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Preface

This volume contains the proceedings of the Sixth International Symposium on
Frontiers of Combining Systems (FroCoS 2007) held September 10-12, 2007 in
Liverpool, UK. Previously, FroCoS was organized in Munich (1996), Amsterdam
(1998), Nancy (2000), Santa Margeritha Ligure near Genoa (2002), and Vienna
(2005). In 2004 and 2006, FroCoS joined IJCAR, the International Joint Con-
ference on Automated Reasoning. Like its predecessors, FroCoS 2007 offered a
forum for the presentation and discussion of research activities on the combi-
nation, integration, analysis, modularization and interaction of formally defined
systems, with an emphasis on logic-based ones. These issues are important in
many areas of computer science, such as logic, computation, program devel-
opment and verification, artificial intelligence, automated reasoning, constraint
solving, declarative programming, and symbolic computation.

There were 31 submissions to FroCoS 2007. Each submission was reviewed
by at least three Programme Committee members. After extensive discussion
within the Programme Committee, 14 papers were accepted for presentation
and publication in this volume. In addition to technical papers, the volume also
includes four invited contributions by Sava Krstic (Intel Corporation, USA),
Roberto Sebastiani (University of Trento, Italy), Viorica Sofronie-Stokkermans
(Max-Planck-Institut für Informatik, Germany), and Michael Zakharyaschev
(Birkbeck College London, UK).

Many people and institutions contributed to making FroCoS 2007 a success.
We are indebted to the members of the Programme Committee and the addi-
tional refereees for the thorough reviewing work; the members of the FroCoS
Steering Committee for their support, to Andrei Voronkov for free use of the
EasyChair conference management system, to sponsorship from EPSRC, and to
Dave Shield and Thelma Williams for their invaluable assistance in hosting this
conference.

June 2007 Boris Konev
Frank Wolter
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Architecting Solvers for SAT Modulo Theories:

Nelson-Oppen with DPLL

Sava Krstić and Amit Goel

Strategic CAD Labs, Intel Corporation

Abstract. We offer a transition system representing a high-level but
detailed architecture for SMT solvers that combine a propositional SAT
engine with solvers for multiple disjoint theories. The system captures
succintly and accurately all the major aspects of the solver’s global op-
eration: boolean search with across-the-board backjumping, communica-
tion of theory-specific facts and equalities between shared variables, and
cooperative conflict analysis. Provably correct and prudently underspec-
ified, our system is a usable ground for high-quality implementations of
comprehensive SMT solvers.

1 Introduction

SMT solvers are fully automated theorem provers based on decision procedures.
The acronym is for Satisfiability Modulo Theories, indicating that an SMT solver
works as a satisfiability checker, with its decision procedures targeting queries
from one or more logical theories. These proof engines have become vital in veri-
fication practice and hold an even greater promise, but they are still a challenge
to design and implement. From the seminal Simplify [9] to the current state-of-
the-art Yices [10], with notable exceptions such as UCLID [6], the prevailing wis-
dom has been that an SMT solver should contain a SAT solver for managing the
boolean complexity of the input formula and several specialized solvers—linear
arithmetic and “theory of uninterpreted functions” obbligato—that communi-
cate by exchanging equalities between variables (“the Nelson-Oppen style”[15]).
This much granted, there is a host of remaining design issues at various levels
of abstraction, the response to which distinguishes one solver from another.

Our goal is to define the top-level architecture of an SMT solver as a math-
ematical object that can be grasped as a whole and fruitfully reasoned about.
We want an abstract model that faithfully captures the intricacies of the solver’s
global operation—what is going on between the architectural components and
what is going on inside the components that is essential for interaction. We
achieve this goal by presenting the SMT solver as a non-deterministic transi-
tion system. The ten rules of our system (Figure 5) provide a rather detailed
rational reconstruction of the mainstream SMT solvers, covering the mecha-
nisms for boolean search, communication of theory-specific facts and equalities
between shared variables, and global conflict analysis. The system provides a
solid theoretical basis for implementations, which can explore various execution

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 1–27, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



2 S. Krstić and A. Goel

strategies, refinements and optimizations, assured of fundamental correctness as
long as they “play by the rules”.

Following the precursor [12] to this paper, we adopt a logic with paramet-
ric polymorphism as the natural choice for SMT solvers, emphasizing cardinality
constraints—not the traditional stable-infinity condition—as an accurate expres-
sion of what matters for completeness of the Nelson-Oppen method in practice.1

Our main results are the termination, soundness, and completeness theorems for
our transition system.

Related Work. We were inspired mainly by the work of Nieuwenhuis, Oliveras,
and Tinelli [16] on abstract DPLL and abstract DPLL modulo theories—transition
systems that model a DPLL-style SAT solver [8] and an SMT solver that extends
it with a solver for one theory. In the follow-up paper [3], the same authors with
Barrett extend their system with features for “splitting on demand” and derive
from it the DPLL(T1, . . . , Tn) architecture. This architecture is closely related
to our system nodpll (Section 5), but is significantly less detailed and transpar-
ent. It refines DPLL modulo a single (composite) theory with appropriate purity
requirements on some, but not all rules. In contrast, nodpll is explicitly modulo
multiple theories, with rules specifying actions of specific theory solvers and the
solvers’ interaction made vivid. For example, equality propagation is spelled out
in nodpll, but which solver in DPLL(T1, . . . , Tn) derives x = z from x = y
and y = z is not clear. Another important difference is in the modeling of con-
flict analysis and it shows even if our systems are compared at the propositional
(SAT solver) level. While [16] and [3] view confict analysis abstractly, tucking it
in a general rule for backjumping, nodpll has rules that directly cover its key
steps: conflict detection, the subsequent sequence of “explanations”, generation
of the “backjump clause”, and the actual backjump. In an SMT solver, in partic-
ular with multiple theories, conflict analysis is even more subtle than in a SAT
solver, and the authors of [16] are the first to point out its pitfalls (“too new
explanations”) and identify a condition for its correct behavior. nodpll neatly
captures this condition as a guard of a rule.

Our work also builds on [7], which has a transition system modeling a Nelson-
Oppen solver for multiple theories, but does not address the cooperation with
the SAT solver. Formal models of SMT solvers that do handle a SAT solver
together with more than one theory are given only in the paper [3] discussed
above and earlier works [2], [5]. Barrett’s architecture of CVC Lite as described
in [2] is complex and too low-level for convenient analysis and application. The
system SMT (T1∪T2) of Bozzano et al. [5] describes in pseudo-code a particular
approach for equality propagation taken by the MathSAT solver, which can be
modeled in nodpll; see Section 5.6.

Outline. Section 2 contains (termino)logical background as developed in [12],
but divorcing the solver’s polymorphic language from HOL, to emphasize that
1 The justification for the presence of non-stably-infinite theories in the Nelson-Oppen

framework is studied in recent papers [20,17,4]; in [12], it is shown that the concept
of stable-infinity can be dismissed altogether.
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ΣEq = 〈Bool | =α2→Bool, ite[Bool,α,α]→α, trueBool, falseBool, ¬Bool→Bool, ∧Bool2→Bool , . . .〉
ΣUF = 〈⇒ | @[α⇒β,α]→β〉
ΣInt = 〈Int | 0Int, 1Int, (−1)Int, . . . , +Int2→Int, −Int2→Int, ×Int2→Int, ≤Int2→Bool , . . .〉
Σ× = 〈× | 〈-, -〉[α,β]→α×β, fstα×β→α, sndα×β→β〉
ΣArray = 〈Array | mk arrβ→Array(α,β), read[Array(α,β),α]→β, write[Array(α,β),α,β]→Array(α,β)〉
ΣList = 〈List | cons[α,List(α)]→List(α), nilList(α), head[List(α),α]→Bool, tail[List(α),List(α)]→Bool〉

Fig. 1. Signatures for theories of some familiar datatypes. For space efficiency, the
constants’ arities are shown as superscripts. ΣEq contains the type operator Bool and
standard logical constants. All other signatures by definition contain ΣEq, but to
avoid clutter we leave their ΣEq-part implicit. In ΣUF, the symbol UF is for uninterpreted
functions and the intended meaning of @ is the function application. The list functions
head and tail are partial, so are represented as predicates in ΣList.

parametricity is not tied to higher-order logic, even though it is most conve-
niently expressed there. In Section 3, we overview purification—a somewhat
involved procedure in the context of parametric theories—and give a suitable
form of the non-deterministic Nelson-Oppen combination theorem of [12]. Sec-
tion 4 is a quick rendition of the core DPLL algorithm as a transition system
covering the essential features of modern SAT solvers. Section 5 contains the
description of our main transition system for modeling combined SMT solvers,
the basic correctness results for it, and some discussion. All proofs are given in
the appendix.

2 Preliminaries

We are interested in logical theories of common datatypes and their combinations
(Figure 1). A datatype has its syntax and semantics; both are needed to define
the theory of the datatype. We give a brief overview of the syntax and an
informal sketch of semantics, referring to [12] for technical details.

Types. A set O of symbols called type operators, each with an associated
non-negative arity, and an infinite set of type variables define the set TpO of
types over O. It is the smallest set that contains type variables and expressions
F (σ1, . . . , σn), where F ∈ O has arity n and σi ∈ TpO.

A type instantiation is a finite map from type variables to types. For
any type σ and type instantiation θ = [σ1/α1, . . . , σn/αn], θ(σ) denotes the
simultaneous substitution of every occurrence of αi in σ with σi. We say that τ
is an instance of σ if there is some θ such that τ = θ(σ).

Signatures. A signature is a pair 〈O |K〉, where O is a set of type operators
and K is a set of constants typed over O. By this we mean that every element
of K has an arity, which is a tuple of types (σ0, . . . , σn). Here, σ1, . . . , σn are
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the argument types of k, and σ0 is its range type. Constants whose range type
is Bool will be called predicates.

We will use the more intuitive notation k :: [σ1, . . . , σn] → σ0 to indicate the
arity of a constant. Moreover, we will write k : [τ1, . . . , τn] → τ0 if there is a type
instantiation that maps σ0, . . . , σn to τ0, . . . , τn respectively. Note the use of ::
and : for the “principal type” and “type instance” of k respectively. Also note
that arities are not types—the symbol → is not a type operator.2

Terms. For a given signature Σ = 〈O |K〉 and every σ ∈ TpO, we assume there
is an infinite set of variables of type σ; we write them in the (name,type)-form
vσ. The sets Tmσ of Σ-terms of type σ are defined inductively by these rules:

(1) every variable vσ is in Tmσ

(2) if t1 ∈ Tmτ1 , . . . , tn ∈ Tmτn and k : [τ1, . . . , τn] → τ0, then k t1 . . . tn ∈ Tmτ0

Type instantiations act on terms: define θ(t) to be the term obtained by
replacing every variable xσ in t with xθ(σ). If t ∈ Tmσ, then θ(t) ∈ Tmθ(σ). We
define t′ � t to mean that t′ = θ(t) for some θ, and we then say that t′ is a type

instance of t and t is a type abstraction of t′.
For every term t, there exists the most general abstraction tabs charac-

terized by: (1) t � tabs; and (2) t′ � tabs for every t′ such that t � t′. The term
tabs is unique up to renaming of type variables and can be obtained by erasing
all type information from t and then applying a type inference algorithm. For
type inference, see, e.g., [13].

Semantics. The type operators List and Array have arities one and two respec-
tively. The meaning of List is a function of arity one (by abuse of notation, also
denoted List) that given a set E as an argument produces the set List(E) of all
lists with elements in E. The meaning of Array is a function that given two sets
I and E as arguments produces the set Array(I, E) of arrays indexed by I with
elements in E.

The meaning of polymorphic types is defined once we know the meaning of
type operators. For example, the meaning of the type Array(α,Array(α, β)) is a
function that given any two sets I and E (as interpretations of type variables
α, β) produces the set Array(I,Array(I, E)). If there are no occurrences of type
variables in a type (e.g., List(Bool×Int)), then the meaning of that type is always
the same set; if the set is finite, we call the type finite.

The meaning of a constant is an indexed family of functions. For example,
the meaning of cons is the family {consE |E is a set}, where consE is a function
that takes an argument in E and an argument in List(E) and produces a result
in List(E).

The meanings of type operators and constants of a signature together deter-
mine a structure for that signature. The structure gives meaning to all terms.

2 In [12], the type and term languages asssociated with a signature were defined as
subsets of the higher-order logic, where the function space type operator is primitive
and so arities could be seen as types.
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Consider t = read(write(aArray(α,β), iα, xβ), jα). Once α and β are interpreted
as concrete sets (I and E, say) and interpretations for the variables a, i, x, j
(elements of Array(I, E), I, E, I respectively) are given, the polymorphic term
t becomes a well-defined element of E. In [12], which should be consulted for
more details, this element is denoted �t�〈ι, ρ〉, where ι and ρ together define an
environment for t: ι maps the type variables α, β to sets I, E respectively, and
ρ maps the variables a, i, x, j to elements of Array(I, E), I, E, I respectively.

As a boring exercise, the reader may furnish the signatures in Figure 1 with
meanings of their type operators and constants, thus obtaining definitions of
structures TEq, TUF, TInt, T×, TArray, TList.

Satisfiability. A Σ-formula is an element of TmBool. If φ is a Σ-formula and T
is a Σ-structure, we say that φ is satisfiable in T if �φ�〈ι, ρ〉 = true for some
environment 〈ι, ρ〉; this environment then is called a model of φ. We also say that
φ is valid if ¬φ is unsatisfiable. Validity is denoted |=T φ, and φ1, . . . , φn |=T φ
is an abbreviation for |=T φ1 ∧ · · · ∧ φn ⊃ φ. The theory of a structure is the
set of formulas that are valid in it.

An atomic Σ-formula is either a propositional variable or a term of the
form k t1 . . . tn, where k is a predicate. A Σ-literal is an atomic formula or
its negation. A clause is a disjunction of literals. A query is a conjunction of
formulas. Clauses containing the same literals in different order are considered
equal. (We think of clauses and queries as sets of literals and formulas respec-
tively.) A convex theory is defined by the property that if a set of literals
implies a disjunction of equalities, then one of the disjuncts must be implied.

A cardinality constraint is an “equality” of the form α
.= n, where α

is a type variable and n is a positive integer; an enviroment 〈ι, ρ〉 satisfies this
constraint if α is in the domain of ι and the cardinality of the set ι(α) is n.

Combining Structures. Two signatures are disjoint if the only type operators
and constants they share are those of ΣEq. If T1, . . . , Tn are structures with
pairwise disjoint signatures, then there is a well-defined sum structure T =
T1 + · · ·+Tn; the semantics of its type operators and constants is defined by the
structures they come from. The types and terms of each Ti are types and terms
of T too. We will call them pure, or i-pure when we need to be specific. The
attribute mixed will be used for arbitrary terms and types of a sum structure.

Solvers. A solver for a fragment of a theory is a sound and complete satisfia-
bility checker for sets of formulas (queries) in the fragment. A strong solver

checks satisfiability of queries that contain formulas and cardinality constraints.
In practice, theory solvers are built for queries consisting of literals only. The

well-known argument that this is sufficient in general begins with the observation
that every query Φ is equisatisfiable with one of the form Q = Φ0 ∪ {p1 ⇔
φ1, . . . , pn ⇔ φn}, where the pi are propositional variables, the φi are literals,
and Φ0 is a propositional query, the boolean skeleton of Φ. A truth assignment
M to propositional variables that satisfies Φ0 can be extended to a model for Φ
if and only if the query of literals QM = {φ′

1, . . . , φ
′
n} is T -satisfiable, where φ′

i is
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either φi or ¬φi, depending on whether M(pi) is true or false. Thus, satisfiability
of Φ is decided by checking if QM is satisfiable for some model M of Φ0. This,
of course, calls for a SAT solver to efficiently enumerate the models M .

Parametricity. There is uniformity in the way “polymorphic” functions like cons
compute their results—a consequence of the fact that the definition of consE
takes the set E as a parameter, making no assumptions about it. Precisely pin-
ning down this uniformity concept is somewhat tricky and we content ourselves
with definitions of parametric type operators and parametric constants that are
most convenient for our purposes. They are needed for proper understanding of
Theorem 1 below, but not for much else in this paper. Thus, the reader may
safely proceed with only a cursory reading of the rest of this section.

Recall first that a relation between two sets A and B is a partial bijection

if it can be seen as a bijection between a subset of A and a subset of B. Define an
n-ary set function F to be parametric if it is functorial on partial bijections.
This means that given any partial bijections fi : Ai ↔ Bi, where i = 1, . . . , n,
there exists a partial bijection F (f1, . . . , fn) : F (A1, . . . , An) ↔ F (B1, . . . , Bn);
moreover, there is a requirement that the identity and composition be pre-
served. That is, F (idA1 , . . . , idAn) = idF (A1,...,An) and F (g1 ◦ f1, . . . , gn ◦ fn) =

F (g1, . . . , gn) ◦ F (f1, . . . , fn), where Ai
fi↔ Bi

gi↔ Ci.
Consider a structure whose type operators are all parametric in the above

sense and let k :: [σ1, . . . , σn] → σ0 be a constant of this structure. Observe
that if α1, . . . , αm are all type variables that occur in the types σi, then any
interpretation ι of type variables (that is, an assignment, for each i, of a set Ai
to αi) interprets each type σj as a set, say Sj , and interprets k as a function
kι : S1 × · · · × Sn → S0. Suppose now we have two interpretations ι, ι′ for type
variables, the first just as above, and the second with A′

i and S′
j in place of Ai and

Sj . Suppose also that fi : Ai ↔ A′
i are partial bijections. Since the type operators

of our structure are assumed parametric, there are induced partial bijections
gj : Sj ↔ S′

j , for j = 0, . . . , n. We say that the constant k is parametric if
in this situation we have g0(kι(x1, . . . , xn)) = kι′(g1(x1), . . . , gn(xn)) for every
x1 ∈ dom(f1), . . . , xn ∈ dom(fn).

Finally, a parametric structure is required to have all type operators and
all constants parametric. Our example structures TEq, TUF, TInt, T×, TArray, TList,
with the notable exception of TUF, are all parametric; so are the structures de-
scribing sets, multisets, and arbitrary algebraic datatypes [12].

We should note that the well-known concept of Reynolds parametricity

in programming languages [18] is neither weaker nor stronger than the concept
we are using. In particular, TUF is Reynolds parametric. See [12].

3 Purification and Non-deterministic Nelson-Oppen

In the untyped setting, to purify a query consisting of mixed formulas is to
transform it into an equisatisfiable query consisting of pure formulas. The trans-
formation iteratively replaces a pure subterm t in a mixed formula with a fresh
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proxy variable x, and adds the pure definitional equality x = t to the query.
For example, purifying the one-formula query {1 + f(x) = f(1 + f(x))} results
in the query {y = f(x), z = 1 + y, u = f(z), z = u} that contains two pure
UF -equalities, one pure arithmetical equality, and one equality between vari-
ables, which is a pure formula in any theory. (For ΣUF-terms, we use the familiar
notations f(x) or f x instead of the syntactically correct f@x.) The essence of
Nelson-Oppen cooperation is in giving each theory solver the part of the purified
query that it understands and then proceed with the solvers deducing in turn
new equalities between variables and letting the other solvers know about them.

Types complicate purification, exposing the pertinence of cardinality con-
straints. The typed version of the example above would have {yInt = f Int⇒Int xInt,
uInt = f Int⇒Int zInt} as a pure query to pass to the solver for uninterpreted func-
tions. But this query is not pure since the type Int is foreign to the theory TUF. As
a way out, we can create the ‘type-abstracted modification {yα = fα⇒α xα, uα =
fα⇒α zα}, which is a pure TUF-query; however, while being sound, this transfor-
mation may compromise completeness. Take the example

Φ1 : distinct(fstxInt×Int, snd yInt×Int, fst zInt×Int)
Φ2 : distinct(fstxBit×Bit, snd yBit×Bit, fst zBit×Bit) (1)
Φ : distinct(fstxα×β1 , snd yβ2×α, fst zα×β3)

where distinct(x1, . . . , xn) denotes the query consisting of all disequalities xi = xj
and Bit is a two-element type belonging to some bitvector structure TBV. The T×-
query Φ is the best pure approximation for both Φ1 and Φ2. It is satisfiable, and
so is the (T×+TInt)-query Φ1, but the (T×+TBV)-query Φ2 is not satisfiable. Thus,
to make a T×-solver properly deal with Φ2, we should give it the abstraction Φ
together with the cardinality constraint α

.= 2.

3.1 Solving Semipure Queries

Let us now repeat the above in general terms. Suppose Σ = Σ1 + · · ·+ Σn is a
sum of pairwise disjoint signatures Σi = 〈Oi |Ki〉 and T = T1 + · · ·+ Tn is the
corresponding sum of theories. Recall that a Σ-term is i-pure if it is a Σi-term.
Ignoring “impurity” at the type level, define a Σ-term to be i-semipure if it
can be generated using only constants from Ki. Also, let strictly i-semipure

terms be those that are i-semipure and have no occurrences of logical constants.
For example, the queries Φ1 and Φ2 above are semipure, while Φ is pure.

Every i-semipure term t has the best pure abstraction tpure defined to
be the most general abstraction of t with respect to the signature Σi. Thus, for
every semipure query Φ there exists an essentially unique pure abstraction Φpure.
For example, Φpure

1 = Φpure
2 = Φ, where the queries are from (1).

Note that Σ-terms without occurrences of non-logical constants are i-semipure
for every i. For such a term t, we define tpure to be the TEq-pure abstraction of
t. For example, (xInt = yInt ∧ uInt×Int = vInt×Int)pure = (xα = yα ∧ uβ = vβ).

If the query Φ is semipure and θ is a type instantiation such that θ(Φpure) = Φ,
denote by Φcard the set of cardinality constraints α

.= n, where α ∈ dom(θ) and
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θ(α) is a finite type of cardinality n. One can show that an i-semipure query Φ
is T -satisfiable if and only if Φpure ∪ Φcard is Ti-satisfiable [12]. Hence, a strong
solver for i-pure queries suffices to solve i-semipure queries.

3.2 Purification

Let T and T1, . . . , Tn be as above. Given any input T -query, we can purify
it by introducing proxy variables and definitional equalities and so obtain an
equisatisfiable T -query, say Φ, that contains only semipure formulas. In fact, we
can obtain Φ such that every formula in it is either a propositional clause or has
one of the following definitional forms:

(A) p ⇔ (x = y) (B) p ⇔ φ (C) x = t

where (i) p, x, y are variables, φ is a strictly semipure literal, and t is a strictly
semipure term; (ii) every variable occurs as the left-hand side in at most one
definitional form; (iii) no (propositional) variable that occurs in propositional
clauses of Φ can occur in the right-hand side of any definitional form. This
is proved in [12] under the assumption that non-logical constants do not take
arguments of boolean type.3

Partition now Φ into subsets Φ�, Φ�, Φ1, . . . , Φn, where Φ� contains the propo-
sitional clauses in Φ, Φ� contains definitional forms (A), and each Φi contains the
definitional forms (B) and (C) whose right-hand sides φ, t are strictly i-semipure.
Note that Φ� is i-pure for every i, and Φ� is i-semipure for every i.

Example 1. Purifying the formula f(x) = x ∧ f(2x− f(x)) > x produces Φ� =
{p, q}, Φ� = {p ⇔ y = x}, ΦUF = {y = f(x), u = f(z)}, ΦInt = {z = 2x− y, q ⇔
u > x}. For readability we omit type superscripts on variables, but see Figure 4
below where this example can be seen in its full typed glory.

3.3 Nelson-Oppen

Let Φ = Φ� ∪ Φ� ∪ Φ1 ∪ · · · ∪ Φn be as above and let us call a variable shared

if it occurs in at least two of the queries Φ�, Φ�, Φ1, . . . , Φn. For a set V of vari-
ables, define an arrangement on V to be a consistent query that for every two
variables x, y ∈ V of the same type contains either x = y or x = y. Partitioning
V into subsets V σ according to the types of variables, we see that an arrange-
ment determines and is determined by a set of equivalence relations on each
class V σ.

The following result is a slightly more general version of (and easily derived
from) Theorem 1 of [12]. It is the basis of the non-deterministic Nelson-Oppen
procedure in the style of Tinelli-Harandi [19], but for parametric theories.

3 This assumption is hardly a restriction since we have the polymorphic if-then-else
constant ite handy in ΣEq. Bringing the input query to the desired equisatifiable
form Φ also requires that all occurrences of ite be compiled away by replacing z =
ite(p, x, y) with the equivalent (p ⊃ z = x) ∧ (p̄ ⊃ z = y).
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Theorem 1. Suppose each of the theories T1, . . . , Tn is either TUF or is paramet-
ric. Let M be an assignment4 to shared propositional variables and let Δ be an
arrangement of all remaining shared variables. Then: Φ∪Δ∪M is T -satisfiable
if and only if (with the convention that T� stands for TEq)

– Φ� ∪M is satisfiable;
– (Φi ∪Δ)pure ∪ Φcard

i ∪M is Ti-satisfiable, for every i ∈ {�, 1, . . . , n}.

4 DPLL with Conflict Analysis

We define a transition system dpll that models the operation of a DPLL-style
SAT solver, including conflict analysis. In Section 5 it will be extended with rules
for Nelson-Oppen cooperation of multiple theories.

The only parameter of dpll is a finite set of propositional literals L, closed
under negation. A dpll state is a triple 〈Ψ,M,C〉, where: (1) Ψ is a set of
clauses over L (2) M is a checkpointed sequence of literals in L, meaning that
each element of M is either a literal or a special checkpoint symbol �, (3) C is
either a subset of L or a special symbol no cflct.

The “input” to dpll is an arbitrary set of clauses Ψinit, modeled as an initial
state in which Ψ = Ψinit, M = [ ], and C = no cflct. The rules describing the
state-to-state transitions are given in Figure 2. The rules have the guarded as-
signment form: above the line is the condition that enables the rule, below the
line is the update to system variables Ψ,M,C.

The notation used in the rules is defined as follows. The negation of a literal
l is l̄. The relation l ≺ l′ means that an occurrence of l precedes an occurrence
of l′ in M . Note that M can be written uniquely in the form M = M 〈0〉 +
� + M 〈1〉 + � + · · · + � + M 〈d〉, where + denotes sequence concatenation and
� does not occur in any M 〈i〉. The superscripts indicate “decision levels” and
M [m] = M 〈0〉 + � + · · ·+ � + M 〈m〉 is the prefix of M up to decision level m.
A literal can occur at most once in M ; we write level l = i if l occurs in M 〈i〉.
Finally, the number k occurring in the rules is an arbitrary non-negative integer.

An example run of dpll is given in Figure 3. The correctness of the system
is expressed by the following theorem, proved in the appendix.

Theorem 2 (Correctness). All runs of dpll are finite. If, initialized with the
set of clauses Ψinit, dpll terminates in the state 〈Ψ,M,C〉, then: (a) C = no cflct
or C = ∅; (b) If C = ∅ then Ψinit is unsatisfiable; (c) If C = no cflct, then M
is a model for Ψinit.

By restricting the set of behaviors of nodpll, we can obtain more accurate mod-
els of modern SAT solvers. Let Explain uip be the rule obtained by strengthening
the guard of Explain with the conditions ∀l′ ∈ C. l′ � l and ∃l′ ∈ C. level l′ =
level l that force the explanation sequence to find the first “unique implication
point” [14] and stop when it is has been found. Consider the strategy
4 We view assignments as sets of literals; e.g. {p̄, q, r̄} is the assignment that maps p, r

to false and q to true.
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Decide
l ∈ L l, l /∈ M

M := M + � + l

UnitPropag
l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M l, l /∈ M

M := M + l

Conflict
C = no cflct l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M

C := {l1, . . . , lk}

Explain
l ∈ C l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ≺ l

C := C ∪ {l1, . . . , lk} � {l}

Learn
C = {l1, . . . , lk} l1 ∨ · · · ∨ lk /∈ Ψ

Ψ := Ψ ∪ {l1 ∨ · · · ∨ lk}

BackJump
C = {l, l1, . . . , lk} l ∨ l1 ∨ · · · ∨ lk ∈ Ψ

level l > m ≥ level li
(i = 1, . . . , k)

C := no cflct M := M [m] + l

Fig. 2. Rules of dpll

(((Conflict ; Explain uip∗ ; [Learn ; BackJump]) ‖UnitPropag)∗ ; [Decide])∗ (2)

where ‖ denotes the non-deterministic choice, α∗ means “apply α as long as
possible”, and [α] means “apply α once if possible”. Note that the rule Conflict is
triggered by a clause all of whose literals are asserted false in M , and UnitPropag
is triggered by a clause in which all but one literal is asserted false in M . To turn
(2) into a deterministic algorithm, one must specify the search for the trigger
clause. This is what the “two-watched-literals” scheme is for; it ensures that
trigger clauses are quickly found after each Decide step. When Decide is to be
applied, the choice of the decision literal is based on some heuristics, the most
popular being VSIDS of [14]. As for the “non-chronological backtracking” in
BackJump, the backjump level m is normally taken to be the minimum possible,
i.e., the largest of the numbers level li (i = 1, . . . , k). With the exception of
restarts and clause forgetting (easily modeled, harder to tune; see Figure 6), the
above gives a rather complete top-level picture of Chaff [14]. One can also prove
that for the strategy (2) the guard of Learn is automatically satisfied, justifying
the fact that the implementations do not perform this expensive check.

The top-level MiniSAT [11] looks almost the same; we only need to replace
Explain uip∗ in (2) with the sequence Explain uip∗ ; Explain min∗, where the con-
flict clause-minimizing rule Explain min is obtained by strengthening the guard
of Explain with the condition l1, . . . , lm ∈ C.
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〈Ψ, [ ], no cflct〉 Decide−−−→ 〈Ψ, �1, no cflct〉 UnitPropag−−−−−−→
〈Ψ, �12, no cflct〉 Decide−−−→ 〈Ψ, �12�3, no cflct〉 UnitPropag−−−−−−→

〈Ψ, �12�34, no cflct〉 Decide−−−→ 〈Ψ, �12�34�5, no cflct〉 UnitPropag−−−−−−→
〈Ψ, �12�34�56, no cflct〉 Conflict−−−−→ 〈Ψ, �12�34�56, {2, 5, 6}〉 Explain−−−−→
〈Ψ, �12�34�56, {2, 5}〉 Learn−−−→ 〈Ψ ′, �12�34�56, {2, 5}〉 BackJump−−−−−→

〈Ψ ′, �125̄, no cflct〉 Decide−−−→ 〈Ψ ′, �125̄�3, no cflct〉 UnitPropag−−−−−−→
〈Ψ ′, �125̄�34, no cflct〉 Decide−−−→ 〈Ψ ′, �125̄�34�6̄, no cflct〉

Fig. 3. A run of dpll. The initial set of clauses Ψ = {1̄ ∨ 2, 3̄ ∨ 4, 5̄ ∨ 6, 2̄ ∨ 5̄ ∨ 6̄} is
taken from [16]. The Learn move changes Ψ into Ψ ′ = Ψ ∪{2̄∨ 5̄}. The BackJump move
goes from decision level 3 to decision level 1. The final assignment satisfies Ψ .

5 The Combined Solver

In this section, we define of our Nelson-Oppen-with-DPLL transition system
nodpll, state its correctness results, and discuss some features and extensions.
The system can adequately express important design decisions and allows a great
deal of freedom for implementation.

The parameters of nodpll are pairwise disjoint theories T1, . . . , Tn. The “in-
put” to nodpll is a (T1+· · ·+Tn)-query Φ, purified into Φ�∪Φ�∪Φ1∪· · ·∪Φn as
in Section 3. Assume that all variables occurring in these formulas have distinct
names and let vars(Θ) denote the set of names of variables in Θ.

5.1 State, Rules, and Initialization

Let I = {�,�, 1, . . . , n}. The state variables of nodpll are the following:

– Shared variable sets Vi for i ∈ I. These are sets of variable names, not
necessarily disjoint. For every i ∈ I define (paraphrasing [5]) the set Li of
interface literals to consist of variables in Vi ∩ V� and their negations,
and also equalities of the form x = y, where x, y ∈ Vi � V�.

– Local constraints Ψi for i ∈ I. Here, Ψ� is a set of propositional clauses
and Ψi for i ∈ {�, 1, . . . , n} is a set of (pure) Ti-formulas and cardinality
constraints. We require that vars(Ψ�) ⊆ V� and that vars(Ψi)∩vars(Ψj) ⊆
Vi ∩ Vj ∩ V� for distinct i, j = �.

– Local stacks (checkpointed sequences) Mi for i ∈ I. Any element of Mi

is either � or a labeled literal—a pair 〈l, j〉, where l ∈ Li and j ∈ I.
– The conflict C—either a set of labeled literals or a special symbol no cflct.

The input query Φ defines the initial state sΦinit, in which: Ψ� = Φ�; Ψi =
Φpure
i ∪ Φcard

i for i = �; Mi = [ ] for every i; C = no cflct; V� = vars(Φ�);
Vi =

⋃
j �=i vars(Φi) ∩ vars(Φj) for i = �,�; and V� = (vars(Φ�) ∩ vars(Φ�)) ∪⋃

i�=�(Vi � V�). An example is given in Figure 4.
The transitions of nodpll are defined by the rules in Figure 5. The following

two paragraphs explain the additional notation used in these rules.
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(a) Φ = {f Int⇒Int(xInt) = xInt, f Int⇒Int(2xInt − f Int⇒Int(xInt)) > xInt}

(b)
Φ� = {pBool, qBool} ΦInt = {zInt = 2xInt − yInt, qBool ⇔ uInt > xInt}
Φ� = {pBool ⇔ (yInt = xInt)} ΦUF = {yInt = f Int⇒Int(xInt), uInt = f Int⇒Int(zInt)}

(c)
Ψ� = {pBool, qBool} ΨInt = {zInt = 2xInt − yInt, qBool ⇔ uInt > xInt}
Ψ� = {pBool ⇔ (yα = xα)} ΨUF = {yβ = fβ⇒β(xβ), uβ = fβ⇒β(zβ)}

Fig. 4. Initialization of nodpll. (a) the input query Φ from Example 1, (b) the result
of purifying Φ, (c) generated local constraints for nodpll. The shared variable sets are
V� = {p, q}, VUF = {x, y, z, u}, and VInt = {x, y, z, u, q}. Note that a variable of Φ, say
xInt, has different “identities” in the pure queries Ψi: xα in Φ�, xβ in ΨUF, and xInt in
ΨInt. They all have the same name, but different types.

