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The dynamical density-matrix renormalization group (DDMRG) method is a nu-
merical technique for calculating the zero-temperature dynamical properties in low-
dimensional quantum many-body systems. For the one-dimensional Hubbard model
and its extensions, DDMRG allows for accurate calculations of these properties for
lattices with hundreds of sites and particles and for any excitation energy. The key
idea of this approach is a variational principle for dynamical correlation functions.
The variational problem can be solved with a standard density-matrix renormaliza-
tion group (DMRG) method. Combined with a finite-size-scaling analysis for dy-
namical spectra, the DDMRG method enables us to study dynamical properties in
the thermodynamic limit. An efficient calculation of momentum-dependent quanti-
ties with DMRG is achieved using open boundary conditions and quasi-momenta.
These techniques are illustrated with the photoemission spectral function of the half-
filled one-dimensional Hubbard model.

22.1 Introduction

Calculating the dynamical correlation functions of quantum many-body systems
has been a long-standing problem of theoretical physics because many experi-
mental techniques probe these properties. For instance, solid-state spectroscopy
experiments, such as optical absorption, photoemission, or nuclear magnetic res-
onance, measure the dynamical correlations between an external time-dependent
perturbation and the response of electrons and phonons in solids [1]. Typically, the
zero-temperature dynamic response of a quantum system is given by a dynamical
correlation function (with � = 1)

GX(ω + iη) = − 1
π

〈
ψ0

∣∣∣∣X† 1
E0 + ω + iη −H

X

∣∣∣∣ψ0

〉
, (22.1)

where H is the time-independent Hamiltonian of the system, E0 and |ψ0〉 are its
ground-state energy and wavefunction, X is the quantum operator corresponding to
the physical quantity which is analyzed, and X† is the Hermitian conjugate of X . A
small real number η > 0 is used to shift the poles of the correlation function into the
complex plane. The spectral function GX(ω + iη) is also the Laplace transform (up
to a constant prefactor) of the zero-temperature time-dependent correlation function
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GX(t ≥ 0) = 〈ψ0|X†(t)X(0)|ψ0〉 , (22.2)

where X(t) is the Heisenberg representation of the operator X . In general, we are
interested in the imaginary part of the correlation function for η → 0

IX(ω + iη) = Im GX(ω + iη) =
1
π

〈
ψ0

∣∣∣∣X† η

(E0 + ω −H)2 + η2
X

∣∣∣∣ψ0

〉
.

(22.3)

A fundamental model for one-dimensional correlated electron systems is the
Hubbard model [2] defined by the Hamiltonian

H = −t
∑
j;σ

(
c†jσcj+1σ + c†j+1σcjσ

)
+ U

∑
j

nj↑nj↓ − U

2

∑
j

nj . (22.4)

It describes electrons with spin σ =↑, ↓ which can hop between neighboring sites
on a lattice. Here c†jσ and cjσ are creation and annihilation operators for electrons

with spin σ at site j (= 1, . . . , N), njσ = c†jσcjσ are the corresponding density
operators, and nj = nj↑ +nj↓. The hopping integral t gives rise to a single-electron
band of width 4t. The Coulomb repulsion between electrons is mimicked by a local
Hubbard interaction U ≥ 0. The chemical potential has been chosen μ = U/2 so
that the number of electrons is equal to the number of sites N (half-filled band) in the
grand-canonical ground state and the Fermi energy is εF = 0 in the thermodynamic
limit. The photoemission spectral function A(k, ω) is the imaginary part of the one-
particle Green’s function

Aσ(k, ω ≤ 0) = lim
η→0

IX(−ω + iη) , (22.5)

for the operator X = ckσ which annihilates an electron with spin σ in the Bloch state
with wavevector k ∈ (−π, π]. This spectral function corresponds to the spectrum
measured in angle-resolved photoemission spectroscopy experiments. We note that
the spectral function of the Hubbard model is symmetric with respect to spatial
reflection Aσ(−k, ω) = Aσ(k, ω) and spin-reflection A↑(k, ω) = A↓(k, ω). The
one-particle density of states (DOS) is

nσ(ω ≤ 0) =
1
N

∑
k

Aσ(k, ω) . (22.6)

At half-filling the inverse photoemission spectral function Bσ(k, ω ≥ 0) is related
to Aσ(k, ω) through the relation Bσ(k, ω) = Aσ(k+π,−ω) and thus nσ(ω ≥ 0) =
1
N

∑
k Bσ(k, ω) is equal to nσ(−ω).

