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This chapter presents numerical methods for the solution of Boltzmann equations as
applied to the analysis of transport and relaxation phenomena in condensed matter
systems.

8.1 Boltzmann Equation for Quasiparticles

Besides the traditional approaches, such as variational methods or the expansion
of the distribution function in a symmetry adapted orthonormal set of functions,
stochastic methods, either based on the sampling of the distribution function by su-
perparticles, the particle-in-cell Monte Carlo collision (PIC-MCC) approach, or the
direct simulation of the master equation underlying the Boltzmann description, the
ensemble Monte Carlo methods, are discussed at a tutorial level. Expansion meth-
ods are most appropriate for the solution of Boltzmann equations which occur in the
Fermi liquid based description of transport in normal metals and superconductors.
Stochastic methods, on the other hand, are particularly useful for the solution of
relaxation and transport problems in semiconductors and electronic devices.

8.1.1 Preliminary Remarks

The Boltzmann equation (BE) is of central importance for the description of trans-
port processes in many-particle systems. Boltzmann introduced this equation in the
second half of the 19th century to study irreversibility in gases from a statistical me-
chanics point of view. Envisaging the molecules of the gas to perform free flights,
which are occasionally interrupted by mutual collisions, he obtained the well-known
equation [1]

∂g

∂t
+ v · ∇rg +

F

M
· ∇vg =

(
∂g

∂t

)
c

, (8.1)

where g(r,v, t) is the velocity distribution function, M is the mass of the gas
molecules, F is the external force, and the r.h.s. is the collision integral. With this
equation Boltzmann could not only prove his famous H-theorem, which contains
a definition of entropy in terms of the velocity distribution function and states that
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for irreversible processes entropy has to increase, he could also calculate transport
properties of the gas, for instance, its heat conductivity or its viscosity.

In the original form, the BE holds only for dilute, neutral gases with a short range
interaction, for which nR3 � 1, where n is the density of the gas andR is the range
of the interaction potential. However, it has also been applied to physical systems,
for which, at first sight, the condition nR3 � 1 is not satisfied. For instance, the
kinetic description of plasmas in laboratory gas discharges or interstellar clouds is
usually based on a BE, althoughR→∞ for the Coulomb interaction. Thus,nR3 �
1 cannot be satisfied, for any density. A careful study of the Coulomb collision
integral showed, however, that the bare Coulomb interaction has to be replaced by
the screened one, resulting in a modified BE, the Lenard-Balescu equation [2, 3],
which can then indeed be employed for the theoretical analysis of plasmas [4, 5].

In the temperature and density range of interest, ionized gases are, from a sta-
tistical point of view, classical systems. The technical problems due to the Coulomb
interaction not withstanding, it is therefore clear that a BE, which obviously belongs
to the realm of classical statistical mechanics, can be in principle formulated for a
plasma.

The BE has also been successfully applied to condensed matter, in particular, to
quantum fluids, metals, and semiconductors [6, 7, 8], whose microscopic descrip-
tion has to be quantum-mechanical. Hence, transport properties of these systems
should be calculated quantum-statistically, using a quantum-kinetic equation, in-
stead of a BE [9, 10, 11]. In addition, naively, one would not expect the condition
nR3 � 1 to be satisfied. The densities of condensed matter are too high. A pro-
found quantum-mechanical analysis in the first half of the 20th century [12, 13, 14]
revealed, however, that the carriers in condensed matter are not the tightly bound,
dense building blocks but physical excitation which, at a phenomenological level,
resemble a dilute gas of quasiparticles for which a BE or a closely related kinetic
equation can indeed be formulated.

The quasiparticle concept opens the door for Boltzmann transport in condensed
matter, see Fig. 8.1. Depending on the physical system, electrons or ion cores in a
solid, normal or superfluid/superconducting quantum fluids etc., various types of
quasiparticles can be defined quantum-mechanically, whose kinetics can then be
modelled by an appropriate semi-classical BE. Its mathematical structure, and with
it the solution strategy, is essentially independent of the physical context. Below,
we restrict ourselves to the transport resulting from electronic quasiparticles in a
crystal. Further examples of semi-classical quasiparticle transport can be found in
the excellent textbook by Smith and Jensen [7].

8.1.2 Electronic Quasiparticles in a Crystal

To facilitate a qualitative understanding of the quasiparticle concept as applied to
electrons, we recall the quantum mechanics of a single electron in a crystal. Writ-
ing the electrons’ wave function in Bloch form ψnk(r) = eik·runk(r)/

√
V with
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Fig. 8.1. This cartoon puts the content of this chapter into perspective. For neutral or ionized
gases, the BE and its range of validity, can be directly derived from the Hamilton function for
the classical gas molecules. In that case, the BE determines the distribution function for the
constituents of the physical system under consideration. In the context of condensed matter,
however, the BE describes the distribution function for the excitation modes (quasiparticles)
and not for the constituents (electrons, ion cores, ...) although the BE has to be obtained –
by quantum-statistical means – from the constituents’ Hamilton operator. The definition of
quasiparticles is absolutely vital for setting-up a BE. It effectively maps, as far as the kinetics
is concerned, the quantum-mechanical many-particle system of the constituents to a semi-
classical gas of excitation modes

an appropriately normalized, lattice periodic Bloch function1 unk, the one-particle
Schrödinger equation, which determines the quasiparticle energies En(k) with n
the band index and k the wave vector in the first Brillouin zone, is given by

[
�2(∇+ ik)2

2me
+ V (r)

]
unk(r) = En(k)unk(r)

−
∫

dr′Σ(r − r′, En(k))eik·(r′−r)unk(r′) , (8.2)

where we separated the lattice-periodic potential V (r) originating from the rigidly
arranged ion cores from the energy dependent potentialΣ(r, E) (self-energy) which
arises from the coupling to other charge carriers as well as to the ion cores’ devia-
tions from the equilibrium positions (phonons).

Let us first consider (8.2) forΣ = 0. An electron moving through the crystal ex-
periences then only the lattice periodic potential V . It gives rise to extremely strong
scattering, with a mean free path of the order of the lattice constant, which could
never be treated in the framework of a BE. However, this scattering is not random.
It originates from the periodic array of the ion cores and leads to the formation of
bare energy bands. Within these bands, the motion of the electron is coherent, but
with a dispersion which differs from the dispersion of a free electron. Because of

1 The Bloch functions are orthonormal when integrated over a unit cell vcell : v−1
cell

∫
cell

dr unk(r)∗un′k′(r) = δnn′δk,k′ .
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this difference, the electron no longer sees the rigid array of ion cores. Its mean free
path exceeds therefore the lattice constant, and a BE may become feasible.

However, in a crystal there is not only one electron but many, and the lattice
of ion cores is not rigid but dynamic. Thus, electron-electron and electron-phonon
interaction have to be taken into account giving rise to Σ �= 0. As a result, the
Schrödinger equation (8.2) becomes an implicit eigenvalue problem for the renor-
malized energy bands En(k) which may contain a real and an imaginary part. For
the purpose of the discussion, we assumeΣ to be real. Physically, the dressing of the
electron incorporated in Σ arises from the fact that the electron attracts positively
charged ion cores and repels other electrons, as visualized in Fig. 8.2. The former
gives rise to a lattice distortion around the considered electron and the latter leads
to a depletion of electrons around it2.

While coherent scattering on the periodic array of ion cores transforms bare
electrons into band electrons, which is favorable for a BE description, residual in-
teractions turn band electrons into dressed quasiparticles, which may be detrimen-
tal to it, because the dressing is energy and momentum dependent. Quasiparticles
are therefore complex objects. Nevertheless, they are characterized by a dispersion,
carry a negative elementary charge, and obey Fermi statistics, very much like band
electrons. Provided they are well-defined, which means that the imaginary part of
Σ, which we neglected so far in our discussion, is small compared to the real part
of Σ, a BE may be thus also possible for them. However, the justification of the

Fig. 8.2. Graphical representation of the many-body effects contained in the selfenergy Σ.
The lattice distortion (dashed lines) and the depletion region (large solid circle) turn bare
band electrons (visualized by the small bullet) into quasiparticles which carry the lattice dis-
tortion and the depletion region with it when they move through the crystal

2 Here, exchange effects are also important, because electrons are fermions. At a technical
level, the depletion region is encoded in the Coulomb hole and the screened exchange
selfenergy.
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quasiparticle BE will be subtle. Indeed, there are no pre-canned recipes for this
task. Each physical situation has to be analyzed separately, using quantum-statistical
techniques [9, 10, 11].

For standard metals [15] and superconductors [16, 17, 18, 19], for instance, the
BE for quasiparticles can be rigorously derived from basic Hamiltonians, provided
the quasiparticles are well-defined. The main reason is the separation of energy
scales [20]: A high-energy scale set by the Fermi momentum kF and a low-energy
scale given by the width Δk of the thermal layer around the Fermi surface, see
Fig. 8.3. The latter also defines the wavelength 1/Δk of the quasiparticles respon-
sible for transport. Because of the separation of scales, an ab initio calculation of
transport coefficients is possible along the lines put forward by Rainer [21] for the
calculation of transition temperatures in superconductors, which is a closely related
problem, see also [22].

