
16 Dynamical Mean-Field Approximation
and Cluster Methods for Correlated Electron Systems

Thomas Pruschke

Institute for Theoretical Physics, University of Göttingen, 37077 Göttingen, Germany
pruschke@theorie.physik.uni-goettingen.de

Among the various approximate methods used to study many-particle systems the
simplest are mean-field theories, which map the interacting lattice problem onto
an effective single-site model in an effective field. Based on the assumption that
one can neglect non-local fluctuations, they allow to construct a comprehensive and
thermodynamically consistent description of the system and calculate various prop-
erties, for example phase diagrams. Well-known examples for successful mean-field
theories are the Weiss theory for spin models or the Bardeen-Cooper-Schrieffer the-
ory for superconductivity. In the case of interacting electrons the proper choice of
the mean-field becomes important. It turns out that a static description is no longer
appropriate. Instead, a dynamical mean-field has to be introduced, leading to a com-
plicated effective single-site problem, a so-called quantum impurity problem.

This chapter gives an overview of the basics of dynamical mean-field theory
and the techniques used to solve the effective quantum impurity problem. Some
key results for models of interacting electrons, limitations as well as extensions that
systematically include non-local physics are presented.

16.1 Introduction

Strongly correlated electron systems still present a major challenge for a theoretical
treatment. The simplest model describing correlation effects in solids is the one-
band Hubbard model [1, 2, 3]

H =
∑
i,j,σ

tijc
†
iσcjσ + U

∑
i

c†i↑ci↑c
†
i↓ci↓ , (16.1)

where we use the standard notation of second quantization to represent the electrons
for a given lattice site Ri and spin orientation σ by annihilation (creation) operators
c
(†)
iσ . The first term describes a tight-binding band with tunneling amplitude for the

conduction electrons tij , while the second represents the local part of the Coulomb
interaction. Since for this model we assume that the conduction electrons do not
have further orbital degrees of freedom, this local Coulomb interaction acts only if
two electrons at the same site Ri with opposite spin are present.

The complementary nature of the two terms present in the Hubbard model (16.1)
– the kinetic energy or tight-binding part is diagonal in momentum representation,
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the interaction part in direct space – already indicates that it will be extremely hard
to solve. One can, however, get at least for filling 〈n〉 = 1 (half filling) some insight
into the physics of the model by a few simple arguments: In the limit U → 0 we
will have a simple metal. On the other hand, for tij → 0, or equivalently U →∞,
the system will consist of decoupled sites with localized electrons and hence rep-
resents an insulator. We thus can expect that there exists a critical value Uc, where
a transition from a metal to an insulator occurs. Furthermore, from second order
perturbation theory around the atomic limit [4], we find that for |tij |/U → 0 the
Hubbard model (16.1) maps onto a Heisenberg model

H =
∑
ij

JijSi · Sj , (16.2)

where Si represents the spin operator at site Ri and the exchange constant is given
by

Jij = 2
t2ij
U

> 0 . (16.3)

Note that this immediately implies that we will have to expect that the ground state
of the model at half filling will show strong antiferromagnetic correlations.

Away from half filling 〈n〉 �= 1 the situation is much less clear. There exists
a theorem by Nagaoka [5], that for U = ∞ and one hole in the half-filled band
the ground state can be ferromagnetic due to a gain in kinetic energy; to what extent
this theorem applies for a thermodynamically finite doping and finite U has not been
solved completely yet. The mapping to the Heisenberg model can still be performed
leading to the so-called t-J model [4], which again tells us that antiferromagnetic
correlations will be at least present and possibly compete with Nagaoka’s mecha-
nism for small Jij or even dominate the physics if Jij is large enough. This is the
realm where models like the Hubbard or t-J model are thought to describe at least
qualitatively the physics of the cuprate high-TC superconductors [6].

The energy scales present in the model are the bandwidth W of the tight-binding
band and the local Coulomb parameter U . From the discussion so far it is clear that
typically we will be interested in the situation U ≈ W or even U � W . This
means, that there is either no clear-cut separation of energy scales, or the largest
energy scale in the problem is given by the two-particle interactions. Thus, standard
perturbation techniques using the interaction as perturbation are usually not reliable
even on a qualitative level; expansions around the atomic limit, on the other hand,
are extremely cumbersome [7] and suffer from non-analyticities [8] which render
calculations at low temperatures meaningless.

The knowledge on correlated electrons systems in general and the Hubbard
model (16.1) in particular acquired during the past decades is therefore mainly due
to the development of a variety of computational techniques, for example quantum
Monte Carlo (QMC), exact diagonalization (ED), and the density-matrix renormal-
ization group (see Parts V, VIII and IX). Since these methods – including modern
developments – have been covered in great detail during this school, I will not dis-
cuss them again at this point but refer the reader to the corresponding chapters in this
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book. The aspect interesting here is that basically all of them are restricted to low-
dimensional systems: For ED, calculations in D > 2 are impossible due to the size
of the Hilbert space, and in case of the DMRG the way the method is constructed
restricts it basically to D = 1. QMC in principle can be applied to any system; how-
ever, the sign problem introduces a severe limitation to the range of applicability
regarding system size, temperature or interaction strengths.

In particular the restriction to finite and usually also small systems make a re-
liable discussion of several aspects of the physics of correlated electron systems
very hard. Typically, one expects these materials to show a rather large variety of
ordered phases, ranging from different magnetic phases with and without orbital or
charge ordering to superconducting phases with properties which typically cannot
be accounted for in standard weak-coupling theory [9]. Moreover, metal-insulator
transitions driven by correlation effects are expected [9], which are connected to a
small energy scale of the electronic system. Both aspects only become visible in a
macroscopically large system: For small finite lattices phase transitions into ordered
states cannot appear, and an identification of such phases requires a thorough finite-
size scaling, which usually is not possible. Furthermore, finite systems typically
have finite-size gaps scaling with the inverse system size, which means that small
low-energy scales appearing in correlated electron materials cannot be identified.

These restrictions motivate the question, if there exists a – possibly approximate
– method that does not suffer from restrictions on temperature and model param-
eters but nevertheless works in the thermodynamic limit and thus allows for phase
transitions and possibly very small low-energy scales dynamically generated due to
the correlations. Such methods are the subject of this contribution.

In Sect. 16.2.1 I will motivate them on a very basic level using the concept of
the mean-field theory well-known from statistical physics, and extend this concept
for the Hubbard model in Sect. 16.2.2, obtaining the so-called dynamical mean-field
theory (DMFT). As we will learn in Sect. 16.2.2.4, the DMFT still constitutes a non-
trivial many-particle problem and I will thus briefly discuss techniques available to
solve the equations of the DMFT. Following some selected results for the Hubbard
model in Sect. 16.2.3 I will touch a recent development to use DMFT in material
science in Sect. 16.2.4. Section 16.3 of this contribution will deal with extensions of
the DMFT, which will be motivated in Sect. 16.3.1. The actual algorithms and their
computational aspects will be discussed in Sects. 16.3.2 and 16.3.3. Some selected
results for the Hubbard model in Sect. 16.3.4 will finish this chapter.