Since its invention in 1992 the DMRG method [3, 4] has established itself has
the most powerful numerical method for studying the properties of one-dimensional
lattice models such as the Hubbard model (for reviews, see [5, 6, 7]). Several ap-
proaches have been developed to obtain excited states or to calculate dynamical
quantities with DMRG. We will first discuss a few approaches which are both sim-
ple and efficient but do not allow for the calculation of continuous or complicated
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spectra. Then we will present the dynamical DMRG method, which is presently the
best frequency-space DMRG approach for calculating zero-temperature dynamical
correlation functions when the spectrum is complex or continuous and allows us to
determine spectral properties in the thermodynamic limit (i.e., for infinitely large
lattices). The basic principles of the DMRG method are described in the Chaps. 20
and 21 of this book and are assumed to be known. The direct calculation of time-
dependent quantities (22.2) within DMRG is explained in Chap. 23 while methods
for computing dynamical quantities at finite temperature are described in Chap. 25.

22.2 Methods for Simple Discrete Spectra

22.2.1 Direct Evaluation of Excited States

Let {|n〉, n = 0, 1, 2, . . .} be the complete set of eigenstates of H with eigenener-
gies En (|n = 0〉 corresponds to the ground state |ψ0〉). The spectrum (22.3) can be
written

IX(ω + iη) =
1
π

∑
n

|〈n|X |0〉|2 η

(En − E0 − ω)2 + η2
. (22.7)

En − E0 is the excitation energy and |〈n|X |0〉|2 the spectral weight of the n-th
excited state. Obviously, only states with a finite spectral weight contribute to the
dynamical correlation function. Typically, the number of contributing excited states
scales as a power of the system size N (while the Hilbert space dimension increases
exponentially with N ). In principle, one can calculate the contributing excited states
only and reconstruct the spectrum from the sum over these states (22.7).

The simplest method for computing excited states within DMRG is to target
the lowest M eigenstates |ψs〉 instead of the sole ground state using the standard
algorithm. In that case, the density matrix is formed as the sum

ρ =
M∑
s=1

csρs (22.8)

of the density matrices ρs = |ψs〉〈ψs| for each target state [8]. As a result the DMRG
algorithm produces an effective Hamiltonian describing these M states accurately.
Here the coefficients cs > 0 are normalized weighting factors (

∑
s cs = 1), which

allow us to vary the influence of each target state in the formation of the density
matrix. This approach yields accurate results for some problems such as the Holstein
polaron [9]. In most cases, however, this approach is limited to a small number M
of excited states (of the order of ten) because DMRG truncation errors grow rapidly
with the number of targeted states (for a fixed number of density-matrix eigenstates
kept). This is not sufficient for calculating a complete spectrum for a large system
and often does not even allow for the calculation of low-energy excitations. For
instance, in the strong-coupling regime U � t of the half-filled one-dimensional
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Hubbard model, the lowest excitation contributing to the photoemission spectral
function A(k, ω) has an energy −ω = En − E0 ≈ U/2 while there are many spin
excitations with energies smaller than U/2. Therefore, in order to obtain the first
contributing excitation, one would have to target an extremely large number M of
eigenstates with DMRG.

22.2.2 Quantum Numbers and Symmetries

The simplest DMRG method for calculating specific excited states (rather than the
lowest eigenstates) uses the conserved quantum numbers and the symmetries of
the system. If quantum numbers and symmetry operators are well-defined in every
subsystem, DMRG calculations can be carried out to obtain the lowest eigenstates
in a specific symmetry subspace and for specific quantum numbers. As an example,
the total number of particles is conserved in the Hubbard model (i.e., the particle
number operator N =

∑
j nj commutes with the Hamilton operator H). Thus one

can target the M lowest eigenstates for a given number of particles. This yields
useful information about excitations contributing to the spectral functions A(k, ω)
and B(k, ω). For instance, a gap in the density of states nσ(ω) is given by

Ec = E0(+1) + E0(−1)− 2E0(0) , (22.9)

where E0(z) is the lowest eigenenergy for a system with z electrons added or re-
moved from the half-filled band.

