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In this chapter I will introduce the basic Density Matrix Renormalization Group
(DMRG) algorithms for calculating ground states in quantum lattice many-body
systems using the one-dimensional spin- 1

2 Heisenberg model as illustration. I will
attempt to present these methods in a manner which combines the advantages of
both the traditional formulation in terms of renormalized blocks and superblocks
and the new description based on matrix-product states. The latter description is
physically more intuitive but the former description is more appropriate for writing
an actual DMRG program. Pedagogical introductions to DMRG which closely fol-
low the original formulation are available in [2, 1]. The conceptual background of
DMRG and matrix-product states is discussed in the previous chapter and should be
read before. Extensions of the basic DMRG algorithms are presented in the chapters
that follow this one.

21.1 Introduction

The DMRG was developed by White [3, 4] in 1992 to overcome the problems
arising in the application of real-space renormalization groups to quantum lattice
many-body systems in solid-state physics. Since then the approach has been ex-
tended to a great variety of problems in all fields of physics and even in quantum
chemistry. The numerous applications of DMRG are summarized in two recent re-
view articles [5, 6]. Additional information about DMRG can be found at http:
//www.dmrg.info.

Originally, DMRG has been considered as an extension of real-space renor-
malization group methods. The key idea of DMRG is to renormalize a system us-
ing the information provided by a reduced density matrix rather than an effective
Hamiltonian (as done in most renormalization groups), hence the name density-
matrix renormalization. Recently, the connection between DMRG and matrix-
product states has been emphasized (for a recent review, see [7]) and has lead to
significant extensions of the DMRG approach. From this point of view, DMRG
is an algorithm for optimizing a variational wavefunction with the structure of a
matrix-product state.

The outline of this chapter is as follows: First I briefly introduce the DMRG
matrix-product state and examine its relation to the traditional DMRG blocks and
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superblocks in Sect. 1. In the next three Sect. I present a numerical renormaliza-
tion group method, then the infinite-system DMRG algorithm, and finally the finite-
system DMRG algorithm. In Sect. 5 the use of additive quantum numbers is ex-
plained. In the next two sections the estimation of numerical errors and code opti-
mization are discussed. In the last section some extensions of DMRG are presented.

21.2 Matrix-Product States and (Super-)Blocks

We consider a quantum lattice system with N sites n = 1, . . . , N . Let B(n) =
{|sn〉; sn = 1, . . . , dn} denote a complete basis of the Hilbert space for site n (all
bases used here are orthonormal). The tensor product of these bases yields a com-
plete basis of the system Hilbert spaceH
{|s = (s1, . . . , sN)〉 = |s1〉⊗ · · ·⊗ |sN〉; sn = 1, . . . , dn;n = 1, . . . , N} . (21.1)

For instance, for the spin- 1
2 Heisenberg model dn = 2 and B(n) = {| ↑〉, | ↓〉}.

Any state |ψ〉 of H can be expanded in this basis: |ψ〉 =
∑

s c(s)|s〉. As ex-
plained in Chap. 20, the coefficients c(s) can take the form of a matrix product.
Here we consider a particular matrix-product state

c(s) = A1(s1) . . .Aj(sj)CjBj+1(sj+1) . . .BN (sN ) , (21.2)

where Cj is a (aj×bj+1)-matrix (i.e., with aj rows and bj+1 columns). The (an−1×
an)-matrices An(sn) (for sn = 1, . . . , dn;n = 1, . . . , j) and the (bn × bn+1)-
matrices Bn(sn) (for sn = 1, . . . , dn;n = j + 1, . . . , N ) fulfill the orthonormaliza-
tion conditions

dn∑
sn=1

(An(sn))
† An(sn) = I and

dn∑
sn=1

Bn(sn) (Bn(sn))† = I , (21.3)

(I is the identity matrix), and the boundary condition a0 = bN+1 = 1. These condi-
tions imply that an ≤ dnan−1 ≤

∏n
k=1 dk and bn ≤ dnbn+1 ≤

∏N
k=n dk.

Obviously, this matrix-product state splits the lattice sites in two groups. The
sites n = 1, . . . , j make up a left block L(j) and the sites n = j + 1, . . . , N
constitute a right block R(j + 1). From the matrix elements of An(sn) and Bn(sn)
we can define third-rank tensors

φL(n)
α (α′, sn) = [An(sn)](α′, α) , (21.4)

for sn = 1, . . . , dn; α = 1, . . . , an, and α′ = 1, . . . , an−1, and

φ
R(n)
β (sn, β′) = [Bn(sn)](β, β′) , (21.5)

for sn = 1, . . . , dn; β = 1, . . . , bn, and β′ = 1, . . . , bn+1. Using these tensors one
can iteratively define a set of orthonormal states in the Hilbert space associated with
each left block
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α

〉
= |s1〉 ; α = s1 = 1, . . . , d1;

∣∣∣φL(n)
α

〉
=

an−1∑
α′=1

dn∑
sn=1

φL(n)
α (α′, sn)

∣∣∣φL(n−1)
α′

〉
⊗ |sn〉 ; α = 1, . . . , an ,

(21.6)

and each right block∣∣∣φR(N)
β

〉
= |sN 〉 ; β = sN = 1, . . . , dN ;

∣∣∣φR(n)
β

〉
=

bn+1∑
β′=1

dn∑
sn=1

φ
R(n)
β (sn, β′) |sn〉 ⊗

∣∣∣φR(n+1)
β′

〉
; β = 1, . . . , bn .

(21.7)

The orthonormality of each set of block states (i.e., the states belonging to the same
block Hilbert space) follows directly from the orthonormalization conditions for the
matrices An(sn) and Bn(sn).

Every set of block states spans a subspace of the Hilbert space associated with
the block. Using these states one can build an effective or renormalized (i.e., ap-
proximate) representation of dimension an or bn for every block. By definition, an
effective representation of dimension an for the block L(n) is made of vector and
matrix representations in a subspace basis B(L, n) for every state and operator (act-
ing on sites in L(n)) which our calculation requires. Note that if an =

∏n
k=1 dk,

the block state set is a complete basis of the block Hilbert space and the “effective”
representation is actually exact. An effective representation of dimension bn for a
right block R(n) is defined similarly using a subspace basis B(R, n).

If we combine the left block L(j) with the right block R(j + 1), we obtain
a so-called superblock {L(j) + R(j + 1)} which contains the sites 1 to N . The
tensor-product basis B(SB, j) = B(L, j)⊗B(R, j+ 1) of the block bases is called
a superblock basis and spans a (ajbj+1)-dimensional subspace of the system Hilbert
spaceH. The matrix-product state given by (21.2) can be expanded in this basis

|ψ〉 =
aj∑
α=1

bj+1∑
β=1

[Cj ](α, β) |φL(j)
α φ

R(j+1)
β 〉 , (21.8)

where [Cj ](α, β) denotes the matrix elements of Cj and

|φL(j)
α φ

R(j+1)
β 〉 = |φL(j)

α 〉 ⊗ |φR(j+1)
β 〉 ∈ B(SB, j) . (21.9)

We note that the square norm of |ψ〉 is given by 〈ψ|ψ〉 = Tr C†
jCj .