16.2 Mean-Field Theory for Correlated Electron Systems

16.2.1 Classical Mean-Field Theory for the Heisenberg Model

In the introduction to the Hubbard model we already encountered the Heisenberg
model (16.2) as low-energy limit for U → ∞. Regarding its solvability, this model
shares some more features with the Hubbard model in that it poses a computational
rather hard problem in D ≥ 2. However, there exists a very simple approximate
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theory which nevertheless describes the properties of the Heisenberg model at least
qualitatively correct, the Weiss mean-field theory [10]. As we all learned in the
course on statistical physics, the basic idea of this approach is the approximate
replacement

Si · Sj ≈ Si · 〈Sj〉MFT + 〈Si〉MFT · Sj (16.4)

H ≈
∑
i

H
(i)
MFT = 2

∑
ij

JijSi · 〈Sj〉MFT (16.5)

where 〈. . .〉MFT stands for the thermodynamic average with respect to the mean-field
Hamiltonian (16.5) and we dropped a for the present discussion unimportant term
〈Si〉MFT · 〈Sj〉MFT. If we define an effective magnetic field or Weiss field accord-
ing to

Bi,MF := 2
∑
j �=i

Jij〈Sj〉MF , (16.6)

we may write
H

(i)
MF = Si ·Bi,MF . (16.7)

This replacement is visualized in Fig. 16.1. The form (16.7) also explains the name
assigned to the theory: The Hamiltonian (16.2) is approximated by a single spin in
an effective magnetic field, the mean-field, given by the average over the surround-
ing spins. Note that this treatment does not make any reference to the system size,
i.e. it is also valid in the thermodynamic limit.

The fact, that the mean-field Bi,MF is determined by 〈Sj〉MFT immediately leads
to a self-consistency condition for the latter

〈Si〉MFT = F [〈Sj〉MFT] . (16.8)

The precise form of the functional will in general depend on the detailed structure
of the Hamiltonian (16.2). For a simple cubic lattice and nearest-neighbor exchange

Jij =

{
J for i, j nearest neighbors

0 otherwise
(16.9)

one finds the well-known result

〈Szi 〉MFT = −1
2

tanh
(

4DJ〈Szj 〉MFT

kBT

)
, (16.10)

J

Fig. 16.1. Sketch for the mean-field theory of the Heisenberg model
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where we put the quantization axis into the z direction and assumed the same value
〈Szj 〉MFT for all 2D nearest neighbors. For kBT < |J∗|, where J∗ := 2DJ , this
equation has a solution |〈Szi 〉MFT| �= 0, i.e. the system undergoes a phase transition
to an ordered state (antiferromagnetic for J > 0 and ferromagnetic for J < 0).

As we know, this mean-field treatment yields the qualitatively correct phase di-
agram for the Heisenberg model in D = 3, but fails in dimensions D ≤ 2 and close
to the phase transition for D = 3. The reason is that one has neglected the fluctua-
tions δSi = Si − 〈Si〉 of the neighboring spins. Under what conditions does that
approximation become exact? The answer is given in [10]: The mean-field approx-
imation becomes exact in the formal limit D → ∞, provided on keeps J∗ = 2DJ
constant. In this limit, each spin has 2D →∞ nearest neighbors (for a simple cubic
lattice). Assuming ergodicity of the system, one finds that the phase space average
realized by the sum over nearest neighbors becomes equal to the ensemble average,
i.e.

1
2D

∑
j �= i

Sj
D→∞=

1
2D

∑
j �= i

〈Sj〉+O(
1
D

) . (16.11)

The requirement J∗ =const. finally is necessary, because otherwise the energy den-
sity 〈H〉/N would either be zero or infinity, and the resulting model would be trivial.

For the Heisenberg model (16.2) one can even show that D > 3 is already
sufficient to make the mean-field treatment exact, which explains why this approxi-
mation can yield a rather accurate description for magnets in D = 3.

Obviously, the above argument based on the limit D =∞ is rather general and
can be applied to other models to define a proper mean-field theory. For example,
applied to disorder models, one obtains the coherent potential approximation (CPA),
where the disorder is replaced by a coherent local scattering potential, which has to
be determined self-consistently via the disorder average. A more detailed discussion
of the capabilities and shortcomings of this mean-field theory is given in Chap. 17.
Here, we want to use the limit D →∞ to construct a mean-field theory for models
like the Hubbard model (16.1).

16.2.2 The Dynamical Mean-Field Theory

16.2.2.1 A First Attempt

Guided by the previous section, the most obvious possibility to construct something
like a mean-field theory for the Hubbard model (16.1) is to approximate the two-
particle interaction term as

c†i↑ci↑c
†
i↓ci↓ → c†i↑ci↑〈c†i↓ci↓〉+ 〈c†i↑ci↑〉c†i↓ci↓ . (16.12)

This approximation, which is also known as Hartree approximation, is discussed
extensively in standard books on many particle theory (for example [11]). Without
going into the details, one can immediately state some serious defects for half filling
〈n〉 = 1:
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– It leads to a metallic solution for arbitrarily large U , in contradiction to the ex-
pectations based on fundamental arguments.

– One does find an antiferromagnetically ordered phase, but for large U the Néel
temperature TN →const. instead of the expectation TN ∝ 1/U based on the
mapping (16.3) to the antiferromagnetic Heisenberg model.

What goes wrong here? The answer is quite simple: The Hartree factorization ne-
glects local charge fluctuations

δniσ = c†iσciσ − 〈c†iσciσ 〉 (16.13)

which however are of order one. Thus, an argument rendering this approximation
exact in a nontrivial limit is missing here.

16.2.2.2 The Limit D → ∞
As we have observed in Sect. 16.2.1, the proper way to set up a mean-field theory
is to consider the limit D → ∞. Again, this limit has to be introduced such that
the energy density 〈H〉/N remains finite. As far as the interaction term in (16.1) is
concerned, no problem arises, because it is purely local and thus does not care about
dimensionality. The critical part is obviously the kinetic energy

1
N
〈Hkin〉 = 1

N

∑
i,j

∑
σ

tij〈c†iσcjσ〉 . (16.14)

To keep the notation simple, I will concentrate on a simple cubic lattice with nearest-
neighbor hopping

tij =

{
−t for Ri and Rj nearest neighbors

0 otherwise
(16.15)

in the following. Starting at a site Ri, one has to apply Hkin to move an electron
to or from site Rj in the nearest-neighbor shell, i.e. 〈c†iσcjσ〉 ∝ t and consequently

1
N
〈Hkin〉 =

1
N

∑
i,j

∑
σ

tij〈c†iσcjσ〉 ∝ −2Dt2 , (16.16)

where the factor 2D arises because we have to sum over the 2D nearest neighbors
[12]. Thus, in order to obtain a finite result in the limit D → ∞, it has to be per-
formed such that Dt2 = t∗ =const. or t = t∗/

√
D [12].

