Geometric Study of Exchange Monte Carlo Method 695

4. Hukushima, K., Nemoto, K.: Exchange Monte Carlo Method and Application to
Spin Glass Simulations. Journal of Physical Society of Japan 65(6), 1604–1608
(1996)

5. Hukushima, K.: Extended ensemble Monte Carlo approach to hardly relaxing prob-
lems. Computer Physics Communications 147, 77–82 (2002)

6. Iba, Y.: Extended Ensemble Monte Carlo. International Journal of Modern Physics
C 12, 623–656 (2001)

7. Liang, F.: An effective Bayesian neural network classifier with a comparison study
to support vector machine. Neural Computation 15, 1959–1989 (2003)

8. Marinari, E., Parisi, G.: Simulated tempering: a new Monte Carlo scheme. Euro-
physics Letters 19(6), 451–455 (1992)

9. Nagata, K., Watanabe, S.: Analysis of Exchange Ratio for Exchange Monte Carlo
Method. In: FOCI’07. Proc. of The First IEEE Symposium on Foundation of Com-
putational Intelligence, pp. 434–439. IEEE Computer Society Press, Los Alamitos
(2007)

10. Pinn, K., Wieczerkowski, C.: Number of Magic Squares from Parallel Tempering
Monte Carlo. International Journal of modern Physics 9(4), 541–546 (1998)

11. Sugita, Y., Okamoto, Y.: Replica-exchange molecular dynamics method for protein
folding. Chemical Physics Letters 314(1-2), 141–151 (1999)

12. Watanabe, S.: Algebraic Analysis for Nonidentifiable Learning Machines. Neural
Computation 13, 899–933 (2001)

13. Yamazaki, K., Watanabe, S.: Singularities in mixture models and upper bounds of
stochastic complexity. Neural networks 16(7), 1029–1038 (2003)

Appendix: Proof of Theorem 2

In Appendix, we show the proof of Theorem 2 about the average exchange ratio
for heat bath type.

(outline of the proof) The average exchange ratio J2 is expressed by the definition
of exchange ratio u2 as follows,

J2 =
1
2

(

1 +
∫

dw1

∫

dw2 tanh
(

nΔt

2
(H(w2) − H(w1))

)

×e−ntH(w1)ϕ(w1)
Z(nt)

e−n(t+Δt)H(w2)ϕ(w2)
Z(n(t + Δt))

)

.

Then, the normalization constant Z(nt) is given from Lemma 1,

Z(nt) =
c(log nt)m−1

(nt)λ−1 Γ (λ).

Hence, by defining

J∗
2 =

∫

dw1

∫

dw2 tanh
(

nΔt

2
(H(w2) − H(w1))

)

×e−ntH(w1)ϕ(w1)e−n(t+Δt)H(w2)ϕ(w2),

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

696 K. Nagata and S. Watanabe

we obtain

J2 =
1
2

(

1 +
J∗

2

Z(nt)Z(n(t + Δt))

)

.

The function J∗
2 is expressed by using the Dirac delta function as follows,

J∗
2 =

∫ ∞

0
ds1

∫ ∞

0
ds2 tanh

(
nΔt

2
(s2 − s1)

)

e−nts1e−n(t+Δt)s2

×
∫

dw1δ(s1 − H(w1))ϕ(w1)
∫

dw2δ(s2 − H(w2))ϕ(w2)

∼=
∫ ∞

0
ds1

∫ ∞

0
ds2 tanh

(
nΔt

2
(s2 − s1)

)

e−nts1e−n(t+Δt)s2

×csλ−1
1 (− log s1)m−1csλ−1

2 (− log s2)m−1.

In the case that Δt ≥ 0, the function J∗
2 is given by putting s′1 = nts1 and

s′2 = nts2 as follows,

J∗
2

∼=
c2(log nt)2(m−1)

(nt)2λ
B

(

λ,
Δt

t

)

.

In the case that Δt < 0, the function J∗
2 is given by putting s′1 = n(t + Δt)s1

and s′2 = n(t + Δt)s2 as follows,

J∗
2

∼=
c2(log n(t + Δt))2(m−1)

(n(t + Δt))2λ
B

(

λ, − Δt

t + Δt

)

.

Consequently, the average exchange ratio J2 is given by

J2 =
1
2

(

1 +
J∗

2

Z(nt)Z(n(t + Δt)

)

→

⎧
⎪⎨

⎪⎩

1
2

(
1 +

(
1 + Δt

t

)λ B(λ, Δt
t)

Γ (λ)2

)
(if Δt ≥ 0)

1
2

(

1 +
(
1 − Δt

t+Δt

)λ B(λ,− Δt
t+Δt)

Γ (λ)2

)

(if Δt < 0),

which completes the theorem (Q.E.D).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Deep Memory POMDPs with

Recurrent Policy Gradients

Daan Wierstra1, Alexander Foerster1, Jan Peters2, and Jürgen Schmidhuber1

1 IDSIA, Galleria 2, 6928 Manno-Lugano, Switzerland
2 University of Southern California, Los Angeles, CA, USA

Abstract. This paper presents Recurrent Policy Gradients, a model-
free reinforcement learning (RL) method creating limited-memory sto-
chastic policies for partially observable Markov decision problems
(POMDPs) that require long-term memories of past observations. The
approach involves approximating a policy gradient for a Recurrent Neu-
ral Network (RNN) by backpropagating return-weighted characteristic
eligibilities through time. Using a “Long Short-Term Memory” architec-
ture, we are able to outperform other RL methods on two important
benchmark tasks. Furthermore, we show promising results on a complex
car driving simulation task.

1 Introduction

Policy gradient (PG) methods have been among the few successful algorithms
for solving real world Reinforcement Learning (RL) tasks (e.g. see [1,2,3,4,5])
as they can deal with continuous states and actions. After being introduced by
Williams [6] and Gullapalli [7], they have recently been extended to deal more
efficiently [8] with complex high-dimensional tasks [9]. Although sensitive to lo-
cal minima in policy representation space, an attractive property of this class of
algorithms is that they are guaranteed to converge to at least a locally optimal
policy, even using function approximators such as neural networks [10]. Further-
more, unlike most regular RL approaches, they provide a natural framework for
learning policies with continuous, high-dimensional actions. Provided the choice
of policy representation is powerful enough, PGs can tackle arbitrary RL prob-
lems. Unfortunately, most PG approaches have only been used to train policy
representations of, typically, a few dozen parameters at most. Surprisingly, the
obvious combination with standard backpropagation techniques has not been
extensively investigated (a notable exception being the SRV algorithm [7,11]).
In this paper, we address this shortcoming, and show how PGs can be nat-
urally combined with backpropagation, and BackPropagation Through Time
(BPTT) [12] in particular, to form a powerful RL algorithm capable of training
complex neural networks with large numbers of parameters.

RL tasks in realistic environments typically need to deal with incomplete
and noisy state information resulting from partial observability such as encoun-
tered in POMDPs. Furthermore, they often need to deal with non-Markovian

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 697–706, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

698 D. Wierstra et al.

problems where there are dependencies onto significantly earlier states. Both
POMDPs and non-Markovian problems largely defy traditional value function
based approaches and require complex state estimators with internal memory
based on accurate knowledge of the system. In reinforcement learning, we can
rarely assume a good memory-based state estimator as the underlying system is
usually unknown.

A naive alternative to using memory is learning reactive stochastic policies [13]
which simply map observations to probabilities of actions. The underlying as-
sumption is that state-information does not play a crucial role during most parts
of the problem and that using random actions can prevent the actor from get-
ting stuck in an endless loop for ambiguous observations (e.g., the scenario of a
blind robot rolling forever against the wall would only happen for a stationary,
deterministic reactive policy). In general, this strategy is clearly suboptimal, and
instead algorithms that use some form of memory still seem essential.

However, if we cannot assume a perfect model and a precisely estimated state,
an optimal policy needs to be both stochastic and memory-based for realistic
environments. As the memory is always an abstraction or imperfect, i.e., limited,
we will focus on learning what we define as limited-memory stochastic policies,
that is, policies that map limited memory states to probability distributions on
actions. Work on policy gradient methods with memory has been scarce so far,
largely limited to finite state controllers [14,15]. In this paper, we extend this
approach to more sophisticated policy representations capable of representing
memory using an RNN architecture called Long Short-Term Memory (LSTM),
see [16]. We develop a new reinforcement learning algorithm that can effectively
learn memory-based policies for deep memory POMDPs. We present Recur-
rent Policy Gradients (RPG), an algorithm which backpropagates the estimated
return-weighted eligibilities backwards in time through recurrent connections in
the RNN. As a result, policy updates can become a function of any event in the
history. We show that the presented method outperforms other RL methods on
two important RL benchmark tasks with different properties: continuous control
in a non-Markovian double pole balancing environment, and discrete control on
the deep memory T-maze [17] task. Moreover, we show promising results in a
complex car driving simulation.

The structure of the paper is as follows. The next section describes the Re-
current Policy Gradient algorithm. The subsequent sections describe our exper-
imental results using RPGs with memory and conclude with a discussion.

2 Recurrent Policy Gradients

In this section we describe our basic algorithm for using memory in a policy
gradient setting. First, we briefly summarize reinforcement learning terminology,
then we briefly review the policy gradient framework. Next, we describe the
particular type of recurrent neural network architecture used in this paper, Long
Short-Term Memory. Subsequently, we show how the methods can be combined
to form Recurrent Policy Gradients.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Deep Memory POMDPs with Recurrent Policy Gradients 699

2.1 Reinforcement Learning – Generalized Problem Statement

First let us introduce the RL framework used in this paper and the corresponding
notation. The environment produces a state gt at every time step. Transitions
from state to state are governed by a probability function p(gt+1|a1:t, g1:t) un-
known to the agent but dependent upon all previous actions a1:t executed by the
agent and all previous states g1:t of the system. Note that most reinforcement
learning papers need to assume Markovian environments – we will later see that
we do not need to for policy gradient methods with an internal memory. Let rt

be the reward assigned to the agent at time t, and let ot be the corresponding
observation produced by the environment. We assume that both quantities are
governed by fixed distributions p(o|g) and p(r|g), solely dependent on state g.

In the more general reinforcement setting, we require that the agent has a
memory of the generated experience consisting of finite episodes. Such episodes
are generated by the agent’s operations on the (stochastic) environment, exe-
cuting action at at every time step t, after observing observation ot and special
‘observation’ rt (the reward) which both depend solely on gt. We define the ob-
served history1 ht as the string or vector of observations and actions up to mo-
ment t since the beginning of the episode: ht = 〈o0, a0, o1, a1, . . . , ot−1, at−1, ot〉.
The complete history H includes the unobserved states and is given by HT =
〈hT , g0:T 〉. At any time t, the actor optimizes Rt = (1 − γ)−1 ∑∞

k=t rkγt−k−1

which is the return at at time t where 0 < γ < 1 denotes a discount factor.
The expectation of this return Rt at time t = 0 is also the measure of quality

of our policy and, thus, the objective of reinforcement learning is to determine a
policy which is optimal with respect to the expected future discounted rewards or
expected return J = E [R0] = (1−γ)−1 limT→∞ E

[∑T−1
t=0 γtrt

]
. For the average

reward case where γ → 1 or, equivalently, (1−γ)−1 → ∞, this expression remains
true analytically but needs to be replaced by J = limT→∞ E[

∑T−1
t=0 rt/T] in order

to be numerically feasible.
An optimal or near-optimal policy in a non-Markovian or partially observable

Markovian environment requires that the action at is taken depending on the
entire preceding history. However, in most cases, we will not need to store the
whole string of events but only sufficient statistics T (ht) of the events which
we call the limited memory of the agents past. Thus, a stochastic policy π can
be defined as π(a|ht) = p(a|T (ht); θ), implemented as an RNN with weights
θ and stochastically interpretable output neurons. This produces a probability
distribution over actions, from which actions at are drawn at ∼ π(a|ht).

2.2 The Policy Gradient Framework

The type of RL algorithm we employ in this paper falls in the class of policy
gradient algorithms, which, unlike many other (notably TD) methods, update
the agent’s policy-defining parameters θ directly by estimating a gradient in the
direction of higher (average or discounted) reward.

1 Note that such histories are also called path or trajectory in the literature.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

700 D. Wierstra et al.

Now, let R(H) be some measure of the total reward accrued during a history
(e.g., R(H) could be the average of the rewards for the average reward case or
the discounted sum for the discounted case), and let p(H |θ) be the probability of
a history given policy-defining weights θ, then the quantity the algorithm should
be optimizing is J =

∫
H

p(H |θ)R(H)dH . This, in essence, indicates the expected
reward over all possible histories, weighted by their probabilities under π. Using
gradient ascent to update parameters θ of policy π, we can write

∇θJ =
∫

∇θp(H)R(H)dH =
∫

p(H)
p(H)

∇θp(H)R(H)dH =
∫

p(H)∇θ log p(H)R(H)dH

using the “likelihood-ratio trick” and the fact that ∇θR(H) = 0 for a single,
fixed H . Taking the sample average as Monte Carlo (MC) approximation of this
expectation by taking N trial histories we get

∇θJ = EH

[
∇θ log p(H)R(H)

]
≈ 1

N

N∑

n=1

∇θ log p(Hn)R(Hn).

which is a fast approximation of the policy gradient for the current policy with
the convergence speed of O(N−1/2) to the true gradient independent of the
number of parameters of the policy (i.e., number of elements of the gradient).

Probabilities of histories p(H) are dependent on an unknown initial state
distribution, on unknown observation probabilities per state, and on unknown
state transition function p(gt+1|a1:t, g1:t). But at least the agent knows its own
action probabilities, so the log derivative for agent parameters θ in ∇θ log p(h)
can be acquired by first realizing that the probability of a particular history is
the product of all actions and observations given subhistories:

p(HT) = p(〈o0, g0〉)
T∏

t=1

p(〈ot, gt〉|ht−1, at−1, g0:t)π(at−1|ht−1)

Taking the log-derivative results into transforming this large product into a sum
log p(HT) = (const)+

∑T
t=0 log π(at|ht): where most parts are not affected by θ,

i.e., are constant. Thus, when taking the derivative of this term, we obtain

∇θ log p(HT) =
T∑

t=0

∇θ log π(at|ht).

Substituting this term into our MC approximation results in a gradient estimator
which only requires observed variables. However, if we make use of the fact that
future actions do not depend on past rewards, we can show that these terms can
be omitted from the gradient estimate (see [5] for details). Thus, an unbiased
gradient estimator is given by

∇θJ ≈ 1
N

N∑

n=1

T∑

t=0

∇θ log π(at|hn
t)Rn

t

which yields the desired gradient estimator which only has observable variables.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Deep Memory POMDPs with Recurrent Policy Gradients 701

Nevertheless, an important problem with this Monte Carlo approach is the
often high variance in the gradient estimate. For example, if R(h) = 1 for all
h, the variance can be given by σ2

T = E[
∑T

t=0(∇θ log π(at|hn
t))2] which grows

linearly with T . One way to tackle such problems and reduce this variance is
to include a baseline b (first introduced by Williams [6]) into the gradient es-
timate ∇θJ ≈ 1

N

∑N
n=1 ∇θ log p(hn

t)(Rn
t − b) where b is typically the expected

average reward or some kind of value function. Due to the likelihood-ratio trick∫
p(H)∇θ log p(H)R(H)dH = ∇θ

∫
p(H)bdH = ∇θ1 = 0, we can guarantee that

E[
∑N

n=1 ∇θ log p(Hn
t)b] = 0 and, thus, the baseline can only reduce the variance

but not bias the gradient in any way [6].
Another way to reduce the variance of the gradient is to reduce the planning

horizon of the agent, i.e., the episode length can be truncated or we can use a dis-
count factor γ̂ which is lower than the true γ as in the GPOMDP algorithm [18]
where 0 < γ̂ < γ. Unfortunately, here can be a big trade-off as γ̂ < γ biases
the gradient, but when γ̂ → γ, this bias vanishes while the gradient estimate
variance can increase significantly.

2.3 LSTM Recurrent Function Approximators

RNNs have attracted some attention in the past decade because of their sim-
plicity and potential power. However, though powerful in theory, they turn out
to be quite limited in practice due to their inability to capture long-term time
dependencies – they suffer from the problem of vanishing gradient [19], the fact
that the gradient signal vanishes as the error signal is propagated back through
time. Because of this, events more than 10 time steps apart can typically not be
related.

One method purposely designed to avoid this problem is Long Short-Term
Memory (LSTM [16]), which constitutes a special RNN architecture capable of
capturing long term time dependencies. The defining feature of this architecture
is that it consists of a number of memory cells, which can be used to store
activations arbitrarily long. Access to the memory cell is gated by units that
learn to open or close depending on the context.

LSTM networks have been shown to outperform other RNNs on numerous
time series requiring the use of deep memory [20]. Therefore, they seem well-
suited for usage in PG algorithms for complex, deep memory requiring tasks.
Whereas RNNs are usually used to predict, we use them to control an agent
directly, to represent a controller’s policy receiving observations and producing
action probabilities at every time step.

2.4 Introducing the Recurrency in Recurrent Policy Gradients

Typically, PG algorithms learn to map observations to action probabilities, i.e.
they learn stochastic reactive policies. As noted before, this is clearly suboptimal
for all but the simplest partial observability problems. We would like to equip
our algorithm with adaptable memory, using LSTM to map histories or memory
states to action probabilities. Unlike earlier methods, our method makes full use

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

702 D. Wierstra et al.

of the backpropagation technique while doing this: whereas most if not all pub-
lished and experimentally tested PG methods (as far as the authors are aware)
estimate parameters θ individually, we use eligibility-backpropagation through
time (as opposed to standard error-backpropagation or BPTT [12]) to update
all parameters conjunctively, yielding solutions that better generalize over com-
plex histories. Using this method, we can map histories to actions instead of
observations to actions.

In order to estimate the gradient for a history-based approach, we map his-
tories ht to action probabilities by using LSTM’s internal state representation.
Backpropagating return-weighted eligibilities [6] affects the policy such that it
makes histories that were better than other histories (in terms of reward) more
likely by reinforcing the probabilities of taking similar actions for similar histo-
ries.

Recurrent Policy Gradients are architecturally equal to supervised RNNs,
however, the output neurons are interpreted as a probability distribution. It
takes, at every time step during the forward pass of BPTT, as input observation
ot and reward rt. Together with the recurrent connections, these produce outputs
π(ht), representing the probability distribution on actions.

Only the output part of the neural network is interpreted stochastically. This
allows us, during the backward pass, to only estimate the eligibilities of the
output units at every time step. The gradient on the other parameters θ can be
derived efficiently via eligibility backpropagation through time, treating output
eligibilities like we would treat normal errors (‘deltas’) in an RNN trained with
gradient descent. Also, by having only stochastic output units, we do not have
to compute complicated gradients on stochastic internal (belief) states such as is
done in [14,15] – eligibility backpropagation through time disambiguates relevant
hidden state automatically, when possible.

3 Experiments

We carried out experiments on three fundamentally different problem domains.
The first task, double pole balancing with incomplete state information, is a
continuous control task that has been a benchmark in the RL community for
many years. The second task, the T-maze, is a difficult discrete control task that
requires remembering its initial observation until the end of the episode. The
third task involves a complex car racing simulator, called Torcs.

All experiments were carried out with 10-cell LSTMs. The baseline estimator
used was simply a moving average of the return received at any time step.

3.1 Continuous Control: (PO)MDP (Double) Pole Balancing

This task involves trying to balance a pole hinged on a cart that moves on a
finite track (see Figure 1). The single control consists of the force F applied to
the cart (in Newtons), and observations usually include the cart’s position x, the
pole’s angle θ and velocities ẋ and θ̇. It provides a perfect testbed for algorithms

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Deep Memory POMDPs with Recurrent Policy Gradients 703

2

F

β

β

1

x

Markov non-Markov

1 pole 863 ± 213 1893 ± 527

2 poles 4981 ± 1386 5649 ± 1548

Fig. 1. The non-Markov double pole balancing task. The results show the mean and
standard deviation of the number of evaluations until the success criterion.

focussing on learning fine control in continuous state and action spaces. However,
recent successes in the RL field have made the standard pole balancing setup too
easy and therefore obsolete. To make the task more challenging, we (1) remove
velocity information ẋ and θ̇ such that the problem becomes non-Markov, and
(2) add a second pole to the same cart, of length 1/10th of the original one. This
yields non-Markovian double pole balancing [21], a truly challenging task that
has not been solved by any other single agent RL method but RPGs.

We applied RPGs to the pole balancing task, using a Gaussian output struc-
ture, consisting of a mean μ (which was interpreted linearly) and a standard
deviation σ (which was scaled with the logistic function in order to prevent vari-
ances from being negative) where eligibilities were calculated according to [6].
We use a learning rate ασ2 (as suggested by Williams [6]) and α = 0.001,
momentum = 0.9 and γ = 0.99. Initial parameters θ were initialized randomly
between −0.01 and 0.01. Reward was always 0.0, except for the last time step
when one of the poles falls over, where it is −1.0.

A run was considered a success when the pole(s) did not fall over for 10, 000
time steps. Figure 1 shows results averaged over 20 runs. RPGs clearly outper-
form earlier PG methods, even by orders of magnitude (compare [15]’s finite
state controller).

3.2 Discrete Control: The Long Term Dependency T-Maze

The second experiment was carried out on the T-maze [17] (see Figure 2). De-
signed to test an RL algorithm’s ability to correlate events far apart in history,
it involves having to learn to remember the observation from the first time step
until the episode ends. At the first time step, it starts at position S and perceives
the X either north or south – meaning that the goal state G is in the north or
south part of the T-junction, respectively. Additionally, the agent perceives its

S
X G

Fig. 2. The T-maze task. In this example, N , the length of the alley, is 35

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

704 D. Wierstra et al.

immediate surroundings. The agent has four possible actions: North, East, South
and West. These discrete actions are represented in the network as a softmax
layer. When the agent makes the correct decision at the T-junction, i.e. go south
if the X was south and north otherwise, it receives a reward of 4.0, otherwise
a reward of -0.1. In both cases, this ends the episode. Note that the corridor
length N can be increased to make the problem more difficult, since the agent
has to learn to remember the initial ‘road sign’ for N +1 time steps. In Figure 2
we see an example T-maze with corridor length 35.

Corridor length N was systematically varied from 10 to 100, and for each
length 10 runs were performed. Training was performed in batches of 20 normal-
izing the gradient to length 0.3. Discount factor γ = 0.98 was used. In Figure 3
the results are displayed, in addition to other algorithms’ results taken from [17].
We can see that RPGs clearly outperform the value-based methods. This might
be due to the difference in complexity of a simple policy versus an unnecessarily
complex value function.

Elman Value Iteration

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 10 20 30 40 50 60 70 80 90 100

N
o.

 s
uc

ce
ss

fu
l r

un
s

Corridor Length

Recurrent Policy Gradients
LSTM Value Iteration

 0

Elman Value Iteration

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 10 20 30 40 50 60 70 80 90 100

N
o.

 it
er

at
io

ns
 (

m
ill

io
ns

)

Corridor Length

Recurrent Policy Gradients
LSTM Value Iteration

 0

Fig. 3. T-maze results. The left chart shows the number of successful runs for N =
10, . . . , 100. Recurrent Policy Gradients’ performance starts to degrade at length N =
100. The right plot shows the number of average iterations required to solve the task,
averaged over the successful runs. RPGs clearly outperform other RL methods on this
task, to the best of the authors’ knowledge. (The results for the Value Iteration based
algorithms are taken from [17]).

4 The TORCS Car Racing Simulator

In order to test our algorithm’s performance on a more complicated environment,
we carried out experiments on the TORCS [22] car racing simulator. Observa-
tions are speed, steering angle, position and look-ahead-distance. The agent has
to learn to drive and stay on the road while maintaining high speed. Its reward
consists of the speed, but it gets punished for getting off the track. Maximum
speed starts off with 10 km/h, and is gradually increased.

Our current experiments, on 5 trials, show the agent can consistently learn to
steer and stay on the road after just under 2 minutes of real-time behavior. The
agent can learn to drive safely – not getting off track – up to 70 km/h, after which
its behavior destabilizes. The fastest lap time is just under 3 minutes, which is still
twice as slow as a trained human player or our preprogrammed agent.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Solving Deep Memory POMDPs with Recurrent Policy Gradients 705

Fig. 4. The TORCS racing car simulator

5 Discussion

We introduced a new policy gradient method equipped with memory capable
of memorizing events from arbitrarily far in the past. The approach involves
computing and backpropagating a policy gradient through time with LSTM
representing memory, thus updating a policy which maps event histories to action
probabilities. The approach outperformed other RL methods on two important
benchmarks. We think Recurrent Policy Gradients constitute one of the most
efficient RL algorithms to date on difficult non-Markovian tasks.

Acknowledgments

This research was funded by SNF grant 200021-111968/1 and by the 6th FP of
the EU (project number IST-511931).

References

1. Benbrahim, H., Franklin, J.: Biped dynamic walking using reinforcement learning.
Robotics and Autonomous Systems Journal (1997)

2. Moody, J., Saffell, M.: Learning to Trade via Direct Reinforcement. IEEE Trans-
actions on Neural Networks 12(4), 875–889 (2001)

3. Prokhorov, D.: Toward effective combination of off-line and on-line training in adp
framework. In: ADPRL. Proceedings of the IEEE International Symposium on Ap-
proximate Dynamic Programming and Reinforcement Learning, IEEE Computer
Society Press, Los Alamitos (2007)

4. Baxter, J., Bartlett, P., Weaver, L.: Experiments with infinite-horizon, policy- gra-
dient estimation. Journal of Artificial Intelligence Research 15, 351–381 (2001)

5. Peters, J., Schaal, S.: Policy gradient methods for robotics. In: IROS. Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and Systems,
Beijing, China, pp. 2219–2225 (2006)

6. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8, 229–256 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

706 D. Wierstra et al.

7. Gullapalli, V.: A stochastic reinforcement learning algorithm for learning real-
valued functions. Neural Networks 3(6), 671–692 (1990)

8. Schraudolph, N., Yu, J., Aberdeen, D.: Fast online policy gradient learning with
smd gain vector adaptation. In: Weiss, Y., Schölkopf, B., Platt, J. (eds.) Advances
in Neural Information Processing Systems, vol. 18, MIT Press, Cambridge, MA
(2006)

9. Peters, J., Vijayakumar, S., Schaal, S.: Natural actor-critic. In: Gama, J., Cama-
cho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI),
vol. 3720, pp. 280–291. Springer, Heidelberg (2005)

10. Sutton, R., McAllester, D., Singh, S., Mansour, Y.: Policy gradient methods for
reinforcement learning with function approximation (2001)

11. Gullapalli, V.: Reinforcement learning and its application to control (1992)
12. Werbos, P.: Back propagation through time: What it does and how to do it. Pro-

ceedings of the IEEE 78, 1550–1560 (1990)
13. Singh, S.P., Jaakkola, T., Jordan, M.I.: Learning without state-estimation in par-

tially observable markovian decision processes. In: International Conference on
Machine Learning, pp. 284–292 (1994)

14. Aberdeen, D.: Policy-Gradient Algorithms for Partially Observable Markov Deci-
sion Processes. PhD thesis, Australian National University (2003)

15. Meuleau, N., Peshkin, L., Kim, K.-E., Kaelbling, L.P.: Learning finite-state con-
trollers for partially observable environments. In: UAI ’99. Proc. Fifteenth Con-
ference on Uncertainty in Artificial Intelligence, pp. 427–436. Morgan Kaufmann,
San Francisco (1999)

16. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computa-
tion 9(8), 1735–1780 (1997)

17. Bakker, B.: Reinforcement learning with long short-term memory. In: Advances in
Neural Information Processing Syst., vol. 14 (2002)

18. Baxter, J., Bartlett, P.: Direct gradient-based reinforcement learning (1999)
19. Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J.: Gradient flow in recurrent

nets: the difficulty of learning long-term dependencies. In: Kremer, S.C., Kolen, J.F.
(eds.) A Field Guide to Dynamical Recurrent Neural Networks, IEEE Press, NJ,
New York (2001)

20. Schmidhuber, J.: RNN overview (2004), http://www.idsia.ch/~juergen/
rnn.html

21. Wieland, A.: Evolving neural network controllers for unstable systems. In: Pro-
ceedings of the International Joint Conference on Neural Networks, Seattle, WA,
pp. 667–673. IEEE Service Center, Piscataway, NJ (1991)

22. Torcs: Torcs, the open racing car simulator (2007),http://torcs.
sourceforge.net/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 http://www.idsia.ch/~{ }juergen/rnn.html
 http://www.idsia.ch/~{ }juergen/rnn.html
http://torcs.sourceforge.net/
http://torcs.sourceforge.net/

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 707–716, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Soft Clustering for Nonparametric Probability Density
Function Estimation

Ezequiel López-Rubio, Juan Miguel Ortiz-de-Lazcano-Lobato,
Domingo López-Rodríguez, and María del Carmen Vargas-González

School of Computer Engineering
University of Málaga

Campus de Teatinos, s/n. 29071
Málaga Spain

Phone: (+34) 95 213 71 55
Fax: (+34) 95 213 13 97

{ezeqlr,jmortiz}@lcc.uma.es, dlopez@ctima.uma.es

Abstract. We present a nonparametric probability density estimation model.
The classical Parzen window approach builds a spherical Gaussian density
around every input sample. Our method has a first stage where hard
neighbourhoods are determined for every sample. Then soft clusters are
considered to merge the information coming from several hard neighbourhoods.
Our proposal estimates the local principal directions to yield a specific Gaussian
mixture component for each soft cluster. This leads to outperform other
proposals where local parameter selection is not allowed and/or there are no
smoothing strategies, like the manifold Parzen windows.

Keywords: Probability density estimation, nonparametric modeling, soft
clustering, Parzen windows.

1 Introduction

The estimation of the unknown probability density function (PDF) of a continuous
distribution from a set of data points forming a representative sample drawn from the
underlying density is a problem of fundamental importance to all aspects of machine
learning and pattern recognition (see [1], [2] and [3]).

Parametric approaches make assumptions about the unknown distribution. They
consider, a priori, a particular functional form for the PDF and reduce the problem to
the estimation of the required functional parameters. On the other hand,
nonparametric methods make less rigid assumptions. Popular nonparametric methods
include the histogram, kernel estimation, nearest neighbor methods and restricted
maximum likelihood methods, as can be found in [4], [5], [6] and [7].

The kernel density estimator, also commonly referred as the Parzen window
estimator, [9], places a Gaussian kernel on each data point of the training set. Then,
the PDF is approximated by summing all the kernels, which are multiplied by a
normalizing factor. Thus, this model can be viewed as a finite mixture model (see [8])
where the number of mixture components will equal the number of points in the data

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

708 E. López-Rubio et al.

sample. Parzen windows estimates are usually built using a ‘spherical Gaussian’ with
a single scalar variance parameter 2σ , which spreads the density mass equally along
all input space directions and gives too much probability to irrelevant regions of space
and too little along the principal directions of variance of the distribution. This
drawback is partially solved in Manifold Parzen Windows algorithm [10], where a
different covariance matrix is calculated for each component. The covariance matrix
is estimated by considering a hard neighbourhood of each input sample. We propose
in Section 2 to build soft clusters to share the information among neighbourhoods.
This leads to filter the input noise by smoothing the estimated parameters.

We present in section 3 a method that automatizes the selection of the right
dimensionality of the manifold. The asymptotical convergence of the proposed
method is formally proven in Section 4. We show some experimental results in
section 5, where the selection achieved by our method produces more precise
estimations than the Manifold Parzen Windows and other approaches. Finally,
Section 6 is devoted to conclusions.

2 The Smooth Parzen Windows Method

Let x be an D-dimensional random variable and p() an arbitrary probability density
function over x which is unknown and we want to estimate. The training set of the
algorithm is formed by N samples of the random variable. For each training sample xi
we build a hard Q-neighbourhood Hi with the Q nearest neighbours of xi, including
itself. Hence Hi is interpreted as a random event which happens iff the input belongs
to that neighbourhood. The knowledge about the local structure of the distribution
around xi is obtained when we calculate the mean vector μ and the correlation matrix
R:

() [] ∑
∈

==
ij H

jii Q
HEH

x

xxμ 1
| (1)

() [] ∑
∈

==
ij H

T
jji

T
i Q

HEH
x

xxxxR
1

|
(2)

Now we present a smoothing procedure to merge the information from different
hard neighbourhoods. We define a soft cluster i by a random event Si which verifies
when the input belongs to cluster i. Each hard neighbourhood Hj contributes to Si with
a weight wij:

]|[ijij SHPw = (3)

So, we have

{ } 1,,...,2,1
1

=∈∀ ∑
=

N

j
ijwMi (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Soft Clustering for Nonparametric Probability Density Function Estimation 709

where the number of soft clusters M may be different from the number of hard
neighbourhoods N. We can infer the structure of the soft cluster by merging the
information from the hard neighbourhoods:

() [] [] [] ()∑∑
=

===
N

j
jij

j
jijii HwHESHPSES

1

||| μxxμ (5)

() [] ()∑∑
=

===
N

j
jij

j
j

T
iji

T
i HwHESHPSES

1

]|[|]|[RxxxxR (6)

In order to define a Gaussian distribution we need the estimation of the covariance
matrix C for each soft cluster:

() ()() ()() () () ()T
iiii

T
iii SSSSSSES μμRμxμxC −=−−=]|[(7)

Finally, we need a method to determine the merging weights wij. We propose two
approaches:

a) If M=N, we can perform the smoothing by replacing the ‘hard’ model at the data
sample xi by a weighted average of its neighbours ranked by their distance to xi. Here
the model at xi has the maximum weight, and their neighbours xj have a weight which
is a decreasing function of the distance from xi to xj:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛ −
−=

2

2

exp
ψ

ω ji
ij

xx
 (8)

∑
=

=
N

k
ik

ij
ijw

1

ω

ω

(9)

where ψ is a parameter to control the width of the smoothing. Please note that ωii=1.
b) We may use the fuzzy c-means algorithm [11] to perform a soft clustering. This

algorithm partitions the set of training data into M clusters so it minimizes the
distance within the cluster. The objective function is:

∑∑
= =

=
M

i

N

j
ijij dmJ

1 1

2φ (10)

where φ is the fuzzy exponent which determines the degree of fuzzyness, and dij is the
distance between training sample xj and the centroid of cluster i.

The degrees of membership of training sample j to soft cluster i are obtained as mij,
which can be regarded as the probability of training sample j belonging to cluster i. In
this approach the weights wij of the local models that we merge to yield the model of
cluster i are computed as follows:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

710 E. López-Rubio et al.

∑
=

=
N

k
ik

ij
ij

m

m
w

1

(11)

3 Dynamic Parameter Selection

Once we have the estimations of the mean vectors μ(Si) and covariance matrices C(Si)
for each soft cluster Si, it is needed to obtain a Gaussian distribution from them which
is both accurate and small sized.

First we incorporate the capacity of estimating the intrinsic dimensionality. A
second level of automated adaptation to the data will be added by means of a
parameter γ. This parameter will enable the method to select the right noise level.

3.1 The Explained Variance Method

The explained variance method considers a variable number, Ki, of eigenvalues and
their corresponding eigenvectors to be kept which is computed independently for each
cluster Si. Through the training process the method ensures that a minimum amount of
variance is conserved in order to satisfy the level of accuracy, [0,1]α ∈ , chosen by the
user.

The lost variance when no directions are kept, V0, can be defined as:

0
1

D
p

i
p

V λ
=

=∑ (12)

with p
iλ the p-th eigenvalue of the covariance matrix C(Si), which are supposed to be

sorted in decreasing order, and D the dimension of the training samples.
In any other situation the discarded variance, VZ, depends on the number, Z, of

principal directions conserved:

1

D
p

Z i
p Z

V λ
= +

= ∑ (13)

Let V0 – VZ be the amount of error eliminated when we conserve information about
the Z principal directions. Then

{ }{ }0 0min 0,1,..., |i ZK Z D V V Vα= ∈ − ≥ (14)

Substitution of (12) and (13) into (14) yields

{ }
1 1 1

min 0,1,..., |
D D D

p p p
i i i i

p p Z p

K Z D λ λ α λ
= = + =

⎧ ⎫
= ∈ − ≥⎨ ⎬

⎩ ⎭
∑ ∑ ∑ (15)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Soft Clustering for Nonparametric Probability Density Function Estimation 711

By expressing the sum of variances as the trace of C(Si) we can simplify (15):

{ } ()
1

min 0,1,..., | ()
Z

p
i i i

p

K Z D trace Sλ α
=

⎧ ⎫
= ∈ ≥⎨ ⎬

⎩ ⎭
∑ C (16)

3.2 The Qualitative Parameter γ

We propose to select the noise variance parameter 2σ as follows:

()2 iK
i iSσ γ λ= ⋅ (17)

where [0,1]γ ∈ and iK
iλ is the last of the preserved eigenvalues of C(Si), i.e. the

smallest of the first Ki largest eigenvalues. The estimated noise variance σ2(Si) is
added to the first Ki largest eigenvalues to yield the estimated variances of the Ki
principal directions, while the D–Ki trailing directions have estimated variances of
σ2(Si).

3.3 Smooth Parzen Windows with Qualitative Parameters

The proposed algorithm is designed to estimate an unknown density distribution p()
which the N samples of the training dataset are generated from. The generated
estimator will be formed by a mixture of M Gaussians, one for each soft cluster:

() ()∑
=

=
M

i
iN

M
p

1

1
ˆ xx (18)

() ()⎟
⎠
⎞

⎜
⎝
⎛ +−= iii baN

2

1
expx (19)

() () ()() ()()∑
=

+++−+=
iK

p
i

p
ii

p
iii SSKDDa

1

22 loglog2log σλσλπ (20)

()
()

()
() ()()∑

=

−⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+−=

iK

p
i

Tp
i

i
p
i

i
i

i S
S

S
S

b
1

2

2

2

2

111 μxuμx
σλσ

 (21)

where p
iu is the eigenvector corresponding to the p-th largest eigenvalue of C(Si).

3.4 Summary

The training algorithm can be summarized as follows:

1. For each training sample, compute the mean vector μ(Hi) and correlation
matrix C(Hi) of its hard neighbourhood Hi with equations (1) and (2).

2. Estimate the merging weights wij either by the distance method (9) or the
fuzzy c-means algorithm (11).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

712 E. López-Rubio et al.

3. Compute the mean vectors μ(Si) and covariance matrices C(Si) of each soft
cluster Si following (5) and (7).

4. Extract the eigenvalues and eigenvectors from C(Si) and estimate the
dimensionality of the underlying manifold Ki, by means of (16).

5. Use (17) to calculate σ2(Si), the noise variance for the discarded directions.
6. Store each local model, i. e., the first Ki eigenvectors and eigenvalues, the

local noise level σ2(Si) and the mean vector μ(Si).

4 Convergence Proof

In this section we prove that our estimator ()p̂ converges to the true density function

p() in the limit N→∞ and M→∞.

Lemma 1. Every local Gaussian Ni(x) tends to the D-dimensional Dirac delta function
δ(x–μ(Si)) as N→∞ and M→∞.

Proof. In the limit N→∞ and M→∞ the clusters Si reduce their volume to zero. This
means that σ2(Si)→0 and p

iλ →0 for all i and p. Hence the Gaussians Ni(x) are

confined to a shrinking volume centered at μ(Si), because the variances in each
direction are p

iλ +σ2(Si) or σ2(Si), but they continue to integrate to 1. So, we have that

Ni(x) → δ(x–μ(Si)).

Theorem 1. The expected value of the proposed estimation tends to the true
probability density function as N→∞ and M→∞.

Proof. The expectation is w.r.t. the underlying distribution of the training samples,
which is the true probability density function p():

()[] ()[]∑
=

=
M

i
iNE

M
pE

1

1
ˆ xx (22)

Since Ni(x) are independent and identically distributed random variables we get

()[] ()[] () ()∫== yxyxx y dNpNEpE iˆ (23)

where Ny() is a Gaussian centered in y. Then, by Lemma 1, if N→∞ and M→∞ then
Ny() shrinks to a Dirac delta:

()[] () ()∫ −→ yyxyx dppE δˆ (24)

So, the expectation of the estimation converges to a convolution of the true density
with the Dirac delta function. Then,

()[] ()xx ppE →ˆ (25)

Theorem 2. The variance of the proposed estimation tends to zero as N→∞ and
M→∞.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Soft Clustering for Nonparametric Probability Density Function Estimation 713

Proof. The variance is w.r.t. the underlying distribution of the training samples, which
is the true probability density function p():

()[] ()
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
= ∑

=

M

i
iN

M
p

1

1
varˆvar xx (26)

Since Ni(x) are independent and identically distributed random variables we get

()[] ()[]xx iN
M

p var
1

ˆvar = (27)

By the properties of variance and (23) we obtain

()[] ()()[] ()[]() ()()[] ()[]()2222 ˆ
11

ˆvar xxxxx pENE
M

NENE
M

p iii −=−= (28)

By definition of expectation

()[] () ()() ()[] ⎟
⎠
⎞⎜

⎝
⎛ −= ∫ 22 ˆ

1
ˆvar xyxyx y pEdNp

M
p (29)

where again Ny() is a Gaussian centered in y. We can bound the integral of the above
equation with the help of (23), and so we get

()[] ()() ()[]
0

ˆ·sup
ˆvar →≤

M

pEN
p

x
x as N→∞ and M→∞ (30)

5 Experimental Results

This section shows some experiments we have designed in order to study the quality
of the density estimation achieved by our method. We call it SmoothDist when the
distance weighting is used, and SmoothFuzzy when we use fuzzy c-means. Vincent
and Bengio’s method is referred as MParzen, the original Parzen windows method
(with isotropic Gaussian kernels) is called OParzen, and finally the Mixtures of
Probabilistic PCA model of Tipping and Bishop [12] is called MPPCA. For this
purpose the performance measure we have chosen is the average negative log
likelihood

1

1
ˆlog ()

T

i
i

ANLL p
T =

= − ∑ x (31)

where ˆ ()p is the estimator, and the test dataset is formed by T samples xi.

5.1 Experiment on 2D Artificial Data

A training set of 100 points, a validation set of 100 points and a test set of 10000
points were generated from the following distribution of two dimensional (x,y) points:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

714 E. López-Rubio et al.

0.04 sin() , 0.04 cos()x yx t t y t tε ε= + = + (32)

where (3,15), (0,0.01), (0,0.01), (,)x yt U N N U a bε ε is uniform in the interval

(a,b) and (,)N μ σ is a normal density.

We have optimized separately all the parameters of the five competing models with
disjoint training and validation sets. The performance of the optimized models has
been computed by 10-fold cross-validation, and the results are shown in Table 1, with
the best result marked in bold. It can be seen that our models outperform the other
three in density distribution estimation.

Table 1. Quantitative results on the espiral dataset (standard deviations in parentheses)

Method Optimized parameters used ANLL on test set
SmoothDist M=100, α=0.9, Q=4, γ=0.03, ψ=0.001 –1.5936 (0.2557)

SmoothFuzzy M=100, α=0.1, Q=4, γ=0.05 –1.6073 (0.3293)
OParzen M=100, σ 2=0.0001 1.0817 (1.3357)
MParzen M=100, K=2, Q=4, σ 2=1.6E–5 –0.9505 (0.3301)
MPPCA M=4, K=1 0.2473 (0.0818)

Fig. 1. Density estimation for the 2D artificial dataset. From left to right and from top to
bottom: SmoothDist, SmoothFuzzy, OParzen, MParzen and MPPCA.

Figure 1 shows density distribution plots corresponding to the five models. Darker
areas represent zones with high density mass and lighter ones indicate the estimator
has detected a low density area.

We can see in the plots that our models have less density holes (light areas) and
less ‘bumpiness’. This means that our model represents more accurately the true
distribution, which has no holes and is completely smooth. We can see that the
quantitative ANLL results agree with the plots, because the lowest values of ANLL

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Soft Clustering for Nonparametric Probability Density Function Estimation 715

match the best-looking plots. So, our model outperforms clearly the other three
considered approaches.

5.2 Density Estimation Experiment

A density estimation experiment has been designed, where we have chosen three
multidimensional datasets from the UCI Repository of Machine Learning Databases
[13]. As in the previous experiment, we have optimized all the parameters of the five
competing models with disjoint training and validation sets. The parameters for the
density estimator of each dataset have been optimized separately. Table 2 shows the
results of the 10-fold cross-validation, with the winning models in bold. Our two
proposals show a superior performance.

Table 2. ANLL on test set (standard deviations in parentheses)

Dataset SmoothDist SmoothFuzzy OParzen MParzen MPPCA
auto-mpg 25.4 (0.8) 26.3 (2.4) 29.3 (3.8) 30.1 (3.7) 33.1 (1.7)

cloud 24.9 (0.7) 24.8 (0.6) 36.9 (3.5) 37.7 (3.5) 31.6 (1.0)
housing 25.7 (1.2) 24.9 (1.7) 31.2 (2.2) 32.1 (2.2) 43.4 (4.9)

5.3 Classification Experiment

We have selected three classification benchmarks from the UCI Repository of
Machine Learning Databases [13] to perform a classification experiment. We have
considered Bayesian classifiers which are built by estimating the probability density
function of each class separately. Then, a test pattern is assigned to the class which
yields the largest probability density. We have optimized the model parameters
separately, as in the previous experiment. In this case we have optimized the models
independently for each class of each database. The results of the 10-fold cross-
validation are shown in Table 3, and the winning model for each database is shown in
bold. We can see that our two approaches outperform the other three.

Table 3. Successful classification percentages on test set (standard deviations in parentheses)

Database SmoothDist SmoothFuzzy OParzen MParzen MPPCA
glass 69.2 (11.5) 66.7 (8.5) 63.0 (14.6) 64.0 (10.4) 46.4 (11.2)
liver 67.4 (5.9) 68.8 (7.2) 60.6 (7.9) 62.6 (7.8) 59.2 (10.9)
pima 69.9 (5.0) 61.6 (5.4) 66.0 (3.9) 62.0 (4.9) 62.9 (5.6)

6 Conclusions

We have presented a probability density estimation model. It is based in the Parzen
window approach. Our proposal builds local models for a hard neighbourhood of each
training sample. Then soft clusters are obtained by merging these local models. A
local Gaussian density is developed by selecting independently for each soft cluster
the best number of retained dimensions and the best estimation of noise variance. This

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

716 E. López-Rubio et al.

allows our method to represent input distributions more faithfully than the Manifold
Parzen window model, which is an improvement of the original Parzen window
method. Computational results show the superior performance of our method.

Acknowledgements

This work was partially supported by the Ministry of Education and Science of Spain
under Projects TIN2005-02984 and TIN2006-07362.

References

1. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford
(1995)

2. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall,
New York (1986)

3. Vapnik, V.N.: Statistical Learning Theory. John Wiley & Sons, New York (1998)
4. Izenman, A.J.: Recent developments in nonparametric density estimation. Journal of the

American Statistical Association 86(413), 205–224 (1991)
5. Lejeune, M., Sarda, P.: Smooth estimators of distribution and density functions.

Computational Statistics & Data Analysis 14, 457–471 (1992)
6. Hjort, N.L., Jones, M.C.: Locally Parametric Nonparametric Density Estimation. Annals of

Statistics 24(4), 1619–1647 (1996)
7. Hastie, T., Loader, C.: Local regression: Automatic kernel carpentry. Statistical Science 8,

120–143 (1993)
8. McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, Chichester (2000)
9. Parzen, E.: On the Estimation of a Probability Density Function and Mode. Annals of

Mathematical Statistics 33, 1065–1076 (1962)
10. Vincent, P., Bengio, Y.: Manifold Parzen Windows. Advances in Neural Information

Processing Systems 15, 825–832 (2003)
11. Bezdek, J.C.: Numerical taxonomy with fuzzysets. J. Math. Biol. 1, 57–71 (1974)
12. Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principal Components Analyzers.

Neural Computation 11, 443–482 (1999)
13. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning

databases. University of California, Department of Information and Computer Science,
Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Vector Field Approximation by Model Inclusive
Learning of Neural Networks

Yasuaki Kuroe1 and Hajimu Kawakami2

1 Department of Information Science, Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

kuroe@kit.ac.jp
2 Department of Electronics and Informatics, Ryukoku University

1-5, Yokotani, Ohe-cho, Seta, Ohtsu 520-21, Japan
kawakami@rins.ryukoku.ac.jp

Abstract. The problem of vector field approximation arises in the wide range of
fields such as motion control, computer vision and so on. This paper proposes a
method for reconstructing an entire continuous vector field from a sparse set of
sample data by training neural networks. In order to make approximation results
possess inherent properties of vector fields and to attain reasonable approxima-
tion accuracy with computational efficiency, we include a priori knowledge on
inherent properties of vector fields into the learning problem of neural networks,
which we call model inclusive learning. An efficient learning algorithm of neural
networks is derived. It is shown through numerical experiments that the proposed
method makes it possible to reconstruct vector fields accurately and efficiently.

1 Introduction

The problem of approximating a vector field arises in numerous problems in control,
instrumentation and signal processing areas. Typical examples are estimations of opti-
cal flow in computer vision, force fields in biological motor control, contact surfaces of
robot manipulators and velocity fields in quantitative flow visualization. They are all ap-
proximation problems of reconstructing an entire continuous vector field from a sparse
set of data (measured vectors data). In approximation problems, it becomes a problem
how to attain reasonable accuracy with reasonable computation efficiency. Furthermore
it is essentially important to make the approximation results possess inherent properties
of a target object. One promising method is to introduce a priori knowledge on an ob-
ject into the formulation of approximation problems. Along this line F. A. Mussa-Ivaldi
proposed a method for approximating a vector field [2]. He defines basis fields by using
derivatives of the Green functions and proposes a method to reconstruct a vector field
by superposition of the basis fields.

In this paper we propose a method for reconstructing an entire continuous vector
field from a sparse set of sample data by neural networks. In order to make approx-
imation results possess inherent properties of vector fields and attain reasonable ap-
proximation accuracy with computational efficiency, we include a priori knowledge on
inherent properties of vector fields into the learning problem of neural networks, which
we call model inclusive learning. We formulate the learning problem in such a way

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 717–726, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

718 Y. Kuroe and H. Kawakami

that the knowledge on vector fields, “any vector field is composed of the sum of two
vector fields: irrotational vector field and solenoidal vector field” is embedded into the
approximation problem. An efficient learning algorithm for the formulation is derived
in a systematic way by introducing the adjoint models of neural networks. In order to
check the performance of the proposed method numerical experiments have been done.
It is shown that the proposed method makes it possible to reconstruct vector fields more
accurately and efficiently.

2 Problem Formulation of Vector Field Approximation

For the purpose of simplicity, we consider a two dimensional vector field and discuss a
method for reconstructing its entire field from a set of sparse sample data. Let

F (x) :=
[
Fx(x)
Fy(x)

]

be a vector field considered in this paper. Here x = [x, y]T denotes a position on the
two dimensional plane. The problem is to reconstruct the vector field F (x) ∈ R

2 from
a given set of sample data {F (xp)} where xp denotes a sample point.

A usual and conventional method to solve this problem by neural networks is as
follows. Considering that F (x) is a nonlinear mapping with two inputs and two outputs,
we prepare a two-input and two-output neural network. The network is trained such that,
for a given set of sample data {F (xp)}, xp is fed to the input of the network and its
output comes close to the data F (xp). Figure 1 shows a block diagram of this learning
method. The backpropagation [1] is usually utilized in order to adjust the weights of the
neural network so as to minimize the square error:

∑

p

{(O1 − Fx(xp))2 + (O2 − Fy(xp))2}

where O1 and O2 are the outputs of the neural network.
Note that F (x) is not merely a nonlinear function but a vector field. If a priori knowl-

edge on inherent properties of vector fields can be embedded into the learning problem,
the approximation result can possess the inherent properties, and moreover approxima-
tion accuracy and learning efficiency can be improved. In this paper we propose a new
learning formulation of neural networks for reconstructing vector fields which we call
model inclusive learning. We formulate the learning problem in such a way that a model
of the knowledge on the inherent property of vector fields is included in the learning
loop of neural networks.

It is known that any vector field F (x) ∈ R
2 is composed of the sum of two vector

fields as follows.
F (x) = C(x) + S(x), x = [x, y]T (1)

where C(x) and S(x) are an irrotational vector field and a solenoidal vector field,
respectively, and satisfy the following relations.

curl(C) = ∇ × C(x) = 0, div(S) = ∇ · S(x) = 0 (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Vector Field Approximation by Model Inclusive Learning of Neural Networks 719

Here we introduce scalar functions U1(x) and U2(x), and express the vector fields
C(x) and S(x) as follows.

C(x) = α∇U1(x), S(x) =
(

0 β
−β 0

)

∇U2(x) (3)

where α and β are scalars. Since the above equation (3) satisfies eq.(2), the vector field
F (x) can be expressed by using the scalar functions U1(x) and U1(x) as follows.

F (x) = C(x) + S(x) =

⎡

⎢
⎣

α
∂U1(x)

∂x
+ β

∂U2(x)
∂y

α
∂U1(x)

∂y
− β

∂U1(x)
∂x

⎤

⎥
⎦ =:

[
Fx(x)
Fy(x)

]

(4)

Considering the relation (4), we now give a new learning formulation for reconstructing
vector fields by neural networks. We formulate the learning problem in such a way that
a neural network reconstructs the vector field F (x) with the relation (4) being satisfied.
For this purpose we train the neural network such that the vector field F (x) itself is not
realized on the neural network as is in the conventional method (Fig. 1), but the scalar
functions U1(x) and U2(x) satisfying the relation (4) are realized on the network as its
input-output relation. Figure 2 shows a block diagram of the proposed model-inclusive
learning method.

x

NN

F(x) Fx (x)
y

+

–

–
+

Learning Algorithm

Fy(x)

Fig. 1. Conventional learning method of vector
fields

x

NN

F(x)y

O1

O2

1
Calculate

∂O
∂I

∂I
∂O2

β
β

α
α

Learning Algorithm

+ +

+
+

+

–
–

–

Fx (x)
Fy (x)

1

Fig. 2. Proposed model-inclusive learning
method of vector fields

We prepare a neural network with two inputs denoted by I = [I1, I2]T and two
outputs denoted by O = [O1, O2]T . For a set of sample data {F (xp)} = {[Fx(xp),
lFy(xp)]T }, the network is given the position data xp = [xp, yp]T as input data (I =
xp) and is trained such that the outputs O1 and O2 come close to U1(xp) and U2(xp)
satisfying the relation (4), respectively. This can be realized in the following manner. We
input the position data xp = [xp, yp]T to the neural network and derive the derivatives
of the output of the neural network with respect to the input:

∂Ok

∂I

∣
∣
∣
∣
I=xp

=

[
∂Ok

∂I1

∣
∣
∣
∣
I1=xp

,
∂Ok

∂I2

∣
∣
∣
∣
I2=yp

]T

, (k = 1, 2).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

720 Y. Kuroe and H. Kawakami

According to eq.(4), their linear combination

(

α
∂O1

∂I1

∣
∣
∣
∣
I1=xp

+ β
∂O2

∂I2

∣
∣
∣
∣
I2=yp

, α
∂O1

∂I2

∣
∣
∣
∣
I2=yp

− β
∂O2

∂I1

∣
∣
∣
∣
I1=xp

)T

is calculated and the result is compared with the given vector data F (xp) = [Fx(xp),
Fy(xp)]T . The neural network is trained so as to minimize the error between them.
Define the performance index by

J =
1
2

∑

p

⎧
⎨

⎩

{(

α
∂O1

∂I1

∣
∣
∣
∣
I1=xp

+ β
∂O2

∂I2

∣
∣
∣
∣
I2=yp

)

− Fx(xp)

}2

+

{(

α
∂O1

∂I2

∣
∣
∣
∣
I2=yp

− β
∂O2

∂I1

∣
∣
∣
∣
I1=xp

)

− Fy(xp)

}2
⎫
⎬

⎭
(5)

where
∑

p stands for the summation with respect to the set of data. By minimizing the
performance of index thus introduced, the scalar functions U1(x) and U2(x) satisfying
eq.(4) are realized on the neural network. As the result an approximation of the vector
field F (x) is obtained. Thus the problem is reduced to finding the parameters of the
neural network which minimize J . Note that, since the parameters α and β in eq.(4)
are not known a prior, we choose not only weights of connections wij but also α and
β as the learning parameters. In order to search the values of the learning parameters
which minimize J , we use gradient based methods, in which several useful algorithms
are available: the steepest decent algorithm, the conjugate gradient algorithm, the quasi-
Newton algorithm and so on. For instance, the steepest decent algorithm is given by the
following iteration.

w(l+1) = w(l) − η
∂J

∂w(l) (6)

where w = [ωij , α, β]T , l is the iteration number and η > 0 is a learning rate. In gra-
dient based algorithms, it becomes a key how to compute the gradients of performance
index, ∂J/∂wij , ∂J/∂α, and ∂J/∂β efficiently and accurately. In order to derive an
algorithm for computing them in a systematic manner, the adjoint models of the neural
network is introduced.

3 Models of Neural Network and Its Adjoint

We consider a general class of neural networks, arbitrarily connected neural networks,
for the purpose of generality. In order to derive an algorithm in a systematic manner,
the adjoint neural network [3],[4] is introduced. First we give the mathematical models
of the neural network and its adjoint.

We consider the neural network denoted by N as shown in Fig.3. The network com-
prises Nu neuron units, which are arbitrarily connected, two external inputs I�(� = 1, 2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Vector Field Approximation by Model Inclusive Learning of Neural Networks 721

and two external outputs Ok(k = 1, 2). The mathematical model of the neural network
N is given by

ui =
Nu∑

j=1

wijyj +
2∑

�=1

δI
�iI�, yi = f(ui), Ok =

Nu∑

j=1

δO
kjyj,

i = 1, 2, · · · , Nu, k = 1, 2 (7)

where ui and yi are the total input value and the output of the i-th neuron, respectively,
and wij is the weight from the j-th neuron to the i-th neuron, f(·) is a nonlinear output
function such as sigmoidal functions, and δI

�i and δO
kj take values 1 or 0. If the �-th

external input is connected to the i-th neuron, δI
�i = 1, otherwise δI

�i = 0. If the output
of the j-th neuron is connected to the k-th external output, δO

kj = 1, otherwise δO
kj = 0.

The adjoint neural network denoted by N̂ is derived in the following manner as
shown in Fig.4. The directions of all signal arrows in the neural network N are inverted
and the external inputs I are replaced by the external outputs Î , the external output O
is replaced by the external inputs Ô, the branching points are replaced by the summing
points vice versa, and all the elements are replaced by the elements with the same
characteristics except that nonlinear elements are replaced by their linearized elements.
The mathematical model of the adjoint neural network is given by

 O I

 O1 I1

 I2 O2

 ∑

 ∑ ∑

L K

Fig. 3. Neural Network N (L = 2, K = 2)

ˆ I 1

ˆ I

ˆ O 1

ˆ O

ˆ I 2

ˆ O 2

 ∑

 ∑ ∑

KL

Fig. 4. Adjoint Neural Network N̂ (L =
2, K = 2)

ŷi =
Nu∑

j=1

wjiûj +
2∑

k=1

δO
kiÔk, ûi =

∂f

∂ui
ŷi, Î� =

Nu∑

j=1

δI
�j ûj,

i = 1, 2, · · · , Nu, � = 1, 2 (8)

where the variables with ˆ denote the variables of the adjoint model corresponding to
those of the neural network N .

4 Learning Method

It can be proved that the relation like the Tellegen’s theorem in electric circuits holds
between the variables in the neural network and its adjoint. We call it the extended
Tellegen’s theorem [3]. The learning algorithm can be derived by using this theorem.
Its derivation in detail is omitted because of the limitation of the space, only the result
is shown here.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

722 Y. Kuroe and H. Kawakami

4.1 Derivation of ∂O/∂I

In our problem formulation of learning vector fields as shown in Fig.4, the first thing to
do is to evaluate the derivatives of the output of the neural network with respect to the
input ∂O/∂I. For this purpose, we input the position data to the external inputs of the
neural network, I = xp, and construct the corresponding adjoint neural network given
by eq.(8). In order to obtain ∂O1/∂I we specify the external inputs Ô of the adjoint
neural network N̂ as:

[Ô1, Ô2]T = [1, 0]T . (9)

We denote the adjoint network N̂ with the external input given by eq.(9) by N̂1. It
can be shown by using the extended Tellegen’s theorem that ∂O1/∂I� (� = 1, 2) are
obtained from the external output of N̂1 as:

[
∂O1

∂I1

∣
∣
∣
∣
I1=xp

,
∂O1

∂I2

∣
∣
∣
∣
I2=yp

]T

=
[
Î1
1 , Î1

2

]T

. (10)

In order to obtain ∂O2/∂I we specify the external inputs Ô of the adjoint neural net-
work N̂ as:

[Ô1, Ô2]T = [0, 1]T . (11)

We denote the adjoint network N̂ with the external input given by eq.(11) by N̂2.
∂O2/∂I� (� = 1, 2) are obtained from the external output of N̂2 as follows:

[
∂O2

∂I1

∣
∣
∣
∣
I1=xp

,
∂O2

∂I2

∣
∣
∣
∣
I2=yp

]T

=
[
Î2
1 , Î2

2

]T

. (12)

4.2 Derivation of the Gradients ∂J/∂wij , ∂J/∂α and ∂J/∂β

We now show a method for computing the gradients ∂J/∂wij , ∂J/∂α and ∂J/∂β. For
this purpose the additional three types of networks, denoted by N ′k, N ′′ and N̂ ′′ are
introduced. The network N ′k (k = 1, 2) is defined as the adjoint of the network N̂k

(k = 1, 2) and constructed by the same procedure as the network N̂ is constructed from
N . The mathematical model of N ′k is given by

u′k
i =

Nu∑

j=1

wijy
′k
j +

2∑

�=1

δI
�iI

′k
� , y′k

i =
∂f

∂ui
y′k

i , O′k
m =

Nu∑

j=1

δO
mjy

′k
j ,

i = 1, 2, · · · , Nu, m = 1, 2, (13)

Note that the external output Î
k

of N̂k is replaced by the external input I ′k of N ′k. We
give the external inputs I ′k of the network N ′k as follows. By using the derivatives of
the output of the neural network with respect to the input, ∂Ok/∂I (k = 1, 2), which
are obtained in the previous subsection, their linear combination

(

α
∂O1

∂I1

∣
∣
∣
∣
I1=xp

+ β
∂O2

∂I2

∣
∣
∣
∣
I2=yp

, α
∂O1

∂I2

∣
∣
∣
∣
I2=yp

− β
∂O2

∂I1

∣
∣
∣
∣
I1=xp

)T

= (αÎ1
1 + βÎ2

2 , αÎ1
2 − βÎ2

1)T

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Vector Field Approximation by Model Inclusive Learning of Neural Networks 723

is calculated according to eq.(4). The results are corresponding to an approximation of
the given data F (xp) = [Fx(xp), Fy(xp)]T of the vector field. Then we calculate the
errors between them and give the external inputs of the networks N ′1 and N ′2:

I ′11 = α
{(

αÎ1
1 + βÎ2

2

)
− Fx(xp)

}
, I ′12 = α

{(
αÎ1

2 − βÎ2
1

)
− Fy(xp)

}
(14)

I ′21 = −β
{(

αÎ1
2 − βÎ2

1

)
− Fy(xp)

}
, I ′22 = β

{(
αÎ1

1 + βÎ2
2

)
− Fx(xp)

}
. (15)

The network N ′′ is defined to be just the same network as the original neural network
N except that the number of the external outputs O′′

j in N ′′ is Nu and given by

O′′
i = ui, i = 1, 2, · · · , Nu. (16)

The network N̂ ′′ is defined as the adjoint of the network N ′′. The mathematical model
of N̂ ′′ is given by

ŷ′′
i =

Nu∑

j=1

wjiû
′′
j , û′′

i =
∂f

∂ui
ŷ′′

i + Ô′′
i , Î ′′� =

Nu∑

j=1

δI
�jû

′′
j ,

i = 1, 2, · · · , Nu, � = 1, 2. (17)

Note that the external output O′′ of N ′′ is replaced by the external input Ô′′ of N̂ ′′. We
give the inputs of the network N̂ ′′ by using the signals in the networks N ′k and N̂k as
follows.

Ô′′k
i =

∂2f

∂u2
i

ŷk
i u′k

i , i = 1, 2, · · · , Nu (18)

The network N̂ ′′ with the external input eq.(18) is denoted by N̂ ′′k. The extended Tel-
legen’s theorem brings that ∂J/∂wij can be evaluated by using the variables of the
networks N , N̂k, N ′k and N̂ ′′k as follows.

∂J

∂wij
=
∑

p

2∑

k=1

(ûk
i y′k

j + yj û
′′k
i) (19)

Furthermore the gradients of the performance index J with respect to the parameters α
and β are obtained by using the external outputs of the adjoint network N̂k as follows.

∂J

∂α
=
∑

p

{
{(αÎ1

1 + βÎ2
2) − Fx(xp)}Î1

1 + {(αÎ1
2 − βÎ2

1) − Fy(xp)}Î1
2

}
(20)

∂J

∂β
=
∑

p

{
{(αÎ1

1 + βÎ2
2) − Fx(xp)}Î2

2 − {(αÎ1
2 − βÎ2

1) − Fy(xp)}Î2
1

}
(21)

By using the gradients of the performance index J , a gradient-based learning itera-
tion can be performed. Note that the approximation of the target vector field F (x) =
[Fx(x), Fy(x)]T is obtained by [αÎ1

1 + βÎ2
2 , αÎ1

2 − βÎ2
1]T after the learning iteration

converges.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

724 Y. Kuroe and H. Kawakami

5 Numerical Experiments

In this section we show some results of the numerical experiments in order to demon-
strate the performance of the proposed method. In the following examples we use a
three-layer feedforward neural network with 5 hidden units and the Davidon-Fletcher-
Powell method [5] to search values of the parameters which minimize J .

5.1 Example 1

First we consider the vector field shown in Fig.5 as a target vector field. We reconstruct
the vector field from the set of data consisting of 10 sample points shown in Fig.6. By

Y
-
a
x
i
s

X-axis

"Vectors"
"Start_points"

Fig. 5. Target vector field

Y
-
a
x
i
s

X-axis

"Sample_Vectors"
"Sample_Points"

Fig. 6. Sampled vector data

changing the initial values of the learning parameters randomly, learning experiments
were carried out over 20 times by using the proposed method. For the purpose of com-
parison the experiments by using the conventional learning method shown in Fig.1 are
also carried out. Figure 7 shows an example of the convergence behavior of the pro-
posed learning method. In the figure the variation of the performance index J versus
the number of the learning iterations is plotted. Figures 8 and 9 show the reconstructed
vector fields by the proposed method and the conventional method, respectively. By
comparing Figs.8 and 9 with Fig.5, it is seen that the result obtained by the proposed
method achieves more approximation accuracy with reflecting the smoothness of the
target vector field than that by the conventional method. In particular, in the left part
of the reconstructed vector field obtained by the conventional method, approximation
accuracy deteriorates.

Table 1 summarizes the approximation accuracy of both the learning methods. The
approximation accuracy is estimated by calculating the mean square errors of vec-
tor components and the vector directions. It is observed that the proposed learning
method can reconstruct the vector field more accurately, in particular, in vector
directions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Vector Field Approximation by Model Inclusive Learning of Neural Networks 725

0.1

1

10

100

0 100 200 300 400 500 600 700 800 900 1000

"OBJ.DAT"

Fig. 7. Values of the performance index during the learning iteration

Y
-
a
x
i
s

X-axis

"Vectors"
"Start_points"

Fig. 8. Reconstructed vector field by the pro-
posed method

Y
-
a
x
i
s

X-axis

"Vectors"
"Start_points"

Fig. 9. Reconstructed vector field by the con-
ventional method

5.2 Example 2

The proposed learning method can be applied to a shape recovering problem of a three
dimensional object with smooth surface. The problem is to reconstruct the whole sur-
face shape from a given set of data of the surface gradient vectors. This problem can be
solved by using the proposed learning method with letting the parameters β = 0 and the
obtained scalar function U1(x) corresponds to the recovered surface. Figure 10 shows
example data of the surface gradient vectors of an object for the experiment. From this

Table 1. Summary of approximation accuracy

Proposed method Conventional method

Vector Component
Vector Direction

[rad]
Vector Component

Vector Direction
[rad]

Mean square error
(average)

5.5851 × 10−1 1.6662 × 10−1 2.8377 2.9134 × 10−1

Mean square error
(best)

3.0789 × 10−1 9.7027 × 10−2 3.6610 × 10−1 1.2233 × 10−1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

726 Y. Kuroe and H. Kawakami

X-axis

"Vectors"
"Start_points"

Fig. 10. Example data of the surface gradi-
ent vectors

-1.5

-1

-0.5

0

0.5

1

1.5

X-axis

Y-axis

Output

Fig. 11. Recovered Surface

data we recover the surface shape by using the proposed learning method. The obtained
result is shown in Fig.11 in which the solid line is the target surface and the dashed line
is the recovered surface and their contour lines are also shown. It is observed that the
recovered surface agrees with its target well.

6 Conclusion

In this paper a method of approximating a vector field from a sparse set of sample data
by training neural networks was discussed. We proposed a model inclusive learning of
neural networks for approximating vector fields, in which the model of the inherent
property of vector fields, “any vector field is composed of the sum of two vector fields,
irrotational vector field and solenoidal vector field” is included into the problem for-
mulation. The proposed method makes it possible to easily extract the component of
irrotational vector field and that of solenoidal vector field from the resultant approxi-
mation of a target vector field.

We derived an efficient learning algorithm for the proposed formulation in a systematic
way by introducing the adjoint model of neural networks. It should be stressed that the
proposed learning algorithm is general and is easily implemented because all the steps of
the algorithm is represented in terms of solving some networks with the same topology.

References

1. Rumelharlt, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representation by Error
Backpropagation. In: Parallel Distributed Processing, vol. 1, MIT Press, Cambridge (1986)

2. Mussa-Ivaldi, F.A.: From basis functions to basis fields: vector field approximation from
sparse data. Biological Cybernetics 67, 479–489 (1992)

3. Saehan, S., Iwagami, T., Kuroe, Y.: Learning Algorithm in Neural Networks Based on Adjoint
Neuron Model Technical. Report. of IEICE, NC 90-30, pp. 1–9 (1989)

4. Kuroe, Y., Nakai, Y., Mori, T.: ‘A Learning Method of Nonlinear Mappings by Neural Networks
with Considering Their Derivatives. In: Proc. IJCNN, Nagoya,Japan, pp. 528–531 (1993)

5. Luenberger, D.G.: Introduction to Linear and Nonlinear Programming, pp. 194–197. Addison-
Wesley, Reading (1973)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spectral Measures for Kernel Matrices

Comparison

Javier González and Alberto Muñoz

Universidad Carlos III de Madrid, c/ Madrid 126, 28903 Getafe, Spain
{javier.gonzalez,alberto.munoz}@uc3m.es

Abstract. With the emergence of data fusion techniques (kernel combi-
nations, ensemble methods and boosting algorithms), the task of compar-
ing distance/similarity/kernel matrices is becoming increasingly
relevant. However, the choice of an appropriate metric for matrices in-
volved in pattern recognition problems is far from trivial.

In this work we propose a general spectral framework to build met-
rics for matrix spaces. Within the general framework of matrix pencils,
we propose a new metric for symmetric and semi-positive definite ma-
trices, called Pencil Distance (PD). The generality of our approach is
demonstrated by showing that the Kernel Alignment (KA) measure is a
particular case of our spectral approach.

We illustrate the performance of the proposed measures using some
classification problems.

Keywords: Kernel Matrix, Kernel Alignment, Procrustes, Simultaneous
Diagonalization.

1 Introduction

In this work we propose a general spectral framework to build metrics to compare
distance/similarity/kernel matrices. Increasingly interest has focused in the last
years in the development of pattern recognition techniques that make use of
several sources of information [9,8]. In this context, the comparison of matrices
involved in pattern recognition is a key issue.

However, the choice of an appropriate metric for matrices is conditioned by
the particular problem under study. For instance, consider the problem of kernel
combination in the context of Support Vector Machine (SVM) classification [11].
In [9,10] the authors propose several SVM kernels following the expression K =
1
M

∑M
i=1 Ki + f(K1, K2, . . . , KM , y), where y is a vector containing the labels of

the data points, and Km are the kernel matrices to be combined (Km(i, j) =
Km(xi, xj), where xi, xj ∈ X , the sample). The function f depends on the
differences of information among the Ki kernels. Thus, a metric to quantify such
kernel matrices differences is needed. A concrete example arises when a set of
web pages has to be classified [7]. In a case like this, the co-citation matrix and
the terms by document matrix convey complementary information and should
be combined. We need to quantify the common information between the two

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 727–736, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

728 J. González and A. Muñoz

matrices in order to build an appropriate metric for this case that eliminates the
existing redundancy.

The use of standard metrics inherited from Euclidean geometry may not be
appropiate for many pattern recognition (PR) problems. For instance, consider
a isometry in IRn, given by a matrix A. Let K a kernel matrix evaluated on a
finite data set. K transforms under A as K ′ = AKA−1. In this case d(K, K ′) =
‖K − K ′‖ �= 0, but since we have simply performed a change of basis d(K, K ′)
should equal 0.

The use of eigenvalues tends to avoid these problems because the spectrum of
a matrix is invariant under many common transformations in PR. An example is
the Spectral Norm [4]. Given two kernels K1 and K2, then d(K1, K2) is given
by

d(K1, K2) =
√

λ1
max(K1, K2) (1)

where λ1
max(K1, K2) represents the largest eigenvalue of K1 − K2. In addition,

even the well known Frobenius (Euclidean) norm can be bounded in terms of
the eigenvalues of the involved matrices [12].

The usual similarity 1 measure for kernel matrices is the Kernel Alignment
(KA) [2]. It can be interpreted as a measure of linear relationship between the
corresponding kernel matrices. Given two kernel matrices K1 and K2 evaluated
on the sample X , the empirical alignment is defined as

A(K1, K2) =
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F

. (2)

where 〈K1, K2〉F =
∑

i,j K1(i, j)K2(i, j) represents the Frobenius product. This
measure has several interesting properties and it has been used to optimize linear
kernels combinations [7].

In this paper we study a new methodology for kernel comparison through the
use of simultaneous diagonalization. This tool allows us to represent two or more
kernels in the same base and go for new metric definitions.

This paper is organized as follows. In Section 2 a new kernel distance based
on the simultaneous diagonalization of matrices is proposed. In Section 3 we
show how the Kernel Alignment can be expressed in terms of the spectrum of
the involved kernels. Section 4 illustrates how to use the spectral approach to
detect redundant information between kernels. Finally, Section 5 concludes with
some experimental results.

2 Pencil Distance

In this section we work with generalized eigenvalues. Given two matrices A and
B, the generalized eigenvalues are the roots of the polynomial det(A − λB) = 0
(while the eigenvalues of A are the roots of det(A − λI) = 0).

1 In the rest of the paper we will deal both with distance and dissimilarity measures.
It is immediate to transform a distance into a similarity and conversely.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spectral Measures for Kernel Matrices Comparison 729

Next we afford the task of diagonalizing two kernels in the same base of
vectors. The resulting eigenvalues will be used to define a new kernel distance
measure.

2.1 Kernel Matrix Pencils

Definition 1. Given two matrices A and B, the matrix-valued function L(λ) =
A − λB is called matrix pencil. The Pencil is represented through the pair
(A, B).

Definition 2. A pencil (A, B) is called definite pencil if the matrices A and
B are symmetric and positive definite.

Any kernel matrix K can be expressed by K =
∑

i diviv
T
i where vi are its eigen-

vectors and di are the corresponding eigenvalues. The equivalent process in pencil
theory is simultaneous diagonalization. Since any matrix kernel is both symmet-
ric and definite positive, (K1, K2) is a definite pencil. The following theorem
ensures the existence of bases in which both kernels diagonalize.

Theorem 1. [13] Let be (K1, K1) a definite pencil. then there is a nonsingular
matrix V such that the matrices A and B can be simultaneously diagonalized.

V T K1V = Λ
V T K2V = Σ (3)

being Λ = diag(λ1, ..., λn), Σ = diag(σ1, ..., σn) and where the generalized eigen-
values λi/σi are real and finite.

Thus the diagonalized versions of K1 and K2 are, respectively, K ′
1 = Λ and K ′

2 =
Σ. Notice that the base of vectors given by the columns of V is not necessarily
orthonormal. This base is not unique but the values λi/σi are invariant under
the choice of the diagonalization basis. In many real applications it is interesting
to perform simultaneous diagonalization for Σ = I [3]. Several algorithms have
been proposed for this case [6]. To solve the equation K1v = λK2v for λ we
will calculate the eigenvalues of K−1

2 K1v = λv. As we show in this section, only
pencil eigenvalues are needed to build kernel metrics.

2.2 A Pencil Distance (PD) Measure for Matrices

The new similarity kernel measure is based on the generalized eigenvalues of the
pencil (K1, K2). Since K1 and K2 are interchangeable, the measure should be
invariant to the order. In our case Σ = Id, and we have λi/σi = λi. It is clear
that, if the order of the matrices in the pencil changes, the corresponding new
eigenvalues become 1/λi. For this reason, any measure based on the numbers
λ1, ..., λr should be invariant under reciprocication of the eigenvalues. Then, the
values to consider are λ∗

i = 1+λi√
1+λ2

i

, where we use the notation λ∗
i = (1/λi)∗.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

730 J. González and A. Muñoz

Once K1 and K2 are expressed in the same base, we can define a a kernel
distance in terms of the generalized eigenvalues:

PD(K1, K2) =
r∑

i=1

(
λ∗

i − 2/
√

2
)2

, (4)

where r is the number of different from zero generalized eigenvalues. This Pencil
Distance is equivalent to ‖Λ − I‖F once the correction under reciprocication
has been applied to the diagonal matrices Λ and I.

3 Kernel Alignment Is a Spectral Similarity

Consider the spectral decomposition of K1 and K2:

K1 = UD1U
T = UD

1/2
1 D

1/2
1 UT = U∗(U∗)T

K2 = V D2V
T = V D

1/2
2 D

1/2
2 V T = V ∗(V ∗)T .

(5)

where U∗ = UD
1/2
1 and V ∗ = V D

1/2
2 . Canonical Correlations [5] can be applied

in order to estimate the degree of similarity of U∗ and V ∗. This procedure
calculates the angles between the spaces respectively generated by the columns
of U∗ and V ∗ by searching for maximal linear correlations over combinations of
the variables. Unfortunately, if both kernels are full rank, the spanned spaces are
the same and differences cannot be found. Nevertheless, the technique can be
generalized calculating the sum of the cross correlations among the variables of
the two basis. This can be done with the squared Frobenius norm of the matrix
(U∗)T V ∗. Normalizing and rewriting in terms of the original decompositions we
can define the following spectral similarity:

S1(K1, K2) =
‖D

1/2
1 UT V D

1/2
2 ‖2

F

‖D1‖F ‖D2‖F
(6)

Proposition 1. The kernel alignment is equivalent to the S1 measure.

Proof. Let K1 = UD1U
T and K2 = V D2V

T . Then:

S1(K1, K2) =
‖D

1/2
1 UT V D

1/2
2 ‖2

F

‖D1‖F ‖D2‖F
=

∑
ij λiμj 〈ui, vj〉2F

√∑
i λ2

i

√∑
j μ2

j

=

∑
ij λiμj 〈ui, vj〉2F

√∑
i λiλj 〈ui, uj〉

√∑
j μiμj 〈vi, vj〉

=

〈∑
i λiuiu

T
i ,

∑
j μjvjv

T
j

〉

√∑
i λiλj

〈
uiuT

i , ujuT
j

〉√∑
j μiμj

〈
vivT

i , vjvT
j

〉

=
〈K1, K2〉F√

〈K1, K1〉F 〈K2, K2〉F

= A(K1, K2)

(7)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spectral Measures for Kernel Matrices Comparison 731

4 Analysis of Kernel Redundances Based on Simultaneous
Diagonalization

In Data Fusion is essential to work with procedures that eliminates redundant
information when two or more sources of information have to be combined.
Simultaneous Diagonalization and Joint Diagonalization (in the case of more
than two kernels) provide a theoretical framework for this purpose.

Working with Matrix Pencils involves the computation of a base on vectors in
which both kernels diagonalize and more information about the problem can be
obtained. The use of kernel matrices eigenvalues has proven to be useful for the
definitions of kernel distances. Eigenvalues can also be used to obtain information
about the data set of variables. For instance, in Principal Component Analysis
(PCA) a diagonalization of the covariance matrix is performed in order to obtain
more representative components of the data. In this case, the eigenvalues can be
interpreted as a the weights of the new variables.

A detailed analysis of the kernels redundancy can be done. The diagonalization
of K1 and K2, produces two matrices Λ = V T K1V and Σ = V T K2V . In this
analysis, V = {v1, ..., vn} is the new base where both kernels diagonalize. The
components of matrices Λ = diag(λ1, ..., λn) and Σ = diag(σ1, ..., σn) can be
interpreted, generalizing the previous PCA example:

– λi = 0 and σi = 0: the vector vi is irrelevant to both kernels structures. That
is, the i-th variable is in the null space of both K1 and K2.

– λi = 0 and σi �= 0: in this case vi is in the null space of K1 but it is a
relevant component for K2. Similar considerations apply for the case λi �= 0
and σi = 0.

– λi �= and σi �= 0: here vi is a variable of the new base relevant for both
kernels. The generalized eigenvalue λi/σi measures relative weight that the
metric induced by K1 gives to the i-th variable in relation to K2 when using
the common base to express the data points.

5 Experiments

In this section we study the validity of the spectral approach in two ways. First,
we show that the Pencil Distance performs as good as the kernel alignment in
an illustrative example where the behaviour of the kernels in terms of the data
structure is known. In a second example, an analysis of redundant information
in kernels is performed applying simultaneous diagonalization.

5.1 Body Mass Index (BMI) Example

The Body Mass Index (BMI) is a corporal index based on the weight and height
of persons. It is a fast and inexpensive method for the assesment of overweight
given by weight/height2 (using kilograms and meters). The BMI induces the
following taxonomy in human beings:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

732 J. González and A. Muñoz

– Below 20: Underweight.
– 20-25: Normal.
– Above-30: Overweight.

