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Abstract. Innermost context-sensitive rewriting has been proved use-
ful for modeling computations of programs of algebraic languages like
Maude, OBJ, etc. Furthermore, innermost termination of rewriting is
often easier to prove than termination. Thus, under appropriate con-
ditions, a useful strategy for proving termination of rewriting is trying
to prove termination of innermost rewriting. This phenomenon has also
been investigated for context-sensitive rewriting (CSR). Up to now, only
few transformations have been proposed and used to prove termination
of innermost CSR. In this paper, we investigate direct methods for prov-
ing termination of innermost CSR. We adapt the recently introduced
context-sensitive dependency pairs approach to innermost CSR and show
that they can be advantageously used for proving termination of inner-
most CSR. We have implemented them as part of the termination tool
mu-term.

1 Introduction

The dependency pairs method [3] is one of the most powerful techniques for proving
termination of Term Rewriting Systems (TRSs [21,22]). Roughly speaking, given
a TRS R, the dependency pairs associated with R form a new TRS DP(R) which
(together with R) determines the so-called dependency chains which characterize
termination of R. The dependency pairs can be presented as a dependency graph,
where the absence of infinite chains can be analyzed by considering the cycles in
the graph. In [1], the dependency pairs method has been adapted for proving ter-
mination of context-sensitive rewriting (CSR [15,18]). With CSR we can achieve
a terminating behavior for non-terminating TRSs by pruning (all) infinite rewrite
sequences. In CSR we only rewrite μ-replacing subterms. Here, μ is a replacement
map, i.e., a mapping μ : F → P(N) satisfying μ(f) ⊆ {1, . . . , k}, for each k-ary
symbol f of the signature F [15]. We use them to indicate the argument posi-
tions on which the rewriting steps are allowed. Then, ti is a μ-replacing subterm
of f(t1, . . . , tk) if i ∈ μ(f); every term t (as a whole) is μ-replacing by definition.
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For other subterms we proceed inductively in this way. Then, for a given TRS
R and a replacement map μ, we obtain a restriction of rewriting which we call
context-sensitive rewriting. A pair (R, μ) is often called a context-sensitive TRS
(CS-TRS). Proving termination of CSR is an interesting problem with several ap-
plications in the fields of term rewriting and programming languages (see [20] for
further motivation). Furthermore, termination of innermost CSR (i.e., the variant
of CSR where only the deepest μ-replacing redexes are contracted) has proved use-
ful for proving termination of programs in programming languages like Maude and
OBJ* which permit to control the program execution by means of such context-
sensitive annotations [16,17].

Proving innermost termination of rewriting is often easier than proving ter-
mination of rewriting [3] and, for some relevant classes of TRSs, innermost ter-
mination of rewriting is even equivalent to termination of rewriting [10,11]. In
[7,12] it is proved that the equivalence between termination of innermost CSR
and termination of CSR holds in some interesting cases (e.g., for orthogonal
CS-TRSs).

Example 1. Consider the following orthogonal TRS R which is a variant of an
example in [4]:

from(X) -> cons(X,from(s(X)))
sel(0,cons(X,XS)) -> X
sel(s(N),cons(X,XS)) -> sel(N,XS)
minus(X,0) -> X
minus(s(X),s(Y)) -> minus(X,Y)
quot(0,s(Y)) -> 0
quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y)))
zWquot(nil,nil) -> nil
zWquot(cons(X,XS),nil) -> nil
zWquot(nil,cons(X:XS)) -> nil
zWquot(cons(X,XS),cons(Y,YS))->cons(quot(X,Y),zWquot(XS,YS))

together with μ(cons) = {1} and μ(f) = {1, . . . , ar(f)} for all other symbols f .
According to [6], innermost μ-termination of R implies its μ-termination as well.
We will show how R can easily be proved innermost μ-terminating (and hence
μ-terminating) by using the results in this paper.

In this paper, we extend the context-sensitive dependency pairs approach in
[1] for proving termination of innermost CSR. Actually, techniques for proving
termination of innermost CSR have already been investigated [7,16]. However,
these papers only consider transformational techniques, where the original CS-
TRS (R, μ) is transformed into a TRS Rμ

Θ (where Θ represents the transforma-
tion which has been used) whose innermost termination implies the innermost
termination of CSR for (R, μ). Up to now, no direct method has been proposed
to prove termination of innermost CSR. As shown in [2], proofs of termination
using context-sensitive dependency pairs (CSDPs) are much more powerful and
faster than any other technique for proving termination of CSR. Dealing with
innermost CSR, we have a similar situation.
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Example 2. Consider the following TRS R:
b -> c(b)
f(c(X),X) -> f(X,X)

together with μ(f) = {1, 2} and μ(c) = ∅. This system is not μ-terminating:
f(b,b) ↪→ f(c(b),b) ↪→ f(b,b) ↪→ . . .

where ↪→ denotes a context-sensitive rewriting step. However R is innermost
μ-terminating. We can give a very easy automatic proof of this fact because
the innermost context-sensitive dependency graph has no cycle. In contrast, by
using available transformations for proving innermost termination of CSR (see
[8] for a survey), we could not obtain a proof by using tools (like AProVE or
TTT) supporting innermost termination proofs (of rewriting).

