
27 Optimization Techniques for Modern High
Performance Computers

Georg Hager and Gerhard Wellein

Regionales Rechenzentrum Erlangen der Friedrich-Alexander-Universität
Erlangen-Nürnberg, 91058 Erlangen, Germany

The rapid development of faster and more capable processors and architectures has
often led to the false conclusion that the next generation of hardware will easily meet
the scientist’s requirements. This view is at fault for two reasons: First, utilizing the
full power of existing systems by proper parallelization and optimization strategies,
one can gain a competitive advantage without waiting for new hardware. Second,
computer industry has now reached a turning point where exponential growth of
compute power has ended and single-processor performance will stagnate at least
for the next couple of years. The advent of multi-core CPUs was triggered by this
development, making the need for more advanced, parallel, and well-optimized al-
gorithms imminent.

This chapter describes different ways to write efficient code on current super-
computer systems. In Sect. 27.1, simple common sense optimizations for scalar
code like strength reduction, correct layout of data structures and tabulation are
covered first. Many scientific programs are limited by the speed of the computer
system’s memory interface, so it is vital to avoid slow data paths or, if this is not
possible, at least use them efficiently. After some theoretical considerations on data
access and performance estimates based on code analysis and hardware character-
istics, techniques like loop transformations and cache blocking are explained using
examples from linear algebra (matrix-vector multiplication, matrix transpose). The
importance of interpreting compiler logs is emphasized. Along the discussion of per-
formance measurements for vanilla and optimized codes we introduce peculiarities
like cache thrashing and translation look-aside buffer misses, both potential show-
stoppers for compute performance. In a case study we apply the acquired knowl-
edge on sparse matrix-vector multiplication, a performance-determining operation
required for practically all sparse diagonalization algorithms.

Turning to shared-memory parallel programming in Sect. 27.2, we identify typ-
ical pitfalls (OpenMP loop overhead and false sharing) that can severely limit par-
allel scalability, and show some ways to circumvent them. The abundance of AMD
Opteron nodes in clusters has initiated the necessity for optimizing memory local-
ity. ccNUMA can lead to diverse bandwidth bottlenecks, and few compilers support
special features for ensuring memory locality. Programming techniques which can
alleviate ccNUMA effects are therefore described in detail using a parallelized
sparse matrix-vector multiplication as a nontrivial but instructive example.

G. Hager and G. Wellein: Optimization Techniques for Modern High Performance Computers, Lect. Notes Phys. 739,
731–767 (2008)
DOI 10.1007/978-3-540-74686-7 27 c© Springer-Verlag Berlin Heidelberg 2008

732 G. Hager and G. Wellein

27.1 Optimizing Serial Code

In the age of multi-1000-processor parallel computers, writing code that runs ef-
ficiently on a single CPU has grown slightly old-fashioned in some circles. The
argument for this point of view is derived from the notion that it is easier to add
more CPUs and boasting massive parallelism instead of investing effort into serial
optimization.

Nevertheless there can be no doubt that single-processor optimizations are of
premier importance. If a speedup of two can be gained by some straightforward
common sense optimization as described in the following section, the user will be
satisfied with half the number of CPUs in the parallel case. In the face of Amdahl’s
law the benefit will usually be even larger. This frees resources for other users and
projects and puts the hardware that was often acquired for considerable amounts of
money to better use. If an existing parallel code is to be optimized for speed, it must
be the first goal to make the single-processor run as fast as possible.

27.1.1 Common Sense Optimizations

Often very simple changes to code can lead to a significant performance boost.
The most important common sense guidelines regarding the avoidance of perfor-
mance pitfalls are summarized in the following. Those may seem trivial, but ex-
perience shows that many scientific codes can be improved by the simplest of
measures.

27.1.1.1 Do Less Work!

In all but the rarest of cases, rearranging the code such that less work than before
is being done will improve performance. A very common example is a loop that
checks a number of objects to have a certain property, but all that matters in the end
is that any object has the property at all:

logical FLAG
FLAG = .false.
do i=1,N

if(complex_func(A(i)) < THRESHOLD) then
FLAG = .true.

endif
enddo

If complex_func() has no side effects, the only information that gets com-
municated to the outside of the loop is the value of FLAG. In this case, depending
on the probability for the conditional to be true, much computational effort can be
saved by leaving the loop as soon as FLAG changes state:

27 Optimization techniques in HPC 733

logical FLAG
FLAG = .false.
do i=1,N

if(complex_func(A(i)) < THRESHOLD) then
FLAG = .true.
exit

endif
enddo

27.1.1.2 Avoid Expensive Operations!

Sometimes, implementing an algorithm is done in a thoroughly one-to-one way,
translating formulae to code without any reference to performance issues. While
this is actually good (performance optimization always bears the slight danger of
changing numerics, if not results), in a second step all those operations should be
eliminated that can be substituted by cheaper alternatives. Prominent examples for
such strong operations are trigonometric functions or exponentiation. Bear in mind
that an expression like x**2.0 is often not optimized by the compiler to become
x*x but left as it stands, resulting in the evaluation of an exponential and a loga-
rithm. The corresponding optimization is called strength reduction. Apart from the
simple case described above, strong operations often appear with a limited set of
fixed arguments. This is an example from a simulation code for non-equilibrium
spin systems:

integer iL,iR,iU,iO,iS,iN,edelz
double precision tt
... ! load spin orientations
edelz=iL+iR+iU+iO+iS+iN ! loop kernel
BF= 0.5d0*(1.d0+tanh(edelz/tt))

The last two lines are executed in a loop that accounts for nearly the whole runtime
of the application. The integer variables store spin orientations (up or down, i.e.
−1 or +1, respectively), so the edelz variable only takes integer values in the
range {−6, . . . ,+6}. The tanh() function is one of those operations that take
vast amounts of time (at least tens of cycles), even if implemented in hardware. In
the case described, however, it is easy to eliminate the tanh() call completely by
tabulating the function over the range of arguments required, assuming that tt does
not change its value so that the table does only have to be set up once:

double precision tanh_table(-6:6)
integer iL,iR,iU,iO,iS,iN, edelz
double precision, tt
...
do i=-6,6 ! do this once

tanh_table(i) = tanh(dble(i)/tt)

734 G. Hager and G. Wellein

enddo
...
edelz=iL+iR+iU+iO+iS+iN ! loop kernel
BF= 0.5d0*(1.d0+tanh_table(edelz))

The table lookup is performed at virtually no cost compared to the tanh() evalu-
ation since the table will, due to its small size and frequent use, be available in L1
cache at access latencies of a few CPU cycles.

27.1.1.3 Shrink the Working Set!

The working set of a code is the amount of memory it uses (i.e. actually touches) in
the course of a calculation. In general, shrinking the working set by whatever means
is a good thing because it raises the probability for cache hits. If and how this can
be achieved and whether it pays off performance-wise depends heavily on the al-
gorithm and its implementation, of course. In the above example, the original code
used standard four-byte integers to store the spin orientations. The working set was
thus much larger than the L2 cache of any processor. By changing the array defini-
tions to use integer*1 for the spin variables, the working set could be reduced
by nearly a factor of four, and became comparable to cache size.

Many recent microprocessor designs have instruction set extensions for integer
and floating-point SIMD operations (see also Sect. 26.1.4) that allow the concur-
rent execution of arithmetic operations on a wide register that can hold, e.g., two
DP or four SP floating-point words. Although vector processors also use SIMD in-
structions and the use of SIMD in microprocessors is often coined vectorization,
it is more similar to the multi-track property of modern vector systems. Generally
speaking, a vectorizable loop in this context will run faster if more operations can be
performed with a single instruction, i.e. the size of the data type should be as small
as possible. Switching from DP to SP data could result in up to a twofold speedup,
with the additional benefit that more items fit into the cache.

Consider, however, that not all microprocessors can handle small types effi-
ciently. Using byte-size integers for instance could result in very ineffective code
that actually works on larger word sizes but extracts the byte-sized data by mask
and shift operations.

27.1.1.4 Eliminate Common Subexpressions!

Common subexpression elimination is an optimization that is often considered a
task for compilers. Basically one tries to save time by pre-calculating parts of com-
plex expressions and assigning them to temporary variables before a loop starts:

! inefficient
do i=1,N

A(i)=A(i)+s+r*sin(x)
enddo

−→
tmp=s+r*sin(x)
do i=1,N

A(i)=A(i)+tmp
enddo

27 Optimization techniques in HPC 735

A lot of compute time can be saved by this optimization, especially where strong
operations (like sin()) are involved. Although it may happen that subexpressions
are obstructed by other code and not easily recognizable, compilers are in princi-
ple able to detect this situation. They will however often refrain from pulling the
subexpression out of the loop except with very aggressive optimizations turned on.
The reason for this is the well-known non-associativity of FP operations: If floating-
point accuracy is to be maintained compared to non-optimized code, associativity
rules must not be used and it is left to the programmer to decide whether it is safe
to regroup expressions by hand.

27.1.1.5 Avoid Conditionals in Tight Loops!

Tight loops, i.e. loops that have few operations in them, are typical candidates for
software pipelining (see Sect. 26.1.3.1), loop unrolling and other optimization tech-
niques (see below). If for some reason compiler optimization fails or is inefficient,
performance will suffer. This can easily happen if the loop body contains conditional
branches:

do j=1,N
do i=1,N

if(i.ge.j) then
sign=1.d0

else if(i.lt.j) then
sign=-1.d0

else
sign=0.d0

endif
C(j) = C(j) + sign * A(i,j) * B(i)

enddo
enddo

In this multiplication of a matrix with a vector, the upper and lower triangular parts
get different signs and the diagonal is ignored. The if statement serves to decide
about which factor to use. Each time a corresponding conditional branch is encoun-
tered by the processor, some branch prediction logic tries to guess the most probable
outcome of the test before the result is actually available, based on statistical meth-
ods. The instructions along the chosen path are then fetched, decoded, and generally
fed into the pipeline. If the anticipation turns out to be false (this is called a mispre-
dicted branch or branch miss), the pipeline has to be flushed back to the position
of the branch, implying many lost cycles. Furthermore, the compiler refrains from
doing advanced optimizations like loop unrolling (see Sect. 27.1.3.2).