For semiconductors, on the other hand, a BE for quasiparticles can only be rigor-
ously derived when they are degenerate, that is, heavily doped and thus metal-like;
the scales are then again well separated. However, when the doping is small, or
in moderately optically excited semiconductors, the electrons are non-degenerate.
Thus, neither a Fermi energy nor a transport energy scale can be defined. In that
case, a BE for quasiparticles is very hard to justify from first principles [23], despite
the empirical success the BE has also in these situations.

8.1.3 Heuristic Derivation of the Quasiparticle Boltzmann Equation

Since we will be mainly concerned with computational techniques developed for
the solution of the quasiparticle BE, we skip the lengthy quantum-statistical

kF

Δk

thermal layer 

k=0

Fermi
surface

Fig. 8.3. Separation of the momentum (and thus energy) scales in a metal. The Fermi momen-
tum kF sets the high-energy scale, whereas the thermal smearing-out of the Fermi surface,
Δk, gives the scale relevant for transport. Using quantum-statistical methods, a correlation
function called gK , which is closely related to the distribution function g can be systemati-
cally expanded in Δk/kF ∼ kT/EF . If the quasiparticles have long enough lifetimes, gK

reduces, in leading order, to g and satisfies a BE [20]
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derivation and simply summarize the necessary conditions a many-particle system
has to satisfy to be suitable for a BE-based analysis:

(i) The quasiparticles should be well-defined objects. The time they spend in a
state with energy En(k), that is, the average time before scattering between
quasiparticles, with material imperfections, or with phonons3 takes place,
should be large compared to �/En(k).

(ii) The coupling to the scatterer (impurities, quasiparticles, and phonons) should
be weak, that is, the collision integral in the quasiparticle BE should be calcu-
lable perturbatively.

(iii) External electro-magnetic fields and temperature gradients should be weak
enough so that their effect during a collision can be neglected. In addition, their
spatio-temporal variation has to be small within a mean free path or a mean
free time.

When conditions (i)–(iii) are satisfied, a BE exists for quasiparticles. This is the
regime of Boltzmann transport in condensed matter.

The structure of the BE for quasiparticles can be guessed heuristically. In anal-
ogy to the BE (8.1), it should be an equation of motion for the quasiparticle distri-
bution function in the nth band, gn(r,k, t). Notice, instead of the velocity v, the
momentum k is now used, because k is the relevant one-particle quantum number
in a given band. The distribution function contains both r and k as independent
variables, whereas the uncertainty principle prohibits a simultaneous measurement
of the two. Thus, by necessity, the quasiparticle BE has to be a rather subtle semi-
classical equation.

Within the semi-classical framework, quasiparticles perform classical intra-band
free flights and occasionally scatter on imperfections, phonons, or other quasipar-
ticles, which then leads to transitions between momentum states and possibly be-
tween bands. Accordingly, the equation of motion which governs the free flight of
a quasiparticle in an electro-magnetic field specified by a vector potential A and a
scalar potential U can be derived from the classical Hamiltonian [24]

H = En

(
1
�
p +

e

�c
A(r)

)
− eU(r) , (8.3)

whereEn(k) is the band energy obtained from the solution of the Schrödinger equa-
tion (8.2), �k is the kinetic momentum, and p and r are, respectively, the canonical
momentum and coordinate of the quasiparticle. From the Hamilton equations it then
follows, that a quasiparticle in the nth band centered at r and k in phase space has
to move according to

3 Naturally, phonons comprising the lattice distortion accounted for in the definition of
quasiparticles do not lead to scattering. But there is a residual electron-phonon interac-
tion which induces transitions between different quasiparticle states.
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dr

dt

)
n

= vn(k) =
1
�
∇kEn(k) ,

(
�
dk

dt

)
n

= F n = −e
(

E +
1
c
vn(k)×B

)
(8.4)

with E = −∇rU and B = ∇r ×A, which immediately leads to the quasiparticle
BE

∂gn
∂t

+ vn · ∇rgn − e

�

(
E +

1
c
vn ×B

)
· ∇kgn =

(
∂gn
∂t

)
c

, (8.5)

when the time evolutions of the distribution function due to streaming (l.h.s.) and
scattering (r.h.s.) are balanced.

Suppressing the variables r and t, the general structure of the collision integral
is (

∂gn
∂t

)
c

=
∑
n′k′
{Sn′k′,nkgn′(k′)[1− gn(k)]− Snk,n′k′gn(k)[1− gn′(k′)]}

(8.6)

with Sn′k′,nk the probability for scattering from the quasiparticle state n′k′ to the
quasiparticle state nk, which has to be determined from the quantum mechanics of
scattering. Its particular form depends on the scattering process (see below). The
collision integral consists of two terms: The term proportional to 1 − gn(k) ac-
counts for scattering-in (gain) processes, whereas the term proportional to gn(k)
takes scattering-out (loss) processes into account. Note, for non-degenerate quasi-
particles4, gn(k)� 1 and the Pauli-blocking factor 1− gn(k) reduces to unity.

Some of the numerical techniques we will discuss below are tailored for the so-
lution of the steady-state, spatially uniform, linearized quasiparticle BE, applicable
to situations, where the external fields are weak and the system is close to thermal
equilibrium. This equation can be obtained from the full BE (8.5) through an expan-
sion around thermal equilibrium. In the absence of magnetic fields and for a single
band it reads [6, 7]

− eE · v ∂f
∂E

∣∣∣∣
E(k)

=
(
Cg(1)

)
(k) , (8.7)

where the r.h.s. symbolizes the linearized collision integral and g(1) = g − f
is the deviation of the distribution function from the Fermi function f(E) =
[exp(E/kBT ) + 1]−1. Here T is the temperature and E measures the energy from
the chemical potential. With the help of the detailed balance condition

Sk′,kf(E(k′))[1 − f(E(k))] = Sk,k′f(E(k))[1− f(E(k′))] , (8.8)

the linearized collision integral becomes5

4 Quasiparticles with mass m∗ are non-degenerate when nλ3
dB � 1, where n is the density

and λdB =
√

h2/2πm∗kBT is the de Broglie wavelength of the quasiparticles.
5 Recall, we suppress in the collision integral the variables r and t.
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Cg(1)

)
(k) =

∑
k′
Sk,k′

{
g(1)(k′)

f(E(k))
f(E(k′))

− g(1)(k)
1− f(E(k′))
1− f(E(k))

}

=
∑
k′
Q̃k,k′g(1)(k′) ,

(8.9)

where in the second line we defined a matrix

Q̃k,k′ = Sk,k′
f(E(k))
f(E(k′))

−
∑
k′′

Sk′,k′′
1− f(E(k′′))
1− f(E(k′))

δkk′ . (8.10)

8.2 Techniques for the Solution of the Boltzmann Equation

In the previous section we phenomenologically derived the BE for quasiparticles6

and listed the necessary conditions for Boltzmann transport in condensed matter.
The standard way to analyze transport processes in condensed matter consists then
of three main steps:

(i) Determine appropriate interaction mechanisms for the quasiparticles responsi-
ble for the transport phenomenon under consideration and calculate the rele-
vant scattering probabilities. This step requires quasiparticle energies and wave
functions. For electronic quasiparticles, they have to be obtained from (8.2)
using, for instance, the ab initio methods described in Chap. 14.

(ii) Write down the BE in terms of the external driving terms and scattering proba-
bilities and solve it.

(iii) Calculate the relevant currents for a confrontation with experiments. For weak
external fields, i.e., in the linear regime, use the currents to extract transport co-
efficients (electric and thermal conductivity, mobility etc.) which may be more
suitable for a comparison with experiments.

The calculation of the currents or transport coefficients is straightforward pro-
vided the solution of the BE is known. Solving the BE is, however, a serious task. It
is a complicated non-linear integro-differential equation, which in almost all cases
of interest cannot be solved analytically. Noteworthy exceptions are the linearized
BE for a classical gas with an interaction potentialU(r) ∼ r−4 [7] and the linearized
BE for an isotropic Fermi liquid at very low temperatures, where particle-particle
Coulomb scattering dominates [25, 26].

Usually the BE has to be solved with a computer. Two groups of techniques can
be roughly distinguished. The first group consists of classical numerical techniques
for the solution of integro-differential equations (approximating differentials by fi-
nite differences, integrals by sums, and using numerical routines for manipulating
the resulting algebraic equations). They are mostly applied to situations where ex-
ternal fields and temperature gradients are weak and the BE can be linearized around
the local thermal equilibrium. In principle, however, they can be also used to solve

6 From now on, BE refers to quasiparticle BE.
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the full BE. With an eye on the calculation of the electric conductivity of metals
and the calculation of hot-electron distributions in semiconductors, we will describe
two such methods: Numerical iteration [27, 28, 29, 30, 31, 32, 33, 34, 35] and al-
gebraization through an expansion of the distribution function in terms of a set of
basis functions [36, 37, 38, 39, 40, 41, 42, 43].