It is also possible to target simultaneously the lowest eigenstates for two differ-
ent sets of quantum numbers or in two different symmetry subspaces using (22.8)
and thus to calculate matrix elements 〈n|X |0〉 between these states. This allows one
to reconstruct the dynamical correlation function at low energy using the Lehmann
representation (22.7). For instance, to calculate the photoemission spectral func-
tion (22.5) of the Hubbard model we would target the ground state for N electrons
and the lowest M eigenstates with N −1 electrons as only those states contribute to
A(k, ω). This way we circumvent the many low-energy spin excitations in the N -
electron subspace. In practice, this method works only for the onset of the spectrum
because there are still a large number of weightless spin excitations between suc-
cessive (N − 1)-electron states contributing to A(k, ω) and one would again have
to target a very large number M of eigenstates to access the relevant high-energy
excitations.

Using quantum numbers and symmetries is the most efficient and accurate
method for calculating specific low-lying excited states with DMRG. For instance,
symmetries and quantum numbers have been used successfully to study optical ex-
citations and the low-energy optical conductivity spectrum in various extended one-
dimensional Hubbard models describing conjugated polymers [10, 11]. However,
this approach is obviously restricted to those problems which have relevant sym-
metries and quantum numbers and provides at most the lowest M eigenstates with
the chosen symmetries and quantum numbers, where M is at most a few tens for
realistic applications. Thus it is not appropriate for high-energy excitations and for
complex or continuous spectra.
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22.2.3 Lanczos-DMRG Method

The Lanczos-DMRG method [12, 13] combines DMRG with the Lanczos algo-
rithm [14] to compute dynamical correlation functions. Starting from the states
|φ−1〉 = 0 and |φ0〉 = X |ψ0〉, the Lanczos algorithm recursively generates a set
of so-called Lanczos vectors:

|φn+1〉 = H |φn〉 − an|φn〉 − b2n|φn−1〉 , (22.10)

where an = 〈φn|H |φn〉/〈φn|φn〉 and b2n+1 = 〈φn+1|φn+1〉/〈φn|φn〉 for n =
0, . . . , L − 1. These Lanczos vectors span a Krylov subspace containing the ex-
cited states contributing to the dynamical correlation function (22.1). Calculating L
Lanczos vectors gives the first 2L − 1 moments of a spectrum and up to L excited
states contributing to it. The spectrum can be obtained from the continued fraction
expansion

− πGX(z − E0) =
〈ψ0|X†X |ψ0〉

z − a0 −
b21

z − a1 −
b22

z − ...

. (22.11)

This procedure has proved to be efficient and reliable in the context of exact diago-
nalizations (see Chap. 18).

Within a DMRG calculation the Lanczos algorithm is applied to the effective
superblock operators H and X and serves two purposes. Firstly, it is used to com-
pute the full dynamical spectrum. Secondly, in addition to the ground state |ψ0〉
some Lanczos vectors {|φn〉, n = 0, . . . ,M ≤ L} are used as target (22.8) to con-
struct an effective representation of the Hamiltonian which describes both ground
state and excited states accurately. Be reminded that a target state does not need to
be an eigenstate of the Hamiltonian but can be any quantum state which is well-
defined and can be computed in every superblock during a DMRG sweep through
the lattice. Unfortunately, DMRG truncation errors increase rapidly with the num-
ber M of target Lanczos vectors for a fixed number of density-matrix eigenstates
kept and the method becomes numerically unstable. Therefore, only the first few
Lanczos vectors (often only the first one |φ0〉) are included as target in most ap-
plications of Lanczos DMRG. In that case, the density-matrix renormalization does
not necessarily converge to an optimal representation of H for all excited states
contributing to a dynamical correlation function and the calculated spectrum is not
always reliable. For instance, the shape of continuous spectra (for very large systems
N � 1) can not be determined accurately with the Lanczos-DMRG method [13].
Nevertheless, Lanczos DMRG is a relatively simple and quick method for calculat-
ing dynamical properties within DMRG. In practice, it gives reliable and accurate
results for simple discrete spectra made of (or dominated by) a few peaks only and it
has been used successfully in several studies of low-dimensional correlated systems
(see [6, 7]).
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22.3 Dynamical DMRG

22.3.1 Correction Vector

The correction vector associated with the dynamical correlation function GX(ω +
iη) is defined by [15]

|ψX(ω + iη)〉 =
1

E0 + ω + iη −H
|X〉 , (22.12)

where |X〉 = X |ψ0〉 is identical to the first Lanczos vector. If the correction vector
is known, the dynamical correlation function can be calculated directly

GX(ω + iη) = − 1
π
〈X |ψX(ω + iη)〉 . (22.13)

To calculate a correction vector an inhomogeneous linear equation system

(E0 + ω + iη −H)|ψ〉 = |X〉 , (22.14)

has to be solved for the unknown state |ψ〉. Typically, the vector space dimension is
very large and the equation system is solved with the conjugate gradient method [16]
or other iterative methods [17].