In the dependency pairs approach, proofs of termination of innermost rewriting
are easier than proofs of termination of rewriting because: (1) the estimated
innermost dependency graph is more accurate, (2) it is possible to limit the
attention on the so-called usable rules of the TRS (for a given cycle).

After some preliminaries in Section 2, in Section 3 we prove that termination
of innermost CSR can be characterized by using an appropriate definition of
chain of CSDPs. In Section 4 we show how to prove automatically innermost
termination of CSR by using the innermost context-sensitive dependency graph.
Section 5 adapts the notion of usable rules to deal with innermost CSR. Section
6 provides a first experimental evaluation of our techniques.

2 Preliminaries

Terms. Throughout the paper, X denotes a countable set of variables and F
denotes a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed
arity given by a mapping ar : F → N. The set of terms built from F and X is
T (F , X ). Positions p, q, . . . are represented by chains of positive natural numbers
used to address subterms of t. Given positions p, q, we denote their concatenation
as p.q. Positions are ordered by the standard prefix ordering ≤. If p is a position,
and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the topmost position
by Λ. The set of positions of a term t is Pos(t). Positions of non-variable symbols
in t are denoted as PosF(t) while PosX (t) are the positions of variables. The
subterm at position p of t is denoted as t|p and t[s]p is the term t with the
subterm at position p replaced by s. We write t�s if s = t|p for some p ∈ Pos(t)
and t � s if t � s and t �= s. The symbol labelling the root of t is denoted as
root(t). A context is a term C ∈ T (F ∪ {�}, X ) with zero or more ‘holes’ � (a
fresh constant symbol).

Term rewriting. A rewrite rule is an ordered pair (l, r), written l → r, with
l, r ∈ T (F , X ), l �∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule
is l and r is the right-hand side (rhs). A TRS is a pair R = (F , R) where R is
a set of rewrite rules. Given R = (F , R), we consider F as the disjoint union
F = C � D of symbols c ∈ C, called constructors and symbols f ∈ D, called
defined functions, where D = {root(l) | l → r ∈ R} and C = F − D.
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Context-sensitive rewriting. A mapping μ : F → P(N) is a replacement map
(or F -map) if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} [15]. Let MF be the set of all
F -maps (or MR for the F -maps of a TRS (F , R)). A binary relation R on terms
is μ-monotonic if t R s implies f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk)
for all f ∈ F , i ∈ μ(f), and t, s, t1, . . . , tk ∈ T (F , X ). The set of μ-replacing
positions Posμ(t) of t ∈ T (F , X ) is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) =
{Λ} ∪

⋃
i∈μ(root(t)) i.Posμ(t|i), if t �∈ X . The set of μ-replacing variables of t

is Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t �μ s if t �μ s and t �= s. In context-sensitive rewriting (CSR [15]), we (only)
contract μ-replacing redexes: s μ-rewrites to t, written s ↪→μ t (or s ↪→R,μ t and
even s ↪→ t, if R and μ are clear from the context), if s

p→R t and p ∈ Posμ(s). A
μ-normal form is a term which cannot be μ-rewritten. Let NFμ(R) (or just NFμ

if no confusion arises) be the set of μ-normal forms of a TRS R. A μ-innermost
redex is a redex t whose μ-replacing subterms are μ-normal forms: t = σ(l) for
some substitution σ and rule l → r ∈ R and for all p ∈ Posμ(t), t|p ∈ NFμ. A

term s innermost μ-rewrites to t, written s
i

↪→ t, if s
p→R t, p ∈ Posμ(s), and

s|p is an μ-innermost redex. A TRS R is μ-terminating if ↪→μ is terminating.
A term t is μ-terminating if there is no infinite μ-rewrite sequence t = t1 ↪→μ

t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A TRS R is innermost μ-terminating

if
i

↪→μ is terminating. We write s
i

↪→!
R t if s

i
↪→∗

R t and t ∈ NFμ.
A pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS.

Reduction pairs. A reduction pair (�, �) consists of a stable and weakly
monotonic quasi-ordering �, and a stable and well-founded ordering � satis-
fying either � ◦ � ⊆ � or � ◦ � ⊆ �. Note that monotonicity is not required
for �.

3 Termination of Innermost CSR with Dependency Pairs

In the following definition, given a term t = f(t1, . . . , tk) ∈ T (F , X ), we write t�

to denote the marked term f �(t1, . . . , tk), where f � is a new fresh symbol (called
tuple symbol [3]). Given a signature F , we let F � be the extension of F containing
all tuple symbols for F : F � = F ∪ {f � | f ∈ F}. Similarly, if t = f �(t1, . . . , tk) is
a marked term, we write t� to denote the unmarked term f(t1, . . . , tk).