What are the consequences of this scaling? To find an answer to this question,
let us consider the quantity directly related to 〈c†iσcjσ〉, namely the single-particle
Green function [11]

Gkσ(z) =
1

z + μ− εk −Σkσ(z)
, (16.17)
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where the kinetic term enters as dispersion εk, obtained from the Fourier transform
of tij , and the two-particle interaction leads to the self-energy Σkσ(z), which can,
for example, be obtained from a perturbation series using Feynman diagrams [11].
For the following argument it is useful, to discuss the perturbation expansion in real
space, i.e. we study now Σij,σ(z). If we represent the Green function G

(0)
ij,σ(z) for

U = 0 by a (directed) full line and the two-particle interaction U by a dashed line,
the first few terms of the Feynman perturbation series read

Σij,σ (z) =
i

i δij +
i j

i j

+ . . . . (16.18)

The first, purely local term, evaluates to U〈niσ̄〉, i.e. it is precisely the Hartree ap-
proximation which we found not sufficient to reproduce at least the fundamental
expectations. Let us now turn to the second term. To discuss it further, we need the
important property G

(0)
ij,σ(z) ∝ td(i,j), where d(i, j) is the “taxi-cab metric”, i.e.

the smallest number of steps to go from site Ri to site Rj . Inserting the scaling
t = t∗/

√
D, we find

G
(0)
ij,σ(z) ∝

(
1√
D

)d(i,j)
. (16.19)

When we insert this scaling property into the second-order term in the expansion
(16.2.2.2), we obtain for j being a nearest neighbor of i

Σij,σ (z) − U niσ̄ δij =
i j

i j

+ . . . ∝ 1√
D

3

d(i,j)

∝ 1√
D

3 . (16.20)

A closer inspection [12] yields an additional factor D on the right-hand side of the
equation, and we finally arrive at the scaling behavior

Σij,σ(z)− U〈niσ̄〉δij ∝ 1√
D

D→∞→ 0 (16.21)

for the non-local part of the one-particle self-energy. Note that the local contribu-
tions Σii,σ(z) stay finite, i.e.

lim
D→∞

Σij,σ(z) = Σσ(z)δij , (16.22)

which in momentum space translates into a k-independent self-energy and hence

Gkσ(z) =
1

z + μ− εk −Σσ(z)
. (16.23)
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The finding that in the limit D → ∞ renormalizations due to local two-particle
interactions become purely local, is rather interesting and helpful in its own right.
For example, one can use it to set up a perturbation theory which is, due to the miss-
ing spatial degrees of freedom, much more easy to handle. Within this framework,
the Hubbard model and related models were studied by several groups studying low-
energy dynamics and transport properties [13, 14, 15] or the phase diagram at weak
coupling U → 0 [16, 17, 18]. There is, however, an additional way one can make
use of the locality of the self-energy, which directly leads to the theory nowadays
called dynamical mean-field theory (DMFT).

16.2.2.3 Mean-Field Theory for the Hubbard Model

The fundamental observation underlying the DMFT, namely that one can use the
locality of the self-energy to map the lattice model onto an effective impurity prob-
lem, was first made by Brandt and Mielsch [19]. For the actual derivation of the
DMFT equations for the Hubbard model one can use several different techniques.
I will here present the one based on a comparison of perturbation expansions [20].
A more rigorous derivation can for example be found in the review by Georges et al.
[21]. Let us begin by calculating the local Green function Gii,σ(z), which can be
obtained from Gkσ(z) by summing over all k, i.e.

Gii,σ(z) =
1
N

∑
k

1
z + μ− εk −Σσ(z)

. (16.24)

Since k appears only in the dispersion, we can rewrite the k-sum as integral over
the density of states (DOS) of the model with U = 0

ρ(0)(ε) =
1
N

∑
k

δ(ε− εk) (16.25)

as

Gii,σ(z) =
∫

dε
ρ(0)(ε)

z + μ− ε−Σσ(z)
= G

(0)
ii (z + μ−Σσ(z)) , (16.26)

where

G
(0)
ii (ζ) =

∫
dε

ρ(0)(ε)
ζ − ε

(16.27)

is the local Green function for U = 0. Note that due to the analytic properties of
Σσ(z) the relation sign {Im [z + μ−Σσ(z)]} = sign Im z always holds.

Now we can make use of well-known properties of quantities like G
(0)
ii (z) which

can be represented as Hilbert transform of a positive semi-definite function like the
DOS ρ(0)(ε) (see for example [11]), namely they can quite generally be written as

G
(0)
ii (ζ) =

1

ζ − Δ̃(ζ)
, (16.28)
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where Δ̃(ζ) is completely determined by ρ(0)(ε). If we define Gσ(z)−1 := z + μ−
Δσ(z), where Δσ(z) := Δ̃(z + μ − Σσ(z)), we can write the Green function for
U > 0 as

Gii,σ(ζ) =
1

z + μ−Δσ(z)−Σσ(z)
=

1
Gσ(z)−1 −Σσ(z)

. (16.29)

Let us now assume that we switch off U at site Ri only. Then Gσ(z) can be viewed
as non-interacting Green function of an impurity model with a perturbation series

Σσ(z) = + + . . . (16.30)

for the self-energy. The full line now represents Gσ(z), but the dashed line visu-
alizes still the same two-particle interaction as in (16.2.2.3). Looking into the lit-
erature, for example into the book by Hewson [22], one realizes that this is pre-
cisely the perturbation expansion for the so-called single impurity Anderson model
(SIAM) [23]

H =
∑
kσ

εkα
†
kσαkσ + εf

∑
σ

c†σcσ + Uc†↑c↑c
†
↓c↓ +

1√
N

∑
kσ

(
α†

kσcσ + H.c.
)
,

(16.31)

which has been studied extensively in the context of moment formation in solids.
Obviously, the quantity Gσ(z) – or equivalently Δσ(z) – takes the role of the

Weiss field in the MFT for the Heisenberg model. However, in contrast to the MFT
for the Heisenberg model, where we ended up with an effective Hamiltonian of a
single spin in a static field, we now have an effective local problem which is coupled
to a dynamical field, hence the name DMFT. Instead of Weiss field, Gσ(z) or Δσ(z)
are called effective medium in the context of the DMFT.

The missing link to complete the mean-field equations is the self-consistency
condition which relates the Weiss field Gσ(z) with the solution of the effective im-
purity problem. This reads

Gii,σ(z) =
∫

dε
ρ(0)(ε)

z + μ− ε−Σσ(z)
!= GSIAM

σ (z) . (16.32)

Thus, Σσ(z) has to be chosen such that the local Green function of the Hubbard
model is identical to the Green function of a fictitious SIAM with non-interacting
Green function

Gσ(z) =
1

Gii,σ(z)−1 + Σσ(z)
. (16.33)

The resulting flow-chart for the iterative procedure to solve the Hubbard model
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Initialize self-energyΣσ(z)

Calculate local Green function

Gii,σ(z) = d
ρ(0)( )

z+μ− −Σσ(z)

Determine effective medium

Gσ(z)−1=Gii,σ(z)−1+Σσ(z )

Solve effective quantum impurity

Fig. 16.2. The self-consistency loop for the DMFT for the Hubbard model

with the DMFT is shown in Fig. 16.2. The only unknown in it is the box at the bot-
tom saying “solve effective quantum impurity problem”. What the notion quantum
impurity stands for and how the SIAM can be solved will be discussed next.

