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The density-matrix renormalization group (DMRG) applied to transfer matrices al-
lows it to calculate static as well as dynamical properties of one-dimensional (1D)
quantum systems at finite temperature in the thermodynamic limit. To this end the
quantum system is mapped onto a 2D classical system by a Trotter-Suzuki decom-
position. Here we discuss two different mappings: The standard mapping onto a
2D lattice with checkerboard structure as well as an alternative mapping introduced
by two of us. For the classical system an appropriate quantum transfer matrix is
defined which is then treated using a DMRG scheme. As applications, the calcu-
lation of thermodynamic properties for a spin-1/2 Heisenberg chain in a staggered
magnetic field and the calculation of boundary contributions for open spin chains
are discussed. Finally, we show how to obtain real-time dynamics from a classical
system with complex Boltzmann weights and present results for the autocorrelation
function of the XXZ-chain.

25.1 Introduction

Several years after the invention of the DMRG method to study ground-state prop-
erties of 1D quantum systems [1], Nishino showed that the same method can also
be applied to the transfer matrix of a 2D classical system hence allowing to calcu-
late its partition function at finite temperature [2]. The same idea can also be used
to calculate the thermodynamic properties of a 1D quantum system after mapping
it to a 2D classical one with the help of a Trotter-Suzuki decomposition [3, 4, 5].
Bursill et al. [6] then presented the first application but the density matrix chosen
in this work to truncate the Hilbert space was not optimal so that the true potential
of this new numerical method was not immediately clear. This changed when Wang
and Xiang [7] and Shibata [8] presented an improved algorithm and showed that
the density-matrix renormalization group applied to transfer matrices (which we
will denote as TMRG from hereon) is indeed a serious competitor to other numeri-
cal methods as for example Quantum-Monte-Carlo (QMC). Since then, the TMRG
method has been successfully applied to a number of systems including various spin
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chains, the Kondo lattice model, the t − J chain and ladder and also spin-orbital
models [9, 10, 11, 12, 13, 14, 15, 16, 17].

The main advantage of the TMRG algorithm is that the thermodynamic limit
can be performed exactly thus avoiding an extrapolation in system size. Further-
more, there are no statistical errors and results can be obtained with an accuracy
comparable to (T = 0) DMRG calculations. Similar to the (T = 0) DMRG al-
gorithms, the method is best suited for 1D systems with short range interactions.
These systems can, however, be either bosonic or fermionic because no negative
sign problem as in QMC exists. Most important, there are two areas where TMRG
seems to have an edge over any other numerical methods known today. These are:

(i) Impurity or boundary contributions, and
(ii) real-time dynamics at finite temperature.

As first shown by Rommer and Eggert [18], the TMRG method allows it to separate
an impurity or boundary contribution from the bulk part thus giving direct access
to quantities which are of order O(1/L) compared to the O(1) bulk contribution
(here L denotes the length of the system). We will discuss this in more detail in
Sect. 25.5. Calculating numerically the dynamical properties for large or even infi-
nite 1D quantum systems constitutes a particularly difficult problem because QMC
and TMRG algorithms can usually only deal with imaginary-time correlation func-
tions. The analytical continuation of numerical data is, however, an ill-posed prob-
lem putting severe constraints on the reliability of results obtained this way. Very
recently, two of us have presented a modified TMRG algorithm which allows for
the direct calculation of real-time correlations [19]. This new algorithm will be dis-
cussed in Sect. 25.6.

Before coming to these more recent developments we will discuss the definition
of an appropriate quantum transfer matrix for the classical system in Sect. 25.2 and
describe how the DMRG algorithm is applied to this object in Sect. 25.3. Here we
will follow in parts the article by Wang and Xiang in [20] but, at the same time, also
discuss an alternative Trotter-Suzuki decomposition [15, 16].