In this experiment we consider a sample of 150 data with three apparent
clusters. The BMI averages for each cluster are, respectively, 18, 22.5 and 28.5
(see Figure 1).

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

1.5 1.6 1.7 1.8 1.9 2.0

50
60

70
80

90
10

0
11

0

height(m)

w
ei

gt
h(

K
g)

Fig. 1. Body Mass Index example data

For the present case, six representations of the data are used. They are sum-
marized in Table 1. The goal of this experiment is to compare the mesures PD
and KA = S1 in a case in which six linear kernels K1, ..., K6 were calculated ac-
cording the representations of Table 1 (Figure 1 corresponds to K2). The example
is favorable for the use of KA, because only linear transformations are involved
and KA, being a correlation measure, is invariant under linear transformations.

Table 1. Six different representations of the data

Representation Variables units
1 (weigth, heigth) kilos(normalized), meters(normalized)
2 (weigth, heigth) kilos, meters
3 (weigth, heigth) grams, meters
4 (weigth, heigth) grams, centimeters
5 (weigth, heigth) Mahalanobis transformation
6 MBI = kg/m2 None

In this example, the reference kernel is assumed to be the one calculated with
the BMI because it perfectly evidences the cluster structure of the data. In other
words, some representations on Table 1 may be affected by the choice of the units,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spectral Measures for Kernel Matrices Comparison 733

but the BMI is independent of the unit scaling. In order to estimate the similarity
between the kernels K1, ..., K5 with K6, a k-means algorithm (k = 3) was ap-
plied to the six data representations. After clustering, the number of points that
were missclassified with respect to taxonomy induced by K6 is summarized in
Table 2.

Table 2. Missclassified points for the six kernel representations with respect to the
three true clusters calculated using the BMI

Kernel 1 2 3 4 5 6
Errors 60 29 98 29 0 0

Based on Table 2, the ranking of kernels (regarding their similarity to K6),
should be (begining with the most similar) K5 → (K4 = K2) → K1 → K3 in
decreasing order. Given that the measures involved in the kernels calculations
are not bounded, it is convenient to perform some previous normalization. Thus
we produce two standarized versions for each kernel Ki, i = 1, ..., 6 given by:

KA
i (x,y) =

Ki(x,y) − min(Ki(x,y))
max(Ki(x,y)) − min(Ki(x,y))

(8)

KB
i (x,y) =

Ki(x,y)
√

Ki(x,x)
√

Ki(y,y)
(9)

Results of the experiment are shown in Table 3. It is clear that, kernel align-
ment and PD are equivalent. Since KA is a similarity and PD a distance, the
corresponding values of the table should be interpreted in a diferent way: Kernels
close to K6 should show large values for the alignment and small values for the
PD.

Table 3. Results for the three measures over the battery of 6 kernels with respect to
K6. Two normalization were applied to the kernels.

Norm. Measure K1 K2 K3 K4 K5 K6

A KA 0.961 0.973 0.940 0.973 0.993 1.000
PD 0.049 0.011 0.159 0.011 0.000 0.000

B KA 0.395 0.259 0.007 0.256 0.741 1.000
PD 0.030 0.038 0.119 0.038 0.001 0.000

In order to show graphically the concordance of the results for alignment and
PD, Figure 2 shows a scatterplot of the values for each kernel. The relationship
is non linear but it is always decreasing, just as one should expect for this
example. Thus, we can concluded that DP performs as well as KA, the best
available measure for this particular example.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

734 J. González and A. Muñoz

0.94 0.95 0.96 0.97 0.98 0.99 1.00

0.
00

0.
05

0.
10

0.
15

alignment

m
ea

ss
ur

e

K1

K2, K4

K3

K5 K6

Fig. 2. Scatterplot of the alignment and the new measure for the six kernels. This
representation corresponds to first method of normalization 1.

5.2 Example 2

In order to validate the effectiveness of the simultaneous diagonalization detect-
ing possible redundancies among kernels, the following experiment was devel-
oped. Consider a data base with 5 observations and three orthogonal variables
x1, x2 and x3. Let K1, K2 and K3 be three linear kernels calculated using the
variable sets {x1}, {x1, x2} and {x2, x3} respectively. Notice that in this example
K1 and K3 are based on independent variable sets while K2 and K3 share the
variable x2.

The goal of this experiment is to show the utility of the spectral approach (via
simultaneous diagonalization) to detect the redundances when using the kernel
battery {K1, K2, K3}. First, we perform simultaneous diagonalization with K1
and K2. This produces a common base of eigenvectors V = {v1, v2, v3, v4, v5}
and two diagonal matrices D1 = Σ = diag(11.58, 0, 0, 0, 0) and D2 = Λ =
diag(0, 0, 0, 3.33, 1.19), where span{v1, v4, v5} = span{x1, x2, x3}. Let K be the
kernel defined by K = V T (D1 + D2)V = K1 + K2. Then K is the linear kernel
calculated using the whole variable set {x1, x2, x3}, and is the (direct sum) of
K1 and K2, as one can expect because there is no redundancy.

Now consider the diagonalization with kernels K2 and K3 where the variable
x2 is present in both kernels. The new diagonal matrices are D′

1 = diag(11.58, 0,
0.33, 0, 0) and D2 = diag(0, 0, 0.33, 0, 1.19). In this new diagonalization neither
the base V of eigenvectors nor D2 change. Now K1 + K2 does not match the
original K because K1 + K2 gives variable v3 twice its weight (the sum doubles
the eigenvalue). A general expresion for recovering K from the information in
this example is K∗ = V T D∗V where D∗ is a diagonal matrix such that di,i =
max(λi, σi). This expression makes K = K∗ and includes the previous example
as a particular case, allowing for a new framework for data fusion, that will be
studied in the next future.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spectral Measures for Kernel Matrices Comparison 735

6 Conclusions and Future Work

In this paper we propose an spectral framework for the definition of metrics for
matrix spaces. We propose a new Pencil Distance (PD) based on the simulta-
neous diagonalization of kernel matrices. The new measure is easy to calculate
and is proven to be consistent with the Kernel Alignment in a significant exam-
ple. In addition, simultaneous diagonalization is used for the task of detecting
redundant information in data fusion. Given two kernels, redundancies can be
detected through the use eigenvalues and the composition of better kernels is
possible. Future work will include the use of the ideas of this paper to define an
algebra of kernels, where operations such as sum and difference of kernels can
be defined in order to define new kernel combination techniques in the context
of classification problems.

Acknowledgments

This work was partially supported by Spanish Goverment grants 2006-03563-001,
2004-02934-001/002 and Madrid Goverment grant 2007-04084-001.

References

1. Bach, F.R., Jordan, M.I.: Kernel Principal Components Analysis. Journal of Ma-
chine Learning Research 3, 1–48 (2002)

2. Cristianini, N., Shawe-Taylor, J.: On the Kernel Target Alignment. Journal of
Machine Learning Research 5, 27–72 (2002)

3. Epifanio, I., Gutierrez, J., Malo, J.: Linear transform for simultaneous diagonaliza-
tion of covariance and perceptual metric matrix in image coding. Pattern Recog-
nition 36, 799–1811 (2003)

4. Golub, G., Loan, C.V.: Matrix Computations. University Press, Baltimore (1997)
5. Hotelling, H.: Relation between two Sets of Variables. Biometrika 28, 32177 (1936)

6. Hua, Y.: On SVD estimating Generalized Eigenvalues of Singular Matrix Pencils
in Noise. IEEE Transactions on Signal Processing 39(4), 892–900 (1991)

7. Joachims, T., Cristianini, N., Shawe-Taylor, J.: Composite Kernels for Hipertext
Categorisasion. In: Proceedings of the International Conference of Machine Learn-
ing, pp. 250–257 (2002)

8. Lanckriet, G.R.G., Bartlett, P., Cristianini, N., Ghaoui, L., E y Jordan, M.I.: Learn-
ing the Kernel Matrix with Semidefinite Programming. Journal of Machine Learn-
ing Research 5, 27–72 (2002)

9. de Diego, I.M., Muñoz, A., Moguerza, J. M.: On the Combination of Kernels for
Support Vector Classifiers. Working paper, 05-45-08, Statistics and Econometrics
Series, University Carlos III (2005)

10. de Diego, I.M., Moguerza, J.M., Muñoz, A.: Combining Kernel Information for
Support Vector Classification. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS
2004. LNCS, vol. 3077, pp. 102–111. Springer, Heidelberg (2004)

11. Moguerza, J., Muñoz, A.: Support Vector Machines with Applications. Statistical
Science 21(3), 322–336 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

736 J. González and A. Muñoz

12. Omladic, M., Semrl, P.: On the distance between Normal Matrices. Proceedings of
the American Mathematical Society 110, 591–596 (1990)

13. Parlett, N.: Beresford. The Symmetric Eigenvalue Problem. Classics in Applied
Mathematics. SIAM (1997)

14. Schölkopf, B., Smola, A., Muller, K.R.: Kernel Principal Component Analysis. In:
Advanced in Kernel Methods-Support Vector Learning, pp. 327–352. MIT Press,
Cambridge (1999)

15. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear Component Analysis as a Ker-
nel Eigenvalue Problem. Neural Computation 10, 1299–1319 (1998)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Novel and Efficient Method for Testing Non Linear
Separability

David Elizondo1, Juan Miguel Ortiz-de-Lazcano-Lobato2, and Ralph Birkenhead1

1 School of Computing
De Montfort University

The Gateway
Leicester, LE1 9BH

United Kingdom
{elizondo,rab}@dmu.ac.uk

2 School of Computing
University of Málaga

Málaga, Spain
jmortiz@lcc.uma.es

Abstract. The notion of linear separability is widely used in machine learning
research. Learning algorithms that use this concept to learn include neural net-
works (Single Layer Perceptron and Recursive Deterministic Perceptron), and
kernel machines (Support Vector Machines). Several algorithms for testing lin-
ear separability exist. Some of these methods are computationally intense. Also,
several of them will converge if the classes are linearly separable, but will fail
to converge otherwise. A fast and efficient test for non linear separability is pro-
posed which can be used to pretest classification data sets for non linear separa-
bility thus avoiding expensive computations. This test is based on the convex hull
separability method but does not require the computation of the convex hull.

1 Introduction

Classification type problems can be tackled using neural networks. Linear models, where
they can be used, are robust against noise and most likely will not overfit. Non linear
models (such as backpropagation) work well where the data is not linearly separable.

Two sub-sets X and Y of IRd are said to be linearly separable (LS) if there exists a
hyperplane P of IRd such that the elements of X and those of Y lie on opposite sides of
it. Figure (1) shows an example of both a LS (a) and a NLS (b) set of points. Squares and
circles denote the two classes. A study on several methods for testing linear separability
and their complexities is given in [1].

Linear separability is an important topic in the domain of machine learning. In real
applications, the data is often linearly separable. For such problems, using backpropa-
gation is an overkill, with thousands of iterations needed to get to the point where linear
separation can bring us fast. Furthermore, multilayer linear neural networks, such as the
Recursive Deterministic Perceptron [2,3] can always linearly separate, in a determin-
istic way, two or more classes (even if the two classes are not linearly separable). The
idea behind the construction of a RDP is to augment the affine dimension of the input

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 737–746, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

738 D. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

(a) (b)

Fig. 1. LS (a) and a non-LS (b) set of points

vector by adding to these vectors the outputs of a sequence of intermediate neurons as
new components. Each intermediate neuron corresponds to a single layer perceptron
and it is characterised by a hyperplane which linearly separates a LS subset, taken from
the non-LS (NLS) original set, and the remaining points in the input vector.

This paper presents a novel and efficient test for non linear separability which can be
used to pretest classification data sets. By performing this test, more expensive compu-
tations, carried out by the methods for testing linear separability, can be avoided. Also,
some linear separability methods work well when the given classification problem is
linearly separable, but can run into very large calculations for non linearly separable
problems. This test is based on the convex hull separability method but does not require
the calculation of the convex hull. The paper is divided into five sections. In the second
section some standard notations and definitions together with some general properties
related to them are given. Section three describes the fast method for testing non linear
separability. Results obtained on classification data using the proposed fast method and
the convex hull classification methods sets are presented and compared in section four.
Finally some conclusions are given in section five.

2 Preliminaries

The following standard notions are used ([3]):
Let E, F ⊂ IRd, u, v, w ∈ IRd and r, t ∈ IR,

– Card(E) stands for the cardinality or number of elements of a set E. For example,
the cardinality of the set E = {(1, 2), (−1, 2.5), (2.3, −2), (3.2, 1.2), (3.4, 0.1)} is
equal to five.

– E \ F is the set of elements which belong to E and do not belong to F . If E =
{(1, 2), (−1, 2.5), (2.3, −2), (3.2, 1.2), (3.4, 0.1)} and F = {(1, 2), (−1, 2.5),
(2.2, −1.3)}, then E \ F is equal to {(2.3, −2), (3.2, 1.2), (3.4, 0.1)}.

– E ⊕ F is the set of elements of the form e + f with e ∈ E and f ∈ F . If
E = {(1, 2), (−1, 2.5)} and F = {(2.2, 3), (3.1, 1)}, then E ⊕ F is equal to
{(3.2, 5), (4.1, 3), (1.2, 5.5), (2.1, 3.5)}.

– E � F stands for E ⊕−(F). If E={(1, 2), (−1, 2.5)} and F={(2.2, 3), (3.1, 1)},
then E � F corresponds to {(−1.2, −1), (−2.1, 1), (−3.2, −0.5), (−4.1, 1.5)}.

The fact that two sub-sets X and Y of IRd are linearly separable is denoted by X || Y
or X || Y (P) or X ||P Y . Thus if X || Y (P(w, t)), then (∀x ∈ X, wxT + t > 0
and ∀y ∈ Y, wyT + t < 0) or (∀x ∈ X, wxT + t < 0 and ∀y ∈ Y, wyT + t > 0).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Novel and Efficient Method for Testing Non Linear Separability 739

2.1 Definitions and Properties

For the theoretical representations, column vectors are used to represent points. How-
ever, for reasons of saving space, where concrete examples are give, row vectors are
used to represent points. We also introduce the notions of convex hull and linear sepa-
rability.

Definition 1. A subset D of IRd is said to be convex if, for any two points p1 and p2 in
D, the segment [p1, p2] is entirely contained in D.

Definition 2. Let S be a subset of IRd, the convex hull of S, denoted by CH(S), is the
smallest convex subset of IRd containing S.

Property 1. [4] Let S be a subset of IRd

• CH(S) = {t1x1 + . . .+ tkxk | x1, . . . , xk ∈ S, t1, . . . , tk ∈ [0, 1] and t1 + . . .+
tk = 1}.
• If S is finite, then there exists a1, ..., ak ∈ IRd and b1, ..., bk ∈ IR such that CH(S) =
{x ∈ IRd | aT

i x ≥ bi for 1 ≤ i ≤ k}. Thus, CH(S) is the intersection of k half
spaces.

2.2 The Convex Hull Method for Testing Linear Separability

Lemma 1. Let X, Y ⊂ IRd,X || Y (P) ⇔ CH(X) || CH(Y) (P).

Lemma 2. Let X, Y ⊂ IRd, then −CH(X) = CH(−X) and CH(X) ⊕ CH(Y) =
CH(X ⊕ Y). Thus, CH(X � Y) = CH(X) � CH(Y).

Lemma 3. Let X, Y be two finite subsets of IRd, CH(X) || CH(Y) ⇔ CH(X) ∩
CH(Y) = ∅.

Theorem 1. Let X, Y be two finite subsets of IRd,then X || Y iff CH(X)∩CH(Y) =
∅.
Property 1. Let S be a finite subset of IRd, then there exists x ∈ S such that S −
{x} || {x}.

This property states that, there exists a point x ∈ S which is LS from the rest of the
points in S.

Remark
The lemmas 1, 2, and 3 and the property 1 are intuitively evident and their proofs are
not very important for the global comprehension of this work. A more general result
than the one shown in theorem 1 can be found in [5]

Property 2. Let X , Y be a finite subset of IRd, and assume that CH(X � Y) = {x ∈
IRn | vT

i x ≥ bi} then,

– if for all i bi ≤ 0, then X �‖ Y ,
– if there exists i such that bi > 0 then, X || Y (P(vi, t)), where t = −β+α

2 ,
α = Max({vT

i y | y ∈ Y }), and β = Min({vT
i x | x ∈ X}.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

740 D. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

Proof

– if for all i, bi ≤ 0 then, 0 ∈ CH(X �Y), thus, CH(X)∩CH(Y) �= ∅, and thus,
by the theorem 1, it can be concluded that X �‖ Y ,

– if there exists i such that bi > 0 then, for every x ∈ X and y ∈ Y then vT
i (x −

y) ≥ bi > 0, that is vT
i x > vT

i y; let α = Max({vT
i y | y ∈ Y }), and β =

Min({vT
i x | x ∈ X}, so, α < β

thus, ∀y ∈ Y, vT
i y − α+β

2 ≤ α − α+β
2 = α−β

2 < 0,
∀x ∈ X, vT

i x − α+β
2 ≥ β − α+β

2 = β−α
2 > 0,

then, X || Y (P(vi, −α+β
2)).

The algorithm 1 ([3,6]) is based in this property.
Given X, Y ⊂ IRd, the convex hull separability algorithm, presented in table 1,

computes w ∈ IRd and t ∈ IR (if they exist) such that X || Y (P(w, t)). Where w
and t represent the weight vector and threshold value which make the hyperplane that
linearly separates X and Y . To start with, the convex hull CH(X � Y) can be defined
as the set of points which verify the constraints {x ∈ IRn | vT

i x ≥ bi for 1 ≤ i ≤ k}
where k represents the number of vertices in CH(X �Y). Two cases are then possible:

1. for all i bi ≤ 0 which means that the two classes are NLS,
2. there exists i such that bi > 0, which means that the two classes are LS: with this

value of bi the values of α and β are then computed. They correspond respectively
to: the maximum value of the vector product of vT

i y with y belonging to the finite
set of points of the second class Y , and the minimum value of the vector product
of vT

i x with x belonging to the finite set of points of the first class X . These two
values are then used to compute the threshold value t which is defined by −β+α

2 .
The set of weights w that represents the perceptron which linearly separates the
two classes X and Y , corresponds to vi.

The 2 class 2 dimension classification problem shown in figure 2-a will be used to
illustrate the Convex Hull separability algorithm.

Table 1. The Convex Hull separability algorithm

CHSA(X, Y, w, t)
– data: two data set vectors, X and Y representing
two classes
– result: a weight vector, w and a threshold value
t which separates the two classes if X || Y)
Begin

Compute v1, ..., vk ∈ IRd, b1, ..., bk ∈ IR such that

CH(X � Y) = {z ∈ IRn | vT
i z ≥ bi for 1 ≤ i ≤ k}.

If (∀i ≤ k, bi ≤ 0) Then not(X || Y)
Else

Begin
chose i such that bi > 0;

α := Max({vT
i y | y ∈ Y });

β := Min({vT
i x | x ∈ X};

w := vi;

t := − β+α
2 ;

(i.e. X || Y (P(w, t)))
End;

End

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Novel and Efficient Method for Testing Non Linear Separability 741

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

−4 −3 −2 −1 0 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

III

III IV

(a) (b)

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

(c)

Fig. 2. (a) XY PLOT of the 2-D classification problemLS, (b) Convex Hull of (X �Y) of the 2-D
classification problem (I, II, III, IV represent the 1st, 2nd, 3rd and 4th quadrants respectively),
(c) Hyperplane that linearly separates the 2-D classification problem (dotted line)

Let X = {(1, 2), (2, 2.5), (1, 3)} and Y = {(2.5, 1.5), (2.5, 2.5), (3, 2), (4, 1.5)}
represent the input patterns for the two classes which define these classification prob-
lem. The next task is to find out if X ‖ Y .

To start with:

(X � Y) = {(−1.5, 0.5), (−1.5, −0.5), (−2, 0), (−3, 0.5),
(−0.5, 1), (−0.5, 0), (−1, 0.5), (−2, 1),
(−1.5, 1.5), (−1.5, 0.5), (−2, 1), (−3, 1.5)}

has to be calculated.
The convex hull of (X � Y) is then calculated:

CH(X � Y) = {(−0.5, 0), (−0.5, 1), (−1.5, 1.5),
(−3, 1.5), (−3, 0.5), (−1.5, −0.5)}

Thus, k, the number of vertices in the CH, is equal to 6. Next, all the vectors vk which
are perpendicular to each of the facets that form the CH together with the corresponding
values of bk are computed (see figure 2-b).

v0 = (−1, 0) b0 = 0.5, v1 = (−1,−1) b1 = −0.5
v2 = (0,−1) b2 = −1.5, v3 = (1, 0) b3 = −3.0
v4 = (2, 3) b4 = −4.5, v5 = (−1, 1) b5 = 0.5

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

742 D. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

Any of the vk, bk couples having a value bk > 0 (k = 0 and 5 in this example) can
now be selected. k = 0 was selected. Thus, the values of α and β can now be calculated.

α := Max({vT
i y | y ∈ Y }) := −2.5

β := Min({vT
i x | x ∈ X} := −2

The values of w and t can now be computed:

w := vi := (−1, 0)
t := −β+α

2 := 2.25

Figure 2-c shows that this hyperplane linearly separates the two classes X and Y .
There are other methods based on computational geometry that can be found in the

literature for testing linear separability. An example of this is the Open Hemisphere
method [7].

3 Novel Efficient Method for Testing Non Linear Separability

This section describes a fast method for testing classification data sets for non linear
separability. The method is based on the convex hull separability algorithm described
in the previous section. Two sets X, Y are not linearly separable if the origin is inside
the convex hull CH(X � Y). A way to find out if the origin is inside the convex hull
is to calculate the convex hull itself. This can be an expensive calculation specially for
large data sets in high dimensions. Instead of performing this expensive calculation a
fast way of finding if an n dimensional classification problem is non linearly separable
is to check if there exists at least one point of CH(X � Y) in each of the 2n quadrants
in n dimensions of the input space. If this condition is true, it can safely be concluded
that the two classes are non linearly separable. Otherwise, no conclusion can be made,
and further analysis is required.

The following steps summarise an algorithm for implementing the method for testing
non linear separability:

1.- Obtain the difference set Dif by computing X � Y .
2.- Convert all elements of Dif to binary. The value zero is used as threshold.
3.- Calculate a set of unique binary values by means of removing the repeated binarized

vectors.
4.- If the number of samples in this unique set equals the number of quadrants in the in-

put space then the method finishes and states the datasets are non linearly separable.
Otherwise, the method finishes and states nothing about the non separability.

4 Experimental Setup

Ninety linearly separable and a ninety non linearly separable data sets, containing sam-
ples for two classes, were generated (figure 3(a,b)). The input dimension of the data
sets was varied from two all the way to ten dimensions with increments of one. Ten
data sets were generated for each input dimension. Each data set contained 200 samples

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Novel and Efficient Method for Testing Non Linear Separability 743

for dimensions less than eight. For dimensions of eight and greater, 2n samples were
generated, where n represents the input space dimension. The method is not restricted
to the number of samples but larger samples allow for a more thorough comparison.
The data sets were tested for non-linear/linear separability using the convex hull, and
the perceptron neural network algorithms. They were also tested for non linear separa-
bility using the quadrant method. The choice of convex hull algorithm came from the
fact that the quadrant method is based on this method. The more standard perceptron
neural network algorithm ([8]) was used as a reference. Two different implementations
of the quadrant method were used, but, because of lack of space, results are only given
for the method which was more efficient and consistent. The three methods were also
tested using ninety non linearly separable data sets based on two concentric and inde-
pendent hyper spheres (figure 3(c)). The results obtained with these data sets were very
similar to the ones given in table 2 and therefore were not included. The meshed spiral
2D classification problem [9] was also used for comparison purposes (figure 3(d)).

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

−0.5

0

0.5

1

1.5

−100 −50 0 50 100
−150

−100

−50

0

50

100

150

(a) (b)

−5 0 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

(c) (d)

Fig. 3. LS (a) and non-LS (b,c,d) data sets

5 Results and Conclusions

A comparison, based on their time of convergence, of the three methods for testing
for non linear separability (convex hull, perceptron and quadrant) is now given. Tables
2 and 3 present the results in terms of the average convergence time for ten data sets
generated for each dimension (2 to 10 dimensions) like figures 3(a) and 3(b).

It can be clearly seen that the quadrant method gives a dramatic time improvement
both for the linearly separable and the non linearly separable data sets. For the non
linearly separable data sets, the quadrant method performs 70 and up to over 3500 times
faster than the convex hull method and 30 and up to over 2000 times faster than the
perceptron method. A similar tendency, with a smaller gain in time, can be observed
with the linear data sets were the quadrant method is 1.5 and up to 30 times faster than
the convex hull method, and 0.5 to up to 230 times faster than the perceptron method.
This can be explained by the fact that both the convex hull and the perceptron algorithms
will converge if the two classes are linearly separable. Both these algorithms depend on

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

744 D. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

a number of iterations, specified by the user, being reached before concluding that two
classes are not linearly separable. This leaves open the possibility of the two classes
being linearly separable, but neither of the two algorithms finding a solution because
the number of maximum iterations has been reached.If the number of iterations is not
restricted, both algorithms will end in an infinite loop for non linearly separable data
sets.

Table 2. Results obtained with the three non linear separability testing methods and ten,non
linearly separable data sets, for two to ten dimensional data sets in terms of the convergence time
(seconds) using 3(a)

Quadrant Convex Hull Perceptron

Dim Max Min Mean Std Max Min Mean Std Max Min Mean Std

2 0.07 0.01 0.02 0.02 105.72 0 31.66 50.96 27.15 26.52 26.83 0.19

3 0.02 0.01 0.01 0 106.31 0.01 21.26 44.8 27.15 26.52 26.83 0.19

4 0.03 0.02 0.02 0 106.96 0.01 52.88 55.74 27.65 27.03 27.4 0.19

5 0.03 0.03 0.03 0 123.95 0.01 96.78 34.53 27.66 26.73 27.36 0.29

6 0.05 0.03 0.03 0.01 107.61 0.01 74.07 51.12 27.9 27.36 27.61 0.18

7 0.04 0.04 0.04 0 108.69 0.01 95.51 33.6 28.13 27.28 27.77 0.27

8 0.08 0.07 0.08 0 116.05 0.01 91.01 47.98 32.85 32.07 32.34 0.28

9 0.6 0.47 0.52 0.05 151.33 0.02 135.12 47.48 53.26 51.55 52.62 0.54

10 3.12 2.94 3.01 0.06 228.88 221.24 224.84 2.99 95.24 94.34 94.73 0.32

To further illustrate the advantages of the quadrant method over other non linear
separability testing methods, the two spiral problem was used [9]. As can be seen in
figures 3(d), this is a highly non linearly separable data set. Table 4 gives the conver-
gence times obtained with the different methods on this data set. It should be observed
that although the convex hull converged within 0.0272 seconds, it provided an invalid
answer suggesting that the problem was linearly separable and providing, as expected,
a non separable plane. The perceptron neural network stopped after 22 seconds without
finding a plane and, therefore, concluding that the two classes are not linearly separable.
The SVM method [10] was used as a check on linear separability for 3(c) and 3(d).

The quadrant method is deterministic and has proven to give consistent dramatic
convergence time improvements over other methods. The current implementation of
the method has some limitations with respect to the input dimension and the number
of samples in the data set. This is because this implementation needs to have enough
samples to be able to cover all quadrants in the input space. Other ways of finding out if
the origin is inside the convex hull of X � Y (X and Y representing the samples in the
two classes of a classification problem) could be studied to overcome this limitation.
An extension of this work could include the calculation of the hyperplane when the two
classes are linearly separable. Another area of further study could include the use of
this method to help cut down the time required to build cascade linear neural networks
such as the RDP. This way, the number of times that the algorithms for testing linear
separability need to be called, could be diminished. Another extension of this work will

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Novel and Efficient Method for Testing Non Linear Separability 745

Table 3. Results obtained with the three non linear separability testing methods and ten, lin-
early separable data sets, for two to ten dimensional data sets in terms of the convergence time
(seconds) using 3(b)

Quadrant Convex Hull Perceptron

Dim Max Min Mean Std Max Min Mean Std Max Min Mean Std

2 0.01 0.01 0.01 0 0.8 0.04 0.24 0.25 23.15 0 2.33 7.32

3 0.01 0.01 0.01 0 1.09 0.09 0.41 0.29 23.5 0 3.08 7.47

4 0.02 0.02 0.02 0 0.8 0.22 0.53 0.18 0.67 0 0.12 0.21

5 0.03 0.03 0.03 0 0.87 0.17 0.49 0.23 4.41 0.01 0.51 1.38

6 0.03 0.03 0.03 0 1.14 0.38 0.76 0.27 26.43 0.01 3.27 8.27

7 0.04 0.04 0.04 0 1.13 0.47 0.71 0.23 0.46 0.01 0.08 0.14

8 0.08 0.07 0.07 0 2.21 0.69 1.11 0.42 5.2 0.01 0.55 1.64

9 0.6 0.46 0.51 0.04 3.12 1.4 2.42 0.57 0.71 0.05 0.28 0.24

10 3.6 2.97 3.07 0.19 6.85 4.11 5.22 0.89 92.31 0.43 10.81 28.71

Table 4. Results obtained with the two spiral 2D classification problem in terms of the conver-
gence time using the quadrant method and three linearly separability testing methods

Quadrant Convex Hull Perceptron SVM Spiral
Time 0.0807 0.0272 21.9629 0.687

be to compare the performance of the quadrant method with real data sets and to include
some results obtained with other methods for testing linear separability such as support
vector machines or the simplex algorithms ([1]).

References

1. Elizondo, D.: A survey of methods for testing linear separability. Transactions on Neural
Networks (IEEE) 17(2), 330–344 (2006)

2. Tajine, M., Elizondo, D.: Enhancing the perceptron neural network by using functional com-
position. Computer Science Department, Université Louis Pasteur, Strasbourg, France, Tech.
Rep. 96-07 (1996)

3. Elizondo, D.A.: The recursive determinist perceptron (rdp) and topology reduction strate-
gies for neural networks. Ph.D. dissertation, Université Louis Pasteur, Strasbourg, France
(January 1997)

4. Preparata, F.P., Shamos, M.: Computational Geometry. An Introduction. Springer, New York
(1985)

5. Stoer, J., Witzgall, C.: Convexity and Optimization in finite dimensions I. Springer, Berlin
(1970)

6. Tajine, M., Elizondo, D.: New methods for testing linear separability. Neurocomputing 47,
161–188 (2002)

7. Johnson, D.S., Preparata, F.P.: The densest hemisphere problem. Theoretical Computer Sci-
ence 6, 93–107 (1978)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

746 D. Elizondo, J.M. Ortiz-de-Lazcano-Lobato, and R. Birkenhead

8. Rosenblatt, F.: Principles of Neurodynamics. Spartan, Washington D.C (1962)
9. Lang, K.J., Witbrock, M.J.: Learning to tell two spirals apart. In: D., T., G., H., T., S. (eds.)

Procedings of the 1988 Connectionist Models Summer School, Morgan Kaufmann, San
Francisco (1988)

10. Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297 (1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A One-Step Unscented Particle Filter

for Nonlinear Dynamical Systems

Nikolay Y. Nikolaev1 and Evgueni Smirnov2

1 Goldsmiths College, University of London, London SE14 6NW,
United Kingdom

n.nikolaev@gold.ac.uk
2 MICC-IKAT, Maastricht University, Maastricht 6200 MD,

The Netherlands
smirnov@micc.unimaas.nl

Abstract. This paper proposes a one-step unscented particle filter for
accurate nonlinear estimation. Its design involves the elaboration of a re-
liable one-step unscented filter that draws state samples deterministically
for doing both the time and measurement updates, without linearization
of the observation model. Empirical investigations show that the one-
step unscented particle filter compares favourably to relevant filters on
nonlinear dynamic systems modelling.

1 Introduction

Particle filters (PF) [3][4][5][9] are efficient computational tools for sequential
Bayesian estimation. Applied to the task of dynamic system modelling, they
approximate the posterior distribution of the unknown state parameter by av-
eraging over its realization as a set of particles. Once the posterior is obtained,
there can be generated forecasts from unseen inputs. PF are suitable for prac-
tical tasks because they can work well with nonlinear models and in relaxed
circumstances, like non-Gaussianity and non-stationarity.

The generic PFs are however sensitive to the magnitude of outliers, which
disturbs their performance on real-world data. One strategy for improving them
is through more accurate particle sampling as suggested by Sigma Point Par-
ticle Filters (SPPF) [12]. During the time update step they calculate the pre-
dictive density of each particle by deterministic sampling using derivative free
Unscented Kalman filters (UKF) [13] or Central Difference Filters (CDF) [10].
In the next measurement update step they compute unfortunately the posterior
with the standard equations relying on linearization of the observation model
which causes two serious problems: 1) with the increase of model nonlinearities
the accuracy decreases; and 2) the linearization may lead to uncorrelated state
and observation, and then the state is not updated [14]. Therefore, SPPF do not
have the potential to infer a large class of system models.

The recent One-step Unscented Kalman Filter (OUKF) [2][14] provided the
idea to alleviate such performance failure by doing the measurement update in
only one step, without linearizing the observation model through derivatives.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 747–756, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

748 N.Y. Nikolaev and E. Smirnov

A critique to the OUKF is that it uses Gaussian quadrature as a technique to
determine the sampling points, which limits its usefulness because it requires
too many points to achieve accurate approximation.

This paper proposes an efficient One-step Unscented Filter (OUF) that re-
quires a smaller number of particles to achieve second-order accuracy of the
state mean and variance, compared to the OUKF [2][14]. A distinguishing char-
acteristics of the OUF is that during both the time and measurement updates
it samples the state deterministically using the unscented transform [7]. The
OUF is more reliable than the UKF [13] because it performs sampling to com-
pute the measurement update. Another contribution is the design of a One-step
Unscented Particle Filter (OUPF) for approximating posteriors with complex
shapes, which often arise in practical tasks. Empirical investigations show that
the one-step unscented particle filter compares favorably to relevant filters on
modeling nonstationary series dynamics and stochastic volatility modeling.

This paper is organized as follows. Section two presents the approach to un-
scented filtering and elaborates the general one-step unscented filter. The next
section three develops the OUPF, and section four offers the empirical study
with related filters. Finally a brief discussion and a conclusion are provided.

2 The One-Step Unscented Filter

2.1 Sequential Bayesian Estimation

The problem of sequential Bayesian estimation is to infer the state of a system
that describes the latent dynamics of a provided series of discrete noisy observa-
tions D = {yt}T

t=1. Assuming univariate dependencies, a dynamical system can
be formally defined by the couple of equations:

xt = g(xt−1, ut) /state model/

yt = f(xt, vt) /observation model/
(1)

where xt is the state, yt is the observation at time t, g is the state transition
function driven by state noise ut, and f is the measurement function driven by
observational noise vt. Both functions f and g can be nonlinear.

Solution to this problem is the posterior state distribution p(xt|y0:t), and,
more precisely, its two characteristics the mean and the variance. The posterior
distribution of the system state xt, as a sufficient statistics of the whole state
history x0:t up to the particular time instant t, can be obtained by a probabilistic
filter which applies recursively the Bayes’ theorem as follows:

p(xt|y0:t) =
p(yt|xt)p(xt|y0:t−1)

p(yt|y0:t−1)
(2)

where p(xt|y0:t) is the state posterior (filtering distribution), p(yt|xt) is the
likelihood of the data, p(xt|y0:t−1) is the state prior (predictive distribution),
and p(yt|y0:t−1) is the evidence. The state prior is defined by the integral:

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A One-Step Unscented Particle Filter for Nonlinear Dynamical Systems 749

p(xt|y0:t−1) =
∫

p(xt|xt−1,y0:t−1)p(xt−1|y0:t−1)dxt−1, where p(xt−1|y0:t−1) is
the previous filtering density, and p(xt|xt−1,y0:t−1) is the transition density.

Adopting a nonlinear observation model leads to nonstandard distributions
(without a predominant mode) which are analytically intractable in most cases.
This difficulty can be alleviated using sampling to approximate the integrals of
the distributions of interest, instead of evaluating them by means of linearization
with the derivatives of the system equations. There are two main approaches
to sampling for this purpose: stochastic and deterministic [2]. Here we focus
attention on deterministic sampling which is supposed to be more accurate. A
recent popular approach to deterministic sampling for integral evaluation is given
by the unscented transform [7].

2.2 Unscented Kalman Filtering

The unscented transform [7] suggests to pick state samples, called sigma-points,
from carefully selected location points. The spread of the location points is deter-
mined in such a way so as to obtain a density estimate with the same statistical
properties (mean and variance) as the true, unknown state distribution. The
usefulness of drawing sigma-points is in that they enable to achieve higher accu-
racy of approximation of the state mean and variance, which is up to the second
order for any kind of model nonlinearity.

The UKF [13] implements algorithmically the numerically stable scaled ver-
sion of the unscented transform [8], which attains high fitting accuracy by choos-
ing symmetric sigma-points at locations set as follows:

X0,t−1 = x̂t−1

Xi,t−1 = x̂t−1 +
(√

(L + λ) Pt−1

)
, i = 1, ..., L (3)

Xi,t−1 = x̂t−1 −
(√

(L + λ) Pt−1

)
, i = L + 1, ..., 2L

where L is the dimension of the state variable, x̂t−1 is the previous mean state
estimate, and Pt−1 is the covariance of the state distribution.

The probability distribution of the state random variable is modelled by
weighted averaging over these sigma-points, after propagating them through
the state transition function. Each sigma-point is associated with a correspond-
ing weight Si,t = {Wi, Xi,t−1}, i = 0, ..., 2L, and such that

∑2L
i=0 Wi = 1. The

weights are computed by specific formulae:

Wm
0 = λ/(λ + 1)

W c
0 = λ/(λ + 1) + (1 − α2 + β) (4)

Wm
i = W c

i = 1/(2(L + λ)), i = 1, ..., 2L

where α, β, and λ are scaling parameters. The parameters α and β are chosen
to control the spread of the distribution. The parameter λ is calculated by the
formula λ = α2(L + κ) − L, using another parameter κ selected to scale the
spread with respect to the mean of the distribution.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

750 N.Y. Nikolaev and E. Smirnov

The time update step performed by the UKF passes the sigma-points Xi,t−1,
generated around the mean from the previous time instant x̂t−1, through the
state transition function Xi,t|t−1 = f(Xi,t−1, vt), and, next, estimates the pre-
dicted state distribution p̂(xt|y0:t−1) = N (x̂t|t−1, Pt|t−1) as follows:

x̂t|t−1 =
2L∑

i=0

Wm
i Xi,t|t−1 (5)

Pt|t−1 =
2L∑

i=0

W c
i

(
Xi,t|t−1 − x̂t|t−1

) (
Xi,t|t−1 − x̂t|t−1

)T (6)

where x̂t|t−1 is the predicted state mean, and Pt|t−1 is the predicted variance.

2.3 One-Step Measurement Update

The idea for doing a measurement update in one step [2][14] is elaborated here by
developing yet another OUF. This OUF simulates the integral of the state poste-
rior by sampling instead of evaluating it using linearization. Thus, the state mean
and variance are obtained in one step, not in the typical two steps of linearized
approximation of the joint posterior through the derivatives of the observation
model, and, next, linear filtering with the Kalman equations. The novelty is in
doing deterministic sampling from predicted distribution p̂(xt|y0:t−1) using the
unscented transform. We apply the sigma-point approach again to the predicted
state mean x̂t|t−1 to approximate directly the posterior p̂(xt|y0:t).

In order to capture the effect from the given target at the particular moment
on the state distribution, this distribution can be simulated by sigma-points
Si,t = {Wi, Xi,t|t}, i = 0, ..., 2L, around the predicted state mean x̂t|t−1:

X0,t|t = x̂t|t−1

Xi,t|t = x̂t|t−1 +
(√

(L + λ) Pt|t−1

)
, i = 1, ..., L (7)

Xi,t|t = x̂t|t−1 −
(√

(L + λ) Pt|t−1

)
, i = L + 1, ..., 2L

where Pt|t−1 is the variance obtained in the time step.
The approximation of the posterior absorbs the effect of the given target yt

through the likelihood. The likelihood integral may be envisioned analytically
tractable [14], and it can be estimated with the outputs Yt produced by passing
the sigma-points through the measurement function:

Yt = f(Xi,t|t, vt)

p̂(yt|Xi,t|t) =
∫

δ (Yt − yt) p(vt)dvt (8)

where δ is the Dirac delta function. There are standard density functions for
computing p̂(yt|Xi,t|t), like the normal probability density for example.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A One-Step Unscented Particle Filter for Nonlinear Dynamical Systems 751

The statistical mean and variance of the posterior probability distribution of
the state p̂(xt|y0:t) = N (x̂t|t, Pt|t) are obtained with the following expressions:

x̂t|t =
2L∑

i=0

Wm
i Xi,t|tp̂(yt|Xi,t|t)/Zt (9)

Pt|t =

[
2L∑

i=0

W c
i X 2

i,t|tp̂(yt|Xi,t|t)/Zt

]

− x̂2
t|t (10)

where the normalizing constant is Zt =
∑2L

i=0 Wm
i p̂(yt|Xi,t|t).

The OUF is reliable from a theoretical point of view as it can deal with
uncorrelated states and observations, therefore it can handle a larger class of
models than the UKF [13]. The OUF is efficient because relying on the unscented
transform it requires less points than Gaussian quadrature.

3 Unscented Particle Filtering

Based on the above developments, we propose a One-step Unscented Particle
Filter (OUPF) for non-parametric estimation of the state. The state is realized
by a set of particles, associated with weights corresponding to their probability
mass, so that the sum of the weighted particles approximates the posterior.
OUPF is an extension to the (SPPF) [12] in that it uses the general OUF for
importance sampling, which makes it more robust.

The particle filtering involves two stages: 1) importance sampling with updat-
ing of the particles and their weights when a data point arrives; and 2) propa-
gating the particles via resampling. The importance sampling uses the OUF to
generate improved states x̂

(i)
t|t that serve as means for the proposal distribution π,

and, next, it draws states x
(i)
t from this proposal π(x(i)

t |x̂(i)
t|t) = N (x(i)

t ; x̂(i)
t|t , Pt|t).

After that, the particle weights are updated from w
(i)
t−1 to w

(i)
t with the following

modification equation:

w
(i)
t ≈ w

(i)
t−1

p(yt|x(i)
t)p(x(i)

t |x(i)
t−1)

π(x(i)
t |x̂(i)

t|t)
(11)

where the prior is p(x(i)
t |x(i)

t−1) = N (x(i)
t ; x(i)

t−1, P
(i)
t−1), the model likelihood is

p(yt|x(i)
t) ≈ exp(−0.5σ−2 ∑T

t=1(yt−y
(i)
t)2), σ is the observational noise variance,

and T is the series size. Thus, a particular weight reflects the density in the state
space in the vicinity of its corresponding particle.

The empirical estimate of the state posterior is obtained as follows:

p̃(xt|y0:t) �
N∑

i=1

w
(i)
t δ(xt − x

(i)
t) (12)

where the weights w
(i)
t are taken normalized by w

(i)
t = w

(i)
t /

∑N
i=1 w

(i)
t .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

752 N.Y. Nikolaev and E. Smirnov

The resampling stage is necessary to promote only the most promising par-
ticles [5], because otherwise the population often becomes occupied by many
particles with negligible weights. Resampling is performed by selecting particles
with high weights and discarding some of those with insignificant weights, using
different techniques. Algorithms using such techniques are known as PF with
Sampling Importance Resampling (SIR).

Overall, the OUPF tends to capture better the statistics of the true state
posterior than SPPF as it has been found experimentally during preliminary
research. The OUPF is especially useful when the shape of the state posterior
density is complex and hard to model. Such situations arise in various practical
tasks, for example in control and financial engineering applications.

4 Empirical Investigations

Research has been conducted with two dynamical systems: a nonlinear observa-
tion model using non-Gaussian state noise, and a nonlinear stochastic volatility
model whose state model is of unknown variance. Although producing quite ir-
regular series the first system can be estimated with sigma-point filters, so we run
the SPPF [12], the PF (SIR) [5][9], the PFMCMC [1], and OUPF. PFMCMC is
an improved generic particle filter which makes additional Markov Chain Monte
Carlo (MCMC) steps on each particle by sampling from the transition prior, and
accepting the move by Metropolis-Hastings steps [1].

The considered stochastic volatility model, however, can not be inferred by
standard filters using linearized Kalman equations for the measurement update.
That is why, we run the PF [5][9], the PFMCMC [1], OUPF and another APF
[11] filter. The APF is a benchmark Auxiliary Particle Filter [11], especially for
financial tasks, that boosts particles with higher predictive likelihood to reduce
the variance of the state in order to attain a better posterior. All studied particle
filters used systematic resampling [9], populations of 200 samples.

Modeling Nonstationary Series Dynamics. A nonstationary time series
was generated using the following non-linear observation model [12]:

xt = 1 + φ1xt + sin(ωπ(t − 1)) + vt

yt =
{

φ2x
2
t + nt k < 30

φ3xt − 2 + nt k ≥ 30 (13)

where we used non-Gaussian (Gamma) state noise vt ∈ Γ (3, 1), Gaussian ob-
servation noise nt ∈ N (0, 1.0e − 5), and scalar parameters: ω = 0.04, φ1 = 0.5,
φ2 = 0.2, φ3 = 0.5. A sequence of t = 60 values was generated. The SPPF was
implemented using the UKF filter to produce results comparable to previous
research [12]. The UKF was tuned with α = 1, β = 0, and κ = 2. There were
performed 100 independent runs with each filter, every run using re-generated
series and randomly re-initialized particles.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A One-Step Unscented Particle Filter for Nonlinear Dynamical Systems 753

Table 1. Accuracies of modeling the unknown state in the non-stationary observation
model, obtained after averaging over 100 independent runs with each filter

�������	
 ���� ���

	
 ��� ����

	
 ����� ����

�		
 ������ �����

��	
 ������ �����

20 40

2

4

6

8

given

PFsir

PFmcmc

SPPF

OUPF

x
(
t
)

time (t)

Fig. 1. A segment from the estimated state by the studied particle filters

Table 1 provides the average rooted mean squared errors (RMSE) of the state
estimate and its standard deviation. Figure 1 illustrates the quality of learning
achieved by the studied filters on this task. The evolution of the RMSE state
errors, averaged over independent 100 runs, is shown in the next Figure 2 to
provide empirical evidence for their convergence characteristics.

Stochastic Volatility Modeling. A stochastic volatility model describes how
stock returns depend on the volatility (variance of the returns). We consider a
nonlinear model of the log returns yt ≡ log(St) − log(St−1), from stock prices St

and St−1, whose noise is driven by the log of the volatility xt ≡ log(v) at time t
as follows [6][14]:

xt = γ + φ(xt−1 − γ) + εt

yt = ηt exp(xt/2) + μ (14)

where the state noise εt is univariate Gaussian εt = N (0, q), and the observation
noise is proportional to Gaussian ηt = N (0, 1). This is a dynamic model of the
returns in which the volatility is referred to as state.

A time series of log returns was made by generating 1000 successively random
values for the volatility xt and passing them through the autoregressive function

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

754 N.Y. Nikolaev and E. Smirnov

10 20 30 40 50

0

5

10

PFsir

PFmcmc

SPPF

OUPF

R
M
S
E

time (t)

Fig. 2. Convergence of the studied particle filters, measured as the RMSE state error
from the beginning to the corresponding point in the series

720 760 800 840

-6

-4

generated

PFsir

PFmcmc

APF

OUPF

L
o
g
-
r
e
t
u
r
n

time (t)

Fig. 3. Sequentially estimated volatility (state) by the studied particle filters

using parameters γ = log(0.01) and φ = 0.95. This volatility was further con-
taminated by state noise εt of variance q = sqrt(0.1). The log returns yt were
produced assuming a mean value μ = 0.0015.

The above equations (14) define a state-space model which may be expected to
be learnable using standard Kalman filters, however there is an intrinsic problem
that prevents this. The problem is that the returns and the volatility become
uncorrelated when treated by linearization with standard filters, and such filters
fail as the Kalman gain becomes zero. Even the derivative-free filters UKF [13]
and CDF [10] can not infer the volatility using this general log volatility model.

The synthesized series was divided into three subseries of increased size:
250, 500 and 1000 training points (log returns). Table 2 offers the results, calcu-
lated by averaging over 100 runs conducted with each filter on each subseries.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A One-Step Unscented Particle Filter for Nonlinear Dynamical Systems 755

Table 2. Accuracies of modeling the unknown state in the stochastic volatility model,
obtained after averaging over 100 runs with each filter

�������	
 �0��� �0��� �0����

���� ��� ���� ��� ���� ���

	
 ����� ����� ������ ����,� ���,� �����,

	
 ����1 ����� �����, ����,� ���,1 ������

�	
 ��1�� ������ ������ ������ ������ ����1�

��	
 ��1�� ����� ������ ������ ����, �����

0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0

0 . 0 0 0

0 . 0 0 5

P F s i r

P F m c m c

A P F

O U P F

w
e
i
g
h
t

v
a
r
i
a
n
c
e

t i m e (t)

Fig. 4. Standard deviation (variance) of the particle weights, recorded during partic-
ular runs with each of the studied filters

The volatility curves learned by the filters are given in Figure 3, along with the
curve of the true (artificially generated) volatility. It can be seen that the OUPF
curve is closest to the true volatility than all other curves.

The variance of the weights is an important characteristic that reflects the
ability of the filter to achieve high precision despite the disturbing effects of
the adopted sampling scheme. Figure 4 shows that OUPF operates with lower
weights variance than the APF, PF and PFMCMC filters, which explains why it
has achieved better results.

5 Discussion and Conclusion

This paper presented an unscented filter that can be incorporated to make ef-
ficient particle filters for sequential estimation of distributions with complex
shapes. The OUF has the capacity to estimate a larger class of models than the
previous SPPF relying on the popular sigma-point filters UKF [13] and CDF
[10]. Although achieving good results on the addressed problems, it should be
noted that particle filters and OUPF are sensitive to the initial conditions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

756 N.Y. Nikolaev and E. Smirnov

It has been found experimentally that the designed OUPF gives a more ac-
curate alternative to the benchmark APF on stochastic volatility modelling.
Future research aims to apply the OUPF on other financial engineering tasks
that assume state-space descriptions.

References

1. Andrieu, C., de Freiras, J.F.G., Doucet, A.: Sequantial MCMC for Bayesian Model
Selection. In: Proc. IEEE Higher Order Statistics Workshop, pp. 130–134. IEEE
Computer Society Press, Los Alamitos (1999)

2. Bolviken, E., Storvik, G.: Deterministic and Stochastic Particle Filters. In: Doucet,
A., et al. Sequantial Monte Carlo Methods in Practice, pp. 97–116 (2001)

3. de Freitas, J.F.G., Niranjan, M., Gee, A.H., Doucet, A.: Sequantial Monte Carlo
Methods to Train Neural Networks. Neural Computation 12, 955–993 (2000)

4. Doucet, A., de Freitas, N., Gordon, N.: Sequantial Monte Carlo Methods in Prac-
tice. Springer, New York (2001)

5. Gordon, N.J., Salmond, D.G., Smith, A.F.M.: A Novel Approach to Nonlinear/non-
Gaussian Bayesian State Estimation. Proceedings IEE-F Radar, Sonar and Navi-
gation 140, 107–113 (1993)

6. Hull, J., White, A.: The Pricing of Options on Assets with Stochastic Volatilities.
The Journal of Finance 42, 281–300 (1987)

7. Julier, S.J., Uhlmann, J.K.: A New Extension of the Kalman Filter to Nonlinear
Systems. In: Proc. SPIE Int. Soc. Opt. Eng., Orlando, FL, vol. 3068, pp. 182–193
(1997)

8. Julier, S.J.: The Scaled Unscented Transformation. In: Proc. American Control
Conf., vol. 6, pp. 4555–4559 (2002)

9. Kitagawa, G.: Monte Carlo Filter and Smoother for Non-Gaussian Nonlinear State
Space Models. J. Computational and Graphical Stat. 5, 1–25 (1996)

10. Norgaard, M., Poulsen, N.K., Ravn, O.: New Developments in State Estimation
for Nonlinear Systems. Automatica 36, 1627–1638 (2000)

11. Pitt, M.K., Shephard, N.: Filtering via Simulation: Auxiliary Particle Filters. J.
American Stat. Assoc. 94, 590–599 (1999)

12. van der Merwe, R., Doucet, A., de Freitas, N., Wan, E.: The Unscented Particle
Filter. In: Leen, T.K., Dietterich, T.G., Tresp, V. (eds.) Advances in Neural Inf.
Processing Systems (NIPS13), pp. 584–590 (2001)

13. van der Merwe, R.: Sigma-point Kalman Filters and Probabilistic Inference in
Dynamic State-Space Models. PhD Thesis, OGI School of Science and Engineering,
Oregon Health and Science University (2004)

14. Zoeter, O., Ypma, A., Heskes, T.: Improved Unscented Kalman Smoothing for
Stock Volatility Estimation. In: Barros, A., Principe, J., Larsen, J., Adali, T.,
Douglas, S. (eds.) Machine Learning for Signal Processing. Proc. of the 14th IEEE
Signal Processing Society Workshop, pp. 143–152. IEEE Press, NJ (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Spike-Timing-Dependent Synaptic Plasticity to

Learn Spatiotemporal Patterns in Recurrent
Neural Networks

Masahiko Yoshioka1, Silvia Scarpetta1,2,3, and Maria Marinaro1,2,3

1 Department of Physics, “E.R. Caianiello”, University of Salerno, 84081 Baronissi
SA, Italy

2 INFN, 84100 Salerno SA, Italy
3 IIASS, Vietri sul Mare, 84019 Vietri sul Mare SA, Italy

Abstract. Assuming asymmetric time window of the spike-timing-
dependent synaptic plasticity (STDP), we study spatiotemporal learn-
ing in recurrent neural networks. We first show numerical simulations of
spiking neural networks in which spatiotemporal Poisson patterns (i.e.,
random spatiotemporal patterns generated by independent Poisson pro-
cess) are successfully memorized by the STDP-based learning rule. Then,
we discuss the underlying mechanism of the STDP-based learning, men-
tioning our recent analysis on associative memory analog neural networks
for periodic spatiotemporal patterns. Order parameter dynamics in the
analog neural networks explains time scale change in retrieval process and
the shape of the STDP time window optimal to encode a large number
of spatiotemporal patterns. The analysis further elucidates phase tran-
sition due to destabilization of retrieval state. These findings on analog
neural networks are found to be consistent with the previous results on
spiking neural networks. These STDP-based spatiotemporal associative
memory possibly gives some insights into the recent experimental results
in which spatiotemporal patterns are found to be retrieved at the various
time scale.

1 Introduction

In the variety of sensory systems, spatiotemporal activities of neurons reflect
their sensory inputs[1,2]. It has also been revealed that in the central ner-
vous system, short-term memory is represented by spatiotemporal patterns of
neurons[3]. There are the growing evidences that support a pivotal role of spa-
tiotemporal neural activities in the biological information processing. However,
the learning mechanism of spatiotemporal patterns in neural networks is still not
well understood. There has been a long history of studies on associative mem-
ory neural networks[4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21], and it is well
known that in discrete-time spin neural networks with synchronous update rule
xi(t + 1) = sgn(

∑
j Jijxj(t)) (i = 1, . . . , N) learning of binary spatiotemporal

patterns ξi(t) = ±1 (t = 1, 2, . . .) is easily attained by the application of the

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 757–766, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

758 M. Yoshioka, S. Scarpetta, and M. Marinaro

Fig. 1. The schematic shape of the time window of spike-timing-dependent synaptic
plasticity (STDP) given by Eq. (2) with parameters τ− = 33.7, τ+ = 16.8, τ0 = −5, and
r = 1. The experimental studies have revealed that weights of some types of synapses
are modified according to ΔJ ∝ W (Δt), where ΔJ represents change of synaptic
weight and Δt = tpost − tpre denotes spike time difference between presynaptic and
postsynaptic neurons.

asymmetrically modified Hebb learning rule Jij = (1/N)
∑

t ξi(t + 1)ξj(t). Nev-
ertheless, the modified Hebb learning rule does not work well in most of realistic
continuous-time neural networks, including asynchronous spin neural networks,
analog neural networks, and spiking neural networks. Several attempts have
been made to enhance the applicability of the modified Hebb learning rule to
spatiotemporal learning[8,9]. However, as far as we know, a satisfactory level of
spatiotemporal learning has not yet been obtained from the improvement of the
modified Hebb learning rule.

In the present study, we give a simple solution for spatiotemporal learning, in-
troducing a different approach from the modified Hebb learning rule. We assume
the spike-timing-dependent synaptic plasticity (STDP) in spatiotemporal learn-
ing rule and realize associative memory neural networks for spatiotemporal pat-
terns. The STDP is the experimental finding on a synaptic plasticity observed in
many parts of the real nervous system[22,23,24,25]. In these experiments, synap-
tic weights of some types of neurons are found to be modified according to spike
time delay between presynaptic and postsynaptic neurons; when a presynaptic
neuron fires before a postsynaptic neuron, the synaptic weight is strengthened,
while if the neurons fire in the opposite order, the synaptic weight is weakened.
This relation of synaptic plasticity to spike time deference is expressed by the
asymmetric time window W (Δt) described in Fig. 1. In our study, we incorpo-
rate this biologically plausible asymmetric time window into a learning rule so
that neural networks act as spatiotemporal associative memory.

The outcome of the application of the STDP to spatiotemporal learning is
remarkable. In the present paper, we first show numerical simulations in which
random spatiotemporal spike sequences are successfully memorized in spiking
neural networks. These random sequences are generated by independent Poisson
process. This means that for successful retrieval, some neurons must fire mul-
tiple times during retrieval process, while others must keep a silent state. Our
numerical simulation reveals that the STDP-based learning rule easily realizes

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

STDP to Learn Spatiotemporal Patterns in Recurrent Neural Networks 759

such complicated control of spiking neural networks. As shown in our previous
analyses, retrieval state of the STDP-based associative memory can be analyzed
exactly both in spiking neural networks and in analog neural networks when
periodic spatiotemporal patterns are assumed [17,18,21]. In the present study,
we summarize these analytical results for periodic patterns and discuss the un-
derlying mechanism of the STDP-based spatiotemporal learning.

The present paper is organized as follows. In Sec. 2, we introduce the STDP-
based learning of Poisson patterns. Then, in Sec. 3, we summarize our previous
analysis on the STDP-based learning of periodic patterns in analog neural net-
works. We compare these analytical results on analog neural networks with the
previous analysis on spiking neurons in Sec. 4. Finally, in Sec. 5, we give a brief
summary and discuss the implication of the present analytical studies for some
experimental results.

2 The Spike-Timing-Dependent Synaptic Plasticity
(STDP) and Spatiotemporal Learning of Poisson
Patterns

The experimental studies on the STDP has revealed that in the real nervous
system, weights of some types of synapses are modified according to

ΔJ ∝ W (Δt) , (1)

where ΔJ represents degree of modification of synaptic weight and Δt = tpost−
tpre represents the spike time difference between presynaptic and postsynaptic
neurons. Typically, the time window W (Δt) takes the asymmetric shape with
the negative part and the positive part as described in Fig. 1. In the present
study, we assume that the STDP time window is given by

W (Δt) =
{

− (r/τ−) e(Δt−τ0)/τ− Δt ≤ τ0

(1/τ+) e−(Δt−τ0)/τ+ τ0 < Δt
, (2)

where parameters τ− and τ+ represent decay time of the STDP time window
and parameter τ0 denotes time shift. Parameter r is introduced to control the
size of the negative part of the STDP time window.

Let us discuss how the STDP contributes to learning of spatiotemporal Pois-
son patterns in networks of spiking neurons. We assume that N spiking neu-
rons defined by the Hodgkin-Huxley equations are interconnected by chemical
synapses Jij . Then, we consider learning of three random spatiotemporal spike
patterns (μ = 1, 2, 3) generated by homogeneous Poisson process as shown in
Fig. 2(a). We carry out encoding of the three patterns by the STDP-based learn-
ing rule

Jij ∝
∑P

μ=1
∑

k1

∑
k2

W
(
tμi (k1) − tμj (k2)

)
, (3)

where tμi (k) represents the k-th spike timing of neuron i in spatiotemporal pat-
tern μ. Fig. 2(b) represents result of numerical simulation, in which pulsed ex-
ternal input is given at time t = 0 to force network retrieve the initial part of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

760 M. Yoshioka, S. Scarpetta, and M. Marinaro

(a) (b)

Fig. 2. The STDP-based learning of spatiotemporal Poisson patterns in Hodgkin-
Huxley type of spiking neural networks. (a) The first spatiotemporal spike pattern
to be memorized (μ = 1) is displayed (Only first ten neurons in all 10000 neurons
are described.). In the interval 0 ≤ t ≤ 3000, random spike timings are generated
by homogeneous Poisson process with a constant rate λ = 1/3000. Three random
Poisson patterns (μ = 1, 2, 3) are generated in the same manner and encoded by the
STDP-based learning rule (3) in a network of 10000 spiking neurons. (b) Behavior of
membrane potentials (i.e., internal potentials) of spiking neurons in a numerical simu-
lation are plotted as a function of time. At t = 0, we give pulsed external input to force
the network to retrieve the initial part of the spatiotemporal pattern that is shown in
(a) . For t > 0, the network retrieve the memorized pattern autonomously (Note that
we give no external input for t > 0).

first pattern (μ = 1). Then, after t = 0, neurons in Fig. 2(b) emit autonomous
spikes in the exact accordance with Fig. 2(a). This means that the partial exter-
nal input at t = 0 evokes the retrieval of all the part of the first pattern (μ = 1).
The other patterns (μ = 2, 3) can also be retrieved if we apply the correspond-
ing initial inputs. In this manner, the STDP-based learning rule enables spiking
neural networks to act as spatiotemporal associative memory.

3 Analysis of Retrieval Process of Periodic
Spatiotemporal Patterns in Analog Neural Networks

As shown in the previous studies on spiking neurons [17,18], the underlying
mechanism of spatiotemporal learning of spike timings can be explained by the
analytical evaluation of time-dependent synaptic electric currents arising in spik-
ing neurons. However, the evaluated synaptic electric currents, which depend on
various parameters such as decay time constants of chemical synapses and the
shape of the STDP time window, are not necessarily easy to understand. For a
simpler explanation of essential mechanism of spatiotemporal learning, we here
summarize our recent study on analog neural networks that memorize periodic
spatiotemporal patterns[21]. The assumption of periodic patterns in analog neu-
ral networks allow us to derive order parameter dynamics, which would ease
understanding of some key features of the STDP-based associative memory for
spatiotemporal patterns.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

STDP to Learn Spatiotemporal Patterns in Recurrent Neural Networks 761

(a) (b) (c)

Fig. 3. A numerical simulation of the STDP-based learning of periodic spatiotem-
poral patterns in an analog neural network. (a) Three periodic spatiotemporal pat-
terns ημ

i (μ = 1, 2, 3) are generated randomly by Eq. (6) with frequency ω = 0.02× 2π.
Figure (a) describes the behavior of the first ten neurons in the first pattern(μ = 1).
All the three random patterns are encoded in an analog neural network according to
the learning rule (8). (b) Setting the initial condition xi(0) close to η1

i (0), we carry out
a numerical simulation. Figure (b) describes the behavior of the first ten neurons in
this numerical simulation. (c) The time evolution of overlap m1 defined by Eq. (10) is
plotted as a function of time. We assume a network of 10000 analog neurons that are
defined by Eq. (4) with the Heaviside function F (u) = H(u).

Let us consider analog neural networks defined by

dxi/dt = −xi + F (hi) , i = 1, . . . , N, (4)

where xi represents the activity of neuron i and transfer function F (h) denotes
the input-output relationship of neurons. Local fields hi, which are analogous to
synaptic electric currents in spiking neurons, are defined by

hi =
∑

j Jijxj . (5)

In these analog neural networks, we consider encoding periodic spatiotemporal
patterns

ημ
i = (1/2) (1 + cos(ωt − φμ

i)) , i = 1, . . . , N, μ = 1, . . . , P, (6)

where ω represents the frequency of periodic spatiotemporal patterns, and phase
shift φμ

i is chosen randomly from the uniform distribution within the interval
[0, 2π). An example of a randomly generated pattern is illustrated in Fig 3(a).
We carry out learning of the periodic patterns according to the STDP-based
learning

Jij ∝
∑P

μ=1

∫ ∞
−∞

∫ ∞
−∞ ημ

i (t1)W (t1 − t2)η
μ
j (t2)dt1dt2. (7)

Then, we arrive a simple learning rule

Jij = (1/N)
∑P

μ=1Re
(
aξμ

i ξμ∗
j

)
+ b/N, (8)

where ξμ
i represents exp (iφμ

i), and a complex number a and a real number b are
defined by

a =
∫ ∞
−∞ W (t)e−iωtdt and b = 2P

∫ ∞
−∞ W (t)dt. (9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

762 M. Yoshioka, S. Scarpetta, and M. Marinaro

(a) (b)

Fig. 4. (a) The storage capacity (the upper limit of pattern number for successful
retrieval) in the associative memory analog neural networks for periodic spatiotemporal
patterns is plotted as a function of r. Parameter r controls the size of the negative part
in the STDP time window (see Eq. (2)). (b) The same as (a) for associative memory
spiking neurons for periodic spatiotemporal patterns.

Figure 3(b) explains a result of a numerical simulation of an analog neural net-
work based on the learning rule (8). The first pattern described in Fig. 3(a) is
successfully retrieved in the numerical simulation in Fig. 3(b).

To quantify degree of retrieval of patterns, it is useful to define overlaps

mμ = (1/N)
∑

i ξμ
i xi. (10)

During retrieval of the first pattern, overlap m1 shows periodic oscillation with
the constant amplitude as shown in Fig. 3(c), while |m2| and |m3| take the
considerably small value, reflecting non-retrieval of the second and the third
patterns. In such a case, the local field (5) is rewritten in the form

hi = Re
(
aξ1

i m1∗) + bX, (11)

where X = (1/N)
∑

i xi. The oscillation of m1 causes oscillation of local field hi

with phase shift −arg(aξ1
i), which brings about oscillation of xi with the high

correlation with ξ1
i . Then, this oscillation of xi sustains oscillation of m1. When

we assume a finite number of patterns P = O(1) and an infinite number of
neurons N → ∞, this dynamics of overlaps is expressed as

dmμ/dt = −mμ + 〈ξμF (
∑

ν Re (aξνmν∗) + bX)〉 , μ = 1, . . . , P, (12)
dX/dt = −X + 〈F (

∑
ν Re (aξνmν∗) + bX)〉 . (13)

where 〈. . .〉 represents the average over ξμ = exp(iφμ). The retrieval process of
the analog neural networks thus can be investigated in the analytical manner.

3.1 The Optimal Shape of the STDP Time Window to Encode a
Large Number of Spatiotemporal Patterns

Stationary solutions in the dynamics (12) and (13) clarify the various important
features of the spatiotemporal analog neural networks. For example, substitution

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

STDP to Learn Spatiotemporal Patterns in Recurrent Neural Networks 763

Fig. 5. The stability analysis of stationary solution in the associative memory analog
neural networks. The solid line represents stationary solution with negative |λ1| and
|λ2|, and the dotted line represents stationary solution with positive |λ1| and/or positive
|λ2|. |κ| takes a negative value only beyond the critical point indicated by the dotted
vertical line. Dots represent results of numerical simulations conducted with P = 2.
Eigenvalue κ well explains the phase transition observed in the numerical simulations.

of the stationary solution of the form m1 = |m1| exp(iω̃t), mμ = 0, (2 ≤ μ),
and d|m1|/dt = dX/dt = 0 yields ω̃ = − tan arg(a), implying that retrieval of
patterns occurs at the different frequency than oscillation frequency of encoded
pattern ω. Note that such time scale change in retrieval occurs also in learning
of Poisson patterns shown in Fig. 2 (Compare the time scales of Fig. 2(a) and
Fig. 2(b)). It also turns out that the parameter b yields the strong influence
on the pattern-number dependence of the stationary solution since parameter b
defined in Eqs. (9) is proportional to P as well as the time average of the time
window W =

∫
W (t)dt. In Fig. 4(a), we plot the analytically derived storage

capacity P c as a function of r, where parameter r controls the negative part
of the STDP time window as defined in Eq. (2). In general, the retrieval state
disappears with finite P since increase of bX term in the local field (11) interferes
the existence of meaningful stationary solution. At r = 1, however, we see the
divergence of the storage capacity P c since the average W = 1 − r vanishes at
r = 1. The storage capacity of the analog neural networks is hence maximized
when the area of the negative part of the STDP time window has the same size
as the positive part so that the time average W takes the zero value.

3.2 Stability of Retrieval State for Single-Pattern Learning (P = 1)
and for Multiple-Pattern Learning (2 ≤ P)

Not all of stationary solutions in the dynamics (12) and (13) are stable. To
discuss the meaningful solution for retrieval state, we need to analyze stability
of stationary solutions. It is interesting that the present analog neural networks
show the different stability condition between the cases of single-pattern learning
(P = 1) and of multiple-pattern learning (2 ≤ P).

When a single pattern is encoded (P = 1), linear stability of the stationary

solution is evaluated from the dynamics d
dt

(
δX δ

∣
∣m1

∣
∣
)T = A

(
δX δ

∣
∣m1

∣
∣
)T,

where δX and δ
∣
∣m1

∣
∣ represent deviation from the stationary solution. When two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

764 M. Yoshioka, S. Scarpetta, and M. Marinaro

(a) (b)

Fig. 6. Analysis and numerical simulations of associative memory spiking neural net-
works for periodic spatiotemporal patterns. In this spiking neural network, periodic
external inhibition is applied to all of spiking neurons so as to discretize spike timings.
(a) Absolute values of eigenvalues λ⊥, λ‖, and κ are plotted as a function of intensity of
inhibition Ainh. The dotted vertical line represents the critical point at which κ takes
the zero value. (b) ISIs of all neurons in a numerical simulation are plotted as a func-
tion of Ainh (For the ISIs of all neurons, see Refs. [17,18].) The thick line represents
analytically derived ISIs, and the vertical line represents the critical point due to κ.

eigenvalues λ1 and λ2 of matrix A have negative real parts, stationary solution
is stable.

When we encode a multiple number of patterns (2 ≤ P), the linear stability
analysis yields P + 1 eigenvalues λ1, λ2, . . . , λP+1. It can be shown that these
eigenvalues include (P −1)-fold eigenvalue κ. Thus, the stability of stationary so-
lution in multiple-pattern learning is determined by real parts of eigenvalues λ1,
λ2, and (P − 1)-fold eigenvalue κ.

Under a certain condition, the (P−1)-fold eigenvalue κ causes phase transition
as shown in Fig. 5. The solid line in Fig. 5 represents stationary solution with
negative |λ1| and |λ2|, while the solution with the dotted line has positive |λ1|
and/or positive |λ2|. Therefore, the solution with the solid line is stable for
single-pattern learning (P = 1). For multiple-pattern learning (2 ≤ P), however,
the solution with the solid line is stable only beyond the critical point indicated
by the dotted vertical line since |κ| takes the positive value below the vertical
line. Dots in Fig. 5 represents results of numerical simulations in which two
periodic patterns are encoded. The critical point determined by the eigenvalue κ
well explains the sudden change of the amplitude of overlap in the numerical
simulations.

4 Analysis of Retrieval Process of Periodic
Spatiotemporal Patterns in Spiking Neural Networks

Analysis of spiking neural networks requires the different treatment of mean
field interactions than the overlap dynamics in analog neural networks[17,18].
Nevertheless, some of the features of the analog neural networks have also been
found in associative memory spiking neural networks for periodic spatiotemporal

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

STDP to Learn Spatiotemporal Patterns in Recurrent Neural Networks 765

patterns. Here, we briefly summarize these similarities between analog and spik-
ing neural networks in learning of periodic spatiotemporal patterns.

It has been shown that term proportional to W and P appears also in synaptic
electric currents in the spiking neurons. As a result, the storage capacity of the
spiking neural networks shown in Fig. 4(b) diverges at r = 1 in the same manner
as Fig. 4(a) . This highlights the general importance of W = 0 in encoding a
large number of spatiotemporal patterns.

Figure 6(a) explains the result of the stability analysis of associative memory
of spiking neural network for periodic patterns in which periodic external inihi-
bition is applied to all of spiking neurons so as to discretize spike timings. When
a single pattern is encoded, stability of stationary solution is characterized by
two types of eigenvalues; eigenvalue λ⊥ characterizes stability of synchronization
in discretized spike timings and eigenvalue λ‖ characterizes stability in dynamics
among clusters of synchronized neurons. In addition, with a multiple number of
patterns, degenerate eigenvalue κ appears as in the case of analog neural net-
works. Note that |κ| exceeds one at the point indicated by the dotted vertical line
in Fig. 6(a). This critical point due to κ causes the phase transition in numerical
simulations in Fig. 6(b), following the same manner as Fig. 5.

5 Discussion

We have studied the STDP-based spatiotemporal learning in recurrent neural
networks. First, we have introduced the general ideas of the STDP-based spa-
tiotemporal learning, demonstrating the numerical simulation of spiking neural
networks that memorize spatiotemporal Poisson patterns (Fig. 2). Then, we dis-
cuss the some key features of the STDP-based spatiotemporal learning, following
our recent analysis on learning of periodic patterns in analog neural networks.
Stationary solution of the order parameter dynamics (12) and (13) in the analog
neural networks elucidates that spatiotemporal patterns encoded by the STDP-
based learning rule are retrieved at the different time scale than the original one.
It also has turned out that the storage capacity is maximized when the negative
part of the STDP time window has the same size as the positive part (Fig. 4).
The further analysis has shown the influence of the eigenvalues charactering sta-
bility of stationary solution on retrieval performance (Fig. 5). Then, we have
briefly compared these analytical results on analog neural networks with spiking
neural networks (Figs. 4 and 6).

It is remarkable that analog neural networks and spiking neural networks
show the similar retrieval properties in the learning of periodic patterns. It has
also been found that the STDP-based learning permits analog neural network
to memorize spatiotemporal Poisson patterns of bursting activities [21]. Wave
forms of analog neuron activities during retrieval of spatiotemporal patterns,
however, differ from those of memorized patterns as shown in Fig. 3, imply-
ing the difficulty of the STDP-based learning in encoding amplitude of slowly
changing neural activities. The dynamics of overlaps (12) and (13) is useful to
understand retrieval of periodic patterns in analog neural networks, but seems to

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

766 M. Yoshioka, S. Scarpetta, and M. Marinaro

be difficult to be applied to the case of Poisson patterns. The different approach
discussed in the studies on spiking neural networks [17,18] possibly gives the
satisfactory approximate of the case of Poisson patterns, especially when spikes
during retrieval are sufficiently sparse. Eigenvalue κ in Fig. 6(a) is not discussed
in Ref. [18] since some restrictions on perturbations are assumed in that stability
analysis. We have derived eigenvalue κ from the more general stability analysis
without the restrictions.

The retrieval frequency of the analog neural network ω̃ = − tan arg(a) can
take a negative value, that is to say, retrieval of spatiotemporal patterns in
analog neural networks can occur in the reversed order with respect to time.
Interestingly, such odd retrieval of reversed spatiotemporal patterns has recently
been observed in the Hippocampus of the awaking rat[26]. The normal order
replay at the faster time scale has also been found to occur in sleeping rats[3].
The time scale change discussed in our present study possibly explains various
time scales in memory replay in the real nervous system.

References

1. MacLeod, K., Laurent, G.: Science 274, 976 (1996)
2. Lorenzo, P.M.D., Hallock, R.M., Kennedy, D.P.: Behavior Neuroscience 117, 1423

(2003)
3. Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., Buzsáki, G.: J. Neurosci. 19,

9497 (1999)
4. Hopfield, J.J.: Proc. Natl. Acad. Sci. USA 79, 2554 (1982)
5. Amit, D.J., Gutfreund, H., Sompolinsky, H.: Phys. Rev. Lett. 55, 1530 (1985)
6. Amari, S.: IEEE Transactions on Computers C-21, 1197 (1972)
7. Matsumoto, N., Okada, M.: Neural Comp. 14, 2883 (2002)
8. Sompolinsky, H., Kanter, I.: Phys. Rev. A 57, 2861 (1986)
9. Coolen, A.C.C., Ruijgrok, T.W.: Phys. Rev. A 38, 4253 (1988)

10. Cook, J.: J. Phys. A 22, 2057 (1989)
11. Arenas, A., Vicente, C.J.P.: Europhys. Lett. 26, 79 (1994)
12. Kühn, R., Bös, S., van Hemmen, J.L.: Phys. Rev. A 43, 2084 (1991)
13. Amari, S., Maginu, K.: Neural Netw. 1, 63 (1988)
14. Nishimori, H., Nakamura, T., Shiino, M.: Phys. Rev. A 41, 3346 (1990)
15. Shiino, M., Fukai, T.: J. Phys. A 25, L375 (1992)
16. Okada, M.: Neural Netw. 8, 833 (1995)
17. Yoshioka, M.: Phys. Rev. E 65, 011903 (2001)
18. Yoshioka, M.: Phys. Rev. E 66, 061913 (2002)
19. Scarpetta, S., Zhaoping, L., Hertz, J.: Neural Comp. 14, 2371 (2002)
20. Scarpetta, S., Marinaro, M.: Hippocampus 15, 979 (2005)
21. Yoshioka, M., Scarpetta, S., Marinaro, M.: Phys. Rev. E 75 (2007) 051917
22. Markram, H., Lübke, J., Frotscher, M., Sakmann, B.: Science 275, 213 (1997)
23. Bi, G.Q., Poo, M.M.: J. Neurosci. 18, 10464 (1998)
24. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A., Poo, M.M.: Nature 395, 37 (1998)
25. Bi, G.Q., Poo, M.M.: Annu. Rev. Neurosci. 24, 139 (2001)
26. Foster, D.J., Wilson, M.A.: Nature 440, 680 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Distributed Message Passing Algorithm for Sensor
Localization

Max Welling and Joseph J. Lim

Bren School of Information and Computer Science
UC Irvine, CA 92697-3425, USA

{welling, josephjl}@ics.uci.edu

Abstract. We propose a fully distributed message passing algorithm based on
expectation propagation for the purpose of sensor localization. Sensors perform
noisy measurements of their mutual distances and their relative angles. These
measurements form the basis for an iterative, local (i.e. distributed) algorithm to
compute the sensor’s locations including uncertainties for these estimates. This
approach offers a distributed, computationally efficient and flexible framework
for information fusion in sensor networks.

1 Introduction

Sensor localization and information fusion have become an active area of research in
recent years. It has become clear that distributed approaches will become increasingly
important to handle the computational challenges in large scale networks. Many such
approaches have been proposed in the past (e.g. [5,3,4] and many more), but very few
can handle uncertainty in a distributed computational setting. The most well-known
approach (not presented as a distributed algorithm) is based on the Fisher information
[3], but this method can be shown to grossly under-estimate uncertainty for high noise
levels. The state-of-the-art in this field is presumably “non-parametric belief propaga-
tion” that propagates sample sets over the edges the graph and can as such handle non-
gaussian distributions [1]. The price being paid for this flexibility is that the algorithm is
computationally intensive, a factor that is not unimportant in applications where energy
is on a tight budget.

In this paper we propose a method which trades computation with accuracy. The
proposed method maintains and communicates Gaussian estimates (which can be rep-
resented by 5 real numbers) instead of sample sets. The price being paid is obviously
that it cannot represent multi-modal distributions. The underlying algorithm is expecta-
tion propagation (EP), a form of belief propagation that has recently been introduced in
the context of Bayesian modeling [2]. We have adapted that framework to the problem
of sensor localization and resolved some numerical issues in the process.

2 A MRF Model for Sensor Localization

Our general approach is based on constructing a Markov random field model (MRF) for
the joint distribution over all sensor locations {xi, i = 1..N} with x ∈ R

2. The general

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 767–775, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

768 M. Welling and J.J. Lim

expression for a MRF with pairwise interactions is given by,

P (x1, .., xN) ∝
∏

ij∈E
ψij(xi, xj)

∏

i∈V
ψi(xi) (1)

where ψij(xi, xj) denotes an interaction potential between sensors i and j and ψi(xi)
a node potential which could for instance encode an absolute measurement of sensor
position.

The problem that we need to solve consist of two parts: 1) finding suitable expres-
sions for the potential functions and 2) solving for the marginal distribution p(xi), ∀i.
We’ll first deal with the first question.

Interactions between sensors consist of two types in this paper: noisy distance mea-
surements between sensors and noisy angle measurements between sensors. The noisy
distance measurement is modeled using a gamma distribution for the squared distances.
The reason we use squared distances is computational. More precisely we use,

ψdist
ij (xi, xj) ∝ r

2(αij−1)
ij exp[−βijr

2
ij] (2)

where rij = ||xi − xj || and αij and βij are free parameters. The interaction between
angles is based on the Von-Mises distribution,

ψangle
ij (xi, xj) ∝ exp[κ cos(θij − ρij)] (3)

where θij = arctan2(xi−xj) denotes the angle1 between the sensors, measured relative
to absolute north (this requires the sensors to carry a compass) . The constant κ controls
the variance of this distribution while ρij denotes its mean.

In the following we will assume that the variance of these distributions is determined
offline, i.e. the distribution over measurement errors is assumed known. On the other
hand, a single measurement will determine the value for the mode of the distribution.
Given a particular observation rij = dij , θij = φij on the edge ij and given a variance
v on squared distance measurements and ν on relative angle measurements we derive
the following values for the parameters,

βij = (d2
ij +

√
d4

ij + 4v)/(2v) (4)

αij = 1 + βijd
2
ij (5)

ρij = φij (6)

κ = F (ν) (7)

where F (ν) is obtained by inverting the relation ν = 1 − I1(κ)2

I0(κ)2 with Ij a Bessel
function of order j. As mentioned, these parameter settings will place the mode of the
distributions at the observed values and sets the variance equal to the given values.