Fortunately the loop nest can be transformed so that all if statements vanish:

do j=1,N
do i=j+1,N

C(j) = C(j) + A(i,j) * B(i)
enddo

736 G. Hager and G. Wellein

enddo
do j=1,N

do i=1,j-1
C(j) = C(j) - A(i,j) * B(i)

enddo
enddo

By using two different variants of the inner loop, the conditional has virtually been
moved outside. One should add that there is more optimization potential in this loop
nest. Please consider the section on data access below for more information.

27.1.1.6 Use Compiler Logs!

The previous sections have pointed out that the compiler is a crucial component
in writing efficient code. It is very easy to hide important information from the
compiler, forcing it to give up optimization at an early stage. In order to make the
decisions of the compiler’s intelligence available to the user, many compilers offer
options to generate annotated source code listings or at least logs that describe in
some detail what optimizations were performed. Listing 27.1 shows an example
for a compiler annotation regarding a standard vector triad loop as in listing 26.1.
Unfortunately, not all compilers have the ability to write such comprehensive code
annotations and users are often left with guesswork.

27.1.2 Data Access

Of all possible performance-limiting factors in HPC, the most important one is data
access. As explained earlier, microprocessors tend to be inherently unbalanced with
respect to the relation of theoretical peak performance versus memory bandwidth.
As many applications in science and engineering consist of loop-based code that

Listing 27.1. Compiler log for a software pipelined triad loop

#<swps> 16383 estimated iterations before pipelining
#<swps> 4 unrollings before pipelining
#<swps> 20 cycles per 4 iterations
#<swps> 8 flops (20% of peak) (madds count as 2)
#<swps> 4 flops (10% of peak) (madds count as 1)
#<swps> 4 madds (20% of peak)
#<swps> 16 mem refs (80% of peak)
#<swps> 5 integer ops (12% of peak)
#<swps> 25 instructions (31% of peak)
#<swps> 2 short trip threshold
#<swps> 13 integer registers used.
#<swps> 17 float registers used.

27 Optimization techniques in HPC 737

moves large amounts of data in and out of the CPU, on-chip resources tend to be
underutilized and performance is limited only by the relatively slow data paths to
memory or even disks. Any optimization attempt should therefore aim at reducing
traffic over slow data paths, or, should this turn out to be infeasible, at least make
data transfer as efficient as possible.

27.1.2.1 Balance and Lightspeed Estimates

Some programmers go to great lengths trying to improve the efficiency of code.
In order to decide whether this makes sense or if the program at hand is already
using the resources in the best possible way, one can often estimate the theoretical
performance of loop-based code that is bound by bandwidth limitations by simple
rules of thumb. The central concept to introduce here is balance. For example, the
machine balance Bm of a processor is the ratio of possible memory bandwidth in
GWords/sec to peak performance in GFlops/sec:

Bm =
memory bandwidth [GWords/sec]
peak performance [GFlops/sec]

. (27.1)

Memory bandwidth could also be substituted by the bandwidth to caches or even
network bandwidths, although the metric is generally most useful for codes that are
really memory-bound. Access latency is assumed to be hidden by techniques like
prefetching and software pipelining. As an example, consider a processor with a
clock frequency of 3.2 GHz that can perform at most two flops per cycle and has
a memory bandwidth of 6.4 GBytes/sec. This processor would have a machine bal-
ance of 0.125 W/F. At the time of writing, typical values of Bm lie in the range
between 0.1 W/F for commodity microprocessors and 0.5 W/F for top of the line
vector computers. Due to the continuously growing DRAM gap and the advent of
multi-core designs, machine balance for standard architectures will presumably de-
crease further in the future. Table 27.1 shows typical balance values for several
possible transfer paths.

In order to quantify the requirements of some code that runs on a machine with
a certain balance, we further define the code balance of a loop to be

Bc =
data traffic volume [Words]

floating point operations [Flops]
. (27.2)

Table 27.1. Typical balance values for operations limited by different transfer paths

data path balance
cache 0.5–1.0
machine (memory) 0.05–0.5
interconnect (high speed) 0.01–0.04
interconnect (GBit ethernet) 0.001–0.003
disk 0.001–0.02

738 G. Hager and G. Wellein

Now it is obvious that the expected maximum fraction of peak performance one can
expect from a code with balance Bc on a machine with balance Bm is

l = min
(

1,
Bm

Bc

)
. (27.3)

We call this fraction the lightspeed of a code. If l � 1, loop performance is not
limited by bandwidth but other factors, either inside the CPU or elsewhere. Note
that this simple performance model is based on some crucial assumptions:

– The loop code makes use of all arithmetic units (multiplication and addition)
in an optimal way. If this is not the case, e.g., when only additions are used,
one must introduce a correction term that reflects the ratio of MULT to ADD
operations.

– Code is based on double precision floating-point arithmetic. In cases where this
is not true, one can easily derive similar, more appropriate metrics (e.g., words
per instruction).

– Data transfer and arithmetic overlap perfectly.
– The system is in throughput mode, i.e. latency effects are negligible.

We must emphasize that more advanced strategies for performance modeling do
exist and refer to the literature [1, 2].

As an example consider the standard vector triad benchmark introduced in
Sect. 26.1.5. The kernel loop,

do i=1,N
A(i) = B(i) + C(i) * D(i)

enddo

features two flops per iteration, for which three loads (to elements B(i), C(i), and
D(i)) and one store operation (to A(i)) provide the required input data. The code
balance is thus Bc = (3 + 1)/2 = 2. On a CPU with machine balance Bm = 0.1,
we can then expect a lightspeed ratio of 0.05, i.e. 5 % of peak.

Standard cache-based microprocessors usually feature an outermost cache level
with write-back strategy. As explained in Sect. 26.1.5, cache line read for ownership
(RFO) is then required to ensure cache-memory coherence if nontemporal stores
or cache line zero is not used. Under such conditions, the store stream to array A
must be counted twice in calculating the code balance, and we would end up with a
lightspeed estimate of lRFO = 0.04.

27.1.2.2 Storage Order of Multi-Dimensional Arrays

Multi-dimensional arrays, first and foremost matrices or matrix-like structures, are
omnipresent in scientific computing. Data access is a crucial topic here as the map-
ping between the inherently one-dimensional, cache line based memory layout of
standard computers and any multi-dimensional data structure must be matched to
the order in which code loads and stores data so that spatial and temporal locality can

27 Optimization techniques in HPC 739

be employed. In Sect. 26.1.5 it was shown that strided access to a one-dimensional
array reduces spatial locality, leading to low utilization of the available bandwidth.
When dealing with multi-dimensional arrays, those access patterns can be generated
quite naturally:

Stride-N access Stride-1 access

do i=1,N
do j=1,N

A(i,j) = i*j
enddo

enddo

for(i=0; i<N; ++i) {
for(j=0; j<N; ++j) {

a[i][j] = i*j;
}

}

These Fortran and C codes perform exactly the same task, and the second array
index is the fast (inner loop) index both times, but the memory access patterns are
quite distinct. In the Fortran example, the memory address is incremented in steps
of N*sizeof(double), whereas in the C example the stride is optimal. This is
because Fortran follows the so-called column major order whereas C follows row
major order for multi-dimensional arrays (see Fig. 27.1). Although mathematically
insignificant, the distinction must be kept in mind when optimizing for data access.

27.1.2.3 Case Study: Dense Matrix Transpose

For the following example we assume column major order as implemented in For-
tran. Calculating the transpose of a dense matrix, A = BT, involves strided memory
access to A or B, depending on how the loops are ordered. The most unfavorable
way of doing the transpose is shown here:

[0][0] [0][1] [0][2] [0][3] [0][4]

[1][4][1][3][1][2][1][1][1][0]

[2][0] [2][1] [2][2] [2][3] [2][4]

[3][0] [3][1] [3][2] [3][3] [3][4]

[4][0] [4][1] [4][2] [4][3] [4][4]

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(1,1) (1,2) (1,3) (1,4) (1,5)

(2,1) (2,2) (2,3) (2,4) (2,5)

(3,1) (3,2) (3,3) (3,4) (3,5)

(4,1) (4,2) (4,3) (4,4) (4,5)

(5,1) (5,2) (5,3) (5,4) (5,5)

0 5 10 15 20

1

2

3

4 9 14 19 24

8 13 18 23

7 12 17 22

6 11 16 21

Fig. 27.1. Row major order (left) and column major order (right) storage schemes for matri-
ces. The small numbers indicate the offset of the element with respect to the starting address
of the array. Solid frames symbolize cache lines

740 G. Hager and G. Wellein

do i=1,N
do j=1,N

A(i,j) = B(j,i)
enddo

enddo

Write access to matrix A is strided (see Fig. 27.2). Due to RFO transactions, strided
writes are more expensive than strided reads. Starting from this worst possible code
we can now try to derive expected performance features. As matrix transpose does
not perform any arithmetic, we will use effective bandwidth (i.e., GBytes/sec avail-
able to the application) to denote performance.

Let C be the cache size and Lc the cache line size, both in DP words. Depending
on the size of the matrices we can expect three primary performance regimes:

– In case the two matrices fit into a CPU cache (2N2 � C), we expect effective
bandwidths of the order of cache speeds. Spatial locality is of importance only
between different cache levels; optimization potential is limited.

– If the matrices are too large to fit into cache but still

NLc � C , (27.4)

the strided access to A is insignificant because all stores performed during a
complete traversal of a row that cause a write miss start a cache line RFO. Those
lines are most probably still in cache for the next Lc − 1 rows, alleviating the
effect of strided write (spatial locality). Effective bandwidth should be of the
order of the processor’s memory bandwidth.

– If N is even larger so that NLc � C, each store to A causes a cache miss and a
subsequent RFO. A sharp drop in performance is expected at this point as only
one out of Lc cache-line entries is actually used for the store stream and any
spatial locality is suddenly lost.