25.2 Quantum Transfer Matrix Theory

The TMRG method is based on a Trotter-Suzuki decomposition of the partition
function, mapping a 1D quantum system to a 2D classical one [3, 4, 5]. In the fol-
lowing, we discuss both the standard mapping introduced by Suzuki [5] as well
as an alternative one [15, 16] starting from an arbitrary Hamiltonian H of a 1D
quantum system with length L, periodic boundary conditions and nearest-neighbor
interaction

H =
L∑
i=1

hi,i+1 . (25.1)

The standard mapping, widely used in QMC and TMRG calculations, is described
in detail in [20]. Therefore we only summarize it briefly here. First, the Hamiltonian
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is decomposed into two parts, H = He + Ho, where each part is a sum of com-
muting terms. Here He (Ho) contains the interactions hi,i+1 with i even (odd). By
discretizing the imaginary time, the partition function becomes

Z = Tr e−βH = lim
M→∞

Tr
{[

e−εHee−εHo
]M}

(25.2)

with ε = β/M , β being the inverse temperature and M an integer (the so called
Trotter number). By inserting 2M times a representation of the identity operator,
the partition function is expressed by a product of local Boltzmann weights

τ i,i+1
k,k+1 =

〈
siks

i+1
k

∣∣ e−εHe,o
∣∣sik+1s

i+1
k+1

〉
, (25.3)

denoted in a graphical language by a shaded plaquette (see Fig. 25.1). The sub-
scripts i and k represent the spin coordinates in the space and the Trotter (imaginary
time) directions, respectively. A column-to-column transfer matrix TM , the so called
quantum transfer matrix (QTM), can now be defined using these local Boltzmann
weights

TM = (τ1,2τ3,4 . . . τ2M−1,2M ) (τ2,3τ4,5 . . . τ2M,1) . (25.4)

and is shown in the left part of Fig. 25.1. The partition function is then simply given
by

Z = Tr T L/2M . (25.5)

The disadvantage of this Trotter-Suzuki mapping to a 2D lattice with checker-
board structure is that the QTM is two columns wide. This increases the amount
of memory necessary to store it and also complicates the calculation of correlation
functions.

quantum chain

classical model

quantum chain

classical model

QTM QTM

Fig. 25.1. The left part shows the standard Trotter-Suzuki mapping of the 1D quantum chain
to a 2D classical model with checkerboard structure where the vertical direction corresponds
to imaginary time. The QTM is two-column wide. The right part shows the alternative map-
ping. Here, the QTM is only one column wide
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Alternatively, the partition function can also be expressed by [15, 16]

Z = lim
M→∞

Tr
{
[T1(ε)T2(ε)]M/2

}
, (25.6)

with T1,2(ε) = TR,L exp[−εH + O(ε2)]. Here, TR,L are the right- and left-shift
operators, respectively. The obtained classical lattice has alternating rows and addi-
tional points in a mathematical auxiliary space. Its main advantage is that it allows
to formulate a QTM which is only one column wide (see right part of Fig. 25.1).
The derivation of this QTM is completely analogous to the standard one, even the
shaded plaquettes denote the same Boltzmann weight. Here, however, these weights
are rotated by 45◦ clockwise and anti-clockwise in an alternating fashion from row
to row. Using this transfer matrix, T̃M , the partition function is given by Z = Tr T̃ LM .

25.2.1 Physical Properties in the Thermodynamic Limit

The reason why this transfer matrix formalism is extremely useful for numerical
calculations has to do with the eigenspectrum of the QTM. At infinite temperature
it is easy to show [21] that the largest eigenvalue of the QTM TM (T̃M ) is given by
S2 (S) and all other eigenvalues are zero. Here S denotes the number of degrees of
freedom of the physical system per lattice site. Decreasing the temperature, the gap
between the leading eigenvalue Λ0 and next-leading eigenvalues Λn (n > 0) of the
transfer matrix shrinks. The ratio between Λ0 and each of the other eigenvalues Λn,
however, defines a correlation length 1/ξn = ln |Λ0/Λn| [20, 21]. Because an 1D
quantum system cannot order at finite temperature, any correlation length ξn will
stay finite for T > 0, i.e., the gap between the leading and any next-leading eigen-
value stays finite. Therefore the calculation of the free energy in the thermodynamic
limit boils down to the calculation of the largest eigenvalue Λ0 of the QTM

f = − lim
L→∞

1
βL

lnZ = − lim
L→∞

lim
ε→0

1
βL

ln Tr T̃ LM

= − lim
ε→0

lim
L→∞

1
βL

ln
{
ΛL0

[
1 +

∑
l>1

(Λl/Λ0)
L︸ ︷︷ ︸

L→∞−−−→0

]}
= − lim

ε→0

lnΛ0

β
.

