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In the past few years, there has been an increasingly active exchange of ideas and
methods between the formerly rather disjunct fields of quantum information and
many-body physics. This has been due, on the one hand, to the growing sophisti-
cation of methods and the increasing complexity of problems treated in quantum
information theory, and, on the other, to the recognition that a number of central
issues in many-body quantum systems can fruitfully be approached from the quan-
tum information point of view. Nowhere has this been more evident than in the
context of the family of numerical methods that go under the rubric density-matrix
renormalization group. In particular, the concept of entanglement and its definition,
measurement, and manipulation lies at the heart of much of quantum information
theory [1]. The density-matrix renormalization group (DMRG) methods use proper-
ties of the entanglement of a bipartite system to build up an accurate approximation
to particular many-body wave functions. The cross-fertilization between the two
fields has led to improvements in the understanding of interacting quantum systems
in general and the DMRG method in particular, has led to new algorithms related
to and generalizing the DMRG, and has opened up the possibility of studying many
new physical problems, ones of interest both for quantum information theory and
for understanding the behavior of strongly correlated quantum systems [2].

In this line, we discuss some relevant concepts in quantum information theory,
including the relation between the DMRG and data compression and entanglement.
As an application, we will use the quantum information entropy calculated with the
DMRG to study quantum phase transitions, in particular in the bilinear-biquadratic
spin-one chain and in the frustrated spin-1/2 Heisenberg chain.

24.1 Basic Concepts of Quantum Information Theory

Perhaps the most fundamental measure in quantum information is the von Neumann
entropy, which quantifies the quantum information or entanglement between two
parts of a bipartite system. For a system of size N , it is defined as

s(N) = −Tr
[
ρ(N) ln ρ(N)

]
. (24.1)

Here ρ(N) is the density matrix for the system and the trace is over the degrees of
freedom of the system. Implicit in this description is that the system can be thought
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of as forming one part of a larger, bipartite system which can always be constructed
to be in a pure state.

The von Neumann entropy has been found to be intimately connected to many-
body properties of a quantum system such as the quantum criticality. In one dimen-
sion, s(N) will increase logarithmically with N if the system is quantum critical,
but will saturate with N if the system is not [3, 4]. If a quantum critical system is
also conformally invariant, additional, specific statements can be made about the
entropy (see below) [5]. In higher dimensions, the von Neumann entropy will be
bounded from below by a number proportional to the area (or length or volume, as
appropriate) of the interface between the two parts of the system [6].

Since the von Neumann entropy is also a quantification of the fundamental ap-
proximation in the DMRG, a number of entanglement-based approaches to improve
the performance and to extend the applicability of DMRG [2, 7, 8, 9], have been
developed in the past few years [10, 11, 12, 13, 14, 15, 16].

For a more extensive discussion of the relationship of entanglement and von
Neumann entropy with the fundamentals of the DMRG, see Chap. 20 of this volume,
especially Sects. 2 and 6.

24.1.1 DMRG and Quantum Data Compression

The reduction of the Hilbert space carried out in the DMRG method is closely re-
lated to the problem of quantum data compression [17, 18]. In quantum data com-
pression, the Hilbert space of the system Λ is divided into two parts: The “typical
subspace” Λtyp, which is retained, and the “atypical subspace” Λatyp, which is dis-
carded. For pure states, there is a well defined relationship between Λtyp and the von
Neumann entropy of the corresponding ensemble. In general, it has been shown that

β ≡ ln (dimΛtyp)− s , (24.2)

is independent of the system size for large enough systems [11, 19].
Since one fundamentally treats a bipartite system in the DMRG, each subsystem

is, in general, in a mixed state. In the context of the DMRG, the accessible informa-
tion [20, 21] of mixed-state ensembles can be interpreted as the information loss due
to the truncation procedure. This information loss is a better measure of the error
than the discarded weight of the reduced density matrix

εTE = 1−
m∑
α=1

wα , (24.3)

(also called the truncation error). Here the wα are the eigenvalues of the reduced
density matrix ρ of either subsystem; both must have the same nonzero eigenvalue
spectrum.

