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Abstract. The paper discusses the benefit of a Maximum Likelihood Linear
Transform (MLLT) applied on selected groups of covariance matrices. The matri-
ces were chosen and clustered using phonetic knowledge. Results of experiments
are compared with outcomes obtained for diagonal and full covariance matrices
of a baseline system and also for widely used transforms based on Linear Dis-
criminant Analysis (LDA), Heteroscedastic LDA (HLDA) and Smoothed HLDA
(SHLDA).

1 Introduction

The absolute majority of current LVCSR systems work with acoustic models based on
hidden Markov Models (HMMs). Output distributions tied to the states of the model
and expressed by multidimensional Gaussian distributions (simply by ”Gaussians”) or,
more exactly, by the mixtures of Gaussians are considered to be a fundamental attribute
of this concept. The application of a mixture of Gaussians for modeling an output distri-
bution results from an effort to both catch the possible non-Gaussian nature of density
functions which are associated with a particular state and model mutual correlations of
elements in feature vectors.

Since ideally all output distributions should be computed for each incoming feature
vector, it is useful notably for real-time applications to reduce the huge amount of com-
putations which increase with a size of the dimension of a feature space and also with
the number of Gaussians. To reduce the computation burden associated with evaluating
output distributions, we can apply some of the following techniques:

– To execute decorrelation of feature vectors and to use diagonal rather a full covari-
ance matrices (CMs) for the modeling of output distributions. For these purposes,
usually some orthogonal transform based on the DCT (Discrete Cosine Transform)
or the NPS (Normalization of Pattern Space) is applied [1].
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– To reduce the dimension of pattern space using the projection of feature vectors
from the original space to the space with lower dimension. A typical approach is
based on PCA (Principal Component Analysis), LDA (Linear Discriminant Analy-
sis) or HLDA (Heteroscedastic LDA).

– To change over from the triphone- to the monophone-based structure of HMMs
where an influence of suppressed dependencies among features is alleviated mainly
by enhancing the number of Gaussians in the individual states of monophone mod-
els. LVCSR systems with a triphone-based structure work typically with 30 up to
120 thousand Gaussians, whereas systems working with monophone-based struc-
ture use from 5 to 15 thousand Gaussians [2].

Naturally, there are many other clever approaches which speed up computations or
choose only relevant states with associated Gaussians for evaluations. Generally, it is
possible to say that both the pass from the triphone- to the monophone-based concept
on the one hand and the various transformation techniques on the other hand decrease
the number of computations, but they simultaneously bring about increasing the word
error rate (WER) in comparison with using full CMs. Moreover, in case of transforms
applied in a level of feature vectors, it is usually unfeasible to find the only one trans-
formation which could decorrelate all elements of feature vectors of all states.

Recently, new approaches have been designed which alleviate the above-mentioned
increasing the WER, while simultaneously preserving a relatively high computation ef-
ficiency. These techniques, known as Maximum Likelihood Linear Transform (MLLT)
[3], [4] and Semi-Tied Covariance (STC) [7], suppose one transformation matrix to be
tied with a group of covariance matrices belonging to (an) individual state(s) of a HMM
(i.e. a set of transform matrices is used for the accomplishment of the transformation).

This paper describes experiments which were performed using the MLLT applied on
selected groups of CMs (i.e. multiple application of a MLLT principle), which should
be decorrelated. The covariance matrices were chosen and clustered using phonetic
knowledge. The results of experiments are compared with outcomes obtained for diag-
onal and full covariance matrices and also for transforms based on LDA, HLDA and
SHLDA (Smoothed HLDA) [5].

2 Maximum Likelihood Linear Transform (MLLT)

Current ASR systems use HMMs with continuous parameters which are represented for
each state by a Gaussian Mixture Model (GMM). A standard GMM with parameters
given by Θ = {cj,μμμj ,ΣΣΣj}M

j=1 it is of the form

p(x|Θ) =
M∑

j=1

cj N(x;μμμj ,ΣΣΣj), (1)

where M is the number of components in a mixture, cj is the j-th component weight
satisfying requirements: cj ≥ 0,