(25.7)

Here the interchangeability of the limits L→∞ and ε→ 0 has been used [5]. Local
expectation values and static two-point correlation functions can be calculated in a
similar fashion (see e.g. [20] and [21]). In the next section, we are going to show
how the eigenvalues of the QTM are computed by means of the density matrix
renormalization group. This is possible since the transfer matrices are built from
local objects. Instead of sums of local objects we are dealing with products, but
this is not essential to the numerical method. However, there are a few important
differences in treating transfer matrices instead of Hamiltonians. At first sight, these
differences look technical, but at closer inspection they reveal a physical core.

The QTMs as introduced above are real valued, but not symmetric. This is not
a serious drawback for numerical computations, but certainly inconvenient. So the
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first question that arises is whether the transfer matrices can be symmetrized. Un-
fortunately, this is not the case. If the transfer matrix were replaceable by a real
symmetric (or a hermitean) matrix all eigenvalues would be real and the ratios of
next-leading eigenvalues to the leading eigenvalue would be real, positive or nega-
tive. Hence all correlation functions would show commensurability with the lattice.
However, we know that a generic quantum system at sufficiently low temperatures
yields incommensurate oscillations with wave vectors being multiples of the Fermi
vector taking rather arbitrary values.

Therefore we know that the spectrum of a QTM must consist of real eigenvalues
or of complex eigenvalues organized in complex conjugate pairs. This opens the
possibility to understand the QTM as a normal matrix upon a suitable choice of
the underlying scalar product. Unfortunately, the above introduced matrices are not
normal with respect to standard scalar products, i.e. we do not have [T̃M , T̃ †

M ] = 0.

25.3 The Method – DMRG Algorithm for the QTM

Next, we describe how to increase the length of the transfer matrix in imaginary
time, i.e. the inverse temperature, by successive DMRG steps. Like in the ordinary
DMRG, we first divide the QTM into two parts, the system S and the environment
block E. Using the QTM, T̃M , the density matrix is defined by

ρ = T̃ LM , (25.8)

which reduces to ρ =
∣∣ΨR0 〉 〈

ΨL0
∣∣ up to a normalization constant in the thermody-

namic limit. As in the zero-temperature DMRG algorithm, a reduced density matrix
ρS is obtained by taking a partial trace over the environment

ρS = TrE{
∣∣ΨR0 〉 〈

ΨL0
∣∣} . (25.9)

Note that this matrix is real but non-symmetric, which complicates its numerical
diagonalization. It also allows for complex conjugated pairs of eigenvalues which
have to be treated separately (see [21] for details).

In actual computations, the Trotter-Suzuki parameter ε is fixed. Therefore the
temperature T ∼ 1/εM is decreased by an iterative algorithm M →M + 1. In the
following, the blocks of the QTM, T̃M , are shown in a 90◦-rotated view.

σ τ

sn

nś

Fig. 25.2. The system block Γ . The plaquettes are connected by a summation over the adja-
cent corner spins
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σ

s

nś n ´

n

σ

e

e

s

ss

1

1

2

2́ ´

sn

Fig. 25.3. The superblock is closed periodically by a summation over all σ states

(i) First we construct the initial system block Γ (see Fig. 25.2) consisting of M
plaquettes so that SM ≤ N < SM+1, where S is the dimension of the local
Hilbert space and N is the number of states which we want to keep. ns, n′

s are
block-spin variables and contain Ñ = SM states. The S2 · Ñ2-dimensional
array Γ (σ, ns, τ, n′

s) is stored.
(ii) The enlarged system block Γ̃ (σ, ns, s2, τ, s

′
2, n

′
s), a (S4 · Ñ2)-dimensional ar-

ray, is formed by adding a plaquette to the system block. If hi,i+1 is real and
translationally invariant, the environment block can be constructed by a 180◦-
rotation and a following inversion of the system block. Otherwise the environ-
ment block has to be treated separately like the system block. Together both
blocks form the superblock (see Fig. 25.3).

(iii) The leading eigenvalue Λ0 and the corresponding left and right eigenstates〈
ΨL0

∣∣ = ΨL(s1, ns, s2, ne) ,
∣∣ΨR0 〉

= ΨR(s′1, n
′
s, s

′
2, n

′
e)

are calculated and normalized 〈ΨL0 |ΨR0 〉 = 1. Now thermodynamic quantities
can be evaluated at the temperature T = 1/(2ε(M + 1)).

