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Abstract. We introduce a propositional encoding of the recursive path
order with status (RPO). RPO is a combination of a multiset path order
and a lexicographic path order which considers permutations of the argu-
ments in the lexicographic comparison. Our encoding allows us to apply
SAT solvers in order to determine whether a given term rewrite system
is RPO-terminating. Furthermore, to apply RPO within the dependency
pair framework, we combined our novel encoding for RPO with an exist-
ing encoding for argument filters. We implemented our contributions in
the termination prover AProVE. Our experiments show that due to our
encoding, combining termination provers with SAT solvers improves the
performance of RPO-implementations by orders of magnitude.

1 Introduction

Since the past year, several papers have illustrated the huge potential in applying
SAT solvers for various types of termination problems for term rewrite systems
(TRSs). The key idea is classic: the specific termination problem for a TRS R is
encoded to a propositional formula ϕ which is satisfiable if and only if R has the
desired termination property. Satisfiability of ϕ is tested using a state-of-the-art
SAT solver and the termination proof for R is reconstructed from a satisfying
assignment of ϕ. However, in order to obtain significant speedups, it is crucial
to base the approach on polynomial encodings which are also small in practice.

The first such attempt addresses LPO-termination [16]. This work is based
on BDDs and does not yield competitive results. A significant improvement is
described in [3] and further extended in [4,23] for argument filters as used in
the popular dependency pair framework [1,10] for termination of TRSs. Both [3]
and [4,23] describe extremely fast SAT-based implementations. Successful SAT
encodings of other termination techniques are presented in [8,9,14,24]. A common
theme in all of these works is to represent (finite domain) integer variables as
binary numbers in bit representation and to encode arithmetic constraints as
Boolean functions on these representations.
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This paper introduces the first SAT-based encoding for recursive path or-
ders. The main new and interesting contributions are (1) the encoding for the
lexicographic comparison w.r.t. permutations, (2) the encoding for the multi-
set extension of the base order, and (3) the combination of the encoding for
precedences and argument filters in order to use RPO with dependency pairs.

Our encoding of RPO is implemented in the termination prover AProVE [11].
The combination of a termination prover with a SAT solver yields a surprisingly
fast implementation of RPO. All 865 TRSs in the Termination Problem Data
Base (TPDB) [21] are analyzed in about 100 seconds for the case of strict prece-
dences. Allowing non-strict precedences takes about 3 times longer. Moreover,
power increases considerably compared to the implementation of LPO described
in [4]: 27 additional termination proofs are obtained. The TPDB is the collection
of examples used in the annual International Termination Competition [19].

After the necessary preliminaries on RPO in Sect. 2, Sect. 3 shows how to
encode both multiset comparisons and lexicographic comparisons w.r.t. permu-
tations, and how to combine them into a single class of orders. Sect. 4 combines
these encodings with the concept of argument filters. In Sect. 5 we describe
the implementation of our results and provide extensive experimental evidence
indicating speedups in orders of magnitude. We conclude in Sect. 6.

2 Preliminaries

The classical approach to prove termination of a TRS R is to find a reduction
order � which orients all rules � → r in R (i.e., � � r). A reduction order is an
order which is well founded, monotonic, and stable (closed under contexts and
substitutions). In practice, most reduction orders amenable to automation are
simplification orders [6]. We refer to [2] for further details on term rewriting.

Three of the most prominent simplification orders are the lexicographic path
order (LPO) [15], the multiset path order (MPO) [6], and the recursive path order
(RPO) [18] which combines the lexicographic and multiset path order allowing
also permutations in the lexicographic comparison. This section introduces their
definitions using a formulation that is suitable for the subsequent SAT encoding.

We assume an algebra of terms constructed over sets of function symbols F
and variables V . For a quasi-order � (i.e., a transitive and reflexive relation), we
define s � t iff s � t and t �� s and we define s ∼ t iff both s � t and t � s.
Path orders are defined in terms of lexicographic and multiset extensions of a
base order (on terms). We often denote tuples of terms as s̄ = 〈s1, . . . sn〉, etc.

Definition 1 (lexicographic extension). Let � be a quasi-order. The lexico-
graphic extensions of �, ∼, and � are defined on sequences of terms:

• 〈s1, . . . , sn〉∼lex 〈t1, . . . , tm〉 if and only if n = m and si ∼ ti for all 1 ≤ i ≤ n
• 〈s1, . . . , sn〉 �lex 〈t1, . . . , tm〉 if and only if (a) m = 0 and n > 0;

or (b) s1 � t1; or (c) s1 ∼ t1 and 〈s2, . . . , sn〉 �lex 〈t2, . . . , tm〉.
• �lex = ∼lex ∪ �lex
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So for tuples of numbers s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈3, 2, 5, 6〉, we have s̄ >lex t̄ as
s1 = t1 and s2 > t2 (where > is the usual order on numbers).

The multiset extension of an order � is defined as follows: s̄ �mul t̄ holds if t̄
is obtained by replacing at least one element of s̄ by a finite number of (strictly)
smaller elements. However, the order of the elements in s̄ and t̄ is irrelevant.
For example, let s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈4, 3, 2, 1, 1〉. We have s̄ >mul t̄ because
s1 = 3 is replaced by the smaller elements t3 = 2, t4 = 1, t5 = 1 and s4 = 0
is replaced by zero smaller elements. So each element in t̄ is “covered” by some
element in s̄. Such a cover is either by a larger si (then si may cover several tj) or
by an equal si (then one si covers one tj). In this paper we formalize the multiset
extension by a multiset cover which is a pair of mappings (γ, ε). Intuitively, γ
expresses which elements of s̄ cover which elements in t̄ and ε expresses for which
si this cover is by means of equal terms and for which by means of greater terms.
This formalization facilitates encodings to propositional logic.

