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The problem of autocorrelations in quantum Monte Carlo simulations of electron-
phonon models is analysed for different algorithms in the framework of the Holstein
model. By revisiting several cases found in the literature, it is demonstrated that
neglecting autocorrelations can lead to an underestimation of statistical errors by
orders of magnitude and hence to incorrect results. A modified algorithm for certain
Holstein-type models, free of any autocorrelations, is discussed.

11.1 Introduction

The interaction of electrons with lattice degrees of freedom plays an important role
in many materials, including conventional and high-temperature superconductors,
colossal-magnetoresistance manganites, and low-dimensional nanostructures. Over
more than two decades, lattice and continuum quantum Monte Carlo (QMC) sim-
ulations have proved to be a highly valuable tool to investigate the properties of
coupled fermion-boson models in condensed matter theory.

Despite the recent development of other numerical methods (e.g., the density
matrix renormalization group, see Part IX, QMC approaches remain in the focus
of research due to their versatility. Especially in the early days of computational
physics, they outperformed alternative memory-consumptive methods, and this of-
ten remains true today, e.g., in more than one dimension or at finite temperature.
Apart from stand-alone applications, QMC algorithms also serve as solvers in the
context of cluster methods (see Chap. 16). Finally, they represent the most reliable
techniques for several classes of problems, e.g., three-dimensional (3D) spin sys-
tems (see Chap. 10).

A general introduction to the concepts common to many QMC methods has
been given in Chap. 10. In this chapter, we focus on the issue of autocorrelations,
which turns out to be of particular importance in the case of coupled fermion-boson
models due to the different physical time scales involved, and the resulting problems
in finding appropriate updating schemes. Quite disturbingly, some recent as well as
early work seems to be unaware of the problem. To illustrate this point, we re-
enact some specific QMC studies from the literature using the same methods, and
demonstrate that statistical errors are severely underestimated if autocorrelations are
neglected.
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This chapter is organized as follows. In Sect. 11.2, we introduce the model con-
sidered, and Sect. 11.3 gives a brief description of the algorithms used. Numerical
evidence for the problem of autocorrelations is presented in Sect. 11.4, whereas
their origin and a possible solution are the topic of Sect. 11.5. We end with our
conclusions in Sect. 11.6.

11.2 Holstein Model

We consider the Holstein model which is defined by the Hamiltonian

H = −t
∑
〈i,j〉σ

c†i,σcj,σ +
ω0

2

∑
i

(p̂2
i + x̂2

i )− α
∑
i,σ

n̂i,σx̂i . (11.1)

Here c†i,σ creates an electron with spin σ at site i, and n̂i =
∑

σ n̂i,σ with n̂i,σ =
c†i,σci,σ. The phonon degrees of freedom at site i are described by the momentum
p̂i and coordinate (displacement) x̂i of a harmonic oscillator. The model parameters
are the nearest-neighbor hopping amplitude t, the Einstein phonon frequency ω0 and
the electron-phonon coupling α. We shall also refer to the spinless Holstein model,
which can be obtained from (11.1) by dropping spin indices and sums over σ. We
consider D-dimensional lattices with V = ND sites and periodic boundary con-
ditions. A useful dimensionless coupling constant is λ = α2/(ω0W ) = 2EP/W ,
where W = 4tD and EP denote the free bandwidth and the polaron binding energy,
respectively.

The Holstein model provides a framework to study numerous problems associ-
ated with electron-phonon interaction, such as polaron formation, superconductivity
or charge-density-wave formation. Besides, more complicated models such as the
Holstein-Hubbard model share the same structure of the phonon degrees of freedom
and the electron-phonon interaction, so that the following discussion in principle
applies to a wider range of problems.

11.3 Numerical Methods

To set the stage for the discussion of autocorrelations, we provide here a brief sum-
mary of the most important details of the different QMC algorithms employed. For
details we refer the reader to [1, 2] and Chap. 10.

