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Preface

This book includes the proceedings of the International Conference on Artificial
Neural Networks (ICANN 2007) held during September 9-13, 2007 in Porto, Por-
tugal, with tutorials being presented on September 9, the main conference taking
place during September 10-12 and accompanying workshops held on September
13, 2007. The ICANN conference is organized annually by the European Neural
Network Society in co-operation with the International Neural Network Society,
the Japanese Neural Network Society, and the IEEE Computational Intelligence
Society. It is the premier European event covering all topics related to neural
networks and cognitive systems. The ICANN series of conferences was initiated
in 1991 and soon became the major European gathering for experts in these
fields. In 2007 the ICANN conference was organized by the Biomedical Engi-
neering Institute (INEB - Instituto de Engenharia Biomédica), Porto, Portugal,
with the collaboration of the University of Beira Interior (UBI - Universidade
da Beira Interior), Covilha, Portugal and ISEP, Polytechnic Engineering School,
Porto, Portugal. From 376 papers submitted to the conference, 197 papers were
selected for publication and presentation, following a blind peer-review process
involving the Program Chairs and International Program Committee; 27 papers
were presented in oral special sessions; 123 papers were presented in oral reg-
ular sessions; 47 papers were presented in poster sessions. The quality of the
papers received was very high; as a consequence, it was not possible to accept
and include in the conference program many papers of good quality. A variety
of topics constituted the focus of paper submissions. In regular sessions, pa-
pers addressed the following topics: computational neuroscience and neurocog-
nitive studies, applications in biomedicine and bioinformatics, spiking neural
networks, data clustering, signal and times series processing, learning theory,
advances in neural network learning methods, advances in neural network archi-
tectures, data analysis, neural dynamics and complex systems, ensemble learn-
ing, self-organization, robotics and control, pattern recognition, text mining and
Internet applications, vision and image processing. Special sessions, organized
by distinguished researchers, focused on significant aspects of current research,
namely: emotion and attention, understanding and creating cognitive systems,
temporal synchronization and nonlinear dynamics in neural networks, complex-
valued neural networks. Papers presented in poster sessions were organized in
the following topics: real-world applications, signal and time series processing,
advances in neural network architectures, advances in neural network training,
meta learning, independent component analysis, graphs, evolutionary comput-
ing, estimation, spatial and spatio-temporal learning. Prominent lecturers gave
six keynote speeches at the conference. Moreover, well-known researchers pre-
sented seven tutorials on state-of-the-art topics. Four post-conference workshops,
entitled “Cognitive Systems”, “Neural Networks in Biomedical Engineering and



VI Preface

Bioinformatics”, “What It Means to Communicate” and “Neural Networks of the
Future?”, concluded the focus of ICANN 2007 on the state-of-the-art research
on neural networks and intelligent technologies. An in-depth discussion was held
on the prospects and future developments both in theory and practice in those
important topics. We would like to thank all the members of the local committee
for their contribution to the organization of ICANN 2007. A special thanks to
Alexandra Oliveira whose dedication and work quality were a major guarantee
of the success of ICANN 2007. We also wish to thank Alfred Hofmann and the
LNCS team from Springer for their help and collaboration in the publication of
the ICANN 2007 proceedings.

July 2007 Joaquim Marques de S&
Luis A. Alexandre
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Abstract. The automatic relevance determination (ARD) shows good perfor-
mance in many applications. Recently, it has been applied to brain current es-
timation with the variational method. Although people who use the ARD tend
to pay attention to one benefit of the ARD, sparsity, we, in this paper, focus on
another benefit, generalization. In this paper, we clarify the generalization error
of the ARD in the case that a class of prior distributions is used, and show that
good generalization is caused by singularities of the ARD. Sparsity is not ob-
served in that case, however, the mechanism that the singularities provide good
generalization implies the mechanism that they also provide sparsity.

1 Introduction

The automatic relevance determination (ARD) [1L2]], an empirical Bayes (EB) or hier-
archical Bayes (HB) approach providing a sparse solution, is known to be useful when
we have to estimate a lot of parameters of which the majority are expected to be zero.
Recently, with the variational Bayes (VB) approach [3L4], the ARD has been applied
to ill-posed brain current estimation from magnetoencephalography (MEG) data, and
shown good performance in a real data experiment, as well as in a computer simula-
tion [3[6]]. Although there are variations of EB approach, it has been shown that many
of them can be described as a unified framework [7]. So, we focus on a similar ap-
proach to the one proposed in [3]. Both the ARD and the maximum a posteriori (MAP)
estimation avoid ill-posedness by incorporating prior knowledge. However, benefits of
the ARD are experimentally observed, one of which is that the ARD provides a sparse
solution. Although less people might pay attention to that, there is another benefit of the
ARD, generalization ability. In this paper, we focus on generalization, and show that the
benefit is caused by singularities. In addition, consideration of the mechanism that the
singularities provide good generalization implies the mechanism that they also provide
sparsity, which we also discuss in this paper.

It is known that, in general, the Bayesian methods in singular models provide bet-
ter generalization performance than the MAP estimation [8]], which is asymptotically
equivalent to the maximum likelihood (ML) estimation, and that, in some cases, the
effect of singularities is observed as the James-Stein (JS) type shrinkage [9]. The JS
estimator was proposed as an estimator dominating the ML estimator [[10], and it has

J. Marques de Sé et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 1-[10]2007.
(© Springer-Verlag Berlin Heidelberg 2007



2 S. Nakajima and S. Watanabe

been shown that the JS estimator can be derived as an EB estimator [[11]]. Moreover, its
asymptotic relation to the ARD with the variational method has been shown .

In this paper, focusing on the case that we use a class of prior distributions, we clarify
the asymptotic generalization error of the ARD. Then, we clarify the nonasymptotic
generalization error in a special case, to show the contribution of prior knowledge when
the number of samples is small. We also discuss the mechanism that causes sparsity, the
other benefit of the ARD. In Section2] we describe the model analyzed in this paper, and
its VB solution. Then, we analyze its asymptotic generalization error in Section[3 and
the nonasymptotic one in Section @l Discussion including the consideration of sparsity
follows in Section[3l Finally, we conclude this paper in Section [6]

2 Automatic Relevance Determination

In brain current estimation, we consider time series data such as

Y =VA +§&, (1)
where Y € RE*U is an output matrix observed, V € REX*M is a constant matrix, called
the lead field matrix, A’ € RM*U jga parameter matrix to be estimated, and £ € RLxU
is an observation noise. L, M, and U denote the output dimensionality, the parameter
dimensionality, and the length of time series, respectively, and their smaller letters are
used as the corresponding indices. In addition, L corresponds to the number of sensors,
M to the number of the sites where the current is to be estimated, in brain current
estimation. Note that U does not mean the length of the whole time series data but
the minimum length of the data used for estimation at one time, as described later. We
denote the column and row vectors by smaller letters, for example, Y = (y1,...,y0) =
(U1, ---,95)", where y,, € R” is the output vector at the time u, and §j; € RY is the time
series vector of the [-th output Here ¢ denotes the transpose of a matrix. By Ny(u, X))
we denote the d-dimensional normal distribution with average y and covariance matrix
X, and by NVy(+; 1, X) its probability density. We assume throughout this paper that all
the elements of £ are subject to N7 (0, 05), where 0 < 05 < oo is known. We say that
a problem is ill-posed when the rank of V' is smaller than the parameter dimensionality,
M, so that we cannot determine the unique parameter value without prior knowledge.
We assume that L < M, so our problem is obviously ill-posed.

In this paper, we consider the following singular modelf]

P(Y]A,b) = TTu_y Ni(yu; V(b * ay), 0211), )
$(A) = [T0_, Nar(au; 0, Inr), ¢(b) = Nag (b 0, (diag(c))?), 3)

where ¢(-) denotes a prior distribution, A € RM™>*U and b € RM are the parameters,
and ¢ € RM is a constant vector, of which each element, ¢,,, > 0, corresponds to the

! A vector with a tilde denotes a time series vector throughout this paper.
% This model is not singular from the viewpoint of the ML estimation, while it has singularities
from the viewpoint of the Bayesian learning [9].
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prior deviation of b,,,. Here, by I; we denote the d X d identity matrix, by * the compo-
nentwise product of matrices, for example, (A * B),y = ApuBmu, and by diag(-) the
diagonal matrix consisting of the elements of a vector, for example, (diag(¢))mm = Cm.-
By the transform B * A — A’, where RM*V 5 B = (b,...,b), we find that the sin-
gular model above is equivalent to the following automatic relevance determination
(ARD) [112] of the original linear model, Eq.(T):

p(Y|A") =TI Np(yu; Val, 0211), (4)
G(A") =TI, Mar(al; 0, (diag(h)?), ¢(b) = TIM_, I(b2,/c2,51/2,2),  (5)

where we denote by I'(k, v) the Gamma distribution with shape parameter « and scale
parameter v, and by I'(; k, v) its probability density. Therefore, we call the singular
model, Egs.(@) and (@), the ARD model, where the parameter, A’, of the original ARD
model, Eqs.(@) and @), corresponds to the componentwise product of the parameters,
B« A. In addition, note that the deviation of A’ , which corresponds to b,,, is assumed
to be constant foru = 1, ..., U, as proposed in [ISI]E This assumption essentially affects
generalization performance, as shown in the following sections. Hereafter, we assume
that we have adopted a coordinate system such that V' is general diagonal. This assump-
tion is equivalent to the one that we use a prior distribution such that the components
along the right singular vectors of V' are independent of each other. However, note that
this assumption breaks sparsity, another benefit of the ARD, which will be discussed in
Section

The variational Bayes (VB) approach provides a tractable posterior distribution, de-
noted by 7(A4, b), that approximates the intractable Bayes posterior distribution, by re-
stricting the set of possible posterior distributions [3|4]]. We apply it to the ARD, Eqs.(2)
and (@), as in [3]], restricting the posterior distribution such that A and b are indepen-
dent of each other, i.e., r(A,b) = r(A)r(b). We suppose that we have n sets of out-
put samples observed, i.e., Y = {Y();i = 1,... n}, whose average is denoted by
Y=n"13" YO =(g1,...,90) = (§1,---,9r)" In a similar fashion to the case,
analyzed in [12]], that V' is not assumed to be general diagonal and the posterior distri-
bution is restricted such that all the elements of A and b are independent of each other,
we obtain the following theorem, whose proof is omitted:

Theorem 1. When V' is general diagonal, the VB posterior distribution is given by
(A BY™) = [T, (/\/U(am;ém,a—gme) - N (b ém,a—gm)) : 6)

where the m-th element time series vector of the componentwise product of the means,
that is, the VB estimator of @, in the original linear model, Eq.[), is

5oz 0 if U = 0
G = b = {S<ym/||vm||;ozU/||vm||2> + 0, ifvm 207 7D
Here, S(Z; ) = 0(n||2]2>x) (1—x/nl|Z]]?) 2 ®)

3In [3]], the hyperprior of the inverse variance, b;f, is assumed to be subject to I'(k, v), which
satisfies the condition for obtaining a stable iterative algorithm in the framework of the VB
approach [13]]. We conjecture that this difference between the prior distributions less affects
generalization, which will be discussed in Section 5.1
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is the positive-part James-Stein type shrinkage (PJS) operator with the degree of shrink-
age x > 0, where 0(-) denotes the indicator function of an event.

In the following sections, we compare the generalization error of the ARD with that of
the MAP estimator, given by

aMAP — (Vi ¢ cr‘,i.fj\/[/nc?n)*lVtgju7 9)

where the prior deviation of the parameter, b in Eq.(3), is assumed to be equal to c, and
not estimated from observation.

3 Asymptotic Generalization Error

Although the purpose of an inverse problem is not prediction of a future output but
estimation of the parameter itself, it is difficult to compare learning methods fairly in the
parameter domain, since performance is strongly affected by prior knowledge. So, some
criteria, for example, the goodness-of-fit (GOF) value and 2 value [[14]], are used in the
field of brain activity estimation for evaluation of the adequacy of models and learning
methods. They evaluate the difference between the observed output and the predictive
output, like the training error in the terms of machine learning. Since we would like to
count the effect of overfitting, we analyze the generalization error, which evaluates the
difference between the true output and the predictive output. The generalization error is
defined as the average Kullback-Leibler (KL) divergence between the true distribution,
q(Y'), and the VB predictive distribution, p(Y'[Y™) = (p(Y'|A, b)) 74,6y ):

G(n, A™) <fq Jlog 400 dY> . (10)
q(Y™)
Here, (-), denotes the expectation value over a distribution p, (-),y~) the expectation
value over all sets of n samples, f dY the integral over all the elements of Y, and
A = B* % A* the true original parameter matrix.
Let M* be the true number of nonzero row vectors of A™, namely, (M — M™*)
vectors satisfy a’* = 0. We, in advance, eliminate the components such that v,,, = 0,
since they never affect learning. Then, we obtain the following theorem:

Theorem 2. WhenV is general diagonal, the generalization error of the ARD, Eqgs.(@)
and @), is asymptotically expanded as

2G(n, A™) = 2xn""' + O(n=%/?),

where2\ = UM* + U(M — M*) Ff“m‘(g{" jl}j;;’f/ 2 (11)
Here, Ijne(h,x) = [ s"~te=*ds, and Ijunc(h) = Tjunc(h, 0) (12)

are the upper incomplete Gamma function and the complete one, respectively. We call
A the generalization coefficient.

(Outline of the proof) Considering the extent of the VB posterior distribution, Eq.(6),
like in [9], we can find that the predictive distribution of the ARD is asymptotically
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Fig. 1. Asymptotic generalization error when M = 100, U = 1,10, 100

equivalent to the model at the VB estimator. So, we just need to evaluate the squared
risk normalized by the noise variance, 05:

2G(n, A™) = o 2 (r((A' = A*)VIV(A = A™))) gy + O(n™%2),  (13)

where tr(-) denotes the trace of a matrix. For the M * nonzero elements, the generaliza-
tion error is equal to U M *, since those true values are on regular points. For the other
(M — M*) irrelevant elements, we have

2Gin(n, A™) = (M = M) = U)*/3IIP)g@yn ™" +Om~32),  (14)

where g is a U-dimensional random vector subject to Ny (0, Irr), over which (-)(5)
denotes the expectation. Using the polar coordinate representation and calculating the
expectation in Eq.(I4), we have

_ ) 4L hune (U +2)/2,U/2) =AU Itune (U /2,U/2)+ U Tine (U ~2) /2,U/2)
20 = (M — M*)™'" ;me(Um) !

_ o\ Thne (U—2)/2,U/2)
= UM — M)

Thus, we obtain Theorem 2] (QEE.D)

Figure [[l shows the generalization coefficient normalized by the parameter dimension-
ality, 2\ /U M, in the case that M = 100 and U = 1, 10, 100. Note that the normalized
generalization coefficient is always equal to unity in the MAP estimation, Eq.(9), which
is asymptotically equivalent to the ML estimator. The horizontal axis indicates M *. We
see in Fig[T] that the ARD provides much better generalization performance when the
model has a lot of irrelevant components. Another important fact is that the larger U is,
the better generalization is. From the viewpoint of statistical physics, the increase of U
leads to the increase of the state density of singularities, which enhances suppression
of overfitting. However, note that setting too large value to U may result in large M *,
since the (M — M*) irrelevant elements are defined as the ones that never have positive
true value during U.
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4 Nonasymptotic Generalization Error When U = 1

One purpose of brain current estimation is to investigate the brain activity of human or
other beings [6]. In that purpose, we can obtain a number of samples. However, in an-
other purpose such as brain computer interface (BCI) [13], where the estimation result
is used as an input signal to control some device in realtime, the number of samples is
only one. Therefore, nonasymptotic analysis is also important. If we focus on the case
that U = 1, we can obtain the nonasymptotic solution, again in a similar fashion to the

analysis in [12]:

Theorem 3. When V' is general diagonal and U = 1, the VB estimator of the m-th
element is given by

/ 0 if v =0
al =< | _ , (15)
sign(ym) - 0% (0, 1S @/ omll; 2/ [0l = e 2 12) om0

where sign(-) denotes the sign of a scalarfl

When the number of samples, n, is small, the predictive distribution is not well ap-
proximated by the normal distribution, and difficult to be calculated. Since our purpose
is not to know the rigorous generalization error of the predictive distribution but to
evaluate the accuracy of the estimated parameter, we analyze a plug-in generalization
error, which we define as the KL divergence between the true distribution, ¢(Y"), and
the model at the VB estimator, p(Y |4, b):

,* )
G'(n, A <fq )log YlAb)dy>q(m. (16)

We obtain the following theorem:

Theorem 4. When V' is general diagonal and U = 1, the plug-in generalization error
of the ARD is given by

2" (n, A™*) = M (@ (9) — aiz<0>>2>q(g>, (17)
where a'<°><g>=sign<a 5 4 g) max (0 1S(ax® + g;1)| — Wﬁmu)’

= Vnag [vml|/oy,

and g is a random variable subject to N1(0,12).

(Proof) Substituting d;ﬁo)( ) = V/nal,||vm||/oy in the first term of Eq.(I3), which is
equal to the plug-in generalization error, immediately completes the theorem. (Q.E.D.)