The second group consists of Monte Carlo techniques for the direct simulation
of the stochastic motion of quasiparticles, whose distribution function is governed
by the BE. These techniques are the most popular ones currently used because the
concepts they invoke are easy to grasp and straightforward to implement on a com-
puter. In addition, Monte Carlo techniques can be applied to far-off-equilibrium
situations and are thus ideally suited for studying hot-electron transport in semicon-
ductor devices which is of particular importance for the micro-electronics industry.
Below, we will present two different Monte Carlo approaches. The first approach,
which evolved into a design tool for electronic circuit engineers, samples the phase
space of the quasiparticles by monitoring the time evolution of a single test-particle
[44, 45, 46, 47, 48, 49]. Whereas the second approach generates the time evolution
of N -electron configurations in a discretized momentum space [50]. This is partic-
ularly useful for degenerate electrons, where Pauli-blocking is important.

8.2.1 Numerical Iteration

8.2.1.1 Spatially Uniform, Steady-State BE with Linearized Collision Integral

Based on the linearized BE (8.7), numerical iteration has been extensively used for
calculating steady-state transport coefficients for metals in uniform external fields
[27, 28, 29, 30]. In contrast to the full BE, the linearized BE is not an integro-
differential equation but an inhomogeneous integral equation to which an iterative
approach can be directly applied. As an illustration, we consider the calculation of
the electric conductivity tensor σ.

To set up the iteration scheme, g(1) is written in a form which anticipates that
g(1) will change rapidly in the vicinity of the Fermi surface, see Fig. 8.3, while it
will be a rather smooth function elsewhere. The relaxation time approximation [6, 7]
suggests for g(1) the ansatz

g(1)(k) = − ∂f
∂E

∣∣∣∣
E(k)

eE · v(k)φ(k) , (8.11)

where E(k) and v(k) are, respectively, the energy measured from the chemical
potential and the group velocity of the quasiparticles. In terms of the function φ(k),
which can be interpreted as a generalized, k-dependent relaxation time, the electric
current becomes [6, 7]

j = 2e
∫

dk

(2π)3
v(k) g(1)(k)
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= −2e2
∫

dk

(2π)3
φ(k)

∂f

∂E

∣∣∣∣
E(k)

v(k) : v(k)E

= σE , (8.12)

from which we can read off the electric conductivity tensor

σ = −2e2
∫

dk

(2π)3
φ(k)

∂f

∂E

∣∣∣∣
E(k)

v(k) : v(k) , (8.13)

where : denotes the tensor product and the factor two comes from the spin. Note,
although the particular structure of (8.11) is inspired by the relaxation time approx-
imation, the iterative approach goes beyond it, because it does not replace the lin-
earized collision integral by −g(1)/τ , where τ is the relaxation time, but keeps it
fully intact. In addition, it is also more general than variational approaches [6, 7]
because the function φ(k) is left unspecified.

To proceed, we insert (8.11) into (8.7). Using the collision integral in the form
(8.9) and defining

X(k; E) = −eE · v(k) , (8.14)

we obtain

X(k; E)
∂f

∂E

∣∣∣∣
E(k)

=
∑
k′
Sk,k′

[
1− f(E(k′))
1− f(E(k))

∂f

∂E

∣∣∣∣
E(k)

X(k; E)φ(k)

− f(E(k))
f(E(k′))

∂f

∂E

∣∣∣∣
E(k′)

X(k′; E)φ(k′)
]
, (8.15)

which can be simplified to

φ(k) =
1 +

∑
k′ Sk,k′ [1−f(E(k′))]X(k′;E)

[1−f(E(k))]X(k;E) φ(k′)∑
k′ Sk,k′ 1−f(E(k′))

1−f(E(k))

, (8.16)

when we recall the identity

∂f

∂E

∣∣∣∣
E(k)

=
1
kBT

f(E(k))[1 − f(E(k))] . (8.17)

Notice that the precise form of the single band scattering probability Sk,k′ is im-
material for the iteration procedure which can thus handle all three major scat-
tering processes: Elastic electron-impurity, inelastic electron-phonon, and electron-
electron scattering.

Equation (8.16) is an inhomogeneous integral equation suitable for iteration:
Starting with φ(0) = 0 (thermal equilibrium), a sequence of functions φ(i), i ≥ 1,
can be successively generated, which comes with increasing i arbitrarily close to
the exact solution, provided the process converges. Convergence is only guaranteed
when the kernel is positive and continuous. This is not necessarily the case, but it
can be enforced when selfscattering processes are included, see below.
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The iteration process needs as an input the scattering probability. The most
important scattering processes affecting the electric conductivity of metals are
electron-impurity and electron-phonon scattering. The former determines the con-
ductivity at low temperatures whereas the latter at high temperatures7. In our nota-
tion, these two scattering probabilities are given by [28]

S
imp
k,k′ =

2π
�
|M imp(cos θkk′)|2δ(E(k′)− E(k)) , (8.18)

Sph
k,k′ =

2π
�

∑
qλ

∑
Qi

∣∣M ph
λ (k′ − k)

∣∣2{Nλqδ(E(k′)− E(k)− �ωλq) δk′−k,q+Qi

+[1 +Nλq] δ(E(k′)− E(k) + �ωλq)δk−k′,q+Qi

}
, (8.19)

whereM imp(cos θkk′) is the electron-impurity coupling which depends on the angle
θkk′ between k and k′ (isotropic elastic scattering), M ph

λ (k′ − k) is the electron-
phonon coupling, and Nλq = [exp(�ωλq) − 1]−1 is the equilibrium distribution
function for phonons with frequencyωλq; q, λ, and Qi are the phonon wave-vector,
the phonon polarization, and the ith reciprocal lattice vector, respectively. The cou-
pling functions are material specific and can be found in the literature [6, 7, 8].

In order to obtain a numerically feasible integral equation, (8.18) and (8.19)
are inserted into (8.16) and the momentum sums are converted into integrals. The
integral over k′ is then transformed into an integral over constant energy surfaces
using8 ∑

k′
→

∫
dk′

(2π)3
→ 1

(2π)3

∫
dE(k′)

∫
dΩ(k′)
�|v(k′)| , (8.20)

where dΩ(k′) is the surface element on the energy surface E(k′). The δ-functions
appearing in the scattering probabilities (8.18) and (8.19) are then utilized to elim-
inate some of the integrations thereby reducing the dimensionality of (8.16). For
isotropic bands φ(k) → φ(E(k)), and one ends up with an one-dimensional in-
tegral equation which can be readily solved by iteration. For more details see
[27, 28, 29, 30].

8.2.1.2 Spatially Uniform BE with the Full Collision Integral

The iterative approach can be also applied to the full BE. This is of particular interest
for the calculation of distribution functions for electrons in strong external fields
[31, 32, 33, 34, 35]. In that case, however, the BE has to be first converted into an
integral equation. This is always possible because the free streaming term in (8.5)
has the form of a total differential which can be integrated along its characteristics.

7 Electron-electron scattering does not affect the electric conductivity, as long as normal
processes are only taken into account. Umklapp processes, on the other hand, contribute
to the conductivity, but the matrix elements are usually very small.

8 The volume is put equal to one.
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As an illustration, we consider a spatially uniform, non-degenerate electron system9

in a single band and an arbitrarily strong electric field. Then we can write the BE as{
∂

∂t
− e

�
E · ∇k + λk + Sk

}
g(k, t) =

∑
k′

[Sk′,k + Skδk,k′ ]g(k′, t) , (8.21)

where we introduced the scattering-out rate

λk =
∑
k′
Sk,k′ , (8.22)

and added on both sides of the equation a selfscattering term Skg(k, t), which has
no physical significance, but is later needed to simplify the kernel of the integral
equation.

To transform (8.21) into an integral equation, we introduce path variables k∗ =
k + e/�Et∗ and t∗ = t which describe the collisionless motion of the electrons
along the characteristics of the differential operator [31, 45]10. In terms of these
variables, (8.21) can be written as

d
dt∗

{
g(k(k∗, t∗), t∗) e

∫ t∗
0 dyλ̃k(k∗,y)

}
= e

∫ t∗
0 dyλ̃k(k∗,y)

∑
k′
S̃k′,k(k∗,t∗)g(k′, t∗)

(8.23)

with λ̃k = λk + Sk and S̃k′,k = Sk′,k + Skδkk′ . Integrating this equation from t∗1
to t∗2 > t∗1 and setting k = k∗ − eEt∗2/�, t = t∗2, and t′ = t∗1 yields

g(k, t) =g
(

k +
eE

�
(t− t′), t′

)
e−

∫
t
t′ dyλ̃k+eE(t−y)/�

+

t∫
t′

dt∗
∑
k′

e−
∫

t
t∗ dyλ̃k+eE(t−y)/� S̃k′,k+eE(t−t∗)/� g(k′, t∗) . (8.24)

This equation, which is an integral representation of the BE (8.21), can be further
simplified when we consider the physical content of the terms on the r.h.s. The first
term denotes the contribution to g(k, t) originating from electrons which were in
state k + eE(t − t′)/� at time t′ and drifted to the state k at time t without being
scattered. The second term, on the other hand, denotes the contribution of electrons
which were scattered from any state k′ to the new state k + eE(t − t∗)/� at any
time t∗ between t and t′ and arrive at the state k at time t without being scattered. In
both terms, the time t′ is arbitrary. It can be any time. The only requirement is that
t′ < t. We can thus take the convenient limit t′ → −∞, in which case the first term
on the r.h.s. of (8.24) vanishes because g(k, t) vanishes for k → ∞. The integral
representation of (8.21) reduces therefore to