If aj =
∏j
n=1 dn and bj+1 =

∏N
n=j+1 dn, the superblock basis B(SB, j) is a

complete basis of H and any state |ψ〉 ∈ H can be written in the form (21.8). For
a large lattice these conditions mean that some matrix dimensions are very large
(at least 2N/2 for a spin- 1

2 model). However, a matrix-product state is numerically
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tractable only if all matrix dimensions are kept small, for instance an, bk ≤ m with
m up to a few thousands. A matrix-product state with restricted matrix sizes can be
considered as an approximation for states inH. In particular, it can be used as a vari-
ational ansatz for the ground state of the system Hamiltonian H . Thus the system en-
ergy E = 〈ψ|H |ψ〉/〈ψ|ψ〉 is a function of the matrices An(sn), Bn(sn), and Cj . It
has to be minimized with respect to these variational parameters subject to the con-
straints (21.3) to determine the ground state. In the following sections I will present
three algorithms (a numerical renormalization group, the infinite-system DMRG
method, and the finite-system DMRG method) for carrying out this minimization.

21.3 Numerical Renormalization Group

The Numerical Renormalization Group (NRG) method was developed by Wilson a
few decades ago to solve the Kondo impurity problem [8]. The key idea is a decom-
position of the lattice into subsystems (blocks) of increasing size. To calculate the
ground state properties of a large lattice one starts from an exact representation of
a small subsystem and builds effective representations of larger subsystems itera-
tively, adding one site at every iteration as illustrated in Fig. 21.1. Here I formulate
this procedure for a quantum lattice system in the framework of a matrix-product
state (21.2). To find a fixed point in an infinite chain, we consider that j ≡ N
in (21.2) while for a finite lattice size N we set bn = 1 for all sites n. In both cases
the right blocks do not play any role and j is increased by one in every iteration
using the following procedure.

We want to calculate an effective representation of dimension aj+1 for the left
block L(j + 1) assuming that we know an effective representation of dimension aj
for the left block L(j). First, from the known bases B(L, j) of L(j) and B(j+1) for
the site j+1 we can define a tensor-product basis of dimension ajdj+1 for L(j+1)∣∣∣φL(j)

α sj+1

〉
=

∣∣∣φL(j)
α

〉
⊗ |sj+1〉 , (21.10)

with α = 1, . . . , aj and sj+1 = 1, . . . , dj+1. Second, every operator acting on sites
in L(j + 1) can be decomposed into a sum of operator pairs

Fig. 21.1. Schematic representations of the NRG method (left), the infinite-system DMRG
(center), and the finite-system DMRG (right). Solid circles are lattice sites and ovals are
blocks. Going from top to bottom corresponds to the iterations L(1) → L(2) → · · · →
L(5) for the three methods. In the right picture, going from bottom to top corresponds to
the iterations R(N = 8) → R(7) → · · · → R(4) in a sweep from right to left of the
finite-system DMRG
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O =
∑
k

OL,k OS,k , (21.11)

where the operatorsOL,k act only on sites in L(j) and the operatorsOS,k act only
on the site j + 1. For instance, the (one-dimensional) Heisenberg Hamiltonian on
the block L(j + 1)

H =
j∑

n=1

SnSn+1 , (21.12)

can be decomposed as

H =
j−1∑
n=1

SnSn+1 ⊗ I + Szj ⊗ Szj+1 +
1
2
(
S+
j ⊗ S−

j+1 + S−
j ⊗ S+

j+1

)
, (21.13)

where I is the identity operator and Sn, S
z
n, S

+
n , S−

n are the usual spin operators for
the site n. As a result the matrix representation of O in the basis (21.10)

O(α, sj+1, α
′, s′j+1) =

〈
φL(j)
α sj+1

∣∣∣O ∣∣∣φL(j)
α′ s′j+1

〉
, (21.14)

is given by

O(α, sj+1, α
′, s′j+1) =

∑
k

OL,k(α, α′) OS,k(sj+1, s
′
j+1) , (21.15)

where
OL,k(α, α′) =

〈
φL(j)
α

∣∣∣OL,k ∣∣∣φL(j)
α′

〉
(21.16)

denotes the known matrix representations of OL,k in the basis B(L, j) of the block
L(j). The matrix representations of the site operators

OS,k(sj+1, s
′
j+1) = 〈sj+1| OS,k

∣∣s′j+1

〉
, (21.17)

can be calculated exactly. For instance, they correspond to the Pauli matrices for the
spin operators Sxn, S

y
n, S

z
n in the spin- 1

2 basis B(n) = {| ↑〉, | ↓〉}.
Using this procedure we can construct the matrix representation (21.14) of

the Hamiltonian (restricted to the block L(j + 1)) in the basis (21.10). This ma-
trix can be fully diagonalized numerically. In practice, this sets an upper limit of
a few thousands on ajdj+1. The eigenvectors are denoted φ

L(j+1)
μ (α, sj+1) for

μ = 1, . . . , ajdj+1 and are ordered by increasing eigenenergies ε
L(j+1)
μ . The aj+1

eigenvectors with the lowest eigenenergies are used to define a new basis B(L, j+1)
of L(j+1) through (21.6) and the other eigenvectors are discarded. The matrix rep-
resentation in B(L, j + 1) for any operator acting in L(j + 1)

O(μ, μ′) =
〈
φL(j+1)
μ

∣∣∣O ∣∣∣φL(j+1)
μ′

〉
; μ, μ′ = 1, . . . , aj+1 , (21.18)
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can be calculated using the orthogonal transformation and projection defined by the
reduced set of eigenvectors. Explicitly, we have to perform two successive matrix
products

M(α, sj+1, μ
′) =

aj∑
α′=1

dj+1∑
s′j+1=1

O(α, sj+1, α
′, s′j+1) φ

L(j+1)
μ′ (α′, s′j+1) ,

O(μ, μ′) =
aj∑
α=1

dj+1∑
sj+1=1

(
φL(j+1)
μ (α, sj+1)

)∗
M(α, sj+1, μ

′) . (21.19)

Vector representations of states in L(j + 1) can be obtained using the same princi-
ples. Therefore, we have obtained an effective representation of dimension aj+1 for
the block L(j +1). We note that the block states (21.6) are not explicitly calculated.
Only matrix and vector representations for operators and states in that basis and the
transformation from a basis to the next one need to be calculated explicitly.

Once the effective representation of L(j + 1) has be determined, the procedure
can be repeated to obtain the effective representation of the next larger block. This
procedure has to be iterated until j + 1 = N for a finite system or until a fixed
point is reached if one investigates an infinite system. After the last iteration phys-
ical quantities for the (approximate) ground state and low-energy excitations can
be calculated using the effective representation of L(N). For instance, expectation
values are given by

〈ψ|O|ψ〉 =
aN∑

μ,μ′=1

[C†
N ](μ) O(μ, μ′) [CN ](μ′) , (21.20)

whereO(μ, μ′) is the matrix representation ofO in the basis B(L,N) and CN is the
(aN × 1)-matrix corresponding to the state |ψ〉 in (21.2) and (21.8). For the ground
state we obviously have [CN ](μ) = δμ,1.