The expectation in Eq.(I7) can, relatively easily, be calculated, by creating random vari-
ables subject to N1 (0, 12). Figure 2l shows the normalized plug-in generalization error,
2G' /UM, in the case that M = 5,n = 1,07 = 1%, and [|v,,|| = 1, ¢y = 10 for Vm.
The dashed line (M** = 2) corresponds to the case that the true original parameter

#In this section, the dimensionality of a time series vector is one, so we abbreviate filde.
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Fig. 2. Nonasymptotic plug-in generalization error when M =5 U =1, M** = 2,4

is equal to a™* = (10,10, a'*,0,0)%, and the dotted line (M** = 4) to the case that
a’™* = (10,10, 10,10, a'*)t, where o/* is indicated by the horizontal axisf We see in
Fig. [2l that the generalization performance of the ARD is much better than the MAP
estimation when a lot of irrelevant components exist, however, worse when few irrele-
vant component exists. This is because suppression of overfitting, naturally, accompa-
nies insensitivity to true components with small amplitudes. However, we conjecture
in Section [5.1] that the ARD provides no worse generalization error than the MAP es-
timation when we use a very vague prior and U > 4. In addition, since we assume a
relatively vague prior in Fig. 2] the generalization error when o/* = 0 as well as when
a’* = 10 is well approximated by the asymptotic result given by Theorem 2] for ex-
ample, the result when a’* = (10, 10,0, 0, 0)* is approximated by the asymptotic result
2G' /UM = 0.60 when M* = 2, and the result when a’* = (10,10, 10,0,0)? by the
asymptotic result 2G’ /UM = 0.73 when M* = 3.

5 Discussion

5.1 Generalization

We have shown that the ARD has the benefit of generalization performance. The sup-
pression of overfitting of the MAP estimation disappears in the asymptotic limit, while
that of the ARD remains. We can say that this benefit is caused by its singularities, be-
cause the asymptotic generalization performance of the Bayesian methods differs from
that of the ML estimation only in singular models. By using the algebraic geometrical
method [8], the asymptotic generalization error of the rigorous Bayes estimation, to
which Bayesian methods are to approximate, has been analyzed in a similar model to
the ARD [16]]. Considering the result of [16], we can say that, in the ARD, the general-
ization property of the Bayes estimation is similar to that of the VB approach, clarified
in this paper. In general, it has been proved that the asymptotic generalization error
of the Bayes estimation is no greater than that of the ML estimation if we use a prior

> By M** we denote the number of true components large enough.
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distribution having positive values on the singularities, while no smaller if we use the
Jeffreys® prior [17], which has zero values on the singularities, and sufficiently small
values on their neighborhoods so that the state density of the singularities is compa-
rable to the other points. In fact, if we use a prior distribution such that the inverse
variance, b2, of @', is subject to I'(k, V), as in [51[6], the prior probabilities on a part
of the singularities, { (@, b ); by = 0}, is zero, so, it seems possible that the property
that we have clarified in this paper differs from that of the method in [3[6]. However,
we conjecture that, when U > 2, the properties would be similar to each other, since
the other part of the singularities, {(@n,, b ); @m = 0}, has a larger state density, and
therefore, dominates its performance when the dimensionality of a,, is larger than that
of b,,. (See [9].)

We discussed in Section@lthat the ARD does not always provide better generalization
performance than the MAP estimation, since suppression of overfitting accompanies
insensitivity to true components with small amplitudes. However, we conjecture that,
when U > 4 and we use a very vague prior, the ARD could dominate the MAP estima-
tion. That is for the following reasons: that Theorem[3lsays that, even in nonasymptotic
cases, the ARD estimator converges to the PJS estimator when U = 1 and ¢, for Vim
goes to infinity; and that the PJS estimator was proved to dominate the ML estimator
when 0 < y < 2(U — 2) [18]], where  is the degree of shrinkage, introduced in Eq.(8).
Although the asymptotic terms when U > 2 have, unfortunately, not been derived yet,
we expect that they would converge to zero when ¢,,, goes to infinity, as in the case that
U = 1. Deriving the terms or their bounds and proving the domination of the ARD over
the MAP estimation is future work.

5.2 Sparsity

Comparing with the minimum norm maximum likelihood (MNML) estimator,

d/MNML — (Vtv)—vt 7“" (18)

u

where ()~ denotes the Moore-Penrose generalized inverse of a matrix, we can find that
the term caused by [ 2_norm penalty of the MAP estimator, Eq.(9), is linear to the ob-
served output, 7,,. On the other hand, Theorems[Iland [3say that both of the asymptotic
and the nonasymptotic shrinkage factors of the ARD, i.e., the factor included in the PJS
operator, Eq.(8), which depends on y, and the factor proportional to c;,,* in Eq.(T3), are
less increasing of ¥,,. Assuming for simplicity that U = 1, we can say in general that

Proposition 1. An estimator, 0 € RM, is more sparse than ', if each element of 1 is
written as

where f(|wy,|) is a nonincreasing, nonconstant, and bounded function of |wy,| such
that 0 < f(|lwn,]) < 1.

Let v’ = a™NML, Then, the MAP estimator, Eq.(), is one such that f(|w,,|) is con-
stant, and therefore, each component, a/™AP, uniformly shrinks, while the ARD estima-

tor is sparse.
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However, we should remember that we have adopted the coordinate system such
that V' is general diagonal. Therefore, the sparsity above is observed on that coordinate
system, and the sparsity on the original coordinate system, which we prefer, is not
necessarily observed, if we use a prior distribution such that the components along the
right singular vectors of V' are independent of each other. On the other hand, when we
apply the ARD, we usually use a prior distribution such that the components on the
original coordinate system are independent of each other, which is conjectured to lead
to sparsity on the original coordinate system. Further analysis is future work.

According to the discussion above, the following PJS estimator based on the MNML
estimator, proposed in [12], is expected to provide a more sparse solution than the ARD:

a’s = S(ap™MY 62U/ |lu)1?), (19)

where we adopt the original coordinate system. Its application to real problems is future
work.

5.3 Properties of Variational Bayes Approach

Properties of the VB approach, proposed in [34]], has recently been clarified. For exam-
ple, properties on convergence have been clarified [19], bounds of the VB free energy
in singular models have been derived [20]]. Moreover, solutions in bilinear models have
been obtained in closed forms [21,22[12]]. The last example means that, in such models,
we do not need iterative calculation like expectation-maximization (EM) algorithm. The
generalization error has also been clarified in bilinear models, and it has been shown
that the VB approach has both of an ML like aspect and a Bayesian aspect [9].

6 Conclusions

In this paper, we have clarified the asymptotic generalization error of the automatic
relevance determination (ARD) in the case that we use a class of prior distributions, and
the nonasymptotic one in a more special case. Thus, we have concluded that one benefit
of the ARD, generalization, is caused by its singularities, and that the larger the time
duration that the hyperparameter is assumed to be constant is, the stronger suppression
of overfitting is. We have also discussed another benefit of the ARD, sparsity, but further
analysis is needed, which is our future work.
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Abstract. A lot of learning machines which have the hidden variables
or the hierarchical structures are the singular statistical models. They
have a different learning performance from the regular statistical models.
In this paper, we show that the learning coefficient is easily computed
by weighted blow up, in contrast, and that there is the case that the
learning coefficient cannot be correctly computed by blowing up at the
origin O only.

1 Introduction

Learning machines which have its singular Fisher information matrix is called
the singular models. For example, layered neural networks, normal mixtures,
hidden Markov models, Boltzmann machines and Bayes networks are the singular
statistical models. These learning machines are not subject to the conventional
statistical theory of the regular statistical models. Recently, the generalization
performance of a singular learning machine in Bayes estimation determined by
the algebraic geometrical structure of the learning machine was proved [7]. The
generalization error

GX™ = /q(x)logp(;(x))(n)dx

is equal to

where n is the number of training samples and A is the learning coefficient. We
are able to express G(n) with a stochastic complexity F'(n) as follows:

G(n)=F(n+1) - F(n),

where F'(n) = Mogn — (m — 1)loglogn + o(1). The constants (—\A) and m are the
values which depend on the complex function of one variable

J. Marques de S& et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 11-{I8] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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() = / H(w) plw)dw,

where H(w) = [ q(x)logp?iﬁ) dx is the Kullback information, ¢(z) is a true dis-
tribution and p(z | w) is a learning machine. The learning coefficients of some
learning machine, for example a three-layer perceptron and a reduced rank re-
gression have been obtained by using blow-up process [2] and [3]. When the
origin O is a singular point, we blow up at the origin O. Then it can happen
that the singular points appear at the origin O and another point (not origin).
Therefore, there is the case where the learning coefficient A cannot be decided
only doing the blow-up at O. In this paper, we introduce the calculation method
of the learning coefficients using the weighted blowup and construct the example
that the learning coefficient cannot calculate by only doing blow-up at O. The
weighted blowup is method to get resolution of singularities using weight of poly-
nomials or analytic functions ,and by this method, we can easily get resolution
of singularities.

2 Bayes Learning and Asymptotic Theory

In this section, we summarize the well known statistical framework of Bayes
estimation.

Let X™ = (X1, Xo, ..., X,;) be training samples which are independently taken
from the probability distribution g(x). ¢(x) is called true distribution and defined
on the N-dimensional Euclidean space RY. The integer n is referred to as the
number of training samples. A learning machine is represented by a conditional
probability density function p(z|w) where w is a d-dimensional parameter. Let
»(w) be a priori distribution. Then the Bayes a posteriori distribution is defined
by

n

1
X") = X’L )
POIX") = 5 ayetw) [Tl
where Z(X™) is the normalizing constant. The Bayes predictive distribution is
also defined by
p(alX") = [ plalw) p(wlX") du,
which is the estimated probability density function on RY by Bayes learning.
The Generalization error G(n) is defined by

G(n) = E[/ q(z)log p(i}?")dﬂ’

where E[-] denotes the expectation value overall sets of X™. Also we define the
stochastic complexity by

F(n) = E[— log Z(X")} + n/q(m) log q(x)dzx.
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Relation between generalization error and stochastic complexity is as follows;
G(n)=F(n+1)— F(n)

The stochastic complexity indicates how appropriate the set of p(x|w) and ¢(w)
are for a given training sample a set of X™. In the learning theory, it is important
to clarify the asymptotic behaviors of G(n) and F'(n). The following theorem
shows the relation between algebraic geometry of the Kullback information and
the singular learning machines.

Theorem 1. When n tends to infinity, the generalization error and the stochas-
tic complezity are respectively given by

Gy =" +ol}),

F(n) = Mogn — (m — 1)loglogn + O(1),

where (—A) and m are each equal to the largest pole and its order of the zeta
function,

) = [ Hw) plw) du.
Here H(w) is the Kullback information

H(w) :/q(ac) log pqaile dz.

Proof. The proof is given in [1].

3 Preliminary Results and Facts

First, we review the definition of analytic equivalence of Kullback information.
Let U and V be open sets in R? whose closures are compact. Let K (w) and
H(w) be analytic functions on U and V, respectively.

Definition 1. Two real analytic functions K(w) on U and H(w) on V are
analytically equivalent if a bijective analytic map g : V — U exists

H(w)=K(g(w)) weV
and the Jacobian |g'(w)| satisfies € < |¢'(w)] < C in V for some ¢,C > 0.

Theorem1 shows that the learning coeflicient is determined by the Kullback infor-
mation and the a priori distribution. From the definition of analytic equivalence,
the following theorem holds.

Theorem 2. If K(w) and H(w) are analytically equivalent, then two zeta func-
tions

Q@ZLKMWM
G = [ Hw)du

have the same largest pole.
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Proof. The proof of this theorem is to see [6].

Note that two zeta functions do not have the same second largest pole in general.
Now, we will explain the concept of weighted resolution of singularities of Kull-
back information.

Let v = (v1,...,v,) be a set of non-negative integers. For a monomial z* =
xyt - xln we define the weighted degree ord,, (z*) with the weight v as

ordy (z") =< v,u >=viug + ... + Vply.

A polynomial is said to be quasi-homogeneous if it is a linear combination of the
monomials which have the same weighted degree with some weight. An analytic
function f is said to have an algebraic isolated singularity at O, if the dimension
of a real vector space

af af
< ox1’ Oz,

is finite. The following theorem shows a sufficient condition of the analytic equiv-
alence.

M(f) = R[[z1,-- -, zn]l/ >

Theorem 3. Let f be an analytic function

f=fa+ far1+ far2a+--, fa#0

where fq 1s a quasi-homegeneous polynomial of degree q with weight v. If the
weighted degree of x*i exceeds d and c1,...,cs are constants, then f and fq +
c1x™ 4 -+ csx™s are analytically equivalent.

Proof. For the proof of this theorem, see [I].

Finaly, we will explain the concept of weighted blow up. The definitiion of a toric
variety is to see [B].

We fix the lattice N = Z™, A = {the first quadrant o of R™ and its all faces }.
Then we have Ty (A) = R"™, where T (4) is a toric variety associated with a fan
Ain Ngp = N ®z R. Let A(w) be a decomposition of A for w = (wy,---,wy,) €
o N N. We assume A(w) is a fan consisting of all faces of

o] = R2061 + -+ Rzoeifl + Rzo’w + R206i+1 + -4 Rzoen.
Then the corresponding morphism
¢ : Tn(A(w)) — Tn(4)

is called a weighted blowup by weight w. Specifically we can calculate as follows.
Let 21, -+, 2z, be eigen coordinates in R", for Z,,(cyclic group). The weighted
blow up of X C R" with weights a1, -+, a, is a projective birational morphism
m:Y — X such that Y is covered by open sets Uy, - - -, U,, where

Ui = Rzlv...ﬂn/zai(_alv RN L2 _an)'

The coordinates in X and in U; are related by

) a;
aq J

mzzyzma‘f]:yjyzmvj#l
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4 Learning Coefficients by Weighted Resolution of
Singularities

In this section, we introduce the calculation method of learning coefficients using
weighted blowup. First, we prove the following theorem.

4.1 Main Theorem

Theorem 4. Let H be an analytic function satisfying the following condition:

(1) H=Hy+ Hg41 + -,

(2) Ha = a5 -2 (@ + -+ an),

(8) Hy is a weighted homogeneous polynomial of weighted degree d with weight
v= (pla e 7pn);

(4) Hy has an algebraic isolated singularity at O,

(5) Hq is non-degenerate.

We consider the following zeta function

«az/Hmwamm,

where x = (x1,- -+, ). Then there exists some a;, (1 <i<n) and
_ P11+ +pn
A= max{ (p1a1+---+pnan+pimi)a}
m=1

Proof. Let H/, be a weighted homogeneous polynomial of weight d. Then we can
write H as follow:

H=afai(9(z) + Hyyy + ),
and there exists the weighted homogeneous polynomial ¢g(z) which satisfies
g(x) ~ Hy+ Hipy + -+,

where g(x) = =" +- -+ ' If two analytic functions are analytically equiva-
lent, then they have the same largest poles. Therefore, we consider the following
zeta function (4 (z) to calculate the largest pole and its order of ((z),

G(z) = {(ay - aym)g(2)}* p(z)d.
From the definition of weighted blowup, we get

prai+--+pnantp;m;

@ =3 [t on T a

(@ 4+ a2} | i | pi(@)da,
where ), y
Ui={(z1, - on); | @ [<[ 2t o [< 2zt |}
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P1+-FPi—1+Pip1+ o +Pn
| Ji |= =, "

Since
P1 P2 Pn

oi(z) = pi(z1zlt  moxlt o wpxlt) = (0, -+, 0)
1
+219iz, (0, +,0) + ppig, (0,--+,0) + N {22 i1, (0,-++,0)

ot xiwiﬂlnwn(ov ) 0) + 1‘1%290“;1302(0, to 70) st
+Inm1¢ixn$1 (O’ e 70)}a

we have the following regular function

©;(0,-++,0)
Gle) = g L
Z+ a(prai+-+pnan+pim;)
p1t+- i1 +3pi FPigr o P
a(piay + -+ ppa, + pim;)

. p1t-+pn
{ )\ = mafff{ (pln.l—‘r""‘rpnan""pimi)a} }

m=1.

(Re(z) > — ).

Hence we obtain

For instance, let H; = 22 + 2zy? = z(x + 2y?), then p; = 2, po = 1, a1 = 1,
az =0, mp =1 and my = 2. Hence we get A\ = Z. However, we cannot apply this
theorem to the following case. Let Hy = 22 +2zy% +y* (degenerate polynomial),
then A\ = 1.

Next, let us study the following analytic function;

H(z,y) = 2% + Zoprpi<pg®™y' + 4.

Then since H ~aP + y9, we cannot apply the above theorem. The maps of blow
up and weighted blow up are birational maps. Therefore composite mapping is
also birational. Using this fact, we get the following theorem.

Theorem 5. Let H be an analytic function on the 2-dimensional space which
satisfying
H=a?+ Z amxtyt + 49,
qk+pl<pq

and a = K + L be the minimum degree of aklxkyl = aKLxKyL. We assume K
and L are the value of minimun k and | which satisfy ar; # 0 ,respectively. Then
the pole X' that is the nearest to the origin calculated by resolution of singularity
at O is as follows.

pL " K+4+L’ Kq

N = mam{p_K+L 2 q_L+K}
{m =1
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Proof. 1t is easy to show that the condition satisfying

P +yl b aP 4 Z amatyt + 41
qk+pl<pq

is L < q. Let Y C R? be the curve H = 0. Y is singular at the origin O. We will
blow up Y at the origin. Substitute © = x,y = xy on Y11(Y = Y1; UY1s)

Hip = o+ (gp=(K+D) Zakl$k+l—(K+L)yl n xq—(K+L)yq) onYi;.
Similarly, substitute = xy,y = y on Y1
Hyy = yK-i-L(xpyp—(K-‘rL) T Zakzxkyk+l_(K+L) T yq—(K+L)).

Then, clearly we have

K+L(1.p—(K+L)

Hyy~x +axry"),

Hyp ~ yK+L(aKLxK + yqf(K+L))_

Therefore, we should consider the following zeta function.

G(z) = / mKJrL(mp*(KJFL) + aKLyL)mgo(ac,xy)dxdy+
Y11

/ Y (ag o™ 4+ yPmETD )y (ay, y)dady,
Yia

where
Yi = {(z,y) €Y;|z <[y},

Yig ={(z,y) e Y|y [<| = [}.