1 2 3 4 5 6 7

1

2

3

4

5

7

6

Fig. 27.2. Cache line traversal for vanilla matrix transpose (strided store stream, column
major order). If the leading matrix dimension is a multiple of the cache line size, each column
starts on a line boundary

27 Optimization techniques in HPC 741

1 2 3 4 5 6 7

1

2

3

4

5

7

6

Fig. 27.3. Cache line traversal for padded matrix transpose. Successive iterations hit different
cache lines

The vanilla graph in Fig. 27.4 shows that the assumptions described above are es-
sentially correct, although the strided write seems to be very unfavorable even when
the whole working set fits into cache. This is because the L1 cache on the considered
architecture is of write-through type, i.e. the L2 cache is always updated on a write,
regardless whether there was an L1 hit or miss. The RFO transactions between the
two caches hence waste the major part of available internal bandwidth.

In the second regime described above, performance stays roughly constant up to
a point where the fraction of cache used by the store stream for N cache lines be-
comes comparable to the L2 size. Effective bandwidth is around 1.8 GBytes/sec, a

100 1000 10000

N

0

2500

5000

7500

10000

12500

15000

B
an

dw
id

th
 [

M
B

yt
es

/s
ec

]

vanilla
flipped
flipped, unroll = 4
flipped, block = 50, unroll = 4

6000 8000 10000
0

200

400

N
 =

 8
19

2

N
 =

 2
56

Fig. 27.4. Performance (effective bandwidth) for different implementations of the dense ma-
trix transpose on a modern microprocessor with 1 MByte of L2 cache. The N = 256 and
N = 8192 lines indicate the positions where the matrices fit into cache and where N cache
lines fit into cache, respectively. (Intel Xeon/Nocona 3.2 Ghz)

742 G. Hager and G. Wellein

mediocre value compared to the theoretical maximum of 5.3 GBytes/sec (delivered
by two-channel memory at 333 MTransfers/sec). On most commodity architectures
the theoretical bandwidth limits can not be reached with compiler-generated code,
but 50 % is usually attainable, so there must be a factor that further reduces avail-
able bandwidth. This factor is the translation look-aside buffer (TLB) that caches
the mapping between logical and physical memory pages. The TLB can be envi-
sioned as an additional cache level with cache lines the size of memory pages (the
page size is often 4 kB, sometimes 16 kB and even configurable on some systems).
On the architecture considered, it is only large enough to hold 64 entries, which
corresponds to 256 kBytes of memory at a 4 kB page size. This is smaller than the
whole L2 cache, so it must be expected that this cache level cannot be used with
optimal performance. Moreover, if N is larger than 512, i.e. if one matrix row ex-
ceeds the size of a page, every single access in the strided stream causes a TLB
miss. Even if the page tables reside in L2 cache, this penalty reduces effective band-
width significantly because every TLB miss leads to an additional access latency of
at least 57 processor cycles. At a core frequency of 3.2 GHz and a bus transfer rate
of 666 MWords/sec, this matches the time needed to transfer more than half a cache
line!

At N � 8192, performance has finally arrived at the expected low level. The
machine under investigation has a theoretical memory bandwidth of 5.3 GBytes/sec
of which around 200 MBytes/sec actually “hit the floor”.

At a cache line length of 16 words (of which only one is used for the strided
store stream), three words per iteration are read or written in each loop iteration for
the in-cache case whereas 33 words are read or written for the worst case. We thus
expect a 1 : 11 performance ratio, roughly the value observed.

We must stress here that performance predictions based on architectural spec-
ifications do work in many, but not in all cases, especially on commodity systems
where factors like chip sets, memory chips, interrupts etc. are basically uncontrol-
lable. Sometimes only a qualitative understanding of the reasons for some peculiar
performance behavior can be developed, but this is often enough to derive the next
logical optimization steps.

The first and most simple optimization for dense matrix transpose would consist
in interchanging the order of the loop nest, i.e. pulling the i loop inside. This would
render the access to matrix B strided but eliminate the strided write for A, thus sav-
ing roughly half the bandwidth (5/11, to be exact) for very large N . The measured
performance gain (see the inset in Fig. 27.4, flipped graph), albeit very noticeable,
falls short of this expectation. One possible reason for this could be a slightly better
effectivity of the memory interface with strided writes.

In general, the performance graphs in Fig. 27.4 look quite erratic at some points.
At first sight it is unclear whether some N should lead to strong performance penal-
ties as compared to neighboring values. A closer look (vanilla graph in Fig. 27.5)
reveals that powers of two in array dimensions seem to be quite unfavorable (the
benchmark program allocates new matrices with appropriate dimensions for each
new N). As mentioned in Sect. 26.1.5.2, strided memory access leads to thrashing

27 Optimization techniques in HPC 743

1020 1024 1028 1032
N

0

500

1000

1500

2000

M
B

yt
es

/s
ec

vanilla
padded

Fig. 27.5. Cache thrashing for unfavorable choice of array dimensions (dashed). Padding
removes thrashing completely (solid)

when successive iterations hit the same (set of) cache line(s) because of insufficient
associativity. Fig. 27.2 shows clearly that this can easily happen with matrix trans-
pose if the leading dimension is a power of two. On a direct-mapped cache of size
C, every C/N -th iteration hits the same cache line. At a line length of Lc words,
the effective cache size is

Ceff = Lc max
(

1,
C

N

)
. (27.5)

It is the number of cache words that are actually usable due to associativity con-
straints. On an m-way set-associative cache this number is merely multiplied by m.
Considering a real-world example with C = 217 (1 MByte), Lc = 16, m = 8 and
N = 1024 one arrives at Ceff = 211 DP words, i.e. 16 kBytes. So NLc � Ceff and
performance should be similar to the very large N limit described above, which is
roughly true.

A simple code modification, however, eliminates the thrashing effect: Assuming
that matrix A has dimensions 1024×1024, enlarging the leading dimension by p
(called padding) to get A(1024+p,1024) leads to a fundamentally different cache
use pattern. After Lc/p iterations, the address belongs to another set of m cache lines
and there is no associativity conflict if Cm/N > Lc/p (see Fig. 27.3). In Fig. 27.5
the striking effect of padding the leading dimension by p = 1 is shown with the
padded graph.

Generally speaking, one should by all means stay away from powers of two in
array dimensions. It is clear that different dimensions may require different paddings
to get optimal results, so sometimes a rule of thumb is applied: Try to make leading
array dimensions odd multiples of 16.

Further optimization approaches will be considered in the following sections.

744 G. Hager and G. Wellein

27.1.3 Data Access Optimizations and Classification of Algorithms

The optimization potential of many loops on cache-based processors can easily be
estimated just by looking at basic parameters like the scaling behavior of data trans-
fers and arithmetic operations versus problem size. It can then be decided whether
investing optimization effort would make sense.

27.1.3.1 O(N)/O(N)

If both the number of arithmetic operations and the number of data transfers (load-
s/stores) are proportional to the problem size (or loop length) N , optimization po-
tential is usually very limited. Scalar products, vector additions and sparse matrix-
vector multiplication are examples for this kind of problems. They are inevitably
memory-bound for large N , and compiler-generated code achieves good perfor-
mance because O(N)/O(N) loops tend to be quite simple and the correct soft-
ware pipelining strategy is obvious. Loop nests, however, are a different matter (see
below).

But even if loops are not nested there is sometimes room for improvement. As
an example, consider the following vector additions:

do i=1,N
A(i) = B(i) + C(i)

enddo
do i=1,N

Z(i) = B(i) + E(i)
enddo

loop fusion
�

! optimized
do i=1,N

A(i) = B(i) + C(i)
! save a load for B(i)

Z(i) = B(i) + E(i)
enddo

Each of the loops on the left has no options left for optimization. The code bal-
ance is 3/1 as there are two loads, one store and one addition per loop (not counting
RFOs). Array B, however, is loaded again in the second loop, which is unneces-
sary: Fusing the loops into one has the effect that each element of B only has to be
loaded once, reducing code balance to 5/2. All else being equal, performance in the
memory-bound case will improve by a factor of 6/5 (if RFO cannot be avoided, this
will be 8/7).

Loop fusion has achieved an O(N) data reuse for the two-loop constellation so
that a complete load stream could be eliminated. In simple cases like the one above,
compilers can often apply this optimization by themselves.

27.1.3.2 O(N2)/O(N2)

In typical two-level loop nests where each loop has a trip count of N , there are
O(N2) operations for O(N2) loads and stores. Examples are dense matrix-vector
multiplication, matrix transpose, matrix addition etc., Although the situation on
the inner level is similar to the O(N)/O(N) case and the problems are gener-
ally memory-bound, the nesting opens new opportunities. Optimization, however,

27 Optimization techniques in HPC 745

is again usually limited to a constant factor of improvement. Consider dense matrix-
vector multiplication (MVM):

do i=1,N
tmp = C(i)
do j=1,N

tmp = tmp + A(j,i) * B(j)
enddo
C(i) = tmp

enddo

This code has a balance of 1 (two loads for A and B and two flops). Array C is
indexed by the outer loop variable, so updates can go to a register (here clarified
through the use of the scalar tmp although compilers can do this transformation
automatically) and do not count as load or store streams. Matrix A is only loaded
once, but B is loaded N times, once for each outer loop iteration. One would like to
apply the same fusion trick as above, but there are not just two but N inner loops to
fuse. The solution is loop unrolling: The outer loop is traversed with a stride m and
the inner loop is replicated m times. Obviously, one has to deal with the situation
that the outer loop count might not be a multiple of m. This case has to be handled
by a remainder loop:

! remainder loop
do r=1,mod(N,m)

do j=1,N
C(r) = C(r) + A(j,r) * B(j)

enddo
enddo
! main loop
do i=r,N,m

do j=1,N
C(i) = C(i) + A(j,i) * B(j)

enddo
do j=1,N

C(i+1) = C(i+1) + A(j,i+1) * B(j)
enddo
! m times
...
do j=1,N

C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)
enddo

enddo

The remainder loop is obviously subject to the same optimization techniques as the
original loop, but otherwise unimportant. For this reason we will ignore remainder
loops in the following.

