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Abstract. It can be desirable to specify polices that require a system
to achieve some outcome even if a certain number of failures occur. This
paper proposes a logic, RoCTL*, which extends CTL* with operators
from Deontic logic, and a novel operator referred to as “Robustly”. This
novel operator acts as variety of path quantifier allowing us to consider
paths which deviate from the desired behaviour of the system. Unlike
most path quantifiers, the Robustly operator must be evaluated over
a path rather than just a state; the Robustly operator quantifies over
paths produced from the current path by altering a single step. The
Robustly operator roughly represents the phrase “even if an additional
failure occurs now or in the future”. This paper examines the expressivity
of this new logic, motivates its use and shows that it is decidable.

Keywords: RoCTL*, Decidability, Modal Logic, Robustness, Branching
Time Logic, QCTL*.

1 Introduction

Temporal logic has been particularly useful in reasoning about properties of
systems. In particular, the branching temporal logics CTL* [1] and CTL [2] have
been used to verify the properties of non-deterministic and concurrent programs.

The logic RoCTL* divides the set of all futures/histories of the CTL* model
into successful paths and faulty paths. There is a temporal aspect to faults, so
that after the final fault, the path is successful. That is, a path with a finite
number of failures has a successful suffix. We augment the operators of CTL*
with a Deontic operator, which quantifies over all successful paths, and a novel
operator “Robustly” which quantifies over paths which deviate from the current
path. Thus there are three path quantifiers in RoCTL*. These quantifiers will
be discussed below.

The CTL* “All paths” operator describes hard constraints on the behavior
of the system, statements which must be true regardless of how many failures
occur. A hard constraint may result from some law of physics, or it may represent
something that the system can always be expected to achieve. For example, a
real time system may be known to miss some deadlines, but never return an
incorrect result. RoCTL* is a conservative extension of LTL and CTL* [3].

To allow us to reason about the consequences of failures, we add an operator
“Robustly” (�) that allows us to quantify over “deviations” from the current
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path. For a statement to be robustly true, it must be true on the current path
and any path produced by altering a single step. We can represent the statement
“if up to n additional failures occur” by chaining n instances of the Robustly
operator. To strengthen the meaning of the Robustly operator, we allow the
deviating event to be a success as well as a failure. The future after the deviating
event may bear no resemblance to the current path. However, to preserve the
intuition of the Robustly operator as introducing no more than a single additional
failure, no failures occur after the deviating event.

The “Obligatory” operator from Standard Deontic Logic (SDL) is embedded
in RoCTL*. This operator is used to describe what the future must be like if no
further failures occur. All of the validities of O from SDL hold in RoCTL*. Ad-
ditionally, as O is used as a path quantifier, all true state formulæ are obligatory
in RoCTL*.

The addition of the Robustly operator and temporal operators to Deontic
logic allows RoCTL* to deal with Contrary-to-Duty obligations. SDL is able to
distinguish what ought to be true from what is true, but is unable to specify
obligations that come into force only when we behave incorrectly. For example,
SDL is inadequate to represent the obligation “if you murder, you must murder
gently” [4]. Addition of temporal operators to Deontic logic allows us to specify
correct responses to failures that have occurred in the past [5]. However, this
approach alone is not sufficient [5] to represent obligations such as “You must
assist your neighbour, and you must warn them iff you will not assist them”.
In RoCTL* these obligations can be represented if the obligation to warn your
neighbour is robust but the obligation to assist them is not.

Other approaches to dealing with Contrary-to-Duty obligations exist. Defea-
sible logic is often used [6], and logics of agency, such as STIT [7], can be useful
as they can allow obligations to be conditional on the agent’s ability to carry
out the obligation.

This paper provides some examples of robust systems that can be effectively
represented in RoCTL*. It is easy to solve the coordinated attack problem if our
protocol is allowed to assume that only n messages will be lost. The logic may
also be useful to represent the resilience of some economy to temporary failures
to acquire or send some resource. For example, a remote mining colony may have
interacting requirements for communications, food, electricity and fuel. RoCTL*
may be more suitable than Resource Logics (see e.g. [8]) for representing systems
where a failure may cause a resource to become temporarily unavailable. This
paper presents a simple example where the only requirement is to provide a cat
with food when it is hungry.