The NRG method is efficient and accurate for quantum impurity problems such
as the Kondo model but fails utterly for quantum lattice problems such as the
Heisenberg model. One reason is that in many quantum systems the exact ground
state can not be represented accurately by a matrix-product state (21.2) with re-
stricted matrix sizes. However, another reason is that in most cases the NRG algo-
rithm does not generate the optimal block representation for the ground state of a
quantum lattice system and thus does not even find the matrix-product state (21.2)
with the minimal energy for given matrix sizes.

21.4 Infinite-System DMRG Algorithm

The failure of the NRG method for quantum lattice problems can be understood
qualitatively. The subsystem represented by a block L(n) always has an artificial
boundary at which the low-energy eigenstates of a quantum lattice Hamiltonian
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tend to vanish. Thus at later iterations the low-energy eigenstates of the effective
Hamiltonian in larger subsystems have unwanted features like nodes where the ar-
tificial boundaries of the previous subsystems were located. White and Noack [9]
have shown that this difficulty can be solved in single-particle problems if the ef-
fects of the subsystem environment are taken into account self-consistently. DMRG
is the application of this idea to many-particle problems. In his initial papers [3, 4],
White described two DMRG algorithms: The infinite-system method presented in
this section and the finite-system method discussed in the next section.

The infinite-system method is certainly the simplest DMRG algorithm and is
the starting point of many other DMRG methods. In this approach the system size
increases by two sites in every iteration, N → N +2, as illustrated in Fig. 21.1. The
right block R(j + 1) is always an image (reflection) of the left block L(j), which
implies that j ≡ N/2 in (21.2). Therefore, the superblock structure is {L(N/2) +
R(N/2 + 1)} and an effective representation for the N -site system is known if we
have determined one for L(N/2).

As in the NRG method an iteration consists in the calculation of an effective
representation of dimension aj+1 for the block L(j + 1) assuming that we already
know an effective representation of dimension aj for the block L(j). First, we pro-
ceed as with the NRG method and determine an effective representation of dimen-
sion ajdj+1 for L(j + 1) using the tensor product basis (21.10). Next, the effective
representation of R(j + 2) is chosen to be an image of L(j + 1). The quantum
system is assumed to be homogeneous and symmetric (invariant under a reflection
n → n′ = N − n + 3 through the middle of the (N+2)-site lattice) to allow for
this operation. Therefore, one can define a one-to-one mapping between the site
and block bases on the left- and right-hand sides of the superblock. We consider a
mapping between the tensor product bases for L(j + 1) and R(j + 2)

∣∣∣φL(j)
α sj+1

〉
↔

∣∣∣sj+2 φ
R(j+3)
β

〉
. (21.21)

Thus, the matrix representation of any operator acting in R(j + 2)

O(sj+2, β, s
′
j+2, β

′) =
〈
sj+2 φ

R(j+3)
β

∣∣∣O ∣∣∣s′j+2 φ
R(j+3)
β′

〉
, (21.22)

is given by the matrix representation (21.14) of the corresponding (reflected) opera-

tor in L(j + 1) through the basis mapping.
A superblock basis B(SB, j + 1) of dimension Dj+1 = ajdj+1dj+2bj+3 can

be defined using the tensor product of the block bases

∣∣∣φL(j)
α sj+1 sj+2 φ

R(j+3)
β

〉
=

∣∣∣φL(j)
α sj+1

〉
⊗

∣∣∣sj+2 φ
R(j+3)
β

〉
, (21.23)

for α = 1, . . . , aj ; sj+1 = 1, . . . , dj+1; sj+2 = 1, . . . , dj+2; and β = 1, . . . , bj+3.

Every operator acting on the superblock (i.e., the (N + 2)-site lattice) can be de-
composed in a sum of operator pairs
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O =
nk∑
k=1

OL,k OR,k , (21.24)

where the operator parts OL,k and OR,k act on sites in L(j + 1) and R(j + 2),
respectively. As an example, the Heisenberg Hamiltonian on a (N + 2)-site chain
can be written

H =
j∑

n=1

SnSn+1 ⊗ I + I ⊗
N+1∑
n=j+2

SnSn+1 +

Szj+1 ⊗ Szj+2 +
1
2
(
S+
j+1 ⊗ S−

j+2 + S−
j+1 ⊗ S+

j+2

)
, (21.25)

where I is the identity operator. Therefore, the matrix representation of any operator
in the superblock basis

O(α, sj+1, sj+2, β, α
′, s′j+1, s

′
j+2, β

′) =〈
φL(j)
α sj+1 sj+2 φ

R(j+3)
β

∣∣∣O ∣∣∣φL(j)
α′ s′j+1 s′j+2 φ

R(j+3)
β′

〉
, (21.26)

(for α, α′ = 1, . . . , aj ; sj+1, s
′
j+1 = 1, . . . , dj+1; sj+2, s

′
j+2 = 1, . . . , dj+2; and

β, β′ = 1, . . . , bj+3) is given by the sum of the tensor products of the matrix repre-
sentations (21.14) and (21.22) for the block operators

O(α, sj+1, sj+2, β, α
′, s′j+1, s

′
j+2, β

′) =
nk∑
k=1

OL,k(α, sj+1, α
′, s′j+1) OR,k(sj+2, β, s

′
j+2, β

′) . (21.27)

Storing the matrix representations (21.14) and (21.22) for the block operators
requires a memory amount ∝ nk[(ajdj+1)2 + (dj+2bj+3)2], but calculating and
storing the superblock matrix (21.26) require nk(Dj+1)2 additional operations and
a memory amount∝ (Dj+1)2. As the number of operator pairs nk is typically much
smaller than the matrix dimensions aj , bj+3 (nk = 5 in the Heisenberg model on a
open chain), one should not calculate the superblock matrix representation (21.26)
explicitly but work directly with the right-hand side of (21.27). For instance, the ap-
plication of the operatorO to a state |ψ〉 ∈ H yields a new state |ψ′〉 = O|ψ〉, which
can be calculated without computing the superblock matrix (21.26) explicitly. If

[Cj+1](α, sj+1, sj+2, β) =
〈
φL(j)
α sj+1 sj+2 φ

R(j+3)
β

∣∣∣ψ〉 , (21.28)

is the vector representation of |ψ〉 in the superblock basis (21.23), the vector repre-
sentation C′

j+1 of |ψ′〉 in this basis is obtained through double matrix products with
the block operator matrices in (21.27)
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Vk(α′, s′j+1, sj+2, β)

=
bj+3∑
β′=1

dj+2∑
s′j+2=1

[Cj+1](α′, s′j+1, s
′
j+2, β

′) OR,k(sj+2, β, s
′
j+2, β

′) ,

[C′
j+1](α, sj+1, sj+2, β)

=
nk∑
k=1

aj∑
α′=1

dj+1∑
s′j+1=1

OL,k(α, sj+1, α
′, s′j+1)Vk(α

′, s′j+1, sj+2, β) .