By just unrolling the outer loop we have not gained anything but a considerable
code bloat. However, loop fusion can now be applied easily:

746 G. Hager and G. Wellein

! remainder loop ignored
do i=1,N,m

do j=1,N
C(i) = C(i) + A(j,i) * B(j)
C(i+1) = C(i+1) + A(j,i+1) * B(j)
! m times
...
C(i+m-1) = C(i+m-1) + A(j,i+m-1) * B(j)

enddo
enddo

The combination of outer loop unrolling and fusion is often called unroll and jam.
By m-way unroll and jam we have achieved an m-fold reuse of each element of
B from register so that code balance reduces to (m + 1)/(2m) which is clearly
smaller than one for m > 1. If m is very large, the performance gain can get close
to a factor of two. In this case array B is only loaded a few times or, ideally, just
once from memory. As A is always loaded exactly once and has size N2, the total
memory traffic with m-way unroll and jam amounts to N2(1+1/m)+N . Fig. 27.6
shows the memory access pattern for vanilla and 2-way unrolled dense MVM.

All this assumes, however, that register pressure is not too large, i.e. the CPU
has enough registers to hold all the required operands used inside the now quite
sizeable loop body. If this is not the case, the compiler must spill register data to
cache, slowing down the computation. Again, compiler logs can help identify such
a situation.

Unroll and jam can be carried out automatically by some compilers at high opti-
mization levels. Be aware though that a complex loop body may obscure important
information and manual optimization could be necessary, either – as shown above
– by hand-coding or compiler directives that specify high-level transformations like
unrolling. Directives, if available, are the preferred alternative as they are much eas-
ier to maintain and do not lead to visible code bloat. Regrettably, compiler directives
are inherently non-portable.

The matrix transpose code from the previous section is another example for
a problem of O(N2)/O(N2) type, although in contrast to dense MVM there is
no direct opportunity for saving on memory traffic; both matrices have to be read

= *+ = *+

Fig. 27.6. Vanilla (left) and 2-way unrolled (right) dense matrix vector multiplication. The
remainder loop is only a single (outer) iteration in this example

27 Optimization techniques in HPC 747

or written exactly once. Nevertheless, by using unroll and jam on the flipped
version a significant performance boost of nearly 50 % is observed (see dotted line
in Fig. 27.4):

do j=1,N,m
do i=1,N

A(i,j) = B(j,i)
A(i,j+1) = B(j+1,i)
...
A(i,j+m-1) = B(j+m-1,i)

enddo
enddo

Naively one would not expect any effect at m = 4 because the basic analysis stays
the same: In the mid-N region the number of available cache lines is large enough
to hold up to Lc columns of the store stream. The left picture in Fig. 27.7 shows the
situation for m = 2. However, the fact that m words in each of the load stream’s
cache lines are now accessed in direct succession reduces the TLB misses by a factor
of m, although the TLB is still way too small to map the whole working set.

Even so, cutting down on TLB misses does not remedy the performance break-
down for large N when the cache gets too small to hold N cache lines. It would
be nice to have a strategy which reuses the remaining Lc −m words of the strided
stream’s cache lines right away so that each line may be evicted soon and would not
have to be reclaimed later. A brute force method is Lc-way unrolling, but this ap-
proach leads to large-stride accesses in the store stream and is not a general solution
as large unrolling factors raise register pressure in loops with arithmetic operations.
Loop blocking can achieve optimal cache line use without additional register pres-
sure. It does not save load or store operations but increases the cache hit ratio. For
a loop nest of depth d, blocking introduces up to d additional outer loop levels that
cut the original inner loops into chunks:

do jj=1,N,b
jstart=jj; jend=jj+b-1
do ii=1,N,b

istart=ii; iend=ii+b-1
do j=jstart,jend,m
do i=istart,iend

a(i,j) = b(j,i)
a(i,j+1) = b(j+1,i)
...
a(i,j+m-1) = b(j+m-1,i)

enddo
enddo

enddo
enddo

In this example we have used 2D blocking with identical blocking factors b for
both loops in addition to m-way unroll and jam. Obviously, this change does not

748 G. Hager and G. Wellein

Fig. 27.7. Two-way unrolled (left) and blocked/unrolled (right) flipped matrix transpose, i.e.
with strided load

alter the loop body so the number of registers needed to hold operands stays the
same. However, the cache line access characteristics are much improved (see the
right picture in Fig. 27.7 which shows a combination of two-way unrolling and 4×4
blocking). If the blocking factors are chosen appropriately, the cache lines of the
strided stream will have been used completely at the end of a block and can be
evicted soon. Hence we expect the large-N performance breakdown to disappear.
The dotted-dashed graph in Fig. 27.4 demonstrates that 50× 50 blocking combined
with 4-way unrolling alleviates all memory access problems induced by the strided
stream.

Loop blocking is a very general and powerful optimization that can often not be
performed by compilers. The correct blocking factor to use should be determined
experimentally through careful benchmarking, but one may be guided by typical
cache sizes, i.e. when blocking for L1 cache the aggregated working set size of
all blocked inner loop nests should not be much larger than half the cache. Which
cache level to block for depends on the operations performed and there is no general
recommendation.

27.1.3.3 O(N3)/O(N2)

If the number of operations is larger than the number of data items by a factor that
grows with problem size, we are in the very fortunate situation to have tremendous
optimization potential. By the techniques described above (unroll and jam, loop
blocking) it is usually possible for these kinds of problems to render the imple-
mentation cache-bound. Examples for algorithms that show O(N3)/O(N2) char-
acteristics are dense matrix-matrix multiplication (MMM) and dense matrix diago-
nalization. It is beyond the scope of this contribution to develop a well-optimized
MMM, let alone eigenvalue calculation, but we can demonstrate the basic principle
by means of a simpler example which is actually of the O(N2)/O(N) type:

do i=1,N
do j=1,N

sum = sum + foo(A(i),B(j))
enddo

enddo

27 Optimization techniques in HPC 749

The complete data set is O(N) here but O(N2) operations (calls to foo(), addi-
tions) are performed on it. In the form shown above, array B is loaded from memory
N times, so the total memory traffic amounts to N(N + 1) words. m-way unroll
and jam is possible and will immediately reduce this to N(N/m + 1), but the dis-
advantages of large unroll factors have been pointed out already. Blocking the inner
loop with a block size of b, however,

do jj=1,N,b
jstart=jj; jend=jj+b-1
do i=1,N

do j=jstart,jend
sum = sum + foo(A(i),B(j))

enddo
enddo

enddo

has two effects:

– Array B is now loaded only once from memory, provided that b is small enough
so that b elements fit into cache and stay there as long as they are needed.

– Array A is loaded from memory N/b times instead of once.

Although A is streamed through cache N/b times, the probability that the current
block of B will be evicted is quite low, the reason being that those cache lines are
used very frequently and thus kept by the LRU replacement algorithm. This leads
to an effective memory traffic of N(N/b+ 1) words. As b can be made much larger
than typical unrolling factors, blocking is the best optimization strategy here. Un-
roll and jam can still be applied to enhance in-cache code balance. The basic N2

dependence is still there, but with a prefactor that can make the difference between
memory-bound and cache-bound behavior. A code is cache-bound if main mem-
ory bandwidth and latency are not the limiting factors for performance any more.
Whether this goal is achievable on a certain architecture depends on the cache size,
cache and memory speeds, and the algorithm, of course.

Algorithms of the O(N3)/O(N2) type are typical candidates for optimizations
that can potentially lead to performance numbers close to the theoretical maximum.
If blocking and unrolling factors are chosen appropriately, dense MMM, e.g., is an
operation that usually achieves over 90 % of peak for N × N matrices if N is not
too small. It is provided in highly optimized versions by system vendors as, e.g.,
contained in the BLAS (Basic Linear Algebra Subsystem) library. One might ask
why unrolling should be applied at all when blocking already achieves the most im-
portant task of making the code cache-bound. The reason is that even if all the data
resides in cache, many processor architectures do not have the capability for sus-
taining enough loads and stores per cycle to feed the arithmetic units continuously.
The once widely used but now outdated MIPS R1X000 family of processors for in-
stance could only sustain one load or store operation per cycle, which makes unroll
and jam mandatory if the kernel of a loop nest uses more than one stream, especially
in cache-bound situations like the blocked O(N2)/O(N) example above.

750 G. Hager and G. Wellein

Although demonstrated here for educational purpose, there is no need to hand-
code and optimize standard linear algebra and matrix operations. They should al-
ways be used from optimized libraries, if available. Nevertheless the techniques
described can be applied in many real-world codes. An interesting example with
some complications is sparse MVM (see next section).

27.1.4 Case Study: Sparse Matrix-Vector Multiplication

An interesting real-world application of the blocking and unrolling strategies dis-
cussed in the previous sections is the multiplication of a sparse matrix with a vector.
It is a key ingredient in most iterative matrix diagonalization algorithms (Lanczos,
Davidson, Jacobi-Davidson; see Chap. 18) and usually a performance-limiting fac-
tor. A matrix is called sparse if the number of non-zero entries Nnz grows linearly
with the number of matrix rows Nr. Of course, only the non-zeroes are stored at all
for efficiency reasons. Sparse MVM (sMVM) is hence an O(Nr)/O(Nr) problem
and inherently memory-bound if Nr is reasonably large. Nevertheless, the presence
of loop nests enables some significant optimization potential. Fig. 27.8 shows that
sMVM generally requires some strided or even indirect addressing of the r.h.s. vec-
tor, although there exist matrices for which memory access patterns are much more
favorable. In the following we will keep at the general case.

27.1.4.1 Sparse Matrix Storage Schemes

Several different storage schemes for sparse matrices have been developed, some of
which are suitable only for special kinds of matrices [3]. Of course, memory access
patterns and thus performance characteristics of sMVM depend heavily on the stor-
age scheme used. The two most important and also general formats are CRS (Com-
pressed Row Storage) and JDS (Jagged Diagonals Storage). We will see that CRS
is well-suited for cache-based microprocessors while JDS supports dependency and
loop structures that are favorable on vector systems.