A number of other extensions of temporal logics have been proposed to deal
with Deontic or Robustness issues [9,10,11,12,13]. Each of these logics are sub-
stantially different from RoCTL*. Some of these logics are designed specifically
to deal with deadlines [9,11]. An Agent Communication Language was formed
by adding Deontic and other modal operators to CTL [13]; this language does
not explicitly deal with robustness or failures. Hansson and Johnsson [11] pro-
posed an extension of CTL to deal with reliability. However their logic reasons
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about reliability using probabilities rather than numbers of failures, and their
paper does not contain any discussion of the relationship of their logic to De-
ontic logics. Like our embedding into QCTL*, Aldewereld et al. [12] uses a Viol
atom to represent failure. However, their logic also uses probability instead of
failure counts and is thus suited to a different class of problems than RoCTL*.
Additionally, adding the Viol atom has different expressivity properties to the
Robustly operator. CTL* with a special “Viol” atom can express statements
such as “If at least one failure occurs” which cannot be expressed in RoCTL*,
and it is not known whether all statements that can be expressed in RoCTL* can
be trivially translated into CTL*. In particular, it is not known how to translate
the phrase “even if a deviation from the current path occurs” into CTL*. None
of these logics appear to have an operator that is substantially similar to the
Robustly operator of RoCTL*.

Diagnosis problems in control theory [14,15] also deals with failures of systems.
Diagnosis is in some sense the dual of the purpose of the RoCTL* logic, as
diagnosis requires that failure cause something (detection of the failure) whereas
robustness involves showing that failure will not cause something.

This paper shows that all RoCTL* statements can be expressed in QCTL*.
Furthermore, it is easy to represent statements like “even if n failures occur” in
CTL*. However, this paper will show how the RoCTL* logic can represent and
make explicit different interactions between the time that failures occur and the
time or duration of the effect. There is no known trivial embedding into CTL*
that preserves these properties.

2 RoCTL* Logic

2.1 RoCTL* Syntax

RoCTL* extends CTL*, which uses the path operators from LTL:

Next Nφ indicates that φ is true at the next step.
Globally Gφ indicates that φ is true and will always be true.
Finally Fφ indicates that φ will be true at some point in the future.
Until φUψ indicates that φ will be true until ψ is true
Weak until φWψ indicates that either φUψ or Gφ is true.

CTL* includes two path-quantifiers:

Always Aφ indicates that φ is true in all possible futures.
Exists Eφ indicates that there is a future in which φ is true.

RoCTL* Includes the Deontic operators O and P as path-quantifiers.

Obligatory Oφ indicates that in every failure-free future φ holds
Permissible Pφ indicates that there is a failure-free future where φ holds

RoCTL* has a new pair of path-quantifiers to deal with failures. Unlike A and
E which are S5 operators, � is a T operator.
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Robustly �φ indicates that φ is true on this path and any path that differs
from this path by a single deviating event.

Prone to Δφ indicates that φ is true, either on this path or a path differing by
a single deviating event, and is the dual of �.

The RoCTL* Logic has a set V of atomic propositions that we call variables.
Where p varies over V , the formulæ of RoCTL* are defined by the abstract
syntax φ := � | p | ¬φ | (φ ∧ φ) | (φUφ) | Nφ | Aφ | Oφ | �φ.

The �, ¬, ∧, N, U and A are the familiar “true”, “not”, “and”, “next”, “un-
til” and “all paths” operators from CTL. The abbreviations ⊥, ∨, F , G, W , E
→ and ↔ are defined as in CTL* logic. As with SDL logic, we define P ≡ ¬O¬.
Finally, we define the abbreviation Δ ≡ ¬�¬. We say that φ is a state formula
iff φ is equivalent to Aφ.

2.2 RoCTL-Structures

Definition 1. A valuation α is a map from a set of states A to the power set
of the variables; we represent the statement “the variable p is true at state w”
with p ∈ α(w).

Definition 2. A CTL-structure M∗ = (A∗, →∗, α∗) is a 3-tuple containing a
set of states A∗, a serial (total) binary relation →∗ and a valuation α∗ on the
set of states A∗. We define C as the class of such structures and Ct as the class
of such structures where →∗ forms a tree.

Definition 3. A RoCTL-structure M is a 4-tuple (A, →s , →f , α), consisting of a
set of states A, a serial (total) binary “success” relation →s , a binary “failure”
relation →f and a valuation α on the set of states A. We define M as the class
of such RoCTL-structures.