From the previous theorem, we get

_ p—K+L 2 q—L+K
{)\—maax{ oL KALo o Kq }

m=1

It’s not always true that A’ is the learning coefficient (i.e. A # X).

4.2 Example

(1)Let H = 2° 4+ y* + Zopysicioama®y!, then A = X = 1.
(2)Let H = 2° 4+ y* + Dspimi<isama®y’. We assume aqq = 0.

If multi(A)B) (Hpp) < multi(o)o) (Hi1), then A = \.

The symbol multi(4 p)(Hi1) expresses multiplicity of Hq; at (A4, B) € R?. For

example, we put ajo = —2 and ag; = 1. Then we get N = ‘51 from the origin

singular point O. But A = g from the singular point (0,1) on Hi;.
In general, if multi 4 gy(H11) < multie gy(H11), then we have A = .
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5 Conclusion

In this paper, we have introduced the calculation method of learning coefficients
by weighted blow up and studied the relation between the learning coefficients
and resolution of singularities. If the analytic function is analytically equivalent
to "™ + -+ + x', then we can easily compute the learning coefficient by
weighted blow up. Whereas if it is not so, we showed that there is the case that
the pole which is obtained by resolution of singularity at the origin O is not the
learning coefficient. By the coefficient part of the analytic function, a wide range
of singular points appears. It is the problem for the future study to construct
mathematical criterion for the higher dimensional above case.

Acknowledgment. This work was supported by the Ministry of Education, Sci-
ence, Sports, and Culture in Japan, Grant-in-aid for scientific research 18079007.
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Abstract. Echo state neural networks, which are a special case of re-
current neural networks, are studied from the viewpoint of their learning
ability, with a goal to achieve their greater prediction ability. A stan-
dard training of these neural networks uses pseudoinverse matrix for
one-step learning of weights from hidden to output neurons. This regu-
lar adaptation of Echo State neural networks was optimized by updat-
ing the weights of the dynamic reservoir with Anti-Oja’s learning. Echo
State neural networks use dynamics of this massive and randomly ini-
tialized dynamic reservoir to extract interesting properties of incoming
sequences. This approach was tested in laser fluctuations and Mackey-
Glass time series prediction. The prediction error achieved by this ap-
proach was substantially smaller in comparison with prediction error
achieved by a standard algorithm.

1 Introduction

From the point of information transfer during processing, neural networks can be
divided into two types: feed-forward neural networks and recurrent neural net-
works. Unlike the feed forward networks, recurrent neural networks contain at
least one cyclical path, where the same input information repeatedly influences
the activity of the neurons in a cyclical path. The advantage of such networks
is their close correspondence to biological neural networks, but there are many
theoretical and practical difficulties connected with their adaptation and imple-
mentation. The common problem of all such networks is the lack of an effective
supervised training algorithm. This problem was overcome with Echo State neu-
ral networks [2]. A very fast algorithm is used in these networks consisting of
a calculation of one pseudo-inverse matrix, which is a standard numerical task.
But the advantage of one step learning turns into a disadvantage when we try
to improve the predictive abilities of the network. The pseudo-inverse matrix
approach does not offer any straightforward solution in this case.

J. Marques de S& et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 19-28] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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One possibility of how to improve the dynamics of such a neural network
is an adaptation of the dynamic reservoir. It is not feasible to apply the usual
learning approaches because of the large number of neurons in the recurrent part
of an Echo State neural network. However, it motivates us to use more robust
technique. This led us to the idea of training the reservoir weights by Anti-Oja’s
learning, which provides a gradual change of the weights and a significantly
lower computational cost. In this paper, a one-step learning process, involv-
ing the use of a pseudo-inverse matrix, is combined with Anti-Oja’s learning,
adapting the weights of the dynamic reservoir itself. Connection between ”liq-
uid state” computing, related to Echo states was mentioned previously in [4J6].
The predictive abilities of optimized Echo State neural networks were tested on
laser-fluctuations and Mackey-Glass time series, which are standard benchmark
data.

2 Echo State Neural Network

Echo State neural networks are atypical in architecture and training of recurrent
neural networks (RNN). This new approach leads to a fast, simple and construc-
tive supervised learning algorithm for the RNN. The basic idea of Echo State
neural networks is an application of a huge reservoir, as a source of dynamic
behavior of a neural network, from which neural activities are combined into the
required output.

The activity of hidden layer neurons in an RNN is further denoted as x,, =
(z1(n),z2(n),...,xn(n)), where z;(n) is the output of the ith-hidden neuron
in time (n), and (V) is the number of hidden neurons. Under certain condi-
tions, each x;(n) is a function of the networks previous inputs u(n),u(n—1),...,
previously processed by the network. The input vector is denoted as u, =
(u1(n),uz(n),...,ux(n)), where u;(n) is the input of the ith-input neuron in
time (n) and (K) is the number of input neurons. Therefore, there exists such a
function, E, so that:

x(n) = E(u(n),u(n —1),...). (1)

Metaphorically speaking, the state of the neural network x(n) can be considered
as an ”echo”, or in other words, a reflection of its previous inputs.

2.1 Description of the Neural Network

Neural network consists of (K) input, (V) hidden and (L) output neurons.
The state of the neurons in the input layer at time (n) is characterized by
the vector u, = (ui(n),uz(n),...,ux(n)), in the output layer by the vector
yn = (y1(n),y2(n),...,yr(n)) and in the hidden layer by the vector x, =
(z1(n),z2(n),...,zn(n)). The values of all the synaptic weights will be stored
in matrices. An input weight matrix will be created: Wi = (wj;‘) with a size of
N x K, a weight matrix between hidden neurons:W = (w;;) with a size of N x N,
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a matrix of output weights: W% = (wgj"") with a size of L x (K + N +L), and a
matrix of weights from the output back to the reservoir: W# = (w?°¥) with
a size of N x L. It is notable that, in this type of network, both direct input-
output weights, as well as the weights between output neurons are allowed. The
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Fig. 1. The typical architecture of Echo State neural networks

structure and topology of Echo State networks can be adjusted according to their
current task. It is not necessary, for example, to use sigmoid output neurons, back
weights from the output layer to the reservoir may or may not exist, and even
the input neurons may not be used. In this application, sigmoid output neurons
were not used, however back weights from the output layer to the reservoir were
used. No loops were used for output neurons. We can find detailed description
of the learning algorithm in [213].

3 Motivation

At first we have to realize, how important the values and the structure (inter-
connection between hidden neurons) of synaptic weights are for the prediction
ability of Echo State neural networks. We will do two simple experiments. In the
first one, Echo State neural network will be trained independently fifty times
and only the values of synaptic weights in its hidden part will be randomly
changed. In the second experiment we will do the same thing, but with one dif-
ference. Now we will change the network topology of the dynamic reservoir. We
can see graphical representation of these experiments in the Fig.[2l These results
led us to one important conclusion from the results shown in the Fig. 2l Values
of synaptic weights and the structure of the dynamic reservoir have big influence
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Fig. 2. Influence of the values and the structure of synaptic weights in dynamic reser-
voir on the prediction quality. The order of experiments is arbitrary.

on the prediction ability of Echo State networks. Therefore, our main goal is to
optimize or train the synaptic weights in the dynamic reservoir. However, it is
not feasible to apply the usual learning approaches due to the large number of
neurons in the recurrent part of an Echo State neural network.

Here we have to realize second important observation about the nature of Echo
State neural networks and their dynamics. The neurons in the dynamic reser-
voir should be slightly interconnected. It means the weight matrix W (synaptic
weights matrix of internal neurons) should be sparse. This is a simple method
how to encourage a rich variety of dynamics between different internal units.

Now we can explain why are we using Anti-Oja’s learning as the supplement of
the classic one-step learning algorithm in our experiments. Anti-Oja’s learning
changes synaptic weights in a way that decreases correlation between hidden
neurons. In final consequence, it results in increase of diversity between internal
state dynamics of hidden neurons, which will become much richer. We can say
that the Anti-Oja’s learning quells the effect of some synaptic weights and on
the other side, it raises impact of some others. This learning changes values of
synaptic weights and the structure of hidden layer, so it optimizes the dynamic
reservoir in the required way. Moreover, the computational demands of Anti-
Oja’s learning are substantially lower than those of standard learning techniques
or optimization methods. A more detailed description of Anti-Oja’s learning is
presented in the next chapter.

3.1 Anti-Oja’s Learning Rule

The only difference between Anti-Hebbian and Hebbian learning is in weight
update formula, which is in case of Anti-Hebbian learning negative (w(n+1) =
w(n) — Aw(n)). From that reason, we will introduce the description of Hebbian
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learning. Hebbian learning [1I] is the first and the best-known learning rule in
neural networks. Hebb first suggested this approach in his book The Organization
of Behavior [5]. Its essence consists of the following two rules:

— If two neurons, located at the opposite sides of a synapse, are activated
concurrently (synchronously), then the value of the synaptic weight will in-
crease.

— If two neurons, located at the opposite sides of a synapse, are activated at
different times (asynchronously), then the value of the synaptic weight will
decrease.

The synapses of neural networks, which follow the rules named before, are called
Hebbian synapses. The change in a synaptic weight (wy;) of a Hebbian synapse
can be expressed mathematically for a pair of neurons k and j, where j sends
data to k, and for a time, noted as n, is as follows:

Awgj(n) = F(yx(n), z;(n)). (2)

Here, z;(n) represents the activity of a pre-synaptic neuron and yx(n) the ac-
tivity of a post-synaptic neuron. F' represents the function of post-synaptic and
pre-synaptic activities of the already mentioned neurons y(n) and z;(n). These
activities are sometimes considered scale-free. A special case of Equation (2) is
the following formula:

Awgj(n) = nyr(n)z;(n). 3)

In this formula, 7 is a small positive constant, the so-called learning rate. Equa-
tion (@) is the simplest approach to a change of a synaptic weight wy;, expressed
as a product of the input and output signals. This rule clearly emphasizes the cor-
relative nature of Hebbian synapses. Sometimes, it is referred to as the activity-
product rule. It follows from Equation (3] that repeated application of the input
signal (pre-synaptic activity) z,(n) leads to an exponential increase, which even-
tually can lead to saturation of wy;. To avoid such a situation, there is a need to
limit the growth of the synaptic weight. One of the possibilities is to introduce a
nonlinear, forgetting factor into formula (B) that defines the change of wy;. The
change of the synaptic weight will be redefined as follows:

Awj(n) = nyr(n)a;(n) — ays(n)wy;(n). (4)

Here, « is a new, positive constant and wy;(n) is a synaptic weight in time n.
This formula can be further refined into:

Awyj(n) = ayk(n)[cz;(n) — wg;(n)], (5)

where ¢ is equal to n/a. This formula (@) is sometimes called the generalized
Hebbian Rule. The meaning of this formula is, that if z;(n) < wg;(n)/c then the
modified synaptic weight wg;(n + 1) in time n + 1 decreases proportionally to a
post-synaptic activity yx(n). On the other hand, when z;(n) > wg;(n)/c, then
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the synaptic weight wy;(n + 1) increases proportionally to yx(n). We have used
in our experiments another modification of Hebbian learning rule called Oja’s
learning rule:

Awgj(n) = nyk(n)[z;(n) — yr(n)we;(n)], (6)
where 7 is small positive constant. There were two reasons for using this last
Oja’s rule in our experiments. With this rule, the prediction accuracy was on
average slightly better, but more importantly, it had less variance.

4 Experiments

Most of the publications about prediction strive to achieve the best prediction,
which is then compared with results of other prediction systems on selected data.
This paper is different in this aim; its goal was to compare results by original
”one-step” learning algorithm, with our new approach. We have used two classic
benchmarking data sets.

The first testing set was composed of a time sequence of 1000 samples of laser
fluctuations data, and the quality of prediction was measured by an error of
prediction in the next 100 steps. A mean absolute percentage error (MAPE) was
used to measure the quality of prediction on this testing set, where test values
P[e“l and predicted values P are used, and N is the number of couples of

K3

values (the length of the predicted time series):

real calc

N ’ P! —P;
= rea

i=1 P}

N

MAPE = x 100. (7)
The second testing set was composed of a time sequence of 3000 samples of
Mackey-Glass (MG) data, and the quality of prediction was measured by an
error of prediction in the independently generated 2000 steps. A normalized
root mean square error (NRMSE) was used to measure the quality of prediction
on this second testing set, where d(n) and y(n) are real, resp. predicted values.
0% is a variance of MG signal and m is a number of independent instances of
MG set, on which the trained Echo State neural network was tested. In our case,
m equals 50.

(®)

mao

m 1/2
NRMSE) = (Zj—l(dj(nv%)z— yj(n+k))2> |

The most used prediction horizon in literature is 84 steps ahead in the series
(variable k in equation[]]). From that reason, we will use the same value. Different
error measures were used here to allow eventual comparison with previous results
[207].

The learning was divided into two phases. The first phase was aimed to find
the best parameters for Echo State neural network for quality prediction results
from the training set. No optimization involving Anti-Oja’s learning was used in
this first phase. The results for laser data are in Table [l and for Mackey-glass
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Table 1. Results of representative experiments in the first phase: quality of the laser
prediction for different parameter values

Index  Size of DR Alpha Average MAPE  Best MAPE

1 200 0.7 38.296% 34.233%
2 200 0.8 33.864% 31.244%
3 250 0.7 36.291% 31.343%
4 250 0.8 34.236% 29.526%
5 300 0.8 35.943% 32.855%
6 300 0.8 35.441% 30.893%

Table 2. Results of representative experiments in the first phase: quality of the Mackey-
Glass prediction for different parameter values

Index  Size of DR Alpha  Average NRMSEs4 Best NRMSFga

1 200 0.7 0.00051 0.00045
2 200 0.8 0.00045 0.00039
3 300 0.7 0.00049 0.00042
4 300 0.8 0.00046 0.00038
5 400 0.7 0.00040 0.00036
6 400 0.8 0.00036 0.00034

data in Table[2l In these tables, DR represents the dynamic reservoir; Alpha is
the parameter influencing the ability of the neural network to exhibit echo states.
These DR and Alpha values were chosen in accordance with the proposal used
by Jaeger (see [2]). Experiments were carried out in the following way. For each
value of DR and the parameter Alpha, the values of synaptic weights in DR were
randomly generated 1000 times. This number was estimated to be sufficiently
large enough for statistical evaluation of prediction error on a testing set and
for each initialization of weights, the error for the testing set was calculated.
Further, an average error of all 1000 trials is presented in the columns Average
MAPE (Table[l) and Average NRMSEg4 (Table2)). Also, the smallest achieved
error was recorded in the Best MAPE and Best NRMSFEg, columns in the same
tables. A clear correlation between Best and Average value columns is apparent
from Tables [[l and @I When a better Average MAPE (Average NRMSEs4) was
achieved, there is also a better Best MAPE (Best NRMSFEsy). The best results
for laser prediction were achieved with a DR consisting of 250 neurons and for
the parameter Alpha 0.8. For Mackey-Glass prediction, the best results were
achieved with a DR composed of 400 neurons and for Alpha 0.8.

The main experiments were carried out in the second phase with a partial
knowledge of behavior of the neural network gained from the first phase. The
parameters of the neural network and the initialization of the synaptic weights of
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the dynamic reservoir were chosen based on the best results from the first phase
of the experiments. The adjustment of synaptic weights using Oja’s learning rule
([ was carried out for all the samples of the training set. The only exceptions
were the last 10 samples in the case of laser prediction. These 10 samples were
chosen as the validation set, which was, after the adjustment, used for checking
the prediction quality of the samples, which were not available for training the
neural network. The validation set for Mackey-Glass data was newly generated
and was composed of 500 samples. Using this method, a great number of itera-
tions was carried out, while the use of the validation set monitored the quality of
prediction. The representative results are given in Tables[Bland @ The variable

Table 3. Results of representative experiments for laser prediction in the second phase
after optimization using Anti-Oja’s learning

Index  Number of iterations n MAPE 1 MAPE 2
1 1630 0.001 24.331%
2 2650 0.0001 29.526% 18.098%
3 4830 0.00001 21.567%

Table 4. Results of representative experiments for Mackey-Glass prediction in the
second phase after optimization using Anti-Oja’s learning

Index Number of iterations n NRMSEg, 1 NRMSEg, 2
1 1120 0.001 0.00032
2 1786 0.0001 0.00034 0.00031
3 2700 0.00001 0.00027

Number of iterations. Tells how many iterations were required to produce the
smallest error with the validation set. The variable n represent those values of
parameter from Equation (@l), which were used in the calculations that yielded
the best results on the validation set after optimization of the neural network
by Anti-Oja’s learning. The variables MAPE 1 /| NRMSEg4 1 represent the pre-
diction error on the testing set before optimization. This value was the same for
all the experiments, since each optimization started with a neural network with
the same initialization of weights and other parameters. Variable MAPE 2 /
NRMSEsy 2 provides the prediction error on the testing set after optimization
using Anti-Oja’s learning.