So in the example above, we have γ(1) = 3, γ(2) = 2 (since t1 is covered by
s3 and t2 is covered by s2), and γ(3) = γ(4) = γ(5) = 1 (since t3, t4, and t5 are
all covered by s1). Moreover, ε(2) = ε(3) = true (since s2 and s3 are replaced
by equal components), whereas ε(1) = ε(4) = false (since s1 and s4 are replaced
by (possibly zero) smaller components). Of course, in general multiset covers are
not unique. For example, t2 could also be covered by s1 instead of s2.

Definition 2 (multiset cover). Let s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 be
tuples of terms. A multiset cover (γ, ε) is a pair of mappings γ : {1, . . . , m} →
{1, . . . , n} and ε : {1, . . . , n} → {false, true} such that for each 1 ≤ i ≤ n, if ε(i)
(indicating equality) then {j | γ(j) = i} is a singleton set.

For s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 we define that s̄ �mul t̄ if there exists
a multiset cover (γ, ε) such that γ(j) = i implies that either: ε(i) = true and
si ∼ tj , or ε(i) = false and si � tj .

Definition 3 (multiset extension). Let � be a quasi-order on terms. The
multiset extensions of �, �, and ∼ are defined on tuples of terms:

• 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉 if and only if there exists a multiset cover (γ, ε)
such that for all i, j, γ(j) = i ⇒ (if ε(i) then si ∼ tj else si � tj).

• 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉
and for some i, ¬ε(i), i.e., some si is not used for equality but rather replaced
by zero or more smaller arguments tj.

• 〈s1, . . . , sn〉 ∼mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉,
n = m, and for all i, ε(i), i.e., all si are used to cover some tj by equality.

Let ≥F denote a quasi-order (a so-called precedence) on the set of function
symbols F and let >F = (≥F \ ≤F) and ≈F = (≥F ∩ ≤F ). Then ≥F induces
corresponding lexicographic and multiset path orders on terms.

Definition 4 (lexicographic and multiset path orders). For a precedence
≥F and ρ ∈ {lpo, mpo} we define the relations �ρ and ∼ρ on terms. We use the
notation s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉.
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• s �ρ t iff s = f(s̄) and one of the following holds:
(1) si �ρ t or si ∼ρ t for some 1 ≤ i ≤ n; or
(2) t = g(t̄) and s �ρ tj for all 1 ≤ j ≤ m and either:

(i) f >F g or (ii) f ≈F g and s̄ �ext
ρ t̄;

• s ∼ρ t iff (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈F g, and s̄ ∼ext
ρ t̄;

where �ext
ρ and ∼ext

ρ are the lexicographic or multiset extensions of �ρ and ∼ρ

for the respective cases when ρ = lpo and ρ = mpo.

Example 1. Consider the following three TRSs for adding numbers:

(a) { add(0, y) → y , add(s(x), y) → add(x, s(y)) }
(b) { add(x, 0) → x , add(x, s(y)) → s(add(y, x)) }
(c) { add(x, 0) → x , add(x, s(y)) → add(s(x), y) }
Example (a) is LPO-terminating for the precedence add >F s, but not MPO-
terminating for any precedence. Example (b) is MPO-terminating for add >F s,
but not LPO-terminating for any precedence as the second rule swaps x and y.
Example (c) is neither LPO- nor MPO-terminating. However, termination could
be proved using a path order where lexicographic comparison proceeds from right
to left instead of left to right. The following definitions extend this observation
to arbitrary permutations of the order in which we compare arguments.

As remarked before, the RPO combines such an extension of the LPO with
MPO. This combination is facilitated by a status function which indicates for
each function symbol if its arguments are to be compared based on a multiset
extension or based on a lexicographic extension using some permutation μ.

Definition 5 (status function). A status function σ maps each symbol f ∈ F
of arity n either to the symbol mul or to a permutation μf on {1, . . . , n}.

Definition 6 (recursive path order with status). For a precedence ≥F and
status function σ we define the relations �rpo and ∼rpo on terms. We use the
notation s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉.

• s �rpo t iff s = f(s̄) and one of the following holds:
(1) si �rpo t or si ∼rpo t for some 1 ≤ i ≤ n; or
(2) t = g(t̄) and s �rpo tj for all 1 ≤ j ≤ m and either:

(i) f >F g or (ii) f ≈F g and s̄ �f,g
rpo t̄;

• s ∼rpo t iff (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈F g, and s̄ ∼f,g
rpo t̄;

where �f,g
rpo and ∼f,g

rpo are the tuple extensions of �rpo and ∼rpo defined by:

• 〈s1, . . . sn〉 �f,g
rpo 〈t1, . . . tm〉 iff one of the following holds:

(1) σ maps f and g to permutations μf and μg; and
μf 〈s1, . . . , sn〉 �lex

rpo μg〈t1, . . . , tm〉;
(2) σ maps f and g to mul; and 〈s1, . . . sn〉 �mul

rpo 〈t1, . . . tm〉.
• 〈s1, . . . sn〉 ∼f,g

rpo 〈t1, . . . tm〉 iff one of the following holds:
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(1) σ maps f and g to μf and μg; and μf 〈s1, . . . , sn〉 ∼lex
rpo μg〈t1, . . . , tm〉;

(2) σ maps f and g to mul; and 〈s1, . . . sn〉 ∼mul
rpo 〈t1, . . . tm〉.

