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In this chapter we show how to calculate a few eigenstates of the full Hamiltonian
matrix of an interacting quantum system. Naturally, this implies that the Hilbert
space of the problem has to be truncated, either by considering finite systems or by
imposing suitable cut-offs, or both. All of the presented methods are iterative, i.e.,
the Hamiltonian matrix is applied repeatedly to a set of vectors from the Hilbert
space. In addition, most quantum many-particle problems lead to a sparse matrix
representation of the Hamiltonian, where only a very small fraction of the matrix
elements is non-zero.

18.1 Basis Construction

18.1.1 Typical Quantum Many-Particle Models

Before we can start applying sparse matrix algorithms, we need to translate the con-
sidered many-particle Hamiltonian, given in the language of second quantization,
into a sparse Hermitian matrix. Usually, this is the intellectually and technically
challenging part of the project, in particular, if we want to take into account sym-
metries of the problem.

Typical lattice models in solid state physics involve electrons, spins and phonons.
Within this part we will focus on the Hubbard model,

H = −t
∑
〈ij〉,σ

(
c†iσcjσ + H.c.

)
+ U

∑
i

ni↑ni↓ , (18.1)

which describes a single band of electrons c(†)iσ (niσ = c†iσciσ) with on-site Coulomb
interaction U . Originally [1, 2, 3], it was introduced to study correlation effects and
ferromagnetism in narrow band transition metals. After the discovery of high-TC
superconductors the model became very popular again, since it is considered as
the simplest lattice model which, in two dimensions, may have a superconducting
phase. In one dimension, the model is exactly solvable [4, 5], hence we can check
our numerics for correctness. From the Hubbard model at half-filling, taking the
limit U →∞, we can derive the Heisenberg model

H =
∑
ij

Jij Si · Sj , (18.2)
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which accounts for the magnetic properties of insulating compounds that are gov-
erned by the exchange interaction J ∼ t2/U between localized spins Si. In many
solids the electronic degrees of freedom will interact also with vibrations of the
crystal lattice, described in harmonic approximation by bosons b

(†)
i (phonons). This

leads to microscopic models like the Holstein-Hubbard model

H =− t
∑
〈ij〉,σ

(c†iσcjσ + H.c.) + U
∑
i

ni↑ni↓

− gω0

∑
i,σ

(b†i + bi)niσ + ω0

∑
i

b†ibi . (18.3)

With the methods described in this part, such models can be studied on finite
clusters with a few dozen sites, both at zero and at finite temperature. In special
cases, e.g., for the problem of few polarons, also infinite systems are accessible.

18.1.2 The Hubbard Model and its Symmetries

To be specific, let us derive all the general concepts of basis construction for the
Hubbard model on an one-dimensional chain or ring. For a single site i, the Hilbert
space of the model (18.1) consists of four states,

(i) |0〉 = no electron at site i,
(ii) c†i↓|0〉 = one down-spin electron at site i,

(iii) c†i↑|0〉 = one up-spin electron at site i, and

(iv) c†i↑c
†
i↓|0〉 = two electrons at site i.

Consequently, for a finite cluster of L sites, the full Hilbert space has dimension
4L. This is a rapidly growing number, and without symmetrization we could not go
beyond L ≈ 16 even on the biggest supercomputers.

Given a symmetry of the system, i.e. an operator A that commutes with H ,
the Hamiltonian will not mix states from different eigenspaces of A. Therefore,
the matrix representing H will acquire a block structure, and we can handle each
block separately (see Fig. 18.1). The Hubbard Hamiltonian (18.1) has a number of
symmetries:

– Particle number conservation: H commutes with total particle number

Ne =
∑
i,σ

niσ . (18.4)

– SU(2) spin symmetry: H commutes with all components of the total spin

Sα =
1
2

∑
i

∑
μ,ν

c†iμσ
α
μνciν , (18.5)

where σα denotes the Pauli matrices, and μ, ν ∈ {↑, ↓}.
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Fig. 18.1. With the use of symmetries the Hamiltonian matrix acquires a block structure.
Here: The matrix for the Hubbard model when particle number conservation is neglected
(left) or taken into account (right)

– Particle-hole symmetry: For an even number of lattice sites H is invariant under
the transformation

Q : ci,σ → (−1)ic†i,−σ , c†i,σ → (−1)ici,−σ , (18.6)

except for a constant.
– Translational invariance: Assuming periodic boundary conditions, i.e., c(†)L,σ =

c
(†)
0,σ , H commutes with the translation operator

T : c
(†)
i,σ → c

(†)
i+1,σ . (18.7)

Here L is the number of lattice sites.
– Inversion symmetry: H is symmetric with respect to the inversion

I : c
(†)
i,σ → c

(†)
L−i,σ . (18.8)

For the basis construction the most important of these symmetries are the parti-
cle number conservation, the spin-Sz conservation and the translational invariance.
Note that the conservation of both Sz = (N↑−N↓)/2 and Ne = N↑ +N↓ is equiv-
alent to the conservation of the total number of spin-↑ and of spin-↓ electrons, N↑
and N↓, respectively. In addition to Sz we could also fix the total spin S2, but the
construction of the corresponding eigenstates is too complicated for most practical
computations.