The distinctive characteristic of a correction vector approach to the calcula-
tion of dynamical properties is that a specific quantum state (22.12) is constructed
to compute the dynamical correlation function at each frequency ω. To obtain a
complete dynamical spectrum, the procedure has to be repeated for many differ-
ent frequencies. Therefore, in the context of exact diagonalizations the correction-
vector approach is less efficient than the Lanczos technique (22.10) and (22.11). For
DMRG calculations, however, this is a highly favorable characteristic. The dynami-
cal correlation function can be determined for each frequency ω separately using ef-
fective representations of the system Hamiltonian H and operator X which describe
a single excitation energy accurately. The approach can be extended to higher-order
dynamic response functions such as third-order optical polarizabilities [18].

In practice, in a correction-vector DMRG calculation [13] two correction vec-
tors with close frequencies ω1 and ω2 and finite broadening η ∼ ω2 − ω1 > 0
are calculated from the effective superblock operators H and X and used as tar-
get (22.8) beside the ground state |ψ0〉 and the first Lanczos vector |X〉. This is
sufficient to obtain an accurate effective representation of the system excitations for
frequencies ω1 � ω � ω2. The spectrum is then calculated for this frequency
interval using (22.13). The calculation is repeated for several (possibly overlap-
ping) intervals to determine the spectral function over a large frequency range. This
correction-vector DMRG method allows one to perform accurate calculations of
complex or continuous spectra for all frequencies in large lattice quantum many-
body systems [6, 7, 13].
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22.3.2 Variational Principle

The success of the correction-vector DMRG method for calculating dynamical prop-
erties show that using specific target states for each frequency is the right approach.
This idea can be further improved using a variational formulation of the prob-
lem [19]. Consider the functional

WX,η(ω, ψ) = 〈ψ|(E0 + ω −H)2 + η2|ψ〉+ η〈X |ψ〉+ η〈ψ|X〉 . (22.15)

For any η �= 0 and a fixed frequency ω this functional has a well-defined and non-
degenerate minimum |ψmin〉. This state is related to the correction vector (22.12)
by

(H − E0 − ω + iη)|ψmin〉 = η|ψX(ω + iη)〉 . (22.16)

The value of the minimum yields the imaginary part of the dynamical correlation
function

WX,η(ω, ψmin) = −πηIX(ω + iη) . (22.17)

Therefore, the calculation of spectral functions can be formulated as a minimization
problem.

This variational formulation is completely equivalent to the correction-vector
method if we can calculate |ψmin〉 and |ψX(ω + iη)〉 exactly. However, if we can
only calculate approximate states with an error of the order ε � 1, the variational
formulation (22.17) gives the imaginary part IX(ω + iη) of the correlation function
with an accuracy of the order of ε2, while the correction-vector approach (22.13)
yields results with an error of the order of ε.

22.3.3 DDMRG Algorithm

The DMRG method can be used to minimize the functional WX,η(ω, ψ) and thus
to calculate the dynamical correlation function GX(ω+ iη). This approach is called
the dynamical DMRG method. The minimization of the functional is easily inte-
grated into the standard DMRG algorithm. At every step of a sweep through the
system lattice, the following calculations are performed for the effective superblock
operators H and X :

(i) The ground state vector |ψ0〉 of H and its energy E0 are calculated as in the
standard DMRG method.

(ii) The state |X〉 = X |ψ0〉 is calculated.
(iii) The functional WX,η(ω, ψ) is minimized using an iterative minimization algo-

rithm. This yields the imaginary part IX(ω + iη) of the dynamical correlation
function and the state |ψmin〉.

(iv) The correction vector is calculated using (22.16).
(v) The states |ψ0〉, |X〉, and |ψX(ω+ iη)〉 are used as target (22.8) of the density-

matrix renormalization process.
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The robust finite-system DMRG algorithm must be used to perform several sweeps
through a lattice of fixed size. Sweeps are repeated until the procedure has converged
to the minimum of WX,η(ω, ψ).