Def. 6 can be specialized to capture the previous path orders by taking spe-
cific forms of status functions: LPO when σ maps all symbols to the identity
permutation; lexicographic path order w.r.t. permutation (LPOS) when σ maps
all symbols to some permutation; MPO when σ maps all symbols to mul.

The RPO termination problem is to determine for a given TRS if there exists
a precedence and a status function such that the system is RPO-terminating.
There are two variants of the problem: “strict-” and “quasi-RPO termination”
depending on if the precedence ≥F is strict or not (i.e., on whether f ≈F g
can hold for f �= g). The corresponding decision problems, strict- and quasi-
RPO termination, are decidable and NP complete [5]. In this paper we address
the implementation of decision procedures for RPO termination problems by
encoding them into corresponding SAT problems.

3 Encoding RPO Problems

We introduce an encoding τ which maps constraints of the form s �rpo t to
propositional statements about the status and the precedence of the symbols in
the terms s and t. A satisfying assignment for the encoding of such a constraint
indicates a precedence and a status function such that the constraint holds.

The first part of the encoding is straightforward and similar to the one in
[3,4]. All “missing” cases (e.g., τ(x �rpo t) for variables x) are defined to be
false.

τ(f(s̄) �rpo t) =
n�

i=1

(τ(si �rpo t) ∨ τ(si ∼rpo t)) ∨ τ2(f(s̄) �rpo t) (1)

τ2(f(s̄) �rpo g(t̄)) =
m�

j=1

τ(f(s̄) �rpo tj) ∧
�

(f >F g)∨
((f ≈F g) ∧ τ(s̄ �f,g

rpo t̄))

�
(2)

τ(s ∼rpo s) = true (3)

τ(f(s̄) ∼rpo g(t̄)) = (f ≈F g) ∧ τ(s̄ ∼f,g
rpo t̄) (4)

The propositional encoding of the “partial order constraints” of the form f >F g
and f ≈F g is performed following the approach applied in [3,4]. The basic idea
is to interpret the symbols in F as indices in a partial order taking finite domain
values from the set {0, . . . , m−1} where m is the number of symbols in F . Each
symbol f ∈ F is then represented using �log2 m� propositional variables and the
constraints are encoded as integer constraints on the binary representations.

In Sect. 3.1 and 3.2. we encode lexicographic comparisons w.r.t. permutations
and multiset comparison. Then in Sect. 3.3 we combine them into �f,g

rpo and ∼f,g
rpo.

3.1 Encoding Lexicographic Comparisons w.r.t. Permutation

For lexicographic comparisons with permutations, we associate with each symbol
f ∈ F (of arity n) a permutation μf encoded through n2 propositional variables
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fi,k with i, k ∈ {1, . . . , n}. Here, fi,k is true iff μf (i) = k (i.e., the i-th argument
of f(s1, . . . , sn) is considered at k-th position when comparing lexicographically).
To ease presentation, we define that fi,k is false for k > n.

For the encoding to be correct, we impose constraints on the variables fi,k

to ensure that they indeed correspond to a permutation on {1, . . . , n}. So for
each i ∈ {1, . . . , n} there must be exactly one k ∈ {1, . . . , n} and for each
k ∈ {1, . . . , n} there must be exactly one i ∈ {1, . . . , n} such that fi,k is true.

We denote by one(b1, . . . , bn) the constraint expressing that exactly one of the
bits b1, . . . , bn is true. Then our encoding includes a formula of the form

�
f/n∈F

�
n�

i=1

one(fi,1, . . . , fi,n) ∧
n�

k=1

one(f1,k, . . . , fn,k)

�
(5)

We apply a linear encoding to propositional logic for constraints of the form
one(b1, . . . , bn) which introduces ≈ 2n fresh Boolean variables which we denote
here as one(bi, . . . , bn) (expressing that one of the variables bi, . . . , bn is true)
and zero(bi, . . . , bn) (expressing that all of the variables bi, . . . , bn are false) for
1 < i ≤ n. The encoding applies a ternary propositional connective x → y ; z
(denoting if-then-else) equivalent to (x → y) ∧ (¬x → z):

�
1≤i≤n

�
�

�
one(bi, . . . , bn) ↔

�
(bi → zero(bi+1, . . . , bn)

; one(bi+1, . . . , bn)

��
∧ (zero(bi, . . . , bn) ↔ ¬bi ∧ zero(bi+1, . . . , bn))

	



where one(bn+1, . . . , bn) = false and zero(bn+1, . . . , bn) = true. This encoding
introduces ≈ 2n conjuncts each involving a formula with at most 4 Boolean
variables. So the encoding is more concise than the more straightforward one
which introduces a quadratic number of conjuncts ¬bi∨¬bj for all 1 ≤ i < j ≤ n.

Now consider the encoding of s̄ ∼f,g
rpo t̄ and s̄ �f,g

rpo t̄ for the case where the
arguments of f and g are compared lexicographically (thus, we use the notation
∼f,g

lex and �f,g
lex). Like in Def. 6, let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉. Now

equality constraints of the form s̄ ∼f,g
lex t̄ are encoded by stating that for all k, the

arguments si and tj used at the k-th position in the comparison (as denoted by
fi,k and and gj,k) must be equal. This implies that s̄ ∼f,g

lex t̄ only holds if n = m.