18.1.3 A Basis for the Hubbard Model

Let us start with building the basis for a system with L sites and fixed electron
numbers N↑ and N↓. Each element of the basis can be identified by the positions of
the up and down electrons, but for uniqueness we also need to define some normal
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order. For the Hubbard model it is convenient to first sort the electrons by the spin
index, then by the lattice index, i.e.,

c†3↑c
†
2↑c

†
0↑c

†
3↓c

†
1↓|0〉 (18.9)

is a valid ordered state. This ordering has the advantage that the nearest-neighbor
hopping in the Hamiltonian does not lead to complicated phase factors, when ap-
plied to our basis states. Finding all the basis states is a combinatorics problem:
There are

(
L
N↑

)
ways of distributing N↑ (indistinguishable) up-spin electrons on L

sites, and similarly,
(
L
N↓

)
ways of distributing N↓ down-spin electrons on L sites.

Hence, the total number of states in our basis is
(
L
N↑

)(
L
N↓

)
. If we sum up the dimen-

sions of all (N↑, N↓)-blocks, we obtain

L∑
N↑=0

L∑
N↓=0

(
L

N↑

)(
L

N↓

)
= 2L2L = 4L , (18.10)

which is the total Hilbert space dimension we derived earlier. The biggest block in

our symmetrized Hamiltonian has N↑ = N↓ = L/2 and dimension
(
L
L/2

)2
. This

is roughly a factor of πL/2 smaller than the original 4L. Below we will reduce the
dimension of the biggest block by another factor of L using translational invariance.

Knowing the basic structure and the dimension of the Hilbert space with fixed
particle numbers, how can we implement it on a computer? An efficient way to
do so, is using integer numbers and bit operations that are available in many pro-
gramming languages. Assume, we work with a lattice of L = 4 sites and N↑ = 3,
N↓ = 2. We can then translate the state of (18.9) into a bit pattern,

c†3↑c
†
2↑c

†
0↑c

†
3↓c

†
1↓|0〉 → (↑, ↑, 0, ↑)× (↓, 0, ↓, 0)→ 1101× 1010 . (18.11)

To build the other basis states, we need all four-bit integers with three bits set to one,
as well as all four-bit integers with two bits set. We leave this to the reader as a little
programming exercise, and just quote the result in Table 18.1.

The complete basis is given by all 24 pairs of the four up-spin and the six down-
spin states. Having ordered the bit patterns by the integer values they correspond to,

Table 18.1. Basis states of the Hubbard model on four sites with three up- and two down-spin
electrons

no. ↑-patterns no. ↓-patterns

0 0111 = 7 0 0011 = 3
1 1011 = 11 1 0101 = 5
2 1101 = 13 2 0110 = 6
3 1110 = 14 3 1001 = 9

4 1010 = 10
5 1100 = 12
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we can label each state by its indices (i, j) in the list of up and down patterns, or
combine the two indices to an overall index n = i · 6 + j. Our sample state (18.9)
corresponds to the index pair (2, 4), which is equivalent to the state 2 · 6 + 4 = 16
of the total 24 states.

18.1.4 The Hamiltonian Matrix

Having found all basis states, we can now apply the Hamiltonian (18.1) to each of
them, to obtain the matrix elements. The hopping term corresponds to the left or
right shift of single bits. For periodic boundary conditions we need to take care of
potential minus signs, whenever an electron is wrapped around the boundary and the
number of electrons it commutes through is odd. The Coulomb interaction merely
counts double occupancy, i.e. bits which are set in both the up and down spin part
of the basis state. For our sample state (18.9) we obtain:

↑ -hopping : 1101× 1010→ −t (1011 + 1110)× 1010 ,

↓ -hopping : 1101× 1010→ −t 1101× (0110 + 1100 + 1001− 0011) ,

U -term : 1101× 1010→ U 1101× 1010 . (18.12)

Now we need to find the indices of the resulting states on the right. For the
Hubbard model with its decomposition into two spin channels, we can simply use a
table which translates the integer value of the bit pattern into the index in the list of
up and down spin states (see Table 18.1). Note, however, that this table has a length
of 2L. When simulating spin or phonon models such a table would easily exceed all
available memory. For finding the index of a given basis state we then need to resort
to other approaches, like hashing, fast search algorithms or some decomposition of
the state [6]. Having found the indices and denoting our basis in a ket-notation, |n〉,
(18.12) reads

↑ -hopping : |16〉 → −t (|10〉+ |22〉) ,

↓ -hopping : |16〉 → −t (|14〉+ |17〉+ |15〉 − |12〉) ,

U -term : |16〉 → U |16〉 .
(18.13)

To obtain the complete Hamiltonian matrix we have to repeat this procedure for all
24 basis states. In each case we obtain a maximum of 2L = 8 off-diagonal non-
zero matrix elements. Thus, the matrix is indeed very sparse (see Fig. 18.2). The
generalization of the above considerations to arbitrary values of L, N↑, and N↓ is
straight-forward. For spatial dimensions larger than one we need to be a bit more
careful with fermionic phase factors. In general, minus signs will occur not only at
the boundaries, but also for other hopping processes.