To obtain the spectrum IX(ω + iη) over a range of frequencies, one has to re-
peat this calculation for several values of ω. The computational effort is thus roughly
proportional to the number of frequencies. As with the correction-vector approach,
one can perform a DDMRG calculation for two close frequencies ω1 and ω2 si-
multaneously, and then calculate the dynamical correlation function for frequencies
ω between ω1 and ω2 without targeting the corresponding correction vectors. This
approach can significantly reduce the computer time necessary to determine the
spectrum over a frequency range but the results obtained for ω �= ω1, ω2 are less
accurate than for the targeted frequencies ω = ω1 and ω = ω2.

22.3.4 Accuracy of DDMRG

First, it should be noted that DDMRG calculations are always performed for a fi-
nite parameter η. The spectrum IX(ω + iη) is equal to the convolution of the true
spectrum IX(ω) with a Lorentzian distribution of width η

IX(ω + iη) =
∫ +∞

−∞
dω′IX(ω′)

1
π

η

(ω − ω′)2 + η2
. (22.18)

Therefore, DDMRG spectra are always broadened and it is sometimes necessary to
perform several calculations for various η to determine IX(ω) accurately. In most
cases, however, the appropriate broadening for DDMRG calculations has merely the
positive side effects of smoothing out numerical errors and hiding the discreteness
of the spectrum, which is a finite-size effect (see the next section).

If a complete spectrum IX(ω + iη) has been obtained, it is possible to calculate
the total spectral weight by integration and to compare it to ground state expectation
values using sum rules. This provides an independent check of DDMRG results.
For instance, the total weight of the photoemission spectral function must fulfill the
relation

∫ 0

−∞
dωAσ(k, ω) = nσ(k) , (22.19)

where nσ(k) = 〈ψ0|c†kσckσ|ψ0〉 is the ground state momentum distribution.
Numerous comparisons with exact analytical results and accurate numerical

simulations have demonstrated the unprecedented accuracy and reliability of the
dynamical DMRG method for calculating dynamical correlation functions in one-
dimensional correlated systems [6, 9, 19, 20, 21, 22] and quantum impurity problems
[23, 24, 25]. As an example, we show in Fig. 22.1 the local DOS of the half-filled
one-dimensional Hubbard model calculated with DDMRG for two values of U .
The local DOS is obtained by substituting X = cjσ and X = c†jσ for ckσ and

c†kσ in the definition of the spectral functions A(k, ω) and B(k, ω), respectively.
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Fig. 22.1. Local density of states of the half-filled one-dimensional Hubbard model for U = 0
and U = 4t calculated in the middle of an open chain with 128 sites using DDMRG and a
broadening η = 0.08t

The local DOS does not depend on the site j for periodic boundary conditions
and is equal to the integrated DOS defined in Sect. 22.1. For open boundary con-
ditions we have checked that the local DOS in the middle of the chain is indis-
tinguishable from the integrated DOS (22.6) for the typical broadening η used in
DDMRG calculations [22]. On the scale of Fig. 22.1 the DDMRG DOS for the
metallic regime (U = 0) is indistinguishable from the exact result (with the same
broadening η), which illustrates the accuracy of DDMRG. For the insulating regime
U = 4t, one clearly sees the opening of the Mott-Hubbard gap in Fig. 22.1. The
width of the gap agrees with the exact result Ec ≈ 1.286t calculated with the
Bethe Ansatz method [2]. The shape of the spectrum around the spectrum onsets
at ω ≈ ±Ec/2 ≈ 0.643t also agrees with field-theoretical predictions as discussed
in the next section. The effects of the broadening η = 0.08t are also clearly visible
in Fig. 22.1: For U = 4t spectral weight is seen inside the Mott-Hubbard gap and
for U = 0 the DOS divergences at ω = ±2t have been broadened into two sharp
peaks.