The results indicate that the initialization of weights in the dynamic reservoir
has a decisive role in prediction abilities of Echo State neural networks. Another
result is that an optimization using Anti-Oja’s learning can substantially improve
results. These conclusions can be drawn from Figures [3 and [ as well.
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Laser fluctuations

-0 experimental values
—e— predicted values

Time step

1 1 1 1 1 1 1 1 1 1
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Fig. 3. Testing data: 100 records of laser fluctuations and 100 values predicted by
original Echo State neural network with ”one-step” learning algorithm (Experiment
No.4 from Table [ DR Size 250, Alpha 0.8, MAPE 29.52 %)

Laser fluctuations

- experimental values
—e— predicted values

Time step
1 1 1 1 1 1 1 1 1 ]
0 10 20 30 40 50 60 70 80 90 100

Fig. 4. Testing data: 100 records of laser fluctuations and 100 values predicted by Echo
State neural network optimized with Anti-Oja’s learning (Experiment No. 2 from Table
Bl MAPE 18.09 %)

5 Conclusions

Echo State neural networks are relatively new in the domain of neural networks.
Their advantage is a closer connection with biological models inherent to recur-
rent neural networks and in their usage of the reservoir of dynamic behavior
without adjusting the weights within the hidden layer. Echo State neural net-
works have a substantial advantage over other types of recurrent networks in
their one-step learning ability, even though this approach may not be very bio-
logically plausible. As a disadvantage, they can be considered to have a relatively
low ability to generalize and in general lack an approach, which would be able
to improve, at least partially, a previously learned network.
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The problem of improving on a previously learned network does not emerge
in the case of common feed-forward or even other recurrent neural networks.
If the need arises to improve the network, a simple adjustment of adding more
iterations of the back propagation of error can help. However, this does not work
for the Echo State networks, when a standard algorithm allows an all or nothing
approach, for example: either we shall teach, or we shall not teach the neural
network, but nothing between. The already taught neural network cannot be
partially amended by this approach.

The work described in this paper tried to solve this problem, where one special
approach was used to improve the learning ability of the Echo State neural
network. This approach originates in metaphors from nature and it is application
of the well-known Anti-Oja’s learning. The computational cost of the Anti-Oja’s
learning is substantial, but hybrid optimization is probably the only feasible way
to improve an already trained Echo State network.

We have chosen laser fluctuations and Mackey-Glass time series as a testing
data. Our aim was to find out if this approach is able to increase prediction
quality of Echo State neural networks. From the results shown in the paper, it is
clear, that this aim has been accomplished. Application of Anti-Oja’s learning in
Echo State neural networks can increase the quality of the network’s prediction.
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Grant VEGA 1/1047/04 and by Slovak Research Development Agency under
the contract No. APVT-20-002504.
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Abstract. Belief propagation (BP) is the calculation method which en-
ables us to obtain the marginal probabilities with a tractable computa-
tional cost. BP is known to provide true marginal probabilities when the
graph describing the target distribution has a tree structure, while do
approximate marginal probabilities when the graph has loops. The accu-
racy of loopy belief propagation (LBP) has been studied. In this paper,
we focus on applying LBP to a multi-dimensional Gaussian distribution
and analytically show how accurate LBP is for some cases.

1 Introduction

Belief propagation (BP) is the calculation method which enables us to obtain the
marginal probabilities with a tractable computational cost and has been widely
studied in the areas such as probabilistic inference for artificial intelligence, turbo
codes, code division multiple access (CDMA) systems, low-density parity check
(LDPC) codes, and probabilistic image processing. BP is known to provide true
marginal probabilities when the graph describing the target distribution has a
tree (singly connected) structure, while do approximate marginal probabilities
when the graph has loops (cycles).

The accuracy of loopy belief propagation (LBP) has been theoretically stud-
ied when the target distributions are discrete distributions [I]-[3] and Gaussian
Markov random fields mainly about the means [4]. The accuracy has also been
studied from the viewpoint of information geometry [5][6]. In probabilistic im-
age processing, the accuracy has been numerically studied as the accuracy of
estimated hyperparameters based on Gaussian graphical models [7][]].

In this paper, we focus on applying loopy belief propagation (LBP) to a multi-
dimensional Gaussian distribution whose inverse covariance matrix corresponds
to the graph with loops. Then, we mathematically show the differences between
true marginal densities and the approximate marginal densities calculated by
LBP. To be more specific, we give the exact solutions of messages and approxi-
mate marginal densities calculated by LBP and give the Kullback-Leibler (KL)
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distances when the inverse covariance matrix corresponds to the graph with a
single loop. Next, we develop the results to the more general case that the graph
has a single loop and an arbitrary tree structure. Furthermore, we give the ex-
pansions of inverse variances of approximate marginal densities up to third-order
when the graph is allowed to have an arbitrary structure (i.e., multiloops).

The situation in which LBP is applied to a multi-dimensional Gaussian dis-
tribution can be seen for example in probabilistic image processing based on
Gaussian graphical models [7][8] and Markov random fields [4]. Besides, clarify-
ing the theoretical properties of LBP in the standard models such as a Gaussian
distribution helps to know the properties of more complex LBP and to design
LBP algorithms efficiently.

This paper is organized as follows. In section 2, we review the scheme for belief
propagation. In section 3, we give the main results of this paper. In section 4,
we give the conclusion and future works.

2 Belief Propagation

Here, we review the scheme for Belief propagation. We review the belief propa-
gation for tree structures in section 2.1, loopy belief propagation in section 2.2,
and the LBP when we apply it to a multi-dimensional Gaussian distribution in
section 2.3.

2.1 Belief Propagation for Tree Structures

Let the target distribution to which we apply LBP be the that of pairwise form

p(X)Zé T Wi, (1)
{ij}eB

where Z is the normalization constant and B is the set which shows the existences
of correlations between x; and x;. For example, when x = (21, z2, 23, r4)T and
correlations exist between {z1,x2}, {x2,z3}, and {x1, 24} respectively, the set
B is expressed as B = {{12}, {23}, {14}}. When the graph given by B is a tree
graph, the marginal distributions {p;(z;)}, {pij(z:,z;)} are exactly calculated
as follows by using normalized messages {M,_.;}, {M,_;}, ({ij} € B).

1
pi(r;) = 7. IT Mi—ia),
' keN;

pij(l‘ul‘j)zzl( II Mk—m(ﬂ?i))Wij(ﬂ?ivﬂ?j)( I1 Mk—d(%‘))@)

U \peN\ {5} kEN;\{i}

Here, both Z; and Z;; are the normalization constants and N; is the subset
of random variables which directly correlate with random variables z;. Nj is
so-called the set of nearest neighbor variables of x;.
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2.2 Loopy Belief Propagation

Egs.([@) are exactly correct when the graph given by B is a tree graph. In
loopy belief propagation, we also compose marginal distributions by egs.()
when the graph given by B has loops. This leap of logic yields the problem of
convergence of LBP and gives marginal distributions approximately. Since the
marginal distributions {p;(z;)} and {p;;(x;,z;)} should satisfy the constraints
J pij(xi, xj)dz; = pi(z;) for consistency, messages {M,_,;} satisfy the equations
given by

Mz—>] .73] / Wzy xmx]) H Mk—n(xz)dxu
Zij keN\{j}

Myilay) = / Woana) [ Mioj@)de. @)
keN;\{i}

Note that there are 2|B| equations in total so that egs.(3]) are the decision equa-
tions for 2|B| messages {M;_;}.

2.3 Gaussian Belief Propagation

We assume that the target probability density in eq.(I]) is a multi-dimensional
Gaussian probability density whose mean vector is 0 and x € R%:

p(x) = \/de;g exp{—;xTSx}. (4)

Here, S is an inverse covariance matrix and we denote the components of the
matrix S by (5)i; = s;,;. Then, W;;(x;,z;) in eq.(I) can be expressed as

m + s, 5225 + 57 302»)}7 (5)

Wij(zi, x5) =
](1' 1']) eXp{ ‘./\/"7‘ J

1, s,
2
where || is the number of elements of subset Aj;. For simplicity, we put C{,’fl =
5;.;. We set the condition |N;| > 0 for Vi € {1,---,d}.

We assume that the probability densities of messages {M,_,;} are Gaussian
densities:

Nig Nij
Mij(z;) = \/ 5 exp{— ) ]%2} (6)

Then, by substituting egs.(@) into egs.(3l), we reduce egs.(@l) to the decision
equations for the parameters of inverse variances {\;_,;} as follows.

. s,
Ainj = — T (7)
Sii + Zkex\ﬁ-\{j} >\k~>i
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Here, {\;;} are \;; = \i; — §;,. After obtaining the values of {\;_;}
which satisfy eqs.(T), we compose messages {M,_,;} by egs.(@). Next, we com-
pose marginal densities {p;(z;)} and {p;;(x;, x;)} approximately by substituting
eqs. (@) into egs.(). That is, we obtain marginal densities by substituting {\;—;}
which satisfy eqs.([d) into

_ D ke Mo . Sii [ x
Pi(l“i)OCeXP{— kej\; 5512}, pij(mi,ﬂfj)ocexp{—(a:i,xj) 2” . },

Lj
Sii+ Z Al—si Sij
N Sij 555+ Z Ak—j (®)
keN;\{i}

Throughout this paper, we put the inverse variances of approximate marginal
densities calculated by LBP as A;(= ZkEM Alimsi)-

3 Main Results of This Paper

We consider the differences between true and approximate marginal densities
when we apply LBP to a multi-dimensional Gaussian density. We consider the
differences in each case (3.1, 3.2, 3.3). In section 3.1, we give the exact solu-
tions of messages {M;_.;} (equally the inverse variances {\;—;}), approximate
marginal densities p;(z;) and pi;(x, ;) (equally {A;} and {S;;11}), and the
KL distances when inverse covariance matrix S corresponds to the graph with
a single loop. In section 3.2, we develop the results of 3.1 to the graph with a
single loop and tree structures. In section 3.3, we give the expansions of inverse
covariances of marginal densities {/4;} when the covariances are very small. All
the proofs in section 3 are shown in [9].

3.1 On the Graphs with a Single Loop

We consider the case in which the inverse covariance matrix S can be described as
the graph which have only a single loop as illustrated in Fig[ll Then, without loss
of generality, we can consider the case that the set B is B = {{12},{23},---,{d—
1d},{d1}}. For the graph with a single loop, we obtain the following theorem.

Theorem 1. When the inverse covariance matrix S corresponds to the graph
given by B = {{12},{23},---,{d—1d}, {d1}}, the inverse variances of messages
{Xi—;} are given by

Siit1 41 — Sit1,i42i41,i42 £ VD
2041541

Sii 11— Si_14-20i 12+ VD

>\i—>i—1 — 9

2411
D = (det S)% 4 (—1)%4s1 950,3 - S4_1,a54.1 det S, 9)

Aiit1 )
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Fig. 1. Examples of a single loop

where i € {1,2,---,d} and periodic boundary conditions Sq,4+1 = Sd.1, $1,0 = S1.d
hold. A; ; are the cofactors of the matriz S.

Theorem [ gives immediately the following corollary.
Corollary 1. When the inverse covariance matrixz S corresponds to the graph
given by B = {{12},{23},---,{d — 1d},{dl}}, the inverse variances {A;} and

the inverse covariance matrices {S; 11} of approzimate marginal densities are
given by

E. .
det S —1)44s815- - ~ P
A= (1+ (14512 Sd71)%, Sijit1 = ( o ) (10)

’ Ei i
Ai,i det S Sii41 Aq‘,+Y1‘J:-1
where
det S + VD

Eii1 = 5 — Si i1 1. (11)

In corollary [l if s1 2,823, -, 84,1 approach 0, we know that A; and §i7i+1 ap-
proach

detS - dets g
A — A Sii41 — Aé’l det S (12)
25t Aiy1ig1

respectively since I; ;11 — det S. These results are equivalent to the inverse co-
variance matrices of the true marginal densities. Taking the limit as s1 2, 52,3, -,
$4,1 — 0 means that the graph with a single loop (e.g., Figll)) turns to a tree
graph and LBP can calculate marginal densities exactly. Hence, corollary[Ilagrees
with and explains the well-known fact that belief propagation is exactly correct
when the graph provided by a target distribution is a tree graph but incorrect
when the graph has loops.

When we calculate the KL distances between true and approximate marginal
densities in order to know the differences between both densities, we obtain the



34 Y. Nishiyama and S. Watanabe

following theorem. Here, KL and symmetrized KL (SKL) distances are defined
as follows.

KL 1) = [ at)tog ) ax (13)
SKL (4(3), (30)) = KL(g(9)Ip(x)) + KL(p(o0)la(x)). (14)

We note that a SKL distance satisfies the definition of distance although a KL
distance does not (since KL(¢||p) # KL(p||q))-

Theorem 2. The KL and SKL distances between true marginal densities p;(x;)
and approzimate marginal densities p;(x;) calculated by LBP are given by

1 1 1
KL(pillf) = —, + ,(1+ )} = log(1+¢),

2 2
~ ]. _1 ]. 1
SKL(p;, p;) = —1 + 2(1+e) 2 4 2(1+6)2. (15)

where € 1s given by
(—1)d481 2°8d.1

= ’ . 16

¢ det S (16)

Similarly, the KL and SKL distances between p;j(z;,x;) and p;;j(z;,x;) are

given by
KL( . H~ ):_1_110 (I_A )+1+\/1+6 si,i-‘rlAi-‘rl,i
pz,z+1 pz,z+1 2 g 1,141 2 detS
1 Io (1 +1+ 6)2 - 7100 Aiv1iv
9 08 2 (det S)2 ’

1 { 1+ \/]. + € _ Si’iJrlAi’iJrl )2
- Ai,i+1 2 det S
31‘272'+1Ai7iAi+1,i+1 }*1] 1++V1+e
(det 5)2 2 )

SKL(ps,it1,Piig1) = —2 +{1+ )
(17)

2
Af i1

where we put A; j11 = A A

From the above theorem 2l we can know that both KL and SKL distances go
to 0 as € tends to O since Afmqu tends to 0. We can say that ¢ is the control
parameter which decides the distances between both marginal densities. The
parameter e decides the accuracy of LBP in the case that the target distribution
is a multi-dimensional Gaussian density whose inverse covariance matrix S forms
the graph with a single loop.

3.2 On the Graphs with a Single Loop and Tree Structures

From the results for a single loop in section 3.1, we can immediately develop
the results to the more general case that the graph given by B has a single
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Fig. 3. An example Fig. 4. The same graph as Fig.3

loop and an arbitrary tree structure as illustrated in Fig. 2l For example, we
consider the graph shown by Figl3l Then, in practice, we calculate the inverse
variances {4;}. The variances {/A;} are obtained by solving eqs.(7) when d = 8
and B = {{12},{23}, {31}, {14}, {25}, {26}, {37}, {78} }. The graph in Figl can
be equivalent to the graph in Fig[l after replacing inverse variances {s; ;} as

2 2 2
/ _ S4,1 / _ 852 56,2
$1,1 7 S11 | =811 — s ) 52,2 = S92 | = 52,2 — s - s 5
4,4 5,5 6,6
2
S
/ _ 7,3
83)3 — 8373 = 83)3 — sg . (18)
ST7T 7 s s

(These replacements are understandable by solving eqs.([) directly). In Fig[l
the directed edges mean that there exist messages in those directions but not in
reverse directions (e.g., message Mj_4(x4) exists but message My_.1(z1) does
not exist between x; and x4). If we focus on variable nodes x1, z2, and x3, these
variable nodes form a closed single loop. Then, referring to the result of corollary
[0, we obtain

A - det S’( B 481,282,383,1);

oA det S’ (19)
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for i € {1,2,3}. Here, S’ and A}, are the inverse covariance matrix and the
cofactor respectively composed by {s ,} instead of {s;;}. The others {A;}, i €

{4,---,8} are calculated as follows by using the notation of continued fractions.
2 .2 2 .2 2 .2
A — g 51,4 S4,1 A — 525 S5,2 A — 52,6 96,2
4 — 94,4 — ) 5 — 95,5 — ) 6 — 26,6 — )
A+ 844 Ay 555 Ao+ 56,6
2 .2 2 2 2 2
A — 7.8 88,7 ;o 58,7 837 S73 887 9
§ =588~ 7 7 =577~ ~ (20)
7+ 58,8 58,8 3+ S7.7— S8.8

(These equations are also understandable by solving eqs.([)).
In a similar way, we obtain {A;;}, {4}, {5}, KL, and SKL distances in
various connected graphs which have at most a single loops.

3.3 Expansions of {A;} at Small Covariances

In sections 3.1 and 3.2, we address the inverse covariance matrix S whose graph
structure is restricted to the graph with a single loop. In this section, we address
the inverse covariance matrix S whose graph is allowed to have an arbitrary
structure (i.e. the graph has multiloops) but the covariance is very small. To
achieve that, we introduce a new parameter s and change the off-diagonal com-
ponents of the matrix S to (5);; = ss;;, where s satisfy 0 < s < 1. If s = 0,
the matrix S turns to a diagonal matrix and if s = 1, the matrix S turns to
the original matrix S in eq.(). Then, our aim is to obtain the expansions of the
inverse variances {/;} with respect to s:

Ai(8) = ajo — ai18 — a8 — a3s® + -+ (21)

when s satisfies s < 1.

In this paper, for simplicity, we derive the terms up to third-order. Before
that, we prepare the following theorem for simultaneous equations which {4;}
satisfy.

Theorem 3. The approzimate inverse variances {A;} calculated by LBP satisfy
either of Z?ZI 2Nl simultaneous equations

52

2 [ 82’1’ .
Vi =2+ 7 = 3 I ARE CRs (22)
JEN;

where + takes an arbitrary sign for each term in the summation.

There exist 2?21 2WVil simultaneous equations since the sign + assigns either of
positive or negative for each term. In addition, we note that there exist extra
simultaneous equations which have no solution. For example, there is no solution
when |N;| > 2 for i and all the signs in the summation are negative.

When s = 0 in the matrix S, approximate inverse variance /A; should be equal
to the true inverse variance s; ; (i.e., 4;(0) = s;; for i € {1,---,d}) since the ma-
trix S becomes a diagonal matrix and LBP algorithm turns to BP algorithm for
tree structures. By imposing these conditions, we obtain the following theorem.