9 No Pauli blocking, i.e. 1 − g → 1 in (8.6).
10 A generalization of the procedure to spatially non-uniform situations is conceivable, but

will not be discussed here.
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g(k, t) =

t∫
−∞

dt∗
∑
k′

e−
∫ t

t∗ dyλ̃k+eE(t−y)/� S̃k′,k+eE(t−t∗)/� g(k′, t∗) . (8.25)

This form of the BE is not yet particularly useful, because the time integral
in the exponent contains an integrand which almost always cannot be integrated
exactly. Even if it can, the result would be a complicated function, unsuited for fast
numerical manipulations. It is at this point, where the selfscattering term, which we
artificially added on both sides of the BE, can be used to dramatically simplify the
integral equation, as was first noticed by Rees [32]. Since the selfscattering rate Sk

is completely unspecified, we can use it to enforce a particularly simple form of λ̃k.
An obvious choice is

λ̃k = λk + Sk = Γ ≡ const (8.26)

with a constantΓ > supλk in order to maintain the physical desirable interpretation
of Sk = Γ−λk in terms of a selfscattering rate, which, of course, has to be positive.
With (8.26), (8.25) reduces after a re-labeling of the time integration variable to

g(k, t) =

∞∫
0

dτ
∑
k′

e−Γτ S̃k′,k+eEτ/�g(k′, t− τ) . (8.27)

This form of the uniform BE is well-suited for an iterative solution [32, 34]. The
parameter Γ turns out to be crucial. It not only eliminates a complicated integration
but it also enforces a positive, continuous kernel which is necessary for the iteration
procedure to converge [33].

From a numerical point of view, integral equations are less prone to numerical
errors than differential equations. It can be therefore expected that an iteration based
solution of (8.27) is numerically more robust than a numerical treatment of the BE
in integro-differential form. Another nice property of the iterative approach is that it
processes the whole distribution function which is available any time during the cal-
culation. This is particularly useful for degenerate electrons, where Pauli-blocking
affects electron-electron and electron-phonon scattering rates. In the simplest, and
thus most efficient, particle-based Monte Carlo simulations, in contrast, the distri-
bution function is only available at the end of the simulation, see Sect. 8.2.3.

At first sight the dimensionality of the integral equation11 seems to ruin any
efficient numerical treatment of (8.27). This is however not necessarily so. The
time integration, for instance, is a convolution and can be eliminated by a Laplace
transform (t ↔ s). In the Laplace domain, (8.27) contains s only as a parameter
not as an integration variable. The efficiency of the method depends then on the
efficiency with which the remaining k-integration can be performed. For realistic
band structures and scattering processes this may be time consuming. However, it
is always possible to express g(k, s) in a symmetry adopted set of basis functions,
thereby converting (8.27) into a set of integral equations with lower dimensionality.

11 Three momentum variables and one time variable.
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Hammar [35], for instance, used Legendre polynomials to expand the angle depen-
dence of the distribution function and obtained an extremely fast algorithm for the
calculation of hot-electron distributions in p − Ge and n − GaAs. In addition, it
is conceivable to construct approximate kernels, which are numerically easier to
handle.

8.2.2 Expansion into an Orthonormal Set of Basis Functions

Another technique which is often used to solve the BE is the expansion of the one-
particle distribution function in terms of an orthonormal set of basis functions. The
BE reduces then to a set of integro-differential equations with less independent vari-
ables. The method leads thus to a partial algebraization of the BE.

A typical example from plasma physics is the Lorentz ansatz for the distribution
function

g(r,v, t) = g(0)(r, v, t) + g(1)(r, v, t) · v
v

+ ... (8.28)

which comprises the first two terms of the expansion of the velocity space angle
dependence of g(r,v, t) in terms of spherical harmonics. In particular, calculations
of transport coefficients for gas discharges are based on this expansion, see, for in-
stance, the review by Winkler [5]. The simplification arises here from the fact that
the expansion coefficients g(i) with i = 0, 1, ... are independent of the angle vari-
ables in velocity space. Hence, the equations determining g(i), which are obtained
from the BE by inserting (8.28) and averaging over the velocity space angles, have
two less independent variables. Symmetries of the discharge can be used to further
reduce the number of independent variables. This depends, however, on the details
of the discharge and thus on the particular form of the BE.

Naturally, the expansion method is most useful for the spatially-uniform, steady-
state, linearized BE, where the expansion coefficients depend at most on the magni-
tude of the velocity and the collision integral is linear in the expansion
coefficients. As an example from condensed matter physics, we discuss here the
expansion method developed by Allen [37] and Pinski [38]. It is an adaptation
of (8.28) to quasiparticles and has been applied to various metals and alloys
[39, 40, 41, 42, 43]. In that case, the algebraization is even complete leading to
a linear set of algebraic equations for the expansion coefficients, which are just con-
stants. In addition, the Allen-Pinski expansion typifies an ab initio approach because
it is usually furnished with first-principle electronic structure data.

Having in mind the calculation of the electric conductivity of a metal, we again
start from the linearized BE (8.7), but now with the linearized collision integral
written in the form (8.9). Defining the function φ by

g(1)(k) = − ∂f
∂E

∣∣∣∣
E(k)

φ(k) , (8.29)

which deviates slightly from the definition used in the previous subsection, and as-
suming the electric field to be in x-direction, the electric current in x-direction be-
comes, see (8.12),
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jx = −2e
∑

k

vx(k)
∂f

∂E

∣∣∣∣
E(k)

φ(k) (8.30)

with φ satisfying the linearized BE in the form

− eExvx(k)
∂f

∂E

∣∣∣∣
E(k)

=
∑
k′
Qkk′φ(k′) , (8.31)

where the kernel of the collision integral is given by

Qkk′ = − ∂f
∂E

∣∣∣∣
E(k)

Q̃kk′ (8.32)

with Q̃kk′ defined in (8.10).
Although the iterative approach described in the previous subsection could be

used to calculate φ(k) from (8.31), this is not very efficient, in particular, for metals
with a complicated Fermi surface, where the required numerical integrations can be
rather subtle and time-consuming. Allen [37] suggested therefore to expand φ(k) in
a complete set of functions, which takes the symmetry of the crystal and thus the
topology of the Fermi surface into account, and to transform (8.31) to a symmetry-
adapted matrix representation which is then solved by matrix inversion. For that
purpose Allen [37] introduced a particular biorthogonal product basis, consisting of
Fermi surface harmonics FJ (k) and energy polynomials σn(E(k)).

The strength of Allen’s approach stems form the mathematical properties of
the basis functions. The Fermi surface harmonics FJ (k) with J = X,Y, Z,X2, ...
are polynomials of the three Cartesian components of the velocity v(k). They are
periodic functions in k-space and orthogonal when integrated over the Fermi surface
[36]. More precisely∑

k

FJ (k)FJ′ (k)δ(E(k)− E) = N(E)δJJ′ (8.33)

with N(E) =
∑

k δ(E(k) − E) the single-spin density of states at energy E; re-
call, we put the volume equal to one. Fermi surface harmonics are useful for the
description of variations of φ(k) on the energy shell, which may be anisotropic
and even consisting of various unconnected pieces. For spherical energy shells, the
FJ(k) reduce to spherical harmonics Ylm(k̂) with k̂ the unit vector in direction of
k. For general topologies they have to be constructed on a computer. The Fermi
surface harmonics transform as basis functions of the irreducible point group of
the crystal for which they are constructed. This is a particularly useful property,
because it leads to a block-diagonal matrix representation for the BE (8.7). For
single sheet, cubic symmetry energy surfaces, the lowest order Fermi surface har-
monics are FJ (k) = vJ(k)/v(E(k)) with J = X,Y, Z and a normalization fac-
tor v(E) = [N(E)−1

∑
k vx(k)2δ(E(k) − E)]1/2, which is the root-mean-square

velocity at the energy surface E. Further details about Fermi surface harmonics,
in particular, the construction principle for arbitrary energy surfaces, can be found
in [36].
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The energy polynomials σn(E) are nth order polynomials in E/(kBT ), which
are orthogonal with respect to the weight function−∂f/∂E with

∫
dE

(
− ∂f
∂E

)
σn(E)σn′(E) = δnn′ . (8.34)

They will be used to describe variations perpendicular to the Fermi surface. The
first two polynomials are σ0(E) = 1 and σ1(E) =

√
3E/(πkBT ). Higher or-

der ones have to be again constructed on a computer, using the recursion relation
given by Allen [37]. As pointed out by Pinski [38], another possible choice for
the energy polynomials, which may lead to faster convergence in some cases, is
σn(E) =

√
2n+ 1Pn(tanh[E/(2kBT )]), where Pn(E) is the nth order Legendre

polynomial.
Allen used the functions FJ(k) and σn(E(k)) to define two complete sets of

functions which are biorthogonal. With the proper normalization, they are given by

χJn(k) =
FJ (k)σn(E(k))
N(E(k))v(E(k))

,

ξJn(k) = −FJ (k)σn(E(k))v(E(k))
∂f

∂E

∣∣∣∣
E(k)

(8.35)

with N(E) and v(E), respectively, the single-spin density of states and the root-
mean-square velocity at energy E (see above). With the help of (8.33) and (8.34),
it is straightforward to show that χJn(k) and ξJn(k) satisfy the biorthogonality
conditions ∑

k

χJn(k)ξJ′n′(k) = δJJ′δnn′ ,

∑
Jn

χJn(k)ξJn(k′) = δkk′ . (8.36)

Any function of k can be either expanded in terms of the functions χJn(k) or in
terms of the functions ξJn(k). The functionsχJn are most convenient for expanding
functions which are smooth in energy. Since in (8.29) we split-off the factor−∂Ef ,
we expect φ(k) to exhibit this property and thus write

φ(k) =
∑
Jn

φJnχJn(k) . (8.37)

The functions ξJn, on the other hand, vary strongly in the vicinity of the Fermi
surface. They are used at intermediate steps to express functions which peak at the
Fermi energy.