Definition 1 (CS-dependency pairs [1]). Let R = (F , R) = (C � D, R) be a
TRS and μ ∈ MR. We define DP(R, μ) = DPF(R, μ) ∪ DPX (R, μ) to be the set
of context-sensitive dependency pairs (CS-DPs) where:

DPF(R, μ) = {l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l ��μ s}

and DPX (R, μ) = {l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)}. We extend
μ ∈ MF into μ� ∈ MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.
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Example 3. Consider the CS-TRS (R, μ) in Example 2. There is only one context-
sensitive dependency pair:

F(c(X),X) -> F(X,X)

with μ�(F) = {1, 2}.

In the CS-DP approach, termination of CSR is characterized as the absence of
infinite chains of CS-DPs [1, Definition 2]. In innermost CSR, we only perform
reduction steps on innermost replacing redexes. Therefore, we have to restrict
the definition of chains in order to obtain an appropriate notion corresponding to
innermost CSR. Regarding innermost reductions, arguments of a redex should
be in normal form before the redex is contracted and, regarding CSR, the redex
to be contracted has to be in a replacing position.

Definition 2 (Innermost μ-chain). Given a CS-TRS (P , μ�) of CS-DPs as-
sociated to a CS-TRS (R, μ), an innermost (R, P , μ�)-chain is a sequence of
pairs uj → vj ∈ P such that there is a substitution σ such that σ(uj)∈ NFμ(R)
and such that, for all j ≥ 1,

1. σ(vj)
i

↪→!
R,μ� σ(uj+1), if uj → vj ∈ DPF(R, μ), and

2. if uj → vj = uj → xj ∈ DPX (R, μ), then there is some sj ∈ T (F , X ) such

that σ(xj) �μ sj and s�
j

i
↪→!

R,μ� σ(uj+1).

As usual we assume that different occurrences of dependency pairs do not share
any variables (renamings are used if necessary). An innermost (R, P , μ�)-chain
is minimal if for all uj → vj ∈ P and j ≥ 1, σ(vj) is innermost μ-terminating
(whenever uj → vj ∈ DPF(R, μ)) and s�

j is innermost μ-terminating (whenever
uj → vj ∈ DPX (R, μ)).

Theorem 1. A CS-TRS (R, μ) is innermost μ-terminating if and only if no
infinite minimal innermost μ-chain exists.

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense
[1]: t belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing
subterm s of t (i.e., t �μ s) is μ-terminating. The proof of this result uses the
following result.

Proposition 1. [1, Proposition 1] Let R = (C � D, R) be a TRS and μ ∈ MR.
Then for all t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ and a term

u ∈ M∞,μ such that t
>Λ
↪→∗ σ(l) Λ→σ(r) �μ u and either (1) there is a μ-replacing

subterm s of r such that u = σ(s), or (2) there is x ∈ Varμ(r) − Varμ(l) such
that σ(x) �μ u.

Proof. (of Theorem 1) We prove the if part by contradiction. We show that
for any infinite innermost μ-rewriting sequence we can construct an infinite in-
nermost (R, DP(R, μ), μ�)-chain. Let innermost μ-rewriting below the root be
>i
↪→ = (

>Λ
↪→ ∩ i

↪→). If R is not innermost μ-terminating, then, by Proposition 1,
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there is a term t ∈ M∞,μ, a rule l → r ∈ R, a substitution σ, and a term

u ∈ M∞,μ such that t
>i
↪→ σ(l) Λ→ σ(r) �μ u (where every immediate replacing

subterm of σ(l) is a μ-normal form), u is not innermost μ-terminating and either

1. there is a μ-replacing subterm s of r such that u = σ(s), or
2. there is x ∈ Varμ(r) − Varμ(l) such that σ(x) �μ u.

In the first case above, we have a dependency pair l� → s� ∈ DPF (R, μ) such
that u = σ(s) ∈ M∞,μ, i.e., we can start an innermost (R, DP(R, μ), μ�)-chain
beginning with σ(l�) ↪→DP(R,μ),μ� σ(s�). Note that σ(l�) ∈ NFμ(R).

In the second case above, since u ∈ M∞,μ, there is a rule λ → ρ such that

u
>i

↪→! σ(λ) (since we can assume that the variables in this rule do not occur in l,
we can use the same –conveniently extended– substitution σ) and σ(ρ) contains

a subterm in M∞,μ. Hence, u� i
↪→!