In this paper we will not use any node potentials. This implies that we don’t have
access to any absolute location information and that the localization can only be suc-
cessful up to a global translation of the coordinate frame. Note that we do have access

1 We use the “four quadrant inverse tangent” arctan2(·) so that R is mapped to [−π, π].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Distributed Message Passing Algorithm for Sensor Localization 769

to absolute north and that the absolute orientation can indeed be recovered. In this pa-
per we will assume that the translational degrees of freedom will be determined by a
separate procedure. To align results with ground truth we will perform a global transfor-
mation which minimizes root mean squared error (RMSE). By adding node potentials
we could in fact have avoided this separate phase.

The final MRF is now defined as the product of all the interaction potentials, i.e.

P (x1, .., xN) ∝
∏

ij∈E
ψdist

ij (xi, xj)ψ
angle
ij (xi, xj) (8)

We will be interested in computing the marginal distribution,

P (xi) =
∫

dx1..dxi−1dxi+1..dxNP (x1, .., xN) (9)

This problem is intractable, but we will employ an effective approximation technique
to find Gaussian projections of these marginals.

3 Localization by Expectation Propagation

The computation of the marginal distributions P (xi) is intractable because x is con-
tinuous and the interaction potentials are nonlinear. Expectation propagation offers an
approximate solution. It sends messages over the edges of the communication graph
(corresponding to pairs of sensors that can exchange information). Each message is
loosely interpreted as an estimate by sensor i of the distribution over locations for sen-
sor j as approximated by a normal distribution. This estimate is based on similar esti-
mates from sensor i’th neighbors but excluding sensor j in that estimate (this is done to
avoid evidence coming from j to directly flow back to j). For more details we refer to
[2].

Applied to our problem we maintain the following quantities: 1) Gaussian estimates
of the marginal distributions over sensor locations bi(xi) and 2) Gaussian messages
Mij(xj). Messages and marginals relate in a simple way,

bi(xi) ∝
∏

j∈Ni

Mji(xi) (10)

The algorithm iteratively updates messages and marginals as we show in the algo-
rithm box below. Note that the computation involves a ”projection operator” P , which
converts a general distribution in the plane to the closest normal distribution in KL-
divergence by matching the first and second moments. The updates also involve a dif-
ficult integration over xj which should be done numerically in general. The constant
γ ∈ [0, 1) is a damping factor and should be increased if the system has difficulty con-
verging. We note that we have used γ = 0.7 in all our experiments which was sufficient
for the algorithm to consistently converge.

In applying the general form of the EP algorithm to sensor localization one runs
into some numerical issues. Firstly, the integral has to be performed in a four dimen-
sional space which may be computationally taxing. Fortunately, one can analytically

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

770 M. Welling and J.J. Lim

Algorithm 1. EP Algorithm
1. Initialize:
1A. Mj→i(xi) as random Gaussian distributions
1B. bi(xi) ∝

�
j∈Ni

Mj→i(xi)

2. Repeat until convergence: update messages (j → i) .

2A. Pij(xi) = P
�

dxj ψij(xi, xj)
bi(xi)bj(xj)

Mi→j(xj)Mj→i(xi)

2B. bi,new(xi) = Pij(xi)
1−γbi(xi)

γ

2C. Mj→i,new(xi) =
�

Pij(xi)
bi(xi)

�1−γ

Mj→i(xi)

integrate out two dimensions by observing that all interaction potentials only depend
on the relative coordinates x− = xi − xj and not on the coordinates x+ = 1

2 (xi + xj).
The algorithm detailed below first transforms to these new coordinates, performs the
integral over x+ analytically while the two- dimensional integral over x− is performed
numerically (e.g. by importance sampling). Finally, the the results are converted back
to the space xi, xj and the messages are updated.

Numerical instabilities can also occur because we need to perform an integral over
a product of local densities and then renormalize. If two of these terms peak at dif-
ferent locations and decay fast, their product is very small (e.g. smaller than machine
precision) everywhere. The result is that we cannot reliably compute the normaliza-
tion constant. We have circumvented this problem by merging the exponential term
of the gamma distribution in eqn.2 with the normal distributions for the messages and
marginals (see step 2A. of the “EP Algorithm” box). We then sample from the resulting
Gaussian distribution and evaluate the remaining terms at the sampled values in order
to approximate the integral. The final algorithm is provided in the algorithm box below.

4 Experimental Results

In the following experiments we will study the influence of various parameters on lo-
calization accuracy. Accuracy is quantified using the root mean squared error (RMSE),

RMSE =
√

2
N(N − 1)

∑

i<j

||yi − yj ||2 (11)

Before computing the error we first align the estimates by computing the optimal ro-
tation and translation as follows: first translate both the true sensors locations and the
predicted sensor locations to the origin: xi → xi − μ. Call x the 2 × N matrix of true
centered locations and y the predicted locations. Next decompose xyT using an SVD:
USV T = xyT and transform y → y′ = yUV T .

The error in the uncertainty ellipse was assessed using the following measure,

EC =
1
N

∑

i

|Trace(Cest
i) − Trace(C true

i)|
Trace(C true

i)
(12)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Distributed Message Passing Algorithm for Sensor Localization 771

Algorithm 2. SLEEP Algorithm
1. Input: γ, αij , βij , κ, ρij ∀ij, Output: Σi,new, μi,new ∀i

2. Initialize: Vi→j , νi→j ∀(i → j)

2A. Σ−1
i = j∈N (i) V −1

j→i ∀i

2B. μi = Σi(j∈N (i) V −1
j→iνj→i) ∀i

3. Repeat until convergence:
choose edge ij according to schedule and update.
3A. Remove messages i → j and j → i:
3Aa. Σ−1

i\j
= Σ−1

i − Vji

3Ab. Σ−1
j\i

= Σ−1
j − Vij

3Ac. μi\j = Σi\j(Σ
−1
i μi − V −1

ji νji)

3Ad. μj\i = Σj\i(Σ
−1
j μj − V −1

ij νij)

3B. Transform to relative coordinates:
3Ba. Σ+ = Σi\j + Σj\i

3Bb. Σ− = Σi\j − Σj\i

3Bc. μ+ = 1
2 (μi\j + μj\i)

3Bd. μ− = μi\j − μj\i

3C. Absorb Gamma distribution into Gaussian:
3Ca. C = (I + 2βΣ+)−1

3Cb. K = CΣ+

3Cc. s = Cμ−
3D. Compute the following moments:
3Da. Z = dx− exp [κ cos (arctan2(x−) − ρij)] ||x−||2α−2Nx− [s, K]

3Db. E[x−] = dx− exp [κ cos (arctan2(x−) − ρij)] ||x−||2α−2 x−Nx− [s, K]/Z

3Dc. E[x−xT
−] = dx− exp [κ cos (arctan2(x−) − ρij)] ||x−||2α−2 x−xT

−Nx− [s, K]/Z

3E. Compute moments for x+ variables:
3Ea. Λ = 1

2Σ−Σ−1
+ , δ = μ+ − Λμ−

3Eb. E[x+] = δ + ΛE[x−]

3Ec. E[x+xT
+] = 1

4 (Σ+−Σ−Σ−1
+ Σ−)+δδT+δE[x−]TΛT+ΛE[x−]δT+ΛE[x−xT

−]ΛT

3Ed. E[x+xT
−] = δE[x−]T + ΛE[x−xT

−]

3Ee. E[x−xT
+] = E[x+xT

−]T

3F. Transform back to sensor coordinates:
3Fa. E[xi] = E[x+] + 1

2E[x−]

3Fb. E[xj] = E[x+] − 1
2 E[x−]

3Fc. E[xixT
i] = E[x+xT

+] + 1
4 E[x−xT

−] + 1
2 (E(x+xT

−] + E(x−xT
+])

3Fd. E[xjxT
j] = E[x+xT

+] + 1
4E[x−xT

−] − 1
2 (E(x+xT

−] + E(x−xT
+])

3G. Compute candidate sensor locations and covariances:
3Ga. μi,cand = E[xi]

3Gb. μj,cand = E[xj]

3Gc. Σi,cand = E[xixT
i] − μi,candμ

T
i,cand

3Gd. Σj,cand = E[xjxT
j] − μj,candμ

T
j,cand

3H. Compute new sensor locations and covariances:
3Ha. Σ−1

i,new = (1 − γ)Σ−1
i,cand + γΣ−1

i

3Hb. Σ−1
j,new = (1 − γ)Σ−1

j,cand + γΣ−1
j

3Hc. μi,new = Σi,new((1 − γ)Σ−1
i,candμi,cand + γΣ−1

i μi)

3Hd. μj,new = Σj,new((1 − γ)Σ−1
j,candμj,cand + γΣ−1

j μj)

3I. Compute new messages:
3Ia. V −1

ji,new = V −1
ji + (1 − γ)[Σ−1

i,new − Σ−1
i]

3Ib. V −1
ij,new = V −1

ij + (1 − γ)[Σ−1
j,new − Σ−1

j]

3Ic. νji,new = Vji,new(V −1
ji νji + (1 − γ)[Σ−1

i,newμi,new − Σ−1
i μi])

3Id. νij,new = Vij,new(V −1
ij νij + (1 − γ)[Σ−1

j,newμj,new − Σ−1
j μj])

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

772 M. Welling and J.J. Lim

0 5 10 15 20 25
−5

0

5

10

15

20

25

0 5 10 15 20 25
−5

0

5

10

15

20

25

Fig. 1. Left: Localization results with v = 0.2 and infinite communicating range but ignoring
angle information. Right: same as left but now including angle information with κ = 3.

−5 0 5 10 15 20 25
−5

0

5

10

15

20

25

0 5 10 15 20 25
0

5

10

15

20

25

Fig. 2. Left: Ground truth Localization with v = 0.2 and infinite communicating range but ignor-
ing angle information. Right: same as left but now including angle information with κ = 3.

where Ci is the covariance of sensor i. Note that we divide by Trace(C true
i) to divide out

the scale of the variance so that smaller variances do not automatically imply smaller
error (i.e. we try to quantify the error in the size and shape of the ellipse).

In our experiments we first placed sensors randomly on a square. Then, we perturbed
the true distances into noisy distances by sampling them from a log-normal distribution
centered at the true distance and with variance v. We used a log-normal distribution
because it was shown in [4] to provide a good fit to actual distance measurements. A
similar procedure was followed to obtain noisy measurements for the angles which we
were sampled from a Von-Mises distribution with a certain value for κ.

We estimated ground truth for the sensor location uncertainty by drawing many
samples according to the procedure above and for each of them minimizing the log-
probability of the sensor locations using a standard optimization package2. Note that
this procedure can not be used in a non-simulated environment because we typically
only have access to a single sample of a distance measurement. For each marker in a
plot we ran the algorithm 30 times and computed average performance measures and
their standard deviations shown as error-bars.

2 http://www.kyb.tuebingen.mpg.de/bs/people/carl/code/minimize.old/minimize.m

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Distributed Message Passing Algorithm for Sensor Localization 773

0.08

0.40

0.12
0.16

0.20
0.24

0.28
0.32

0.36 0

5

10

15

0

1

2

3

4

5

Angle KappaDistance Variance

R
M

S
E

0.2
0.4

0.6
0.8

1

0

5

10

15

0

5

10

15

Maximum Comm. Range Ratio

Angle Kappa

R
M

S
E

Fig. 3. Left: RMSE as a function of variance in squared distance measurements (v) and κ. All
sensors communicate. κ is inversely related to the variance in the angle measurement, i.e. larger
κ implies smaller variance. Right: RMSE as a function of communication range and κ (v = 0.2).
A communication range of 1 is equal to the diagonal spanning the box in which the sensors are
placed. In both plot there are N = 15 sensors.

In the following examples we vary over the settings of a number variables. The stan-
dard settings are given by: v = 0.2, N = 15 and infinite communication range.

In figure 1 we show two runs of our algorithm, one without angle information (left)
and one with angle information (right). It can clearly be observed that the angle in-
formation is helpful in disambiguating sensors which are nearby. Figure 2 shows the
corresponding ground truth uncertainty regions.

In figure 3 (left) we show RMSE as a function of the variance in distance measure-
ments and as a function of κ which is inversely related to variance in angle measure-
ments. One can observe that even small values of κ around κ = 2 (corresponding to a
std. of approximately π/4 in angle) can be very helpful in improving the accuracy of
the location estimates.

In figure 3 (right) we plot RMSE as a function of the communication range (the
fraction of the maximal (diagonal) distance in our 20 by 20 window) and as a function
of κ. Again, angle information can help building good maps and is especially helpful
when the communication range is small.

Figure 4 (left) shows RMSE for varying κ and N (the number of sensors). As ex-
pected, more sensors are helpful and bigger κ is helpful. For values of κ > 3 we see
diminishing returns.

Finally, we studied the error in the uncertainty itself. Figures 4 (right) and 5 (left
and right) show the dependence of EC w.r.t. κ, v, N and communication range. While
decreasing the variance in the distance measurements improves the estimates for un-
certainty, the trend for the variance in angle measurements in reversed: less variance
makes the estimation harder. We suspect that decreasing variance will improve EC if
the location estimates themselves are bad because in that case estimating uncertainty
is essentially impossible. However, if the sensor map is in the right ballpark then there
may be another effect which offsets this. Decreasing the variance implies that the sen-
sors are more tightly coupled and that loopy inference by EP deteriorates as evidence
over-counting becomes a problem. This assessment is supported by the fact that more

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

774 M. Welling and J.J. Lim

10
20

30
40

50

0

5

10

0

1

2

3

4

Number of Sensors
Angle Kappa

R
M

S
E

10
20

15

30
40

50

0
3

6
9

12
15
0.2

0.4

0.6

0.8

1

Number of Sensors
Angle Kappa

E
c

Fig. 4. Left: RMSE as a function of the number of sensors N and κ (v = 0.2 and N = 15).
Right: EC as a function of the number of sensors N and κ (v = 0.2 and N = 15).

sensors (which all communicate) also has a detrimental effect on EC presumably be-
cause it creates more tight cycles in the communication graph.

We have also compared our algorithm to a current state-of-the-art algorithm, namely
the “anchor-free localization” (AFL) algorithm discussed in [5]. Since this algorithm was
only defined for distance measurements we ignored angle information as well. This is a
distributed algorithm based on quadratic penalties for deviations between the noisy ob-
served distances and distances measured in the sensor map. However, unlike SLEEP, AFL
hasapreprocessing phasewhere itunfolds themapapproximately, avoiding localminima.
We have enhanced AFL with a computation of the inverse Fisher information in order to
compute uncertainty in localization [3]. In all our experiments we have found that our al-
gorithm works significantly better than AFL both in terms of RMSE as well as EC . These
results will be published elsewhere in full detail and are left out due to space constraints.

5 Discussion

We presented a flexible distributed computational paradigm for sensor localization.
Various kinds of information are easily integrated by adding potential functions and
adapting EP to handle inference. In this paper we have presented an explicit algorithm
that incorporates noisy distance and angle information.

The experiments have shown that the algorithm is able to competitively estimate
both location and uncertainty in location. We have also shown that approximate in-
ference in graphs with many tight loops begins to break down in terms of estimating
uncertainty (but not in terms of the location estimates themselves). This suggests in-
teresting avenues for future research. For instance, one could try to develop distributed
implementations for generalized EP algorithms.

There are a few other issues that need further scrutiny. We are currently using impor-
tance sampling to do the required numerical integration but this may not be optimal in
terms of computational efficiency. We plan to apply quadrature integration to improve
upon this. Also, we plan to extend the current model with more sources of information.
For instance one may want to simultaneously infer location and, say, the concentration
of a chemical in the atmosphere. Extensions to dynamic models where robots move
around in their environment are also under investigation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

A Distributed Message Passing Algorithm for Sensor Localization 775

0.080.120.16 0.2 0.240.280.320.36 0.4

3
6

9
12

15

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Distance Variance
Angle Kappa

E
c

0.4

0.6

0.8

1

0

5

10

15

0.2

0.4

0.6

0.8

1

Maximum Comm. Range Ratio
Angle Kappa

E
c

Fig. 5. EC as a function of variance in squared distance measurements (v) and κ. All sensors
communicate. Right: EC as a function of communication range and κ (v = 0.2). In both plot
there are N = 15 sensors.

Acknowledgements

We thanks Tom Minka for important suggestions and Alex Ihler for interesting discus-
sions.

References

1. Ihler, A.T., Fisher III, J.W., Moses, R.L., Willsky, A.S.: Nonparametric belief propagation for
self-calibration in sensor networks. In: Information Processing in Sensor Networks (2004)

2. Minka, T.: Expectation propagation for approximate Bayesian inference. In: UAI, pp. 362–369
(2001)

3. Moses, R.L., Krishnamurthy, D., Patterson, R.: A self-localization method for wireless sensor
networks. EURASIP Journal on Applied Signal Processing 4, 348–358 (2003)

4. Peng, R., Sichitiu, M.L.: Robust, probabilistic, constraint-based localization for wireless sen-
sor networks. pp. 541–550 (2005)

5. Priyantha, N.B., Balakrishnan, H., Demaine, E., Teller, S.: Anchor-free distributed localization
in sensor networks.Technical Report TR-892, MIT LCS (April 2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization

in Disparity-Tuned Complex Cells

W. Stürzl1, H.A. Mallot2, and A. Knoll1

1 Robotics and Embedded Systems, Technical University of Munich, Germany
2 Cognitive Neuroscience, University of Tübingen, Germany

stuerzl@in.tum.de

Abstract. Based on the energy model for disparity-tuned neurons, we
calculate probability density functions of complex cell activity for
random-dot stimuli. We investigate the effects of normalization and give
analytical expressions for the disparity tuning curve and its variance. We
show that while normalized and non-normalized complex cells have sim-
ilar tuning curves, the variance is significantly lower for normalized com-
plex cells, which makes disparity estimation more reliable. The results of
the analytical calculations are compared to computer simulations.

1 Introduction to the Binocular Energy Model

An overview of the binocular energy model [1] and an extension consisting of an
additional normalization operation is shown in Fig. 1. The model is motivated
by neurophysiological recordings from disparity-tuned neurons in the visual cor-
tex of mammals. It is similar to the spatio-temporal energy model for motion
perception described in [2].

In the first stage, left and right images, Il(x, y) and Ir(x, y) respectively, are
convolved with pairs of orthogonal filters,

Sal =
∫∫

fal(ξ, η) Il(ξ, η) dξdη , Sar =
∫∫

far(ξ, η) Ir(ξ, η) dξdη , (1)

Sbl =
∫∫

fbl(ξ, η) Il(ξ, η) dξdη , Sbr =
∫∫

fbr(ξ, η) Ir(ξ, η) dξdη . (2)

The linear receptive fields defined by the functions fal, fbl, fal, fbl can be mod-
elled as Gabor functions, see e.g. [3],

G(x − x0|k, Σ̂, φ) = e−
1
2 (x−x0)�Σ̂−1(x−x0) cos(k�(x − x0) − φ) . (3)

x0 denotes the center position of a simple cell’s receptive field in the image or
retina, k determines the spatial frequency and the orientation. The monocular
receptive fields have a phase difference of 90◦, i.e. φbl = φal + 1

2π, φbr = φar + 1
2π.

Binocular simple cells combine the corresponding left and right filter responses
(see Fig. 1),

Sa = Sal + Sar , Sb = Sbl + Sbr , (4)

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 776–787, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 777

(.)2(.)2 (.)2 (.)2

(.)2 (.)2

SbSa

C

NC

left
image

right
image

ε

+

+ +

+

Fig. 1. Overview of the binocular energy model. The “classical” model, Eqs. (1)–(5),
is depicted as gray panels. The white panels show the additional operations of the
normalization step, Eq. (6). See text for details.

and output the squared sum to the complex cell. Mathematically equivalent
but biologically more plausible, one can use four units instead, that have sign-
inverted receptive fields and a half-squaring non-linearity [4].

Finally, binocular complex cells integrate responses of (at least) two simple
cells,

C = S2
a + S2

b . (5)

Binocular Normalization

The “classical” energy model has been extended by adding monocular and binoc-
ular divisive normalization operations [5]. In this paper, we will examine the ef-
fect of binocular normalization as depicted in Fig. 1. We define a normalized
complex cell by

NC :=
C

(S2
al + S2

ar + S2
bl + S2

br) + ε
=

S2
a + S2

b

(S2
al + S2

ar + S2
bl + S2

br) + ε
. (6)

ε ≥ 0 is a small normalization constant. For high local image contrast (estimated
by S2

al + S2
ar + S2

bl + S2
br) the effect of ε is negligible. Eq. (6) is a simple variant

of the binocular normalization model proposed in [5] which enables us to show
analytically, that the variance of normalized complex cell activity is reduced,
and disparity detection is thus enhanced.

Similar models for “divisive normalization” or “gain control” have been used
to describe several properties of visual cortex neurons, like response saturation
and cross-orientation inhibition [6,7,8].

2 Probability Density Functions for Complex Cells

In this section, we will calculate probability density functions, tuning curves and
variances of disparity-tuned complex cells of the “classical” energy model (which

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

778 W. Stürzl, H.A. Mallot, and A. Knoll

we will call “non-normalized complex cells”), and of normalized complex cells
defined in Eq. (6). We will assume random dot stereo images as stimuli.

2.1 Receptive Field Functions of the Position-Shift Type

In the following, we will consider vertically oriented receptive field functions, i.e.
we set k = k ex and Σ̂ = diag(σ2

x, σ2
y) in Eq. (3),

G(x − x0|k, σ2
x, σ2

y, φ) = e
− (x−x0)2

2σ2
x

− (y−y0)2

2σ2
y cos(k(x − x0) − φ) . (7)

In this paper, we will use receptive fields of the position-shift type [5,9]: Re-
ceptive fields in the right image are shifted by D relative to the left receptive
fields. To simplify notation, we set φal = φar = 0 and use the fact that the
receptive field function (7) is separable. Eqs. (1),(2) are then transformed into
one-dimensional integrals (using σ := σx),

Sal =
∫

e−
ξ2

2σ2 cos(kξ)Il(ξ) dξ , Sar =
∫

e−
(ξ−D)2

2σ2 cos(k(ξ − D))Ir(ξ) dξ , (8)

Sbl =
∫

e−
ξ2

2σ2 sin(kξ)Il(ξ) dξ , Sbr =
∫

e−
(ξ−D)2

2σ2 sin(k(ξ − D))Ir(ξ) dξ , (9)

where we have defined the one-dimensional images

Il/r(ξ) :=
∫

e
− (y−y0)2

2σ2
y Il/r(ξ + x0, y)dy . (10)

The receptive fields of the phase-shift type can be obtained by replacing
exp(− (x−x0−D)2

2σ2) with exp(− (x−x0)2

2σ2) in Eqs. (8) and (9), i.e. the corresponding
receptive fields are located in the same positions, but have phase shifts.

2.2 Random Dot Stereo Stimuli

In the following, we do not restrict our derivations to a single stereo stimulus, but
rather assume that images are generated by a random process. In the simplest
case, each pixel is an identically and independently distributed random variable
with mean I0 and standard deviation σ2

I . In the continuous limit we will use

〈Ī(ξ)Ī(ξ′)〉 = I2
0 + σ2

Iδ(ξ − ξ′) . (11)

We will also assume that the output of the linear filters is zero for an input
with constant pixel values (or intensity) over the receptive fields. While this is

true for the odd receptive field function,
∫

e−
ξ2

2σ2 sin(kξ)dξ = 0, it does not hold

exactly for the even function,
∫

e−
ξ2

2σ2 cos(kξ)dξ =
√

2πσ exp(− 1
2k2σ2). This can

be accounted for by replacing cos(kξ) with (cos(kξ) − exp(− 1
2k2σ2)) in Eq. (8).

However, in order to simplify the analytical calculations, we do not use this, but
ignore constant offsets (which is equal to setting I0 = 0).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 779

We will analyze the case where left and right receptive fields “look” at image
parts that are shifted versions of each other, i.e. over the whole receptive field there
is a constant disparity d. We do not consider occlusions and variation in depth.
However, we take (sensor) noise into account described by identically and inde-
pendently distributed random variables. Thus, left and right input is modelled as

Il(x) = Ī(x) + νl(x) , Ir(x) = Ī(x − d) + νr(x) . (12)

Throughout this paper, we will assume 〈νu(x)〉 = 0 and 〈νu(x)νv(x′)〉 = σ2
n

×δ(x − x′)δu,v, u, v ∈ {l, r}.
Substituting (12) into (8) and (9), and defining d̃ := d − D, we obtain

Sal =
∫

e−
ξ2

2σ2 cos(kξ)Ī(ξ) dξ +
∫

e−
ξ2

2σ2 cos(kξ)νl(ξ) dξ , (13)

Sar =
∫

e−
(ξ+d̃)2

2σ2 cos(k(ξ + d̃)Ī(ξ)dξ +
∫

e−
(ξ−D)2

2σ2 cos(k(ξ − D))νr(ξ) dξ , (14)

Sbl =
∫

e−
ξ2

2σ2 sin(kξ)Ī(ξ) dξ +
∫

e−
ξ2

2σ2 sin(kξ)νl(ξ) dξ , (15)

Sbr =
∫

e−
(ξ+d̃)2

2σ2 sin(k(ξ + d̃))Ī(ξ) dξ +
∫

e−
(ξ−D)2

2σ2 sin(k(ξ − D))νr(ξ) dξ . (16)

2.3 Probability Density Function for the Linear Stage

Since theelementsof thevectorS := (Sal, Sar, Sbl, Sbr)� are sumsof independently
and identically distributed randomvariables, the joint probability density function
can be approximated by a Gaussian according to the central limit theorem, i.e.

PS(S|d̃) ≈ 1
√

(2π)4 det Σ̂(d̃)
exp(− 1

2 (S − 〈S〉)�Σ̂(d̃)−1(S − 〈S〉) . (17)

As discussed in Sect. 2.2, we assume 〈S〉=0. The covariance matrix is given by

Σ̂(d̃) = 〈(S − 〈S〉)(S − 〈S〉)�〉 = 〈SS�〉 =

⎛

⎜
⎜
⎝

a c 0 e
c a −e 0
0 −e b d
e 0 d b

⎞

⎟
⎟
⎠ , (18)

a := 〈S2
al〉 = 〈S2

ar〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fa(x′)dxdx′ + σ2
n

∫

fa(x)2dx ,(19)

b := 〈S2
bl〉 = 〈S2

br〉 =
∫∫

〈Ī(x)Ī(x′)〉fb(x)fb(x′)dxdx′ + σ2
n

∫

fb(x)2dx , (20)

c := 〈SalSar〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fa(x′ + d̃)dxdx′ , (21)

d := 〈SblSbr〉 =
∫∫

〈Ī(x)Ī(x′)〉fb(x)fb(x′ + d̃)dxdx′ , (22)

e := 〈SalSbr〉 = −〈SarSbl〉 =
∫∫

〈Ī(x)Ī(x′)〉fa(x)fb(x′ + d̃)dxdx′ , (23)

〈SalSbl〉 = 〈SarSbr〉 = 0 . (24)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

780 W. Stürzl, H.A. Mallot, and A. Knoll

By means of the orthogonal 4 × 4 matrix

Ô :=
(

Ô2 0
0 Ô2

)

= Ô−1 = Ô� , Ô2 :=
1√
2

(
1 −1

−1 1

)

, (25)

we can calculate the probability density function of u := (ua, va, ub, vb)� =
ÔS = 1√

2
(Sal + Sar, Sal − Sar, Sbl + Sbr, Sbl − Sbr)�,

Pu(u| d̃) =
1

√
(2π)4 det Λ̂(d̃)

exp(− 1
2u�Λ̂(d̃)−1 u) , (26)

with Λ̂(d̃) = ÔΣ̂(d̃) Ô� =

⎛

⎜
⎜
⎝

a + c 0 0 −e
0 a − c e 0
0 e b + d 0

−e 0 0 b − d

⎞

⎟
⎟
⎠ . (27)

2.4 Non-normalized Complex Cells

According to the energy model, a disparity-tuned complex cell combines the
output of two simple cells with orthogonal receptive field functions, i.e.

C = S2
a + S2

b = 2(u2
a + u2

b) . (28)

Using
Puaub

(ua, ub| d̃) =
∫∫

Pu(u| d̃)dvadvb =
exp

(
− u2

a

2(a+c) − u2
b

2(b+d)

)

√
4π2(a + c)(b + d)

, (29)

the corresponding probability density function is (for a + c > b + d)

PC(C|d̃) =
∫ π

−π

Puaub
(
√

C/2 cosφ,
√

C/2 cosφ| d̃)| det
(∂(ua, ub)

∂(C, φ)

)
|dφ (30)

=
exp

(
− C(a+c+b+d)

8(a+c)(b+d)

)
I0

(C((a+c)−(b+d))
8(a+c)(b+d)

)

4
√

(a + c)(b + d)
. (31)

I0 is a modified Bessel function of the first kind.
The mean of complex cell activity (“tuning curve”) and its variance are given by

〈C(d̃)〉 =
∫ ∞

0
C PC(C|d̃) dC = 2(a + b + c + d) , (32)

Var[C(d̃)] = 〈C2〉 − 〈C〉2 = 8(a + c)2 + 8(b + d)2 . (33)

Eqs. (19)–(23) can be further evaluated for random dot-stimuli,

a = 1
2

√
πσ(σ2

I + σ2
n)

(
1 + exp(−k2σ2)

)
, (34)

b = 1
2

√
πσ(σ2

I + σ2
n)

(
1 − exp(−k2σ2)

)
, (35)

c = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

) (
cos(kd̃) + exp(−k2σ2)

)
, (36)

d = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

) (
cos(kd̃) − exp(−k2σ2)

)
, (37)

e = 1
2

√
πσσ2

I exp
(

− d̃2

4σ2

)
sin(kd̃) . (38)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 781

-4 -2 0 2 4

0.5

1

1.5

2 � � ���� ����

������

����

� �
�

�

Fig. 2. Tuning curves 〈C(d̃)〉 of non-normalized complex cells with kσ = 2 for random-
dot stimuli, see Eq. (39). Depth of modulation is κ = 1 and κ = 1

2 (thin curve). As can
be seen from Eq. (40), these curves also show the corresponding standard deviations�

Var[C(d̃)] ≈ 〈C(d̃)〉.

If we assume that exp(−k2σ2) � 1, we can use the approximation b+d ≈ a+c.
A typical value for the visual cortex is ks ≈ 2, see [10], and thus exp(−k2σ2) ≈
exp(−4) ≈ 0.018.

For the tuning curve of the non-normalized complex cell, we finally have

〈C(d̃)〉 ≈ 4(a + c) = 〈C(∞)〉
(
κ exp

(
− d̃2

4σ2

)
cos(kd̃) + 1

)
, (39)

where we have defined 〈C(∞)〉 := 2
√

πσ(σ2
I + σ2

n) (asymptotic amplitude of
complex cell activity for d̃ → ∞) and κ := σ2

I

σ2
I+σ2

n
(“depth of modulation”). For

κ = 1, Eq. (39) matches the results in [11,12,13]. In addition, we find that the
variance of the non-normalized complex cell, Eq. (33), is proportional to the
square of the expected response,

Var[C(d̃)] ≈ 16(a + c)2 = 〈C(d̃)〉2 . (40)

The probability density function can be approximated for a + c ≈ b + d by

PC(C|d̃) ≈ 1
4(a + c)

exp
(

− C

4(a + c)

)
=

1
〈C(d̃)〉

exp
(

− C

〈C(d̃)〉

)
. (41)

Fig. 2 shows tuning curves for κ = 1 (no noise, σ2
n = 0) and κ = 1

2 (high
noise, σ2

n = σ2
I). The corresponding probability density functions, calculated

from Eq. (31), are shown in Fig. 3. The maxima at C = 0, d̃/σ ≈ 1.5 correspond
to the minima of the tuning curves in Fig. 2.

Except for very high C-values, it is difficult to recognize d̃ ≈ 0 from the
response of the complex cell. This is due to the fact that the complex cell activity

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

782 W. Stürzl, H.A. Mallot, and A. Knoll

also depends on stimulus contrast. As is shown in the next section, this can be
significantly reduced by means of divisive contrast normalization.

2.5 Normalized Complex Cells

In this section we analyze the properties of contrast normalized complex cells.
According to Eq. (6) and (4) the normalized complex cell is computed as

NC =
(Sal + Sar)2 + (Sbl + Sbr)2

(S2
al + S2

ar + S2
bl + S2

br) + ε
=

2(u2
a + u2

b)
(u2

a + v2
a + u2

b + v2
b) + ε

. (42)

NC ∈ [0, 2] since v2
a + v2

b ≥ 0.
Using the approximation b ± d ≈ a ± c that is valid for exp(−k2σ2) � 1, we

have

Λ̂(d̃)−1 ≈ 1
a2 − c2 − e2

⎛

⎜
⎜
⎝

a − c 0 0 e
0 a + c −e 0
0 −e a − c 0
e 0 0 a + c

⎞

⎟
⎟
⎠ . (43)

Substituting (ua, ub) =
√

w(cos φ, sin φ) and (va, vb) =
√

z(cosψ, sin ψ) the nor-
malized complex cell is given by

NC =
2w

w + z + ε
, (44)

and the corresponding probability function can be calculated according to

PNC (NC | d̃) =
∫ ∞

0

∫ ∞

0
Pwz(w, z) δ

(
NC − 2w

w + z + ε

)
dwdz , (45)

with Pwz(w, z| d̃) =
∫ π

−π

∫ π

−π

1
4
Pu(w, φ, z, ψ)dψdφ (46)

≈ 1
8πA

∫ π

−π

e−
(a−c)w+(a+c)z−2e

√
wz sin φ

2A dφ , (47)

with A := a2−c2−e2. The delta-function in Eq. (45) ensures that the integration
is restricted to the domain where NC − 2w

w+z+ε = 0, Eq. (44).
Using δ(f(x)) =

∑
i |f ′(xi)|−1δ(x−xi), where {xi} are the roots of f , we find

δ
(

NC − 2w

w + z + ε

)
=

2(z + ε)
(2 − NC)2

δ
(
w − NC

2 − NC
(z + ε)

)
, (48)

and the integration over w in Eq. (45) yields, with n := NC
2−NC ,

PNC (NC | d̃) ≈ 2
(2 − NC)2

∫ ∞

0
(z + ε)Pwz

(
n(z + ε), z

)
dz

=
e−

(a−c)nε
2A

4π(2 − NC)2A

∫ π

−π

∫ ∞

0
(z + ε)e

2e
√

n(z+ε)z sin φ−((a−c)n+a+c)z

2A dzdφ . (49)

We could not find a way to integrate (49) analytically for ε > 0. However,
with the approximation

√
n(z + ε)z ≈

√
nz, integration over z and φ yields

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 783

0
1

2

3

4

5

0

0.5

1

1.5

2

0

0.5

1

1.5

0
1

2

3

4

0
1

2

3

4

5

0

0.5

1

1.5

2

0

0.5

1

1.5

2

0
1

2

3

4

� � � � �
�

�

�

������

�

������
���� ����

Fig. 3. PC(C| d̃) for kσ = 2. Because of symmetry, only the range d̃/σ ≥ 0 is shown.

0

1

2

30

0.5

1

1.5

2

0

0.5

1

1.5

2

0

1

2

0

1

2

30

0.5

1

1.5

2

0
0.2
0.4
0.6

0.8

1

0

1

2

� �
�

�
� � �

���� ����

�� ��

Fig. 4. Probability density functions of normalized complex cells, Eq. (53) for different
noise levels, κ = 1 ⇐⇒ σ2

n = 0 and κ = 1
2 ⇐⇒ σ2

n = σ2
I

PNC (NC | d̃) ≈ e−
(a−c)NCε
2(2−NC)A

2g[NC]
1
2

((a + (1 − NC)c)A
g[NC]

+
ε

2 − NC

)
, (50)

with g[NC] := (a + (1 − NC)c)2 − e2NC (2 − NC) . (51)

Eq. (50) is exact for ε = 0, and with κ := σ2
I

σ2
I+σ2

n
we find

PNC (NC | d̃; ε = 0) =
(a2 − c2 − e2)(a + (1 − NC)c)

2
(
(a + (1 − NC)c)2 − e2NC (2 − NC)

) 3
2

(52)

=

(
1 − κ2e−

d̃2

2σ2
)(

1 + κ(1 − NC)e−
d̃2

4σ2 cos(kd̃)
)

2
((

1 + κ(1 − NC)e−
d̃2
4σ2 cos(kd̃)

)2 − κ2NC (2 − NC)e−
d̃2
2σ2 sin2(kd̃)

) 3
2

. (53)

Fig. 4 shows the probability density function described by Eq. (53), again for
kσ = 2. Compared to the non-normalized complex cell (see Fig. 3), there is – at
least for low noise levels (σ2

n � σ2
I ⇐⇒ κ ≈ 1) – a much stronger link between

small disparities and high activity (NC ≈ 2). Thus, if one observes high activity
then there is d̃ ≈ 0 with high probability.

Eq. (53) has simple expressions for the following two cases,

d̃ σ : PNC (NC | d̃ σ; ε = 0) ≈ 1
2

, (54)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

784 W. Stürzl, H.A. Mallot, and A. Knoll

d̃ = 0 : PNC (NC | d̃ = 0; ε = 0) =
1 − κ2

2[1 + κ(1 − NC)]2
. (55)

In the limit of zero noise, i.e. σ2
n → 0, we find

lim
κ→1

PNC (NC | d̃ = 0; ε = 0) = δ(2 − NC) , (56)

since
∫ 2
0 PNC (NC | d̃ = 0; ε = 0) dNC = 1, and limκ→1 PNC (NC | d̃ = 0; ε = 0) = 0

for 0 ≤ NC < 2.

Tuning Curve and Variance. The tuning curve is given by

〈NC (d̃)〉 =
∫ 2

0
NC PNC (NC | d̃; ε = 0) dNC = 1 + cos(kd̃)κe−

d̃2

4 σ2 h[κe−
d̃2

4 σ2] , (57)

with h[u] :=
1
u2 −

(1
u3 − 1

u

)
artanh(u) . (58)

Using artanh(u) =
∑∞

k=0
1

2k+1u2k+1, one can show that (for |u| ≤ 1)

h[u] = 1 −
∞∑

k=1

1
2k + 1

(
u2(k−1) − u2k

)
=

∞∑

k=0

(1
2k + 1

− 1
2k + 3

)
u2k . (59)

Since h[0] = 2
3 ≤ h[u] ≤ h[1] = 1, we obtain

2
3 | cos(kd̃)|κe−

d̃2

4 σ2 ≤ |〈NC (d̃)〉 − 1| ≤ | cos(kd̃)|κe−
d̃2

4 σ2 , (60)

and for |δ| � 2σ the tuning curve can be approximated by

〈NC (d̃)〉 ≈ 1 + cos(kd̃)κe−
d̃2

4 σ2 . (61)

Since 〈C(d̃)〉/〈C(∞)〉 = cos(kd̃)κe−
d̃2

4 σ2 , we find that normalized and non-norma-
lized complex cell have similar tuning curves – as can be seen in Fig. 5. The

approximation 〈NC (d̃)〉 ≈ 1 + 2
3κ cos(kd̃)e−

d̃2

4 σ2 + 1
3κ3 cos(kd̃)e−

3d̃2

4 σ2 has been
obtained using the first three terms in Eq. (59), i.e. h[u] ≈ 2

3 + 1
3u2.

Using

〈NC (d̃)2〉 :=
∫ 2

0
NC 2 PNC (NC | d̃; ε = 0) dNC , (62)

the variance in the response of the non-normalized complex cell is

Var[NC (d̃)] = 〈NC (d̃)2〉 − 〈NC (d̃)〉2 = (1 − κ2e−
d̃2

2 σ2)H [κ2e−
d̃2

4 σ2 , kd̃)] , (63)

with H [u, v] := (cos2v − sin2v)
1
u2 + sin2v

1
u3 artanh(u) . (64)

One can show that 1
3 (1 − κ2e−

d̃2

2 σ2) < Var[NC (d̃)] < 1
3 .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 785

-4 -2 0 2 4

0.5

1

1.5

2

����

� � �

� � �

� �
�

�

��� � ����

������� � �����
�

�

Fig. 5. Tuning curve 〈NC (d̃)〉 of the normalized complex cell (continuous curve),

Eq. (57), and the approximations 1+κ cos(kd̃)e
− d̃2

4 σ2 = 〈C(d̃)〉/〈C(∞)〉 (dash-dotted),

and 1+ 2
3κ cos(kd̃)e

− d̃2

4 σ2 + 1
3κ3 cos(kd̃)e

− 3d̃2

4 σ2 (dashed), for kσ = 2. The noise levels are
σ2

n = 0 (κ = 1, bold curves) and σ2
n = σ2

I (κ = 1
2 , thin curves). The dash-dotted curves

are identical to the curves in Fig 2. Also shown is the standard deviation (Var[NC (d̃)])
1
2 .

By means of Taylor expansion of artanh(u), we have found a good approxi-

mation, Var[NC (d̃)] ≈ (1 − κ2e−
d̃2

2 σ2)
(

1
3 + κ2e−

d̃2

2 σ2 [15 sin2(kd̃) + 7
45 cos2(kd̃)]

)
.

Fig. 5 also shows the standard deviation (Var[NC (d̃)])1/2 for zero noise (κ = 1)
and strong noise (σ2

n = σ2
I , κ = 1

2). The low variance for small d̃ (and low noise)
enhances the detectability of stimulus disparities D that are close to the neuron’s
preferred disparity d (compare with Fig. 2 and Var[C(d̃)] ≈ 〈C(d̃)〉2).

3 Comparing Analytical Results with Simulations

As a control of the analytically derived results we performed computer simula-
tions with discrete images and applied circular Gabor filters of bandwidth two,
more specifically we set σx = σy = 5/2pixel and k = 2/3 pixel−1. The (separa-
ble) 2D Gabor filters are approximated by two pairs of row and column filters.
The size of these filters is 13 × 1 and 1 × 13 (corresponding to a 13 × 13 filter
mask in 2D), and their elements are integer values. As “stimuli” we used random
dot images consisting of black and white pixels. Disparities were simulated by
shifting the right image with respect to the left image. For each disparity, mean
and standard deviation of complex cells were computed. As can be seen in Fig. 6,
the analytically derived equations fit the data quite well.

4 Discussion, Limitations of the Model

We have shown analytically that simple contrast normalization can greatly en-
hance disparity detection for binocular neurons of the energy type. While the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

786 W. Stürzl, H.A. Mallot, and A. Knoll

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

−20 −15 −10 −5 0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

4

d̃ [pixel] d̃ [pixel]

Fig. 6. Simulated disparity tuning curves (circles) and standard deviation (crosses) for
non-normalized complex cell (left) and normalized complex cell (right). The continuous
curves show the analytical results, Eqs. (39),(40) and (57),(63) respectively.

“classical” model predicts that the standard deviation is proportional to the
mean firing rate for random-dot stimuli, divisive normalization significantly re-
duces the standard deviation, in particular close to the preferred disparity. The
simple expression for contrast normalization given by Eq. (6) has been chosen
in order to make analytical calculations more convenient. For the same reason,
i.e. to keep the model simple, monocular normalization which is known to play
a major role in gain control [14], was not included. In addition, although we
have taken sensor noise (with constant variance) into account, our model does
not include intrinsic response variability of the disparity tuned neuron. This has
to be considered when comparing the calculated variances to measured data.
Response variances to dynamic random dot stimuli have been reported to be
approximately proportional to the mean firing rate [15,16].

References

1. Ohzawa, I., DeAngelis, G., Freeman, R.: Stereoscopic depth discrimination in the
visual cortex: Neurons ideally suited as disparity detectors. Science 249, 1037–1041
(1990)

2. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion.
J. Opt. Soc. Am. A 2, 284–299 (1985)

3. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular
information. I. Simple cells. J. Neurophysiol. 82, 891–908 (1999)

4. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for processing binocular
information. II. Complex cells. J. Neurophysiol. 82, 909–924 (1999)

5. Fleet, D., Heeger, D., Wagner, H.: Modeling binocular neurons in primary visual
cortex. In: Jenkin, M., Harris, L. (eds.) Computational and Biological Mechanisms
of Visual Coding, pp. 103–130. Cambridge University Press, Cambridge (1996)

6. Heeger, D.: Normalization of cell responses in cat striate cortex. Vis. Neurosci. 9,
181–197 (1992)

7. Carandini, M., Heeger, D., Movshon, J.A.: Linearity and normalization in simple
cells of the macaque primary visual cortex. The Journal of Neuroscience 17, 8621–
8644 (1997)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

An Analytical Model of Divisive Normalization 787

8. Wainwright, M., Schwartz, O., Simoncelli, E.: Natural image statistics and divisive
normalization: Modeling nonlinearity and adaptation in cortical neurons. In: Rao,
R., Olshausen, B., Lewicki, M. (eds.) Probabilistic Models of the Brain: Perception
and Neural Function, MIT Press, Cambridge (2002)

9. Anzai, A., Ohzawa, I., Freeman, R.: Neural mechanisms for encoding binocular
disparity: Receptive field position versus phase. J. Neurophysiol. 82, 874–890 (1999)

10. DeValois, R., DeValois, K.: Spatial Vision. Oxford University Press, Oxford (1988)
11. Zhu, Y., Qian, N.: Binocular receptive field models, disparity tuning, and charac-

teristic disparity. Neural Computation 8, 1611–1641 (1996)
12. Tsai, J., Victor, J.: Reading a population code: a multi-scale neural model for

representing binocular disparity. Vision Research 43, 445–466 (2003)
13. Tanabe, S., Doi, T., Umeda, K., Fujita, I.: Disparity-tuning characteristics of neu-

ronal responses to dynamic random-dot stereograms in macaque visual area V4. J.
Neurophysiol. 94, 2683–2699 (2005)

14. Truchard, A., Ohzawa, I., Freeman, R.: Contrast gain control in the visual cortex:
Monocular versus binocular mechanisms. The Journal of Neuroscience 20, 3017–
3032 (2000)

15. Read, J., Cumming, B.: Testing quantitative models of binocular disparity selec-
tivity in primary visual cortex. J. Neurophysiol. 90, 2795–2817 (2003)

16. Prince, S., Pointon, A., Cumming, B., Parker, A.: Quantitative analysis of the re-
sponses of v1 neurons to horizontal disparity in dynamic random-dot stereograms.
J. Neurophysiol. 87, 191–208 (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 788–798, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Automatic Design of Modular Neural Networks
Using Genetic Programming

Naser NourAshrafoddin, Ali R. Vahdat, and M.M. Ebadzadeh

Amirkabir University of Technology (Tehran Polytechnic)

Abstract. Traditional trial-and-error approach to design neural networks is time
consuming and does not guarantee yielding the best neural network feasible for
a specific application. Therefore automatic approaches have gained more
importance and popularity. In addition, traditional (non-modular) neural
networks can not solve complex problems since these problems introduce wide
range of overlap which, in turn, causes a wide range of deviations from efficient
learning in different regions of the input space, whereas a modular neural
network attempts to reduce the effect of these problems via a divide and
conquer approach. In this paper we are going to introduce a different approach
to autonomous design of modular neural networks. Here we use genetic
programming for automatic modular neural networks design; their architectures,
transfer functions and connection weights. Our approach offers important
advantages over existing methods for automated neural network design. First it
prefers smaller modules to bigger modules, second it allows neurons even in the
same layer to use different transfer functions, and third it is not necessary to
convert each individual into a neural network to obtain the fitness value during
the evolution process. Several tests were performed with problems based on
some of the most popular test databases. Results show that using genetic
programming for automatic design of neural networks is an efficient method
and is comparable with the already existing techniques.

Keywords: Modular neural networks, evolutionary computing, genetic
programming, automatic design.

1 Introduction

The human brain is the most elaborate information processing system known.
Researchers believe that it derives most of its processing power from the huge
numbers of neurons and connections. It is also believed that the human brain contains

about 1110 neurons, each of which is connected to an average of 410 other neurons.

This amounts to a total of 1510 connections. This sophisticated biologic system
teaches us some important principles regarding design of NNs:

• Despite its massive connections it is relatively small, and highly organized [1].
• Subsequent layers of neurons, arranged in a hierarchical fashion, form

increasingly complex representations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Automatic Design of Modular Neural Networks Using Genetic Programming 789

• Structuring of the brain into distinct streams or pathways allows for the
independent processing of different information types and modalities [1].

• Modules containing little more than a hundred cells, also known as
minicolumns, are the basic functional modular units of the cerebral cortex [2].

We propose to capture these global and local structural regularities by modeling

the brain in a framework of modular neural networks (MNNs) [3]. Rather than
starting from a fully connected network and then letting the desired functions emerge
with prolonged learning, we advocate an approach that proceeds from a structured
modular network architecture. Utilizing this method of designing, NNs achieved will
also be scalable, i.e. expansion modules can be added or redundant modules can be
removed if necessary. By choosing the right modular structure, networks with a wide
range of desirable characteristics can be developed, as will be outlined in section 3.

Non-modular NNs tend to introduce high internal interference because of the
strong coupling among their hidden-layer weights, i.e. all neurons try to affect overall
output of the NN. On the other hand, complex tasks tend to introduce a wide range of
overlap which, in turn, causes a wide range of deviations from efficient learning in the
different regions of the input space. A modular NN attempts to reduce the effect of
these problems via a divide and conquer approach. It, generally, decomposes the large
size/high complexity task into several sub-tasks; each one is handled by a simple, fast
and efficient module. Then, sub-solutions are integrated via a multi-module decision-
making strategy. Hence, modular NNs, generally, proved to be more efficient than the
non-modular alternatives [4].

All problems regarding manual design of NNs have led the researchers to invent
techniques for automating the design of NNs. Some automatic approaches have been
proposed for this task. A recent group of these approaches are based on evolutionary
algorithms (EAs) [5], [6]. Some methods of EAs used for automatic design of NNs
are genetic algorithm (GA) and evolutionary programming (EP). In GAs, both the
structure and parameters of a network are represented as a (usually) fixed-length
string, and a population of such strings (or genotypes) is evolved, mainly by
recombination. However, one problem with this approach is the size of the required
genotype bit string. On the other hand, EP evolves by mutation only, operating
directly on the network components. It has been suggested that this approach is much
more suited to network design than GAs [5].

Another problem faced by evolutionary training of NNs is the permutation
problem, also known as the competing convention problem. It is caused by the many-
to-one mapping from the representation (genotype) to the actual NN (phenotype),
since two NNs that order their hidden nodes differently in their chromosomes will still
be functionally equivalent. For example, NNs shown in Fig. 1 are functionally
equivalent, but they have different chromosomes. In general, any permutation of the
hidden nodes will produce functionally equivalent NNs with different chromosome
representations. The permutation problem makes crossover operator very inefficient
and ineffective for producing good offspring. That is why EP works better than GA in
evolution of NNs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

790 N. NourAshrafoddin, A.R. Vahdat, and M.M. Ebadzadeh

Fig. 1. Permutation problem. Two equivalent NNs and their corresponding non-equivalent
binary representations.

The problems mentioned above are both due to the representations and codings
used, and not to the EAs themselves; thus, with suitable coding schemes, it is possible
to develop non-deceptive EA-based NN design algorithms. A very well-known and
efficient approach which suppresses these problems is genetic programming (GP).

GP [7] is an automatic domain-independent method for solving problems. Starting
with many randomly created solutions, it applies the Darwinian principle of natural
selection, recombination (crossover), mutation, gene duplication, gene deletion, gene
insertion and certain mechanisms of developmental biology. It thus breeds an
improved population over many generations. GP starts from a high-level statement of
a problem’s requirements and attempts to produce a solution that solves the problem.

The remainder of the paper is organized as follows: in section 2 we will review
almost all the previous attempts to automatic design of NNs using various
implementations of GP. In section 3 we will describe our approach in details and also
some important implementation points are stated. In section 4 some experiments and
their results are explained and in section 5 we conclude our work.

2 Related Works

After presenting the recent evolutionary approach, Genetic Programming, by Koza
[7], [8], exploiting genetic programming approach to automatic design of NNs is,
perhaps, first introduced in [9]. Koza and Rice show how to find both weights and
architecture for a NN using a population of LISP symbolic expressions (S-
expressions) of varying size and shape. They use the function set F = {P,W,+,–,*,%}
and terminal set T = {R, D0, D1, …, Dn} to produce trees and its corresponding S-
expressions. Function P denotes a neuron with linear threshold transfer function, and
function W is the weighting function used to give a weight to a signal going into a P
function. +, –, and * are ordinary arithmetic operators and % is protected division
operator which returns zero in case of a division by zero. R is the random floating
point constant and D0, D1, …, and Dn are network input signals. A sample S-
expression which performs odd-parity (exclusive-or) perfectly, in their work, is
shown below:

(P (W (+ 1.1 0.741) (P (W 1.66 D0) (W –1.387 D1)))
 (W (+ 1.2 1.584) (P (W 1.19 D1) (W –0.989 D0)))

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Automatic Design of Modular Neural Networks Using Genetic Programming 791

This S-expression can be graphically presented as the tree below in Fig.2(a). This
S-expression can be further converted to the form that one would typically see in the
NN literature, such as Fig. 2 (b):

Fig. 2. (a) The tree of a simple NN corresponding to above S-expression. (b) and its
corresponding NN [9].

Gruau [10] has developed a compact cellular growth (constructive) algorithm
based on symbolic S-expressions called cellular encoding that are evolved by genetic
programming. A scheme similar to cellular encoding, edge encoding by Luke [11]
grows network graphs using edges instead of nodes. While the cellular encoding
approach evaluates each grammar tree node in a breadth first search manner, thus
ensuring parallel execution, edge encoding is designed to work using depth first
search. The cellular encoding tends to create graphs with a large number of
connections which must then be pruned using respective operators. Edge encoding,
using its depth first search approach, favors graphs with fewer connections. Ritchie et
al. [12] implemented a GP-based algorithm for optimizing NN architecture (GPNN)
and compared its ability to model and detect gene-gene interactions with a traditional
back-propagation NN (BPNN). The rules used for their implementation are consistent
with those described by Koza and Rice [9]. Using simulated data, they demonstrated
that their GPNN was able to model nonlinear interactions as well as a traditional
BPNN and also achieved better predictive ability.

3 Proposed Method

Here we develop a GP-optimized NN design approach in an attempt to improve
upon the trial-and-error process of choosing an optimal architecture for a pure
feed-forward modular NN. This method utilizes more important inputs from a
larger pool of variables, optimizes the weights, and the connectivity of the network
including the number of hidden layers and the number of nodes in the hidden layer.
Thus, the algorithm attempts to generate appropriate modular NN for a given
dataset.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

792 N. NourAshrafoddin, A.R. Vahdat, and M.M. Ebadzadeh

3.1 Function and Terminal Sets

Here we use different transfer functions for different neurons. These transfer
functions include: linear (purelin), hard limit (hardlim), symmetric hard limit
(hardlims), log-sigmoid (logsig), and tan-sigmoid (tansig). Utilizing these transfer
functions means that there is no necessity to use similar transfer functions for
different neurons in a NN even in the same layer.

Arithmetic functions used are plus, minus, and times functions, which are simple
arithmetic operators. For division operation we use a protected function (pdivide)
which returns the dividend when divisor is zero. ppower returns the same result as
power function unless the result is a complex value. If this is the case, it returns zero.
psqrt returns simple square root of its argument. If its argument is less than zero, the
function returns zero. Exp returns exponential value of its two arguments and plog
returns logarithm of absolute value of its argument, and if its argument is zero the
function returns zero. Furthermore min and max operators are also added which
return their minimum and maximum arguments respectively. So the function set used
in this work is, F = {hardlim, hardlims, purelin, logsig, tansig, plus, minus, times,
pdivide, ppower, psqrt, exp, plog, min, max}.

We use a random floating point constant generator in addition to n input signals
(according to number of dataset features) to form our terminal set. Therefore the
terminal set is T = {R, D0, …, Dn} where Di is the ith feature of the dataset and n is
the number of dataset features. There is no need for declaring the number of input
signals to the algorithm beforehand, instead the algorithm recognizes the number of

Fig. 3. A sample tree individual and its equivalent neural network

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Automatic Design of Modular Neural Networks Using Genetic Programming 793

input signals (dataset features) automatically and adds them to the terminal set. Once
a terminal R is used in a tree, a random constant number is replaced for R and this
random number will not change until the end of the algorithm. A sample individual
and its corresponding NN are shown below in Fig. 3.

To further simplify the evaluation of each tree as a NN, in our implementation each
NN is a MATLAB executable string. A codification of the tree in Fig. 3 is:

HardLim (Plus (Plus (Times (LogSig (Plus (Plus (Times (x1, 0.46), Times(x2,
0.22)), 0.01)), 0.5),Times(x3, 0.72)), 0.4))

Since each tree should represent a NN, all combinations of functions and terminals
can not be used and there are some rules about creation and manipulation of trees in
this work, e.g. the first node of the tree (root node) must be a transfer function.

To avoid the bloat problem (a phenomenon consisting of an excessive tree growth
without the corresponding improvement in fitness) we should continuously supervise
depth and size of trees - depth denotes number of levels of a tree and size denotes
number of nodes in a tree. To do this we have set some restrictions on depth and size
of the trees. The maximum allowed depth of each tree is limited to 15 levels.

To generate the initial population we use ramped half-and-half method. Standard
tree crossover and mutation are also used as diversity operators. For tree crossover,
random nodes are chosen from both parent trees, and the respective branches are
swapped creating two new offspring. For tree mutation, a random node is chosen from
the parent tree and is substituted by a new random tree created with the terminals and
functions available. This new random tree is created using the grow method. For
parent selection we use lexicography selection method which is very similar to
tournament method. The main difference is that, if two individuals are equally fit, the
shortest one (the tree with fewer nodes) is chosen as the best. For survivor selection
we use total elitism method. The best individuals from both parents and children are
chosen to fill the new population.

3.2 Fitness (Evaluation) Function

A fast and easy-calculating criterion for evaluating performance of a NN in a
classification problem is to use its classification error. The evolutionary process
demands the assignation of a fitness value to each genotype. This value is the result of
evaluation of the NN with the pattern set representing the problem. Since each
individual corresponds to a NN, so at first glance it seems that every individual should
be converted into a NN (with its weights already set, thus it does not need to be
trained) to evaluate its fitness value. But the interesting point in our work is that there
is no need to convert each tree to a NN. Due to our string based implementations each
individual is represented as a MATLAB executable string which can be readily
evaluated. Therefore upon reproducing a tree and applying the inputs to it, the fitness
value of the corresponding NN is available. The fitness function is sum of the
absolute values between expected output (yi) and real output (oi) of each individual
NN (N is the number of input samples).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

794 N. NourAshrafoddin, A.R. Vahdat, and M.M. Ebadzadeh

∑
=

−=
N

1i
ii oyFitness

(1)

Calculating fitness may be a time consuming task, and during the evolutionary
process the same tree is certainly to be evaluated more than once. To avoid this, some
evaluations are kept in memory for future use, in case their results are needed again.

4 Experimental Results

To show the effectiveness of our proposed method we have conducted several
experiments on some of the most popular knowledge-extraction datasets of different
complexity from UCI Machine Learning Repository. Briefly, the goal here is to
classify a number of samples in a number of different classes i.e. prediction about an
attribute of the database, given some other attributes.

First dataset used here is iris dataset. It contains 150 samples in 3 classes and each
sample has 4 features. Second dataset is wine dataset which contains 178 samples in 3
classes, each with 13 features. And the third dataset is glass dataset with 214 samples
in 6 classes, each with 10 features. We used 70% of samples for fitness evaluation
(training error) of the individuals and the remained 30% for performing tests
(generalization error). We show our setup for two experiments and results obtained in
these experiments.

In the first experiment, performed by utilizing the proposed GP approach, we try to
produce a single tree (NN) for each dataset, which is able to classify all samples of its
respective dataset. Therefore the expected output of this NN is class number of the
sample to be classified.

Optimal parameters of the algorithm which have been obtained after some runs are
as follows:

• Population size: 150 individuals
• Initial population by: Ramped half-and-half
• Termination condition (number of generations): 50 generations
• Maximum depth of each tree: 15 levels
• Maximum number of nodes in each tree: No constraint
• Parent selection method: Lexicography with 10% of population as competitors
• Survivor selection method: Total elitism

Two other important parameters are the probabilities for crossover and mutation
operators. In our implementation these two parameters are variable and can be
updated by the algorithm whenever needed [13]. If an individual generated by
crossover operator yields a good fitness value (e.g. it will be the best individual so
far), the probability of crossover will increase. The same rule applies for mutation
operator. Minimum and maximum limits set for these two probabilities are 0.1 and
0.9 respectively. Table 1 shows the characteristics of the best NN and average errors
found in this experiment for classification of all samples in each dataset for 10 runs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Automatic Design of Modular Neural Networks Using Genetic Programming 795

Table 1. Characteristics of the best NNs found in first experiment for classification of all
samples in each dataset

Dataset
name

of
classes

of
training
samples

of test
samples

Average
training

error
(Fitness)

Average
generalization

error

Depth
(# of

levels)

Size
(# of

nodes)

Iris 3 105 45 0.1278 0.1150 15 59
Wine 3 125 53 0.4689 0.5600 15 61
Glass 6 152 62 0.7129 0.9360 14 68

Second experiment is conducted so that a NN (module) is evolved, using GP, for
each class of the dataset. Inputs to these modules are all samples of the dataset, and
the output is either 0 or 1, deciding whether the sample belongs to the
corresponding class of the module or not. In the next step, another NN is evolved,
as in Fig. 4, which receives the outputs of the previous modules and outputs the
final class number of the sample. Briefly, the features of each sample are fed into
the modules and the number of its class is produced as the output of the last NN.
For all three datasets the same procedure is accomplished with the same set of GP
parameters as in first experiment.

Fig. 4. The general structure of modular NNs generated with our method

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

796 N. NourAshrafoddin, A.R. Vahdat, and M.M. Ebadzadeh

Tables 2, 3 and 4 show the characteristics of the best single NNs for each class and
also the final modular neural network found in this experiment to classify all samples
of each dataset. These results are the average of 10 runs of the algorithm.

As can be seen in Table 1, when a single GP-optimized NN is used for
classification of iris dataset, training and generalization errors are not very promising.
Average training and generalization errors for this dataset are 0.1278 and 0.1150
respectively. These NNs decide the class number of each sample.

Table 2. Characteristics of the best NN modules and final modular NN found in second
experiment for classification of all samples of iris dataset

Class
of

training
samples

of test
samples

Average
training

error
(Fitness)

Average test
error

Depth
(# of

levels)

Size
(# of

nodes)

1 35 15 0 --- 10 29
2 35 15 0.1232 --- 15 135
3 35 15 0.1357 --- 13 75

all 105 45 0.0228 0.0542 15 114

Table 3. Characteristics of the best NN modules and final modular NN found in second
experiment for classification of all samples of wine dataset

Class
of

training
samples

of test
samples

Average
training

error
(Fitness)

Average test
error

Depth
(# of

levels)

Size
(# of

nodes)

1 41 18 0.0731 --- 7 21
2 50 21 0.1044 --- 15 76
3 34 14 0.0028 --- 14 79

all 125 53 0.0365 0.0891 11 32

Table 4. Characteristics of the best NN modules and final modular NN found in second
experiment for classification of all samples of glass dataset:

Class
of

training
samples

of test
samples

Average
training

error
(Fitness)

Average test
error

Depth
(# of

levels)

Size
(# of

nodes)

1 49 21 0.0693 --- 10 28
2 12 5 0.4333 --- 4 8
3 54 22 0.0546 --- 12 37
4 9 4 0.5555 --- 8 17
5 7 2 0.4285 --- 4 9
6 21 8 0.0952 --- 6 20

all 152 62 0.0125 0.0539 13 70

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Automatic Design of Modular Neural Networks Using Genetic Programming 797

On the other hand, using the second method (modular neural network), the average
training and generalization errors for iris dataset as shown in last row of Table 2 are
reduced to 0.0228 and 0.0542, respectively. These results show that the second
approach is far more effective than the first method. For wine dataset the same
methods are applied. The average training and generalization error of the first method
are 0.4689 and 0.5600 respectively. Using the second method these errors are reduced
to 0.0365 and 0.0891 respectively. The average training and generalization errors for
glass dataset with the first method are 0.7129 and 0.9360 while with the second
approach these errors are reduced to 0.0125 and 0.0539.

5 Conclusion

By comparison of tables 1 through 4, it can be concluded that using a single NN for
classification of all samples of a dataset - although it is evolved by an evolutionary
algorithm - is not a good idea and this NN doesn't yield a good generalization error.
On the other hand utilizing the structure of a modular neural network with some
modules according to the number of classes in each dataset and then feeding their
outputs into a new GP-optimized NN to decide for the class number of each sample
yields much better results. The reason is that since a module is evolved for each class,
due to the relative similarity of the samples in each class, learning the input space is
easier. In fact in this method each module classifies a single class from other classes
and a final NN decides the sample’s class number.

In summary the most important features of this work are:

1. No knowledge of the architecture or connection weights of the NNs is known
a-priori.

2. Smaller NNs are preferred to larger NNs with the same performance.
3. Neurons, even in the same layer, are not forced to use the same transfer

function and a variety of transfer functions are available for each neuron.
4. Since we have used a string-based representation for our implementation,

there is no need to convert chromosomes of the population to real NNs in
order to calculate their fitness value.

References

[1] Murre, J.M.J.: Transputers and neural networks: An analysis of implementation
constraints and performance. IEEE Transactions on Neural Networks 4, 284–292 (1993)

[2] Eccles, J.C.: Neuroscience 6, 1839–1855 (1981)
[3] Murre, J.: Learning and Categorization in Modular Neural Networks, Harvester–

Wheatcheaf (1992)
[4] Auda, G.: Cooperative modular neural network classifiers, PhD thesis, University of

Waterloo, Systems Design Engineering Department, Canada (1996)
[5] Yao, X.: Evolving Artificial Neural Networks. Proceedings of the IEEE 87(9) (1999)
[6] Back, T., Fogel, D.B., Michalewicz, Z.: Evolutionary Computation 1: Basic Algorithms

and Operators, and Evolutionary Computation 2: Advanced Algorithms and Operators.
IOP Publishing Ltd (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

798 N. NourAshrafoddin, A.R. Vahdat, and M.M. Ebadzadeh

[7] Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA (1992)

[8] Koza, J.R.: Genetic Programming: A Paradigm for Genetically Breeding Populations of
Computer Programs to Solve Problems. Stanford University Computer Science
Department Technical Report STAN-CS-90-1314 (June 1990)

[9] Koza, J.R., Rice, J.P.: Genetic Generation of Both Weights and Architecture for a Neural
Network. In: Proceedings of the International Joint Conference on Neural Networks,
vol. II, pp. 397–404 (1991)

[10] Gruau, F.: Automatic definition of modular neural networks. Adaptive Behaviour 3(2),
151–183 (1995)

[11] Luke, S., Spector, L.: Evolving graphs and networks with edge encoding: Preliminary
report. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming Conference
Stanford University, July 28-31, pp. 117–124 (1996)

[12] Ritchie, M.D., White, B.C., Parker, J.S., Hahn, L.W., Moore, J.H.: Optimization of neural
network architecture using genetic programming improves detection and modeling of
gene-gene interactions in studies of human diseases. BMC Bioinformatics 2003 4(28)
(2003)

[13] Davis, L.: Adapting operator probabilities in genetic algorithms. In: Schaffer, J.D. (ed.)
Proceedings of the Third International Conference on Genetic Algorithms, pp. 61–69.
Morgan Kaufmann, San Mateo, CA (1989)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Blind Matrix Decomposition Via Genetic

Optimization of Sparseness and Nonnegativity
Constraints

Kurt Stadlthanner1, Fabian J. Theis1, Elmar W. Lang1, Ana Maria Tomé2,
and Carlos G. Puntonet3

1 Institute of Biophysics, University of Regensburg, 93040 Regensburg, Germany
elmar.lang@biologie.uni-regensburg.de

2 DETI / IEETA, Universidade de Aveiro, 3810-Aveiro, Portugal
3 DATC, Universidad de Granada, E-18071 Granada, Spain

Abstract. Nonnegative Matrix Factorization (NMF) has proven to be a
useful tool for the analysis of nonnegative multivariate data. However, it
is known not to lead to unique results when applied to nonnegative Blind
Source Separation (BSS) problems. In this paper we present first results
of an extension to the NMF algorithm which solves the BSS problem
when the underlying sources are sufficiently sparse. As the proposed tar-
get function is discontinuous and possesses many local minima, we use a
genetic algorithm for its minimization. Application to a microarray data
set will be considered also.

1 Introduction

Environmental stimuli cause the induction or repression of genes in living cells
via a corresponding up- or down-regulation of the amount of messenger RNA
(mRNA). Different experimental conditions may thus result in different charac-
teristic expression patterns. Recently, high throughput methods like microarrays
have become available and allow to measure whole genom wide gene expression
profiles [2]. Intelligent data analysis tools are needed to unveil the information
hidden in those microarray data sets [21].

Matrix factorization techniques seem promising to go beyond simple clustering
and decompose such data sets into component profiles which might be indicative
of underlying biological processes [15], [23], [3].

These unsupervised analysis methods decompose any given data matrix into
a product of two matrices with desired properties. The latter are imposed as
constraints on the matrix decomposition procedure. These techniques can equiv-
alently be regarded as expanding the given data vectors into a basis of desired
property. Famous among such projection methods are the following:

1. PCA: Principal Component Analysis [8] projects data into a space spanned
by mutually orthogonal principal components (PCs). With microarray data
the latter are called eigenarrays.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 799–808, 2007.
� Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

800 K. Stadlthanner et al.

2. ICA: Independent Component Analysis [11], [5] decomposes the data into
statistically independent components (ICs). With microarray data, ICA ex-
tracts expression modes, the ICs which define corresponding groups of in-
duced and repressed genes.

3. NMF: Non-negative Matrix Factorization [13] decomposes a given data ma-
trix into a product of two strictly non-negative matrices. Applied to microar-
rays, NMF extracts so called metagenes. Non-negativity constraints seem
natural as the raw fluorescence intensities measured with microarrays can
have non-negative values only. Thus this technique alleviates some of the
problems which arise with PCA and ICA which both yield negative entries
in their component expression profiles. The latter have no obvious interpre-
tation. In most applications so far this fact is gently ignored and the negative
entries are turned positive by simply considering only the absolute values of
the entries to the component profiles.

2 Matrix Factorization and Blind Source Separation

In the field of modern data analysis mathematical transforms of the observed
data are often used to unveil hidden causes. Especially in situations where differ-
ent observations of the same process are available matrix factorization techniques
have proven useful [14]. Thereby, the M ×T observation matrix X is decomposed
into a M × N matrix A and a N × T matrix S

X = AS (1)

Here, it is assumed that M observations, consisting of T samples, constitute
the rows of X and that M << T and M ≤ N . Obviously, the decomposition
is highly non-unique and can only be solved uniquely if additional conditions
constraining the row vectors of H or the column vectors of W are given.

One application of matrix factorization is linear blind source separation (BSS),
where the observed microarray signals X are considered a weighted superposition
of N underlying eigenmodes. If the latter form the rows of the N × T matrix S,
then each element aij of the mixing matrix A represents the weight with which
the j-th source signal contributes to the i-th observed signal.

3 Sparse Nonnegative Blind Source Separation

3.1 Non-negative Matrix Factorization

A natural constraint to many real world problems is reflected in nonnegative
matrix factorization (NMF) where the source matrix S, the mixing matrix A as
well as the observation matrix X are assumed to be strictly nonnegative. But
NMF does not yield a unique decomposition, hence additional constraints are
needed.

Considering gene expression profiles, if underlying eigenmodes should be in-
dicative of ongoing biological processes in cells, then it may be expected that only

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Blind Matrix Decomposition Via Genetic Optimization 801

a small number of genes are highly up- or down-regulated within a single process,
i.e. many expression levels are close-to-average. Hence sparse coding seems to
provide an additional natural constraint to NMF. Such sparse coding concepts
have since long been discussed in the vision community [20], [22], [12] [16] and
have already been exploited successfully in NMF based image analysis meth-
ods [9] as well as in other BSS algorithms [17].

An extension to standard NMF is presented in this paper. This sparse NMF
(sNMF)algorithm seeks a nonnegative matrix factorization of the data matrix,
for which the matrix S has the largest number of close-to-zero components in ev-
ery eigenmode. This approach uniquely solves the matrix decomposition problem
up to the usual scaling and permutation indeterminacies.

The basic idea of this sparse NMF (sNMF) algorithm is to estimate two
nonnegative matrices Â and Ŝ such that

1. Â and Ŝ are both nonnegative
2. the rows of the matrix Ŝ are as sparsely encoded as possible, i.e. contains as

many close-to-zero components as possible
3. the reconstruction error F (A,S) = ||X−ÂŜ||2 of the estimated observations

is as small as possible.

To solve this problem algorithmically, we minimize the following cost function
E(Â, Ŝ)

E(Â, Ŝ) =
1

2M
||n(X) − n(ÂŜ)||2 − λ

N

N∑

n=1

στ (̂sn), (2)

where the function n(..) normalizes the row vectors of X and ÂŜ according to
xij = (xij)(

∑T
k=1 x2

ik)−1/2. Further σ denotes an appropriate sparseness mea-
sure, λ represents a Lagrange weighting factor, and ŝn denotes the n-th row of
the matrix Ŝ.

3.2 Sparseness Measure

For the sparse nonnegative BSS problem at hand, we define the sparseness στ

of a row vector s as the ratio of the number of its close-to-zero elements and the
total number of components

0 ≤ στ (sn) =
number of elements of sn ≤ τ · smax

n

number of elements of sn
≤ 1, (3)

where smax
n is the maximum value of sn, τ ∈ [0, 1] and we set all vector compo-

nents sn leτ to zero elements. The Lagrange parameter λ is used to balance the
factorization of the data matrix and the sparseness requirement. As both terms
in the cost function are normalized, results should be robust against varying
sizes of X and S as soon as an appropriate λ has been obtained.

With NMF, a different sparseness measure is used in the literature which
defines the spareness of a vector by the ratio of its L1 norm to its L2 norm [9].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

802 K. Stadlthanner et al.

Such a sparseness measure is, however, inappropriate for microarrays as the
following illustrative example demonstrates.

Two nonnegative random sources sorg
1 and sorg

2 consisting of 1000 data points
were generated with 90 % of the components of the first source signal and 80 % of
the components of the second source signal being zeros. These two sources were
normalized and then used to constitute the rows of the source matrix Sorg. The
matrix of observations X was obtained by mixing the sources with the following

mixing matrix Aorg =
[

5 1
6 1

]

. Note, that as the first source signal is dominating

in both of the mixtures the following alternative factorization of the observation
matrix X is feasible. First, the original mixing matrix Aorg can be replaced by
the pseudo mixing matrix

Apseu =
[

0 1
1 1

]

. (4)

Correspondingly, the original source matrix Sorg has then to be replaced by
the matrix Spseu, the row vectors of which constitute the following pseudo source
signals.

spseu
1 = sorg

1 , (5)
spseu
2 = 5sorg

1 + sorg
2 . (6)

Table 1. The L1/L2-norm sparseness σ and στ as defined in Eq. (3) (τ = 0) of the
original and the pseudo sources

σ(s) στ (s)
sorg
1 0.76 0.90

sorg
2 0.62 0.80

spseu
1 0.76 0.90

spseu
2 0.69 0.72

Obviously, these matrices also factorize X, i.e. X = ApseuSpseu still holds, but
the number of zero elements in the second pseudo source signal spseu

2 is about 8%
lower than that of the original source signal sorg

2 (cf. Tab. 1). Hence, a smaller
value of the cost function is obtained with the matrices Aorg and Sorg than with
the matrices Apseu and Spseu if the sparseness measure στ=0 is used in Eq. (3).
Accordingly, the matrices Aorg and Sorg would be recovered correctly.

In contrast, the L1/L2 - norm sparseness measure σ assigns a higher sparseness
value to the second pseudo source signal spseu

2 than to the original source signal
sorg
2 (cf. Tab. 1). This would lead to a smaller value of the cost function with

the matrices Apseu and Spseu than with the matrices Aorg and Sorg if sparsity
is measured by σ in Eq. (3). Accordingly, a sparse BSS algorithm based on the
latter sparseness measure would fail to recover the original source signal matrix
Sorg and mixing matrix Aorg, respectively.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Blind Matrix Decomposition Via Genetic Optimization 803

4 Genetic Algorithm Based Optimization

4.1 Fitness Function

As mentioned above, the cost or fitness function defined in Eq. 2 is discon-
tinuous hence cannot by optimized by techniques based on gradient descent.
Furthermore, it possesses many local minima which suggests to use a Genetic
Algorithm (GA) [19], [4] for its minimization.

For the minimization of the fitness function in Eq. 2 the M2 elements of the
solution matrix Â have to be determined. Taking advantage of the scaling in-
determinacy inherent in the matrix decomposition model (1) we may assume
that the columns of the original mixing matrix A are normalized such that
aii = 1 ∀ i. Hence, only the M2 − M off diagonal elements of the matrix Â
have to be determined by the GA. Accordingly, each of the Nind individuals of
the GA comprises M2 − M nonnegative genes. During the optimization proce-
dure, however, we allow the genes to turn negative as we have observed in our
experiments that otherwise the GA often fails to find the global minimum of the
fitness function.

In every generation of the GA, the fitness of each individual for the optimiza-
tion task has to be computed in order to determine the number of offsprings
it will be allowed to produce. In order to compute the fitness function values,
for every individual a matrix Â− is generated with its off elements consisting of
the genes as stored in the individual and with unit diagonal elements. As in the
next step of the algorithm the matrix Â− has to be inverted, care must be taken
that it does not become singular. Therefore, we replace matrices Â− with a
conditional number with respect to inversion which is higher than a user defined
threshold τsing by a random matrix (also with unit values on its diagonal) with
a conditional number lower than τsing . Finally, the genes of the corresponding
individual are adjusted accordingly.

Next, the matrices Â and Ŝ are needed in order to evaluate the target function
(2). For this purpose, the inverse Ŵ− = Â−1

− is computed and the matrices Ŝ
and Â are then obtained by setting the negative elements of the matrices Â−
and Ŝ− = Ŵ−X, respectively, to zero.

After assigning a fitness function value to each individual, they are arranged
in ascending order of their fitness function values F (p(i)), i = 1, . . . , Nind which
are determined by

F (p(i)) = 2 − μ + 2(μ − 1)
p(i) − 1
Nind − 1

, (7)

where p(i) is the position of individual i in the ordered population. The scalar
parameter μ is chosen between 1.1 and 2.0 and denotes the selective pressure
towards the fittest individuals.

4.2 Genetic Operators

Stochastic Universal Sampling (SUS) [19] is used to determine the absolute num-
ber of offsprings an individual may produce. The latter are created in a two step

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

804 K. Stadlthanner et al.

procedure. In the first crossover step, two individuals are chosen at random
according to the SUS criterion. They are used to create a new individual by
uniform crossover. In the second mutation step, these offsprings are mutated by
altering a certain fraction rmut of the genes at random in the range of [0, mmax].
Finally the parent individuals are replaced by their offsprings applying an elitist
reinsertion scheme. Hence, only the (1 − relit)Nind less fittest parent individuals
are replaced by their fittest offsprings. In order to prevent the algorithm from
converging prematurely we make use of the concept of multiple populations.
Thereby, a number Npop of populations, each consisting of Nind individuals, are
evolving independently in parallel and are only allowed to exchange their fittest
individuals after every Tex-th generation. The calculations have been performed
using the functions provided by the Genetic Algorithm Toolbox [?] except from
the mutation operator which has been implemented separately.

4.3 Parallelization

A general problem of the proposed sNMF-GA algorithm is its tendency to con-
verge prematurely to suboptimal solutions. This problem can be overcome to
a large extent, however, if instead of one large population several smaller sub-
populations are used which only exchange individuals from time to time. An-
other reason to parallelize the GA in sNMF-GA is that the evaluation of the
fitness function may become very time consuming because of the evaluation of
the sparseness in every step. Hence, the implementation of the sNMF-GA algo-
rithm is designed such that it can be run on several computers in parallel. As the
implementation of the sNMF-GA algorithm is fully written in the C program-
ming language, the routines of the MPICH2 [10] implementation of the Message
Passing Interface standard [1] for the communication between computers can be
used advantageously. The run time of the GA can be reduced by a factor close
to 1/Nnod if a cluster consisting of Nnod nodes is available.

4.4 Algorithm Repetitions

Despite the use of the mutation operator and multiple populations, the algo-
rithm still could not recover the source and mixing matrix after its first run in
most cases. In order to keep the computational load of the algorithm bearable,
this problem could not be overcome by simply increasing the number Nind of
individuals and Npop of populations to arbitrarily large values. But satisfying
results could still be obtained by applying the algorithm repeatedly. As usu-
ally, the algorithm is provided with the observation matrix X in its first run
which is then decomposed into first estimates of the source matrix Ŝ(1) and the
mixing matrix Â(1), i.e. X = Â(1)Ŝ(1). In order to make use of the suboptimal
results already achieved, during the next run the matrix Ŝ(1) is provided to the
algorithm instead of the matrix X. The matrix Ŝ(1) is then factorized into the
matrices Â(2) and Ŝ(2), which means that the matrix X can now be factorized
as X = Â(1)Â(2)Ŝ(2). This procedure is repeated K times until the newly de-
termined mixing matrix A(K) differs only marginally from the identity matrix.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Blind Matrix Decomposition Via Genetic Optimization 805

With this procedure the final estimates of the mixing matrix Â and of the source
matrix Ŝ are determined as

Â =
K∏

j=1

Â(j) and Ŝ = Ŝ(K) (8)

respectively, as the matrix X can be factorized as

X =
K∏

j=1

Â(j)Ŝ(K) (9)

4.5 Application of sNMF to Microarray Data

This subsection deals with the sNMF analysis of microarray data. Results will
be compared with those achieved by fastICA. The data sets to be analyzed
were recorded during an investigation of Pseudo-Xanthoma Elasticum (PXE),
an inherited connective tissue disorder characterized by progressive calcification
and fragmentation of elastic fibers in the skin, the retina, and the cardiovascular
system.