+= *

Fig. 27.8. Sparse matrix-vector multiplication. Dark elements visualize entries involved in
updating a single l.h.s. element. Unless the sparse matrix rows have no gaps between the first
and last non-zero elements, some indirect addressing of the r.h.s. vector is inevitable

27 Optimization techniques in HPC 751

In CRS, an array val of length Nnz is used to store all non-zeroes of the matrix,
row by row, without any gaps, so some information about which element of val
originally belonged to which row and column must be supplied. This is done by
two additional integer arrays, col_idx of length Nnz and row_ptr of length Nr.
col_idx stores the column index of each non-zero element in val, and row_ptr
contains the indices at which new rows start in val (see Fig. 27.9). The basic code
to perform a MVM using this format is quite simple:

do i = 1,Nr

do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))

enddo
enddo

The following points should be noted:

– There is a long outer loop (length Nr).
– The inner loop may be short compared to typical microprocessor pipeline

lengths.
– Access to result vector c is well optimized: It is only loaded once from memory.
– The non-zeroes in val are accessed with stride one.
– As expected, the r.h.s. vector b is accessed indirectly. This may however not be

a serious performance problem depending on the exact structure of the matrix.
If the non-zeroes are concentrated mainly around the diagonal, there will even
be considerable spatial and/or temporal locality.

– Bc = 5/4 if the integer load to col_idx is counted with four bytes.

Some of those points will be of importance later when we demonstrate parallel
sMVM (see Sect. 27.2.2).

JDS requires some rearrangement of the matrix entries beyond simple zero elim-
ination. First, all zeroes are eliminated from the matrix rows and the non-zeroes are
shifted to the left. Then the matrix rows are sorted by descending number of non-
zeroes so that the longest row is at the top and the shortest row is at the bottom.
The permutation map generated during the sorting stage is stored in array perm of
length Nr. Finally, the now established columns are stored in array val consecu-
tively. These columns are also called jagged diagonals as they traverse the original

val

col_idx

row_ptr

−4 2

2 8

8 −5 10

−5

10 −6 1 83 5 9

1 2 1 3 2 4 5 3 3 5

−4 2 2 8 8 −5 10 −5 10 −61

2

3

4

5

1 2 3 4 5

Fig. 27.9. CRS sparse matrix storage format

752 G. Hager and G. Wellein

sparse matrix from left top to right bottom (see Fig. 27.10). For each non-zero the
original column index is stored in col_idx just like in the CRS. In order to have
the same element order on the r.h.s. and l.h.s. vectors, the col_idx array is sub-
ject to the above-mentioned permutation as well. Array jd_ptr holds the start
indices of the Nj jagged diagonals. A standard code for sMVM in JDS format is
only slightly more complex than with CRS:

do diag=1, Nj

diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag)
do i=1, diagLen

c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))
enddo

enddo

The perm array storing the permutation map is not required here; usually, all sMVM
operations are done in permuted space. These are the notable properties of this loop:

– There is a long inner loop without dependencies, which makes JDS a much
better storage format for vector processors than CRS.

– The outer loop is short (number of jagged diagonals).

val

col_idx

jd_ptr

perm

−5

10

2

−4

8 10

−6

8

2

−5−4

2

8 10

−5

10

2

8

−5

−6

−4

2

8

−5

10

2

8

10−5

−6

8 −4 2 10 −5 10−5 2 8 −6

2 1 1 3 3 4 2 3 5 5

1 106

3 2 2 1 1 5 3 1 4 4

3 12 45

original
col index

1

2

3

4

5

1

2

3

4

5

1

2

3

4

5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Fig. 27.10. JDS sparse matrix storage format. The permutation map is also applied to the
column index array. One of the jagged diagonals is marked

27 Optimization techniques in HPC 753

– The result vector is loaded multiple times (at least partially) from memory, so
there might be some optimization potential.

– The non-zeroes in val are accessed with stride one.
– The r.h.s. vector is accessed indirectly, just as with CRS. The same comments

as above do apply, although a favorable matrix layout would feature straight
diagonals, not compact rows. As an additional complication the matrix rows as
well as the r.h.s. vector are permuted.

– Bc = 9/4 if the integer load to col_idx is counted with four bytes.

The code balance numbers of CRS and JDS sMVM seem to be quite in favor of
CRS.

27.1.4.2 Optimizing JDS Sparse MVM

Unroll and jam should be applied to the JDS sMVM, but it usually requires the
length of the inner loop to be independent of the outer loop index. Unfortunately, the
jagged diagonals are generally not all of the same length, violating this condition.
However, an optimization technique called loop peeling can be employed which, for
m-way unrolling, cuts rectangular m×x chunks and leaves m−1 partial diagonals
over for separate treatment (see Fig. 27.11; the remainder loop is omitted as usual):

do diag=1,Nj,2 ! 2-way unroll & jam
diagLen = min((jd_ptr(diag+1)-jd_ptr(diag)) ,\

(jd_ptr(diag+2)-jd_ptr(diag+1)))
offset1 = jd_ptr(diag)
offset2 = jd_ptr(diag+1)
do i=1, diagLen

c(i) = c(i)+val(offset1+i)*b(col_idx(offset1+i))
c(i) = c(i)+val(offset2+i)*b(col_idx(offset2+i))

enddo
! peeled-off iterations
offset1 = jd_ptr(diag)
do i=(diagLen+1),(jd_ptr(diag+1)-jd_ptr(diag))

c(i) = c(i)+val(offset1+i)*b(col_idx(offset1+i))
enddo

enddo

Assuming that the peeled-off iterations account for a negligible contribution to CPU
time, m-way unroll and jam reduces code balance to

Bc =
1
m

+
5
4

.

If m is large enough, this can get close to the CRS balance. However, as explained
before large m leads to strong register pressure and is not always desirable. Gener-
ally, a sensible combination of unrolling and blocking is employed to reduce mem-
ory traffic and enhance in-cache performance at the same time. Blocking is indeed
possible for JDS sMVM as well (see Fig. 27.12):

754 G. Hager and G. Wellein

Fig. 27.11. JDS matrix traversal with 2-way unroll and jam and loop peeling. The peeled
iterations are marked

! loop over blocks
do ib=1, Nr, bl

block_start = ib
block_end = min(ib+bl-1, Nr)
! loop over diagonals in one block
do diag=1, Nj

diagLen = jd_ptr(diag+1)-jd_ptr(diag)
offset = jd_ptr(diag)
if(diagLen .ge. block_start) then
! standard JDS sMVM kernel
do i=block_start, min(block_end,diagLen)

c(i) = c(i)+val(offset+i)*b(col_idx(offset+i))
enddo

endif
enddo

enddo

Fig. 27.12. JDS matrix traversal with 4-way loop blocking

27 Optimization techniques in HPC 755

CRS JDS
vanilla

JDS
unroll = 2

JDS
block = 400

0

50

100

150

200

250

300

350

400

450

M
Fl

op
s/

se
c

AMD Opteron
Intel Itanium2 (SGI Altix)
Intel Xeon/Core

Fig. 27.13. Performance comparison of sparse MVM codes with different optimizations. A
matrix with 1.7 × 107 unknowns and 20 jagged diagonals was chosen. The blocking size of
400 has proven to be optimal for a wide range of architectures

With this optimization the result vector is effectively loaded only once from memory
if the block size bl is not too large. The code should thus get similar performance as
the CRS version, although code balance has not been changed. As anticipated above
with dense matrix transpose, blocking does not optimize for register reuse but for
cache utilization.

Fig. 27.13 shows a performance comparison of CRS and plain, 2-way unrolled
and blocked (b = 400) JDS sMVM on three different architectures. The CRS vari-
ant seems to be preferable for standard AMD and Intel microprocessors, which is
not surprising because it features the lowest code balance right away without any
subsequent manual optimizations and the short inner loop length is less unfavorable
on CPUs with out-of-order capabilities. The Intel Itanium2 processor with its EPIC
architecture, however, shows mediocre performance for CRS and tops at the blocked
JDS version. This architecture can not cope very well with the short loops of CRS
due to the absence of out-of-order processing and the compiler, despite detecting all
instruction-level parallelism on the inner loop level, not being able to overlap the
wind-down of one row with the wind-up phase of the next.

27.2 Shared-Memory Parallelization

OpenMP seems to be the easiest way to write parallel programs as it features a
simple, directive-based interface and incremental parallelization, meaning that the
loops of a program can be tackled one by one without major code restructuring. It
turns out, however, that getting a truly scalable OpenMP program is a significant
undertaking in all but the most trivial cases. This section pinpoints some of the
performance problems that can arise with shared-memory programming and how
they can be circumvented. We then turn to the OpenMP parallelization of the sparse
MVM code that has been demonstrated in the previous sections.

756 G. Hager and G. Wellein

27.2.1 Performance Pitfalls

Like any other parallelization method, OpenMP is prone to the standard problems
of parallel programming: Serial fraction (Amdahl’s law) and load imbalance, both
introduced in Sect. 26.2.

An overabundance of serial code can easily arise when critical sections become
out of hand. If all but one threads continuously wait for a critical section to become
available, the program is effectively serialized. This can be circumvented by em-
ploying finer control on shared resources using named critical sections or OpenMP
locks. Sometimes it may even be useful to supply thread-local copies of otherwise
shared data that may be pulled together by a reduction operation at the end of a par-
allel region. The load imbalance problem can often be solved by choosing a different
OpenMP scheduling strategy (see Sect. 26.2.4.4).

There are, however, very specific performance problems that are inherently con-
nected to shared-memory programming in general and OpenMP in particular.