R,μ� σ(λ�). Furthermore, there is a dependency
pair l� → x ∈ DPX (R, μ) such that σ(x) �μ u; thus, according to Definition 2
we can start an (R, DP(R, μ), μ�)-chain beginning with

σ(l�) ↪→DP(R,μ),μ� u�

and then continuing with a dependency pair u′ → v′ such that u′ = λ� and
u� i

↪→!
R,μ� σ(u′). Note that σ(l�), σ(λ�) ∈ NFμ(R).

Thus, in both cases we can start an innermost (R, DP(R, μ), μ�)-chain which
could be infinitely extended in a similar way by starting from u�. This contradicts
our initial assumption.

On the other hand, in order to show that the criterion is also necessary for
innermost termination of context-sensitive rewriting we assume that there exists
an infinite innermost μ-chain that implies the existence of an infinite innermost
μ-rewrite sequence. If there is an infinite innermost (R, DP(R, μ), μ�)-chain, then
there is a substitution σ and dependency pairs ui → vi ∈ DP(R, μ) such that
considering the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF(R, μ), then v�
1 is a μ-replacing subterm of the right-

hand-side r1 of a rule l1 → r1 in R. Therefore, r1 = C1[v
�
1]p1 for some

p1 ∈ Posμ(r1) and, since σ(u1) ∈ NFμ, we can perform the innermost

μ-rewriting step t1 = σ(u�
1)

i
↪→R,μ σ(r1) = σ(C1)[σ(v�

1)]p1 = s1, where

σ(v�
1)

� = σ(v1)
i

↪→!
R,μ� σ(u2) and σ(u2) also initiates an infinite innermost

(R, DP(R, μ), μ�)-chain. Note that p1 ∈ Posμ(s1).
2. If u1 → x ∈ DPX (R, μ), then there is a rule l1 → r1 in R such that u1 = l�1,

and x ∈ Varμ(r1)−Varμ(l1), i.e., r1 = C1[x]q1 for some q1 ∈ Posμ(r1). Fur-

thermore, since there is a subterm s such that σ(x)�μ s and s� i
↪→!

R,μ� σ(u2),
we can write σ(x) = C′

1[s]p′
1

for some p′1 ∈ Posμ(σ(x)). Therefore, since
σ(u1) = σ(l1)� ∈ NFμ, we can perform the innermost μ-rewriting step

t1 = σ(l1)
i

↪→R,μ σ(r1) = σ(C1)[C′
1[s]p′

1
]q1 = s1 where s� i

↪→!
R,μ� σ(u2) (hence
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s
i

↪→! u�
2) and σ(u2) initiates an infinite innermost (R, DP(R, μ), μ�)-chain.

Note that p1 = q1.p
′
1 ∈ Posμ(s1).

Since μ�(f �) = μ(f), and p1 ∈ Posμ(s1), we have that s1
i

↪→!
R,μ t2[σ(u2)]p1 = t2

and p1 ∈ Posμ(t2). Therefore, we can build in that way an infinite μ-rewrite
sequence

t1
i

↪→R,μ s1
i

↪→!
R,μ t2

i
↪→R,μ · · ·

which contradicts the innermost μ-termination of R.

Example 4. Consider again the CS-TRS R in Example 2. As shown in Example
3, there is only one CS-DP:

F(c(X),X) -> F(X,X)

Since μ�(F) = {1, 2}, if a substitution σ satisfies σ(F(c(X),X)) ∈ NFμ(R), then
σ(X) = s is in μ-normal form. Assume that the dependency pair is part of an
innermost CS-DP-chain. Since there is no way to μ-rewrite F (s, s), there must
be F (s, s) = F (c(t), t) for some term t, which means that s = t and c(t) = s,
i.e., t = c(t) which is not possible. Thus, there is no infinite innermost chain of
CS-DPs for R, which is proved innermost terminating by Theorem 1.

Of course, ad-hoc reasonings like in Example 4 do not lead to automation. In
the following section we discuss how to prove termination of innermost CSR by
giving constraints on terms that can be solved by using standard methods.

4 Checking Innermost μ-Termination Automatically

The analysis of infinite sequences of dependency pairs can be handled by looking
at (the cycles C of) the dependency graph associated to the TRS R [3].

The Innermost Context-Sensitive dependency graph of a TRS R is the di-
rected graph whose nodes are the CS-dependency pairs; there is an arc from
u → v to u′ → v′ if u → v, u′ → v′ is an innermost μ-chain.

In [2] we have investigated the structure of context-sensitive sequences in order
to improve the CS-dependency graph. A μ-rewrite sequence can proceed in two
ways: by means of visible parts of the rules that is, μ-replacing subterms in the
right-hand sides which are rooted by a defined symbol, or showing up hidden
non-μ-terminating subterms which are activated by migrating variables of a rule
l → r, i.e. those variables that are not μ-replacing in l and become μ-replacing
in r.