The numerical errors in the DDMRG method are dominated by the truncation
of the Hilbert space. As in a ground state DMRG calculation, this truncation error
decreases (and thus the accuracy of DDMRG target states and physical results in-
creases) when more density-matrix eigenstates are kept. As the variational approach
yields a smaller error in the spectrum than the correction-vector approach for the
same accuracy in the targeted states, the DDMRG method is usually more accurate
than the correction-vector DMRG method for the same number of density-matrix
eigenstates kept or, equivalently, the DDMRG method is faster than the correction-
vector DMRG method for a given accuracy.
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22.4 Finite-Size Scaling

If only a finite number of eigenstates contributes to a dynamical correlation function,
the spectrum (22.7) is discrete in the limit η → 0

IX(ω) =
∑
n

|〈n|X |0〉|2δ(En − E0 − ω) . (22.20)

If the number of contributing eigenstates is infinite (for instance, in the thermody-
namic limit N →∞ of the Hubbard model), the spectrum IX(ω) may also include
continuous structures. DDMRG allows us to calculate the spectrum of a large but fi-
nite system with a broadening given by the parameter η. To determine the properties
of a dynamical spectrum in the thermodynamic limit, one has to calculate

IX(ω) = lim
η→0

lim
N→∞

IX(ω + iη) . (22.21)

It should be noted that the order of limits in the above formula is important. Com-
puting both limits from numerical results requires a lot of accurate data for different
values of η and N and can be the source of large extrapolation errors. A better ap-
proach is to use a broadening η(N) > 0 which decreases with increasing N and
vanishes in the thermodynamic limit [19]:

I(ω) = lim
N→∞

IX(ω + iη(N)) . (22.22)

The function η(N) depends naturally on the specific problem studied and can also
vary for each frequency ω considered. For one-dimensional correlated electron sys-
tems such as the Hubbard model, one finds empirically that the optimal scaling is

η(N) =
c

N
, (22.23)

where the constant c is comparable to the effective band width of the excitations
contributing to the spectrum around ω.

In Fig. 22.2 we see that the DOS of the half-filled one-dimensional Hubbard
model becomes progressively step-like around ω ≈ 0.643t as the system size is
increased using a size-dependent broadening η = 10.24t/N . The slope of nσ(ω)
has a maximum at a frequency which tends to half the value of the Mott-Hubbard
gap Ec ≈ 1.286t for N → ∞. The height of the maximum diverges as η−1 ∼ N
for increasing N (see the inset in Fig. 22.2). This demonstrates the presence of a
Dirac-function peak δ(ω − Ec/2) in the derivative of nσ(ω) [19] or, equivalently,
a step increase of the DOS at the spectrum onset in the thermodynamic limit, in
agreement with the field-theoretical result for a one-dimensional Mott insulator [26].
Thus the features of the infinite-system spectrum can be determined accurately from
DDMRG data for finite systems using a finite-size scaling analysis with a size-
dependent broadening η(N).

It should be noted that a good approximation for a continuous infinite-system
spectrum can sometimes be obtained at a much lower computational cost than this
scaling analysis by solving the convolution equation (22.18) numerically for an un-
known smooth function IX(ω′) using DDMRG data for a finite system on the left-
hand side (deconvolution) [9, 24, 27].
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Fig. 22.2. Expanded view of the DOS around the spectrum onset at ω = Ec/2 ≈ 0.643t
(vertical dashed line) in the the half-filled one-dimensional Hubbard model for U = 4t. The
data have been obtained with DDMRG for various system sizes from N = 32 to N = 256
with a broadening η = 10.24t/N . The inset shows the slope of nσ(ω) at ω = Ec/2 as a
function of the system size

22.5 Momentum-Dependent Quantities

The DMRG method is usually implemented in real space where it performs opti-
mally for one-dimensional systems with open boundary conditions and short-range
interactions only [5, 6]. If periodic boundary conditions are used, momentum de-
pendent operators, such as the operators ckσ used in the definition of the spectral
functions A(k, ω), can be readily expanded as a function of local (real space) oper-
ators using plane waves (or Bloch states) [12]

ckσ =
1√
N

N∑
j=1

e−ikjcjσ , (22.24)

with wavevectors k = 2πz/N (momentum p = �k) for integers−N/2 < z ≤ N/2.
These plane waves are the one-electron eigenstates of the Hamiltonian (22.4) in the
non-interacting limit (U = 0) for periodic boundary conditions.