18.1.5 Using Translation Symmetry

We mentioned earlier that the translation symmetry of the Hubbard model (or any
other lattice model) can be used for a further reduction of the Hilbert space dimen-
sion. What we need are the eigenstates of the translation operator T , which can be
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2U
U
t
-t

Fig. 18.2. Schematic representation of the Hamiltonian matrix of the Hubbard model with
L = 4, N↑ = 3, N↓ = 2, and periodic boundary conditions

constructed using the projector

Pk =
1
L

L−1∑
j=0

e2πijk/LT j . (18.14)

Clearly, for a given (unsymmetrized) state |n〉, the state Pk|n〉 is an eigenstate of T ,

TPk|n〉 = 1
L

L−1∑
j=0

e2πijk/LT j+1|n〉 = e−2πik/LPk|n〉 , (18.15)

where the corresponding eigenvalue is exp(−2πik/L) and 2πk/L is the discrete
lattice momentum. Here we made use of the fact that TL = 1 (on a ring with L
sites, L translations by one site let you return to the origin). This property also
implies exp(−2πik) = 1, hence k has to be an integer. Due to the periodicity of the
exponential, we can restrict ourselves to k = 0, 1, . . . , (L− 1).

The normalization of the state Pk|n〉 requires some care. We find

P †
k =

1
L

L−1∑
j=0

e−2πijk/LT−j =
1
L

L−1∑
j′=0

e2πij′k/LT j
′
= Pk

P 2
k =

1
L2

L−1∑
i,j=0

e2πi(i−j)k/LT i−j =
1
L

L−1∑
j′=0

e2πij′k/LT j
′
= Pk , (18.16)

as we expect for a projector. Hence, 〈n|P †
kPk|n〉 = 〈n|P 2

k |n〉 = 〈n|Pk|n〉. For
most |n〉 the states T j|n〉 with j = 0, 1, . . . , (L − 1) will differ from each other,
therefore 〈n|Pk|n〉 = 1/L. However, some states are mapped onto themselves by a
translation T νn with νn < L, i.e., T νn |n〉 = eiφn |n〉 with a phase φn (usually 0 or
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π). Nevertheless TL|n〉 = |n〉, therefore νn has to be a divider of L with qn = L/νn
an integer. Calculating the norm then gives

〈n|Pk|n〉 = 1
L

qn∑
j=0

ei(2πk/qn+φn) j , (18.17)

which equals qn/L = 1/νn or 0 depending on k and φn.
How do the above ideas translate into a reduced dimension of our Hilbert space?

Let us first consider the ↑-patterns from Table 18.1: All four patterns (states) are
connected with a translation by one site, i.e., starting from the pattern |0↑〉 = 0111
the other patterns are obtained through |n↑〉 = T−n|0↑〉,

|0↑〉 = T 0|0↑〉 = 0111 ,

|1↑〉 = T−1|0↑〉 = 1011 ,

|2↑〉 = T−2|0↑〉 = 1101 ,

|3↑〉 = T−3|0↑〉 = 1110 . (18.18)

We can call this group of connected states a cycle, which is completely described
by knowing one of its members. It is convenient to use the pattern with the smallest
integer value to be this special member of the cycle, and we call it the representative
of the cycle.

Applying the projector to the representative of the cycle, Pk|0↑〉, we can gener-
ate L linearly independent states, which in our case reads

P0|0↑〉 = (0111 + 1011 + 1101 + 1110)/L ,

P1|0↑〉 = (0111− i 1011− 1101 + i 1110)/L ,

P2|0↑〉 = (0111− 1011 + 1101− 1110)/L ,

P3|0↑〉 = (0111 + i 1011− 1101− i 1110)/L . (18.19)

The advantage of these new states, which are linear combinations of all members of
the cycle in a spirit similar to discrete Fourier transformation, becomes clear when
we apply the Hamiltonian: Whereas the Hamiltonian mixes the states in (18.18), all
matrix elements between the states in (18.19) vanish. Hence, we have decomposed
the four-dimensional Hilbert space into four one-dimensional blocks.

In a next step we repeat this procedure for the ↓-patterns of Table 18.1. These
can be decomposed into two cycles represented by the states |0↓〉 = 0011 and
|1↓〉 = 0101, where due to T 2|1↓〉 = −|1↓〉 the second cycle has size ν1 = 2.
Note, that we also have phase factors here, since the number of fermions is even.
To get the complete symmetrized basis, we need to combine the up and down spin
representatives, thereby taking into account relative shifts between the states. For
our sample case the combined representatives,

|r〉 = |n↑〉T j|m↓〉 (18.20)
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no. patterns

0 0111 × 0011
1 0111 × 0110
2 0111 × 1100
3 0111 × 1001
4 0111 × 0101
5 0111 × 1010

Fig. 18.3. Decomposition of the basis for L = 4, N↑ = 3, N↓ = 2 into six cycles

with j = 0, 1, . . . ,min(νn, νm)− 1, are given in Fig. 18.3.
The basis of each of the L fixed-k (fixed-momentum) Hilbert spaces is then

given by the states

|rk〉 = Pk|r〉√〈r|Pk|r〉 , (18.21)

where we discard those |r〉 with 〈r|Pk|r〉 = 0. In our example all six states
have 〈r|Pk|r〉 = 1/4 ∀k and no state is discarded. Therefore the dimension of each
fixed-k space is six, and summing over all four k we obtain the original number of
states, 24. For other particle numbers or lattice sizes we may obtain representatives
|r〉 with 〈r|Pk|r〉 = 0 for certain k. An example is the case N↑ = N↓ = 2, L = 4
which leads to ten representatives, but two of them have 〈r|Pk|r〉 = 0 for k = 1 and
k = 3. Adding the dimensions of the four k-subspaces, we find 10+8+10+8 = 36,
which agrees with

(
L
N↓

)(
L
N↑

)
= 62.