Based on these considerations, the convergence of DMRG can be improved sig-
nificantly by selecting the states kept using a criterion related to the accessible in-
formation. In general, the accessible information must be less than the Kholevo
bound [20]
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I ≤ s(ρ)− ptyps(ρtyp)− (1− ptyp) s(ρatyp) , (24.4)

where ρtyp or ρatyp are the portions of the density matrix formed from the basis states
that are kept and discarded, respectively. The probability ptyp is chosen to be appro-
priate for the corresponding binary channel. The behavior of the mutual information
for particular ensembles as a function of ptyp, including various bounds on the mu-
tual information can be found in [21]. For the DMRG, the atypical subspace should
contain as little information as possible if the approximation is to be accurate. As-
suming that this is the case, we take ptyp = 1, and the number of block states are
selected so that s(ρ) − s(ρtyp) ≤ χ. This a priori-defined χ satisfies a well-defined
entropy sum rule which is related to the total quantum information generated by the
DMRG. Deviations from this sum rule provide a measure of the error of the DMRG
calculation. Therefore, χ can be chosen to control its accuracy.

Figure 24.1 shows the relative error of the ground-state energy, defined as
(EDMRG − Eexact)/Eexact, plotted on a logarithmic scale for various values of the
Coulomb interaction U for the one-dimensional Hubbard model. In Fig. 24.1(a), it
is plotted as a function of εTE, whereas in Fig. 24.1(b), it is plotted as a function of
χ. As can be seen, the error in the latter plot behaves very stably as a function of
χ, even for very small values of the retained eigenvalues of ρtyp. On the other hand,
the error in the energy behaves somewhat less regularly as a function of εTE. There-
fore, an extrapolation of the energy as a function of χ would be significantly better
behaved than one as a function of εTE. We find that such behavior is representative;
generically, extrapolation with χ is as stable or more stable than extrapolation with
εTE for a wide variety of systems [11].
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Fig. 24.1. The relative error of the ground-state energy for the half-filled Hubbard chain for
various values of the on-site Coulomb interaction U on an N = 80-site lattice with periodic
boundary conditions as a function of (a) the truncation error and (b) the threshold value of
the Kholevo bound on accessible information, see (24.4). Taken from [11]
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24.1.2 DMRG and Non-Local Models

Another application of quantum information to the DMRG is to non-local quantum
lattice models that occur in quantum chemical applications [22] or when the Hub-
bard and related models are represented in momentum space [23, 24]. A general
non-local fermionic Hamiltonian has the form

Ĥ =
∑
p,q,σ

T σp,q ĉ†p,σ ĉq,σ +
∑

p,q,r,s,σ,σ′
V σ,σ′
p,q,r,s ĉ†p,σ ĉ

†
q,σ′ ĉr,σ′ ĉs,σ . (24.5)

Here ĉ†p,σ creates a fermion with spin σ in single-particle orbital p. In quantum
chemistry, the T σp,q represent the one-particle overlap integrals, while in momentum-
space models only the diagonal elements, which contain the dispersion, are nonzero.
The V σ,σ′

p,q,r,s are two-particle overlap integrals, which are related to the Coulomb in-

teraction, in quantum chemistry. For momentum-space models, V σ,σ′
p,q,r,s contains the

Fourier-transformed Coulomb interaction; additional symmetries (momentum con-
servation, interaction only between opposite spin species, etc.) generally simplify
its structure significantly.

In contrast to short-range models in real space, the optimal ordering of the “lat-
tice sites”, in such models, i.e., the orbitals of the single-particle basis, is not evident.
However, finding a sufficiently good ordering seems to be crucial to formulating ef-
ficient DMRG algorithms for such systems [10, 25]. From a quantum information
point of view, the lattice sites are inequivalent in general; their relative importance
only becomes clear when the interaction is turned on. Therefore, the entropy profile
of the bipartite partitioning of the finite system depends very much on the ordering
of the lattice sites. The question, then, is how to quantify their importance in terms
of quantum information. Unfortunately, there is, as yet, no clear-cut solution to this
problem. However, various quantum-information-based quantities lend insight. One
such quantity is the single-site entropy sp, which is formed by taking a single site as
one part of a bipartite system, and then calculating the entropy for this subsystem in
the usual way. This quantity encodes the entanglement between the site and the re-
mainder of the system, i.e., the extent to which the site shares quantum information
with the rest of the system. Heuristic schemes to order sites based on this site en-
tropy have been proposed [10]: Generally, sites with the largest single-site entropy
should be placed close together in the middle of the order. For such cases the size of
the typical subspace can also be reduced using entanglement-based optimization of
the ordering of lattice sites [10, 11, 16, 22]. The problem, however, is that the single-
site entropy does not encode the quantum information exchange between pairs of
sites, i.e., how important it is to place particular sites in proximity to each other.