27.2.1.1 OpenMP Overhead

Whenever a parallel region is started or stopped or a parallel loop is initiated or
ended, there is some non-negligible overhead involved. Threads must be spawned
or at least woken up from an idle state, the size of the work packages (chunks) for
each thread must be determined, and in the case of dynamic or guided scheduling
schemes each thread that becomes available must be supplied with a new chunk to
work on. Generally, the overhead caused by the start of a parallel region consists of
a (large) constant part and a part that is proportional to the number of threads. There
are vast differences from system to system as to how large this overhead can be,
but it is generally of the order of at least hundreds if not thousands of CPU cycles.
If the programmer follows some simple guidelines, the adverse effects of OpenMP
overhead can be much reduced:

– Avoid parallelizing short, tight loops. If the loop body does not contain much
work, i.e. if each iteration executes in a very short time, OpenMP loop overhead
will lead to very bad performance. It is often beneficial to execute a serial version
if the loop count is below some threshold. The OpenMP IF clause helps with
this:

!$OMP PARALLEL DO IF(N>10000)
do i=1,N
A(i) = B(i) + C(i) * D(i)

enddo
!$OMP END PARALLEL DO

Fig. 27.14 shows a comparison of vector triad data in the purely serial case
and with one and four OpenMP threads, respectively. The presence of OpenMP
causes overhead at small N even if only a single thread is used. Using the IF
clause leads to an optimal combination of threaded and serial loop versions if

27 Optimization techniques in HPC 757

102 103 104 105 106

N

0

500

1000

1500

M
Fl

op
s/

se
c

serial version
OMP_NUM_THREADS = 1
OMP_NUM_THREADS = 4
OMP_NUM_THREADS = 4, if clause

Fig. 27.14. OpenMP overhead and the benefits of the IF(N>10000) clause for the vector
triad benchmark. Note the impact of aggregate cache size on the position of the performance
breakdown from L2 to memory. (AMD Opteron 2.0 GHz)

the threshold is chosen appropriately, and is hence mandatory when large loop
lengths cannot be guaranteed.
As a side-note, there is another harmful effect of short loop lengths: If the num-
ber of iterations is comparable to the number of threads, load imbalance may
cause bad scalability.

– In loop nests, parallelize on a level as far out as possible. This is inherently con-
nected to the previous advice. Parallelizing inner loop levels leads to increased
OpenMP overhead because a team of threads is spawned or woken up multiple
times.

– Be aware that most OpenMP work-sharing constructs (including OMP DO and
END DO) insert automatic barriers at the end so that all threads have completed
their share of work before anything after the construct is executed. In cases
where this is not required, a NOWAIT clause removes the implicit barrier:

!$OMP PARALLEL
!$OMP DO

do i=1,N
A(i) = func1(B(i))

enddo
!$OMP END DO NOWAIT
! still in parallel region here. do more work:
!$OMP CRITICAL

CNT = CNT + 1
!$OMP END CRITICAL
!$OMP END PARALLEL

758 G. Hager and G. Wellein

There is also an implicit barrier at the end of a parallel region that cannot be re-
moved. In general, implicit barriers add to synchronization overhead like critical
regions, but they are often required to protect from race conditions.

27.2.1.2 False Sharing

The hardware-based cache coherence mechanisms described in Sect. 26.2.4 make
the use of caches in a shared-memory system transparent to the programmer. In
some cases, however, cache coherence traffic can throttle performance to very low
levels. This happens if the same cache line is modified continuously by a group
of threads so that the cache coherence logic is forced to evict and reload it in rapid
succession. As an example, consider a program fragment that calculates a histogram
over the values in some large integer array A that are all in the range {1, . . . , 8}:

integer, dimension(8) :: S
integer IND
S = 0
do i=1,N

IND = A(i)
S(IND) = S(IND) + 1

enddo

In a straightforward parallelization attempt one would probably go about and
make S two-dimensional, reserving space for the local histogram of each thread:

integer, dimension(:,:), allocatable :: S
integer IND,ID,NT

!$OMP PARALLEL PRIVATE(ID,IND)
!$OMP SINGLE

NT = omp_get_num_threads()
allocate(S(0:NT,8))
S = 0

!$OMP END SINGLE
ID = omp_get_thread_num() + 1

!$OMP DO
do i=1,N
IND = A(i)
S(ID,IND) = S(ID,IND) + 1

enddo
!$OMP END DO NOWAIT

! calculate complete histogram
!$OMP CRITICAL

do j=1,8
S(0,j) = S(0,j) + S(ID,j)
enddo

!$OMP END CRITICAL
!$OMP END PARALLEL

27 Optimization techniques in HPC 759

The loop starting at line 18 collects the partial results of all threads. Although this
is a valid OpenMP program, it will not run faster but much more slowly when using
four threads instead of one. The reason is that the two-dimensional array S contains
all the histogram data from all threads. With four threads these are 160 bytes, less
than two cache lines on most processors. On each histogram update to S in line 10,
the writing CPU must gain exclusive ownership of one of the two cache lines, i.e.
every write leads to a cache miss and subsequent coherence traffic. Compared to
the situation in the serial case where S fits into the cache of a single CPU, this will
result in disastrous performance.

One should add that false sharing can be eliminated in simple cases by the stan-
dard register optimizations of the compiler. If the crucial update operation can be
performed to a register whose contents are only written out at the end of the loop, no
write misses turn up. This is not possible in the above example, however, because
of the computed second index to S in line 10.

Getting rid of false sharing by manual optimization is often a simple task once
the problem has been identified. A standard technique is array padding, i.e. insertion
of a suitable amount of space between memory locations that get updated by differ-
ent threads. In the histogram example above, an even more painless solution exists
in the form of data privatization: On entry to the parallel region, each thread gets
its own local copy of the histogram array in its own stack space. It is very unlikely
that those different instances will occupy the same cache line, so false sharing is
not a problem. Moreover, the code is simplified and made equivalent with the serial
version by using the REDUCTION clause introduced in Sect. 26.2.4.4:

integer, dimension(8) :: S
integer IND
S=0

!$OMP PARALLEL DO PRIVATE(IND) REDUCTION(+:S)
do i=1,N

IND = A(i)
S(IND) = S(IND) + 1

enddo
!$OMP EMD PARALLEL DO

Setting S to zero is only required for serial equivalence as the reduction clause au-
tomatically initializes the variables in question with appropriate starting values. We
must add that OpenMP reduction to arrays in Fortran does not work for allocatable,
pointer or assumed size types.

27.2.2 Case Study: Parallel Sparse Matrix-Vector Multiplication

As an interesting application of OpenMP to a nontrivial problem we now extend the
considerations on sparse MVM data layout and optimization by parallelizing the
CRS and JDS matrix-vector multiplication codes from Sect. 27.1.4.

No matter which of the two storage formats is chosen, the general paralleliza-
tion approach is always the same: In both cases there is a parallelizable loop that

760 G. Hager and G. Wellein

calculates successive elements (or blocks of elements) of the result vector (see
Fig. 27.15). For the CRS matrix format, this principle can be applied in a straight-
forward manner:

!$OMP PARALLEL DO PRIVATE(j)1

do i = 1,Nr

do j = row_ptr(i), row_ptr(i+1) - 1
c(i) = c(i) + val(j) * b(col_idx(j))

enddo
enddo

!$OMP END PARALLEL DO

Due to the long outer loop, OpenMP overhead is usually not a problem here. De-
pending on the concrete form of the matrix, however, some loop imbalance might
occur if very short or very long matrix rows are clustered at some regions. A differ-
ent kind of OpenMP scheduling strategy like DYNAMIC or GUIDED might help in
this situation.

The vanilla JDS sMVM is also parallelized easily:

!$OMP PARALLEL PRIVATE(diag,diagLen,offset)
do diag=1, Nj

diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag)

!$OMP DO
do i=1, diagLen
c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))

enddo
!$OMP END DO

enddo

T0

T1

T2

T3

T4

+= *

Fig. 27.15. Parallelization approach for sparse MVM (five threads). All marked elements
are handled in a single iteration of the parallelized loop. The r.h.s. vector is accessed by all
threads

1 The privatization of inner loop indices in the lexical extent of a parallel outer loop is not
required in Fortran, but it is in C/C++ [4].

27 Optimization techniques in HPC 761

!$OMP END PARALLEL

The parallel loop is the inner loop in this case, but there is no OpenMP overhead
problem as the loop count is large. Moreover, in contrast to the parallel CRS version,
there is no load imbalance because all inner loop iterations contain the same amount
of work. All this would look like an ideal situation were it not for the bad code
balance of vanilla JDS sMVM. However, the unrolled and blocked versions can be
equally well parallelized. For the blocked code (see Fig. 27.12), the outer loop over
all blocks is a natural candidate:

!$OMP DO PARALLEL DO PRIVATE(block_start,block_end,i,diag,
!$OMP& diagLen,offset)

do ib=1,Nr,b
block_start = ib
block_end = min(ib+b-1,Nr)
do diag=1,Nj

diagLen = jd_ptr(diag+1)-jd_ptr(diag)
offset = jd_ptr(diag)
if(diagLen .ge. block_start) then

do i=block_start, min(block_end,diagLen)
c(i) = c(i)+val(offset+i)*b(col_idx(offset+i))

enddo
endif

enddo
enddo

!$OMP END PARALLEL DO

This version has even got less OpenMP overhead because the DO directive is on the
outermost loop. Unfortunately, there is more potential for load imbalance because
of the matrix rows being sorted for size. But as the dependence of workload on loop
index is roughly predictable, a static schedule with a chunk size of one can remedy
most of this effect.

Fig. 27.16 shows performance and scaling behavior of the parallel CRS and
blocked JDS versions on three different architectures. In all cases, the code was run
on as few locality domains or sockets as possible, i.e. first filling one locality domain
or socket before going to the next. On the ccNUMA systems (Altix and Opterons,
equivalent to the block diagrams in Figs. 26.23 and 26.24), the performance charac-
teristics with growing CPU number is obviously fundamentally different from the
UMA system (Xeon/Core node like in Fig. 26.22). Both code versions seem to be
extremely unsuitable for ccNUMA. Only the UMA node shows the expected be-
havior of strong bandwidth saturation at 2 threads and significant speedup when the
second socket gets used (additional bandwidth due to second FSB).