During the investigations M = 8 microarray experiments have been carried
out. In the first and second experiment the PXE fibroblasts were incubated in
Bovine Serum Albumin (BSA). The incubation time was three hours in the for-
mer and 24 hours in the latter experiment. In the third experiment the PXE
fibroblasts were incubated for three hours in an environment with a high con-
centration of the Transcription Growth Factor beta (TGF-β) and in the fourth
experiment the cells were incubated for 24 hours in a medium enriched with In-
terleukin 1β. The same experiments were then repeated with a control group of
normal fibroblasts. Gene expression levels were recorded on an Affymetrix HG-
U133 plus 2.0 microarray chip. This in-situ chip is capable of detecting 54675
genes in parallel and makes use of the probe pair strategy. Hence, each measured
expression value was accompanied by a detection call. If in all experiments the
detection call of a particular gene amounted to “absent”, the gene was removed
from all data sets. After this procedure only 10530 genes remained in each data
set. These data sets were used to constitute the 8 × 10530 observation matrix
X which was then decomposed into the matrices Â and Ŝ by the proposed
sNMF algorithm. For the genetic algorithm the number of sub-populations was
Nsub = 56, the total number of iterations was Ttotal = 2500 and the number of
algorithm repetitions was Nrep = 8. The sparseness measure στ was set to 0.30.
As the overall number of individuals was large (Nind = 2800), the algorithm was
run in parallel on a cluster of 28 computers.

After 8 iterations the algorithm converged to a stable estimate of the matrix
of eigengenes. The corresponding eigenmodes turned out to be rather sparse as
can be seen in Tab. 2. Hence, the sNMF algorithm deals with the expression
levels of a small number of genes only to reconstruct the data matrix X. It
is assumed that these genes are the most important representatives of cellular

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

806 K. Stadlthanner et al.

processes related with the experiments conducted. This assumption reflects a
widely used praxis in genetics which says that the most highly expressed genes
are the most typical for a specific cellular process [15].

After the sNMF analysis, each row of the matrix S should ideally consist of
an expression pattern indicative of a group of genes most important to the cel-
lular processes related to the disease under investigation. However, many more
translational processes are occurring simultaneously in a biological cell express-
ing genes not related to the disease investigated. Hence, each estimated source
is expected to also contain signatures from various other cellular processes. De-

Table 2. Sparseness στ=0 of the estimated sources and number of genes related with
calcium ion binding (#(cib)) for each of the 8 eigenmodes estimated with sNMF

Source 1 2 3 4 5 6 7 8
στ=0 0.996 0.971 0.983 0.995 0.984 0.954 0.989 0.985

#(cib) 0 13 7 0 4 35 9 6

spite this highly overcomplete setting, the algorithm succeeded in grouping the
majority of genes which are related with calcium ion binding (344 in total) and
hence with the disease signatures of PXE into the sixth estimated source (see
Tab. ??). Furthermore, the calcium ion binding related genes in the sixth source
seem to be specific for only one biological process as maximally 14 % of them
could be found in any of the remaining component signals. To assign genes to
molecular functions, the publicly available Gene Ontology database [6, 7] was
queried.

In [18] the same PXE data set was analyzed by means of the fastICA algo-
rithm. In this analysis the following procedure was carried out: first the data
matrix X was fed into fastICA with the gaussian nonlinearity being used. The
independent components extracted display both positive and negative expres-
sion levels. The latter, of course, miss any obvious biological meaning - a fact
often gently neglected in the literature. Furthermore, there are no close-to-zero
entries in the component signals. Thus all genes seemingly participate in all
translational processes observed. To get rid of these negative expression levels
which lack any biological interpretation, in [18] a further postprocessing step was
undertaken. In this step two clusters were formed for each source. For this pur-
pose the maximum positive (smax) and the minimum negative expression level
(smin) encountered in the component signals was determined. The first cluster
then consisted of all those genes which had positive expression levels higher than
0.26smax while the second group consisted of genes with expression levels lower
than −0.26smin. Finally, the molecular function of the genes in each cluster was
determined by enquiring the GO database. In this case, at most 22 genes related
with calcium ion binding could be grouped into one cluster as can be seen in
Tab. 3. Furthermore, other clusters (e.g. clusters 1, 2 and 13) also contained sig-
nificant amounts of genes related with calcium ion binding. sNMF thus achieved
a better grouping of calcium ion binding genes than fastICA. These results are

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Blind Matrix Decomposition Via Genetic Optimization 807

Table 3. Number of genes related with calcium ion binding (#(cib)) for each of the
16 clusters formed during the analysis of the PXE data by fastICA

cluster 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#(cib) 9 8 3 2 5 1 0 4 1 22 2 4 12 3 0 1

rather preliminary, though. Further cooperation with biologists is necessary to
investigate the gene regulatory networks and biochemical pathways in which the
calcium ion binding genes grouped into the sixth component signal by the sNMF
algorithm are involved.

Acknowledgements

Financial support by Siemens AG, Corporate Technology, Munich, the DFG
(GRK 638: Nonlinearity and Nonequilibrium in Condensed Matter), the DAAD-
GRICES Acçôes Integradas Luso - Alemãs and the DAAD Acciones Integradas
Hispano - Alemanas is gratefully acknowledged.

References

1. The Message Passing Interface (MPI) standard, http://www.mpi-forum.org
2. Baldi, P., Hatfield, W.: DNA Microarrays and Gene Epression. Cambridge Univer-

sity Press, Cambridge (2002)
3. Chiapetta, P., Roubaud, M.C., Torrésani, B.: Blind source separation and the

analysis of microarray data. J. Comp. Biology 11, 1090–1109 (2004)
4. Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic Algorithm Tool-

box. University of Sheffield
5. Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing. John Wiley

& Sons, England (2002)
6. The Gene Onkology Consortium. Gene ontologie: Tool for the unification of biology.

Nature Genetics 25, 25–29 (2000)
7. The Gene Onkology Consortium. Creating the gene ontology resource: design and

implementation. Genome Research 11, 1425–1433 (2001)
8. Diamantaras, K.I., Kung, S.Y.: Principal Component Neural Networks, Theory

and Applications. Wiley, Chichester (1996)
9. Hoyer, P.O.: Non-negative matrix factorization with sparseness constraints. J. Ma-

chine Learning Research 5, 1457–1469 (2004)
10. http://www.mpi-forum.org/docs/mpi-20-html/mpi2report.html MPI-2: Exten-

sions to the Message-Passing Interface, www.mpi-forum.org
11. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Componenet Analysis. John

Wiley & Sons, England (2001)
12. Hyvärinen, A., Oja, E., Hoyer, P., Hurri, J.: Image feature extraction by sparse

coding and independent component analysis. In: Proc. ICPR 1998 (1998)
13. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-

torization. Nature 401, 788–791 (1999)
14. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Ad-

vances in Neural Information Processing 13 (NIPS’2000), Masachusetts, MIT Press,
Washington (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.mpi-forum.org
http://www.mpi-forum.org/docs/mpi-20-html/mpi2 report.html
 www.mpi-forum.org

808 K. Stadlthanner et al.

15. Lee, S.-I., Batzoglou, S.: Application of independent component analysis to mi-
croarrays. Genome Biology 4, R76.1–R76.21 (2003)

16. Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural
Computation 12, 337–365 (2000)

17. Li, Y., Cichocki, A., Amari, S.: Analysis of sparse representation and blind source
separation. Neural Computation 16, 1193–1234 (2004)

18. Lutter, D., Stadlthanner, K., Theis, F.J., Lang, E.W., Tomé, A.M., Becker, B.,
Vogt, T.: Analyzing gene expression profiles with ica. In: Ruggiero, C. (ed.) Proc.
BIOMED 2006, Canada, Acta Press (2006)

19. Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs.
Springer, Berlin (1999)

20. Ohlshausen, B.A., Field, D.J.: Natural image statistics and efficient coding. Net-
work: Computation in Neural Systems 7, 333–339 (1996)

21. Quackenbush, J.: Computational analysis of microarray data. Nature 2, 418–427
(2001)

22. Ruderman, D.: The statistics of natural images. Network: Computations in Neural
Systems 5, 517–548 (1994)

23. Saidi, S.A, Holland, C.M., Kreil, D.P., MacKay, D.J.C., Charnock-Jones, D.S.,
Print, C.G., Smith, S.K.: Independent component analysis for gene arrays. Onco-
gene 23, 6677–6683 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 809–816, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Meta Learning Intrusion Detection in Real Time Network

Rongfang Bie1,*, Xin Jin1, Chuanliang Chen1, Chuan Xu1, and Ronghuai Huang2

1 College of Information Science and Technology,
Beijing Normal University, Beijing 100875, P.R. China
rfbie@bnu.edu.cn, xinjin4@yahoo.com,

byronccl@126.com, abram_win@hotmail.com,
2School of Education Technology,

Beijing Normal University, Beijing 100875, P.R. China
huangrh@bnu.edu.cn

Abstract. With the rapid increase in connectivity and accessibility of computer
systems over the internet which has resulted in frequent opportunities for intru-
sions and attacks, intrusion detection on the network has become a crucial issue
for computer system security. Methods based on hand-coded rule sets are la-
borous to build and not very reliable. This problem has led to an increasing in-
terest in intrusion detection techniques based upon machine learning or data
mining. However, traditional data mining based intrusion detection systems use
single classifier in their detection engines. In this paper, we propose a meta
learning based method for intrusion detection by MultiBoosting multi classifi-
ers. MultiBoosting can form decision committees by combining AdaBoost with
wagging. It is able to harness both AdaBoost's high bias and variance reduction
with wagging's superior variance reduction. Experiments results show that
MultiBoosting can improve the detection performance of state-of-art machine
learning based intrusion detection techniques. Furthermore, we present a Sym-
metrical Uncertainty (SU) based method for reducing network connection fea-
tures to make MultiBoosting more efficient in real-time network environment,
in the meanwhile, keep the detection performance unundermined and in some
cases, even further improved.

1 Introduction

Computer security has become a critical issue with the rapid increase in connectivity
and accessibility of computer systems over the internet which has resulted in frequent
opportunities for intrusions and attacks. Intrusion Detection Systems (IDS) is very
important for computer security [24]. IDS can identify attacks while they are occur-
ring on a network, in an attempt to defend the network. IDS were introduced by
Anderson [20] and formalized later by Denning [21]. Network Intrusion Detection
Systems (NIDS) use audit data such as network packet data, especially network
packet headers and payloads. Most NIDS generally collects network packets through
using Network Interface Card (NIC) and takes passive analysis. NIDS detects attacks

* Corresponding author.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

810 R. Bie et al.

that host-based detection systems miss, e.g., many IP-based Denial-Of-Service (DoS)
attacks and fragmented packet (Teardrop) attacks [28][23]. In this paper, we will
concentrate our attention on NIDS.

Most NIDS are based on hand-crafted signatures that are developed by manual
coding of expert knowledge [13]. The major problem with this approach is that these
IDSs rely heavily on human analysts to differentiate intrusive from non-intrusive
network traffic. The large and growing amount of data confronts the analysts with an
overwhelming task, making the automation of aspects of this task necessary [9].
Recently, there has been an increased interest in data mining based approaches to
building detection models for IDSs. The methods include Naïve Bayes [6], K-means
Nearest Neighbor [29], Support Vector Machine (SVM) [29][28][25] (Least Squares
SVM [13], Robust SVM [15]), Decision Tree (ID3 [12], C4.5 [14]), Radial Basis
Function (RBF) networks [4], Improved Iterative Scaling (IIS) [27], etc.

In this paper we describe a meta mining based method for intrusion detection by
MultiBoosting traditional classifiers based on network connection features. We also
present a Symmetrical Uncertainty (SU) based method for selecting relevant connec-
tion features to improve the detection performance.

The rest of this paper is structured as follows. Section 2 describes SU based feature
ranking method for selecting relevant connection features. Section 3 presents the meta
learning method. Section 4 presents the experimental results. Conclusions are covered
in Section 5.

2 Symmetrical Uncertainty of Network Features

Network intrusion detection relies on building network state models from a given set
of labeled connection feature vectors. However, using large multidimensional feature
vectors is costly in terms of training and operational complexity, memory demands,
etc. Therefore, one would prefer to select relevant network features in the feature
vector [7].

In this paper we describe a Symmetrical Uncertainty (SU) based method for select-
ing relevant features for network intrusion detection. SU has been described in books
on information theory and in numerical recipes, by Press et al.

We define each network feature as variable X and the attack class as variable C.
We first calculate the entropy of X. Entropy, a commonly used measure in the infor-
mation theory, characterizes the purity of an arbitrary collection of samples. The en-
tropy of X will be obtained by

2() () log (())
x X

H X p x p x
∈

= −∑ (1)

where p(x) is the marginal probability density function for the variable X . The en-
tropy of X after observing C is:

2(|) () (|) log ((|))
c x

H X C p c p x c p x c= −∑ ∑ (2)

where p(x|c) is the conditional probability of x given c.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Meta Learning Intrusion Detection in Real Time Network 811

Given the entropy as a criterion of impurity in a training set S, Information Gain
(IG) can reflect additional information about X provided by C that represents the
amount by which the entropy of X decreases.

() (|) () () (,)IG H C H X C H C H X H C X= − = + − (3)

where, H(C, X) is the joint entropy of C and X, it is calculated from the joint prob-
abilities of all combinations of values of C and X.

A well-known weakness of the IG criterion is that it is biased in favor of attributes
with more values even when they are not more informative. The Symmetrical Uncer-
tainty (SU) criterion compensates for the inherent bias of IG by dividing it by the sum
of the entropies of C and X [8]:

2.0 /(() ())SU IG H C H X= × + (4)

Due to the correction factor 2.0, SU coefficient takes values which are normalized
to the range [0, 1]. A value of SU = 0 indicates that the attribute X and the class C
have no association; the value 1 for the symmetrical uncertainty coefficient indicates
that X can completely predicts C.

3 Meta Learning

3.1 MultiBoosting

MultiBoosting [5] can be considered as wagging (which is in turn a variant of bag-
ging) committees formed by AdaBoost. A decision is made as to the size of
sub-committees, and how many sub-committees should be formed for a single run.

In the absence of an a-priori reason for selecting any specific values for those fac-
tors, MultiBoost takes a single committee size T and sets the number of sub-
committees and the size of those sub-committees to square of T. Note that both these
values must be whole numbers, it is necessary to round off the result.

Deriving the values is achieved by setting a target final sub-committee member in-
dex, where each member of the final committee is given an index by starting from
one. Due to too great or too low error, that allows the premature termination of boost-
ing one sub-committee to lead to an increase in the size of the next sub-committee.

An additional sub-committee is added with a target of completing the full comple-
ment of committee members if the last sub-committee is prematurely terminated.
When this additional sub-committee also fails to reach this target, this process is re-
peated, adding further sub-committees until the target total committee size is
achieved. More information about MultiBoosting algorithm is presented in [5].

In our experiments, MultiBoosting is combined with the following base learners.

3.2 Base Learners

Radial Basis Function (RBF) Network: The Radial Basis Function (RBF) Network
has shown a great promise in this sort of problems because of its faster learning ca-
pacity [16]. The input to RBF Network is a vector x of extracted features from the
network connection. We use the k-means clustering [17] algorithm to provide the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

812 R. Bie et al.

basis functions. Then RBF Network learns a logistic regression on top of that. For
classification it uses the given number of clusters per class [3].

Support Vector Machine (SVM): Being developed in 1995 by Vapnik and co-
workers, the Support Vector Machines (SVM) is a relatively new machine learning
formulation [19]. SVM have been successfully applied to a wide range of pattern
recognition problems [18]. SVM can learn linear rules described by a weighted vector
and a threshold. Geometrically, we can find two parts representing the two classes
with a hyper-plane with normal and distance from the origin [28]. In the case that
linear separation is impossible, the technique of kernel will be used to automatically
inject the training samples into a higher-dimensional space, and to learn a separator in
that space. In our experiments, we use the Linear kernel function.

Naive Bayes: Naive Bayes [1] based intrusion detection problem can be described as
follows. For a given sample we search for a class ci that maximizes the posterior
probability P(ci|x;θ’), by applying Bayes rule. Then x can be classified by computing.

' 'arg max (|) (| ;)
i

l i i
c C

c P c P x cθ θ
∈

= (5)

Decision Tree (DT): The most popular DT learning algorithm is Quinlan’s C4.5 [2].
For network intrusion detection, DT will construct a tree where the nodes correspond
to connection features/attribute test, the links (to attribute values and the leaves) to the
attack types. To classify an incoming network connection represented as a feature
vector we start at the root of the tree and follow the path corresponding to the vector’s
values until a leaf node is reached and the classification is obtained.

4 Experimental Results

The following experiments are based on ten runs of 10-fold cross-validation on the
KDDCUP99 Network Intrusion Detection Benchmark Dataset, available on [11, 22, 26].
We investigated all the 41 network session features [10].Performance is expressed in
terms of the standard measure in the intrusion detection literature, Detection Rate.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Fig. 1. SU scores of the 41 network features. X-axis represents the feature ID. Y-axis represents
the SU score.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Meta Learning Intrusion Detection in Real Time Network 813

0

0.05

0.1

0.15
0.2

0.25

0.3

0.35

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Fig. 2. Sorted SU scores of the 41 network features. X-axis represents the sorted ranking index
according to the SU score of the features. For example, ‘1’ represents the rank 1 feature, whose
ID is 5, which can be seen from Fig 2. Y-axis represents the SU score.

The detection rate of an intrusion class is defined by the ratio of the number of
connections which are correctly predicted as the class and the number of all connec-
tions which are of the class (some of these connections may be incorrectly predicted
to be other class). Detection rate ranges [0%, 100%], the higher the better. We use
detection rate of a class to evaluate the ability of the learning methods to find all the
samples which belong to the attack type.

Fig. 1 shows the SU ranking scores computed between each feature and the class.
Fig. 2 shows the sorted results. For feature selection we select the top 29, 33, 36 fea-
tures respectively in different experiments. We choose the top 29 features because
they have a SU value of greater than 0.05. In other experiments, we try 33 for 0.01,
and 36 for 0 (there are several features having an SU value of 0, which means that
they are utterly irrelevant features).

Fig. 3 shows the detection rate of MultiBoosting and four baseline classifiers
(SVM, RBF Network, C4.5 and Naïve Bayes) with the 41 original features and the
SU selected features.

The results show that by using MultiBoosting, all the four base classifiers’ per-
formance is greatly improved. With the original features, MultiBoosting improve the
detection rate of SVM by 1.16%, RBF Network by 2.21%, C4.5 by 1.69% and Naïve
Bayes by 2.23%.

The results also show that by using SU based feature selection, we can use only 29
features instead of the original 41features to achieve still high performance. Actually,
in many cases, the performance is even improved. For example, using the top 33 fea-
tures, the detection rate of MultiBoosting with RBF Network is improved
from95.96% to 98.25%, compared to using the full original 41 features. The reason is
that SU based method can filter out irrelevant features which may impair the detection
ability of the classifiers. This will have two advantages: 1. further improve the detec-
tion rate by selecting relevant features and rejecting irrelevant features. 2. make the
MultiBoosting based method more suitable for real time network by simplifying the
models with reduced features.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

814 R. Bie et al.

97.5

98

98.5

99

99.5

100

SVM MultiBoosting

29 33 36 Full(41)

95

95.5

96

96.5

97

97.5

98

98.5

99

RBF Network MultiBoosting

29 33 36 Full(41)

99

99.1

99.2

99.3

99.4

99.5

99.6

99.7

99.8

C4.5 MultiBoosting

29 33 36 Full(41)

96

96.5

97

97.5

98

98.5

99

99.5

100

Naïve Bayes MultiBoosting

29 33 36 Full(41)

Fig. 3. Detection rate of MultiBoosting and four baseline classifiers (SVM, RBF Network, C4.5
and Naïve Bayes) with the full 41 original features and the SU selected 29, 33 and 36 features.
Y-axis represent the detection rate, we omit the ‘%’ symbol.

5 Conclusions

The contribution of this paper is two folds.
Firstly, we propose a meta learning based method for network intrusion detection

by MultiBoosting [5] multi classifiers. Comparison results based on the standard
DARPA benchmark data sets, using the detection rate performance measure, indicate
that MultiBoosting can greatly improve the detection performance of traditional ma-
chine learning intrusion detection methods.

Secondly, we propose to use Symmetrical Uncertainty (SU) for reducing network
connection features. Experimental results show two advantages of this method: the
one is that SU can further improve the detection rate by selecting relevant features
and rejecting irrelevant features. The other is that SU can make the MultiBoosting
based method more efficient in real-time network environment by simplifying the
models with reduced features.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Meta Learning Intrusion Detection in Real Time Network 815

Acknowledgments

This work was supported by the National Science Foundation of China under the
Grant No. 60273015 and No. 10001006. This research was also supported by the
Foundation of Chinese National 985 Project “Educational Information and Technol-
ogy Platform” in Beijing Normal University.

References

1. Schneider, K.-M.: Comparison of Event Models for Naive Bayes Anti-Spam E-Mail Filter-
ing. In: Proceedings of the 10th Conference of the European Chapter of the Association for
Computational Linguistics, Budapest, Hungary, pp. 307–314 (April 2003)

2. Quinlan, R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San
Mateo, CA (1993)

3. Witten, I., Frank, E.: Data Mining –Practical Machine Learning Tools and Techniques
with Java Implementation. Morgan Kaufmann, San Francisco (2000)

4. Zhang, Z., Shen, H.: Online Training of SVMs for Real-time Intrusion Detection. In:
AINA’04. 18th International Conference on Advanced Information Networking and Ap-
plications, p. 568 (2004)

5. Geoffrey, I.: Webb: MultiBoosting: A Technique for Combining Boosting and Wagging.
Machine Learning 40(2), 159–196 (2000)

6. BenAmor, N., Benferhat, S., ElOuedi, Z.: Naive Bayes vs Decision Trees in Intrusion De-
tection Systems. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357,
Springer, Heidelberg (2004)

7. Ganchev, T., Zervas, P., Fakotakis, N., Kokkinakis, G.: Benchmarking Feature Selection
Techniques on the Speaker Verification Task. In: 5th International Symposium on Com-
munication Systems, Network and Digital Signal Processing (July 19-21, 2006)

8. Hall, M.A., Smith, L.A.: Practical feature subset selection for machine learning. In: Pro-
ceedings of the 21st Australian Computer Science Conference, pp. 181–191 (1998)

9. Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based Modeling for Fraud
and Intrusion Detection: Results from the JAM Project. In: DISCEX ’00. Proceedings of
the 2000 DARPA Information Survivability Conference and Exposition (2000)

10. KDDCUP99 Dataset Task Description (Accessed 2006), http://kdd.ics.uci.edu/databases/
kddcup99/task.html

11. KDDCUP99 Network Intrusion Detection Benchmark Dataset (Accessed 2006),
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

12. Sinclair, S.M.C., Pierce, L.: An Application of Machine Learning to Network Intrusion
Detection. In: Proceedings of the 15th Annual Computer Security Applications Confer-
ence, Phoenix, AZ, USA, pp. 371–377 (1999)

13. Kim, B.-J., Kim II, K.: Two-Tier Based Intrusion Detection System. In: Wang, L., Jin, Y.
(eds.) FSKD 2005. LNCS (LNAI), vol. 3614, pp. 27–29. Springer, Heidelberg (2005)

14. Sabhnani, M., Serpen, G.: Application of Machine Learning Algorithms to KDD Intrusion
Detection Dataset within Misuse Detection Context. In: MLMTA03. Proceedings of the
International Conference on Machine Learning, Models, Technologies and Applications,
Las Vegas, NV, pp. 209–215 (June 2003)

15. Hu, W., Liao, Y., Vemuri, V R.: Robust Support Vector Machines for Anomaly Detection
in Computer Security. In: Proceddings of Conference on Machine Learining and Applica-
tion (2003)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

816 R. Bie et al.

16. Lee, C.-C., Chung, P.-C., Tsai, J.-R., Chang, C.-I: Robust Radial Basis Function Neural
Networks. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernet-
ics 29(6) (1999)

17. Wang, H., et al.: Clustering by Pattern Similarity in Large Data sets. In: SIGMOD, pp.
394–405 (2002)

18. Guo, G., Li, S.Z., Chan, K.: Face Recognition by Support Vector Machines. In: Fourth
IEEE International Conference on Automatic Face and Gesture Recognition, pp. 196–201.
IEEE Computer Society Press, Los Alamitos (2000)

19. Vapnik, V.N.: Statistical learning theory. Adaptive and learning systems for signal proc-
essing, communications, and control, Wiley, New York (1998)

20. Anderson, J.P.: Computer security threat monitoring and surveillance. Technical Report,
James P Anderson Co. Fort Washington, PA (April 1980)

21. Denning, D.E.: An intrusion-detection model. IEEE Transactions on Software Engineer-
ing SE-13(2), 222–232 (1987)

22. Nguyen, B.V.: An Application of Support Vector Machines to Anomaly Detection. Re-
search in Computer Science - Support Vector Machine, report, Fall (2002)

23. Vigna, G., Kemmerer, R.: Netstat: a network based intrusion detection system. Journal of
Computer Security 7(1) (1999)

24. Symantec.com: Symantec internet security threat report highlights rise in threats to confi-
dential information. (Accessed 2006), Available at http://www.symantec.com/press/2005/
n050321.html

25. Sung, A., Mukkamala, S.: Identifying important features for intrusion detection using sup-
port vector machines and neural networks. In: Symposium on Applications and the Inter-
net, pp. 209–216 (2003)

26. Kendall, K.: A Database of Computer Attacks for the Evaluation of Intrusion Detection
Systems. Master’s Thesis, Massachusetts Institute of Technology (1998)

27. Jin, X., Huang, R., Bie, R.: Detecting Network Attacks via Improved Iterative Scaling. In:
INDIN07. Proceedings of the 5th IEEE International Conference on Industrial Informatics,
Vienna, Austria, July 23-26 (2007)

28. Kim, D.S., Park, J.S.: Network-Based Intrusion Detection with Support Vector Machines.
In: Kahng, H.-K. (ed.) ICOIN 2003. LNCS, vol. 2662, pp. 747–756. Springer, Heidelberg
(2003)

29. Kaplantzis, S., Mani, N.: A Study on Classification Techniques for Network Intrusion De-
tection. In: NCS06. Proceedings of the IASTED International Conference on Networks
and Communication Systems (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning to Support the Generation of

Meta-examples

Ricardo Prudêncio1 and Teresa Ludermir2

1 Departament of Information Science, Federal University of Pernambuco, Av. dos
Reitores, s/n - CEP 50670-901 - Recife (PE) - Brazil

prudencio.ricardo@gmail.com
2 Center of Informatics, Federal University of Pernambuco, Pobox 7851 - CEP

50732-970 - Recife (PE) - Brazil
tbl@cin.ufpe.br

Abstract. Meta-Learning has been used to select algorithms based on
the features of the problems being tackled. Each training example in this
context, i.e. each meta-example, stores the features of a given problem
and the performance information obtained by the candidate algorithms
in the problem. The construction of a set of meta-examples may be costly,
since the algorithms performance is usually defined through an empirical
evaluation on the problem at hand. In this context, we proposed the
use of Active Learning to select only the relevant problems for meta-
example generation. Hence, the need for empirical evaluations of the
candidate algorithms is reduced. Experiments were performed using the
classification uncertainty of the k-NN algorithm as the criteria for active
selection of problems. A significant gain in performance was yielded by
using the Active Learning method.

1 Introduction

In several domains of application, there are different algorithms that can be
applied to a single problem. In Machine Learning, for instance, different learn-
ing algorithms have been proposed to solve learning problems. An important
question that arises in such domains is the appropriate selection of algorithms
for each problem at hand [1]. The most traditional strategies to algorithm se-
lection involve, in general, expert knowledge, or costly procedures of empirical
evaluation [2]. Meta-Learning [3] arises in this context as an alternative solution,
capable of automatically acquire knowledge to be used in algorithm selection.

The knowledge in Meta-Learning is acquired from a set of meta-examples
that store the experience obtained in the application of a number of candidate
algorithms in problems investigated in the past. More specifically, each meta-
example is related to a given problem and stores: (1) the features that describe
the problem; and (2) information about the performance obtained by the can-
didate algorithms when applied to the problem (e.g. the best algorithm, error
rates, execution times,...). A meta-learner is a learning model that receives as
input a set of such meta-examples, and generates knowledge relating features of
the problems and the performance of the candidate algorithms.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 817–826, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

818 R. Prudêncio and T. Ludermir

A limitation of Meta-Learning is related to the process of generating meta-
examples. In order to generate a meta-example from a given problem, it is nec-
essary to perform an empirical evaluation (e.g. cross-validation) to collect the
performance information of the candidate algorithms. Although the proposal of
Meta-Learning is to perform this empirical evaluation only in a limited number
of problems, the cost of generating a whole set of meta-examples may be high,
depending, for instance, on the number and complexity of the candidate algo-
rithms, the used methodology of empirical evaluation and the amount of data
available in the problems.

Considering the above context, we present here an original proposal in which
Active Learning [4] is used to select problems for meta-example generation. Ac-
tive Learning is a paradigm of Machine Learning, used in domains in which it is
hard or costly to acquire training examples [5]. The main motivation of Active
Learning is to reduce the number of training examples, at same time maintaining
the performance of the learning algorithms. In our proposal, it corresponds to
reduce the set of meta-examples by selecting only the more relevant problems,
consequently, reducing the number of empirical evaluations performed on the
candidate algorithms.

In order to evaluate the viability of our proposal, we implemented a proto-
type in which the k-NN (k-Nearest Neighbors) algorithm is used as meta-learner,
and a method based on uncertainty of classification [5] is used to select prob-
lems for meta-example generation. The prototype was evaluated in a case study
which corresponds to the task of selecting two specific algorithms for time se-
ries forecasting problems: the Time Delay Neural Network (TDNN) [6] and the
Simple Exponential Smoothing (SES) [7]. Experiments performed on a set of 99
problems revealed a gain in the meta-learner performance by using the imple-
mented Active Learning method, compared to a random procedure for selecting
problems.

The remaining of this paper is organized as follows. Section 2 brings a brief
presentation of Meta-Learning, followed by section 3 which describes, in more
details, the proposed solution and the implemented prototype. Section 4 presents
the performed experiments and obtained results. Finally, section 5 concludes the
paper by presenting some future work.

2 Meta-learning

In different knowledge areas, it is observed the existence of several algorithms
that compete to be applied to specific classes of problems. In such situations,
both empirical and theoretical results have shown that there is no algorithm
uniformly superior, independently on the problem being tackled [8,9,10].

Meta-Learning is a framework that defines techniques to assist algorithm selec-
tion for learning problems (usually classification and regression problems) [3]. In
a strict formulation of Meta-Learning, each training example (or meta-example)
is related to an individual learning problem investigated in the past and stores:
(1) a set of features (called meta-attributes) that describes the problem; and (2)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning to Support the Generation of Meta-examples 819

a class attribute which indicates the best algorithm for the problem, among a set
of candidate algorithms. The meta-learner in the strict formulation is simply a
classifier algorithm which predicts the best algorithm for a given problem based
on its descriptive meta-attributes [8].

The meta-attributes usually are statistical and information theory measures
of the problem’s dataset, such as number of training examples and attributes,
correlation between attributes, class entropy, presence of outliers in the dataset,
among others [11]. The class label stored in a meta-example is usually defined by
empirically evaluating each candidate algorithm on the problem. This can be per-
formed, for instance, via a cross-validation experiment using the available prob-
lem’s dataset. The accuracy of each classifier is estimated by cross-validation,
and the class label is assigned to a problem according to the algorithm with
highest estimated accuracy.

Although the strict Meta-Learning has been investigated by different authors
(see for instance [1,8,12,13,14,15]), other Meta-Learning techniques have been
proposed to provide more informative solutions to algorithm selection. In [16],
the authors proposed a meta-learner not only to predict the best algorithm
but also to predict the applicability of each candidate algorithm to the new
problems being tackled. In [9], the NOEMON system combined different strict
meta-learners in order to provide rankings of the candidate algorithms. In [10],
the authors applied instance-based learning to provide rankings of algorithms,
taking into account the predicted accuracy and execution time of the algorithms.
In [17], the authors used a regression model as meta-learner in order to predict
the numerical value of the accuracy for each candidate algorithm.

The concepts and techniques of Meta-Learning were originally evaluated to se-
lect algorithms for classification and regressionproblems. However, in recent years,
Meta-Learning has been extrapolated to other domains of application [12,14,18].
In [12,14], for instance, the authors proposed the use of Meta-Learning to select
algorithms for time series forecasting. In [18], the authors applied Meta-Learning
to support the construction of planning systems. Considering these applications,
Meta-Learning can be viewed as a more general framework to algorithm selection,
and it is expected to be useful in problems related to a large range of domains.

3 Active Learning for Meta-example Generation

An important step in the generation of meta-examples is to estimate the perfor-
mance of the candidate algorithms on a set of problems. The evaluation of per-
formance is accomplished by applying a pre-defined methodology of experiments
(e.g. hold-out, cross-validation,...) to the available datasets. The information re-
sulting from the performance evaluation is used to define the target attribute in
the Meta-Learning task (e.g. the class corresponding to the best algorithm).

The generation of meta-examples may be a costly process depending on a
number of aspects, such as the methodology of experiments adopted to perfor-
mance evaluation, the number of problems available to generate meta-examples,
and the number and complexity of the candidate algorithms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

820 R. Prudêncio and T. Ludermir

Input
Problem

� FE �

Meta-
Attributes

ML

�

DB of
Meta-

Examples

Meta-
Examples

� Best
Algorithm

AL

New Meta-
Example�

�
Problems

DB of
Problems

Fig. 1. System Architecture

In the above context, we proposed here the use of Active Learning to sup-
port the generation of training examples for Meta-Learning. Active Leaning is a
paradigm of Machine Learning in which the learning algorithm has some control
over the inputs on which it trains [4]. The main objective of this paradigm is to
reduce the number of training examples, at same time maintaining the perfor-
mance of the learning algorithm. Active Learning is ideal for learning domains
in which the acquisition of labeled examples is a costly process, such as image
recognition [5], text classification [19] and information filtering [20].

The main motivation of the use of Active Learning in our context is to select
only the more relevant problems for Meta-Learning, and hence, to reduce the
number of empirical evaluations on the candidate algorithms. Figure 1 presents
the general architecture of system following our proposal. The system has three
different phases: meta-example generation, training and use, described as follows.

In the meta-example generation, the Active Learning (AL) module selects from
a base of problems, those ones considered the most relevant for the Meta-Learning
task. The selection of problems is performed based on a pre-defined criteria imple-
mented in the module. The candidate algorithms are then empirically evaluated
on the selected problems, in order to collect the performance information related
to the algorithms. Each generated meta-example (composed by meta-attributes
and performance information) is then stored in an appropriate database.

In the training phase, the Meta-Learner (ML) acquires knowledge from the
database of meta-examples generated by the AL module. This knowledge as-
sociates meta-attributes to the performance of the candidate algorithms. The
acquired knowledge may be refined as more meta-examples are provided by the
AL module.

In the use phase, given a new input problem, the Feature Extractor (FE)
module extracts the values of the meta-attributes. According to these values,
the ML module predicts the best candidate algorithm. For that, it uses the
knowledge previously acquired as a result of the training phase.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning to Support the Generation of Meta-examples 821

In order to evaluate the proposal, we implemented a prototype to select be-
tween two candidate algorithms for time series forecasting problems: the Time-
Delay Neural Network (TDNN) [6] and the Simple Exponential Smoothing model
(SES) [7]. Both algorithms were used for short-term forecasting of stationary
time series (with no trend or seasonality). According to [14], both algorithms
are indicated to forecast stationary time series, however the quality of the fore-
casts provided by the algorithms may be very different depending on the time
series at hand.

In the current prototype, the k-Nearest Neighbors (k-NN) algorithm was used
in the ML module, and an Active Learning method based on classification un-
certainty of the k-NN [5] is used in the AL module. In the next sections, we
provide more details of the implemented prototype.

3.1 Feature Extractor

In our proposal, the FE module implements p meta-attributes X1, . . . , Xp which
correspond to features that describe the input problems. Hence, each problem e
is described by a vector x = (x1, . . . , xp) in which xj = Xj(e), (j = 1, . . . , p).

In the implemented prototype, each input problem consists of a time series to
be forecasted, and p = 10 features were used as meta-attributes:

1. Length of the time series (X1): number of observations of the series.
2. Mean of the absolute values of the 5 first autocorrelations (X2): high values

of this feature suggests that the value of the series at a time point is very
dependent of the values in recent past points.

3. Test of significant autocorrelations (X3): presence of at least one significant
autocorrelation taking into account the first 5 ones.

4. Significance of the first, second and third autocorrelation (X4, X5 and X6):
indicates significant dependences in more recent past points.

5. Coefficient of variation (X7): measures the degree of instability in the series.
6. Absolute value of the skewness and kurtosis coefficient (X8 and X9): measure

the degree of non-normality in the series.
7. Test of Turning Points for randomness (X10): The presence of a very large

or a very low number of turning points in a series suggests that the series is
not generated by a purely random process.

All implemented features are directly computed from the avaliable series data,
which has the advantage of avoiding subjective analysis, such as visual inspection
of plots.

3.2 Meta-learner

The Meta-Learning task in the current prototype corresponds to the strict for-
mulation described in Section 2, i.e. the meta-learner is a conventional classifier
that uses the meta-attributes to predict the best candidate algorithm. In the im-
plemented prototype, we used the k-NN algorithm as the strict meta-learner. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

822 R. Prudêncio and T. Ludermir

[10], the authors presented some advantages of using instance-based algorithms,
such as the k-NN, as meta-learners. Instance-based algorithms are extensible:
once a new meta-example becomes available, it can be easily integrated without
the need to initiate re-learning. According to [10], this is relevant for algorithm
selection since the user typically starts with a small set of meta-data that in-
creases steadily with time.

In this section, we describe more formally the meta-learner used in the pro-
totype. Let E = {e1, . . . , en} be the set of n problems used to generate a set
of n meta-examples ME = {me1, . . . , men}. Each meta-example is related to a
single problem and stores the values of p features X1, . . . , Xp for the problem
and the value of a class attribute C, which indicates the best algorithm for the
problem, among L candidates. In our prototype, we have p = 10 meta-attributes
describing problems and L = 2 candidate algorithms (TDNN and SES).

Let D = {c1, . . . , cL} be the domain of the class attribute C where each class
label cl ∈ D represents a candidate algorithm. In this way, each meta-example
mei ∈ ME is represented as the pair (xi, C(ei)) storing: (1) the description xi

of the problem ei, where xi = (x1
i , . . . , x

p
i) and xj

i = Xj(ei); and (2) the class
label associated to ei, i.e. C(ei) = cl, where cl ∈ D.

Given a new input problem described by the vector x = (x1, . . . , xp), the
k-NN meta-learner retrieves k meta-examples from ME, according to the dis-
tance between meta-attributes. The distance function (dist) implemented in the
prototype was the unweighted L1-Norm, defined as:

dist(x,xi) =
p∑

j=1

|xj − xj
i |

maxi(x
j
i) − mini(x

j
i)

(1)

The prediction of the class label for the new problem (i.e. the prediction of
the best algorithm) is performed according to the number of occurrences (votes)
of each cl ∈ D in the class labels associated to the retrieved meta-examples.

3.3 Active Learning

As seen, the ML module predicts the best algorithms by using a set of meta-
examples generated from labeled problems, i.e. the problems in which the best
candidate algorithm is known. The AL module, described in this section, receives
a set of unlabeled problems, i.e. the problems in which the candidate algorithms
were not yet evaluated and, hence, the best algorithm for each problem is not
known. Therefore, the main objective of the AL module is to incrementally select
unlabeled problems to be used for generating new meta-examples.

In the prototype, the AL module implements a method for selecting unla-
beled problems which is based on the criteria of classification uncertainty of
the k-NN algorithm [5]. In this criteria, initially, the k-NN algorithm classifies
each unlabeled example by using the available labeled examples. A degree of
uncertainty of the provided classification is assigned for each unlabeled example.
Finally, the unlabeled example with the highest classification uncertainty is then
selected.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning to Support the Generation of Meta-examples 823

The classification uncertainty of the k-NN algorithm is defined in [5] as the
ratio of: (1) the distance between the unlabeled example and its nearest labeled
neighbor; and (2) the sum of the distances between the unlabeled example and
its nearest labeled neighbors of different classes. A high value of uncertainty
indicates that the unlabeled example has nearest neighbors with similar dis-
tances but conflicting labeling. Hence, once the unlabeled example is labeled, it
is expected that the uncertainty of classification in its neighborhood should be
reduced.

In our context, let E be the set of labeled problems, and let Ẽ be the set of
unlabeled problems. Let El be the subset of labeled problems associated to the
class label cl, i.e. El = {ei ∈ E|C(ei) = cl}. Given the set E, the classification
uncertainty of k-NN for each ẽ ∈ Ẽ is defined as:

S(ẽ|E) =
minei∈E dist(x̃,xi)

∑L
l=1 minei∈El

dist(x̃,xi)
(2)

In the above equation, x̃ is the description of problem ẽ. The AL module then
selects, for generating a new meta-example, the problem ẽ∗ ∈ Ẽ with highest
uncertainty:

ẽ∗ = argmax
�e∈ �ES(ẽ|E) (3)

Finally, the selected problem is labeled (i.e. the class value C(ẽ∗) is defined),
through the empirical evaluation of the candidate algorithms using the avaliable
data of the problem.

In our prototype, the labeling of a time series is performed through the empir-
ical evaluation of TDNN and SES in forecasting the series. For this, a hold-out
experiment was performed, as described in [13]. Given a time series, its data
was divided into two parts: the fit period and the test period. The test period
consists on the last 30 points of the time series and the fit period consists on the
remaining data. The fit data was used to calibrate the parameters of both models
TDNN and SES. Both calibrated models were used to generate one-step-ahead
forecasts for the test data. Finally, the class attribute was assigned as the model
which obtained the lowest mean absolute forecasting error on the test data.

4 Experiments and Results

In the performed experiments, we used 99 time series collected from the Time
Series Data Library (TSDL)1. This repository contains time series data from
several domains, most of them used as benchmark problems in the forecasting
field. Both algorithms (TDNN and SES) were empirically evaluated for fore-
casting each series (as seen in section 3.3), and hence, 99 meta-examples were
generated for the experiments with Meta-Learning.

The prototype was evaluated for different configurations of the k-NN meta-
learner (with k = 1, 3, 5, 7, 9 and 11 nearest neighbors). For each configuration,

1 TSDL - http://www-personal.buseco.monash.edu.au/˜hyndman/TSDL

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

824 R. Prudêncio and T. Ludermir

0 10 20 30 40 50 60 70 80 90 100
43

44

45

46

47

48

49

50

51

52

E
rr

or
 R

at
es

 (
%

)
Classification Uncertainty
Random Method

Number of meta−examples in the training set

Fig. 2. Average curves of error rates obtained by k-NN meta-learner for both the
classification uncertainty and the random active learning methods

a leave-one-out experiment was performed to evaluate the performance of the
meta-learner, also varying the number of meta-examples provided by the Active
Learning module. This experiment is described just below.

At each step of leave-one-out, one problem is left out for testing the ML
module, and the remaining 98 problems are considered as candidates to generate
meta-examples. The AL module progressively includes one meta-example in the
training set of the ML module, up to the total number of 98 training meta-
examples. At each included meta-example, the ML module is judged on the test
problem left out, receiving either 1 or 0 for failure or success. Hence, a curve with
98 binary judgments is produced for each test problem. Finally, the curve of error
rates obtained by ML can be computed by averaging the curves of judgments
over the 99 steps of the leave-one-out experiment.

As a basis of comparison, the same above experiment was applied to each
configuration of k-NN, but using in the AL module a random method for selecting
unlabeled problems. According to [5], despite its simplicity, the random method
has the advantage of performing a uniform exploration of the example space.

Figure 2 presents the curve of error rates obtained by the k-NN meta-learner av-
eraged across the different configurations of the parameter k. The figure presents
the average curve obtained when both methods were used: the classification un-
certainty (described in section 3.3) and the random method. As it is expected, for
both methods, the error rate obtained by the ML module decreased as the number
of meta-examples in the training set increased. However, the error rates obtained

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Active Learning to Support the Generation of Meta-examples 825

by deploying the classification uncertainty method were, in general, lower than
the error rates obtained by deploying the random method. In fact, from 8 to 84
meta-examples included in the training set, the classification uncertainty method
steadily achieved better performance compared to the random method.

5 Conclusion

In this paper, we presented an original work that proposes the use of Active
Learning to enhance the generation of examples for Meta-Learning. In order to
verify the viability of our proposal, we implemented a prototype in which the
classification uncertainty criteria is used to select meta-examples for a k-NN
meta-learner. The prototype was evaluated in a task of selecting two candi-
date algorithms for time series forecasting, and the experiments results were
promissing.

We highlight here that, despite the originality of the proposal, it still has some
limitations that will be dealt with in future work. Although the classification
uncertainty method obtained good results in the investigated Meta-Learning
task, other Active Learning methods for k-NN have presented very competitive
results in tasks related to other contexts [5].

Another question to investigate is the use of Active Learning not only for strict
k-NN meta-learners, but also for other Meta-Learning techniques (as those cited
in section 2). The choice of the strict k-NN meta-learner in our prototype was due
to the fact that different authors in literature have focused their efforts on this
kind of meta-learner or on similar techniques. However, other Meta-Learning
techniques have been achieved good results in algorithm selection and hence,
they also have to be investigated in the context of the current proposal.

References

1. Kalousis, A., Gama, J., Hilario, M.: On data and algorithms - understanding in-
ductive performance. Machine Learning 54(3), 275–312 (2004)

2. Kalousis, A., Hilario, M.: Representational issues in meta-learning. In: Proceed. of
the 20th International Conference on Machine Learning, pp. 313–320 (2003)

3. Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on
meta-learning. Machine Learning 54(3), 187–193 (2004)

4. Cohn, D., Atlas, L., Ladner, R.: Improving Generalization with Active Learning.
Machine Learning 15, 201–221 (1994)

5. Lindenbaum, M., Markovitch, S., Rusakov, D.: Selective sampling for nearest neigh-
bor classifiers. Machine Learning 54, 125–152 (2004)

6. Lang, K., Hinton, G.: Time-delay neural network architecture for speech recogni-
tion. In CMU Technical Report CS-88-152, Carnegie-Mellon University, Pittsburgh,
PA (1988)

7. Brown, R.G.: Smoothing, Forecasting and Prediction. Prentice-Hall, Englewood
Cliffs (1963)

8. Aha, D.: Generalizing from case studies: a case study. In: Proceedings of the 9th
International Workshop on Machine Learning, pp. 1–10 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

826 R. Prudêncio and T. Ludermir

9. Kalousis, A., Theoharis, T.: Noemon: Design, implementation and performance re-
sults of an intelligent assistant for classifier selection. Intelligent Data Analysis 3(5),
319–337 (1999)

10. Brazdil, P., Soares, C., da Costa, J.: Ranking learning algorithms: Using IBL and
meta-learning on accuracy and time results. Machine Learning 50(3), 251–277
(2003)

11. Engels, R., Theusinger, C.: Using a data metric for preprocessing advice for data
mining applications. In: ECAI-98. Proceedings of the 13th European Conference
on Artificial Intelligence, pp. 430–434 (1998)

12. Prudêncio, R., Ludermir, T.: Selection of models for time series prediction via meta-
learning. In: Proceedings of the 2nd International Conference on Hybrid Systems,
pp. 74–83 (2002)

13. Prudêncio, R., Ludermir, T., de Carvalho, F.: A modal symbolic classifier to select
time series models. Pattern Recognition Letters 25(8), 911–921 (2004)

14. Prudêncio, R., Ludermir, T.: Meta-learning approaches to selecting time series
models. Neurocomputing 61, 121–137 (2004)

15. Leite, R., Brazdil, P.: Predicting relative performance of classifiers from samples.
In: Proceedings of the 22nd International Conference on Machine Learning (2005)

16. Michie, D., D. J. S., Taylor, C.C., (eds.): Machine Learning, Neural and Statistical
Classification. Ellis Horwood, New York (1994)

17. Bensusan, H., Alexandros, K.: Estimating the predictive accuracy of a classifier.
In: Proceedings of the 12th European Conference on Machine Learning, pp. 25–36
(2001)

18. Tsoumakas, G., Vrakas, D., Bassiliades, N., Vlahavas, I.: Lazy adaptive multicri-
teria planning. In: Proceed. of the 16th European Conference on Artificial Intelli-
gence, pp. 693–697 (2004)

19. Tong, S., Koller, D.: Support vector machine active learning with applications to
text classification. Journal of Machine Learning Research 2, 45–66 (2002)

20. Sampaio, I., Ramalho, G., Corruble, V., Prudêncio, R.: Acquiring the preferences of
new users in recommender systems - The role of item controversy. In: Proceedings
of the ECAI 2006 Workshop on Recommender Systems, pp. 107–110 (2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of

Communication�

Viktor Gyenes and András Lőrincz

Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, Hungary, H-1117
gyenesvi@inf.elte.hu, andras.lorincz@elte.hu

Abstract. We investigate the properties of coupled co-learning systems
during the emergence of communication. Co-learning systems are more
complex than individual learning systems because of being dependent
on the learning process of each other, thus risking divergence. We devel-
oped a neural network approach and implemented a concept that we call
reconstruction principle, which we found adequate for overcoming the in-
stability problem. Experimental simulations were performed to test the
emergence of both compositional and holistic communication. The re-
sults show that compositional communication is favorable when learning
performance is considered, however it is more error-prone to differences
in the conceptual representations of the individual systems. We show
that our architecture enables the adjustment of the differences in the
individual representations in case of compositional communication.

1 Introduction

The emergence and evolution of communication has gained significant research
attention in the past decade. Multi-agent simulations are popular to model the
coordinated development of natural languages. The inherent property of the
development of a coordinated communication system that multiple agents par-
ticipate in it poses extra difficulties to the algorithms aiming to model it.

When communication evolves, it should be the result of a negotiation process
between many parties. During this process, certain new items are invented by
individuals and accepted and learned by the others. Who invents things and who
accepts them should neither be predefined nor one-sided. All agents take part
in both of these tasks, that is, they teach and learn simultaneously. To let the
whole process converge to a useful communication system, agents have to adapt
to each other, not only to the task to be learned; their learning depends on that
of the others. The complexity of the problem is that learning concerns hidden
variables different for each agent while learning is inherently coupled.

Most work done in the field of language emergence is motivated by modelling
natural language evolution. Here, we take a broader view: we consider the op-
timization of information transfer among the agents as a process of negotiation
� Research has been supported by the New Ties project (EC FET grant No. 003752).

Any opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of the EC.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 827–837, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

828 V. Gyenes and A. Lőrincz

about a ‘language’. This approach is more general and may be relevant for the en-
coding of information in different kinds of distributed sensory and computational
systems. One of the motivations of our work is to encapsulate the difficulties of
parallel learning for agents that have different conceptual representations.

Here, we address this problem. We model the agents with so called reconstruc-
tion networks. We provide a neural implementation of what we call reconstruction
principle, and argue that it is efficient for making co-learning stable.

2 Related Work

When modelling natural language evolution, it is a natural idea to involve knowl-
edge transfer from generation to generation, like in the Iterated Learning Model
of Kirby and colleagues [1,2]: the new generation of language users learns the
language from the previous generation and then the old generation is replaced
by the new one. An interesting conclusion of the model is that the compositional
nature of language might be the result of the learning bottleneck imposed when
language has to pass from one generation to the other. Vogt [3] also builds on the
Iterated Learning Model and combines it with language games [4] to model the
emergence of compositional languages when agents aim to communicate about
their observations. An interesting aspect of this work is that it deals with the
conceptual representations of the agents upon which they build their language,
which is strongly related to the symbol grounding problem [5], and also the
compositional nature of language. Smith [6] also considers the development of
individual, distinct meaning structures and examines its effect on the evolved
language. All of these models apply learning from generation to generation, and
thus teachers are fixed. This way these models avoid the problem of co-learning.

Cangelosi [7] uses artificial neural networks trained by a genetic algorithm to
develop a language in an agent system that aims to differentiate between edible
and poisonous food items and emphasizes that the evolution of language requires
the parallel evolution of the ability of language understanding and production.
He also considers the parallel development of input categorization and language.
Hutchins and Hazlehurst aim to invent a shared lexicon [8] utilizing feedforward
connectionist networks that model language learning agents.

The work of Oliphant and Batali [9] is very close to ours regarding the recon-
struction principle. They model the development of a stable coordinated commu-
nication system using a method that they call the ‘obverter’ procedure in which
agents observe each other and try to maximize their chances to communicate
successfully, instead of simply imitating the others. They provide mathematical
considerations about the convergence of their method. The underlying idea is
very similar to generative or reconstruction networks [10], which – in the field
of vision – would claim that vision is inverse graphics [11].

Our architecture can be seen as a neural network implementation of the ‘ob-
verter’ learner that also generalizes it for combinatorial/compositional inter-
nal representations and communication. Up to our best knowledge, no neural
network approach has incorporated this idea, only ‘imitator’ approaches exist.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of Communication 829

Central to our methodology is the idea of Cangelosi that production and un-
derstanding must be maintained in parallel. Our framework enables the learn-
ers to have distinct conceptual representations. We investigate the properties
of both compositional and non-compositional (holistic) communication systems.
We treat the problem of co-learning, and restrict our methods to local Hebbian
learning for the individual systems.

3 Methods

This section details our network architecture and the learning methods applied.
The general context of the learning is a signalling game, in which the networks
observe inputs and the learning task is to co-develop a language (agree on a set
of signals) to communicate the observations. This helps investigating communi-
cation related issues without being effected by other environmental factors, and
gives us freedom to vary related parameters and test various settings.

3.1 Network Architecture

We model the agents by three-layer neural networks, the architecture is depicted in
Fig. 1: the input layer of the network receives the observation (x ∈ Rm), which is
processed and an internal representation (h ∈ {0, 1}n) is formed. In ourmodel, this
transformation (G) represents the extraction of features, resulting in a combinato-
rial internalrepresentation,whosecomponents indicatethepresence/absenceofthe
features.Thex → h transformation ismodelled as follows.Each inputx (belonging
toafiniteset fornow) isassignedavectorfG(x) ∈ [0, 1]n ofrealvaluesas if indicating
the degree (or probability) of the presence of various features. The internal repre-
sentation h ∈ {0, 1}n is generated from fG(x) by rounding to 0 or 1. Adjustment
of concept formation is modelled by letting the values in fG(x) be tuned. A partic-
ular property of this characterization is that inputs are categorized into multiple
categories: each feature represents being the member of a category (see, Fig. 1).

Two other transformations govern the communication related behavior of the
network. The network can generate an ‘utterance’ u from its internal represen-
tation by means of transformation Q. We let u ∈ {0, 1}2n

, so that the utterance
may contain combinatorially many signals. Furthermore, the network also has
another transformation, W , that we call ‘parsing’ or ‘understanding an utter-
ance’, since it yields some internal representation based on an utterance.

In our studies, we used two methods for generation and parsing. The first
method performs the linear transformations Q and W that are followed by a
nonlinearity σ rounding the values to 0 or 1: u = σ(Qh), h = σ(Wu). The
other method implements the so called reconstruction principle. In this case, the
network generates an utterance ug for a given internal representation h such that
when it is parsed (by the network itself) the resulting internal representation is
closest to the original vector h. That is, the network tries to reconstruct the
internal representation from its own intended output, and chooses an utterance
that reconstructs the internal representation the best. The same principle is used

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

830 V. Gyenes and A. Lőrincz

W
1

Q
1

generation

x

u

W
2

parsingQ
2

G
2

h
2

x

input

h
1
internal representation

utterance

G
1

[0 0 1 0 1 0 0 1]

concept formation

input categorization

f
G

[0.0 0.4 0.9 0.1 1.0 0.3 0.6 0.9]

rounding

u

agent A
1

agent A
2

Fig. 1. Network architecture. Left: two agents, A1 and A2, structure of the input
set and the transformation to internal representation. Right: each input belongs the
certain (feature) sets with certain probabilities. For each input, these probabilities are
rounded to make the internal representation.

for parsing, except the roles are changed: given an utterance u, the network
chooses an internal state h, that when transformed back to an utterance, yields
an utterance closest to u. Below, this idea is formalized for the generation of
utterance ug from internal representation h, and for creating an approximate h̃
via parsing utterance u, respectively:

ug = argminu ‖ h − σ(Wu) ‖2
L2

(1)

h̃ = argminh ‖ ug − σ(Qh) ‖2
L2

(2)

3.2 Optimization Method

The minimization tasks (1) and (2) are combinatorial optimization problems,
since we restricted the vectors h and u to have only 0 − 1 components. To solve
these problem, we use the cross-entropy (CE) method [12], which is a generic
approach to combinatorial optimization. The CE method maintains a param-
eterized probability distribution, from which it iteratively randomly generates
solution samples, evaluates them according to the cost function, and continu-
ously updates the probability distribution, until convergence.

The CE algorithm nicely fits into the reconstruction network frame. We used
the multi-dimensional Bernoulli distribution as the probability density function
for generating random samples of n-dimensional 0 − 1 valued vectors. Initial
guesses of the probability distribution are also provided by the linear transforma-
tions of the networks. The cost function is the reconstruction error. The original
batch version of the CE method generates a population of random samples, and
chooses the best p (= 5) percent, which is used to update the density function.
We modified the method to make it online: the reconstruction error is considered
as a Gaussian variable with given mean and standard deviation. We updated the
distribution if the error fell into the best p percent of the most recent samples.
The online CE algorithm of Table 1 finds h̃ that minimizes ‖ u − σ(Qh) ‖2

L2
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of Communication 831

Table 1. Pseudo-code for the cross-entropy reconstruction algorithm

m = 0, d = 0 // mean and standard deviation of errors
α, β ∈ [0, 1] (= 0.1) // update rates
q = 1.648 // 95% percentile of normal distribution
p = Wu

max(Wu) // initial probability distribution

min = ∞ // initial minimum value
until convergence or a fixed iteration count

generate a random sample h from p
e =‖ u − σ(Qh) ‖2

L2 // calculate reconstruction error
m ← (1 − β)m + βe // update mean error
d ← (1 − β)d + β(m − e)2 // update standard deviation of errors
if (e < m − qd) // if error falls to the best 5%

p ← (1 − α)p + αh // update probability distribution
end if
if (e < min)

min ← e, h̃ ← h // update current minimum and best solution
end if

end

We note, that if the matrices Q and W are well tuned, then the initial
guess for the probability density function becomes sharp, and the algorithm
converges very quickly. In this case, the algorithm essentially behaves as a sim-
ple feedforward linear transformation. However, we found that the whole com-
binatorial reconstruction algorithm is needed for proper training. We note too
that the L2 norm is equivalent to the L1 norm for our case, because the vec-
tors are 0 − 1 valued. The known property of the CE method that it easily
finds combinatorial solutions is exploited during the learning of compositional
communication.

3.3 Network Training

The training of the matrices Q and W is Hebbian and has certain ‘quasi-
supervised flavor’: networks are presented with observations, from which they
generate internal representations. One of the networks, say agent A1 generates
utterance u1, which is then sent to the another agent. That is, the output is not
supplied externally but generated by one of the networks. Then each network
has an internal representation-utterance pair and can use it to update its trans-
formation matrices. The update is Hebbian, it uses the negative gradient of the
squared reconstruction error. For agent Ai (i=1,2) we have:

ΔQi = ε (u1 − Qihi)hT
i = ε eu

i hT
i , (3)

ΔWi = ε (hi − Wiu1)uT
1 = ε eh

i uT
1 , (4)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

832 V. Gyenes and A. Lőrincz

where ε ∈ [0, 1] is some update factor, eh
i and eu

i denote the errors at the internal
representation and utterance level, respectively. Note that the vector u1 is the
same for each agent, but vector hi, the matrices Qi and Wi may be different.1

Feature extraction can be tuned at the listener (agent A2 in the present ex-
ample), because internal representation h2 is available and its estimation h̃2 can
be computed from the utterance. Let us suppose that the input was x, then:

fG2(x) ← θ
(
fG2(x) + ε(h̃2 − h2)

)
, (5)

where fG2(x) is the vector containing the values that generates the internal
representation h2 for input x. Function θ clamps the values to [0,1]. We used
this model for adjusting feature extraction in our illustrations. The key is that
the error term h̃ − h is available in (5) in our frame.

4 Computer Simulations

We start with the simple case when networks develop the same internal rep-
resentation (G1 = G2 = I, the identity transformation; h1 = h2), merely to
investigate language emergence independently from differences in internal rep-
resentations. Next, we investigate the effect of different internal representations.

4.1 Test Scenarios

The following experimental scenarios were studied:

– We studied non-combinatorial ‘languages’, where the utterances were forced
to have only one nonzero element, and also combinatorial ‘languages’, where
utterances were let to have arbitrary combinations of nonzero entries.

– We studied generation and parsing methods using simple linear transfor-
mations Q and W followed by a rounding nonlinearity, i.e., without the
reconstruction algorithm. In the non-combinatorial case, following the linear
transformation the maximum valued component was set to 1, others to 0.

– We systematically varied the size of the internal representation, and the
number of networks to see how the learning scales with these factors.

In each episode of learning, two random selected networks participated in
communication. An input was selected randomly, and one of the networks gen-
erated an utterance to it, the other parsed it, and then both of them updated
their transformations. To decide whether a consistent language had emerged, we
defined a performance matrix: the relative frequency of the usage of each signal
for each input was calculated from communications about the given input. We
say that a consistent language developed, if all networks produced consistently
the same signals for the same input. In the non-compositional case, each state
was required to be denoted by a different signal. In the compositional case, we
1 The matrices Qi and Wi are initialized to have random values between 0 and 1.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of Communication 833

call a language consistent, if an utterance denoting an internal representation
with certain features are composed of utterances referring to those features, and
all the networks use the same combinations. We also recorded how often the
parsing agent could reconstruct the same internal representation from the ut-
terance it received as it generated from its observation (h̃ = h) towards the end
of a series of communication episode; this is the communication success rate (it
happens to be 1 for a consistent language).

4.2 Results

First we tested how the combinatorial and non-combinatorial methods behave
as a function of the size of the internal state and the number of agents. We
evaluated the percentage of the runs when the method converged to a consistent
language, and the average number of learning episodes that agents needed to
reach that. We found that if the reconstruction principle was applied, learning
reached a consistent state and 100% communication success in all of the cases,
both for combinatorial and for holistic languages. The number of episodes needed
to reach an agreement is shown in Fig. 2. It can be seen that the combinatorial
method needs reasonably smaller number of learning episodes as the state size
and the agent count increases. We observed that when combinatorial solution
was allowed then compositional language developed in all of the cases.

2 3 4 5 6 7 8
10

1

10
2

10
3

10
4

10
5

internal representation size

nu
m

be
r

of
 e

pi
so

de
s

non−combinatorial
combinatorial

(a) Varying state size

2 4 8 16 32
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

agent count

nu
m

be
r

of
 e

pi
so

de
s

non−combinatorial
combinatorial

(b) Varying agent count

Fig. 2. The effect of varying internal representation size and agent number.
(a) the y axis is on a logarithmic scale: slope is slow for compositional languages, but
it is exponential for holistic ones as a function of the size of the internal representation
(b) the y axis is linear, size of the internal representation is 4. Average of 100 runs.

We also investigated how the learning changes when the reconstruction prin-
ciple was not applied. Surprisingly, in the non-combinatorial case, this method
was never sufficient to develop a consistent language. For the combinatorial case,
Fig. 3 shows the results: without the reconstruction principle both the ratio of
consistent languages and the communication success drops drastically with the
size of internal representation, and also with the agent count (not shown here).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

834 V. Gyenes and A. Lőrincz

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

internal representation size

pe
rf

or
m

an
ce

 r
at

e

with reconstruction
w/o reconstruction:CL rate
w/o reconstruction:CS rate

(a) Learning performance

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

internal state size

si
gn

al
 c

ou
nt

with reconstruction
w/o reconstruction

(b) Number of signals used

Fig. 3. Using and not using the reconstruction principle. CS: communication
success, CL: consistent language. (a) sharp drop for larger state sizes and (b) strong
increase in the number of developed signals without reconstruction. Result of 100 runs.

100 90 80 70 60 50 40 30 20 10 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

percent of equal representations

co
m

m
. s

uc
ce

ss
 r

at
e

combinatorial
non−combinatorial

(a) Without adjusting concept for-
mation

90 80 70 60 50 40 30 20 10 0
0

10

20

30

40

50

60

70

80

90

100

percent of equal representations

co
ns

is
te

nt
 la

ng
. r

at
e

(b) Adjusting concept formation

Fig. 4. The effect of differences in the internal representations. Size of rep-
resentation: 6. (a) drop of performance is more serious in the case of compositional
languages. (b) learning becomes successful for compositional communication with prob-
ability 1 if initial differences are not too large. Result of 10 runs.

Furthermore, the reconstruction principle also has an intriguing effect on the
number of signals used by the agents. Theoretically, an n-component state can
be communicated using the combination of n signals. This lower bound was
reached with reconstruction, but was significantly exceeded without it.

To see how learning behaves when agents have different internal representa-
tions, we have explicitly generated feature sets (i.e., G transformations) for a
finite number of inputs. Differences between agents’ G transformations were sys-
tematically introduced. In this case, totally consistent language can not develop,
agents can not agree because the categorization of the observations differs. We
let learning run for a sufficiently large number of episodes, and during the last
1000 episodes, we evaluated what fraction of the communication episodes were
successful (the parsing network was able to reconstruct the same internal state
from the utterance as it developed from its input). As expected, communication

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of Communication 835

success rate drops as the discrepancies between internal representations increase.
The drop is faster for the combinatorial case (Fig. 4a).

However, when feature values were adapted according to (5) then after some
communication tuning episodes, the language development converged for com-
positional languages. Consistent communication developed in a broad domain
where the initial differences were not too large (Fig. 4b).

5 Discussion

We observed that at the beginning of the learning, the networks have synony-
mous signals for denoting components of the state. First ‘they learn’ to un-
derstand each others’ signals, and later ‘they refine’ their dictionaries to single
common signals for any given component. When the reconstruction principle is
not in effect, this negotiation is not successful and the number of signals often
increases. However, when reconstruction is utilized, negotiation is accomplished
by adaptation to signals used by the other parties.

The obverter learning procedure [9] applies the same idea as our reconstruc-
tion principle. In [9] they prove that the best strategy for agents is to produce
utterances that maximize the chance of other agents understanding it. They ar-
gue that agents do not have access to what others would understand, so it seems
a good idea to produce utterances that the agent itself would understand well.
This idea is exploited in our reconstruction network. Our algorithm goes beyond
the ideas described in [9], because we can handle compositions, and we can work
with individuals having distinct conceptual representations. The necessity of an
obvious feature of our model, that production and understanding are dependent
on each other and evolve simultaneously, has been emphasized by Cangelosi [7].

In [13] Kirby argues that compositional languages emerge due to the learning
bottleneck effect of linguistic knowledge transfer from generation to generation.
He claims that compositional languages are favored because they are easier to
pass to the next generation since fewer observations are enough to learn them
because of their compressed nature. Our simulations indicate that there is an-
other reason why compositional languages are favored, namely that they are
easier to agree upon. Nonetheless, the reason is the same as that of Kirby; their
compressed nature enables faster negotiation, since only the signals referring to
components (instead of their combinations) need to be agreed on. Actually, we
have observed, that relatively few categorization samples are enough to agree on
a consistent language (about 20 in case of an 8-component representation).

Smith [6] and Vogt [3] both use discrimination games, by which agents develop
a categorial representation of observations. When experimenting with the effect
of different representations, Smith comes to a conclusion that the overall success
of communication seems to be directly related to the amount of shared meaning
structure in the agents. This conjecture is strengthened by our results, and is
also present in the conclusions of Cangelosi. However, [7] only deals with holistic
communication in a scenario where there is an evolutionary pressure for agents to
develop similar internal representations. We had shown that holistic communi-

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

836 V. Gyenes and A. Lőrincz

cation is more resistant to representational differences. The underlying reason is
probably the compactness and generalizing capability of compositional commu-
nication: the misunderstanding of utterances generalizes across similar internal
representations. To let successful communication emerge even in the case of dif-
ferent internal representations, we adjusted the representations themselves. The
adjustments are based on the differences between the representations induced
by the utterance and the one generated from the agent’s own observation. In
case of a compositional language, the utterance is a projection of how the other
agent categorizes the observation, and this information can be used to alter an
agents own categorization. This might turn out to be an important feature of
compositional languages, since holistic languages lack this information.

It must be noted, that we did not aim to model the development of compo-
sitional syntax, only that of a compositional lexicon. Syntactic structures (e.g.
the order of signals) could compress information even further.

The use of the powerful cross-entropy stochastic optimization for the indi-
vidual examples allowed us to restrict learning to a local Hebbian rule derived
from the reconstruction principle, which is an important feature of our approach.
Furthermore, no other method reported 100% success even for many agents.

To conclude, a neural network approach [10] was adapted in a novel way to ef-
fectively implement ideas about the development of a combinatorial communica-
tion system. The reconstruction principle [11] has a central role in our approach.
It makes the negotiation process of the parties convergent in the case of identical
meaning structures. Experiments show that communication is sensitive to the
differences in the conceptual representation, and compositional communication
has the advantage that it carries a potential to adjust it.

References

1. Smith, K., Kirby, S., Brighton, H.: Iterated learning: a framework for the emergence
of language. Artif. Life 9, 371–386 (2003)

2. Kirby, S., Hurford, J.: The emergence of linguistic structure: An overview of the
iterated learning model. In: Simulating the Evolution of Language, pp. 121–148.
Springer, London (2002)

3. Vogt, P.: The emergence of compositional structures in perceptually grounded lan-
guage games. Artif. Intell. 167, 206–242 (2005)

4. Steels, L.: Grounding symbols through evolutionary language games. In: Simulating
the Evolution of Language, pp. 211–226. Springer, Heidelberg (2002)

5. Harnad, S.: The symbol grounding problem. Physica D 42, 335–346 (1990)

6. Smith, A.D.M.: Establishing communication systems without explicit meaning
transmission. In: Kelemen, J., Sośık, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159,
pp. 381–390. Springer, Heidelberg (2001)

7. Cangelosi, A., Parisi, D.: The emergence of a language in an evolving population
of neural networks. Conn. Sci. 10, 83–97 (1998)

8. Hutchins, E., Hazlehurst, B.: How to invent a lexicon: the development of shared
symbols in interaction. In: Artificial Societies, pp. 157–189. UCL Press, London
(1995)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Co-learning and the Development of Communication 837

9. Oliphant, M., Batali, J.: Learning and the emergence of coordinated communica-
tion. Newslett. Center Res. Lang. 11, 1–46 (1997)

10. Ballard, D.H., Hinton, G.E., Sejnowski, T.J.: Parallel visual computation. Na-
ture 306, 21–26 (1983)

11. Horn, B.K.P.: Understanding image intensities. Artif. Intell. 8, 201–231 (1977)
12. Rubinstein, R.Y., Kroese, D.P.: The Cross-Entropy Method. In: Information Sci-

ence and Statistics, Springer, New York (2004)
13. Kirby, S.: Learning, bottlenecks and infinity: a working model of the evolution of

syntactic communication. In: Proceedings of the AISB’99 Symposium on Imitation
in Animals and Artifacts, pp. 121–129 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic
Associative Memories and Their

Performance Comparison

Yasuaki Kuroe and Yuriko Taniguchi

Department of Information Science, Kyoto Institute of Technology
Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan

kuroe@kit.ac.jp

Abstract. Associative memories are one of the popular applications of neural
networks and several studies on their extension to the complex domain have been
done. One of the important factors to characterize behavior of a complex-valued
neural network is its activation function which is a nonlinear complex function.
In complex-valued neural networks, there are several possibilities in choosing
an activation function because of a wide variety of complex functions. This pa-
per proposes three models of orthogonal type dynamic associative memories us-
ing complex-valued neural networks with three different activation functions.
We investigate their behavior as associative memories theoretically. Compar-
isons are also made among these three models in terms of dynamics and storage
capabilities.

1 Introduction

In recent years, there have been increasing research interests of artificial neural net-
works and many efforts have been made on applications of neural networks to various
fields. As applications of the neural networks spread more widely, developing neural
network models which can directly deal with complex numbers is desired in various
fields. Several models of complex-valued neural networks have been proposed and their
abilities of information processing have been investigated.

One of the most useful and most investigated areas of applications of neural networks
addresses implementations of associative memories. Among them associative memories
of self-correlation type are easy to implement and have been extensively studied. Some
models of complex-valued associative memories of self-correlation type have been pro-
posed [1,2,3,4,5,6].

One of the important factors to characterize behavior of a complex-valued neural
network is its activation function which is a nonlinear complex function. In the real-
valued neural networks, the activation is usually chosen to be a smooth and bounded
function such as a sigmoidal function. In the complex region, however, there are several
possibilities in choosing an activation function because of a variety of complex func-
tions. In [7] the properties that a suitable activation should possess are discussed for
complex-valued backpropagation of complex-valued feedforward neural networks. [8]
discusses the properties of activation functions from the standpoint of existence of an
energy function for complex-valued recurrent neural networks.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 838–847, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic Associative Memories 839

The purpose of this paper is to present models of orthogonal type dynamic associa-
tive memories using complex-valued neural networks and to investigate their qualitative
behaviors theoretically. We propose three models of orthogonal type complex-valued
associative memories with three different activate functions. These three models are
orthogonal type counterparts of self-correlation type complex-valued associative mem-
ories proposed in [2,9].

We treat the models of complex-valued associative memories as nonlinear dynamical
systems and study their qualitative behavior theoretically. In particular, we investigate
the structures and asymptotic behavior of solution orbits near each memory pattern.
Comparisons are also made among these three models in terms of asymptotic behavior
of solution orbits near each memory pattern and storage capabilities.

In the following, the imaginary unit is denoted by i (i2 = −1). The n-dimensional
complex (real) space is denoted by C

n(Rn) and the set of n×m complex (real) matrices
is denoted by C

n×m(Rn×m). For A ∈ C
n×m (a ∈ C

n), its real and imaginary parts
are denoted by AR (aR) and AI (aI), respectively.

2 Complex-Valued Associative Memories of Orthogonal Type

2.1 Models

Let m be the number of memory patterns to be stored and each memory pattern be an
N dimensional complex vector, denoted by s(γ) ∈ C

N , γ = 1, 2, · · · , m. Suppose that
{s(1), s(2), · · · , s(m)} are linearly independent vectors.

Consider a complex-valued neural network described by difference equations of the
form:

xj [t + 1] = f(
N∑

k=1

wjkxk[t]), j = 1, 2, · · · , N (1)

where xj [t] ∈ C is the output of the jth neuron at time t, wjk ∈ C is the connection
weight from the kth neuron to the jth neuron and f(·) is the activation function which
is a nonlinear complex function (f : C → C).

Let us determine the weight matrix W = {wjk} ∈ C
N×N and the activation func-

tion f(·) so that the neural network (1) can store the set of memory vectors {s(1), s(2),
· · · , s(m)} and act as a dynamic associative memory.

The weight matrix W is determined after the model of conventional real-valued
associative memories of orthogonal type as follows.

W := SS+ ∈ C
N×N (2)

where

S := (s(1) . . .s(m)) ∈ C
N×m

S+ := (S∗S)−1S∗ ∈ C
m×N

Note that S+ is the pseudo-inverse matrix of the matrix S.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

840 Y. Kuroe and Y. Taniguchi

One of the important factors to characterize behavior of a complex-valued neural
network is its activation function f(·). In the real-valued neural networks, the activa-
tion function is usually chosen to be a smooth and bounded function such as sigmoidal
functions. In the complex region, however, there are several possibilities in choosing an
activation function because of a variety of complex functions. As a candidate of the ac-
tivation function f(·), we will choose a complex function which satisfies the following
conditions:

(i) f(·) is a smooth and bounded function by analogy with the sigmoidal function of
real-valued neural networks, and

(ii) each memory vector s(γ) becomes an equilibrium point of the network (1).

From the definition of the weight matrix W given by (2), the following condition holds:

Ws(γ) = s(γ), γ = 1, 2, · · · , m. (3)

Therefore the condition (ii) is accomplished if the following condition hold.

f(s(γ)
j) = s

(γ)
j , j = 1, 2, · · · , N, γ = 1, 2, · · · , m. (4)

which implies that each element of each memory vector is a fixed point the activa-
tion function. In regard to the condition (i), we recall the Liouville’s theorem, which
says that ‘if f(u) is analytic at all u ∈ C and bounded, then f(u) is a constant
function’. Since a suitable f(u) should be bounded, it follows from the theorem that
if we choose an analytic function for f(u), it is constant, which is clearly not suit-
able [7]. In place of analytic function we choose functions which have the continu-
ous partial derivatives ∂fR/∂uR, ∂fR/∂uI , ∂f I/∂uR and ∂f I/∂uI where f(u) =
fR(uR, uI) + if I(uR, uI).

In complex-valued neural networks the following three classes of complex nonlinear
functions f(·) are considered as a candidate of activation functions. Let us express u in
the polar representation as u = reiθ .

• Type A: f(u) = fR(uR) + if I(uI) (5)

• Type B: f(u) = ψ(r) exp{iφ(θ)} (6)

• Type C: f(u) = ψ(r) exp{iθ} (7)

In Type A, fR(·) and f I(·) are nonlinear real functions, fR : R → R and f I : R →
R. In Type B and C, ψ(·) and φ(·) are nonlinear real functions, ψ : R0+ → R0+,
φ : R → R, where R+0 = {x | x ≥ 0 x ∈ R}. Note that in Type A the real and
imaginary parts of an input go through nonlinear functions separately, and in Type B
the magnitude and the phase of an input go through nonlinear functions separately, and
in Type C only the magnitude of an input go through the nonlinear function with the
phase being unchanged. Most of the activation functions yet proposed for the models
of complex-valued neural networks belong to either of Type A or C.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic Associative Memories 841

Noting the condition (4), we choose the following three complex functions as the
activation function of (1).

f(u) :=
ηuR

η − 1 +
√

2|uR|
+ i

ηuI

η − 1 +
√

2|uI |
for Type A, (8)

f(u) :=
η|u|

η − 1 + |u| exp
[
i{argu − 1

2n
sin(2n argu)}

]
, −π ≤ arg u < π

for Type B, (9)

f(u) :=
ηu

η − 1 + |u| =
ηr

η − 1 + r
exp{iθ} for Type C (10)

where η is a real constant number satisfying η − 1 > 0 and n is a natural number. The
functions (8) and (10) have been often used as activation functions in complex-valued
neural networks. The function (9) is obtained by modifying the discrete complex-valued
activation function based on the complex-signam function used in [6] so as to satisfy the
condition (i), that is, it becomes a continuous and smooth function. The functions (8),
(9) and (10) are all not analytic, but have the continuous partial derivatives ∂fR/∂uR,
∂fR/∂uI , ∂f I/∂uR and ∂f I/∂uI and are bounded. Note also that, they all satisfies
(4), which makes all the memory vectors s(γ), γ = 1, 2, · · · , m be equilibrium points
of the complex-valued neural network (1) with the weight matrix (2).

We call the complex-valued associative memory described by (1), (2) and (8) Model
A, by (1), (2) and (9) Model B, and by (1), (2) and (10) Model C, respectively.

2.2 Memory Patterns

For Models A, B and C of complex-valued associative memories, each memory vector
s(γ) to be stored is demanded to become an equilibrium point of the network (1) and (2),
which is accomplished if the condition (4) holds. This requirement makes each element
of the memory vectors s(γ), γ = 1, 2, · · · , m be allowed only to take restricted values.
In Model A, each element sγ

j of the memory vectors s(γ) is allowed only to take the
values

sγ
j ∈ {eiπ/4, ei3π/4, ei5π/4, ei7π/4}, j = 1, 2, · · · , N (11)

and, in Model B, each element sγ
j of the memory vectors s(γ) is allowed only to take

the values

sγ
j ∈ {ei0π/2n

, eiπ/2n

, . . . , ei(2n−1)π/2n

}, j = 1, 2, · · · , N. (12)

In Model C each element sγ
j of the memory vectors s(γ) is allowed to take all the values

satisfying
|s(γ)

j | = 1. (13)

Figure 1 shows the values which each element sγ
j of the memory vectors is allow to take

in Models A, B and C, respectively. Note that, in Model B, the number of the allowed
values can be increased arbitrarily by increasing n.

By choosing such values for each element, each memory vector s(γ) becomes an
equilibrium point of the network (1) and (2). For Models A and B, it is easy to check

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

842 Y. Kuroe and Y. Taniguchi

(γ)

Im

Re

s j

0
φ

φ
0 = /4π

ee

e e

i1

i7φ

φ

φ

i3

i5 0

φ
00

0

(γ)

Im

Re

s j

0
φ

0

ee

e e

i1

i7φ

φ

φ

i3

i5 0

φ
00

0

nπφ =2 /2 n=3

(γ)

Im

Re

s j

-1 1

1

-1

(a) model A (b) Model B (n = 3) (c) Model C

Fig. 1. The values which each element s
γ
j of the memory vectors is allowed to take

that each memory vector is an isolated equilibrium point of the network. On the other
hand, in Model C, each memory vector s(γ) is not an isolated equilibrium point of the
network as is discussed in [2], because the function (10) satisfies

eiαs
(γ)
j = f(

N∑

k=1

wjkeiαs
(γ)
k), j = 1, 2, · · · , N (14)

for any real number α. This implies that s(γ) is a point in the set of equilibrium points
defined by

Φ(γ) = {eiαs(γ) : ∀α ∈ R} ⊂ C
N (15)

which is a closed curve (hyper circle) in the complex N dimensional state space C
N .

From this fact we identify all the points in the equilibrium set Φ(γ) and regard Φ(γ) as a
memory pattern for Model C [2].

3 Qualitative Analysis of Behavior Near Memory Patterns

In this section we study qualitative behavior of Models A, B and C of the complex-
valued associative memories. Especially, we investigate asymptotic behavior of solution
orbits near each memory pattern s(γ).