One quantity that can overcome this problem is the mutual two-site information

Ip,q ≡ 1
2

(sp + sq − spq) (1− δpq) ≥ 0 , (24.6)

where spq is the entropy of a subsystem consisting of two (not necessarily adja-
cent) lattice sites p and q. This quantity has proven to be especially useful when
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Fig. 24.2. Diagram of Ip,q for the molecules LiF, CO, N2, and F2 calculated at Hartree-Fock
ordering with m = 200: Lines connect orbital labels with Ip,q > 0.01. The circle for CO and
N2 denotes that the surrounding orbitals are all connected with each other. Taken from [22]

applied to quantum chemical systems. In Fig. 24.2, we show the topology of Ip,q
for four prototypical small molecules, LiF, CO, N2, and F2, with a particular ba-
sis set; for details, see [22]. As can be seen, the mutual two-site information yields
a picture of the detailed connectivity of the orbitals, which is different for each
molecule. An attempt to optimize ordering of orbitals using a cost function based
on this information has led to moderate success [22]. However, more work needs
to be done both on defining a meaningful measure of mutual two-site information,
and in developing heuristics to optimize ordering based on this measure. A related
problem has cropped up in an attempt to map the one-dimensional Hubbard model
with periodic boundary condition to a model with open boundary conditions [16].
The transformed effective interaction, which has the form V σ,σ′

p,q,r,s (see Hamiltonian
(24.5)), is then nonlocal. An analysis of the entanglement generated by these nonlo-
cal terms has been used to optimize the site ordering. Such insights are also relevant
to quantum chemical problems.

24.2 Entropic Analysis of Quantum Phase Transitions

The local measure of entanglement, the  -site entropy with  = 1, 2, ...N , which
is obtained from the reduced density matrix ρ, can be used to detect and locate
quantum phase transitions (QPTs) [26, 27, 28, 29]. As an example, Fig. 24.3 shows
the block entropy for  = N/2 for the most general isotropic spin-one chain model
described by the Hamiltonian

H =
∑
i

[
cos θ (Si · Si+1) + sin θ (Si · Si+1)

2 ]
, (24.7)
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Fig. 24.3. Entropy of blocks of � = N/2 and � = N/2 + 1 sites of the bilinear-biquadratic
spin S = 1 model for a chain with N = 200 sites

as a function of θ, where we take −π < θ ≤ π. In one dimension, the model is
known to have at least four different phases [30, 31, 32]. The ground state is fer-
romagnetic for θ < −3π/4 and θ > π/2. For −3π/4 < θ < −π/4, the ground
state is dimerized; the point θ = −π/4 is exactly solvable [33, 34]. In the range
−π/4 < θ < π/4, the system is in the Haldane phase, there is an exact solution at
θ = π/4 [35, 36, 37], and for π/4 < θ < π/2, the phase is spin nematic (trimer-
ized). The issue of whether a quantum quadrupolar phase [38, 39, 40], exists near
θ = −3π/4 has not yet been settled [41]. These phases and the corresponding QPTs
are reflected in the block entropy, Fig. 24.3. The jump in the entropy at π/2 indicates
a first-order transition. At θ = −3π/4, there is only a cusp in the block entropy, but
a jump in the single-entropy sp (as defined above) indicates that this transition is first
order [42]. The cusps at θ = −π/4 and π/4 indicate second-order transitions, and
the bifurcation of the entropy curves for  = N/2 and  = N/2 + 1 indicates that
there is a spatially inhomogeneous dimerized phase between −3π/4 < θ < −π/4.

Note that the entropy has a minimum at θ = arctan 1/3 � 0.1024π, which is
at the valence-bond-solid (VBS) point [43], but that it remains a continuous curve.
The extremum of the entropy indicates a change in the wave function and can also
signal a phase transition even if it remains a continuous curve. Such behavior has
also been found in the 1/n-filled SU(n) n = 2, 3, 4, 5 Hubbard model at U = 0,
where an infinite-order (Kosterlitz-Thouless-like) phase transition takes place [27,
44, 45, 46]. Since there is no sharply defined transition in the entropy, however,
additional methods must be used to classify the ground-state properties on either
side of an extremum. One possibility is an analysis of the entropy profile s( ) as
the subsystem size  is changed from  = 0 to N for fixed model parameters; see
below. Note that there is also another minimum in the block entropy at θ = −π/2;
this corresponds to a point where the model can be partially mapped to the nine-state
quantum Potts model whose ground state is exactly known [47, 48]. However, there
is no known phase transition at this point.