Definition 3 (Hidden symbol [2]). Let R = (F , R) be a TRS and μ ∈ MR.
We say that f ∈ F is a hidden symbol if there is a rule l → r ∈ R where f
occurs at a non-μ-replacing position. Let H(R, μ) (or just H, if R and μ are
clear from the context) be the set of all hidden symbols in (R, μ).

Obviously, as innermost μ-chains are restricted chains (also restricted μ-chains!),
the Innermost Context-Sensitive dependency graph (in the following ICSDG or
ICS-dependency graph for short) is a subgraph of the dependency graph.
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Definition 4 (Innermost CSDG). Let R be a TRS and μ ∈ MR. The inner-
most context-sensitive dependency graph consists of the set DP(R, μ) of context-
sensitive dependency pairs and arcs which connect them as follows:

1. There is an arc from a dependency pair u → v ∈ DPF(R, μ) to a depen-
dency pair u′ → v′ ∈ DP(R, μ) if there are subtitutions σ and θ such that

σ(v)
i

↪→! θ(u′) and σ(u) and θ(u′)∈ NFμ(R).
2. There is an arc from a dependency pair u → v ∈ DPX (R, μ) to a dependency

pair u′ → v′ ∈ DP(R, μ) if root(u′)� ∈ H(R, μ) and u and u′ ∈ NFμ(R).

Example 5. Consider the following CS-TRS R in [6]:
f(g(b)) -> f(g(a)) f(a) -> f(a) a -> b

together with μ(f) = {1} and μ(g) = ∅. Then DP(R, μ) is:
F(g(b)) -> F(g(a)) F(a) -> F(a) F(a) -> A

and μ�(F) = {1}. The CSDG contains a single cycle {F(a) -> F(a)}. However,
the ICSDG is empty.

4.1 Approximating the ICSDG

In order to automatically build the Innermost Context-Sensitive Dependency
Graph it is necessary to approximate it since for two dependency pairs u → v
and u′ → v′ it is undecidable to know if there exist two substitutions σ and θ such
that σ(v) μ-reduces innermost to θ(u′) and σ(u) and θ(u′) are instantiated to μ-
normal forms. For this reason, we have to approximate the graph by computing
a supergraph containing it in the same way as previous approaches [3,1]. In
the context-sensitive setting, we have adapted functions Cap and Ren to be
applied only on μ-replacing subterms [1]. On the other hand, in the innermost
setting it is not necessary to use Ren since all variables are always instantiated
to normal forms and cannot be reduced and Cap(v) substitutes every subterm
with a defined root symbol by fresh variables only if the term is not equal to
subterms of u. To approximate the ICS-dependency graph, however, we have to
combine both of them: we use Capμ

u(v) to replace all μ-replacing subterm rooted
with a defined symbol whenever the term was not equal to a μ-replacing subterm
of the left-hand side of the dependency pair u. We use Renμ

u(v) to replace by
fresh variables those ones that are replacing in v but not in u since they are not
μ-normalized. Given a term u, we let Capμ

u be given as follows: let D be a set
of defined symbols (in our context, D = D ∪ D�):

Capμ
u(x) = x if x is a variable

Capμ
u(f(t1, . . . , tk)) =

{
y if f ∈ D

f([t1]
f
1 , . . . , [tk]fk) otherwise

where y is a new, fresh variable which has not yet been used and given a term s,
[s]fi = Capμ

u(s) if i ∈ μ(f) and s is not equal to a μ-replacing subterm of u and
[s]fi = s otherwise. Given a term u, we let Renμ

u be given by: Renμ
u(x) = y if x

is a variable and Renμ
u(f(t1, . . . , tk)) = f([t1]

f
1 , . . . , [tk]fk) for evey k-ary symbol
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f , where given a term s ∈ T �(F , X ), [s]fi = Renμ
u(s) if i ∈ μ(f) and the variable

is not μ-replacing in u and [s]fi = s otherwise.
We have an arc from u → v to u′ → v′ in the ICS-dependency graph if

Renμ
u(Capμ

u(v)) and u′ are unifiable by some mgu σ such that σ(u), σ(u′) ∈
NFμ(R); following [3], we say that v and u′ are innermost μ-connectable. The
following result whose proof is similar to that of [3, Theorem 39] formalizes the
correctness of this approach (we only need to take into account the replacement
restrictions indicated by the replacement map μ).

Proposition 2. Let (R, μ) be a CS-TRS. If there is an arc from u → v to
u′ → v′ in the ICS-dependency graph, then v and u′ are innermost μ-connectable.

Example 6. (Continuing Example 2) Since Renμ�

u (Capμ�

u (F(X,X))) = F(X,X)
and F(c(Y),Y) do not unify we conclude (and this can easily be implemented)
that the ICS-dependency graph for the CS-TRS (R, μ) in Example 2 contains
no cycles.

We know how to approximate the ICS-dependency graph by means of the func-
tions Capμ

u and Renμ
u. The next step is checking the innermost μ-termination

with the ICSDG automatically.