(iv) A reduced density matrix is calculated by performing the trace over the envi-
ronment

ρs(n′
s, s

′
2|ns, s2) =

∑
s1,ne

∣∣ΨR0 〉 〈
ΨL0

∣∣ =
∑
s1,ne

ΨR(s1, n
′
s, s

′
2, ne)ΨL(s1, ns, s2, ne)

and the complete spectrum is computed. A (N×(S ·Ñ))-matrix V L(ñs|ns, s2)(
V R(ñ′

s|n′
s, s

′
2)
)

is constructed using the left (right) eigenstates belonging to
the N largest eigenvalues, where ñs (ñ′

s) is a new renormalized block-spin
variable with only N possible values.

σ

s

nś
s

2

2́

sn

τ τσblock

renormalized

n

n ´
n ´

n

∼

s

s

s

s

Fig. 25.4. The renormalization step for the system block
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(v) Using V L and V R the system block is renormalized. The renormalization (see
Fig. 25.4) is given by

Γ (σ, ñs, τ, ñ′
s) =

∑
ns,s2

∑
n′

s,s
′
2

V L(ñs|ns, s2)Γ̃ (σ, ns, s2, τ, s
′
2, n

′
s)V R(ñ′

s|n′
s, s

′
2) .

Now the algorithm is repeated starting with step 2 using the new system block.
However, the block-spin variables can now take N instead of Ñ values.

25.4 An Example: The Spin-1/2 Heisenberg Chain
with Staggered and Uniform Magnetic Fields

As example, we show here results for the magnetization of a spin-1/2 Heisenberg
chain subject to a staggered magnetic field hs and an uniform field hu = gμBHext/J

H = J
∑
i

[
Si · Si+1 − huS

z
i − (−1)ihsS

x
i

]
, (25.10)

where Hext is the external uniform magnetic field and g the Landé factor. An effec-
tive staggered magnetic field is realized in spin-chain compounds as for example
copper pyrimidine dinitrate (CuPM) or copper benzoate if an external uniform mag-
netic field Hext is applied [22]. For CuPM the magnetization as a function of applied
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Fig. 25.5. TMRG data (solid line) and experimental magnetization curves (circles) for CuPM
at a temperature T = 1.6 K with the magnetic field applied along the c′′ axis. For comparison
ED data for a system of 16 sites and T = 0 are shown (dashed lines). Here J/kB = 36.5 K,
hu = gμBHext/J , hs = 0.11 hu and g = 2.19. Inset (a): Magnetization for small magnetic
fields. Inset (b): Susceptibility as a function of temperature T at Hext = 0 calculated by
TMRG
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magnetic field Hext has been measured experimentally. In Fig. 25.5 the excellent
agreement between these experimental and TMRG data at a temperature T = 1.6 K
with a magnetic field applied along the c′′ axis is shown. Along the c′′ axis the ef-
fect due to the induced staggered field is largest (see [23] for more details). Note
that at low magnetic fields the TMRG data describe the experiment more accurately
than the exact diagonalization (ED) data, because there are no finite size effects (see
inset (a) of Fig. 25.5). For a magnetic field Hext applied along the c′′ axis a gap,
Δ ∝ H

2/3
ext , is induced with multiplicative logarithmic corrections. For Hext → 0

and low T the susceptibility diverges χ ∼ 1/T because of the staggered part [24]
(see inset (b) of Fig. 25.5).

25.5 Impurity and Boundary Contributions

In recent years much interest has focused on the question how impurities and bound-
aries influence the physical properties of spin chains [25, 26, 27, 28, 29]. The doping
level p defines an average chain length L̄ = 1/p−1 and impurity or boundary contri-
butions are of order∼ O (

1/L̄
)

compared to the bulk. This makes it very difficult to
separate these contributions from finite-size corrections if numerical data for finite
systems (e.g. from QMC calculations) are used. TMRG, on the other hand, allows
to study directly impurities embedded into an infinite chain [18]. We will discuss
here only the simplest case that a single bond or a single site is different from the
rest. The partition function is then given by