11.3.1 One-Electron Method

For the one-electron case (the polaron problem), we make use of the world-
line method originally proposed in [3, 4]. Dividing the imaginary-time axis [0, β]
(β = (kBT )−1 is the inverse temperature) into intervals of length Δτ = β/L � 1



11 Autocorrelations in QMC Simulations of Electron-Phonon Models 359

according to the Suzuki-Trotter approximation (see Chap. 10), the result for the
fermionic3 partition function reads

Zf,L =
∑
{rτ}

wf({rτ}) , wf({rτ}) = e
∑L

τ,τ′=1 F (τ−τ ′)δrτ ,r
τ′

L∏
τ=1

I(rτ+1 − rτ ) ,

(11.2)

with the fermionic weight wf. The fermion world-lines, specified by a position vec-
tor rτ on each time slice,4 are subject to periodic boundary conditions both in real
space and imaginary time, and the sum in (11.2) is over all allowed configurations.

The retarded electron (self-)interaction due to electron-phonon coupling is de-
scribed by the memory function

F (τ) =
ω0Δτ3α2

4L

L−1∑
ν=0

cos(2πτν/L)
1− cos(2πν/L) + (ω0Δτ)2/2

, (11.3)

whereas electron hopping is manifest in the Fourier-transformed lattice propagator

I(r) =
1
V

∑
k

cos(k · r) e2Δτt
∑D

ζ=1 cos kζ . (11.4)

The system described by the partition function (11.2) is characterized by an
additional dimension (imaginary time), as well as by a complicated retarded (i.e.,
non-local in imaginary time) interaction. As first shown in [3], it may be simulated
by means of Markov Chain MC in combination with the Metropolis algorithm [5].
The updating consists in choosing a random time slice τ0 ∈ [1, L] and a random
spatial component ζ0 ∈ [1, D], and proposing a local change r′τ0,ζ0 = rτ0,ζ0 ± 1,
which is to be accepted with probability min[1, wf(r′

τ )/wf(rτ )].

11.3.2 Many-Electron Method

A frequently used method for simulations of many-electron systems is the grand-
canonical determinant QMC method [2], introduced for interacting fermions in
Chap. 10. The corresponding grand-canonical Hamiltonian reads H − μ

∑
i,σ n̂i,σ ,

where μ denotes the chemical potential. For the Holstein model, the integration over
the fermionic degrees of freedom can be done exactly, whereas for the Holstein-
Hubbard model with electron-electron interaction it is done by means of MC sam-
pling over Hubbard-Stratonovitch fields (see Chap. 10).

In the original approach of [2], the Trotter approximation to the partition func-
tion reads

3 The bosonic part can be calculated exactly [4] and is therefore not considered.
4 We use bold symbols to indicate the vector character of a quantity. The exact definition of

the components should be clear from the context.
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ZL = const.
∫
Dx

∏
σ

det
[
(1 +

L∏
τ=1

e−ΔτK
σ

e−ΔτI
σ({xτ})

]
︸ ︷︷ ︸

wf({xτ})

e−ΔτSb({xτ})

︸ ︷︷ ︸
wb({xτ})

,

(11.5)

with Kσ , Iσ denoting the matrix representations of the spin-σ component of the
first respectively last term (including the minus signs) in Hamiltonian (11.1).

The bosonic action is given by

Sb({xτ}) =
V∑
i=1

L∑
τ=1

[
ω0

2
x2
i,τ +

1
2ω0Δτ2

(xi,τ − xi,τ+1)
2

]
=

L∑
i=1

xT
iAxi .

(11.6)

Here the sampling is over all possible phonon configurations {xτ} of the bosonic
degrees of freedom. In the simplest approach, we select a random time slice
τ0 ∈ [1, L] and a random lattice site i0 ∈ [1, V ], and propose a modified phonon
configuration x′

i0,τ0
= xi0,τ0 ± δx. The latter is then accepted with probability

min[1, wf({x′
τ})wb({x′

τ})/wf({xτ})wb({xτ})]. The change δx is determined by
requiring a reasonable acceptance rate. An improved (global) updating scheme will
be discussed below.