4.2 Proofs of Termination of Innermost CSR Using the ICSDG

The absence of infinite innermost (R, DP(R, μ), μ�)-chains is checked in the
ICSDG by finding (possibly different) μ-reduction pairs (�C, �C) for each cycle
C. Here, a μ-reduction pair is a pair (�, �) where � is a stable and μ-monotonic
quasi-ordering which is compatible with the well-founded and stable ordering �,
i.e., satisfying either � ◦ � ⊆ � or � ◦ � ⊆ �.

Theorem 2 (Use of the ICSDG). Let R be a TRS and μ ∈ MR. Then, R is
innermost μ-terminating iff for each cycle C in the innermost context-sensitive
dependency graph there is a μ-reduction pair (�C,�C) such that R ⊆�C, C ⊆�C

∪ �C, and

1. If C ∩ DPX (R, μ) = ∅, then C ∩ �C �= ∅

2. If C ∩ DPX (R, μ) �= ∅, then �μ ⊆ �C, and
(a) C ∩ �C �= ∅ and f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C, or
(b) f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C.

The proof is similar to that of [1, Theorem 4]. The practical use of Theorem 2
concerns the so-called strongly connected components (SCCs) of the dependency
graph, rather than the cycles themselves (which are exponentially many) [13,14].

Example 7. There are many examples that are easily solved when trying to build
the ICS-dependency graph since they do not contain cycles. This is the case for
Example 2 and Example 5.

The use of argument filterings, which is standard in the current formulations of
the dependency pairs method, also adapts without changes to this setting.

Also the subterm criterion [13], can be used to ignore certain cycles of the
dependency graph. In [1], we have adapted it to CSR.
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5 Usable CS-Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pairs approach is that, since the variables in the right-hand side
of the dependency pairs are in normal form, the rules which can be used to
connect contiguous dependency pairs are usually a proper subset of the rules
in the TRS. This leads to the notion of usable rules [3, Definition 32] which
simplifies the proofs of innermost termination of rewriting. We adapt this notion
to the context-sensitive setting.

Definition 5 (Basic usable CS-rules). Let R be a TRS and μ ∈ MR. For
any symbol f let Rules(R, f) be the set of rules defining f and such that the
left-hand side l has no redex as proper μ-replacing subterm. For any term t the
set of basic usable rules U0(R, t) is as follows:

U0(R, x) = ∅

U0(R, f(t1, . . . , tn)) = Rules(R, f) ∪
�

i∈μ(f)
U0(R′, ti) ∪

�

l→r∈Rules(R,f)

U0(R′, r)

where R′= R−Rules(R, f). If C ⊆ DP(R, μ), then U0(R, C) =
⋃

l→r∈C

U0(R, r).

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that μ-rewritings are possible only on μ-
replacing subterms), some subtleties arise due to the presence of non-conservative
rules. Here, a rule l → r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e.,
it does not contain migrating variables; R is μ-conservative if all its rules are
(see [20]).

Definition 6 (Conservative CSDPs). Let R be a TRS and μ ∈ MR. The
set of conservative CSDPs DPCo(R, μ) is DPCo(R, μ) = {u → v ∈ DP(R, μ) |
Varμ�

(v) ⊆ Varμ�

(u)}.

Note that DPCo(R, μ) ⊆ DPF (R, μ). Basic usable rules in Definition 5 can be
applied to cycles C consisting of conservative CS-dependency pairs provided that
U0(R, C) is also conservative. This is proved in Theorem 3 below. First, we need
some auxiliary results.

Proposition 3. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F , X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s

i
↪→ s′ by

applying a rule l → r ∈ R, then there is a substitution σ′ such that s′ = σ′(t′)
for t′ = t[r]p and p ∈ Posμ

F(t).

Proof. Let p ∈ Posμ(s) be the position of an innermost redex s|p = θ(l) for
some substitution θ. Since s = σ(t) and for all replacing variables in t, we have
σ(x) ∈ NFμ(R), it follows that p is a non-variable (replacing) position of t.
Therefore, p ∈ Posμ

F(t). Since s = σ(t), we have that s′ = σ(t)[θ(r)]p and since
p ∈ Posμ

F(t), by defining σ′(x) = σ(x) for all x ∈ V ar(t) and σ(x) = θ(x) for all
x ∈ Var(r) (as usual, we assume Var(t) ∩ Var(r) = ∅), we have s′ = σ′(t[r]p).
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Proposition 4. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F , X ) and σ be a

substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s
i

↪→ s′ by
applying a conservative rule l → r ∈ R, then there is a substitution σ′ such that
s′ = σ′(t′) for t′ = t[r]p, p ∈ Posμ

F(t) and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proof. By Proposition 3, we know that σ′, as in Proposition 3, satisfies s′ = σ′(t′)
for θ as in Proposition 3 and some p ∈ Posμ

F (t). Since s|p is an innermost μ-
replacing redex, we have that ∀y ∈ Varμ(l), θ(y) ∈ NFμ(R). Since the rule l → r
is conservative, Varμ(r) ⊆ Varμ(l), hence ∀z ∈ Varμ(r), σ′(z) ∈ NFμ(R). Since
Varμ(t[r]p) ⊆ Varμ(t) ∪ Varμ(r), we have that ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proposition 5. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F , X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If U0(R, t)

is conservative and s
i

↪→∗
R u then s

i
↪→∗

U0(R,t) u.