We write C	 for the set of (unlabeled) literals occurring in C. We write
l ∈ Mi to mean that 〈l, j〉 ∈ Mi holds for some j. For i = �,�, the symbol
|=i denotes entailment modulo Ti; |=� is propositional entailment, and |=� is
entailment modulo TEq. Note that all literals occurring in the rules contain un-
typed (shared) variables and so there is an abuse of notation when we write
Ψi, l1, . . . , lk |=i l in the rule Explaini. Of course, this entailment should be un-
derstood as Ψi, l

′
1, . . . , l

′
k |=i l

′ where each primed literal is obtained by replacing
the untyped variables occurring in it with the equally named typed variable of
Ψi. (Recall that the variables of Ψi have the same names as variables of Φi, but
possibly more general types.) The same convention is used in the rules Inferi and
Conflicti.

It is easy to see that all local stacks have the same number of occurrences of
�. Thus, each Mi can be written as Mi = M

〈0〉
i +�+M

〈1〉
i +�+ · · ·+�+M

〈d〉
i ,

where d is the current decision level and � does not occur in any M
〈k〉
i .

Note that some of the sequences M
〈k〉
i may be empty; however, M

〈k〉
Bool is non-

empty for 1 ≤ k ≤ d and its first element is called the kth decision literal.
The rule Explain uses the notation 〈l, j〉 ≺Mi 〈l′, j′〉; by definition, this means
that both labeled literals occur in Mi and that the occurrence of 〈l, j〉 precedes
the occurrence of 〈l′, j′〉. For correctness of this definition, we need to know that
in any local stack, any literal can occur at most once. This invariant is proved
in the appendix. Finally, the function level used in the BackJump rule is defined
only for literals that occur in M�; we have level l = k if l occurs in M

〈k〉
�

.
This completes the definition of the system nodpll. As with dpll, to check

the satisfiability of a formula Φ, we can start with the state sΦinit and apply the
rules of nodpll in arbitrary order; if we end up with a final state in which
C = no cflct, then Φ is satisfiable; otherwise, the final state will have C = ∅ and
Φ is unsatisfiable.

Example 2. If nodpll is initialized with Ψ�, Ψ�, ΨUF, ΨInt from Figure 4, the
first 13 steps could be (1) Infer�, (2) Infer�, (3) LitDispatch�, (4) LitDispatchInt,
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Decide
l ∈ L l, l̄ /∈ M

M := M + � + 〈l, 〉 Mi := Mi + � (all i �= )

Inferi

l ∈ Li l, l̄ /∈ Mi Ψi, Mi |=i l

Mi := Mi + 〈l, i〉

LitDispatchi

(i �= )

l ∈ Li 〈l, j〉 ∈ M l /∈ Mi

Mi := Mi + 〈l, j〉

EqDispatchi

(i �= , )

x, y ∈ Vi 〈x = y, j〉 ∈ M x = y /∈ Mi

Mi := Mi + 〈x = y, j〉

LitPropagi

(i �= )

l ∈ L 〈l, i〉 ∈ Mi l, l̄ /∈ M

M := M + 〈l, i〉

EqPropagi

(i �= , )

x, y ∈ V 〈x = y, i〉 ∈ Mi x = y /∈ M

M := M + 〈x = y, i〉

Conflicti

C = no cflct 〈l1, i1〉, . . . , 〈lk, ik〉 ∈ Mi Ψi, l1, . . . , lk |=i false

C := {〈l1, i1〉, . . . , 〈lk, ik〉}

Explaini

〈l, i〉 ∈ C 〈l1, i1〉, . . . , 〈lk, ik〉 ≺Mi 〈l, i〉 Ψi, l1, . . . , lk |=i l

C := C ∪ {〈l1, i1〉, . . . , 〈lk, ik〉} � {〈l, i〉}

Learn
C� = {l1, . . . , lk} C� ⊆ L l1 ∨ · · · ∨ lk /∈ Ψ

Ψ := Ψ ∪ {l1 ∨ · · · ∨ lk}

BackJump
C� = {l, l1, . . . , lk} l ∨ l1 ∨ · · · ∨ lk ∈ Ψ

level l > m ≥ level li
(i = 1, . . . , k)

C := no cflct M := M
[m]

+ 〈l, 〉 Mi := M
[m]
i (all i �= )

Fig. 5. Rules of nodpll

(5) Infer�, (6) EqDispatchInt, (7) InferInt, (8) EqPropagInt, (9) EqDispatchUF,
(10) EqDispatchUF, (11) InferUF, (12) EqPropagUF, (13) EqDispatchInt, with these
rules modifying the local stacks as follows:

M� : [ ]
(1)−→ [ p ]

(2)−→ [p, q ]

M� : [ ]
(3)−→ [p]

(5)−→ [p, y = x ]
(8)−→ [p, y = x, z = x]

(12)−→ [p, y = x, z = x, u = y]

MUF : [ ]
(9)−→ [y = x]

(10)−→ [y = x, z = x]
(11)−→ [y = x, z = x, u = y ]

MInt : [ ]
(4)−→ [q]

(6)−→ [q, y = x]
(7)−→ [q, y = x, z = x ]

(13)−→ [q, y = x, z = x, u = y]

We omit the labels in labeled literals; the highlighted occurrence of each lit-
eral indicates its label in all stacks. The execution terminates in 6 more steps
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Forget
C = no cflct φ ∈ Ψ� Ψ� � {φ} |= φ

Ψ� := Ψ� − {φ}

Restart
C = no cflct

Mi := M
[0]
i (all i)

ThLearni

l1, . . . , lk ∈ L� Ψi |=i l1 ∨ · · · ∨ lk

Ψ� = Ψ� ∪ {l1 ∨ · · · ∨ lk}

Fig. 6. Additional rules for nodpll

ConflictInt, ExplainUF, ExplainInt, Explain
�
, Explain

�
,Explain

�
that transform C as

follows: no cflct → {q, y = u} → {q, z = x} → {q, y = x} → {q, p} → {q} → ∅.
An imlementation of nodpll would require theory solvers S�,S�,S1, . . . ,Sn.

Each solver Si would be responsible for maintaining its local stack Mi, local con-
straint setΨi, and for the implementation of the rules Inferi, LitPropagi,EqPropagi,
Conflicti,Explaini,BackJump. The SAT solver S� would additionally implement
the rules Decide, LitDispatchi, Learn; and the pure equality solver S� would ad-
ditionally implement the rules EqDispatchi. In addition, a central controller C
would be needed to manage the global conflict set C. With a little effort to en-
sure that explanations from theory solvers are expressed in terms of SAT literals,
the conflict set could alternatively be handled by the SAT solver.

5.2 Correctness

A labeled literal may occur in more than one local stack. As local stacks grow
and shrink during a run of nodpll, the same labeled literal may become created
(by rules Decide, Infer, or BackJump), multiply its presence in local stacks (the
dispatch and propagation rules), then partially or entirely disappear from the
stacks (rule BackJump), then become created again etc. This intricate dynamics
makes nodpll significantly more complex than dpll, but the basic correctness
properties still hold.

Theorem 3 (Termination). Every run of nodpll is finite and ends in a state
where C = no cflct or C = ∅.

Theorem 4 (Soundness). If a final state with C = ∅ is reachable, then the
input query is T -unsatisfiable.

Completeness results for nodpll are derived from Theorem 1. Note that The-
orem 1 immediately implies a complete decision procedure: enumerate all as-
signments M to shared propositional variables and all arrangements Δ for other
shared variables and see if there is a pair M,Δ that is consistent with all lo-
cal constraints Ψi. Instead of this inefficient blind search, nodpll progressively
builds M as M� and Δ as the set of all equalities implied by Ψ�∪M�. Thus, when
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an execution of nodpll started at sΦinit reaches a final state where C = no cflct,
if we can prove that the accumulated M and Δ are consistent with the local
constraints, it would follow that Φ is satisfiable. However, if a participating the-
ory Ti is not convex, it may happen that Ψi implies x = y ∨ u = v, while neither
x = y nor u = v is implied by any local constraints; thus, Δ contains x = y and
u = v and so is not consistent with Ψi. It is well known that convexity guar-
antees completeness for the original basic Nelson-Oppen cooperation algorithm
[15], and case (i) of Theorem 5 is the analogous result for nodpll. Complete-
ness can also be achieved by proxying all equalities between shared variables
with fresh propositional variables ([5], see Section 5.6 below), leaving it to the
SAT solver to find the arrangement of shared variables by purely boolean search.
This result is covered by case (ii) of Theorem 5.

Theorem 5 (Completeness). Suppose each of the theories T1, . . . , Tn is either
TUF or is parametric. Suppose a final state with C = no cflct is reachable from
the initial state generated by the input query Φ = Φ�∪Φ�∪Φ1∪· · ·∪Φn. Suppose
also that one of the following conditions holds:

(i) Ti is convex and Φcard
i = ∅, for all i ∈ {1, . . . , n};

(ii) for every pair x, y of shared variables of the same type, Φ� contains a defin-
itional form p ⇔ (x = y).

Then Φ is T -satisfiable.

Theorems 3, 4 and 5 are proved in the appendix.

5.3 Strengthening Propositional Rules

Clearly, dpll is a subsystem of nodpll, but its rules UnitPropag, Conflict and
Explain are less permissive than the corresponding rules Infer�, Conflict� and
Explain

� of nodpll. If we change these three rules of nodpll with the equally
named rules in Figure 7, then the correspondence would be exact. This change
would not affect nodpll in any significant way. In particular, the proof of cor-
rectness properties of nodpll given in the appendix would apply verbatim to
the modified system.

5.4 Why Are the Literals Labeled?

Every literal that gets added to any of the local stacks is a logical consequence
of the decision literals and the local constraints Ψi. When a conflict is reached,
we need to identify a subset of decision literals that is sufficient for the conflict.
The “explanation” mechanism serves this purpose; starting with a conflicting set
of literals, it picks a non-decision literal from the set, detects the inference step
that created it, and replaces the literal with a subset of the local stack that was
used by the inference step. The result is a new conflicting set of literals that is
in a precise sense “older”, so that repeating the literal explanation process will
terminate (with a conflicting set of decision literals).
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Infer�
l ∈ L� l, l /∈ M� l ∨ l1 ∨ · · · ∨ lk ∈ Ψ l1, . . . , lk ∈ M�

M� := M� + 〈l,�〉

Conflict�
C = no cflct 〈l1, i1〉, . . . , 〈lk, ik〉 ∈ M� l1 ∨ · · · ∨ lk ∈ Ψ�

C := {〈l1, i1〉, . . . , 〈lk, ik〉}

Explain
�

〈l,�〉 ∈ C 〈l1, i1〉, . . . , 〈lk, ik〉 ≺M�
〈l,�〉 l ∨ l1 ∨ · · · ∨ lk ∈ Ψ�

C := C ∪ {〈l1, i1〉, . . . , 〈lk, ik〉} � {〈l,�〉}

Fig. 7. Rules of dpll within nodpll

Detecting the inference step that created a particular literal is the main pur-
pose of labels: the label in a labeled literal simply signifies the theory responsible
for its derivation. Without labels, the explanation process would be too ambigu-
ous and potentially circular—the phenomenon termed “too new explanations”
in [16]. As an illustration, consider the five-step execution of nodpll in Fig-
ure 8, where we indicate only the changes of local stacks M�,M1,M2, the other
parts of the nodpll state being unaffected. We assume that l̄ ∨ l′ ∈ Ψ� and
Ψ2, l

′ |=2 l—the facts responsible for the Infer� and Infer2 steps.

M� : [ ]
(2)−→ [l]

(3)−→ [l, l′]

M1 : [ ]
(1)−→ [l]

M2 : [ ]
(4)−→ [l′]

(5)−→ [l′, l]

M� : [ ]
(2)−→ [〈l, 1〉] (3)−→ [〈l, 1〉, 〈l′,�〉]

M1 : [ ]
(1)−→ [〈l, 1〉]

M2 : [ ]
(4)−→ [〈l′,�〉] (5)−→ [〈l′,�〉, 〈l, 2〉]

Fig. 8. A five-step run: (1) Infer1, (2) LitPropag1, (3) Infer�, (4) LitDispatch2, (5) Infer2

Suppose that, as shown on the left in Figure 8, we use non-labeled literals in
the local stacks. Assume that sometime in the future a conflict arises, with the
conflict set that contains l but not l′. Say, C = {l} ∪D. Then Explain2 applies
and changes C to {l′} ∪ D. But then Explain

�
applies and changes C back to

{l} ∪D. So the system can repeat explaining l and l′ with each other forever.
The same situation, but with labeled literals, is shown on the right in Figure 8:

The conflict set C is now {〈l, 2〉} ∪ D. It becomes {〈l′,�〉} ∪ D after Explain2,
and then becomes {〈l, 1〉} ∪D after Explain

�. At this point, we cannot explain
〈l, 1〉 with 〈l′,�〉, and this prevents the circularity that was possible when labels
were not used. Instead, rule Explain1 will have to explain 〈l, 1〉 with the (in this
case, empty) set of literals that were used in the Infer1 step.

5.5 Basic Extensions

The system nodpll can be extended with new rules to capture secondary fea-
tures, often without significantly complicating correctness proofs.
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The rules Forget Restart, and ThLearn in Figure 6 are used in practice to
improve the boolean search. Reasonably restricting their use to preserve termi-
nation, they can be safely added to the basic nodpll. This has been addressed
in [16].

Extending nodpll with the rule ThLearn makes it possible to propagate dis-
juncions of shared equalities; one can prove, by an argument that goes back
to [15], that with this rule the system becomes complete even for non-convex
theories.

nodpll keeps the variable and constraint sets Vi, Ψi constant, except for Ψ�,
which grows with each Learn or ThLearn step and shrinks with Forget or Restart.
However, it is useful to also have rules that modify Vi and/or Ψi. A simple rule
that replaces Ψi with an equisatifiable Ψ ′

i that may even use fresh variables [7,16]
would allow us to generate (x /∈ u ∧ x ∈ v) ∨ (x ∈ u ∧ x /∈ v) when u = v (in set
theory) and u = 3x− 1 ∧ v = 2x + 1 when 2u + 3y = 1 (in integer arithmetic),
where in both cases x is fresh. Adding new variables (proxies of theory facts)
to V� is the essence of “splitting on demand” [3]; together with the above Ψi-
modifying rule and ThLearn, it models Extended T-Learn of [3]. Termination is
an issue again, but manageable, as shown in [3].

5.6 Equality Proxying and Propagation

If in Example 2 we had a proxy for y = u, say r ⇔ y = u, with this definional
form put in both ΨInt and ΨUF, and with r in V�, then instead of propagating
y = u from MUF to MInt with EqPropag and EqDispatch in steps 12 and 13, we
can equivalently propagate r with LitPropag and LitDispatch.

The delayed theory combination (DTC) approach of MathSAT [5] takes
this idea to the extreme: at the initialization time, introduce a proxy boolean
variable exy for every equality x = y between shared variables and put the
definitional form exy ⇔ x = y in Ψi for all i such that x, y ∈ Vi. Then let
nodpll communicate equalities only through their boolean proxies exy. This
way we can eliminate the rules EqPropag and EqDispatch altogether.

DTC guarantees completeness even if participating theories are not convex;
see case (ii) of Theorem 5. It is also conceptually simple and so is used in the
theoretical system DPLL(T1, . . . Tn) [3]. The disadvantage is that it requires
addition of a potentially large set of new variables. Yices [10] adopts DTC but
goes a step further and curtails proliferation of proxies exy by introducing them
only “on demand”, thus ignoring provably useless ones. On the other hand, in
Simplify [9] and in CVC Lite [2] propagation of equalities can occur directly,
without creating propositional proxy variables.

Techniques for equality propagation clearly deserve further study and exper-
imentation; nodpll provides a flexible medium to express various approaches.

5.7 Participating Solvers

The requirements on the deductive strength of individual solvers can be read off
from Figure 5 and are exactly as specified by the DPLL(T ) framework [16]. Infer
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needs deduction of new literals from those in the local stack and Explain needs
a subset (preferably small) of the local stack that suffices for that deduction.
Conflict requires detection of inconsistency and an inconsistent (small again)
subset of the local stack. How complete a solver needs to be with respect to Infer
and Conflict depends on the approach taken with equality proxying (and on the
convexity if of the theory) and is discussed in [16].

There is also an explicit requirement to deal with cardinality constraints,
which sometimes can be delegated to the equality module and the SAT solver
by introducing clauses saying that every variable of a specific finite type is equal
to one of (representatives of) elements of that type [10]. This issue has been only
recently raised [12] and is awaiting proper treatment.

6 Conclusion

Gaps between published algorithms and their actual implementations are in-
evitable, but in the SMT area they are often too large. Clarification efforts are
needed and recent work on the DPPL(T ) architecture [16] shows how such ef-
forts pay off with superior implementations. Our involvement in the design of a
comprehensive SMT solver prompted the question of what exactly is “DPLL(T )
with Nelson-Oppen”, but the available answers were lacking in various ways.
With the transition system nodpll presented in this paper, we have identified
an abstraction layer for describing SMT solvers that is fully tractable by formal
analysis and comfortably close to implementation. It gives a precise setting in
which one can see the features of existing systems, search for improvements, and
recount them.

Acknowledgments. We thank Jim Grundy, Murali Talupur and Cesare Tinelli
for their comments, and Leonardo de Moura for explaining some Yices details.
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A Appendix

Proof of Theorem 2

There is little here that is not contained in the proofs of Theorems 3, 4, 5. Yet,
we give a full proof of Theorem 2 because it may be of independent interest and
because it may serve as an introduction to the more involved proofs that follow.

Starting the proof of termination of dpll, define the relation M � M ′ on
checkpointed sequences to mean that either M = M ′, or for some m, M [m] is a
proper prefix of M ′[m]. It is easy to prove that � is a partial order.

protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmr/m/n/9 {OT1/cmr/m/n/9 }OT1/cmr/m/n/9 size@update enc@update ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/KrsGGT-RR-06.pdf
protect protect protect edef OT1{OT1}let enc@update elax protect edef cmr{cmr}protect edef m{m}protect edef n{n}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ignorespaces elax protect elax protect edef cmr{cmtt}protect xdef OT1/cmtt/m/n/9 {OT1/cmr/m/n/9 }OT1/cmtt/m/n/9 size@update enc@update ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/KrsGGT-RR-06.pdf
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Observe that with respect to the ordering �, the rules Decide, UnitPropag and
BackJump increase the M -component of the dpll state, while the other three
rules leave M unchanged. Observe also that the set of all possible values for M
is finite, as a consequence of this easily checked invariant of dpll:

If l occurs in M , then it occurs only once and l̄ does not occur at all. (3)

It follows now that in every run

sinit → s1 → s2 → . . . (4)

of dpll, only finitely many steps are based on Decide, UnitPropag and BackJump.
Since there must be a BackJump between any two occurrences of Conflict (to
restore C = no cflct), the number of occurrences of Conflict in (4) is also finite.
The same is true about Learn because there are only finitely many clauses to
add to Ψ . Thus, the only possibility for (4) to be infinite is that from some
point on, all steps are based on the rule Explain. To see that every sequence of
Explain-based steps must be finite, observe first an easy invariant of dpll:

Every literal in C occurs in M . (5)

Notice then that, leaving M intact, Explain replaces a literal l of C with a set of
literals that precede l in M . Thus, with each application of Explain, the set C
gets smaller in the multised ordering that the ordering of M induces on subsets
of M .5

For the rest of the proof, assume that s	 = 〈Ψ	,M	, C	〉 is a final state ob-
tained by running dpll initialized with the set of clauses Ψinit. It remains to
prove

C	 = no cflct or C	 = ∅; (6)
If C	 = ∅ then Ψinit is unsatisfiable; (7)
If C	 = no cflct, then M	 is a model for Ψinit. (8)

Proof of (6). Assuming the contrary, suppose C	 is a non-empty set and let l
be an arbitrary element of it. By (5), l occurs in M	. Considering a particular
run sinit → s1 → s2 . . . → s	, let sn be the last state in this run such that sn.M
does not contain l. Note that the transition sn → sn+1 must be based on Decide,
UnitPropag, or BackJump, since the other three rules do not update M . Note
that sn+1.M = sn.M + l and also that

sn+1.M is a prefix of si.M for all i > n. (9)

Indeed, if (9) is not true, then in the execution sn+1 → · · · → s	 there must be
a BackJump to the level smaller than the level of l, and it must remove l from
M , contradicting the assumption that l occurs in si.M for all i > n.
5 “M �mul N holds iff you can get from M to N by carrying out the following

procedure one or more times: remove an element x and add a finite number of
elements, all of which are smaller than x.” [1]
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If the transition sn → sn+1 is a UnitPropag or BackJump, then Explain is
applicable to sn+1 and so by (9), Explain is applicable to s	 as well, contradicting
the finality of s	. Thus, our transition must be based on the rule Decide, and
so l is a decision literal (a literal immediately following an occurrence of �) in
s	.M . Since l was by assumption an arbitrary element of C	, it follows that all
elements of C	 are decision literals. As a consequence, the levels of literals in C	
are all distinct. Now, depending on whether the clause

∨
l∈C�

l̄ is in Ψ or not,
either BackJump or Learn applies to s	. In both cases we run into contradiction
with the finality of s	.

Proof of (7). We prove by simultaneous induction that the following two prop-
erties are invariants of dpll. Note that (7) is a special case of (11) when k = 0.

Ψ is equivalent with Ψinit (10)
If C = {l1, . . . , lk}, then Ψinit |= l1 ∨ · · · ∨ lk (11)

Both properties are trivially true for initial states. Assuming s → s′ is a tran-
sition based on a rule R of dpll, and s satisfies (10) and (11), we proceed to
prove that s′ satisfies these conditions too.

If R is not Learn, then s′.Ψ = s.Ψ and so s′ satisfies (10) by induction hypoth-
esis. If R is Learn, the proof that s′ satisfies (10) is a simple application of the
induction hypotheses (10) and (11). Thus, s′ satisfies (10) in all cases.

Now we prove that s′ satisfies (11). The only non-trivial cases are when R
is Conflicti or Explaini, since in all other cases we have s′.C = s.C. When R
is Conflicti, from the guard l1 ∨ · · · ∨ lk ∈ s.Ψ and (10), we obtain the desired
relation Ψinit |= l1 ∨ · · · ∨ lk immediately.

Suppose R is Explaini and let γ be the clause consisting of the inverses of
literals of s.C − {l}. By induction hypothesis, we have Ψinit |= γ ∨ l̄. Also, the
guard of Explain and (10) imply Ψinit |= l1 ∨ · · · ∨ lk ∨ l. The required relation
Ψinit |= γ ∨ l1 ∨ · · · ∨ lk follows immediately.

Proof of (8). From (5) and non-applicability of Decide, it follows that M	 is an
assignment: for every l ∈ L, it contains either l or l̄. By (10), we only need to
prove M	 |= γ for every clause γ = l1 ∨ · · · ∨ lk in Ψ	. But if this were not true,
we would have li ∈ M	 for i = 1, . . . , k and so Conflict would be applicable to
the stat s	, contradicting its finality.

Proof of Theorems 3 and 4

Assuming that the input formula Φ is fixed, we will write sinit for sΦinit. For any
state s, the union of local constraints s.Ψ�, s.Ψ�, s.Ψ1, . . . , s.Ψn will be denoted
s.Ψ .

Let us start with a set of invariants of nodpll:

All local stacks contain the same number of occurrences of �; (12)
In any local stack, any literal can occur at most once; (13)
If l occurs in M�, then l̄ does not occur in M�. (14)



22 S. Krstić and A. Goel

All these properties are obviously true in the initial state. Directly examining
all rules, we can easily check that if s → s′ and s satisfies the properties, then
so does s′.

Consider an arbitrary execution sequence (finite or infinite)

π : sinit = s0 → s1 → s2 → . . . (15)

For each state sk in π we will collect the local stacks sk.Mi (i = �,�, 1, . . . , n) into
the global stack sk.O that interleaves them all. The elements of that stack will
be triples 〈l, j, i〉, denoting the occurrence of 〈l, j〉 in Mi. The global stacks sk.O
are defined inductively as follows. First, sinit.O is the empty sequence. Then, if
the transition sk → sk+1 is based on the rule R, let sk+1.O = sk.O if R is Learn,
Conflicti or Explaini; if R is BackJump, let sk+1.O = (sk.O)[m] + 〈l̄,�,�〉; finally,
if R is one of the remaining six rules, let sk+1.O = sk.O + U , where U is given
in the following table:

R : Decide Inferi LitDispatchi EqDispatchi LitPropagi EqPropagi

U : � + 〈pε,�,�〉 〈l, i, i〉 〈pε, j, i〉 〈x = y, j, i〉 〈pε, i,�〉 〈x = y, i,�〉

It follows immediately from the definition that 〈l, i, j〉 occurs in s.O if and
only if 〈l, i〉 occurs in s.Mj . The ordering of occurrence triples in s.O will be
denoted �.

Lemma 1. The following properties hold for all states in π.

(a) If 〈l, j〉 ≺Mi 〈l′, j′〉 then 〈l, j, i〉 � 〈l′, j′, i〉.
(b) If 〈l, i〉 occurs in Mj, then it also occurs in Mi and we have 〈l, i, i〉 � 〈l, i, j〉.

Proof. Straightforward induction. �
Corollary 1. If the rule LitDispatchi or EqDispatchi applies to a reachable state,
then j = i. (The number j here is from the rule as stated in Figure 5.)

Proof. Let s be a state in which LitDispatchi applies. (We omit the discussion
of the entirely analogous EqDispatch case.) Using an execution sequence π that
contains s, we have 〈pε, j, i〉 ∈ s.O and so, by part (b) of Lemma 1, 〈pε, j, j〉 ∈ s.O.
In particular pε ∈ Mj , which together with the guard pε /∈ Mi implies i = j. �
For each state s, define

s.C∗ =
{

no cflct if s.C = no cflct
{〈l, i, i〉 | 〈l, i〉 ∈ s.C} otherwise

Lemma 2. (a) For every reachable state s with s.C = no cflct, all elements of
s.C∗ occur in s.O.

(b) If s is a reachable state and s → s′ is a transition based on the rule Explaini,
then s′.C∗ �mul s.C∗, where �mul is the multiset ordering6 induced by the
relation � on the set of triples occurring in s′.O = s.O.

6 The guard of Explaini implies that neither s.C∗ nor s′.C∗ can be no cflct, so they
can be compared by �mul.
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Proof. First we prove (a) by induction. Let s, s′ be two consecutive states in any
execution sequence π and let the transition s → s′ be based on a rule R. If R is
any of the first six rules in Figure 5, or if R is Learn, then s′.C∗ = s.C∗ and s′.O
contains s.O. If R is BackJump, then s′.C = no cflct. In all these cases, there is
nothing to check. Finally, if R is either Conflicti or Explaini, then s′.O = s.O,
and s′.C−s.C consists of pairs 〈lν , iν〉 that occur in s.Mi. Thus, 〈lν , iν , i〉 occurs
in s.O, and by Lemma 1(a), the new element 〈lν , iν , iν〉 of s.C∗ occurs in s.O
too.

For part (b), we have

s′.C = s.C − {〈l, i〉}+ {〈l1, i1〉, . . . , 〈lk, ik〉},

where 〈l1, i1〉, . . . , 〈lk, ik〉 ≺s.Mi 〈l, i〉. Thus, by Lemma 1(a,b),

〈lν , iν , iν〉 � 〈lν , iν , i〉 � 〈l, i, i〉

for ν = 1, . . . , k. �

Proof of Theorem 3. Part 1: Termination. Immediately from the definition of
the global stack, for every nodpll transition s → s′ we have s.O = s′.O if the
transition is based on Learn, Conflict, or Explain, and s.O ≺ s′.O if the transition
is based on any other rule. The ordering≺ here is that of checkpointed sequences,
introduced in the proof of Theorem 2.

Assume now the theorem is not true and suppose the execution sequence π
in (15) is infinite. From the previous paragraphs, we have

sinit.O � s1.O � s2.O � . . . (16)

The invariant (13) (unique occurrence of literals in local stacks) implies that
the set of all possible tuples s.O where s is a nodpll state is finite. This imme-
diately implies that only finitely many inequalities in (16) can be strict.

Since (16) is thus an eventually constant sequence, the first six rules of nodpll

and BackJump (which all necessarily change s.O) can occur only finitely many
times in π. Since Conflict applies only when C = no cflct and replaces it with a
set, and since only BackJump can make C = no cflct again, we derive that Conflict
also can occur only finitely many times in π. Since there are only finitely many
clauses that Learn might add to Ψ�, this rule also occurs finitely many times.
Therefore, all but finitely many transitions in π are based on Explain.

Now, for some m, we have that all transitions in the subsequence sm →
sm+1 → . . . of π are based on Explain. By Lemma 2, this yields an infinite
descending chain sm.C∗ �mul sm+1.C

∗ �mul . . ., contradicting well-foundedness
of the multiset ordering. This finishes the proof that nodpll is terminating. �
Recall that a decision literal in a state s is any labeled literal 〈l,�〉 that occurs
immediately after � in s.M�. Let Mdec be the subsequence of M� consisting of
all decision literals and let M

[n]
dec be the sequence of the first n decision literals.

We will also need the notation for conflict clauses: if s.C = {l1, . . . , lk}, define
s.Ccls = l1 ∨ · · · ∨ lk, and if s.C = no cflct, define s.Ccls = true. Note that
s.Ccls = false if s.C = ∅.



24 S. Krstić and A. Goel

Lemma 3. The following are invariants of nodpll:

(a) Ψ |=T Ψinit and Ψinit |=T Ψ ;
(b) Ψinit |=T Ccls;
(c) For every i, Ψinit,Mdec |=T Mi.

Proof. The initial state obviously satisfies all three conditions.
We prove (a) and (b) by simultaneous induction. If s → s′ is a transition based

on a rule R of nodpll, and s satisfies (a) and (b), we prove that s′ satisfies these
conditions too.

If R is not Learn, then s′.Ψ = s.Ψ and so s′ satisfies (a) by induction hypoth-
esis. If R is Learn, then s′.Ψ = s.Ψ ∪ {s.Ccls}, so the proof that s′ satisfies (a) is
a simple application of the induction hypotheses (a) and (b).

Now we prove that s′ satisfies (b): Ψinit |=T s′.Ccls. The only non-trivial cases
are when R is Conflicti or Explaini, since in all other cases we have either s′.C =
s.C or s′.C = true (the latter happens if R is BackJump). When R is Conflicti,
the truth of the guard s.Ψi, li, . . . , lk |=i false directly implies s.Ψi |=i s

′.Ccls. By
induction hypothesis (a) Ψinit |=T s.Ψi. Combining the two facts proves our goal.

Suppose finally R is Explaini. The clause s′.Ccls is obtained from s.Ccls by
removing the literal l̄ and adding literals l1, . . . , lk. We have s.Ψi, li, . . . , lk |=i l
from the guard of our rule. We also have Ψinit |=T s.Ccls and Ψinit |=T s.Ψi from
the induction hypotheses (b) and (a) respectively. Combining these facts proves
that s′ satisfies (b) too.

Having proved that (a) and (b) hold for all reachable states, it only remains
to prove (c). We will prove that the following generalization of (c) holds for all
reachable states.

For every i and n, Ψinit,M
[n]
dec |=T M

[n]
i . (17)

Again, we reason by induction. If R, the rule used in a transition s → s′, is one
of the first six (from Decide to EqPropag) in Figure 5, it is easy to see by direct
examination that s′ satisfies (17) if s satisfies it. For the next three rules we have
s′Mi = s.Mi (for all i), so there is nothing to prove. Thus, we may assume that
the transition s → s′ is based on BackJump. The only fact needed to prove that
s′ satisfies (17) that is not immediately implied by the induction hypothesis is
Ψinit,M

[m]
dec |=T l̄, where m and l are as in the rule BackJump in Figure 5. This

follows from two facts: (1) Ψinit |=T s.Ccls, and (2) Ψinit,M
[m]
dec |=T l′ for every

l′ ∈ s.C − {l}. Fact (1) is part (b) of our lemma, and fact (2) follows from our
induction hypothesis, because the guard of BackJump implies that l′ ∈ s.M

[m]
�

for every l′ ∈ s.C − {l}. �

Proof of Theorem 3. Part 2: Final States. Suppose s is a final state with s.C =
no cflct and let sinit → s1 → s2 → . . . → s be a run leading to s. Arguing by
contradiction, assume s.C = ∅. Note that

∨
l∈C l̄ ∈ Ψ�, because otherwise Learn

would apply to s. We claim that in this situation all elements of C are decision
literals. Since no two decision literals can have the same level, this claim implies
that BackJump applies to s, which is a contradiction.
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It remains now to prove our claim: every element 〈l, i〉 of s.C is a decision
literal. By Lemma 2 (a), 〈l, i〉 occurs in s.Mj for some j, and then by Lemma 1
(b), 〈l, i〉 ∈ s.Mi. Let n be the largest integer such that 〈l, i, i〉 /∈ sn.O. Let
R be the rule used in the transition sn → sn+1. By definition of the global
stack, we have sn+1.O = sn.O

[m] + 〈l, i, i〉 (when R is BackJump), sn+1.O =
sn.O+�+〈l, i, i〉 (when R is Decide), or sn+1.O = sn.O+〈l, i, i〉, in the remaining
cases. The “remaining cases” actually consist only of Inferi; the propagation rules
change the global stack by adding to it triples 〈l′, i′, j′〉 with i′ = j′, and the
same is true of the dispatch rules by Corollary 1. If R is Decide, we are done.
Thus, it only remains to eliminate the possibilities when R is Inferi or BackJump.