(21.29)

Performing these operations once requires only nkDj+1(ajdj+1+dj+2bj+3) opera-
tions, while computing a matrix-vector product using the superblock matrix (21.26)
would require (Dj+1)2 operations. In practice, this sets an upper limit of the order
of a few thousands for the matrix dimensions an, bn.

As we want to calculate the ground state of the system Hamiltonian H , the next
task is to set up the superblock representation (21.27) of H and then to determine
the vector representation (21.28) of its ground state in the superblock basis. To de-
termine the ground state without using the superblock matrix (21.26) of H we use
iterative methods such as the Lanczos algorithm or the Davidson algorithm, see
Chap. 18. These algorithms do not require an explicit matrix for H but only the
operation |ψ′〉 = H |ψ〉, which can be performed very efficiently with (21.29) as
discussed above.

Once the superblock ground state Cj+1 has been determined, the next step is
finding an effective representation of dimension aj+1 < ajdj+1 for L(j + 1)
which described this ground state as closely as possible. Thus we look for the
best approximation C̃j+1 of the superblock ground state Cj+1 with respect to a
new basis B(L, j + 1) of dimension aj+1 for L(j + 1). As discussed in Chap. 20
this can be done using the Schmidt decomposition or more generally reduced den-
sity matrices. Choosing the density-matrix eigenvectors with the highest eigenval-
ues is an optimal choice for constructing a smaller block basis (see Sect. 21.7).
Therefore, if the DMRG calculation targets a state with a vector representation
[Cj+1](α, sj+1, sj+2, β) in the superblock basis (21.23), we calculate the reduced
density matrix for the left block L(j + 1)

ρ(α, sj+1, α
′, s′j+1)

=
dj+2∑
sj+2=1

bj+3∑
β=1

([Cj+1](α, sj+1, sj+2, β))∗ [Cj+1](α′, s′j+1, sj+2, β)

(21.30)

for α, α′ = 1, . . . , aj and sj+1, s
′
j+1 = 1, . . . , dj+1. This density matrix has ajdj+1

eigenvalues wμ ≥ 0 with
ajdj+1∑
μ=1

wμ = 1 . (21.31)
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We note φ
L(j+1)
μ (α, sj+1) the corresponding eigenvectors. The aj+1 eigenvectors

with the largest eigenvalues are used to define a new basis B(L, j + 1) of L(j + 1)
through (21.6) and the other eigenvectors are discarded. As done in the NRG
method, the matrix representation of any operator in L(j + 1) can be calculated
using the orthogonal transformation and projection (21.19) defined by the reduced
set of eigenvectors. If necessary, vector representations of states in L(j + 1) can be
obtained using the same principles.

Thus, we have obtained an effective representation of dimension aj+1 for the
block L(j+1). We note that as with the NRG method the block states (21.6) are not
explicitly calculated. Only matrix and vector representations of operators and states
in that basis and the transformation from a basis to the next one need to be calculated
explicitly. The procedure can be repeated to obtain an effective representation of the
next larger blocks (i.e., for the next larger lattice size). Iterations are continued until
a fixed point has been reached.

As an illustration Fig. 21.2 shows the convergence of the ground state energy per
site as a function of the superblock size N in the one-dimensional spin- 1

2 Heisen-
berg model. The energy per site EDMRG(N) is calculated from the total energy E0

for two consecutive superblocks EDMRG(N) = [E0(N)−E0(N−2)]/2. The exact
result for an infinite chain is Eexact = 1

4 − ln(2) according to the Bethe ansatz solu-
tion [10]. The matrix dimensions an, bn are chosen to be not greater than a number
m which is the maximal number of density-matrix eigenstates kept at each itera-
tion. As N increases, EDMRG(N) converges to a limiting value EDMRG(m) which
is the minimal energy for a matrix-product state (21.2) with matrix dimensions up
to m. This energy minimum EDMRG(m) is always higher than the exact ground
state energy Eexact as expected for a variational method. The error in EDMRG(m)
is dominated by truncation errors, which decrease rapidly as the number m increases
(see the discussion of truncation errors in Sect. 21.7).

Once a fixed point has been reached, ground state properties can be calculated.
For instance, a ground state expectation value Ō = 〈ψ|O|ψ〉 is obtained in two

0 500 1000 1500 2000

N

10–8

10–7

10–6

10–5

10–4

10–3

10–2

E
D

M
R

G
(N

) -
 E

ex
ac

t
 m = 20

m = 50

m = 100

Fig. 21.2. Convergence of the ground state energy per site calculated with the infinite-system
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Heisenberg chain as a function of the superblock size N for
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steps: First, one calculates |ψ′〉 = O|ψ〉 using (21.29), then the expectation value is
computed as a scalar product Ō = 〈ψ|ψ′〉. Explicitly,

〈ψ|ψ′〉 =
aj∑
α=1

dj+1∑
sj+1=1

dj+2∑
sj+2=1

bj+3∑
β=1

([Cj+1](α, sj+1, sj+2, β))∗ [C′
j+1](α, sj+1, sj+2, β) .

(21.32)

Experience shows that the infinite-system DMRG algorithm yields accurate
results for local physical quantities such as spin density and short-range spin corre-
lations in quantum lattice systems with “good” features (infinite homogeneous one-
dimensional systems with short-range interactions such as the Heisenberg model on
an open chain). These local quantities are calculated using operatorsO acting only
on sites around the middle of the last (i.e., longest) lattice (more precisely, in an
interval of length N −N ′ around the center of a N -site lattice if the fixed point has
been reached after N ′/2 < N/2 iterations). For other types of systems and other
physical quantities the infinite-system algorithm fails in most cases. The reasons for
these failures are the same as for NRG. First, the exact ground state may not be
represented accurately by a matrix-product state (21.2) with restricted matrix sizes.
For instance, the matrix-product state cannot reproduce long-range power-law cor-
relations, see Chap. 20. Second, very often the infinite-system DMRG algorithm
does not generate the optimal block representation for the ground state (i.e., does
not find the best possible matrix-product state (21.2) for preset matrix sizes) when
the system does not have the good features mentioned above.

21.5 Finite-System DMRG Algorithm

The finite-system method is a more versatile DMRG algorithm than the infinite-
system method as it can be applied to almost any quantum lattice problem. It is
also more reliable as it always finds the best possible matrix-product representa-
tion (21.2) for a given quantum state. In the finite-system DMRG method the lattice
size N is kept constant. The superblock structure is {L(j) + R(j + 1)}, where j is
varied iteratively by one site from N − 2 to 2 in a sweep from right to left and from
2 to N − 2 in a sweep from left to right, see Fig. 21.1. If the system has the reflec-
tion symmetry used in the infinite-system algorithm, j need to be varied from N/2
to 2 and back only. At the start of the finite-system algorithm, one calculates effec-
tive representations for the left blocks L(1) to L(N−3) using the NRG method, the
infinite-system DMRG algorithm, or other methods, even using random transforma-
tions in (21.6), as they can be poor approximations of the optimal representations.
This initial calculation is called the warmup sweep.