3.1 Linearized Models Near Memory Patterns

The qualitative behavior of a nonlinear dynamical system near an equilibrium point
can be studied via linearization with respect to that point. We will derive the linearized
model at each memory vector s(γ). Note that the activation functions f(u) in (8), (9) and
(10) are not differentiable with respect to u for all u ∈ C, but their real and imaginary
parts, fR and f I , are continuously partially differentiable with respect to uR and uI . It
is, therefore, possible to derive the linearized model by separating each model into its
real and imaginary parts.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic Associative Memories 843

We linearize Models A and B at each memory vector s(γ) and Model C at a point
q(γ) = eiαs(γ) in each equilibrium set Φ(γ) where α is a real number. Let Δxi[t] :=
xi[t] − s

(γ)
i and define y[t] ∈ R

2N by

y[t] = (ΔxR
1 [t], ΔxR

2 [t], · · · , ΔxR
N [t], ΔxI

1[t], ΔxI
2[t], · · · , ΔxI

N [t])T (16)

where (·)T denotes the transpose of (·). The linearized model for Models A and B is
obtained as

y[t + 1] = J(s(γ))y[t], γ = 1, 2, · · · , m (17)

where J(s(γ)) = F (s(γ))Y ∈ R
2N×2N . The matrices F (s(γ)) ∈ R

2N×2N and Y ∈
R

2N×2N are given as follows.

F (s(γ)) =
[
FRR FRI

FIR FII

]

Y =
[
WR −W I

W I WR

]

where

FRR = diag(
∂fR

∂uR

∣
∣
∣
∣
u=s

(γ)
1

,
∂fR

∂uR

∣
∣
∣
∣
u=s

(γ)
2

, · · ·, ∂fR

∂uR

∣
∣
∣
∣
u=s

(γ)
N

)

FRI = diag(
∂fR

∂uI

∣
∣
∣
∣
u=s

(γ)
1

,
∂fR

∂uI

∣
∣
∣
∣
u=s

(γ)
2

, · · ·, ∂fR

∂uI

∣
∣
∣
∣
u=s

(γ)
N

)

FIR = diag(
∂f I

∂uR

∣
∣
∣
∣
u=s

(γ)
1

,
∂f I

∂uR

∣
∣
∣
∣
u=s

(γ)
2

, · · ·, ∂f I

∂uR

∣
∣
∣
∣
u=s

(γ)
N

)

FII = diag(
∂f I

∂uI

∣
∣
∣
∣
u=s

(γ)
1

,
∂f I

∂uI

∣
∣
∣
∣
u=s

(γ)
2

, · · ·, ∂f I

∂uI

∣
∣
∣
∣
u=s

(γ)
N

)

and the elements of F (s(γ)) are given by

∂fR

∂uR

∣
∣
∣
u=sγ

j

=
∂f I

∂uI

∣
∣
∣
u=sγ

j

= 1 − 1
η
,

∂fR

∂uI

∣
∣
∣
u=sγ

j

=
∂f I

∂uR

∣
∣
∣
u=sγ

j

= 0

for Model A and

∂fR

∂uR

∣
∣
∣
u=sγ

j

=
(

1 − 1
η

)

(sγR
j)2,

∂f I

∂uI

∣
∣
∣
u=sγ

j

=
(

1 − 1
η

)

(sγI
j)2

∂fR

∂uI

∣
∣
∣
u=sγ

j

=
∂f I

∂uR

∣
∣
∣
u=sγ

j

=
(

1 − 1
η

)

sγR
j sγI

j

for Model B. The linearized model for Model C is obtained as the same form as (17)
with J(s(γ)) = F (s(γ))Y being replaced by J(q(γ)) = F (q(γ))Y , where the elements
of F (q(γ)) are given by

∂fR

∂uR

∣
∣
∣
u=qγ

j

= 1 +
−1 + (qγI

j)2

η
,

∂f I

∂uI

∣
∣
∣
u=qγ

j

= 1 +
−1 + (qγR

j)2

η

∂fR

∂uI

∣
∣
∣
u=qγ

j

=
∂f I

∂uR

∣
∣
∣
u=qγ

j

=
−qγR

j qγI
j

η

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

844 Y. Kuroe and Y. Taniguchi

3.2 Structure of Solution Orbits Near Memory Patterns

We now analyze the qualitative behavior and structure of the solution orbits near each
memory pattern. This can be done by investigating the eigenvalues and eigenvectors of
the coefficient matrix J(s(γ)) (or J(q(γ))) of the linearized model (17). Let λi(J(s(γ)))
(λi(J(q(γ)))) be the ith eigenvalue of J(s(γ)) (J(q(γ))).

The following theorems are obtained for Models A.

Theorem A.1. All the eigenvalues of the coefficient matrix J(sγ) of Model A are real
and satisfy the following condition:

|λj(J(sγ))| ≤ η − 1
η

< 1, j = 1, 2, · · · , 2N. (18)

Theorem A.2. The matrix J(sγ) of Model A has 2m eigenvalues (η−1)/η and 2(N −
m) eigenvalues 0. Two of the corresponding eigenvectors to the eigenvalue (η − 1)/η
are

r(γ) :=
(
(s(γ)R)T , (s(γ)I)T

)T

(19)

p(γ) :=
(
({is(γ)}R)T , ({is(γ)}I)T

)T

. (20)

The following theorems are obtained for Model B.

Theorem B.1. All the eigenvalues of the coefficient matrix J(sγ) of Model B satisfy
the following condition:

|λj(J(sγ))| ≤ η − 1
η

< 1, j = 1, 2, · · · , 2N (21)

Theorem B.2. The matrix J(sγ) of Model B has at least one eigenvalues (η−1)/η and
at least one eigenvalue 0. The corresponding eigenvector to the eigenvalue (η − 1)/η
is r(γ) defined by (19) and the corresponding eigenvector to the eigenvalue 0 is p(γ)

defined by (20).

For Model C the following theorems are obtained.

Theorem C.1. All the eigenvalues of the coefficient matrix J(qγ) of Model C are real
and satisfy the following condition.

|λj(J(qγ))| ≤ 1, j = 1, 2, . . . , 2N (22)

Theorem C.2. The matrix J(q(γ)) has at least one eigenvalue 1 and at least one eigen-
value (η − 1)/η. It also has 2(N − m) eigenvalues 0. The corresponding eigenvector
to the eigenvalue 1 is

p(γ) = (({iq(γ)}R)T , ({iq(γ)}I)T)T (23)

and that to the eigenvalue (η − 1)/η is

r(γ) = ((q(γ)R)T , (q(γ)I)T)T . (24)

Note that Theorems A.1 to C.2 hold for all the memory vectors s(γ) (q(γ)), γ =
1, 2, · · · , m. The proofs of these theorems are omitted due to the space limitation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic Associative Memories 845

3.3 Discussions

It is known that qualitative behavior of solutions near an equilibrium point of a nonlinear
dynamical system is determined by its linearized model at the point if it is hyperbolic (in
a discrete time system, the coefficient matrix of the linearized model has no eigenvalues
of unit modulus) [10]. From the theorems obtained in the previous subsection, all the
memory vectors s(γ), γ = 1, 2, · · · , m are hyperbolic in Models A and B, whereas
all the memory vectors q(γ), γ = 1, 2, · · · , m are not hyperbolic in Model C. For each
model, it is required that all embedded memory vectors are at least asymptotically stable
equilibrium points of the network for correct recalling as associative memories.

From Theorems A.1 and B.1, each memory vector s(γ) of Model A and B is an
asymptotically stable equilibrium point because the magnitude of all the eigenvalues of
the coefficient matrix J(s(γ)) is less than one. Therefore every solution starting in the
neighborhood of the vector s(γ) tends to s(γ) as t → ∞.

For Model C, further study is needed to investigate the stability of the memory pat-
terns Φ(γ), γ = 1, 2, · · · , m because all the memory vectors q(γ), γ = 1, 2, · · · , m
are not hyperbolic. The structure of solution orbits near memory patterns Φ(γ) can be
investigated based on the center manifold theory [10] for Model C. It can be shown
that, if J(q(γ)) has only one eigenvalue 1, each memory pattern Φ(γ) itself is the center
manifold of each point q(γ) ∈ Φ(γ) and is asymptotically stable, that is, every solution
starting in the neighborhood of Φ(γ) tend to Φ(γ) as t → ∞.

Therefore it is concluded that in Model A and B all embedded memory vectors
s(γ), γ = 1, 2, · · · , m are asymptotically stable and they all can be recalled. On the
other hand, in Model C, all the embedded memory vectors are not necessarily asymp-
totically stable and it is necessary to evaluate eigenvalues of the coefficient matrices
J(qγ) to check their stability.

Let us compare the obtained results with those obtained in [9] for the self-correlation
type complex-valued associative memories. The difference between the models of as-
sociative memories in this paper and those in [9] is the choice of memory patterns
to be stored s(γ) ∈ C

N , γ = 1, 2, · · · , m and the determination of weight matrix
W = {wjk} ∈ C

N×N . For the self-correlation type complex-valued associative mem-
ories in [9], memory patterns s(γ) ∈ C

N , γ = 1, 2, · · · , m are chosen so as to satisfies
the following orthogonal relations.

s(γ)∗s(l) =
{

N, γ = l
0, γ
= l

(25)

|s(γ)
j | = 1, j = 1, 2, · · · , N (26)

for all γ, l = 1, 2, · · ·, m where s∗ is the conjugate transpose of s and s
(γ)
j is the jth ele-

ment of s(γ), and the weight matrix W is determined by the sum of the autocorrelation
matrix of each memory vector s(γ):

W =
1
N

m∑

γ=1

s(γ)s(γ)∗ (27)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

846 Y. Kuroe and Y. Taniguchi

Theorems A.1, A.2, B.1, B.2, C.1 and C.2 are equivalent to the corresponding theo-
rems obtained in [9] for the self-correlation type complex-valued associative memories.
Therefore the qualitative behavior and structure of solution orbits near each memory
pattern of the self-correlation type and those of orthogonal type complex-valued asso-
ciative memories are much the same.

Note that, it is required that for the complex-valued associative memory of self-
correlation type that memory patterns {s(1), s(2), · · · , s(m)} are orthogonal each other,
whereas the orthogonality of the memory patterns is not required for the complex-
valued associative memory of orthogonal type. The requirement of the orthogonality
of the memory patterns makes differences among Models A, B and C on how many
vectors can be chosen such orthogonal vectors in N dimensional space C

N [9]. For
Model C of the complex-valued associative memory of self-correlation type it can be
shown that, for any N there always exist N vectors satisfying the conditions (25) and
(26) in the N dimensional space C

N . On the other hand, there not always exit N vec-
tors in the N dimensional space C

N for Model A and Model B of the complex-valued
associative memory of self-correlation type. The problems of how many vectors we
can choose such orthogonal vectors for Models A and B are equivalent to the existence
problems of the complex Hadamard matrices and the generalized Hadamard matrices,
respectively, which are partially solved but not completely solved.

4 Conclusions

In this paper we presented models of orthogonal type dynamic associative memories us-
ing complex-valued neural networks and studied their qualitative behavior theoretically.
One of the important factors to characterize behavior of a complex-valued neural net-
work is its activation function. We presented three kinds of models with three different
activation functions and investigate the structures and asymptotic behavior of solution
orbits near each memory pattern. We compared three models in terms of asymptotic
behavior of solution orbits near each memory pattern and storage capabilities. We also
compared the results for complex-valued associative memories of orthogonal type ob-
tained in this paper with those for the complex-valued associative memories of self-
correlation type obtained in [9].

References

1. Hirose, A.: Dynamics of fully complex-valued neural networks. Electronics Letters 28(16),
1492–1494 (1992)

2. Kuroe, Y., Hashimoto, N., Mori, T.: Qualitative analysis of a self-correlation type complex-
valued associative memories. Nonlinear Analysis 47, 5795–5806

3. Kuroe, Y., Hashimoto, N., Mori, T.: Qualitative Analysis of Continuous Complex-Valued
Associative Memories. In: Dorffner, G., Bischof, H., Hornik, K. (eds.) ICANN 2001. LNCS,
vol. 2130, pp. 843–850. Springer, Heidelberg (2001)

4. Nemoto, I., Kono, T.: Complex-valued neural network. The Trans. of IEICE J74-D-II(9),
1282–1288 (1991) (in Japanese)

5. Noest, A.J.: Phaser neural network. In: Anderson, D.Z. (ed.) Neural Informaion Processing
Systems, pp. 584–591. AIP, New York (1988)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Models of Orthogonal Type Complex-Valued Dynamic Associative Memories 847

6. Jankowski, S., Lozowski, A., Zurada, J.M.: Complex-valued multistate neural associative
memory. IEEE Trans. Neural Networks 7(6), 1491–1496 (1996)

7. Georgiou, G.M., Koutsougeras, C.: Complex Domain Backpropagation. IEEE Transactions
on Circuits and Systems-II 39(5), 330–334 (1992)

8. Kuroe, Y., Yoshida, M., Mori, T.: On Activation Functions for Complex-Valued Neural Net-
works - Existence of Energy Functions -; Artificial Neural Networks and Neural Information
Processing - ICANN/ICONIP 2003, Okyay Kaynak et. In: Kaynak, O., Alpaydın, E., Oja,
E., Xu, L. (eds.) ICANN 2003 and ICONIP 2003. LNCS, vol. 2714, pp. 985–992. Springer,
Heidelberg (2003)

9. Kuroe, Y., Taniguchi, Y.: Models of Self-Correlation Type Complex-Valued Associative
Memories and Their Dynamics. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.)
ICANN 2005. LNCS, vol. 3696, pp. 185–192. Springer, Heidelberg (2005)

10. Sastry, S.: Nonlinear Systems Analysis, Stability, and Control. Springer, Heidelberg (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic

Hopfield Neural Networks

Teijiro Isokawa1, Haruhiko Nishimura2,
Naotake Kamiura1, and Nobuyuki Matsui1

1 Division of Computer Engineering, Graduate School of Engineering,
University of Hyogo, Japan

{isokawa, kamiura, matsui}@eng.u-hyogo.ac.jp
2 Graduate School of Applied Informatics, University of Hyogo, Japan

haru@ai.u-hyogo.ac.jp

Abstract. We analyze a discrete-time quaternionic Hopfield neural net-
work with continuous state variables updated asynchronously. The state
of a neuron takes quaternionic value which is four-dimensional hypercom-
plex number. Two types of the activation function for updating neuron
states are introduced and examined. The stable states of the networks
are demonstrated through an example of small network.

1 Introduction

Quaternion is a four-dimensional hypercomplex number system discovered by
W.R.Hamilton [1]. This is extensively used in several fields, such as modern
mathematics, physics, computer graphics, and so on [2]. One of the benefits by
the use of quaternions is that it can treat and operate three or four dimensional
vector as one entity, so the effective information processing can be achieved by
the operations for quaternionic variables.

In this respect, there have been growing the studies concerning the introduc-
tion of quaternions into neural networks. The computational ability for a single
quaternionic neuron was exhibited in [3]. There have been several multilayer
perceptron models with their learning algorithm (back-propagation method) in
quaternion domain, and several applications of them have also been proposed
[4,5,6].

However, only a few investigations concerning recurrent neural networks in
quaternion domain are performed. The existence conditions of energy function
in the Hopfield-type quaternionic network was explored in the case of continuous
value of neuron states with continuous time [7]. The case of bipolar value of the
neuron states with discrete time was also studied and its stability was shown
explicitly [8].

In this paper, we further explore the properties of the Hopfield neural networks
where the neuron states take continuous values and are updated in discrete
time. Two types of the activation function for updating the neuron states are
introduced. For both activation functions, it is proved that the energy decreases

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 848–857, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 849

monotonically with respect to the change of the neuron state. The attractors of
neuron states are demonstrated in the network with three neurons.

2 Quaternion Algebra

Quaternions form a class of hypercomplex numbers that consist of a real number
and three kinds of imaginary number, i, j, k. Formally, a quaternion number is
defined as a vector x in a 4-dimensional vector space,

x = x(e) + x(i)i + x(j)j + x(k)k (1)

where x(e), x(i), x(j), and x(k) are real numbers. H, the division ring of quater-
nions, thus constitutes the four-dimensional vector space over the real numbers
with the bases 1, i, j, k. It is also written using 4-tuple or 2-tuple notations as

x = (x(e), x(i), x(j), x(k)) = (x(e), �x) (2)

where �x = {x(i), x(j), x(k)}. In this representation x(e) is the scalar part of x and
�x forms the vector part. The quaternion conjugate is defined as

x∗ = (x(e), −�x) = x(e) − x(i)i − x(j)j − x(k)k. (3)

Quaternion bases satisfy the following identities, known as the Hamilton rules:

i2 = j2 = k2 = ijk = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. (4)

From these rules it follows immediately that multiplication of quaternions is not
commutative.

The operations between quaternions, p = (p(e), �p) = (p(e), p(i), p(j), p(k)) and
q = (q(e), �q) = (q(e), q(i), q(j), q(k)), are defined as follows. The addition and
subtraction of quaternions are defined, in the same manner as those of complex-
valued numbers or vectors, by

p ± q = (p(e) ± q(e), �p ± �q) = (p(e)±q(e), p(i)±q(i), p(j)±q(j), p(k)±q(k)). (5)

With regard to the multiplication, the product between p and q, notation
p ⊗ q, is determined by Eq. (4) as

p ⊗ q = (p(e)q(e) − �p · �q, p(e)�q + q(e)�p + �p × �q) (6)

where �p · �q and �p × �q denote the dot and cross products respectively between
three dimensional vectors �p and �q. The conjugate of product holds the relation
of

(p ⊗ q)∗ = q∗ ⊗ p∗. (7)

The quaternion norm of x, notation |x|, is defined by

|x| =
√

x ⊗ x∗ =
√

x(e)2 + x(i)2 + x(j)2 + x(k)2. (8)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

850 T. Isokawa et al.

3 Quaternionic Hopfield Neural Network

3.1 Quaternionic Neuron Model

We introduce the formalism of the neural network in which all the variables are
represented by quaternion numbers. We start with the quaternion-valued neuron
model. The action potential of the neuron p at time t and output state of the
neuron p at time (t + 1) are defined as follows:

sp(t) =
∑

q

wpq ⊗ xq(t) − θp, (9)

xp(t + 1) = f(sp(t)), (10)

where x, wpq, θ ∈ H are the input to the neuron, the connection weight from
neuron q to neuron p, and the threshold, respectively. The activation function f
determines the output of the neuron.

Two types of quaternionic functions for f are introduced in this paper. One
is designed so that each quaternionic component is updated independently and
defined by

f1(s) = f
(e)
1 (s(e)) + f

(i)
1 (s(i))i + f

(j)
1 (s(j))j + f

(k)
1 (s(k))k, (11)

where each real-valued function f
(α)
1 (α = {e, i, j, k}) is set to

f
(e)
1 (s) = f

(i)
1 (s) = f

(j)
1 (s) = f

(k)
1 (s) = tanh(s/ε), (12)

where ε > 0 is a steepness parameter. This is a straightforward extension of
the conventional updating scheme in real-valued neurons and often used in the
quaternionic multilayer perceptron [4,5,6].

The other is an extension to the quaternion domain of the activation function
proposed in [9] in the complex domain and defined as

f2(s) =
as

1 + |s| , (13)

where a is a real-valued constant.

3.2 Energy Function

The neurons are connected to each other in the network, as in real-valued Hop-
field neural network. We introduce an energy function of the network that con-
sists of N neurons as

E(t) = −1
2

N∑

p=1

N∑

q=1

x∗
p(t) ⊗ wpq ⊗ xq(t) +

1
2

N∑

p=1

(
θ∗

p ⊗ xp(t) + xp ⊗ θ∗
p(t)

)

+
N∑

p=1

G(xp(t)), (14)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 851

where G(x(t)) is a scalar function that satisfies

∂G(x)
∂x(α) = g(α)(x(e), x(i), x(j), x(k)) (α = {e, i, j, k}). (15)

Here, g(x) is the inverse function of f(x) and represented as

g(x) = f−1(x)
= g(e)(x(e), x(i), x(j), x(k)) + g(i)(x(e), x(i), x(j), x(k))i

+g(j)(x(e), x(i), x(j), x(k))j + g(k)(x(e), x(i), x(j), x(k))k, (16)

so that the following relation is hold from Eq. (10):

sp(t) = f−1(xp(t + 1)) = g(xp(t + 1)). (17)

E should be a real-valued function (E = E∗) and this is always satisfied
by the condition for the connection weight, wpq = w∗

qp. This network allows

self-connections and their values take real, wpp = w∗
pp = (w(e)

pp ,0).
As in the case of the real-valued Hopfield network, the energy E of this network

also never increases with time when the state of a neuron changes. Let Er(t) be
the contribution of a given neuron r to the energy E at time t, then it is given
as

Er(t) = −1
2

{(
N∑

p=1

x∗
p(t) ⊗ wpr

)

⊗ xr(t) + x∗
r(t) ⊗

(
N∑

q=1

wrq ⊗ xq(t)

)

− x∗
r(t) ⊗ wrr ⊗ xr(t)

}

+
1
2

(
θ∗

r ⊗ xr(t) + x∗
r ⊗ θr(t)

)
+ G

(
xr(t)

)

= −1
2

{(
N∑

p=1

wrp ⊗ xp(t) − θr

)∗

⊗ xr(t)

+ x∗
r(t) ⊗

(
N∑

q=1

wrq ⊗ xq(t) − θr

)

− x∗
r(t) ⊗ wrr ⊗ xr(t)

}

+G
(
xr(t)

)

Considering the relation in Eq. (9) we obtain

Er(t) = −1
2

{s∗
r(t) ⊗ xr(t) + x∗

r(t) ⊗ sr(t) − x∗
r(t) ⊗ wrr ⊗ xr(t)} + G

(
xr(t)

)

= −Re
{
x∗

r(t) ⊗ sr(t)
}

+
1
2
w(e)

rr x∗
r(t) ⊗ xr(t) + G

(
xr(t)

)
. (18)

Suppose that only the state of the neuron r is asynchronously updated at time
(t + 1) according to Eqs. (9) and (10). Its contribution to the energy E becomes

Er(t + 1) = −Re
{
x∗

r(t + 1) ⊗ sr(t + 1)
}

+
1
2
w(e)

rr x∗
r(t + 1) ⊗ xr(t + 1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

852 T. Isokawa et al.

+G
(
xr(t + 1)

)

= −Re
{
x∗

r(t + 1) ⊗ (sr(t) + wrr ⊗ Δxr)
}

+
1
2
w(e)

rr x∗
r(t + 1) ⊗ xr(t + 1) + G

(
xr(t + 1)

)
,

where Δxr = xr(t + 1) − xr(t). The difference of the energy between time t + 1
and t, ΔE, becomes

ΔE = Er(t + 1) − Er(t)

= −Re
(
Δx∗

r ⊗ sr(t)
)

− w(e)
rr · Re

{
x∗

r(t + 1) ⊗ Δxr

}

+
1
2
w(e)

rr x∗
r(t + 1) ⊗ xr(t + 1) − 1

2
w(e)

rr x∗
r(t) ⊗ xr(t)

+G(xr(t + 1)) − G(xr(t))

= −Re
(
Δx∗

r ⊗ sr(t)
)

− 1
2
w(e)

rr Δx∗
r ⊗ Δxr + G(xr(t + 1)) − G(xr(t))

= −Re
(
Δx∗

r ⊗ sr(t)
)

− 1
2
w(e)

rr |Δxr|2 + G(xr(t + 1)) − G(xr(t)). (19)

G(xr(t)) can be expanded around xr(t + 1) by the Taylor’s theorem as

G(xr(t)) = G(xr(t + 1)) −
∑

α

Δx(α)
r

∂G

∂x
(α)
r

∣
∣
∣
∣x(α)=x

(α)
r (t+1)

+
∑

α,β

Δx(α)
r Δx(β)

r

∂2G

∂x
(α)
r ∂x

(β)
r

∣
∣
∣
∣x(α)=φ(α),x(β)=φ(β) ,

where φ(α) is between x
(α)
r (t) and x

(α)
r (t+1). Hence, the difference of the energy

can be written as

ΔE = −Re
(
Δx∗

r ⊗ sr(t)
)

− 1
2
w(e)

rr |Δxr|2

+
∑

α

Δx(α)
r

∂G

∂x
(α)
r

∣
∣
∣
∣x(α)=x

(α)
r (t+1)

−
∑

α,β

Δx(α)Δx(β)
r

∂2G

∂x
(α)
r ∂x

(β)
r

∣
∣
∣
∣x(α)=φ(α),x(β)=φ(β) .

Considering Eqs.(15) and (17), ΔE is reduced to

ΔE = −1
2
w(e)

rr |Δxr|2 −
∑

α,β

Δx(α)Δx(β)
r

∂g(β)

∂x(α)

∣
∣
∣
∣x(α)=φ(α),x(β)=φ(β) . (20)

We first consider the case that f1(Eq. (11)) is applied for the activation
function of neurons. The inverse function of f1, g1, is calculated as

g1(x) = g
(e)
1 (x(e)) + g

(i)
1 (x(i))i + g

(j)
1 (x(j))j + g

(k)
1 (x(k))k

g
(α)
1 (x) = tanh−1 x =

ε

2
ln

1 + x

1 − x
.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 853

In this case, Eq. (20) becomes

ΔE = −1
2
w(e)

rr |Δxr|2 −
∑

α

(Δx(α))2
∂g(α)

∂g(β)

= −1
2
w(e)

rr |Δxr|2 −
∑

α

(Δx(α)
r)2 · ε

(1 + φ(α))(1 − φ(α))
,

because ∂gβ/∂x(α) = 0 for α �= β and ∂g(α)/∂x(α) = ε/(1 + x(α))(1 − x(α)).
Furthermore,

min
ε

(1 + φ(α))(1 − φ(α))
= ε (at φ(α) = 0),

hence the following inequality holds:

ΔE < −1
2
w(e)

rr

∣
∣Δxr

∣
∣2 − ε

∑

α

(Δx(α)
r)2

= −
(

1
2
w(e)

rr + ε

)
∣
∣Δxr

∣
∣2 . (21)

The energy with the activation function f1 never increases under the condition
of w

(e)
rr > −2ε.

We further consider the case of f2 used for the activation function. In this
case, the inverse of f2 is obtained as

g2(x) =
x

a − |x|
= g

(e)
2 (x) + g

(i)
2 (x)i + g

(j)
2 (x)j + g

(k)
2 (x)k,

g
(α)
2 (x) =

x(α)

a − |x| .

The differential of g
(β)
2 (x) (β = {e, i, j, k}) with respect to x(α) can be calculated

as

∂g
(β)
2

∂x(α) =

⎧
⎨

⎩

x(α)x(β)

(a−|x|)2|x| (α �= β)

a|x|−�γ �=β x(γ)2

(a−|x|)2|x| (α = β)
.

In this case, the difference of the energy (Eq. (20)) becomes

ΔE = −1
2
w(e)

rr |Δxr|2 −
∑

α

(Δx(α))2
a

(a − |φ|)2 (22)

where −a < φ(α) < a. Under the condition of a > 0, this energy never increases
when the state of the neuron changes.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

854 T. Isokawa et al.

4 An Example: 3 Neurons Network

We introduce a quaternion equivalent of Hebbian rule for embedding patterns
to the network. The Hebbian rule is defined as

wpq =
1

4N

np∑

μ=1

ξμ,p ⊗ ξ∗
μ,q (23)

where ξμ,p = (ξ(e)
μ,p, ξ

(i)
μ,p, ξ

(j)
μ,p, ξ

(k)
μ,p) (ξ{(e),(i),(j),(k)} ∈ {1, −1}) represents the pat-

tern vector for neuron p in the μ-th pattern and np is the number of patterns
to be stored. The norm of wpq is normalized by the number of neurons and
|ξ|2 = 4. This form satisfies the conditions wpq = w∗

qp and wpp ≥ 0:

w∗
qp =

1
4N

np∑

μ=1

(
ξμ,q ⊗ ξ∗

μ,p

)∗ =
1

4N

np∑

μ=1

ξμ,p ⊗ ξ∗
μ,q = wpq,

and

wpp =
1

4N

np∑

μ=1

ξμ,p ⊗ ξ∗
μ,p =

1
4N

np∑

μ=1

|ξμ,p|2 =
np

N
> 0.

We consider the network that consists of three neurons and one pattern (np =
1) is to be stored in. The pattern to be stored, ξ1 = {ξ1,1, ξ1,2, ξ1,3}, is as
follows:

ξ1,1 = ξ
(e)
1,1 + ξ

(i)
1,1i + ξ

(j)
1,1j + ξ

(k)
1,1k

= (1, 1, −1, 1),
ξ1,2 = (−1, 1, −1, −1),
ξ1,3 = (1, 1, 1, −1). (24)

The connection weight matrix W = {wpq} obtained from Eq. (23) is

W =
1
3

⎛

⎝
1 −i −j
i 1 −k
j k 1

⎞

⎠ . (25)

4.1 In the Case of f1

We start with the case that f1 is applied for the activation function. From the
definition of f1, this function corresponds to the sign function when ε → 0.
Then, we examined the stable states of the network.

Table 1 shows a list of fixed points in the network with the weight matrix
of Eq. (25). The pattern with μ = 1, i.e. ξ1 = {ξ1,1, ξ1,2, ξ1,3}, in this table
corresponds to the stored pattern itself (Eq. (24)). The patterns ξμ with μ =
9, · · · , 16 are respectively the same as quaternionic component-wise inverted ones

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 855

Table 1. The degenerate fixed points in the network with the same W of Eq. (25)

μ ξμ,1 ξμ,2 ξμ,3

1 (1, 1, −1, 1) (−1, 1, −1, −1) (1, 1, 1, −1)
2 (−1, 1, 1, −1) (−1, −1, 1, 1) (−1, −1, −1, −1)
3 (−1, 1, −1, −1) (−1, −1, 1, −1) (1, −1, −1, −1)
4 (−1, 1, 1, 1) (−1, −1, −1, 1) (−1, 1, −1, −1)
5 (−1, 1, −1, 1) (−1, −1, −1, −1) (1, 1, −1, −1)
6 (1, 1, 1, −1) (−1, 1, 1, 1) (−1, −1, 1, −1)
7 (1, 1, −1, −1) (−1, 1, 1, −1) (1, −1, 1, −1)
8 (1, 1, 1, 1) (−1, 1, −1, 1) (−1, 1, 1, −1)
9 (−1, −1, 1, −1) (1, −1, 1, 1) (−1, −1, −1, 1)

10 (−1, −1, −1, −1) (1, −1, 1, −1) (1, −1, −1, 1)
11 (−1, −1, 1, 1) (1, −1, −1, 1) (−1, 1, −1, 1)
12 (−1, −1, −1, 1) (1, −1, −1, −1) (1, 1, −1, 1)
13 (1, −1, 1, −1) (1, 1, 1, 1) (−1, −1, 1, 1)
14 (1, −1, −1, −1) (1, 1, 1, −1) (1, −1, 1, 1)
15 (1, −1, 1, 1) (1, 1, −1, 1) (−1, 1, 1, 1)
16 (1, −1, −1, 1) (1, 1, −1, −1) (1, 1, 1, 1)

with μ = 1, · · · , 8. Energy with respect to these fixed points is all −6. The same
weight matrix as Eq. (25) can also be obtained from any pattern in this table,
so they seem to form a quaternionic degenerated state.

These degenerated states can be explained by introducing a quaternionic
parameter aμ of which norm is 1, i.e., |aμ| = 1. Let ξμ = {ξμ,1, · · · , ξμ,N}
be the μ-th stored pattern and wpq be a connection weight between the p-th
neuron and the q-th neuron calculated from the pattern ξμ. From the pattern
ξ′

μ = {ξμ,1 ⊗ aμ, · · · , ξμ,N ⊗ aμ}, the connection weight w′
pq can be calculated

by Hebbian rule (Eq. (23)) as follows:

w′
pq =

1
4N

np∑

μ=1

ξ′
μ,p ⊗ ξ′∗

μ,q =
1

4N

np∑

μ=1

ξμ,p ⊗ aμ ⊗ a∗
μ ⊗ ξ∗

μ,q = wpq.

Note that aμ ⊗ a∗
μ = |aμ|2 = 1. This relation shows that the patterns ξμ ⊗ aμ

are also stored in the network when we embed the pattern ξμ into the network.
The parameter aμ can be any quaternion in the condition of |aμ| = 1, but the
quaternionic component of a stored pattern takes either +1 or −1 in this case,
hence the number of components in a set {aμ} is at most 16. This number
reflects the number of the degenerated patterns in the network when one stored
pattern is embedded. Henceforth we call a set of these patterns ‘Multiplet’. In
this network {ξ1, · · · , ξ16} forms a multiplet. A component in a multiplet, ξμ, can
be transformed into another component in the same multiplet, ξν (ν �= μ), by
multiplying a certain aμ (aμ-transformation). For example, ξ5 can be obtained
from ξ1 by aμ-transformation with aμ = 1

2 (1, 1, −1, 1).
Even if the parameter ε takes larger value, the state of the network converges

to one of 16 stable points. Each quaternionic element of resultant network states

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

856 T. Isokawa et al.

takes bipolar values, but their intensities are lower than ones in the case of ε → 0.
Hence, a set of the component in the multiplet can be represented by using real-
valued parameter c > 0 as {cξ1, cξ2, · · · , cξ16}. This is due to the steepness of
the activation function for updating the state of neurons.

4.2 In the Case of f2

We also examine the stable points of the network in the case that f2 is applied
for the activation function. We set a = 3 in Eq. (13), so that the stored pattern
is the stable point in the network, i.e., xp = f2(sp) = f2(ξ1) = ξ1.

This network has the degenerated states same as ξn shown in Table 1. These
can be explained by the same reason in the case of f1. This network also con-
verges to the states other than ξn. We show two stable points as examples:
⎧
⎨

⎩

x1
x2
x3

⎫
⎬

⎭
=

⎧
⎨

⎩

(−0.58, 0.58, 0.58, −1.73)
(−0.58, −0.58, 1.73, 0.58)
(−0.58, −1.73, −0.58, −0.58)

⎫
⎬

⎭
,

⎧
⎨

⎩

(−1.13, 1.13, −0.38, −1.13)
(−1.13, −1.13, 1.13, −0.38)
(0.38, −1.13, −1.13, −1.13)

⎫
⎬

⎭
.

These patterns are also in the Multiplet because the stored pattern (ξ1) can
be obtained by aμ-transformation from them, and hence more stable patterns
constitute the components of the Multiplet than those in the case of f1.

5 Conclusion

In this paper, we constructed quaternionic hopfield networks where the state
of the neurons takes continuous value and discrete-time is used for update of
the neuron states. Two types of the activation function are introduced, and it
has been proven that the energies of the networks for both activation functions
always decrease with respect to the state changes of neurons. We examined the
properties of the networks through the networks with 3 neurons and one pattern
embedded. We have shown that our proposed network has the degenerated states
as the stable points called Multiplet and that the type of the activation function
affects the members in the Multiplet.

The properties of the network should be explored for larger scale of the net-
works, i.e., the number of neurons in the network and the number of embedded
patterns become larger. This remains for our future work.

Acknowledgements

This study was financially supported by Japan Society for the Promotion of
Science (Grant-in-Aid for Young Scientists (B) 19700221).

References

1. Hankins, T.L.: Sir William Rowan Hamilton. Johns Hopkins University Press, Bal-
timore, London (1980)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks 857

2. Mukundan, R.: Quaternions: From Classical Mechanics to Computer Graphics, and
Beyond. In: Proceedings of the 7th Asian Technology Conference in Mathematics,
pp. 97–105 (2002)

3. Nitta, T.: A Solution to the 4-bit Parity Problem with a Single Quaternary Neuron.
Neural Information Processing - Letters and Reviews 5(2), 33–39 (2004)

4. Nitta, T.: An Extension of the Back-propagation Algorithm to Quaternions. In:
ICONIP’96. Proceedings of International Conference on Neural Information Pro-
cessing, vol. 1, pp. 247–250 (1996)

5. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.: Multilayer Perceptrons to Approx-
imate Quaternion Valued Functions. Neural Networks 10(2), 335–342 (1997)

6. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion Neural
Network with Geometrical Operators. Journal of Intelligent & Fuzzy Systems 15(3–
4), 149–164 (2004)

7. Yoshida, M., Kuroe, Y., Mori, T.: Models of hopfield-type quaternion neural net-
works and their energy functions. International Journal of Neural Systems 15(1–2),
129–135 (2005)

8. Isokawa, T., Nishimura, H., Kamiura, N., Matsui, N.: Fundamental Properties of
Quaternionic Hopfield Neural Network. In: Proceedings of 2006 International Joint
Conference on Neural Networks, pp. 610–615 (2006)

9. Georgiou, G.M., Koutsougeras, C.: Complex domain backpropagation. IEEE Trans-
actions on Circuits and Systems II 39(5), 330–334 (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Learning Algorithms Based on Mappings:

The Case of the Unitary Group of Matrices

Simone Fiori

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni (DEIT),
Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona (Italy)

fiori@deit.univpm.it

Abstract. Neural learning algorithms based on optimization on mani-
folds differ by the way the single learning steps are effected on the neural
system’s parameter space. In this paper, we present a class counting four
neural learning algorithms based on the differential geometric concept
of mappings from the tangent space of a manifold to the manifold it-
self. A learning stepsize adaptation theory is proposed as well under the
hypothesis of additiveness of the learning criterion. The numerical per-
formances of the discussed algorithms are illustrated on a learning task
and are compared to a reference algorithm known from literature.

1 Introduction

A recent discovery in neural learning theory is that neural learning dynamics
may be formulated in terms of differential equations on manifolds [1,4,5,7]. A
differential manifold is seen as a continuous curved parameter space, which in-
herently takes into account the natural constraints that learning the solution of
a given problem may be subjected to.

A way to numerically integrate differential equations on manifolds for neural
learning is by piece-wise geodesic arcs. Geodesics are defined up to metrization
of the base-manifold. However, it has been suggested that other maps may be
taken advantage of, while it is not clear whether such maps configure geodesic
arcs (upon any appropriate metric). This observation suggests that there exists
a more general concept that encompasses a wider class of maps than the class
of geodesics.

In the present manuscript, we consider the unitary group U(p) as parameter
space and suggest four different kinds of mappings from the tangent space of the
group to the group itself. It is worth mentioning that the set U(p) is a classical
Lie group, it thus enjoys the properties of an algebraic group as well as the
properties of a differential manifold.

Under the hypothesis that network learning criterion is additive, namely, it
may be broken down into the sum of terms each of which depends only on one
of neural network’s output signals, we are able to develop a learning stepsize
adaptation rule, as well.

The numerical performances of the discussed algorithms are illustrated on
a complex independent component learning task and are compared to those
exhibited by the complex-FastICA algorithm known from literature.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 858–863, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Learning Algorithms Based on Mappings 859

2 Mappings-Based Learning Algorithms

The derivation of learning algorithms in the present paper is based on notions
from differential geometry [6]. In particular, on the notion of mapping B : TM →
M from the tangent bundle TM of a manifold M to the manifold itself. Mappings
come into effect in neural learning whenever an adapting procedure is formulated
in terms of optimization of a network’s performance criterion under constraints,
where the manifold structure accounts for the constraints.

2.1 Mappings-Based Numerical Solution of Gradient-Based
Learning Equations

Let us consider an optimization problem that consists in finding a local extremum
of a non-linear regular function f : M → R. The solution W = W(t) of the
steepest gradient-ascent differential equation:

d

dt
W(t) = ∇W(t)f , with W(0) = W0 ∈ M , (1)

will asymptotically tend to one of the local extremum of the function f(·) over
manifold M , depending on the boundary value W0. In the above expression,
symbol ∇Wf ∈ TWM denotes the Riemannian gradient of the criterion f(·). If
the unitary group is endowed with the canonical bi-invariant metric, then the
Riemannian gradient writes:

∇Wf =
∂f

∂W
− W

(
∂f

∂W

)H

W , (2)

with ∂f
∂W

def= ∂f
∂�W +j ∂f

∂�W . Here, symbols �(·) and �(·) denote real and imaginary
part, respectively, symbol j denotes imaginary unit and superscript H denotes
Hermitian (conjugate) transpose. The optimization-type differential-equation (1)
may not be solved in closed form and needs to be turned into a discrete-time
learning algorithm via a suitable time-discretization scheme. This operation may
be effected by the help of mappings as:

Wn+1 = BWn(hn∇Wnf) , n ≥ 0 , (3)

where sequence hn ∈ R denotes a suitable learning step-size schedule.
In the present paper, we take as a special example the case of learning by

optimization over the Lie group of unitary matrices, namely U(p) def= {W ∈
Cp×p|WHW = Ip}. The Lie algebra associated to the unitary group is denoted

as u(p) def= {S ∈ Cp×p|S + SH = 0p}. It holds TWU(p) = W · u(p) for every
W ∈ U(p).

For the unitary group of matrices, we consider the following mappings:

Mapping I: The exponential mapping:

expW(WS) = Wexp(S) . (4)

In the above expressions, symbol exp(·) denotes matrix exponentiation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

860 S. Fiori

Mapping II: The Cayley-transform-based mapping:

cayW(WS) def= W (2Ip + S) (2Ip − S)−1
. (5)

Mapping III: The polar-decomposition-based mapping:

polW(WS) def= W(Ip + S)
√

(Ip − S2)−1 . (6)

Mapping IV: The QR-decomposition-based mapping:

qrmW(WS) def= q(W + WS) , (7)

where q(·) denotes the ‘Q’ factor of the QR decomposition of the matrix-
argument.

2.2 Learning Stepsize Adaptation for Additive Learning Criteria

We consider the case of training a linear feed-forward neural network described
by y = WHx, where y ∈ Cp denotes network response, x ∈ Cp denotes network
input and W ∈ Cp×p denotes the network connection pattern.

We make the technical hypothesis that the learning criterion f has the additive
structure:

fn
def= f(Wn) =

p∑

i=1

IE[G(|yi,n|2)] = 1T
p IE[G(|yn|2)] , (8)

with G : R+ → R being a differentiable sample-wise learning performance index.
Modulus operator |·| as well as function G(·) are supposed to act component-wise.
Also, operator IE[·] denotes statistical expectation with respect to the statistics
of signal x.

From equation (3), it is readily seen that:

yn+1 = WH
n+1x = B(hnSn)Hyn , (9)

where symbol B(·) denotes mapping from the identity of the group U(p). The
following approximations hold:

B(S) ≈ Ip + S +
1
2
S2 , for small-norm S ∈ u(p) , (10)

G(|yn+1|2) ≈ G(|yn|2) + 2�[(G′(|yn|2) ◦ yn)H(yn+1 − yn)] , (11)

where symbol ◦ denotes component-wise vector multiplication. Thanks to the
above approximations, it is easily seen that:

fn+1−fn ≈ −2hn�(IE[(G′(|yn|2)◦yn)HSnyn])+h2
n�(IE[(G′(|yn|2)◦yn)HS2

nyn]) .
(12)

At optimality it should hold fn+1 − fn ≈ 0, thus the optimal learning stepsize
may be taken as:

hn =
2�(IE[(G′(|yn|2) ◦ yn)HSnyn])
�(IE[(G′(|yn|2) ◦ yn)HS2

nyn])
. (13)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Learning Algorithms Based on Mappings 861

2.3 Plain Expressions

We deem it appropriate to summarize here the presented algorithm and to pro-
vide plain expressions for the quantities of interest.

When the learning criterion function is of the type (8), the Euclidean gradient
has expression:

∂f

∂W
= 2IE[x(G′(|yn|2) ◦ yn)H] , (14)

therefore, the quantity Sn to be inserted in the learning algorithm:

Wn+1 = BWn(hnWnSn) , (15)

in the present case, is given by:

Sn = WH
n (∇Wnf) = 2IE[yn(G′(|yn|2) ◦yn)H] − 2IE[(G′(|yn|2) ◦yn)yH

n] . (16)

It is worth noting that, if we set Tn
def=IE[yn(G′(|yn|2) ◦yn)H], then we have the

following simpler expressions:

Sn = 2(Tn − TH
n) , hn =

2� tr(TnSn)
� tr(TnS2

n)
, (17)

where symbol tr(·) denotes the trace of the matrix-argument.

3 Numerical Experiment

As a numerical experiment, we suppose the network input stream to have struc-
ture x = Ms, where s ∈ Cp is formed by statistically independent proper
complex-valued signals and M ∈ Cp×p is full-rank. The aim of the neural net-
work here is to separate out the independent signals from their mixtures [3].

It is known that every noiseless full-rank mixture may be reduced to an unitary
mixture by whitening the observations, therefore we may restrict our analysis
to unitary mixtures without loss of generality. Namely, we shall assume M ∈
U(p). In this instance, the separating network may be described by a connection
pattern W ∈ U(p). A network learning criterion is [2] like (8) with G(|y|2) =
log(0.1 + |y|2), y ∈ C.

The simplest choice for the initial network connection pattern is W0 = Ip. The
presented experiments were carried out over mixtures of telecommunication-type
complex-valued signals (namely, three 4-QAM, three 16-QAM, three 8-PSK and
a Gaussian noise). The mixing matrix M was randomly generated, each part of
any entries distribution being uniform. As component extraction performance
index, the average inter-channel interference (ICI) was defined as:

ICI def=
1
p

∑
ij P 2

ij −
∑

i maxk{P 2
ik}

∑
i maxk{P 2

ik} , (18)

where the separation product P is defined by Psdef=y. As computational com-
plexity indices, we measured the total flops per learning iteration and the total

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

862 S. Fiori

time required by the algorithms to run on a 1.86 GHz – 512 MB platform. As an
index we used to evaluate the numerical behavior of the learning algorithms, an
unitarity measure was defined in order to check for the adherence of the network
connection matrix to the unitary group, namely δ(W)def= ‖WT W − Ip‖F, where
‖ · ‖F denotes matrix Frobenius norm.

For further comparison purpose, the numerical behavior of the algorithms
based on Mapping I, Mapping II, Mapping III and Mapping IV was compared
to the numerical behavior of the complex-FastICA algorithm [2] endowed with
the same non-linearity and symmetric orthogonalization.

The computational burden of the five considered algorithms, in terms of flops
per iteration and run-time count, is illustrated in Figure 1, which also offers a
comparative view of the separation performances of the five algorithms. As it
can be readily noted, the mapping-based algorithms behaved satisfactorily: In
particular, they nearly behave in the same way, as only slight differences may
be noted in performances. The algorithm based on Mapping III shows better
trade-off among separation performances, numerical precision and computational
burden than the other considered algorithms.

1 2 3 4 5
0

2

4

6

8

10

F
lo

ps
/It

er
at

io
n

(lo
g−

sc
al

e)

Algorithm
1 2 3 4 5

0

5

10

15

20

25

30

E
la

ps
ed

 ti
m

e
(s

ec
.s

)

Algorithm

1 2 3 4 5
−4

−3

−2

−1

0

IC
I i

nd
ex

 (
lo

g−
sc

al
e)

Algorithm
1 2 3 4 5

−15

−10

−5

0

δ
in

de
x

(lo
g−

sc
al

e)

Algorithm

Fig. 1. Values of flops per iteration and time-count as well as of the ICI and δ indices
values (both in log10-scale) after learning completion. (Algorithms: 1 – Mapping I, 2 –
Mapping II, 3 – Mapping III, 4 – Mapping IV and 5 – complex-FastICA).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neural Learning Algorithms Based on Mappings 863

4 Conclusion

The aim of the present paper was to illustrate the theory of learning by map-
pings in the special case of function optimization on the manifold of unitary
matrices. Results of a numerical experiment showed that mapping-based algo-
rithms behave satisfactorily and may exhibit better trade-off between learning
performances and computational burden over second-order (namely, Newton-
like) algorithm.

References

1. Amari, S.-I., Fiori, S.: Editorial: Special issue on Geometrical Methods in Neural
Networks and Learning. Neurocomputing 67, 1–7 (2005)

2. Bingham, E., Hyvärinen, A.: A fast fixed-point algorithm for independent com-
ponent analysis of complex valued signals. International Journal of Neural Sys-
tems 10(1), 1–8 (2000)

3. Cichocki, A., Amari, S.-I.: Adaptive Blind Signal and Image Processing. J. Wiley &
Sons, England (2002)

4. Fiori, S.: A theory for learning based on rigid bodies dynamics. IEEE Trans. on
Neural Networks 13(3), 521–531 (2002)

5. Fiori, S.: Quasi-geodesic neural learning algorithms over the orthogonal group: A
tutorial. Journal of Machine Learning Research 6, 743–781 (2005)

6. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Hei-
delberg (2004)

7. Tanaka, T., Fiori, S.: Simultaneous tracking of the best basis in reduced-rank Wiener
filter. In: IEEE-ICASSP. International Conference on Acoustics, Speech and Signal
Processing, vol. III, pp. 548–551 (May 2006)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons

Sven Buchholz1, Kanta Tachibana2, and Eckhard M.S. Hitzer3

1 Institute of Computer Science, University of Kiel, Germany
2 Graduate School of Engineering, Nagoya University, Japan
3 Department of Applied Physics, University of Fukui, Japan

Abstract. Neural computation in Clifford algebras, which include fa-
miliar complex numbers and quaternions as special cases, has recently
become an active research field. As always, neurons are the atoms of com-
putation. The paper provides a general notion for the Hessian matrix of
Clifford neurons of an arbitrary algebra. This new result on the dynamics
of Clifford neurons then allows the computation of optimal learning rates.
A thorough discussion of error surfaces together with simulation results
for different neurons is also provided. The presented contents should give
rise to very efficient second–order training methods for Clifford Multi-
layer perceptrons in the future.

1 Introduction

Neural computation in Clifford algebras, which include familiar complex num-
bers and quaternions, has recently become an active research field [6,5,11]. Par-
ticularly, Clifford-valued Multi-layer perceptrons (CMLPs) have been studied.
To our knowledge, no second–order methods to train CMLPs are available yet.
This paper aims to provide therefore the needed facts on Hessians and optimal
learning rates by studying the dynamics on the level of Clifford neurons. After
an introduction to Clifford algebra, we review Clifford neurons as introduced
in [4]. Section 4 provides as a general and explicit notion for Hessian matrix of
these neurons, which enables easy and accurate computation of optimal learning
rates. This is demonstrated by simulation in section 5, after which the paper
concludes with a summary.

2 Basics of Clifford Algebra

An algebra is a real linear space that is equipped with a bilinear product. Clifford
algebras are of dimension 2n(n ∈ N0) and are generated by so-called quadratic
spaces, from which they inherit a metric structure. Every quadratic space has
an orthonormal basis. Here we are interested in spaces R

p+q (p, q ∈ N0) with
canonical basis O := (e1, ..., ep+q) that are endowed with a quadratic form Q,
such that for all i, j ∈ {1, . . . , p + q}

Q(ei) =
{

1, i ≤ p
−1, p + 1 ≤ i ≤ p + q,

(1)

Q(ei + ej) − Q(ei) − Q(ej) = 0 , (2)

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 864–873, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons 865

which, in turn, renders O to be orthonormal. These quadratic spaces, abbreviated
as R

p,q hereafter, give now rise to the following definition.

Definition 1 (Clifford Algebra [12]). The Clifford algebra Cp,q of R
p,q is the

2p+q dimensional associative algebra with unity 1R given by

(i) Cp,q is generated by its distinct subspaces R and R
p,q

(ii) xx = Q(x) for any x ∈ R
p,q .

Note the use of juxtaposition for the so–called geometric product of Cp,q. Since
nothing new is generated in case of p = q = 0, C0,0 is isomorphic to the real num-
bers R. The Clifford algebras C0,1 and C0,2 are isomorphic to complex numbers
and quaternions, respectively.

The set of all geometric products of elements of O

E := {ej1ej2 · · · ejr , 1 ≤ j1 < . . . < jr ≤ p + q} (3)

constitutes a basis of Cp,q, which follows directly from condition (ii) in Defini-
tion 1. This basis can be ordered by applying the canonical order of the power
set P of {1, . . . , p + q}, i.e. by using the index set

I := {{i1, . . . , is} ∈ P | 1 ≤ i1 < . . . < is ≤ p + q} (4)

and then define eI := ei1 . . . eis for all I ∈ I. Set e∅ := 1R. A general element x
of Cp,q

x =
∑

I

eI xI :=
∑

I∈I
eI xI , (xI ∈ R) (5)

is termed multivector. The name stems from the fact that for k ∈ {0, · · · , p + q}

Ck
p,q := {eI | I ∈ I, |I| = k} (6)

spans a linear subspace of Cp,q (C0
p,q = R, C1

p,q = R
p,q and

∑
k Ck

p,q = Cp,q).
Projection onto subspaces is defined via the grade operator

〈·〉k : Cp,q → Ck
p,q, x �→

∑

I∈I ,
|I|=k

xIeI , (7)

with convention 〈·〉 := 〈·〉0 for the so-called scalar part. Projection onto the I-th
component (w.r.t. E) of a multivector, on the other hand, is written as [·]I .

Involutions on Cp,q are linear mappings that when applied twice yield the
identity again. Examples are inversion inv(x) :=

∑p+q
k=0(−1)k〈x〉k and rever-

sion rev(x) :=
∑p+q

k=0(−1)
k(k−1)

2 〈x〉k. The principal involution defined by ẽI =
rev(eI) e

[Iq]
0 is of main importance for us, whereby [Iq] stands for the number of

negative signature vector factors in eI . Note that x̃y = ỹx̃. Any non–null vector
of Cp,q has an inverse (w.r.t. the geometric product) and is an element of the
Clifford group.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

866 S. Buchholz, K. Tachibana, and E.M.S. Hitzer

Definition 2 (Clifford group [10]). The Clifford group associated with the
Clifford algebra Cp,q is defined by

Γp,q = {s ∈ Cp,q | ∀x ∈ R
p,q , s x inv(s)−1 ∈ R

p,q} . (8)

The action of Γp,q on R
p,q is an orthogonal automorphism [12] that extends

to multivectors due to the bilinearity of the geometric product. Since C0,1 is
commutative, the fact that complex multiplication can be viewed geometrically
as dilation–rotation [14] follows as special case from (8).

3 Clifford Neurons and the Linear Associator

Formally, a Clifford neuron can be easily introduced as follows. Consider the most
common real neuron (of perceptron–type with identity as activation function)
that computes a weighted sum of its inputs xi according to

y =
∑

i

wixi + θ . (9)

Using instead multivector weights wi ∈ Cp,q, a multivector threshold θ ∈ Cp,q

and replacing real multiplication by the geometric product readily turns (9) into
a Clifford neuron (for C0,0, of course, one gets the real neuron back again). Al-
though complex-valued and quaternionic–valued Multi-layer perceptrons
(MLPs) are known for a long time (see [9] and [2], respectively), not much
research has been carried out on the neuron level itself in the beginning. Only
recently, the following two types of Clifford neurons have been studied in greater
detail in the literature.

Definition 3 (Basic Clifford Neuron (BCN) [4]). A Basic Clifford Neuron,
BCNp,q, computes the following function from Cp,q to Cp,q

y = wx + θ. (10)

A BCN has only one multivector input and therefore also only multivector
weight. Contrary to a real neuron (9) it makes sense to study the one input
only case, since this will be in general a multidimensional entity. The general
update rule using gradient descent for a BCN with simplified, for notation pur-
poses, error function

E = ‖error‖2 := ‖d − y‖2 , (11)

where d stands for desired output, reads

Δw = −∂ E

∂ w
= 2error x̃ . (12)

Equation (12) generalizes the various specific update rules given in [4] by using
the principal involution of Section 2. The second type of Clifford neuron proposed
in [4] mimics the action of the Clifford group.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons 867

Definition 4 (Spinor Clifford Neuron (SCN) [4]). For p, q ∈ N0, p + q >1
a Spinor Clifford Neuron, SCNp,q, computes the following function from Cp,q to Cp,q

y = w xφ(w) + θ , (13)

where φ denotes a particular involution (e.g. inversion, reversion,...).

Like a BCN, a SCN has also only one independent weight though a two–sided
multiplication takes place. For a SCN with (adapted) error function (11) gradient
descent therefore results in a two-stage update procedure. First compute the
update of the ”right weight” in (13) as

wR := (̃w x) error (14)

which then yields Δw = φ(wR). Again, this is a powerful generalization of the
few specific rules known from the literature.

BCNs are the atoms of Clifford MLPs while SCNs are the atoms of Spinor
MLPs. Clifford MLPs have already found numerous applications (see e.g. [6,1]
and the references therein). Recent applications of Spinor MLPs can be found
in [11,5]. All these works, however, rely on a simple modified Back–propagation
algorithm. To our knowledge, there are no known general second–order based
training algorithms for Clifford MLPs and Spinor MLPs yet. Given the increas-
ing interest in such architectures a high demand for second order methods can be
stated. This paper aims to establish the foundations of such forthcoming algo-
rithms by providing general and explicit expressions for describing the dynamics
of Clifford neurons in terms of their Hessian matrices.

Hessians (of the error functions) of Clifford neurons are not a complete terra
incognita though. Both BCNs and SCNs can be viewed, to some extent, as par-
ticular Linear Associators (LAs) (see e.g. [3,13] for an introduction to this most
simple feed–forward neural network). In the case of BCNs this readily follows
from the well–known theorem that every associative algebra of finite dimension
is isomorphic to some matrix algebra. For SCNs, however, this additionally, re-
lies on the fact (mentioned in Section 2) that the action of the Clifford group is
always an orthogonal automorphism.

Dynamics of the Linear Associator are well understood and [8] is perhaps the
first complete survey on the topic. Note that for a LA gradient descent, with
an appropriate learning rate η, converges to the global minimum for any convex
error function like the sum-of-squares error (SSE). The Hessian HLA of a LA
with error function of SSE-type (of which (11) is a simplified version) is always
a symmetric matrix. For batch–learning (see e.g. the textbook [13]) the optimal
learning rate ηopt is known to be 1

λmax
where λmax is the largest eigenvalue of

HLA. Also, HLA is known to be the auto–correlation matrix of the inputs.
In principle it would be possible to compute Hessians of BCNs from the above

facts. There are however several drawbacks that limit this procedure to only
low–dimensional algebras and render it impossible for all other cases. First of
all, note that in order to proceed in this way one has to know and apply the
appropriate matrix isomorphism for every single algebra. There is no general

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

868 S. Buchholz, K. Tachibana, and E.M.S. Hitzer

solution and the isomorphisms can get rather complicated. Also, by applying
an isomorphism numerical problems may occur for the eigenvalue computation.
Even if one succeeds, no explicit structural insights are easily obtained from this
procedure since everything is expressed in terms of a particular input. For SCNs
the situation will be even more complicated, and, by missing the big picture
again, no conclusions of truly general value are obtained.

The next section therefore now offers a new general and explicit solution for
computing Hessian matrices of Clifford neurons without the above drawbacks.
This is done by invoking the principal involution.

4 Hessian Matrices of Clifford Neurons

Hessian matrices w.r.t. the parameters of a neural architecture allow to compute
optimal learning rates. Decoupling of parameters and using an individual optimal
learning rate for every single one yields fastest possible convergence [7]. For the
two types of Clifford neurons introduced in the previous section it is very natural
to decouple the multivector weight w from the multivector threshold θ. The
threshold θ of a BCN or SCN is a generic parameter in the sense, that it does
not depend on the signature (p, q) of the underlying Clifford algebra. In fact,
it can be handled in exactly the same way as the threshold vector of a LA of
dimension p + q. In what follows we therefore only study Hessians w.r.t. the
multivector weight w. To simplify notations, inputs to the neurons are written
as x without indexing over the training set.

Theorem 1 (Hessian of a BCN). The elements of the Hessian matrix of a
BCN are given by

∂IJE = ∂JIE =
∂E

∂wJ∂wI
= 2〈ẽIeJxx̃〉 (15)

where ·̃ denotes principal involution.

Proof. Rewriting the error function as

E = ‖d − (wx + θ)‖2 =
∑

I

(dI − ([wx]I + θI))
2 eI ẽI︸︷︷︸

1

= 〈(d − wx − θ)(d − wx − θ)̃ 〉

=
〈
wx(̃wx)

〉
− 〈wx(d − θ)̃ 〉 −

〈
(d − θ)(̃wx)

〉

= 〈wxx̃w̃〉 − 2 〈(d − θ)x̃w̃〉 (16)

yields

∂E

∂wI
= 〈eIxx̃w̃〉

︸ ︷︷ ︸
〈(x�x�w)��eI〉

+ 〈wxx̃ẽI〉 − 2 〈(d − θ)x̃ẽI〉

= 2 〈wxx̃ẽI〉 − 2 〈(d − θ)x̃ẽI〉
= −2 〈(d − wx − θ)x̃ẽI〉

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons 869

and finally

∂E

∂wJ∂wI
= 2 〈eJxx̃ẽI〉

= 2〈ẽIeJxx̃〉 . (17)

For every I, J , (17) ”picks out” the scalar component of the product resulting
from multiplying ẽIeJ with the multivector xx̃. Consequently, one gets easily
the following result for the neurons BCN0,q.

Corollary 1. The Hessian of BCN0,q is a scalar matrix aE, where E denotes
the identity matrix.

Of course, every diagonal entry of the Hessian of a BCNp,q equals the scalar a
above. The next corollary gives a complete overview for BCNs of dimension four.

Corollary 2. Let {xs = cs
0e0 + cs

1e1 + cs
2e2 + cs

12e12}s=1...S denote the input
set to a BCNp,q, p + q = 2. Set a :=

∑S
s=1(c

s
0c

s
0 + cs

1c
s
1 + cs

2c
s
2 + cs

12c
s
12), b :=

2
∑S

s=1(c
s
0c

s
1+cs

2c
s
12), c := 2

∑S
s=1(c

s
0c

s
2−cs

1c
s
12), d := 2

∑S
s=1(c

s
0c

s
12−cs

1c
s
2). Then

the Hessian w.r.t. the SSE-function of the BCN0,2, the BCN1,1, and the BCN2,0
is given by

HBCN0,2 =

⎛

⎜
⎜
⎝

a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎞

⎟
⎟
⎠ , (18)

HBCN1,1 =

⎛

⎜
⎜
⎝

a b 0 d
b a d 0
0 d a −b
d 0 −b a

⎞

⎟
⎟
⎠ , and (19)

HBCN2,0 =

⎛

⎜
⎜
⎝

a b c 0
b a 0 c
c 0 a −b
0 c −b a

⎞

⎟
⎟
⎠ , (20)

respectively.

Unfortunately, the Hessian of a SCN does have a more comlicated form and does
not depend alone on the received input.

Theorem 2 (Hessian of a SCN). The elements of the Hessian matrix of a
SCN are given by

∂E

∂wJ∂wI
= 2 〈(eJxw + wxeJ) (eIxw + wxeI) 〉̃

−2 〈(d − wxw) (eIxeJ + eJxeI) 〉̃ (21)

where (·) stands for the involution of the SCN.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

870 S. Buchholz, K. Tachibana, and E.M.S. Hitzer

Proof. From
E = ‖d − wxw‖2 =

∑

I

(dI − (wxw)I)
2 eI ẽI

= 〈(d − wxw)(d − wxw)̃ 〉

=
〈
dd̃ + wxw(wxw)̃

〉
− 2 〈d(wxw)̃ 〉 (22)

follows
∂E

∂wI
= 〈(eIxw + wxeI) (wxw)̃ 〉

+ 〈(wxw)(eIxw + wxeI) 〉̃
−2 〈d(eIxw + wxeI)̃ 〉

= −2 〈(d − wxw)(eIxw + wxeI)̃ 〉 (23)

and by computing ∂wJ

∂E
∂wI

follows the assumption.

Hence, if w is of small absolute value the approximation HSCNp,q ≈ 2 · HBCNp,q

holds. Due to space limitations, this concludes or study of Hessians of Clifford
neurons.

5 Simulations on Optimal Learning Rates

From Theorem 1 direct structural insights on the dynamics of BCNs can be
obtained. According to Corollary 1, the error function of a BCN0,q is always
isotropic, its Hessian is a scalar matrix aE, and therefore η = 1

a is its optimal
learning rate. This section now reports simulation results for all four–dimensional
BCNs (theoretically covered by Corollary 2) in order to give some illustrations
and to get further insights on the dynamics of these neurons. For the quater-
nionic BCN0,2 100 points have been generated from a uniform distribution of
[0, 1]4. Each element of the that way obtained input training set was left multi-
plied in C0,2 by 1e0 + 2e1 + 3e2 + 4e12 in order to get the output training set.
Using the optimal learning rate η = ηopt (computed as 1/λmax from (19) and

0 5 10 15 20
0

1

2

3

4

5

6

7

Epochs

M
S

E

η = η
opt

η = 2⋅η
opt

η = 2⋅η
opt

 + 0.001

0 5 10 15 20
0

1

2

3

4

5

6

7

Epochs

M
S

E

BCN
0,2

LA

Fig. 1. Left panel shows learning curves of the BCN0,2 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons 871

0
0.5

1
1.5

2

1
1.5

2
2.5

3
0

1

2

3

w
1

w
2

0
0.5

1
1.5

2

2
2.5

3
3.5

4
0

0.5

1

1.5

2

w
1

w
3

0
0.5

1
1.5

2

3
3.5

4
4.5

5
0

0.5

1

1.5

2

w
1

w
4

1
1.5

2
2.5

3

2
2.5

3
3.5

4
0

0.5

1

1.5

2

w
2

w
3

1
1.5

2
2.5

3

3
3.5

4
4.5

5
0

0.5

1

1.5

2

w
2

w
4

2
2.5

3
3.5

4

3
3.5

4
4.5

5
0

1

2

3

w
3

w
4

Fig. 2. Plot of error function for the BCN1,1. Projections on the six 2D planes that
coincide with the coordinate axes of weight space.

0
0.5

1
1.5

2

1
1.5

2
2.5

3
0

1

2

3

w
1

w
2

0
0.5

1
1.5

2

2
2.5

3
3.5

4
0

0.5

1

1.5

2

w
1

w
3

0
0.5

1
1.5

2

3
3.5

4
4.5

5
0

0.5

1

1.5

2

w
1

w
4

1
1.5

2
2.5

3

2
2.5

3
3.5

4
0

0.5

1

1.5

2

w
2

w
3

1
1.5

2
2.5

3

3
3.5

4
4.5

5
0

0.5

1

1.5

2

w
2

w
4

2
2.5

3
3.5

4

3
3.5

4
4.5

5
0

1

2

3

w
3

w
4

Fig. 3. Plot of error function for the BCN2,0. Projections on the six 2D planes that
coincide with the coordinate axes of weight space.

(20), respectively) batch-learning converged indeed in one epoch to the global
solution. This can be seen from the left panel of figure 1, which also shows
obtained learnig curves for η = 2ηopt (slowest convergence) and η = 2ηopt +0.001
(beginning of divergence). Right panel of figure 1 shows optimal learning curve
of the BCN 0,2 versus optimal learning curve of the LA for illustration.

Similar simulations have been carried out for the remaining two BCNs of
dimension four. In both cases input set of the BCN0,2 has been used again. For

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

872 S. Buchholz, K. Tachibana, and E.M.S. Hitzer

0 20 40 60 80 100
0

1

2

3

4

5

6

Epochs

M
S

E

η = η
opt

η = 2⋅η
opt

η = 2⋅η
opt

 + 0.001

0 20 40 60 80 100
0

1

2

3

4

5

6

Epochs

M
S

E

BCN
1,1

LA

Fig. 4. Left panel shows learning curves of the BCN1,1 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.

0 20 40 60 80 100
0

2

4

6

8

10

12

14

Epochs

M
S

E

η = η
opt

η = 2⋅η
opt

η = 2⋅η
opt

 + 0.001

0 20 40 60 80 100
0

1

2

3

4

Epochs

M
S

E

BCN
2,0

LA

Fig. 5. Left panel shows learning curves of the BCN2,0 for different learning rates η.
Right panel shows comparison of the optimal learning curves for the BCN2,0 and the
LA. Both architectures are trained with their respective optimal learning rate.

obtaining the output set, it was left multilpied in C1,1 and C0,2 by 1e0+2e1+3e2+
4e12, respectively. Error surfaces obtained for these data are plotted in figure 2
and figure 3, respectively. Both surfaces do have a partial isotropy since isotropic
projections do exist. Moreover, the following can be proven from (19),(20) for
the projection planes EwI ,wJ (BCNp,q) : Ew1,w4(BCN1,1) = Ew2,w3(BCN1,1) =
Ew1,w3(BCN2,0) = Ew2,w4(BCN2,0) and Ew1,w3(BCN1,1) = Ew2,w4(BCN1,1) =
Ew1,w4(BCN2,0) = Ew2,w3(BCN2,0). Note how this nicely resembles the fact that
C1,1 and C0,2 are isomorphic algebras. For both neurons a further decoupling of
weights might be of interest due to the existence of isotropic planes. Finally,
plots of learnig curves are provided by figure 4 and figure 5. Inclusion of an
LA in all simulations was done to show that and how Clifford neurons do differ
significantly from an LA.

6 Summary

The dynamics of Clifford neurons have been studied in this paper. General and
explicit expressions of the Hessian of a BCN and of a SCN have been derived.
From the general BCN result structural insights on the dynamics of specific
BNCs can be easily obtained. The Hessian of a BCN0,q has been identified to be
a scalar matrix aE, which readily gives 1/a as optimal learning rate for such a

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Optimal Learning Rates for Clifford Neurons 873

neuron. Simulations have been carried out to show the stability and accuracy of
computation of optimal learning rates from the derived Hessians. We hope that
the presented material will give rise to fast second–order training methods for
Clifford and Spinor MLPs in the future.

References

1. Arena, P., Fortuna, L., Muscato, G., Xibilia, M.G.: Neural Networks in Multidi-
mensional Domains. LNCIS, vol. 234. Springer, Heidelberg (1998)

2. Arena, P., Fortuna, L., Occhipinti, L., Xibilia, M.G.: Neural networks for quater-
nion valued function approximation. In: IEEE Int. Symp. on Circuits and Systems,
London, vol. 6, pp. 307–310. IEEE Computer Society Press, Los Alamitos (1994)

3. Baldi, P.F., Hornik, K.: Learning in linear neural networks: A survey. IEEE Trans-
actions on Neural Networks 6(4), 837–858 (1995)

4. Buchholz, S.: A theory of neural computation with Clifford algebra. Technical
Report Number 0504, Universität Kiel, Institut für Informatik (2005)

5. Buchholz, S., Le Bihan, N.: Optimal separation of polarized signals by quaternionic
neural networks. In: EUSIPCO 2006. 14th European Signal Processing Conference,
Florence, Italy (September 4-8, 2006)

6. Hirose, A.: Complex–Valued Neural Networks. Studies in Computational Intelli-
gence, vol. 32. Springer, Heidelberg (2006)

7. LeCun, Y., Bottou, L., Orr, G.B., Müller, K.–R.: Efficient BackProp. In: Orr,
G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 1524,
Springer, Heidelberg (1998)

8. LeCun, Y., Kanter, I., Solla, S.A.: Eigenvalues of Covariance Matrices: Application
to Neural–Network Learning. Physical Review Letters 66(18), 2396–2399 (1991)

9. Leung, H., Haykin, S.: The Complex Backpropagation Algorithm. IEEE Transac-
tions on Signal Processing 3(9), 2101–2104 (1991)

10. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cam-
bridge (1997)

11. Matsui, N., Isokawa, T., Kusamichi, H., Peper, F., Nishimura, H.: Quaternion
neural network with geometrical operators. Journal of Intelligent & Fuzzy Sys-
tems 15(3–4), 149–164 (2004)

12. Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge University
Press, Cambridge (1995)

13. Rojas, R.: Neural Networks. Springer, Heidelberg (1996)
14. Yaglom, I.M.: Complex Numbers in Geometry. Academic Press, New York (1968)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 874–883, 2007.
© Springer-Verlag Berlin Heidelberg 2007

Solving Selected Classification Problems in
Bioinformatics Using Multilayer Neural Network Based

on Multi-Valued Neurons (MLMVN)

Igor Aizenberg1 and Jacek M. Zurada2

1 Texas A&M University-Texarkana; 2 University of Louisville
igor.aizenberg@tamut.edu (IA),

jacek.zurada@louisville.edu (jmz)

Abstract. A multilayer neural network based on multi-valued neurons
(MLMVN) is a new powerful tool for solving classification, recognition and
prediction problems. This network has a number of specific properties and
advantages that follow from the nature of a multi-valued neuron (complex-
valued weights and inputs/outputs lying on the unit circle). Its backpropagation
learning algorithm is derivative-free. The learning process converges very
quickly, and the learning rate for all neurons is self-adaptive. The functionality
of the MLMVN is higher than the one of the traditional feedforward neural
networks and a variety of kernel-based networks. Its higher flexibility and faster
adaptation to the mapping implemented make it possible to solve complex
classification problems using a simpler network. In this paper, we show that the
MLMVN can be successfully used for solving two selected classification
problems in bioinformatics.

1 Introduction

A multilayer neural network based on multi-valued neurons (MLMVN) has been
introduced in [1] and then developed further in [2]. This network consists of multi-
valued neurons (MVN). That is a neuron with complex-valued weights and an
activation function, defined as a function of the argument of a weighted sum. It maps
a whole complex plane onto the unit circle. This activation function was proposed in
[3]. The discrete-valued (k-valued) multi-valued neuron was introduced in [4]. It
implements such mappings between its n inputs and a single output that can be
represented by the k-valued threshold functions. Thus, it is based on the principles of
multiple-valued threshold logic over the field of complex numbers formulated in [5]
and then developed in [6]. The discrete-valued MVN, its properties and learning are
observed in detail in [6]. A continuous-valued MVN has been introduced in [1],[2].

Both discrete-valued and continuous-valued MVNs have a number of wonderful
properties. The first important property is that MVN is a complex-valued neuron. Its
weights are complex numbers and its inputs and outputs are lying on the unit circle. In
the discrete-valued (k-valued) case, they are exactly kth roots of unity. In the
continuous-valued case, they are arbitrary numbers with a unitary magnitude that is

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Selected Classification Problems in Bioinformatics 875

they are lying on the unit circle. The MVN's activation function is a function of the
argument of the weighted sum. It maps the whole complex plane into the unit circle.
This makes the MVN's functionality higher than the one of the traditional neurons (a
neuron with a sigmoid activation function, first of all). It is important that MVN
learning is reduced to the movement along the unit circle. There is the efficient
learning algorithm for MVN, which is based on a simple linear error correction rule.
It is derivative-free.

Different applications of MVN have been considered during recent years. MVN is
used as a basic neuron in the cellular neural networks [6], as the basic neuron of the
associative memories [6],[7]-[10], as the basic neuron in a number of neural
classifiers [10]-[12]. In [1],[2], it was suggested to use MVN as a basic neuron of a
feedforward neural network, which was called MLMVN. The MLMVN's
backpropagation learning algorithm generalizes the one for the single MVN and it is
derivative-free. The MLMVN outperforms a classical multilayer feedforward network
and different kernel-based networks in terms of learning speed, network complexity,
and classification/prediction rate. It has been tested for a number of benchmarks
problems (parity n, the two spirals, the sonar, and the Mackey-Glass time series
prediction [1],[2]). In [13],[14], the MLMVN has been successfully used for solving a
problem of blur and blur parameters identification. It is important to mention that
since the MLMVN (as well as the single MVN) implements those input/output
mappings that are described by multiple-valued (up to infinite-valued) functions, it is
an efficient mean for solving the multiple-class classification problems. The results
reported in [1],[2] and [13],[14] show that the MLMVN is really an efficient mean for
solving classification problems. It is more flexible and adapts faster. This makes its
training more efficient in comparison with other solutions.

In this paper, we apply MLMVN to solving several classification problems in
bioinformatics. There are multiple-class classification of microarray gene expression
data and breast cancer diagnostics. After presenting the basic properties of MLMVN
and its backpropagation learning algorithm, we will consider two four-class test cases
of microarray gene expression data classification (referred to as "Lung" and
"Novartis" [15]) and the test case of breast cancer diagnostics with a famous
"Wisconsin breast cancer data base"1.

2 Multi-Valued Neuron (MVN) and MVN-Based Multilayer
Neural Network (MLMVN)

2.1 Multi-Valued Neuron

A discrete-valued multi-valued neuron (MVN) has been introduced in [4] as a neural
element based on the principles of multiple-valued threshold logic over the field of
complex numbers. It has been comprehensively studied in [6], where its theory, basic

1 This breast cancer databases was obtained from the University of Wisconsin Hospitals,

Madison from Dr. William H. Wolberg. There are publicly available from a number of
sources, for example, http://www.ics.uci.edu/~mlearn/MLSummary.html

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

876 I. Aizenberg and J.M. Zurada

properties, and learning are observed. A discrete-valued MVN performs a mapping
between n inputs and a single output. This mapping is described by a multiple-valued
(k-valued) function of n variables 1()nf x , ..., x with n+1 complex-valued weights as

parameters:

1 0 1 1() ()n n nf x , ..., x P w w x ... w x= + + + , (1)

where 1()nX x ,...,x= is a vector of inputs (a pattern vector) and

0 1() nW w ,w , ...,w= is a weighting vector. The function and variables are the kth roots

of unity: exp(2)j i j/Kε π= , 0 ..., 1j , k -= , where i is an imaginary unity. P is the

activation function of the neuron:

() exp(2) if 2 arg 2 (1)P z = i j/k , j/k z j+ /kπ π π≤ < , (2)

where j=0,..., k-1 are the values of k-valued logic, 0 1 1 n nz w w x ... w x= + + + is a

weighted sum, arg z is an argument of the complex number z. Fig. 1 illustrates the
definition of the function (2). It divides a complex plane onto k equal sectors and
maps the whole complex plane into a subset of points belonging to the unit circle.
This is a set of kth roots of unity.

The MVN learning is reduced to the movement along the unit circle. This
movement is derivative-free, because any direction along the circle always leads to
the target. The shortest way of this movement is completely determined by an error
that is a difference between the desired and actual outputs. Let qε be a desired output

of the neuron (see Fig. 2) and ()s P zε = be an actual output of the neuron. The most

efficient MVN learning algorithm is based on the error correction learning rule [6]:

1 ()
(1)

q sr
r+ r

C
W W + ε - ε X

n+
= , (3)

where X is an input vector, n is a number of neuron’s inputs, X is a vector with the
components complex conjugated to the components of vector X, r is the number of
iteration, rW is a current weighting vector, 1rW + is a weighting vector after

correction, rC is a learning rate. Recently it was proposed in [2] to modify (3) as

follows:

1 ()
(1)

q sr
r+ r

r

C
W W + ε - ε X

n+ z
= , (4)

where rz is a current value of the weighted sum. A factor 1 | |rz in (4) is a self-

adaptive part of the learning rate. When it is used, rC in (4) should be equal to 1 that

makes the learning rate completely self-adaptive. Learning rule (4) makes it possible
squeezing a space for the possible values of the weighted sum. Thus, this space can be
reduced to the respectively narrow ring, which includes the unit circle inside. This
approach can be useful in order to exclude a situation when small changes either in
the weights or the inputs lead to a significant change of z.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Selected Classification Problems in Bioinformatics 877

Fig. 1. Geometrical interpretation of the MVN
activation function

Fig. 2. Geometrical interpretation of the
MVN learning rule

The convergence of the learning process based on the rule (3) is proven in [6]. The
rule (3) ensures such a correction of the weights that the weighted sum is moving
from the sector s to the sector q (see Fig. 2). The direction of this movement is

completely determined by the error q sδ ε ε= − . The correction of the weights
according to (3) changes the weighted sum exactly on the value δ . This ensures that
a desired output can be reached right after a single step of the weights adjustment for
the given input.

The activation function (2) is discrete. It has been recently proposed in [1],[2], to
modify the function (2) in order to generalize it for the continuous case in the
following way. If k → ∞ in (2) then the angle value of the sector (see Fig. 1) tends to
zero. Hence, the function (2) is transformed in this case as follows:

 () exp((arg))
| |

iArg z z
P z i z e

z
= = = , (5)

where Arg z is a main value of the argument of the complex number z and |z| is its
absolute value.

The function (5) maps the complex plane into a whole unit circle, while the
function (2) maps a complex plane just into a discrete subset of the points belonging
to the unit circle. Thus, the activation function (5) determines a continuous-valued
MVN. The learning rule (4) is modified for the continuous-valued case in the
following way [1],[2]:

1 (1) | |
r

r+ r
r r

C z
W W + T - X

n+ z z

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
, (6)

where T is a desired output of the neuron. It should be mentioned that the use of a

self-adaptive part of the learning rate (factor 1/ rz) is optional. It is reasonable to

use it for the mappings described by the functions with many high jumps. However, it

i

s
sε

qε
i

0

1

K-2 z

j-1

j j+1

K-1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

878 I. Aizenberg and J.M. Zurada

should not be used to learn the smoothed mappings. It should also be omitted from (6)
for the learning of the output layer neurons in a feedforward network (see below)
because the exact errors for these neurons are known, while for the hidden neurons
the exact errors are unknown. Thus, in this case (6) is transformed as follows

1 (1) | |
r

r+ r
r

C z
W W + T - X

n+ z

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
. (7)

It is possible to consider two different modifications of the MVN. There are
continuous inputs discrete output and discrete inputs continuous output,
respectively. The first of these modifications can be used for solving those
classification problems, where the features of the classified objects are continuous-
valued, while there are a fixed finite number of classes. Evidently, in this case, the
learning rule (4) can be used for training this type of the neuron. Respectively, the
learning rule (6) can be used for training the MVN modification with the continuous-
valued output and discrete-valued inputs. In this work, we use the discrete-valued
MVN and the "continuous inputs discrete output" modification.

2.2 Multilayer Neural Network Based on Multi-Valued Neurons (MLMVN)

A multilayer feedforward neural network based on multi-valued neurons (MLMVN)
has been proposed in [1],[2]. It refers to the basic principles of the network with a
feedforward dataflow through nodes proposed in [16]. The most important is that
there is a full connection between the consecutive layers (the outputs of neurons from
the preceding layer are connected with the corresponding inputs of neurons from the
following layer). The network contains one input layer, m-1 hidden layers and one
output layer. Let us use here the following notations. Let kmT be a desired output of

the kth neuron from the mth (output) layer; kmY be an actual output of the kth neuron

from the mth (output) layer. Then the global error of the network taken from the kth
neuron of the mth (output) layer is calculated as follows:

*
km km kmT Yδ = − . (8)

Following the backpropagation learning algorithm for the MLMVN proposed in
[1],[2], the errors of all the neurons from the network are determined by the global
errors of the network (8). It is essential that the global error of the network consists
not only of the output neurons errors, but of the local errors of the output neurons and
hidden neurons. It means that in order to obtain the local errors for all neurons, the
global error must be shared among these neurons.