∑M
j=1 cj = 1, μμμj is the mean value of the j-th

component and ΣΣΣj is a square covariance matrix of the j-th component of the rank n.
As was mentioned in Section 1, almost all currently used systems work with the CM
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of a diagonal form. In comparison with a full covariance concept, this approach has
an evident advantage especially owing to lower computational and storage burden and
also due to a robust parameter estimation. However, the diagonal concept of CMs can
be fully beneficial only on condition that elements of the feature vector are mutually
independent. The MLLT introduces a new form of a CM which allows sharing a few
full covariance matrices over many distributions. Instead of having a distinct CM for
every component in the recognizer, each CM consists of two elements: a non-singular
linear transformation matrix W T shared over a set of components, and the diagonal
elements in the matrix ΛΛΛj . The inverse covariance (precision) matrix ΣΣΣ−1

j is then of
the form

ΣΣΣ−1
j ≈ WΛΛΛjW

T =
n∑

k=1

λk
j wkwT

k , (2)

where ΛΛΛj is a diagonal matrix with entries ΛΛΛj = diag(λλλj) = diag(λ1
j , λ

1
j , . . . , λ

n
j ) and

wT
k is the kth row of the transformation matrix W T. Estimations of model parameters

could be performed by the maximum likelihood approach. We look for such a set of
parameters Θ̂, which satisfies the equation

Θ̂ = argmax
Θ

N∑

i=1

log p(xi|Θ). (3)

The solution of this equation cannot be determined in an analytical form. However, we
can use an iterative procedure based on the EM algorithm.

2.1 Levels of CMs Clustering

The MLLT (or perhaps better the multiple-MLLT) proposed in this article supposes the
transform matrix W T to be generally searched for each of R selected groups of CMs.
For a better insight into this problem Fig. 1 illustrates examples of using transformation
matrices W T

r in a HMM structure of an ASR system. A diagram shows five levels of
a tree structure based on a successive division of a whole set of GMMs. In fact, this
division is based on phonetic knowledge and supposes the 3-state HMM of a triphone
to be used as a basic unit for acoustic modeling.

It is evident that the whole acoustic model ”•−•+•” consists of a set of particular tri-
phone models ”•−?+•”. In a simplified way all triphones with the same centre phoneme
can be considered to be a generalized model of a monophone, e.g. the phoneme ”A”
depicted in the form ”•−A+•”. Considering different frequency of occurrence of indi-
vidual triphones in training data it is pertinent owing to a robust estimation of statistics
of less frequent units to cluster phonetically similar states of models (usually using
a phonetic decision tree). It means that each state of one generalized monophone can
include several clustered representatives each of them is described by an individual
mixture (GMM) equipped with M components. Individual components of a GMM can
be described by probability density functions of the form N(x;μμμΦ(α) β γ ,ΣΣΣΦ(α) β γ) ,
where x is the feature vector, μμμΦ(α) β γ , is the mean value and ΣΣΣΦ(α) β γ is the covari-
ance matrix of the γ-th component of the β-th representative (mixture) of the state α of
the phoneme Φ.
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Fig. 1. Levels of CMs clustering

As was described above there are basically five different levels of CMs clustering,
which are indicated in Fig. 1:

– MLLT (1): There is only one transformation matrix for all components of all
GMMs (mixtures) of all states of all generalized monophones.

– MLLT (2): There is a separate transformation matrix for all components of all
mixtures of all states of an individual generalized monophone (it means that each
generalized monophopne has its own transformation matrix).

– MLLT (3): In this case, a separate transformation matrix is connected to all com-
ponents of all mixtures belonging to an individual state of a given generalized
monophone.

– MLLT (4): There is a separate transformation matrix for all components of a given
mixture which belongs to an individual state of a given generalized monophone.

– MLLT (5): Each component in all mixtures of HMMs has its own transformation
matrix. This approach is equivalent to the case of GMMs equipped with the full
CMs, because each symmetric positive definite matrix has clear decomposition to
the diagonal and transformation matrices (eigen values and eigen vectors).

2.2 Practical Application of the MLLT for Different Levels of CMs Clustering

Let us suppose R groups of CMs to be selected in a given level of clustering. It means
that each group of CMs will share its own transformation matrix W T

r , r = 1, . . . , R.
As was mentioned above, to estimate parameters of HMMs including parameters of
transformation matrices W T

r , r = 1, . . . , R, we will have to use the EM algorithm.
This algorithm supposes the construction of an optimization function Q(Θ̄̄Θ̄Θ,ΘΘΘ), which
can be expressed in the form [6]

Q(Θ̄̄Θ̄Θ,ΘΘΘ) =
R∑

r=1

∑

(s,j)∈Ξ(r)

∑

t

γsj(t) log
[
csj N(o(t);μμμsj ,ΛΛΛsj , W

T
r )

]
=

=
R∑

r=1

∑

(s,j)∈Ξ(r)

∑

t

γsj(t){log csj − n

2
log(2π) +

1
2

log det
(
W r ΛΛΛsj W T

r

)
− (4)