Definition 4. We use →sf as an abbreviation for
(
→s ∪ →f

)
. For all n ∈ N we

call an ω-sequence σ = 〈w0, w1, . . .〉 of states a fullpath iff for all non-negative
integers i we have wi →sf wi+1. For all i in N we define σ≥i to be the full-
path 〈wi, wi+1, . . .〉, we define σi to be wi and we define σ≤i to be the sequence
〈w0, w1, . . . , wi〉.

Definition 5. We say that a fullpath σ is failure-free iff for all i ∈ N we have
σi →s σi+1. We define SF (w) to be the set of all fullpaths in M starting with w
and S(w) to be the set of all failure-free fullpaths in M starting with w.

Definition 6. For two fullpaths σ and π we say that π is an i-deviation from σ
iff σ≤i = π≤i and π≥i+1 ∈ S(πi+1). We say that π is a deviation from σ if there
exists a non-negative integer i such that π is an i-deviation from σ. We define
a function δ from a fullpath to a set of fullpaths such that where σ and π are
fullpaths, π is a member of δ(σ) iff π is a deviation from σ.

Below is an example of an i-deviation π from a fullpath σ. The arrows not labeled
with s can be either →s or →f . After π diverges from σ, it avoids any failures that
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may have been on σ>i. We require that a deviation not introduce any failures
except for the deviating event itself, hence π≥i+1 is failure-free.

s s · · ·s
πi+1 πi+2 πi+3

σ0 σi σi+1 σi+2σ1 σi+3

Note that after the deviation, all transitions must be success transitions while
steps before the deviation may be either success or failure transitions. This fol-
lows from the intuition of Robustly representing “even if an additional failure
occurs”, as the failures that are prior to the deviation are already on the existing
path. Additionally, allowing failures to occur before the deviation also allows n
Robustly operators to be nested to represent the statement “even if n additional
failures occur”.

2.3 RoCTL* Semantics

We define truth of a RoCTL* formula φ on a fullpath σ = 〈w0, w1, . . .〉 in
RoCTL-structure M recursively as follows:

M, σ � Nφ iff M, σ≥1 � φ

M, σ � φUψ iff ∃i∈N s.t. M, σ≥i � ψ and ∀j∈Nj < i =⇒ M, σ≥j � ψ

M, σ � Aφ iff ∀π∈SF (σ0)M, π � φ

M, σ � Oφ iff ∀π∈S(σ0)M, π � φ

M, σ � �φ iff ∀π∈δ(σ)M, π � φ and M, σ � φ .

The definitions for �, p, ¬ and ∧ are as we would expect from classical logic.
We say that a formula φ is valid in RoCTL* iff for all structures M in M, for all
fullpaths σ in M we have M, σ � φ.

The operator O is similar to A. If ψ is a CTL* formula and ψ′ is ψ with
all instances of A replaced with O, then Oψ′ is a validity of RoCTL* iff ψ is a
validity [3]. It is also easy to show that if →f is empty, the O and � operators
are equivalent to the A operator. Restricting the class of structures such that
→s ∩ →f = ∅ and/or such that →f is serial does not affect the validities of the logic.

3 Properties of RoCTL*

The behaviour of the A operator is the same as in CTL*, and the behaviour of
the O operator is similar to that of the O operator in SDL. It is easy to show [3]
that the axiom class Oφ → Pφ is valid in RoCTL* (and SDL); neither the
axiom class φ → Pφ, nor the axiom class Oφ → φ, is valid in RoCTL* (or SDL).
However, unlike SDL, the axiom class p → Op is valid in RoCTL* [3]. This is
due to O being a path quantifier in RoCTL*. In this section, combinations of
operators and differences between the operators will be discussed.
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3.1 Interpretations of Combinations of Operators

As both A and O are traditional path-quantifiers, AO and OA are of little use
and reduce to O and A respectively. Similarly, �O reduces to O. However, O�
does not reduce to �. Indeed, �φ is not a state formula, while O�φ is. The pair
O� quantifies over any path starting at the present state that has at most one
failure.