Z = Tr
(
T̃ L−1
M Timp

)
, (25.11)

where Timp is the QTM describing the site impurity or the modified bond. In the
thermodynamic limit the total free energy then becomes

F = −T lnZ = Lfbulk + Fimp = −LT lnΛ0 − T ln(λimp/Λ0) , (25.12)

with Λ0 being the largest eigenvalue of the QTM, T̃M , and λimp = 〈ΨL0 |Timp|ΨR0 〉.
As example, we want to consider a semi-infinite spin-1/2 XXZ-chain with an

open boundary. In this case translational invariance is broken and field theory pre-
dicts Friedel-type oscillations in the local magnetization 〈Sz(r)〉 and susceptibility
χ(r) = ∂〈Sz(r)〉/∂h near the boundary [30, 31]. Using the TMRG method the
local magnetization can be calculated by

〈Sz(r)〉 =
〈Ψ0
L|T̃ (Sz)T̃ r−1Timp|Ψ0

R〉
Λr0λimp

, (25.13)

where T̃ (Sz) is the transfer matrix with the operator Sz included and Timp is the
transfer matrix corresponding to the bond with zero exchange coupling. Hence
Timp|Ψ0

R〉 is nothing but the state describing the open boundary at the right. In
Fig. 25.6 the susceptibility profile as a function of the distance r from the boundary
for various temperatures as obtained by TMRG calculations [31] is shown. For more
details the reader is referred to [18] and [31].
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Fig. 25.6. Susceptibility profile for Δ = 0.6 and different temperatures T . N = 240 states
have been kept in the DMRG algorithm. The lines are a guide to the eye

25.6 Real-Time Dynamics

Finally, we want to discuss a very recent development in the TMRG method. The
Trotter-Suzuki decomposition of a 1D quantum system yields a 2D classical model
with one axis corresponding to imaginary time (inverse temperature). It is therefore
straightforward to calculate imaginary-time correlation functions (CFs). Although
the results for the imaginary-time CFs obtained by TMRG are very accurate, the re-
sults for real times (real frequencies) involve errors of unknown magnitude because
the analytical continuation poses an ill-conditioned problem. In practice, the max-
imum entropy method is the most efficient way to obtain spectral functions from
TMRG data. The combination of TMRG and maximum entropy has been used to
calculate spectral functions for the XXZ-chain [17] and the Kondo-lattice model
[14]. However, it is in principle impossible to say how reliable these results are be-
cause of the afore mentioned problems connected with the analytical continuation of
numerical data. It is therefore desirable to avoid this step completely and to calculate
real-time correlation functions directly.

A TMRG algorithm to do this has recently been proposed by two of us [19].
Starting point is an arbitrary two-point CF for an operator Ôr(t) at site r and time t

〈Ôr(t)Ô0(0)〉 = Tr(Ôr(t)Ô0(0)e−βH)
Tr(e−βH)

=
Tr

(
e−βH/2eitHÔre−itH Ô0e−βH/2

)
Tr

(
e−βH/2eitHe−itHe−βH/2

) .

(25.14)

Here we have used the cyclic invariance of the trace and have written the denomi-
nator in analogy to the numerator. In the following we will use the standard Trotter-
Suzuki decomposition leading to a 2D checkerboard model.
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The crucial step in our approach to calculate real-time dynamics directly is to
introduce a second Trotter-Suzuki decomposition of exp(−iδH) with δ = t/N in
addition to the usual one for the partition function described in Sect. 25.2. We can
then define a column-to-column transfer matrix

T2N,M = (τ1,2τ3,4 · · · τ2M−1,2M )(τ2,3τ4,5 · · · τ2M,2M+1)
(v̄2M+1,2M+2 · · · v̄2M+2N−1,2M+2N )
(v̄2M+2,2M+3 · · · v̄2M+2N,2M+2N+1)
(v2M+2N+1,2M+2N+2 · · · v2M+4N−1,2M+4N )
(v2M+2N+2,2M+2N+3 · · · v2M+4N,1) , (25.15)

where the local transfer matrices have matrix elements

τ(siks
i+1
k |sik+1s

i+1
k+1) = 〈siksi+1

k |e−εhi,i+1 |sik+1s
i+1
k+1〉

v(sils
i+1
l |sil+1s

i+1
l+1) = 〈silsi+1

l |e−iδhi,i+1 |sil+1s
i+1
l+1〉 (25.16)

and v̄ is the complex conjugate. Here i = 1, . . . , L is the lattice site, k = 1, . . . , 2M
(l = 1, . . . , 2N ) the index of the imaginary time (real time) slices and sik(l) denotes

a local basis. The denominator in (25.14) can then be represented by Tr(T L/22N,M )
where N,M,L → ∞. A similar path-integral representation holds for the numer-
ator in (25.14). Here we have to introduce an additional modified transfer matrix
T2N,M (Ô) which contains the operator Ô at the appropriate position. For r > 1 we
find