When calculating the Hamiltonian matrix for a given k-sector, we can make use
of the fact that H commutes with T , and therefore also with Pk. Namely, the matrix
element between two states |rk〉 and |r′k〉 is simply given by

〈r′k|H |rk〉 =
〈r′|PkHPk|r〉√〈r′|Pk|r′〉〈r|Pk |r〉 =

〈r′|PkH |r〉√〈r′|Pk|r′〉〈r|Pk |r〉 , (18.22)

i.e., we need to apply the projector only once after we applied H to the representa-
tive |r〉. Repeating the procedure for all representatives, we obtain the matrix for a
given k. The full matrix with fixed particle numbers N↑ and N↓ is decomposed into
L blocks with fixed k. For example, the 24×24 matrix from Fig. 18.2 is decomposed
into the four 6× 6 matrices.
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Hk=0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2U −t −t t t 0
−t 2U −t −t 0 t
−t −t 2U 0 −t −t
t −t 0 U −t t
t 0 −t −t U −t
0 t −t t −t U

⎞
⎟⎟⎟⎟⎟⎟⎠

Hk=1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2U −t −it −it t 0
−t 2U −t −t −2it t
it −t 2U 0 −t −it
it −t 0 U −t −it
t 2it −t −t U −t
0 t it it −t U

⎞
⎟⎟⎟⎟⎟⎟⎠

Hk=2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2U −t t −t t 0
−t 2U −t −t 0 t
t −t 2U 0 −t t
−t −t 0 U −t −t
t 0 −t −t U −t
0 t t −t −t U

⎞
⎟⎟⎟⎟⎟⎟⎠

Hk=3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

2U −t it it t 0
−t 2U −t −t 2it t
−it −t 2U 0 −t it
−it −t 0 U −t it
t −2it −t −t U −t
0 t −it −it −t U

⎞
⎟⎟⎟⎟⎟⎟⎠

(18.23)

Note that except for k = 0 and k = 2, which correspond to the momenta zero and
π, the matrices Hk are complex. Their dimension, however, is a factor of L smaller
than the dimension of the initial space with fixed particle numbers. At first glance,
the above matrices look rather dense. This is due to the small dimension of our
sample system. For larger L and Ne the Hamiltonian is as sparse as the example of
Fig. 18.1.

18.1.6 A few Remarks about Spin Systems

We mentioned earlier that the Heisenberg model (18.2) can be derived from the
Hubbard model (18.1) considering the limit U → ∞. Consequently, the numerical
setup for both models is very similar. For a model with |Si| = 1/2, we can choose
the z-axis as the quantization axis and encode the two possible spin directions ↓ and
↑ into the bit values zero and one, e.g., ↓↑↓↓→ 0100. If applicable, the conservation
of the total spin Sz =

∑
i S

z
i is similar to a particle number conservation, i.e., we

can easily construct all basis states with fixed Sz using the ideas described earlier.
The same holds for translational invariance, where now the construction of a sym-
metric basis is made easier by the lack of fermionic phase factors (spin operators
at different sites commute). When calculating matrix elements it is convenient to
rewrite the exchange interaction as

SiSj =
1
2
(
S+
i S−

j + S−
i S+

j

)
+ Szi S

z
j , (18.24)

where the operators S±
i = Sxi ± iSyi rise or lower the Szi value at site i, which

is easy to implement in our representation. Note also, that from this equation the
conservation of the total Sz is obvious.

If the considered solid consists of more complex ions with partially filled shells,
we may also arrive at Heisenberg type models with |Si| > 1/2. In this case we need
2|Si|+ 1 states per site to describe all possible Sz-orientations and, of course, this
requires more than one bit per site. Numbering all possible states with a given total
Sz is slightly more complicated. For instance, we can proceed recursively adding
one site at each time.
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18.1.7 Phonon Systems

Having constructed a symmetrized basis for the Hubbard and Heisenberg type mod-
els, let us now comment on bosonic models and phonons, in particular. For such sys-
tems the particle number is usually not conserved, and the accessible Hilbert space
is infinite even for a single site. For numerical studies we therefore need an appro-
priate truncation scheme, which preserves enough of the Hilbert space to describe
the considered physics, but restricts the dimension to manageable values. Assume
we are studying a model like the Holstein-Hubbard model (18.3), where the pure
phonon part is described by a set of harmonic Einstein oscillators, one at each site.
For an L-site lattice the eigenstates of this phonon system are given by the Fock
states

|m0, . . . ,mL−1〉 =
L−1∏
i=0

(b†i )
mi

√
mi!
|0〉 (18.25)

and the corresponding eigenvalue is

Ep = ω0

L−1∑
i=0

mi . (18.26)

If we are interested in the ground state or the low energy properties of the interacting
electron-phonon model (18.3), certainly only phonon states with a rather low energy
will contribute. Therefore, a good truncated basis for the phonon Hilbert space is
given by the states

|m0, . . . ,mL−1〉 with
L−1∑
i=0

mi ≤M , (18.27)

which include all states with Ep ≤ ω0M . The dimension of the resulting Hilbert
space is

(
L+M
M

)
.