Note that in all cases sn+1.O must be a prefix of s.O, because otherwise there
would have been a BackJump to a level smaller than the level of 〈l, i, i〉 in the
execution sn+1 → · · · → s, and it would have removed 〈l, i, i〉 from the global
stack, contradicting the assumption that 〈l, i, i〉 occurs in si.O for all i ≥ n + 1.
Thus, sn+1.Mi is a prefix of s.Mi.

Suppose R is Inferi. The guard of Inferi implies Ψi, l1, . . . , lk |=i l for some
l1, . . . , lk ∈ sn.Mi, Since sn.Mi is a prefix of sn+1.Mi, it is also a prefix of s.Mi.
This implies that Explaini is enabled at s—a contradiction because s is final.

Suppose now R is BackJump: sn+1.O = sn.O
[m] + 〈l, i, i〉. We have i = � and

〈l, i〉 = 〈l0,�〉, where sn.C = {〈l0, i0〉, 〈l1, i1〉, . . . , 〈lk, ik〉} and level l0 > k ≥
level lν (ν = 1, . . . k). The levels here are computed with respect to sn. Thus,
l1, . . . , lk ∈ sn.M�. Moreover, since the backjumping level in the transition sn →
sn+1 is m, from the guard of BackJump we have that the literals l1, . . . , lk occur in
(sn.M�)[m] (the level of each is at most m). Since sn+1.M� = sn.M

[m]
�

+ 〈l0,�,�〉
and sn+1.M� is a prefix of s.M�, these literals occur in s.M� as well, and their
occurrences in s.M� precede the occurrence of l0. The guard of BackJump implies
also that the clause l0 ∨ l1 ∨ · · · ∨ lk is in sn.Ψ�, and so it must be in s.Ψ� too (any
transition that changes Ψ� makes it larger). The facts just collected immediately
imply that Explain

� applies to s, which (again) is not possible because s is final. �
Proof of Theorem 4. This is a special case of Lemma 3(b), since Ccls = false when
C = ∅. �

Proof of Theorem 5

By Theorem 1, to prove that Φ is T -satisfiable, it suffices to find an assignment
M to variables occurring in Φ� and an arrangement Δ of other shared variables
in Φ such that

M |= Φ� (18)
(Φi ∪Δ)pure ∪ Φcard

i ∪M is Ti-satisfiable for every i ∈ {�, 1, . . . , n} (19)

Since Ψi = Φpure
i ∪ Φcard

i , the condition (19) can be restated as

Ψi ∪Δ ∪M is Ti-satisfiable for every i ∈ {�, 1, . . . , n}. (20)
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Now, suppose we are in a final state s of nodpll. We will first see how s
determines M and Δ such that (18) holds. Then we will show that (20) holds if
we assume either of the conditions (i), (ii).

Define M to be s.M�. In s, as in any final state, s.M� contains every variable
in V� or its negation—otherwise the rule Decide would apply. Thus, M can be
seen as a full assignment to propositional variables in V�. Since all variables of
s.Ψ� are in V�, we must have either M |= s.Ψ� or M |= ¬(s.Ψ�). In the latter
case, M would have to falsify some clause of s.Ψ�, so the rule Conflict� would
apply, which is not true since we are in a final state. Thus, M |= s.Ψ�. Since Ψ�
is initially Φ� and can only grow with applications of nodpll rules, the desired
relation M |= Φ� holds.

For the rest of the proof, observe that rules of nodpll do not modify local
constraints other than Ψ�; thus, s.Ψi = Ψi holds for every i = �.

Recall that Φ� consists of formulas of the form p ⇔ (x = y), where p ∈ V�
and x, y are shared variables. Since M = s.M� is an assignment to V�, we have
either p ∈ M , or p̄ ∈ M . In the first case, we must have p ∈ s.M�, and in the
second case, we must have p̄ ∈ s.M�—otherwise, LitDispatch� would apply to s.
(Note that p, p̄ ∈ L�.) Since Ψ� ∪ s.M� is consistent (otherwise, Conflict� would
apply to s), it follows that the set Ψ� ∪ s.M� ∪M is consistent too. Consider an
arbitrary model of this set and define Δ to be the arrangement of V� determined
by that model. Clearly, (20) holds for i = �.

Arguing by contradiction, assume (20) is not true for some i. This implies
that Ψi ∪ Δi ∪M is not Ti-satisfiable, where Δi is the subset of Δ containing
the (dis)equalities between variables in Vi. Indeed, if one has a Ti-model for
Ψi ∪Δi ∪M , then this model extends to a model of Ψi ∪Δ ∪M by interpreting
the non-Vi variables of Δ as arbitrary elements constrained only by equalities
and disequalities of Δ−Δi. (It is easy to argue that such extensions exist.)

Notice that for unsatisfiability of Ψi ∪ Δi ∪ M , propositional literals that
occur in M but not in Ψi are irrelevant. Thus, Ψi ∪Δi ∪M i is Ti-unsatisfiable,
where M i is the subsequence of M containing only variables in V�∩Vi and their
negations. Now, every element of M i must also be in Mi, because otherwise the
rule LitDispatch would apply. As a consequence, Ψi∪Δi∪Mi is not Ti-satisfiable.

At this point, we have to use our assumptions (i) or (ii).

Case 1: Assume (i) holds. Write Δi = Δ+ ∪ Δ−, where Δ+ and Δ− contain
equalities and disequalities respectively. Then Ψi,Mi, Δ

+ |=i ¬Δ−. For each defi-
nitional form p ⇔ φ in Ψi, either p or p̄ occurs in Mi (because p ∈ V�∩Vi and M is
an assignment to all variables in V�). Obtain Ψ ′

i from Ψi by replacing p ⇔ φ with
φ or ¬φ, depending on whether Mi contains p or ¬p. Clearly, Ψi,Mi |=i Ψ ′

i and
Ψ ′
i , Δ

+ |=i ¬Δ−. Now, Ψ ′
i ∪Δ+ is a set of Ti-literals (here we use the assumption

that Ψi contains no cardinality constraints) and Δ− is a disjunction of equalities.
Since Ti is convex, we must have Ψ ′

i ∪Δ+ |=i x = y for some x, y ∈ Vi such that
(x = y) ∈ Δ−. In other words, Ψi,Mi |=i x = y for some x, y such that 〈x, y〉 /∈ δ.
Since Inferi does not apply, we must have (x = y) ∈ Mi. Then, since EqPropagi
does not apply, we must have (x = y) ∈ s.M�. This contradicts consistency of
s.M� ∪Δ that has already been established, finishing the proof.
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Case 2: Assume (ii) holds. Since Ψi ∪ Δi ∪ Mi is Ti-unsatisfiable, we have
Ψi,Mi |=i ¬Δi, and so Ψi,Mi |=i ¬φ for some φ ∈ Δi. Now, φ is either x = y
or x = y, for some x, y ∈ Vi. By assumption (ii), there is a variable p ∈ V� ∩ Vi
such that p ⇔ (x = y) is in Ψ�. As we already argued, we have either p ∈ Mi

and p ∈ s.M�, or p̄ ∈ Mi and p̄ ∈ s.M�. Assume first p ∈ Mi; then (x = y) ∈ Δ
(by definition of Δ), so φ must be (x = y), so Ψi,Mi |=i ¬p, which implies
Ψi,Mi |=i false and therefore applicability of Conflicti to our final state. This is
a contradiction. In the same way the contradiction is obtained in the remaining
case p̄ ∈ Mi. �
Note that in case (i), the proof relies on the full strength of rules Inferi for
inferring equalities between variables. In case (ii), however, the proof relies only
on the full strength of the rules Conflicti and it would go through even if the
rules Inferi (i = 1, . . . , n) were removed from the system.

Note also that completeness can be proved on the per theory basis, where
different theories satisfy different sufficient conditions for completeness. For ex-
ample, instead of requiring in Theorem 5 that one of the conditions (i), (ii) holds,
it suffices to make these requirements per theory. Precisely, we can change the
last assumption of Theorem 5 to read as follows: for every i ∈ {1, . . . , n}, one of
the following conditions holds:

(i′) Ti is convex and Φcard
i = ∅;

(ii′) for every pair x, y ∈ Vi of shared variables of the same type, Φ� contains a
definitional form p ⇔ (x = y).

The proof above would apply with minimal changes.

Finally, we give an example showing that in case (i) the completeness does
not necessarily hold without the assumption Φcard

i = ∅.

Example 3. Let x1, x2, x3, x4 be variables of type α, and let Φ be the T×-query
consisting of the cardinality constraint α

.= 2 and all constraints 〈xi, xj〉 =
〈xk, xl〉, where (i, j, k, l) is a permutation of (1, 2, 3, 4). It is easy to see that Φ is
satisfiable and that in every model 〈ι, ρ〉 of Φ, three of the variables x1, x2, x3, x4

are mapped by ρ to the same element of ι(α), while the fourth is mapped to the
other element of the two-element set ι(α).

Now suppose we have five variables xi of type α, five disjoint theories Ti and
queries Φi such that the variables occurring in Φi are xj , where j ∈ {1, . . . , 5}�

{i}. Suppose also that each Φi contains the cardinality constraint α
.= 2 and

that—as in the example of T× and Φ above—for every i, the query Φi is Ti-
satisfiable, but that every model requires the four variables in Φi to be mapped
to the two elements of the domain set in a 3:1 fashion (three variables mapped
to the same element, the fourth to a distinct element).

The union of the queries Φ1, . . . , Φ5 is unsatisfiable: there is no partition of a
set of five elements that when restricted to any four-element subset produces a
3:1 partition.
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Abstract. In the last two decades we have witnessed an impressive
advance in the efficiency of propositional satisfiability techniques (SAT),
which has brought large and previously-intractable problems at the reach
of state-of-the-art SAT solvers. Most of this success is motivated by the
impressive level of efficiency reached by current implementations of the
DPLL procedure. Plain propositional logic, however, is not the only ap-
plication domain for DPLL. In fact, DPLL has also been successfully
used as a boolean-reasoning kernel for automated reasoning tools in much
more expressive logics.

In this talk I overview a 12-year experience on integrating DPLL
with logic-specific decision procedures in various domains. In particular,
I present and discuss three main achievements which have been obtained
in this context: the DPLL-based procedures for modal and description
logics, the lazy approach to Satisfiability Modulo Theories, and Delayed
Theory Combination.

1 Introduction

In the last two decades we have witnessed an impressive advance in the efficiency
of propositional satisfiability techniques (SAT), which has brought large and
previously-intractable problems at the reach of state-of-the-art SAT solvers. As
a consequence, many hard real-world problems have been successfully solved by
encoding into SAT. E.g., SAT solvers are now a fundamental tool in most formal
verification design flows for hardware systems.

Most of the success of SAT technologies is motivated by the impressive level of
efficiency reached by current implementations of the Davis-Putnam-Logemann-
Loveland procedure (DPLL) [13,12], in its most-modern variants (see, e.g., [43]).

Plain propositional logic, however, is not the only application domain for
DPLL. In fact, DPLL has also been successfully used as a boolean-reasoning
kernel for automated reasoning tools in much more expressive logics, including
modal and description logics, and decidable subclasses of first-order logic. In
most cases, this has produced a boost in the overall performances, which rely
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both on the improvements in DPLL technology and on clever integration between
DPLL and the logic-specific decision procedures.

In this talk I overview a 12-year experience on integrating DPLL with logic-
specific decision procedures in various domains. In particular, I present and
discuss three main achievements which have been obtained in this context.

The first (§2) is the introduction of DPLL inside satisfiability procedures
for modal and description logics [23,24,37,27,35,28,25,21,22,26], which caused
a boost in performances wrt. previous state-of-the-art procedures, which used
Smullyan’s analytic tableaux [39] as propositional-reasoning engine.

The second (§3) is the lazy approach to Satisfiability Modulo Theories (lazy
SMT) [1,41,15,3,4,18,19,6,16], in which DPLL is combined with satisfiability
procedures for (sets of literals in) expressive decidable first-order theories. Cur-
rent lazy SMT tools have reached a high degree of efficiency, so that they are
increasingly used in formal verification.

The third (§4) is Delayed Theory Combination (Dtc) [7,8,9,17,14], a general
method for tackling the problem of theory combination within the context of lazy
SMT . Dtc exploits the power of DPLL also for assigning truth values for the
interface equalities that the T -solver’s are not capable of inferring. Thus, it does
not rely on (possibly very expensive) deduction capabilities of the component
procedures —although it can fully benefit from them— and nicely encompasses
the case of non-convex theories.

2 DPLL for Modal Logics

We assume the reader is familiar with the basic notions on modal logics and
of first-order logic. Some very-basic background on SAT (see, e.g., [43]) and on
decision procedures and their combination (see, e.g., [31]) is also assumed.

We adopt the following terminology and notation. We call an atom any for-
mula which cannot be decomposed propositionally (e.g., A1, �r(A1 ∧ �rA2)),
and a literal an atom or its negation. We call a truth assignment μ for a formula
ϕ any set/conjunction of top-level literals in ϕ. Positive literals �rαi, Ak [resp.
negative literals ¬�rβi, ¬Ak] mean that the corresponding atom is assigned to
true [resp. false]. We say that a truth assignment μ for ϕ propositionally satisfies
ϕ, written μ |=p ϕ, iff it tautologically entails ϕ. E.g., {A1,¬�r(A2∧�rA3)} |=p

(A1 ∧ (A2 ∨ ¬�r(A2 ∧ �rA3))).

2.1 From Tableau-Based to DPLL-Based Procedures

We call “tableau-based” a system that implements and extends to other logics
the Smullyan’s propositional tableau calculus [39]. E.g., a typical Tableau-based
procedure for modal Km consists on some control strategy applied to the follow-
ing rules:

Γ, ϕ1 ∧ ϕ2

Γ, ϕ1, ϕ2
(∧)

Γ, ϕ1 ∨ ϕ2

Γ, ϕ1 Γ, ϕ2
(∨)

μ

α1 ∧ . . . ∧ αm ∧ ¬βj
(�r/¬�r) (1)
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for each box-index r ∈ {1, ...,m}. Γ is an arbitrary set of formulas, and μ is
a set of literals which includes ¬�rβj and whose only positive �r-atoms are
�rα1, . . . ,�rαm.

We call “DPLL-based” any system that implements and extends to other
logics the Davis-Putnam-Longeman-Loveland procedure (DPLL) [13,12]. DPLL-
based procedures basically consist on the combination of a DPLL procedure
handling the purely-propositional component of reasoning, and some procedure
handling the purely-modal component. Thus, for instance, in our terminology
Ksat [23], Fact [27], Dlp [35], Racer [26] are DPLL-based systems.1 From a
purely-logical viewpoint, it is possible to conceive a DPLL-based framework by
substituting the propositional tableaux rules with some rules implementing the
DPLL algorithms in a tableau-based framework [37]. A formal framework for
representing DPLL and DPLL-based procedures has been proposed in [40,33].

2.2 Basic Modal DPLL for Km

The first DPLL-based procedure for a modal logic, Ksat, was introduced in
[23,25] (Figure 1). This schema evolved from that of the PTAUT procedure in
[2], and is based on the “classic” DPLL procedure [13,12]. Ksat takes in input a
modal formula ϕ and returns a truth value asserting whether ϕ is Km-satisfiable
or not. Ksat invokes K-DPLL passing as arguments ϕ and (by reference) an
empty assignment �. K-DPLL tries to build a Km-satisfiable assignment μ
propositionally satisfying ϕ. This is done recursively, according to the following
steps:

– (base) If ϕ = �, then μ propositionally satisfies ϕ. Thus, if μ is Km-satisfiable,
then ϕ is Km-satisfiable. Therefore K-DPLL invokes K-Solver(μ), which
returns a truth value asserting whether μ is Km-satisfiable or not.

– (backtrack) If ϕ = ⊥, then μ does not satisfy ϕ, so that K-DPLL returns
False.

– (unit) If a literal l occurs in ϕ as a unit clause, then l must be assigned �.
To obtain this, K-DPLL is invoked recursively with arguments the formula
returned by assign(l, ϕ) and the assignment obtained by adding l to μ.

– (split) If none of the above situations occurs, then choose-literal(ϕ) returns
an unassigned literal l according to some heuristic criterion. Then K-DPLL

is first invoked recursively with arguments assign(l, ϕ) and μ∧ l. If the result
is negative, then K-DPLL is invoked with assign(¬l, ϕ) and μ ∧ ¬l.

K-DPLL is a variant of the “classic” DPLL algorithm [13,12]. The K-DPLL

schema differs from that of classic DPLL by only two steps.
The first is the “base” case: when standard DPLL finds an assignment μ which

propositionally satisfies the input formula, it simply returns “True”. K-DPLL,

1 Notice that there is not an universal agreement on the terminology “tableau-based”
and “DPLL-based”. E.g., tools like Fact, Dlp, and Racer are often called “tableau-
based”, although they use a DPLL-like algorithm instead of propositional tableaux
for handling the propositional component of reasoning [27,35,28,26].
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function Ksat(ϕ)
return K-DPLL(ϕ, �);

function K-DPLL(ϕ, μ)
if (ϕ == �) /* base */

then return K-Solver(μ);
if (ϕ == ⊥) /* backtrack */

then return False;
if {a unit clause (l) occurs in ϕ} /* unit */

then return K-DPLL(assign(l, ϕ), μ ∧ l);
l := choose-literal(ϕ); /* split */
return K-DPLL(assign(l, ϕ), μ ∧ l) or

K-DPLL(assign(¬l, ϕ), μ ∧ ¬l);

/* μ is
�

i �1α1i ∧
�

j ¬�1β1j ∧ . . . ∧
�

i �mαmi ∧
�

j ¬�mβmj ∧
�

k Ak ∧
�

h ¬Ah */

function K-Solver(μ)
for each box index r ∈ {1...m} do

for each literal ¬�rβrj ∈ μ do
if not (Ksat(

�
i αri ∧ ¬βrj))

then return False;
return True;

Fig. 1. The basic version of Ksat algorithm. assign(l, ϕ) substitutes every occurrence
of l in ϕ with � and evaluates the result.

instead, is also supposed to check the Km-satisfiability of the corresponding set
of literals, by invoking K-Solver on μ. If the latter returns true, then the whole
formula is satisfiable and K-DPLL returns True as well; otherwise, K-DPLL

backtracks and looks for the next assignment.
The second is in the fact that in K-DPLL the pure-literal step [12] is re-

moved.2 In fact the sets of assignments generated by DPLL with pure-literal
might be incomplete and might cause incorrect results. This fact is shown by
the following example.

Example 1. Let ϕ be the following formula:

(�1A1∨A1) ∧(�1(A1 → A2)∨A2) ∧(¬�1A2∨A2) ∧(¬A2∨A3) ∧(¬A2∨¬A3).

ϕ is Km-satisfiable, because μ = {A1,¬A2,�1(A1 → A2),¬�1A2} is a Km-
consistent assignment propositionally satisfying ϕ. It is easy to see that no sat-
isfiable assignment propositionally satisfying ϕ assigns �1A1 to true. As �1A1

occurs only positively in ϕ, DPLL with the pure literal rule would assign �1A1

to true as first step, which would lead the procedure to return False.

With these simple modifications, the embedded DPLL proceduresworks as an enu-
merator of a complete set of assignments, whose Km-satisfiability is recursively
2 Alternatively, the application of the pure-literal rule is restricted to atomic proposi-

tions only.
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checkedbyK-Solver.K-Solver is a straightforward application of the (�r/¬�r)-
rule in (1).

The above schema has lately been extended to other modal and description
logics [27,28,22]. Moreover, the schema has been lately adapted to work with
modern DPLL procedures, and many optimizations have been conceived. Some
of them will be described in §3.3 in the context of Satisfiability Modulo Theories.

2.3 DPLL-Based vs. Tableaux-Based Procedures

[23,24,25,20,21,28,29] presented extensive empirical comparisons, in which DPLL-
based procedures outperformed tableau-based ones, with orders-of-magnitude
performance gaps. (Similar performance gaps between tableau-based vs. DPLL-
based procedures were obtained lately also in a completely-different context [1].)
Remarkably, most such results were obtained with tools implementing variants
of the “classic” DPLL procedure of §2.2, still very far from the efficiency of
current DPLL implementations.

Both tableau-based and DPLL-based procedures for Km-satisfiability work
(i) by enumerating truth assignments which propositionally satisfy the input
formula ϕ and (ii) by recursively checking the Km-satisfiability of the assign-
ments found. As both algorithms perform the latter step in the same way, the
key difference relies in the way they handle propositional inference. In [24,25] we
remarked that, regardless the quality of implementation and the optimizations
performed, DPLL-based procedures do not suffer from two intrinsic weaknesses
of tableau-based procedures which significantly affect their efficiency, and whose
effects are amplified up to exponentially when using them in modal inference.
We consider these weaknesses in turn.

Syntactic vs. semantic branching. In a propositional tableaux truth assign-
ments are generated as branches induced by the application of the ∨-rule to
disjunctive subformulas of the input formula ϕ. Thus, they perform syntactic
branching [24], that is, the branching in the search tree is induced by the syntac-
tic structure of ϕ. As discussed in [11], an application of the ∨-rule generates two
subtrees which can be mutually consistent, i.e., which may share propositional
models.3 Therefore, the set of truth assignments enumerated by a propositional
tableau grows exponentially with the number of disjunctions occurring positively
in ϕ, regardless the fact that it may contain up to exponentially-many duplicated
and/or subsumed assignments.

Things get even worse in the modal case. When testing Km-satisfiability, un-
like the propositional case where they look for one assignment satisfying the
input formula, the propositional tableaux are used to enumerate up to all satis-
fying assignments, which must be recursively checked for Km-consistency. This
requires checking recursively possibly-many sub-formulas of the form

∧
i αri∧¬βj

3 As pointed out in [11], propositional tableaux rules are unable to represent bivalence:
“every proposition is either true or false, tertium non datur”. This is a consequence
of the elimination of the cut rule in cut-free sequent calculi, from which propositional
tableaux are derived.
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Fig. 2. Search trees for the formula Γ = (α ∨ ¬β) ∧ (α ∨ β) ∧ (¬α ∨ ¬β). Left: a
tableau-based procedure. Right: a DPLL-based procedure.

of depth d − 1, for which a propositional tableau will enumerate all satisfying
assignments, and so on. At every level of nesting, a redundant truth assign-
ment introduces a redundant modal search tree. Thus, with modal formulas, the
redundancy of the propositional case propagates up-to-exponentially with the
modal depth.

DPLL instead, performs a search which is based on semantic branching [24],
i.e., a branching on the truth value of sub-formulas ψ of ϕ (typically atoms): 4

ϕ

ϕ[ψ/�] ϕ[ψ/⊥],

where ϕ[ψ/�] is the result of substituting with � all occurrences of ψ in ϕ and
then simplify the result. Thus, every branching step generates two mutually-
inconsistent subtrees. Thus, DPLL always generates non-redundant sets of as-
signments. This avoids search duplications and, in the case of modal search, the
recursive exponential propagation of redundancy.

Example 2. Consider the formula Γ = (α∨¬β)∧(α∨β)∧(¬α∨¬β), where α and
β are modal atoms s.t. α∧¬β is Km-inconsistent, and let d be the depth of Γ . The
only assignment propositionally satisfying Γ is μ = α ∧ ¬β. Consider Figure 2,
left. Two distinct but identical open branches are generated, both representing
the assignment μ. Then the tableau expands the two open branches in the same
way, until it generates two identical (and possibly-big) closed modal sub-trees T
of modal depth d, each proving the Km-unsatisfiability of μ.

This phenomenon may repeat itself at the lower level in each sub-tree T , and
so on. For instance, if α = �1((α′ ∨ ¬β′) ∧ (α′ ∨ β′)) and β = �1(α′ ∧ β′), then
at the lower level we have a formula Γ ′ of depth d − 1 analogous to Γ . This
propagates exponentially the redundancy with the depth d.

Finally, notice that if we considered the formula ΓK =
∧K
i=1(αi∨¬βi)∧ (αi∨

βi) ∧ (¬αi ∨ ¬βi), the tableau would generate 2K identical truth assignments
μK =

∧
i αi ∧ ¬βi, and things would get exponentially worse.

4 Notice that the notion of “semantic branching” introduced in [24] is stronger than
that lately used in [27,28]; the former coarsely corresponds to the latter plus the
usage of unit-propagation.
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Fig. 3. Search trees for the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β). Left: a
tableau-based procedure. Right: a DPLL-based procedure.

Look at Figure 2, right. A DPLL-based procedure branches asserting α = �
or α = ⊥. The first branch generates α ∧ ¬β, whilst the second gives ¬α ∧
¬β ∧ β, which immediately closes. Therefore, only one instance of μ = α∧¬β is
generated. The same applies to μK .

Detecting constraint violations. A propositional formula ϕ can be seen as a
set of constraints for the truth assignments which possibly satisfy it. For instance,
a clause A1 ∨ A2 constrains every assignment not to set both A1 and A2 to ⊥.
Unlike tableaux, DPLL prunes a branch as soon as it violates some constraint of
the input formula. (For instance, in Ksat this is done by the function assign.)

Example 3. Consider the formula Γ = (α ∨ φ1) ∧ (β ∨ φ2) ∧ φ3 ∧ (¬α ∨ ¬β),
α and β being atoms, φ1, φ2 and φ3 being sub-formulas, such that α ∧ β ∧ φ3

is propositionally satisfiable and α ∧ φ2 is Km-unsatisfiable. Look at Figure 3,
left. Again, assume that, in a tableau-based procedure, the ∨-rule is applied in
order, left to right. After two steps, the branch α, β is generated, which violates
the constraint imposed by the last clause (¬α∨¬β). A tableau-based procedure
is not able to detect such a violation until it explicitly branches on that clause,
that is, only after having generated the whole sub-tableau T3 for α ∧ β ∧ φ3,
which may be rather big. DPLL instead (Figure 3, right) avoids generating the
violating assignment detects the violation and immediately prunes the branch.

3 Integrating DPLL and Theory Solvers: Lazy SMT

Satisfiability Modulo Theories is the problem of deciding the satisfiability of a
first-order formula with respect to some decidable first-order theory T (SMT (T )).
Examples of theories of interest are, those of Equality and Uninterpreted Func-
tions (EUF), Linear Arithmetic (LA), both over the reals (LA(Q)) and the
integers (LA(Z)), its subclasses of Difference Logic (DL) and Unit-Two-Variable-
Per-Inequality (UT VPI), the theories of bit-vectors (BV), of arrays (AR) and
of lists (LI).
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Efficient SMT solvers have been developed in the last five years, called lazy
SMT solvers, which combine DPLL with decision procedures (T -solvers) for
many theories of interest (e.g., [1,41,15,3,4,18,19,6,16]).

3.1 Theory Solvers

In its simplest form, a Theory Solver for T (T -solver) is a procedure which takes
as input a collection of T -literals μ and decides whether μ is T -satisfiable. In
order to be effectively used within a lazy SMT solver, the following features of
T -solver are often important or even essential.

Model generation: when T -solver is invoked on a T -consistent set μ, it is able
to produce a T -model I witnessing the consistency of μ, i.e., I |=T μ.

Conflict set generation: when T -solver is invoked on a T -inconsistent set μ, it
is able to produce the (possibly minimal) subset η of μ which has caused its
inconsistency. η is called a theory conflict set of μ.

Incrementality: T -solver “remembers” its computation status from one call to
the other, so that, whenever it is given in input a set μ1 ∪ μ2 such that μ1

has just been proved T -satisfiable, it avoids restarting the computation from
scratch.

Backtrackability: it is possible for the T -solver to undo steps and return to a
previous status on the stack in an efficient manner.

Deduction of unassigned literals: when T -solver is invoked on a T -consistent set
μ, it can also perform a set of deductions in the form η |=T l, s.t. η ⊆ μ and
l is a literal on a not-yet-assigned atom in ϕ.

Deduction of interface equalities: when returning Sat, T -solver can also perform
a set of deductions in the form μ |=T e (if T is convex) or μ |=T

∨
j ej (if

T is not convex) s.t. e, e1, ..., en are equalities between variables or terms
occurring in atoms in μ. We denote the equality (vi = vj) by eij , and we
call eij-deduction a deduction of (disjunctions of) eij ’s. A T -solver is eij-
deduction-complete if it always capable to inferring the (disjunctions of) eij ’s
which are entailed by the input set of literals. Notice that here the deduced
equalities need not occur in the input formula ϕ.

3.2 Lazy Satisfiability Modulo Theories

We adopt the following terminology and notation. The bijective function T 2B
(“theory-to-propositional”), called boolean abstraction, maps propositional vari-
ables into themselves, ground T -atoms into fresh propositional variables, and
is homomorphic w.r.t. boolean operators and set inclusion. The function B2T
(“propositional-to-theory”), called refinement, is the inverse of T 2B. The sym-
bols ϕ, ψ denote T -formulas, and μ, η denote sets of T -literals; ϕp, ψp denote
propositional formulas, μp, ηp denote sets of propositional literals (i.e., truth
assignments) and we often use them as synonyms for the boolean abstraction of
ϕ, ψ, μ, and η respectively, and vice versa (e.g., ϕp denotes T 2B(ϕ), μ denotes
B2T (μp)). If T 2B(ϕ) |= ⊥, then we say that ϕ is propositionally unsatisfiable,
written ϕ |=p ⊥.
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1. SatValue T -DPLL (T -formula ϕ, T -assignment & μ) {
2. if (T -preprocess(ϕ, μ) == Conflict);
3. return Unsat;
4. ϕp = T 2P(ϕ); μp = T 2P(μ);
5. while (1) {
6. T -decide next branch(ϕp, μp);
7. while (1) {
8. status = T -deduce(ϕp, μp);
9. if (status == Sat) {
10. μ = P2T (μp);
11. return Sat; }
12. else if (status == Conflict) {
13. blevel = T -analyze conflict(ϕp, μp);
14. if (blevel == 0)
15. return Unsat;
16. else T -backtrack(blevel,ϕp , μp);
17. }
18. else break;
19. } } }

Fig. 4. Schema of T -DPLL based on modern DPLL

Figure 4 represent the schema of a T -DPLL procedure based on a modern
DPLL engine. This schema evolved from that of the DPLL-based procedures
for modal logics, see §2.2. The input ϕ and μ are a T -formula and a reference to
an (initially empty) set of T -literals respectively. The DPLL solver embedded
in T -DPLL reasons on and updates ϕp and μp, and T -DPLL maintains some
data structure encoding the set Lits(ϕ) and the bijective mapping T 2P/P2T
on literals.
T -preprocess simplifies ϕ into a simpler formula, and updates μ if it is the

case, so that to preserve the T -satisfiability of ϕ∧μ. If this process produces some
conflict, then T -DPLL returns Unsat. T -preprocess combines most or all the
boolean preprocessing steps for DPLL with some theory-dependent rewriting
steps on the T -literals of ϕ. (The latter are described in §3.3.)
T -decide next branch selects the next literal like in standard DPLL (but

it may consider also the semantics in T of the literals to select).
T -deduce, in its simplest version, behaves similarly to standard BCP in

DPLL: it iteratively deduces boolean literals lp deriving propositionally from
the current assignment (i.e., s.t. ϕp ∧ μp |= lp) and updates ϕp and μp accord-
ingly, until one of the following facts happens:

(i) μp propositionally violates ϕp (μp ∧ ϕp |= ⊥). If so, T -deduce behaves like
deduce in DPLL, returning Conflict.

(ii) μp propositionally satisfies ϕp (μp |= ϕp). If so, T -deduce invokes T -solver
on μ: if the latter returns Sat, then T -deduce returns Sat; otherwise,
T -deduce returns Conflict.
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(iii) no more literals can be deduced. If so, T -deduce returns Unknown. A
slightly more elaborated version of T -deduce can invoke T -solver on μ at
this intermediate stage: if T -solver returns Unsat, then T -deduce returns
Conflict. (This enhancement, called early pruning, is discussed in §3.3.)

A much more elaborated version of T -deduce can be implemented if T -solver
is able to perform deductions of unassigned literals η |=T l s.t. η ⊆ μ, as in §3.1.
If so, T -deduce can iteratively deduce and propagate also the corresponding
literal lp. (This enhancement, called T -propagation, is discussed in §3.3.)

T -analyze conflict is an extensions of analyze conflict of DPLL [42,43]:
if the conflict produced by T -deduce is caused by a boolean failure (case (i)
above), then T -analyze conflict produces a boolean conflict set ηp and the
corresponding value of blevel; if the conflict is caused by a T -inconsistency
revealed by T -solver (case (ii) or (iii) above), then T -analyze conflict pro-
duces the boolean abstraction ηp of the theory conflict set η ⊆ μ produced
by T -solver, or computes a mixed boolean+theory conflict set by a backward-
traversal of the implication graph starting from the conflicting clause ¬ηp (see
§3.3). Once the conflict set ηp and blevel have been computed, T -backtrack
behaves analogously to backtrack in DPLL: it adds the clause ¬ηp to ϕp, ei-
ther temporarily or permanently, and backtracks up to blevel. (These features,
called T -backjumping and T -learning, are discussed in §3.3.)