−1
2

(o(t) − μμμsj)
T

W r ΛΛΛsj W T
r (o(t) − μμμsj)},
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where Θ̄̄Θ̄Θ = {Θ̄r}R
r=1 is a set of parameters of the old and ΘΘΘ = {Θr}R

r=1 parameters
of the new system. Let us remark that Θr =

{
csj ,μμμsj ,ΛΛΛsj , W

T
r

}
(s,j)∈Ξ(r) have their

own transformation matrix W T
r . Ξ(r) is a set of couples (s, j), where s corresponds

to the state and j is an index of a component. In fact s matches the state of an original
triphone model which is, in a sense of above described clustering process, consecutively
clustered in various ways (Note: Because each state of an original triphone model was
always represented by one mixture (GMM), we can alternatively see the index s as
a label of a concrete mixture in the system of all mixtures representing the whole HMM
of a task); γsj(t) is the a posteriori probability of the j-th component and the s-th state
given an observation of the feature vector o(t) and the set of parameters ΘΘΘ; ΛΛΛsj is the
diagonal matrix, μμμsj is the mean value and csj is the a priori probability of the s-th state
and the j-th component.

Let us have a look at the set Ξ(r) from the point of view of the variant MLLT (2). In
this case the R would be equal to the number of phonemes (in the phoneme alphabet)
and one set Ξ(r) would consist of all components of all states which are connected with
all triphones containing the same centre phoneme.

Searching for maximum of Q(Θ̄̄Θ̄Θ,ΘΘΘ) respecting csj , μμμsj and ΣΣΣsj results in expected
equations

ĉsj = [
∑

t

γsj(t)] [
∑

j

∑

t

γsj(t)]−1 (5)

μ̂μμsj = [
∑

t

γsj(t)o(t)] [
∑

t

γsj(t)]−1 (6)

Σ̂ΣΣsj = [
∑

t

γsj(t)(o(t) − μ̂μμsj) (o(t) − μ̂μμsj)
T] [

∑

t

γsj(t)]−1 (7)

Maximization of (4) simultaneously with respect to ΛΛΛsj and W T
r is possible only in

quite trivial cases. For that reason, the maximum has to be estimated by a special iter-
ative procedure [6], [7]. This technique consists firstly in optimization of ΛΛΛsj at fixed
W T

r and in the next step, on the contrary, the W T
r is optimized at the fixed ΛΛΛsj , which

results in the estimate

Λ̂ΛΛsj =
[
diag (W T

r Σ̂sjW r)
]−1

, (8)

where (s, j) ∈ Ξ(r), Σ̂ΣΣsj is the estimate of a covariance matrix of the j-th component
and the s-th state. An iterative procedure for an estimate of an individual row of the
transformation matrix W T

r can be written in the form of

(w̃(r)
k )T = (c(r)

k )T (G(r)
k )−1

√
T

(c(r)
k )T(G(r)

k )−1(c(r)
k )

, (9)

where
G

(r)
k =

∑

(s,j)∈Ξ(r)

∑

t

λ̂k
sjγsj(t)

[
o(t) − μ̂μμsj

] [
o(t) − μ̂μμsj

]T
, (10)

k = 1, . . . , n; n is a dimension of the feature space, T is a number of speech feature
vectors, λ̂k

sj is the k-th diagonal element of the matrix Λ̂ΛΛsj , (w̃(r)
k )T is the estimate of
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the k-th row of the transformation matrix W T
r , (c(r)

k )T is the k-th row of the cofactor
matrix to the transformation matrix W T

r , γsj(t) is the a posteriori probability of the
j-th component and the s-th state given an observation of a feature vector o(t) at the
time t and a set of parameters ΘΘΘ. Let us describe one pass through the modified EM
algorithm:

1. Using up-to-date set of parameters we compute a posteriori probabilities γsj(t) for
all components j, all states s and all times t (this point corresponds to a standard
step of the Baum-Welch procedure).

2. On the basis of γsj(t) we estimate for all j and s a priori probabilities ĉsj (5), mean
values μ̂μμsj (6) and covariance matrices Σ̂ΣΣsj , see (7).

3. Using current transformation matrices W T
r we compute new estimates of all diag-

onal matrices Λ̂̂Λ̂Λsj according to (8).
4. We estimate all transformation matrices W T

r , r = 1, . . . , R. To accomplish this
step, a special iterative procedure must be run. For individual transformation ma-
trices we compute:

– the matrices G
(r)
k according to (10), where k = 1, . . . , n and n is the dimension

of a feature space,
– the cofactor matrix W COF

r to the current estimate of the transformation matrix
W T

r ,

– the individual rows of the transformation matrix W̃
T
r according to (9).