Theoretical Analysis of Accuracy of Gaussian Belief Propagation 37

Theorem 4. For Z?:I o2Wil simultaneous equations in Theorem 3, conditions
A;(0) = 854, 1 € {1,---,d} holds if and only if all the signs in the summation
are positive. That is, the simultaneous equations are given by
Vil =2+ 7 = > 1+ ie{l,-d) (23)
A; Py AjA;

Then, the solutions of the inverse variances {A;} which satisfy eqs.(23) are ex-
panded with respect to s as follows.

d 2
sS4 .
Ai(8) = 845 — 7t 2+O 4. 24
O =si= > Terou (24)
J=1(#1)

Compared with the result of theorem 4, the inverse variances of true marginal
densities are expanded as follows.

det S d 8]2’,1’ 2, Sii —1a\3 -1 31,3
A, = ST Z s ST 5 [tr(Sy " S6)” — tr{(Sa); ; (So)i,i}”]s
1,1 G=1(4) 753
+0(s%). (25)

Here, matrices Sy and S, are the diagonal and off-diagonal matrices which satisfy
S = Sq+ sS, respectively. Matrices (Sg);,; and (S,);,; are the minor matrices of
Sq and S, with the i-th row and column omitted. From the eqs.(24) 25]), we can
know that the approximate inverse variances {4;} calculated by LBP give exact
coefficients up to second-order term but yield the differences from third-order
term. When we calculate the KL distances, we obtain the following theorem.

Theorem 5. KL distances from true marginal densities p;(x;) to approzimate
marginal densities p;(z;) calculated by LBP are expanded as follows with respect
to s forie{1,2,---,d}.

(S7756)% = {(Sa)ii (So)ia}®

6 )256 +O(s7). (26)

KL(pil|p:) = (tr
Theorem 5 tells us that approximate marginal densities calculated by LBP are
how close to the true marginal densities when covariances in S are very small.

4 Conclusion and Future Works

In this paper, we analytically show how accurate LBP is when the target distri-
bution is a multi-dimensional Gaussian distribution. In particular, we calculate
the fixed point, approximate marginal densities, and KL distances exactly when
matrix S forms the graph with a single loop. Then, we know that a control pa-
rameter € decides the accuracy. Next, we develop the result to the more general
case. Furthermore, we show the series expansions of inverse variances {A;(s)}
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and KL distances up to third-order with respect to s when the matrix S forms
an arbitrary graph. These results contribute to the foundation for understanding
theoretical properties underlying more complex LBP algorithms and designing
LBP algorithms efficiently. We have several future works, some of which are to
derive the convergence rate to a fixed point, to obtain the higher order terms in
eqs.([24)), and to compare the theoretical results with numerical experiments.
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Abstract. The reduction of input dimensionality is an important
subject in modelling, knowledge discovery and data mining. Indeed, an
appropriate combination of inputs is desirable in order to obtain better
generalisation capabilities with the models. There are several approaches
to perform input selection. In this work we will deal with techniques
guided by measures of input relevance or input sensitivity. Six strate-
gies to assess input relevance were tested over four benchmark datasets
using a backward selection wrapper. The results show that a group of
techniques produces input combinations with better generalisation capa-
bilities even if the implemented wrapper does not compute any measure
of generalisation performance.

Keywords: Input Selection, Input Relevance Measures.

1 Introduction

Artificial neural networks make a non linear mapping between an output and an
input dataset. These inputs could be high-dimensional depending on the mod-
elling problem. Moreover, it is well known that for a fixed amount of data, the
number of input variables cannot be increased indefinitely without a reduction
in performanceEl [1]. Thus, the set of variables involved in the modelling process
must be reduced by variable selection or preprocessing.

There are several approaches to reduce the input dimensionality [I1]. The
filter approach uses statistics to measure the relevance of each variable [23].
These calculations are independent of the learning machine and are computed
as a preprocessing step. The wrapper approach [I5T9)24] considers the specific
learning algorithm as a black box, and some measures of performance are used to
evaluate the different combinations of inputs. There are also embedded techniques
that modify the learning algorithm by the addition of some penalty term to the
error function [5J6/20]. These penalty terms are intended to reduce the numeric

! This phenomenon has been termed the curse of dimensionality.
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value of the weight connections of the network during the training process. As
a result, the influence of irrelevant inputs is minimized. In every case, the main
idea is to discard irrelevant or noisy information, increasing the generalisation
properties of the model.

The principal disadvantage of embedded methods is their dependency on the
learning algorithm. Instead, filters and wrappers could be considered as univer-
sal feature selectors since they are not based on a specific learning method [11].
Moreover, wrappers have more computational cost than filters, but they also
give better results because of the inclusion of the learning algorithm in the se-
lection process. This high computational cost is due to the performance measure
computed at each input evaluation step (cross-validation).

In the wrapper approach, testing the whole set of input combinations could
be a computationally infeasible approach depending on the quantity of inputs.
Instead, a search strategy like backward or forward selection should guide the
searching process. Backward selection has been commonly used by several re-
searchers in neural network feature selection [T9I2T24]. This selection strategy
begins with the complete set of features and ranks each one of the input vari-
ables according to some measure of relevance. Then, the least relevant features
are pruned one by one [19] in a sequential manner, or could also be pruned
in group by the detection of a sufficient large gap in the mentioned relevance
ranking [24].

Concerning the metrics of relevance issue, it is well known that neural net-
works, although are good modelling tools to perform prediction or classification
tasks, they do not give any information about the nature of the problem, or the
relations between variables and their relevance for the whole process. The result-
ing model is not a mechanistic representation of the phenomenon to be modelled.
Instead, the neural network has a set of parameters that do not directly repre-
sent any characteristic of the process generating the data. Many researchers have
proposed distinct approaches trying to extract the knowledge that lies behind
the parameters of the network [SIT7IT9/24].

Relevance metrics could be categorized into two broad groups. Metrics based
only on calculations over the network parameters [RIT7IT9], and metrics where
the input dataset is fed into the model in order to get a numerical or analytical
measure of sensitivity of each input feature [24]. Actually, there are a large
number of strategies to measure input relevance in neural networks. Some of
these techniques are more effective than others to perform input selection.

In this work, we use a backward elimination approach to test some of the
existing methodologies that perform input ranking. Therefore, the goal is to
identify the relevance metrics performing the best the task of detecting irrelevant
or redundant input features. The backward selection methodology is evaluated
over four benchmark datasets from the UCI Machine-Learning Repository [16].
The organization of the paper is as follows: Section 2] describes the relevance
metrics under test. Section ] shows the details of the backward elimination
approach implemented. Section @ presents the results of the set of experiments
realized. Finally, in section [}l we give some conclusions of the tests.
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2 Relevance Metrics

2.1 Using Network Parameters Only

These methods are based on the idea that the input weights of an artificial neu-
ron represent input gain. The learning algorithm (back-propagation) minimizes
the error signal by adjusting the weight connections between neurons such that
the output of the net tracks the target signal [I2]. Irrelevant or noisy inputs have
to be attenuated by small weights in order to minimize the general error signal.
Conversely, the weights of relevant inputs must be increased. The most widely
used metrics are the Garson’s Algorithm, the Overall Connection Weights metric
and the ANNIGMA input gain approximation. The equation to calculate the rel-
evance in a single hidden layer and single output neural network is given in each
case. Expansion to multiple hidden layers networks should be straightforward.

Garson’s Algorithm. This weight based method is derived from the one first
proposed by Garson [8]. Some researchers have used this approach to asses input
relevance [QT4IT7ITR]. Input relevance is calculated as shown in equation [Il

nh nh
|wij| wik| ||
me=3 (1 () 0
j=1 > e (lwis] lwikl) j=1 > ir—1 lwi

Where ni and nh are the number of inputs and hidden units respectively, w;
is the weight between input ¢ and hidden unit j, and wj;, is the weight between
hidden unit j and the output k. This method uses input-hidden connections.

Overall Connections. This strategy was proposed by Olden and Jackson [17],
and contrary to Garson’s algorithm, it does not use the absolute value of the
connection weights. Instead, the raw input-hidden-output weight product is ob-
tained (see equation ). The use of the weight sign is founded on the idea that
the effect of an input could be cancelled in posterior layer calculations. More-
over, the sign indicates the direction of the contribution of each input. So far,
many researchers have used this technique in order to rank inputs according to
their relevance [T4JT§].

Rip = (wijwjn) (2)

Where nh is the number of hidden units, w;; is the weight between input ¢ and
hidden unit j, and wj; is the weight between hidden unit j and the output k.

ANNIGMA. ANNIGMA is an acronym of Artificial Neural Net Input Gain
Measurement Approximation [19]. This method approximates the activation
functions of the artificial neurons by a linear factor. Thus, the analytical output-
input ratio is calculated (see equation [B)). This ratio (called Local Gain) is nor-
malized, and used as a measure of input relevance.
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nh

LGi =) |wijwin| (3)

Jj=1

Where nh is the number of hidden units, w;; is the weight between input i and
hidden unit j, and w;;, is the weight between hidden unit j and the output .

2.2 Using Network Parameters and Input Patterns

These methodologies measure the neural network input sensitivity in a direct or
indirect way by the stimulation of the model with a set of input patterns. This
approach is the one used by the following three relevance metrics: Sensitivity
Matriz, Input Perturbation and Input Cancellation. Equations to calculate the
relevance in a single hidden layer and single output neural network are given in
each case. Expansion to multiple hidden layers should be straightforward.

Sensitivity Matrix. The neural network sensitivity expresses the amount of
change of an output with the variations of a specific input. In other words, the
sensitivity is the partial derivative of an output node with respect to an input
node. This is also known as the Jacobian matrix [2]. Since the Jacobian matrix
is a function of the network inputs, it is possible to find a different value of
sensitivity for each input pattern. There are different approaches to integrate
these values in a singular value of sensitivity per input [24]. In our case, we use
the accumulated absolute value (see equation@l). This direct calculation of input
sensitivity has been used in related works to asses input relevance [24], some
researchers use the name Partial Derivatives for this method [IUT4UTE].

nh
Ri= Y and 00k _ O (w 0 ) (4)

” Wi
oI, dal) 4 T% 0al
pEpatterns Jj= J

o07

i

Where nh is the number of hidden units, w;; is the weight between input ¢ and
of;

hidden unit j, wjy is the weight between hidden unit j and the output k, ;7 is
J

the first derivative of the activation function of the hidden unit j and g{: k is the
k

first derivative of the activation function of the output unit k.

Input Perturbation. This strategy is a numerical method to obtain the input
sensitivity of the neural network. The output error is calculated after the addition
of a small perturbation to one of the inputs of the network. Error variations are
accumulated over the whole set of training patterns (see equation[d). In this work,
we test two different variations of the technique. The former adds several input
perturbations within a rangeﬁ and the input sensitivity is accumulated after each
input perturbation. This approach is refered as noise perturbation metric in the
experiments. The latter adds only two perturbations to the input. These values
correspond to the extreme values of the distribution used in the former method.
This approach is refered as fiz input perturbation. The mentioned processes are

2 Uniformly distributed, 5% of the input range, 100 times.
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executed for all the inputs individually to obtain a measure of input relevance.
This metric has been used by some researchers in different works [OIT4UTS].

Ryu= 3 (Rh) and R =[SE(OW(I") - SEOI! + ) (5)

Where SE() is the squared error function, and € is a small perturbation added
to the input signal.

Input Cancellation. This method accumulates the change in the output error
over the whole set of training patterns after replacing one of the inputs by its
average (see equation [A]). The relevance of each input is assessed by computing
the output error increments.

Ri= Y (R, and Rh = [SE(OI7) - SE(Ou(L)]*  (6)

pEpatterns

Where SE() is the squared error function, and I; is the average of input 4.

3 Description of the Backward Selection Algorithm

The backward elimination process is guided by the aforementioned metrics of
input relevance. The back-propagation with momentum algorithm [2] was used
to train the networks. Each training phase stops if a fixed number of epochs is
reached or, if all the training observations have an output error that is smaller
than a fixed threshold (2%-4% of output range). The backward selection algo-
rithm goes as follows:

1. Train a randomly initialized artificial neural network using the complete set
of inputs.
Compute input relevance for every input.
Prune the least relevant input.
Continue training for a fixed number of iterations.
If all the training observations are correctly mapped:
- Then, go to step 2.
- Else, restore last pruned input.
6. Compute input relevance for every input and exit.

G o

Notice that the aforementioned backward selection strategy does not include the
calculation of any generalisation performance measure. The process is exclusively
guided by the relevance of each variable according to each technique.

4 Experiments

The backward selection strategy described so far was tested on four benchmark
datasets. In each case, the performance of the pruned model (the resulting set of
inputs after applying backward selection) was obtained using cross-validation.
The selection algorithm was executed 50 times with each metric in order to ob-
tain an error distribution. Results are shown using box-plots in order to compare
the performance of the different neural networks [4].
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4.1 Non Linear Static Function

This dataset was used by Sugeno and Yasukawa [22] to perform input selection
in a fuzzy system. The single output y belongs to a static system with two inputs
x1 and zo:

y=(1+27°+ x51'5)2 and (7)

Sugeno and Yasukawa also added two dummy inputs x3 and x4 to check the
appropriateness of their identification method. The dataset contains 50 rows
and the number of K-folds for the cross validation performance measure was 25.
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Fig. 1. Accumulated input relevance after 50 iterations of different techniques over the
non linear function benchmark. Each bar represents one of the input variables x1, 2,
23 and x4 (form left to right).

Figure [l shows the accumulated relevance over 50 iterations of the metrics
under study. One can see that the four last metrics (ANNIGMA, Sensitivity
Matriz, Input Perturbation and Input Cancellation) perform better the identifi-
cation of irrelevant inputs. Moreover, Input Perturbation and Input Cancellation
reject consistently the two dummy variables.
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Fig. 2. Different input selection techniques applied to the non linear function dataset.
A. All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Figure2shows that the pruned networks obtained using ANNIGMA, Sensitiv-
ity Matriz, Input Perturbation and Input Cancellation present a higher generali-
sation performance. This result validates the higher capability of these methods
for identifying irrelevant inputs, as shown in figure [
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4.2 Wine Recognition Benchmark

These data are the results of a chemical analysis of wines grown in the same
region in Italy but derived from three different cultivars [7]. The analysis de-
termined the quantities of 13 constituents found in each of the three types of
wines. The dataset contains 178 rows and the number of K-folds for the cross
validation performance measure was 16.
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Fig. 3. Different input selection techniques applied to the wine recognition benchmark.
A. All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Different networks were trained and pruned using backward elimination. Fig-
ure B shows the results of the cross validation tests made over the resulting
pruned networks. In this case, the networks where the inputs were selected us-
ing Garson, ANNIGMA, Sensitivity Matriz and Input Perturbation present the
lowest validation errors. Notice that the Ouverall Connections metric yields net-
works with a validation error median that is higher than the one obtained with
the complete set of inputs. Overall Connections and Input Cancellation produce
networks with high training errors.

4.3 Box-Jenkins Furnace Benchmark

This dataset was presented by Box and Jenkins [3], and it has been used by
several researchers in input identification problems [I3122]. The process is a gas
furnace with single input u(t) and single output y(¢): gas flow rate and COq
concentration, respectively. In this dynamic process, the output y; is expressed
as a function of the signals y—1), Yu—2), Y(t—3)s Yt—a), U(t—1)s U(—2); U(t—3),
U(t—4y, U—s5) and u_g). The dataset has 296 data points and 19 K-folds were
used for the cross-validation evaluation.

Figure @ shows the performance distribution after cross-validation of the final
pruned networks using backward elimination. Sensitivity Matriz, Input Pertur-
bation and Input Cancellation present the best validation performance for this
specific dataset. Concerning the training performance issue, Sensitivity matriz
and Input Perturbation produce pruned networks with best characteristics than
the other metrics.
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Fig. 4. Different input selection techniques applied to the Box-Jenkins benchmark. A.
All inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity
matrix. F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

4.4 Sonar Data

This is the dataset used by Gorman and Sejnowski in their study on the classifi-
cation of sonar signals using a neural network [I0]. The task was to discriminate
between sonar signals bounced off a metal cylinder and those bounced off a
roughly cylindrical rock. There are 60 inputs corresponding to the amplitude
of the different bounding frequencies, and the output is the object class (metal
cylinder or cylindrical rock). This 208-row dataset has been used for several re-
searchers in the feature selection task [I9120]. In our case, we performed a 13
K-folds cross-validation evaluation.
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Fig. 5. Different input selection techniques applied to the sonar benchmark. A. All
inputs. B. Garson. C. Overall connection weights. D. ANNIGMA. E. Sensitivity matrix.
F. Input cancellation. G. Noise perturbation. H. Fix perturbation.

Figure Bl shows that the Sensitivity Matriz metric produces pruned networks
with the lowest validation error for this dataset. The only metric having a vali-
dation error median that is higher than the one obtained using the complete set
of inputs is Owerall Connections. All the set of metrics yields pruned networks
having a median training error that is higher than the one that is obtained us-
ing the complete set of inputs. The lower training errors were found with the
ANNIGMA, Sensitivity Matrixz, Input Cancellation and Fixz Input Perturbation
metrics.
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5 Conclusions

Wrapper techniques although having a high computational cost are good uni-
versal input selectors. Some metrics of input relevance have been developed in
order to optimize the searching process of the adequate set of inputs. In this
article, six different methodologies for the assessment of input relevance have
been tested over four benchmark datasets. Metrics were divided into two groups
depending on the use of input information to determine input relevance:

G1. Garson, Overall Connections and ANNIGMA only use network parameters
(weight connections) to estimate input relevance.

G2. Sensitivity Matrixz, Input Perturbation and Input Cancellation use a set of
patterns to stimulate the neuronal model and get the relevance information.