We first proceed with a sweep through the lattice from right to left, reducing
j by one at every iteration starting from j = N − 2. For this purpose, we have
to compute an effective representation of dimension bj+1 for R(j + 1) using the
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effective representation of dimension bj+2 for the right block R(j + 2) calculated
in the previous iteration. For the first iteration j = N − 2, the exact representation
of R(N) is used. As done for left blocks in the NRG and infinite-system DMRG
algorithm, we first define a tensor-product basis of dimension dj+1bj+2 for the new
right block using the site basis B(j + 1) and the subspace basis B(R, j + 2) of
R(j + 2) ∣∣∣sj+1 φ

R(j+2)
β

〉
= |sj+1〉 ⊗

∣∣∣φR(j+2)
β

〉
, (21.33)

for sj+1 = 1, . . . , dj+1 and β = 1, . . . , bj+2. The matrix representation (21.22) of
any operatorO acting in R(j + 1) can be calculated similarly to (21.15)

O(sj+1, β, s
′
j+1, β

′) =
∑
k

OS,k(sj+1, s
′
j+1) OR,k(β, β′) , (21.34)

where the OS,k(sj+1, s
′
j+1) are site-operator matrices (21.17) and OR,k(β, β′) de-

notes the known matrix representations of operators acting on sites of R(j + 2)
in the basis B(R, j + 2). Thus we obtain an effective representation of dimension
dj+1bj+2 for R(j+1). Next, we use the available effective representation of dimen-
sion aj−1 for the left block L(j − 1), which has been obtained during the previous
sweep from left to right (or the result of the warmup sweep if this is the first sweep
from right to left). With this block L(j − 1) we build an effective representation of
dimension aj−1dj for L(j) using a tensor-product basis (21.10) as done in the NRG
and infinite-system DMRG methods.

Now we consider the superblock {L(j)+R(j+1)} and its tensor-product basis
analogue to (21.23) and set up the representation of operators in this basis, espe-
cially the Hamiltonian, similarly to (21.27). As for the infinite-system algorithm we
determine the ground state Cj of the superblock Hamiltonian in the superblock ba-
sis using the Lanczos or Davidson algorithm and the efficient implementation of the
matrix-vector product (21.29). Typically, we have already obtained a representation
of the ground state Cj+1 for the superblock configuration {L(j + 1)+R(j + 2)} in
the previous iteration. This state can be transformed exactly in the superblock basis
for {L(j) + R(j + 1)} using

[CG
j ](α, sj , sj+1, β) =

aj∑
α′=1

φ
L(j)
α′ (α, sj)

dj+2∑
sj+2=1

bj+3∑
β′=1

[Cj+1](α′, sj+1, sj+2, β
′)
(
φ
R(j+2)
β (sj+2, β

′)
)∗

,

(21.35)

for α = 1, . . . , aj−1; sj = 1, . . . , dj ; sj+1 = 1, . . . , dj+1; and β = 1, . . . , bj+2.

The functions φ
R(j+2)
β (sj+2, β

′) are the density-matrix eigenvectors of R(j + 2)

calculated in the previous iteration while the functions φ
L(j)
α′ (α, sj) are the density-

matrix eigenvectors of L(j) calculated during the previous sweep from left to right
(or during the warmup sweep if this is the first sweep from right to left). The state
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CG
j can be used as the initial vector for the iterative diagonalization routine. When

the finite-system DMRG algorithm has already partially converged, this initial state
CG
j is a good guess for the exact ground state Cj of the superblock Hamiltonian in

the configuration {L(j) + R(j + 1)} and thus the iterative diagonalization method
converges in a few steps. This can result in a speed up of one or two orders of
magnitude compared to a diagonalization using a random initial vector CG

j .
Once the superblock representation Cj of the targeted ground state has been

obtained, we calculate the reduced density matrix for the right block R(j + 1)

ρ(sj+1, β, s
′
j+1, β

′)

=
dj∑
sj=1

aj−1∑
α=1

([Cj ](α, sj , sj+1, β))∗ [Cj ](α, sj , s
′
j+1, β

′) , (21.36)

for β, β′ = 1, . . . , bj+2 and sj+1, s
′
j+1 = 1, . . . , dj+1. We denote the eigenvectors

of this density matrix φ
R(j+1)
μ (sj+1, β) with μ = 1, . . . , dj+1bj+2. The bj+1 eigen-

vectors with the largest eigenvalues are chosen to define a new basis B(R, j + 1)
of R(j + 1) through (21.7) and the other eigenvectors are discarded. As already
mentioned in the previous section, this is the optimal choice for preserving Cj while
reducing the basis dimension from dj+1bj+2 to bj+1 (see Chap. 20 and Sect. 21.7
for more detail). The matrix representation of any operator acting only on sites in
R(j + 1) can be calculated in the new basis with two successive matrix products

M(sj+1, β, μ
′) =

bj+2∑
β′=1

dj+1∑
s′j+1=1

O(sj+1, β, s
′
j+1, β

′) φ
R(j+1)
μ′ (s′j+1, β

′) ,

O(μ, μ′) =
bj+2∑
β=1

dj+1∑
sj+1=1

(
φR(j+1)
μ (sj+1, β)

)∗
M(sj+1, β, μ

′) , (21.37)

for μ, μ′ = 1, . . . , bj+1 as done for a right block in (21.19).
Thus we have obtained an effective representation of dimension bj+1 for the

right block R(j + 1). We note that the block states (21.7) are not explicitly calcu-
lated. Only matrix and vector representations of operators and states in that basis
and the transformation from a basis to the next one need to be calculated explicitly.
The procedure is repeated in the next iteration to obtain an effective representation
for the next larger right block. Iterations are continued until the sweep from right
to left is completed (j + 1 = 3). This right-to-left sweep is illustrated in the right
picture of Fig. 21.1 going from bottom to top.

Then we exchange the roles of the left and right blocks and perform a sweep
from left to right. Effective representations for the left blocks L(j), j = 2, . . . ,
N−3, are built iteratively. The effective representation for R(j+3) which has been
calculated during the last right-to-left sweep is used to make an effective tensor-
product-basis representation of R(j+2) and thus to complete the superblock {L(j+
1)+R(j+2)}. This left-to-right sweep corresponds to the right picture of Fig. 21.1
going from top to bottom.
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When this left-to-right sweep is done, one can start a new couple of sweeps back
and forth. The ground state energy calculated with the superblock Hamiltonian de-
creases progressively as the sweeps are performed. This results from the progres-
sive optimization of the matrix-product state (21.2) for the ground state. Figure 21.3
illustrates this procedure for the total energy of a 400-site Heisenberg chain. The
matrix dimensions an, bn are chosen to be not greater than m = 20 (maximal num-
ber of density-matrix eigenstates kept at each iteration). The sweeps are repeated
until the procedure converges (i.e., the ground state energy converges). In Fig. 21.3
the DMRG energy converges to a value EDMRG(m = 20) which lies about 0.008
above the exact result for the 400-site Heisenberg chain. As it corresponds to a vari-
ational wavefunction (21.2) the DMRG energy EDMRG(m) always lies above the
exact ground state energy and decreases as m increases.