For models that map to a conformal field theory [49], an analytic expression for
the entropy profile has been derived, and this form has been shown to be satisfied
by critical spin models. The entropy for a subsystem of length  in a finite system
of length N with open boundary conditions within conformal field theory has the
form [5]
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s( ) =
c

6
ln

[
2N
π

sin
(

π 

N

)]
+ g , (24.8)

where c is the central charge. This quantity contains a constant term which depends
on the ground-state degeneracy and a constant shift g which depends on the bound-
ary conditions. As will be shown below, there can be an additional oscillatory term
which decays with system size and distance from the boundary as a power law
[50, 51].

A new method to analyze the oscillatory nature of the finite subsystem entropy
s( ), is based on the Fourier spectrum of s( ),

s̃(q) =
1
N

N∑
�=0

e−iq�s( ) , (24.9)

with s(0) = s(N) = 0, where q = 2πn/N and n = 0, . . . , N − 1, is appropriate to
study cases when no true phase transition takes place, i.e., when only the character
of the decaying correlation function changes.

Figure 24.4(a) shows the block entropy at θ = π/4 for the so-called trimerized
phase, a phase characterized by three soft modes in the energy spectrum at k =
0,±2π/3 [35, 36, 37]. The solid line is a fit using (24.8), which yields c = 2 in
agreement with [30, 31, 32] and [52]. The oscillation in the entropy with a period of
three is related to these three soft modes, as is apparent in Fig. 24.4(b) in which the
peaks in the Fourier spectrum appear at k = 0,±2π/3 [53]. A similar analysis at
θ = −π/4 yields c = 3/2 in the thermodynamic limit. The corresponding s̃(q) has
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Fig. 24.4. (a) Von Neumann entropy of a subsystem of size � on an L = 60 bilinear-
biquadratic spin chain for θ = π/4 and θ = 0.15π. The fit to the upper, θ = π/4, curve has
been carried out using (24.8), and yields c = 2, q∗ = 2π/3. The lower curve, for θ = 0.15π,
has a small value and the entropy saturates because the phase is gapped. (b) Power spectrum
N2|s̃(q)|2 of the data of (a). The curve for θ = 0.15π has been multiplied by a factor of 5 to
enhance its readability on this scale
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peaks at q = 0 and π for finite systems. It is known that for θ < π/4 the soft modes
become gapped and the minimum of the energy spectrum moves from q = 2π/3
toward q = π as θ approaches the VBS point [43].

In order to characterize the various phases in the thermodynamic limit, a finite-
size extrapolation must be carried out. Fig. 24.5 displays the behavior of s̃(q∗)
with system size for a number of values of θ that are representative of the differ-
ent phases. The wave vector q∗ is chosen to be appropriate for the corresponding
phase, for example, q∗ = 2π/3 in the trimerized phase. The value q∗ = 0.53 for
θ = 0.15π (in the incommensurate phase) is the location of the incommensurate
peak; see Fig. 24.4(b). As can be seen, all s̃(q∗) → 0 for N → ∞, except in the
range −3π/4 < θ < −π/4 where s̃(q = π) remains finite, signaling the bond-
ordered nature of the dimerized phase. Note that the q∗ = 0 peak (not shown) also
scales to a finite value in much of the phase diagram.

In Fig. 24.6, we summarize the behavior of s̃(q) for finite systems and in the
N → ∞ limit. We determine the position of the peaks in s̃(q) on finite systems
by finding the maxima in splines fit through the discrete allowed q points. Infinite-
system behavior, obtained from extrapolations (see Fig. 24.5), is also depicted. In
the ferromagnetic phase, θ < −3π/4, θ > π/2, there is a sole peak at q∗ = 0, as ex-
pected. The q∗ = 0 peak is present for all θ and persists in the thermodynamic limit.
In the dimer phase, −3π/4 < θ < −π/4, the q∗ = π peak persists in the thermo-
dynamic limit (see Fig. 24.5). Two different behaviors can be seen in the Haldane
phase, −π/4 < θ < π/4; for θ < θVBS, the q∗ = π peak present in finite-size
systems vanishes in the thermodynamic limit. For θ > θVBS, the incommensurate
peak present only in finite systems can be seen to move from q = 0 to 2π/3 as
θ goes towards π/4, as also seen in Fig. 24.4. Finally, in the spin nematic phase,
π/4 < θ < π/2, there is a peak at q∗ = 2π/3 which scales to zero as N →∞.