The order of � and N affects the meaning of the combination, �Nφ represents
the statement “Even if one or fewer deviations occur now or in the future, φ
will be true at the next step”. The formula N�φ is similar, but only requires
φ to be true if the deviation occurs after the next step. As with the A path-
quantifier from CTL*, �Nφ → N�φ and �Gφ → G�φ are valid in RoCTL* but
�Nφ ← N�φ and G�φ → �Gφ are not [3]. The statement G�φ indicates that
for every state along the present path, φ holds at the beginning of all deviations;
the statement �Gφ indicates that φ will be true not only at the beginning of
the deviation, but along the deviation as well.

The order of the N and O operators is important, even more so than of N and
A. As with NAφ → ANφ, the formula form NOφ → ONφ is not valid. However,
unlike ANφ → NAφ, the form ONφ → NOφ is not valid. The combination NO
represents what will obligatory after the next transition, which might be a failure
transition. The ON combination instead discusses what should be true at the
next step. For further discussion of this combination, see Example 1.

It is easy to show that the following formulæ forms are valid in RoCTL*:
Aφ → Oφ, AOφ ↔ Oφ, OAφ ↔ Aφ, Aφ → �φ, �φ → Oφ, A�φ ↔ Aφ,
�Aφ ↔ Aφ and �Oφ ↔ Oφ.

3.2 Differences Between A, � and O

The A, � and O operators have similar properties since they quantify over paths.
The � operator is an unusual path quantifier as �φ is not a state formula. This
paper will not present a full axiomatization of RoCTL*. However, it will examine
which axioms of A are also valid for � and O . The axioms [16] that reference
the A operator are:

C9 A (φ → ψ) → (Aφ → Aψ)
C10 Aφ → AAφ
C11 Aφ → φ
C12 φ → AEφ
LC AG (Aφ → EN (AψUAφ)) → (Aφ → EG (AψUAφ)) .

C13 A¬φ ↔ ¬Eφ
C14 p → Ap
C15 ANφ → NAφ

As the real world may not be in a desirable state, neither Oφ → φ nor φ →
OPφ are valid. As mentioned previously ONφ → NOφ is not valid in RoCTL*.
It is easy to show that the C9, C10, C13, C14 and LC axioms are still valid if A
is replaced with O.

The formula φ → �Δφ is not valid in RoCTL*. The reason for this is that
a deviation can prevent any number of failures occurring in the future, but
the second deviation can cause only a single new failure. The � operator is
not transitive, so �φ → ��φ is not valid in RoCTL*. The axiom forms C9,
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C13, C14, C15 are still valid in RoCTL* if A is replaced with �. The formula
�G (Aφ → PN (AψUAφ)) → (Aφ → ΔG (AψUAφ)) is also valid in RoCTL*.

4 Examples

In this section a number of examples are presented. The first example examines
the difference between the formula NOφ and the formula ONφ. The second
example shows how RoCTL* may be used to specify a robust network protocol.
Then an example of feeding a cat will be introduced to explain how we may
reason about consequences of polices. These examples will frequently use the
�/Δ operator to form the pair O�. In the final example we use the simple
formula O(ΔFe → Fw) which nests �/Δ in a less trivial way.

Example 1. Here is an example of a simple Contrary-to-Duty obligation. This
provides a counter example to both ONφ → NOφ and NOφ → ONφ.
ON(Gp): You should commit to the proper decision.
NO (G¬p ∨ Gp): Once you have made your decision, you must stick with it.

It is consistent with the above that we do not make the proper decision (N¬p).
Once we have made the wrong decision we cannot satisfy Gp, so we must stick
with the wrong decision G¬p. Hence, in this case, both ON(Gp) and NO(G¬p)
are true. Likewise ON(G¬p) and NO(Gp) are false. This demonstrates how
obligations can change with time in RoCTL*. We will now give an example of a
structure M = (A, →s , →f , α) that satisfies these formulae:

A = {u, v, w},
→s = {(u, v), (v, v), (w, w)} ,

→f = {(u, w)} ,
α(v) = {p} , α(w) = ∅ .

s

s

u

v : p

w : ¬p

s

f

Let σ be the fullpath 〈u, w, w, . . . 〉 corresponding to making the wrong de-
cision. We see that M, σ≥1 � ¬p, so M, σ≥1 � O¬p and M, σ≥1 � ¬Op. Thus
M, σ � NO¬p and M, σ � N¬Op. It follows that M, σ � ¬NOp.

Let π = 〈v, v, . . .〉. We see that M, π � p. We see that S(u) = {〈u, v, v, . . .〉}.
Hence M, σ � ONp and it follows that M, σ � ¬O¬Np and so M, σ � ¬ON¬p.