Once convergence is achieved, ground state properties can be calculated with
(21.29) and (21.32) as explained in the previous section. Contrary to the infinite-
system algorithm, however, the finite-system algorithm yields consistent results for
the expectation values of operators acting on any lattice site. For example, we show
in Fig. 21.4 the staggered spin bond order (−1)n(〈SnSn+1〉 + ln(2) − 1/4) and
the staggered spin-spin correlation function C(r) = (−1)r〈SnSn+r〉 obtained in
the 400-site Heisenberg chain using up to m = 200 density-matrix eigenstates. A
strong staggered spin bond order is observed close to the chain edges (Friedel os-
cillations) while a smaller one is still visible in the middle of the chain because
of its finite size. For a distance up to r ≈ 100 the staggered spin-spin correlation
function C(r) decreases approximately as a power-law 1/r as expected but a devi-
ation from this behavior occurs for larger r because of the chain edges. Finite-size
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Fig. 21.3. Convergence of the ground state energy calculated with the finite-system DMRG
algorithm using m = 20 density-matrix eigenstates as a function of the iterations in a 400-site
spin- 1

2
Heisenberg chain. Arrows show the sweep direction for the first three sweeps starting

from the top



21 Density-Matrix Renormalization Group Algorithms 611

0
Bond n

0

0.05

0.1

0.15

0.2

(–
1)

n Δ<
S n

S n
+

1>

1
Distance r

10–4

10–3

10–2

10–1

100

C
(r

) =
 (–

1)
r <

S n
S n

+
r>

DMRG
C(r) = 0.8/r

100 200 300 400 10 100

Fig. 21.4. Staggered spin bond order (left) (−1)n(〈SnSn+1〉 − 1
4

+ ln(2)) and staggered
spin-spin correlation function (right) C(r) = (−1)r〈SnSn+r〉. Both quantities have been
calculated using the finite-system DMRG algorithm with m = 200 in a 400-site spin- 1

2

Heisenberg chain. The dashed line is a guide for the eye

and chain-end effects are unavoidable and sometimes troublesome features of the
finite-size DMRG method.

Contrary to the infinite-system algorithm the finite-system algorithm always
finds the optimal matrix-product state (21.2) with restricted matrix sizes. Never-
theless, experience shows that the accuracy of DMRG calculations depends sig-
nificantly on the system investigated because the matrix-product state (21.2) with
restricted matrix sizes can be a good or a poor approximation of the true ground
state. In practice, this implies that physical quantities calculated with DMRG can
approach the exact results rapidly or slowly for an increasing number m of density-
matrix eigenstates kept. This so-called truncation error is discussed in Sect. 21.7.
For instance, the finite-system DMRG method yields excellent results for gapped
one-dimensional systems but is less accurate for critical systems or in higher di-
mensions for the reason discussed in Chap. 20.

21.6 Additive Quantum Numbers

Symmetries and quantum numbers play an important role in the solution and anal-
ysis of quantum many-body systems. Here I discuss additive quantum numbers,
which constitute the simplest implementation of quantum numbers within the basic
DMRG methods. A quantum number is additive when the quantum number of the
tensor product of two states is given by the sum of the quantum numbers of both
states. The use of other symmetries and quantum numbers is described in [7, 11].

We consider an operator Q acting in H which is the sum of Hermitian site op-
erators, Q =

∑N
n=1 Qn, where the operator Qn acts only on the site n. A typical
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example is the z-component of the total spin Sz =
∑N

n=1 Szn in a spin system such
as the Heisenberg model. If Q commutes with the system Hamiltonian H , eigen-
states of H can be chosen so that they are also eigenstates of Q. If the target of the
DMRG calculation is an eigenstate of Q (for instance, the ground state of H), one
can show that the reduced density operators for left and right blocks commute with
the operators

QL(j) =
j∑

n=1

Qn and QR(j+1) =
N∑

n=j+1

Qn , (21.38)

respectively. As a consequence, the density-operator eigenstates (21.6) and (21.7)
can be chosen to be eigenstates of QL(j) or QR(j+1) and the block basis states
can be labeled with an index identifying their quantum number (the corresponding
eigenvalue of QL(j) or QR(j+1)). For instance, the left block basis becomes

B(L, j) =
{∣∣∣φL(j)

r,α

〉
; r = 1, 2, . . . ;α = 1, . . . , ar,j

}
, (21.39)

where the index r numbers the possible quantum numbers q
L(j)
r of QL(j), α num-

bers ar,j basis states with the same quantum number, and
∑

r ar,j = aj .
We note that QL(j+1) = QL(j) + Qj+1. Thus if we choose the site basis states

in B(j + 1) to be eigenstates of the site operator Qj+1 and denote |t, sj+1〉 a basis

state with quantum number qS(j+1)
t , the tensor product state (21.10) becomes

∣∣∣φL(j)
r,α ; t, sj+1

〉
=

∣∣∣φL(j)
r,α

〉
⊗ |t, sj+1〉 , (21.40)

and its quantum number (eigenvalue of QL(j+1)) is given by q
L(j+1)
p = q

L(j)
r +

q
S(j+1)
t . Therefore, the corresponding density-matrix eigenstates take the form

φ
L(j+1)
p,α (r, α′, t, sj+1) and vanish if q

L(j+1)
p �= q

L(j)
r + q

S(j+1)
t , see (21.6). Simi-

larly, the density-matrix eigenstates for a right block are noted φ
R(j+1)
p,β (t, sj+1, r, β

′)

and vanish if q
R(j+1)
p �= q

R(j+2)
r + q

S(j+1)
t . We can save computer time and mem-

ory if we use this rule to compute and store only the terms which do not identically
vanish.

Furthermore, as Q = QL(j) + Qj+1 + Qj+2 + QR(j+3), a superblock basis
state (21.23) can be written∣∣∣φL(j)

p,α ; r, sj+1; t, sj+2;φ
R(j+3)
v,β

〉
=

∣∣∣φL(j)
p,α ; r, sj+1

〉
⊗

∣∣∣t, sj+2;φ
R(j+3)
v,β

〉
,

(21.41)

and its quantum number (eigenvalue of Q) is given by q = q
L(j)
p + q

S(j+1)
r +

q
S(j+2)
t + q

R(j+3)
v . Therefore, the superblock representation (21.28) of a state |ψ〉

with a quantum number q can be written [Cj+1](p, α, r, sj+1, t, sj+2, v, β) and van-

ishes if q �= q
L(j)
p + q

S(j+1)
r + q

S(j+2)
t + q

R(j+2)
v . Here again we can save computer

time and memory if we use this rule to compute and store only the components of
Cj+1 which do not identically vanish.
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If an operatorO has a simple commutation relation with Q of the form [Q,O] =
Δq O, where Δq is a number, the matrix elements 〈μ|O|ν〉 of O in the eigen-
basis of Q vanish but for special combinations of the eigenstates |μ〉 and |ν〉.
Similar rules apply for the related operators QL(n), QR(n), and Qn. Explicitly,
for the matrices (21.17) of site operators one finds that 〈p, sn|O|p′, s′n〉 = 0 for