Since DMRG calculations can be performed for much larger systems using open
boundary conditions, it is desirable to extend the definition of the spectral function
A(k, ω) to that case. Combining plane waves with filter functions to reduce bound-
ary effects is a possible approach [13] but this method is complicated and does
not always yield good results [22]. A simple and efficient approach is based on
the eigenstates of the particle-in-a-box problem [i.e., the one-electron eigenstates of
the Hamiltonian (22.4) with U = 0 on an open chain]. The operators are defined
for quasi-wavevectors k = πz/(N + 1) (quasi-momenta p = �k) with integers
1 ≤ z ≤ N by

ckσ =

√
2

N + 1

N∑
j=1

sin(kj)cjσ . (22.25)
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Fig. 22.3. Momentum and quasi-momentum distribution in the half-filled one-dimensional
Hubbard model for U = 4t calculated using DMRG on a 128-site lattice with periodic and
open boundary conditions, respectively. The inset shows an expanded view of the same data
around the Fermi point kF = π/2

Both definitions of ckσ are equivalent in the thermodynamic limit N →∞. Numer-
ous test for momentum-dependent quantities [such as the spectral function A(k, ω)]
have shown that both approaches are also consistent in the entire Brillouin zone for
finite systems [21, 22]. For instance, in Fig. 22.3 we show the ground state momen-
tum distribution nσ(k) of the half-filled one-dimensional Hubbard model calculated
with DMRG for both periodic and open boundary conditions. Small quantitative dif-
ferences are observed only for a few special k-points corresponding to low-energy
excitations, close to the Fermi wavevector kF = π/2. Therefore, open chains and
the definition (22.25) can be used to investigate momentum-dependent quantities
such as spectral functions A(k, ω).

22.6 Application: Spectral Function of the Hubbard Model

The DDMRG method and the quasi-momentum technique allow us to calculate the
spectral properties of one-dimensional correlated systems on large lattices. To illus-
trate the capability of this approach we have calculated the photoemission spectral
function Aσ(k, ω) of the half-filled one-dimensional Hubbard model. In Fig. 22.4
we show a density plot of this spectral function for U = 4t on a 128-site lattice. Re-
sults for stronger coupling U/t are qualitatively similar [22]. In Fig. 22.4 we observe
dispersive structures which correspond well to the excitation branches (spinon and
holon) predicted by field theory for one-dimensional Mott insulators in the weak
coupling regime (i.e., U/t � 1 in the Hubbard model) [26]. The DDMRG re-
sults can also be compared to those obtained with other numerical methods (see
Chap. 19).
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Fig. 22.4. Density plot of the spectral function Aσ(k, ω) in the half-filled one-dimensional
Hubbard model for U = 4t calculated on a 128-site open chain using DDMRG with η =
0.0625t and quasi-momenta

An advantage of the DDMRG approach over other numerical techniques is that
it allows for the simulation of systems large enough to obtain information on the
spectrum in the thermodynamic limit. For instance, using the scaling analysis of
Sect. 22.4 we have found that for a given k-point the spectrum maximum diverges
as a power-law η−α (∼ Nα) for η → 0 (N → ∞) at the spectrum onset (i.e.
on the low-energy holon and spinon excitation branches). This indicates a power-
law divergence of the spectral weight in the thermodynamic limit [19]: Aσ(k, ω) ∼
(ε(k) − ω)−α for ω < ε(k) and |k| ≤ kF, where ε(k) is the gap dispersion set by
the spinon branch for |k| < Q ≈ 0.4π and by the holon branch for |k| > Q. This
behavior has been predicted for generic one-dimensional Mott insulators using field
theory [26]. From the DDMRG data, we obtain α = 0.79 ± 0.05 for the Q-point
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Fig. 22.5. Dispersion of structures found in the DDMRG spectral function of Fig. 22.4
(symbols). Lines show the dispersion of corresponding excitation branches calculated with
the Bethe Ansatz for periodic boundary conditions
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where spinon and holon branches merge and α = 0.5 ± 0.1 for other |k| ≤ kF in
excellent agreement with the field-theoretical predictions α = 3/4 and α = 1/2,
respectively.

Finally, we note that in the one-dimensional Hubbard model the dispersion of
excitations (but not their spectral weight) can be calculated with the Bethe Ansatz
method [2]. In Fig. 22.5 we compare the dispersion of structures observed in the
DDMRG spectral function for an open chain with the dispersion of some excitations
obtained with the Bethe Ansatz for periodic boundary conditions. The agreement
is excellent and allows us to identify the dominant structures, such as the spinon
branch (squares) and the holon branches (circles) [21, 22]. This demonstrates once
again the accuracy of the DDMRG method combined with the quasi-momenta tech-
nique. In summary, DDMRG provides a powerful and versatile approach for inves-
tigating the dynamical properties in low-dimensional lattice quantum many-body
systems.
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