We are now able to rewrite (8.31). Using the definition of ξJn, the l.h.s. imme-
diately becomes

l.h.s. of (8.31) = eExξX0(k) . (8.38)

For the r.h.s., we find
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r.h.s. of (8.31) =
∑
k′k′′

Qkk′δk′k′′φ(k′′)

=
∑
J′n′

∑
k′
Qkk′χJ′n′(k′)

∑
k′′

ξJ′n′(k′′)φ(k′′)

=
∑
J′n′

∑
k′
Qkk′χJ′n′(k′)φJ′n′ , (8.39)

where in the second line we expressed the Kronecker delta via (8.36) and in the third
line we used the inverse of (8.37)

φJn =
∑

k

ξJn(k)φ(k) . (8.40)

Multiplying (8.38) and (8.39) from the left with χJn(k) and summing over all k
leads to the final result

Exδn0δJX =
∑
J′n′

QJn,J′n′φJ′n′ (8.41)

with QJn,J′n′ =
∑

kk′ χJn(k)Qkk′χJ′n′(k′).
Equation (8.41) is the symmetry-adapted matrix representation of the linearized

BE (8.31). Its solution gives the expansion coefficients φJn. To complete the cal-
culation, we have to express the electric current jx in terms of these coefficients.
Using in (8.30) the definition for ξX0(k) and the biorthogonality condition (8.36),
we obtain

jx = 2eφX0 , (8.42)

which with (8.41) yields

σxx = 2e2[Q−1]X0,X0 . (8.43)

Thus, in Allen’s basis, the xx-component of the electric conductivity tensor is just
the upper-most left matrix element of the inverse of the matrix which represents the
linearized collision integral. Remember, because of the symmetry of the basis func-
tions, this matrix is block-diagonal. The numerical inversion is therefore expected
to be fast.

The numerical bottleneck is the calculation of the matrix elements QJn,J′n′ .
They depend on the symmetry of the metal and, of course, on the scattering pro-
cesses. For realistic band structures, this leads to rather involved expressions, which,
fortunately, are amenable to some simplifications arising from the fact that in met-
als kBT/EF � 1, where EF is the Fermi energy. The k-integration can thus be
restricted to the thermal layer with width Δk, see Fig. 8.3. For explicit expressions,
we refer to the literature [37, 38, 39, 40, 41, 42, 43]. Although Allen’s approach
is not straightforward to implement, it has the advantage that it can handle com-
plicated Fermi surfaces in a transparent manner. In practice, the matrix elements
QJn,J′n′ are expressed in terms of generalized coupling functions which can be
either directly obtained from experiments or from ab initio band structure calcula-
tions. Allen’s method of solving the linearized BE is therefore geared towards an ab
initio calculation of transport coefficients for metals.
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8.2.3 Particle-Based Monte Carlo Simulation

The most widely accepted method for solving the electron transport problem in
semiconductors is the particle-based Monte Carlo simulation [44, 45, 46, 47, 48, 49].
In its general form, it simulates the stochastic motion of a finite number of test-
particles and is equivalent to the solution of the BE. This technique has been, for
instance, used to simulate field-effect transistors from a microscopic point of view,
starting from the band structures and scattering processes of the semiconducting
materials transistors are made off.

A Monte Carlo simulation of Boltzmann transport is a one-to-one realization of
Boltzmann’s original idea of free flights, occasionally interrupted by random scat-
tering events, as being responsible for the macroscopic transport properties of the
gas under consideration; here, the electrons in a semiconductor. The approach relies
only on general concepts of probability theory, and not on specialized mathematical
techniques. Because of the minimum of mathematical analysis, realistic band struc-
tures, scattering probabilities, and geometries can be straightforwardly incorporated
into a Monte Carlo code. However, the method has some problems to account for
Pauli-blocking in degenerate electron systems. It has thus not been applied to de-
generate semiconductors, metals, or quantum fluids.

8.2.3.1 Spatially Uniform, Steady-State BE with the Full Collision Integral

First, we focus on the simplest situation: Steady-state transport in a spatially uni-
form, non-degenerate semiconductor. For the techniques described in the previous
Subsections, this situation is already rather demanding, in particular, when a realis-
tic electronic structure is used, which leads to involved k-summations. The Monte
Carlo simulation, on the other hand, requires no k-summations. Moreover, in that
particular case, transport coefficients for electrons can be calculated rather easily be-
cause ergodicity guarantees that the simulation of a single test-particle is sufficient
to sample the whole phase space.

Instead of attempting to solve
{
− e

�
E · ∇k + λk + Sk

}
g(k, t) =

∑
k′

[Sk′,k + Skδkk′ ] g(k′, t) , (8.44)

which is the BE appropriate for steady-state transport in a single band of a semicon-
ductor subject to an uniform electric field, the Monte Carlo approach simulates the
motion of a single test-electron in momentum space. For that purpose, it generates a
large number of free flights, where the test-electron drifts freely in the electric field
until it suffers one of the possible scattering processes, see Fig. 8.4. The technique
uses random variables to represent the duration of the free flight, to select the type
of scattering which terminates the free flight, and to determine the momentum of the
test-electron after the scattering event, which is then used as the initial momentum
for the next free flight. The steady-state does not depend on the initial condition for
the first free flight. Any convenient choice can therefore be made.
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time

t1 t2 t3 t4 t5

Fig. 8.4. Schematic representation of the particle-based Monte Carlo simulation of steady-
state Boltzmann transport in spatially uniform solids. A single test-particle suffices here be-
cause ergodicity guarantees that the whole phase space is sampled. The test-particle performs
free flights in the external field, randomly interrupted by one of the possible scattering pro-
cesses (black bullets). The simulation consists of a finite number of free flights, starting from
an arbitrary initial condition (grey bullet). For each free flight the simulation uses random
numbers to generate its duration ti, to select the terminating scattering process, and to deter-
mine the test-particles’ momentum after the scattering event, which then serves as the initial
momentum for the next free flight

Because of ergodicity, the ensemble average of a single-particle observable
O(k) is equal to the time average of this observable. Splitting the total simulation
time ts into a finite number of free flights with duration ti we obtain

〈O〉 = 〈O〉ts =
∑
i

1
ts

ti∫
0

dt O(k(t)) , (8.45)

whereO can be, for instance, the energy of the electronE(k) or its velocity v(k) =
�−1∇kE(k). Note, for each free flight, the time integration starts all over again
from zero. The test-electron has no memory, reminiscent of the Markovian property
of the BE.

The probability distributions for the random variables used in the Monte Carlo
simulation are given in terms of the electric field and the transition probabilities for
the various scattering processes. For realistic band structures the distributions can be
quite complicated, in particular, the distribution of the duration of the free flights.
Special techniques have to be used to relate the random variables needed in the
simulation to the uniformly distributed random variables generated by a computer.

Let us first consider the distribution of the duration of the free flights. The proba-
bility for the test-electron to suffer the next collision in the time interval dt centered
around t is given by

P (t)dt = λ̃k(t)e−
∫ t
0 dt′λ̃k(t′)dt , (8.46)

where k(t) = k0− (e/�)Et, with k0 the arbitrary wave vector from which the first
free flight started, and λ̃k the total transition rate from state k due to all scattering
processes, including selfscattering. In Sect. 8.2.1, we introduced selfscattering in
order to simplify the integral representation of the BE. But it is also very useful in
the present context because, using again the choice (8.26), it leads to λ̃ = Γ and
thus to

P (t)dt = Γ e−Γtdt . (8.47)
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Note, without selfscattering, we should have integrated over λk(t), comprising only
real scattering events. For realistic band structures, this could have been done only
numerically, and would have lead to a rather complicated P (t)dt, useless for further
numerical processing.