〈Ôr(t)Ô0(0)〉 = lim
N,M→∞

lim
L→∞

Tr(T (Ô)T [r/2]−1T (Ô)T L/2−[r/2]−1)
Tr(T L/2)

= lim
N,M→∞

〈ΨL0 |T (Ô)T [r/2]−1T (Ô)|ΨR0 〉
Λ

[r/2]+1
0 〈ΨL0 |ΨR0 〉

. (25.17)

Here [r/2] denotes the first integer smaller than or equal to r/2 and we have set
T ≡ T2N,M . A graphical representation of the transfer matrices appearing in the
numerator of (25.17) is shown in Fig. 25.7. This new transfer matrix can again be
treated with the DMRG algorithm described in Sect. 25.3 where either a τ or v
plaquette is added corresponding to a decrease in temperature T or an increase in
real time t, respectively.

To demonstrate the method, results for the longitudinal spin-spin autocorrelation
function of the XXZ-chain at infinite temperature are shown in Fig. 25.8. For Δ = 0
the XXZ-model corresponds to free spinless fermions and is exactly solvable. We
focus on the case of free fermions, as here the analysis of the dynamical TMRG
(DTMRG) method, its results and numerical errors can be done to much greater ex-
tent than in the general case. The performance of the DTMRG itself is expected to
be independent of the strength of the interaction. The comparison with the exact re-
sult in Fig. 25.8 shows that the maximum time before the DTMRG algorithm breaks
down increases with the number of states. However, the improvement when taking
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T[r/2]−1

e−βΗ/2

e−itH

e−βΗ/2

eitH

T(O)T(O)

E

S

Fig. 25.7. Transfer matrices appearing in the numerator of (25.17) for r > 1 with r even. The
two big black dots denote the operator Ô. T , T (Ô) consist of three parts: A part representing
exp(−βH) (vertically striped plaquettes), another for exp(itH) (stripes from lower left to
upper right) and a third part describing exp(−itH) (upper left to lower right). T , T (Ô) are
split into system (S) and environment (E)

N = 400 instead of N = 300 states is marginal. The reason for the breakdown of
the DTMRG computation can be traced back to an increase of the discarded weight
(see inset of Fig. 25.9). Throughout the RG procedure we keep only N of the leading
eigenstates of the reduced density matrix ρS . As long as the discarded states carry
a total weight less than, say, 10−3 the results are faithful. For infinite temperature
and Δ = 0 we could explain the rapid increase of the discarded weight with time
by deriving an explicit expression for the leading eigenstate of the QTM as well as
for the corresponding reduced density matrix. At the free fermion point the spec-
trum of this density matrix is multiplicative. Hence, from the one-particle spectrum
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Fig. 25.8. Autocorrelation function for Δ = 0 and Δ = 1 (inset) at T = ∞, where N =
50−400 states have been kept and δ = 0.1. The exact result is shown for comparison in the
case Δ = 0
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Fig. 25.9. Largest 100 eigenvalues Λi of ρS for Δ = 0 and T = ∞ calculated exactly. The
inset shows the discarded weight 1 −∑100

i=1 Λi

which is calculated by simple numerics we obtain the entire spectrum. As shown
in Fig. 25.9 this spectrum becomes more dense with increasing time thus setting a
characteristic time scale tc(N), quite independent of the discretization δ of the real
time, where the algorithm breaks down. Despite these limitations, it is often possible
to extrapolate the numerical data to larger times using physical arguments thus al-
lowing to obtain frequency-dependent quantities by a direct Fourier transform. This
way the spin-lattice relaxation rate for the Heisenberg chain has been successfully
calculated [32].
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