16.2.2.4 DMFT as Quantum Impurity Problem

Up to now all considerations have been purely analytical. Since this is a book on
computational aspects in many-body systems, one may wonder how this theory fits
into this field. The simple answer lies in the solution of the SIAM necessary to
complete the DMFT loop. Although the Hamiltonian (16.31) of the SIAM looks
comparatively simple, it is already an extremely challenging model. It has been set
up in the early 1960’s, but a reliable solution for both thermodynamic and dynamic
quantities at arbitrary model parameters and temperature became possible only in
the late 1980’s. It belongs to a class of models nowadays called quantum-impurity
models, where a small set of interacting quantum degrees of freedom are coupled
to a continuum of non-interacting quantum states. The physical properties of these
models comprise the well-known Kondo effect [22], quantum phase transitions and
non-Fermi liquid behavior. The actual difficulty in solving these models is that they
typically have a ground state that in the thermodynamical limit is orthogonal to the
one of the possible reference systems – e.g. U = 0 or Vk = 0 for the SIAM –
and thus cannot be treated properly with perturbation expansions. A characteristic
signature of this non-orthogonality is the appearance of an exponentially small en-
ergy scale. Both aspects together make it extremely hard to solve the models even
numerically, because any representation by a finite system makes it impossible to
resolve such energy scales.

Besides the numerical renormalization group discussed in the next paragraph,
one of the first computational techniques used to solve quantum impurity problems
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for finite temperatures was quantum Monte Carlo based on the Hirsch-Fye algo-
rithm [21, 24]. This algorithm and its application to e.g. Hubbard model has already
been discussed extensively in Chap. 10. For these models, the short-ranged interac-
tion and hopping allow for a substantial reduction of the computational effort and
a rather efficient code. For quantum impurity problems, however, the orthogonality
catastrophe mentioned above leads to long-ranged correlations in imaginary time.
Consequently, when we denote with L the number of time slices in the simulation,
the code scales with L3 (instead of L lnL for lattice models [25]). Thus, although
the algorithm does not show a sign problem for quantum impurity problems, the
computational effort increases very strongly with decreasing temperature and also
increasing local interaction. As a result, the quantum Monte Carlo based on the
Hirsch-Fye algorithm is severely limited in the temperatures and interaction param-
eters accessible. For those interested, a rather extensive discussion of the algorithm
and its application to the DMFT can be found in the reviews by Georges et al. and
Maier et al. [21, 24]. Note that with quantum Monte Carlo one is generically re-
stricted to finite temperature, although within the projector quantum Monte Carlo
the ground state properties can be accessed in some cases, too [26].

A rather clever method to handle quantum-impurity systems comprising such a
huge range of energy scales was invented by Wilson in the early 1970’s [27], namely
the numerical renormalization group (NRG). In this approach, the continuum of
states is mapped onto a discrete set, however with exponentially decreasing energy
scales. This trick allows to solve models like the SIAM for arbitrary model parame-
ters and temperatures. A detailed account of this method is beyond the scope of this
contribution but can be found in a recent review by Bulla et al. [28]. Here, the inter-
esting aspect is the actual implementation. One introduces a discretization parameter
Λ > 1 and divides the energy axis into intervals [Λ−(n+1), Λ−n], n = 0, 1, . . ., for
both positive and negative energies. After some manipulations [22, 28, 29, 30] one
arrives at a representation

H ≈ Himp +
∞∑
n=0

∑
σ

(
εnα

†
nσαnσ + tnα

†
n−1σαnσ + H.c.

)
, (16.34)

where Himp is the local part of the quantum impurity Hamiltonian. To keep the

notation short, I represented the impurity degrees of freedom by the operatorsα(†)
−1,σ .

The quantities εn and tn have the property, that they behave like εn ∝ Λ−n/2 and
tn ∝ Λ−n/2 for large n. The calculation now proceeds as follows: Starting from
the impurity degrees of freedom (n = −1) with the Hamiltonian H−1 ≡ Himp, one
successively adds site after site of the semi-infinite chain, generating a sequence of
Hamiltonians

HN+1 =
√
ΛHN +

∑
σ

(√
Λ
N+1

εN+1α
†
N+1,σαN+1,σ

+
√
Λ
N+1

tN+1α
†
nσαnσ + H.c.

)
. (16.35)
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The factors Λ in the mapping ensure that at each step N the lowest energy eigen-
values are always of order one. Since for the chain parameters Λ(N+1)/2tN+1 → 1
holds, the high energy states of the Hamiltonian at step N will not significantly con-
tribute to the low-energy states at step N +1 and one discards them. This truncation
restricts the size of the Hilbert space at each step sufficiently that the usual expo-
nential growth is suppressed and one can actually repeat the procedure up to almost
arbitrarily large chains.

At each step N , one then has to diagonalize HN , generating all eigenvalues and
eigenvectors. The eigenvectors are needed to calculate matrix elements for the next
step by a unitary transformation of the matrix elements from the previous step. Since
this involves two matrix multiplications, the numerical effort (together with the di-
agonalization) scales with the third power of the dimension of the Hilbert space.
Invoking symmetries of the system, like e.g. charge and spin conservation, one can
reduce the Hamilton matrix at each step to a block structure. This block structure on
the one hand allows for an efficient parallelization and use of SMP machines (for
example with OpenMP). On the other hand, the size of the individual blocks is much
smaller than the actual size of the Hilbert space. For example, with 1000 states kept
in the truncation one has a dimension of the order of 200 for the largest subblock.
The use of the block structure thus considerably reduces the computational effort
necessary at each step.

Moreover, one can identify each chain length N with a temperature or energy
scale Λ−N/2 and can thus approach arbitrarily low temperatures and energies. With
presently available workstations the computational effort of solving the effective
impurity model for DMFT calculations at T = 0 then reduces to a few minutes
using on the order of 10 . . . 100 MB of memory.

Unfortunately, an extension of Wilson’s NRG to more complex quantum im-
purity models including e.g. orbital degrees of freedom or multi-impurity systems
(needed for example for the solution of cluster mean-field theories, see Sect. 16.3)
is not possible beyond four impurity degrees of freedom (where the consumption of
computer resources increases to order of days computation time with∼ 20−30 GB
memory usage), because the step “construct Hamilton matrix of step N + 1 from
Hamilton matrix of step N” increases the size again exponentially with respect to
the number of impurity degrees of freedom. For a compensation, one has to increase
the number of truncated states in each step appropriately. However, this procedure
breaks down when one starts to truncate states that contribute significantly to the
low-energy properties of the Hamiltonian at step N + 1. In this situation, one is left
with quantum Monte Carlo algorithms as only possible solver at T > 0. At T = 0,
there exists presently not yet a reliable tool to solve quantum impurity models with
substantially more that two impurity degrees of freedom (spin degeneracy). First
attempts to use the density matrix renormalization group method to solve quantum
impurity problems can for example be found in [31, 32, 33].

16.2.3 DMFT Results for the Hubbard Model

In the following sections selected results for the Hubbard model within the DMFT
will be discussed. I restrict the presentation to the case of a particle-hole symmetric
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non-interacting system, i.e. the simple-cubic lattice with nearest-neighbor hopping
according to (16.15). More general situations including next nearest-neighbor hop-
ping have also been studied and results can for example be found in [21, 34]. More-
over, the DMFT also allows for a consistent calculation of two-particle properties
like susceptibilities and also transport quantities. A detailed discussion of the as-
pects of these calculations go well beyond the scope of this article and the interested
reader is referred to the extensive literature on these subjects [21, 24, 35].