To keep the required M small, we apply another trick [7]. After Fourier trans-
forming the phonon subsystem,

bi =
1√
L

L−1∑
k=0

e2πiik/L b̃k , (18.28)

we observe that the phonon mode with k = 0 couples to a conserved quantity: The
total number of electrons Ne,

H = −t
∑
〈ij〉,σ

(c†iσcjσ + H.c.) + U
∑
i

ni↑ni↓ + ω0

∑
k

b̃†k b̃k

−gω0√
L

∑
i,σ

∑
k �=0

e−2πiik/L(̃b†k + b̃−k)niσ −
gω0√

L
(̃b†0 + b̃0)Ne . (18.29)

With a constant shift b̃0 = b̂0 + gNe/
√
L this part of the model can thus be solved

analytically. Going back to real space and using the equivalently shifted phonons
bi = b̄i + gNe/L, the transformed Hamiltonian reads
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H = −t
∑
〈ij〉,σ

(c†iσcjσ + H.c.) + U
∑
i

ni↑ni↓ + ω0

∑
i

b̄†i b̄i

−gω0

∑
i

(b̄†i + b̄i)(ni↑ + ni↓ −Ne/L)− ω0(gNe)2/L . (18.30)

Since the shifted phonons b̄
(†)
i couple only to the local charge fluctuations, in a sim-

ulation the same accuracy can be achieved with a much smaller cutoff M , compared
to the original phonons b

(†)
i . This is particularly important in the case of strong in-

teraction g.
As in the electronic case, we can further reduce the basis dimension using the

translational symmetry of our lattice model. Under periodic boundary conditions,
the translation operator T transforms a given basis state like

T |m0, . . . ,mL−1〉 = |mL−1,m0, . . . ,mL−2〉 . (18.31)

Since we are working with bosons, no additional phase factors can occur, and every-
thing is a bit easier. As before, we need to find the representatives |rp〉 of the cycles
generated by T , and then construct eigenstates of T with the help of the projection
operator Pk . When combining the electronic representatives |re〉 from (18.20) with
the phonon representatives |rp〉, we proceed in the same way, as we did for the up
and down spin channels, |r〉 = |re〉T j|rp〉. A full symmetrized basis state of the
interacting electron-phonon model is then given by Pk|r〉. Note that the product
structure of the electron-phonon basis is preserved during symmetrization, which is
a big advantage for parallel implementations [8].

Having explained the construction of a symmetrized basis and of the correspond-
ing Hamiltonian matrix for both electron and phonon systems, we are now ready to
work with these matrices. In particular, we will show how to calculate eigenstates
and dynamic correlations of our physical systems.

18.2 Eigenstates of Sparse Matrices

18.2.1 The Lanczos Algorithm

The Lanczos algorithm is one of the simplest methods for the calculation of ex-
tremal (smallest or largest) eigenvalues of sparse matrices [9]. Initially it was devel-
oped for the tridiagonalization of Hermitian matrices [10], but it turned out, not to
be particularly successful for this purpose. The reason for its failure as a tridiagonal-
ization algorithm is the underlying recursion procedure, which rapidly converges to
eigenstates of the matrix and therefore looses the orthogonality between subsequent
vectors that is required for tridiagonalization. Sometimes, however, deficiencies turn
into advantages, and the Lanczos algorithm made a successful career as an eigen-
value solver.

The basic structure and the implementation of the algorithm is very simple.
Starting from a random initial state (vector) |φ0〉, we construct the series of states
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Hn|φ0〉 by repeatedly applying the matrix H (i.e., the Hamiltonian). This series of
states spans what is called a Krylov space in the mathematical literature, and the
Lanczos algorithm therefore belongs to a broader class of algorithms that work on
Krylov spaces [11]. Next we orthogonalize these states against each other to obtain
a basis of the Krylov space. Expressed in terms of this basis, the matrix turns out
to be tridiagonal. We can easily perform these two steps in parallel, and obtain the
following recursion relation:

|φ′〉 = H |φn〉 − βn|φn−1〉 ,
αn = 〈φn|φ′〉 ,
|φ′′〉 = |φ′〉 − αn|φn〉 ,
βn+1 = ||φ′′|| =

√
〈φ′′|φ′′〉 ,

|φn+1〉 = |φ′′〉/βn+1 , (18.32)

where |φ−1〉 = 0 and |φ0〉 is a random normalized state, ||φ0|| = 1.
The coefficients αn and βn form the tridiagonal matrix, which we are looking

for,

H̃N =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

α0 β1 0 . . . . . . . . . . . 0
β1 α1 β2 0 . . . . . 0
0 β2 α2 β3 0 0

. . .
. . .

. . .
0 . . 0 βN−2 αN−2 βN−1

0 . . . . . 0 βN−1 αN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (18.33)

With increasing recursion order N the eigenvalues of H̃N – starting with the ex-
tremal ones – converge to the eigenvalues of the original matrix H . In Fig. 18.4 we
illustrate this for the ground-state energy of the one-dimensional Hubbard model
(18.1) on a ring of 12 and 14 sites. Using only particle number conservation, the

corresponding matrix dimensions are D =
(
12
6

)2
= 853776 and D =

(
14
7

)2
=

11778624, respectively. With about 90 iterations the precision of the lowest eigen-
value is better than 10−13, where we compare with the exact result obtained with
Bethe ansatz [4]. The eigenvalues of the tridiagonal matrix were calculated with
standard library functions from the LAPACK collection [12]. Since N � D, this
accounts only for a tiny fraction of the total computation time, which is governed
by the application of H on |φn〉.