To relate the random variable t to a random variable R ∈ [0, 1] with a uniform
distribution, we consider the cumulant of P (t),

c(t) =
∫ t

0

dt′P (t′) = 1− e−Γt , (8.48)

which for a random value of t is a random variableR, uniformly distributed between
[0, 1] because c(0) = 0 and c(∞) = 1. Thus, c(t) = R. Inverting (8.48) and
introducing a new random variableR1 = 1−R, which is also uniformly distributed
in [0, 1], the duration of the free flights can be easily generated by

t = − 1
Γ

lnR1 . (8.49)

Having determined the duration of a free flight, a scattering event, responsible
for the end of the free flight, has to be chosen. As mentioned before, we assume that
λ̃k is the total transition rate from state k, which is now the terminating momentum
of the free flight, including selfscattering, that is, λ̃k =

∑N
p=1 λ

p
k+Sk =

∑N+1
p=1 λpk,

where N is the total number of real scattering processes and λN+1
k = Sk. From

definition (8.26) follows λ̃k = Γ . One way of choosing the terminating scattering
process is therefore to generate a random variable R2 ∈ [0, 1] and to form partial
sums until

1
Γ

m−1∑
p=1

λpk < R2 ≤ 1
Γ

m∑
p=1

λpk (8.50)

is satisfied. The mth process is then the terminating one.
Equation (8.50) contains selfscattering and real scattering processes. In the for-

mer the momentum is conserved, that is, k = k′, with k′ the momentum after
the scattering event. For real scattering processes, however, k′ is a random variable
which has to be determined from the transition probabilities of the various scattering
processes whose precise forms in turn depend on the material. We describe there-
fore only the basic strategy for choosing the momentum of the test-electron after the
scattering event, assuming electron-impurity and electron-phonon scattering to be
responsible for the end of the free flight, see Fig. 8.5.

From the momentum k the test-electron has at the end of the free flight, we
obtain its energyE(k) before the scattering event. Energy conservation can then be
used to determine the energy E′ of the test-electron after the scattering event. For
electron-impurity scattering E′ = E(k) (elastic scattering) whereas for electron-
phonon scatteringE′ = E(k)±�ω, where for simplicity we assumed dispersionless
phonons with energy �ω. The upper and lower sign corresponds, respectively, to
phonon absorption and emission, which are treated here as separate processes. In
most cases, the part of the semiconductors’ band structure relevant for transport can
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final
state

initial
state bath

Fig. 8.5. Illustration of the scattering event in the test-particle-based Monte Carlo simula-
tion. The test-particle scatters off a generalized bath representing impurities and phonons.
For elastic scattering, the test-electron gains or loses only momentum, whereas for inelastic
scattering it can also transfer or receive energy

be assumed to be isotropic. The magnitude of the final state momentum, k′ = |k′|
can thus be obtained from E′ = E(k′). The orientation of the vector k′, however,
is still unspecified.

When the scattering process is randomizing, all momentum states on the final
state energy surface are equally probable. Measuring the orientation of k′ in polar
coordinates, with k pointing in the z-direction, the probability12 for k′ to be given
by k′x = k′ cosφ′ sin θ′, k′y = k′ sinφ′ sin θ′, and k′z = k′ cos θ′, with 0 ≤ φ′ ≤ 2π
and 0 ≤ θ′ ≤ π, is P (φ′, θ′) = (1/4π) sin θ′. To relate the random variables φ′

and θ′ to two uniformly distributed random variables in the interval [0, 1], we first
condition the two-variable probability P (φ′, θ′) in the form

P (φ′, θ′) = P1(φ′)P2(θ′|φ′) , (8.51)

where P1(φ′) =
∫ π
0

dθ′P (φ′, θ′) = 1/(2π) is the marginal probability for φ′ and
P2(θ′|φ′) = P (φ′, θ′)/(P1(φ′)) = sin θ′/2 is the conditional probability for θ′

given φ′. We then apply cumulants (as described above) separately to P1 and P2

and obtain

φ′ = 2πR3 ,

cos θ′ = 1− 2R4 (8.52)

with R3 and R4 uniformly distributed random variables in the interval [0, 1].
For non-randomizing scattering processes, the probability for the angles is pro-

portional to the transition rate written in the polar coordinates introduced above.
Hence, for given k and k′, the properly normalized function P (φ′, θ′; k, k′) =
(sin θ′/4π)S(k, k′, φ′, θ′) gives the probability for the azimuth φ′ and the polar
angle θ′, both depending therefore on k and k′. Applying again the method of con-
ditioning, which can be applied to any two-variable probability, together with the
cumulants, the random variables φ′(k, k′) and θ′(k, k′) can be again expressed in
terms of uniformly distributed random variables in the interval [0, 1].

The simulation consists of a finite number of free flights of random duration
and random initial conditions. Average single particle properties, in particular the

12 Strictly speaking, it is the probability density.
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drift velocity, can then be obtained from (8.45). Assuming the electric field to be in
z-direction, the drift will be also along the z-axis, that is, only the z-component of
the electron momentum will be changed due to the field. Hence, writing (8.45) with
O = vz(kz(t)) and integrating with respect to kz instead of t, the drift velocity is
given by [44]

〈vz〉 = 1
K

∑
flights

kz,f∫
kz,i

1
�

∂E

∂kz
dkz =

1
�K

∑
flights

(Ef − Ei) , (8.53)

where the sum goes over all free flights, kz,i and kz,f denote the z-component of the
initial and final momentum of the respective free flights, andK is the total length of
the k-space trajectory.

In some cases, the distribution function g(k) may be also of interest. In order to
determine g(k) from the motion of a single test-particle a grid is set up in momen-
tum space at the beginning of the simulation. During the simulation the fraction of
the total time the test-electron spends in each cell is then recorded and taken as a
measure for the distribution function. This rule results from an application of (8.45).
Indeed, using O(k(t)) = ni(k(t)) with ni(k(t)) = 1 when the test-particle is in
cell i and zero otherwise, gives g(ki) ≡ 〈ni〉 = Δti/ts, with Δti the time spend
in cell i. Averaged single particle quantities for the steady-state could then be also
obtained from the sum

〈O〉 =
∑

k

O(k)g(k) , (8.54)

but for a reasonable accuracy the grid in momentum space has to be very fine. It is
therefore more convenient to calculate 〈O〉 directly from (8.45).

It is instructive to demonstrate that the Monte Carlo procedure just outlined is
indeed equivalent to solving the steady-state BE (8.44). The equivalence proof has
been given by Fawcett and coauthors [44] and we follow closely their treatment. The
starting point is the definition of a functionPn(k0,k, t) which is the probability that
the test-electron will have momentum k at time t during the nth free flight when it
started at t = 0 with momentum k0. The explicit time dependence must be retained
because the electron can pass through the momentum state k any time during the
nth free flight. This probability satisfies an integral equation

Pn(k0,k, t) =
∑

k′,k′′

t∫
0

dt′Pn−1(k0,k
′, t)S̃k′,k′′

× e−
∫

t−t′
0 dt′′λ̃k′′−eEt′′/�δk,k′′−eE(t−t′)/� , (8.55)

whose r.h.s. consists of three probabilities which are integrated over. The first one
Pn−1(k0,k

′, t) is the probability that the test-electron passes through some mo-
mentum state k′ during the (n−1)th free flight, the second S̃k′,k′′ is the probability
that it will be scattered from state k′ to state k′′, whereas the exponential factor
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is the probability that it will not be scattered while drifting from k′′ to k during
the nth free flight. The Kronecker-δ ensures that the test-electron follows the tra-
jectory appropriate for the applied electric field E. The Monte Carlo simulation
generates realizations of the random variable k(t) in accordance to the probability
Pn(k0,k, t).

Integrating in (8.55) over k′′ and t′ and substituting τ = t− t′ and y = τ − t′′
yields an equation,

Pn(k0,k, t) =
∑
k′

t∫
0

dτPn−1(k0,k
′, t− τ)S̃k′,k+eEτ/� e−

∫ τ
0 dyλ̃k+eEy/� ,

(8.56)

which is a disguised BE. To make the connection with the BE more explicit, we
consider the count at k obtained after N collisions

CN (k0,k) = lim
ts→∞

N∑
n=1

1
ts

ts∫
0

dtPn(k0,k, t) . (8.57)

This number is provided by the Monte Carlo procedure and at the same time it can
be identified with g(k) forN � 1. Thus, CN (k0,k) is the bridge, which will carry
us from the test-particle Monte Carlo simulation to the traditional BE.