T -DPLL differs from the standard DPLL [42,43] because it exploits:

– an extended notion of deduction of literals: not only boolean deduction (μp ∧
ϕp |= lp), but also theory deduction (μ |=T l);

– an extended notion of conflict: not only boolean conflict (μp ∧ ϕp |=p ⊥),
but also theory conflict (μ |=T ⊥), or even mixed boolean+theory conflict
((μ ∧ ϕ) |=T ⊥).

Example 4. Consider the LA(Q)-formulas ϕ and its boolean abstraction ϕp of
Figure 5. Suppose T -decide next branch selects, in order, μp := {¬B5, B8,
B6,¬B1} (in c4, c7, c6, and c1). T -deduce cannot unit-propagate any literal.
By the enhanced version of step (iii), it invokes T -solver on μ := {¬(3x1 − x3 ≤
6), (x3 = 3x5 + 4), (x2 − x4 ≤ 6),¬(2x2 − x3 > 2)}. The enhanced T -solver
not only returns Sat, but also it deduces ¬(3x1 − 2x2 ≤ 3) (c3 and c5) as a
consequence of the first and last literals. The corresponding boolean literal ¬B3,
is added to μp and propagated (T -propagation). Hence A1, A2 and B2 are unit-
propagated from c5, c3 and c2.

Let μ′p be the resulting assignment {¬B5, B8, B6,¬B1,¬B3, A1, A2, B2}). By
step (iii), T -deduce invokes T -solver on μ′: {¬(3x1 − x3 ≤ 6), (x3 = 3x5 + 4),
(x2 − x4 ≤ 6),¬(2x2− x3 > 2),¬(3x1 − 2x2 ≤ 3), (x1 − x5 ≤ 1)} which is incon-
sistent because of the 1st, 2nd, and 6th literals, so that returns Unsat, and hence
T -deduce returns Conflict. Then T -analyze conflict and T -backtrack learn
the corresponding boolean conflict clause

c8 =def B5 ∨ ¬B8 ∨ ¬B2
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ϕ = ϕp =
c1 : ¬(2x2 − x3 > 2) ∨ A1

c2 : ¬A2 ∨ (x1 − x5 ≤ 1)
c3 : (3x1 − 2x2 ≤ 3) ∨ A2

c4 : ¬(2x3 + x4 ≥ 5) ∨ ¬(3x1 − x3 ≤ 6) ∨ ¬A1

c5 : A1 ∨ (3x1 − 2x2 ≤ 3)
c6 : (x2 − x4 ≤ 6) ∨ (x5 = 5 − 3x4) ∨ ¬A1

c7 : A1 ∨ (x3 = 3x5 + 4) ∨ A2

¬B1 ∨ A1

¬A2 ∨ B2

B3 ∨ A2

¬B4 ∨ ¬B5 ∨ ¬A1

A1 ∨ B3

B6 ∨ B7 ∨ ¬A1

A1 ∨ B8 ∨ A2

¬B3

A1

A2

B2

¬B2

¬A2

B3

c8 : B5 ∨ ¬B8 ∨ ¬B2

T

¬B5

B8

B6

¬B1

Fig. 5. Boolean search (sub)tree in the scenario of Example 4. (A diagonal line, a ver-
tical line and a vertical line tagged with “T ” denote literal selection, unit propagation
and T -propagation respectively; a bullet “•” denotes a call to T -solver.)

and backtrack, popping from μp all literals up to {¬B5, B8}, and then unit-
propagate ¬B2 on c8 (T -backjumping and T -learning). Then, starting from
{¬B5, B8,¬B2}, also ¬A2 and B3 are unit-propagated on c2 and c3 respectively.

As in standard DPLL, an excessive number of T -learned clauses may cause
an explosion in size of ϕ. Thus, many lazy SMT tools introduce techniques for
discharging T -learned clauses when necessary. Moreover, like in standard DPLL,
T -DPLL can be restarted from scratch in order to avoid dead-end portions of
the search space. The learned clauses prevent T -DPLL to redo the same steps
twice. Most lazy SMT tools implement restarting mechanisms as well.

3.3 Enhancements

In the schema of Figure 4, even assuming that the DPLL engine and the T -solver
are extremely efficient as a stand-alone procedures, their combination can be
extremely inefficient. This is due to a couple of intrinsic problems.

– The DPLL engine assigns truth values to (the boolean abstraction of) T -
atoms in a blind way, receiving no information from T -solver about their
semantics. This may cause up to an huge amount of calls to T -solver on
assignments which are obviously T -inconsistent, or whose T -inconsistency
could have been easily derived from that of previously-checked assignments.

– The T -solver is used as a memory-less subroutine, in a master-slave fashion.
Therefore T -solver may be called on assignments that are subsets of, super-
sets of or similar to assignments it has already checked, with no chance of
reusing previous computations.

Therefore, it is essential to improve the integration schema so that the DPLL

solver is driven in its boolean search by T -dependent information provided by
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T -solver, whilst the latter is able to take benefit from information provided by
the former, and it is given a chance of reusing previous computation.

We describe some of the most effective techniques which have been proposed in
order to optimize the interactionbetweenDPLL andT -solver. (We refer the reader
to [36] for amuchmore extensive anddetailed survey.) Some of them, likeNormaliz-
ing T -atoms, Early pruning, T -backjumping and pure-literal filtering, derive from
those developed in the context of DPLL-based procedures for modal logics.

Normalizing T -atoms. In order to avoid the generation of many trivially-
unsatisfiable assignments, it is wise to preprocess T -atoms so that to map as
many as possible T -equivalent literals into syntactically-identical ones. This can
be achieved by applying some rewriting rules, like, e.g.:

– Drop dual operators: (x1 < x2), (x1 ≥ x2) ⇒ ¬(x1 ≥ x2), (x1 ≥ x2).
– Exploit associativity: (x1 + (x2 + x3) = 1), ((x1 + x2) + x3) = 1) ⇒ (x1 +

x2 + x3 = 1).
– Sort: (x1 + x2 − x3 ≤ 1), (x2 + x1 − 1 ≤ x3) ⇒ (x1 + x2 − x3 ≤ 1)).
– Exploit T -specific properties: (x1 ≤ 3), (x1 < 4) ⇒ (x1 ≤ 3) if x1 ∈ Z.

The applicability and effectiveness of these mappings depends on the theory T .

Static learning. On some specific kind of problems, it is possible to quickly
detect a priori short and “obviously T -inconsistent” assignments to T -atoms in
Atoms(ϕ) (typically pairs or triplets). Some examples are:

– incompatible values (e.g., {x = 0, x = 1}),
– congruence constraints (e.g., {(x1 =y1), (x2 = y2),¬(f(x1, x2)=f(y1, y2))}),
– transitivity constraints (e.g., {(x− y ≤ 2), (y − z ≤ 4),¬(x− z ≤ 7)}),
– equivalence constraints ({(x = y), (2x− 3z ≤ 3),¬(2y − 3z ≤ 3)}).

If so, the clauses obtained by negating the assignments (e.g., ¬(x = 0)∨¬(x = 1))
can be added a priori to the formula before the search starts. Whenever all
but one literals in the inconsistent assignment are assigned, the negation of
the remaining literal is assigned deterministically by unit propagation, which
prevents the solver generating any assignment which include the inconsistent
one. This technique may significantly reduce the boolean search space, and hence
the number of calls to T -solver, producing very relevant speed-ups [1,6].

Intuitively, one can think to static learning as suggesting a priori some small
and “obvious” T -valid lemmas relating some T -atoms of ϕ, which drive DPLL

in its boolean search. Notice that the clauses added by static learning refer only
to atoms which already occur in the original formula, so that the boolean search
space is not enlarged.

Early pruning. Another optimization, here generically called early pruning –
EP, is to introduce an intermediate call to T -solver on intermediate assignment
μ. (I.e., in the T -DPLL schema of Figure 4, this is represented by the “slightly
more elaborated” version of step (iii) of T -deduce.) If T -solver(μ) returns Unsat,
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then all possible extensions of μ are unsatisfiable, so that T -DPLL returns Unsat
and backtracks, avoiding a possibly big amount of useless search.

In general, EP may introduce a drastic reduction of the boolean search space,
and hence of the number of calls to T -solvers. Unfortunately, as EP may cause
useless calls to T -solver, the benefits of the pruning effect may be partly counter-
balanced by the overhead introduced by the extra EP calls. To this extent, many
different improvements to EP and strategies for interleaving calls to T -solvers
and boolean reasoning steps [41,19,3,6,10] have been proposed.

T -propagation. As discussed in §3.1, for some theories it is possible to im-
plement T -solver so that a call to T -solver(μ) returning Sat can also perform
one or more deduction(s) in the form η |=T l, s.t. η ⊆ μ and l is a literal on an
unassigned atom in ϕ. If this is the case, then T -solver can return l to T -DPLL,
so that lp is added to μp and unit-propagated [1,3,19]. This process, which is
called T -propagation, may induce a beneficial loop with unit-propagation. As
with early-pruning, there are different strategies by which T -propagation can be
interleaved with unit-propagation [1,3,19,6,10,33].

Notice that T -solver can return the deduction(s) performed η |=T l to T -

DPLL, which can add the deduction clause (ηp → lp) to ϕp, either temporarily
and permanently. The deduction clause will be used for the future boolean search,
with benefits analogous to those of T -learning (see §3.3).

T -backjumping and T -learning. Modern implementations inherit the back-
jumping mechanism of current DPLL tools: T -DPLL learns the conflict clause
¬ηp and backtracks to the highest point in the stack where one lp ∈ ηp is not
assigned, and unit propagates ¬lp on ¬ηp. Intuitively, DPLL backtracks to the
highest point where it would have done something different if it had known in
advance the conflict clause ¬ηp from the T -solver.

As hinted in §3.2, it is possible to use either a theory conflict η (i.e., ¬η is a T -
valid clause) or a mixed boolean+theory conflicts sets η′, i.e., s.t. an inconsistency
can be entailed from η′ ∧ ϕ by means of a combination of boolean and theory
reasoning ( η′ ∧ ϕ |=T ⊥). Such conflict sets/clauses can be obtained starting
from the theory-conflicting clause ¬ηp by applying the backward-traversal of the
implication graph, until one of the standard conditions (e.g., 1UIP) is achieved.
Notice that it is possible to learn both clauses ¬η and ¬η′.

Example 5. The scenario depicted in Example 4 represents a form of T -
backjumping and T -learning, in which the conflict clause c8 used is a LA(Q)-
conflict clause (i.e., P2T (c8) is LA(Q)-valid). However, T -analyze conflict
could instead look for a mixed boolean+theory conflict clause by treating c8
as a conflicting clause and backward-traversing the implication graph, that is,
by resolving backward c8 with c2 and c3, (i.e., with the antecedent clauses of
B2 and A2) and with the deduction clause c9 (which “caused” the propagation
of ¬B3):
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c8: theory conflicting clause
︷ ︸︸ ︷
B5 ∨ ¬B8 ∨ ¬B2

c2
︷ ︸︸ ︷
¬A2 ∨B2

B5 ∨ ¬B8 ∨ ¬A2
(B2)

c3
︷ ︸︸ ︷
B3 ∨A2

B5 ∨ ¬B8 ∨B3
(¬A2)

c9
︷ ︸︸ ︷
B5 ∨B1 ∨ ¬B3

B5 ∨ ¬B8 ∨B1︸ ︷︷ ︸
c′
8: mixed boolean+theory conflict clause

(B3)

finding the mixed boolean+theory conflict clause c′8 : B5 ∨ ¬B8 ∨ B1. (Notice
that, P2T (c′8) = (3x1−x3 ≤ 6)∨¬(x3 = 3x5 +4)∨(2x2−x3 > 2) is not LA(Q)-
valid.) If so then T -backtrack pops from μp all literals up to {¬B5, B8}, and
then unit-propagates B1 on c′8, and hence A1 on c1.

As with static learning, the clauses added by T -learning refer only to atoms
which already occur in the original formula, so that no new atom is added. [18]
proposed an interesting generalization of T -learning, in which learned clause
may contain also new atoms. [7,8] used a similar idea to improve the efficiency
of Delayed Theory Combination (see §4).

Pure-literal filtering. If we have non-boolean T -atoms occurring only posi-
tively [resp. negatively] in the input formula, we can safely drop every negative
[resp. positive] occurrence of them from the assignment to be checked by T -solver
[41,22,3,6,36].5 We call this technique, pure-literal filtering.

There are two potential benefits for this behavior. Let μ′ be the reduced
version of μ. First, μ′ might be T -satisfiable despite μ is T -unsatisfiable. If so,
and if μ propositionally satisfies ϕ, then T -DPLL can stop, potentially saving
a lot of search. Second, if μ′ (and hence μ) is T -unsatisfiable, then checking the
consistency of μ′ rather than that of μ can be faster and cause smaller conflict
sets, so that to improve the effectiveness of T -backjumping and T -learning.

Moreover, this technique is particularly useful in some situations. For instance,
many T -solvers for DL(Z) and LA(Z) cannot efficiently handle disequalities
(e.g., (x1−x2 = 3)), so that they are forced to split them into the disjunction of
strict inequalities (x1 − x2 > 3) ∨ (x1 − x2 < 3). This causes an enlargement of
the search, because the two disjuncts must be investigated separately. In many
problems, however, it is very frequent that most equalities (t1 = t2) occur with
positive polarity only. If so, then pure-literal filtering avoids adding (t1 = t2) to
μ when (t1 = t2)p is assigned to false by T -DPLL, so that no split is needed [3].

4 DPLL for Theory Combination: DTC

We consider the SMT problem in the case of combined theories, SMT (T1 ∪
T2). In the original Nelson-Oppen method [31] and its variant due to Shostak
5 If both T -propagation and pure-literal filtering are implemented, then the filtered

literals must be dropped not only from the assignment, but also from the list of
literals which can be T -deduced, so that to avoid the T -propagation of literals which
have already been filtered away.
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[38] (hereafter referred as deterministic N.O.6) the two T -solvers cooperate by
inferring and exchanging equalities between shared terms (interface equalities),
until either one T -solver detects unsatisfiability (Unsat case), or neither can
perform any more entailment (Sat case). In case of a non-convex theory Ti,
the Ti-solver may generate a disjunction of interface equalities; consequently,
a Ti-solver receiving a disjunction of equalities from the other one is forced to
case-split on each disjunct. Deterministic N.O. requires that each T -solver is
always capable to inferring the (disjunctions of) equalities which are entailed by
the input set of literals (see §3.1). Whilst for some theories this feature can be
implemented very efficiently (e.g., EUF [32]), for some others it can be extremely
expensive (e.g., DL(Z) [30]).

Delayed Theory Combination (Dtc) is a general method for tackling the
problem of theory combination within the context of lazy SMT [7,8]. As with
N.O., we assume that T1, T2 are two signature-disjoint stably-infinite theories
with their respective Ti-solvers. Importantly, no assumption is made about the
eij-deduction capabilities of the Ti-solvers (§3.1): for each Ti-solver, every inter-
mediate situation from complete eij-deduction (like in deterministic N.O.) to no
eij-deduction capabilities (like in non-deterministic N.O.) is admitted.

In a nutshell, in Dtc the embedded DPLL engine not only enumerates truth
assignments for the atoms of the input formula, but also assigns truth values for
the interface equalities that the T -solver’s are not capable of inferring, and han-
dles the case-split induced by the entailment of disjunctions of interface equalities
in non-convex theories. The rationale is to exploit the full power of a modern
DPLL engine by delegating to it part of the heavy reasoning effort previously
due to the Ti-solvers.

An implementation of Dtc [8,9] is based on the schema of Figure 4, exploiting
early pruning, T -propagation, T -backjumping and T -learning. Each of the two
Ti-solvers interacts only with the DPLL engine by exchanging literals via the
truth assignment μ in a stack-based manner, so that there is no direct exchange
of information between the Ti-solvers. Let T be T1∪T2. The T -DPLL algorithm
is modified to the following extents [8,9]:7

– T -DPLL must be instructed to assign truth values not only to the atoms
in ϕ, but also to the interface equalities not occurring in ϕ. P2T and T 2P
are modified accordingly. In particular, T -decide next branch is modified
to select also new interface equalities not occurring in the original formula.

– μp is partitioned into three components μpT1
, μpT2

and μpe, s.t. μTi is the set
of i-pure literals and μe is the set of interface (dis)equalities in μ.

– T -deduce is modified to work as follows: for each Ti, μpT i
∪ μpe , is fed to the

respective Ti-solver. If both return Sat, then T -deduce returns Sat, otherwise
it returns Conflict.

– Early-pruning is performed; if some Ti-solver can deduce atoms or sin-
gle interface equalities, then T -propagation is performed. If one Ti-solver

6 We also call nondeterministic N.O. the non-deterministic variant of N.O. method
first presented in [34].

7 For simplicity, we assume ϕ is pure, although this condition is not necessary.
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SAT!

and the consequent two branches

μ′LA(Z) |=LA(Z) ((v1 = v3) ∨ (v1 = v4))

Mimics the eij-deduction

{¬(v1 = v4), v1 = v3}, {v1 = v4}

v1 = v4

EUF -unsat, C14

C14 : (μ′′′EUF ∧ (v1 = v3) ∧ (v2 = v4)) → ⊥

v2 = v4

EUF -unsat, C24

v2 = v3

C24 : (μ′′EUF ∧ (v1 = v3) ∧ (v2 = v3)) → ⊥
LA(Z)-unsat, C23

C23 : (μ′′LA(Z) ∧ (v5 = v6)) → ((v2 = v3) ∨ (v2 = v4))

¬(v2 = v4)

¬(v2 = v3)

v5 = v6

EUF -unsat, C56

¬(v5 = v6)

C56 : (μ′EUF ∧ (v1 = v3)) → (v5 = v6)

v1 = v3

LA(Z)-unsat, C13

¬(v1 = v4)

¬(v1 = v3)

C13 : (μ′LA(Z)) → ((v1 = v3) ∨ (v1 = v4))

v5 = v4 − 1v1 ≥ 0
v3 = 0

v2 ≥ v6 v4 = 1
v2 ≤ v6 + 1

v1 ≤ 1

μLA(Z):
¬(f(v1) = f(v2))¬(f(v2) = f(v4))

f(v3) = v5
f(v1) = v6

μEUF :

Fig. 6. The Dtc search tree for Example 6 on LA(Z) ∪ EUF , with no eij-deduction.
v1, . . . , v6 are interface terms. μ′

T i
, μ′′

T i
, μ′′′

T i
denote generic subsets of μT i , T ∈

{EUF , LA(Z)}.

performs the eij-deduction μ∗ |=Ti

∨k
j=1 ej , s.t. μ∗ ⊆ μT i

∪ μe, each ej be-

ing an interface equality, then the deduction clause T 2B(μ∗ →
∨k
j=1 ej) is

learned.
– T -analyze conflict and T -backtrack are modified so that to use the

conflict set returned by one Ti-solver for T -backjumping and T -learning.
Importantly, such conflict sets may contain interface equalities.

In order to achieve efficiency, other heuristics and strategies have been further
suggested in [7,8,9], and more recently in [17,14].

Example 6. [9] Consider the set of EUF ∪ LA(Z)-literals μ =def μEUF ∪ μLA(Z)

of Figure 6. We assume that both the EUF - and LA(Z)-solvers have no eij-
deduction capabilities (like with non-deterministic N.O.). For simplicity, we also
assume that both Ti-solvers always return conflict sets which do not contain
redundant interface disequalities ¬eij . (We adopt here a strategy for Dtc which
is described in detail in [9].) In short, T -DPLL performs a boolean search on
the eij ’s, backjumping on the T -conflicting clauses C13, C56, C23, C24 and C14,
which in the end causes the unit-propagation of (v1 = v4). Then, T -DPLL

selects a sequence of ¬eij ’s without generating conflicts, and concludes that the
formula is T1 ∪ T2-satisfiable. Notice that the backjumping steps on the clauses
C13, C56, and C25 mimic the effects of performing eij-deductions.

By adopting T -solvers with different eij-deduction power, one can trade part
or all the eij-deduction effort for extra boolean search. [9] shows that, if the
T -solvers have full eij-deduction capabilities, then no extra boolean search on
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the eij ’s is required; otherwise, the boolean search is controlled by the quality
of the conflict sets returned by the T -solvers: the more redundant ¬eij ’s are
removed from the conflict sets, the more boolean branches are pruned. If the
conflict sets do not contain redundant ¬eij ’s, the extra effort is reduced to one
branch for each deduction saved, as in Example 6.

Variants of DTC are currently implemented in the MathSAT [8], Yices [17],
and Z3 [14] lazy SMT tools.

4.1 Splitting on Demand

The idea of delegating to the DPLL engine part of the heavy reasoning effort
previously due to the Ti-solvers is pushed even further in the Splitting on demand
technique proposed in [5]. This work is built on top of the observation that for
many theories, in particular for non-convex ones, T -solvers must perform lots
of internal case-splits in order to decide the satisfiability of a set of literals.
Unfortunately most T -solvers cannot handle boolean search internally, so that
they cannot do anything better then doing naive case-splitting on all possible
combinations of the alternatives.

With splitting on demand, whenever the T -solver encounters the need of a
case-split, it gives back the control to the DPLL engine by returning (the boolean
abstraction of) a clause encoding the alternatives, which is learned and split upon
by the DPLL engine. (Notice that the atoms encoding the alternatives in the
learned clause may not occur in the original formula.) This is repeated until the
T -solver can decide the T -satisfiability of its input literals without case-splitting.
Therefore the T -solver delegates the boolean search induced by the case-splits
to the DPLL solver, which presumably handles it in a much more efficient way.
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Abstract. We present an overview of results on hierarchical and mod-
ular reasoning in complex theories. We show that for a special type of
extensions of a base theory, which we call local, hierarchic reasoning is
possible (i.e. proof tasks in the extension can be hierarchically reduced to
proof tasks w.r.t. the base theory). Many theories important for computer
science or mathematics fall into this class (typical examples are theories
of data structures, theories of free or monotone functions, but also func-
tions occurring in mathematical analysis). In fact, it is often necessary
to consider complex extensions, in which various types of functions or
data structures need to be taken into account at the same time. We show
how such local theory extensions can be identified and under which con-
ditions locality is preserved when combining theories, and we investigate
possibilities of efficient modular reasoning in such theory combinations.

We present several examples of application domains where local the-
ories and local theory extensions occur in a natural way. We show, in
particular, that various phenomena analyzed in the verification litera-
ture can be explained in a unified way using the notion of locality.

1 Introduction

Many problems in mathematics and computer science can be reduced to proving
the satisfiability of conjunctions of literals in a background theory (which can be
the extension of a base theory with additional functions – e.g., free, monotone, or
recursively defined – or a combination of theories). It is therefore very important
to identify situations where reasoning in complex theories can be done efficiently
and accurately. Efficiency can be achieved for instance by:

(1) reducing the search space (preferably without loosing completeness);
(2) modular reasoning, i.e., delegating some proof tasks which refer to a specific

theory to provers specialized in handling formulae of that theory.

Identifying situations where the search space can be controlled without loss of
completeness is of utmost importance, especially in applications where efficient
algorithms (in space, but also in time) are essential. To address this problem,
essentially very similar ideas occurred in various areas: proof theory and auto-
mated deduction, databases, algebra and verification.
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Local inference systems. Possibilities of restricting the search space in inference
systems without loss of completeness were studied by McAllester and Givan in
[17,21,18]. They introduced so-called “local inference systems”, which can be
modeled by sets of rules (or sets of Horn clauses N) with the property that for
any ground Horn clause G, it is guaranteed that if G can be proved using N then
G can already be proved by using only those instances N [G] of N containing
only ground terms occurring in G or in N . For local inference systems, validity of
ground Horn clauses can be checked in polynomial time. In [5,4], Ganzinger and
Basin define a more general notion, order locality, and establish links between
order-locality and saturation w.r.t. ordered resolution with a special notion of
redundancy. These results were used for automated complexity analysis.

The work on local inference systems and local theories can be seen as an
extension of ideas which occurred in the study of deductive databases. The in-
ference rules of a deductive database are usually of a special form (known as
datalog program): typically a set of universal Horn clauses which do not contain
function symbols. Any datalog program defines an inference relation for which
entailment of ground clauses is decidable in polynomial time [33,34].

Locality and algebra. Similar ideas also occurred in algebra. To prove that the
uniform word problem for lattices is decidable in polynomial time, Skolem [26]
used the following idea: replace the lattice operations ∨ and ∧ by ternary rela-
tions r∨ and r∧, required to be functional, but not necessarily total. The lattice
axioms were translated to a relational form, by flattening them and then replac-
ing every atom of the form x ∨ y ≈ z with r∨(x, y, z) (similarly for ∧-terms).
Additional axioms were added, stating that equality is an equivalence and that
the relations are compatible with equality and functional. This new presenta-
tion, consisting only of Horn, function-free clauses, can be used for deciding in
polynomial time the uniform word problem for lattices. The correctness and
completeness of the method relies on the fact that every partially-ordered set
(where ∨ and ∧ are partially defined) embeds into a lattice. A similar idea was
used by Evans in the study of classes of algebras with a PTIME decidable word
problem [12]. The idea was extended by Burris [8] to quasi-varieties of algebras.
He proved that if a quasi-variety axiomatized by a set K of Horn clauses has the
property that every finite partial algebra which is a partial model of the axioms
in K can be extended to a total algebra model of K then the uniform word prob-
lem for K is decidable in polynomial time. In [13], Ganzinger established a link
between the proof theoretic notion of locality and embeddability of partial into
total algebras. In [14,27] the notion of locality for Horn clauses is extended to
the notion of local extension of a base theory.

Locality and verification. Apparently independently, similar phenomena were
studied in the verification literature, mainly motivated by the necessity of devis-
ing methods for efficient reasoning in theories of data structures. In [23], McPeak
and Necula investigate local reasoning in pointer data structures, with the goal of
efficiently proving invariants in programs dealing with pointers. They present a
methodology of specifying shapes of data structures using a class of specifications
which they call local. It is then shown that the class of local specifications has
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the property that in order to disprove a (ground) formula, only certain ground
instances of the specification are needed, referring to a part of the data structure
which is situated in the “neighborhood” of the counterexample. The essence of
the method devised by McPeak and Necula is to perform case analysis based on
memory writes, and generate facts that must be proved unsatisfiable by using a
finite number of instantiations of the axioms defining the properties of the data
structures. They show that for local specifications finite sets of instances can be
found, without loss of completeness. Locality considerations also occur in the
study of a theory of arrays by Bradley, Manna and Sipma [6]. They identified a
fragment of the theory of arrays for which universal quantification over indices
can be replaced by taking a (well-determined) set of ground instances for the
index variables. We will show that all these phenomena are instances of a gen-
eral concept, and present possibilities of recognizing various types of locality of
theories and theory extensions.

It is equally important to be able to reason efficiently in complex theories.

Modular reasoning in combinations of theories. Modular methods for checking
satisfiability of conjunctions of ground literals in combinations of theories which
have disjoint signatures, or only share constants are well studied. The Nelson-
Oppen combination procedure [24] for instance, can be applied for combining
decision procedures of stably infinite theories over disjoint signatures. Resolution-
based methods have also been used in this context [2,1]. Recently, attempts have
been made to extend the Nelson-Oppen combination procedure to more general
theories. Extensions have been achieved either by relaxing the requirement that
the theories to be combined are stably-infinite [32]1; or by relaxing the require-
ment that the theories to be combined have disjoint signatures [3,31,15]. Note
that these extensions are still restrictive, as the conditions imposed on the base
theory and on the component theories are very strong, and of a model theoretic
nature. For instance, due to the limitations on the shared theory for decidability
transfer in combinations of theories as studied in [15], only locally finite shared
theories (hence no numerical domains) can be handled when applying these re-
sults to verification in [16]. In contrast, the notion of local extensions we studied
[27] imposes no restrictions on using numerical domains as a base theory.

The notion of locality of a theory extension allows us to address at the same
time the two aspects important for efficient reasoning mentioned above, namely
restricting the search space and modular reasoning. Locality is used for restrict-
ing the search space, but as a side-effect it allows to reduce proof tasks in the
extension, hierarchically, to proof tasks w.r.t. the base theory. We will present
these results here. We will also present recent results on preservation of locality
of theories (resp. theory extensions) under theory combination, and on possibil-
ities of modular reasoning in such combinations. In particular, we are interested
in characterizing the type of information which needs to be exchanged between
1 It is interesting that, although the approach of [32] is orthogonal to the notion of

locality of a theory extension [27], many of the examples considered there can also
be explained using semantical characterizations of locality.
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provers for the component theories in order to guarantee completeness of the
procedure. This last problem is strongly related to the problem of studying the
form of interpolants in theory combinations. This is why we will also mention
some of our results on interpolation in local theory extensions.

Structure of the paper: The paper is structured as follows: Section 2 contains
generalities on theories, local theories, partial algebras, weak validity and em-
beddability of partial algebras into total algebras. In Section 3 the notion of
local theory extension is introduced, and a method for hierarchical reasoning in
such extensions is presented. Section 4 presents two possibilities of identifying
local theory extensions: one based on links between embeddability and locality
(Section 4.1) and one which in addition allows to use resolution-based methods
(Section 4.2). These methods are used in Section 5 to provide various examples
of local theory extensions. We illustrate the method for hierarchical reasoning
in Section 3.1 on several examples. In Section 6 we investigate conditions under
which locality is preserved when combining theories, and in Section 7 we inves-
tigate possibilities of efficient modular reasoning in such theory combinations.

2 Preliminaries

Theories. Theories can be regarded as sets of formulae or as sets of models. Let
T be a Π-theory and φ, ψ be Π-formulae. We say that T ∧ φ |= ψ (written also
φ |=T ψ) if ψ is true in all models of T which satisfy φ.

In what follows we consider extensions of theories, in which the signature
is extended by new function symbols (i.e. we assume that the set of predicate
symbols remains unchanged in the extension). If a theory is regarded as a set of
formulae, then its extension with a set of formulae is set union. If T is regarded
as a collection of models then its extension with a set K of formulae consists
of all structures (in the extended signature) which are models of K and whose
reduct to the signature of T0 is in T0.

Let T0 be an arbitrary theory with signature Π0 = (S0, Σ0,Pred), where S0 is
a set of sorts, Σ0 a set of function symbols, and Pred a set of predicate symbols.
We consider extensions T1 of T0 with signature Π = (S,Σ,Pred), where the set
of sorts is S = S0 ∪ S1 and the set of function symbols is Σ = Σ0 ∪Σ1 (i.e. the
signature is extended by new sorts and function symbols). We assume that T1

is obtained from T0 by adding a set K of (universally quantified) clauses in the
signature Π . Thus, Mod(T1) consists of all Π-structures which are models of K
and whose reduct to Π0 is a model of T0.

Local theories. This notion was introduced by Givan and McAllester in [17,21].
A local theory is a set of Horn clauses K such that, for any ground Horn clause
C, K |= C only if already K[C] |= C (where K[C] is the set of instances of K in
which all terms are subterms of ground terms in either K or C).

The size of K[G] is polynomial in the size of G for a fixed K. Since satisfiability
of sets of ground Horn clauses can be checked in linear time [11], it follows that
for local theories, validity of ground Horn clauses can be checked in polynomial
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time. Givan and McAllester proved that every problem which is decidable in
PTIME can be encoded as an entailment problem of ground clauses w.r.t. a
local theory [18]. An example of a local theory (cf. [18]) is the set of axioms of
a monotone function w.r.t. a transitive relation ≤:

K = {x ≤ y ∧ y ≤ z → x ≤ z, x ≤ y → f(x) ≤ f(y)}.

Another example provided in [18] is a local axiom set for reasoning about a
lattice (similar to that proposed by Skolem in [26]). In [5,4], Ganzinger and Basin
defined the more general notion of order locality and showed how to recognize
(order-)local theories and how to use these results for automated complexity
analysis. Given a term ordering �, we say that a set K of clauses entails a clause
C bounded by � (notation: K |= C), if and only if there is a proof of K |= C
from those ground instances of clauses in K in which (under �) each term is
smaller than or equal to some term in C.

Definition 1 ([5,4]). A set of clauses K is local with respect to � if whenever
K |= C for a ground clause C, then K |= C.

Theorem 1 ([5,4]). Let � be a (possibly partial) term ordering and K be a set
of clauses. Assume that K is saturated with respect to �-ordered resolution, and
let C be a ground clause. Then K |= C for a ground clause C if and only if
K |= C, i.e. K is local with respect to �.

The converse of this theorem is not true in general. Ganzinger and Basin estab-
lished conditions under which the converse holds – they use a hyperresolution
calculus and identify conditions when for Horn clauses order locality is equiv-
alent to so-called peak saturation (Theorems 4.4–4.7 in [4]). These results are
obtained for first-order logic without equality. In [13], Ganzinger established a
link between proof theoretic and semantic concepts for polynomial time decid-
ability of uniform word problems which had already been studied in algebra
[26,12,8]. He defined two notions of locality for equational Horn theories, and
established relationships between these notions of locality and corresponding
semantic conditions, referring to embeddability of partial algebras into total al-
gebras. Theorem 1 also can be used for recognizing equational Horn theories:

Theorem 2 ([13]). Let K be a set of Horn clauses. Then K is a local theory in
logic with equality if and only if K∪EQ is a local theory in logic without equality,
where EQ denotes the set of equality axioms consisting of reflexivity, symmetry,
transitivity, and of congruence axioms for each function symbol in the signature.