τ(s̄ ∼f,g
lex t̄) = (n = m) ∧

�
� n�

k=1

n�
i=1

m�
j=1

fi,k ∧ gj,k → τ(si ∼rpo tj)

	

 (6)

To encode s̄ �f,g
lex t̄, we define auxiliary relations �f,g,k

lex , where k ∈ IN denotes
that the k-th component of s̄ and t̄ is currently being compared. Thus �f,g

lex =
�f,g,1

lex , since the comparison starts with the first component. For any k, there
are three cases to consider when encoding s̄ �f,g,k

lex t̄. If there is no si that can
be used for the k-th comparison (i.e., k > n), then we encode to false. If there
is such an si but no such tj (i.e., m < k ≤ n), then we encode to true. If there
are both an si and a tj used for the k-th comparison (i.e., fi,k and gj,k hold),
then we encode to a disjunction that either si is greater than tj , or si is equal
to tj , and we continue the encoding at position k + 1. Since exactly one fi,k is
true, the disjunction and conjunction over all fi,k (with i ∈ {1, ..., n}) coincide
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(similar for gj,k). Here, we use a disjunction of conjunctions, as this will be more
convenient in Sect. 4.

τ(s̄ �f,g,k
lex t̄) =

�����
�����

false if k > n

true if m < k ≤ n�n
i=1

�
fi,k ∧

��m
j=1 gj,k → otherwise

(τ(si �rpo tj) ∨ (τ(si ∼rpo tj) ∧ τ(s̄ �f,g,k+1
lex t̄)))

�� (7)

Example 2. Consider again the TRS of Ex. 1(c):

{ add(x, 0) → x , add(x, s(y)) → add(s(x), y) }
In the encoding of the constraints for the second rule, we have to encode the
comparison 〈x, s(y)〉 �add,add,1

lex 〈s(x), y〉, which yields:�
add1,1 ∧

�
add1,1 →

�
τ(x �rpo s(x)) ∨ (τ(x ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �add,add,2

lex
〈s(x), y〉))

��
∧
�
add2,1 →

�
τ(x �rpo y) ∨ (τ(x ∼rpo y) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
�� �

∨
�
add2,1 ∧

�
add1,1 →

�
τ(s(y) �rpo s(x)) ∨ (τ(s(y) ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
��

∧
�
add2,1 →

�
τ(s(y) �rpo y) ∨ (τ(s(y) ∼rpo y) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
���

Seeing that τ(x �rpo s(x)) = τ(x ∼rpo s(x)) = τ(x �rpo y) = τ(x ∼rpo y) =
τ(s(y) �rpo s(x)) = τ(s(y) ∼rpo s(x)) = false and τ(s(y) �rpo y) = true, the
above formula can be simplified to add2,1 ∧¬add1,1. Together with the constraint
(5) which ensures that the variables addi,k specify a valid permutation μadd, this
implies that add1,2 and ¬add2,2 must be true. And indeed, for the permuta-
tion μadd = 〈2, 1〉 the tuple μadd(〈x, s(y)〉) = 〈s(y), x〉 is greater than the tuple
μadd(〈s(x), y〉) = 〈y, s(x)〉.

3.2 Encoding Multiset Comparisons

For multiset comparisons, we associate s̄ and t̄ with a multiset cover (γ, ε) enco-
ded by n ∗ m propositional variables γi,j and n variables εi. Here, γi,j is true iff
γ(j) = i (si covers tj) and εi is true iff ε(i) = true (si is used for equality).

For the encoding to be correct, we again have to impose constraints on these
variables to ensure that (γ, ε) indeed forms a multiset cover. So for each j ∈
{1, . . . , m} there must be exactly one i ∈ {1, . . . , n} such that γi,j is true, and
for each i ∈ {1, . . . , n}, if εi is true then there must be exactly one j ∈ {1, . . . , m}
such that γi,j is true. Thus, our encoding includes the following formula:

m�
j=1

one(γ1,j , . . . , γn,j) ∧
n�

i=1

(εi → one(γi,1, . . . , γi,m)) (8)

Now we encode s̄ �f,g
rpo t̄ for the case where f and g have multiset status. To

have an analogous notation to the case of lexicographic comparisons, we use the
notation �f,g

mul instead of �mul
rpo . This will also be convenient later in Sect. 4. The

encoding of �f,g
mul, �f,g

mul, and ∼f,g
mul is similar to Def. 3. To encode s̄ �f,g

mul t̄, one
has to require that if γi,j and εi are true, si ∼rpo tj holds, and else, if γi,j is
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true and εi is not, si �rpo tj holds. For �f,g
mul, we must have at least one si that

is not used for equality, and for ∼f,g
mul, all si must be used for equality.

τ(s̄ �f,g
mul t̄) =

n�
i=1

m�
j=1

(γi,j → ((εi → τ(si ∼rpo tj)) ∧ (¬εi → τ(si �rpo tj)))) (9)

τ(s̄ �f,g
mul

t̄) = τ(s̄ �f,g
mul

t̄) ∧ ¬
n�

i=1
εi (10)

τ(s̄ ∼f,g
mul t̄) = τ(s̄ �f,g

mul t̄) ∧
n�

i=1
εi (11)

Example 3. Consider again the rules for the TRS from Ex. 1(b):

{ add(x, 0) → x , add(x, s(y)) → s(add(y, x)) }.