We now perform a series of mathematical manipulations at the end of which
we will have obtained the steady-state, spatially-uniform BE (8.44). Inserting (8.56)
into the definition (8.57), applying on both sides −(e/�)E · ∇k from the left, and
using the two identities

−eE
�
· ∇kS̃k′,k+eEτ/� = − ∂

∂τ
S̃k′,k+eEτ/� ,

−eE
�
· ∇ke−

∫ τ
0 dyλ̃k+eEy/� = −

(
∂

∂τ
+ λ̃k

)
e−

∫ τ
0 dy′λ̃k+eEy/� (8.58)

gives

− eE

�
· ∇kCN (k0,k) = −λ̃kCN (k0,k)

− lim
ts→∞

N∑
n=1

1
ts

∑
k′

ts∫
0

dτPn−1(k0,k
′, t− τ) ∂

∂τ

[
S̃k′,k+eEτ/�e−

∫ τ
0 dyλ̃k+eEy/�

]
,

(8.59)

where we used definition (8.57) once more to obtain the first term on the r.h.s. This
equation can be rewritten into
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−eE
�
· ∇kCN (k0,k) = −λ̃kCN (k0,k)

− lim
ts→∞

N∑
n=1

1
ts

ts∫
0

dt
∑
k′
Pn−1(k0,k

′, 0)S̃k′,k+eEt/�e−
∫

t
0 dyλ̃k+eEy/�

+ lim
ts→∞

N∑
n=1

1
ts

ts∫
0

dt
∑
k′
Pn−1(k0,k

′, t)S̃k′,k − lim
ts→∞

N∑
n=1

1
ts

ts∫
0

dt

×
∑
k′

t∫
0

dτ
∂

∂t

(
Pn−1(k0,k

′, t− τ)S̃k′,k+eEτ/�e−
∫ τ
0 dyλ̃k+eEy/�

)
, (8.60)

when the τ -integration is carried out by parts and ∂τPn−1 = −∂tPn−1 is used.
Pulling now in the fourth term on the r.h.s. the differential operator ∂t in front of
the τ -integral produces two terms, one of which cancels with the second term on
the r.h.s. and the other vanishes in the limit ts → ∞. As a result, only the first and
third term on the r.h.s. of (8.60) remain. Using finally in the third term again the
definition (8.57) yields

− eE

�
· ∇kCN (k0,k) + λ̃kCN (k0,k) =

∑
k′
CN−1(k0,k

′)S̃k′,k , (8.61)

which, recalling the definitions of λ̃k and S̃k′,k and using CN−1(k0,k)→ CN (k0,
k) → g(k) for N → ∞, is identical to the BE (8.44). Thus, the simulation of
a large number of free flights, each one terminating in a random scattering event,
indeed simulates the steady-state BE for a spatially uniform semiconductor.

8.2.3.2 Spatially Non-Uniform BE with the Full Collision Integral

For spatially non-uniform situations13, typical for semiconductor devices, the simu-
lation of a single test-particle is not enough (see Fig. 8.6). With a single test-particle,
for instance, it is impossible to represent the source term of the Poisson equation.
However, this equation needs to be solved in conjunction with the BE to obtain
the self-consistent electric field responsible for space-charge effects which, in turn,
determine the current-voltage characteristics of electronic devices.

Instead of a single test particle it is necessary to simulate an ensemble of test-
particles for prescribed boundary conditions for the Poisson equation and the BE,
where the latter have to be translated into boundary conditions for the test-particles.
The boundary conditions for the Poisson equation are straightforward; Dirichlet
condition, i.e., fixed potentials, at the electrodes and Neumann condition, i.e., zero
electric field, at the remaining boundaries. But the boundary conditions for the test-
particles, which need to be consistent with the ones for the Poisson equation, can be
rather subtle, resulting in sophisticated particle injection and reflection strategies,

13 The same holds for time-dependent situations.
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gate drainsource

x

y

charge assignment & force interpolation

Fig. 8.6. Schematic representation of the cross section of a metal-semiconductor field-effect
transistor (MESFET). Shown is a typical discretization of the two-dimensional simulation
volume, a representative electron trajectory, and the contacting through a source, a gate, and
a drain electrode. The BE has to be solved together with the Poisson equation; for both equa-
tions boundary conditions are required, see Sect. 8.2.3.2. Since the Poisson equation is grid-
bound, whereas the BE is not, charge assignment and force interpolation symbolized by the
thin lines inside the circle are required for the simultaneous solution of the two

in particular, when the doping profile of the semiconductor structure is taken into
account. An authoritative discussion of the boundary conditions, as well as other as-
pects of device modeling, can be found in the textbook by Jacoboni and Lugli [47].

Conceptually, the Monte Carlo simulation for semiconductor devices resembles
the particle-in-cell simulations for plasmas described in Chap. 6, and we refer there
for technical details. In particular, the techniques for the solution of the Poisson
equation and the particle weighting and force interpolation required for the cou-
pling of the grid-free electron kinetics (simulation of the BE) with the grid-bound
electric field (solution of the Poisson equation) are identical. In addition, except of
the differences which arise from the particular electric contacting of the simulation
volume, the implementation of particle injection and reflection (boundary condi-
tions for the test-particles) are also basically the same. The only differences are that
the test-particles have to be of course propagated during a free flight according to
dk/dt = −(e/�)E and dr/dt = �−1∇kE(k) and that the scattering processes
are the ones appropriate for semiconductors: Electron-impurity scattering, electron-
phonon scattering, and, in some cases, electron-electron scattering.

In this generalized form, the particle-based Monte Carlo simulation has become
the standard tool for analyzing Boltzmann transport of electrons in semiconductors.
In combination with ab initio band structure data, including scattering rates, it is by
now an indispensable tool for electronics engineers optimizing the performance of
semiconductor devices [46, 47, 48, 49].

8.2.4 Ensemble-Based Monte Carlo Simulation

The test-particle-based Monte Carlo algorithm described in the previous Subsection
cannot be applied to degenerate electron systems where the final state of the scat-
tering may be blocked by the Pauli principle. Mathematically, the Pauli-blocking is
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encoded in the collision integral (8.6) through the factor 1− gn(r,k, t). It depends
therefore on the one-particle distribution function which in the test-particle-based
Monte Carlo algorithm is only available at the end of the simulation. In principle, the
distribution function from a previous run could be used, but this requires additional
book-keeping, which, if nothing else, demonstrates that the algorithm presented in
the previous Subsection loses much of its simplicity.

An alternative method, which is most suitable for degenerate Fermi systems is
the ensemble-based Monte Carlo simulation. There are various ways to simulate an
ensemble. We describe here a simple approach, applicable to a spatially homoge-
neous electron system. It is based on the master equation for the probability Pν(t)
that at time t the many-particle system is in configuration ν = (nk1 , nk2 , ...). For
fermions, nki

= 0 when the momentum state ki is empty and nki
= 1 when the

state is occupied. The one-particle distribution function, which is the solution of the
corresponding BE, is then given by an ensemble average

g(k, t) =
∑
ν

Pν(t)nk . (8.62)

The algorithm has been developed by El-Sayed and coworkers and we closely
follow their treatment [50]. The purpose of the algorithm is to simulate electron re-
laxation in a two-dimensional, homogeneous degenerate electron gas, with electron-
electron scattering as the only scattering process. Such a situation can be realized,
for instance, in the conduction band of a highly optically excited semiconductor
quantum well at low enough temperatures. It is straightforward to take other scatter-
ing processes into account. Inhomogeneous situations, typical for device modeling,
can be in principle also treated but it requires a major overhaul of the approach
which we will not discuss.

Taking only direct electron-electron scattering into account, the force-free Boltz-
mann equation for a homogeneous, two-dimensional electron gas reads14

∂gk

∂t
= 2

∑
p,k′p′

Wkp;k′p′ ([1− gk][1 − gp]gk′gp′ − gkgp[1− gk′ ][1− gp′ ]) (8.63)

with

Wkp;k′p′ =
2π
�

∣∣∣∣V (|k − k′|)
∣∣∣∣
2

δk+p;k′+p′δ (E(k)+E(p)−E(k′)−E(p′)) (8.64)

and V (q) = 2πe2/[ε0(q + qs)] the statically screened Coulomb interaction in two
dimensions, V = L2 is again put to one. The factor two in front of the sum in (8.63)
comes from the electron spin. As indicated above, the simulation of this equation
via the test-particle-based Monte Carlo technique is complicated because the Pauli
blocking factors depend on the (instantaneous) distribution function. The ensemble
Monte Carlo method proposed by El-Sayed and coworkers [50] simulates therefore

14 Notice the slight change in our notation: g(k) → gk .
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the master equation underlying the Boltzmann description. This equation determines
the time evolution of the probability for the occurrence of a whole configuration in
momentum space,

dPν
dt

= −Pν(t)
τν

+
∑
ν′
Wν′νPν′(t) . (8.65)

Here
1
τν

=
∑
ν′
Wνν′ (8.66)

is the lifetime of the configuration ν, and Wν,ν′ is the transition rate from configu-
ration ν to ν′. Specifically for electron-electron scattering,

Wνν′ =
1
2

∑
kpk′p′

Wkp;k′p′nknp[1− nk′ ][1− np′ ]Dνν′
kp;k′p′ (8.67)

with Dνν′
kp;k′p′ = δn′

knk−1δn′
pnp−1δn′

k′nk′+1δn′
p′np′+1

∏
q �=k,p,k′,p′ δn′

qnq .
The crucial point of the method is that the sampling of the configurations can be

done in discrete time steps τν . The master equation (8.65) then simplifies to

Pν(t+ τν) =
∑
ν′
Πν′νPν′(t) (8.68)

with
Πν′ν = τνWν′ν (8.69)

the transition probability from configuration ν to configuration ν′15. Thus, when
the system was at time t in the configuration ν0, that is Pν(t) = δνν0 , then the
probability to find the system at time t+ τν in the configuration ν is Pν(t + τν) =
Πν0ν . In a simulation the new configuration can be therefore chosen according to
the probabilityΠν0ν .