The reason for the failure of ccNUMA to deliver the expected bandwidth lies in
our ignorance of a necessary prerequisite for scalability that we have not honored
yet: Correct data and thread placement for access locality.

762 G. Hager and G. Wellein

1 2 4 6 8
Threads

0

100

200

300

400

500

600

700

800

M
Fl

op
s/

se
c

CRS - Intel Xeon/Core
bJDS - Intel Xeon/Core
CRS - SGI Altix
bJDS - SGI Altix
CRS - AMD Opteron
bJDS - AMD Opteron

Fig. 27.16. Performance and strong scaling for straightforward OpenMP parallelization of
sparse MVM on three different architectures, comparing CRS (open symbols) and blocked
JDS (closed symbols) variants. The Intel Xeon/Core system (dashed) is of UMA type, the
other two systems are ccNUMA

27.2.3 Locality of Access on ccNUMA

It was mentioned already in the section on ccNUMA architecture that locality and
congestion problems (see Figs. 27.17 and 27.18) tend to turn up when thread-
s/processes and their data are not carefully placed across the locality domains of
a ccNUMA system. Unfortunately, the current OpenMP standard does not refer to
placement at all and it is up to the programmer to use the tools that system builders
provide.

The placement problem has two dimensions: First, one has to make sure that
memory gets mapped into the locality domains of processors that actually access
them. This minimizes NUMA traffic across the network. Second, threads or pro-
cesses must be “pinned” to those CPUs which had originally mapped their memory
regions in order not to lose locality of access. In this context, mapping means that
a page table entry is set up which describes the association of a physical with a vir-

P

C

C

P

C

C

P

C

C

P

C

C

Memory Memory

Fig. 27.17. Locality problem on a ccNUMA system. Memory pages got mapped into a local-
ity domain that is not connected to the accessing processor, leading to NUMA traffic

27 Optimization techniques in HPC 763

P

C

C

P

C

C

P

C

C

P

C

C

Memory Memory

Fig. 27.18. Congestion problem on a ccNUMA system. Even if the network is very fast, a
single locality domain can usually not saturate the bandwidth demands from concurrent local
and non-local accesses

tual memory page. Consequently, locality of access in ccNUMA systems is always
followed on the page level, with typical page sizes of (commonly) 4 kB or (more
rarely) 16 kB, sometimes larger. Hence strict locality may be hard to implement
with working sets that only encompass a few pages.

27.2.3.1 Ensuring Locality of Memory Access

Fortunately, the initial mapping requirement can be enforced in a portable manner
on all current ccNUMA architectures. They support a first touch policy for memory
pages: A page gets mapped into the locality domain of the processor that first reads
or writes to it. Merely allocating memory is not sufficient (and using calloc()
in C will most probably be counterproductive). It is therefore the data initialization
code that deserves attention on ccNUMA:

integer,parameter::N=1000000
double precision A(N), B(N)

! executed on single
! locality domain
READ(1000) A
! congestion problem
!$OMP PARALLEL DO
do i = 1, N

B(i) = func(A(i))
enddo

!$OMP END PARALLEL DO

�

integer,parameter::N=1000000
double precision A(N), B(N)
!$OMP PARALLEL DO
do i=1,N

A(i) = 0.d0
!$OMP END PARALLEL DO
! A is mapped now
READ(1000) A
!$OMP PARALLEL DO
do i = 1, N

B(i) = func(A(i))
enddo

!$OMP END PARALLEL DO

On the left, initialization of A is done in a serial region using a READ staement, so
the array data gets mapped to a single locality domain (maybe more if the array is
very large). The access to A in the parallel loop will then lead to congestion. The
version on the right corrects this problem by initializing A in parallel, first-touching
its elements in the same way they are accessed later. Although the READ operation

764 G. Hager and G. Wellein

is still sequential, the data will be distributed across the locality domains. Array B
does not have to be initialized but will automatically be mapped correctly.

A required condition for this strategy to work is that the OpenMP loop schedules
of initialization and work loops are identical and reproducible, i.e. the only possible
choice is STATIC with a constant chunk size. As the OpenMP standard does not
define a default schedule, it is generally a good idea to specify it explicitly on all
parallel loops. All current compilers choose STATIC by default, though. Of course,
the use of a static schedule poses some limits on possible optimizations for elim-
inating load imbalance. One option is the choice of an appropriate chunk size (as
small as possible, but at least several pages).

Unfortunately it is not always at the programmer’s discretion how and when data
is touched first. In C/C++, global data (including objects) is initialized before the
main() function even starts. If globals cannot be avoided, properly mapped local
copies of global data may be a possible solution, code characteristics in terms of
communication vs. calculation permitting [5]. A discussion of some of the problems
that emerge from the combination of OpenMP with C++ can be found in [6].

27.2.3.2 ccNUMA Optimization of Sparse MVM

It should now be obvious that the bad scalability of OpenMP-parallelized sparse
MVM codes on ccNUMA systems (see Fig. 27.16) is due to congestion that arises
because of wrong data placement. By writing parallel initialization loops that exploit
first touch mapping policy, scaling can be improved considerably. We will restrict
ourselves to CRS here as the strategy is basically the same for JDS. Arrays c, val,
col_idx, row_ptr and b must be initialized in parallel:

!$OMP PARALLEL DO
do i=1,Nr

row_ptr(i) = 0 ; c(i) = 0.d0 ; b(i) = 0.d0
enddo

!$OMP END PARALLEL DO
.... ! preset row_ptr array
!$OMP PARALLEL DO PRIVATE(start,end,j)

do i=1,Nr

start = row_ptr(i) ; end = row_ptr(i+1)
do j=start,end-1
val(j) = 0.d0 ; col_idx(j) = 0

enddo
enddo

!$OMP END PARALLEL DO

The initialization of b is based on the assumption that the non-zeroes of the matrix
are roughly clustered around the main diagonal. Depending on the matrix structure
it may be hard in practice to perform proper placement for the r.h.s. vector at all.

Fig. 27.19 shows performance data for the same architectures and sMVM codes
as in Fig. 27.16 but with appropriate ccNUMA placement. There is no change in

27 Optimization techniques in HPC 765

Fig. 27.19. Performance and strong scaling for ccNUMA-optimized OpenMP parallelization
of sparse MVM on three different architectures, comparing CRS (open symbols) and blocked
JDS (closed symbols) variants. Cf. Fig. 27.16 for performance without proper placement

scalability for the UMA platform, which was to be expected, but also on the cc-
NUMA systems for up to two threads. The reason is of course that both architectures
feature two-processor locality domains which are of UMA type. On four threads
and above, the locality optimizations yield dramatically improved performance. Es-
pecially for the CRS version scalability is nearly perfect when going from 2n to
2(n+1) threads (due to bandwidth limitations inside the locality domains, scalabil-
ity on ccNUMA systems should always be reported with reference to performance
on all cores of a locality domain). The JDS variant of the code benefits from the op-
timizations as well, but falls behind CRS for larger thread numbers. This is because
of the permutation map for JDS which makes it hard to place larger portions of the
r.h.s. vector into the correct locality domains, leading to increased NUMA traffic.

It should be obvious by now that data placement is of premier importance on cc-
NUMA architectures, including commonly used two-socket cluster nodes. In prin-
ciple, ccNUMA features superior scalability for memory-bound codes, but UMA
systems are much easier to handle and require no code optimization for locality of
access. It is to be expected, though, that ccNUMA designs will prevail in the mid-
term future.

27.2.3.3 Pinning

One may speculate that the considerations about locality of access on ccNUMA sys-
tems from the previous section do not apply for MPI-parallelized code. Indeed, MPI
processes have no concept of shared memory. They allocate and first-touch memory
pages in their own locality domain by default. Operating systems are nowadays ca-
pable of maintaining strong affinity between threads and processors, meaning that a
thread (or process) will be reluctant to leave the processor it was initially started on.
However, it might happen that system processes or interactive load push threads off

766 G. Hager and G. Wellein

their original CPUs. It is not guaranteed that the previous state will be re-established
after the disturbance. One indicator for insufficient thread affinity are erratic perfor-
mance numbers (i.e., varying from run to run). Even on UMA systems insufficient
affinity can lead to problems if the UMA node is divided into sections (e.g., sockets
with dual-core processors like in Fig. 26.22) that have separate paths to memory and
internal shared caches. It may be of advantage to keep neighboring thread IDs on
the cores of a socket to exploit the advantage of shared caches. If only one core per
socket is used, migration of both threads to the same socket should be avoided if the
application is bandwidth-bound.

The programmer can avoid those effects by pinning threads to CPUs. Every
operating system has ways of limiting the mobility of threads and processes. Unfor-
tunately, these are by no means portable, but there is always a low-level interface
with library calls that access the basic functionality. Under the Linux OS, PLPA [7]
can be used for that purpose. The following is a C example that pins each thread to
a CPU whose ID corresponds to the thread ID:

#include <plpa.h>
...
#pragma omp parallel
{

plpa_cpu_set_t mask;
PLPA_CPU_ZERO(&mask);
int id = omp_get_thread_num();
PLPA_CPU_SET(id,&mask);
PLPA_NAME(sched_setaffinity)((pid_t)0, (size_t)32, &mask);

}

The mask variable is used as a bit mask to identify those CPUs the thread should
be restricted to by setting the corresponding bits to one (this could be more than one
bit, a feature often called CPU set). After this code has executed, no thread will be
able to leave its CPU any more.

System vendors often provide high-level interfaces to the pinning or CPU set
mechanism. Please consult the system documentation for details.

27.3 Conclusion and Outlook

In this chapter we have presented basic optimization techniques on the processor
and the shared-memory level. Although we have mainly used examples from lin-
ear algebra for clarity of presentation, the concepts can be applied to all numerical
program codes. Although compilers are often surprisingly smart in detecting opti-
mization opportunities, they are also easily deceived by the slightest obstruction of
their view on program source. Regrettably, compiler vendors are very reluctant to
build tools into their products that facilitate the programmer’s work by presenting a
clear view on optimizations performed or dropped.