Theorems 2 and 1 were used in [13] for proving the locality of the following pre-
sentation Int of the set of integers with successor and predecessor by saturation:

(1) p(x) ≈ y → s(y) ≈ x (3) p(x) ≈ p(y) → y ≈ x
(2) s(x) ≈ y → p(y) ≈ x (4) s(x) ≈ s(y) → y ≈ x

The presentation Int′ of integers with successor and predecessor consisting of the
axioms (1) and (2) alone (without the injectivity conditions (3) and (4)) is not
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local but it is stably local: in order to disprove a ground set G of clauses only
those ground instances Int′[G] of Int′ are needed where variables are mapped to
subterms occurring in G. (Note that Int′ ∪ EQ is not saturated under ordered
resolution; when saturating it the injectivity axioms are generated.)

In [14,27] the notion of locality for Horn clauses is extended to the notion
of local extension of a base theory (cf. Section 3). In the study of local theory
extensions we will refer to total models of a theory and to partial models of a
theory. The necessary notions on partial structures are defined below.

Partial structures. Let Π = (S,Σ,Pred) be a S-sorted signature where Σ
is a set of function symbols and Pred a set of predicate symbols. A partial Π-
structure is a structure A = ({As}s∈S , {fA}f∈Σ, {PA}P∈Pred), where for every
s ∈ S, As is a non-empty set and for every f ∈ Σ with arity s1 . . . sn → s,
fA is a partial function from

∏n
i=1 Asi to As. A is called a total structure if all

functions fA are total. (In the one-sorted case we will denote both an algebra
and its support with the same symbol.) Details on partial algebras can be found
in [7]. The notion of evaluating a term t with variables X = {Xs | s ∈ S} w.r.t.
an assignment {βs:Xs → As | s ∈ S} for its variables in a partial structure
A is the same as for total many-sorted algebras, except that the evaluation is
undefined if t = f(t1, . . . , tn) with a(f) = (s1 . . . sn → s), and at least one of
βsi(ti) is undefined, or else (βs1(t1), . . . , βsn(tn)) is not in the domain of fA.

A weak Π-embedding between the partial structures A = ({As}s∈S, {fA}f∈Σ,
{PA}P∈Pred) and B = ({Bs}s∈S , {fB}f∈Σ, {PB}P∈Pred) is a (many-sorted) family
i = (is)s∈S of total maps is : As → Bs such that

– if fA(a1, . . . , an) is defined then also fB(is1(a1), . . . , isn(an)) is defined and
is(fA(a1, . . . , an)) = fB(is1(a1), . . . , isn(an)), provided a(f) = s1 . . . sn → s;

– for each s, is is injective and an embedding w.r.t. Pred i.e. for every P ∈ Pred
with arity s1 . . . sn and every a1, . . . , an where ai ∈ Asi , PA(a1, . . . , an) if and
only if PB(is1(a1), . . . , isn(an)).

In this case we say that A weakly embeds into B.
In what follows we will denote a many-sorted variable assignment {βs:Xs →

As | s ∈ S} as β : X → A. For the sake of simplicity all definitions below
are given for the one-sorted case. They extend in a natural way to many-sorted
structures.

Definition 2 (Weak validity). Let (A, {fA}f∈Σ, {PA}P∈Pred) be a partial
structure and β : X→A.

(1) (A, β) |=w t ≈ s if and only if (a) β(t) and β(s) are both defined and equal;
or (b) at least one of β(s) and β(t) is undefined.

(2) (A, β) |=w t ≈ s if and only if (a) β(t) and β(s) are both defined and different;
or (b) at least one of β(s) and β(t) is undefined.

(3) (A, β) |=w P (t1, . . . , tn) if and only if (a) β(t1), . . . , β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . . , β(tn) is undefined.

(4) (A, β)|=w¬P (t1, . . . , tn) if and only if (a) β(t1), . . ., β(tn) are all defined and
(β(t1), . . . , β(tn))∈PA; or (b) at least one of β(t1), . . ., β(tn) is undefined.



Hierarchical and Modular Reasoning in Complex Theories 53

(A, β) weakly satisfies a clause C (notation: (A, β) |=w C) if (A, β) |=w L for at
least one literal L in C. A weakly satisfies C (notation: A |=w C) if (A, β) |=w C
for all assignments β. A weakly satisfies a set of clauses K (notation: A |=w K)
if A |=w C for all C ∈ K.

Definition 3 (Evans validity). Evans validity is defined similarly, with the
difference that (1) is replaced with:

(1’) (A, β) |= t ≈ s if and only if (a) β(t) and β(s) are both defined and equal; or
(b) β(s) is defined, t = f(t1, . . . , tn) and β(ti) is undefined for at least one
of the direct subterms of t; or (c) both β(s) and β(t) are undefined.

Evans validity extends to (sets of) clauses in the usual way. We use the notation:
(A, β) |= L for a literal L; (A, β) |= C and A |= C for a clause C, etc.

Example 1. Let A be a partial Σ-algebra, where Σ = {car/1, nil/0}. Assume
that nilA is defined and carA(nilA) is not defined. Then:

– A |= car(nil) ≈ nil (since carA(nil) is undefined in A, but nil is defined in A);
– A |= car(nil) ≈ nil;
– A |=w car(nil) ≈ nil, A |=w car(nil) ≈ nil (since car(nil) is not defined in A).

Definition 4. A partial Π-algebra A is a weak partial model (resp. partial
model) of T1 with totally defined Σ0-function symbols if (i) A|Π0 is a model
of T0 and (ii) A |=w K (resp. A |= K).

If the base theory T0 and its signature are clear from the context, we will refer
to (weak) partial models of T1. We will use the following notation:

– PMod(Σ1, T1) is the class of all partial models of T1 in which the functions
in Σ1 are partial, and all other function symbols are total;

– PModw(Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and all the other function symbols are total;

– Mod(T1) denotes the class of all total models of T1.

We will also consider small variations of the notion of weak partial model:

– PModf
w(Σ1, T1) is the class of all finite weak partial models of T1 in which

the Σ1-functions are partial and all the other function symbols are total;
– PModfd

w (Σ1, T1) is the class of all weak partial models of T1 in which the
Σ1-functions are partial and their definition domain is a finite set, and all
the other function symbols are total.

and similar variations PModf(Σ1, T1), PModfd(Σ1, T1) of the notion of partial
model.

Embeddability. For theory extensions T0 ⊆ T1 = T0 ∪ K, where K is a set of
clauses, we consider the following conditions:

(Emb) Every A ∈ PMod(Σ1, T1) weakly embeds into a total model of T1.
(Embw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model of T1.
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We also define a stronger notion of embeddability, which we call completability:

(Compw) Every A ∈ PModw(Σ1, T1) weakly embeds into a total model B of
T1 such that A|Π0 and B|Π0 are isomorphic.

(Comp) is defined analogously (w.r.t. PMod(Σ1, T1)).

Conditions which only refer to embeddability of finite partial models are denoted
by (Embf

w), (Compf
w), resp. (Embf), (Compf). Conditions referring to embeddabil-

ity of partial models in which the extension functions have a finite definition
domain (i.e. in PModfd

w (Σ1, T1)) are denoted by (Embfd
w ), resp. (Compfd

w ).

3 Local Theory Extensions

The notion of local theories introduced and studied by Givan and McAllester
[17,21,18] can be extended in a natural way to extensions of a base theory with
a set of additional function symbols constrained by a set K if clauses.

Let K be a set of clauses in the signature Π = (S,Σ,Pred), where S = S0∪S1

and Σ = Σ0 ∪Σ1. In what follows, when we refer to sets G of ground clauses we
assume that they are in the signature Πc = (S,Σ ∪Σc,Pred), where Σc is a set
of new constants. If Ψ is a set of ground Σ0∪Σ1∪Σc-terms, we denote by KΨ the
set of all instances of K in which all terms starting with a Σ1-function symbol
are ground terms in the set Ψ . We denote by KΨ the set of all instances of K in
which all variables occurring below a Σ1-function symbol are instantiated with
ground terms in the set TΣ0(Ψ) of Σ0-terms generated by Ψ .

If G is a set of ground clauses and Ψ = st(K, G) is the set of ground subterms
occurring in either K or G then we write K[G] := KΨ , and K[G] := KΨ .

We will focus on the following type of locality of a theory extension T0 ⊆ T1,
where T1 = T0 ∪ K with K a set of (universally quantified) clauses:

(Loc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no weak partial model in which all terms in st(K, G) are defined.

(SLoc) For every set G of ground clauses T1 ∪G |=⊥ iff T0 ∪ K[G] ∪G has
no partial model in which all terms in st(K, G) are defined.

Weaker notions (Locf), resp. (SLocf) can be defined if we require that the re-
spective conditions only hold for finite sets G of ground clauses. An intermediate
notion of locality (Locfd) can be defined if we require that the respective condi-
tions only hold for sets G of ground clauses containing only a finite set of terms
starting with a function symbol in Σ1. A more general notion of locality (ELoc)
is presented at the end of Section 4.1.

An extension T0 ⊆ T1 is local (stably local) if it satisfies condition (Locf) (resp.
(SLocf)). A local (stably local) theory [13] is a local extension of the empty
theory. In (stably) local theory extensions hierarchical reasoning is possible.
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3.1 Hierarchical Reasoning in Local Theory Extensions

Consider a local theory extension T0 ⊆ T0 ∪ K. The locality conditions defined
above require that, for every set G of ground clauses, T1 ∪G is satisfiable if and
only if T0 ∪K∗[G] ∪G has a (Evans, weak, finite) partial model with additional
properties, where, depending on the notion of locality, K ∗ [G] is K[G] or K[G].
All clauses in K ∗ [G] ∪ G have the property that the function symbols in Σ1

have as arguments only ground terms. Therefore, K ∗ [G] ∪ G can be flattened
and purified (i.e. the function symbols in Σ1 are separated from the other sym-
bols) by introducing, in a bottom-up manner, new constants ct for subterms
t = f(g1, . . . , gn) with f ∈ Σ1, gi ground Σ0 ∪ Σc-terms (where Σc is a set of
constants which contains the constants introduced by flattening, resp. purifica-
tion), together with corresponding definitions ct ≈ t. The set of clauses thus
obtained has the form K0 ∪ G0 ∪D, where D is a set of ground unit clauses of
the form f(g1, . . . , gn)≈c, where f ∈ Σ1, c is a constant, g1, . . . , gn are ground
terms without function symbols in Σ1, and K0 and G0 are clauses without func-
tion symbols in Σ1. Flattening and purification preserve both satisfiability and
unsatisfiability with respect to total algebras, and also with respect to partial
algebras in which all ground subterms which are flattened are defined [27].

For the sake of simplicity in what follows we will always flatten and then
purify K ∗ [G]∪G. Thus we ensure that D consists of ground unit clauses of the
form f(c1, . . . , cn)≈c, where f ∈ Σ1, and c1, . . . , cn, c are constants.

Lemma 3 ([27]). Let K be a set of clauses and G a set of ground clauses, and
let K0 ∪ G0 ∪D be obtained from K ∗ [G] ∪ G by flattening and purification, as
explained above. Assume that T0 ⊆ T0 ∪ K is a local theory extension. Then the
following are equivalent:

(1) T0∪K∗ [G]∪G has a partial model in which all terms in st(K, G) are defined.
(2) T0∪K0∪G0∪D has a partial model with all terms in st(K0, G0, D) defined.
(3) T0 ∪ K0 ∪G0 ∪N0 has a (total) model, where

N0 = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ D}.

Theorem 4 ([27]). Assume that the theory extension T0 ⊆ T1 either (1) sat-
isfies condition (Locf), or (2) satisfies condition (SLocf) and T0 is locally finite.
Then:
(a) If all variables in the clauses in K occur below some function symbol from

Σ1 and if the universal theory of T0 is decidable, then the universal theory
of T1 is decidable.

(b) Assume some variables in K do not occur below any function symbol in Σ1.
If the ∀∃ theory of T0 is decidable then the universal theory of T1 is decidable.

In case (a) above locality allows to reduce reasoning in T1 to reasoning in an
extension of T0 with free function symbols (for this an SMT procedure can be
used). In case (b) this is not possible, as K ∗ [G] is not a set of ground clauses.
We will illustrate the applicability of Lemma 3 and Theorem 4 for specific ex-
amples of local theory extensions in Section 5.
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4 Identifying Local Theory Extensions

We discuss two different ways of recognizing the locality of a theory extension.
The first is semantical, based on possibilities of embedding partial models of a
theory extension into total models. The second is proof theoretical, and at the
moment part of work in progress: we present some results based on possibilities
of saturating the extension axioms with respect to ordered resolution.

4.1 Locality and Embeddability

Links between locality of a theory and embeddability were established by
Ganzinger in [13]. Similar results can also be obtained for local theory extensions.

In what follows we say that a non-ground clause is Σ1-flat if function symbols
(including constants) do not occur as arguments of function symbols in Σ1. A
Σ1-flat non-ground clause is called Σ1-linear if whenever a variable occurs in
two terms in the clause which start with function symbols in Σ1, the two terms
are identical, and if no term which starts with a function symbol in Σ1 contains
two occurrences of the same variable.

For sets of Σ1-flat clauses locality implies embeddability. This generalizes
results presented in the case of local theories in [13].

Theorem 5. Assume that K is a family of Σ1-flat clauses in the signature Π.

(1) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Loc) then it satisfies (Embw).
(2) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locf) then it satisfies (Embf

w).
(3) If the extension T0 ⊆ T1 := T0 ∪ K satisfies (Locfd) then it satisfies (Embfd

w ).
(4) If T0 is compact and the extension T0 ⊆ T1 satisfies (Locf), then T0 ⊆ T1

satisfies (Embw).

Conversely, embeddability implies locality. The following results appear in [27],
[30] and allow us to give several examples of local theory extensions (cf. Sect. 5).

Theorem 6 ([27,30]). Let K be a set of Σ1-flat and Σ1-linear clauses.

(1) If the extension T0 ⊆ T1 satisfies (Embw) then it satisfies (Loc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf
w),

then T0 ⊆ T1 satisfies (Locf).
(3) T0 ⊆ T1 satisfies (Embfd

w ). Then T0 ⊆ T1 satisfies (Locfd).

Theorem 7 ([27]). Let T0 be a universal theory and K be a set of clauses.
Then:

(1) If the extension T0 ⊆ T1 satisfies (Emb) then it satisfies (SLoc).
(2) Assume that T0 is a locally finite universal theory, and that K contains only

finitely many ground subterms. If the extension T0 ⊆ T1 satisfies (Embf),
then T0 ⊆ T1 satisfies (SLocf).
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Analyzing the proofs of Theorems 6 and 7 we notice that the embeddability con-
ditions (Comp) and (Compw) imply, in fact, stronger locality conditions. Con-
sider a theory extension T0 ⊆ T0 ∪ K with a set K of formulae of the form
∀x1 . . . xn(Φ(x1, . . . , xn) ∨ C(x1, . . . , xn)), where Φ(x1, . . . , xn) is an arbitrary
first-order formula in the base signature Π0 with free variables x1, . . . , xn, and
C(x1, . . . , xn) is a clause in the signature Π .

We can extend the notion of locality of an extension accordingly:

(ELoc) For every formula Γ = Γ0 ∪G, where Γ0 is a Π0-sentence and G is
a set of ground clauses, T1 ∪ Γ |=⊥ iff T0 ∪ K[Γ ] ∪ Γ has no weak
partial model in which all terms in st(K, G) are defined.

A stable locality condition (ESLoc) can be defined similarly. The proofs of The-
orems 6 and 7 can be adapted with minimal changes to prove a stronger result:

Theorem 8 ([27]). (1) Assume all terms of K starting with a Σ1-function are
flat and linear. If the extension T0 ⊆ T1 satisfies (Compw) then it satisfies (ELoc).

(2) Assume that T0 is a universal theory. If the extension T0 ⊆ T1 satisfies
(Comp) then it satisfies (ESLoc).

4.2 Locality and Saturation

In Section 2, the results of Basin and Ganzinger [5,4] were mentioned, in which
links between saturation w.r.t. ordered resolution of a set of clauses K and the
(order)-locality of K were established. It is natural to ask if similar results can
be obtained for local theory extensions. Local theory extensions are extensions
T1 of a base theory T0 by means of a set of new sorts S1 and a set of new function
symbols Σ1 constrained by a set of clauses K. We investigate the link between
the locality of the set K of clauses and the locality of the extension T0 ⊆ T0 ∪K.
This is work in progress, from which we present a first result:

Theorem 9. Let T0 be a first-order theory with signature Π0 = (S0, Σ0,Pred).
Let T1 = T0 ∪ K with signature Π = (S0 ∪ S1, Σ0 ∪Σ1,Pred). Assume that:

– all functions in Σ1 occurring in K have their output sort in S1;
– K is a set of clauses which only contain function symbols in Σ1;
– the set K of clauses is local (resp. stably local).

Then the extension T0 ⊆ T0 ∪K is also local (resp. stably local).

Proof : (Sketch) Let P = ({Ps}s∈S0∪S1 , {fP }f∈Σ0∪Σ1 , {RP }R∈Pred) be a weak
partial model of T0 ∪ K in which all Σ0-functions are totally defined. We will
denote by P|Σ1 the partial structure obtained from P by forgetting all operation
symbols in Σ0. P (hence also P|Σ1) is a weak partial model of K. By the locality
of K, P|Σ1 = ({Ps}s∈S0∪S1 , {fP }f∈Σ1, {RA}R∈Pred) weakly embeds (via an em-
bedding i) into a total model A = ({As}s∈S0∪S1 , {fA}f∈Σ1, {RA}R∈Pred) of K.
Let A∗ be the substructure of A having the same supports as A for the sorts in
S1 and support is(Ps) for each sort s ∈ S0. (Since we assumed that all function
symbols in Σ1 have output sort in S1, A∗ is closed under all Σ1-operations.)
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Let B = ({Bs}s∈S0∪S1 , {fB}f∈Σ0∪Σ1 , {RB}R∈Pred), where for s ∈ S0, Bs =
is(Ps), for s ∈ S1, Bs = As, for f ∈ Σ0, fB coincides with fP , for f ∈ Σ1, fB
coincides with fA∗ , and all predicate symbols coincide with those in A∗. Then
B|Π0 is isomorphic to P|Π0 , hence is a model of T0 and B|Σ1 = A∗, hence B |= K.

 !
The locality of K can be checked e.g. by testing whether K ∪ EQ is saturated
under ordered resolution (w.r.t. the (strict) subterm ordering) using Theorems 1
and 2 (cf. also [5,4,13]) but now extended to a many-sorted framework. The
advantage is that even if K is not saturated, if K∗ is a finite saturation of K∪EQ
under ordered resolution, then T0∪K∗ can be used to extract a presentation which
defines a (local) theory extension which has the same total models as T0 ∪ K.

Note: The idea in the proof of Theorem 9 can also be used to show that (under
the assumptions in Theorem 9) if K satisfies Comp (resp. (Compw)) then the
extension T0 ⊆ T0 ∪ K also satisfies Comp (resp. (Compw)).

5 Examples of Local Theory Extensions

We present several examples of theory extensions for which embedding condi-
tions among those mentioned above hold and are thus local, and illustrate the
possibilities of local reasoning in such extensions.

5.1 Extensions with Free Functions

Any extension T0 ∪ Free(Σ) of a theory T0 with a set Σ of free function symbols
satisfies condition (Compw).

Example 2. Let T0 be the theory LI(Q) of linear rational arithmetic, and let
T1 = LI(Q)∪Free({f, g, h}) be the extension of T0 with the free functions f, g, h,
and let G = g(a) = c+5 ∧ f(g(a)) ≥ c+1 ∧ h(b) = d+4 ∧ d = c+1 ∧ f(h(b)) <
c + 1. We show that G is unsatisfiable in LI(Q) ∪ Free({f, g, h}) as follows:

Step 1: Flattening; purification. G is purified and flattened by replacing the terms
starting with f, g, h with new variables. We obtain the following purified form:

G0 : a1 = c + 5 ∧ a2 ≥ c + 1 ∧ b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1,
Def : a1 = g(a) ∧ a2 = f(a1) ∧ b1 = h(b) ∧ b2 = f(b1).

Step 2: Hierarchical reasoning. By Lemma 3, G is unsatisfiable in LI(Q) ∪
Free({f, g, h}) iff G0 ∧ N0 is unsatisfiable in LI(Q), where N0 corresponds to
the consequences of the congruence axioms for those ground terms which occur
in the definitions Def for the newly introduced variables.

Def G0 N0

a1=g(a) ∧ a2=f(a1) a1 = c + 5 ∧ a2 ≥ c + 1 N0 : b1=a1 → b2=a2

b1=h(b) ∧ b2=f(b1) b1 = d + 4 ∧ d = c + 1 ∧ b2 < c + 1

To prove that G0 ∧ N0 is unsatisfiable in LI(Q), note that G0 |=LI(Q) a1 = b1.
Hence, G0 ∧N0 entails a2 = b2 ∧ a2 ≥ c + 1 ∧ b2 < c + 1, which is inconsistent.
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5.2 Shallow Theory Extensions

We now consider the case of shallow extensions of a base theory T0 first consid-
ered in [14]. Let Π be the signature of the theory extension. We assume that all
extension functions have a codomain in the set S0 of (base) sorts. A Π-clause
is called shallow if extension function symbols in Σ1 occur in C only positively
and only at the root of terms. The theory extension T0 ⊆ T0 ∪ K is shallow
if K consists only of shallow clauses. Typical examples of shallow clauses are
tail-recursive definitions of an extension function.

Theorem 10 ([14]). Assume that T0 ⊆ T0 ∪ K is a theory extension by a set
K of shallow clauses w.r.t. the family of all extension functions with a codomain
in S0. Then the extension satisfies condition Comp and hence is stably local.

5.3 Extensions with Monotone Functions

In [27] and [30] we analyzed extensions with monotonicity conditions for an n-ary
function f w.r.t. a subset I ⊆ {1, . . . , n} of its arguments:

(MonIf )
∧

i∈I
xi ≤i yi ∧

∧

i�∈I
xi = yi → f(x1, .., xn) ≤ f(y1, .., yn).

If I={1, . . . , n} we speak of monotonicity in all arguments; we denote Mon{1,...,n}f

by Monf . If I = ∅, Mon∅f is equivalent to the congruence axiom for f . Monotonic-
ity in some arguments and antitonicity in other arguments is modeled by consid-
ering functions f :

∏
i∈I P

σi

i ×
∏
j �∈I Pj → P with σi ∈ {−,+}, where P+

i =Pi and
P−
i =P ∂

i , the order dual of the poset Pi. The corresponding axioms are denoted
by Monσf , where for i ∈ I, σ(i)=σi∈{−,+}, and for i ∈ I, σ(i)=0.

Theorem 11 ([27,30]). The following hold:

1. Let T0 be a class of (many-sorted) bounded semilattice-ordered Σ0-structures.
Let Σ1 be disjoint from Σ0 and T1 = T0∪{Monσf |f ∈ Σ1}. Then the extension
T0 ⊆ T1 satisfies (Compfd

w ), hence is local.
2. Any extension of the theory of posets with functions in a set Σ1 satisfying
{Monσf | f ∈ Σ1} satisfies condition (Embw), hence is local.

This provides us with a large number of concrete examples.

Corollary 12 ([27,30]). The extensions with functions satisfying monotonicity
axioms Monσf of the following classes of algebras are local:

(1) any class of algebras with a bounded (semi)lattice reduct, a bounded distri-
butive lattice reduct, or a Boolean algebra reduct ((Compfd

w ) holds);
(2) T , the class of totally-ordered sets; DO, the theory of dense totally-ordered

sets ((Compfd
w ) holds);

(3) the class P of partially-ordered sets ((Embw) holds).
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Corollary 13 ([27,30]). Any (possibly many-sorted) extension of a class of
algebras with a semilattice reduct, a (distributive) lattice reduct, or a Boolean
algebra reduct, as well as any extension of the theory of reals (integers) with
functions satisfying Monσf into an infinite numeric domain is local ((Compfd

w )
holds).

Example 3. Let T0 be a theory (with a binary predicate ≤), and T1 a local ex-
tension of T0 with two monotone functions f, g. Consider the following problem:

T0 ∪Monf ∪Mong |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v))

The problem reduces to the problem of checking whether T0 ∪Monf ∪Mong ∪
G |=⊥, where G = c0 ≤ c1 ∧ f(c1 ∨ c2) ≤ g(c3 ∧ c4) ∧ f(c0) ≤ g(c4).

The locality of the extension T0 ⊆ T1 means that, in order to test if T0∪Monf∪
Mong ∪G |=⊥, it is sufficient to test whether T0 ∪Monf [G]∪Mong[G]∪G |=w⊥,
where Monf [G],Mong[G] consist of those instances of the monotonicity axioms
for f and g in which the terms starting with f and g already occur in G:

Monf [G] = c0≤c1∨c2 → f(c0)≤f(c1∨c2) Mong[G] = c4≤c3∧c4 → g(c4)≤g(c3∧c4)
c1∨c2≤c0 → f(c1∨c2)≤f(c0) c3∧c4≤c4 → g(c3∧c4)≤g(c4)

In order to check the satisfiability of the latter formula, we purify it, intro-
ducing definitions for the terms below the extension functions d1 = c1 ∨ c2, d2 =
c3 ∧ c4 as well as for the terms starting with the extension functions themselves:
f(d1) = e1, f(c0) = e3, g(c4, e4), g(d2, e2), and add the following (purified) in-
stances of the congruence axioms: d1 = c0 → e1 = e3 and c4 = d2 → e4 = e2.
We obtain the following set of clauses:

Def G0 N0 K0

f(d1) = e1 c0 ≤ c1 d1 = c0 → e1 = e3 d1 ≤ c0 → e1 ≤ e3

f(c0) = e3 d1 = c1 ∨ c2 d2 = c4 → e2 = e4 c0 ≤ d1 → e3 ≤ e1

g(c4) = e4 d2 = c3 ∧ c4 d2 ≤ c4 → e2 ≤ e4

g(d2) = e2 e1 ≤ e2 ∧ e3 �≤ e4 d4 ≤ d2 → e4 ≤ e2

We illustrate the hierarchical reduction to testing satisfiability in the base
theory for the following examples of local extensions:

(1) Let T0 = DL, the theory of distributive lattices or T0 = B, the theory of
Boolean algebras. The universal clause theory of DL (resp. B) is the theory of
the two element lattice (resp. two element Boolean algebra), so testing Boolean
satisfiability is sufficient (this is in NP); any SAT solver can be used for this.
(2) If T0 = L we can reduce the problem above to the problem of checking the
satisfiability of a set of ground Horn clauses. This can be checked in ptime.

(3) If T0 = R we first need to explain what ∨ and ∧ are. For this, we replace
d1 = c1 ∨ c2 with (c1 ≤ c2 → d1 = c2) ∧ (c2 < c1 → d1 = c2) and similarly for
d2 = c3 ∧ c4. We proved unsatisfiability using the redlog demo [10].

We can therefore conclude that in all cases above:
T1 |= ∀x, y, z, u, v(x ≤ y ∧ f(y ∨ z) ≤ g(u ∧ v) → f(x) ≤ g(v)). �
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Blockwise and piecewise monotonicity also define local theory extensions if the
base theory (for indices) T0 is a theory endowed with a total order relation ≤.
The extensions below are similar to some examples considered in [6] but slightly
more general since we do not restrict T0 to be Presburger arithmetic.

Theorem 14. Let T0 be a theory endowed with a total order relation ≤.

Piecewise monotonicity. Assume that l1, . . . , lm, u1, . . . , um are constants
such that l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary func-
tion symbol. Any piecewise-monotone extension T0 ∧ (GMonf ) of T0 is local.
Here (GMonf ) = (GMon[l1,u1]

f ) ∧ · · · ∧ (GMon[lm,um]
f ), where:

(GMon[li,ui]
f ) ∀x, y(li ≤ x ≤ y ≤ ui → f(x) ≤ f(y)).

Blockwise monotonicity. Assume that l1, . . . , lm, u1, . . . , um are given con-
stants such that l1 ≤ u1 < l2 ≤ u2 < · · · < lm ≤ um. Let f be a unary
function. Any blockwise-monotone extension T0 ∧ (BMonf ) of T0 is local.
Here (BMonf ) =

∧m−1
i=1 (BMon[li,ui],[li+1,ui+1]

f ), where:

(BMon[li,ui],[li+1,ui+1]
f ) ∀x, y(li≤x≤ui<li+1≤y ≤ ui+1 → f(x) ≤ f(y)).

Similar conditions can be defined for n-ary functions and/or many-sorted func-
tions bridging several theories endowed with total orders.

Strict monotonicity. Strict monotonicity can be handled too, under the as-
sumption of density of the codomain of the functions [20].

5.4 Boundedness Conditions

Any extension of a theory for which ≤ is reflexive with functions satisfying
(Monσf ) and boundedness (Boundtf ) conditions is local [28,30].

(Boundtf ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn (such that in any model the associated function has the same
monotonicity as f). Similar results can be established for guarded monotonicity
conditions with mutually disjoint guards [28].

Theorem 15. Any extension of T0 with a function f ∈ Σ0 satisfying bounded-
ness (Boundtf ) or guarded boundedness (GBoundtf ) conditions is local.

(Boundtf ) ∀x1, . . . , xn(f(x1, . . . , xn) ≤ t(x1, . . . , xn))
(GBoundtf ) ∀x1, . . . , xn(φ(x1, . . . , xn) → f(x1, . . . , xn) ≤ t(x1, . . . , xn))

where t(x1, . . . , xn) is a term in the base signature Π0 with variables among
x1, . . . , xn and φ(x1, . . . , xn) a conjunction of literals in signature Π0 with vari-
ables among x1, . . . , xn.
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Theorem 16 (Piecewise boundedness for free functions). Let m ∈ N. For
i ∈ {1, . . . ,m}, let ti(x1, . . . , xn) and si(x1, . . . , xn) be terms in the signature
Π0 with variables among x1, . . . , xn, and let φi(x1, . . . , xn), i ∈ {1, . . . ,m} be
conjunctions of literals in the base signature Π0, with variables among x1, . . . , xn,
i.e. such that for every i = j, φi ∧φj |=T0⊥. Any “piecewise-bounded” extension
T0∧(GBoundf ), where f ∈ Σ0, is local. Here (GBoundf ) =

∧m
i=1(GBound[si,ti],φi

f );

(GBound[si,ti],φi

f ) ∀x(φi(x) → si(x) ≤ f(x) ≤ ti(x)).

Combinations of (strict) monotonicity with (guarder) boundedness often occur in
applications. We present a simple example in the verification of a train controller
(for details and more realistic rules we refer to [20]).

Example 4 ([20]). We consider a controller which communicates with all the
trains on a given linear track. Trains report their position in given time intervals
(Δt) and the controller then communicates them how they can move. The trains
adjust their speed accordingly (between given minimum and maximum speeds).
These update rules can be described by the following set of clauses where the
positions of trains are stored in arrays a (for the current moment of time) and
a′ for their positions at the next evaluation point (after Δt seconds).
(F1) ∀i (i = 0 → a(i) + Δt∗min ≤R a′(i) ≤R a(i) + Δt∗max)
(F2) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) ≥R lalarm

→ a(i) + Δt ∗ min ≤R a′(i) ≤R a(i) + Δt∗max)
(F3) ∀i (0 < i < n ∧ a(p(i)) >R 0 ∧ a(p(i)) − a(i) <R lalarm

→ a′(i) = a(i) + Δt∗min)
(F4) ∀i (0 < i < n ∧ a(p(i)) ≤R 0 → a′(i) = a(i)).

The following constants are considered either given or parameters: Δt > 0 (time
between evaluations of the system); minimum/maximum speed of trains 0 ≤
min ≤ max; lalarm (the distance between trains which is deemed secure); n (the
number of trains). An example of an invariant to be checked is collision freeness.
At a very abstract level, this can be expressed as a monotonicity axiom,

CF(a) ∀i, j (0 ≤ i < j ≤ n → a(i) >R a(j)),

where < is an ordering which expresses train precedence and >R is the usual
ordering on the real numbers (i.e. for all trains i, j on the track, if i precedes j
then i should be positioned strictly ahead of j). For a more realistic encoding of
collision freeness which takes into account the length of trains cf. [20]. To check
that collision freeness is an invariant, we check that the initial state is collision
free and that collision freeness is preserved by the updating rulesK = {F1, ...,F4}.

Let T0 be a many-sorted combination of real arithmetic – for reasoning about
positions, sort num – with an index theory – for describing precedence between
trains, sort i. Let T be the extension of T0 with the two functions a and a′. We
need to check that T |= K ∧ CF(a) → CF(a′), i.e.

T ∧ K ∧ CF(a) ∧ ¬CF(a′) |=⊥ .

For this, in [20] we considered two successive extensions of the base theory T0:

– the extension T1 of T0 with a strictly monotone function a, of sort i → num,
– the extension T2 of T1 with a function a′ satisfying the update axioms K.
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By using the previous results we can prove that both these extensions are local.
We can theorefore reduce successively, in a hierarchical way (using Lemma 3)
the test of satisfiability of a set G of ground clauses w.r.t. T2 first to a satisfi-
ability test for a set G′ of ground clauses w.r.t. T1, and then to a satisfiability
test for a set G′′ of ground clauses w.r.t. T0. This hierarchical approach can
also be used for determining constraints between the parameters of the system
(Δt,min,max, n, lalarm) which guarantee collision freeness.

5.5 Data Structures: Theories of Constructors/Selectors

Many data structures important in verification have local or stably local axiom-
atizations, or can be defined by using chains of local theory extensions. Some
examples are given below.

Extensions with selector functions [27]. Let T0 be a theory with signature
Π0 = (Σ0,Pred), let c ∈ Σ0 with arity n, and let Σ1 = {s1, . . . , sn} consist
of n unary function symbols. Let T1 = T0 ∪ Selc (a theory with signature Π =
(Σ0∪Σ1,Pred)) be the extension of T0 with the set Selc of clauses below. Assume
that T0 satisfies the (universally quantified) formula Injc (i.e. c is injective in T0)
then the extension T0 ⊆ T1 satisfies condition (Compw) [27].