Results converge to show best performances when input relevance is assessed
using methodologies belonging to group G2. We could say that within this group
the Sensitivity Matriz technique presents the best behaviour in most of the cases.

Techniques belonging to group G1 should be used if there are time execution
constraints since they have less computational cost. In this case, a set of tests
with the specific dataset must be carried out in order to find the most suit-
able relevance metric. For instance, Garson technique behaves well in the wine
recognition benchmark (Section L2]) even if only the input-hidden connections
are used to compute relevance. Within the group G1, we found that the AN-
NIGMA metric behaves better than the others in most of the cases (all tests
except the Box-Jenkins benchmark. Section 3]). Notice that ANNIGMA was
created as a simplification of Sensitivity Matriz by replacing the first derivative
of the activation functions by a constant term.

An important remark should be made. The relevance metrics were tested in a
backward elimination framework. Thus, the techniques were evaluated on their
ability to detect irrelevant or redundant variables. The ability to rank a set of
inputs according to their relevance was not tested.
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Abstract. Although encouraging results have been reported, existing
Bayesian network (BN) learning algorithms have some troubles on lim-
ited data. A statistical or information theoretical measure or a score
function may be unreliable on limited datasets, which affects learning ac-
curacy. To alleviate the above problem, we propose a novel BN learning
algorithm MRMRG, Max Relevance and Min Redundancy Greedy algo-
rithm. MRMRG algorithm applies Max Relevance and Min Redundancy
feature selection technique and proposes Local Bayesian Increment (LBI)
function according to the Bayesian Information Criterion (BIC) formula
and the likelihood property of overfitting. Experimental results show that
MRMRG algorithm has much better accuracy than most of existing BN
learning algorithms when learning BNs from limited datasets.

1 Introduction

During the last two decades, many BN learning algorithms have been pro-
posed. In general, BN learning algorithms take one of the two approaches: the
constraint-based method and the search & score method. The constraint-based
approach [I],[2] estimates from the data whether certain condition independences
hold between variables. Typically, this estimation is performed using statistical
or information theoretical measure. The search & score approach [3],[],[7] at-
tempts to find a graph that maximizes the selected score. Score function is
usually defined as a measure of fitness between the graph and the data.

Although encouraging results have been reported, the recent explosion of high
dimensional and limited datasets in the biomedical realm and other domains has
induced a serious challenge to these BN learning algorithms. The existing algo-
rithms must face higher dimensional and smaller datasets. To further enhance
learning efficiency and accuracy, this paper proposes Max-Relevance and Min-
Redundancy Greedy BN learning algorithm. MRMRG algorithm applies Max
Relevance and Min Redundancy feature selection technology to obtain better
efficiency and accuracy on limited datasets, and proposes Local Bayesian In-
crement function according to BIC approximation formula and the likelihood
property of overfitting to learn BNs on limited datasets.
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This paper is organized as follows. Section 2 provides a brief review of Bayesian
network. Section 3 describes Max Relevance and Min Redundancy feature se-
lection technology. In Section 4, we propose Local Bayesian Increment function.
Section 5 represents the details of MRMRG algorithm. At the same time, we
also analyze the time complexity of MRMRG. Section 6 shows an experimental
comparison among MRMRG, K2 and TPDA. Finally, we conclude our work and
present future works.

2 Bayesian Network

A Bayesian network is defined as a pair B = {G, O}, where G is a directed acyclic
graph (DAG) G = {V(G), A(G)}, with a set of nodes V(G) = {X1,..., X},
representing a set of random variables and a set of arcs A(G) C V(G) x V(G),
representing independent relationships that exist between variables. © represents
the set of parameters that quantify the network. It contains a parameter 6;;, =
P(z | ¢i]j]) for each possible value ;1 of X;, and ¢;[j] of II;. Here II; denotes
the parents set of X; and ¢;[j] is a particular instantiation of the parents set I7;.

In the search & score approach, learning BN can be formally expressed as
follows: given a complete training dataset D, find a directed acyclic graph G*
such that G* = arg max score(G : D), where score(G : D) is the score function

measuring the degree of fitness of any candidate DAG G to the dataset D.

In general, the score functions for learning BN have the decomposability
property: the value assigned to each structure can be expressed as a sum of
local values that depend on each variable and its parents: score(G : D) =

> score(X;,II; : D). The score functions are high-order functions. The
X, eV(G)
higher is the dimension of {X;} U II;, the higher are the orders of the score
functions. We take K2 score proposed by Cooper and Herskovits in [3] as an
example.

We use the following notion: the number of values for the variable X; is r;;
the number of possible configurations for the parents set II; of X; is ¢;; Nyji is
the number of instances in the dataset D where X; takes the value x;, and II;

takes the value ¢;[j]; N;; = Z Nijk-

K2 score is based on several absumptlonb (multinomiality, parameter indepen-
dence, parameter modularity, uniformity of the prior distribution of the param-
eters given the network structure), and can be expressed as follows:

gKQ(G : D) log —|— Z Z ( ((Nlir:__’rz]-_ 1 ) ZIOg ijk- > ’

=1 \j=1

where p(G) represents the prior probability of the DAG G.
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3 Max-Dependence and MRMR

Definition 1. In feature selection, Max-Dependence sc- heme [J] is to find
a feature set S* with m features, which jointly have the largest dependency on
the target class C'; S* = arg max 1(S;0).

Definition 2. In feature selection, Max-Relevance criterion [3] is to select a
feature set S* with m features satisfying S* = arg mgx( Iél > I(X;; ), which
X;es

approzimates I(S*;C) with the mean value of all mutual’information values
between the features X;,i =1,...,m and class C.

Definition 3. In feature selection, Min-Redundancy criterion [5]] is to select
a feature set S* with m features such that they are mutually minimally similar
(mutually mazimally dissimilar): S* = argmin( |51|2 > I(X5; X5)).
S X;,X;€8
Definition 4. In feature selection, Max-Relevance and Min-Redundancy
criterion [J] is to find a feature set S* with m features obtained by optimizing
the Mazx-Relevance criterion and the Min-Redundancy criterion simultaneously.
Assume that the two conditions are equally important, and use the following
formula: S* = argmax( Y, I(X;;C) — Iél > I(Xi X5)).
S x;es X, X;€8

We select the feature set S, = {X1,..., X}, the class variable C. Using the
standard multivariate mutual information MI1(X,...,X,,) = [ [p(21,...,2m)

log ( le---vzm))) dzy ... dzm, we get the formula: I(Sy;C) = MI(Sm,C) —

P(ﬂll)mp(ﬂlm
MI(S,,). Applying the Max-Dependence scheme, we can get the formula:

S* = argnéaXI(Sm; C) = arg max (MI(Sp,C)— MI(Sp)). (1)

Equation (1) is similar to the MRMR feature selection criterion: The second term
requires that the features S,, are maximally independent of each other(that is,
minimum redundant), while the first term requires every feature to be maxi-
mally dependent on C'. In practice, the authors Peng & Ding have shown that
if one feature is selected at one time, then MRMR criterion is a nearly optimal
implementation of Max-Dependence scheme on limited datasets.[6]

4 Local Bayesian Increment Function

Let X and Y be two discrete variables, Z be a set of discrete variables, and z
be an instantiation for Z. X,Y ¢ Z.

Definition 5. According to Moore’s recommendation [8] about the chi-squared
test, the sub-dataset D z_  satisfying the following condition is locally suffi-
ciently large for {XUY} given Z = z : All cells of {X UY'} in the contingency
table conditioned on Z = z have expected value greater than 1, and at least 80%
of the cells in the contingency table about {X UY } on Z = z have expected value
greater than 5.
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Learning on limited datasets, we loose the “locally sufficiently large” condition:
If the number of cases in Dy_ _ is much larger than the number of values for
{X UY}, for example ||Dy__|| > 4 x (|| X]| x [[Y]); then we assume that the
sub-dataset Dy__ is “locally sufficiently large” for {X UY'} given Z = 2.

Let D be a dataset of m cases. Let V be a set of n discrete variables, where X;
in V has r; possible values (z;1, zi2, ..., i, ). Bp and Bg denote BN structures
containing just the variables in V. Bg exactly has one edge Y — X, more than
Bp. X; has the parents set II; in Bp and the parents set II; UY in Bg. Ny
is the number of cases in D, which variable X is instantiated as x;, and I1; is

instantiated as ¢;[j]. Let Njj, = ZN {juyt ks Nig = Z Nijk. 6;, 6 denote the

maximum likelihoods of ©;, 6. 7rf denoteb the mbtantlatlon of IT; in the [th case.

Cases occur independently. The prior distribution of possible Bayesian net-
works is uniform. Given a Bayesian network model, there exist two properties:
Parameter Independence and Parameter Modularity. [4]

We apply the BIC formula also used by Steck in [9] : BIC'(Bg) = log L (é) —
3 log(m)dim (é) ~ log(P(D | Bg)) to control the complexity of BN model. BIC

adds the penalty of structure complexity to LBI function to avoid overfitting.
Definition 6 (Local Bayesian Increment Function)

Lbi(Y,i, IT;) = log (P(Bs, D)/ P(Bp, D)) ~ BIC(Bs) — BIC(Bp)

= log (L (éBS) /L (éBP)) ; log(m) [dim (éBS) — dim (éBP)}

log (L (éBS) /L (éBP)) — log ( (D | éBS)) “log (P (D | éBP))

_ l B l l B l

= ;mg (P (at10P5 miuy) /P (a1 OFF )

According to the likelihood property of overfitting(the marginal likelihood of
overfitting for the training dataset is usually no less than non-overfitting), we
assume that the log-likelihood does not change on the sub-dataset Dir,—g,[«]
which are not “locally sufficiently large” for {X UY'} (that is, to assume that
there is overfitting between X and the parents set II; UY on the D,y (4),

Z logP(ml\éBS,mUy>: Z logP(xl|éBP77rl>. (2)
di€D ;=[x di€D 1, =4,[+]

According to (2), we infer the following results:

og (1 (67 ) ~tos (1 (67))
= Nij x Li(X,Y),for j, Dp,—4,(;) is “locally sufficiently large”
J

dim (éBS> — dim (éBP) =(ry —1)(r; = 1)g;
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1
Lbi(Y,i, 1) = Y Nig x L;(X,Y) = (ry = 1)(rs — 1)g; log(m),
J
for j, Diz,—¢,[j 1s “locally sufficiently large”.

Note: [;(X,Y) is the mutual information between X and Y on Dy, g,

5 MRMRG Algorithm

(4]

53

MRMRG algorithm initializes the current parents set II; of the variable X; to
NULL, and then adds the variables one by one, which acquire the maximal
value for Local Bayesian Increment (LBI) function, into the parents set II; from
Pre; — II;, until the result of LBI function is no more than 0. Repeating the
above steps for every variable, we can obtain an approximately optimal Bayesian

network.

The pseudo-code of MRMRG algorithm sees Fig.1. Pre; denotes the set of
variables that precede X;. IT; denotes the current parents set of the variable X;.

k < 5.

Input: A set V of n variables, an ordering on the variables, a dataset D containing m cases.
Output: for each variable X; (i=1, . . ., n), a printout of the parents set II, .
Procedure MRMRG()

For every variable X;, call the procedure GSParentsSet (X, Pre;) and obtainII, ;

For every variable X;, output the parents set II, of the variable X;

Endproc

Procedure GSParentsSet(C, Pre;)
Initialize II, to NULL and OK to TRUE;
while OK

1
[ ]+1
Sort the variables in Pre; - I1, by descendant order according to the value of (1);
Obtain the top & variables {Y}, Y5, ..., Y;} from the sorted variables set Pre; - I1, ;
Y = argmax ‘:Lbi(Y/,i,l_l,):.;

mx = Argmax
Y, el oY)

> I(X:X)

1 X el

For every variable X€ Pre; -1, , compute the formula {I (X;0)-

If Lbi(Y,,,i,T1,)>0 then

Hr‘ = Hi U{Ymax} ’
Else
OK=FALSE;
Endif
Endwhile
Return IT,;
Endproc

} (D;

Fig. 1. Max-Relevance and Min-Redundancy Greedy BN Learning
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Given an ordering on the variables, MRMRG algorithm improves greedy BN
learning algorithms (such as K2 algorithm [3]) in the following two ways in order
to learn more accurately and efficiently on limited datasets.

Firstly, on limited datasets, the results of traditional scoring functions (such
as K2 score [3],BDe score {], etc) score(C, II; U X ;) have less and less reliability
and robustness with the dimension increase of II; U X, so that the formula
Y = arg  max score(C, II; U X;) cannot obtain the variable Y with the

J

i €Pre;—1I1;
maximal score, even cannot acquire a variable with approximately maximal score
sometimes. Since MRMR technology only uses 2-dimensional computation, it
has much higher reliability and robustness than traditional scoring functions
on limited datasets. Furthermore, according to the discussion in section 2.2,
we know that if one feature is selected at one time (that is Greedy search),
MRMR technology is nearly optimal implementation scheme of Max-Dependence
scheme, which is equivalent to the maximal score method, on limited datasets.
We consider that for some variable X; € Pre; — II;, if the value of {I(X;;C) —
|H7:1|+1 X%:Hi I(X;; X)} is the largest, then it is the most probable that the value

of the formula score(C, II; UXj) is the largest. Thus, MRMRG algorithm applies
Max-Relevance and Min-Redundancy (MRMR) feature selection technology and
replaces score(C, IT;UX ;) with the formula {I(X;; C)— IHi1|+1 > I(X;5X)}to
Xell;
obtain the variable Y which gets the maximal score. Firstly, MRMRG algorithm
selects the top k variables from the variables set Pre; — II; sorted according to
the value of the formula {I(X;;C)— | H1~1| i X%:H I(X;; X)} by descendant order.
Then, it take the variable Y with the largest Vallue of LBI function among the k
variables as the variable with the maximal score.

Secondly, MRMRG algorithm proposes LBI function to replace traditional
score increment functions (such as K2 [3],BDe [4]) to control the complexity of
Bayesian network and to avoid overfitting. When the dataset D is “sufficiently
large” for {X UY U II;}, LBI function is equivalent to K2 increment function.
When the dataset D is not ”sufficiently large” for {X UY U II;}, but there
exist sub-datasets Djj,—g,, that are "locally sufficiently large” for {X U Y}
given IT; = ¢;[*], MRMRG algorithm can also apply LBI function to improve
accuracy and avoid overfitting (see section 4).

5.1 The Time Complexity of MRMRG

r = maz(r;),i = 1,...,n, where r; is the number of values for the variable X;.

The complexity of the formula I(X;C) — |H-1|+1 > I(X;X;) is O(n). The
‘ XjEHi

complexity of computing Lbi(Y, 4, II;) is O(mnr). The while statement loops at
most O(n) times, each time it is entered. In the worst case, the complexity of
GSParentsSet(X;, Pre;) is O(kmn?r). The for statement loops n times. So, in
the worst case, the complexity of MRMRG() is O(kmn3r).
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6 Experimental Results

We implemented MRMRG algorithm, K2 algorithm[3], TPDA algorithm [2] and
presented the comparison of the experimental results for 3 implementations. .

Tests were run on a PC with Pentium4 1.5GHz and 1GB RAM. The operat-
ing system was Windows 2000. These programs were developed under Matlab
7.0. 5 Bayesian networks were used. Table 1 shows the characteristics of these
networks. The characteristics include the number of nodes, the number of arcs,
the maximal number of node parents/children(Max In/Out-Degree), and the
minimal /maximal number of node values(Domain Range).

From these networks, we performed these experiments with 200, 500, 1000
training cases each. For each network and sample size, we sampled 20 original
datasets and recorded the average results by each algorithm. Let £ = 3 in Fig.1.

Table 1. Bayesian networks

BN Nodes Num Arcs Num Max In/Out-Degree Domain Range
Insur 27 52 3/7 2-5
Alarm 37 46 4/5 2-4
Barley 48 84 4/5 2-67
Hailf 56 66 4/16 2-11
Munin 189 282 3/15 1-21

6.1 Comparison of Runtime Among Algorithms

A summary of the time results of the execution of all the 3 algorithms is in
Table 2. We normalized the times reported by dividing by the corresponding
running time of MRMRG on the same datasets and reported the averages over
sample sizes. [I0] Thus, a normalized running time of greater than 1 implies a
slower algorithm than MRMRG on the same learning task. A normalized running
time of lower than 1 implies a faster algorithm than MRMRG.

From the results, we can see that MRMRG has better efficiency than other
3 algorithms K2 and TPDA. In particular, for smaller sample sizes (200, 500,
1000), MRMRG runs several times faster than K2 and TPDA.

6.2 Comparison of Accuracy Among Algorithms

We compared the accuracy of BNs learned by these 3 algorithms according to
the BDeu score. The BDeu score corresponds to the posteriori probability of the
structure learned.[4] The BDeu scores of which Equivalent Sample Size (ESS) is
10 in our experiments were calculated on a seperate test set sampled from the
true BN containing 20000 samples. Tables 3-7 report the results.