Having found the extremal eigenvalues, we can also calculate the corresponding
eigenvectors of the matrix. If the eigenvector |ψ〉 of the tridiagonal matrix H̃N has
the components ψj , i.e., |ψ〉 = {ψ0, ψ1, . . . , ψN−1}, the eigenvector |Ψ〉 of the
original matrix H is given by

|Ψ〉 =
N−1∑
j=0

ψj |φj〉 . (18.34)
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Fig. 18.4. Convergence of the Lanczos recursion for the ground-state energy of the Hubbard
model on a ring of L = 12 and L = 14 sites

To calculate this sum we simply need to repeat the above Lanczos recursion with
the same start vector |φ0〉, thereby omitting the scalar products for αj and βj , which
we know already.

The efficiency of the Lanczos algorithm is based on three main properties:

(i) It relies only on matrix vector multiplications (MVM) of the matrix H with a
certain vector |φn〉. If H is sparse, this requires only of the order of D opera-
tions, where D is the dimension of H .

(ii) When calculating eigenvalues, the algorithm requires memory only for two
vectors of dimension D and for the matrix H . For exceptionally large prob-
lems, the matrix can be re-constructed on-the-fly for each MVM, and the mem-
ory consumption is determined by the vectors. When calculating eigenvectors
we need extra memory.

(iii) The first few eigenvalues on the upper and lower end of the spectrum of H
usually converge very quickly. In most cases N � 100 iterations are sufficient.

Extensions of the Lanczos algorithm can also be used for calculating precise
estimates of the full spectral density of H , or of dynamical correlation functions
that depend on the spectrum of H and on the measured operators. We will discuss
more details in Chap. 19 when we describe Chebyshev expansion based methods,
such as the Kernel Polynomial Method.

18.2.2 The Jacobi-Davidson Algorithm

The Jacobi-Davidson method is a recent, more involved approach to the sparse
eigenvalue problem, which was suggested by Sleijpen and van der Vorst [13] as
a combination of Davidson’s method [14] and a procedure described by Jacobi [15].
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It has the advantage that not only the lowest eigenstates but also excitations converge
rapidly. In addition, it can correctly resolve degeneracies.

In the Jacobi-Davidson algorithm, like in the Lanczos algorithm, a set of vectors
VN = {|v0〉, . . . , |vN−1〉} is constructed iteratively, and the eigenvalue problem
for the Hamiltonian H is solved within this subspace. However, in contrast to the
Lanczos algorithm, we do not work in the Krylov space of H , but instead expand
VN with a vector that is orthogonal to our current approximate eigenstates. In more
detail, the procedure is as follows:

(i) Initialize the set V with a random normalized start vector, V1 = {|v0〉}.
(ii) Compute all unknown matrix elements 〈vi|H |vj〉 of H̃N with |vi〉 ∈ VN .

(iii) Compute an eigenstate |s〉 of H̃N with eigenvalue θ, and express |s〉 in the
original basis, |u〉 = ∑

i |vi〉〈vi|s〉.
(iv) Compute the associated residual vector |r〉 = (H−θ)|u〉 and stop the iteration,

if its norm is sufficiently small.
(v) Otherwise, (approximately) solve the linear equation

(1− |u〉〈u|)(H − θ)(1 − |u〉〈u|)|t〉 = −|r〉 . (18.35)

(vi) Orthogonalize |t〉 against VN with the modified Gram-Schmidt method and
append the resulting vector |vN 〉 to VN , obtaining the set VN+1.

(vii) Return to step (ii).

0 200 400 600 800
MVM

–8

–7.5

–7

–6.5

–6

E

0 200 400 600 800
MVM

–8

–7.5

–7

–6.5

–6

E

Lanczos Jacobi-Davidson

artificial 3-fold
degeneracy

Hubbard model
L = 12, N↓= 5, N↑= 6
D = 731808

Fig. 18.5. Comparison of the Jacobi-Davidson algorithm and the Lanczos algorithm applied
to the four lowest eigenstates of the Hubbard model with L = 12, N↓ = 5, N↑ = 6. Jacobi-
Davidson correctly resolves the two-fold degeneracy, standard Lanczos (although faster) can-
not distinguish true and artificial degeneracy
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For (18.35) we only need an approximate solution, which can be obtained, for
instance, with a few steps of the Generalized Minimum Residual Method (GMRES)
or the Quasi Minimum Residual Method (QMR) [16]. If more than one eigenstate
is desired, the projection operator (1 − |u〉〈u|) needs to be extended by the already
converged eigenstates, (1 −∑

k |uk〉〈uk|), such that the search continues in a new,
yet unexplored direction. Since the Jacobi-Davidson algorithm requires memory for
all the vectors in VN , it is advisable to restart the calculation after a certain number
of steps. There are clever strategies for this restart, and also for the calculation of
interior eigenstates, which are hard to access with Lanczos. More details can be
found in the original papers [13, 17] or in text books [18].