However, there is a main drawback. In order to determine τν form (8.66) a high-
dimensional, configuration-dependent integral has to be numerically calculated be-
fore the time propagation can be made. Clearly, this is not very efficient. To over-
come the problem, the selfscattering method is used again, but now at the level of
the master equation, where selfscattering events can be also easily introduced be-
cause (8.65) is unchanged, when a diagonal element is added to the transition rate.
It is therefore possible to work with a modified transition rate

W s
νν′ = Wνν′ +Wνδνν′ , (8.70)

giving rise to (cp. with (8.66))

15 The normalization required for the interpretation of Πν′ν in terms of a probability is a
consequence of the detailed balance Wνν′ = Wν′ν which holds for energy conserving
processes.
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1
τsν

=
1
τν

+Wν . (8.71)

The diagonal elements of the modified transition probability Πs
ν0ν , that is, (8.69)

with τν → τsν and Wν0ν → W s
ν0ν , are now finite. There is thus a finite probability

to find the system at time t+ τsν still in the configuration ν0, in other words, there is
a finite probability for selfscattering ν → ν.

Allowing for selfscattering provides us with the flexibility we need to speed up
the simulation. Imagine τν has a lower bound τs. Then, we can always add

Wν =
1
τs
− 1
τν

> 0 (8.72)

to the transition rate which, when inserted in (8.71), leads to τsν = τs. The sampling
time step can be therefore chosen configuration independent, before the sampling
starts. In addition, from the fact that τs is a lower bound to τν follows 1/τν ≤
1/τs. Thus, 1/τs can be easily obtained from (8.66) using an approximate integrand
which obeys or even enforces this inequality. In particular, using

nknp ≤ nknp[1− nk′ ][1− np′ ] (8.73)

in (8.66) leads to
1
τs

=
γ

2
N(N − 1) , (8.74)

where N =
∑

k nk is the total number of electrons and γ = supk,p γkp with
γkp =

∑
k′p′ Wkp;k′p′ .

We now have to work out the modified transition probabilityΠs
ν0ν = τsνW

s
ν0ν =

τsW s
ν0ν . Following El-Sayed and coworkers [50], we consider a configuration ν1

which differs from the configuration ν0 only in the occupancy of the four momentum
states k1, p1, k′

1, and p′
1. Then

Πs
ν0νi

= P (1)(k1,p1) · P (2)
k1,p1

(k′
1,p

′
1) · P (3)

k1p1;k′
1p′

1
(νi) (8.75)

with
P (1)(k1,p1) =

nk1

N

np1

N − 1
(8.76)

the probability for the electrons with momentum k1 and p1 to be the scatterer,

P
(2)
k1,p1

(k′
1,p

′
1) =

Wk1p1;k′
1p′

1

γk1p1

(8.77)

the probability that the two electrons with k1 and p1 are scattered into momentum
states k′

1 and p′
1, respectively, and

P
(3)
k1p1;k′

1p′
1
(νi) =

⎧⎨
⎩

γk1p1
γ (1− nk′

1
)(1− np′

1
) i = 1

1− γk1p1
γ (1− nk′

1
)(1 − np′

1
) i = 0

(8.78)
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the probability for the selected momentum states to perform a real (i = 1) or a selfs-
cattering (i = 0) event, respectively. Note, the factor (1−nk′

1
)(1−np′

1
) guarantees

that real scattering events occur only when the final momentum states are empty.
All three probabilities are normalized to unity when summed over the domain of the
independent variables in the brackets.

In order to implement the ensemble-based Monte Carlo simulation, the momen-
tum space is discretized into a large number of cells which can be either occupied
or empty (see Fig. 8.7). A configuration is then specified by the occupancies of all
cells. The temporal evolution of the configurations proceeds in discrete time steps
τs and is controlled by the probability Πs

ν′ν . The basic structure of the algorithm
is thus as follows: First, the initial distribution gk(t = 0) is sampled to create the
initial configuration ν0, which is then propagated in time in the following manner:

(i) Increment the time by τs.
(ii) Choose at random two initial momentum states, k1 and p1, and two final mo-

mentum states, k′
1 and p′

1.
(iii) Perform the selfscattering test consisting of two inquiries:

First, check whether the chosen momentum states are legitimate by asking
whether R1 > P (1)(k1,p1) and R2 > P

(2)
k1,p1

(k′
1,p

′
1), with R1, R2 ∈ [0, 1]

two uniformly distributed random numbers. Second, determine whether the fi-
nal states are empty or not. In the former case, a real scattering event takes
place provided R3 > P

(3)
k1p1;k′

1p′
1
(ν1), with R3 ∈ [0, 1] again an uniformly

distributed random variable, whereas in the latter selfscattering occurs.
(iv) Generate the new configuration ν1, which is the old configuration ν0 with the

occupancies nk1 , np1 , nk′
1
, and np′

1
changed in accordance to the outcome of

the selfscattering test.

configuration
ν’

configuration
ν

time t time t + τs

1

1

1

1

1

1

00
0 0

0

00

0

0

0

0 0 0

00

0

1

0

0

0

0
0 0 0

0

0

Πν’ν
s

Fig. 8.7. Schematic representation of the ensemble-based Monte Carlo simulation. A suf-
ficiently large part of the two-dimensional momentum space is discretized into small cells.
Each cell with size ΔkxΔky is labelled by its central momentum ki, i = 1, 2, ..., M with M
the total number of cells. An ensemble of N < M electrons occupies the cells: n(ki) = 1,
when an electron is in cell i, and n(ki) = 0 otherwise;

∑
i n(ki) = N . The occupancies of

all cells constitute a configuration ν. During the simulation a sequence of configurations is
generated stochastically whereby the transition probability from configuration ν′ at time t to
configuration ν at time t + τs is Πs

ν′ν
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The algorithm is terminated after a pre-fixed number of real scattering processes
took place. The diagnostics and the calculation of moments can be done on the fly,
for instance, before the time is incremented from t to t+ τs.

Provided the momentum space is appropriately discretized, the algorithm is very
fast. A typical run to study, for instance, the relaxation of an initial non-equilibrium
Gaussian electron distribution, gk(t = 0) = C exp[(E(k) − E0)/σ)2], where C
is a constant to fix the electron density and E0 and σ are the position and width of
the Gaussian profile, respectively, took for N = 5000 on the Intel 80368 processor
available to El-Sayed and coworkers only 10–20 minutes [50]. With the increased
computing power available now, this kind of ensemble Monte Carlo simulation is
extremely fast. It should be therefore a useful tool for the simulation of dense, de-
generate Fermi systems in non-equilibrium, such as, highly optically excited semi-
conductors, metal clusters in strong laser fields (see Chap. 9), or nuclear matter in
heavy ion collisions.

8.3 Conclusions

In this section, we discussed Boltzmann transport in condensed matter, focusing on
the conditions, which need to be satisfied for a BE to be applicable to the quasiparti-
cles in a crystal, and on computational tools to solve the quasiparticle BE. Although
the quasiparticle BE cannot always be rigorously derived from first principles, it
provides in most cases a surprisingly accurate description of transport processes in
condensed matter. Most of semiconductor device engineering, for instance, is based
on a quasiparticle BE, despite the lack of a satisfying microscopic derivation.

We presented various strategies for the numerical solution of the quasiparticle
BE. For the steady-state, spatially uniform, linearized BE, usually employed for
the calculation of transport coefficients for metals, we discussed numerical iteration
and the expansion of the one-particle distribution function in terms of a symmetry-
adapted set of basis functions. In the context of condensed matter, Fermi surface har-
monics are here particularly useful because they adequately describe the topology
of the Fermi surface, which may be anisotropic, or even consisting of unconnected
pieces in momentum space.

As far as the numerical solution of the time-dependent, nonlinear BE is con-
cerned, we discussed iteration and Monte Carlo simulation. Both approaches have
been used in the past to calculate hot electron distributions in strongly biased semi-
conductors. Iteration is here based on the integral representation of the BE. The
approach is mathematically very elegant although its potential has not been fully
exploited. By far the most popular method for the numerical solution of the BE is
the Monte Carlo simulation. It has the virtue of an intuitively obvious approach,
requiring a minimum of preparatory mathematical analysis, before the computer
generates the solution. In addition, it requires no k-summations, which makes the
incorporation of realistic band structures particularly easy. We discussed two Monte
Carlo algorithms. In the first, particle-based algorithm, a single test-particle is used
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to build-up the stationary distribution function for electrons in a semiconductor sub-
ject to an uniform electric field. This approach, appropriately modified for time-
dependent and spatially inhomogeneous settings, has become a design tool for the
electronic circuit engineer, indicating its power, flexibility, and practical importance.
The second approach propagates an ensemble of N electrons in discrete time steps
through a discretized momentum space and is particularly useful for spatially ho-
mogeneous, degenerate electron systems with a pronounced Fermi statistics.

There are of course situations where the BE cannot be applied to condensed
matter. In particular, transport properties of liquids, amorphous solids, and strongly
correlated systems (transition metals, Kondo insulators etc.) cannot be described
within the framework of a BE. The mean free path of quasiparticles, if they can
be defined, is too short in this type of condensed matter and the separation of the
quasiparticles’ motion into free flights, with a few randomly occurring scattering
events, is impossible. However, provided external fields and temperature gradients
are weak, transport processes can be alternatively studied within linear response
theory (Kubo formalism [51]). This approach relates linear transport coefficients to
thermodynamic correlation functions, which can then be calculated, for instance,
with the methods outlined in Chap. 19, Sect. 19.2.2. The Kubo formalism is also
applicable when the mean free path is short. It is therefore the method of choice for
the calculation of transport coefficients in situations where the BE cannot be used.
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