q
S(n)
p �= q

S(n)
p′ + Δq if [Qn,O] = Δq O. For instance, for the spin operator S+

n

with [Sz, S+
n ] = �S+

n only 〈↑ |S+
n | ↓〉 does not vanish. For the matrix representa-

tion of left block operators (21.14) one finds that
〈
φL(j)
pα ; r, sj+1

∣∣∣O ∣∣∣φL(j)
p′α′ ; r′, s′j+1

〉
= 0 , (21.42)

for q
L(j)
p + q

S(j+1)
r �= q

L(j)
p′ + q

S(j+1)
r′ + Δq if [QL(j+1),O] = Δq O. A similar

rule, applies to matrix representations (21.22) in a right block
〈
t, sj+2;φ

R(j+3)
vβ

∣∣∣O ∣∣∣t′, s′j+2;φ
R(j+3)
v′β′

〉
= 0 , (21.43)

for qR(j+3)
v + q

S(j+2)
t �= q

R(j+3)
v′ + q

S(j+2)
t′ + Δq if [QR(j+2),O] = Δq O. There-

fore, we can reduce the computer time and memory used if we compute and save
only the matrix elements which are not identically zero because of the conservation
of additive quantum numbers. Moreover, if we implement these rules, the computa-
tional cost of the operations (21.15), (21.19), (21.29), (21.30), (21.32), and (21.34)
to (21.37) is also substantially reduced.

In summary, using additive quantum numbers increases the complexity of a
DMRG program but can reduce the computational effort significantly. In Chap. 22
it is shown that quantum numbers and symmetries can also be used with DMRG to
investigate additional properties such as excited states.

21.7 Truncation Errors

There are three main sources of numerical errors in the finite-system DMRG
method:

– The iterative diagonalization algorithm used to find the ground state of the su-
perblock Hamiltonian (diagonalization error),

– the iterative optimization of matrices in the matrix-product state (21.2) (conver-
gence error), and

– the restrictions put on the matrix dimensions an and bn (truncation error).

Diagonalization errors originate from errors in the calculation of the matrix Cj
in (21.2) but they propagate to the other matrices through the density-matrix based
selection of the block basis states. These errors can always be made negligible com-
pared to the other two error sources in ground state calculations. However, as the
superblock diagonalization is the most time-consuming task and the other two error
sources limit the overall accuracy anyway, one should not determine the superblock
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ground state with too much precision but strike a balance between accuracy and
computational cost. In DMRG algorithms that target other states than the ground
state (for instance, dynamical correlation functions, see Chap. 22), the diagonaliza-
tion error may become relevant.

Convergence errors corresponds to non-optimal matrices An(sn) and Bn(sn)
in the matrix-product state (21.2). They are negligible in DMRG calculations for
ground state properties in non-critical one-dimensional open systems with nearest-
neighbor interactions. For such cases DMRG converges after very few sweeps
through the lattice. Convergence problems occur frequently in critical or inhomo-
geneous systems and in systems with long-range interactions (this effectively in-
cludes all systems in dimension larger than one, see the last section). However, if
one performs enough sweeps through the lattice (up to several tens in hard cases),
these errors can always be made smaller than truncation errors (i.e., the finite-system
DMRG algorithm always finds the optimal matrices for a matrix-product state (21.2)
with restricted matrix sizes).

Truncation errors are usually the dominant source of inaccuracy in the finite-
system DMRG method. They can be systematically reduced by increasing the ma-
trix dimensions an, bn used in (21.2). In actual computations, however, they can be
significant and it is important to estimate them reliably. In the finite-system DMRG
algorithm a truncation error is introduced at every iteration when a tensor-product
basis of dimension ajdj+1 for the left block L(j + 1) is reduced to a basis of di-
mension aj+1 during a sweep from left to right and, similarly, when a tensor-product
basis of dimension bj+2dj+1 for the right block R(j + 1) is reduced to a basis of
dimension bj+1 during a sweep from right to left. Each state |ψ〉 which is defined
using the original tensor-product basis (usually, the superblock ground state) is re-
placed by an approximate state |ψ̃〉 which is defined using the truncated basis. It has
been shown [1] that the optimal choice for constructing a smaller block basis for a
given target state |ψ〉 consists in choosing the eigenvectors with the highest eigen-
values wμ from the reduced density-matrix (21.30) or (21.36) of |ψ〉 for this block.

More precisely, this choice minimizes the differences =
∣∣∣|ψ〉 − |ψ̃〉∣∣∣2 between the

target state |ψ〉 and its approximation |ψ̃〉.
The minimum of S is given by the weight P of the discarded density-matrix

eigenstates. With w1 ≥ w2 ≥ · · · ≥ wajdj+1 we can write

Smin = P (aj+1) =
ajdj+1∑

μ=1+aj+1

wμ = 1−
aj+1∑
μ=1

wμ (21.44)

for the left block L(j + 1) and similarly Smin = P (bj+1) = 1−∑bj+1
μ=1 wμ for the

right block R(j + 1). It can be shown that errors in physical quantities depend di-
rectly on the discarded weight. For the ground-state energy the truncation introduces
an error

〈ψ̃|H |ψ̃〉
〈ψ̃|ψ̃〉

− 〈ψ|H |ψ〉〈ψ|ψ〉 ∝ P (aj+1) or P (bj+1) , (21.45)
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while for other expectation values the truncation error is

〈ψ̃|O|ψ̃〉
〈ψ̃|ψ̃〉

− 〈ψ|O|ψ〉〈ψ|ψ〉 ∝
√

P (aj+1) or
√

P (bj+1) (21.46)

for P (aj+1), P (bj+1) � 1, respectively. Therefore, truncation errors for physi-
cal quantities are small when the discarded weight is small. Clearly, the discarded
weight is small when the eigenvalues wμ of the reduced density-matrices (21.30)
and (21.36) decrease rapidly with increasing index μ. As discussed in Chap. 20,
there are various quantum systems for which the spectrum of reduced density-
matrices for subsystems has this favorable property. For such quantum systems the
matrix-product state (21.2) is a good approximation and DMRG truncation errors
decrease rapidly with increasing matrix sizes aj+1 and bj+1.

In practice, there are two established methods for choosing the matrix dimen-
sions in a systematic way in order to cope with truncation errors. First, we can
perform DMRG sweeps with matrix dimensions not greater than a fixed number m
of density-matrix eigenstates kept, an, bn � m. In that approach, physical quanti-
ties [ground state energy EDMRG(m) and other expectation values ŌDMRG(m)] are
calculated for several values of m and their scaling with increasing m is analyzed.
Usually, one finds a convergence to a fixed value with corrections that decreases
monotonically with m. This decrease is exponential in favorable cases (gapped one-
dimensional systems with short-range interactions) but can be as slow as m−2 for
systems with non-local Hamiltonians. As an example, we show in Fig. 21.5 the
truncation error in the ground state energy for a 100-site Heisenberg chain. For
open boundary conditions (a favorable case for a matrix-product state (21.2) and
thus for DMRG) the error decreases very rapidly with m until it reaches the order of
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magnitude of round-off errors in the computer system used. For periodic boundary
conditions (a less favorable case) the error decreases slowly with m and is still sig-
nificant for the largest number of density-matrix eigenstates considered m = 400.