Let kj
iw be the weight corresponding to the ith input of the kjth neuron (kth neuron of

the jth level), ijY be the actual output of the ith neuron from the jth layer (j=1,…,m),

and jN be the number of the neurons in the jth layer (it means that the neurons from

the j+1st layer have exactly jN inputs). Let 1,..., nx x be the network inputs.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Selected Classification Problems in Bioinformatics 879

Hence, the local errors are represented in the following way. The errors of the mth
(output) layer neurons are:

*1
km km

ms
δ δ= , (9)

where km is a kth neuron of the mth layer; 1 1m ms N −= + , i.e. the number of all neurons

on the previous layer (layer m-1 which the error is backpropagated to) incremented by
1. The errors of the hidden layers neurons are computed as follows:

1

1 1
1

1

1
()

jN
ij

kj ij k
ij

w
s

δ δ
+

+ −
+

=
= ∑ , (10)

where kj specifies the kth neuron of the jth layer (j=1,…,m-1);

1 11, 2,..., , 1j js N j m s−= + = = is the number of all neurons on the layer j-1

incremented by 1. Thus, the equations (9),(10) determine the error backpropagation
for the MLMVN. It is worth to stress on its principal distinction from the classical
error backpropagation: the MLMVN backpropagation does not depend on the
derivative of the activation function. Moreover, both discrete-valued and continuous
valued activation functions (2) and (5) that we use here are not differentiable at all as
the functions of a complex variable.

A factor 1/ js in (9),(10) ensures sharing of the particular neuron error among all

the neurons on which this error depends. It should be mentioned that for the 1st hidden
layer the parameter 1 1s = because there is no previous hidden layer, and there are no

neurons the error may be shared with.
It is important that both error backpropagation and the learning process for the

MLMVN are organized in the same manner independently of a particular
modification of MVN (discrete-valued, continuous-valued, continuous inputs
discrete output and discrete inputs continuous output).

After the error has been backpropagated, the weights of all neurons of the network
can be adjusted using either the learning rule (3) or (7) (depending on the type of
MVN and mapping, which we learn) for the output layer and, respectively, either (4)
or (6) for the hidden layers. Hence, the following correction rules are used for the
weights [1],[2]:

1

0 0

, 1,..., ,
(1)

,
(1)

kj km km
i i km im

m

km km km
km

m

C
w w Y i n

N

C
w w

N

δ

δ

−= + =
+

= +
+

%%

%

 (11)

for the neurons from the mth (output) layer (kth neuron of the mth layer),

1

0 0

, 1,..., ,
(1) | |

,
(1) | |

kjkj kj
i i kj i j

j kj

kjkj kj
kj

j kj

C
w w Y i n

N z

C
w w

N z

δ

δ

−= + =
+

= +
+

%%

%

 (12)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

880 I. Aizenberg and J.M. Zurada

for the neurons from the 2nd till m-1st hidden layers (kth neuron of the jth layer (j=2, …,
m-1), and

1 1 1
1

1

1 1 1
0 0 1

1

, 1,..., ,
(1) | |

,
(1) | |

k k k
i i k i

k

k k k
k

k

C
w w x i n

n z

C
w w

n z

δ

δ

= + =
+

= +
+

%

%

 (13)

for the neurons of the 1st hidden layer, where n is the number of network inputs, jN

is the number of neurons in the jth layer.
It is important that it should be taken 1kjC = in (11)-(13). Thus, the learning rate in

the MLMVN training is completely self-adaptive for the hidden neurons and it is not
needed for the output neurons.

In general, the MLMVN training process should continue until the comdition of
the minimal mean square error will be satisfied:

* 2

1 1

1 1
() ()

N N

kms s
s k s

E W E
N N

δ λ
= =

= = ≤∑∑ ∑ , (14)

where λ determines the precision of learning, sE is the square error for the sth

pattern 1()s nX x ,...,x= . In particular, in the case when 0λ = the equation (14) is

transformed to *, 0kmsk s δ∀ ∀ = , which means zero training error.

3 Solving Some Classification Problems in Bioinformatics

We are considering two classification problems. The first problem is classification of
microarray gene expression data. For this problem, we use two well-known
microarray gene expression data sets "Novartis" and "Lung" described in detail in
[15]. Both publicly available datasets consist of multiple classes. The "Lung" data set
includes 197 samples with 419 features (genes) that represent the four known classes.
The "Novartis" data set includes 103 samples with 697 features that also represent the
four known classes. Though feature selection is left outside the scope of this study, it
should be noted that any screening or selection of features prior to classification can
have significant effect on the result. Since using MLMVN we have to put the inputs
on the unit circle, the gene expression data was not used in classification as such. We
used a simple linear transform to convert the initial continuous-valued data to the
complex numbers lying on the unit circle. If the initial range of the features is [],a b

and [],y a b∈ is the initial feature value then ix e ϕ= , where

[]()
6.27 0,6.27

()

y a

b a
ϕ ⎛ ⎞−= ∈⎜ ⎟−⎝ ⎠

, is the transformed value on the unit circle and

[]0,6.27ϕ ∈ is its argument.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Selected Classification Problems in Bioinformatics 881

To test the MLMVN as a classifier for both problems, we used the network with
one hidden layer and one output layer containing the same number of neurons as the
number of classes. Thus, each output neuron works according to the rule "the winner
takes it all". Each of them recognizes samples from "its" class while rejecting other
samples. Best results for both test data sets are produced by the network with 6
neurons in a single hidden layer (any increase of the hidden neurons amount does not
improve the results; on the other hand, the results are a bit worse for a smaller size of
hidden layer). Thus, taking into account that we have exactly 4 classes in both
classification problems, the network n 6 4 (where n is the number of inputs) has
been used. The hidden neurons were continuous-valued (continuous inputs
continuous output), while the output neurons had continuous inputs and a discrete
output (k=2 in (2)). If more than one output neuron classifies some sample as "its",

we consider it to be a "winner", whose output's argument is closer to / 2π . However,
if all neurons reject a sample, this sample can be considered as "unclassified" (false
negative classification). During the learning process we directed the weighted sum to

the angles / 2π in the upper semi-plane and 3 / 2π in the bottom semi-plane. The

domains / 2 /8π π± and 3 / 2 /8π π± were considered as acceptable,
respectively.

We used a K-folding cross validation with K=5 to separate the data on the training
and testing sets. Thus, K=5 training and testing sets have been created. For the
"Novartis" data set, 80-84 samples of 103 were used for training and the rest 19-23
ones for testing. For the "Lung" data set, 117-118 samples of 197 were used for
training and the rest 39-40 ones for testing.

The training process requires for its convergence just about 1 minute on a PC with
Pentium IV 3.8 GHz CPU using a software simulator developed in the Borland
Delphi 5 environment and about 500-1000 training epochs starting from the random
weighted vectors with the real and imaginary parts belonging to [0, 1].

For the "Novartis" data set there is 98.95% classification rate, and for the "Lung"
data set there is 95.94% classification rate. For comparison, the best classification
results for the "Novartis" data set by using the k nearest neighbors (kNN) classifier
was 97.69% with k = 1. For the "Lung" data set, the best classification accuracy by
using the kNN classifier was 92.55% with k = 5. Exactly the same data transformation
and subsampling partitions were used for all classifiers.

The next experiment was done using the "Wisconsin breast cancer database". One
of the best known classification results for this data set first described in [17] was in
turn reported in [18]. There is also detailed description of the data set in [18]. It
contains 699 samples drawn from the classes "Benign" (458 samples) and
"Malignant" (241 samples). Each entry is described by a 9-dimensional vector of
integer-valued features (each element of which has value between 1 and 10). The nine

features were clump thickness (1x), uniformity of cell size (2x), uniformity of cell

shape (3x), marginal adhesion (4x), single epithelial cell size (5x), bare nuclei (6x),

bland chromatin (7x), normal nucleoli (8x) and mitoses (9x). The missing values

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

882 I. Aizenberg and J.M. Zurada

for the feature 6x for 16 samples have been replaced with the average equals to 3.

The data set was divided into training set containing 350 randomly selected samples
and test set containing the rest of 349 input samples like it was done in [18].

Since both inputs and outputs for this experiment are discrete, we used the
"discrete input (k=10 in (2) continuous output" hidden neurons and the "continuous
inputs discrete output (k=2 in (2)" output neuron. This makes it possible to ensure
faster convergence of the training algorithm because the network becomes more
flexible and adaptive. The best results were obtained using the network 9 8 1 (9
inputs, 8 hidden neurons and a single output neuron). Any increase of the hidden layer
size does not improve the results, while the results are a bit worse for reduced hidden
layer sizes. The training process converges quickly (just about 2.5-3 minutes and
4000-5000 epochs are required for the mentioned above software simulator). The
classification rate for five independent runs (every time the learning process was
started from the random weights) is 95.99%. This result is a bit better than 95%
reported in [18]. However, a classification method, which was used in [18], consists
of two stages. After the first stage, where a standard backpropagation neural network
9 9 1 is trained, fuzzy rules are derived from the results of the first stage and only
the fuzzy rules are used for classification. Thus, although the results reported in [18]
and those obtained here are comparable, the training process for the MLMVN is
single-stage, and hence simpler.

4 Conclusions

In this paper, we documented the use of the multi-valued neural network based on
multi-valued neurons for solving two popular bioinformatics classification problems.
The MLMVN produces good results both for microarray gene expression data
classification and for the breast cancer diagnostics.

References

1. Aizenberg, I., Moraga, C., Paliy, D.: A Feedforward Neural Network based on Multi-
Valued Neurons. In: Reusch, B. (ed.) Computational Intelligence, Theory and
Applications. Advances in Soft Computing, vol. XIV, pp. 599–612. Springer, Heidelberg
(2005)

2. Aizenberg, I., Moraga, C.: Multilayer Feedforward Neural Network Based on Multi-
Valued Neurons (MLMVN) and a Backpropagation Learning Algorithm. Soft
Computing 11, 169–183 (2007)

3. Aizenberg, N.N., Ivaskiv Yu., L., Pospelov, D.A: About one generalization of the
threshold function. Doklady Akademii Nauk SSSR (The Reports of the Academy of
Sciences of the USSR) 196(6), 1287–1290 (1971)

4. Aizenberg, N.N., Aizenberg, I.N.: CNN Based on Multi-Valued Neuron as a Model of
Associative Memory for Gray-Scale Images. In: Proceedings of the Second IEEE Int.
Workshop on Cellular Neural Networks and their Applications, pp. 36–41. Technical
University Munich, Germany (1992)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

 Solving Selected Classification Problems in Bioinformatics 883

5. Aizenberg, N.N., Ivaskiv Yu, L.: Multiple-Valued Threshold Logic. Naukova Dumka
Publisher House, Kiev (1977) (in Russian)

6. Aizenberg, I., Aizenberg, N., Vandewalle, J.: Multi-valued and universal binary neurons:
theory, learning, applications. Kluwer Academic Publishers, Dordrecht (2000)

7. Jankowski, S., Lozowski, A., Zurada, J.M.: Complex-Valued Multistate Neural
Associative Memory. IEEE Trans. on Neural Networks 7, 1491–1496 (1996)

8. Aoki, H., Kosugi, Y.: An Image Storage System Using Complex-Valued Associative
Memory. In: Proc. of the 15th International Conference on Pattern Recognition, vol. 2, pp.
626–629. IEEE Computer Society Press, Los Alamitos (2000)

9. Muezzinoglu, M.K., Guzelis, C., Zurada, J.M.: A New Design Method for the Complex-
Valued Multistate Hopfield Associative Memory. IEEE Trans. on Neural Networks 14(4),
891–899 (2003)

10. Aoki, H., Watanabe, E., Nagata, A., Kosugi, Y.: Rotation-Invariant Image Association for
Endoscopic Positional Identification Using Complex-Valued Associative Memories. In:
Mira, J.M., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2085, pp. 369–374. Springer,
Heidelberg (2001)

11. Aizenberg, I., Myasnikova, E., Samsonova, M., Reinitz, J.: Temporal Classification of
Drosophila Segmentation Gene Expression Patterns by the Multi-Valued Neural
Recognition Method. Journal of Mathematical Biosciences 176(1), 145–159 (2002)

12. Aizenberg, I., Bregin, T., Butakoff, C., Karnaukhov, V., Merzlyakov, N., Milukova, O.:
Type of Blur and Blur Parameters Identification Using Neural Network and Its Application
to Image Restoration. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 1231–
1236. Springer, Heidelberg (2002)

13. Aizenberg, I., Paliy, D., Astola, J.: Multilayer Neural Network based on Multi-Valued
Neurons and the Blur Identification Problem, 2006 IEEE World Congress on
Computational Intelligence. In: Proceedings of the 2006 IEEE Joint Conference on Neural
Networks, Vancouver, Canada, July 16-21, pp. 1200–1207. IEEE Computer Society Press,
Los Alamitos (2006)

14. Aizenberg, I., Paliy, D., Moraga, C., Astola, J.: Blur Identification Using Neural Network
for Image Restoration. In: Reusch, B. (ed.) book Computational Intelligence, Theory and
Application. Proceedings of the 9th International Conference on Computational
Intelligenc, pp. 441–455. Springer, Heidelberg (2006)

15. Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus Clustering: A resampling-based
method for class discovery and visualization of gene expression microarray data. Machine
Learning 52, 91–118 (2003)

16. Rumelhart, D.E., McClelland, J.L.: Parallel Distributed Processing: Explorations in the
Microstructure of Cognition. MIT Press, Cambridge (1986)

17. Mangasarian, O.L., Setiono, R., Wolberg, W.H.: Pattem recognition via linear
programming: Theory and application to medical diagnosis. In: Coleman, T.F., Li, Y.
(eds.) Large-scale numerical optimization, pp. 22–30. SIAM Publications, Philadelphia
(1990)

18. Wettayapi, W., Lursinsap, C., Chu, C.H.: Rrule extraction from neural networks using
fuzzy sets. In: ICONIP’O2. Proceedings of the 9th International Conference on Neural
Information Processing, vol. 5, pp. 2852–2856 (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a

Hybrid Learning Method in Coherent Neural
Networks

Chor Shen Tay, Ken Tanizawa, and Akira Hirose

Department of Electronic Engineering, The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Abstract. Computer Generated Holograms (CGHs) are commonly used
in optical tweezers which are employed in various research fields. Frame
interpolation using coherent neural networks (CNNs) based on corre-
lation learning can be used to generate holographic movies efficiently.
However, the error that appears in the interpolated CGH images need
to be reduced even further so that the method with frame interpolation
can be accepted for use generally. In this paper, we propose a new hy-
brid CNN learning method that is able to generate the movies almost
just as efficiently and yet reduces even more error that is present in the
generated holographic images as compared to the method based solely
on correlation learning.

1 Introduction

Holograms are recordings of information that are used to produce 3-dimensional
(3D) holographic images for optical tweezers and other purposes [1]-[4]. Com-
puter generated holograms (CGHs) are holograms which are not created tangibly
but are generated using a computer that can be used to produce wavefronts of
light with any prescribed amplitude and phase distribution. A specific type of
CGH called the kinoform - a phase-only diffractive CGH - which is widely used
in many application fields, is considered in this paper.

A method of generating holographic movies efficiently with frame interpola-
tion using coherent neural network (CNN) that deals with the complex-amplitude
information with generalization ability in the carrier-frequency domain was pro-
posed by Hirose et al. (previous learning method) [5][6]. Nevertheless, generating
kinoforms that are relatively error-free is also crucial in order for the method with
frame interpolation to be accepted for common use.

In this paper, we propose and actualize a new hybrid learning method (HLM)
using CNN that is capable of reducing the amount of error present in the gen-
erated kinoforms. It is also able to generate the movies almost just as efficiently
as compared to the previous learning method.

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 884–893, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a Hybrid Learning Method 885

2 Coherent Neural Networks

2.1 Fundamentals of Learning and Information Processing

Figure 1 is a self-homodyne neural circuit, which is the most basic unit of
the neural network used in the whole course of the present research [7][8].
There is only a single input xm = |xm| exp(iαm) into, single output yn =
|yn| exp(iβn) from, and multiple connections with different synaptic weights
wnm,h = |wnm,h| exp(iθnm,h) into the neuron where i ≡

√
−1. The subscripts m,

n are the indices for the input, output vectors respectively while h is the index
for the connection path.

Σ

w

yx

nm,h

nm,1

nm,2

m n

w

w =| nm,hw | exp(i 2πf τ)nm,h

Fig. 1. Self-homodyne neural circuit

We employ an amplitude-phase type activation function defined as

yn = g(un) = tanh(B|un|) exp(i arg(un)) (1)

where B is the amplitude gain of the input signals and un is the internal state
of the neuron which is given as

un =
∑

m

∑

h

(|wnm,h| exp(i2πfτnm,h)xm) (2)

Here, f is the carrier frequency of light and τnm,h is the time delay of wnm,h.
|wnm,h| and 2πfτnm,h(= θnm,h) represent the amplitude and phase of wnm,h

respectively.
As the CGH involved with in this paper is the kinoform, we consider only

the phase portion of yn in (1). Also, as neural networks possess generalization
ability, the HLM using CNN can change the networks’ learning and processing
behavior by changing its f . This frequency-domain generalization allows us to
generate and interpolate CGH as the network generates the output based on the
frequency that the user presents to it, even if f does not correspond to a teacher
data set of data [9].

Two different learning rules were used in this paper. The first rule is correla-
tion learning expressed as

μ
d|wnm,h|

dt
=−|wnm,h|+|ŷn||xm|cos(β̂n−αm−θnm,h) (3)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

886 C.S. Tay, K. Tanizawa, and A. Hirose

μ
dτnm,h

dt
=

1
2πf

|ŷn||xm|
|wnm,h| sin(β̂n − αm − 2πfτnm,h) (4)

The second rule is learning by method of steepest descent (SDM) stated as

μ
d|wnm,h|

dt
= −

(

γ|xm| cos θrot
nm,h −|yn||ŷn|sin(βn−β̂n)

|xm|
|un| sin θrot

nm,h

)

(5)

μ
dτnm,h

dt
= − 1

2πf

(

γ|xm| sin θrot
nm,h + |yn||ŷn| sin(βn − β̂n)

|xm|
|un| cos θrot

nm,h

)

(6)

Here, μ is the time constant of learning, γ = B(1−|yn|2)(|yn|−|ŷn| cos(βn−β̂n)),
θrot

nm,h = βn − αm − 2πfτnm,h, and the ˆ notation means that the term belongs
to the teacher data presented to the neural network for learning.

2.2 Hybrid Learning Method

The proposed HLM comprises two different learning methods carried out in
series. A primary reason for using an HLM in generating holographic movies
with frame interpolation lies in the fact that each of the component methods
within the HLM possesses different areas of strengths and weaknesses that do
not coincide with each other: one component method removes the low frequency
distortion in the kinoforms more effectively while the other method removes the
high frequency noise in the kinoforms more effectively. In addition, we found
that the error generated using the HLM is much less than the error generated
by each individual component method. The detail is presented below.

128 pixels (=128 neurons)

slexip
821

)s nor uen
8 21=(

Fig. 2. Structure of neural network with lateral connections to be used in Method 1

The first part of the HLM executes correlation learning using the neural net-
work structure shown in Fig. 2 (method 1). As can be seen for the gray neuron
in Fig. 2 as an example, the network in method 1 learns using the standard co-
herent synaptic connections as well as lateral connections that are output from
the adjacent neurons. The weights of the lateral connections are frequency inde-
pendent in this present experiment and expressed by a simple complex-valued

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a Hybrid Learning Method 887

128 pixels (=128 neurons)

slexip
821

)snoruen
821=(

Fig. 3. Structure of previous neural network, which is used also in Method 2

weight w ∈C, i.e., w = |w| exp(iθ), with a frequency-insensitive angle θ instead
of 2πfτ . Actually, we prefer a frequency-sensitive connection, just like the con-
nections shown in Fig. 1, because the total neural behavior should be frequency
sensitive [6]. However, we cannot implement it with our present personal com-
puter having 1GB memory area. For the implementation, we need five times
large area as well as a longer computation time.

The second part of the HLM carries out learning by SDM using the neural
network structure shown in Fig. 3 (method 2), which was used also in previous
report [6]. The neural network in method 2 learns using the standard coher-
ent synaptic connections only - the reason why we have used different neural
networks for methods 1 and 2 will be explained in Section 3.3.

3 Computer Simulations

3.1 Types of Error Identified

The sources of error in the generated kinoforms are found by calculating the
difference or error dj between the ideal hologram data sj and the generated
hologram data obtained using the respective learning methods lj , i.e.,

dj = sj − lj (7)

Diagrams (a) and (d) in Fig. 4 show typical examples of the errors that were
identified at the generated teacher and interpolated kinoforms after learning with
the previous method. The errors are found using (7) and displayed in grayscale
(white: π, black: −π). Two types of errors can be identified from the diagrams
(a) and (d), which are

1. Local, high frequency noise characterized by the rough patterns.
2. Global, low frequency distortion characterized by the warped patterns.

The sources of error identified allowed us to consider possible countermeasures
to reduce them from the generated kinoforms.

3.2 Learning Results Obtained Using Method 1

Diagrams (b) and (e) in Fig. 4 show examples of the error present in the gener-
ated teacher and generated interpolated kinoforms respectively when method 1

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

888 C.S. Tay, K. Tanizawa, and A. Hirose

G
en

er
at

ed
T
ea

ch
er

G
en

er
at

ed
In

te
rp

ol
at

ed

(a) Previous method

(d) Previous method

(b) Method 1

(e) Method 1

(c) Method 2

(f) Method 2

Fig. 4. Comparison of error in generated holograms between different learning methods

is used independently in generating the kinoforms. We find in the both diagrams
that the distortion is reduced when we compare them to their counterparts that
used the previous learning method shown in diagrams (a) and (d).

However, we can also see that the noise present in diagrams (b) and (e) of
Fig. 4 increases (area of rough patterns becomes larger). Figure 5(a) shows the
evolution of the mean error values Ev, for learning in method 1, at the teacher
frequencies defined as

Ev =
1

SIZE

∑

n

(

β̂ − arg(ûn)
)2

(8)

where β̂ is the teacher presented to the neural network, ûn is temporary out-
put, and SIZE is the size of the hologram (128 × 128 pixels). The values of
Ev obtained at the end of learning for method 1 are much higher than those
obtained using the previous learning method. As such, it is possible to draw
the conclusion that method 1 is effective against distortion, but weak against
noise.

The reason why method 1 is effective against distortion is that the structure
of the neural network with the lateral connections in Fig. 2 feedback information
from the surrounding neurons into the central neuron while learning. As a result,
the learning process is dynamic and incorporating the output from the surround-
ing adjacent neurons. This is the primary reason why method 1 is effective in
reducing the distortion in the generated kinoforms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a Hybrid Learning Method 889

0

0.005

0.010

0 20 40 60 80 100

E
rr

or
 F

un
ct

io
ns

E

Iteration Number

v Previous
Method

Method 1

(a) Results obtained using method 1

0

10

0 20 40 60 80 100
Iteration Number

10x

2.5x

1.25

E
rr

or
 F

un
ct

io
ns

E v

-4

-5

Previous
Method

Method 2

(b) Results obtained using method 2

Fig. 5. Ev of teacher data vs. learning iteration number

3.3 Learning Results Obtained Using Method 2

Diagrams (c) and (f) in Fig. 4 show examples of the error obtained in the gen-
erated kinoforms with method 2. Comparing diagram (c) with diagram (a) in
Fig. 4, it can be observed that the error present in the (c) is greatly reduced.
Note that a totally error-free diagram will correspond to a pattern that is to-
tally and evenly gray throughout. It is also observable by comparing diagrams
(f) and (d) in the same figure that although the noise present in the generated
interpolated kinoform of method 2 is significantly less than that of the previous
learning method, the distortion becomes even more apparent.

Figure 5(b) shows the mean error Ev at teacher frequencies in method 2
against the learning iteration number carried out. It is apparent from Fig. 5(b)
that the Ev using method 2 are less than those obtained using the previous
learning method. It is therefore possible to infer from examining Figs. 4(c),
4(f) and 5(b) that although method 2 is effective against reducing the noise
present in the holograms, it is also extremely weak against distortion at the
same time.

The reason why method 2 does not make use of the neural network struc-
ture shown by Fig. 2 is that the lateral connections shown in the network are
frequency independent, unlike the standard coherent synaptic connections that
are frequency dependent. Because the network behavior should be carrier fre-
quency dependent, the lateral connection also should be frequency dependent.
The lateral connection is useful to remove global distortion in the first rough
learning because the coherent neuron can possess redundancy in learning in gen-
eral [10]. Because the structure of Fig. 2 is inconsistent with generalized learning
in the frequency-domain and also because the problem of the distortion has al-
ready been handled by method 1, method 2 utilizes the neural network structure
without lateral connections shown in Fig. 3.

Method 2 is effective against noise as learning by SDM approaches the solution
straightforward when we have no local minima. This is different from correlation
learning. This difference in learning by SDM in method 2 makes it effective
against the noise present in the generated kinoforms.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

890 C.S. Tay, K. Tanizawa, and A. Hirose

3.4 Learning Results Obtained Using the HLM

Figure 6 shows the comparison made between the final iteration error Ev of re-
spective learning methods versus carrier frequency at learning frequency points.
It can be seen that the Ev obtained using the HLM is the smallest compared to
all of the other methods that are discussed in this paper. The error Ev obtained
using the HLM is approximately 103 ∼ 105 times smaller than that obtained
for the previous learning method. We can deduce that Ev obtained at the end
of the learning iterations correspond and is directly proportional to the noise in
the generated kinoforms by comparing Fig. 5(a) with 5(b).

10-10

10-8

10-6

10-4

10-2

10
0

400000 400002 400004 400006 400008 400010 400012
Optical carrier frequency [GHz]

Previous Method

Method 1

Method 2

Hybrid Method

H
ol

og
ra

m
 m

ea
n

er
ro

r
 E

v

Fig. 6. Comparison of final iteration Ev in different methods

Figure 7 compares examples of the generated teacher diagrams learnt between
the different learning methods against that of the ideal diagram. The images on
the top-half of the diagrams show the kinoforms (hologram domain), while those
at the bottom-half of the diagrams represent the reconstructed images on the
image screen (movie frame domain). In this movie, a bright pixel moves from
upper left to upper right. Figure 7 shows that the generated diagram (i.e. both
the kinoform and frame) using the HLM is very similar to that of the ideal
diagram. The fact indicates that almost all of the error has been removed.

Likewise, Fig. 8 shows the comparison made for the generated interpolated
diagrams between respective learning methods against that of the ideal diagram
in the same movie. It is again observe that there is less noise and distortion
in the diagram generated with the HLM than that with the previous learning
method.

Figure 9 shows the comparison of the degree of blurring (unsharpness) of the
reconstructed image frames generated by the HLM against those by the previous
learning method. We define the degree of blurring as

Eb =
1

SIZE

SIZE∑

k=1

(

L − L̂

)2

(9)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a Hybrid Learning Method 891

Ideal Hybrid Method Previous Method

Fig. 7. Comparison of learning-point diagrams (top: holograms, bottom: movie frames)

Ideal Hybrid Method Previous Method

Fig. 8. Comparison of interpolated diagrams (top: holograms, bottom: movie frames)

where L is the luminosity of the individual reconstructed image pixels on the
image screen. The degree of blurring Eb shows the error in the reconstructed-
image domain, whereas the mean erro Ev shows the error level in the holographic
domain. The lower the value of Eb, the better we consider the reconstructed
images to be.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

892 C.S. Tay, K. Tanizawa, and A. Hirose

0

10

20

30

40

400000 400002 400004 400006 400008 400010 400012

D
eg

re
e

of
 b

lu
rr

in
g

 E

Optical carrier frequency [GHz]

50

b Previous Method

Hybrid Method

Fig. 9. Comparison of sharpness of reconstructed images

The 25 Eb values in Fig. 9 correspond to generated image frames at 25 fre-
quency points (7 frames at learning frequencies and 18 interpolating frames)
when a single pixel moves from upper left to upper right inthe image screen.
The ticks on the x-axis (every four points) represent the frequencies used for
learning. The rest of the points correspond to the generated interpolated im-
ages.

The curves in Fig. 9 clearly shows that the degree of blurring Eb is lower
for the image reconstructed with the HLM. Note particularly that the points
showing the Eb which correspond to the learning frequency points of the HLM
are practically zero. This means numerically that the images are very sharp and
identical to the ideal images.

3.5 Calculation Cost to Generate Movies

The amount of time required for generation of the above movie (7 teachers)
using the previous learning method is approximately 18.5 minutes on average,
while that using the HLM is approximately 21.6 minutes. This corresponds to a
17% increase in calculation time. However, the quality is much better than the
previous method and is near to that of kinoforms generated with complete set
of object data and FFT.

The calculation cost to generate object data is incomparably higher than
other costs because, in most cases, we have to generate them by hand three
dimensionally. The proposal provides us to generate a high-quality kinoform
movies with a small number of object data.

4 Summary

We have proposed a new hybrid CNN learning method that is able to generate
3D movies almost just as efficiently and yet reduces even more error. We have
compared the results of the newly proposed hybrid learning method with that
of the previous learning method in this paper. We have confirmed that the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Error Reduction in Holographic Movies Using a Hybrid Learning Method 893

hybrid learning method is capable of generating holographic movies almost just
as efficiently and with less error as compared to the previous learning method.

References

1. Grier, D.G.: A revolution in optical manipulation. Nature 424, 810–816 (2003)
2. Liesener, J., Reicherter, M., Haist, T., Tiziani, H.J.: Multi-functional optical tweez-

ers using computer-generated holograms. Optics Communications 185(1), 77–82
(2000)

3. Reicherter, M., Haist, T., Wagemann, E.U., Tiziani, H.J.: Optical particle trap-
ping with computer-generated holograms written on a liquid-crystal display. Optics
Letters 24(9), 608–610 (1999)

4. Schonbrun, E., et al.: 3D interferometric optical tweezers using a single spatial light
modulator. Optics Express 13(10), 3777–3786 (2005)

5. Hirose, A., Higo, T., Tanizawa, K.: Efficient generation of holographic movies
with frame interpolation using a coherent neural network. IEICE Electronics Ex-
press 3(19), 417–423 (2006)

6. Hirose, A., Higo, T., Tanizawa, K.: Holographic Three-Dimensional Movie Genera-
tion with Frame Interpolation Using Coherent Neural Networks. In: WCCI/IJCNN
2006, Vancouver (2006)

7. Kawata, S., Hirose, A.: Coherent optical neural network that learns desirable phase
values in the frequency domain by use of multiple optical-path differences. Optics
Letters 28(24) (2003)

8. Hirose, A. (ed.): Complex-Valued Neural Networks: Theories and Applications.
World Scientific Publishing Co. Pte. Ltd, Singapore (2003)

9. Hirose, A.: Complex-Valued Neural Networks. Springer, Heidelberg (2006)
10. Hirose, A., Eckmiller, R.: Coherent optical neural networks that have optical-

frequency-controlled behavior and generalization ability in the frequency domain.
Applied Optics 35(5) (1996)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant

Hierarchical NMF

Sven Rebhan1, Julian Eggert1, Horst-Michael Groß2, and Edgar Körner1

1 HONDA Research Institute Europe GmbH
Carl-Legien-Strasse 30, 63073 Offenbach/Main, Germany

2 Ilmenau Technical University, Dept. of Neuroinformatics and Cognitive Robotics
P.O.B. 100565, 98684 Ilmenau, Germany

Abstract. The hierarchical non-negative matrix factorization (HNMF)
is a multilayer generative network for decomposing strictly positive data
into strictly positive activations and base vectors in a hierarchical man-
ner. However, the standard hierarchical NMF is not suited for overcom-
plete representations and does not code efficiently for transformations in
the input data. Therefore we extend the standard HNMF by sparsity con-
ditions and transformation-invariance in a natural, straightforward way.
The idea is to factorize the input data into several hierarchical layers of
activations, base vectors and transformations under sparsity constraints,
leading to a less redundant and sparse encoding of the input data.

1 Introduction

The NMF has been introduced by Lee and Seung [1,2] as an efficient factor-
ization method for decomposing multivariant data under the constraint of non-
negativity. This results in a parts-based representation, because it allows only
additive combination of components. While the standard NMF makes no fur-
ther assumption on the input data, even so it is often used on inputs containing
particular transformation properties, e.g. input images presented at different po-
sitions, scales and rotations. The resulting base vectors of the standard NMF
then encode each transformation implicitly, which leads to a large amount of
redundancy in the base vectors.

Ahn et al. developed a hierarchical multilayered variant of the NMF [3] by
stacking multiple layers of NMF networks. This way a hierarchical represen-
tation of the input can be learned, where higher layers of the hierarchy code
for more complex features composed of less complex features from lower layers.
One can interprete this as a more and more abstract representation of the input
with increasing hierarchy levels. Despite the interesting property of increasing
abstraction in the layers of the network, the main problem of the NMF, the
implicit coding of transformations in the base vectors, remains.

By assuming transformation properties in the input data we introduce, based
on the work of Eggert et al. [4,5], a hierarchical, sparse and transformation-
invariant version of the NMF. It has been shown that the proposed separation
of the input data into activations, base vectors and transformations leads to

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 894–903, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant Hierarchical NMF 895

a sparser and less redundant representation of the input than in the standard
NMF. Extending the approach of Eggert et al. in a hierarchical way, we combine
the advantage of sparsity and reduced redundancy in the representation with
the advantage of growing abstraction in the hierarchical network of Ahn et al.

In Sect. 2 we extend the energy term formulations of [4,5] and derive the
update rules for the activations and base vectors. Afterwards we discuss two
possible update schemes in Sect. 2.3 and finally present simulation results using
the new algorithm in Sect. 3. A short discussion finalizes the paper.

2 Hierarchical Extension to the Sparse,
Transformation-Invariant NMF Framework

2.1 Sparse and Transformation-Invariant NMF

First we look at the sparse and transformation-invariant NMF, which serves
as the base for our hierarchical extension. The energy term of the sparse and
transformation-invariant NMF is defined as the Euclidian distance between the
i-th input Vi and its reconstruction Ri plus the sparsity term λH · gH (H)

F (H, Ŵ) =
1
2

∑

i

||Vi − Ri||2 + λH · gH (H) (1)

where gH(H) is a sparsity function and λH is used to control the sparsity in the
activations Hi. The reconstruction Ri itself is gained by linearly overlapping the
normalized base vectors Ŵj transformed by the operators T m, weighted by the
activation Hj,m

i

Ri =
∑

j

∑

m

Hj,m
i T mŴj . (2)

To avoid the scaling problem described in [4] the base vectors have to be normal-
ized. Now one can calculate the derivation of the energy function with respect to
Hj,m

i and Wj and update them according to the standard NMF update rules:
1. Calculate the reconstruction Ri according to (2).
2. Update the activations according to 1

Hj,m
i ← Hj,m

i �

(
T mŴj

)T

Vi

(
T mŴj

)T

Ri + λH · g′H
(
Hj,m

i

) . (3)

3. Calculate the reconstruction Ri using the new activations according to (2).
4. Update the non-transformed base vectors according to

Wj ← Wj�

∑

m

[

(T m)T V
(
Hj,m

)T +
[(

Ŵj

)T

(T m)T R
(
Hj,m

)T

]

∇Wj

(
Ŵj

)]

∑

m

[

(T m)T
R (Hj,m)T +

[(
Ŵj

)T

(T m)T
V (Hj,m)T

]

∇Wj

(
Ŵj

)] .

() (4)
1 Where � denotes componentwise multiplication as C = A � B := Ci = Ai · Bi, ∀i .

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

896 S. Rebhan et al.

5. Return to 1 until convergence.

The terms for updating the activations and base vectors can be found in [4],
in addition the transformation matrix T m from [5] is already included to make
the sparse NMF transformation-invariant. Based on the update rules above we
formulate the hierarchical energy equation and the corresponding update rules.

2.2 Sparse and Transformation-Invariant Hierarchical NMF

The sparse and transformation-invariant HNMF can be seen, similar as suggested
in [3], as a network composed of multiple sparse and transformation-invariant
NMF layers. This leads to the following Euclidian energy formulation2:

F (H(L), W (1), . . . , W (L)) =
1
2

∑

i

∣
∣
∣
∣
∣
∣Vi − R

(1)
i

∣
∣
∣
∣
∣
∣
2

, (5)

where L denotes the topmost layer of the network. The reconstruction R(l) of the
layer l in the hierarchy serves as the activation of the layer (l-1) and is calculated
according to the transformation-invariant NMF

R(l),ml−1
i := H(l−1),ml−1

i =
∑

ml

H(l),ml

i T (l),mlW (l),ml−1 . (6)

This recursive definition reveals that the reconstruction of the input data de-
pends only on the highest layer activations H(L) and all base vectors. Having a
closer look at (6) we see that the transformation information ml−1 is propagated
down the hierarchy.

As [5] shows, sparsity is absolutely necessary in a transformation-invariant
NMF network to avoid trivial solutions for the base vectors. Therefore we have
to include at least sparsity in the activations. In contrast to the activations of all
other layers, which are defined through down-propagation, the activations H(L)

are independent. The extended energy formulation reads as

F =
1
2

∑

i

∣
∣
∣
∣
∣
∣Vi − R

(1)
i

∣
∣
∣
∣
∣
∣
2
+ λH · gH

(
H(L)

)
. (7)

This step additionally requires the normalization of all base vectors Ŵ (1),
. . . , Ŵ (L). We choose the normalization function for the base vectors as

Ŵ(l),ml−1
jl

=
W(l),ml−1

jl
∑

a

∑

b

W
(l),a,b
jl

, (8)

which normalizes the length of each base vector to one. This leads to

R(l),ml−1
i := H(l−1),ml−1

i =
∑

ml

H(l),ml

i T (l),mlŴ (l),ml−1 . (9)

2 Denoted as F from now on for convenience.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant Hierarchical NMF 897

To be able to control the arrangement in the base vectors it is useful to include
sparsity in the base vectors as well. Therefore we add another sparsity term to
the energy function, which is now composed of three elements

F =
1
2

∑

i

∣
∣
∣
∣
∣
∣Vi − R

(1)
i

∣
∣
∣
∣
∣
∣
2

︸ ︷︷ ︸
Reconstruction error

+ λH · gH

(
H(L)

)

︸ ︷︷ ︸
Activation sparsity

+
∑

l

λ
(l)
W · gW

(
Ŵ (l)

)

︸ ︷︷ ︸
Base vector sparsity

. (10)

The sparsity terms for the activations and base vectors are chosen as

gH

(
H(L)

)
=

∑

i

∑

jL

∑

mL

H
(L),jL,mL

i (11)

gW

(
Ŵ (l)

)
=

∑

jl

∑

jl−1

∑

ml−1

Ŵ
(l),jl−1,ml−1
jl

. (12)

Starting from the functions above we calculate the gradients with respect to the
activations H(L) and base vectors W (l).

In order to formulate the multiplicative update rule we split the remaining
two gradient terms into the positive part ∇+ and the negative part ∇−.3 For
the highest layer activations we get the following update rule

H(L),mL

i ← H(L),mL

i �

∑

mL−1

(
T (L),mLŴ (L),mL−1

)T

V(L),mL−1
i

∑

mL−1

(
T (L),mLŴ (L),mL−1

)T

R(L),mL−1
i + λH

(13)

with the substitutions

V(l+1),ml

i =
∑

ml−1

(
T (l),mlŴ (l),ml−1

)T

V(l),ml−1
i (14)

R(l+1),ml

i =
∑

ml−1

(
T (l),mlŴ (l),ml−1

)T

R(l),ml−1
i . (15)

The reconstruction error is propagated from the bottom to the top layer of the hi-
erarchy and is then used to adjust the activations of the highest layer. The
sparsity term itself is an additional constraint which is independent of the recon-
struction quality of the network. As a consequence the sparse and transformation-
invariantHNMF network has to find a tradeoffbetween reconstruction quality and
sparsity, controlled by the sparsity parameter λH .

Performing the same steps for the gradient with respect to W (l), we get

W(l),ml−1
jl

← W(l),ml−1
jl

�
∇−

W (l)F

∇+
W (l)F

. (16)

3 This is possible due to the non-negative character of all elements in the equation.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

898 S. Rebhan et al.

The gradient of the sparsity term gH

(
H(L)

)
for the highest layer activations is

zero, because H(L) is independent of the base vectors. For the two parts of the
gradient of (16) we get

∇−
W (l)F = WV

(l),ml−1
jl

+
∑

k

[(
Ŵ(l),k

jl

)T [
WR

(l),k
jl

+ λ
(l)
W

]]

Ŵ(l),ml−1
jl

(17)

∇+
W (l)F = WR

(l),ml−1
jl

+
∑

k

[(
Ŵ(l),k

jl

)T

WV
(l),k
jl

]

Ŵ(l),ml−1
jl

+ λ
(l)
W (18)

with the substitutions

WR
(l),ml−1
jl

=
∑

ml

[(
T (l),ml

)T

R(l),ml−1

(
H(l),jl,ml

)T
]

(19)

WV
(l),ml−1
jl

=
∑

ml

[(
T (l),ml

)T

V (l),ml−1

(
H(l),jl,ml

)T
]

. (20)

Similar to the substitutions for the activations we see an upwards propagation of
the reconstruction error. The sparsity constraint on the base vectors, controlled
by the parameter λ

(l)
W , can also be seen in the update function (17) and (18).

The normalization of the base vectors which is required by the sparsity in the
activations leads to an additional term in the update rule for W (l).

In the next section we discuss two possible update schemes, starting from the
update rules (13) to (20).

2.3 Possible Update Schemes

With the extension of the NMF to a hierarchical network new possibilities to
update the whole network come along.

1. Update the network by iterating layer by layer
2. Update the whole network by propagating through all layers

In the following we discuss the pro and contra of the two methods.

Update Network Layer by Layer
In this scheme each layer is learned separately, beginning from the lowest layer,
as shown in Fig. 1a. The goal is to reconstruct the activations of the layer
below as a linear combination of base vectors. Afterwards the layer above is
adapted and so on. This means that the activations of each layer are adapted
sequentially and are therefore mutually independent. In this sense you get a stack
of separate transformation-invariant, sparse NMF networks. A big advantage
of this independent relaxation is the fact that all parameters of one layer are
independent from the parameters of the other layers, which makes the parameter
setting much easier. Another advantage is the extensibility of the framework.
After the convergence of the network you can add another layer on top of the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant Hierarchical NMF 899

R1

V

W1

H1

W2

H2

a) b)

1

34

2

56

78

1

R
2

3

Fig. 1. The graphics above show two possible update sequences for the HNMF.
a) In this scheme each layer is iterated independently. First 1-4 is iterated until con-
vergence, then 5-8 is iterated, trying to reconstruct H1.
b) In this scheme the whole network is iterated in a combined manner by first calcu-
lating 1 followed by the reconstruction R, then 2, the reconstruction R, 3 and finally
the reconstruction R until convergence.

existing layers and learn the new one. All other layers can be left untouched.
The big disadvantage is that each layer only minimizes the local energy function
on the activations of the lower layer. This leads to a smaller number of minima
in the energy function, but has the disadvantage that in most cases the global
minimum of the whole network is not found (see [3]).

Update Network as a Whole
Contrary to the independent relaxation, in this scheme we learn the base vec-
tors and the highest layer activations simultaneously as shown in Fig. 1b. The
sequence of updating is the following:

1. Calculate the reconstruction of the lowest layer by propagating down the
highest layer activations through the base vectors by applying (9) iteratively.

2. Propagate the reconstruction error between R(1) and the input V (1) to the
highest layer using (14) and (15).

3. Adapt the activations of the highest layer as described in (13).
4. Execute step 1 using the updated activations H(L).
5. Adapt the base vectors of the lowest layer W (1) using (16).
6. Execute step 1 using the updated base vectors.
7. Propagate the reconstruction error between R(1) and the input V (1) to the

next higher layer using (14) and (15).
8. Adapt the base vectors of the next higher layer W (l+1) using (16).
9. Repeat step 6 to 8 until the base vectors of all layers are updated.

10. Repeat beginning with step 1 until convergence.

The advantage of this combined relaxation is the minimization of the overall
energy function, which leads to a better reconstruction and a sparser repre-
sentation. One drawback is the introduction of relations between the sparsity

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

900 S. Rebhan et al.

parameters by combined relaxation, which makes the selection of the parame-
ters more difficult. Because of the better reconstruction results, we choose the
combined update scheme for the experiments we present in the next section.

3 Results

For the following experiments we set up a two layer, sparse and translation-
invariant hierarchical network. We use only translation for T (l) because this
transformation can be coded very efficiently using correlations. The learning of
the base vectors is performed with the combined relaxation scheme discussed in
Sect. 2.3. The used dataset (see examples in Fig. 2) consists of 162 bar images
of 4x4 pixel size. Each of the images is a superposition of up to four horizontal
and vertical bars. The horizontal bar can be applied at four different horizontal
positions; the vertical bar at four different vertical positions. A complete overlap
of two bars is not allowed.

Fig. 2. These are 24 examples for the input dataset, which consists of 162 images. Each
image has a size of 4x4 pixel and is a superposition of horizontal and vertical bars.

The task for the network is to find a set of base vectors that encodes the input
under a given sparsity constraint. In Fig. 3 the two lower layer base vectors of
the translation-invariant, sparse HNMF network are shown. One can see that
the network finds the two original bars (one horizontal, one vertical). Based on
these vectors, the 64 upper layer base vectors compose more complex structures
in order to satisfy the sparsity constraint.

Figure 4 shows the base vectors of the upper layer projected to the input space.
The vectors themselves consist of very sparse, sporadic peaks. By increasing
the sparsity constraint in the activations, the base vectors get more and more
complex, whereas the sparsity in the base vectors leads to a reallocation of the
information between the different layers. As a result, the sparsity settings for
the network are essential to force a meaningful distribution of the information
within the hierarchy.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant Hierarchical NMF 901

Fig. 3. Here the two base vectors of the lower layer, which are nearly perfect recon-
structions of the original vectors, are shown

Fig. 4. This shows the 16 resulting base vectors of the upper layer projected into the
input space. As you can see the set also contains the two vectors of the layer below.

If we have a look at the energy function depicted in Fig. 5 we see three
phases in the relaxation process. In the first phase, which comprises the steps 0
to 380, the overall energy decreases very slowly. This is mainly a result of the
reconstruction error optimization done by the network. As one can see clearly
the minimization of the reconstruction error is taking place in the lower base
vectors, because in this phase the higher layer vectors are not changed signif-
icantly. In the second phase, including the steps 380 to 600, a minimization
of the sparsity penalization is taking place, where large changes in the higher
layer base vectors can be seen. We can observe a reorganization in the HNMF
network, where the information stored in the upper layer base vectors is trans-
ferred down to lower layer vectors. Along with the transfer of information, the
base vectors in the upper layer get sparser. This has a major effect on the en-
ergy function. The following third phase, starting at step 600, is characterized
by using the reorganized structure of the network to optimize both the recon-
struction error and the sparsity. This is achieved by modifying the lower layer
base vectors and the activations, leaving the upper layer base vectors mostly
unchanged.

Through the whole relaxation process the energy function is steadily decreas-
ing with a jump at the beginning of the reorganization phase. This leads to
the conclusion that during the process the focus of what should be minimized
is shifted between reconstruction and sparsity according to the chosen param-
eter set. When choosing extreme settings for the sparsity parameters the focus
switches to sparsity maximization whereas the minimization of the reconstruc-
tion error does not play a role anymore and vice versa.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

902 S. Rebhan et al.

 1050
 1100
 1150
 1200
 1250
 1300
 1350
 1400
 1450
 1500
 1550
 1600

 0 100 200 300 400 500 600 700 800 900 1000 1100

Energy

 200

 250

 300

 350

 400

 450

 500

 550

 0 100 200 300 400 500 600 700 800 900 1000 1100

Reconstruction error

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 100 200 300 400 500 600 700 800 900 1000 1100

Sum over W0

 50

 55

 60

 65

 70

 75

 80

 85

 0 100 200 300 400 500 600 700 800 900 1000 1100

Sum over W1

steps

steps

steps

steps

Fig. 5. These plots show the three phases of a two-layer HNMF network relaxation
process for (from top to bottom) the energy function, the reconstruction error and the
sparsity measure in the base vectors. The phases are: minimization of the reconstruc-
tion error, reorganization within the network to meet the sparsity constraint and the
combined minimization of the reconstruction error and the sparsity penalization.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Sparse and Transformation-Invariant Hierarchical NMF 903

4 Conclusion

In this paper we propose the extension of the sparse Overlapping NMF intro-
duced in [4] and [5] to a hierarchical, sparse and transformation-invariant net-
work. This extension was done in a straightforward manner by defining the
activations of each layer as a reconstruction of the layer above (see (6)). While
other hierarchical approaches as in [3] store input transformations implicitly in
the base vectors, our approach encodes the transformations explicitly. This ex-
plicit encoding leads to a reduction of redundancy in the base vectors, making
the representation sparser and more efficient.

In Sect. 2.3 we discussed two different update schemes and concluded that
only a combined relaxation of the whole network leads to a minimization of the
overall energy function and is therefore preferable. Using the combined relax-
ation scheme on bar stimuli, we achieved the results depicted in Sect. 3, which
show that the transformation-invariant and sparse HNMF is able to decompose
the stimuli into the original parts. In this process the basic parts of the data set
are stored in the lowest layer base vectors, whereas the higher layer base vec-
tors compose a more complex and more abstract representation of the input by
combining lower layer vectors. The resulting decomposition is a sparse represen-
tation of the input, having also very good reconstruction properties. By adapting
the sparsity parameters, the network solution can be steered towards a perfect
reconstruction or towards a sparse representation, where extreme settings will
lead to insensible or trivial solutions.

As a final interesting point we want to mention that the proposed algorithm
includes all previous approaches as special cases. To emulate [3] we just set all
transformation matrices to unity matrices (no transformation), for [4,5] we take
a single layer network and choose the sparsity parameters accordingly. So the
transformation-invariant and sparse hierarchical NMF can be seen as a unifica-
tion of the three mentioned NMF approaches.

References

1. Lee, D.D., Seung, H.S.: Learning the parts of objects with nonnegative matrix fac-
torization. Nature 401, 788–791 (1999)

2. Lee, D.D., Seung, H.S.: Algorithms for Non-negative Matrix Factorization. Advances
in Neural Information Processing Systems 13, 556–562 (2001)

3. Ahn, J.-H., Choi, S., Oh, J.-H.: A multiplicative up-propagation algorithm. In: Pro-
ceedings of the 21th International Conference, pp. 17–24 (2004)

4. Eggert, J., Körner, E.: Sparse coding and NMF. In: IJCNN 2004. Proceedings of
the International Joint Conference on Neural Networks, pp. 2529–2533 (2004)

5. Eggert, J., Wersing, H., Körner, E.: Transformation-invariant representation and
NMF. In: IJCNN 2004. Proceedings of the International Joint Conference on Neural
Networks, pp. 2535–2539 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of

Neurons Is Enhanced by Dynamical Relaying

Raul Vicente1,2, Gordon Pipa1,2, Ingo Fischer3, and Claudio R. Mirasso4

1 Max-Planck Institute for Brain Research, Deutschordenstrasse 46,
60528 Frankfurt am Main, Germany

2 Frankfurt Institute for Advanced Studies, Max-von-Laue Strasse 1,
60438 Frankfurt am Main, Germany

3 Dept. of Applied Physics and Photonics (TONA) Vrije Universiteit Brussel,
Pleinlaan 2, B-1050 Brussel, Belgium

4 Dept. de Fisica Universitat de les Illes Balears, Crta de Valldemossa km 7.5,
E-07071 Palma de Mallorca, Spain

Abstract. How can two distant neural assemblies synchronize their fir-
ings at zero-lag even in the presence of non-negligible delays in the
transfer of information between them? Here we propose a simple net-
work module that naturally accounts for zero-lag neural synchronization
for a wide range of temporal delays. In particular, we demonstrate that
isochronous (without lag) millisecond precise synchronization between
two distant neurons or neural populations can be achieved by relaying
their dynamics via a third mediating single neuron or population.

1 Introduction

Neural synchronization stands today as one of the most promising mechanisms to
counterbalance the huge anatomical and functional specialization of the different
brain areas [1,2,3]. In particular, it proposes the formation of transiently synchro-
nized neural assemblies during few hundreds of milliseconds as the underlying
process to bind several local neural dynamics. Consequently, neural synchrony
can provide a dynamic and reconfigurable mechanism for large-scale integration
of distributed brain activity and serve as an efficient code to complement the rate
modulation and overcome some of its limitations. The synchrony hypothesis has
been supported by experimental findings demonstrating that millisecond precise
synchrony of neuronal oscillations across well separated cortical areas plays an
essential role in visual coherent perception and other high-cognitive tasks [3,4].

However, and albeit more evidence is being accumulated in favor of its func-
tional role as a binding mechanism of distributed neural responses, the physical
and anatomical substrate for such a dynamic and precise synchrony, especially
zero-lag even in the presence of non-negligible delays, remains unclear [4]. Several
mechanisms have been proposed to explain the appearance of synchronization
between neural populations. Inhibitory connections and gap junctions have been
proposed to increase the stability of the synchronous state [5]. In general, these
and other approaches require either the precise tuning of properties such as the

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 904–913, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of Neurons 905

synaptic rise time or rely on rather complex architectures [6] while exhibiting
several limitations in the range of synchronization attainable.

In addition, the problem of the communication delays between the neural
units involved in the interaction, although fundamental, has been hardly faced
[7]. Conduction and synaptic delays between the brain areas which are observed
to synchronize can amount to several tens of milliseconds. How under such la-
tency times the reciprocal interactions between two brain regions can lead the
associated neural populations come into sync without almost any lag?

Here we propose a simple network motif that is able to naturally lead to the
zero-lag synchronization between two arbitrarily distant neural populations. The
basic idea is that when two spiking neurons interact not directly but through a
third mediating neuronal unit, the redistribution of the dynamics performed by
this central unit leads in a robust and self-consistent manner toward the zero-lag
synchronization of the outer neurons [8]. This simple network module is expected
to exist within the complex functional architecture of the brain and especially
within the reciprocal thalamocortical interactions. It is significant that recent
studies have demonstrated the constant latency between the thalamus (the main
relay unit of sensory information in the brain) and almost any area in the mam-
malian neocortex [9]. Remarkably, this occurs irrespective of the very different
distances that separate the thalamic nuclei and the cortex regions involved. This
means that an action potential generated in a thalamic cell will take the same
time to reach a cortical neuron independently of the thalamocortical afferent
used to propagate the spike. To our purposes, this implies that a thalamocorti-
cal circuit is an ideal representation of this network module. With the proposed
network motif the synchronous state can be achieved after the exchange of a
few spikes and consequently within a few tens of milliseconds. This time scale
is perfectly compatible with the required processing times of information found
experimentally [4].

2 Methods

In order to test the synchronization properties of such neural circuits we sim-
ulated the dynamics of Hodgkin-Huxley (HH) neurons that interact with each
other via reciprocal synaptic connections with an intermediate third neuron of
the same type.

2.1 Mathematical Model

The dynamics of the membrane potential of each neuron is modeled by the clas-
sical Hodgkin-Huxley equations [10] with the addition of appropriate synaptic
currents to mimic the chemical coupling between neurons.

The temporal evolution of the voltage across the membrane is given by

C
dV

dt
= −gNam3h(V −ENa)− gKn4(V − Ek)− gL(V − EL)+ Iext + Isyn , (1)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

906 R. Vicente et al.

where C = 1 μF/cm2 is the membrane capacitance, the constants gNa = 120
mS/cm2, gK = 36 mS/cm2, and gL = 0.3 mS/cm2 are the maximal conductances
of the sodium, potassium, and leakage channels, and ENa = 50 mV, EK =
−77 mV, and EL = −54.5 mV stand for the corresponding reversal potentials.
According to Hodgkin and Huxley formulation the voltage-gated ion channels
are described by the following set of differential equations

dm

dt
= αm(V)(1 − m) − βm(V)m , (2)

dh

dt
= αh(V)(1 − h) − βh(V)h , (3)

dn

dt
= αn(V)(1 − n) − βn(V)n , (4)

where the gating variables m(t), h(t), and n(t) represent the activation and
inactivation of the sodium channels and the activation of the potassium channels,
respectively. The experimentally fitted voltage-dependent transition rates are

αm(V) =
0.1(V + 40)

1 − exp (−(V + 40)/10)
, (5)

βm(V) = 4 exp (−(V + 65)/18) , (6)

αh(V) = 0.07 exp (−(V + 65)/20) , (7)
βh(V) = [1 + exp (−(V + 35)/10)]−1 , (8)

αn(V) =
(V + 55)/10

1 − exp (−0.1(V + 55))
, (9)

βn(V) = 0.125 exp(−(V + 65)/80) . (10)

The synaptic transmission between neurons is modeled by a postsynaptic
conductance change with the form of an alpha-function

α(t) =
1

τd − τr
(exp (−t/τd) − exp (−t/τr)) , (11)

where the parameters τd and τr stand for the decay and rise time of the function
and determine the duration of the response. Consequently, the the synaptic
current takes the form

Isyn(t) = −gmax

∑

τl

∑

spikes

α (t − tspike − τl) (V (t) − Esyn) , (12)

where gmax describes the maximal synaptic conductance and the internal sum is
extended over the train of presynaptic spikes occurring at tspike. The delays aris-
ing from the finite conduction velocity of axons are taken into account through
the latency time τl in the alpha-function. Thus, the external sum covers the
different latencies that arise from the existence of multiple synaptic connections

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of Neurons 907

between two different neural populations. Excitatory and inhibitory transmis-
sions are differentiated by setting the synaptic reversal potential to be Esyn = 0
mV or Esyn = −80 mV, respectively.

Finally, the external current Iext stimulation is adjusted to a constant value of
10 μA/cm2. Under such conditions a single Hodgkin-Huxley type neuron enters
into a regime of periodic firing with a natural period of Tnat = 14.66 ms. When
inspecting the role of noise, white Gaussian stochastic fluctuations were added
to the otherwise constant level of the external current.

2.2 Geometry

We consider a neural circuit composed by two Hodgkin-Huxley neurons inter-
acting with a relay neuron of the same class. This mediating neuron is receiving
input from the two outer neurons and projecting output toward them. Latency
times are included in the interaction to capture the non-negligible conduction
delays occurring in the transmission of spikes. This neural circuit can be thought
as a simple model of two neuronal populations (α and β) interacting through a
set of neurons whose dynamics is summarized by a single mediating population
c with a given transfer function (see Fig. 1).

α β c

α β c

α β

SP

CP

SP: Set of paths
CP: Central path

A B

Fig. 1. a) Sketch of a neural circuit with recurrent connections mapped to the interac-
tion between three neural populations (α, β, and a central population c.) b) Interaction
between populations α and β through the mediating element c with single (top) or dis-
tributed (bottom) synaptic delays.

Individual temporal delays of the arrival of presynaptic potentials (i.e., latency
times) were modelled by a gamma distribution to mimic the multiple connections
between the neural populations involved in the synchronization process.

The probability density function of the distribution of delays is then

f(τl) = τk−1
l

exp(−τl/θ)
θkΓ (k)

(13)

where k and θ are shape and scale parameters of the gamma distribution. The
mean time delay is given by τ̂l = kθ.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

908 R. Vicente et al.

2.3 Numerical Integration

The set of equations (1-12) is numerically integrated using the Heun method
with a time step of 0.02 ms.

Starting from random initial conditions each neuron is first simulated without
any synaptic coupling for 200 ms after which frequency adaptation has occurred
and each neuron settles into a periodic firing regime with a well defined frequency.
The relation between the phases of the oscillatory activities of the neurons at
the end of this heating time was entirely determined by the initial conditions.
Following this period and once the synaptic transmission has been activated, a
simulation time of 3 seconds is recorded. This allowed us to trace the change in
the relative timing of the spikes induced by the synaptic coupling in this neural
circuit.

2.4 Data Analysis

The strength of the synchronization and the phase-difference between each in-
dividual pair of neurons (m, n) were derived by the computation of the order
parameter defined as

ρ(t) =
1
2
| exp(iφm(t)) + exp(iφn(t))| , (14)

which takes the value of 1 when two oscillators are moving in-phase and 0 in
an anti-phase regime. In order to compute this quantifier it is only necessary
to estimate the phases of the individual neural oscillators. An advantage of this
method is that one can easily reconstruct the phase of a neuronal oscillation from
the train of spikes without the need of recording the full membrane potential
time series [11]. The idea behind is that the time interval between two well
defined events (such as action potentials) define a complete cycle and the phase
increase during this time amounts to 2π. Then, linear interpolation is used to
assign a value to the phase during the spike events.

Cross-correlation analysis of the membrane potentials was also computed in
order to check the results obtained from the order parameter estimation.

3 Results

Prior to the illustration of the results obtained from the direct simulation of
equations (1-12), we first characterize in Fig. 2 the response of a single Hodgkin-
Huxley neuron to the arrival of a presynaptic potential and the subsequent
change in the postsynaptic conductivity. In particular, we computed how much
the period of the oscillation of a single HH neuron is changed as a function of the
phase at which this single perturbation is received. This phase response curve
(PRC) contains useful information about the synchronization properties of the
oscillators involved.

Figure 2 shows the trace of the voltage potential of an unperturbed HH neuron
and the phase response curves to alpha-functions with different synaptic rise and

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of Neurons 909

0 0.2 0.4 0.6 0.8 1
−0.15

−0.1

−0.05

0

0.05

φ

Δφ

0 4 8 12
−80

−60

−40

−20

0

20

40

Time (ms)

M
em

b
ra

n
e

vo
lt

ag
e

(m
V

)

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

Time (ms)

α
−
 f
u

n
ct

io
n

0 0.2 0.4 0.6 0.8 1
−0.2

−0.1

0

0.1

0.2

φ

Δφ

τ
r
=0.1, τ

d
=5 ms

τ
r
=0.1, τ

d
=3 ms

τ
r
=1, τ

d
=5 ms

τ
r
=1, τ

d
=3 ms

a)

b)

c)

d)

Fig. 2. a) Membrane voltage of an unperturbed HH neuron during a cycle of oscillation.
b) Alpha-functions with different rise and decay times indicated in the legend. c) PRCs
for excitatory synapses (Esyn=0 mV). d) PRCs for inhibitory synapses (Esyn=-80 mV).
The PRC is defined as Δφ = 1 − Tper/Tnat, where Tper stands for the length of the
cycle containing the perturbation. φ represents the phase at which the perturbation
is received. The colors in panels c) and d) code for alpha-functions of the same color
shown in b). gmax = 0.2.

decay times. The Hodgkin and Huxley neuron is known to produce a response
such that a perturbation can advance or retard the next spike as it is seen in
panel c) where an excitatory coupling was simulated. However, it is observed in
panel d) that in the investigated regime, an inhibitory synapse can only retard
the firing of the next action potential. It is also noticed that due to the finite
duration of the alpha-function the value of the PRCs for excitatory synapses
differs from zero in the neighborhood of a spike (φ = 0 , 1).

The different synchronization characteristics of inhibitory and excitatory
synapses in two-coupled neuron models and the role of the synaptic rise and
decay times can be attributed to the different features of their respective PRCs
[5,12]. Nevertheless, here we propose a network module that naturally provides
a robust mechanism for synchronizing two neural populations with zero-phase
lag. This effect is based on the dynamical relaying provided by a third popula-
tion, and opposite to directly-coupled neuron models it turns out to be largely
independent of the characteristics of the synaptic transmission. Figure 3 displays
the time traces of the membrane potential for the three neurons coupled as in
the module of Fig.1 with excitatory synapses.

It is observed that once the synaptic coupling is activated the network module
consistently self-organizes toward the state in which the outer neurons synchro-
nize their spikes. The zero-lag synchronization arises as a consequence of the relay
and redistribution of excitatory postsynaptic potentials (EPSP) performed by
the central neuron. The EPSPs induced in such a neural circuit are responsible

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

910 R. Vicente et al.

−100

−50

0

50

N
1
 M

em
b
ra

n
e

vo
lt

ag
e

(m
V

)

−100

−50

0

50

N
2
 M

em
b
ra

n
e

vo
lt

ag
e

(m
V

)

−20 0 20 40 60 80 100 120
−100

−50

0

50

Time (ms)

N
3
 M

em
b
ra

n
e

vo
lt

ag
e

(m
V

)

a)

b)

c)

Fig. 3. a), b), and c) show the evolution of membrane potential of the three neurons
interacting through the network sketched in Fig.1. Neuron 2 is the relay neuron. The
synaptic coupling is activated at t = 0 ms with a gmax = 0.5. The gamma distribution
of the latency times is chosen to be at the limit at which it tends to a delta distribution
centered in 8 ms. The alpha-function used for the synaptic coupling had a rise time of
τr = 0.1 ms and a decay time of 3 ms.

to slightly modify the firing timing of the postsynaptic cells in a manner that the
outer neurons tend to fire at unison after a few spikes irrespective of the initial
conditions. We have checked that this phenomenon also occurs for inhibitory
synapses and different synaptic temporal scales.

To inspect if the unavoidable noise sources around a neuron are able to disrupt
the synchronization we simulated the dynamics of the HH neurons with inde-
pendent additive white noise in the external current input of each cell. Figure 4
shows that even in the presence of moderate noise intensities the synchronization
process takes place.

At this point, a crucial question is whether this synchronization transition
is particular to single latency synaptic pathways or it is maintained for broad
distributions of conduction delays. To answer such issue we have represented in
Figure 5 the order parameter of the neuronal oscillations of the outer cells for
several delay distributions. In particular, we scanned the shape factor and the
mean value of the distribution of delays. The results indicate the existence of a
broad region of delays (between 2 ms and 9 ms) where for almost any shape factor
the outer neurons come into sync. Only distributions with an unrealistic small
shape factor (nearly decaying exponentials distributions) are unable to produce
synchrony regardless the average delay of the synaptic connections. The drop in
the synchronization quality found around τ̂l ∼ 10 ms is associated to an irregular
firing state of the neurons where no locking behavior is found.

Thus, zero-phase synchronization can take place in such network module
even in the presence of broad distributions in the delays communicating two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of Neurons 911

0 20 40 60 80 100 120 140 160 180 200
−80

−60

−40

−20

0

20

40

60

80

100

Time (ms)

M
em

br
an

e
vo

lta
ge

 (m
V)

−60 −40 −20 0 20 40 60
0.5

0.6

0.7

0.8

0.9

1

Lag (ms)

Co
rr

el
at

io
n

co
ef

f.

Fig. 4. The large panel shows the temporal evolution of the outer neurons in the
presence of noise once synaptic coupling is activated at t = 0 ms. The noise level
was adjusted to σ = 1 μA ms1/2/cm2. It is clear that even the spikes become more
irregular a good synchronization level is obtained at zero-lag. The inset displays the
cross-correlation function of the voltage temporal series for a 3 second simulation.

Fig. 5. Order parameter of the phases of the outer neurons as a function of the shape
factor and mean delay of the gamma distribution of delays. gmax = 0.2, Esyn = 0 mV.
The alpha-function used for the synaptic coupling had a rise time of τr = 0.1 ms and
a decay time of 3 ms.

neural populations. Similar behaviors are found for inhibitory synapses and
alpha-functions with different durations demonstrating that the synchronization
process in such a network is largely independent of the particular characteristics
of the PRCs of the neuron.

Up to now, only symmetrical distributions of delays have been considered
in the pathways from the relay neuron to each one of the outer units. However,
when different distributions are simulated for each of the pathways we have found

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

912 R. Vicente et al.

that the phase lag between the outer neurons usually deviates from zero with
the cell with the shortest mean distance to the relay unit leading the dynamics.
Nevertheless, it is quite remarkable that broad distributions (large shape factors)
allow for almost zero-lag synchronization even in the presence of differences of
several milliseconds in the average delay of both pathways.

4 Discussion

We have introduced a simple and extremely robust network motif that is able
to account for the zero-phase synchronization of distant neural elements in a
natural way. This robust synchronization arises as a consequence of the relay
and redistribution of the dynamics performed by a mediating neuron. As a con-
sequence and in opposition to previous works, neither inhibitory, gap junctions,
nor complex networks need to be invoked to provide a stable mechanism of
zero-phase correlated activity of neural populations even in the presence of large
conduction delays.

As a future direction we are working to provide a more physiologically detailed
model of the network motif here presented in order to compare with experimental
data. In particular, for the relay or thalamic neuron we are including a descrip-
tion of additional ionic channels (transient Ca2+ and K+ as well as a persistent
Na+ conductance). Neural population modeling for each of the three involved
pools of neurons is also under current research.

Acknowledgments

Research supported by the GABA project (European Commission, FP6-NEST
contract 043309).

References

1. Von der Malsburg, C., Schneider, W.: A neural cocktail-party processor. Biological
Cybernetics 54, 29–40 (1986)

2. Rieke, F., Warland, D., De Ruyter van Steveninck, R.: Spikes: Exploring the Neural
Code. MIT Press, Cambridge (1997)

3. Varela, F.J., Lachaux, J.P., Rodriguez, E., Martinerie, J.: The brainweb: phase
synchronization and large-scale integration. Nature Reviews Neuroscience 2, 229–
239 (2001)

4. Singer, W.: Neuronal Synchrony: A Versatile Code for the Definition of Relations?
Neuron 24, 49–65 (1999)

5. Van Vreeswijk, C., Abbott, L.F., Ermentrout, B.: When inhibition not excita-
tion synchronizes neural firing. Journal of Computational Neuroscience 1, 313–321
(1994)

6. Lago-Fernandez, L.F., Huerta, R., Corbacho, F., Siguenza, J.A.: Fast response and
temporal coherent oscillations in small-world networks. Physical Review Letters 84,
2758–2761 (2000)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Zero-Lag Long Range Synchronization of Neurons 913

7. Freeman, W.: Characteristics of the synchronization of brain activity imposed
by finite conduction velocity of axons. International Journal of Bifurcation and
Chaos 10, 2307–2322 (2000)

8. Fischer, I., Vicente, R., Buldu, J.M., Peil, M., Mirasso, C.R., Torrent, M.C., Garcia-
Ojalvo, J.: Zero-lag synchronization via dynamical relaying. Physical Review Let-
ters 97, 123902(1)–123902(4) (2006)

9. Salami, M., Itami, C., Tsumoto, T., Kimura, F.: Change of conduction velocity
by regional myelination yields to constant latency irrespective of distance between
thalamus and cortex. PNAS 100, 6174–6179 (2003)

10. Hodgkin, A.L., Huxley, A.F.: A quantitative description of the membrane cur-
rent and its application to conduction and excitation in nerve. Journal of Physiol-
ogy 117, 500–544 (1952)

11. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization: A universal concept in
nonlinear sciences. Cambridge University Press, Cambridge (2001)

12. Goel, P., Ermentrout, B.: Synchrony, stability and firing pattern is pulse-coupled
oscillators. Physica D 163, 191–216 (2002)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for

Implementing the Game of Life

Giovanni Egidio Pazienza1, Eduardo Gomez-Ramirez2,
and Xavier Vilaśıs-Cardona3

1 GRSI, Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Quatre Camins
2, 08022 Barcelona (Spain)
gpazienza@salle.url.edu

2 LIDETEA, Posgrado e Investigación, Universidad La Salle, Benjamı́n Franklin 47,
Col. Condesa, 06140 Mexico City (Mexico)

egr@ci.ulsa.mx
3 LIFAELS, Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Quatre

Camins 2, 08022 Barcelona (Spain)
xvilasis@salle.url.edu

Abstract. One-layer space-invariant Cellular Neural Networks (CNNs)
are widely appreciated for their simplicity and versatility; however, such
structures are not able to solve non-linearly separable problems. In this
paper we show that a polynomial CNN - that has with a direct VLSI
implementation - is capable of dealing with the ‘Game of Life’, a Cel-
lular Automaton with the same computational complexity as a Turing
machine. Furthermore, we describe a simple design algorithm that al-
lows to convert the rules of a Cellular Automaton into the weights of a
polynomial CNN.

1 Introduction

Cellular Neural Networks (CNNs) [1] combine the features of Neural Networks
and Cellular Automata, since neurons exhibit only local connections. CNNs with
space-invariant weights have found application in a number of fields - especially
in image processing [2] - because of their versatility and fast computation.

Thanks to its topological simplicity, the one-layer space-invariant CNN allows
a VLSI implementation [3], but its computational power is restricted by the fact
that it cannot solve linearly non-separable problems. In order to extend the ca-
pability of representation of CNNs, many authors have proposed modifications
to the standard model like space-variant CNNs [4], multilayer CNNs [5], trape-
zoidal activation functions [6], piecewise-linear discriminant functions [7], and
even a supercomputer whose computation core is a CNN [8]. All these methods
make the CNN capable of universal computation [9], but they complicate the
correspondent hardware implementation.

In our studies we take into consideration a so-called polynomial CNN that
is a standard one-layer space-invariant CNN with the addition of a polynomial
term. One of the main advantages of polynomial CNNs is that they have a direct
VLSI realization [10].

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 914–923, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for Implementing the Game of Life 915

In this paper we prove that the simplest model of polynomial CNN can imple-
ment the ‘Game of Life’ [11], a well-known problem with the same computational
power as a universal Turing machine. The core of our work is the introduction
of a design algorithm for polynomial CNNs based exclusively on the solution
of a system of inequalities. On the one hand, such algorithm allows to find the
weights of the network straightforwardly with respect to other learning algo-
rithms for CNNs (e.g. [12]); on the other hand, we set a direct link between the
rules of a Cellular Automata and the learning process of a polynomial CNN.

This paper is structured as follows: first, we introduce the theoretical model
of the polynomial CNNs; then, we explain the rules ‘Game of Life’ showing how
they can be summarized in a Cartesian system; next, we describe in detail the
design algorithm to find the weights of the network; finally, we draw conclusions.

2 Polynomial Cellular Neural Networks

2.1 A Brief Introduction to Cellular Neural Networks

Cellular Neural Networks (CNNs) are a particular kind of neural networks in
which neurons are usually arranged in a two-dimensional square grid, thus each
cell is locally connected only with its 8 neighbor cells. In our studies we employ a
synchronous version of CNNs called Discrete-Time CNNs (DTCNNs) [13], whose
dynamic is described as follows

xij(n + 1) =
∑

C(k,l)∈Nr(i,j)

A(i, j; k, l)ykl(n) +
∑

C(k,l)∈Nr(i,j)

B(i, j; k, l)ukl(n) + i,

(1)

where uij , xij and yij are the input, the state and the output of the cell in
position (i, j), respectively; Nr(i, j) is the set of indexes corresponding to the
cell (i, j) and its neighbors; finally, the matrices A and B contain the weights of
the network, and the value i is a bias.

In DTCNNs only binary output is allowed, then a suitable activation function
is

yij(n) = f(xij(n)) =
{

1, if xij(n) ≥ 0
−1, if xij(n) < 0.

(2)

The most interesting case is the space-invariant CNN, in which weights depend
on the difference between cell indexes rather than on their absolute values. In
this case the behavior of the network is completely specified by a unique set of
weights {A, B, i} called cloning template. Usually, A and B are 3-by-3 matrices.
In the case of a space-invariant network, the Eq. (1) can be written in a compact
way by using the Einstein notation

xc(n) = ac
dy

d(n) + bc
du

d(n) + i. (3)

According to this notation, when an index appear twice in a single term, it
implies that we are summing over all its possible values.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

916 G.E. Pazienza, E. Gomez-Ramirez, and X. Vilaśıs-Cardona

2.2 The Polynomial Model and Its Advantages

It is possible to prove that one-layer space-invariant Cellular Neural Networks
cannot solve non-linearly separable problems. However, this drawback can be
overcome by a polynomial CNN, whose general discrete-time state equation is

xd(n) = ad
ey

e(n) + bd
eu

e(n) + i + g(ue, ye), (4)

where a polynomial term g(ue, ye) is added to the standard DTCNN model. The
polynomial CNN was first introduced in [14], and the stability of the network is
analysed in [15]. Its applications range from elementary non-linearly separable
tasks, like the XOR operation [16], to real-life cases, like the epilepsy seizures
prediction [17]. In the simplest case the term g(ue, ye) is a second degree poly-
nomial with the following form

g(ue, ye) =
2∑

i=0

((pi)d
e(u

e)i · (qi)d
e(y

e)2−i) (5)

= (p0)d
e(1

e) · (q0)d
e(y

e)2 + (p1)d
e(u

e) · (q1)d
e(y

e) + (p2)d
e(u

e)2 · (q2)d
e(1

e),

where {(p0)i} = P0 etc. and (P0, P1, P2, Q0, Q1, Q2) are 3-by-3 matrices.
Note that throughout this paper capital letters indicate matrices and lower case
letters indicate scalar values.

3 The Game of Life

3.1 The Rules

One of the best known example of Cellular Automaton (CA) is the ‘Game of
Life’ (GoL). It is a no-player game usually played on an infinite two-dimensional
grid of square cells, and its evolution is determined only by the initial state. Each
cell interacts with its 8 neighbor cells, and at any fixed time it can be either alive
(black cell) or dead (white cell). In each time step, the next state of each cell is
defined by the following rules

– Birth: a cell that is dead at time t becomes alive at time t + 1 only if exactly
3 of its eight neighbors were alive at time t;

– Survival : a cell that was living at time t will remain alive at t + 1 if and
only if it had exactly 2 or 3 alive neighbors at time t.

The importance of the GoL comes from the fact that this structure has the
same complexity as a universal Turing machine [18], therefore any conceivable
algorithm can be computed by a GoL-based computer.

3.2 A Visual Representation for the Rules of Semitotalistic CA

In the GoL the next state of the central cell depends only on its present state and
the sum of its eight nearest neighbors. This kind of CA are called semitotalistic

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for Implementing the Game of Life 917

Birth Survival

Fig. 1. Birth and Survival rules for the GoL. The red cross corresponds to a 1 (black)
for the next state, a blue diamond to a -1 (white), and the black square is a ‘don’t
care’.

Fig. 2. The Game of Life: a red cross corresponds to a 1 (black) for the next state, and
a blue diamond is a -1 (white)

and their rules can be conveniently represented in a Cartesian system, as depicted
in Fig. 1. Following the convention that a black pixel is +1 and a white pixel is
-1, the x axis corresponds to the central pixel of the 3×3 Cellular Automaton,
whereas the y axis is equal to the sum of the 8 outer neighbours. The rules of the
CA are represented by associating to each point of the grid - corresponding to a
pair (central pixel, sum of neighbours) - a symbol indicating the following state
of the cell: a red cross represents a 1 (black) for the next state, a blue diamond
represents a −1 (white), and a black square is a ‘don’t care’.

As mentioned in the previous section, the GoL can be expressed as the com-
bination of two rules (Birth and Survival); therefore, the scheme for the GoL
is the logic AND of two correspondent schemes (see Fig. 2). Thanks to this
representation, it is evident that the GoL is not a linearly separable task.

3.3 Alternative Set of Rules for the GoL

Looking at Fig. 1, it is possible to state that also the Birth and the Survival
rules taken individually are not linearly separable. However, the GoL can be
formulated as the logic combination of two linearly separable rules as follows

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

918 G.E. Pazienza, E. Gomez-Ramirez, and X. Vilaśıs-Cardona

– Rule 1 : a cell will be alive in the next state if at least 3 of the 9 cells in its
3 × 3 neighborhood are alive, otherwise it will be dead;

– Rule 2 : a cell will be alive in the next state if at most 3 of its 8 neighbors
are alive, otherwise it will be dead.

Their schemes are represented in Fig. 3, and hereafter these rules will be used
as reference for our work.

Rule 1 Rule 2

Fig. 3. Rule 1 and Rule 2 rules. The red cross corresponds to a 1 (black) for the next
state, and a blue diamond is a -1 (white).

4 Design Algorithm for the Polynomial CNN

4.1 Remarks on the Polynomial CNN

The polynomial CNN model taken into consideration comprises 73 free param-
eters: 9 for the eight matrices (A,B,P0,P1,P2,Q0,Q1,Q2) plus the bias i. This
huge design space would be impossible to be handled, unless we make some
preliminary analysis of the problem in order to reduce the number of vari-
ables.

Firstly, since the GoL is a semitotalistic CA, all the matrices of the CNN model
must have central symmetry: we indicate the central element with the subindex
c, and the peripheral element with the subindex p. Secondly, it is noteworthy to
mention that the GoL is a function of the input pattern only, therefore all the
matrices multiplying (yd) and (yd)2 - that is A, Q1 and Q2 - must have only the
central element. Finally, we focus on the Eq. (5). As the input is binary, the last
term of the equation is constant, and thus it can be added to the bias. Also the
value (p0)d

e(1e) belonging to the first term is constant, then its central element
can be absorbed into the matrix Q0. As for the second term, we can say that
the central element of Q2 can be included in the matrix A.

To sum up, the polynomial CNN model for the GoL can be written as

xd(n) = ad
ey

e(n) + bd
eu

e(n) + i + (q0)d
e(y

e)2 + (p1)d
e(u

e) · (yd) (6)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for Implementing the Game of Life 919

where

A =

⎛

⎝
0 0 0
0 ac 0
0 0 0

⎞

⎠ ; B =

⎛

⎝
bp bp bp

bp bc bp

bp bp bp

⎞

⎠ ; Q0 =

⎛

⎝
0 0 0
0 q0c 0
0 0 0

⎞

⎠ ; P1 =

⎛

⎝
p1p p1p p1p

p1p p1c p1p

p1p p1p p1p

⎞

⎠ .

In conclusion, it is necessary to focus only on 7 parameters: ac, bc, bp, q0c, p1c, p1p, i.

4.2 Dynamic Behavior

In this section we show how it is possible to design a cloning template for the
polynomial CNN to perform a step of the GoL on a binary image. All the possible
combinations for the GoL are represented in Table 1, in which it is emphasized
that the Output is the logic AND between the two Rules.