16.2.3.1 General Structures of the Green Function in DMFT

The fundamental quantity we calculate in the DMFT is the local single-particle
Green function Gii,σ(z). Its imaginary part Nσ(ω) := − ImGii,σ(ω + i0+)/π
is called DOS of the interacting system. The generic result for this quantity for a
typical value of U = O(W ) at T = 0, where W is the bandwidth of the dispersion
εk, is shown in Fig. 16.3 [21, 35]. One can identify three characteristic structures:
Two broad peaks below and above the Fermi energy ω = 0, which describe the
incoherent charge excitations. They are separated by the energy U and referred to as
lower Hubbard band (LHB) and upper Hubbard band (UHB), respectively. In addi-
tion a rather sharp resonance exists at the Fermi energy, which is a result of coherent
quasiparticles in the sense of Landau’s Fermi liquid theory.

This interpretation becomes more apparent when one looks at the single-particle
self-energy, shown as inset to Fig. 16.3. The region close to the Fermi energy is
characterized by a behavior ReΣσ(ω+ i0+) ∝ ω and ImΣσ(ω+ i0+) ∝ ω2. Both
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are features characteristic for a Fermi liquid. The slope of the real part determines
the quasiparticle renormalization factor or effective mass of the quasiparticles.

16.2.3.2 The Mott-Hubbard Metal-Insulator Transition

One particular feature we expect for the Hubbard model is the occurrence of a metal-
insulator transition (MIT) in the half-filled case 〈n〉 = 1. As already mentioned,
this particular property can serve as a test for the quality of the approximation used
to study the model. That the expected MIT indeed appears in the DMFT has first
been noticed by Jarrell [20] and was subsequently studied in great detail [21]. The
MIT shows up in the DOS as vanishing of the quasiparticle peak with increasing
U . An example for this behavior can be seen in Fig. 16.4. The full curve is the
result of a calculation with a value of U < W , the dashed obtained with U >
1.5W ≈ Uc. For the latter, the quasiparticle peak at ω = 0 has vanished, i.e. we
have N(ω = 0) = 0. Since the DOS at the Fermi level determines all properties
of a Fermi system, in particular the transport, we can conclude from this result that
for U > Uc the conductivity will be zero, hence the system is an insulator. One
can now perform a series of calculations for different values of U and temperatures
T to obtain the phase diagram for this MIT (see e.g. [36] and references therein).
The result is shown in Fig. 16.5. As an unexpected feature of this MIT one finds
that there exists a hysteresis region, i.e. starting from a metal and increasing U
leads to a different Uc,2 as starting from the insulator at large U and decreasing
U . The coexistence region terminates in a second-order critical end point, which
has the properties of the liquid-gas transition [37, 38]. At T = 0, the transition is
also second order and characterized by a continuously vanishing Drude weight in
the optical conductivity [21], or equivalently a continuously vanishing quasiparticle
renormalization factor [39]. Interestingly, the actual critical line falls almost onto the
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upper transition [40]. Finally, for temperatures larger than the upper critical point the
MIT turns into a crossover.

16.2.3.3 Magnetic Properties

Up to now we have discussed the paramagnetic phase of the Hubbard model. What
about the magnetic properties? Does the DMFT in particular cure the failure of the
Hartree approximation, where TN became constant when U →∞?

Investigations of magnetic properties can be done in two ways. First, one can
calculate the static magnetic susceptibility and search for its divergence. This will
give besides the transition temperature also the proper wave vector of the magnetic
order [21, 41]. For the NRG another method is better suited and yields furthermore
also information about the single-particle properties and hence transport proper-
ties in the antiferromagnetic phase [21, 34]: One starts the calculation with a small
symmetry breaking magnetic field, which will be switched off after the first DMFT
iteration. As result, the system will converge either to a paramagnetic state or a
state with finite polarization. The apparent disadvantage is, that only certain com-
mensurate magnetic structures can be studied, such as the ferromagnet or the Néel
antiferromagnet.

For half filling, the result of such a calculation for the Néel structure at T = 0 is
shown in Fig. 16.6. Quite generally, we expect a stable antiferromagnetic phase at
arbitrarily small values of U with an exponentially small Néel temperature [11, 16].
Indeed we find that the Néel antiferromagnet is the stable solution for all values of
U at T = 0 [42].
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W
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Fig. 16.6. DOS for spin up and spin down in the antiferromagnetic phase at half filling and
T = 0. The inset shows the magnetization as function of U

The next question concerns the magnetic phase diagram, in particular the de-
pendence of the Néel temperature TN on U . To this end one has to perform a rather
large number of DMFT calculations systematically varying T and U . The result of
such a survey are the circles denoting the DMFT values for TN(U) in the phase di-
agram in Fig. 16.7. The dotted line is a fit that for small U behaves∝ exp (−α/U),
predicted by weak-coupling theory, while for large U a decay like 1/U is reached.
Thus, the DMFT indeed reproduces the correct U dependence in both limits U → 0
and U →∞.
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Another observation is that the phase diagram is completely dominated by the
Néel phase. It even encompasses the MIT phase, whose phase lines are given by
the squares in Fig. 16.7. Note, that the Néel phase is an insulator, too. Thus, there is
the obviously interesting question if an additional transition occurs within the anti-
ferromagnetic insulator from what is called Slater insulator, driven by bandstructure
effects, and Mott-Hubbard insulator, driven by correlation effects. Up to now, no
hard evidence for such a transition could be found [34, 43].

Last, but not least, one may wonder how the magnetic phase diagram develops
away from half filling. Here, two interesting conjectures are known. Weak coupling
theory predicts, that for small U the Néel state remains stable up to a certain filling
〈nc〉 < 1, but shows phase separation [18]. In the limit U →∞, on the other hand,
one expects a ferromagnetic phase to appear, which is driven by kinetic energy gain
instead of an effective exchange interaction [5]. Here, the full power of the NRG
as solver for the quantum impurity problem can be seen. There are no restrictions
regarding the value of U or the temperature T . Consequently, one can scan the whole
phase space of the Hubbard model to obtain the U -δ phase diagram at T = 0 shown
in Fig. 16.8. The quantity δ = 1 − 〈n〉 denotes the doping and the vertical axis has
been rescaled according to U/(W + U) in order to show the results for the whole
interval U ∈ [0,∞). One indeed finds an extended region of antiferromagnetism
(AFM) for finite doping, which in addition shows phase separation (PS) for values
U < W . For larger U , the actual magnetic structure could not be resolved yet [42].
At very large U the antiferromagnet is replaced by an extended island of Nagaoka
type ferromagnetism (FM) extending out to ≈ 30% doping [42]. These examples
show that the DMFT is indeed capable of reproducing at least qualitatively the rather

30%20%10%0%
0

0,2

0,4

0,6

0,8

1

U
/(

W
 +

 U
)

δ

PM

AFM(PS)

FM
AFM (??)

Fig. 16.8. Magnetic phase diagram of the Hubbard model for T = 0. The vertical axis has
been rescaled as U/(W+U) to encompass the whole interval [0,∞). The abbreviations mean
paramagnetic metal (PM), antiferromagnet (AFM), phase separation (PS) and ferromagnet
(FM). δ = 1 − 〈n〉 denotes the doping
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complex physical properties of the Hubbard model (16.1). Moreover, the values for
transition temperatures obtained are strongly reduced as compared to a Stoner or
Hartree approximation [11], thus illuminating the importance of local dynamical
fluctuations due to the two-particle interaction respected by the DMFT.