27 Optimization techniques in HPC 767

There is one important topic in code optimization that we have neglected for
brevity: The start of any serious optimization attempt on a nontrivial application
should be the production of a profile that identifies the hot spots, i.e. the parts of
the code that take the most time to execute. Many tools, free and commercial, exist
in this field and more are under development. In which form a programmer should
be presented performance data for a parallel run with thousands of processors and
how the vast amounts of data can be filtered to extract the important insights is the
subject of intense research. Multi-core technologies are adding another dimension
to this problem.

References

1. A. Hoisie, O. Lubeck, H. Wassermann, Int. J. High Perform. Comp. Appl. 14, 330 (2000)
738

2. P.F. Spinnato, G. van Albada, P.M. Sloot, IEEE Trans. Parallel Distrib. Systems 15(1),
81 (2004) 738

3. R. Barrett, M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods (SIAM, 1994) 750

4. URL http://www.openmp.org 760
5. B. Chapman, F. Bregier, A. Patil, A. Prabhakar, Concurrency Comput.: Pract. Exper. 14,

713 (2002) 764
6. C. Terboven, D. an Mey, in Proceedings of IWOMP2006 — International Workshop

on OpenMP, Reims, France, June 12–15, 2006. (2006). URL http://iwomp.
univ-reims.fr/cd/papers/TM06.pdf 764

7. URL http://www.open-mpi.org/software/plpa/ 766

	Part I Molecular Dynamics
	1 Introduction to Molecular Dynamics
	Ralf Schneider, Amit Raj Sharma, and Abha Rai
	Basic Approach
	Macroscopic Parameters
	Inter-Atomic Potentials
	Numerical Integration Techniques
	Analysis of MD Runs
	From Classical to Quantum-Mechanical MD
	Ab Initio MD
	Car-Parrinello Molecular Dynamics
	Potential Energy Surface
	Advanced Numerical Methods
	References

	2 Wigner Function Quantum Molecular Dynamics
	V. S. Filinov, M. Bonitz, A. Filinov, and V. O. Golubnychiy
	Quantum Distribution Functions
	Semiclassical Molecular Dynamics
	Quantum Dynamics
	Time Correlation Functions in the Canonical Ensemble
	Discussion
	References

	Part II Classical Monte Carlo
	3 The Monte Carlo Method, an Introduction
	Detlev Reiter
	What is a Monte Carlo Calculation?
	Random Number Generation
	Integration by Monte Carlo
	Summary
	References

	4 Monte Carlo Methods in Classical Statistical Physics
	Wolfhard Janke
	Introduction
	Statistical Physics Primer
	The Monte Carlo Method
	Cluster Algorithms
	Statistical Analysis of Monte Carlo Data
	Reweighting Techniques
	Finite-Size Scaling Analysis
	Generalized Ensemble Methods
	Concluding Remarks
	References

	5 The Monte Carlo Method for Particle Transport Problems
	Detlev Reiter
	Transport Problems and Stochastic Processes
	The Transport Equation: Fredholm IntegralEquation of Second Kind
	The Boltzmann Equation
	The Linear Integral Equation for the Collision Density
	Monte Carlo Solution
	Some Special Sampling Techniques
	An Illustrative Example
	References

	Part III Kinetic Modelling
	6 The Particle-in-Cell Method
	David Tskhakaya
	General Remarks
	Integration of Equations of Particle Motion
	Plasma Source and Boundary Effects
	Calculation of Plasma Parameters and FieldsActing on Particles
	Solution of Maxwell's Equations
	Particle Collisions
	Final Remarks
	References

	7 Gyrokinetic and Gyrofluid Theory and Simulation of Magnetized Plasmas
	Richard D. Sydora
	Introduction
	Single Particle Dynamics
	Continuum Gyrokinetics
	Gyrofluid Model
	Gyrokinetic Particle Simulation Model
	Gyrokinetic Particle Simulation Model Applications
	Summary
	References

	Part IV Semiclassical Approaches
	8 Boltzmann Transport in Condensed Matter
	Franz Xaver Bronold
	Boltzmann Equation for Quasiparticles
	Techniques for the Solution of the Boltzmann Equation
	Conclusions
	References

	9 Semiclassical Description of Quantum Many-Particle Dynamics in Strong Laser Fields
	Thomas Fennel and Jörg Köhn
	Semiclassical Many-Particle Dynamicsin Mean-Field Approximation
	Semiclassical Ground State
	Application to Simple-Metal Clusters
	References

	Part V Quantum Monte Carlo
	10 World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons
	F.F. Assaad and H.G. Evertz
	Introduction
	Discrete Imaginary Time World Linesfor the XXZ Spin Chain
	World-Line Representations without Discretization Error
	Loop Operator Representationof the Heisenberg Model
	Spin-Phonon Simulations
	Auxiliary Field Quantum Monte Carlo Methods
	Numerical Stabilization Schemes for Lattice Models
	The Hirsch-Fye Impurity Algorithm
	Selected Applications of the Auxiliary Field Method
	Conclusion
	The Trotter Decomposition
	The Hubbard-Stratonovich Decomposition
	Slater Determinants and their Properties
	References

	11 Autocorrelations in Quantum Monte Carlo Simulations of Electron-Phonon Models
	Martin Hohenadler and Thomas C. Lang
	Introduction
	Holstein Model
	Numerical Methods
	Problem of Autocorrelations
	Origin of Autocorrelations and Principal Components
	Conclusions
	References

	12 Diagrammatic Monte Carlo and Stochastic Optimization Methods for Complex Composite Objects in Macroscopic Baths
	A. S. Mishchenko
	Introduction
	Physical Properties of Interest
	The Diagrammatic Monte Carlo Method
	Stochastic Optimization Method
	Conclusions and Perspectives
	References

	13 Path Integral Monte Carlo Simulation of Charged Particles in Traps
	Alexei Filinov, Jens Böning, and Michael Bonitz
	Introduction
	Idea of Path Integral Monte Carlo
	Basic Numerical Issues of PIMC
	PIMC for Degenerate Bose Systems
	Discussion
	References

	Part VI Ab-Initio Methods in Physics and Chemistry
	14 Ab-Initio Approach to the Many-Electron Problem
	Alexander Quandt
	Introduction
	An Orbital Approach to Chemistry
	Hartree-Fock Theory
	Density Functional Theory
	References

	15 Ab-Initio Methods Applied to Structure Optimization and Microscopic Modelling
	Alexander Quandt
	Exploring Energy Hypersurfaces
	Applied Theoretical Chemistry
	Model Hamiltonians
	Summary and Outlook
	Links to Popular Ab Initio Packages
	References

	Part VII Effective Field Approaches
	16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems
	Thomas Pruschke
	Introduction
	Mean-Field Theory for Correlated Electron Systems
	Extending the DMFT: Effective Cluster Theories
	Conclusions
	References

	17 Local Distribution Approach
	Andreas Alvermann and Holger Fehske
	Introduction
	Applications of the LD Approach
	Summary
	References

	Part VIII Iterative Methods for Sparse Eigenvalue Problems
	18 Exact Diagonalization Techniques
	Alexander Weiße and Holger Fehske
	Basis Construction
	Eigenstates of Sparse Matrices
	References

	19 Chebyshev Expansion Techniques
	Alexander Weiße and Holger Fehske
	Chebyshev Expansion and Kernel Polynomial Approximation
	Applications of the Kernel Polynomial Method
	KPM in Relation to other Numerical Approaches
	References

	Part IX The Density Matrix Renormalisation Group: Concepts and Applications
	20 The Conceptual Background of Density-Matrix Renormalization
	Ingo Peschel and Viktor Eisler
	Introduction
	Entangled States
	Reduced Density Matrices
	Solvable Models
	Spectra
	Entanglement Entropy
	Matrix-Product States
	Summary
	References

	21 Density-Matrix Renormalization Group Algorithms
	Eric Jeckelmann
	Introduction
	Matrix-Product States and (Super-)Blocks
	Numerical Renormalization Group
	Infinite-System DMRG Algorithm
	Finite-System DMRG Algorithm
	Additive Quantum Numbers
	Truncation Errors
	Computational Cost and Optimization
	Basic Extensions
	References

	22 Dynamical Density-Matrix Renormalization Group
	Eric Jeckelmann and Holger Benthien
	Introduction
	Methods for Simple Discrete Spectra
	Dynamical DMRG
	Finite-Size Scaling
	Momentum-Dependent Quantities
	Application: Spectral Function of the Hubbard Model
	References

	23 Studying Time-Dependent Quantum Phenomenawith the Density-Matrix Renormalization Group
	Reinhard M. Noack, Salvatore R. Manmana, Stefan Wessel, and Alejandro Muramatsu
	Time Dependence in Interacting Quantum Systems
	Sudden Quench of Interacting Fermions
	Discussion
	References

	24 Applications of Quantum Information in the Density-Matrix Renormalization Group
	Ö. Legeza , R.M. Noack , J. Sólyom , and L. Tincani
	Basic Concepts of Quantum Information Theory
	Entropic Analysis of Quantum Phase Transitions
	Discussion and Outlook
	References

	25 Density-Matrix Renormalization Group for Transfer Matrices: Static and Dynamical Properties of 1D Quantum Systems at Finite Temperature
	Stefan Glocke, Andreas Klümper, and Jesko Sirker
	Introduction
	Quantum Transfer Matrix Theory
	The Method -- DMRG Algorithm for the QTM
	An Example: The Spin-1/2 Heisenberg Chain with Staggered and Uniform Magnetic Fields
	Impurity and Boundary Contributions
	Real-Time Dynamics
	References

	Part X Concepts of High Performance Computing
	26 Architecture and Performance Characteristics of Modern High Performance Computers
	Georg Hager and Gerhard Wellein
	Microprocessors
	Parallel Computing
	Conclusion and Outlook
	References

	27 Optimization Techniques for Modern High Performance Computers
	Georg Hager and Gerhard Wellein
	Optimizing Serial Code
	Shared-Memory Parallelization
	Conclusion and Outlook
	References

	Appendix: Abbreviations
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