Hence M, σ � (ONp ∧ ¬NOp) and so M, σ � (ONφ → NOφ) where φ = p.
Likewise M, σ � (NO¬p ∧ ¬ON¬p), so M, σ � (NOφ → ONφ) where φ = ¬p.

Example 2. In the coordinated attack problem we have two generals A and B.
General A wants to organise an attack with B. A communication protocol will be
presented such that a coordinated attack will occur if no more than one message
is lost.

AG (sA → ONrB): If A sends a message, B should receive it at the next step.
AG (¬sA → ¬NrB): If A does not send a message now, B will not receive a

message at the next step.
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AG(fA → AGfA): If A commits to an attack, A cannot withdraw.
AG(fA → ¬sA): If A has committed to an attack, it is too late to send messages.
A (¬fAWrA): A cannot commit to an attack until A has received plans from B

Similar constraints to the above also apply to B. Below we add a constraints
requiring A to be the general planning the attack

A (¬sBWrB): General B will not send a message until B has received a message.

No protocol exists to satisfy the original coordination problem, since an un-
bounded number of messages can be lost. Here we only attempt to ensure correct
behaviour if one or fewer messages are lost.

A (sAUrA): General A will send plans until a response is received.
AG (rA → fA): Once general A receives a response, A will commit to an attack.
A (¬rBW (rB ∧ (sB ∧ NsB ∧ NNfB))): Once general B receives plans, B will

send two messages to A and then commit to an attack.

Having the formal statement of the policy above and the semantics of RoCTL*
we may prove that the policy φ̂ is consistent and that it implies correct behaviour
even if a single failure occurs:

φ̂ → O�F (fA ∧ fB) .

Indeed, we will show in Section 5 that such issues can be decided in finite time.

Example 3. We have a cat that does not eat the hour after it has eaten. If the
cat bowl is empty we might forget to fill it. We must ensure that the cat never
goes hungry, even if we forget to fill the cat bowl one hour. At the beginning of
the first hour, the cat bowl is full. We have the following variables:

b “The cat bowl is full at the beginning of this hour”
d “This hour is feeding time”

We can translate the statements above into RoCTL* statements:

1. AG(d → ¬Nd): If this hour is feeding time, the next is not.
2. AG((d ∨ ¬b) → ΔN¬b): If it is feeding time or the cat bowl was empty, a

single failure may result in an empty bowl at the next step
3. AG((¬d ∧ b) → Nb): If the bowl is full and it is not feeding time, the bowl

will be full at the beginning of the next hour.
4. O�G (d → b): It is obligatory that, even if a single failure occurs, it is always

the case that the bowl must be full at feeding time.
5. b: The cat bowl starts full.

Having the formalised the policy it can be proven that the policy is consistent
and that the policy implies O�GONb, indicating that the bowl must be filled
at every step (in case we forget at the next step), unless we have already failed
twice. The formula AGONb → O�G (d → b) can also be derived, indicating that
following a policy requiring us to always attempt to fill the cat bowl ensures that
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we will not starve the cat even if we make a single mistake. Thus following this
simpler policy is sufficient to discharge our original obligation.

Example 4. We define a system that will warn the user if the system enters an
unsafe state:

1. AGONs: The system should always ensure that the system reaches a safe
state by the next step.

2. AG(s → N¬e): If the system is in a safe state an error e will not occur at
the next step.

3. s ∧ ¬e: The system starts in a safe state with no error.
4. AG(¬s → Nw): If the system is in an unsafe state, the system will warn the

user at the next step.

We may prove that if an error e almost occurs, the system will finally warn the
user, i.e. O(ΔFe → Fw).

See [3] for more examples, such as nesting Δ within � to discuss liveness of
failure detection.

5 Embeddings

In this section it will be shown that RoCTL* can be embedded in QCTL*, and
hence is decidable.

5.1 Converting a RoCTL-Structure M to a CTL-Structure M∗

For a RoCTL-structure M we construct a CTL tree structure M∗ as follows. We
define an interim CTL-structure M sf . The atoms of M sf are the atoms of M
plus an additional atom “Viol” representing the statement “The last transition
was a failing (f) transition” and an additional set Y of anonymous atoms. For
each state w of M we have two states ws and wf in M sf , with Viol being true
at wf but not ws. For each pair of states wi and wj in M , we have

ws
i → ws

j ⇐⇒ wi →s wj ws
i → wf

j ⇐⇒ wi →f wj

wf
i → ws

j ⇐⇒ wi →s wj wf
i → wf

j ⇐⇒ wi →f wj .