16.2.4 Further Application: Combining First
Principles with DMFT

The finding, that the DMFT for the Hubbard model, besides properly reproduc-
ing all expected features at least qualitatively, also leads to a variety of non-trivial
novel aspects of the physics of this comparatively simple model [21, 35], rather
early triggered the expectation, that this theory can also be a reasonable ansatz to
study real 3D materials. This idea was further supported by several experimental
results on transition metal compound suggesting that the metallic state can be de-
scribed as a Fermi liquid with effective masses larger than the ones predicted by
bandstructure theory [9]. Moreover, with increasing resolution of photoemission
experiments, structures could be resolved that very much looked like the ubiqui-
tous lower Hubbard band and quasiparticle peak found in DMFT, for example in
the series (Sr,Ca)VO3 [44, 45, 46, 47]. It was thus quite reasonable, to try to de-
scribe such materials within a Hubbard model [48, 49]. However, the explanation
of the experiments required an unphysical variation of the value of U across the
series.

The explanation for the failure lies in the orbital degrees of freedom neglected
in the Hubbard model (16.1) but definitely present in transition metal ions. Thus,
a development of quantum impurity solvers for models including orbital degrees
of freedom started [50, 51, 52]. At the same time it became clear, that the number
of adjustable parameters in a multi-orbital Hubbard model increases dramatically
with the degrees of freedom. In view of the restricted sets of experiments that one
can describe within the DMFT, the idea of material specific calculations with this
method actually appears rather ridiculous.

The idea which solved that problem was to use the density functional theory
(DFT) [53, 54] to generate the dispersion relation εmm

′
k entering the multi-orbital

Hubbard model [55, 56]. Moreover, within the so-called constrained DFT [57] even
a calculation of Coulomb parameters is possible. Thus equipped, a material-specific
many-body theory for transition metal oxides and even lanthanides became possi-
ble, nowadays called LDA+DMFT [58, 59, 60, 61]. The scheme basically works as
follows [58, 61]:

– For a given material, calculate the band structure using DFT with local density
approximation [54].

– Identify the states where local correlations are important and downfold the band-
structure to these states to obtain a Hamilton matrix H(k) describing the dis-
persion of these states. If necessary, include other states overlapping with the
correlated orbitals (for example oxygen 2p for transition metal oxides).
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– From a constrained DFT calculation, obtain the Coulomb parameters for the
correlated orbitals.

– Perform a DMFT calculations using the expression

Gii,σ(z) =
1
N

∑
k

1
z + μ−H(k)−Σσ(z)

(16.36)

for the local Green function, which now can be a matrix in the orbital indices
taken into account. Note that the self-energy can be a matrix, too.

– If desired, use the result of the DMFT to modify the potential entering the DFT
and repeat from the first step until self-consistency is achieved [56].

As an example for the results obtained in such a parameter-free calculation I present
the DOS for (Sr,Ca)VO3 obtained with the LDA+DMFT scheme compared to pho-
toemission experiments [62] in Fig. 16.9. Apparently, both the position of the struc-
tures and the weight are obtained with rather good accuracy. From these calculations
one can now infer that the structures seen are indeed the lower Hubbard band orig-
inating from the 3d levels, here situated at about −2 eV, and a quasiparticle peak
describing the coherent states in the system.

This example shows that the DMFT is indeed a rather powerful tool to study
3D materials where local correlations dominate the physical properties. There is,
however, not a simple rule of thumb which can tell us when this approach is indeed
applicable and when correlations beyond the DMFT may become important. Even in
seemingly rather simple systems non-local correlations can be important and modify
the dominant effects of the local interactions in a subtle way [63].
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16.3 Extending the DMFT: Effective Cluster Theories

16.3.1 Questions Beyond the DMFT

The DMFT has turned out to be a rather successful theory to describe properties of
strongly correlated electron systems in three dimensions sufficiently far away from
e.g. magnetic phase transitions. Its strength lies in the fact that it correctly includes
the local dynamics induced by the local two-particle interactions. It is, on the other
hand, well-known that in one or two dimensions or in the vicinity of a transition to a
state with long-range order the physics is rather dominated by non-local dynamics,
e.g. spin waves for materials showing magnetic order. Such features are of course
beyond the scope of the DMFT.

As a particular example let us take a look at the qualitative properties of the
Hubbard model in D = 2 on a square lattice at and close to half filling. As we
already know, the model has strong antiferromagnetic correlations for intermediate
and strong U , leading to a phase transition to a Néel state at finite TN in D = 3.
However, in D = 2 the theorem by Mermin and Wagner [64] inhibits a true phase
transition at finite T , only the ground state may show long-range order. Neverthe-
less, the non-local spin correlations exist and can become strong at low temperature
[6]. In particular, a snapshot of the system will increasingly look like the Néel state,
at least in a certain vicinity of a given lattice site.

Such a short-range order in both time and space can have profound effects for
example on the photoemission spectrum. In a true Néel ordered state the broken
translational symmetry leads to a reduced Brillouin zone and hence to a folding back
of the bandstructure, as depicted in Fig. 16.10(a). At the boundary of this so-called
magnetic Brillouin zone, a crossing of the dispersions occurs, which will be split by
interactions and leads to the gap in the DOS and the insulating behavior of the Néel
antiferromagnet. When we suppress the long-range order but still allow for short-
range correlations, the behavior in Fig. 16.10(b) may occur. There is no true broken
translational symmetry, hence the actual dispersion will not change. However, the
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Fig. 16.10. Sketch of the effect of long-range Néel order (a) vs. strong short-ranged correla-
tions (b) on the single-particle properties of the Hubbard model in D = 2
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system “feels” the ordered state on certain time and length scales, which leads to
broadened structures at the position of the back-folded bands (shadow bands) in the
spectral function [65, 66]. Furthermore, the tendency to form a gap at the crossing
points at the boundary of the magnetic Brillouin zone can lead to a suppression of
spectral weight at these points (pseudo-gaps) [65].

The paradigm for such a behavior surely are the high-TC superconductors, but
other low-dimensional materials show similar features, too.

16.3.2 From the Impurity to Clusters

Let us in the beginning state the minimum requirements, that a theory extending the
DMFT to include non-local correlation should fulfill: It should

– work in thermodynamic limit,
– treat local dynamics exactly,
– include short-ranged dynamical fluctuations in a systematic and possibly non-

perturbative way,
– be complementarity to finite-system calculations
– and of course remain computationally manageable.

It is of course tempting, to try and start from the DMFT as an approximation that
already properly includes local dynamics and add the non-local physics somehow.
Since the DMFT becomes exact in the limit D → ∞, an expansion in powers of
1/D may seem appropriate [67]. However, while such approaches work well for
wave functions, their extension to the DMFT suffer from so-called self-avoiding
random walk problems, and no proper resummation has been successful yet.

A more pragmatic approach tries to add the non-local fluctuations by hand
[68, 69], but here the problem of possible overcounting of processes arises. More-
over, the type of fluctuations included is strongly biased and the way one includes
them relies on convergence of the perturbation series.

In yet another idea one extends the DMFT by including two-particle fluctuations
locally [70]. In this way, one can indeed observe effects like pseudo-gap formation
in the large-U Hubbard model [71], but cannot obtain any k-dependence in the
spectral function, because the renormalizations are still purely local.