In Fig. 18.5 we give a comparison of the Lanczos and the Jacobi-Davidson al-
gorithms, calculating the four lowest eigenstates of the Hubbard model on a ring
of L = 12 sites with N↓ = 5 and N↑ = 6 electrons. The matrix dimension is
D = 731808, and each of the lowest states is two-fold degenerate. In terms of speed
and memory consumption the Lanczos algorithm has a clear advantage, but with
the standard setup we have difficulties resolving the degeneracy. The method tends
to create artificial copies of well converged eigenstates, which are indistinguishable
from the true degenerate states. The problem can be circumvented with more ad-
vanced variants of the algorithm, such as Block or Band Lanczos [9, 18], but we
loose the simplicity of the method and part of its speed. Jacobi-Davidson then is
a strong competitor. It is not much slower and it correctly detects the two-fold de-
generacy, since the converged eigenstates are explicitly projected out of the search
space.
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10. C. Lanczos, J. Res. Nat. Bur. Stand. 45, 255 (1950) 539
11. Y. Saad, Numerical Methods for Large Eigenvalue Problems (University Press, Manch-

ester, 1992). URL http://www-users.cs.umn.edu/ saad/books.html 540
12. Linear Algebra PACKage. URL http://www.netlib.org 540
13. G.L.G. Sleijpen, H.A. van der Vorst, SIAM J. Matrix Anal. Appl. 17, 401 (1996) 541, 543
14. E.R. Davidson, J. Comput. Phys. 17, 87 (1975) 541
15. C.G.J. Jacobi, J. Reine und Angew. Math. 30, 51 (1846) 541



544 A. Weiße and H. Fehske

16. Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd edn. (SIAM, Philadelphia,
2003). URL http://www-users.cs.umn.edu/ saad/books.html 543

17. D.R. Fokkema, G.L.G. Sleijpen, H.A. van der Vorst, SIAM J. Sci. Comp. 20, 94 (1998) 543
18. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst (eds.), Templates for the

Solution of Algebraic Eigenvalue Problems: A Practical Guide (SIAM, Philadelphia,
2000). URL http://www.cs.utk.edu/ dongarra/etemplates/ 543


	Part I Molecular Dynamics
	1 Introduction to Molecular Dynamics
	Ralf Schneider, Amit Raj Sharma, and Abha Rai
	Basic Approach
	Macroscopic Parameters
	Inter-Atomic Potentials
	Numerical Integration Techniques
	Analysis of MD Runs
	From Classical to Quantum-Mechanical MD
	Ab Initio MD
	Car-Parrinello Molecular Dynamics
	Potential Energy Surface
	Advanced Numerical Methods
	References


	2 Wigner Function Quantum Molecular Dynamics
	V. S. Filinov, M. Bonitz, A. Filinov, and V. O. Golubnychiy
	Quantum Distribution Functions
	Semiclassical Molecular Dynamics
	Quantum Dynamics
	Time Correlation Functions in the Canonical Ensemble
	Discussion
	References


	Part II Classical Monte Carlo
	3 The Monte Carlo Method, an Introduction
	Detlev Reiter
	What is a Monte Carlo Calculation?
	Random Number Generation
	Integration by Monte Carlo
	Summary
	References


	4 Monte Carlo Methods in Classical Statistical Physics
	Wolfhard Janke
	Introduction
	Statistical Physics Primer
	The Monte Carlo Method
	Cluster Algorithms
	Statistical Analysis of Monte Carlo Data
	Reweighting Techniques
	Finite-Size Scaling Analysis
	Generalized Ensemble Methods
	Concluding Remarks
	References


	5 The Monte Carlo Method for Particle Transport Problems
	Detlev Reiter
	Transport Problems and Stochastic Processes
	The Transport Equation: Fredholm IntegralEquation of Second Kind
	The Boltzmann Equation
	The Linear Integral Equation for the Collision Density
	Monte Carlo Solution
	Some Special Sampling Techniques
	An Illustrative Example
	References


	Part III Kinetic Modelling
	6 The Particle-in-Cell Method
	David Tskhakaya
	General Remarks
	Integration of Equations of Particle Motion
	Plasma Source and Boundary Effects
	Calculation of Plasma Parameters and FieldsActing on Particles
	Solution of Maxwell's Equations
	Particle Collisions
	Final Remarks
	References


	7 Gyrokinetic and Gyrofluid Theory and Simulation of Magnetized Plasmas
	Richard D. Sydora
	Introduction
	Single Particle Dynamics
	Continuum Gyrokinetics
	Gyrofluid Model
	Gyrokinetic Particle Simulation Model
	Gyrokinetic Particle Simulation Model Applications
	Summary
	References


	Part IV Semiclassical Approaches
	8 Boltzmann Transport in Condensed Matter
	Franz Xaver Bronold
	Boltzmann Equation for Quasiparticles
	Techniques for the Solution of the Boltzmann Equation
	Conclusions
	References


	9 Semiclassical Description of Quantum Many-Particle Dynamics in Strong Laser Fields
	Thomas Fennel and Jörg Köhn
	Semiclassical Many-Particle Dynamicsin Mean-Field Approximation
	Semiclassical Ground State
	Application to Simple-Metal Clusters
	References


	Part V Quantum Monte Carlo
	10 World-line and Determinantal Quantum Monte Carlo Methods for Spins, Phonons and Electrons
	F.F. Assaad and H.G. Evertz
	Introduction
	Discrete Imaginary Time World Linesfor the XXZ Spin Chain
	World-Line Representations without Discretization Error
	Loop Operator Representationof the Heisenberg Model
	Spin-Phonon Simulations
	Auxiliary Field Quantum Monte Carlo Methods
	Numerical Stabilization Schemes for Lattice Models
	The Hirsch-Fye Impurity Algorithm
	Selected Applications of the Auxiliary Field Method
	Conclusion
	The Trotter Decomposition
	The Hubbard-Stratonovich Decomposition
	Slater Determinants and their Properties
	References