From the results, we can see that MRMRG can learn more accurately than
TPDA on limited datasets. In particular, MRMRG has better accuracy than K2
on limited datasets.
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Table 2. Normalized Runtime

Size MRMRG K2 TPDA

200 1.0 2.39 8.82
500 1.0 5.57 7.61
1000 1.0 9.18 4.57

Table 4. Average BDeu(Alarm)

Size MRMRG K2 TPDA
200 -15.305 -16.069 -24.456
500 -13.858 -13.950 -18.097
1000 -13.319 -13.583 -15.429

Table 6. Average BDeu(Hailf)

Size MRMRG K2  TPDA
200 -72.138 -73.361 -106.135
500 -71.217 -72.662 -101.382
1000 -70.955 -71.734 -97.374

7 Conclusion

Accuracy are the main index in evaluating algorithms for learning BN. MRMRG
algorithm greatly reduces the number of high dimensional computations and im-
proves the accuracy of learning. The experimental results indicate that MRMRG
has better performance on accuracy than most of existing algorithms on limited

datasets.

between nodes.
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Abstract. An incremental one-class learning algorithm is proposed for
the purpose of outlier detection. Outliers are identified by estimating -
and thresholding - the probability distribution of the training data. In
the early stages of training a non-parametric estimate of the training data
distribution is obtained using kernel density estimation. Once the num-
ber of training examples reaches the maximum computationally feasible
limit for kernel density estimation, we treat the kernel density estimate as
a maximally-complex Gaussian mixture model, and keep the model com-
plexity constant by merging a pair of components for each new kernel added.
This method is shown to outperform a current state-of-the-art incremen-
tal one-class learning algorithm (Incremental SVDD [5]) on a variety of
datasets, while requiring only an upper limit on model complexity to be
specified.

1 Introduction

The problem of one-class learning (also known interchangeably as “outlier /
novelty / anomaly detection”) arises in a wide variety of different application
domains. The fundamental goal of one-class learning is to generate a rule that
distinguishes between examples of a known class of items and examples from
previously-unseen novel classes, on the exclusive basis of training examples from
the known class.

This problem presents itself in cases where one wishes to distinguish between
members of a class for which examples are abundantly available, and members
of another rarely observed class. This often arises when attempting to detect
abnormal activity, eg. jet engine failure, computer network intrusions, disease
symptoms, etc. In each of these domains, anomalous examples may be scarce or
entirely absent during training, but their subsequent identification is of crucial
importance. A wide variety of different methods have been proposed to address
this problem (see [3] for a review). However, almost all existing one-class clas-
sification algorithms require all training examples to be available at once, for a
single “batch” learning step: if a new example is presented, the classifier must be
retrained from scratch.

Since outliers might only be identifiable by their deviation from a normal
model, a key problem in one class learning is the choice of model complexity. In
some cases training data may be well described by the parameters of a single
Gaussian distribution, while in other cases - eg. where the data has multiple

J. Marques de S& et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 58-[67] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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modes or lies on a non-linear manifold - a more complex model is required. It
is important to select the correct level of model complexity: if it is too low, the
learned normal model may also include the anomalies that we wish to detect; if
it is too high, the model may not include the majority of normal examples.

In many cases it would be useful to be able to incrementally train a classi-
fier as data became available, without needing to pre-specify the level of model
complexity. In this paper we propose a new technique for performing incremen-
tal one-class learning, where only an upper limit on model complexity needs
to be specified. While computationally feasible, our algorithm attempts to es-
timate the underlying p.d.f. (probability density function) of the training data
using non-parametric kernel density estimation (with Gaussian kernels), thereby
generating a maximally complex one-component-per-example Gaussian mixture
model. Once a maximum number of mixture components has been reached, it is
kept constant by merging a pair of components for every new component added.
We choose pairs of components for merging based on an information theoretic
merging-cost function originally proposed by Goldberger and Roweis in [2].

Currently, at least two related techniques exist in the literature. In [9] Yaman-
ishi et al. propose an unsupervised outlier detection procedure “SmartSifter” in
which a Gaussian mixture model is trained using an on-line adaptation of the
EM (Expectation Maximization) algorithm. A key aspect of their adaptation is
the inclusion of “discounting” parameters which ensure that the effect of older
training examples on the model parameters is rapidly displaced by new exam-
ples. Each new training example is given a score based on the extent to which
it changes the model parameters: a comparatively high score, indicating a large
change in model parameters, indicates the possibility of an outlier. This algo-
rithm seems inappropriate for comparison with the proposed algorithm as it
models a finite window of training data preceding each new example, rather
than attempting to incrementally build a complete normal class description.

A more closely related algorithm has been proposed in [5], where Tax and
Laskov present an incremental training procedure for the SVDD (Support Vec-
tor Data Description) algorithm originally proposed by Tax and Duin in [7].
The SVDD algorithm attempts to find the smallest hypersphere that encloses
the training data, and allows more complex hyper-volumes (which may fit the
data better) to be obtained by introducing kernel functions which map the train-
ing data to a higher dimensional space [7]. In both batch and incremental forms,
the SVDD algorithm relies crucially on the correct choice of model complexity
parameters. Various methods have been proposed to address this issue in the
absence of example outliers, including: procedures for generating synthetic out-
liers (Tax and Duin [4]) and, more recently, a consistency based approach which
takes the simplest possible classifier and increases its complexity parameter un-
til the proportion of correctly recognized training data starts to fall (Tax and
Muller [8]). The incremental variant of SVDD does not include any on-line model
complexity selection, but it is conceivable that the batch optimization methods
could be applied to a pre-existing dataset to optimally parametrize the classifier
before using it for on-line training.
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We provide a detailed description of the proposed algorithm in Section 2l and
then illustrate its performance on a variety of datasets in Section Bl where we
also compare its performance with the incremental SVDD algorithm [5] (opti-
mized using the consistency criterion proposed in [8]). Our algorithm is shown
to yield equivalent, often better, performance than the incremental SVDD algo-
rithm without requiring any time-consuming parameter optimization.

2  Algorithm

The proposed algorithm is designed to receive a sequence of labeled multivariate
training data, and to determine - at any stage in the training process - whether
or not new data are outliers. This is achieved by estimating the underlying
probability density function that gave rise to the data, and setting a threshold
on this density: if a new example has a probability lower than the threshold, it
is classified as an outlier.

2.1 Density Estimation

Phase 1: Kernel Density Estimation. Initially the probability density of
the data is determined using Kernel Density Estimation. This technique allows
us to evaluate the probability of a new example by taking a uniformly weighted
combination of a set of Gaussian kernels (with identical covariance matrices X))
centered on each of the training data. Thus, finding the probability of a new
data point z, given a set of N training data X = {z1,...,2n}, simply consists
of evaluating the following function:

N
1 T -1
p(z) _ § (z—zp)" X7 (z—xp) (1)
(2m)? IE PN =
The factor ( )}\EI 1 (where d refers to the dimensionality of the data) ensures
2m) 2 2

that the resulting probability distribution integrates to 1. Training the model is
straight-forward: when a new training example xygw is received, it is simply
added to the set X:

X—-XU {xNEW} (2)

The only remaining problem is the choice of the covariance matrix 2. To re-
duce computational cost, we use a uniform covariance matrix ¥ (o) = I? - o2,
which leaves only a single parameter o to be determined. The value of ¢ is chosen
using the “leave-one-out” likelihood criterion proposed by Duin in [I] (recently
shown to be a good model selection criterion for multivariate kernel density
estimation by Zhang et al. in [I0]). This technique allows us to find a param-
eter that maximizes the likelihood of the dataset, while avoiding the problem
of the data likelihood tending towards infinity as ¢ — 0. For a given value of
o, the “leave-one-out” likelihood function combines the log-likelihoods for every
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individual example x,, given a model constructed from all others Vx # z,, as
follows:

2mo) 2

Zlog( LN D Vet ><>> )

Every time the training dataset is updated (during the kernel density estimation
phase) we evaluate @) for a range of values surrounding the previous o, and
choose o = argmax,, (LL(0)).

Phase 2: Mixture Model Merging. Since the computational cost of evaluat-
ing () scales linearly with the quantity of training data, it eventually becomes
infeasible to estimate the p.d.f. of the data in this fashion. Noting that the kernel
density estimate is essentially a maximally-complex Gaussian mixture model, we
adapt a method proposed by Goldberger and Roweis for reducing the complexity
of Gaussian mixture models in [2]: once the maximum feasible model complexity
has been reached, we keep it constant by merging a pair of components for each
new component added.

Initialization. Once the maximum model complexity has been reached N =
Npar we initialize a data structure to store a Gaussian mixture model with
weights (initially uniform), and covariances (set to the final value estimated in
the kernel density phase), and means (the training data) as follows:

wi..N = ]{(’1

_ 2
21...N =17 Ufinal (4)
H1..N = T1..N

For each pair of components G; = {w;, u;, X;} and G; = {wj, u;, X;} a merg-
ing cost is then calculated using () - explained in the next section - forming
an N x N matrix C. This one-off] calculation of Nm”(j\;m”_l) different cost
values is computationally feasible for values of N, where it is still possible to
evaluate () in reasonable time.

Merging Strategy. In this stage every new training example still contributes a
Gaussian kernel. However the covariance matrix is now fixed to the final estimate
obtained in the preceding stage, and we employ a merging strategy to keep the
number of mixture components constant. For every new component added, a
pair of components (which may include the new one) is merged as follows:
Wmerge(i,j) — Wi + wy
Hmerge(i,j) = wif—iw]' i + w;j—jwj © g
Emerge(i,j) = wiqj}jwj (Zz + (,u% - ,umerge(i,j))(,ui - ,UJmerge(i,j))T)
F ety (Zi+ (15 = tmerge(i.) (i = Hmerge(i)) ")

(5)

1 Subsequently maintaining this cost matrix only requires a fixed number of Nyqq + 1
cost evaluations for each new training example.
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We wish to choose a pair of components to merge in a way that minimizes
the resulting change in the p.d.f. encoded by the model. The Kullback-Leibler
divergence provides a means of assessing the “damage” caused by replacing a
particular pair of components with a single merged component. Essentially, the
KL divergence KL(P||Q) = [ p(z)log? Ezg dx quantifies the expected infor-
mation loss per sample when an approx1mat1ng distribution @ is substituted for
a true distribution P. For a pair of Gaussian distributions G, = {u,, Xp} and

Gq = {pq, X4}, it can be calculated as follows [2]:

1 X _ _
£(GIG) =} (108 ) + TH(ET 50 4 (i 1) Z5 oy = )" = d
P

(6)

This allows us to quantify the cost of replacing components G; and G (where

i # j) with their merged counterpart G,cpgei,j) by calculating a weighted

combination (as proposed by Goldberger and Roweis in [2]) of their respective
Kullback-Leibler divergences from Gerge(i,j) as follows:

COSt(G’i7 GJ) = wiK:E(GiHGmerge(i,j)) + ij:E(GjHGmerge(i,j)) (7)

Updating Procedure. When a new training example xnypgw arrives, a tempo-
rary new component Gn,,,,+1 = { y. 1+1 cenew, 14 U?znal} is created, and the

weights of existing components are rescaled by a factor of N i where N, is
the total number of training examples received before the new one. The cost
matrix is augmented with a new row/column for the new component, and a
pair of components is chosen such that {G;,G;} = argming, g, (cost(Gi, Gj)).
If {Gi,G;} are both existing components, then G; is replaced with Giergei,j)
and G is replaced with the new component; alternatively if G; is the new com-
ponent then G; is simply replaced with G,,cpge(i j)- The temporary component
GN,,..+1 1s then removed, and the merging cost matrix C' updated accordingly.
This procedure requires a fixed total of Ny, + 1 evaluations of (@) for every
new training example, as the cost matrix only needs to be updated for entries
corresponding to merged/new components.

2.2 Classification Threshold

Given the proposed density estimation method, an important remaining issue is
the choice of classification threshold. A naive approach would be to set the thresh-
old at that the level of the least probable (given the current model) training exam-
ple, thereby correctly classifying all training data as normal. However, it is quite
possible that the least probable training example - which will be located in the
most sparsely populated region of training data - may have a probability value
equivalent to that of the outliers we wish to detect. To avoid this problem, and to
make the method robust to potential outliers in the training set, we set the thresh-
old at a value that deliberately misclassifies a certain proportion of the training
data as outliers. In the experiments described in the following section we choose
a value of 10%, aiming to learn a classifier that filters out 90% of normal data.
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3 Experiments

In this section we measure the classification performance of the proposed algo-
rithm on a variety of datasets, showing how classification performance changes
as the model is trained on more training examples. To place the performance
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Fig. 1. Results for the synthetic spiral dataset. See text for description.
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Fig. 2. Results for real datasets. See text for description.

of the proposed algorithm in context we compare its performance to that of the
incremental SVDD algorithm [5], making comparisons at the point where both
algorithms have been trained on all training examples in a given dataset.

We use a freely available implementation of the incremental SVDD algorithm,
incsvdd, contained in the DDtools MATLAB toolbox [6]. In all tests we use the
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Is the Computational Complexity Really Bounded?
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Fig. 3. Measuring computational complexity

radial basis kernel function, and optimize the kernel parameter (for the whole
training dataset) using the consistent occ function (also from [6]) which im-
plements the consistency-based model selection criterion proposed in [8]. We
initially apply this criterion to a range of 20 linearly spaced values between
the shortest and longest Euclidean distances observed within the dataset; to
search for potentially better parameter values on a finer scale, we then run a
second parameter optimization for a further 20 values surrounding the opti-
mal parameter from the first set. As for the proposed algorithm, we set the
SVDD threshold parameter at a level that aims to reject to 10% of the training
data.

Synthetic Dataset. An initial experiment was carried out on a synthetic 2
dimensional dataset: we defined a spiral shaped region which we used to di-
vide a set of uniformly distributed random datapoints into a hypothetical nor-
mal class of datapoints (points in the spiral region) and outliers (all other
points). We used 2500 spiral points for training the algorithm, and a further 2500
points from the spiral along with 2500 outlier points for testing it, as shown in
Figure [l

For this test (as for all subsequent tests) we set the upper limit on the number
of mixture components Ny,q, to be 100. The middle section of figure [l shows
the configuration of the 100 Gaussian components before the merging phase
commences, and at the end of the training process. The resulting model organi-
zation appears to accurately reflect the shape of the spiral: indeed, at the end
of training the algorithm correctly classifies 88.13% of all test data, with a True
Positive ratdd of TP = 86.1% and a False Positive ratd] of FP = 0.0984%. The
TP and FP curves shown in the lower left hand section of Figure [l indicate
that the classification performance increased in a stable fashion as more training
examples were processed. In this plot, and in subsequent plots of this type, the
vertical dotted line indicates the start of the merging phase.

At the end of training, the incremental SVDD algorithm correctly classified
79.44% of the test data (with TP = 89.69% and FP = 0.308%), misclassifying

2 Indicating normal examples correctly identified as normal.
3 Indicating outliers incorrectly classified as normal.
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a much larger number of outliers as normal. The ROCH curve in the lower right
hand section of Figure [l shows the different TP and F P values obtained as the
(training data rejection) threshold is varied for each classifier, indicating that the
proposed algorithm outperforms incremental SVDD algorithm across the range
of possible thresholds. Both plots in Figure [l show the mean performance for 10
different random orderings of the training data.

Real Datasets. A series of subsequent experiments were then carried out on
three different real-world datasets obtained from the UCI Machine Learning
Repositoryﬁ:

1. The Wisconsin Breast Cancer Database, which contains 699 (9-dimensional)
datapoints, containing 458 normal examples and 241 cases of cancer.

2. The Letter Recognition Database, which contains 20,000 (16-dimensional)
parametrizations of examples of printed letters, with 26 classes corresponding
to the alphabet. We use the 789 examples of the letter A’ as a hypothetical
normal class, and all other classes as outliers.

3. The STATLOG Landsat Satellite Database, which contains 6435 (36 dimen-
sional) vectors corresponding multispectral images of 6 different types of
ground coverage: we use the 1533 examples of 'red soil’” as the normal class.

For each of these datasets we use 90% of examples of the chosen normal class
as training data, and the remaining 10% for testing. All subsequent experiments
are performed for 10 different testing/training permutations of the normal class.
Again, we test our algorithm with a maximum complexity level of 100 com-
ponents, and compare it to the consistency-optimized incremental SVDD al-
gorithm. The classification results illustrated by the ROC curves in Figure 2
indicate that the proposed algorithm consistently outperforms the incremental
SVDD algorithm, although the performance obtained on the Cancer and Satellite
datasets is very similar.

Computational Complexity. To confirm the assertion that the proposed algo-
rithm has bounded computational complexity, we recorded the time taken to
train our algorithm on each datapoint during the tests on the 36 dimensional
Satellite dataset. This is plotted (excluding the point where the merging matrix
is first initialized) in Figure[3 indicating that a fixed processing time per example
is indeed reached soon after the merging phase commences. Our algorithm takes
an average time of 565.56 4 0.32 seconds to train on the 1379 examples, while
the SVDD algorithm takes a significantly shorter time of 6.25 4+ 0.34 seconds
to train, albeit after a parameter optimization step which takes 482.53 + 60.21
seconds. Evaluation times for the two algorithms are similar: our algorithm takes
2.8840.02 seconds to classify 5056 testing examples, while the incremental SVDD
algorithm takes 2.01 + 0.102 seconds to classify the same examples.

4 Receiver Operating Characteristic.
5 http://www.ics.uci.edu/ mlearn/MLRepository.html
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4 Discussion

We have proposed a simple procedure for incrementally training a one-class
classifier to perform outlier detection, without the need for any time-consuming
model optimization procedures. Despite its simplicity, the proposed algorithm
appears to perform better than the incremental SVDD algorithm, even though
the parameters of the latter were being chosen through a lengthy optimization
process. The fact that the optimization process proposed in [8] did not find
parameters that allowed incremental SVDD to outperform our algorithm does
not mean that such parameters could not be found in principle: it does, however,
illustrate the the key strength of our algorithm - the fact that it automatically
generates models that achieve a useful level of outlier detection performance.
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Abstract. Estimating a priori the size of neural networks for achieving
high classification accuracy is a hard problem. Existing studies provide
theoretical upper bounds on the size of neural networks that are unre-
alistic to implement. This work provides a computational study for esti-
mating the size of neural networks using as an estimation parameter the
size of available training data. We will also show that the size of a neural
network is problem dependent and that one only needs the number of
available training data to determine the size of the required network for
achieving high classification rate. We use for our experiments a threshold
neural network that combines the perceptron algorithm with simulated
annealing and we tested our results on datasets from the UCI Machine
Learning Repository. Based on our experimental results, we propose a
formula to estimate the number of perceptrons that have to be trained
in order to achieve a high classification accuracy.