Proof. By induction on the length of the sequence s
i

↪→∗
R u. If s = σ(t) = u, it is

trivial. Otherwise, if s
i

↪→R s′
i

↪→∗
R u, we first prove that the result also holds in

s
i

↪→R s′. By Proposition 3, s = σ(t), and s′ = σ′(t′) for t′ = t[r]p is such that
s|p = θ(l) and s′|p = θ(r) for some p ∈ Posμ

F (t). Thus, root(l) = root(t|p) and
by Definition 5, we can conclude that l → r ∈ U0(R, t). By hypothesis, U0(R, t)
is conservative. Thus, l → r is conservative and by Proposition 4, s′ = σ′(t′)
and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R). Since t′ = t[r]p and root(t|p) = root(l), we
have that U0(R, t′) ⊆ U0(R, t) and (since U0(R, t) is conservative) U0(R, t′) is

conservative as well. By the induction hypothesis we know that s′
i

↪→∗
U0(R,t′) u.

Thus we have s
i

↪→U0(R,t) s′
i

↪→∗
U0(R,t) u as desired.

Theorem 3. Let R = (F , R) be a TRS, μ ∈ MF , and C ⊆ DPCo(R, μ). If there
is a μ�-reduction pair (�, �) such that, U0(R, C) is conservative, U0(R, C) ⊆�,
C ⊆� ∪ �, and C∩ � �= ∅, then there is no minimal innermost (R, C, μ�)-chain.

Proof. We proceed by contradiction. If R is not innermost μ-terminating, then
by Theorem 1 there is an infinite innermost (R, DP(R, μ), μ�)-chain:

σ(u1) ↪→DP(C,μ),μ� σ(v1)
i

↪→!
R σ(u2) ↪→DP(C,μ),μ� σ(v2)

i
↪→!

R σ(u3) ↪→DP(C,μ),μ� · · ·

for a substitution σ and ui → vi ∈ DPF (C, μ) for i ≥ 1. Since ui → vi ∈
DPCo(R, μ), and σ(ui) ∈ NFμ(R), this implies that ∀x ∈ Varμ(vi), σ(x) ∈
NFμ(R) and by Proposition 5 the sequence can be seen as:

σ(u1) ↪→DP(C,μ),μ� σ(v1)
i

↪→!
(U0(R,C),μ�)

σ(u2) ↪→DP(C,μ),μ� σ(v2)
i

↪→!
(U0(R,C),μ�)

σ(u3) ↪→ · · ·

By stability of �, we have σ(ui) � σ(vi) and by stability, μ-monotonicity and
transitivity of � we have that σ(vi) � σ(ui+1). By using the compatibility
conditions of the μ-reduction pair, we obtain an infinite decreasing �-sequence
which contradicts well-foundedness of �.
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Unfortunately, dealing with non-conservative CSDPs, considering the basic us-
able CS-rules does not ensure a correct approach.

Example 8. Consider again the TRS R:
b -> c(b)
f(c(X),X)-> f(X,X)

together with μ(f) = {1} and μ(c) = ∅. There are two non-conservative CS-DPs
(note that μ�(F) = μ(f) = {1}):

F(c(X),X) -> F(X,X)
F(c(X),X) -> X

and only one cycle in the ICSDG:
F(c(X),X) -> F(X,X)

Note that U0(R, F(X,X)) = ∅. Since this CS-DP is strictly compatible with,
e.g., an LPO, we would conclude the innermost μ-termination of R. However,
this system is not innermost μ-terminating:

f(b,b)
i

↪→ f(c(b),b)
i

↪→ f(b,b)
i

↪→ · · ·

The problem is that we have to take into account the special status of variables
in the right-hand side of a non-conservative CS-DP. Instances of such variables
are not guaranteed to be μ-normal forms. For this reason, when a cycle contains
at least one non-conservative CS-DP, we have to consider the whole set of rules
of the system.

Furthermore, conservativeness of U0(R, C) cannot be dropped either since we
could infer an incorrect result as shown by the following example.