Table 1. List of the 18 possible combinations for the GoL

Row Central pixel # black neigh.
�

neigh. Rule 1 Rule 2 Output

1. White 0 -8 - + - (White)

2. White 1 -6 - + - (White)

3. White 2 -4 - + - (White)

4. White 3 -2 + + + (Black)

5. White 4 0 + - - (White)

6. White 5 2 + - - (White)

7. White 6 4 + - - (White)

8. White 7 6 + - - (White)

9. White 8 8 + - - (White)

10. Black 0 -8 - + - (White)

11. Black 1 -6 - + - (White)

12. Black 2 -4 + + + (Black)

13. Black 3 -2 + + + (Black)

14. Black 4 0 + - - (White)

15. Black 5 2 + - - (White)

16. Black 6 4 + - - (White)

17. Black 7 6 + - - (White)

18. Black 8 8 + - - (White)

Since our goal is to link the rules of the CA with the weights of a polynomial
CNN, we write the Eq. (6) as a function of the central pixel uc and sum of its
neighbors

∑
up, so to keep a representation as similar as possible to a Cellular

Automaton

xd(n) = uc(bc + p1cyc) + (bp + p1pyc)
∑

up + acyc + qcy
2
c + i (7)

The first step of our approach consists in supplying the initial image as input
U = {(u)i} of the network, whereas the initial state Y = {(y)i} of the network
is composed by a matrix of 0’s. Thanks to this mechanism, the first iteration of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

920 G.E. Pazienza, E. Gomez-Ramirez, and X. Vilaśıs-Cardona

the CNN can be used to carry out one rule, whereas for the following iterations
also the other rule will be taken into consideration.

Therefore, for the first iteration yc = 0 and the state equation is

xd
d(1) = ucbc + bp

∑
up + i (8)

This means that, during the first iteration, we can perform any linearly separable
task by setting properly bc, bp and i. For instance, in the following we assume
that the Rule 1 is performed first; therefore, a possible choice for the variable is
bc=1, bp=1 and i = 3, as justified by the Fig. 3. Obviously, when the Rule 2 is
performed first, the values for the parameters change.

Now, for the sake of simplicity, we look for solutions where p1c = 0. To sum
up, the Eq. (7) can be simplified as follows

xd(n + 1) = uc + (1 + p1pyc)
∑

up + acyc + qcy
2
c + 3, (9)

and there are only three free parameters (p1p, ac, qc).
In the following, we cluster the rows of Table 1 according to the value of

Rule 1 - that is, the result of the first iteration for the polynomial CNN - and
Output, corresponding to the parameter yc. Each case gives rise to a number of
inequalities that can be collected in a system whose variables are ac, p1p, and
qc; if the system is compatible, the problem has at least one solution.

Case 1: Previous state(Rule 1) = + ⇒ yc = 1;

Output = + (black) ⇒ xd(n + 1) > 0;

Rows : 4, 12, 13 ⇒ (uc,
∑

up) = {(−1, −2), (1, −4), (1, −2)}
Case 2: Previous state(Rule 1) = − ⇒ yc = −1;

Output = − (white) ⇒ xd(n + 1) < 0;
Rows : 1, 2, 3, 10, 11 ⇒

⇒ (uc,
∑

up) = {(−1, −8); (−1, −6); (−1, −4); (1, −8); (1, −6)}
Case 3: Previous state(Rule 1) = + ⇒ yc = +1;

Output = − (white) ⇒ xd(n + 1) < 0;
Rows : 5, 6, 7, 8, 9, 14, 15, 16, 17, 18 ⇒

⇒ (uc,
∑

up) = {(−1, 0); (−1, 2); (−1, 4); (−1, 6); (−1, 8); (1, 0); (1, 2);

(1, 4); (1, 6); (1, 8)}

Moreover, for the Case 3 we need to assure that the Output −1 (white) is stable
after the third iteration. Therefore, it is necessary to take into consideration also
the case

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for Implementing the Game of Life 921

Fig. 4. Space of solutions when p1c = 0 and ac > 0

Case 4: Previous state = − ⇒ yc = −1;

Output = − (white) ⇒ xd(n + 1) < 0;
Rows : 5, 6, 7, 8, 9, 14, 15, 16, 17, 18 ⇒

⇒ (uc,
∑

up) = {(−1, 0); (−1, 2); (−1, 4); (−1, 6); (−1, 8); (1, 0); (1, 2);

(1, 4); (1, 6); (1, 8)}

By solving this system of equations we can get the solution space that is depicted
in Fig. 4. Note that it is not a polyhedron but an infinite space.

For example, when the Rule 1 is executed during the first iteration and the
Rule 2 next, a possible solution to the system of inequalities is

ac = 12.9, bc = 1, bp = 1, i = 3, q0c = −17, p1c = 0, p1p = −2.1

On the other hand, when the Rule 2 is executed during the first iteration and
the Rule 1 next, a possible solution becomes

ac = 40.9, bc = 0, bp = −1, i = −2, q0c = −26, p1c = 1, p1p = 4

Moreover, it is also possible to demonstrate that there exist only three types
of solutions: in the first type all the parameters (ac, bc, bp, q0c, p1c, p1p, i) are
different from zero, whereas in the second and in the third types either p1c

or bc, respectively, are 0. The solutions just described belong to the last two
classes, then are the simplest possible (in the sense of solutions with more null
parameters).

5 Conclusions

Standard one-layer space-invariant Cellular Neural Networks cannot solve lin-
early separable problems, and this fact represents a limitation for their use. In
this paper we show that a one-layer space-invariant polynomial CNN can per-
form a single step of the ‘Game of Life’, a Cellular Automaton with the same
computational complexity of a universal Turing machine. This result has been
achieved thanks to the introduction of a design algorithm for the weights of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

922 G.E. Pazienza, E. Gomez-Ramirez, and X. Vilaśıs-Cardona

the network. Such algorithm is very simple with respect to other CNN learn-
ing methods, being based on the resolution of a system of linear inequalities.
Moreover, it allows to establish a direct link between the rules of a semitotalistic
Cellular Automata and the learning procedure of a polynomial CNNs.

In this paper we have focused on the ‘Game of Life’ because it is a sort
of benchmark for testing the capability of representation of polynomial CNNs.
However, our long-term objective is to investigate the advantages of polynomial
CNNs over standard CNNs for complex image processing tasks. Furthermore, we
will soon compare the performances of the two systems by emulating them on a
Field Programmable Gate Array (FPGA). In the near future, we are also going
to prove theoretically, through the design procedure introduced in this paper,
the tight connection between semitotalistic CA and polynomial CNNs.

References

1. Chua, L., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35,
1257–1272 (1988)

2. Chua, L., Roska, T.: The cellular neural network CNN and the CNN universal
machine: concept, architecture and operation modes. In: Roska, T., Rodŕıguez-
Vázquez, Á. (eds.) Towards the visual microprocessor, Wiley, Chichester, UK
(2001)

3. Yang, L., Chua, L., Krieg, K.: VLSI implementation of cellular neural networks. In:
ISCAS’90. Proc. IEEE International Symposium on Circuits and Systems, vol. 3,
pp. 2425–2427. IEEE Computer Society Press, Los Alamitos (1990)

4. Balsi, M.: Generalized CNN: potentials of a CNN with non-uniform weights. In:
CNNA’92. Proc. second IEEE International Workshop on Cellular Neural Networks
and their Applications, Munich, Germany, pp. 129–139. IEEE Computer Society
Press, Los Alamitos (1992)

5. Yang, Z., Nishio, Y., Ushida, A.: Templates and algorithms for two-layer cellular
neural networks neural networks. In: Proc. of IJCNN’02, vol. 2, pp. 1946–1951
(2002)

6. Bilgili, E., Goknar, I., Ucan, O.: Cellular neural networks with trapezoidal activa-
tion function. International journal of Circuit Theory and Applications 33, 393–417
(2005)

7. Dogaru, R., Chua, L.: Universal CNN cells. International Journal of Bifurcation
and Chaos 9(1), 1–48 (1999)

8. Roska, T., Chua, L.O.: The CNN universal machine: an analogic array computer.
IEEE Trans. Circuits Syst. II 40, 163–173 (1993)

9. Chua, L.O., Roska, T., Venetianer, P.: The CNN is universal as the Turing machine.
IEEE Trans. Circuits Syst. I 40(4), 289–291 (1993)

10. Laiho, M., Paasio, A., Kananen, A., Halonen, K.A.I.: A mixed-mode polynomial
cellular array processor hardware realization. IEEE Trans. Circuits Syst. I 51(2),
286–297 (2004)

11. Berlekamp, E., Conway, J.H., Guy, R.K.: Winning ways for your mathematical
plays. Academic Press, New York (1982)

12. Magnussen, H., Nossek, J.: Global learning algorithms for discrete-time cellular
neural networks. In: CNNA’94. Proc. third IEEE International Workshop on Cel-
lular Neural Networks and their Applications, Rome, Italy, pp. 165–170. IEEE
Computer Society Press, Los Alamitos (1994)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Polynomial Cellular Neural Networks for Implementing the Game of Life 923

13. Harrer, H., Nossek, J.: Discrete-time cellular neural networks. International Journal
of Circuit Theory and Applications 20, 453–467 (1992)

14. Schonmeyer, R., Feiden, D., Tetzlaff, R.: Multi-template training for image pro-
cessing with cellular neural networks. In: CNNA’02. Proc. of 2002 7th IEEE Inter-
national Workshop on Cellular Neural Networks and their Applications, Frankfurt,
Germany, IEEE Computer Society Press, Los Alamitos (2002)

15. Corinto, F.: Cellular Nonlinear Networks: Analysis, Design and Applications. PhD
thesis, Politecnico di Torino, Turin (2005)

16. Gómez-Ramı́rez, E., Pazienza, G.E., Vilaśıs-Cardona, X.: Polynomial discrete time
cellular neural networks to solve the XOR problem. In: CNNA’06. Proc. 10th Inter-
national Workshop on Cellular Neural Networks and their Applications, Istanbul,
Turkey (2006)

17. Niederhofer, C., Tetzlaff, R.: Recent results on the prediction of EEG signals in
epilepsy by discrete-time cellular neural networks DTCNN. In: ISCAS’05. Proc.
IEEE International Symposium on Circuits and Systems, pp. 5218–5221. IEEE
Computer Society Press, Los Alamitos (2005)

18. Rendell, P.: A Turing machine in Conway’s game life (2006), Available:
www.cs.ualberta.ca/∼{}bulitko/f02/papers/tmwords.pdf

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

www.cs.ualberta.ca/~{}bulitko/f02/papers/tmwords.pdf

Deterministic Nonlinear Spike Train Filtered by

Spiking Neuron Model

Yoshiyuki Asai1,2, Takashi Yokoi1, and Alessandro E.P. Villa2,3,4

1 National Institute of Advanced Industrial Science and Technology (AIST),
Tsukuba, Japan

{yoshiyuki.asai, takashi-yokoi}@aist.go.jp
2 NeuroHeuristic Research Group, Information Science Institute

University of Lausanne, Switzerland
{oyasai, avilla}@neuroheuristic.org

3 Université Joseph Fourier, NeuroHeuristic Research Group, Institut des
Neurosciences, Grenoble, F-38043, France

INSERM, U836, Grenoble, F-38043, France
alessandro.villa@ujf-grenoble.fr
http://www.neuroheuristic.org/

Abstract. Deterministic nonlinear dynamics has been observed in ex-
perimental electrophysiological recordings performed in several areas of
the brain. However, little is known about the ability to transmit a com-
plex temporally organized activity through different types of spiking neu-
rons. This study investigates the response of a spiking neuron
model representing three archetypical types (regular spiking, thalamo-
cortical and resonator) to input spike trains composed of determinis-
tic (chaotic) and stochastic processes with weak background activity.
The comparison of the input and output spike trains allows to assess
the transmission of information contained in the deterministic nonlin-
ear dynamics. The pattern grouping algorithm (PGA) was applied to
the output of the neuron to detect the dynamical attractor embedded
in the original input spike train. The results show that the model of the
thalamo-cortical neuron can be a better candidate than regular spiking
and resonator type neurons in transmitting temporal information in a
spatially organized neural network.

1 Introduction

A cell assembly–a neuronal network composed of functionally related units–
may be considered as a highly complex nonlinear dynamical system able to ex-
hibit deterministic chaotic behavior, as suggested by experimental observations
(Mpitsos, 1989; Celletti and Villa, 1996; Villa et al., 1998). The time series corre-
sponding to the sequence of the spikes of a neuron is referred to as “spike train”
and can be searched for detecting embedded temporal structures. Previous stud-
ies (Tetko and Villa, 1997; Asai et al., 2006) showed that deterministic nonlinear
dynamics in noisy time series could be detected by applying algorithms aimed
at finding preferred firing sequences with millisecond order time precision that

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 924–933, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model 925

repeated more frequently than expected by chance from simultaneously recorded
multivariate time series of neural activities. Then, a neuron belonging to a cell
assembly is expected to receive input spike trains having a temporal structure
that reflects the underlying nonlinear dynamical system. Neuronal responses to
stochastic time series (Bulsara et al., 1991; Takahata et al., 2002) and periodic
inputs (Nomura et al., 1994; Pakdaman, 2001) have been intensively studied
from the view point of the neural coding. However there are less works shedding
light on neuronal response to an input spike train whose inter-spike-intervals
have temporal structure related to deterministic process.

The purpose of the present work is to investigate how different types of
archetypical neurons (i.e., thalamo-cortical, regular spiking, resonator) react to
an input spike train generated by deterministic dynamical system in presence
of “noisy” processes (Poissonian and Gaussian). The comparison between the
output spike train and the input chaotic dynamics is carried out by applying
the pattern grouping algorithm (Tetko and Villa, 2001; Abeles and Gat, 2001)
to both time series and evaluating the degree of preservation of the original
dynamics.

2 Spiking Neuron Model

The simple spiking neuron (Izhikevich, 2003) considered in this study can re-
produce several known types of neuron dynamics. The model is described as
follows;

dv

dt
= 0.04v2 + 5v + 140 − u + Ibg + Iext (1)

du

dt
= a(bv − u) ,

with the auxiliary after-spike resetting, v ← c and u ← u+d when v ≥ +30 mV .
The variable v represents the membrane potential (in millivolt units) of the neu-
ron, and u is a membrane recovery variable giving negative feedback to v. The
time unit is millisecond. When the membrane potential reaches +30 mV , the
state variables are reset with amounts given by parameters c and d, respectively.
Note that v = +30 mV is not a threshold for generating spikes, but it corre-
sponds to the peak of action potentials. Parameters a and b control the time
scale of the recovery variable and its sensitivity to the subthreshold fluctuation
of the membrane potential.

Three neuron types were considered in this study according to the literature
(Izhikevich, 2003; Izhikevich, 2004): (i) a neo-cortical neuron of regular spiking
(RS) type with parameters a = 0.02, b = 0.2, c = −65, d = 8; (ii) a thalamo-
cortical (TC) neuron with parameters a = 0.02, b = 0.25, c = −65, d = 2;
(iii) a neuron type characterized by its sustained subthreshold oscillation of the
membrane potential called resonator (RZ) with parameters a = 0.1, b = 0.25,
c = −65, d = 2.

Ibg is a background activity simulated by square pulses lasting 3 ms dis-
tributed according to a Poissonian distribution with an average firing rate of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

926 Y. Asai, T. Yokoi, and A.E.P. Villa

Fig. 1. Return maps of input spike trains. The axes are scaled in ms time units.
Upper row: single inputs, N = 10, 000 points, 3 spikes/s. Lower row: combined inputs,
N = 20, 000 points, 6 spikes/s.

5 spikes/s. The amplitude of background pulses was set to 5.5, 1.0 and 0.5 for
RS, TC and RZ neurons, respectively. The duration and amplitude of the pulses
were selected in order to allow a high membrane excitability with a minimum of
spurious spikes generated by the background noise alone. Because of the nonlin-
earity of the model, few spikes were nevertheless generated by the background
noise, corresponding to rates of 0.09, 0.09 and 0.07 spikes/s for RS, TC and RZ
neurons, respectively.

Iext is an external input spike train to the neuron corresponding to square-
like pulse current lasting 1 ms. The amplitude of the external pulses is tuned
for each neuron type such that a single input pulse can evoke an output spike
at resting membrane condition. The amplitude of the external input was set to
17, 5 and 2.5 for RS, TC and RZ neurons, respectively.

3 Input Spike Train

We considered three types of single input spike trains corresponding to a deter-
ministic process generated by the Zaslavskii map and to Poissonian and Gaus-
sian stochastic processes. Ten thousand points (N = 10, 000) were generated in
each series. The Zaslavskii map (Zaslavskii, 1978) is described by the following
equation:

{
xn+1 = xn + v(1 + μyn) + εvμ cosxn (mod. 2π)
yn+1 = e−γ(yn + ε cosxn) ,

(2)

where x, y ∈ R, the parameters are real numbers with μ = 1−e−γ

γ , v = 4
3 ·

100 and initial conditions set to x0 = 0.3 and y0 = 0.3. With this parameter

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model 927

Fig. 2. (a) Regular spiking (RS), (b) thalamo-cortical (TC), (c) Resonator (RZ) neu-
ronal types. The time-series of the membrane potential and of the input spike train are
illustrated in the upper and lower traces in each panel. I1 marks a single input strong
enough to evoke a spike in all neuronal types at rest. I2 marks an input spike arriving
shortly after the previous input, such that no spike is generated due to neuron’s refrac-
toriness. I3 marks an input spike arriving also shortly after the previous input but due
to peculiar internal RZ neuronal dynamics the temporal summation at neuronal mem-
brane is enough to evoke an output spike. B1 indicate burst of background activities
that can be integrated in the TC neuron such to evoke an output spike. B2 indicates
an isolated single pulse of background activity unable to evoke an output whereas I4

indicates an input spike superimposed on the background activity.

set, the system exhibits a chaotic behavior. Time series {xn} are generated by
iterative calculation. A new time series {wn} is derived by taking the difference
between two adjacent values of {xn}, and adding a constant C to make all
values positive, i.e. , wn = xn+1 − xn + C, where C = min{(xn+1 − xn)} +
0.1. The time series {wn} were assumed to correspond to the sequence of the
inter-spike-intervals. The dynamics was rescaled in milliseconds time units with
an average rate of 3 events/s (i.e., 3 spikes/s) in order to let the Zaslavskii
spike train be comparable to neurophysiological experimental data. Inter-spike-
intervals generated according to the Exponential distribution with an average
rate of 3 events/s were referred to Poissonian spike train. Inter-spike-intervals
generated according to a Gaussian distribution with standard deviation set to
150 ms and an average rate of 3 events/s were referred to Gaussian spike train.
Return maps of the three single input spike trains, corresponding to the plots
of the n-th inter-spike-interval against the (n − 1)-th inter-spike-interval, are
displayed in the upper row of Fig. 1. Notice the typical structure of the attractor
of Zaslavskii map in the leftmost panel.

Four types of complex input spike trains were obtained by merging two sim-
ple spike trains with the following combinations: Zaslavskii and Poisson spike

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

928 Y. Asai, T. Yokoi, and A.E.P. Villa

Fig. 3. Return maps of raw output spike trains and reconstructed output spike trains
by PGA for an input Zaslavskii spike train with background activity

train, Zaslavskii and Gaussian, Poisson and Poisson, Gaussian and Gaussian. The
return maps of the lower row of Fig. 1 show that the Gaussian spike train could
completely destroy the Zaslavskii attractor, whereas the attractor could still be
recognized in the combination with the Poissonian spike train.

In addition to three simple and four complex inputs, we considered also the
inputs in combination with the background activity described above, that means
fourteen cases overall (3 simple, 4 complex, 3 simple with background, 4 complex
with background).

4 Filtering and Reconstruction of Spike Train

Spatiotemporal firing patterns, also called preferred firing sequences, are de-
fined as a sequences of spikes (formed by three or more) with high temporal
precision of the order of milliseconds. The Pattern Grouping Algorithm (PGA)
(Tetko and Villa, 2001; Abeles and Gat, 2001) is aimed at finding all sequences
of events that repeat at least 5 times within the time series and to estimate
the significance of this repetition above chance levels. In the current study
the three important parameters controlling the PGA performance were set as
follows: the maximal duration of the temporal pattern was 900 ms, the time
precision of the events within the temporal pattern (called jitter) was 3 ms,
the level of significance of each pattern was p = 0.01. All events belonging
to all recurrent firing sequences detected by PGA are pooled together keep-
ing their original timing and form a subset of the original spike train (Asai
et al., 2006).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model 929

Table 1. Number of points in the raw and PGA reconstructed (“rec”) spike train for
the Zaslavskii, Poissonian and Gaussian input spike train with (BG) and without the
background activity (no BG). The input spike trains included 10, 000 points with a
rate of 3 spikes/s.

Input Regular Spiking Thalamo-Cortical Resonator
spike train raw rec raw rec raw rec

Zaslavskii
no BG 7392 2753 8234 4424 8345 3988

BG 6597 864 7834 2448 7115 359

Poissonian
no BG 6197 0 7488 93 7567 0

BG 5643 0 7173 0 6724 21

Gaussian
no BG 8354 107 9266 129 9036 174

BG 7343 0 8716 66 7517 0

5 Differential Effect of Neuronal Type Dynamics

Figure 2 briefly illustrates some examples of different responses to input and
background activity as a function of the selected neuronal type. At first we
investigated the response of the neuron model to the simple inputs with back-
ground activity. In presence of an input Zaslavskii spike train with background
activity one can recognise in the return map of the output train of all neuronal
types (Fig. 3 upper panels) the sets of points which reflect the original Zaslavskii
attractor. Notice also margins without points near the ordinate and abscissa axis
in each panel due to the refractoriness of the neuronal dynamics.

In order to investigate how the deterministic component of the original input
spike train is transmitted by the neuron we searched recurrent firing sequences
in the output spike trains (Fig. 3 lower panels). The method demonstrated its
efficacy in removing almost all random noisy points seen in the return maps of
the raw neuron outputs and the attractor was clearly visible for the TC neuron
and for RS to a lesser extent. In the case of the resonator (RZ) PGA with
the current control parameters detected only 5 % of the spikes (Fig. 3 bottom-
right) that were contained in the raw output (Fig. 3 upper-right). In fact the RZ
neuron is somewhat blurring the original attractor (compare Fig. 3 upper raw)
and introduces additional jitter associated to the internal oscillatory dynamics.
We applied PGA with jitter equal to 5 ms instead of 3 ms as initially set for all
analyses and we could find 22 % spikes in the RZ reconstructed output (figure
not shown).

The count of spikes involved in the output spike trains and in the correspond-
ing reconstructed spike train are summarised in Table 1. For all types of neuron,
the background activity tended to reduce the number of spikes in the output
train. Notice also that spurious patterns were detected by PGA when the neu-
ron receives stochastic inputs, such as Poissonian and Gaussian spike trains, but
the amount of these points is very little compared to the other cases.

The response of the neuron to the complex inputs in presence of the back-
ground activity is shown in Fig. 4. In the combined Zaslavskii and Poissonian

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

930 Y. Asai, T. Yokoi, and A.E.P. Villa

Fig. 4. Return maps of raw output spike trains for combined inputs (as labeled) with
background activity. RS: regular spiking neuron; TC: thalamo-cortical neuron; RZ:
resonator.

input spike train (see Fig. 1 lower row) the dynamical structure was still present
and it appears that all types of neurons are able to preserve some determin-
istic temporal structure in the inputs (Fig. 4 leftmost column). Interestingly,
although the original Zaslavskii attractor was completely destroyed in Zaslavskii
and Gaussian spike train (Fig. 1), it appeared that the output spike train pre-
served a kind of dim shade of the original Zaslavskii attractor in the return maps
of TC and RZ neurons and of RS to a lesser extent (Fig. 4 second column). The
control analyses with a combination of Gaussian and Poissonian inputs did not
show any particular feature other than the known effects due to the internal
dynamics, such as the “stripes” of the RZ neuron associated to its subthreshold
oscillatory dynamics.

Likewise with a single input we investigated how the deterministic component
of the combined original input spike train that is transmitted through the neuron
by means of PGA reconstruction (Fig. 5). The method demonstrated its efficacy
in removing almost all random noisy points seen in the return maps of the raw
neuron outputs and the attractor was clearly visible for the TC neuron and for
RS to a lesser extent. In the case of TC neuron, PGA was able to detect several
points relevant to the original Zaslavskii attractor (Fig. 5 two leftmost columns).

Table 2 shows that the numbers of points in the reconstructed spike trains
of TC neuron is about the half of what was observed for the single input train
(Table 1). Conversely, for RS and RZ neurons, few relevant points only could

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model 931

Fig. 5. Return maps of reconstructed output spike trains by PGA for combined inputs
(as labeled) with background activity. RS: regular spiking neuron; TC: thalamo-cortical
neuron; RZ: resonator.

Table 2. Number of points in the raw and PGA reconstructed (“rec”) spike train for
the Zaslavskii, Poissonian and Gaussian input spike train with (BG) and without the
background activity (no BG). The overall input spike trains included 20, 000 points
with an overall rate of 6 spikes/s.

Regular Spiking Thalamo-Cortical Resonator
raw rec raw rec raw rec

Zaslavskii no BG 9220 1188 12224 1962 12902 1373
& Poisson BG 8544 194 11725 1632 11987 746

Zaslavskii no BG 9735 977 12951 1532 13207 1608
& Gaussian BG 8972 350 12344 978 12111 621

Poissonian no BG 8836 324 11852 1100 12704 763
& Poissonian BG 8203 80 11390 777 11863 553

Gaussian no BG 10002 944 13407 1581 13446 1059
& Gaussian BG 9178 279 12792 622 12421 393

be detected and their number was close to what is detected in the control tests
containing pure stochastic inputs, as indicated also in Table 2. Table 2 shows
also that the effect of background is less dramatic than in the single input
and that a strong stochastic input is able to produce a significant amount of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

932 Y. Asai, T. Yokoi, and A.E.P. Villa

preferred firing sequences that are only related to the internal dynamics and not
the deterministic input.

6 Discussion

We investigated the response of the spiking neuron model to input spike trains
characterized by deterministic temporal structure or stochastic properties. Three
types of cortical neuron i.e. regular spiking (RS), thalamo-cortical (TC) and
resonator (RZ) neurons were modeled following (Izhikevich, 2003; Izhikevich,
2004). The effect of the difference in dynamics to transmit the deterministic
temporal structure in the input spike train to the output was also examined.

Regular spiking neuron (RS) had a rather long refractory period and hence
could not generate neural discharges quickly when the neuron received rapid
sequence of input spikes. On the opposite, RZ is characterized by subthreshold
oscillatory membrane potential and could respond quickly, but its feature clearly
appeared in the stripe patterns of the return map of the output spike train.
Latency to generate neural discharge of RZ after receiving an input spike can
widely vary according to the neuron’s state. Hence weak spikes in the background
activity were effective to vary the timing of neural discharges corresponding to
input spikes, leading to dim shape of the attractor seen in Fig. 4. Because of this
nonlinearity, PGA could detected less spikes in the output of RZ neuron even
when simple and complex input spike trains included Zaslavskii spike train with
the background activity. TC neuron appeared to be the model that was better
able to preserve the input deterministic dynamics. In this case PGA could detect
spike sets which corresponded to parts of the original Zaslavskii attractor even
with a combined input that included a strong stochastic noise (Fig. 5).

The fact that thalamo-cortical neurons appear as a good candidate for the
transmission of temporal information may raise several hypotheses on the role
of the thalamo-cortical loop with respect to feed-forward networks formed by
cortical regular spiking neurons (Villa, 2002). The current work is only at an
incipient state but it clearly address the need to investigate in detail the ability
of transmitting detailed temporal information as a function of neuronal inter-
nal dynamics. Furthermore, the effect of background activity and the nature of
additional stochastic inputs might act as additional controlling parameters on
the transmission of temporal information through chains of different types of
neurons.

Acknowledgements

This study was partially funded by the bi-national JSPS/INSERM grant SYR-
NAN and Japan-France Research Cooperative Program.

References

Abeles, M., Gat, I.: Detecting precise firing sequences in experimental data. Journal of
Neuroscience Methods 107, 141–154 (2001)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model 933

Asai, Y., Yokoi, T., Villa, A.E.P.: Detection of a dynamical system attractor from spike
train analysis. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006.
LNCS, vol. 4131, pp. 623–631. Springer, Heidelberg (2006)

Bulsara, A., Jacobs, E.W., Zhou, T., Moss, F., Kiss, L.: Stochastic resonance in a single
neuron model: theory and analog simulation. J. Theor. Biol. 152, 531–555 (1991)

Celletti, A., Villa, A.E.P.: Low dimensional chaotic attractors in the rat brain. Biolog-
ical Cybernetics 74, 387–394 (1996)

Izhikevich, E.M.: Simple model of spiking neurons. IEEE Transactions on Neural Net-
works 14, 1569–1572 (2003)

Izhikevich, E.M.: Which model to use for cortical spiking neurons? IEEE Transactions
on Neural Networks 15, 1063–1070 (2004)

Mpitsos, G.J.: Chaos in brain function and the problem of nonstationarity: a com-
mentary. In: Basar, E., Bullock, T.H. (eds.) Dynamics of sensory and cognitive
processing by the brain, pp. 521–535. Springer, London (1989)

Nomura, T., Sato, S., Segundo, J.P., Stiver, M.D.: Global bifurcation structure of
a bonhoeffer-van der pol oscillator driven by periodic pulse trains, Biol. Cybern.
vol. 72, pp. 55–67 (1994)

Pakdaman, K.: Periodically forced leaky integrate-and-fire model. Physical Review
E 63, 41907 (1907)

Takahata, T., Tanabe, S., Pakdaman, K.: White-noise stimulation of the hodgkin-
huxley model. Biol. Cybern. 86, 403–417 (2002)

Tetko, I.V., Villa, A.E.: A comparative study of pattern detection algorithm and dy-
namical system approach using simulated spike trains. In: Gerstner, W., Hasler,
M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS, vol. 1327, pp. 37–42.
Springer, Heidelberg (1997)

Tetko, I.V., Villa, A.E.P.: A pattern grouping algorithm for analysis of spatiotemporal
patterns in neuronal spike trains. 1. detection of repeated patterns. J. Neurosci.
Meth. 105, 1–14 (2001)

Villa, A.E.P.: Cortical modulation of auditory processing in the thalamus. In: Lomber,
S.G., Galuske, R.A.W. (eds.) Virtual lesions: Examining Cortical Function with
reversible Deactivation, ch. 4, pp. 83–119. Oxford University Press, Oxford (2002)

Villa, A.E.P., Tetko, I.V., Celletti, A., Riehle, A.: Chaotic dynamics in the primate mo-
tor cortex depend on motor preparation in a reaction-time task. Current Psychology
of Cognition 17, 763–780 (1998)

Zaslavskii, G.M.: The simplest case of a strange attractor. Phys. Let. 69A, 145–147
(1978)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot

Learning of Complex Temporal Sequences

Matthieu Lagarde, Pierre Andry, and Philippe Gaussier

ETIS, Neurocybernetic Team, UMR CNRS 8051
2, avenue Adolphe-Chauvin, University of Cergy-Pontoise, France

{lagarde,andry,gaussier}@ensea.fr

Abstract. We present an artificial neural network used to learn online
complex temporal sequences of gestures to a robot. The system is based
on a simple temporal sequences learning architecture, neurobiological
inspired model using some of the properties of the cerebellum and the
hippocampus, plus a diversity generator composed of CTRNN oscilla-
tors. The use of oscillators allows to remove the ambiguity of complex
sequences. The associations with oscillators allow to build an internal
state to disambiguate the observable state. To understand the effect of
this learning mechanism, we compare the performance of (i) our model
with (ii) simple sequence learning model and with (iii) the simple se-
quence learning model plus a competitive mechanism between inputs
and oscillators. Finally, we present an experiment showing a AIBO robot,
which learns and reproduces a sequence of gestures.

1 Introduction

Our long term goal is to build an autonomous robot able to learn sensorimotor
tasks. Such a system should be (i) able to acquire new “behaviors” : gestures,
objects manipulation as sequences combining multimodal elements of different
levels. To do this, an autonomous system must (ii) take advantage of information
of the associations between vision and motor capabilities. This paper focuses
essentially on the first point : learning, predicting and reproduction of complex
sensorimotor sequences.

In this scope, solutions based on neural networks are an interesting solu-
tion. Neural networks are able to learn sequences using associative mechanisms.
Moreover, these networks offer a level of coding (neuron) that takes into account
information about the lower sensorimotor system; such systems avoid the use
of symbols or information that could separate the sequence learning component
from the building of associations between sensation and action. Networks are
adapted to online learning favoring easier interactions with humans and other
robots. Among these models, chaotic neural networks are based on recurrent
network (RN). In [1], a fully connected RN learns a sequence thanks to a single
layer of neurons. The dynamics generated by the network help to learn a short
sequence. After a few iterations, the learned sequence vanishes progressively.
In [2], a random RN (RRN) learns a sequence thanks to a combination of two

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 934–943, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot Learning 935

layers of neurons. The first layer generates an internal dynamic by means of a
RRN. The second layer generates a resonance phenomenon. The network learns
short sequences of 7 or 8 states. But this model is highly sensitive to noises or the
stimulus variations and does not learn long periods sequences. A similar model
is the Echo States Network (ESN) based on RRN for short term memory [3]
(STM). Under certain conditions (detailed in [4]), the activation of each neuron
in the hidden layer, is a function of the input history presented to the network;
this is the echo function. Once again, the idea is to use a “reservoir” of dynamics
from which the desired output is learned in conjunction with the effect of the
input activity.

In the context of robotics, many models concern gesture learning. By means
of nonlinear dynamical systems, [5] develops control policies to approximate the
recorded movements and to learn them with a fitting of mixture model using
a recursive least square regression technique. In [6], the trajectories of gestures
are acquired by the construction of motor skills with a probalistic representation
of the movement. Trajectories can be learnt through via points [7] with parallel
vector-integration-to-endpoint models [8]. In our work, we wish to be able to re-
use and detect subsequences and possibly, combine them. Thus, we need to learn
some of the important components of the sequence and not only to approximate
the trajectory of the gesture.

In this paper, we present a biologically inspired model of neural network for
temporal complex sequences learning. A first approach described in [9] proposes
a neural network for the online learning of the timing between events for simple
sequences (with non ambiguous states like “A B C”). We propose a model for
complex sequences (with ambiguous states like A and B in “A B A C B”). In or-
der to remove the ambiguous states or transitions, we use batteries of oscillators
as a reservoir of diversity allowing to separate the inputs appearing repeatedly
in the sequence. In section 3, we show results from simulations comparing the
performances of 3 different systems involved in the learning and reproduction
of the same set of complex sequences : (i) the system described in [9], (ii) this
system plus a simple competitive mechanism between the oscillators and the
input (showing the effect of adding internal dynamics in order to separate am-
biguous states) and (iii) a system optimizing the use of the oscillators by using
an associative learning rule in order to recruit new internal states when needed
(repetition of the same input state). Section 4 details the application of our
model on a real robot for the learning of a complex gesture. Finally, we conclude
and point out some open problems.

2 A Model for Timing and Sequence Learning

The architecture (Fig. 1) is based on a neurobiological model [10] inspired from
some of the properties of the cerebellum and the hippocampus. This model
uses associative learning rules between past inputs memorized as a STM and
present inputs in order to learn the timing of simple sequences. “Simple” refers
here to the sequences in which the same state appears only once. The main

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

936 M. Lagarde, P. Andry, and P. Gaussier

Fig. 1. Complex sequences learning model. Barred links are modifiable connexions.
The others are associated to unmodifiable connexions. The left part is detailed in figure
3.A and 3.B. The right part is detailed in figure 4.

advantage of this model is that the associative mechanism also learns the timing
of the sequence, which allows accurate predictions of the transitions that compose
the sequence. In order to learn complex sequences in which the same state is
repeated several times, in our model we have added a mechanism that generates
internal dynamics and that can be associated with the repeated inputs of the
sequence. The association between the repeated inputs and different activities
of the oscillator allows to code hidden states with different and un-ambiguous
patterns of activities. As a result, our architecture manages to learn/predict and
reproduce complex temporal sequences.

2.1 Generating Internal Diversity

Oscillators are very much used in robotic applications like locomotion using
central pattern generator (CPG) [11]. An oscillator is a continuous time recurrent
neural network (CTRNN) composed of two neurons (Fig. 2.A). The study on
CTRNNs can be found in [12]. This kind of oscillators is known for stability, and
resistance to the noises. CTRNN are easy to implement too. A CTRNN coupling
two neurons produces an oscillator (Fig. 2.B) :

τe.
dx

dt
= −x + S((wii ∗ x) − (wji ∗ y) + weconst) (1)

τi.
dy

dt
= −y + S((wjj ∗ y) + (wij ∗ x) + wiconst) (2)

with τe a time constant for the excitatory neuron and τi for the inhibitory neuron.
x and y are the activity of the excitatory and the inhibitory neuron respectively.
wii is the weight of the recurrent link of the excitatory neuron, wjj the weight
of the recurrent link of the inhibitory neuron. wij is the weight of the link from
the excitatory neuron to inhibitory neuron. wji is the weight of the link from the
inhibitory neuron to excitatory neuron. weconst and wiconst are the weights of the
links from the constant inputs. And S is the transfer function of each neuron.
In our model, we use three oscillators with τe = τi.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot Learning 937

A. B.
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

time

Fig. 2. A. Oscillator model. Left neuron is excitatory and right neuron is inhibitory.
Excitatory links are : Wii = 1, Wjj = 1, Wij = 1. Inhibitory links is : Wji = −1,
Constant input value is equal to 1 with constant links Weconst = 0.45 and Wiconst = 0.
Initial activities of neurons are X(0) = 0, Y (0) = 0.
B. Display of the instantaneous mean frequency activity of 3 oscillators systems with
τ1 = 20 (plain line), τ2 = 30 (long dashed line), τ3 = 50 (short dashed line).

2.2 Learning of Internal States

In order to use repeatedly the same input in a given sequence, different configu-
rations of oscillators can be associated with the same input. To understand the
generation of diversity and its implication in our learning algorithm, we have
tested two mechanisms : a simple competition coupling input states with oscil-
lators (Fig. 3.A) and an associative mechanism based on a learning rule (Fig.
3.B) that recruits neurons according to the activities of the oscillators and the
repeated inputs.

Competitive Mechanism. The competition is computed as follow : each neu-
ron ij of the Competition group acts as an neuron performing the logical operator
AND between the neurons of the Inputs group and of the Oscillators group :

Potij = (winputi ∗ xinputi + woscij ∗ xoscij) − thresholdij (3)

with winputi = 1, woscij = 1, thresholdij = 1.2, xinputi the activity of the input
at index i and xoscij the activity of the oscillator at index j.

In a second step, a competition between all neurons ij of the Competition
group is applied :

Winnerij =
{

1 if ij = Argmaxij(Potij)
0 otherwise

(4)

The winner neuron becomes the input of the temporal sequence learning network
(subsection 2.3). In this way, a “reservoir” of oscillator neurons can be used as a
way to associate the same input with different internal patterns. Intuitively, the
simple competition (no learning is required here) allows to directly select differ-
ent “internal” states corresponding to the same input repeated many times in

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

938 M. Lagarde, P. Andry, and P. Gaussier

the sequence. For example in Fig. 3.A, each input (A,B,C,D) can appears up to 3
times (corresponding to the number of oscillators) in the same sequence. More-
over, such a mechanism does not disturb the prediction nor the reproduction
of the sequence. Obviously, if the competition between oscillators is an avenue
worth exploring, it is still possible to have ambiguity. An input can be associated
with same winner oscillator two or more times. Consequently, there is still poten-
tial ambiguities on the “internal” states of our model, and some sequences could
not be reproduced correctly. A precise measure of this problem corresponds to
the probability that the same state can be associated with the same oscillator
several times and therefore the “internal” state partially depends of the shape,
phase and number of oscillators. Typically, the problem happens when a given
state comes back with the same frequency as the selected oscillator. The curves
C2 and C3 on figure 5 show the performances of the competitive mechanism. To
solve this problem, an associative mechanism allowing to recruit neurons coding
“internal” states has been added.

A. B.

Fig. 3. A. Model of the neural network coupling an input state with an oscillator.
All links are fixed connections. B. Model of the neural network used to associate an
input state with a configuration of oscillators. Only few links are represented for the
legibility. Dashed links are modifiable connections. Solid links are fixed connections.

Associative Mechanism. The learning process of an association between an
input state and a configuration of oscillators is :

US = wi ∗ xi (5)

with wi the weight of the link from input state i, and xi activity of the input
state i. If US > threshold, we compute the potential and the activity of the
neuron as follow :

Potj =
Mosci∑

j=0

|(wj − ej)| Actj =
1

1 + Potj
(6)

with Mosci the number of oscillators, wj the weight of the link from oscillator j,
and ej the activity of the oscillator j. The neuron that has the minimum activity
is recruited : Win = Argminj(Actj). Initial weigths of connexions have high
values. The oscillators configuration is learnt according to the error of distance

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot Learning 939

Δwj = ε(ej − wj) with ε a learning rate, wj weight of link from Oscillator j,
and ej activity of oscillator j. The Associations group becomes the new input
of the temporal sequence learning network (subsection 2.3). As showed on the
figure 3.B, an input allows recruiting 3 different neurons coding “internal” states.
They correspond to the connectivity of the unconditional links chosen between
the Inputs group and the Association group. The associative mechanism ensures
to recruit a new “internal” state for each input (A, B, C or D) from the sequence.
The connectivity of links between the Input group and the Association group,
has been chosen to have a number of hidden states equal for each input. This
allows the comparison between the different models in our simulations. But it
could be possible to change the connectivity of the links to allow the recruitement
of more hidden states for each repeated input in the sequence. We have tested
this mechanism in our architecture in simulation and robotic application.

2.3 Temporal Sequences Learning

This part of model is based on a schematic representation of hippocampus [10]
(Fig. 4). DG represents past state (STM), and develops a temporal activity
spectrum. CA3 links allow pattern completion and recognition between incoming
state from EC and previous state maintained in DG. We suppose the DG activity
can be modelled as follow :

ActDG
j,l (t) =

1
mj

· exp − (t − mj)
2

2 · σj
(7)

with ActDG
j,l the activity of the cell at index l on the line j, t the time, mj a time

constant and σj the standard deviation. Neurons on one line share their activity in
the time and represent a temporal trace of EC. Learning of an association is on the
weights of links between CA3 and DG. The normalization of the activity coming
from DG neurons is performed due to the normalization of the DG-CA3 weights.

W
DG(j,l)
CA3(i,j) =

⎧
⎨

⎩

ActDG
j,l

�
j,l(ActDG

j,l)2 if ActDG
j �= 0

unchanged otherwise
(8)

Fig. 4. Representation of hippocampus. Entorhinal Cortex (EC) receives inputs and
transmits them to Dentate Gyrus (DG) and CA3 pyramidal cells. Between the DG
group and the CA3 group there are fully connected with modifiable connections. Be-
tween the EC group and CA3 group, and the EC group and DG group, there are fixed
one to neighborhood connections.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

940 M. Lagarde, P. Andry, and P. Gaussier

Interestingly, this model has the property to work when a same input comes
several times continously. Thanks to the derivative group EC, a repeated input
is stored during the total time of its presence. Consequently, two successive states
are not ambiguous for the system (“A A” = “A”).

3 Simulation Results

A temporal sequence of states is rarely replayed two times exactly with the same
rhythm. Time can vary between two states especially when demonstrating a se-
quence to a robot. In our simulations we apply a time variation between states
and observe the consequences on three architectures. The first architecture is the
model of simple sequences learning presented in subsection 2.3. The second is
the same model plus the competitive mechanism presented in subsection 2.2. The
third architecture is the same as the first one plus the associative mechanism (Fig.
1) seen in subsection 2.2. References sequences are generated to be successfully
reproduced by the second architecture with a timing variation of 0%. All archi-
tectures are trained with the same sequences and the same maximum of timing
variation (0%, 5% or 10%), but with a time variation randomly chosen between
0 and the maximum variation of the time. In our experiments, to bootstrap a se-
quence, we provide the first state. Consequently, this state will not be ambiguous
in the sequences. For example, a complex sequences can be “D B C B A C A B”
: “D” is the starting state and it will not be repeated after. Fig. 5 shows the per-
formances of each architecture. We can see that the first architecture (subsection
2.3) has very good performances with sequences of 3 and 4 states, because those se-
quences have no repeated states (simple sequences). With sequences having more
than 4 states, the performances fall drastically , because there is at least one state

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 2 3 4 5 6 7 8

%
 o

f s
eq

ue
nc

es
 c

or
re

ct
ly

 r
ep

ro
du

ce
d

sequence length

"C1"

"C2"

"C3"

"C4"

Fig. 5. C1 : first architecture : simple sequences learning. The results are the same with
time variation of 0%, 5% and 10%. C2 : second architecture : complex sequences learning
with a competitive mechanism and a time variation of 5%. C3 : second architecture :
complex sequences learning with a competitive mechanism and a time variation of 10%.
C4 : current architecture : complex sequences learning with an associative mechanism.
The results are the same timing variation of 0%, 5% and 10%.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot Learning 941

repeated in the sequences. We can see the time variation has no effect on the per-
formances. The architecture can not reproduce them, because CA3 group learns
two transitions and, thus it predicts two states for each repeated input. The sec-
ond architecture using competitive mechanism, has better performances, but, as
we have seen previously in subsection 2.2, ambiguous internal states can appear
and reduce this gain of sequences correctly reproduced. Consequently, like the first
architecture, the CA3 group learns two “internal” states and, thus, it predicts two
states from one input repeated. We can see, the performances change according to
the timing variation between states in the sequences : a same input from a given
sequence can be associated with two different oscillators and, consequently a dif-
ferent “internal” state wins. Thanks to the recruitment mechanism, the third ar-
chitecture, has the best performances : 100% with all tested sequences. There are
not ambiguous states or “internal” states. The time variation has no effect on the
performances of the model.

4 Robotic Application

The robot used in our experiments is an Aibo ERS7 (Sony). In our application,
we use only the front left leg, in a passive movement mode to learn a sequence
of gestures. The sequence to be learned and reproduced is showed Fig. 6.A. In
this application, we test the third architecture previously described.

During learning, we manipulate the front left leg of the robot passively (Fig.
6.B). During the execution of the movement, the neural network learns online,
and in one shot the succession of the joints orientation thanks to the motors
feedback information of its leg (proprioceptive signal). Hence, the inputs of our
model are the orientations/angles of the leg. The recorded motors information
while learning are shown in Fig. 7.X-learning (horizontal movements) and Fig.
7.Y-learning (vertical movements).

To initiate the reproduction of the sequence by the robot, we give the first
state of the sequence (“down”). As Aibo can not be manipulated when motors
are activated, we send the command directly to the robot. Next, Aibo plays the
sequence autonomously (Fig. 7, top). With the starting state, our model predicts
the next orientation and send the corresponding command to the robot.

A. B.

Fig. 6. A. Representation of desired sequence. It begins from the start point. B. We
manipulate Aibo passively. It learns the succession of orientations of the movement
from these front left leg motor information.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

942 M. Lagarde, P. Andry, and P. Gaussier

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 200 400 600 800 1000 1200 1400 1600 1800

an
gl

e

time

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 200 400 600 800 1000 1200 1400 1600 1800

an
gl

e

time

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 200 400 600 800 1000 1200

an
gl

e

time

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0 200 400 600 800 1000 1200

an
gl

e

time

X-learning Y-learning X-reproduction Y-reproduction

 0
 0.1

 0.5

 1

 0 0.5 1
 0

 0.5

 1

 0 0.5 1

Learnt gesture Reproduced gesture

Fig. 7. Top : Aibo reproduces the learnt sequence. Middle : X-learning and Y-learning
are respectively the horizontal and the vertical motors information while robot learns
the sequence. X-reproduction and Y-reproduction are respectively the horizontal and
the vertical motors information during the reproduction of the sequence. On the figure
Y-reproduction, the first movement is not reproduced (not predicted), but given by the
user in order to trigger the recall it is our bootstrap state to start the sequence. X-axis
are the time and Y-axis are the angles of the motors.

5 Conclusions and Discussions

We have proposed a model of neural network for the learning of complex tempo-
ral sequences. This model introduces an associative mechanism taking advantage
of a diversity generator composed of oscillators. These oscillators are based on
coupled CTRNN. This model is efficient in the frame of autonomous robotics
and succeed in learning in one shot the timing of sequences of gestures.

During the robotics application, we have noticed that the robot reproduces
the sequence with a different amplitude of the movement. This effect comes from
the speed of the displacement of the leg of Aibo. In our application, the speed of
the reproduction is a predefined constant different from the user dynamic during
learning. The rhythm of the sequence is respected thanks to atemporal group
of neurons. A possible improvement would be to add a model like CPG [5] for
each movements (“up”, “down”, “left” and “right”) composing sequences with
variable speeds. In our model, the number of neurons coding the associations
between the inputs and the oscillators, represents the size of the “short term
memory”. In our simulations and application, the sequences learnt do not satu-
rate the “memory”. It would be interesting to analyze the behavior of the neural
network with longer sequences, and test the limitations of the system when the
neural limit has been reached by the recruitment mechanism. In the present sys-
tem, it would mean that the already recruited neurons could be erased in order
to encode new states.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

The Role of Internal Oscillators for the One-Shot Learning 943

In further works, this sequence learning model will complete a model for
imitation based on low level sensorimotors capabilities and vision [13]. In this
way, the robot will learn sensorimotors capabilities based on its vision and learn
a demonstrated gesture from human or robot by imitation and reproduce it.

Acknowledgements

This work was supported by the French Region Ile de France, the network of
excellence HUMAINE and the FEELIX GROWING european project. (FP6
IST-045169)

References

1. Molter, C., Salihoglu, U., Bersini, H.: Learning cycles brings chaos in continuous
hopfield networks. In: IJCNN. Proceedings of the International Joint Conference
on Neural Networks conference (2005)

2. Daucé, E., Quoy, M., Doyon, B.: Resonant spatio-temporal learning in large random
neural networks. Biological Cybernetics 87, 185–198 (2002)

3. Jaeger, H.: Short term memory in echo state networks. Technical Report GMD
Report 152, German National Research Center for Information Technology (2001)

4. Jaeger, H.: The ”echo state” approach to analysing and training recurrent neural
networks. Technical Report GMD Report 148, German National Research Center
for Information Technology (2001)

5. Ijspeert, A.J., Nakanishi, J., Shibata, T., Schaal, S.: Nonlinear dynamical sys-
tems for imitation with humanoid robots. In: Humanoids2001. Proceedings of the
IEEE/RAS International Conference on Humanoids Robots, pp. 219–226 (2001)

6. Calinon, S., Billard, A.: Learning of Gestures by Imitation in a Humanoid Robot.
In: dautenhahn, K., nehaniv, c.l. (eds.), Cambridge University Press, Cambridge
(2006) (in press)

7. Hersch, M., Billard, A.: A biologically-inspired model of reaching movements. In:
Proceedings of the 2006 IEEE/RAS-EMBS International Conference on Biomedical
Robotics and Biomechatronics, Pisa (2006)

8. Bullock, D., Grossberg, S.: Neural dynamics of planned arm movements: Emergent
invariants and speed-accuracy properties during trajectory formation. Psychologi-
cal Review 95, 49–90 (1988)

9. Ans, B., Coiton, Y., Gilhodes, J.C., Velay, J.L.: A neural network model for tempo-
ral sequence learning and motor programming. Neural Networks 7(9), 1461–1476
(1994)

10. Gaussier, P., Moga, S., Banquet, J.P., Quoy, M.: From perception-action loops to
imitation processes. Applied Artificial Intelligence (AAI) 1(7), 701–727 (1998)

11. Ijspeert, A.J.: A neuromechanical investigation of salamander locomotion. In:
AMAM 2000. Proceedings of the International Symposium on Adaptive Motion
of Animals and Machines (2000)

12. Yamauchi, B., Beer, R.D.: Sequential behaviour and learning in evolved dynamical
neural networks. Adapt. Behav. 2(3), 219–246 (1994)

13. Andry, P., Gaussier, P., Nadel, J., Hirsbrunner, B.: Learning invariant sensori-
motor behaviors: A developmental approach to imitation mechanisms. Adaptive
behavior 12(2), 117–138 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral

Analysis of the Synchronisation Matrix with an
Additional Phase Sensitive Rotation

Jan-Hendrik Schleimer and Ricardo Vigário

Adaptive Informatics Research Centre
Helsinki University of Technology

P.O. Box 5400, fin-02015 Espoo, Finland
schleime@cis.hut.fi, rvigario@cis.hut.fi

Abstract. Synchrony is a phenomenon present in many complex sys-
tems of coupled oscillators. It is often important to cluster those sys-
tems into subpopulations of oscillators, and characterise the interactions
therein. This article derives the clustering information, based on an eigen-
value decomposition of the complex synchronisation matrix. A phase
sensitive post-rotation is proposed, to separate classes of oscillators with
similar frequencies, but with no physical interaction.

1 Introduction

Synchronisation can arise in complex systems comprised of natural or artificial
non-linear oscillators. This is the case, e.g., in chemical oscillators [1] or technical
devices, like Josephson’s junctions [2]. It can be seen as a by-product of physical
interactions between oscillators. In particular, the study of neuronal communi-
cation can benefit from a better characterisation of synchronisation phenomena
between elements of the nervous system.

Neural coding schemes, relying on the relative timing of responses between
neurons, emphasise the relevance of synchronisation phenomena in nervous sys-
tems [3]. Essentially, synchronisation is either caused by a common input or by
interactions between neurons. In this paper, the focus is on the later “internal
synchronisation”, since its role is less well understood. In many neuron models,
stable limit cycle attractors exist. Based on the results of perturbation theory,
the interaction between these self-sustained oscillators can be reduced, to take
place on the phase φj associated with each neuron. See [4] for an explanation
of how to perform the reductions of interacting dynamical systems to a phase
description.

Here, we address the problem of clustering a population of oscillators into
segregated subpopulations, exhibiting high internal interactions. Approaches
to solve this problem have often assumed different frequencies for the various
subpopulations, usually neglecting phase information. These assumptions pose
a restriction to the analysis of the dynamic world of natural systems, where

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 944–953, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral Analysis 945

communication can be unrelated to the natural frequency of the constituent
oscillators.

Such problem is of particular relevance in systems with adaptive coupling
strengths. They typically show distributed values for their internal frequencies,
which are independent from the interactions they temporarily form. Existing
algorithmic solutions, only focusing on frequencies, and neglecting phase infor-
mation, would therefore have difficulties disambiguating the population.

Here, we present a solution that makes explicit use of phase information,
extracted from known models of physical interactions. The approach relies on a
post-rotation of the eigenvectors of the synchronisation matrix. The derivation
of the method is illustrated with simulated examples.

2 Background

A generally accepted model, describing the dynamics of a weakly interacting
population of m oscillators, expressed as the evolution of their associated phase
variable φj(t), is

dφj

dt
= ωj +

m∑

k=1

Γjk(φj , φk). (1)

This reduction of a d-dimensional oscillator to a one-dimensional phase equa-
tion can be employed whenever the differential equation describing the oscillators
display attracting limit cycles. The role of the phase variable can be intuitively
grasped as the position of the oscillator on the limit cycle, disregarding its exact
position in the d-dimensional space. The natural frequency of each oscillator is
denoted as ωj , and Γ is a coupling function, resulting from the phase reduction
of the interaction terms. In particular, if Γjk(φj , φk) = Γ (φk − φj) is odd, the
coupling is attractive and can lead to synchronisation. For a simple global cou-
pling Γjk(φj , φk) = κ

m sin(φk − φj) with large enough κ, a meanfield (also called
order-parameter) �eΦ = 1

m

∑
k eiφk can be introduced so that its magnitude �

describes the synchronisation state of the system [1]. This special choice is called
the Kuramoto model. With the Hilbert transform, the phase information can be
obtained for electrophysiological measurements, from which one can calculate �,
and investigate synchronisation. The method is not restricted to single neurons,
but can also be applied to recordings that summarise whole ensembles, like local
field potentials and even eeg and meg. Nevertheless, the interpretation of the
results, in terms of interacting oscillators gets more difficult.

In case of non-global coupling, the population can split into synchronous sub-
populations which is not reflected in the parameter �. With the subpopulations
having no phase relation between each other, � can be very small, which suggests
no synchronisation at all.

Generalisations of the order-parameter can measure the tendency of the popu-
lation to segregate into clusters, in theoretical situations [5]. However, we proceed
with an alternative way to study phase synchronisation, which is adequate for
clustering oscillatory data. Consider the bivariate statistical quantities

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

946 J.-H. Schleimer and R. Vigário

qjk =
〈
ei(φj−φk)

〉
, (2)

which we gather into a Hermitian matrix Q ∈ C
m×m. One immediate differ-

ence to the order-parameter is that, while � > 0 indicates entrainment in the
Kuramoto model, only qjk = 1 truly implies a constant phase lag, i.e., perfect
entrainment between the two oscillators.

The expectation in Eq. (2) can be approximated with a temporal average
under certain ergodicity assumptions and for a system in an equilibrium state
(stationarity holds). So henceforth, we set 〈x〉 = 1

T

∫ T

0 x(t)dt for sufficiently long
observation period T .

If we postulate that synchronisation arises from physical interactions between
the populations, can we infere which oscillators interact, based solely on Q?

3 Spectral Analysis of the Synchronisation Matrix

It has been pointed out recently that an eigenvalue decomposition of the matrix
formed by the absolute values |qjk| can help identifying subpopulations of syn-
chronous oscillators [6]. This approach can be understood as spectral clustering,
when |qjk| are perceived as the elements of the connectivity matrix.

It is also possible to motivate an eigenvalue decomposition of Q directly, by
properties of wave superposition and cancellation, illustrated in the following
examples.

Example 1. Examine the maximum of the expected square amplitude |y|2 =
yy∗ of two superimposed waves y = αeiωt + βei(ωt+ϑ), which have the same
frequency, but are phase shifted by ϑ. Impose the constraint |α|2 + |β|2 = 1 for
α, β ∈ C. From the Lagrangian formulation L =

〈
|y|2

〉
− λ(|α|2 + |β|2 − 1), and

the conditions ∂L
∂u∗ = 0|u=α,β,λ, three equations follow1

(λ − 1)α = βeiϑ, (λ − 1)β = αe−iϑ, |α|2 + |β|2 = 1.

One can then conclude that |α| = |β| = 1√
2

and β = αe−iϑ, ∀α = 1√
2
eiψ, for

any arbitrary ψ. That is, as intuition suggests, the maximum is obtained if the
weights compensate for the relative phase shift between the oscillators, prior to
the superimposition.

Example 2. Superimpose three oscillators with frequencies ω1, ω2 = ω1 and ω3 =
ω1 + �, for � > 0, subject to |α|2 + |β|2 + |γ|2 = 1. Examining the amplitudes
of α, β and γ at the extrema of L (as in Ex. 1), with y = αeiω1t +βeiω2t +γeiω3t,
leads to the relations

|α| = |β|, |γ| � 2(|α| + |β|)
T�

,

where T is the observation period. This means that, for non-zero |α| and |β|,
the magnitude of γ will be inversely related to the product T�. Specifically, |γ|
1 We use the complex gradient operator as in [7].

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral Analysis 947

decreases with the increase of the frequency difference. For small differences, a
compensating large T is required.

These examples show that, assuming one has a large enough observation time,
a maximisation scheme as above select frequency-entrained oscillators, and pro-
vide information about the relative phase offset between them.

We can take Ex. 1 & 2 as rationale, and search for a complex superposition
y(t) = vHz(t) of all amplitude-normalised oscillators zk = eiφk , obtained from
the data through Hilbert transform, such that the average square magnitude
E = 〈yy∗〉 � 0 is maximal. If vk ∈ C, its phase can compensate for any phase
shift of the oscillators. With the magnitude |vk|, oscillators of similar frequency
can be selected. An unconstrained projection vector v would allow to maximise
E ad infinitum, so the additional restriction ‖v‖2 = 1 needs to be imposed.
For a population of oscillators that form entrained subsets, a maximum can
be expected, if the largest such population is selected, and their phase shifts
compensated by vk.

One can rewrite E = vH
〈
zzH

〉
v = vHQv. The Lagrangian, including the

constraint is
L = vHQv − λ(vHv − 1). (3)

All solutions to the necessary condition ∇L = 0 must fulfil the eigenvalue prob-
lem

Qv = λv. (4)

The largest eigenvalue is the maximum of L. The matrix Q represents a Hermi-
tian operator that defines a quadratic hermitian form, 0 � (vHQv) ∈ R, ∀v ∈ R,
i.e., it is positive semidefinite and has, according to the spectral theorem, an or-
thonormal basis given by the eigenvalue decomposition

Q = V ΛV H =
m∑

k=1

λkvkvH
k , (5)

with m orthogonal complex eigenvectors V = [v1, · · · , vm] and positive real
eigenvalues λk = vH

k Qvk. Without loss of generality, let them be ordered decreas-
ingly λ1 � · · · � λm. Since, for a matrix such as Q, one has

∑
k λk = tr(Q) = m,

the eigenvalues measure the effective size of a subpopulation. The eigenvector
basis is unique only if all eigenvalues are distinct, ∀j �= k : λj �= λk. Multiplicity
of eigenvalues can arise if two subpopulations of equal size exist.

Note that smaller non-zero eigenvalues λk �= 0 can correspond to local max-
ima, if the Hessian ∇∇L = Q −λkI is negative semidefinite; or saddle points, if
the Hessian is indefinite. Those eigenvalues can often be associated with smaller
synchronous subpopulations.

In [6], the condition λ � 1, known as Kaiser-Guttman rule in factor analysis
or spectral clustering, was used to identify significant synchronisation clusters.

3.1 Phase Oscillator View on the Synchronisation Matrix

Let us first clarify the relation between values of λ1, and the dynamical system
that can produce one synchronous meanfield (Eq. (1) with Γjk = κ

m sin(φk−φj)).

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

948 J.-H. Schleimer and R. Vigário

(a)

10 20 30 40 50 60
0

1

(b)

Re

(c)

10 20 30 40 50 60
0

1

Fig. 1. (a) Abscissa: number of oscillator (ordered by frequency, •: entrained / ◦: free);
Ordinate: Amplitudes of scaled coefficients of the eigenvectors,

√
λjvj , from Ex. 3.

The maximum achievable for the coefficents is one. (b) Vectors in the complex plane,
showing the phase angles of the coefficients of the largest eigenvector. (c) Four clusters
with different internal frequencies as in Ex. 4. Coefficients of different eigenvectors are
connected with different linestyles for visibility.

When the largest eigenvalue dominates the expansion in Eq. (5), the synchroni-
sation matrix can be approximated by dropping relatively small terms, resulting
in Q ≈ λ1v1v

H
1 . In [8], it is noted that if the model allows the introduction of

a non-zero magnitude meanfield, cf. Sec. 1, then the coefficients in Q, for two
synchronised oscillators j and k factorise

qjk =
〈
ei(φj−φk)

〉
=

〈
ei(φj−Φ)

〉

︸ ︷︷ ︸
Q

(1)
j

〈
e−i(φk−Φ)

〉
. (6)

In that case a theoretical solution (T → ∞) to E = λ1 is given by the choice

vk1 =

{
1√
λ1

〈
ei(φk−Φ+ϑ)

〉
if φ̇k = Φ̇,

0 else ,
for any constant ϑ. (7)

This indeterminacy of the phase offset is also known in quantum systems. Com-
bining Eq. (7) with Eq. (6), the factorisation reads

qjk = Q
(1)
j (Q(1)

k)∗ = (
√

λ1vj1)(
√

λ1v
∗
k1).

Taking the squared absolute value, confirms the relation |Q(1)
j |2 = λ1|vj1|2, found

in [6].
The following example illustrates that

√
λ1|vj1| gives information about the

involvement of oscillator j in a cluster of synchronous neurons. It further shows
that the phase angle of vj1 holds the relative phase offset.

Example 3. Consider a population of m = 60 phase oscillators, simulated with
Kuramoto’s equation (Sec. 2). For this choice it can be analytically shown that,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral Analysis 949

if |ωj − Ω| � κ�, they are entrained. Otherwise they are “free” [1]. The natural
frequencies, ωj, have to be drawn from a symmetric distribution, say, the normal
distribution N(Ω, 1), with Ω = 10. The global coupling strength is set to κ = 1.9.
The time evolution is simulated simply with Euler’s forward method and random
initialisations. Only samples taken from the period, in which the system has
reached equilibrium, are used to estimate the matrix Q. The eigenvalues for the
decomposition of Q are λ1 = 54.8, λ2 = 1.8, λ3 = 1.2, λ4 = 1.1, . . ., revealing
one large synchronisation cluster. From Fig. 1a one sees that the oscillators j,
for which the coefficients

√
λ1|vj1| are close to one, correspond to those that are

theoretically predicted to be entrained (Fig. 1a, •). Yet, the numerical solution
does not yield a zero amplitude for all free oscillators, like in Eq. (7), (Fig. 1a,
◦). A reason for that is the finite sample size and the fact that the relative
phase velocity of almost entrained oscillators goes through a bottleneck. More
speciffically, for “just not entrained oscillators”, e.g., with a too high frequency
ω − Ω = κ� + ε, and small ε > 0, a rather long observation period is required.
This is due to the fact that the velocity in the rotational frame of the meanfield
d(φ − Φ)/dt reduces dramatically near φ = Φ ± π

2 , if ε → 0. This is the case
because

d(φk − Φ)
dt

= κ�(1 − sin(φk − Φ)
︸ ︷︷ ︸

zero at ±π
2

) + ε,

which is easily derived from the formulas in [1, Cpt. 5].
Also note in Fig 1b that information about the relative phase of the oscillators

is conserved in the phase of the coefficients of the eigenvectors, as we have
theoretically motivated.

Example 4. Let us now take a population of m = 60 oscillators comprising sub-
populations with four distinctly distributed frequencies. Assume a local coupling
function Γjk(φj , φk) = Kjk sin(φk − φj). The coupling strength matrix Kjk is
chosen as a block-diagonal matrix, with c = 1, . . . , 4 blocks, such that

Kjk =

{
κ/|N(c)| if j, k ∈ N(c),
0 else,

for
4⋃

c=1

N(c) = {1, . . . , m}.

N(c) denotes the index set of the cth block. In this way, an oscillators is connected
to only one of the four subpopulations. The overall strength is chosen κ = 3, so
that all oscillators within the cluster get entrained. With similar reasoning as in
Ex 3 we reach the result shown in Fig. 1c. 4 clusters with different frequencies.
As a decision rule, an oscillator is associated to the cluster for which it has the
largest involvement [6]

c = argmax
k

{
√

λk|vjk|}. (8)

4 Rotating the Eigenvectors with a Phase Constrain

A problem with maximising Eq. (3) is that oscillators with very similar frequen-
cies will agregate in the same cluster, regardless of whether or not they are really

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

950 J.-H. Schleimer and R. Vigário

(a)

10 20 30 40 50 60
0

1

(b)
1

(c)

10 20 30 40 50 60
0

EV 4
EV 3
EV 2
EV 1

Fig. 2. (a) Ordinate: Amplitude of the scaled eigenvectors
√

λjvj of the four largest
eigenvectors of Q, from Ex 5. (b) Phase angles of eigenvector coefficients of the largest
population. (c) Rotated eigenvectors U , that allow correct clustering.

entrained. This means that, if there are several non-interacting subpopulations
with similar meanfield frequencies, they will appear as grouped together. Such
situations can happen by plain coincidence; because two unconnected oscilla-
tors have similar natural frequency; or for the reason illustrated in the following
example.

Example 5. Considering a similar set of oscillators as in Ex. 4, now with the indi-
vidual frequencies drawn from a global distribution ωj ∼ N(10, 1), ∀j = 1, . . . , m,
across all subpopulations. In neurobiological terms, this means that the neuron’s
system parameters, which determine its natural frequency, do not depend on the
synaptic connections it has formed. If, like in Ex. 3, we estimate the eigenvalues
of Q, we get λ1 = 40.9, λ2 = 18.5, λ3 = 0.5, . . . According to the Kaiser-Guttman
criterion, only two clusters are present. Such result is clearly illustrated in Fig. 2a.
Yet, the data was generated with four distinct subpopulations.

If the coupling is strong enough within an interacting subpopulation c, a
meanfield can be introduced

�(c)eiΦ(c)
=

1
m

∑

k∈N(c)

eiφk . (9)

Then Eq. (1) can be rewritten as

φ̇j = ωj + κ�(c) sin(Φ(c) − φj), ∀j ∈ N(c). (10)

For any subpopulation at equilibrium, the entrainment condition reads

φj − Φ(c) = sin−1
(

ωj

κ�(c)

)

. (11)

This means that oscillators with |φj − Φ(c)| > π
2 are not entrained to the cluster

c. In Fig. 2b, however, there are oscillators belonging to cluster 1 which do not
fulfil this constraint. Instead we find them dispersed all around the unit circle.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral Analysis 951

In general, phases within one cluster are forced towards each other, through
the coupling term. On the other hand, detuning caused by differences in natural
frequencies opposes this trend, cf. Eq. (10). This is not accounted for in the
spectral analysis, presented in Sec. 3, which lead to vk.

A solution to this problem can be sought in the following manner. Assume
there are d clusters. If we denote a new set of vectors U = [u1, . . . , ud], defining
the clusters in much the same way as vc, one can formulate the criterion

∣
∣
∣
∣

m∑

j=1

ujk

∣
∣
∣
∣, ∀k = 1, . . . , d.

This criterion measures the compactness of the phase angles in one cluster, much
like the meanfield does Eq. (9).

We now search for a linear transformation between Ṽ = [v1, · · · , vd] and U ,
which takes the restrictions presented in Ex. 5 into account. Keep in mind that
Ṽ is composed of only the eigenvalues defining the d clusters.

Such transformation can be written as U = Ṽ W . The magnitude of the new
loadings, |ujc| = |

∑
k vjkwkc|, indicates the jth oscillator’s degree of membership

to cluster c. Since we do not want to alter the phase of the old loadings, vjk,
W ∈ �d×d. Further note that W should be restricted to be orthonormal, since
the total amount of oscillators should not be altered

tr(UHCU) =
d∑

k=1

λk = m, iff W TW = I.

To obtain a rotation with the desired property, one can maximise the following
cost function

J =
d∑

k=1

∣
∣
∣
∣

m∑

j=1

ujk

∣
∣
∣
∣, w.r.t. W . (12)

The gradient of J w.r.t. an entry of the rotation matrix wjk is given as

∂J

∂wij
= �

(

ūj

∑

k

vki

)

+ �
(

ūj

∑

k

vki

)

, where ūj =
∑

k

ukj . (13)

4.1 Flow on the Stiefel Manifold

An elegant and efficieant way to incorporate the orthonormalisty constrain re-
quired above is derived from differential geometric concepts. The restriction
W TW = I to gether with J(W) �= J(W R), for any rotation matrix, R, defines
the Stiefel manifold S of matrices. One can project the gradient G = ∂J/∂W
(from Eq. (13)) onto the tangent space of the Stiefel manifold by [9]

Π = W skew(W TG) + (I − WW T)G,

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

952 J.-H. Schleimer and R. Vigário

in order for a gradient based optimisation of J w.r.t. to W to stay on S. Al-
ternatively, one can also modify the gradient to account for the geometry of the
Stiefel manifold directly. This leads to [9]

GS = G − W (G)TW .

Let us revisit Ex. 5, and perform a rotation defined by the stationary point of

dW

dt
= G − W (G)TW .

The result U = Ṽ W is depicted in Fig. 2c. For the jth oscillator the decision
rule c = argmaxk{ujk}, instead of Eq. (8), then leads to the correct clustering.

5 Concluding Remarks

In this paper we address the problem of clustering phase synchronous oscilla-
tors. Particular focus is given to subpopulations with similar frequencies, but no
physical cross-interactions.

The approach is based on a phase sensitive rotation of the eigenvectors ob-
tained from a decomposition of the complex synchronisation matrix. The rota-
tion is determined by optimising a criterion motivated by a model of interacting
phase oscillators.

In earlier work [6], the magnitude λkv2
jk was utilised, based on a real valued

synchronisation matrix. This effectively neglects all phase information available
in the complex version synchronisation matrix. However, that phase informa-
tion can be utilised to disambiguate non-interacting oscillators and solve our
particular clustering problem. Therefore, it is proposed to use

√
λkvjk instead.

This comes with no additional computational costs, but with the clear benefit
of retaining the phase information. Such information can be used to define the
rotation that finally allows the clustering. Post-rotations of loading matrices are
common in factor analysis, cf., the varimax rotation [10].

References

1. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulences. Springer, Heidelberg
(1984)

2. Josephson, B.D.: The discovery of tunnelling supercurrents. Rev. Mod. Phys. 46(2),
251–254 (1974)

3. Singer, W.: Neuronal synchrony: A versatile code for the definition of relations?
Neuron 24, 49–65 (1999)

4. Brown, E., Moehlis, J., Holmes, P.: On the phase reduction and response dynamics
of neuroal osicllator populations. Neural Computation 16, 673–715 (2004)

5. Golomb, D., Hanssel, D.: The number of synaptic inputs and the synchrony of
large, sparse neuronal networks. Neural Computation 12(5), 1095–1139 (2000)

6. Allefeld, C., Müller, M., Kurths, J.: Eigenvalue decomposition as a generalized
synchronization cluster analysis. Int J. Bifurcation & Chaos (NDES ’05) (2007)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Clustering Limit Cycle Oscillators by Spectral Analysis 953

7. Brandwood, D.H.: A complex gradient operator and its application in adaptive
array theory. IEE Proceedings, Part F - Communications, Radar and Signal Pro-
cessing 130, 11–16 (1983)

8. Allefeld, C., Kurths, J.: An approach to multivariate phase synchronization analysis
and its application to event-related potentials. Int. J. Bif. & Chaos 14(2), 417–426
(2004)

9. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthog-
onality constraints. SIAM Journal on Matrix Analysis and Applications 20(2),
303–353 (1998)

10. Richman, M.B.: Rotation of principal components. Journal of Climatology 6, 293–
335 (1985)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Control and Synchronization of Chaotic Neurons

Under Threshold Activated Coupling

Manish Dev Shrimali1,2, Guoguang He1,2, Sudeshna Sinha3,
and Kazuyuki Aihara1,2

1 Aihara Complexity Modelling Project, ERATO, JST, Tokyo 151 0064, Japan
2 Institute of Industrial Science, The University of Tokyo, Tokyo 153 8505, Japan

3 The Institute of Mathematical Sciences, CIT Campus, Taramani,
Chennai 600 113, India

Abstract. We have studied the spatiotemporal behaviour of thresh-
old coupled chaotic neurons. We observe that the chaos is controlled by
threshold activated coupling, and the system yields synchronized tempo-
rally periodic states under the threshold response. Varying the frequency
of thresholding provides different higher order periodic behaviors, and
can serve as a simple mechanism for stabilising a large range of regu-
lar temporal patterns in chaotic systems. Further, we have obtained a
transition from spatiotemporal chaos to fixed spatiotemporal profiles, by
lengthening the relaxation time scale.

Keywords: Chaotic dynamics, Control and Synchronization.

1 Introduction

In the last two decades, many control techniques have been proposed including
the OGY [1] for controlling chaos in chaotic dynamical systems. In this paper, we
focus on the network of chaotic neuron model that has been proposed in studies
of the squid giant axon and the Hodgkin–Huxley equation [2]. We have applied
the threshold activated coupling to chaotic neurons to control chaos [3,4,5]. This
mechanism works in marked contrast to the OGY method. In the OGY method
the chaotic trajectories in the vicinity of unstable fixed points are controlled
onto these points. In threshold control, on the other hand, the system does not
have to be close to any particular fixed point before implementing the control.
Here the trajectory merely has to exceed the prescribed threshold. So the control
transience is typically very short. The chaotic neurons are controlled with the
threshold activated coupling and spatially synchronized temporal patterns with
different periods are obtained. We have investigated the effect of the variation
of the relaxation time on the spatiotemporal characteristics of the threshold
coupled chaotic neurons. We have also obtained a wide range of stable cyclic
behavior of threshold coupled chaotic neurons by simply varying the frequency
of control.

The threshold-activated coupling of chaotic systems are relevant for certain
mechanical systems like chains of nonlinear springs, as also for some biological

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 954–962, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Control and Synchronization of Chaotic Neurons 955

systems, such as synaptic transmissions among neurons [6]. It is also relevant
to population migrations as it is reasonable to model the population of an area
(state at a site) as a nonlinear map and when this population exceeds a certain
critical amount the “excess” population moves to a neighboring area (site). The
threshold mechanism is also reminiscent of the Bak-Tang-Wiesenfeld cellular au-
tomata algorithm [7], or the “sandpile” model, which gives rise to self organized
criticality (SOC). The model system studied here is however significantly dif-
ferent, the most important difference being that the threshold mechanism now
occurs on a nonlinearly evolving substrate, i.e. there is an intrinsic deterministic
dynamics at each site. So the local chaos here is like an internal driving or per-
turbation, as opposed to external perturbation/driving in the sandpile model,
which is effected by dropping “sand” from outside.

The paper is organized as follows. In Sec.II, a model of chaotic neuron is
described. The threshold activated coupling is introduced as a control mechanism
for chaotic neurons and the effect of relaxation time scale on the spatiotemporal
properties of threshold coupled chaotic neurons is studied. In Sec.III, we have
studied the threshold activated coupling at the varying time interval to obtain
different temporal patterns of spatially synchronized neurons. The conclusion
are presented in the last section.

2 Chaotic Neuron Model

We study the following network of chaotic neuron model proposed by Aihara [2].

yn+1(i) = kyn(i) − αf(yn(i)) + a,

xn+1(i) = f(yn+1(i)), (1)

where, the sigmod function, f(x) = 1/[1 + exp(−x/ε)], is the output function
of the neuron; and ε is the steepness parameter of the sigmoid function. The
internal state of the ith neuron is yt(i) at time t, xt(i) is the output of the
neuron at time t, k is the decay parameter of the refractoriness, and α is the
refractory scaling parameter.

In Fig. 1(a), we have shown the output x of each chaotic neuron for the
network size N = 100 as a function of parameter α. Other parameters of the
map are k = 0.5, a = 1.0, and ε = 0.04. There are regions in parameter space
around α ∼ 1.1 and ∼ 1.4, where the system is chaotic.

2.1 Threshold Mechanism

Now, on this nonlinear network a threshold activated coupling is incorporated
[3,4,5]. The coupling is triggered when a site in the network exceeds the critical
value y∗ i.e. when a certain site yn(i) > y∗. The super critical site then relaxes
(or “topples”) by transporting the excess δ = (yn(i) − y∗) equally to its two
neighbors:

yn(i) → y∗

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

956 M.D. Shrimali et al.

Fig. 1. The output of each neuron x as a function of bifurcation parameter α for
N = 100 uncoupled neurons (a) and threshold y∗ = 0.5 coupled neurons (b)

yn(i − 1) → yn(i − 1) + δ/2
yn(i + 1) → yn(i + 1) + δ/2 (2)

The process above occurs in parallel, i.e. all supercritical sites at any instant
relax simultaneously, according to Eqs. 2, and this constitutes one relaxation
time step. After r such relaxation steps, the system undergoes the next chaotic
update. In some sense then, time n associated with the chaotic dynamics is mea-
sured in units of r. The relaxation of a site may initiate an avalanche of relaxation
activity, as neighboring sites can exceed the threshold limit after receiving the
excess from a supercritical site, thus starting a domino effect. This induces a
bi-directional transport to the two boundaries of the array. These boundaries
are open so that the “excess” may be transported out of the system.

The spatiotemporal behavior of the threshold coupled chaotic systems under
different threshold levels has been investigated both numerically and analyti-
cally, specifically, for the case of networks of chaotic logistic maps [3,4,5]. There
exist many phases in threshold space (0 < x∗ < 1), i.e. for x∗ ≤ 3/4 the dynamics
goes to a fixed point. When 0.75 < x∗ < 1.0, the dynamics is attracted to cycles

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Control and Synchronization of Chaotic Neurons 957

Fig. 2. The output of threshold coupled neurons x as a function of threshold y∗ for
the fixed value of α = 1.4

whose periodicities depend on the value of x∗. By tuning the threshold level x∗

one thus obtain spatiotemporal cycles of different orders.
In Fig. 1(b), we have shown the output x of each chaotic neuron as a function

of parameter α with a threshold y∗ = 0.5. With the threshold activated coupling,
the chaos in the chaotic neurons is controlled around α ∼ 1.4. In Fig. 2, we have
shown the output x of each chaotic neuron as a function of threshold y∗ for the
fixed value of α = 1.4. There are two period–doubling bifurcations near y∗ ∼ 0
and ∼ 0.7.

For α = 1.4, we get controlled period-2 output dynamics of the network with
the threshold values y∗ < 0.7. The network of chaotic neurons is synchronized
with period two and all sites are taking values close to 0 and 1 alternatively for
y∗ < 0.7 and α = 1.4, where the system is chaotic in the absence of threshold
activated coupling. In Fig. 3, the space-time density plot of xn(i) is shown for
fixed values of α = 1.4, y∗ = 0.5 and N = 100 after the transient dynamics.

2.2 Relaxation Timescale

Note however, that the dynamical outcome crucially depends the relaxation time
r, i.e. on the timescales for autonomously updating each site and propagat-
ing the threshold-activated coupling between sites. For sufficiently large value
of relaxation time, i.e. in the limit r → ∞, the system is fully relaxed (sub-
critical) before the subsequent dynamical update. So the time scales of the two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

958 M.D. Shrimali et al.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

time

sp
ac

e

 10 20 30 40 50 60 70 80 90 100

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Fig. 3. Space-time density plots of an array of threshold-coupled chaotic neurons,
with threshold value y∗ = 0.5, size N = 100, and relaxation time r = 1000. The x-axis
denotes the time and the y-axis denotes the site index.

processes, the intrinsic chaotic dynamics of each site and the threshold-activated
relaxation, are separable. Here the relaxation mechanism is much faster than
the chaotic evolution, enabling the system to relax completely before the next
chaotic iteration. This scenario is similar to the SOC model, where the driving
force (perturbation) is very dilute, e.g. in the sandpile model the avalanche of
activity, initiated by an external “sand grain” dropped on the pile, ceases before
the next “sand grain” perturbs the pile.