(Selc) si(c(x1, . . . , xn)) ≈ xi i ∈ {1, . . . , n}
x ≈ c(x1, . . . , xn) → c(s1(x), . . . , sn(x)) ≈ x

(Injc) c(x1, . . . , xn) ≈ c(y1, . . . , yn) → (
n�

i=1

xi ≈ yi)

A general study of the locality of various presentations of theories of constructors
and selectors, as well as of theories of arrays is subject of ongoing work jointly
with Swen Jacobs and Carsten Ihlemann [19]; it will not be mentioned here. Be-
low, we present a simple example concerning an axiomatization of doubly-linked
lists with additional information fields. Then we analyze a class of alternative
axiomatizations of pointer structures (studied by Necula and McPeak [23]) and
show that these also define stably local theory extensions.
Example 5. Let T1 be the theory of doubly-linked lists with information on
elements, with sorts cell (list cell) and s (scalar, referring to the information
stored in the cells). The signature contains the functions s and p (arity cell →
cell) and a family of functions {infoi}i∈I (arity cell → s). We assume that s
and p satisfy the axioms (1)–(4) in Section 2 (listed directly after Theorem 2
as an axiomatization for Int) and {infoi | i ∈ I} are not constrained by any
other axioms. We can view the theory T1 as the extension of the theory Int in
Section 2 with an additional sort s and free function symbols {infoi | i ∈ I}. Thus,
satisfiability tests for ground clauses w.r.t. T1 can be reduced in a hierarchical
way, in one step to satisfiability tests for ground clauses w.r.t. Int (a local theory).
A direct locality proof can also be given. By imposing additional axioms on the
infoi functions we still define local extensions: this would for instance be the case
if adding guarded boundedness constraints on some of the infoi’s, or local sets
of axioms K on {infoi | i ∈ I} subject to the conditions in Theorem 9.
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5.6 Verification of Pointer Programs: Local Data Structures

In [23], McPeak and Necula investigate reasoning in pointer data structures. The
language used has two sorts (a pointer sort p and a scalar sort s). Sets Σp and
Σs of pointer resp. scalar fields are given. They can be modeled by functions of
sort p → p and p → s, respectively. A constant null of sort p exists. The only
predicate of sort p is equality between pointers; predicates of scalar sort can have
any arity. In this language one can define pointer (dis)equalities and arbitrary
scalar constraints. The local axioms considered in [23] are of the form

∀p E ∨ C (1)

where E contains disjunctions of pointer equalities and C contains scalar con-
straints (sets of both positive and negative literals). It is assumed that for all
terms f1(f2(. . . fn(p))) occurring in the body of an axiom, the axiom also con-
tains the disjunction p = null∨ fn(p) = null∨ · · · ∨ f2(. . . fn(p))) = null. This has
the rôle of excluding null pointer errors. Examples of axioms (for doubly linked
data structures with state and priorities) which are considered there are:

∀p p = null ∧ next(p) = null → prev(next(p)) = p
∀p p = null ∧ next(p) = null → state(p) = state(next(p))
∀p p = null ∧ next(p) = null ∧state(p) = RUN → priority(p) ≥ priority(next(p))

(the first axiom states that prev is a left inverse for next, the second axiom tells
how a state can be updated; the third axiom is a monotonicity condition on the
function priority with values in a partially ordered domain).

For the sake of simplicity, in what follows we assume that in (1) the disjunc-
tions contain also definedness guards on the scalar fields. The special form of
the axioms ensures that all partial models can be embedded into total models.

Theorem 17. Let T1 be the two-sorted extension T0 ∪ K of a Π0-theory T0 (or
sort s, the theory of scalars), with signature Π = (S,Σ,Pred), where S = {p, s},
Σ = Σp ∪Σs ∪Σ0 axiomatized by a set K of axioms ∀p(E ∨C) of type (1). Then
T is a stably local extension of T0.

Proof : Let P = (Pp, Ps, {fP }f∈Σp∪Σs ∪ {gP}g∈Σ0 , {RP }R∈Pred) ∈ PMod(Σp ∪
Σs, T1). We construct a total model A starting from P as follows. The universes
of A are the same as those of P . For every f ∈ Σp and every p ∈ Pp, we
define fA(p) := fP (p) if fP (p) is defined, and fA(p) := null otherwise. For every
f ∈ Σs and every q ∈ Pp we define fA(q) := fP (q) if fP (q) is defined, and
fA(p) := nulls otherwise. We show that B is a model of T1: Clearly, B|Π0 =
P|Π0 = (Ps, {gP}g∈Σ0 , {RP }R∈Pred) is a total model of T0. We show that B |= K.
Let C = ∀p(E ∨C) ∈ K and let β : Xp → Bp. If there exists any t = null in E with
any β(t) = null, β |= C. Assume now that β(t) = null for all terms occurring
below a function symbol in Σp or Σs in C. This means that β(t) is defined also
in P for all such terms. As (P, β) |= C, there exists a literal L in C such that
(P, β) |= L. We distinguish the following cases: (a) L = t ≈ s and both β(t), β(s)
are defined in P . Then they are defined and equal also in B, so (B, β) |= C. (b)
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L = t ≈ s, β(s) is defined, t = f(t1, . . . , tn), where f ∈ Σp ∪ Σs, and β(ti) is
undefined for at least one of t1, . . . , tn. This case cannot occur since we assumed
that β(ti) = null for all i; if they were undefined in P the value assigned to them
in B would have been null. (c) L = t ≈ s, β(t) and β(s) are both undefined.
Then the value assigned to them in B is either null if they are of pointer sort,
or nulls if they are of scalar sort. Therefore (B, β) |= C also in this case. (d)
L = (¬)R(t1, . . . , tn), where t1, . . . , tn are terms of scalar sort. An argument
similar to that used in (b) shows that (if clauses are guarded by definedness
conditions for the scalar terms) β(ti) is defined in P for all i so (P, β) |= L, i.e.
(B, β) |= C. Thus, (B, β) |= C for all β : Xp → Bp and all C ∈ K. This shows
that B ∈ Mod(T1).2 �

6 Combinations of Local Extensions

In this section we study the locality of combinations of local theory extensions.
In the light of the results in Section 4.1 we concentrate on studying which em-
beddability properties are preserved under combinations of theories. For the sake
of simplicity, in what follows we only consider conditions (Embw) and (Compw).
Analogous results can be given for conditions (Embf

w), (Compf
w), resp. (Embfd

w ),
(Compfd

w ) and combinations thereof. Full proofs are contained in [29].
We first consider the situation when both components satisfy the embeddabil-

ity condition (Compw).

Theorem 18. Let T0 be a first order theory with signature Π0 = (Σ0,Pred) and
(for i ∈ {1, 2}) Ti = T0 ∪ Ki be an extension of T0 with signature Πi = (Σ0 ∪
Σi,Pred). Assume that both extensions T0 ⊆ T1 and T0 ⊆ T2 satisfy condition
(Compw), and that Σ1∩Σ2 = ∅. Then the extension T0 ⊆ T =T0∪K1∪K2 satisfies
condition (Compw). If, additionally, in Ki all terms starting with a function
symbol in Σi are flat and linear, for i = 1, 2, then the extension is local.

Example 6. The following combinations of theories (seen as extensions of a
first-order theory T0) satisfy condition (Compw) (in case (4) condition (Compfd

w )):
(1) T0 ∪ Free(Σ1) and T0 ∪ Selc if T0 is a theory and c ∈ Σ0 is injective in T0.
(2) R∪Free(Σ1) and R∪Lipλc (f), where f ∈ Σ1. Here Lipλc (f) is the λ-Lipschitz

condition3 for f at point c ∈ R (for λ > 0):
(Lipλc (f)) ∀x |f(x)− f(c)| ≤ λ · |x− c|.

(3) R ∪ Lipλ1
c1 (f) and R ∪ Lipλ2

c2 (g), where f = g.

2 Analyzing the proof of Theorem 7 (embeddability implies stable locality), one can see
that for any valuation β and set Ψ of ground terms of sort p closed under subterms
the proof only uses embeddability into total models of a special type of partial models
P , namely those for which for f ∈ Σp ∪ Σs, fP (p1, . . . , pn) is defined iff there exist
terms t1, . . . tn in Ψ which evaluate to p1, . . . , pn w.r.t. β. With such restrictions the
definedness guards on scalar terms are not necessary for proving stable locality.

3 We proved in [27] that for every function f and constants c and λ with λ > 0 the
extension R ⊆ R ∪ (Lipλ

c (f)) satisfies (Compw), hence it is local.
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(4) T0 ∪ Free(Σ1) and T0 ∪Monσf , where f ∈ Σ1 has arity n, σ : {1, . . . , n} →
{−1, 1, 0}, if T0 is, e.g., a theory of algebras with a bounded semilattice reduct.

This result can be extended to the more general situation in which one extension
satisfies condition (Embw) and the other satisfies (Compw) or (Embw).

Theorem 19. Let T0 be a first order theory with signature Π0 = (Σ0,Pred),
and let T1 = T0 ∪ K1 and T2 = T0 ∪ K2 be two extensions of T0 with signatures
Π1 = (Σ0 ∪Σ1,Pred) and Π2 = (Σ0 ∪Σ2,Pred), respectively. Assume that:

(1) T0 ⊆ T1 satisfies condition (Compw),
(2) T0 ⊆ T2 satisfies condition (Embw),
(3) K1 is a set of Σ1-flat clauses in which all variables occur below a Σ1-function.

Then the extension T0 ⊆ T0∪K1∪K2 satisfies (Embw). If in Ki all terms starting
with a function symbol in Σi are flat and linear (for i=1, 2) the extension is local.

Theorem 20. Let T0 be an arbitrary theory in signature Π0 = (Σ0,Pred). Let
K1 and K2 be two sets of clauses over signatures Πi = (Σ0 ∪ Σi,Pred), where
Σ1 and Σ2 are disjoint. We make the following assumptions:

(A1) The class of models of T0 is closed under direct limits of diagrams in
which all maps are embeddings (or, equivalently, T0 is a ∀∃ theory).

(A2) Ki is Σi-flat and Σi-linear for i = 1, 2, and T0 ⊆ T0 ∪ Ki, i = 1, 2
are both local extensions of T0.

(A3) For all clauses in K1 and K2, every variable occurs below some ex-
tension function.

Then T0 ∪ K1 ∪ K2 is a local extension of T0.

Example 7. The following combinations of theories (seen as extensions of the
theory T0) satisfy condition (Embw), hence are local:

(1) Eq ⊆ Free(Σ1)∪L, where Eq is the pure theory of equality, without function
symbols, and L the theory of lattices.

(2) T0 ⊆ (T0 ∪ Free(Σ1)) ∪ (T0 ∪ Mon(Σ2)), where Σ1 ∩ Σ2 = ∅, Mon(Σ2) =
∧
f∈Σ2

Monσ(f)
f and T0 is, e.g., the theory of posets.

(3) The combination of the theory of lattices and the theory of integers with
injective successor and predecessor is local (local extension of the theory of
pure equality).

7 Modular Reasoning

In what follows we discuss some issues related to modular reasoning in combina-
tions of local theory extensions. We analyze, in particular, the form of informa-
tion which needs to be exchanged between provers for the component theories
when reasoning in combinations of local theory extensions.
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7.1 Reasoning in Local Combinations of Theory Extensions

Let T1 = T0 ∪ K1 and T2 = T0 ∪ K2 be theories with signatures Π1 = (Σ0 ∪
Σ1,Pred) and Π2 = (Σ0 ∪Σ2,Pred), and G a set of ground clauses in the joint
signature with additional constants Πc = (Σ0∪Σ1∪Σ2∪Σc,Pred). We want to
decide whether T1 ∪ T2 ∪G |=⊥.

The set G of ground clauses can be flattened and purified as explained above. For
the sake of simplicity, everywhere in what follows we will assume w.l.o.g. that
G = G1 ∧ G2, where G1, G2 are flat and linear sets of clauses in the signatures
Π1, Π2 respectively, i.e. for i = 1, 2, Gi = G0

i ∧ G0 ∧ Di, where G0
i and G0

are clauses in the base theory and Di a conjunction of unit clauses of the form
f(c1, . . . , cn) = c, f ∈ Σi.

Corollary 21. Assume that T1 = T0 ∪K1 and T2 = T0 ∪K2 are local extensions
of a theory T0 with signature Π0 = (Σ0,Pred), and that the extension T0 ⊆
T0 ∪K1 ∪K2 is local. Let G = G1 ∧G2 be a set of flat, linear are purified ground
clauses, such that Gi = G0

i ∧G0 ∧Di are as explained above. Then the following
are equivalent:

(1) T1 ∪ T2 ∪ (G1 ∧G2) |=⊥,
(2) T0 ∪ (K1 ∪ K2)[G1 ∧G2] ∪ (G0

1 ∧G0 ∧D1) ∧ (G0
2 ∧G0 ∧D2) |=⊥,

(3) T0 ∪ K0
1 ∪ K0

2 ∪ (G0
1 ∪G0) ∪ (G0

2 ∪G0) ∪N1 ∪N2 |=⊥, where

Ni = {
n∧

i=1

ci ≈ di → c = d | f(c1, . . . , cn) ≈ c, f(d1, . . . , dn) ≈ d ∈ Di}, i = 1, 2,

and K0
i is the formula obtained from Ki[Gi] after purification and flattening,

taking into account the definitions from Di.

A more precise characterization of the formulae that need to be exchanged be-
tween provers for the components is provided by results on interpolation.

7.2 Interpolation in Local Theory Extensions

A theory T has interpolation if, for all formulae φ and ψ in the signature of T ,
if φ |=T ψ then there exists a formula I containing only symbols which occur in
both φ and ψ such that φ |=T I and I |=T ψ. First order logic has interpolation
[9], but for an arbitrary first order theory T , the interpolants may contain (al-
ternations of) quantifiers even for very simple formulae φ and ψ. It is important
to identify situations in which ground clauses have ground interpolants.

A theory T has the ground interpolation property if for all ground clauses
A(c, d) and B(c, e), if A(c, d) ∧ B(c, e) |=T⊥ then there exists a ground
formula I(c), containing only the constants c occurring both in A and
B, such that A(c, d) |=T I(c) and B(c, e) ∧ I(c) |=T⊥ .

In [28] we identify a class of theory extensions T0 ⊆ T1 for which interpolants
can be computed hierarchically using a procedure for generating interpolants in
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the base theory T0. This allows to exploit specific properties of T0 for obtaining
simple interpolants in T1. We make the following assumptions4 about T0 and T1:

Assumption 1: T0 is convex w.r.t. the set Pred of all predicates (including
equality ≈), i.e., for all conjunctions Γ of ground atoms, relations
R1, . . . , Rm ∈ Pred and ground tuples of corresponding arity t1, . . . , tn, if
Γ |=T0

∨m
i=1 Ri(ti) then there exists a j ∈ {1, . . . ,m} such that Γ |=T0

Rj(tj).
Assumption 2: T0 is P -interpolating, i.e. for all conjunctions A and B of

ground literals, all binary predicates R ∈ P and all constants a and b such
that a occurs in A and b occurs in B (or vice versa), if A ∧B |=T0 aRb then
there exists a term t containing only constants common to A and B with
A ∧B |=T0 aRt ∧ tRb.

Assumption 3: T0 has ground interpolation.
Assumption 4: T1=T0∪K, where K consists of the combinations of clauses:

{
x1 R1 s1 ∧ · · · ∧ xnRn sn → f(x1, . . . , xn)Rg(y1, . . . , yn)
x1 R1 y1 ∧ · · · ∧ xn Rn yn → f(x1, . . . , xn)Rf(y1, . . . , yn)

(2)

where n ≥ 1, x1, . . . , xn are variables, R1, . . . , Rn, R are binary relations with
R1, . . . , Rn ∈ P and R transitive, and each si is either a variable among the
arguments of g, or a term of the form fi(z1, . . . , zk), where fi ∈ Σ1 and all
the arguments of fi are variables occurring among the arguments of g.

Theorem 22 ([28]). If the theory extension T0 ⊆ T1 satisfies the assumptions
above then ground interpolants for T1 exist and can be computed hierarchically.

In [25] we adapt and apply the idea of Theorem 22 for efficiently computing
interpolants with a simple form for extensions of linear arithmetic with free
function symbols, as an alternative to the method proposed by McMillan [22].

As a consequence of the results in [28], the following theory extensions have
ground interpolation, and interpolants can be computed hierarchically.

(a) Extensions with free function symbols of any of the base theories: Eq (pure
equality), P (posets), LI(Q), LI(R) (linear rational, resp. real arithmetic), S
(semilattices), DL (lattices), B Boolean algebras.

(b) Extensions with monotone functions of any of the base theories: P (posets),
S (semilattices), DL (lattices), B Boolean algebras.

(c) Extensions of any of the base theories in (b) with Leq(f, g) ∧Monf .
(d) Extensions of any of the base theories in (b) with SGc(f, g1) ∧Mon(f, g1).
(e) Extensions of any of the base theories in (a) with Boundtf or GBoundtf (where

t is a term and φ a set of literals in the base theory).
(f) Extensions of any base theory in (b) with Monf ∧ Boundtf , if t is monotone.

7.3 Application: Information Exchange in Combinations of Theories

The method for hierarchic reasoning described in Corollary 21 is modular, in the
sense that once the information about Σ1 ∪ Σ2-functions was separated into a

4 Examples of theories which have these properties are provided in [28].
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Σ1-part and a Σ2-part, it does not need to be recombined again. For reasoning
in the combined theory one can proceed as follows:

– Purify (and flatten) the goal G, and thus transform it into an equisatisfiable
conjunction G1 ∧ G2, where Gi consists of clauses in the signature Πi, for
i = 1, 2, and Gi = G0

i ∧G0 ∧Di, as in Corollary 21.
– The problem of testing the validity of the formulae containing extension

functions in the signature Σi, Ki[Gi] ∧ Gi are reduced (using Lemma 3) to
testing the validity of the formula K0

i ∧G0
i ∧G0 ∧Ni in the base theory.

– The conjunction of all the formulae obtained this way, for all component
theories, is used as input for a decision procedure for the base theory.

We show that, in fact, only information exchange over the shared signature (i.e.
shared functions and constants) is necessary.

Theorem 23 ([28]). Let T0 ⊆ T0 ∪ Ki be local extensions, i = 1, 2 where Ki
are Σi-flat and Σi-linear and all variables in clauses in Ki occur below a Σi-
symbol. Assume the extension T0 ⊆ T0 ∪ K1 ∪ K2 is local. Let G = G1∧G2 be
as constructed before with T0∪(K1 ∧G1)∧(K2 ∧G2) |=⊥. Then we can construct
a ground formula I which contains only function symbols in Σ0 = Σ1 ∩Σ2 and
constants shared by G1, G2 such that (T0∪K1)∧G1 |= I and (T0∪K2)∧G2∧I |=⊥ .

8 Conclusions

We presented an overview of results on hierarchical and modular reasoning in
complex theories. We show that for local and stably local theory extensions hier-
archic reasoning is possible (i.e. proof tasks in the extension can be hierarchically
reduced to proof tasks w.r.t. the base theory). We showed how local theory ex-
tensions can be identified and provided various examples from mathematics and
verification. In particular, we identified phenomena analyzed in the verification
literature which can be explained using the notion of locality.

We then presented criteria for recognizing situations in which combinations of
theory extensions of a base theory are again local extensions of the base theory.
These results allow to recognize even wider classes of local theory extensions, and
open the way for studying possibilities of modular reasoning in such extensions.
For this, it is interesting to analyze the exact amount of information which needs
to be exchanged between provers for the component theories. We characterized
the form of this information in the case of local combinations of local extensions.
We plan to investigate whether there are any links between the results described
in this paper and other methods for reasoning in combinations of theories over
non-disjoint signatures e.g. by Ghilardi [15].
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A straightforward way of adding a temporal dimension to a logical system is
to combine it with a suitable temporal logic. Typical examples are first-order
temporal logic [3], temporal description logics [1] or spatio-temporal logics [4].
In 1992, Finger and Gabbay [2] started an investigation of possible ways of
temporalising abstract logical systems.

In this paper, I analyse the existing methodologies of temporalising logics and
illustrate them by recent results on the computational properties and expressive
power of temporal description, spatio-temporal and dynamic topological logics.
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Abstract. Innermost context-sensitive rewriting has been proved use-
ful for modeling computations of programs of algebraic languages like
Maude, OBJ, etc. Furthermore, innermost termination of rewriting is
often easier to prove than termination. Thus, under appropriate con-
ditions, a useful strategy for proving termination of rewriting is trying
to prove termination of innermost rewriting. This phenomenon has also
been investigated for context-sensitive rewriting (CSR). Up to now, only
few transformations have been proposed and used to prove termination
of innermost CSR. In this paper, we investigate direct methods for prov-
ing termination of innermost CSR. We adapt the recently introduced
context-sensitive dependency pairs approach to innermost CSR and show
that they can be advantageously used for proving termination of inner-
most CSR. We have implemented them as part of the termination tool
mu-term.

1 Introduction

The dependency pairs method [3] is one of the most powerful techniques for proving
termination of Term Rewriting Systems (TRSs [21,22]). Roughly speaking, given
a TRS R, the dependency pairs associated with R form a new TRS DP(R) which
(together with R) determines the so-called dependency chains which characterize
termination ofR. The dependency pairs can be presented as a dependency graph,
where the absence of infinite chains can be analyzed by considering the cycles in
the graph. In [1], the dependency pairs method has been adapted for proving ter-
mination of context-sensitive rewriting (CSR [15,18]). With CSR we can achieve
a terminating behavior for non-terminating TRSs by pruning (all) infinite rewrite
sequences. In CSR we only rewrite μ-replacing subterms. Here, μ is a replacement
map, i.e., a mapping μ : F → P(N) satisfying μ(f) ⊆ {1, . . . , k}, for each k-ary
symbol f of the signature F [15]. We use them to indicate the argument posi-
tions on which the rewriting steps are allowed. Then, ti is a μ-replacing subterm
of f(t1, . . . , tk) if i ∈ μ(f); every term t (as a whole) is μ-replacing by definition.
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For other subterms we proceed inductively in this way. Then, for a given TRS
R and a replacement map μ, we obtain a restriction of rewriting which we call
context-sensitive rewriting. A pair (R, μ) is often called a context-sensitive TRS
(CS-TRS). Proving termination of CSR is an interesting problem with several ap-
plications in the fields of term rewriting and programming languages (see [20] for
further motivation). Furthermore, termination of innermost CSR (i.e., the variant
of CSR where only the deepest μ-replacing redexes are contracted) has proved use-
ful for proving termination of programs in programming languages like Maude and
OBJ* which permit to control the program execution by means of such context-
sensitive annotations [16,17].

Proving innermost termination of rewriting is often easier than proving ter-
mination of rewriting [3] and, for some relevant classes of TRSs, innermost ter-
mination of rewriting is even equivalent to termination of rewriting [10,11]. In
[7,12] it is proved that the equivalence between termination of innermost CSR
and termination of CSR holds in some interesting cases (e.g., for orthogonal
CS-TRSs).

Example 1. Consider the following orthogonal TRS R which is a variant of an
example in [4]:

from(X) -> cons(X,from(s(X)))
sel(0,cons(X,XS)) -> X
sel(s(N),cons(X,XS)) -> sel(N,XS)
minus(X,0) -> X
minus(s(X),s(Y)) -> minus(X,Y)
quot(0,s(Y)) -> 0
quot(s(X),s(Y)) -> s(quot(minus(X,Y),s(Y)))
zWquot(nil,nil) -> nil
zWquot(cons(X,XS),nil) -> nil
zWquot(nil,cons(X:XS)) -> nil
zWquot(cons(X,XS),cons(Y,YS))->cons(quot(X,Y),zWquot(XS,YS))

together with μ(cons) = {1} and μ(f) = {1, . . . , ar(f)} for all other symbols f .
According to [6], innermost μ-termination of R implies its μ-termination as well.
We will show how R can easily be proved innermost μ-terminating (and hence
μ-terminating) by using the results in this paper.

In this paper, we extend the context-sensitive dependency pairs approach in
[1] for proving termination of innermost CSR. Actually, techniques for proving
termination of innermost CSR have already been investigated [7,16]. However,
these papers only consider transformational techniques, where the original CS-
TRS (R, μ) is transformed into a TRS Rμ

Θ (where Θ represents the transforma-
tion which has been used) whose innermost termination implies the innermost
termination of CSR for (R, μ). Up to now, no direct method has been proposed
to prove termination of innermost CSR. As shown in [2], proofs of termination
using context-sensitive dependency pairs (CSDPs) are much more powerful and
faster than any other technique for proving termination of CSR. Dealing with
innermost CSR, we have a similar situation.
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Example 2. Consider the following TRS R:
b -> c(b)
f(c(X),X) -> f(X,X)

together with μ(f) = {1, 2} and μ(c) = ∅. This system is not μ-terminating:
f(b,b) ↪→ f(c(b),b) ↪→ f(b,b) ↪→ . . .

where ↪→ denotes a context-sensitive rewriting step. However R is innermost
μ-terminating. We can give a very easy automatic proof of this fact because
the innermost context-sensitive dependency graph has no cycle. In contrast, by
using available transformations for proving innermost termination of CSR (see
[8] for a survey), we could not obtain a proof by using tools (like AProVE or
TTT) supporting innermost termination proofs (of rewriting).

In the dependency pairs approach, proofs of termination of innermost rewriting
are easier than proofs of termination of rewriting because: (1) the estimated
innermost dependency graph is more accurate, (2) it is possible to limit the
attention on the so-called usable rules of the TRS (for a given cycle).

After some preliminaries in Section 2, in Section 3 we prove that termination
of innermost CSR can be characterized by using an appropriate definition of
chain of CSDPs. In Section 4 we show how to prove automatically innermost
termination of CSR by using the innermost context-sensitive dependency graph.
Section 5 adapts the notion of usable rules to deal with innermost CSR. Section
6 provides a first experimental evaluation of our techniques.

2 Preliminaries

Terms. Throughout the paper, X denotes a countable set of variables and F
denotes a signature, i.e., a set of function symbols {f, g, . . .}, each having a fixed
arity given by a mapping ar : F → N. The set of terms built from F and X is
T (F ,X ). Positions p, q, . . . are represented by chains of positive natural numbers
used to address subterms of t. Given positions p, q, we denote their concatenation
as p.q. Positions are ordered by the standard prefix ordering ≤. If p is a position,
and Q is a set of positions, p.Q = {p.q | q ∈ Q}. We denote the topmost position
by Λ. The set of positions of a term t is Pos(t). Positions of non-variable symbols
in t are denoted as PosF(t) while PosX (t) are the positions of variables. The
subterm at position p of t is denoted as t|p and t[s]p is the term t with the
subterm at position p replaced by s. We write t�s if s = t|p for some p ∈ Pos(t)
and t � s if t � s and t = s. The symbol labelling the root of t is denoted as
root(t). A context is a term C ∈ T (F ∪ {�},X ) with zero or more ‘holes’ � (a
fresh constant symbol).

Term rewriting. A rewrite rule is an ordered pair (l, r), written l → r, with
l, r ∈ T (F ,X ), l ∈ X and Var(r) ⊆ Var(l). The left-hand side (lhs) of the rule
is l and r is the right-hand side (rhs). A TRS is a pair R = (F , R) where R is
a set of rewrite rules. Given R = (F , R), we consider F as the disjoint union
F = C # D of symbols c ∈ C, called constructors and symbols f ∈ D, called
defined functions, where D = {root(l) | l → r ∈ R} and C = F −D.
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Context-sensitive rewriting. A mapping μ : F → P(N) is a replacement map
(or F -map) if ∀f ∈ F , μ(f) ⊆ {1, . . . , ar(f)} [15]. Let MF be the set of all
F -maps (or MR for the F -maps of a TRS (F , R)). A binary relation R on terms
is μ-monotonic if t R s implies f(t1, . . . , ti−1, t, . . . , tk) R f(t1, . . . , ti−1, s, . . . , tk)
for all f ∈ F , i ∈ μ(f), and t, s, t1, . . . , tk ∈ T (F ,X ). The set of μ-replacing
positions Posμ(t) of t ∈ T (F ,X ) is: Posμ(t) = {Λ}, if t ∈ X and Posμ(t) =
{Λ} ∪

⋃
i∈μ(root(t)) i.Posμ(t|i), if t ∈ X . The set of μ-replacing variables of t

is Varμ(t) = {x ∈ Var(t) | ∃p ∈ Posμ(t), t|p = x}. The μ-replacing subterm
relation �μ is given by t �μ s if there is p ∈ Posμ(t) such that s = t|p. We write
t �μ s if t �μ s and t = s. In context-sensitive rewriting (CSR [15]), we (only)
contract μ-replacing redexes: s μ-rewrites to t, written s ↪→μ t (or s ↪→R,μ t and
even s ↪→ t, if R and μ are clear from the context), if s p→R t and p ∈ Posμ(s). A
μ-normal form is a term which cannot be μ-rewritten. Let NFμ(R) (or just NFμ
if no confusion arises) be the set of μ-normal forms of a TRS R. A μ-innermost
redex is a redex t whose μ-replacing subterms are μ-normal forms: t = σ(l) for
some substitution σ and rule l → r ∈ R and for all p ∈ Posμ(t), t|p ∈ NFμ. A

term s innermost μ-rewrites to t, written s
i
↪→ t, if s

p→R t, p ∈ Posμ(s), and
s|p is an μ-innermost redex. A TRS R is μ-terminating if ↪→μ is terminating.
A term t is μ-terminating if there is no infinite μ-rewrite sequence t = t1 ↪→μ

t2 ↪→μ · · · ↪→μ tn ↪→μ · · · starting from t. A TRS R is innermost μ-terminating

if
i
↪→μ is terminating. We write s

i
↪→!

R t if s
i
↪→∗

R t and t ∈ NFμ.
A pair (R, μ) where R is a TRS and μ ∈ MR is often called a CS-TRS.

Reduction pairs. A reduction pair (�,�) consists of a stable and weakly
monotonic quasi-ordering �, and a stable and well-founded ordering � satis-
fying either � ◦ � ⊆ � or � ◦ � ⊆ �. Note that monotonicity is not required
for �.

3 Termination of Innermost CSR with Dependency Pairs

In the following definition, given a term t = f(t1, . . . , tk) ∈ T (F ,X ), we write t�

to denote the marked term f �(t1, . . . , tk), where f � is a new fresh symbol (called
tuple symbol [3]). Given a signature F , we let F � be the extension of F containing
all tuple symbols for F : F � = F ∪ {f � | f ∈ F}. Similarly, if t = f �(t1, . . . , tk) is
a marked term, we write t� to denote the unmarked term f(t1, . . . , tk).

Definition 1 (CS-dependency pairs [1]). Let R = (F , R) = (C #D, R) be a
TRS and μ ∈ MR. We define DP(R, μ) = DPF(R, μ) ∪DPX (R, μ) to be the set
of context-sensitive dependency pairs (CS-DPs) where:

DPF(R, μ) = {l� → s� | l → r ∈ R, r �μ s, root(s) ∈ D, l �μ s}

and DPX (R, μ) = {l� → x | l → r ∈ R, x ∈ Varμ(r) − Varμ(l)}. We extend
μ ∈ MF into μ� ∈ MF� by μ�(f) = μ(f) if f ∈ F , and μ�(f �) = μ(f) if f ∈ D.
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Example 3. Consider the CS-TRS (R, μ) in Example 2. There is only one context-
sensitive dependency pair:

F(c(X),X) -> F(X,X)

with μ�(F) = {1, 2}.

In the CS-DP approach, termination of CSR is characterized as the absence of
infinite chains of CS-DPs [1, Definition 2]. In innermost CSR, we only perform
reduction steps on innermost replacing redexes. Therefore, we have to restrict
the definition of chains in order to obtain an appropriate notion corresponding to
innermost CSR. Regarding innermost reductions, arguments of a redex should
be in normal form before the redex is contracted and, regarding CSR, the redex
to be contracted has to be in a replacing position.

Definition 2 (Innermost μ-chain). Given a CS-TRS (P , μ�) of CS-DPs as-
sociated to a CS-TRS (R, μ), an innermost (R,P , μ�)-chain is a sequence of
pairs uj → vj ∈ P such that there is a substitution σ such that σ(uj)∈ NFμ(R)
and such that, for all j ≥ 1,

1. σ(vj)
i

↪→!
R,μ� σ(uj+1), if uj → vj ∈ DPF(R, μ), and

2. if uj → vj = uj → xj ∈ DPX (R, μ), then there is some sj ∈ T (F ,X ) such

that σ(xj) �μ sj and s�j
i
↪→!

R,μ� σ(uj+1).

As usual we assume that different occurrences of dependency pairs do not share
any variables (renamings are used if necessary). An innermost (R,P , μ�)-chain
is minimal if for all uj → vj ∈ P and j ≥ 1, σ(vj) is innermost μ-terminating
(whenever uj → vj ∈ DPF(R, μ)) and s�j is innermost μ-terminating (whenever
uj → vj ∈ DPX (R, μ)).

Theorem 1. A CS-TRS (R, μ) is innermost μ-terminating if and only if no
infinite minimal innermost μ-chain exists.

Let M∞,μ be a set of minimal non-μ-terminating terms in the following sense
[1]: t belongs to M∞,μ if t is non-μ-terminating and every strict μ-replacing
subterm s of t (i.e., t �μ s) is μ-terminating. The proof of this result uses the
following result.