Example 9. Consider the TRS R:
b -> c(b)
f(c(X),X) -> f(g(X),X)
g(X) -> X

together with μ(f) = {1} and μ(g) = μ(c) = ∅. There is only one con-
servative cycle: {F(c(X),X) -> F(g(X),X)} having only one usable (but non-
conservative!) rule g(X) -> X. This is compatible with the μ-reduction pair in-
duced by the following polynomial interpretation:

[f](x, y) = 0 [c](x) = x + 1 [g](x) = x [F](x, y) = x

However the system is not innermost μ-terminating:

f(c(b),b)
i

↪→ f(g(b),b)
i

↪→ f(b,b)
i

↪→ f(c(b),b)
i

↪→ · · ·

Nevertheless, Theorem 3 is useful to improve the proofs of termination of inner-
most CSR as the following example shows.

Example 10. Consider again the TRS R in example 1. The system contains three
cycles in the ICSDG:
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{ SEL(s(N),cons(X,XS)) -> SEL(N,XS) }
{ MINUS(s(X),s(Y)) -> MINUS(X,Y) }
{ QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) }

The first two cycles can be solved by using the subterm criterion. However, with-
out the notion of usable rules, the last one is difficult to solve. The cycle is con-
servative and the obtained usable rules are also conservative: minus(X,0) -> X
and minus(s(X),s(Y)) -> minus(X,Y). According to Theorem 3, the cycle can
be easily solved by using a polynomial interpretation:

[minus](x, y) = x [0] = 0
[s](x) = x + 1 [QUOT](x, y) = x

6 Experiments

We have implemented the techniques described in the previous sections as part
of the tool mu-term [19]. In order to evaluate the techniques which are reported
in this paper we have made some benchmarks. We have considered the examples
in the Termination Problem Data Base (TPDB, version 3.2) available through
the URL:

http://www.lri.fr/~marche/tpdb/

Although there is no special TPDB category for innermost termination of CSR
(yet) we have used the TRS/CSR directory in order to test our techniques for
proving termination of innermost CSR (Theorems 2, 3). It contains 90 examples
of CS-TRSs. We are able to give an automatic proof of innermost μ-termination
for 62 examples. In order to evaluate our direct techniques in comparison with
the transformational approach of [7,8,16], where termination of innermost CSR
for a CS-TRS (R, μ) is proved by proving innermost termination of a trans-
formed TRS Rμ

Θ, where Θ specifies a particular transformation (see [6,7] for
a survey on this topic), we have transformed the set of examples by using the
transformations that are correct for proving innermost termination of CSR: Giesl
and Middeldorp’s correct transformations for proving termination of innermost
CSR, see [7], although we use the ‘authors-based’ notation introduced in [20]:
GM and C for transformations 1 and 2 for proving termination of CSR intro-
duced in [8], and iGM for the specific transformation for proving termination of
innermost CSR introduced in [7]. Then we have proved innermost termination
of the set of examples with AProVE [9], which is able to prove innermost ter-
mination of standard rewriting. In fact, AProVE is currently the most powerful
tool for proving termination and innermost termination of TRSs but as we have
said, mu-term is nowadays the only termination tool that proves innermost ter-
mination of CSR. The results are summarized in Table 1. Further details can be
found here:

http://www.dsic.upv.es/~balarcon/FroCoS07/benchmarks

Indirectly, we have also made the first benchmarks to evaluate the existing cor-
rect transformations for proving innermost termination of CSR (see Table 1)

http://www.lri.fr/~marche/tpdb/
http://www.dsic.upv.es/~balarcon/FroCoS07/benchmarks
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Table 1. Comparing techniques for proving termination of innermost CSR

iCSDPs Transformations
YES score 62 44

YES average time 0.13 sec. 5 sec.

C GM iGM
YES score 24 41 30

showing that, quite surprisingly, the iGM transformation (which is in principle
the more suitable one for proving innermost termination of CSR) obtains worse
results than GM.

7 Conclusions and Future Work

In this paper, we have extended the context-sensitive dependency pairs approach
in [1] for proving termination of innermost CSR. We have introduced the no-
tion of an innermost μ-chain (Definition 2) and proved that it can be used to
characterize innermost μ-termination (Theorem 1). We have also shown how to
automatically prove innermost μ-termination by means of the ICS-dependency
graph (Definition 4, Theorem 2). We have formulated the notion of basic usable
rules showing how to use them in proofs of innermost termination of CSR (Def-
inition 5, Theorem 3). We have implemented these techniques in mu-term and
have made some benchmarks.

Up to now, no direct method has been proposed to prove termination of
innermost CSR. So this is the first proposal of a direct method for proving
termination of innermost CSR. We have extended Arts and Giesl’s approach to
prove innermost termination of TRSs to CSR (thus also extending [1,2]). The
main issue which is left open is a general notion of usable rules, which can be
used with non-conservative CSDPs. As in the standard case, this would probably
help us to achieve better results. Even without them, though, our benchmarks
show that the use of CSDPs dramatically improves the performance of existing
(transformational) methods for proving termination of innermost CSR.

Acknoledgements. We thank the anonymous referees for many useful remarks.
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