In the encoding of the constraints for the second rule, we have to encode the
comparison 〈x, s(y)〉 �f,g

mul 〈y, x〉, which yields:
�

γ1,1 →
�
(ε1 → τ(x ∼rpo y)) ∧ (¬ε1 → τ(x �rpo y))

��
∧
�

γ1,2 →
�
(ε1 → τ(x ∼rpo x)) ∧ (¬ε1 → τ(x �rpo x))

��

∧
�

γ2,1 →
�
(ε2 → τ(s(y) ∼rpo y)) ∧ (¬ε2 → τ(s(y) �rpo y))

��
∧
�

γ2,2 →
�
(ε2 → τ(s(y) ∼rpo x)) ∧ (¬ε2 → τ(s(y) �rpo x))

��

Seeing that τ(x ∼rpo y) = τ(x �rpo y) = τ(x �rpo x) = τ(s(y) ∼rpo y) =
τ(s(y) ∼rpo x) = τ(s(y) �rpo x) = false and τ(x ∼rpo x) = τ(s(y) �rpo y) =
true, the above formula can be simplified to ¬γ1,1 ∧ (¬γ1,2 ∨ ε1)∧ (¬γ2,1 ∨¬ε2)∧
¬γ2,2. Together with the constraint (8) which ensures that the variables γi,j and
εi specify a valid multiset cover (γ, ε), this implies that γ2,1, ¬ε2, γ1,2, and ε1
must hold. And indeed, for the multiset cover (γ, ε) with γ(1) = 2, γ(2) = 1,
ε(1) = true, and ε(2) = false, the tuple 〈x, s(y)〉 is greater than 〈y, x〉.

3.3 Combining Lexicographic and Multiset Comparisons

We have shown how to encode lexicographic and multiset comparisons. In order
to combine �f,g

lex and �f,g
mul into �f,g

rpo as well as ∼f,g
lex and ∼f,g

mul into ∼f,g
rpo, we

introduce for each symbol f ∈ F a variable mf , which is true iff the arguments
of f are to be compared as multisets (i.e., the status function maps f to mul ).

τ(s̄ �f,g
rpo t̄) =

�
mf ∧ mg ∧ τ(s̄ �f,g

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1

lex t̄)
�

(12)

τ(s̄ ∼f,g
rpo t̄) =

�
mf ∧ mg ∧ τ(s̄ ∼f,g

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g

lex t̄)
�

(13)

Similar to Def. 6, the above encoding function τ can be specialized to other
standard path orderings: lexicographic path order w.r.t. permutation (LPOS)
when mf is set to false for all f ∈ F ; LPO when additionally fi,k is set to true
iff i = k; MPO when mf is set to true for all f ∈ F .

We conclude this section with an approximation of the size of the proposi-
tional formula obtained when encoding s �rpo t where s = f(s1, . . . , sn) and
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t = g(t1, . . . , tm) with the total size of terms s and t being k. A single step of
unfolding Def. 6 results in a formula containing at least n copies of t (with all its
subterms) and m copies of s (with all its subterms) occurring in constraints of
the form s′ �rpo t′. Hence, without memoing, the final encoding is clearly expo-
nential in k. To obtain a polynomial encoding, we introduce sharing of common
subformulas in the propositional formula. The approach is similar to that pro-
posed by Tseitin to obtain a linear CNF transformation of Boolean formulas [22].
If τ(s′ �rpo t′) occurs in the encoding τ(s �rpo t), then we do not immediately
perform the encoding of s′ �rpo t′ as well. Instead, we introduce a fresh Boolean
variable of the form Xs′ �rpo t′ , and encode also the meaning of such fresh vari-
ables. The encoding of Xs′ �rpo t′ is of the form Xs′ �rpo t′ ↔ τ(s′ �rpo t′). Again,
when constructing τ(s′ �rpo t′), all subformulas τ(s′′ �rpo t′′) encountered are
replaced by Boolean variables Xs′′ �rpo t′′ . In total, there are at most O(k2) fresh
Boolean variables to encode. As the encodings of multiset comparisons and lex-
icographic comparisons are both of size O(k3), the size of the overall encoding
is in O(k5). Thus, the size of the encoding is indeed polynomial.3

4 RPO and Dependency Pairs

One of the most powerful and popular techniques for proving termination of
term rewriting is the dependency pair (DP) method [1,10]. This method has
proven highly successful for systems which are not simply terminating, i.e., where
termination cannot be shown directly using simplification orders such as LPO,
MPO, and RPO. Instead it is the combination of the simplification order, in our
case RPO, with the DP method which significantly increases termination proving
power. A main advantage of the DP method is that it permits the use of orders
that are not monotonic and thus allows the application of argument filters.

An argument filter is a function which specifies for every function symbol f ,
which parts of a term f(. . .) may be eliminated before comparing terms with the
underlying simplification order. More formally (we adopt notation of [17]):

Definition 7 (argument filter). An argument filter π maps every n-ary func-
tion symbol to an argument position i ∈ {1, . . . , n} or to a (possibly empty) list
[i1, . . . , ip] with 1 ≤ i1 < · · · < ip ≤ n. An argument filter π induces a mapping
from terms to terms:

π(t) =

⎧
⎨

⎩

t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1 ), . . . , π(tip)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation � on terms, let �π be the relation where s �π t holds if and only
if π(s) � π(t). An argument filter with π(f) = i is called collapsing on f .
3 A finer analysis shows that not all multiset and lexicographic comparisons are large.

For example, for s = f(a1, . . . , an) and t = g(b1, . . . , bn) with constants ai and bj ,
there is one comparison of two n-tuples with encoding size O(n3), but the other
n2 + 2n comparisons only need size O(n) each. In fact, one can show that the size
of the overall encoding is in O(k3).
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Example 4. Consider the following rewrite rule (which will later turn out to be
a dependency pair when proving the termination of Ex. 5):

ADD′(x, s(y), z) → ADD′(y, x, s(z))

The rule cannot be oriented by RPO. Lexicographic comparison fails as the
first two arguments are swapped. Multiset comparison is prevented by the third
argument (s(z) cannot be covered). But an argument filter π(ADD′) = {1, 2},
which eliminates the third argument of ADD′, enables the multiset comparison.