At the other end of the spectrum is the limit of very small r where the local
dynamics and the coupling take place simultaneously. It is evident that lowering
r essentially allows us to move from a picture of separated relaxation processes
to one where the relaxation processes can overlap, and disturbances do not die
out before the subsequent chaotic update. It was observed in [8] that for short
relaxation times the system is driven to spatiotemporal chaos. This is due to
the fast driving rate of the system which does not provide enough time to spa-
tially distribute the perturbations and allow the excess to propagate to the open
boundaries. However large r gives the system enough time to relax, and allows
the excess to be transported out of the system through the open ends. So for
large r the system displays very regular behavior for a large range of threshold
values.

In Fig. 4, the bifurcation diagram of the output state of each neuron is shown
as a function of threshold y∗ for different values of relaxation time r. Fig. 5 shows
a example of dynamical transition of threshold coupled chaotic neurons from a
fixed temporal behavior to spatiotemporal chaos as r becomes smaller. There

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Control and Synchronization of Chaotic Neurons 959

Fig. 4. Bifurcation diagram of the output state of each neuron with respect to thresh-
old y∗ for an array of threshold–coupled chaotic neurons. Size N=50 and relaxation
times are (a) r = 1, (b) r = 50, (c) r = 100, and (d) r = 1000.

is a transition from the spatiotemporal fixed point to spatiotemporal chaos as
we decrease the relaxation time. These transitions result from the competition
between the rate of intrinsic driving arising from the local chaotic dynamics and
the time required to propagate the threshold–activated coupling.

3 Thresholding at Varying Interval

Now, we implement the threshold mechanism at varying intervals nc, with 1 <
nc ≤ 20, i.e. the thresholding frequency ranges from once every two iterates of
the chaotic neuron maps to once every 20 iterates. We find that for all nc in this
range the chaotic neuron maps gets controlled onto an exact and stable orbit of
periodicity p ≥ nc, where p is an integer multiple of nc [9].

In Fig. 6 the temporal behavior of threshold coupled chaotic neurons is shown
for thresholding at different intervals nc. It is clear evident that thresholding at

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

960 M.D. Shrimali et al.

Fig. 5. Bifurcation diagram of the output state x of each neuron with respect to the
relaxation time r for an array of threshold–coupled chaotic neurons with threshold
y∗ = 0.5 and system size N = 50

different frequencies yields different temporal periods. For instance one obtain
temporal periods 15, 5, 7, and 18 with nc = 3, 5, 7 and 9 respectively. In fact it
can serve as a control parameter for selecting a different cyclic behaviors from the
chaotic neuron dynamics. This has particular utility in obtaining higher order
periods, which are difficult to obtain otherwise.

4 Conclusion

We have studied the spatiotemporal behaviour of threshold coupled chaotic neu-
rons. We observe that the chaos is controlled by threshold activated coupling,
and the system yields synchronized temporally periodic states under the thresh-
old response. Varying the frequency of thresholding provides different higher
order periodic behaviors, and can serve as a simple mechanism for stabilising a
large range of regular temporal patterns in chaotic systems. Further, we have
obtained a transition from spatiotemporal chaos to fixed spatiotemporal profiles,
by lengthening the relaxation time scale.

Threshold-coupled chaotic systems have the capacity to directly and flexi-
bly implement fundamental logic and arithmetic operations [10]. Such extended
dynamical systems offer much scope of parallelism, allowing rapid solutions of

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Control and Synchronization of Chaotic Neurons 961

0 10 20 30 40 50
Time

0

0.2

0.4

0.6

0.8

1

x

0 10 20 30 40 50
Time

0

0.2

0.4

0.6

0.8

1

x

0 10 20 30 40 50
Time

0

0.2

0.4

0.6

0.8

1

x

0 10 20 30 40 50
Time

0

0.2

0.4

0.6

0.8

1

x

(a) (b)

(c) (d)

Fig. 6. The temporal behavior of an array of spatially synchronized threshold-coupled
logistic maps, with threshold value y∗ = 0.5, size N = 100, and relaxation time r =
10000 for (a) nc = 3, (b) nc = 5, (c) nc = 7, and (d) nc = 9. The spatially synchronized
neurons have temporal periods 15, 5, 7, and 18 for nc = 3, 5, 7 and 9 respectively.

certain problems utilizing the collective responses and collective properties of the
system [11,12]. So the varied temporal and spatial responses of the array of model
neurons studied here, can also be potentially harnessed to accomplish different
computational tasks, and the system may be used for information processing
[13].

Note that in terms of practical implementation, the threshold mechanism has
been implemented in electrical circuits [14]. Parallel distributed processing with
spatio–temporal chaos, on the basis of a model of chaotic neural networks, has
also been proposed [13], and a mixed analog/digital chaotic neuro–computer pro-
totype system has been constructed for quadratic assignment problems (QAPs)
[15]. So our model system of threshold-coupled neurons, which combines thresh-
old mechanisms and neuronal units, should be readily realizable with electrical
circuits.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

962 M.D. Shrimali et al.

References

1. Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Letts. 64, 1196–
1199 (1990)

2. Aihara, K., Takebe, T., Toyoda, M.: Chaotic neural networks. Phys. Lett. A 144,
333–340 (1990)

3. Sinha, S., Biswas, D.: Adaptive dynamics on a chaotic lattice. Phys. Rev. Letts. 71,
2010–2013 (1993)

4. Sinha, S.: Unidirectional adaptive dynamics. Phys. Rev. E 49, 4832–4842 (1994)
5. Sinha, S.: Chaos and Regularity in Adaptive Lattice Dynamics. Int. Journ. Mod.

Phys. B 9, 875–931 (1995)
6. Aihara, K., Matsumoto, G.: Chaotic oscillations and bifurcations in squid giant

axons. In: Holden, A.R. (ed.) Chaos, pp. 257–269. Manchester University Press,
Manchester (1986)

7. Bak, P., Tang, C., Weisenfeld, K.: Self-organized criticality: An explanation of the
1/f noise. Phys. Rev. Letts. 59, 381–384 (1987)

8. Mondal, A., Sinha, S.: Spatiotemporal Consequences of Relaxation Timescales in
Threshold Coupled Systems. Phys. Rev. E 73, 026215 (2006)

9. Sinha, S.: Using thresholding at varying intervals to obtain different temporal pat-
terns. Phys. Rev. E 63, 036212 (2001)

10. Sinha, S., Ditto, W.L.: Dynamics based computation. Phys. Rev. Letts. 81, 2156–
2159 (1998)

11. Sinha, S., Munakata, T., Ditto, W.L.: Parallel computing with extended dynamical
systems. Phys. Rev. E 65, 036214 (2002)

12. Munakata, T., Sinha, S., Ditto, W.L.: Chaos Computing: Implementation of Fun-
damental Logical and Arithmetic Operations and Memory by Chaotic Elements.
IEEE Trans. on Circuits and Systems 49, 1629–1633 (2002)

13. Aihara, K.: Chaos engineering and its application to parallel distributed processing
with chaotic neural networks. Proceedings of the IEEE 90, 919–930 (2002)

14. Murali, K., Sinha, S.: Experimental realization of chaos control by thresholding.
Phys. Rev. E 68, 016210 (2003)

15. Horio, Y., Ikeguchi, T., Aihara, K.: A mixed analog/digital chaotic neuro-computer
system for quadratic assignment problems. Neural Networks 18, 505–513 (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neuronal Multistability Induced by Delay

Cristina Masoller, M.C. Torrent, and Jordi Garćıa-Ojalvo

Departament de F́ısica i Enginyeria Nuclear, Universitat Politècnica de Catalunya,
Colom 11, E-08222 Terrassa, Barcelona, Spain

Abstract. Feedback circuits are important for understanding the emer-
gence of patterns of neural activity. In this contribution we study how
a delayed circuit representing a recurrent synaptic connection interferes
with neuronal nonlinear dynamics. The neuron is modeled using a
Hodgkin-Huxley type model in which the firing pattern depends on
subthreshold oscillations, and the feedback is included as a time delayed
linear term in the membrane voltage equation. In the regime of sub-
threshold oscillations the feedback amplifies the oscillation amplitude,
inducing threshold crossings and firing activity that is self regularized
by the delay. We also study a small neuron ensemble globally coupled
through the delayed mean field. We find that the firing pattern is con-
trolled by the delay. Depending on the delay, either all neurons fire spikes,
or they all exhibit subthreshold activity, or the ensemble divides into clus-
ters, with some neurons displaying subthreshold activity while others fire
spikes.

1 Introduction

Time-delayed feedback mechanisms are relevant in many biological systems. Ex-
citable gene regulatory circuits [1], human balance [2,3], and eye movements [4,5]
are just a few examples. Many feedback loops have been proposed to explain pat-
terns of neural activity. A well known recurrent circuit is in the hippocampal
CA3 region, that is known to be involved in associative memory recall [6,7]. A
neuron might experience recurrent excitatory or inhibitory feedback though an
auto-synapse, and/or though a circuit of synaptic connections involving other
neurons. Since recurrent connections require the propagation of action poten-
tials along the synaptic path, finite signal transmission velocity, and processing
time in synapses lead to a broad spectrum of conduction and synaptic delay
times, ranging from few to several hundreds of milliseconds. Since neural spike
frequencies can exceed 10 Hz, these delays times can be much longer than the
characteristic inter-spike interval.

Within the framework of neuron rate-equation models, a recurrent feedback
circuit has been studied by adding to the membrane potential equation a term
proportional to the potential at an earlier time, ηV (t − τ) [8]. Here η is the
synaptic strength and τ is the delay time, that is the sum of conduction and
synaptic delays. While this is a very simplified approach, it has been successful
for understanding characteristic delayed feedback-induced phenomena, such as
multi-stability [9,10].

J. Marques de Sá et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 963–972, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

964 C. Masoller, M.C. Torrent, and J. Garćıa-Ojalvo

Early experiments on the response of a single neuron in a recurrent excitatory
loop were performed by Diez-Martinez and Segundo [11], who studied a pace-
maker neuron in the crayfish stretch receptor organ. By having each spike trigger
electronically a brief stretch after a certain delay, they showed that with increas-
ing delay the discharge patterns transformed from periodic spikes to trains of
spikes separated by silent intervals. Pakdaman et al. [12] interpreted this behav-
ior as due to neuronal adaptation mechanisms, that decreased sensitivity along
successive firings. By studying models of various levels of complexity (an inte-
grate and fire, a leaky integrator and a rate-equation model including membrane
conductances), with and without adaptation to repeated stimuli, Pakdaman and
coworkers found that models including adaptation predicted a dynamics that was
similar to that observed experimentally in the crayfish receptor, exhibiting tonic
firings for short delays, and multiplets or bursts for longer delays. The influence
of noise on a single neuron with a delayed recurrent synaptic connection was
analyzed by Vibert et al. [13]. The noise-induced inter-spike interval irregularity
was found to decrease when the delay increased above the natural firing period:
for short delays noise irregularizes the firing period, while for long delays, the
neuron fires with a mean period equal to the delay, as observed without noise.

Recently, interest on delayed feedback circuitry has focused on its influence
on neural ”spontaneous” or self synchronous activity. Spontaneous synchrony is
known to be part of consciousness and perception processes in the brain [14], but
also of diseases such as epilepsy. Rosenblum and Pikovsky [15] proposed the use
linear delayed feedback to control synchrony in ensembles of globally coupled
neurons. It was shown that by variations of the delay time of the coupling,
neural synchrony can be either enhanced or suppressed [16,17]. Popovych et
al. [18] extended this method to the case of nonlinear delayed feedback, that
is, linear delayed feedback nonlinearly combined with the instantaneous signal,
showing that nonlinear feedback cannot reinforce synchronization, which can be
relevant for applications requiring robust de-synchronization.

With the aim of providing further insight into the influence of a recurrent
connection in a single neuron, and global delayed coupling in a neuron ensemble,
we study a small neuron ensemble composed by a few neurons that are globally
coupled through their delayed mean field, and compare their activity with that
of a single neuron that has a recurrent delayed synaptic connection. We show
that, as for the single neuron, the firing pattern of the ensemble is controlled
not only by the coupling strength but also by the delay time. Depending on the
delay, either all neurons fire spikes, or they all exhibit subthreshold activity, or
the ensemble divides into clusters, with some neurons displaying subthreshold
activity while others fire spikes.

This paper is organized as follows. Section II presents the single neuron model
and the coupling scheme of the neuron ensemble. Section III presents results of
the numerical simulations, where the control parameter is the delay time and
the dynamics of a single neuron with a recurrent connection is compared with
that of a globally coupled neuron ensemble. Section IV presents a summary and
the conclusions.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neuronal Multistability Induced by Delay 965

2 Model

To simulate the firing activity of a single neuron we use a model proposed by
Braun et al. [19] that was developed on the basis of experimental data from shark
electroreceptors [20] and mammalian cold receptors [21]. The model is a flexible
neuronal pattern generator that produces different types of firing patterns, that
are of relevance also in cortical neurons [22]. The temporal sequence of spikes
indicates that the activity of these neurons depends on subthreshold oscillations
of the membrane potential. In electro-receptors and in the upper temperature
range of cold receptors there is an irregular sequence of spikes which, however,
shows a multi-modal inter-spike interval distribution that suggest the existence
of subthreshold oscillations which operate below but near the spike-triggering
threshold. In this situation it essentially depends on noise whether a spike is
triggered or not but the subthreshold oscillation period is still reflected in the
basic rhythm of the discharge. External stimuli can alter the frequency and/or
the amplitude of the oscillations, thus inducing pronounced changes of the neu-
ron firing pattern. In contrast, in the low temperature range of cold receptors,
irregular single spikes can be recorded, whose histogram of inter-spike intervals
do not have a distinct modal structure but seems to reflect pacemaker activity
under random fluctuations.

The model proposed by Braun et al. has been studied by several authors.
As a function of the temperature different deterministic firing patterns have
been identified [23], including coexistence of spikes and subthreshold oscillations
(spikes with skippings), tonic spiking and bursting patterns. This rich dynamic
behavior is due to the interplay of two sets of de- and re- polarizing ionic con-
ductances that are responsible for spike generation and slow-wave potentials
[24]. The influence of noise was studied by Feudel et al. [25], who showed that
the model predictions are in good agreement with data of electro-physiological
experiments with the caudal photoreceptor of the crayfish. Neiman et al. [26]
demonstrated experimentally that electroreceptor cells in the paddlefish con-
tain an intrinsic oscillator that can be synchronized with an external signal,
and simulations based on Braun et al. model with a periodic external stimulus
yield good agreement with the observations. Noise induced synchronization [27]
and anticipated synchronization [28] have also been demonstrated. The effect
of delayed recurrent feedback was analyzed by Sainz-Trapaga et al. [29], who
showed that the feedback can modify the amplitude of the subthreshold oscilla-
tions in a way such that they operate slightly above threshold, therefore leading
to feedback-induced spikes.

The rate equation for the potential voltage across the membrane, V , is [19]:

CM V̇ = −INa − IK − isd − Isr − Il + ηV (t − τ), (1)

where CM is the capacitance, INa and IK are fast sodium and potassium cur-
rents, Isd and Isr are additional slow currents. These four currents depend on the
temperature T as described in [19]. Il is a passive leak current. Further details
and definitions of the other quantities can be found in [19]. The last term in the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

966 C. Masoller, M.C. Torrent, and J. Garćıa-Ojalvo

r.h.s. of Eq. (1) accounts for the recurrent synaptic connection. V (t − τ) is the
membrane potential at the earlier time, t − τ , η is the synaptic strength and τ
the delay time. Because we are interested in feedback-induced patterns, we do
not include any noise source in the equations, and consider parameters such that
the neuron, without feedback, displays only subthreshold oscillations.

We compare the dynamics of a neuron with feedback, with that of N neurons
globally coupled through their delayed mean field. The rate-equation for the
membrane potential of the ith neuron of the ensemble, Vi, is:

CM V̇i = −INa,i − IK,i − Isd,i − Isr,i − Il,i + ηVT (t − τ), (2)

where VT (t − τ) = (1/N)
∑N

i=1 Vi(t − τ) is the delayed mean field and the other
variables have the same meaning as in Eq.(1). This coupling scheme resembles
that studied by Rosenblum and Pikovsky [15], but in [15] the neuron ensemble
(N = 2000 Hindmarsh-Rose neurons in the regime of chaotic bursting) was
coupled by two terms, one proportional to the instantaneous mean field, and
the other, proportional to the delayed mean field. The authors found that, for
certain parameters, the delayed mean field destroyed the synchrony among the
neurons induced by the instantaneous coupling, without affecting the oscillations
of individual neurons. With the aim of providing further insight into the effect
of delayed coupling, here we consider a small neuron ensemble that is coupled
only through its delayed mean field.

3 Results

The parameters used in the simulations are such that the neurons, in the absence
of feedback or coupling, display subthreshold oscillations of period T0 ∼ 130 ms
(the temperature parameter is set to 350C, and other parameters are as in [19]).
To integrate Eq. (1) [Eq.(2)] it is necessary to specify the initial value of the
potential V [Vi with i = 1, N] on the time interval [−τ, 0]. It is known that the
neuron exhibits multistability as different initial conditions lead, after a transient
time, to different stable firing patterns [9,10]. Here the initial conditions are such
that the neuron is oscillating in its natural cycle when the feedback begins to act
(i.e., the feedback starts when the neuron is at a random phase of the cycle). For
the neuron ensemble, the initial conditions are such that the neurons oscillate
independently one of another (i.e., they are at random, different phases of the
cycle) when the coupling starts.

We begin by considering a single neuron with self-feedback. Due to the ex-
citable nature of the dynamics it can be expected that even weak feedback
strengths can be a strong perturbation to the neuron subthreshold oscillations.
The feedback can amplify the amplitude of the oscillations, inducing threshold-
crossings and giving rise to firing activity that can be self-regularized by the
delay time. This is indeed observed in Fig. 1, that depicts the amplitude, A =
max(V) − min(V), and the frequency of the neuronal oscillations vs. the de-
lay for fixed synaptic strength. When η is positive, Fig. 1(a), the oscillation
amplitude is diminished, with respect to the natural oscillation amplitude, for

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neuronal Multistability Induced by Delay 967

0 2 4 6 8 10
20

40

60

80

A
 (

m
V

) (b)

0 2 4 6 8 10
20

30

40

A
 (

m
V

)

(a)

0 2 4 6 8 10
7

7.5

8

8.5

τ/T
0

f (
H

z) (d)

0 2 4 6 8 10
7

7.5

8

8.5

τ/T
0

f (
H

z) (c)

Fig. 1. (a), (b) Amplitude of the neuron oscillations vs. the delay time, normalized
to the subthreshold oscillation period, T0, for feedback strength η = 0.001 (a) and
η = −0.001 (b). The dashed line indicates the amplitude of the natural subthreshold
oscillations (in the absence of feedback). (c), (d) Frequency of the oscillations vs. the
normalized delay time for η = 0.001 (c) and η = −0.001 (d). The dashed line indicates
the frequency of the natural oscillations.

0 10 20 30 40

−50

0
(a)

0 10 20 30 40

−50

0
(b)

0 10 20 30 40

−50

0

Time/T
0

(c)

0 10 20 30 40

−50

0

Time/T
0

V
 (

m
V

)

(d)

Fig. 2. Oscillatory waveforms for increasing values of the delay time and negative
feedback strength, η = −0.001. τ/T0 = 2.4 (a), 2.5 (b), 2.65 (c) and 2.7 (d).

all delay values, but there is a non-monotonic relationship of the amplitude
with the delay: the oscillation amplitude is maximum (minimum) for τ ∼ nT0
[τ ∼ (n + 1/2)T0] with n integer. When η is negative, Fig. 1(b), the oscillation
amplitude is enhanced with respect to the natural amplitude, and the neuron
fires spikes; however, the feedback is not strong enough to induce firings for all
delay values; there are feedback-induced spikes only in ”windows” of the delay
centered at τ ∼ (n + 1/2)T0 with n integer. The frequency of the neuronal oscil-
lations [Figs. 1(c), 1(d)] is also modified by the feedback: for delays longer than
a few oscillation periods, the frequency decreases with τ in a piece-wise linear
way, increasing abruptly at certain delay values.

In the windows of delay values where feedback-induced spikes occur, the firing
pattern is governed by the value of the delay: at the beginning of the window
the firings are frequent [tonic spikes are displayed in Fig. 2(a)], they become
increasingly sporadic as the delay increases [spikes with skippings are displayed
in Figs. 2(b)-2(d)], until they disappear at the end of the window. The process
repeats itself in the next window, that is separated by an interval ∼ T0.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

968 C. Masoller, M.C. Torrent, and J. Garćıa-Ojalvo

0 1 2 3 4 5 6 7 8 9 10
0

50

100

τ/T
0

A
 (

m
V

) (a)

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

τ/T
0

A
 (

m
V

)

(b)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

τ/T
0

f (
H

z)

(c)

0 1 2 3 4 5 6 7 8 9 10
7

7.5

8

τ/T
0

f (
H

z) (d)

Fig. 3. Amplitude (a), (c) and frequency (b), (d) of the mean field oscillations (gray
circles) vs. τ/T0, for η = 0.001 (a), (b); and η = −0.001 (c),(d). The black dots display
the amplitude and the frequency of one neuron of the ensemble. The dashed lines
indicate the amplitude and frequency of the natural oscillations.

Next, we consider the ensemble of N neurons under the influence of delayed
global coupling. we present results for N = 5 neurons, but similar patterns are
observed for other values of N .

Figure 3 displays the amplitude and the frequency of the oscillations of the
mean field (black dots) vs. the delay time for fixed coupling strength. For com-
parison, the amplitude and the frequency of the oscillations of one of the neurons
of the array are also displayed (gray circles). For both, positive and negative cou-
pling strength, it can be observed that the mean field oscillation amplitude [Figs.
3(a), 3(c)] exhibits periodic features at delay times separated by T0, similar to
those observed in Fig. 1 for a single neuron with a recurrent connection. In win-
dows of τ separated by T0 the amplitude of the oscillations of the mean field
decreases to close to zero, revealing that the neurons organize their activity such
that they oscillate out of phase, and even in perfect antiphase, keeping the mean
field nearly constant. The frequency of both, the mean field and one neuron of
the array has a piece-wise linear dependence with the delay [Figs. 3(b), 3(d)]. In
the regions of out of phase behavior the frequency of the individual neurons is
nearly constant, equal to the natural frequency f0 = T−1

0 , while the frequency
of the mean field is nf0 with n ≥ 2 integer (not shown because of the scale).

For positive coupling strength all the neurons display subthreshold oscilla-
tions. The oscillations can be either in-phase, out-of-phase, or in perfect anti-
phase depending on the delay τ . A few examples are displayed in Fig. 4: in
Fig. 4(a) the neuron oscillate inphase; in Fig. 4(b) two neurons display in-phase
oscillations (i.e., they form a cluster); in Fig. 4(c) the ensemble splits into two

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neuronal Multistability Induced by Delay 969

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

Time/T
0

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

0 5 10 15 20
−200

0

200

Time/T
0

(a) (b)

(c) (d)

Fig. 4. Oscillatory waveforms for η = 0.001 and τ/T0 = 6.9 (a), 7.0 (b), 7.1 (c), and
7.3 (d). The black lines display the oscillation of the individual neurons (displaced
vertically for clarity) and the grey lines, the collective mean field.

clusters, and the oscillations of the clusters are in antiphase, in Fig. 4(d) the five
neurons display perfect antiphase behavior that leaves the mean field constant.

For negative coupling strength the ensemble displays more complex behavior:
depending on τ either all the neurons fire spikes, or they all display subthreshold
oscillations, or some neurons display subthreshold oscillations while others fire
spikes. The neuronal oscillations can be either in-phase or out-of-phase depend-
ing on the delay. A few examples are displayed in Fig. 5: in Fig. 5(a) the neurons
fire synchronized spikes; in Fig. 5(b) four neurons fire out of phase spikes, while
the other displays subthreshold oscillations; in Fig. 5(c) the five neurons display
perfect antiphase subthreshold behavior that leaves the mean field constant; in
Fig. 5(d) the ensemble splits into two clusters, one fires synchronized spikes while
the other displays subthreshold oscillations; in Fig. 5(e) the ensemble splits into
two clusters that alternate their firing pattern; in Fig. 5(f) the neurons synchro-
nize their firings again, but the pattern is different from that of Fig. 5(a).

The firing pattern varies not only with τ , but also with the initial conditions
of the neurons, that is, with the positions of the neurons in the subthreshold
oscillation cycle when the coupling begins to act. For most values of the delay,
different initial positions lead to different firing patterns, and there is multi-
stability of solutions with the coexistence of in-phase and out-of-phase behaviors.
As an example, Figs. 6(a) and 6(b) display, for the same parameters as Figs. 5(a)
and 5(b), different firing patterns, that occur with different (random) initial
conditions. However, for specific values of the delay, the basins of attraction of
inphase firings and out of phase subthreshold oscillations are very wide, and
almost all initial conditions lead to these states. Fig. 6(c) and 6(d) display the
mean field oscillation amplitude and the oscillation amplitude of one neuron of
the array, respectively, for 8 random initial conditions. For τ/T0 =5.5, 6.5 and
7.5, it is observed that all initial conditions lead to large amplitude oscillations of
both, the mean field and one neuron of the array, indicating inphase firings, while
for τ/T0 =5.8, 6.8 and 7.8, almost all initial conditions lead to small amplitude
oscillations, of both, the mean field and one neuron of the array, reveling out of
phase subthreshold oscillations.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

970 C. Masoller, M.C. Torrent, and J. Garćıa-Ojalvo

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

0 5 10 15 20
−200

0

200

Time/T
0

M
em

br
an

e
po

te
nt

ia
l (

m
V

)

0 5 10 15 20
−200

0

200

(a) (b)

(c) (d)

(e) (f)

Time/T
0

Fig. 5. Oscillatory waveforms for η = −0.001 and τ/T0 = 6.6 (a), 6.7 (b), 6.8 (c), 7.0
(d), 7.3 (e), and 7.5 (f)

0 5 10 15 20
−200

0

200

Time/T
0

V
i, V

T
 (

m
V

)

(a)

0 5 10 15 20
−200

0

200

Time/T
0

(b)

5.5 6 6.5 7 7.5 8

0

50

100

τ/T
0

A
T
 (

m
V

)

(c)

5.5 6 6.5 7 7.5 8
20

40

60

80

τ/T
0

A
1 (

m
V

)

(d)

Fig. 6. (a), (b) Oscillatory waveforms for η = −0.001, τ/T0 = 6.6 (a), 6.7 (b), and
initial conditions different from those of Figs. 5(a), 5(b). (c), (d) Amplitude of the
oscillations of the mean field (c) and of the oscillations of one neuron of the ensemble
(d) for 8 random initial conditions.

4 Summary and Conclusions

We studied the dynamics of a neuron under the influence of a delayed feedback
circuit representing a recurrent synaptic connection. The neuron was modeled
using a Hodgkin-Huxley type model with parameters corresponding to the sub-
threshold oscillation regime, and the feedback was included as a time delayed
linear term in the membrane voltage equation. We found that weak positive
feedback strengths reduce the amplitude of the subthreshold oscillations, while
weak negative feedback strengths amplify the oscillation amplitude, inducing
threshold-crossings and firing activity for certain values of the delay time, which
are related to integer multiples of the subthreshold oscillation period, T0. We
also studied the firing pattern of a small ensemble of neurons globally coupled

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Neuronal Multistability Induced by Delay 971

through the delayed mean field, and found a rich variety of different behaviors,
with the firing pattern controlled by the delay time of the mutual coupling. For
certain intervals of the delay, related to T0, the neurons synchronize their oscil-
lations, either subthreshold oscillations (for positive coupling strength), or firing
activity (for negative coupling strength). Outside the synchronization regions,
depending on the value of the delay time, either the neurons exhibit out of phase
oscillations, or the ensemble divides into clusters, with the clusters exhibiting
anti-phased oscillations. As the delay is increased for a fixed coupling strength,
the different regimes repeat themselves in a periodic sequence (synchronization,
out of phase, cluster behavior, and synchronization) with a periodicity approxi-
mately equal to T0. These results can be of relevance for a deeper understanding
of the role played by time delays in weakly coupled neuronal ensembles.

Acknowledgments. This research was supported by “Ramon y Cajal” program
(Spain) and the GABA project (European Commission, FP6-NEST 043309).

References

1. Suel, G.M., Garcia-Ojalvo, J., Liberman, L.M., Elowitz, M.B.: An excitable gene
regulatory circuit induces transient cellular differentiation. Nature 440, 545 (2006)

2. Stepan, G., Kollar, L.: Math. Comp. Modelling 31, 199 (2000)
3. Cabrera, J.L., Milton, J.G.: On-off intermittency in a human balancing task. Phys.

Rev. Lett. 89, 158702 (2002)
4. Moschovakis, A.K., Scudder, C.A., Highstein, S.M.: The microscopic anatomy and

physiology of the mammalian saccadic system. Prog. Neurobiol. 50, 133 (1996)
5. Mergenthaler, K., Engbert, R.: Modeling the control of fixational eye movements

with neurophysiological delays. Phys. Rev. Lett. 98, 138104 (2007)
6. Debanne, D., Gahwiler, B.H., Thompson, S.M.: Long-term synaptic plasticity be-

tween pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J.
of Physiol. (London) 507, 237–247 (1998)

7. Nakazawa, K., Quirk, M.C, Chitwood, R.A., Watanabe, M., Yeckel, M.F., Sun,
L.D., Kato, A., Carr, C.A., Johnston, D., Wilson, M.A., Tonegawa, S.: Requirement
for hippocampal CA3 NMDA receptors in associative memory recall. Science 297,
211–218 (2002)

8. Plant, R.E.: A Fitzhugh differential-difference equation modeling recurrent neural
feedback. SIAM J. Appl. Math. 40, 150–162 (1981)

9. Foss, J., Longtin, A., Mensour, B., Milton, J.: Multiestability and delayed recurrent
loops. Phys. Rev. Lett. 76, 708–711 (1996)

10. Foss, J., Milton, J.: Multistability in recurrent neural loops arising from delay. J.
Neurophysiol. 84, 975–985 (2000)

11. Martinez, O.D., Segundo, J.P.: Behavior of a single neuron in a recurrent excitatory
loop. Biological Cybernetics 47, 33–41 (1983)

12. Pakdaman, K., Vibert, J.F., Bousssard, E., Azmy, N.: Single neuron with recurrent
excitation: Effect of the transmission delay. Neural Networks 9, 797–818 (1996)

13. Vibert, J.F., Alvarez, F., Pham, J.: Effects of transmission delays and noise in
recurrent excitatory neural networks. BioSystems 48, 255–262 (1998)

14. Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., Varela, F.J.:
Perception’s shadow: long-distance synchronization of human brain activity. Na-
ture 397, 430–433 (1999)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

972 C. Masoller, M.C. Torrent, and J. Garćıa-Ojalvo

15. Rosenblum, M.G., Pikovsky, A.S.: Phys. Rev. Lett. 92, 114102 (2004)
16. Rosenblum, M., Pikovsky, A.: Delayed feedback control of collective synchrony: an

approach to suppression of pathological brain rhythms. Phys. Rev. E 70, 041904
(2004)

17. Rosenblum, M., Tukhlina, N., Pikovsky, A., Cimponeriu, L.: Delayed feedback
suppression of collective rhythmic activity in a neuronal ensemble. Int. J. Bif.
Chaos 16, 1989 (2006)

18. Popovych, O.V., Hauptmann, C., Tass, P.A.: Effective desynchronization by non-
linear delayed feedback. Phys. Rev. Lett. 94, 164102 (2005)

19. Braun, H.A., Huber, M.T., Dewald, M., Schafer, K., Voigt, K.: Int. J. Bif. Chaos
Appl. Sci. Eng. 8, 881–889 (1998)

20. Braun, H.A., Wissing, H., Schafer, K., Hirsch, M.C.: Oscillation and noise deter-
mine signal transduction in shark multimodal sensory cells. Nature 367, 270–273
(1994)

21. Braun, H.A., Bade, H., Hensel, H.: Static and dynamic discharge patterns of burst-
ing cold fibers related to hypothetical receptor mechanisms. Pflügers Arch. 386, 1–9
(1980)

22. Braun, H.A., Voigt, K., Huber, M.T.: Oscillations, resonances and noise: basis of
flexible neuronal pattern generation. Biosystems 71, 39–50 (2003)

23. Braun, W., Eckhard, B., Braun, H.A., Huber, M.: Phase-space structure of a ther-
moreceptor. Phys. Rev. E 62, 6352–6360 (2000)

24. Braun, H.A., Huber, M.T., Anthes, N., Voigt, K., Neiman, A., Pei, X., Moss, F.:
Interactions between slow and fast conductances in the Huber/Braun model of
cold-receptor discharges. Neurocomputing 32, 51–59 (2000)

25. Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., Moss, F.:
Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons.
Chaos 10, 231–239 (2000)

26. Neiman, A., Pei, X., Russell, D., Wojtenek, W., Wilkens, L., Moss, F., Braun,
H.A., Huber, M.T., Voigt, K.: Synchronization of the noisy electrosensitive cells in
the paddlefish. Phys. Rev. Lett. 82, 660–663 (1999)

27. Zhou, C.S., Kurths, J.: Noise-induced synchronization and coherence resonance of
a Hodgkin-Huxley model of thermally sensitive neurons. Chaos 13, 401–409 (2003)

28. Ciszak, M., Calvo, O., Masoller, C., Mirasso, C.R., Toral, R.: Anticipating the
response of excitable systems driven by random forcing. Phys. Rev. Lett. 90, 204102
(2003)

29. Sainz-Trapaga, M., Masoller, C., Braun, H.A., Huber, M.T.: Influence of time-
delayed feedback in the firing pattern of thermally sensitive neurons. Phys. Rev.
E 70, 031904 (2004)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index

Abe, Shigeo II-180, II-527
Abiyev, Rahib H. II-554
Abreu, Marjory C.C. I-349
Adams, Rod II-100
Adán-Coello, Juan Manuel II-417
Aihara, Kazuyuki I-954
Aizenberg, Igor I-874
Akhand, M.A.H. I-98
Alonso-Betanzos, Amparo II-240
Altunkaya, Koray II-554
Andry, Pierre I-934
Antonelo, Eric A. II-660
Aquino, Ronaldo R.B. de II-455,

II-738, II-779
Arevian, Garen II-425
Asai, Yoshiyuki I-924
Assimakopoulos, Vassilios II-476
Atencia, Miguel I-599
Avesani, Paolo II-869
Aziz, Taha Abdel II-359

Babinec, Štefan I-19
Barreto, Guilherme A. I-219
Barreto S., Miguel A. II-379
Barrio, Ignacio I-209, I-421, I-431
Baruque, Bruno I-339
Basaran, Siddik C. II-709
Bayerl, Pierre II-281
Belanche, Llúıs I-209, I-421, I-431
Benuskova, Lubica II-758
Bie, Rongfang II-546, I-809
Billard, Aude G. II-768
Birkenhead, Ralph I-737
Blanco, Ángela II-110, II-435
Blekas, Konstantinos II-291
Böcker, Sebastian II-90
Bogaerts, Walter F. II-408
Boubezoul, Abderrahmane I-199
Bougioukos, Nikolaos II-476
Bourne, Tom II-139
Braga, Antônio P. I-289
Breneman, Curt M. I-628
Buchholz, Sven I-864
Bueckert, Jeff II-640

Campenhout, Jan Van I-471
Cañamero, Lola II-889

Canuto, Anne M.P. I-349
Caridakis, George II-261
Carvalho, Nuno Borges II-699

Carvalho Jr, Manoel A. II-455, II-779
Castellano, Cristina González II-100
Castellanos-Sánchez, Claudio II-573
Català, Andreu I-520

Čerňanský, Michal I-618
Chakravarthy, V. Srinivasa II-230
Chen, Chuanliang II-546, I-809

Cheung, Yiu-ming I-78
Chibirova, Olga K. I-579
Claro, Pedro II-699

Condous, George II-139
Corchado, Emilio I-339
Cortez, Paulo II-445
Costa, José A.F. II-680

Costen, N. I-441
Cuadrado-Vega, Abel A. I-589, I-609
Cuppini, Cristiano II-9

Daqi, Gao II-250
Davey, Neil II-100
Defour, Jeroen I-471

Dejori, Mathäus I-119
De Las Rivas, Javier II-110
Di Fatta, Giuseppe I-279

Di Iorio, Ernesto II-271
Di Pellegrino, Giuseppe II-9
Dı́az-Blanco, Ignacio I-589, I-609

Diez-González, Alberto B. I-609
Domı́nguez-González, Manuel I-589,

I-609
Doornik, Johan van II-39

Dorronsoro, José R. I-159
Drosopoulos, Athanasios II-261
Duch, W�lodzis�law I-180, II-953

Duff, Armin II-129
Duffner, Stefan I-249
Dutoit, Xavier II-660

Duysak, Alpaslan II-670

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

974 Author Index

Ebadzadeh, Mohammad Mehdi I-788
Eggert, Julian I-894, II-169
Eickhoff, Ralf I-501
Elango, P. I-490
Elizondo, David I-737
Embrechts, Mark J. I-269, I-628, II-408
Erny, Julien II-29
Evangelista, Paul F. I-269, II-408

Fallah, Ali II-621
Feldbusch, Fridtjof I-380
Fernández, Santiago I-549, II-220
Fernández-Redondo, Mercedes I-309,

I-450
Ferreira, Aida A. II-455, II-738, II-779
Fiannaca, Antonino I-279
Fidalgo, J. Nuno II-728
Fiori, Simone I-858
Fischer, Ingo I-904
Fisher, Robert B. I-58
Foerster, Alexander I-697
Fontenla-Romero, Oscar I-190
Fragopanagos, Nickolaos II-850, II-879
Fraguela, Paula I-190
Franco, Leonardo I-648
Freitas, Ricardo Lúıs de II-417
Fritsch, Jannik II-583
Fuertes-Mart́ınez, Juan J. I-589, I-609
Fyfe, Colin I-667

Gaglio, Salvatore I-279
Galán-Maŕın, Gloria II-816
Gamez, David I-360
Garcia, Christophe I-249
Garćıa, Daniel I-159
Garćıa, Hilario López II-341
Garćıa-Ojalvo, Jordi I-963
Gastaldo, Paolo II-564
Gaussier, Philippe I-934
Gepperth, Alexander II-583
Giannelos, Konstantinos II-476
Gil-Pita, Roberto II-690
Goerick, Christian II-583
Golak, Slawomir II-789
Gomez-Ramirez, Eduardo I-914
Gonçalves, Márcio L. II-680
González, Ana I-159
González, Iván Machón II-341
González, Javier I-727
Graves, Alex I-549, II-220

Greer, Douglas S. II-19
Grim, Jǐŕı I-129
Groß, Horst-Michael II-190, II-593,

I-894
Grochowski, Marek I-180
Grossi, Giuliano I-559
Guijarro-Berdiñas, Bertha I-190
Guilén, Alberto II-506
Gyenes, Viktor I-827

Hamad, Denis II-321
Hao, Zhifeng II-603
Hartley, Matthew II-899
Hasegawa, Osamu II-465
Hasler, Stephan II-210
Hattori, Motonobu II-49
Hayashi, Akira II-311
He, Guoguang I-954
Hébert, Pierre-Alexandre II-321
Hernández-Espinosa, Carlos I-309,

I-450
Hernández-Lobato, Daniel I-319, II-718
Hernández-Lobato, José Miguel II-718
Herrera, Luis Javier II-506
Heyns, Bram II-408
Hilas, Costas S. II-120
Hirano, Akihiro I-169
Hirose, Akira I-884
Hitzer, Eckhard M.S. I-864
Holstein, H. I-441
Hora, Jan I-129
Horita, Akihide I-169
Hosokawa, Ryota II-180
Huang, Changjian I-628
Huang, Ronghuai I-809
Hübner, Wolfgang I-411
Hyvärinen, Aapo II-798

Igel, Christian I-139
Iglesias, Javier I-579
Inoue, Hideaki II-748
Iriguchi, Ryosuke I-88
Ishihara, Abraham K. II-39
Ishii, Shin I-229, II-611
Ishizaki, Shun II-49
Isokawa, Teijiro I-848
Iwasa, Kaname II-748
Iwata, Akira II-748
Iwata, Kazunori II-311

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index 975

Jarabo-Amores, Maria P. II-690
Jerez, José M. I-648
Jianli, Sun II-250
Jin, Xin II-546, I-809
Jin, Yaochu I-370
Jo, Geun-Sik II-399
Joya, Gonzalo I-599
Jung, Jason J. II-399

Kaiser, Florian I-380
Kamimura, Ryotaro I-480
Kamiura, Naotake I-848
Kanemura, Atsunori II-611
Kao, Yonggui I-569
Kasabov, Nikola II-758
Kasderidis, Stathis II-922
Kaulmann, Tim I-501, I-529
Kawakami, Hajimu I-717
Kerdels, Jochen II-331
Knoll, A. I-776
Kollias, Stefanos II-261
Körner, Edgar I-894, II-169, II-210
Korsten, Nienke II-850
Köster, Urs II-798
Kratz, Marie I-599
Kugler, Mauricio II-748
Kuroe, Yasuaki I-717, I-838
Kuroyanagi, Susumu II-748

Laaksonen, Jorma II-200
Lagarde, Matthieu I-934
Lagaris, Isaac E. II-291
Lai, Pei Ling I-667
Lang, Elmar W. I-799, II-80, II-486
Lappas, Georgios I-68
�Lawryńczuk, Maciej II-630, II-650
Li, B. I-441
Lim, Joseph J. I-767
Lin, I-Chun II-301
Linton, Jonathan II-408
Liou, Cheng-Yuan II-301
Lira, Carlos Alberto B.O. II-455
Lira, Milde M.S. II-455, II-738, II-779
Litinskii, Leonid B. I-638
Liu, Chong I-400
Liu, Feng I-49
Liu, Zhou II-603
Löffler, Axel I-529
López-Rodŕıguez, Domingo I-707,

II-816

López-Rubio, Ezequiel I-707
Lőrincz, András I-677, I-827
Lücke, Jörg I-657, II-389
Ludermir, Teresa I-817
Luts, Jan II-139
Lutter, Dominik II-80

Maeda, Shin-ichi II-611
Magosso, Elisa II-9
Magoulas, George D. I-259
Mallot, Hanspeter A. I-411, I-776
Marin, Armando II-417
Marinaro, Maria I-757
Martin, Christian II-593
Mart́ın-Merino, Manuel II-110, II-435
Mart́ınez, Luis A. II-349
Mart́ınez-Muñoz, Gonzalo I-319
Martinetz, Thomas I-109
Masoller, Cristina I-963
Mastorocostas, Costas A. II-120
Mastorocostas, Paris A. II-120
Mata-Moya, David II-690
Matos, Manuel A. II-728
Matsuda, Takeshi I-11
Matsui, Nobuyuki I-848
Matsuka, Toshihiko II-912
Matykiewicz, Pawe�l II-953
Mayer, Rudolf II-359
McGregor, Simon I-460
Medeiros, Cláudio M.S. I-219
Medeiros, Talles H. I-289
Meng, Q. I-441
Mérida-Casermeiro, Enrique II-816
Mersch, Britta II-583
Mesa, Héctor I-539, II-349
Micheli, Alessio II-826
Ming, QingHe I-569
Mirasso, Claudio R. I-904
Mireles, Victor II-369
Mori, Takeshi I-229
Müller, Daniel Nehme II-496
Muñoz, Alberto I-727
Murase, Kazuyuki I-98
Murugesan, K. I-490

Nagata, Kenji I-687
Nakagawa, Masanori II-963
Nakajima, Shinichi I-1
Nakayama, Kenji I-169
Nasser, Alissar II-321

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

976 Author Index

Nattkemper, Tim W. II-90
Navaux, Philippe O.A. II-496
Neme, Antonio II-369
Neskovic, Predrag II-149
Neto, Otoni Nóbrega II-455, II-738,

II-779
Netto, Márcio L.A. II-680
Neumann, Heiko II-281
Nikolaev, Nikolay Y. I-747
Nikolopoulos, Konstantinos II-476
Nishimura, Haruhiko I-848
Nishiyama, Yu I-29
NourAshrafoddin, Naser I-788
Nuttin, Marnix II-660

Okada, Shogo II-465
Oliveira, Josinaldo B. de II-779
Olivetti, Emanuele II-869
Onishi, Kenta II-527
Ortiz-de-Lazcano-Lobato, Juan Miguel

I-707, I-737, II-816
Ouladsine, Mustapha I-199

Panchev, Christo II-425, II-943
Panuku, Lakshmi Narayana I-390
Paris, Sébastien I-199
Parodi, Giovanni II-564
Parra, Xavier I-520
Parussel, Karla II-889
Pastor, Josette II-29
Pateritsas, Christos II-261
Pazienza, Giovanni Egidio I-914
Pedersini, Federico I-559
Peng, Chun-Cheng I-259
Pérez-Sánchez, Beatriz I-190, II-240
Pérez-Uribe, Andrés I-39, II-379
Pestian, John II-953
Peters, Gabriele II-331
Peters, Jan I-697
Pipa, Gordon I-904
Póczos, Barnabás I-677
Pomares, Hector II-506
Posṕıchal, Jǐŕı I-19
Prada, Miguel A. I-589
Prade, Henri II-29
Prim, Marta I-511
Prior, Matthew I-329
Prudêncio, Ricardo I-817
Puntonet, Carlos G. I-799

Rajala, Miika II-836
Rauber, Andreas II-359
Rebhan, Sven I-894
Redi, Judith II-564
Reguera-Acevedo, Perfecto I-589, I-609
Ringbauer, Stefan II-281
Rio, Miguel II-445
Ritala, Risto II-836
Rizzo, Riccardo I-279
Robinson, Mark II-100
Rocha, Miguel II-445
Roesch, Etienne B. II-859
Rojas, Ignacio II-506
Romero, Enrique I-209, I-421, I-431
Rosa, João Lúıs Garcia II-417
Rosa-Zurera, Manuel II-690
Rubio, G. II-506
Rückert, Ulrich I-501, I-529
Ryabko, Daniil II-808

Sahani, Maneesh I-657
Sakamoto, Yasuaki II-912
Saldanha, Rodney R. I-289
Samolada, Evi II-516
Samura, Toshikazu II-49
Sánchez-Maroño, Noelia II-240
Sander, David II-859
Sanger, Terence D. II-39
Santos, Gabriela S.M. II-455
Santos, Katyusco F. II-738
Sarraf, Samaneh II-621
Satizábal M., Héctor F. I-39
Sato, Masayoshi I-149
Sauser, Eric L. II-768
Scarpetta, Silvia I-757
Schachtner, Reinhard II-80
Schaffernicht, Erik II-190
Scherbart, Alexandra II-90
Scherer, Klaus R. II-859
Schiano, Jeffrey L. II-670
Schleimer, Jan-Hendrik I-944
Schmidhuber, Jürgen I-549, I-697,

II-220
Schmitz, Gerd II-80
Schneegaß, Daniel I-109
Schrauwen, Benjamin I-471, II-660
Schwaighofer, Anton I-119
Sekhar, C. Chandra I-390, II-230
Sendhoff, Bernhard I-370
Seo, Kwang-Kyu II-537

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

Author Index 977

Serino, Andrea II-9
Seyedena, T. II-621
Shapiro, Jonathan I-400
Shen, Xian II-546
Shrimali, Manish Dev I-954
Sillito, Rowland R. I-58
Silva, Geane B. II-779
Simão, Jorge II-934
Sinha, Sudeshna I-954
Siqueira, Mozart Lemos de II-496
Smirnov, Evgueni I-747
Soler, Vicenç I-511
Sona, Diego II-869
Sousa, Pedro II-445
Sperduti, Alessandro II-826
Stadlthanner, Kurt I-799
Stafylopatis, Andreas II-261
Steege, Frank-Florian II-593
Stephan, Volker II-190
Stetter, Martin I-119
Stroobandt, Dirk II-660
Stürzl, Wolfgang I-776
Suárez, Alberto I-319, II-718
Subirats, José Luis I-648
Sukumar, N. I-628
Sun, Yi II-100
Suttorp, Thorsten I-139
Suykens, Johan A.K. II-139
Swethalakshmi, H. II-230
Szabó, Zoltán I-677
Szirtes, Gábor I-677
Szymanski, Boleslaw K. I-269

Tachibana, Kanta I-864
Takahashi, Ricardo H.C. I-289
Taniguchi, Yuki I-229
Taniguchi, Yuriko I-838
Tanizawa, Ken I-884
Tay, Chor Shen I-884
Taylor, John G. II-850, II-879,

II-899, II-973
Taylor, Neill R. II-973
Teixeira, Ana Rita II-486
Teixeira, Roselito A. I-289
Terai, Asuka II-963
Tereshko, Valery II-59
Theis, Fabian J. I-799, II-80
Tian, Fengzhan I-49
Tikka, Jarkko I-239
Timm, Wiebke II-90

Timmerman, Dirk II-139
Tiňo, Peter I-618
Tobar, Carlos Miguel II-417
Tomé, Ana Maria I-799, II-80, II-486
Toprak, Inayet B. II-709
Torrent, M.C. I-963
Torres-Sospedra, Joaqúın I-309, I-450
Trentin, Edmondo II-271
Tresp, Volker I-119

Udluft, Steffen I-109
Unsal, Abdurrahman II-670
Ursino, Mauro II-9
Urso, Alfonso M. I-279

Vahdat, Ali R. I-788
Van Calster, Ben II-139
Van Dijck, Gert II-159
Van Huffel, Sabine II-139
Van Hulle, Marc M. II-159
Van Vaerenbergh, Jo II-159
Vargas-González, Maŕıa del Carmen

I-707
Varsamis, Dimitris N. II-120
Veeramachaneni, Sriharsha II-869
Veredas, Francisco J. I-539, II-349
Verschure, Paul F.M.J. II-129
Verstraeten, David I-471
Vicen-Bueno, Raul II-690
Vicente, Raul I-904
Vigário, Ricardo I-944
Vilaśıs-Cardona, Xavier I-914
Villa, Alessandro E.P. I-579, I-924
Volna, Eva I-299
von der Malsburg, Christoph II-1

Watanabe, Sumio I-1, I-11, I-29,
I-88, I-687

Welling, Max I-767
Wen, Ruojing I-370
Wen, Wen II-603
Wersing, Heiko II-210
Wierstra, Daan I-697
Windeatt, Terry I-329
Wolfrum, Philipp II-1
Wu, Liang II-149
Wu, Ying I-667
Wysoski, Simei Gomes II-758
Wyss, Reto II-129

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

978 Author Index

Xiaoyan, Li II-250
Xu, Anbang II-546
Xu, Chuan I-809, II-546

Yamauchi, Koichiro I-149
Yang, Simon X. II-640
Yang, Xiaowei II-603
Yang, Zhirong II-200
Yardimci, Ahmet II-69, II-709
Yeo, Seong-Won II-399

Yin, Hujun I-339
Yokoi, Takashi I-924
Yoshioka, Masahiko I-757

Zapranis, Achilleas II-516
Zeng, Hong I-78
Zhang, Chen II-169
Zhu, Qiliang I-49
Zunino, Rodolfo II-564
Zurada, Jacek M. I-874

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

	Title page
	Preface
	Organization
	Table of Contents – Part I
	Generalization Error of Automatic Relevance Determination
	Introduction
	Automatic Relevance Determination
	Asymptotic Generalization Error
	Nonasymptotic Generalization Error When $U = 1$
	Discussion
	Generalization
	Sparsity
	Properties of Variational Bayes Approach

	Conclusions

	On a Singular Point to Contribute to a Learning Coefficient and Weighted Resolution of Singularities
	Introduction
	Bayes Learning and Asymptotic Theory
	Preliminary Results and Facts
	Learning Coefficients by Weighted Resolution of Singularities
	Main Theorem
	Example

	Conclusion

	Improving the Prediction Accuracy of Echo State Neural Networks by Anti-Oja’s Learning
	Introduction
	Echo State Neural Network
	Description of the Neural Network

	Motivation
	Anti-Oja's Learning Rule

	Experiments
	Conclusions

	Theoretical Analysis of Accuracy of Gaussian Belief Propagation
	Introduction
	Belief Propagation
	Belief Propagation for Tree Structures
	Loopy Belief Propagation
	Gaussian Belief Propagation

	Main Results of This Paper
	On the Graphs with a Single Loop
	On the Graphs with a Single Loop and Tree Structures
	Expansions of $\{\Lambda_{i} \}$ at Small Covariances

	Conclusion and Future Works

	Relevance Metrics to Reduce Input Dimensions in Artificial Neural Networks
	Introduction
	Relevance Metrics
	Using Network Parameters Only
	Using Network Parameters and Input Patterns

	Description of the Backward Selection Algorithm
	Experiments
	Non Linear Static Function
	Wine Recognition Benchmark
	Box-Jenkins Furnace Benchmark
	Sonar Data

	Conclusions

	An Improved Greedy Bayesian Network Learning Algorithm on Limited Data
	Introduction
	Bayesian Network
	Max-Dependence and MRMR
	Local Bayesian Increment Function
	MRMRG Algorithm
	The Time Complexity of MRMRG

	Experimental Results
	Comparison of Runtime Among Algorithms
	Comparison of Accuracy Among Algorithms

	Conclusion

	Incremental One-Class Learning with Bounded Computational Complexity
	Introduction
	Algorithm
	Density Estimation
	Classification Threshold

	Experiments
	Discussion

	Estimating the Size of Neural Networks from the Number of Available Training Data
	Introduction
	Methodology
	Estimations of Circuit Size

	Evaluation of the Estimated Network Size on Additional Datasets
	Conclusions

	A Maximum Weighted Likelihood Approach to Simultaneous Model Selection and Feature Weighting in Gaussian Mixture
	Introduction
	The MWL Learning Framework
	Simultaneous Clustering and Feature Weighting
	Experimental Results
	Synthetic Data
	Real-World Data

	Conclusion

	Estimation of Poles of Zeta Function in Learning Theory Using Pad´e Approximation
	Introduction
	Bayesian Learning
	Zeta Function in Learning Theory

	The Proposed Method
	Padé Approximation
	Proposal Method
	Determination of z_0 from n

	Experiments
	Experimental Condition
	Experimental Results

	Discussion
	Conclusion

	Neural Network Ensemble Training by Sequential Interaction
	Introduction
	Modification of Negative Correlation Learning (NCL) for Interaction and Interactive Bagging/Boosting Methods
	Experimental Studies
	Experimental Results
	Experimental Analysis

	Conclusions
	References

	Improving Optimality of Neural Rewards Regression for Data-Efficient Batch Near-Optimal Policy Identification
	Introduction
	Markov Decision Processes and Reinforcement Learning
	Neural Rewards Regression
	Auxiliared Bellman Residual
	Policy Gradient Neural Rewards Regression
	Improving Data-Efficiency
	Benchmark Results
	Conclusion

	Structure Learning with Nonparametric Decomposable Models
	Introduction
	Decomposable Models
	Nonparametric Decomposable Models
	Learning: Scoring Functions
	Learning: Search Strategy

	Experiments
	Toy Data
	Learning from DNA Microarray Measurements

	Conclusions

	Recurrent Bayesian Reasoning in Probabilistic Neural Networks
	Introduction
	Subspace Approach to Statistical Pattern Recognition
	Structural Probabilistic Neural Networks
	Recurrent Bayesian Reasoning
	Numerical Example
	Conclusion

	Resilient Approximation of Kernel Classifiers
	Introduction
	Background
	Support Vector Machines
	Approximation of SVMs

	Resilient Approximation of SVMs
	Techniques for Choosing Initial Vectors
	Resilient Minimization of the Distance Function

	Experiments
	Discussion

	Incremental Learning of Spatio-temporal Patterns with Model Selection
	Introduction
	Outline
	Awake Phase
	Sleep Phase
	Pseudo Patterns
	S-Net Learning (Sleep Phase)
	Post Sleep Phase

	Experiments
	Comparison ILS1 with Other Systems Using Static Patterns
	Learning Spatio-temporal Patterns

	Conclusion

	Accelerating Kernel Perceptron Learning
	Introduction
	The SK Algorithm and Rosenblatt's Rule
	Perceptron Training Acceleration
	Numerical Experiments
	Conclusions

	Analysis and Comparative Study of Source Separation Performances in Feed-Forward and Feed-Back BSSs Based on Propagation Delays in Convolutive Mixture
	Introduction
	Feed-Forward BSS
	Network and Input-Output Equations
	Learning Algorithm

	Feed-Back BSS
	Block Diagram and Input-Output Relations
	Learning Algorithm

	Derivation of Learning Algorithm for FB-BSS Based on Propagation Delay
	Analysis of Source Separation Based on Propagation Delay in Mixing Process
	Effects of Propagation Delay on Learning FB-BSS
	Canceling $u_K(n)$ by Using $u_K(n-l)$
	Cancelation of $u_K(n)$ Evaluated by Correlation
	Effects of Fractional Propagation Delays

	Simulations and Discussions
	Simulation Setup
	Instantaneous and Propagation Delay Model
	Convolutive and Propagation Delay Model
	Delay Difference Based on Location of Signal Sources and Sensors

	Conclusions

	Learning Highly Non-separable Boolean Functions Using Constructive Feedforward Neural Network
	Introduction
	The Network Architecture and Training
	Results
	Discussion and Further Work

	A Fast Semi-linear Backpropagation Learning Algorithm
	Motivation
	The Proposed Algorithm
	One-Layer Linear Learning
	Combining Linear and Non-linear Learning

	Experimental Results
	K.U. Leuven Competition Data
	Lorenz Time Series

	Discussion
	Conclusions and Future Work

	Improving the GRLVQ Algorithm by the Cross Entropy Method
	Introduction
	Problem Statement
	GLVQ Algorithm
	Attribute Weighing and GRLVQ Algorithm

	Cross Entropy Method
	Cross Entropy Method for GRLVQ Optimisation

	Experimental Results
	Attribute Weighing Estimation
	Conclusion

	Incremental and Decremental Learning for Linear Support Vector Machines
	Introduction
	Background
	Incremental and Decremental Inner Product Learning for Linear SVMs
	Problem Setting
	Sketch of the Solution
	Calculation of the Increments

	Implementation
	Efficient Computation of the Linear Equations System
	A Complete Algorithm

	Applications
	Feature Selection
	Basis Selection Guided by the Margin
	Kernel Out of a Similarity

	Conclusions and Future Work

	An Efficient Method for Pruning the Multilayer Perceptron Based on the Correlation of Errors
	Introduction
	The Back-Propagation Algorithm in a Nutshell
	The Proposed Methodology
	Pruning Hidden-to-Output Layer Weights
	Pruning Input-to-Hidden Layer Weights

	Simulations and Discussion
	Conclusions

	Reinforcement Learning for Cooperative Actions in a Partially Observable Multi-agent System
	Introduction
	Partially Observable Multi-agent Systems and FSCs
	IState-GPOMDP for Cooperative Actions
	Computer Simulation
	Synchronized-Cooperative Goal Problem
	Experimental Results

	Discussion
	Concluding Remarks

	Input Selection for Radial Basis Function Networks by Constrained Optimization
	Introduction
	Radial Basis Function Networks
	Input Selection for RBF Networks
	Input Selection Algorithm for RBF Network

	Experiments
	Simulated Data
	Boston Housing Data

	Summary and Conclusions

	An Online Backpropagation Algorithm with Validation Error-Based Adaptive Learning Rate
	Introduction
	The Training Algorithm
	The Main Learning Phase
	Refinement Phase

	Experimental Results
	Conclusion

	Adaptive Self-scaling Non-monotone BFGS Training Algorithm for Recurrent Neural Networks
	Introduction
	The Adaptive Self-scaling Nonmonotone BFGS
	Description of Applications
	Presentation of Experimental Results
	Conclusion and Future Works
	References

	Some Properties of the Gaussian Kernel for One Class Learning
	Introduction
	Recent Work
	The One-Class SVM
	Method
	The Coefficient of Variance
	Why Direct Tuning of the Kernel Matrix Works

	Experimental Results
	Conclusions

	Improved SOM Learning Using Simulated Annealing
	Introduction
	Related Work
	SOM Adaptive Learning Rate Algorithm
	Self-Organizing Map Basic Algorithm
	The Fast Learning SOM Algorithm (FLSOM)

	Experimental Results
	Quality Criteria
	Evaluation of the Proposed Algorithm
	Validation of the Proposed Learning Process

	Conclusions

	The Usage of Golden Section in Calculating the Efficient Solution in Artificial Neural Networks Training by Multi-objective Optimization
	Introduction
	The MOBJ Algorithm
	Description of MOBJ Algorithm
	The Decision Process
	Computational Aspects for the MOBJ Algorithm

	The MOBJ Algorithm with Golden Section
	Description of Algorithm

	Classification and Regression Problems
	Classification Problem
	Regression Problem

	Discussions
	Conclusions
	References

	Designing Modular Artificial Neural Network Through Evolution
	Introduction
	Evolutionary Algorithm with Hill – Climbing
	An Outline of the Convergence Manner of the Method
	Experiments
	Conclusion
	References

	Averaged Conservative Boosting: Introducing a New Method to Build Ensembles of Neural Networks
	Introduction
	Theory
	Adaboost Review
	Averaged Boosting and Conservative Boosting
	The ACB Algorithm

	Experimental Testing
	Datasets
	Results
	General Measurements
	Discussion

	Conclusions

	Selection of Decision Stumps in Bagging Ensembles
	Introduction
	Methods
	Experiments
	Conclusions

	An Ensemble Dependence Measure
	Introduction
	The Ensemble Dependence Measure, D
	Out-of-Bootstrap Estimation
	Diversity Measures
	Experimental Method
	Results
	Conclusions

	Boosting Unsupervised Competitive Learning Ensembles
	Introduction
	Self-Organizing Maps
	Unsupervised Competitive Learning Ensembles
	Bagging and AdaBoosting
	Summarizing Some Applied Ensembles Techniques

	Experiment Details
	Conclusions and Future work
	References

	Using Fuzzy, Neural and Fuzzy-Neural Combination Methods in Ensembles with Different Levels of Diversity
	Introduction
	Related Works
	Ensembles
	Diversity in Ensembles

	CI-Based Combination Methods
	Neural Networks
	Fuzzy Neural Networks
	Fuzzy Connectives

	Experimental Setting Up
	Results
	Ensembles with Three Base Classifiers
	Ensembles with Five Base Classifiers
	Ensembles with Seven Base Classifiers

	Conclusion
	References

	SpikeStream: A Fast and Flexible Simulator of Spiking Neural Networks
	Introduction
	Architecture
	Databases
	SpikeStream Application
	SpikeStream Simulation
	SpikeStream Archiver
	Neuron and Synapse Classes

	Performance
	Tests
	Results

	External Devices
	Applications
	General Application Areas
	Recent Experiments

	Other Spiking Simulators
	Limitations
	Conclusion
	References

	Evolutionary Multi-objective Optimization of Spiking Neural Networks
	Introduction
	Spiking Neural Network Model
	A Multi-objective Genetic Algorithm for Pareto Learning
	Genetic Representation of SNNs
	Objectives
	Genetic Variations and Pareto-based Selection

	Empirical Studies
	Experimental Setup
	Results from Networks with Single-Terminal Connections
	Results from Networks with Multi-terminal Connections

	Conclusion

	Building a Bridge Between Spiking and Artificial Neural Networks
	Introduction
	The Neuron Model
	The Gain Function
	The Back-Propagation Algorithm
	Experimental Setup
	Results and Discussion
	Conclusion

	Clustering of Nonlinearly Separable Data Using Spiking Neural Networks
	Introduction
	Networks of Spiking Neurons with Multiple Delay Connections
	Learning
	Encoding

	Clustering of Linearly Separable Data Using SNN
	Clustering of Nonlinearly Separable Data Using SNN
	Hierarchical Clustering Using SNN
	Conclusions

	Implementing Classical Conditioning with Spiking Neurons
	Introduction
	Classical Conditioning
	Spiking Neuron Models

	Model
	Neuron Structure
	Learning Algorithm

	Simulation Results
	Pavlovian Conditioning
	Extinction
	Blocking
	Secondary Conditioning

	Discussion and Future Work
	Robustness
	Future Work

	Deformable Radial Basis Functions
	Introduction
	Construction of Deformable Radial Basis Functions
	C^1 Splines
	Generating Smooth Shapes

	Results
	Summary and Discussion

	Selection of Basis Functions Guided by the L2 Soft Margin
	Introduction
	Related Methods
	Optimizing Linear L_2 Soft Margin SVMs
	Search Strategies
	Search Strategies Guided by the L_2 Soft Margin
	Implementation
	Stopping Criteria

	Experimental Study
	Toy Example
	Benchmark Comparisons

	Conclusions and Future Work

	Extended Linear Models with Gaussian Prior on the Parameters and Adaptive Expansion Vectors
	Introduction
	Linear Models with Overall Gaussian Prior
	Regression
	Binary Classification

	Linear Models with Adaptive Expansion Vectors
	Derivatives with Respect to the Expansion Vectors
	Computational Cost
	Introducing a Non-flat Hyperprior

	Comparison with Related Methods
	Relevance Vector Machines
	Other Related Methods

	Experimental Study
	Regression Benchmarks
	Classification Benchmarks

	Conclusions

	Functional Modelling of Large Scattered Data Sets Using Neural Networks
	Introduction
	The Self-organising Hierarchical RBF Network
	Hierarchical Architecture
	Adaptivity of the RBFs

	Application to 3D Point-Cloud Surface Reconstruction
	Surface Reconstruction and Mesh Repair
	Progressive Reconstruction by Error-Driven Active Learning
	Neuron Adaptivity
	Pruning Effectiveness
	Data Compression

	Conclusion

	Stacking MF Networks to Combine the Outputs Provided by RBF Networks
	Introduction
	Theory
	Training a Neural Network
	The Multilayer Feedforward Network
	The Radial Basis Function Network
	Combining Networks with Stacked Generalization

	Experimental Setup
	Databases
	Results
	General Measurements
	Discussion

	Conclusions

	Neural Network Processing for Multiset Data
	Introduction
	Limitations of Conventional Neural Networks
	The Variadic Network
	The Multiplicative Link, Variadicised
	The Sigmoidal Neuron, Variadicised
	Scalar Outputs from Variadic Networks

	Backprop Training a MLVP
	Algorithm
	Training on Sample Problems
	Sample Problem Descriptions
	Sample Problem Results

	Conclusion
	Future Work
	Derivation of Backprop Algorithm

	The Introduction of Time-Scales in Reservoir Computing, Applied to Isolated Digits Recognition
	Introduction
	Reservoir Computing and Time-Scales
	Input Time-Scale and Integrator Nodes
	Output Time-Scale

	Experimental Setup and Results
	Input Resampling vs. Integration
	Reservoir Resampling vs. Integration

	Conclusion and Future Work

	Partially Activated Neural Networks by Controlling Information
	Introduction
	Partially Activated Networks
	Concept of Partially Activated Networks
	Information Acquisition Procedure
	Information Maximization Procedure
	Information Control Procedure

	Results and Discussion
	XOR Problem
	Application to a Student Survey

	Conclusion

	CNN Based Hole Filler Template Design Using Numerical Integration Techniques
	Introduction
	Dynamic Analysis of CNN
	Hole-Filler Template Design
	Numerical Integration Algorithms
	Simulated Results
	Conclusion
	References

	Impact of Shrinking Technologies on the Activation Function of Neurons
	Introduction
	CMOS Scaling Theory
	Shrinking Threshold Elements
	Conclusion

	Rectangular Basis Functions Applied to Imbalanced Datasets
	Introduction
	The Rectangular Basis Function
	RecBF Applied to Imbalanced Problems
	Patterns Ordered by Class
	The Shrink Operation
	Results in Number of Fuzzy Points

	Comparison with Other Methods for Imbalanced Datasets
	Application on a Real Dataset
	Conclusions
	References

	Qualitative Radial Basis Function Networks Based on Distance Discretization for Classification Problems
	Introduction
	Qualitative Radial Functions
	Radial Basis Function Networks
	Distance Discretization
	Forward Selection Algorithm

	Experiments and Results
	Classification Problems
	Results and Discussion

	Summary

	A Control Approach to a Biophysical Neuron Model
	Introduction
	Neuron Model
	NaK-ATPase as a Controller
	Modeling the Synapse
	Action Potential Generation

	Simulation Results
	Conclusion

	Integrate-and-Fire Neural Networks with Monosynaptic-Like Correlated Activity
	Searching for Monosynaptic-Like Circuits
	Problem Description

	The Integrate-and-Fire Neuron Model
	An Evolutionary Algorithm to Search for IAF Circuits
	Executions and Results
	Conclusions

	Multi-dimensional Recurrent Neural Networks
	Introduction
	Multi-dimensional Recurrent Neural Networks
	Multi-directional MDRNNs
	Multi-dimensional Long Short-Term Memory

	Experiments
	Air Freight Data
	MNIST Data
	Analysis

	Conclusion

	FPGA Implementation of an Adaptive Stochastic Neural Model
	Introduction
	The Model
	Constrained Pseudo-Boolean Optimization
	Examples
	Architecture and Dynamics

	The Hardware Architecture
	Description of the Architecture
	FPGA Implementation
	Computational Performance

	Global Robust Stability of Competitive Neural Networks with Continuously Distributed Delays and Different Time Scales
	Introduction
	Main Results and Proof
	Conclusion

	Nonlinear Dynamics Emerging in Large Scale Neural Networks with Ontogenetic and Epigenetic Processes
	Introduction
	Neural Network Model
	Simulations
	Results
	Discussion

	Modeling of Dynamics Using Process State Projection on the Self Organizing Map
	Introduction
	Cluster-Level Dynamic Model
	Neuron-Level Dynamic Model
	Trajectory Encoding
	T-SOM Learning Module

	Experimental Results
	Conclusions

	Fixed Points of the Abe Formulation of Stochastic Hopfield Networks
	Introduction
	Deterministic Model
	Hopfield Networks and the Abe Formulation
	Stability of Fixed Points and Combinatorial Optimization

	Stochastic Stability of Fixed Points
	Stochastic Model
	Stochastic Stability and Existence of Attractor
	Comparison of the Limit Sets of the Deterministic and the Stochastic Systems
	Stability of the Fixed Points of the Network

	Conclusions

	Visualization of Dynamics Using Local Dynamic Modelling with Self Organizing Maps
	Introduction
	Local Linear Modelling of Dynamics
	Clustering Dynamics
	Local Model Estimation
	Retrieval

	Visualization of Dynamics
	Election of the Dynamic Selectors
	Visualization of Dynamic Features

	Experimental Results
	Conclusions

	Comparison of Echo State Networks with Simple Recurrent Networks and Variable-Length Markov Models on Symbolic Sequences
	Introduction
	Methods
	Recurrent Neural Networks
	Echo State Networks
	Variable Length Markov Models
	Models Using Architectural Bias Property

	Experiments
	Datasets
	Performance of ESNs
	Recurrent Neural Networks
	Markov Models and Methods Explicitly Using Architectural Bias Property

	Conclusion

	Data Fusion and Auto-fusion for Quantitative Structure-Activity Relationship (QSAR)
	Introduction
	Background
	QSAR
	Data Fusion

	Performance Metrics
	Auto-fusion Method for QSAR
	Functional Model for Data Fusion
	Architectural Paradigm for Data Fusion

	Experimental Results
	Problem Description
	Albumin Data Set: Description
	Classical QSAR Solutions
	Auto-fusion for Albumin

	Conclusion

	Cluster Domains in Binary Minimization Problems
	Introduction
	The Domain Dynamics
	Cluster Approach of Domain Formation
	The Results of Computer Simulations
	References

	MaxSet: An Algorithm for Finding a Good Approximation for the Largest Linearly Separable Set
	Introduction
	Mathematical Preliminaries
	The MaxSet Algorithm
	Testing the Algorithm on a Set of Benchmark Functions
	Discussion

	Generalized Softmax Networks for Non-linear Component Extraction
	Introduction
	The Neural Network Model
	A Non-linear Generative Model
	Maximum Likelihood
	E-Step Approximation
	Simulations
	Discussion

	Stochastic Weights Reinforcement Learning for Exploratory Data Analysis
	Introduction
	Immediate Reward Reinforcement Learning
	Stochastic Weights
	Exploratory Data Analysis
	Principal Component Analysis
	Other Linear Projections
	Kernel Mappings
	Topology Preserving Manifolds

	Conclusion

	Post Nonlinear Independent Subspace Analysis
	Introduction
	The PNL-ISA Model
	Ambiguities of PNL-ISA
	Algorithm (Sketch)
	Illustrations
	Databases
	Performance Measure
	Simulations

	Conclusions

	Algebraic Geometric Study of Exchange Monte Carlo Method
	Introduction
	Background
	Exchange Monte Carlo Method
	Exchange Ratios for EMC Method

	Main Result
	Discussion
	Conclusion

	Solving Deep Memory POMDPs with Recurrent Policy Gradients
	Introduction
	Recurrent Policy Gradients
	Reinforcement Learning -- Generalized Problem Statement
	The Policy Gradient Framework
	LSTM Recurrent Function Approximators
	Introducing the Recurrency in Recurrent Policy Gradients

	Experiments
	Continuous Control: (PO)MDP (Double) Pole Balancing
	Discrete Control: The Long Term Dependency T-Maze

	The TORCS Car Racing Simulator
	Discussion

	Soft Clustering for Nonparametric Probability Density Function Estimation
	Introduction
	The Smooth Parzen Windows Method
	Dynamic Parameter Selection
	The Explained Variance Method
	The Qualitative Parameter $gamma$
	Smooth Parzen Windows with Qualitative Parameters
	Summary

	Convergence Proof
	Experimental Results
	Experiment on 2D Artificial Data
	Density Estimation Experiment
	Classification Experiment

	Conclusions
	References

	Vector Field Approximation by Model Inclusive Learning of Neural Networks
	Introduction
	Problem Formulation of Vector Field Approximation
	Models of Neural Network and Its Adjoint
	Learning Method
	Derivation of $\partial O/\partial I$
	Derivation of the Gradients $\partial J/\partial w_{ij}$,$\partial J/\partial \alpha$ and $\partial J/\partial \beta$

	Numerical Experiments
	Example 1
	Example 2

	Conclusion

	Spectral Measures for Kernel Matrices Comparison
	Introduction
	Pencil Distance
	Kernel Matrix Pencils
	A Pencil Distance (PD) Measure for Matrices

	Kernel Alignment Is a Spectral Similarity
	Analysis of Kernel Redundances Based on Simultaneous Diagonalization
	Experiments
	Body Mass Index (BMI) Example
	Example 2

	Conclusions and Future Work

	A Novel and Efficient Method for Testing Non Linear Separability
	Introduction
	Preliminaries
	Definitions and Properties
	The Convex Hull Method for Testing Linear Separability

	Novel Efficient Method for Testing Non Linear Separability
	Experimental Setup
	Results and Conclusions

	A One-Step Unscented Particle Filter for Nonlinear Dynamical Systems
	Introduction
	The One-Step Unscented Filter
	Sequential Bayesian Estimation
	Unscented Kalman Filtering
	One-Step Measurement Update

	Unscented Particle Filtering
	Empirical Investigations
	Discussion and Conclusion

	Spike-Timing-Dependent Synaptic Plasticity to Learn Spatiotemporal Patterns in Recurrent Neural Networks
	Introduction
	The Spike-Timing-Dependent Synaptic Plasticity (STDP) and Spatiotemporal Learning of Poisson Patterns
	Analysis of Retrieval Process of Periodic Spatiotemporal Patterns in Analog Neural Networks
	The Optimal Shape of the STDP Time Window to Encode a Large Number of Spatiotemporal Patterns
	Stability of Retrieval State for Single-Pattern Learning (P=1) and for Multiple-Pattern Learning $(2leqP)$

	Analysis of Retrieval Process of Periodic Spatiotemporal Patterns in Spiking Neural Networks
	Discussion

	A Distributed Message Passing Algorithm for Sensor Localization
	Introduction
	A MRF Model for Sensor Localization
	Localization by Expectation Propagation
	Experimental Results
	Discussion

	An Analytical Model of Divisive Normalization in Disparity-Tuned Complex Cells
	Introduction to the Binocular Energy Model
	Probability Density Functions for Complex Cells
	Receptive Field Functions of the Position-Shift Type
	Random Dot Stereo Stimuli
	Probability Density Function for the Linear Stage
	Non-normalized Complex Cells
	Normalized Complex Cells

	Comparing Analytical Results with Simulations
	Discussion, Limitations of the Model

	Automatic Design of Modular Neural Networks Using Genetic Programming
	Introduction
	Related Works
	Proposed Method
	Function and Terminal Sets
	Fitness (Evaluation) Function

	Experimental Results
	Conclusion
	References

	Blind Matrix Decomposition Via Genetic Optimization of Sparseness and Nonnegativity Constraints
	Introduction
	Matrix Factorization and Blind Source Separation
	Sparse Nonnegative Blind Source Separation
	Non-negative Matrix Factorization
	Sparseness Measure

	Genetic Algorithm Based Optimization
	Fitness Function
	Genetic Operators
	Parallelization
	Algorithm Repetitions
	Application of sNMF to Microarray Data

	Meta Learning Intrusion Detection in Real Time Network
	Introduction
	Symmetrical Uncertainty of Network Features
	Meta Learning
	MultiBoosting
	Base Learners

	Experimental Results
	Conclusions
	References

	Active Learning to Support the Generation of Meta-examples
	Introduction
	Meta-learning
	Active Learning for Meta-example Generation
	Feature Extractor
	Meta-learner
	Active Learning

	Experiments and Results
	Conclusion

	Co-learning and the Development of Communication
	Introduction
	Related Work
	Methods
	Network Architecture
	Optimization Method
	Network Training

	Computer Simulations
	Test Scenarios
	Results

	Discussion

	Models of Orthogonal Type Complex-Valued Dynamic Associative Memories and Their Performance Comparison
	Introduction
	Complex-Valued Associative Memories of Orthogonal Type
	Models
	Memory Patterns

	Qualitative Analysis of Behavior Near Memory Patterns
	Linearized Models Near Memory Patterns
	Structure of Solution Orbits Near Memory Patterns
	Discussions

	Conclusions

	Dynamics of Discrete-Time Quaternionic Hopfield Neural Networks
	Introduction
	Quaternion Algebra
	Quaternionic Hopfield Neural Network
	Quaternionic Neuron Model
	Energy Function

	An Example: 3 Neurons Network
	In the Case of $f1$
	In the Case of $f2$

	Conclusion

	Neural Learning Algorithms Based on Mappings: The Case of the Unitary Group of Matrices
	Introduction
	Mappings-Based Learning Algorithms
	Mappings-Based Numerical Solution of Gradient-Based Learning Equations
	Learning Stepsize Adaptation for Additive Learning Criteria
	Plain Expressions

	Numerical Experiment
	Conclusion

	Optimal Learning Rates for Clifford Neurons
	Introduction
	Basics of Clifford Algebra
	Clifford Neurons and the Linear Associator
	Hessian Matrices of Clifford Neurons
	Simulations on Optimal Learning Rates
	Summary

	Solving Selected Classification Problems in Bioinformatics Using Multilayer Neural Network Based on Multi-Valued Neurons (MLMVN)
	Introduction
	Multi-Valued Neuron (MVN) and MVN-Based Multilayer Neural Network (MLMVN)
	Multi-Valued Neuron
	Multilayer Neural Network Based on Multi-Valued Neurons (MLMVN)

	Solving Some Classification Problems in Bioinformatics
	Conclusions
	References

	Error Reduction in Holographic Movies Using a Hybrid Learning Method in Coherent Neural Networks
	Introduction
	Coherent Neural Networks
	Fundamentals of Learning and Information Processing
	Hybrid Learning Method

	Computer Simulations
	Types of Error Identified
	Learning Results Obtained Using Method 1
	Learning Results Obtained Using Method 2
	Learning Results Obtained Using the HLM
	Calculation Cost to Generate Movies

	Summary

	Sparse and Transformation-Invariant Hierarchical NMF
	Introduction
	Hierarchical Extension to the Sparse, Transformation-Invariant NMF Framework
	Sparse and Transformation-Invariant NMF
	Sparse and Transformation-Invariant Hierarchical NMF
	Possible Update Schemes

	Results
	Conclusion

	Zero-Lag Long Range Synchronization of Neurons Is Enhanced by Dynamical Relaying
	Introduction
	Methods
	Mathematical Model
	Geometry
	Numerical Integration
	Data Analysis

	Results
	Discussion

	Polynomial Cellular Neural Networks for Implementing the Game of Life
	Introduction
	Polynomial Cellular Neural Networks
	A Brief Introduction to Cellular Neural Networks
	The Polynomial Model and Its Advantages

	The Game of Life
	The Rules
	A Visual Representation for the Rules of Semitotalistic CA
	Alternative Set of Rules for the GoL

	Design Algorithm for the Polynomial CNN
	Remarks on the Polynomial CNN
	Dynamic Behavior

	Conclusions

	Deterministic Nonlinear Spike Train Filtered by Spiking Neuron Model
	Introduction
	Spiking Neuron Model
	Input Spike Train
	Filtering and Reconstruction of Spike Train
	Differential Effect of Neuronal Type Dynamics
	Discussion

	The Role of Internal Oscillators for the One-Shot Learning of Complex Temporal Sequences
	Introduction
	A Model for Timing and Sequence Learning
	Generating Internal Diversity
	Learning of Internal States
	Temporal Sequences Learning

	Simulation Results
	Robotic Application
	Conclusions and Discussions

	Clustering Limit Cycle Oscillators by Spectral Analysis of the Synchronisation Matrix with an Additional Phase Sensitive Rotation
	Introduction
	Background
	Spectral Analysis of the Synchronisation Matrix
	Phase Oscillator View on the Synchronisation Matrix

	Rotating the Eigenvectors with a Phase Constrain
	Flow on the Stiefel Manifold

	Concluding Remarks

	Control and Synchronization of Chaotic Neurons Under Threshold Activated Coupling
	Introduction
	Chaotic Neuron Model
	Threshold Mechanism
	Relaxation Timescale

	Thresholding at Varying Interval
	Conclusion

	Neuronal Multistability Induced by Delay
	Introduction
	Model
	Results
	Summary and Conclusions

	Author Index