Proposition 1. [1, Proposition 1] Let R = (C # D, R) be a TRS and μ ∈ MR.
Then for all t ∈ M∞,μ, there exist l → r ∈ R, a substitution σ and a term

u ∈ M∞,μ such that t
>Λ
↪→∗ σ(l) Λ→σ(r) �μ u and either (1) there is a μ-replacing

subterm s of r such that u = σ(s), or (2) there is x ∈ Varμ(r) − Varμ(l) such
that σ(x) �μ u.

Proof. (of Theorem 1) We prove the if part by contradiction. We show that
for any infinite innermost μ-rewriting sequence we can construct an infinite in-
nermost (R,DP(R, μ), μ�)-chain. Let innermost μ-rewriting below the root be
>i
↪→ = (

>Λ
↪→ ∩ i

↪→). If R is not innermost μ-terminating, then, by Proposition 1,
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there is a term t ∈ M∞,μ, a rule l → r ∈ R, a substitution σ, and a term

u ∈ M∞,μ such that t
>i
↪→ σ(l) Λ→ σ(r) �μ u (where every immediate replacing

subterm of σ(l) is a μ-normal form), u is not innermost μ-terminating and either

1. there is a μ-replacing subterm s of r such that u = σ(s), or
2. there is x ∈ Varμ(r)− Varμ(l) such that σ(x) �μ u.

In the first case above, we have a dependency pair l� → s� ∈ DPF (R, μ) such
that u = σ(s) ∈ M∞,μ, i.e., we can start an innermost (R,DP(R, μ), μ�)-chain
beginning with σ(l�) ↪→DP(R,μ),μ� σ(s�). Note that σ(l�) ∈ NFμ(R).

In the second case above, since u ∈ M∞,μ, there is a rule λ → ρ such that

u
>i

↪→! σ(λ) (since we can assume that the variables in this rule do not occur in l,
we can use the same –conveniently extended– substitution σ) and σ(ρ) contains

a subterm in M∞,μ. Hence, u�
i

↪→!
R,μ� σ(λ�). Furthermore, there is a dependency

pair l� → x ∈ DPX (R, μ) such that σ(x) �μ u; thus, according to Definition 2
we can start an (R,DP(R, μ), μ�)-chain beginning with

σ(l�) ↪→DP(R,μ),μ� u�

and then continuing with a dependency pair u′ → v′ such that u′ = λ� and
u�

i
↪→!

R,μ� σ(u′). Note that σ(l�), σ(λ�) ∈ NFμ(R).
Thus, in both cases we can start an innermost (R,DP(R, μ), μ�)-chain which

could be infinitely extended in a similar way by starting from u�. This contradicts
our initial assumption.

On the other hand, in order to show that the criterion is also necessary for
innermost termination of context-sensitive rewriting we assume that there exists
an infinite innermost μ-chain that implies the existence of an infinite innermost
μ-rewrite sequence. If there is an infinite innermost (R,DP(R, μ), μ�)-chain, then
there is a substitution σ and dependency pairs ui → vi ∈ DP(R, μ) such that
considering the first dependency pair u1 → v1 in the sequence:

1. If u1 → v1 ∈ DPF(R, μ), then v�1 is a μ-replacing subterm of the right-
hand-side r1 of a rule l1 → r1 in R. Therefore, r1 = C1[v

�
1]p1 for some

p1 ∈ Posμ(r1) and, since σ(u1) ∈ NFμ, we can perform the innermost

μ-rewriting step t1 = σ(u�1)
i

↪→R,μ σ(r1) = σ(C1)[σ(v�1)]p1 = s1, where

σ(v�1)
� = σ(v1)

i
↪→!

R,μ� σ(u2) and σ(u2) also initiates an infinite innermost
(R,DP(R, μ), μ�)-chain. Note that p1 ∈ Posμ(s1).

2. If u1 → x ∈ DPX (R, μ), then there is a rule l1 → r1 in R such that u1 = l�1,
and x ∈ Varμ(r1)−Varμ(l1), i.e., r1 = C1[x]q1 for some q1 ∈ Posμ(r1). Fur-

thermore, since there is a subterm s such that σ(x)�μ s and s�
i

↪→!
R,μ� σ(u2),

we can write σ(x) = C′
1[s]p′

1
for some p′1 ∈ Posμ(σ(x)). Therefore, since

σ(u1) = σ(l1)� ∈ NFμ, we can perform the innermost μ-rewriting step

t1 = σ(l1)
i
↪→R,μ σ(r1) = σ(C1)[C′

1[s]p′
1
]q1 = s1 where s�

i
↪→!

R,μ� σ(u2) (hence
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s
i
↪→! u�2) and σ(u2) initiates an infinite innermost (R,DP(R, μ), μ�)-chain.

Note that p1 = q1.p
′
1 ∈ Posμ(s1).

Since μ�(f �) = μ(f), and p1 ∈ Posμ(s1), we have that s1
i
↪→!

R,μ t2[σ(u2)]p1 = t2
and p1 ∈ Posμ(t2). Therefore, we can build in that way an infinite μ-rewrite
sequence

t1
i
↪→R,μ s1

i
↪→!

R,μ t2
i
↪→R,μ · · ·

which contradicts the innermost μ-termination of R.

Example 4. Consider again the CS-TRS R in Example 2. As shown in Example
3, there is only one CS-DP:

F(c(X),X) -> F(X,X)

Since μ�(F) = {1, 2}, if a substitution σ satisfies σ(F(c(X),X)) ∈ NFμ(R), then
σ(X) = s is in μ-normal form. Assume that the dependency pair is part of an
innermost CS-DP-chain. Since there is no way to μ-rewrite F (s, s), there must
be F (s, s) = F (c(t), t) for some term t, which means that s = t and c(t) = s,
i.e., t = c(t) which is not possible. Thus, there is no infinite innermost chain of
CS-DPs for R, which is proved innermost terminating by Theorem 1.

Of course, ad-hoc reasonings like in Example 4 do not lead to automation. In
the following section we discuss how to prove termination of innermost CSR by
giving constraints on terms that can be solved by using standard methods.

4 Checking Innermost μ-Termination Automatically

The analysis of infinite sequences of dependency pairs can be handled by looking
at (the cycles C of) the dependency graph associated to the TRS R [3].

The Innermost Context-Sensitive dependency graph of a TRS R is the di-
rected graph whose nodes are the CS-dependency pairs; there is an arc from
u → v to u′ → v′ if u → v, u′ → v′ is an innermost μ-chain.

In [2] we have investigated the structure of context-sensitive sequences in order
to improve the CS-dependency graph. A μ-rewrite sequence can proceed in two
ways: by means of visible parts of the rules that is, μ-replacing subterms in the
right-hand sides which are rooted by a defined symbol, or showing up hidden
non-μ-terminating subterms which are activated by migrating variables of a rule
l → r, i.e. those variables that are not μ-replacing in l and become μ-replacing
in r.

Definition 3 (Hidden symbol [2]). Let R = (F , R) be a TRS and μ ∈ MR.
We say that f ∈ F is a hidden symbol if there is a rule l → r ∈ R where f
occurs at a non-μ-replacing position. Let H(R, μ) (or just H, if R and μ are
clear from the context) be the set of all hidden symbols in (R, μ).

Obviously, as innermost μ-chains are restricted chains (also restricted μ-chains!),
the Innermost Context-Sensitive dependency graph (in the following ICSDG or
ICS-dependency graph for short) is a subgraph of the dependency graph.
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Definition 4 (Innermost CSDG). Let R be a TRS and μ ∈ MR. The inner-
most context-sensitive dependency graph consists of the set DP(R, μ) of context-
sensitive dependency pairs and arcs which connect them as follows:

1. There is an arc from a dependency pair u → v ∈ DPF(R, μ) to a depen-
dency pair u′ → v′ ∈ DP(R, μ) if there are subtitutions σ and θ such that

σ(v)
i

↪→! θ(u′) and σ(u) and θ(u′)∈ NFμ(R).
2. There is an arc from a dependency pair u → v ∈ DPX (R, μ) to a dependency

pair u′ → v′ ∈ DP(R, μ) if root(u′)� ∈ H(R, μ) and u and u′ ∈ NFμ(R).

Example 5. Consider the following CS-TRS R in [6]:
f(g(b)) -> f(g(a)) f(a) -> f(a) a -> b

together with μ(f) = {1} and μ(g) = ∅. Then DP(R, μ) is:
F(g(b)) -> F(g(a)) F(a) -> F(a) F(a) -> A

and μ�(F) = {1}. The CSDG contains a single cycle {F(a) -> F(a)}. However,
the ICSDG is empty.

4.1 Approximating the ICSDG

In order to automatically build the Innermost Context-Sensitive Dependency
Graph it is necessary to approximate it since for two dependency pairs u → v
and u′ → v′ it is undecidable to know if there exist two substitutions σ and θ such
that σ(v) μ-reduces innermost to θ(u′) and σ(u) and θ(u′) are instantiated to μ-
normal forms. For this reason, we have to approximate the graph by computing
a supergraph containing it in the same way as previous approaches [3,1]. In
the context-sensitive setting, we have adapted functions Cap and Ren to be
applied only on μ-replacing subterms [1]. On the other hand, in the innermost
setting it is not necessary to use Ren since all variables are always instantiated
to normal forms and cannot be reduced and Cap(v) substitutes every subterm
with a defined root symbol by fresh variables only if the term is not equal to
subterms of u. To approximate the ICS-dependency graph, however, we have to
combine both of them: we use Capμu(v) to replace all μ-replacing subterm rooted
with a defined symbol whenever the term was not equal to a μ-replacing subterm
of the left-hand side of the dependency pair u. We use Renμu(v) to replace by
fresh variables those ones that are replacing in v but not in u since they are not
μ-normalized. Given a term u, we let Capμu be given as follows: let D be a set
of defined symbols (in our context, D = D ∪D�):

Capμu(x) = x if x is a variable

Capμu(f(t1, . . . , tk)) =
{

y if f ∈ D

f([t1]
f
1 , . . . , [tk]

f
k) otherwise

where y is a new, fresh variable which has not yet been used and given a term s,
[s]fi = Capμu(s) if i ∈ μ(f) and s is not equal to a μ-replacing subterm of u and
[s]fi = s otherwise. Given a term u, we let Renμu be given by: Renμu(x) = y if x

is a variable and Renμu(f(t1, . . . , tk)) = f([t1]
f
1 , . . . , [tk]

f
k) for evey k-ary symbol



Termination of Innermost Context-Sensitive Rewriting 81

f , where given a term s ∈ T �(F ,X ), [s]fi = Renμu(s) if i ∈ μ(f) and the variable
is not μ-replacing in u and [s]fi = s otherwise.

We have an arc from u → v to u′ → v′ in the ICS-dependency graph if
Renμu(Capμu(v)) and u′ are unifiable by some mgu σ such that σ(u), σ(u′) ∈
NFμ(R); following [3], we say that v and u′ are innermost μ-connectable. The
following result whose proof is similar to that of [3, Theorem 39] formalizes the
correctness of this approach (we only need to take into account the replacement
restrictions indicated by the replacement map μ).

Proposition 2. Let (R, μ) be a CS-TRS. If there is an arc from u → v to
u′ → v′ in the ICS-dependency graph, then v and u′ are innermost μ-connectable.

Example 6. (Continuing Example 2) Since Renμ
�

u (Capμ
�

u (F(X,X))) = F(X,X)
and F(c(Y),Y) do not unify we conclude (and this can easily be implemented)
that the ICS-dependency graph for the CS-TRS (R, μ) in Example 2 contains
no cycles.

We know how to approximate the ICS-dependency graph by means of the func-
tions Capμu and Renμu. The next step is checking the innermost μ-termination
with the ICSDG automatically.

4.2 Proofs of Termination of Innermost CSR Using the ICSDG

The absence of infinite innermost (R,DP(R, μ), μ�)-chains is checked in the
ICSDG by finding (possibly different) μ-reduction pairs (�C,�C) for each cycle
C. Here, a μ-reduction pair is a pair (�,�) where � is a stable and μ-monotonic
quasi-ordering which is compatible with the well-founded and stable ordering �,
i.e., satisfying either � ◦ �⊆� or � ◦ �⊆�.

Theorem 2 (Use of the ICSDG). Let R be a TRS and μ ∈ MR. Then, R is
innermost μ-terminating iff for each cycle C in the innermost context-sensitive
dependency graph there is a μ-reduction pair (�C,�C) such that R ⊆�C, C ⊆�C

∪ �C, and

1. If C ∩ DPX (R, μ) = ∅, then C ∩ �C = ∅

2. If C ∩ DPX (R, μ) = ∅, then �μ⊆�C, and
(a) C ∩ �C = ∅ and f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C, or
(b) f(x1, . . . , xk) �C f �(x1, . . . , xk) for all f � in C.

The proof is similar to that of [1, Theorem 4]. The practical use of Theorem 2
concerns the so-called strongly connected components (SCCs) of the dependency
graph, rather than the cycles themselves (which are exponentially many) [13,14].

Example 7. There are many examples that are easily solved when trying to build
the ICS-dependency graph since they do not contain cycles. This is the case for
Example 2 and Example 5.

The use of argument filterings, which is standard in the current formulations of
the dependency pairs method, also adapts without changes to this setting.

Also the subterm criterion [13], can be used to ignore certain cycles of the
dependency graph. In [1], we have adapted it to CSR.
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5 Usable CS-Rules

An interesting feature in the treatment of innermost termination problems using
the dependency pairs approach is that, since the variables in the right-hand side
of the dependency pairs are in normal form, the rules which can be used to
connect contiguous dependency pairs are usually a proper subset of the rules
in the TRS. This leads to the notion of usable rules [3, Definition 32] which
simplifies the proofs of innermost termination of rewriting. We adapt this notion
to the context-sensitive setting.

Definition 5 (Basic usable CS-rules). Let R be a TRS and μ ∈ MR. For
any symbol f let Rules(R, f) be the set of rules defining f and such that the
left-hand side l has no redex as proper μ-replacing subterm. For any term t the
set of basic usable rules U0(R, t) is as follows:

U0(R, x) = ∅

U0(R, f(t1, . . . , tn)) = Rules(R, f) ∪
�

i∈μ(f)

U0(R′, ti) ∪
�

l→r∈Rules(R,f)

U0(R′, r)

where R′= R−Rules(R, f). If C ⊆ DP(R, μ), then U0(R,C) =
⋃

l→r∈C

U0(R, r).

Interestingly, although our definition is a straightforward extension of the clas-
sical one (which just takes into account that μ-rewritings are possible only on μ-
replacing subterms), some subtleties arise due to the presence of non-conservative
rules. Here, a rule l → r of a TRS R is μ-conservative if Varμ(r) ⊆ Varμ(l), i.e.,
it does not contain migrating variables; R is μ-conservative if all its rules are
(see [20]).

Definition 6 (Conservative CSDPs). Let R be a TRS and μ ∈ MR. The
set of conservative CSDPs DPCo(R, μ) is DPCo(R, μ) = {u → v ∈ DP(R, μ) |
Varμ

�

(v) ⊆ Varμ
�

(u)}.

Note that DPCo(R, μ) ⊆ DPF (R, μ). Basic usable rules in Definition 5 can be
applied to cycles C consisting of conservative CS-dependency pairs provided that
U0(R,C) is also conservative. This is proved in Theorem 3 below. First, we need
some auxiliary results.

Proposition 3. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s

i
↪→ s′ by

applying a rule l → r ∈ R, then there is a substitution σ′ such that s′ = σ′(t′)
for t′ = t[r]p and p ∈ PosμF(t).

Proof. Let p ∈ Posμ(s) be the position of an innermost redex s|p = θ(l) for
some substitution θ. Since s = σ(t) and for all replacing variables in t, we have
σ(x) ∈ NFμ(R), it follows that p is a non-variable (replacing) position of t.
Therefore, p ∈ PosμF(t). Since s = σ(t), we have that s′ = σ(t)[θ(r)]p and since
p ∈ PosμF(t), by defining σ′(x) = σ(x) for all x ∈ V ar(t) and σ(x) = θ(x) for all
x ∈ Var(r) (as usual, we assume Var(t) ∩ Var(r) = ∅), we have s′ = σ′(t[r]p).
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Proposition 4. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a

substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If s
i
↪→ s′ by

applying a conservative rule l → r ∈ R, then there is a substitution σ′ such that
s′ = σ′(t′) for t′ = t[r]p, p ∈ PosμF(t) and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proof. By Proposition 3, we know that σ′, as in Proposition 3, satisfies s′ = σ′(t′)
for θ as in Proposition 3 and some p ∈ PosμF (t). Since s|p is an innermost μ-
replacing redex, we have that ∀y ∈ Varμ(l), θ(y) ∈ NFμ(R). Since the rule l → r
is conservative, Varμ(r) ⊆ Varμ(l), hence ∀z ∈ Varμ(r), σ′(z) ∈ NFμ(R). Since
Varμ(t[r]p) ⊆ Varμ(t) ∪ Varμ(r), we have that ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R).

Proposition 5. Let R be a TRS and μ ∈ MR. Let t, s ∈ T (F ,X ) and σ be a
substitution such that s = σ(t) and ∀x ∈ Varμ(t), σ(x) ∈ NFμ(R). If U0(R, t)

is conservative and s
i
↪→∗

R u then s
i

↪→∗
U0(R,t) u.

Proof. By induction on the length of the sequence s
i

↪→∗
R u. If s = σ(t) = u, it is

trivial. Otherwise, if s
i
↪→R s′

i
↪→∗

R u, we first prove that the result also holds in

s
i

↪→R s′. By Proposition 3, s = σ(t), and s′ = σ′(t′) for t′ = t[r]p is such that
s|p = θ(l) and s′|p = θ(r) for some p ∈ PosμF (t). Thus, root(l) = root(t|p) and
by Definition 5, we can conclude that l → r ∈ U0(R, t). By hypothesis, U0(R, t)
is conservative. Thus, l → r is conservative and by Proposition 4, s′ = σ′(t′)
and ∀x ∈ Varμ(t′), σ′(x) ∈ NFμ(R). Since t′ = t[r]p and root(t|p) = root(l), we
have that U0(R, t′) ⊆ U0(R, t) and (since U0(R, t) is conservative) U0(R, t′) is

conservative as well. By the induction hypothesis we know that s′
i
↪→∗

U0(R,t′) u.

Thus we have s
i
↪→U0(R,t) s′

i
↪→∗

U0(R,t) u as desired.

Theorem 3. Let R = (F , R) be a TRS, μ ∈ MF , and C ⊆ DPCo(R, μ). If there
is a μ�-reduction pair (�,�) such that, U0(R,C) is conservative, U0(R,C) ⊆�,
C ⊆� ∪ �, and C∩ � = ∅, then there is no minimal innermost (R,C, μ�)-chain.

Proof. We proceed by contradiction. If R is not innermost μ-terminating, then
by Theorem 1 there is an infinite innermost (R,DP(R, μ), μ�)-chain:

σ(u1) ↪→DP(C,μ),μ� σ(v1)
i

↪→!
R σ(u2) ↪→DP(C,μ),μ� σ(v2)

i
↪→!

R σ(u3) ↪→DP(C,μ),μ� · · ·

for a substitution σ and ui → vi ∈ DPF (C, μ) for i ≥ 1. Since ui → vi ∈
DPCo(R, μ), and σ(ui) ∈ NFμ(R), this implies that ∀x ∈ Varμ(vi), σ(x) ∈
NFμ(R) and by Proposition 5 the sequence can be seen as:

σ(u1) ↪→DP(C,μ),μ� σ(v1)
i
↪→!

(U0(R,C),μ�)
σ(u2) ↪→DP(C,μ),μ� σ(v2)

i
↪→!

(U0(R,C),μ�)
σ(u3) ↪→ · · ·

By stability of �, we have σ(ui) � σ(vi) and by stability, μ-monotonicity and
transitivity of � we have that σ(vi) � σ(ui+1). By using the compatibility
conditions of the μ-reduction pair, we obtain an infinite decreasing �-sequence
which contradicts well-foundedness of �.
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Unfortunately, dealing with non-conservative CSDPs, considering the basic us-
able CS-rules does not ensure a correct approach.

Example 8. Consider again the TRS R:
b -> c(b)
f(c(X),X)-> f(X,X)

together with μ(f) = {1} and μ(c) = ∅. There are two non-conservative CS-DPs
(note that μ�(F) = μ(f) = {1}):

F(c(X),X) -> F(X,X)
F(c(X),X) -> X

and only one cycle in the ICSDG:
F(c(X),X) -> F(X,X)

Note that U0(R, F(X,X)) = ∅. Since this CS-DP is strictly compatible with,
e.g., an LPO, we would conclude the innermost μ-termination of R. However,
this system is not innermost μ-terminating:

f(b,b)
i
↪→ f(c(b),b)

i
↪→ f(b,b)

i
↪→ · · ·

The problem is that we have to take into account the special status of variables
in the right-hand side of a non-conservative CS-DP. Instances of such variables
are not guaranteed to be μ-normal forms. For this reason, when a cycle contains
at least one non-conservative CS-DP, we have to consider the whole set of rules
of the system.

Furthermore, conservativeness of U0(R,C) cannot be dropped either since we
could infer an incorrect result as shown by the following example.

Example 9. Consider the TRS R:
b -> c(b)
f(c(X),X) -> f(g(X),X)
g(X) -> X

together with μ(f) = {1} and μ(g) = μ(c) = ∅. There is only one con-
servative cycle: {F(c(X),X) -> F(g(X),X)} having only one usable (but non-
conservative!) rule g(X) -> X. This is compatible with the μ-reduction pair in-
duced by the following polynomial interpretation:

[f](x, y) = 0 [c](x) = x + 1 [g](x) = x [F](x, y) = x

However the system is not innermost μ-terminating:

f(c(b),b)
i
↪→ f(g(b),b)

i
↪→ f(b,b)

i
↪→ f(c(b),b)

i
↪→ · · ·

Nevertheless, Theorem 3 is useful to improve the proofs of termination of inner-
most CSR as the following example shows.

Example 10. Consider again the TRS R in example 1. The system contains three
cycles in the ICSDG:
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{ SEL(s(N),cons(X,XS)) -> SEL(N,XS) }
{ MINUS(s(X),s(Y)) -> MINUS(X,Y) }
{ QUOT(s(X),s(Y)) -> QUOT(minus(X,Y),s(Y)) }

The first two cycles can be solved by using the subterm criterion. However, with-
out the notion of usable rules, the last one is difficult to solve. The cycle is con-
servative and the obtained usable rules are also conservative: minus(X,0) -> X
and minus(s(X),s(Y)) -> minus(X,Y). According to Theorem 3, the cycle can
be easily solved by using a polynomial interpretation:

[minus](x, y) = x [0] = 0
[s](x) = x + 1 [QUOT](x, y) = x

6 Experiments

We have implemented the techniques described in the previous sections as part
of the tool mu-term [19]. In order to evaluate the techniques which are reported
in this paper we have made some benchmarks. We have considered the examples
in the Termination Problem Data Base (TPDB, version 3.2) available through
the URL:

http://www.lri.fr/~marche/tpdb/

Although there is no special TPDB category for innermost termination of CSR
(yet) we have used the TRS/CSR directory in order to test our techniques for
proving termination of innermost CSR (Theorems 2, 3). It contains 90 examples
of CS-TRSs. We are able to give an automatic proof of innermost μ-termination
for 62 examples. In order to evaluate our direct techniques in comparison with
the transformational approach of [7,8,16], where termination of innermost CSR
for a CS-TRS (R, μ) is proved by proving innermost termination of a trans-
formed TRS Rμ

Θ, where Θ specifies a particular transformation (see [6,7] for
a survey on this topic), we have transformed the set of examples by using the
transformations that are correct for proving innermost termination of CSR: Giesl
and Middeldorp’s correct transformations for proving termination of innermost
CSR, see [7], although we use the ‘authors-based’ notation introduced in [20]:
GM and C for transformations 1 and 2 for proving termination of CSR intro-
duced in [8], and iGM for the specific transformation for proving termination of
innermost CSR introduced in [7]. Then we have proved innermost termination
of the set of examples with AProVE [9], which is able to prove innermost ter-
mination of standard rewriting. In fact, AProVE is currently the most powerful
tool for proving termination and innermost termination of TRSs but as we have
said, mu-term is nowadays the only termination tool that proves innermost ter-
mination of CSR. The results are summarized in Table 1. Further details can be
found here:

http://www.dsic.upv.es/~balarcon/FroCoS07/benchmarks

Indirectly, we have also made the first benchmarks to evaluate the existing cor-
rect transformations for proving innermost termination of CSR (see Table 1)

http://www.lri.fr/~marche/tpdb/
http://www.dsic.upv.es/~balarcon/FroCoS07/benchmarks
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Table 1. Comparing techniques for proving termination of innermost CSR

iCSDPs Transformations
YES score 62 44

YES average time 0.13 sec. 5 sec.

C GM iGM
YES score 24 41 30

showing that, quite surprisingly, the iGM transformation (which is in principle
the more suitable one for proving innermost termination of CSR) obtains worse
results than GM.

7 Conclusions and Future Work

In this paper, we have extended the context-sensitive dependency pairs approach
in [1] for proving termination of innermost CSR. We have introduced the no-
tion of an innermost μ-chain (Definition 2) and proved that it can be used to
characterize innermost μ-termination (Theorem 1). We have also shown how to
automatically prove innermost μ-termination by means of the ICS-dependency
graph (Definition 4, Theorem 2). We have formulated the notion of basic usable
rules showing how to use them in proofs of innermost termination of CSR (Def-
inition 5, Theorem 3). We have implemented these techniques in mu-term and
have made some benchmarks.

Up to now, no direct method has been proposed to prove termination of
innermost CSR. So this is the first proposal of a direct method for proving
termination of innermost CSR. We have extended Arts and Giesl’s approach to
prove innermost termination of TRSs to CSR (thus also extending [1,2]). The
main issue which is left open is a general notion of usable rules, which can be
used with non-conservative CSDPs. As in the standard case, this would probably
help us to achieve better results. Even without them, though, our benchmarks
show that the use of CSDPs dramatically improves the performance of existing
(transformational) methods for proving termination of innermost CSR.

Acknoledgements. We thank the anonymous referees for many useful remarks.
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Abstract. We describe a translation from SAT solver generated propo-
sitional resolution refutation proofs to classical natural deduction proofs.
The resulting proof can usually be checked quicker than one that simply
simulates the original resolution proof. We use this result in interactive
theorem provers, to speed up reconstruction of SAT solver generated
proofs. The translation is efficient, running in time linear in the length
of the original proof, and effective, easily scaling up to large proofs with
millions of inferences.

1 Introduction

Interactive theorem provers like PVS [11], HOL4 [3] or Isabelle [12] traditionally
support rich specification logics. Automation for these logics is limited in theory
and hard in practice, and proving a non-trivial theorem usually requires manual
guidance by an expert user. Automatic proof procedures on the other hand, while
designed for simpler logics, have become increasingly powerful over the past few
years. By integrating automated procedures with interactive systems, we can
preserve the richness of our specification logic and at the same time increase the
degree of proof automation for useful fragments of that logic [13].

Formal verification is an important application area of interactive theorem
proving. Problems in verification can often be reduced to Boolean satisfiability
(SAT) and so the performance of an interactive prover on propositional problems
may be of significant practical importance. SAT solvers [10] are powerful proof
procedures for propositional logic and it is natural to wish to use them as proof
engines for interactive provers.

There are many approaches to such an integration. The pragmatic approach is
to trust the result of the SAT solver and assert it as a theorem in the prover. The
danger is that of soundness bugs in the solver but more likely in the relatively
untested interface code, which may involve complex translations to propositional
logic. The safest approach would be execute the SAT solver algorithm within the
prover, but we reject this on the grounds of efficiency. A good middle ground
is to verify the SAT solver proof, and this is the approach we take. The extra
assurance of soundness is particularly suited for those industrial applications
where the focus is on certification rather than debugging.

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 88–102, 2007.
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Recent work [2,16] showed how interactive provers could use SAT solvers as
non-trusted decision procedures for propositional logic, by simulating propo-
sitional resolution in their proof systems. We now show how to translate the
resolution proof to a natural deduction proof that can be replayed faster than
a natural deduction proof that directly simulates the resolution proof. The idea
is to memoise parts of the proof by adapting standard data compression tech-
niques. The treatment is tool independent, and assumes only that the inter-
active prover supports propositional logic and can simulate classical natural
deduction.

The next section gives all the background required to keep the paper reason-
ably self-contained. In §3 and §4, we look at proof reconstruction and memoisa-
tion respectively. Finally, we give experimental results in §5.

2 Preliminaries

2.1 SAT Solver Proof Structure

We restrict ourselves to proofs produced by conflict driven clause learning SAT
solvers based on the DPLL algorithm [8]. A SAT solver takes as input a term in
conjunctive normal form (CNF), a conjunction of disjunctions of literals. A literal
is a possibly negated atomic proposition. Each disjunct term of the conjunction
is called a clause. Since both conjunction and disjunction are associative, com-
mutative and idempotent, clauses can also be thought of as sets of literals, and
the entire formula as a set of clauses.

The propositional resolution proof system is

C0 ∪ {p} C1 ∪ {p̄}
(C0 − p) ∪ (C1 − p̄)

p̄

where the literal p̄ is the pivot. We set the convention that the pivot is given
by its literal occurrence in the second input clause of the resolution. The first
clause contains the negation of the pivot. The conclusion clause is the resolvent.

A SAT solver generated refutation proof consists of a list of chains of reso-
lutions. The last chain in the list derives the empty clause ⊥. We abbreviate a
chain c

Cn

C2

C0 C1

R1

p1

R2

p2

....
Rn−1

Rn
pn

(1)

by using the linear form c ≡ C0(p1)C1(p2)C2 . . . (pn)Cn and order literals, so
clauses are ordered sets. Each Rn is assigned a numeric ID that can be referenced
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by chains occuring later in the proof. The Ci are clause IDs (typically indexes
into the clause database) and the pivots pi are encoded as numbers.

Each chain corresponds to a conflict clause derivation during the SAT solver’s
execution. Since the solver uses backtracking search, many such derived clauses
are never used in the final proof. The derivations that are relevant to the final
proof can be easily and cheaply extracted from the SAT solver trace. Hence-
forth, whenever we refer to the SAT solver generated proof, we mean the smaller
extracted version. It is beyond the scope of this work to discuss why SAT solver
resolution proofs are restricted to this format [8].

2.2 Natural Deduction and Fully Expansive Proof

Classical natural deduction, call it N, is a well known inference system. Figure 1
gives a two-sided sequent style presentation of the rules, primitive and derived,
that we shall use. N has rules for other connectives and for quantifiers, but we
shall not be needing those.

{A} � A
ASSUME

Γ � A Δ � A ⇒ B

Γ ∪ Δ � B
MP

Γ � A ⇒⊥
Γ � ¬A

¬I

Γ � A

Γ − {B} � B ⇒ A
⇒I

Γ � A ⇒ B

Γ ∪ {A} � B
⇒E

Δ � A Γ ∪ A � B

(Γ − A) ∪ Δ � B
CUT

Fig. 1. Inference rules

Implementations of system N form the deductive engine for the theorem
provers HOL4, Isabelle/HOL and HOL Light [5], and other well-known interac-
tive provers such as Coq [7], MetaPRL and PVS can simulate system N easily.
It thus forms a good starting point for our investigations.

A fully expansive or LCF style prover is one in which all proof must use a
small kernel of simple inference rules. The small kernel is easy to get right, and
all proof is then sound by construction. For this reason, all the provers mentioned
above, except perhaps1 PVS, are fully expansive.

The penalty for fully expansive proof is performance, because complex infer-
ences must be implemented in terms of the existing kernel rather than in a more
direct and efficient manner. It is therefore standard practice when implementing
proof procedures for fully expansive provers to use an efficient external engine
to find the proof, and then check the proof in-logic. One approach is to reflect a
verified proof checker into efficient code [4]. Another is to replay the proof within
the prover. We take the latter approach, since many interactive provers do not
support reflection (except indirectly via unverified code generation).

We shall be using the HOL4 theorem prover as our initial test bed. The HOL4
kernel can efficiently simulate all the rules of Figure 1.
1 The designation “fully expansive” is a philosophical one: implementations vary in

both the size of the kernel and the complexity of the rules.
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2.3 Generalised Suffix Trees

A generalised suffix tree (GST) is a data structure that supports efficient sub-
string matching. Let A be an alphabet. An alphabet is a set of distinct atomic
labels, called characters. Sequences of characters are called strings. The length
|s| of a string s is the number of characters in it. Strings are of finite length. A
substring s[i..j] is a contiguous subsequence of s, starting from the character of
s at index i and going up to and including the character of s at index j.

Given a set of strings T over A and a string P , a GST for T can report all
substrings of elements of T that are substrings of P , in time O(|P |). The GST for
T itself can be constructed in time O(Σs∈T |s|) and takes up space O(Σs∈T |s|),
assuming A is fixed. If this is not the case, all complexity results acquire a factor
of log2A.

An online algorithm for GST construction is known, due to E. Ukkonen [15].
Ukkonen’s algorithm is for constructing the suffix tree of one string, but can
easily be extended to GSTs by adding a terminal character $ to the end of each
string, where $ /∈ A.

root

ab b cd d

0

e

0

e

0

cdabe

0

e

0

cdabe

1

d

0

abe

1

d

0

abe

1

$

Fig. 2. Example GST for abcdabe and cdd

A GST stores all suffixes of each string in T , in a structure resembling a
threaded Patricia trie [9]. As an example, Figure 2 gives the GST for the strings
abcdabe and cdd, with pointers (or ID’s) 0 and 1 respectively. The threads are
not shown, and edges are labelled with substrings for readability.