	11 Autocorrelations in Quantum Monte Carlo Simulations of Electron-Phonon Models
	Martin Hohenadler and Thomas C. Lang
	Introduction
	Holstein Model
	Numerical Methods
	Problem of Autocorrelations
	Origin of Autocorrelations and Principal Components
	Conclusions
	References


	12 Diagrammatic Monte Carlo and Stochastic Optimization Methods for Complex Composite Objects in Macroscopic Baths
	A. S. Mishchenko
	Introduction
	Physical Properties of Interest
	The Diagrammatic Monte Carlo Method
	Stochastic Optimization Method
	Conclusions and Perspectives
	References


	13 Path Integral Monte Carlo Simulation of Charged Particles in Traps
	Alexei Filinov, Jens Böning, and Michael Bonitz
	Introduction
	Idea of Path Integral Monte Carlo
	Basic Numerical Issues of PIMC
	PIMC for Degenerate Bose Systems
	Discussion
	References


	Part VI Ab-Initio Methods in Physics and Chemistry
	14 Ab-Initio Approach to the Many-Electron Problem
	Alexander Quandt
	Introduction
	An Orbital Approach to Chemistry
	Hartree-Fock Theory
	Density Functional Theory
	References


	15 Ab-Initio Methods Applied to Structure Optimization and Microscopic Modelling
	Alexander Quandt
	Exploring Energy Hypersurfaces
	Applied Theoretical Chemistry
	Model Hamiltonians
	Summary and Outlook
	Links to Popular Ab Initio Packages
	References


	Part VII Effective Field Approaches
	16 Dynamical Mean-Field Approximation and Cluster Methods for Correlated Electron Systems
	Thomas Pruschke
	Introduction
	Mean-Field Theory for Correlated Electron Systems
	Extending the DMFT: Effective Cluster Theories
	Conclusions
	References


	17 Local Distribution Approach
	Andreas Alvermann and Holger Fehske
	Introduction
	Applications of the LD Approach
	Summary
	References


	Part VIII Iterative Methods for Sparse Eigenvalue Problems
	18 Exact Diagonalization Techniques
	Alexander Weiße and Holger Fehske
	Basis Construction
	Eigenstates of Sparse Matrices
	References


	19 Chebyshev Expansion Techniques
	Alexander Weiße and Holger Fehske
	Chebyshev Expansion and Kernel Polynomial Approximation
	Applications of the Kernel Polynomial Method
	KPM in Relation to other Numerical Approaches
	References


	Part IX The Density Matrix Renormalisation Group:  Concepts and Applications
	20 The Conceptual Background of Density-Matrix Renormalization
	Ingo Peschel and Viktor Eisler
	Introduction
	Entangled States
	Reduced Density Matrices
	Solvable Models
	Spectra
	Entanglement Entropy
	Matrix-Product States
	Summary
	References


	21 Density-Matrix Renormalization Group Algorithms
	Eric Jeckelmann
	Introduction
	Matrix-Product States and (Super-)Blocks
	Numerical Renormalization Group
	Infinite-System DMRG Algorithm
	Finite-System DMRG Algorithm
	Additive Quantum Numbers
	Truncation Errors
	Computational Cost and Optimization
	Basic Extensions
	References


	22 Dynamical Density-Matrix Renormalization Group
	Eric Jeckelmann and Holger Benthien
	Introduction
	Methods for Simple Discrete Spectra
	Dynamical DMRG
	Finite-Size Scaling
	Momentum-Dependent Quantities
	Application: Spectral Function of the Hubbard Model
	References


	23 Studying Time-Dependent Quantum Phenomenawith the Density-Matrix Renormalization Group
	Reinhard M. Noack, Salvatore R. Manmana, Stefan Wessel, and Alejandro Muramatsu
	Time Dependence in Interacting Quantum Systems
	Sudden Quench of Interacting Fermions
	Discussion
	References


	24 Applications of Quantum Information in the Density-Matrix Renormalization Group
	Ö. Legeza , R.M. Noack , J. Sólyom , and L. Tincani 
	Basic Concepts of Quantum Information Theory
	Entropic Analysis of Quantum Phase Transitions
	Discussion and Outlook
	References


	25 Density-Matrix Renormalization Group for Transfer Matrices: Static and Dynamical Properties of 1D Quantum Systems at Finite Temperature
	Stefan Glocke, Andreas Klümper, and Jesko Sirker
	Introduction
	Quantum Transfer Matrix Theory
	The Method -- DMRG Algorithm for the QTM
	An Example: The Spin-1/2 Heisenberg Chain with Staggered and Uniform Magnetic Fields
	Impurity and Boundary Contributions
	Real-Time Dynamics
	References


	Part X Concepts of High Performance Computing
	26 Architecture and Performance Characteristics of Modern High Performance Computers
	Georg Hager and Gerhard Wellein
	Microprocessors
	Parallel Computing
	Conclusion and Outlook
	References


	27 Optimization Techniques for Modern High Performance Computers
	Georg Hager and Gerhard Wellein
	Optimizing Serial Code
	Shared-Memory Parallelization
	Conclusion and Outlook
	References


	Appendix: Abbreviations
	Index


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