It is easy to rewrite a RoCTL* formula to use the Δ operator instead of �. To
ease the embedding of the Δ operator we will add a countable set Y of atoms
to M sf and unwind it into a tree to form the tree structure M∗.

Translating a CTL tree structure M∗ = (A∗, →∗, α∗) with a Viol atom into a
RoCTL-structure M = (A, →s , →f , α) is trivial. We set A = A∗ and let α∗ = α.
We set →s and →f such that for each pair of states wi and wj we have:

wi →s wj ⇐⇒ (wi →∗ wj) ∧ (Viol /∈ α(wj))

wi →f wj ⇐⇒ (wi →∗ wj) ∧ (Viol ∈ α(wj)) .
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5.2 Translating a RoCTL* Formula into a QCTL* Formula

Definition 7. Given some CTL structure M = (A, →, α) and some x ∈ A, an
x-variant of M is some structure M = (A, →, α′) where α′(w)\{x} = α(w)\{x}
for all w ∈ A.

QCTL* has the syntax φ := � | p | ¬φ | (φ ∧ φ) | (φUφ) | Nφ | Aφ | ∃pφ . The se-
mantics of �, p, ¬, ∧, U , N , and A are the same as in CTL* and RoCTL*.
Under the Kripke semantics for QCTL*, ∃pφ is defined as

M, b |= ∃pα ⇐⇒ There is some p-variant M ′ of M such that M ′, b |= α .

This paper uses the tree semantics for QCTL*. These semantics are the same
as the Kripke semantics except that, whereas the Kripke semantics evaluates
validity over the class C of CTL-structures, the tree semantics evaluate validity
over the class Ct of tree CTL-structures. This changes the validities of the logic
as, unlike CTL* [17], QCTL* is sensitive to unwinding into a tree structure [18].

We let γ be the (Q)CTL* formula NNG¬Viol. The γ formula is used to
represent the requirement that all transitions after a deviation must be successes.

We define a translation function tΔ such that for any formula φ∗ and for some
atom y not in φ∗:

tΔ (φ∗) =∀y [Gy → E [(Gy ∨ F (y ∧ γ)) ∧ φ∗]] .

Note that for tΔ (φ∗) to hold, E [(Gy ∨ F (y ∧ γ)) ∧ φ∗] must hold for all pos-
sible values of y that satisfy Gy, including the case where y is true only along
the current fullpath σ∗. The diagram below shows a fullpath π∗ that satisfies
F (y ∧ γ) for all such y.

s s · · ·

σ∗
i+1σ∗

iσ∗
i−1σ∗

1σ∗
0

¬y¬y

σ∗
i+2

y y y y y y

π∗
i+1 π∗

i+2

π∗
iπ∗

i−1π∗
1π∗

0

Lemma 1. Say that φ is a RoCTL* formula and φ∗ is a QCTL* formula such
that for all M and σ it is the case that M, σ � φ iff M∗, σ∗ � φ∗. Then, for all
M and σ it is the case that M, σ � Δφ iff M∗, σ∗ � tΔ (φ∗).

Proof. ( =⇒ ) Say that M, σ � Δφ. Then M, σ � φ or there exists a deviation π
from σ such that M, π � φ. If M, σ � φ then M∗, σ∗ � φ∗ from which it follows
that M∗, σ∗ � ∀y [Gy → E [Gy ∧ φ∗]], and so M∗, σ∗ � tΔ (φ∗).