In the second approach the density-matrix eigenbasis is truncated so that the dis-
carded weight is approximately constant, P (aj+1), P (bj+1) � P , and thus a vari-
able number of density-matrix eigenstates is kept at every iteration. The physical
quantities obtained with this procedure depends on the chosen discarded weight P .
Empirically, one finds that the relations (21.45) and (21.46) hold for DMRG results
calculated with various P . For the energy one has EDMRG(P ) ≈ E(P = 0) + cP
and for other expectation values ŌDMRG(P ) ≈ Ō(P = 0) + c′

√
P if P is small

enough. Therefore, we can carry out DMRG calculations for several values of the
discarded weight P and obtain results E(P = 0) and Ō(P = 0) in the limit of van-
ishing discarded weight P → 0 using an extrapolation. In practice, this procedure
yields reliable estimations of the truncation errors and often the extrapolated results
are more accurate than those obtained directly with DMRG for the smallest value of
P used in the extrapolation.

It should be noted that if one works with a fixed number m of density-matrix
eigenstates kept, it is possible to calculate an average discarded weight P (m) =∑
j P (bj+1) over a sweep. In many cases, the physical quantities EDMRG(m) and

ŌDMRG(m) scale with P (m) as in (21.45) and (21.46), respectively. Therefore, an
extrapolation to the limit of vanishing discarded weight P (m)→ 0 is also possible
(see [12] for some examples).

21.8 Computational Cost and Optimization

Theoretically, the computational cost for one calculation with the infinite-system al-
gorithm or for one sweep of the finite-system algorithm is proportional to Nnkm

3d3

for the number of operations and to Nnkm
2d2 for the memory if one assumes that

about m density-matrix eigenstates are kept at every iteration and the site Hilbert
space dimension is d. In practice, various optimization techniques such as the ad-
ditive quantum numbers of Sect. 21.6 lead to a more favorable scaling with m.
The actual computational effort varies greatly with the model investigated and the
physical quantities which are computed. Using a highly optimized code the infinite-
system DMRG simulations shown in Fig. 21.2 take from 30 seconds for m = 20
to 7 minutes for m = 100 on 3 GHz Pentium 4 processor while the finite-system
DMRG calculations shown in Figs. 21.3 and 21.4 take about 20 minutes. These cal-
culations use less than to 300 MBytes of memory. For more difficult problems with
m � 104, the computational cost can reach thousands of CPU hours and hundreds
of GBytes of memory.

Even for less challenging problems, it is useful to consider some basic optimiza-
tion issues for a DMRG code. First of all, an efficient dynamical memory manage-
ment should be used because many vectors, matrices, and tensors of higher ranks
with variable sizes have too be stored temporarily. Even for the simplest applications
this amounts to the allocation and release of GBytes of memory during a DMRG
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simulation. Second, processor-optimized linear algebra routines should be used be-
cause most of the CPU time is spent for linear algebra operations such as products
of matrices. Generic BLAS routines [13] can be as much as two orders of mag-
nitude slower than processor-optimized ones. Third, the most expensive part of a
DMRG iteration is usually the calculation of the superblock representation (21.28)
of the target state, typically the ground state of the superblock Hamiltonian. Thus
one should use the procedures (21.29) and (21.35) and the efficient iterative algo-
rithms described in Chap. 18 to perform this task. Finally, one should also consider
using parallelization and optimization techniques for high-performance computers
(see Chap. 27). Unfortunately, the basic DMRG algorithms presented in Sects. 21.4
and 21.5 are inherently sequential and a parallelization is possible only at a low
level. For instance, the superblock product (21.29) or, at an even lower level, ma-
trix products (i.e., the BLAS routines) can be parallelized. The parallelization of a
DMRG code is discussed in more detail in [14].

21.9 Basic Extensions

The finite-system DMRG algorithm described in Sect. 21.5 can readily be applied to
one-dimensional quantum spin chains. It can also be used to study fermions, bosons,
and systems in higher dimensions without much difficulty.

To apply the DMRG algorithm to fermion systems we just have to take into
account the fermion commutation sign in the operator decomposition (21.11) and
(21.24) and in the tensor product of their matrix representations (21.15), (21.27),
and (21.34). Using the total number of fermion as an additive quantum number is
very helpful for that purpose. For instance, if |α〉, |α′〉, |β〉, |β′〉 denote states with
a fixed number of fermions and O1,O2 are operators, the matrix element of the
tensor-product operatorO1⊗O2 for the tensor-product states |αβ〉 = |α〉⊗ |β〉 and
|α′β′〉 = |α′〉 ⊗ |β′〉 is

〈αβ |O1 ⊗O2|α′β′〉 = (−1)q|Δq| 〈α |O1|α′〉 〈β |O2|β′〉 , (21.47)

where q is the number of fermions in the state |α′〉 and Δq is the difference between
the number of fermions in the states |β〉 and |β′〉.

To apply the DMRG method to boson systems such as electron-phonon models,
we must first choose an appropriate finite basis for each boson site to represent the
infinite Hilbert space of a boson as best as possible, which is done also in exact
diagonalization methods [12]. Then the finite-system DMRG algorithm can be used
without modification. However, the computational cost scales as d3 for the CPU
time and as d2 for the memory if d states are used to represent each boson site.
Typically, d = 10−100 is required for accurate computations in electron-phonon
models. Therefore, simulating boson systems with the standard DMRG algorithms
is significantly more demanding than spin systems. More sophisticated DMRG al-
gorithms have been developed to reduce the computational effort involved in solving
boson systems. The best algorithms scale as d or d ln(d) and are presented in [12].
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Fig. 21.6. Schematic representations of the site sequence (dashed line) in a two-dimensional
lattice. The site in the bottom left corner is site 1. The superblock structure {L(21)+ site
22 + site 23 +R(24)} is shown with solid lines delimiting the left and right blocks and full
circles indicating both sites

The finite-system DMRG method can be applied to quantum systems with vari-
ous degrees of freedom, on lattices in dimension larger than one, and to the non-local
Hamiltonians considered in quantum chemistry and momentum space, see Chap. 24.
We just have to order the lattice sites from 1 to N in some way to be able to carry
out the algorithm described in Sect. 21.5. For instance, Fig. 21.6 shows one possi-
ble site sequence for a two-dimensional cluster. It should be noted that sites which
are close in the two-dimensional lattice are relatively far apart in the sequence. This
corresponds to an effective long-range interaction between the sites even if the two-
dimensional system includes short-range interactions only, and results in a slower
convergence and larger truncation errors than in truly one-dimensional systems with
short-range interactions. As a consequence, reordering of the lattice sites can sig-
nificantly modify the accuracy of a DMRG calculation and various site sequences
should be considered for those systems which do not have a natural order. The dif-
ficulty with DMRG simulations and more generally with matrix-product states in
dimensions larger than one is discussed fully in Chap. 20.
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