1 Introduction

On non-seperable problems, finding the best function for minimizing the classifi-
cation error is an NP-complete problem. Blum and Rivest [I1] proved that even
for a very small network to find weights and thresholds that learn any given
set of training examples is an NP-complete problem. Hoffgen and Simon [17]
deal with the problem of learning a probably almost optimal weight vector for
a neuron, finding that it is an NP-complete problem. Also finding an optimum
network configuration for solving combinatorial optimization problems is not an
easy task [34]. Thus, establishing an optimal weight configuration of threshold
units (in order to minimize the error rate) cannot be executed in efficient time
and therefore only approximations of optimum solutions can be achieved.

In order for neural networks to approximate high classification rates, which
is equivalent to low error rates, to a specific classification problem it usually
requires a certain amount of adjustments, which are apparently unavoidable in
the light of the No Free Lunch Theorems; cf. [33]. The need for tunning network
parameters when the classification accuracy is very important may lead us to
lots of experiments for establishing a high classification rate. A piori estimation
of these parameters may help in reducing the time and effort to find an appro-
priate neural network for achieving high classification accuracy. An important

J. Marques de Sa et al. (Eds.): ICANN 2007, Part I, LNCS 4668, pp. 68{77] 2007.
© Springer-Verlag Berlin Heidelberg 2007
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adjustment related to neural networks implementations is the number of hidden
units (network size) that should be trained in order to approximate a function
that best describes the training data.

The problem of finding the smallest network that can realize an arbitrary
function given a set of m vectors in n dimensions defines the circuit complexity
problem [I0]. The circuit complexity problem is of great importance for hard-
ware implementations and tries to find tight bounds for the number of units
used to realize an arbitrary function. Identifying sequences of Boolean func-
tions {f(z1,...,2n) 52, With “superpolynomial” (or exponential) gate number
in constant depth circuits of unbounded fan-in gates is a very difficult prob-
lem and only slow progress has been made over the past decades. For example,
Razborov and Widgerson [27] designed a sequence of functions that requires at
least the superpolynomial number n?(?°9") of threshold gates in any circuit of
depth 3. Furthermore, it has been shown [3I12] that computing the permanent
of an n X n matrix requires a superpolynomial number of gates in any threshold
circuit of constant depth; for more information about the computational power
of small depth circuits, see [31]. In [I0] Beiu surveys a large number of bounds
for a number of different network approaches.

Theoretical analysis on lower and upper bounds on VC-dimension [30] has
been performed for some type of networks. Baum and Haussler [89] show that
in a feedforward network with W weights and N computational threshold units
the VC-dimension is bounded VC < 2-W -logs(e - N). Maas [25] has obtained
a lower bound Wlog,W for certain types of multilayer feedforward network of
threshold units. Other tight bounds for specific type of functions have been
obtained in [BITITATSITIR9/32]; see Anthony and Bartlett [5] for a review of the
field.

Bounding VC-dimensions is a challenging task in mathematical investigations
of neural networks which provides a number of sophisticated mathematical tools.
The bounds, however, tend to be too large, since they provide such guarantees
of generalisation for any probability distribution of training examples and for
any training algorithm that minimizes the training error on the training ex-
amples. Therefore, the VC-dimension is a very general theoretical measure of
pattern classification ability. The proposed bounds are usually unrealistic and
with limited practical value for real world problems. Other alternative meth-
ods for calculating more realistic bounds should be considered, as in Haussler
et al. [I6], where a probability distribution was introduced for considering the
performance of a classifier that implements a Bayes optimal classification algo-
rithm [I3]. Empirical studies investigating the relation of classification ability
to parameters of the problem are important for more realistic VC-dimension
bounds.

In this work we relate the network learning capacity to the number of existing
training samples. We propose a formula of an upper bound of size S = 8- \/ 2n/n
computational units as sufficient for a small error rate, where n = log|Sg| is
the number of bits neccessary to enumerate all existing training data. Since in
the problems that we used from the UCI Repository n < 12 and S < 147,
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the proposed formula leads to realistic to implement neural networks. With this
formula we also show that the size of the neural network depends on the size of
existing training samples Sy. This means that if more training data emerge in
a problem then a larger network is required. Consequently, this also proves that
the number of trained units cannot be constant for all classification problems
but is a problem dependent parameter.

2 Methodology

Our experiments are performed with LSA machine [Tl2], a neural network that
combines the classical perceptron algorithm [28] with a specific type of simu-
lated annealing [I5] as the stochastic local search procedure for finding thresh-
old gates of a classification circuit. The simulated annealing procedure employs
a logarithmic cooling schedule c¢(k) = @/1n (k 4 2) search strategy where the
“temperature” decreases at each step. The simulated annealing-based extension
of the perceptron algorithm is activated when the number of misclassified ex-
amples increases for the new hypothesis compared to the previous one. In this
case, a random decision is made according to the rules of simulated annealing. If
the new hypothesis is rejected, a random choice is made among the misclassified
examples for the calculation of the next hypothesis. A detailed description on
the LSA machine can be found in [112].

We will experiment with depth-two circuits where depth-one consists of com-
putational units and depth-two of a voting function that decides the output class.
Depth-four networks with the LSA machine lead approximately to the same size
of networks for achieving low error rates [21]. The dataset D is divided into two
disjoint sets of data: the training dataset |Sy| for training the neurons and the
testing dataset |St| for evaluating the classification error of the network. Each
neuron at depth-one is trained by a sample set of size p randomly drawn from
the available training data set Sp.

According to the No-Free-Lunch-Theorems, the performance of learning al-
gorithms is problem-dependent. Four problem-dependent parameters, the net-
work size N, the sample size p for training a unit, the length of inhomoge-
neous Markov chain k£ and the constant @ of the simulated annealing cool-
ing schedule, are required for the LSA machine. The constant @ determines
an escape from local minima in the simulated annnealing process and is ex-
pressed in terms of a percentage of the size p of the sample set used to train
a neuron, i.e. ¢ = G - p, where G € (0,1) . For the estimation of the net-
work size we chose two datasets from the UCI Machine Learning Repository
(http://www.ics.uci.edu/~mlearn/MLRepository.html), where one of the
datasets induces three classes.

Splice-junction Gene Sequences Database (SJGSD): The database con-
sists of 3190 vectors representing 60 attributes. There are three classes with
distribution: 25% for IE (767 instances); 25% for EI (768 instances); and 50%
for “Neither” (1655 instances). In order to discriminate between the three classes,
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we introduce three databases, each related to a single class as positive examples:
the “IE database” consists of 767 positive examples (IE class) and 2423 negative
examples (union of EI class and “Neither” class); the “EI database” consists
of 768 positive examples and 2422 negative examples; the “Neither database”
consists of 1655 positive examples and 1535 negative examples.

Wisconsin Breast Cancer Database (WBCD): WBCD is a binary classi-
fication problem where each vector represents 9 features. The output indicates
either a benign case (positive example) or a malignant case (negative example).
The data set consists of 699 samples, where 16 samples have missing values which
are discarded in a pre-processing step. The remaining 683 data are divided into
444 benign and 239 malignant cases.

2.1 Estimations of Circuit Size

Classification problems P can be encoded as Boolean functions fp on n input
variables where the sample sets usually provide only a tiny fraction of input-
output pairs of fp. For the splice-junction data we have “DNA windows” of
length 60 with the usual DNA information from {A, C,G,T}. Therefore, in bi-
nary notation we have n = 120. For the WBCD we have 9 attributes, each taking
a value from 1 to 10, i.e. the binary encoding leads us to n = 36.

In both cases the sample data provide only a tiny fraction of the theoretically
possible number of function values. A priori, we can argue that not all combi-
nations of binary inputs are feasible (or even a small fraction only has indeed
a valid interpretation). We take this into account by simply encoding (enumer-
ating) the sample data instead of using the variable number n as the input to
the core of the classification circuit: We apply a methodology which is well-
known from the synthesis of partially defined Boolean functions [22] in order
to obtain some rough estimations of the size of circuits representing the sam-

ple data. We denote by sf :=| Sy, | the size of the training data set, i.e. we
have ssthce = 2127 and sYP°d = 455. By np we denote the number of binary

variables calculated from the number of input attributes and the range of val-
ues each attribute can take, i.e. ngplice = 120 and nywpea = 36. The s’LJ training
data can be enumerated by using nt := [log s¥'] binary variables, i.e. we have
nSPi® = 12 and nyPed = 9.
For a given problem P, we introduce the classification circuit Cp: The circuit
is built from threshold functions of unbounded fan-in (as basic gates; cf. [23125])
and has minimum size with respect to the gate number S(Cp). The number
of input nodes is np. We now try to approximate Cp by a composition of two
circuits .
Cp = Clnp—nf] + C[nz], (1)
P

where C[np — nj | is a multi-output circuit that calculates the encoding of el-
ements from Sy,. The encoding then becomes the binary input to C[nf]. Based
on the results about local encoding [22] we assume

S(C[np—ﬂif}) < S(C[nf]) and therefore 8(5}\:) < 2-S(C[nf]). (2)
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Actually, S(C[np — nf’]) depends strongly on the distribution of sample data
within the whole domain of feasible samples of P and (@) is valid for sufficiently
large n and complex P only. Nevertheless, we will focus on S(C[nf]) alone
which seems to be justified by our experimental observation that indeed the
chosen problems are associated with complex functions fp.

To estimate S(C[nf]), we use the asymptotically optimal design of Boolean
functions by liner threshold functions as presented in [23]:

S(fa) < 2- \/2: : (1 +0(\/2"/n)), (3)

where f, = f(z1,...,2,) is an arbitrary Boolean function. Moreover, almost all
Boolean functions f,, asymptotically require 2 - \/ 2™ /n linear threshold gates for
their representation [23] (i.e. almost all functions are as complex as the most
complex functions).

We computed classification results for depth-two circuits C. The remaining
parameter settings are k = 20,000, and ¢ = p/3. The size p is determined by
preliminary experiments on depth-two circuits for Ny = 50. The experiments
lead us to the following settings: peplice := | St | /4 for all three classes and

Pwbed = | S1, /6.

Table 1. Error Rates on Test Sets for Networks of Size Nper

Nper  Splice-Junction WBCD
IE EI Neither
304.1% 3.4% 6.3% 1.1%
48 4.0% 3.3% 6.0%  0.9%
66 4.0% 3.3% 6.0% 0.9%
80 4.0% 3.3% 6.0% 1.2%
84 4.0% 3.3% 6.0% 1.2%
130 3.9% 3.3% 6.0% 1.1%
154 3.9% 3.3% 6.0% 1.1%
180 3.8% 3.2% 5.9% 1.1%
252 3.8% 3.1% 5.9% 1.0%
300 3.8% 3.1% 5.9% 1.0%

Let RT denote the maximum of the three best (not necessarily different)
classification rates recorded in Table 1 for problem P and circuits C. We set:

Sk = min S(C'[e = R]), (4)

min R:RP

where e = R means an error rate of R by the given circuit. We now allow a
margin of deviation from R” by A. As an estimation of the circuit size that
ensures a high classification rate we take

SP:i=max{S(C"[e=R]): (R" <R<R"+A)&(S(C"le=R)<SEL.)}. (5)
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If the max-operation is over an empty set, we take S¥ := SF. . Taking the
max-operation in (B gives some confidence that the error rates have already
stabilised. The calculation of the corresponding values for the four classification
problems is summarised in Table 2. From Table 1 and Table 2 we conclude that

Table 2. Circuit size estimates compared to Sfred

Circuit size Splice-Junction WBCD
estimates IE EI Neither
Sp 154 154 154 180
st 147 147 147 60

pred

for P = WBCD the differences in the classification rate are very small. For the
Splice-junction data, where the size of sample sets is much larger, we observe an
improvement and then stabilisation of error rates with increased circuit size.

We compare (see Table 2) the values of Sp to Sf. 4 == 2 -2- (2n% /nP)1/2,
cf. @), where x = 4 is chosen on the following grounds: The RHS of (@) doubles
the complexity S (51\3), and we assume that the third factor on the RHS of (@),
which summarises the complexity of auxiliary sub-circuits, at most doubles the
product of the first two factors for relatively small values of (2% / nt)1/2. Thus,
we provide empirical evidence that

8- (2" [nf)!/? (6)

is an appropriate upper bound for the size of a neural network in order to achieve
a high generalisation capability of the network.

We note that the simple rules from (@) and (@) generate the same Sp for
P e {IE, EI, Neither}. Furthermore, if P = WBCD and Npe, = 48 or Nper = 66,
the error rate in Table 1 is only 0.9%, i.e. S¥24! = 60 from Table 3 seems to be
a good estimation.

In the context of machine learning, the RHS of []) provides an estimation
of the size of elements of the hypotheses space (circuits of threshold functions)
that represent particular objects (concepts). The method to prove the lower
bound for @) was utilised in [24125] (cf. also []) to obtain a lower bound for a
sufficient number of samples such that the error rate on test samples is below
¢ with probability at least (1 — §). The lower bound is expressed in terms of
the VC-dimensions of neural nets, which basically equals the number of neurons
(threshold gates); see also [26]. The lower bound is of the type

max{4-n-(n+k)*/e-log(13/e); 4/ -log (2/6)}, (7)

where k is the number of gates in neural nets (which represent the hypotheses).
We note that k = SE 4 (or even k = 2 (2% /nP)1/2) and ¢ in the range of
values from Table 1 would result in a number of examples much larger than the

number of samples available from our datasets, which is relatively independent
of 6.
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3 Evaluation of the Estimated Network Size on
Additional Datasets

We will evaluate in this Section the proposed upper bound on more datasets
from the UCI Repository.

Hayes-Roth Datasets (Hayes): The datasets has three classes (named hayes-
1, hayes-2 and hayes-3 in the rest of the text), which consist of five numerical
attributes. The dataset in UCI Repository consists of a training file of 132 sam-
ples and a test file of 28 samples. We merged the two file and used 2/3 of data
for training and 1/3 for testing, therefore we reduced the number of training
samples and increased the number of test samples, preserving however in our
testset the 28 original test samples.

Iris Plant Datasets (Iris): The set consists of 3 classes of 50 instances each,
where each class refers to a type of iris plant. One class is linearly separable
from the other two; the latter are not linearly separable from each other. There
are four attributes containing measurements in cm of sepal length, sepal width,
petal length, and petal width, and the task is to identify the three classes: Iris
Setosa (linearly seperable), Iris Versicolour, and Iris Virginica. We denote the
three classification problems, as iris-1, iris-2 and iris-3.

The Monk’s Problems (Monk): The Monk-1 and Monk-2 datasets, used
in this research, have a target concept to be identified. Monk-1 consists of 556
samples, monk-2 consists of 601 samples, and both datasets, if we omit the “id”
attribute, which is unique for each sample, have 6 attributes.

US Congressional Voting Records Database (Votes): The US Congres-
sional Voting Records (Votes) data set includes votes for each of the U.S. House
of Representatives Congressmen on 16 key issues (attributes) identified by the
Congressional Quarterly Almanaco (CGA) in 1984. The dataset consists of 435
samples of two classes ( 267 democrats, 168 republicans). The dataset consists
of 16 features, which are key issues for congressman’s votes for which Boolean
data (as yes, no votes) exist in voting records.

Waveform Datasets (Wave): Waveform is a three class dataset (waveform
1, waveform 2, waveform 3) where each class is a “wave” generated from a
combination of 2 of 3 “base” waves. The dataset contains 5,000 samples, with
21 attributes with continuous values from 0 to 6. We used in our research these
datasets with their original numerical values.

We will apply the formula to the above described collection of additional
datasets. Table [B] shows the estimated circuit size for domains with |D| data,
where the available training data are |Sg| = 2/3-|D|. 'LS’ indicates a zero error
classification for the dataset, and we consider the set as lineary seperable. There-
fore such datasets will be excluded from further investigation. From preliminary
experiments for N = 50 units, p = |S.|/2, G = |SL|, and K=25,000 we have
fine-tuned for each dataset the rest of parameters G, p and K. With respect to
parameters G, p and K, we compare according to Equation (@) the classification
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Table 3. Datasets and Predicted Network Size

Domain |D| |Sz| n7’ Sprea
Hayes-Roth 1 160 106 7 35
Hayes-Roth 2 160 106 7 35
Hayes-Roth 3 160 106 7 LS
Tris 1 150 100 7 LS
Iris 2 150 100 7 35
Iris 3 150 100 7 35
Monks 1 556 370 9 60
Monks 2 601 401 9 60
Votes 435 290 9 60

Waveform 1 5,000 3,333 12 147
Waveform 2 5,000 3,333 12 147
Waveform 3 5,000 3,333 12 147

error from the predicted size of neural network N = |S| from Table Bl to half of
circuit sizes N = |S|/2 and double circuit sizes N = 2 - |S| from the predicted
size. Comparison results are shown in Table El

Table 4. Classification Errors for |S|, |S|/2, 2-|95]

Domain ed for |S|  e3 for |S|/2 e for 2-|S]
Hayes-Roth 1 11.1% +1.0% 11.9% +2.1% 11.1 +1.0%
Hayes-Roth 2 11.5% £2.0% 11.9% £+2.6% 10.4 +£1.7%
Iris 2 0.7% +0.1% 0.7% +0.1% 0.7 £0.1%
Iris 3 0