The most successful compromise that fulfills all of the previously stated require-
ments is based on the concept of clusters. There, the basic idea is to replace the
impurity of the DMFT by a small cluster embedded in a medium representing the
remaining infinite lattice. In this way, one tries to combine the advantages of finite-
system calculations, i.e. the proper treatment of local and at least short-ranged corre-
lations, with the properties of the DMFT, viz the introduction of the thermodynamic
limit via the Weiss field. The schematic representation of this approach is shown
in Fig. 16.11. This idea is not new, but has been tried in the context of disordered
systems before [72], and also in various ways for correlated electron models [24].
A rather successful implementation is the cluster perturbation theory, discussed in
Chap. 19. A recent review discussing these previous attempts and their problems is
given in [24].
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Fig. 16.11. Schematic picture of the idea of a cluster based MFT

16.3.3 Implementing the Algorithm

The implementation of the concept of a cluster MFT is straightforward and will
be discussed here using the so-called DCA [24] as example. The other methods
basically follow the same strategy, but differ in the details.

The DCA is an extension of the DMFT in k-space. Starting from the observa-
tion that for short-ranged fluctuations one expects that k-dependencies of certain
quantities like the single-particle self-energy will be weak, one coarse-grains their
k-dependence by introducing a suitable set of Nc momenta K in the first Bril-
louin zone (see Fig. 16.12 with Nc = 4 as example). The k-dependence of the
single-particle self-energy Σσ(k, z) is then approximated according to Σσ(k, z) ≈
Σσ(K, z). This means, that one effectively reduces the resolution in real space to
length scales ΔR ∼ π/ΔK , where ΔK is a measure of the difference of individual
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Fig. 16.12. Tiling the first Brillouin zone in the DCA
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K-vectors in the coarse-grained Brillouin zone. Consequently, we can expect to
treat non-local correlations up to this length scale correctly.

The next step now is to integrate out the remaining k-vectors in the sectors
around each K-point. If we do this for the single-particle Green function, we obtain
a quantity

Ḡσ(K, z) :=
Nc

N

∑
k′

1
z + μ− εK+k′ −Σσ(K, z)

(16.37)

we will call the effective cluster Green function. Obviously, the quantity Ḡσ(K, z)
describes an effective periodic cluster model. The procedure now follows precisely
the ideas of the DMFT. Switching off the interaction in the effective cluster leads to
an effective non-interacting system described by a Green function

Ḡσ(K, z) =
1

Ḡσ(K, z)−1 + Σσ(K, z)
(16.38)

and a self-consistency loop depicted in Fig. 16.13.
As in the DMFT, the problematic step is the last box, i.e. the solution of the

effective quantum cluster problem. Note that although we started the construction
from a cluster, the presence of the energy-dependent medium Ḡσ(K, z) renders
this problem again a very complicated many-body problem, just like the effective
quantum impurity problem in the DMFT. However, the situation here is even worse,
because the dynamical degrees of freedom represented by this medium mean that

Initialize self-energy ΣKσ(z)

Calculate coarse grained Green function

GKσ(z)=
Nc

N
k

1
z+μ−ΣKσ(z)− K+k

Determine effective medium

GKσ(z)−1 =GKσ(z)+ΣKσ(z)

Solve effective quantum cluster

Exact limits: Nc = 1 ⇒ DMFT, Nc = N ⇒ exact

Fig. 16.13. Flow-diagram of the algorithm for the DCA
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even for clusters as small as Nc = 4, the effective system to solve has infinitely
many degrees of freedom. For example the NRG, which is so successful for the
Hubbard model in the DMFT, will suffer from a huge increase of the Hilbert space
(4Nc) in each step, which makes the method useless. Up to now the only reasonable
technique is quantum Monte Carlo (QMC), and most of the results presented in the
next section will be based on QMC simulations.

Before we move to the presentation of some results for the Hubbard model, let
me make some general comments on the method. First, while the concept of a cluster
MFT seems to be a natural extension of the DMFT, it lacks a similar justification by
an exact limit. The best one can do is view the cluster MFT as interpolation scheme
between the DMFT and the real lattice, systematically including longer ranged cor-
relations. Moreover, the use of a finite cluster introduces the problem of boundary
conditions (BC). In a real space implementation [73] one has to use open BC and
thus has broken translational invariance. As a consequence, k is not a good quan-
tum number any more and one has to work out averaging procedures to recover the
desired diagonality in k-space. The DCA implements periodic BC, but introduces
patches in the Brillouin zone, where Σσ(K, z) is constant. As result, one obtains a
histogram of self-energy values and must use a fitting procedure to recover a smooth
function Σσ(k, z), if desired.

Another potential problem can be causality [72]. In early attempts to set up
cluster approaches, one typically ran into the problem that spectral functions could
become negative. It has been shown, however, that the different implementations of
the cluster MFT are manifestly causal [24].

Last but not least one may wonder how one can implement non-local two-
particle interactions in this scheme, for example nearest-neighbor Coulomb inter-
action or the exchange interaction in models like the t-J model. In the DMFT, these
interactions reduce to their mean-field description [74]. For cluster mean-field theo-
ries, they should in fact be treated similarly to the single-particle hopping. One then
is faced with the requirement, to not only solve for dynamic single-particle prop-
erties in the presence of the effective bath, but also set up a similar scheme for the
two-particle quantities of the effective cluster [24]. In this respect the cluster MFT
acquire a structure similar to the so-called EDMT proposed by Q. Si et al. [70].

16.3.4 Results for the Hubbard Model

In the following I present some selected results obtained with the DCA for the
Hubbard model in D = 2 on a square lattice. If not mentioned otherwise, we will
again use the nearest-neighbor hopping (16.15). A much wider overview can be
found in the review [24].

The first obvious question to ask is how the cluster MFT will modify the single-
particle properties of the Hubbard model. As mentioned, the Mermin-Wagner theo-
rem states that no long-range magnetic order can occur, but from the discussion in
the beginning of this chapter we expect at least the presence of strong non-local spin
fluctuations which should lead to precursors of the ordering at T = 0 in the physical
quantities. In Fig. 16.14 the results of calculations for half filling and U = W/2 with
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Fig. 16.14. DOS for the 2D Hubbard model at half filling and U = W/2 for different tem-
perature using the DMFT (middle panel) and the DCA with Nc = 4 (right panel). The left
panel shows the bare DOS at U = 0 for comparison. Figure taken from [75]

the DMFT (middle panel) and the DCA with a cluster size of Nc = 4 (right panel)
for different temperatures are shown. For comparison the bare DOS is included in
the left panel. In the DMFT, one obtains a phase transition into the Néel state at
some TN > 0. For T > TN, the DOS shows the ubiquitous three-peak structure,
while for T < TN a gap appears in the DOS. No precursor of the transition can be
seen. The DCA, on the other hand, already shows a pronounced pseudo-gap even
at elevated temperatures, which becomes deeper with decreasing temperatures. This
reflects the expected presence of spin fluctuations. Since the DCA still represents a
MFT, a phase transition will eventually occur here, too. However, the correspond-
ing transition temperature is reduced from its DMFT value and the DOS seemingly
varies smoothly from T > TN to T < TN here.