While very powerful in the context of the DP method, argument filters also
present a severe bottleneck for automation, as the search space for argument
filters is enormous (exponential in the arities of the function symbols). A SAT
encoding for the LPO with argument filters is presented in [4] where the com-
bined constraints on the argument filter and on the precedence of the LPO
(which influence each other) are encoded as a single SAT problem.

This paper applies a similar strategy to combine RPO with argument filters.
The combined search for an argument filter π, a precedence >F , and a status
function σ are encoded into a single propositional formula. This formula is satis-
fiable iff there is an argument filter and an RPO which orient a set of inequalities.
Each model of the encoding indicates such an argument filter and RPO.

4.1 Dependency Pairs and Argument Filters

We provide here a simplified presentation of the DP method and refer to [1,10] for
further details. For a TRS R over the symbols F , the defined symbols DR ⊆ F
consist of all root symbols of left-hand sides of R. The signature F is extended
by a fresh tuple symbol F for each defined symbol f ∈ DR. Then for each
rule f(s1, . . . , sn) → r in R and each subterm g(t1, . . . , tm) of r with g ∈ DR,
F (s1, . . . , sn) → G(t1, . . . , tm) is a dependency pair, intuitively indicating that a
function call to f may lead to a function call to g. The set of dependency pairs
of R is denoted DP (R). So in Ex. 1(b), add is the only defined symbol and there
is one dependency pair: ADD(x, s(y)) → ADD(y, x).

The main result of the DP method states that a TRS R is terminating iff
there is no infinite R-chain of its dependency pairs P = DP (R). This means
that there is no infinite sequence of dependency pairs s1 → t1, s2 → t2, . . . from
P such that for all i there is a substitution σi where tiσi is terminating w.r.t.
R and tiσi →∗

R si+1σi+1. Termination proofs in the DP method are stated in
terms of DP problems which are pairs of the form (P , R) where P is a set of
dependency pairs and R a TRS. Such a pair is read as posing the question: “Is
there an infinite R-chain of dependency pairs from P?” Hence, termination of
R is stated as the initial DP problem (P , R) with P = DP (R).

Starting from the initial DP problem, termination proofs repeatedly restrict
(P , R) to obtain a smaller DP problem (P ′, R) with P ′ ⊂ P while maintaining
a soundness property to guarantee that there is an infinite R-chain of pairs from
P ′ whenever there is an infinite R-chain of pairs from P . Thus, if one reaches
the DP problem (∅, R), then termination is proved.
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One of the main techniques to restrict DP problems involves the notion of a
reduction pair (�, �) where � is reflexive, transitive, monotonic, and stable and
� is a stable well-founded order compatible with � (i.e., � ◦ � ⊆ � or � ◦ � ⊆
�). But � need not be monotonic. Given a DP problem (P , R) and a reduction
pair (�, �), the technique requires that (a) the dependency pairs in P are weakly
or strictly decreasing and, (b) all rules in R are weakly decreasing. Then it is
sound to obtain P ′ by removing all strictly decreasing dependency pairs from P .
It is possible to further strengthen the approach [12,13] by introducing a notion
of usable rules and considering these in (b) instead of all rules. Arts and Giesl
show in [1] that if (�, �) is a reduction pair and π is an argument filter, then
(�π, �π) is also a reduction pair. In particular, we focus on reduction pairs of
this form to prove termination of TRS where the direct application of RPO fails.

Example 5. Building on the rule from Ex. 4, consider the TRS (on the left) for
addition using an accumulator and its three dependency pairs (on the right):

add(x, y) → add′(x, y, 0) ADD(x, y) → ADD′(x, y, 0)
add′(0, 0, z) → z

add′(s(x), y, z) → add′(x, y, s(z)) ADD′(s(x), y, z) → ADD′(x, y, s(z))
add′(x, s(y), z) → add′(y, x, s(z)) ADD′(x, s(y), z) → ADD′(y, x, s(z))

To orient the DPs we use (�π
rpo, �π

rpo) where π(ADD)=π(ADD′)=[1, 2], π(s)=[1],
and where �rpo and �rpo are induced by the precedence ADD >F ADD′ and the
status function σ that maps ADD and ADD′ to mul. Since the problematic third
accumulator argument (in the last two DPs) is filtered away, all three DPs are
strictly decreasing and can be removed, as there are no usable rules. This results
in the DP problem (∅, R) which proves termination for the TRS.

4.2 Encoding RPO with Argument Filters

To encode argument filters, each n-ary function symbol f ∈ F is associated with
n propositional variables f1, . . . , fn, and another variable listf . Here, fi is true
iff i ∈ π(f) or i = π(f), and listf is true iff π is not collapsing on f . To ensure
that these n+1 propositional variables indeed correspond to an argument filter,
we impose the following constraints which express that if π collapses f then it
is replaced by exactly one of its subterms:

¬listf → one(f1, . . . , fn).

To encode the combination of RPO with argument filters, consider again the
equations (1) - (4). Each reference to a subterm must now be “wrapped” by the
question: “has this subterm been filtered by π?” In the following, similar to the
encoding of Sect. 3, all “missing” cases are defined to be false. Equations (1′) -
(3′) enhance Equations (1) - (3). Equations (4a′) and (4b′) enhance Equation (4)
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in the cases when one of the terms is a variable x and (4c′) considers the other
case and examines whether the filter collapses the root symbols or not.