Then we update W T
r and continue the iterative procedure from the point of 4a)

until the convergence is reached.
5. We replace the old estimate of the parameters Θ̄̄Θ̄Θ by the new ΘΘΘ ones and repeat by

the step 1 until the convergence of the EM algorithm is reached.

As soon as the transform matrices W T
r , r = 1, . . . , R, are estimated, we can use

them for transformation of feature vectors o(t) to the new feature space. Generally, the
feature vector o(t) should be put as many transformations

o(t)(r)(t) = W T
r o(t), for r = 1, . . . , R, (11)

as many groups R of CMs are in a given task clustered. The resulting likelihood func-
tion log N(o(t); W T

r μμμsj ,ΛΛΛ
−1
sj ) must then be normalized by a likelihood compensation

term, which is proportional to log detW T
r .

3 Results of Experiments

All the experiments were performed using a speech data set of telephone quality. The
corpus consists of Czech read speech transmitted over a telephone channel. One thou-
sand speakers were asked to read various sets of 40 sentences. The digitization of an
input analog telephone signal was provided by a telephone interface board DIALOGIC
D/21D at 8 kHz sample rate and converted to the mu-law 8 bit resolution. The telephone
test set consisted of 100 sentences randomly selected from utterances of 100 different
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Table 1. Results of comparative experiments

# of transf. matrices WER[%] #of estimated parameters

DIAG - 14.03 ≈2.33M

LDA dim 26 1 13.74 ≈1.68M

HLDA dim 25 1 13.81 ≈1.62M

SHLDA dim 25 1 13.96 ≈1.62M

MLLT(1) 1 11.68 ≈2.33M

MLLT(2) 43 11.64 ≈2.38M

MLLT(3) 129 11.46 ≈2.50M

MLLT(4) 4044 11.29 ≈7.57M

FULL - 9.18 ≈22.70M

speakers who were not included in the telephone training database. The lexicon in all
test tasks contained 475 different words. Since several words had multiple different
phonetic transcriptions, the final vocabulary consisted of 528 items. There were no OOV
words.

The front-end of the ASR system is based on the MFCC parameterization. Feature
vectors consisted of 12 static + 12 delta + 12 delta-delta = 36 coefficients (including the
zeroth cepstral coefficient representing the signal energy) were computed with a frame
spacing of 10ms. The number of coefficients in a feature vector and the number of band-
pass filters (f =15) applied in the frequency axis (0÷4kHz) is a result of a thorough
analysis and extensive experimental works in which robust setting of the MFCC-based
parameterization was searched for [6]. Cepstral mean normalization (CMN) was used
to reduce the effect of constant channel characteristics. No variance or vocal tract length
normalization (VTLN) was applied in these experiments.

The basic speech unit in all the experiments was a triphone. Each individual triphone
is represented by a 3-state HMM; each state is provided by a mixture of 8 components
of a multivariate Gaussians. In all recognition experiments a language model based on
zero-grams was applied so that the influence of individual transforms could be better
judged. For that reason, the perplexity of the task was 528.

The goal of following experiments was to explore how an application of different lev-
els of CMs clustering influences recognition results (WER). In order to judge a benefit
of the Maximum Likelihood Linear Transform used at different levels of CMs cluster-
ing, we also performed comparative experiments on a standard baseline ASR system
with CMs of the diagonal form (DIAG) and with the system working with the full CMs
(FULL). In addition, several comparative tests were also made with widely used linear
transforms based on LDA, HLDA and SHLDA. In these experiments we searched for
the lowest dimension of the feature space which yielded lower or equal WER than the
solution based on DIAG. In the case of SHLDA we set the smoothing factor α on a rec-
ommended value, which is α = 0.8 [5]. The Results of all the experiments are itemized
in Table 1 together with information about the number of parameters that have to be
estimated.
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4 Conclusions

The Maximum Likelihood Linear Transform (MLLT) applied at different levels of co-
variance matrices clustering (i.e. multiple applications) is a very effective technique of
parameter decorrelation, which overcomes the widely used Linear Discriminant Anal-
ysis (LDA), Heteroscedastic LDA (HLDA) and also SHLDA (Smoothed HLDA) and
approaches the application with the full CMs. However, results shown in Table 1 in-
dicate that the growth of a number of transform matrices also causes the growth of
a number of parameters that should be estimated, as well as the increase in the number
of computations, especially during enumeration of output distributions. Therefore, the
tradeoff between computational burdens (e.g. a case of real time applications) and the
WER is necessary. We can also consider a different concept of CMs clustering which
would not be based on phonetic knowledge but rather directly on real data, i.e. the ”ge-
ometrical” form of covariance matrices. This concept could bring the same or better
results simultaneously with decreasing the number of transformation matrices.
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