If M, σ � φ then, for some i, there exists an i-deviation π from σ such that
M, π � φ. If Gy holds along σ∗ then y holds at π∗

i = σ∗
i . As π is an i-deviation, all

transitions following πi+1 are success transitions, so M∗, π∗
≥i � γ and M∗, π∗ �

F (y ∧ γ) ∧ φ∗ from which it follows that M∗, σ∗ � tΔ (φ∗).
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(⇐=) Say that M∗, σ∗ � tΔ (φ∗). Then

My, σ∗ � [Gy → E [(Gy ∨ F (y ∧ γ)) ∧ φ∗]] ,

where My is any tree structure that is y-bisimilar to M∗. Consider an My for
which y is true at a state w iff w ∈ σ∗. Then My, σ∗ � E [(Gy ∨ F (y ∧ γ)) ∧ φ∗].
Thus there exists some fullpath σy such that σy

0 = σ∗
0 and My, σy � F (y ∧ γ)∧φ∗

or My, σy � Gy ∧ φ∗.
If My, σy � Gy ∧ φ∗ then σy = σ∗, so M∗, σ∗ � φ∗ and M, σ � φ. If My, σy �

F (y ∧ γ)∧φ∗ then there exists an integer i such that My, σy
≥i � y∧γ. Let σ and

π be translations of σ∗ and σy respectively into fullpaths through the original
structure M . As My is a tree structure and y is only true along σ∗, it follows
that σy

≤i = σ∗
≤i and π≤i = σ≤i. This, together with the fact that My, σy

≥i � γ,
means that π is an i-deviation from σ. As My, σy � φ∗ it follows that M, π � φ,
and so M, σ � Δφ.

Theorem 1. We may express any RoCTL* formula φ of length n as a QCTL*
formula φ∗ of length O(n) that is equivalent to φ when φ∗ is interpreted according
to the tree semantics for QCTL*.

Proof. Using tΔ (φ∗) defined above, tO(φ∗) ≡ A (NG¬Viol → φ∗), t¬(φ∗) ≡
¬φ∗, tN (φ∗) ≡ Nφ∗, tA(φ∗) ≡ Aφ∗, t∧(φ∗

1, φ
∗
2) ≡ φ∗

1 ∧ φ∗
2, tU (φ∗

1, φ
∗
2) ≡ φ∗

1Uφ∗
2,

t	 = � and tp(p) ≡ p, we may recursively translate any RoCTL* formula φ into
a QCTL* formula φ∗ such that M, σ � φ iff M∗, σ∗ � φ∗ where M∗, σ∗ are the
transformations of M, σ described above.

Corollary 1. RoCTL* is decidable.

Proof. In Section 5.1 we have shown that for every RoCTL-structure M there
is a corresponding CTL tree structure M∗ and visa versa. As the tree semantics
for QCTL* are decidable [19,20], it is obvious from Theorem 1 that RoCTL* is
decidable.

6 Conclusion

We have proposed a logic RoCTL* for reasoning about robust systems. This
logic introduced a Robustly operator that provides a bridge between what should
happen and what actually does. We have given examples of simple robust systems
that can be represented in RoCTL*. We have proven that RoCTL* has a linear
embedding into QCTL*, and hence is decidable. Never-the-less there is much
more to be understood about this logic.

Although we can decide RoCTL* via QCTL*, it is important to find a more
efficient decision procedure as QCTL* is not elementary [21,22]. Determining
whether a particular model satisfies a RoCTL* policy is also useful. It is easy
to show that the model checking problem is decidable via reduction to QCTL*
and μ-calculus. However, a more efficient decision procedure is needed.
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Restricting the expressivity of RoCTL* may lead to better complexity results.
It may be productive to look for a restriction of RoCTL* that more closely
resembles CTL or LTL than CTL*. However, as the Robustly operator is a path-
quantifier that is not a state formulae, it is quite different from the operators
found in CTL and LTL. For this reason, finding a restriction that preserves the
usefulness and uniqueness of the Robustly operator while gaining some of the
simplicity of CTL or LTL will be non-trivial.

Finding an axiomatization for RoCTL* may be a challenging task. Although
this paper has compared the validities of the � and O operators to the axioms
for the A operator, we are far from finding a sound axiomatization of RoCTL*,
and have not examined how to prove that such an axiomatization is complete.

More work needs to be done in applying RoCTL* to practical problems. This
paper has presented some trivial examples where RoCTL* succinctly represents
robustness properties of simple systems. To test the expressivity of RoCTL* and
find real world applications, much larger and more complex examples need to
be formalised and examined. For some uses, RoCTL* may need to be extended.
RoCTL* can use the prone operator to discuss whether it is possible for a failure
to be detected at a particular step. Diagnosis problems require that failures will
be detected. For these purposes, an “If at least one additional failure occurs”
operator and a knowledge operator are desirable. It would be useful to find an
extension that satisfies these requirements while preserving decidability.
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