11.4 Problem of Autocorrelations

We now come to a discussion of autocorrelations, which are analyzed using the
binning and Jackknife methods introduced in Chap. 4. As shown in there, the inte-
grated autocorrelation time τO,int associated with an observableO can be estimated
by plotting the statistical error as obtained from a binning/Jackknife analysis as a
function of binsize k, and deducing the binsize required for “saturation”. The in-
crease of the error with increasing k demonstrates the fact that unjustified neglect of
autocorrelations leads to an underestimation of errors and hence to incorrect results.
Explicitly, the statistical error ΔO for a given number of (correlated) measurements
Nmeas increases with τO,int as (ΔO)2 ∝ 2τO,int/Nmeas.

11.4.1 One-Electron Case

As a specific case, we consider world-line simulations of the Holstein polaron, i.e.,
the Hamiltonian (11.1) with a single electron. This problem has first been studied
by means of QMC in [3]. The same method has also been used in [6] as well as
in [7], and its generalizations represent a versatile tool for studies of more general
systems with one or two fermions. In [3, 6], the authors skipped L (the number of
time slices) steps between successive measurements.

We take λ = 1, close to the critical coupling where the small-polaron crossover
occurs in the adiabatic regime [8], leading to the occurrence of critical slowing down
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Fig. 11.1. Statistical error of the fermionic total energy Ef as a function of binsize k, normal-
ized to the result for the maximum binsize, obtained with the world-line method [4]. Results
are for the Holstein model with one electron, N = 32 and λ = 1

for ω0/t � 1 [7]. To compare with [4], we choose the same parameters βt = 5,
L = 32, N = 32 and ω0/t = 1.

In Fig. 11.1, we show results for the statistical error of the fermionic contribution
to the total energy5 as obtained from a binning analysis with variable binsize k.
The uncertainty of the binning error increases with decreasing binsize, leading to
fluctuations. Note the logarithmic scale on the abscissa.

Skipping Nskip = L = 32 steps between measurements, we find for the 1D case
that the statistical error increases roughly by a factor of 7, i.e., it is substantially
larger than the estimate obtained from binning with k = 1, which corresponds to
the usual procedure to calculate statistical errors from uncorrelated data.

The situation is slightly worse in three dimensions, with the real error being
again about an order of magnitude larger. This may be related to the local updating,
as the relative difference between two entire successive world-line configurations is
smaller in higher dimensions if only a single coordinate rτ0,ζ0 is changed.

Finally, we also consider the more demanding 2D case of low temperature βt =
15 and small phonon frequency ω0/t = 0.1, which has been studied using the same
method in [6, 7]. As discussed below, the smaller values of ω0 and Δτ give rise
to substantially longer autocorrelation times. Indeed, despite the larger number of
skipped steps Nskip = L = 300, convergence of the statistical error is slower as a
function of k.

An alternative algorithm free of autocorrelations, which can also be applied to
the many-electron case, has been proposed in [9] and will be discussed in Sect. 11.5.

11.4.2 Many-Electron Case

It is important to point out that the occurrence of long autocorrelation times is
not restricted to the one-electron case. The problem is at least as serious for the

5 Autocorrelation times are similar for other observables.
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two-electron model [7], and accurate simulations in the many-electron case turn out
to be unfeasible in many cases [10] due to autocorrelations times exceeding 104 MC
steps.

To illustrate this point, we consider two parameter sets for the Holstein model at
half filling (one electron per lattice site), representative of the work in [11] and [12].
We use the finite-temperature determinant QMC method, although the results of [11]
have been obtained using the projector method (see Chap. 10; autocorrelation times
are usually comparable). Owing to the substantially larger computational effort as
compared to one-electron calculations, we were not able to obtain converged results.
Therefore, and to compare different parameters, we show in Fig. 11.2 the statistical
error of the bosonic energy Eb = (ω0/2)〈∑i(p̂

2
i + x̂2

i )〉, normalized to the error
for binsize k = 1. The definition of λ in terms of the coupling constant g used in
[11, 12] reads λ = 2g2/(ω0W ), and we have used Nskip = 1.