Therefore, incommensurability can be detected by the entropy analysis as well.
It is known [54] that the VBS point is a disorder point, where incommensurate

0 0.005 0.01 0.015 0.02 0.025 0.03
0

0.05

0.1

0.15

0.2

0.25

1/N

s(
q)

θ = −π/2,  q = π
θ = −π/4,  q = π
θ = 0,      q = π
θ = .15π,  q = .53π
θ = π/4,   q = 2π/3
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priate wave vector q. The continuous lines are fits to a form AN−α + B
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vbs

Fig. 24.6. Position of the peak q∗ in the Fourier-transformed block entropy |s̃(q)|2 plotted
as a function of the parameter θ for the bilinear-biquadratic spin chain on system sizes of
N = 120 and N = 180 (for higher resolution near θVBS), as well as in the thermodynamic
limit. The peak at q∗ = 0 on finite systems, which is present for all θ, has been removed for
readability

oscillations appear in the decaying correlation function; however, the shift of the
minimum of the static structure factor appears only at a larger value, θL = 0.138π,
the Lifshitz point. In contrast to this, the minimum of the block entropy shown in
Fig. 24.3 is exactly at the VBS point, and therefore indicates the location of the
commensurate-incommensurate transition correctly.

A similar analysis can be carried out for the frustrated J − J ′ Heisenberg spin
1/2 chain with Hamiltonian

H =
∑
i

[
J (Si · Si+1) + J ′ (Si · Si+2)

]
, (24.10)

with the ratio J ′/J (J ′, J > 0) playing the role of the parameter θ in the bilinear-
biquadratic model. For J ′/J < Jc ≈ 0.2411, the model is in a critical Heisenberg
phase, while a spin gap develops for J ′/J > Jc. At J ′/J = 0.5, the Majumdar-
Ghosh point, the model is exactly solvable and the ground state is a product of
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Fig. 24.7. Power spectrum of the block entropy N2|s̃(q)|2 for the frustrated Heisenberg
chain at J/J ′ = 1, calculated on a chain of length N = 128
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local dimers [55]. As a function of J ′/J , the block entropy is continuous, but has
a minimum at J/J ′ = 0.5. For J/J ′ > 0.5 an extra peak appears in the Fourier
spectrum of s̃(q) and moves from 0 to π/2 as J/J ′ gets larger. The development of
the incommensurate peaks near J/J ′ = 1 can be seen in Fig. 24.7.

24.3 Discussion and Outlook

In this chapter, we have sketched the intimate relationship between quantum in-
formation and the family of density-matrix renormalization group methods. The
fundamental approximation in the DMRG can perhaps be best understood in quan-
tum information terms: The wave function of a bipartite system is most accurately
represented by minimizing the quantum information loss, or by carrying out an op-
timal lossy quantum data compression. The quantum information loss can be used
within the DMRG as a measure of the accuracy that is alternate to the discarded
weight of density matrix eigenvalues and has a number of advantages. We have out-
lined some efforts to use quantum information quantities, specifically, the one-site
entropy and the mutual quantum information for two sites, to optimize the order-
ing of single-particle orbitals in non-local Hamiltonians. Finally, we have discussed
how the von Neumann entropy calculated during the DMRG procedure can be used
to study quantum phase transitions. Jumps, cusps, and minima or maxima in the
mid-block entropy signal first, second, and infinite-order phase transitions, while
information about the spatial structure of phase can be gleaned from dependence
of the entropy on the position of the partition of the bipartite system and from its
Fourier transform.

There are a number of possibilities to further apply quantum information theory
within the DMRG approach. For example, the possibility of using various quan-
tum information entropies, the entropy reduction by basis-state transformations,
entanglement localization, bounds on accessible information of mixed states, and
the description of the dynamics of mixed states in terms of an effective tempera-
ture have not yet been fully explored [1, 56]. These aspects of quantum informa-
tion are also closely related to a more quantum-information oriented formulation
of the DMRG which has led to more general algorithms based on matrix-product
states and their generalizations. Application of these generalizations include sys-
tems at finite temperature, systems with dissipation, the calculation of dynamical
and time-dependent behavior, and more efficient treatment of higher-dimensional
systems [2].
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31. G. Fath, J. Sólyom, Phys. Rev. B 47, 872 (1993) 658, 659
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