The influence of spin fluctuations close to half filling can also be seen in
the spectral functions A(k, ω) = − ImmG(k, ω + i0+)/π, which are plotted
along high-symmetry directions of the first Brillouin zone of the square lattice (see
Fig. 16.16) in Fig. 16.15. The calculations were done with Nc = 16 at a temperature
T = W/30 at U = W using a Hirsch-Fye QMC algorithm and maximum entropy
to obtain the real-frequency spectra from the QMC imaginary time date [24, 77].
In the calculation an additional next-nearest neighbor hopping t′ = 0.05W was
included. For 〈n〉 = 0.8 (left panel of Fig. 16.15) nice quasiparticles along the non-
interacting Fermi surface (base-line in the spectra) can be seen and the imaginary
part of the self-energy (plot in the left corner of the panel) has a nice parabolic ex-
tremum at ω = 0 and is basically k-independent. Thus, in this parameter regime the
DMFT can be a reliable approximation, at least as far as single-particle properties in
the paramagnetic phase are concerned. For 〈n〉 = 0.95 (right panel in Fig. 16.15),
on the other hand, quasiparticles are found along the diagonal of the Brillouin zone
(cold spot), while the structures are strongly overdamped in the region k ≈ (0, π)
(hot spot). The notion hot spot comes from the observation, that in this region the
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Fig. 16.15. Spectral functions along high-symmetry directions of the first Brillouin zone of
the square lattice (see Fig. 16.16) obtained from a DCA calculation with Nc = 16 for dif-
ferent fillings 〈n〉 = 0.8 (left panel) and 〈n〉 = 0.95 (right panel). The figures in the left
corners show the imaginary part of the self-energy at special k-points indicated by the arrows
in the spectra. The model parameters are U = W and T = W/30. Figure taken from [76]

Fermi surface can be connected with the reciprocal lattice vector Q describing the
antiferromagnetic ordering (see Fig. 16.16) (nesting). Obviously, these k-points will
be particularly susceptible to spin fluctuations and acquire additional damping due
to the coupling to those modes.

Finally, one may wonder what the DCA can do for 3D systems. As example,
I show results of a calculation of the Néel temperature for the 3D Hubbard model
at half filling in Fig. 16.17. The figure includes several curves: The one labelled
“Weiss” is obtained from a Weiss mean-field treatment of the antiferromagnetic
Heisenberg model with an exchange coupling J ∼ t2/U according to (16.3). The
one called “Heisenberg” represents a full calculation for the 3D Heisenberg model
with this exchange coupling, “SOPT” denotes a second-order perturbation theory
calculation for the Hubbard model, “Staudt” recent QMC results [79] and finally
“DMFT” and “DCA” the values for TN obtained from DMFT and DCA respectively.
Obviously, the DCA results in a substantial reduction of TN as compared to the
DMFT, leading to the correct values for all U . As expected, the DMFT overestimates
TN as usual for a mean-field theory, but, as we already know, is otherwise consistent
with the anticipated behavior at both small and large U on the mean-field level.

X

M

ΓQ

Fig. 16.16. First Brillouin zone of the square lattice
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Fig. 16.17. Néel temperature as function of U for the 3D Hubbard model at half filling. For
the different curves see text. Taken from [78]

Note that for the QMC results and the DCA a finite size scaling has been performed,
where for the DCA lattices up to 32 sites were included, i.e. substantially smaller
that in [79].

16.4 Conclusions

Starting from the Weiss mean-field theory for the Heisenberg model, we have devel-
oped a proper mean-field theory for correlated fermionic lattice models with local
interactions. In contrast to the mean-field theory for the Heisenberg model, the fun-
damental quantity in this so-called dynamical mean-field theory is the single-particle
Green function, and the effective local problem turned out to be a quantum-impurity
model. Quantum impurity models are notoriously hard to solve, even with advanced
computational techniques. As a special example, we discussed the numerical renor-
malization group approach in some detail.

As we have seen, the dynamical mean-field theory allows to calculate a vari-
ety of static and dynamic properties for correlated lattice models like the Hubbard
model and its relatives. In contrast to the Hartree-Fock treatment, dynamical renor-
malizations lead to non-trivial phenomena like a Fermi liquid with strongly en-
hanced Fermi liquid parameters, a paramagnetic metal-insulator transition and mag-
netic properties that correctly describe the crossover from weak-coupling Slater an-
tiferromagnetism to Heisenberg physics and Nagaoka ferromagnetism as U →∞.

In combination with density functional theory, which allows to determine model
parameters for a given material ab initio, a particularly interesting novel approach to
a parameter-free and material-specific calculation of properties of correlated materi-
als arises. Several applications have demonstrated the power of this method, which
can even lead to a quantitative agreement between theory and experiment.

Thus, is the DMFT an all-in-one tool, suitable for every purpose? Definitely not.
We also learned that we have to pay a price for the gain: The DMFT completely
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neglects non-local fluctuations. This means, for example, that it does not care for
the dimensionality of the system and will in particular lead to phase transitions even
in nominally one-dimensional problems. Furthermore, even in three dimensions one
cannot realize ordered states with non-local order parameters – e.g. d-wave super-
conductivity. Thus, for low-dimensional system or in the vicinity of phase transi-
tions, the DMFT surely is not a good approach.

These deficiencies can be cured at least in part by extending the notion of local to
also include clusters in addition to single lattice sites. One then arrives at extensions
of the DMFT like the cluster dynamical mean-field theory or the dynamical cluster
approximation. These theories allow to incorporate at least spatially short-ranged
fluctuations into the calculations. We have learned that these extensions indeed lead
to new phenomena, like formation of pseudo-gaps in the one-particle spectra and the
appearance of new ordered phases with non-local order parameters. Cluster theories
also lead to further renormalizations of transition temperatures or, with large enough
clusters, lead to a suppression of phase transitions in low-dimensional systems, in
accordance with e.g. the Mermin-Wagner theorem.

Again one has to pay a price for this gain, namely a tremendously increased
computational effort. For this reason, calculations are up to now possible only for
comparatively high temperatures and only moderate values for the interaction pa-
rameters. For the same reason, while the DMFT can also be applied to realistic
materials with additional orbital degrees of freedom, cluster mean-field extensions
are presently restricted to single-orbital models. Also, questions concerning critical
properties of phase transitions are out of reach.

Another phenomenon frequently occurring in correlated electron systems, which
cannot be handled by both theories, are quantum phase transitions. This class of
phenomena typically involves long-ranged two-particle fluctuations and very low
temperatures, which are of course beyond the scope of any computational resource
presently available.

The roadmap for further developments and investigations is thus obvious. We
need more efficient algorithms to calculate dynamical properties of complex quan-
tum impurity systems, preferably at low temperatures and T = 0. First steps into
this direction have already been taken through the development of new Monte Carlo
algorithms [80, 81] which show much better performance than the conventional
Hirsch-Fye algorithm and are also sign-problem free [82].

With more efficient algorithms also new possibilities for studies of properties of
correlated electron systems arise: Studies of f -electron systems (heavy Fermions)
with DFT+DMFT or even DFT+cluster mean-field theories; low-temperature prop-
erties of one- or two-dimensional correlated electron systems with large interac-
tion parameter; critical properties and properties in the vicinity of quantum phase
transitions.

This collection of examples shows that, although the DMFT and its cluster ex-
tensions are already well established, the list of possible applications and improve-
ments is large and entering into the field by no means without possible reward.
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