The strong increase of statistical errors as a function of binsize in Fig. 11.2 illus-
trates the substantial autocorrelations in such simulations. No saturation can be seen
in our data even for the largest binsize k > 104 shown (cf Fig. 11.1) and, in contrast
to the world-line method of Sect. 11.3, skipping thousands of steps is usually not
practicable in the many-electron case. In our opinion, this suggests that reliable re-
sults for the Holstein model in the many-electron case are extremely challenging to
obtain using the determinant QMC method, and the situation becomes even worse
for ω0/t < 1. Similar conclusions can be drawn about the spinless Holstein model,
models with phonon modes of different symmetry [10], as well as Holstein-Hubbard
models with local and/or non-local Coulomb interaction [13].

Despite these difficulties, some early work [12] as well as more recent pa-
pers, e.g., [11, 14], seem to be unaware of this problem. This issue becomes even
more critical if dynamical quantities such as the one-electron spectral function are
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Fig. 11.2. Statistical error of the bosonic energy Eb as a function of binsize k, normalized
to the result for k = 1, obtained with the determinant QMC method [2]. Results are for the
Holstein model at half filling n = 1, βt = 10 and ω0/t = 1. Errorbars are not shown
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calculated. The reason lies in the necessity to perform an analytical continuation to
real frequencies, which turns out to be an extremely ill-conditioned problem (see
Chap. 12) whose solution – obtained for example by the Maximum Entropy method
[15, 16] – depends crucially on the statistical noise of the input data (the imaginary-
time Green function). Any underestimation of errors, or the neglect of significant
autocorrelations between measurements on different time slices can lead to incor-
rect results. Furthermore, meaningful statistical errors for dynamical properties are
difficult to obtain, and are often not reported at all.

11.5 Origin of Autocorrelations and Principal Components

To understand the problem and to find solutions, it is instructive to look at the physi-
cal origin of autocorrelations in more detail [9]. To this end, let us consider the non-
interacting limit (t = α = 0), in which the partition function ZL ∼

∫ Dx e−ΔτSb .
As discussed in [17], the difficulties encountered in QMC simulations, even for
the simple case of a single (N = 1) quantum-mechanical harmonic oscillator, re-
sult from the large condition number (the ratio of largest to smallest eigenvalue)
of the matrix A in the bosonic action Sb (11.6). For Δτ � 1, this number scales
as (ω0Δτ)−2 [17], causing autocorrelation times to grow quadratically with de-
creasing phonon frequency or increasing number of Trotter slices L. This is very
unfortunate, as small phonon frequencies are frequently encountered in materials of
interest, and small values of Δτ are desirable to control the Trotter error.

The physical reason for these correlations becomes obvious if we look at the
free bosonic action (11.6), which is proportional to the energy of a given phonon
configuration. The first term of Sb corresponds to the kinetic energy of the oscilla-
tors, and the second term describes a coupling in imaginary time – a pure quantum-
mechanical effect. Due to this interaction, a large change of a single phonon de-
gree of freedom, xi0,τ0 say, is very unlikely to be accepted due to the associated
large energy change ∼ (ω0Δτ)−1. However, using only small changes Δx, suc-
cessive phonon configurations will be highly correlated. This behavior carries over
to the interacting case with one or many electrons, as well as to more general
models.

The situation is not completely obvious for the world-line algorithm, because
the phonon degrees of freedom are integrated out analytically. However, the retarded
self-interaction entering simulations in terms of F (τ) (11.3) gives rise to the same
problem. Moreover, for large α (strong coupling), electronic hopping becomes very
unlikely (F (τ) ∼ α2), causing the acceptance rate to approach zero and thus again
giving rise to autocorrelations.6 The situation is expected to be slightly better for the
continuous-time variant of the algorithm [18] because hopping events may occur at
arbitrary points in imaginary time.