τ(f(s̄) �π
rpo t) =

n�
i=1

�
fi ∧

�
τ(si �π

rpo t) ∨
(listf ∧ τ(si ∼π

rpo t))

��
∨ τ2(f(s̄) �π

rpo t) (1′)

τ2(f(s̄) �π
rpo g(t̄)) =

m�
j=1

�
gj → τ(f(s̄) �π

rpo tj)
�

∧ (2′)

�
listg →

�
listf ∧

�
(f >F g) ∨ ((f ≈F g) ∧ τ(s̄ �f,g,π

rpo t̄))
���

τ(s ∼π
rpo s) = true (3′)

τ(f(s̄) ∼π
rpo x) = (¬listf ∧

n�
i=1

�
fi → τ(si ∼π

rpo x)
�

for variables x (4a′)

τ(x ∼π
rpo g(t̄)) = (¬listg ∧

m�
j=1

�
gj → τ(x ∼π

rpo tj)
�

for variables x (4b′)

τ(f(s̄) ∼π
rpo g(t̄)) =

�
¬listf →

n�
i=1

�
fi → τ(si ∼π

rpo g(t̄))
��

∧ (4c′)

�
�(listf ∧ ¬listg) →

m�
j=1

�
gj → τ(f(s̄) ∼π

rpo tj)
�	
 ∧

�
(listf ∧ listg) →

�
(f ≈F g) ∧ τ(s̄ ∼f,g,π

rpo t̄)
��

For the lexicographic comparison with permutations, we enhance Formula (5)
to specify the relation between filters and permutations. Only non-filtered argu-
ments are permuted. Moreover, for an n-ary symbol f with � < n non-filtered
arguments, the permutation should map all � non-filtered arguments to positions
from {1, . . . , �}. Formula (5a′) states that if some argument of f is considered
at the k-th position (i.e., some fi,k is true), then there is exactly one such
argument. Formula (5b′) specifies that filtered arguments may not be used in
the permutation. So if the i-th argument of f is filtered (i.e., fi is false), then
the permutation variables fi,k (for 1 ≤ k ≤ n) are also false. Formula (5c′)
states that if the i-th argument of f is not filtered (i.e., fi is true), then the
i-th argument of f is considered at exactly one position in the permutation.
Finally, Formula (5d′) expresses that all � non-filtered arguments are permuted
“to the left”, i.e., to positions from {1, . . . , �}. Hence, if an argument is mapped
to position k, then some argument is also mapped to position k − 1.

n̂

k=1

 
n_

i=1

fi,k → one(f1,k, . . . , fn,k)

!
(5a′)

n̂

i=1

(fi → one(fi,1, . . . , fi,n)) (5c′)

n̂

i=1

 
¬fi →

n̂

k=1

¬fi,k

!
(5b′)

n̂

k=2

 
n_

i=1

fi,k →
n_

i=1

fi,k−1

!
(5d′)

For the encoding of f(s̄) ∼f,g,π
rpo g(t̄) and f(s̄) �f,g,π

rpo g(t̄) when the arguments
of f and g are compared lexicographically, we use the notation ∼f,g,π

lex and �f,g,π
lex .

For an equality constraint of the form s̄ ∼f,g,π
lex t̄ we enhance Equation (6). There

must be a one-to-one correspondence between the non-filtered arguments of s̄
and of t̄ via the permutations for f and for g. To express this, we use a constraint
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of the form eq arity(f,g) in Equation (6′) which states that the number of non-
filtered arguments of f and of g are the same. It corresponds to the constraint
(n = m) in Equation (6) and is encoded as

eq arity(f, g) =
max(n,m)�

k=1

�
� n�

i=1

fi,k ↔
m�

j=1

gj,k

	



τ(s̄ ∼f,g,π
lex t̄) = eq arity(f, g) ∧

n�
k=1

n�
i=1

m�
j=1

�
fi,k ∧ gj,k → τ(si ∼π

rpo tj)
�

(6′)

Next we enhance Equation (7) to define �f,g,π
rpo = �f,g,1,π

rpo . For m < k ≤ n we
now require that f considers an argument at the k-th position. The remaining
cases are structurally identical to the corresponding cases of Equation (7).

τ(s̄ �f,g,k,π
lex t̄) =

�����
�����

false if k > n�n
i=1 fi,k if m < k ≤ n�n
i=1

�
fi,k ∧

��m
j=1 gj,k → otherwise

(τ(si �π
rpo tj) ∨ (τ(si ∼π

rpo tj) ∧ τ(s̄ �f,g,k+1,π
lex t̄)))

�� (7′)

For the multiset comparison, we enhance Formula (8) such that the multiset
cover only considers non-filtered arguments of f(s̄) and g(t̄). Formula (8a′) states
that if the j-th argument of g is not filtered (i.e., gj is true), then there must
be exactly one argument of f that covers it. Formula (8b′) states that if the i-th
argument of f is filtered (i.e., fi is false), then it cannot cover any arguments
of g. Formula (8c′) specifies that if the j-th argument of g is filtered (i.e., gj is
false), then there is no argument of f that covers it. Finally, Formula (8d′) is
taken straight from the original Formula (8).

m�
j=1

(gj → one(γ1,j , . . . , γn,j)) (8a′)
n�

i=1

�
�¬fi → ¬

m�
j=1

γi,j

	

 (8b′)

m�
j=1

�
¬gj → ¬

n�
i=1

γi,j

�
(8c′)

n�
i=1

�
εi → one(γi,1, . . . , γi,m)

�
(8d′)

Now we define τ(s̄ �f,g,π
mul t̄) = τ(s̄ �f,g

mul t̄). For the encoding of �f,g,π
mul and

∼f,g,π
mul , we restrict Equations (10) and (11) to arguments that are not filtered:

τ(s̄ �f,g,π
mul t̄) = τ(s̄ �f,g

mul t̄) ∧ ¬
n�

i=1

(fi → εi) (10′)

τ(s̄ ∼f,g,π
mul t̄) = τ(s̄ �f,g

mul t̄) ∧
n�

i=1

(fi → εi) (11′)

Finally, for the combination of lexicographic and multiset comparisons, we
simply change the equations (12) and (13) to use �f,g,π

mul instead of �f,g
mul etc.:

τ(s̄ �f,g,π
rpo t̄) =

�
mf ∧ mg ∧ τ(s̄ �f,g,π

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1,π

lex t̄)
�

(12′)

τ(s̄ ∼f,g,π
rpo t̄) =

�
mf ∧ mg ∧ τ(s̄ ∼f,g,π

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g,π

lex t̄)
�

(13′)
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Example 6. We solved the inequality ADD′(x, s(y), z) (�)ADD′(y, x, s(z)) in Ex.
5 by the argument filter π(ADD′) = [1, 2] and RPO. To find such argument filters
and the status and precedence of the RPO, such inequalities are now encoded
into propositional formulas. Indeed, the formula resulting from our inequality
is satisfiable by the corresponding setting of the propositional variables (i.e.,
mADD′ = listADD′ = ADD′

1 = ADD′
2 = true and ADD′

3 = false). So we use a
multiset comparison for the filtered tuples 〈x, s(y)〉 and 〈y, x〉. Hence, as in Ex. 3
we set γ1,2 = ε1 = γ2,1 = true and ε2 = false .

In recent refinements of the DP method [12], the choice of the argument filter
π also influences the set of usable rules which contribute to the inequalities
that have to be oriented. We showed in [4] how to extend the encoding of LPO
and argument filters in order to take this refinement into account as well. In a
similar way, this refinement can also be integrated into our encoding of RPO
and argument filters. Finally, similar to Sect. 3.3 one can easily show that the
size of our encoding is again polynomial.

5 Implementation and Experiments

We implemented the encoding of RPO (also in combination with argument fil-
ters) in the termination analyzer AProVE [11], using the SAT4J solver [20]. (We
also tried other SAT solvers like MiniSAT [7] and obtained similar results.) The
encoding can also be restricted to instances of RPO like LPO or MPO.

We tested the implementation on all 865 TRSs from the TPDB [21]. The
experiments were run on a 2.2 GHz AMD Athlon 64 with a time-out of 60 seconds
(as in the International Termination Competition [19]). For each encoding we
give the number of TRSs which could be proved terminating (with the number of
time-outs in brackets) and the analysis time (in seconds) for the full collection.

The first two rows compare our new SAT-based approach for direct application
of path orders to the previous dedicated solvers for path orders in AProVE 1.2
which did not use SAT solving. The last two rows give a similar comparison for
path orders within the DP framework. The columns contain the data for LPO
with strict and non-strict precedence (denoted lpo/qlpo), for LPO with status
(lpos/qlpos), for MPO (mpo/qmpo), and for RPO with status (rpo/qrpo).

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

1 SAT-based 123 (0) 127 (0) 141 (0) 155 (0) 92 (0) 98 (0) 146 (0) 162 (0)
(direct) 31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3

2 dedicated 123 (5) 127(16) 141 (6) 154(45) 92 (7) 98(31) 145(10) 158 (65)
(direct) 334.4 1426.3 460.4 3291.7 653.2 2669.1 908.6 4708.2

3 SAT-based 357 (0) 389 (0) 362 (0) 395 (2) 369 (0) 408 (1) 375 (0) 416 (2)
(arg. filt.) 79.3 199.6 69.0 261.1 110.9 267.8 108.8 331.4

4 dedicated 350(55) 374(79) 355(57) 380(92) 359(69) 391(82) 364(74) 394(102)
(arg. filt.) 4039.6 5469.4 4522.8 6476.5 5169.7 5839.5 5536.6 7186.1

The table shows that with our new SAT encoding, performance improves by or-
ders of magnitude over existing solvers both for direct analysis with path orders
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and for the combination of path orders and argument filters in the DP frame-
work. Note that without a time-out, this effect would be aggravated. By using
SAT, the number of time-outs reduces dramatically from up to 102 to at most 2.
The two remaining SAT examples with time-out have function symbols of high
arity and can only be shown terminating by further sophisticated termination
techniques in addition to RPO. Apart from these two, there are only 15 examples
that take longer than two seconds and only 3 of these take longer than 10 sec-
onds. The table also shows that the use of RPO instead of LPO increases power
substantially, while in the SAT-based setting, runtimes increase only mildly.

6 Conclusion

In [4] we demonstrated the power of propositional encoding and application of
SAT solving to LPO termination analysis. This paper extends this approach to
the more powerful class of recursive path orders. The main new challenges were
the encoding of multiset comparisons and of lexicographic comparisons w.r.t.
permutations as well as the combination with argument filters.

We solved this problem by a novel SAT encoding which combines all of the
constraints originating from these notions into a single search process. Through
implementation and experimentation we showed that our encoding leads to
speedups in orders of magnitude over existing termination tools as well as in-
creased termination proving power. To experiment with our SAT-based imple-
mentation and for further details on our experiments please visit our evaluation
web site at http://aprove.informatik.rwth-aachen.de/eval/SATRPO/.
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