6 In the world-line algorithm, the discrete step size used for updates cannot be reduced
below one lattice constant.
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We now discuss a solution for the problem of autocorrelations in simulations of
certain Holstein-type models. It is based on a transformation of the bosonic action
to a so-called principal-component representation [9], which is obtained by writing

Sb =
V∑
i=1

xT
iAxi =

V∑
i=1

xT
iA

1/2A1/2 xi =
V∑
i=1

ξT
i · ξi , ξi = A1/2xi , (11.7)

with the aforementionedL×L matrix A, and the principal components ξ, in terms of
which Sb becomes diagonal. Using this representation, the bosonic weight reduces
to a Gaussian distribution, wb = exp(−Δτ

∑
i ξ

T
i ·ξi). For α = 0, sampling can be

done exactly in terms of the new variables ξi,τ using the Box-Muller method [19].
To further illustrate the origin of autocorrelations, as well as the transformation

to principal components, we show in Fig. 11.3(a) a schematic representation of the
distribution of values for a pair (p, p′) of two phonon momenta (shaded area). The
elongated shape originates from the strong correlations mediated by Sb, and requires
a transition A → B between two points in phase space to be performed in many
small steps, leading in turn to long autocorrelation times.

In contrast, the axes of the principal components ξ, ξ′ in Fig. 11.3(b) lie along
the axes of the ellipse, and a single MC update of ξ′ is sufficient to get from A to B.
Although we have sketched the more general case, the distribution after the exact
transformation (11.7) – under which wb becomes a Gaussian – is actually circular
in the new variables ξ, ξ′ (dashed line in Fig. 11.3(b)).

Whereas exact sampling without autocorrelations is straightforward in the non-
interacting case α = 0, the dependence of wf on the phonon coordinates xi,τ for
α > 0 does not permit a simple separation of bosonic and fermionic contributions
in the updating process. Therefore, it has been proposed [9] to base the QMC algo-
rithm on the Lang-Firsov transformed Hamiltonian, which has no explicit coupling
of x to electronic degrees of freedom. To this end, it is advantageous to sample the
phonon momenta p instead of x, as the former depend only weakly on the elec-
tronic degrees of freedom [9], which enables us to treat the fermionic weight wf

B

A

(a) p

Bξ

p’

ξ’

A

(b)

Fig. 11.3. Schematic illustration of the transformation from phonon momenta p, p′ to princi-
pal components ξ, ξ′ (see text)
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as a part of the observables, and renders the MC sampling exact and rejection-free
(every new configuration is accepted). Consequently, we avoid a warm-up phase,
autocorrelations and the computationally expensive evaluation of wf in the updating
process.

The method outlined here has been successfully applied to the polaron [9, 20],
bipolaron [21], and the (spinless) many-polaron problem [22]. Unfortunately, at-
tempts to generalize this approach to the Holstein-Hubbard model, or the spinful
Holstein model, have not been successful [13]. Although the Lang-Firsov transfor-
mation improves the sampling of phonon configurations via principal components,
the complex phase in the transformed hopping term [9] induces a severe sign prob-
lem [13, 22]. Despite encouraging acceptance rates, this global updating scheme
does not permit reliable statements concerning a possible decrease of autocorrela-
tion times.

11.6 Conclusions

By revisiting several QMC studies of Holstein models carried out in the past we
have illustrated the severe problem of autocorrelations in simulations of electron-
phonon models, in accordance with [10]. In particular, we have shown that statisti-
cal errors can be underestimated by orders of magnitude if autocorrelations are ne-
glected. This is particularly dangerous when calculating dynamic properties using,
e.g., Maximum Entropy methods, where meaningful errorbars can usually not be
obtained, introducing substantial uncertainties into the results. Long autocorrelation
times can also lead to critical slowing down as well as non-ergodic sampling during
finite-time MC runs – both phenomena being additional sources for underestimated
statistical errors – thereby also affecting the expectation values of observables.

Similar to the infamous minus-sign problem (see Chap. 10), autocorrelations
in QMC simulations seem to result from the fact that one is dealing with an ill-
conditioned physical problem. As a consequence, their appearance is not restricted
to the Holstein-type models considered here (see Chap. 10), or the particular QMC
methods employed. Besides, autocorrelations even occur in simulations of classical
systems (Chap. 4), although the problem is usually not as substantial as for coupled
fermion-boson systems. This general observation strongly suggests that great care
has to be taken when performing any MC simulations in order to avoid incorrect
results.

Significant advances in terms of efficiency and applicability can be achieved by
constructing a physically motivated global updating scheme. One such possibility
has been presented here in terms of a transformation to principal components. How-
ever, a general solution to overcome the problem of autocorrelations in simulations
of electron-phonon models is not yet known.
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