Intuitively, a string is added by considering increasingly longer prefixes of it,
and adding each suffix of that prefix to the tree. A final step adds on the $
character so that only the actual suffixes of s are represented. Suffixes are added
by following from the root node the unique path corresponding to that suffix,
and then creating new nodes (perhaps breaking an existing edge into two edges)
and edges if some suffix of that suffix is not already present.

The concatenation of edge labels along the path from the root to a node is
called the path label of the node. Note that a leaf node is labelled with the IDs
of all strings that end at that node. Thus, the longest substring common to a set
of strings is the deepest (w.r.t. the length of its path label) internal node such
that all leaf nodes below it are labelled by IDs of only that set of strings. In the
example, this would be cd.
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3 Proof Reconstruction

To show that a propositional term t is a tautology, we convert t̄ to CNF, and re-
play in the theorem prover the SAT solver generated proof of the unsatisfiability
of t̄, thus concluding % t (for details see [16]).

SAT solvers maintain a set of clauses, called the clause database (typically
a dynamic array). Initially these are the problem clauses. The database is then
extended by conflict clauses derived during the proof search. The proof search
itself consists of trying out assignments of � or ⊥ to the variables of the problem.
A conflict (a clause in the database becoming false under the current assignment
set) causes a backtrack where part or all of the current sequence of assignments
may be undone. A conflict clause is then derived, encoding what the algorithm
hopes are the critical assignments within the current assignment set that caused
the conflict (for details see [8].

However, having conflict clauses does not mean that similar or identical sub-
sequences of assignments can never occur in the future. Indeed, in problems with
structure, such as most verification problems, there is some locality in the sense
that given a certain assignment sequence, it is likely that the next variable to
be assigned, and the value it is assigned, are the same as for an earlier identical
assignment subsequence.

Since clause IDs are numbers and pivots are encoded as numbers, a chain can
be seen as a string of numbers. Thus, locality in variable assignments translates
into chains having identical substrings. During reconstruction of the proof within
the interactive prover, such common substrings mean duplication of computa-
tional effort. We now show how such common substrings can be used to derive
the same proof at lower cost. Section 4 will show how common substrings are
actually found in the SAT solver proof and factored out. Chronologically, that
happens first, but it is more instructive to first look at proof reconstruction.

To avoid clutter, we identify literals and clauses with their numeric IDs.

3.1 Simulating Resolution

The first step is see how propositional resolution can be efficiently simulated
using the rules of Figure 1 [16]. A clause would normally be represented by a
term p0 ∨ . . . ∨ pn. However, performing resolution using this representation is
inefficient because of tedious associative-commutative reasoning required to pick
out the pivots. Instead, the clause is represented by the theorem {p0 ∨ . . . ∨
pn, p̄0, . . . , p̄n} %⊥. This theorem form asserts exactly the clause concerned.

Now consider two clauses represented in theorem form. If the clauses are
s ≡ p0 ∨ . . . ∨ pn ∨ v̄ and t ≡ q0 ∨ . . . ∨ qm ∨ v, we may resolve them, with v as
the pivot, as follows:

{s, p̄0, . . . , p̄n, v} %⊥
{s, p̄0, . . . , p̄n} % v ⇒⊥ ⇒I

{s, p̄0, . . . , p̄n} % v̄
¬I {t, q̄0, . . . , q̄m, v̄} %⊥

{s, t, p̄0, . . . , p̄n, q̄0, . . . , q̄m} %⊥
CUT



A Compressing Translation from Propositional Resolution 93

We package this derivation into a single rule written as a function RES(s, t),
where s and t are understood to be in theorem form, and the output is also a
theorem. We assume only one variable occurs with opposite signs in the argument
clauses, so there is no need to supply the pivot. This way, RES can be generalised
to chains, i.e, RES(C0, . . . , Cn) = Rn for derivation 1 of §2.1, where the Ci are
again understood to be theorems. The final resolvent theorem, and indeed any
theorem intended to represent a clause, is called a clause theorem.

The clause theorem for the resolvent can be used as an input into another RES
and the process continued until the hypotheses contain only terms correspond-
ing to full clauses and no literals. At this point, we have derived the required
refutation. To avoid clutter, we shall use the � symbol to represent all those
hypotheses of a clause theorem that represent clauses. The choice of notation
is deliberate, representing a “hole” rather than an identifier bound to specific
terms. The hole collects all the initial clauses of the problem that participate in
the refutation.

If hypotheses sets are implemented as such (e.g., they are implemented as
red-black sets in HOL4), computing a single resolution inference requires two
set deletions and one set union. In HOL4, hypothesis set deletions and in-
sertions are logarithmic in the number of hypotheses, whereas unions are
linearithmic2.

3.2 Using Memoised Pieces of Chains

The memoisation algorithm (§4) generates a new, memoised proof from the SAT
solver proof. It detects shared parts of the proof and writes them out before their
first use, and later in the proof at the point of use inserts pointers to the shared
part. We now show how this sharing is used in the theorem prover.

Let a semi-chain be a strictly alternating sequence of pivots and clauses,
starting with a pivot and ending with a clause. Semi-chains are written using
the same linear form as chains. The length or size of a semi-chain is the num-
ber of pivots in it. Given a chain c ≡ C0(p1)C1(p2)C2 . . . (pn)Cn, a semi-chain
(pi)Ci . . . (pj)Cj is denoted by c[i..j] for i > 0, analogous to substring notation.

We allow semi-chain notation in RES, i.e.,

RES(C0, C1, C2, . . . , Cn)
=RES(C0, c[1..n])
=RES(C0, . . . , Ci−1, c[i..j], Cj+1, . . . , Cn)

Further, we use RES(c) for RES(C0, c[1..n]), and let ci for i > 0 be the ith pivot
in a (semi-)chain c.

We plan to use our memoisation algorithm (§4) to identify semi-chains com-
mon to more than one chain in the proof. Suppose the algorithm has found a
semi-chain s with m pivots, such that s = c1[i..i + m] and s = c2[i′..i′ + m] for
chains c1 and c2, where c1 is the same as the chain c in §2.1.

2 O(nlog(n))
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The aim is compute the resolutions in s only once. The immediate problem
is that the semi-chain has no first clause with which to begin computing its
resolutions. To get around this, we construct the first clause for s as follows:

{s1 ⇒ . . .⇒ sm ⇒⊥} % s1 ⇒ . . . ⇒ sm ⇒⊥ ASSUME
.... ⇒E

{s1 ⇒ . . . ⇒ sm ⇒⊥, s1, . . . , sm} %⊥ (2)

We shall call such a clause the starter clause for a semi-chain, and denote it by
ŝ. The reader can confirm that

RES(ŝ, s) = {�, s1 ⇒ . . .⇒ sm ⇒⊥, q̄0, . . . , q̄k} %⊥

where the qi are the non-pivot literals occuring in the clauses of s.
We can now see why semi-chains do not begin with a clause: if they did, the

pivot to be removed from that clause would vary from one use of the semi-chain
to another, making it impossible to cache RES(ŝ, s).

Now, we wish to derive RES(c1) without computing RES(Ci−1, c[i..i+n]). The
first step is

RES(C0, c1[1..i− 1]).... ⇒I

{�, q̄0, . . . , q̄k} % s1 ⇒ . . . ⇒ sm ⇒⊥ RES(ŝ, s)
{�, q̄0, . . . , q̄k′} %⊥ CUT (3)

where the qi are again the non-pivot literals of the clauses of c1, up to that point
in the derivation. Then,

RES(c1) = RES({�, q̄0, . . . , q̄k′} %⊥, c1[i + m + 1..n])

This derivation works because ⇒ I does not require that the antecedent being
introduced should occur in the hypotheses of the theorem; if it does, it is deleted
from the hypotheses as an additional step. This is easily generalised for multiple
non-overlapping semi-chains in the same chain. Overlaps will be discussed in
§3.3. RES(c2) is computed in a similar manner.

For every memoised semi-chain there is a one-time cost of the construction of
the starter clause, which is m set insertions (one for each ⇒E). For every use
of a memoised semi-chain, we need one CUT and m number of ⇒ I, giving one
set union and m + 1 set deletions. However, since even a non-deductive use of
the semi-chain would require one set union and one set deletion, our true net
overhead is only m set deletions per use of a semi-chain. Even if only two chains
share this semi-chain, we have still saved m set unions, and set union is a far
more expensive operation than insertion or deletion.

3.3 Merging Overlapping Semi-chains

When a common semi-chain s is discovered, it is written out to the proof before
the chains which will use it. The chains that use s have the s part of themselves
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replaced by a semi-chain of size one, consisting of the first pivot of s and a clause
ID that points to RES(ŝ, s) in the clause database.

This can create unsoundness when semi-chains overlap, because pivots (that
fall in the overlap of two semi-chains) that have been removed using one semi-
chain are re-introduced using the next one, so that the clause theorem of the
underlying chain changes from what the SAT solver intended. It is too limiting to
forbid our semi-chain matching algorithm from detecting more than one match
per chain. Instead, we can merge the clause theorems of overlapping semi-chains,
to obtain a clause theorem that is usable without compromising soundness.

We show how to merge two overlapping semi-chains; it is easy to extend the
method to more than two. We assume that the semi-chains do overlap and that
neither is contained entirely within the other. The memoisation algorithm will
guarantee this.

Suppose in a chain c we have we have two overlapping semi-chains s1 = c[i1..j1]
and s2 = c[i2..j2], where i1 < i2. The merged semi-chain, s3, is then c[i1..j2]. We
first compute the list of pivots of s3, [ci1 , . . . , cj2 ]. The next step is to construct
the starter clause ŝ3. This is done exactly as in derivation 2 of §3.2, except that
we now use the list we just computed. Once that is done, we have,

ŝ3.... ⇒I

{�, q̄0, . . . , q̄k} % ci1 ⇒ . . . ⇒ cj1 ⇒⊥ RES(ŝ1, s1)
{�, q̄0, . . . , q̄k′ , ci1 ⇒ . . . ⇒ cj2 ⇒⊥} %⊥ CUT

.... ⇒I

{�, q̄0, . . . , ¯qk′′} % ci2 ⇒ . . . ⇒ cj2 ⇒⊥ RES(ŝ2, s2)
{�, q̄0, . . . , ¯qk′′′ , ci1 ⇒ . . . ⇒ cj2 ⇒⊥} %⊥ CUT

(4)
where the qi play the same role as before, and RES(ŝ1, s1) and RES(ŝ2, s2) have
already been computed using derivation 3 of §3.2. Then we can set

RES(ŝ3, s3) = {�, q̄0, . . . , ¯qk′′′ , ci1 ⇒ . . . ⇒ cj2 ⇒⊥} %⊥

It is tedious but not hard to show that this clause theorem is precisely the
clause theorem that would be generated from scratch (i.e., by performing all the
resolutions) for the semi-chain s3. RES(c) can now be computed as in derivation
3 of §3.2, using RES(ŝ3, s3).

However, a merge comes at a cost. There is the cost for ŝ3, plus two CUT rules
and (j1 − i1) + (j2 − i2) applications of ⇒I (in the case of only two overlapping
semi-chains). There is nothing against which to offset this cost, since merging
does not save us anything: we are only doing it to preserve soundness. Worse, the
computation of RES(ŝ1, s1) and RES(ŝ2, s2) computes the overlapping resolutions
twice. However, we can add some tradeoff analysis to the memoisation algorithm
to ensure we never lose time overall (see §4.1). We cannot, of course, discard s1

and s2 in favour of s3, since they are separately used elsewhere.
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4 Proof Memoisation

We now turn to the generation of the memoised proof itself. The input is the
SAT solver generated proof (from which unused chains have already been filtered
out). The output is a memoised proof that factors out shared semi-chains and
additionally indicates when merging is required.

Since SAT solver proofs can have millions of inferences, we need an efficient
way of detecting shared semi-chains. The algorithm proceeds in two stages. In
the read stage, we make a pass though the proof, adding chains to a GST and
collecting information about matches. In the write stage, we write out the mem-
oised proof, ensuring that all semi-chains are written out before their point of
first use.

4.1 Read Stage: Detecting Shared Semi-chains

Let V be the set of literals (hence potential pivots) and C be the set of clause
IDs. Then our alphabet A is V +C, the + here indicating disjoint union. Every
semi-chain is a string, but not all strings are semi-chains. A sub-semi-chain of a
semi-chain is any substring of the semi-chain that begins at an even numbered
index (string indexes begin at zero) and is of even length.

In the read stage, our strategy will be to drop the first clause from each
chain we encounter, and add the resulting semi-chain to our GST, as a string.
Then, when reading in later chains, we shall match in the GST the longest sub-
semi-chain(s) of the chain being read. Since not all strings (and hence not all
substrings) are semi-chains, we will need to modify the GST matching algorithm
to return only valid semi-chains. We could let (literal,clause ID) pairs be the
alphabet, but then A = V ×C and the constant factors in the complexity results
would become very high.

The modification is easily done by filtering matching substrings. When the
GST returns a match, it is possible to check in constant time that the starting
index of the match is even numbered in both matching chains, and that the
length of the match is even. If so, it is a valid semi-chain.

Detecting a match. In §2.3 we noted the longest common substring is the path
label of the deepest node below which all leaves are marked only with the IDs of the
strings we are interested in. This requires the use of sophisticated lowest common
ancestor algorithms. Fortunately, we are interested in finding a match with any
string, to only the string currently being added. So we can limit ourselves to leaves
marked with the ID of the current string. But we can do better.

Once a variable has been assigned during a SAT solver’s search, it is not
assigned again unless there is a conflict and the variable becomes unassigned
during backtracking. What this means for us is that a pivot never occurs twice
in a (semi-)chain. This means that the GST algorithm, when adding the current
string, will never revisit a node that was created earlier during the addition of
the same string [15]. Nodes (or leaf edges from a node) are created whenever
we are unable to find a way to extend a suffix of a prefix of the current string
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without explicitly adding the next character in that suffix to the current path
in the tree that we have followed from the root node. This means that the suffix
up to but not including the next character is a substring of an earlier chain, as
well as a substring of the chain being added.

So, thanks to our knowledge of the structure of the strings, we can detect
matches on the fly as we add the current string. The parent edge of any node just
created was labelled with the ID of the string (or equivalently, the clause ID of
the chain) during the addition of which that edge was created. This string/chain
is called the owner of the match, and we are guaranteed not only that it contains
the matched semi-chain, but also that it is the very first string that contains the
matched semi-chain, since edges’ string ID labels are assigned only when the
edge is created.

Choosing the best match. Adding a string can return multiple overlapping
matches. We have considered three different schemes for retaining these matches:

1. Retain only the longest size match.
2. Retain all matches.
3. Greedily retain maximal non-overlapping matches.

Since each retained match is converted into a memoised semi-chain in the output
proof, the retention scheme affects how much merging will be required. Scheme 1
minimises merging (merging can still occur, in the owning chain), but may miss
many opportunities for sharing work. Scheme 2 does not miss anything, but
maximises merging. Scheme 3 attempts to find a middle of the road solution,
and in experiments so far it appears to be superior.

It is too expensive to find the optimal maximal non-overlapping matches.
Matches are always reported in increasing order of starting index (recall the GST
algorithm considers prefixes of increasing size), so Scheme 3 adopts a greedy
approach as follows, where set R is the set of reported matches that will be
returned by the GST, and s is the string being added:

1. R ← ∅,M ← ∅,maxj ← −1
2. s[i..j] ← next match

3. if i > maxj then R ← R ∪ {max substring(M)},M ← {s[i..j]}
else M ← M ∪ {s[i..j]},maxj ← max(j,maxj)

4. if last match then R ← R ∪ {max substring(M)}
else goto 2

For each match that is reported, pointers to information about the match are
recorded keyed on both the current and the owning string, for use during the
write stage. These are literally pointers, so there is no wasted memory.

Tradeoff analysis. We do not report matches of length two, since these cor-
respond to semi-chains of length one. In that case, the overhead for using the
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semi-chain outweighs the savings. The situation is slightly more complicated for
semi-chains of length two. Here, if we have only a single match, we save two set
unions and two set insertions, but use up two set unions and four set insertions
and deletions in using the semi-chains, so again there is a net loss. However, if a
semi-chain of length two matches in more than two chains, then we make a net
profit in terms of set unions saved. For semi-chains of length three or more, we
always profit (ignoring merges for the moment).

Therefore, for each semi-chain, we keep a count of how many times it has
matched. This information is used in the write stage to decide which matches
to retain, because by then we know how many times every semi-chain matched.
The semi-chain match count information is recorded in a map whose key is a 64
bit unsigned integer constructed as follows:

1. The first 32 bits give the owner string’s ID
2. The next 16 bits give the starting index in the owner
3. The next 16 bits give the ending index in the owner

This hash is perfect because a distinct matched semi-chain will always be owned
by the string of the very first chain to contain that semi-chain. 32 bits for the
clause ID is sufficient. 16 bits for the indices is not as safe, though we have yet to
come across any proofs where a conflict clause derivation contained more than 216

pivots. This may be because we have not attempted any large problems as yet.

4.2 Write Stage: Merging and Splitting

Once the read stage is over, we have for each chain information on all its matches,
including those for which it is the owner. We now make another pass through the
chains, writing out semi-chains si, merging information, and the chains them-
selves. For a chain c, we give a abstract view of the write stage (details follow):

foreach si ∈ owned by(c)
record si

sort matched in(c) by starting index

foreach S ⊆ matched in(c)
if overlap(si ∈ S) then record merge(S)

record c

An example will make this more concrete.

Example. Suppose c matched semi-chains s1 ≡ c[i1..j1], s2 ≡ c[i2..j2] and s3 ≡
c[i3..j3], of which it owns all but s1. Suppose further that s1 and s2 overlap in
c. Then the proof output for c would be as follows (where we elide all clauses
except the first clause C0 of c and let c[i]≡ ci).

id2: S c[i_2] ... c[j_2]
id3: S c[i_3] ... c[j_3]
id4: M id1 c[i_1] c[j_1] id2 c[i_2] c[j_2]
id5: C C_0 c[1] ... c[i_1] id4 ... c[i_3] id3 ...
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The idn denote clause IDs, which are added here for readability but are implicitly
assigned by order of appearance in the actual proof. id1 is the ID of s1, which was
recorded earlier since c does not own it. An S indicates a semi-chain, recorded as
a sequence of alternating pivot and clause IDs. An M indicates merging informa-
tion, recorded as a list of (id,start index,end index) triples, in increasing order of
start index, which is sufficient information for the methods of §3 to compute the
required clause theorems. Finally, a C indicates the chain itself, with references to
the clause IDs of semi-chains or merged semi-chains as required. �
The only point of interest when writing semi-chains is that if a semi-chain is
contained entirely within another (in which case c owns both), we write out
both semi-chains separately since they may be required elsewhere, but ignore
the contained semi-chain completely when writing out the C line.

Detecting merges. We need to check if semi-chains overlap each other, and
in what order. There may be more than one M line if there was more than one
disconnected set of overlapping semi-chains.

At this point it will be helpful to abstract the semi-chains c[i..j] to closed
intervals [i, j] on the natural number line. The first step is to sort the intervals
by start index. This can be done in any standard way. We use a heap H , the top
most interval having the smallest start index.

The next step is to partition this interval set into merge sets such that an
interval in one merge set overlaps with at most two intervals in the same set
but has at least one pivot not overlapped by any interval, no interval is entirely
contained in another, and no interval overlaps with an interval in another merge
set. The intuition is that each merge set corresponds to a single M line. Merge
sets keep their intervals sorted by start index. The merge sets are created as
follows, where L is the final list of merge sets (@ is list append):

1. L← [∅]
2. if empty(H) then return L else [i, j] ← pop(H)
3. if j − i = 1 ∧ times matched(c[i..j]) = 1 then goto 2
4. [i′, j′] ← last(last(L))
5. if j′ ≥ i

if j ≤ j′ ∨ i′ ≥ i then last(L) ← last(L) ∪ {[min(i, i′),max(j, j′)]}
else last(L) ← last(L) ∪ {[i, j]}

else L ← L@{[i, j]}
6. goto 2

Note we take care to filter out intervals contained entirely within others. This
procedure is linear in the number of intervals.

Splitting merged semi-chains. At this point we are ready to write out the
merge information, each merge set in L contributing one M line. However, recall



100 H. Amjad

that we wish to avoid doing merges if possible, due to the overhead. Also, if
two semi-chains overlap, then the resolutions in the overlapping part are com-
puted twice, once for each semi-chain. We can sometimes avoid this situation by
splitting two overlapping semi-chains into three semi-chains, corresponding to
the non-overlapping part of the first semi-chain, the overlapping part, and the
non-overlapping part of the second semi-chain. The three new semi-chains do
not require merging, since they do not overlap, and the overlapped part is now
computed only once.

Since semi-chains matched in c but not owned by c, have already been written
out, a split can only happen if both the involved semi-chains are owned by c.
We could get around this by making a third pass over the proof, which knows
in advance what splits are required, but the gains from this are uncertain.

Even when we can split an overlap, it does not always pay to do so. The
resulting semi-chains could be of length two, so that using them may result in a
net increase in computational effort, as noted towards the end of §4.1. Further,
if there is a choice between which overlap to split, we need to be careful since
that split could affect whether or not we split any remaining overlaps.

Therefore, for each merge set, we sort overlaps by size, and begin by splitting
the biggest one, for maximum savings. We avoid splitting overlaps where the
resulting middle semi-chain would be of size two or less. The splitting information
does not have to be recorded in the proof: all we get is a few more S lines and
few less M lines. This optimisation made a marked difference in practice.

5 Experimental Results

Since the shortening of resolution proofs is believed to be an intractable prob-
lem [1], the algorithm is of heuristic value only, and requires benchmarking for
performance evaluation. The memoisation algorithm itself is easily seen to be
linear in the length of the proof: the read stage adds chains and detects matches
in time linear in the length of the chain, and the write stage takes worst case
linear time to analyse merging information (the sorting in §4.2 is an abstraction
only, as the GST reports matched intervals ordered by starting index).

We tried out our algorithm on a few problems from the SATLIB benchmarks
library for SAT solvers. We used the ZChaff SAT solver [10] to generate the
proofs, which were then memoised using a C++ implementation, and then re-
constructed in HOL4. The results are summarised in Table 1. The columns are,
respectively: problem name, number of variables, number of clauses, SAT solver
time, proof replay time, compression time, compressed proof replay time, num-
ber of resolutions, number of resolutions in compressed proof, net speed up. The
benchmark machine was an Intel P4 3GHz CPU with 4GB of RAM.

The program crashed when reconstructing the memoised proof for ip50. The
crash was not in our code but in the Moscow ML runtime engine on top of which
HOL4 runs. We are investigating this.

As hoped, the proof replay times in the theorem prover do improve when
using the memoising algorithm. The payoff column measures the reduction in
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Table 1. Times in seconds. Resolutions in inference steps. Pay off in % time.

Problem Vars Clauses ZChaff HOL4 Memo HOL4+M Res Res+M Pay off

c7552.miter 11282 69529 78 104 3 76 242509 225439 24%
ip36 47273 153368 218 1706 22 1219 1141756 1022449 27%
ip38 49967 162142 237 1831 23 1222 1109932 996248 32%
ip50 66131 214786 1077 9034 118 - 3957973 3568362 -
6pipe 15800 394739 200 396 7 286 310813 267972 26%
6pipe.ooo 17064 545612 384 1093 15 735 782903 694019 31%
7pipe 23910 751118 584 1010 19 793 497019 437060 20%

total time and is always positive. We note here that directly verifying the proof
in C++ is much faster. However, our aim here is not to debug SAT solvers, but
to use them as untrusted oracles for fully expansive theorem provers.

As expected, the number of resolution steps is also lower in the memoised
proof. This does not tell the full story since the memoised proof contains infer-
ences other than RES inferences. Rather than counting all the different kinds of
inferences, we normalised the computational cost in terms of set unions, dele-
tions and insertions. The memoised proofs have more primitive inferences, but
after factoring out the inferences due to simulating RES, we observed that the
remaining inferences are mostly set deletions/insertions due to starter clause
construction and merging. These operations are cheaper than set unions, so we
conclude that the time savings come from the reduction in the number of costly
set unions that occur in applications of the RES rule.

6 Conclusion

Other than the already cited work [2,16] we are not aware of any work on inte-
gration of DPLL based SAT solvers with interactive theorem provers. Harrison
integrated a SAT solver based on St̊almarck’s method into HOL90 [6], and the
theorem provers PVS, Coq and HOL Light have been integrated with SMT
solvers at various times. Certainly, we are not aware of any work on memoisa-
tion of SAT solver generated proofs. The closest work we could find is on merging
chains using extended resolution, but both the method and the aim of that work
are completely different from our own [14].

More interesting is to normalise chains by reordering the pivots, to increase
the number of string matches. This will either require explicit knowledge of
pivot occurrences in the chain clauses, or an implicit idea of which pivots’ reso-
lutions must precede the others. The former would require effectively doing all
the resolutions, an expensive proposition. The latter would require analysing the
implication graph of the SAT solver when a conflict occurs. Not only would this
sacrifice tool independence, it would also be hard to do efficiently since we do
not know a priori which conflicts are used in the final proof.
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Abstract. In formal approaches, messages sent over a network are usu-
ally modeled by terms together with an equational theory, axiomatiz-
ing the properties of the cryptographic functions (encryption, exclusive
or, . . . ). The analysis of cryptographic protocols requires a precise un-
derstanding of the attacker knowledge. Two standard notions are usu-
ally considered: deducibility and indistinguishability. Those notions are
well-studied and several decidability results already exist to deal with a
variety of equational theories. However most of the results are dedicated
to specific equational theories.

We show that decidability results can be easily combined for any dis-
joint equational theories: if the deducibility and indistinguishability re-
lations are decidable for two disjoint theories, they are also decidable for
their union. As an application, new decidability results can be obtained
using this combination theorem.

1 Introduction

Security protocols are paramount in today’s secure transactions through public
channels. It is therefore essential to obtain as much confidence as possible in
their correctness. Formal methods have proved their usefulness for precisely an-
alyzing the security of protocols. Understanding security protocols often requires
reasoning about knowledge of the attacker. In formal approaches, two main de-
finitions have been proposed in the literature to express knowledge. They are
known as message deducibility and indistinguishability relations.

Most often, the knowledge of the attacker is described in terms of message
deducibility [17,19,18]. Given some set of messages φ representing the knowl-
edge of the attacker and another message M , intuitively the secret, one can ask
whether an attacker is able to compute M from φ. To obtain such a message he
uses his deduction capabilities. For instance, he may encrypt and decrypt using
keys that he knows.

This concept of deducibility does not always suffice for expressing the knowl-
edge of an attacker. For example, if we consider a protocol that transmits an
encrypted Boolean value (e.g. the value of a vote), we may ask whether an at-
tacker can learn this value by eavesdropping on the protocol. Of course, it is
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completely unrealistic to require that the Boolean true and false are not de-
ducible. We need to express the fact that the two transcripts of the protocol,
one running with the Boolean value true and the other one with false are indis-
tinguishable. Besides allowing more careful formalization of secrecy properties,
indistinguishability can also be used for proving the more involved notion of
cryptographic indistinguishability [6,1,16]: two sequences of messages are cryp-
tographically indistinguishable if their distributions are indistinguishable to any
attacker, that is to any probabilistic polynomial Turing machine.

In both cases, deduction and indistinguishability apply to observations on
messages at a particular point in time. They do not take into account the dy-
namic behavior of the protocol. For this reason the indistinguishability relation
is called static equivalence. Nevertheless those relations are quite useful to reason
about the dynamic behavior of a protocol. For instance, the deducibility rela-
tion is often used as a subroutine of many decision procedures [20,7,11]. In the
applied-pi calculus framework [3], it has been shown that observational equiv-
alence (relation which takes into account the dynamic behavior) coincides with
labeled bisimulation which corresponds to checking static equivalences and some
standard bisimulation conditions.

Both of these relations rely on an underlying equational theory axiomatiz-
ing the properties of the cryptographic functions (encryption, exclusive or, . . . ).
Many decision procedures have been provided to decide these relations under a
variety of equational theories. For instance algorithms for deduction have been
provided for exclusive or [11], homomorphic operators [13], Abelian groups with
distributive encryption [15] and subterm theories [2]. These theories allow ba-
sic equations for functions such as encryption, decryption and digital signature.
There are also some results on static equivalence. For instance, a general decid-
ability result to handle the class of subterm convergent equational theories is
given in [2]. Also in [2], some abstract conditions on the underlying equational
theory are proposed to ensure decidability of deduction and static equivalence.
Note that the use of this result requires checking some assumptions, which might
be difficult to prove. This result has been applied to several interesting equa-
tional theories such as exclusive or, blind signature and other associative and
commutative functions.

For all the previous results, decidability is provided for particular fixed the-
ories or for particular classes of theories. In this paper, we provide a general
combination result for both deduction and static equivalence: if the deducibil-
ity and indistinguishability relations are decidable for two disjoint theories E1

and E2 (that is, the equations of E1 and E2 do not share any symbol), they are
also decidable for their union E1 ∪ E2. Our algorithm for combining theories is
polynomial (in the DAG-size of the inputs). It ensures in particular that if the
deducibility and indistinguishability relations are decidable for two disjoint the-
ories in polynomial time, they are decidable in polynomial time for their union.

The interest of our result is twofold: first, it allows us to obtain new decid-
ability results from any combination of the existing ones: for example, we obtain
that static equivalence is decidable for the theory of encryption combined with
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exclusive or (and also for example with blind signature), which was not known
before. Second, our result allows a modular approach. Deciding interesting equa-
tional theories that could not be considered before can be done simply by reduc-
ing to the decision of simpler and independent theories.

Our combination result relies on combination algorithms for solving unifi-
cation problem modulo an equational theory [21,5]. It follows the approach of
Chevalier and Rusinowitch [8], who show how to combine decision algorithms for
the deducibility problem in the presence of an active attacker. However, they do
not consider static equivalence at all, which is needed to express larger classes of
security properties. Moreover, even for deduction, they do not state any combina-
tion result in the passive case, though this result might be obtained by adapting
their proof. Considering static equivalence notoriously involves more difficulties
since static equivalence is defined through overall quantification. In particular,
proving static equivalence requires a careful understanding of the (infinite) set
of equalities satisfied by a sequence of terms.

Outline of the paper. In Section 2 we introduce notation and definitions as well
as the two notions of knowledge. Section 3 provides some material for our combi-
nation algorithms. Then Sections 4 and 5 are devoted to the study of deduction
and static equivalence respectively. In Section 6, we sum up our results and pro-
vide new results obtained as a consequence of our main theorems. Due to lack
of space, some proofs are omitted. They can be found in [4].

2 Preliminaries

2.1 Basic Definitions

A signature Σ consists of a finite set of function symbols, such as enc and pair,
each with an arity. A function symbol with arity 0 is a constant symbol. Given
a signature Σ, an infinite set of names N , and an infinite set of variables X , we
denote by T (Σ) (resp. T (Σ,X )) the set of terms over Σ ∪N (resp. Σ ∪N ∪X ).
The former is called the set of ground terms over Σ, while the latter is simply
called the set of terms over Σ. The concept of names is borrowed from the applied
pi calculus [3] and corresponds to the notion of free constant used for instance
in [8]. We write fn(M) (resp. fv (M)) for the set of names (resp. variables) that
occur in the term M . A context C is a term with holes, or (more formally) a
linear term. When C is a context with n distinguished variables x1, . . . , xn, we
may write C[x1, . . . , xn] instead of C in order to show the variables, and when
T1, . . . , Tn are terms we may also write C[T1, . . . , Tn] for the result of replacing
each variable xi with the corresponding term Ti. A substitution σ is a mapping
from a finite subset of X called its domain and written dom(σ) to T (Σ,X ).
Substitutions are extended to endomorphisms of T (Σ,X ) as usual. We use a
postfix notation for their application.

An equational presentation H = (Σ,E) is defined by a set E of equations u = v
with u, v ∈ T (Σ,X ) and u, v without names. For any equational presentation H,
the relation =H denotes the equational theory generated by (Σ,E) on T (Σ,X ),
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that is the smallest congruence containing all instances of axioms of E. Abu-
sively, we shall not distinghuish between an equational presentation H over a
signature Σ and a set E of equations presenting it. Hence, we write M =E N
instead of M =H N when the signature is clear from the context. A theory E is
consistent if there do not exist two distinct names n1 and n2 such that n1 =E n2.
Note that, in an inconsistent theory, the problem we are interested in, i.e. de-
duction (defined in Section 2.3) and static equivalence (defined in Section 2.4)
are trivial.

Example 1. Let Σxor be the signature made up of the constant symbol 0 and the
binary function ⊕ and Exor be the following set of equations:

x⊕ (y ⊕ z) = (x⊕ y)⊕ z x⊕ 0 = x
x⊕ y = y ⊕ x x⊕ x = 0

We have that n1 ⊕ (n2 ⊕ n1) =Exor n2.

Definition 1 (syntactic subterm). The set Sts(M) of syntactic subterms of
a term M is defined recursively as follows:

Sts(M) =

⎧
⎪⎨

⎪⎩

{M} if M is a variable, a name or a constant

{M} ∪
�⋃

i=1

Sts(Mi) if M = f(M1, . . . ,M�)

The positions in a term M are defined recursively as usual (i.e. sequences of inte-
gers with ε being the empty sequence). We denote by M |p the syntactic subterm
of M at position p. The term obtained by replacing M |p by N is denoted M [N ]p.

2.2 Assembling Terms into Frames

At a particular point in time, while engaging in one or more sessions of one or
more protocols, an attacker may know a sequence of messages M1, . . . ,M�. This
means that he knows each message but he also knows in which order he obtained
the messages. So it is not enough for us to say that the attacker knows the set
of terms {M1, . . . ,M�}. Furthermore, we should distinguish those names that
the attacker knows from those that were freshly generated by others and which
remain secret from the attacker; both kinds of names may appear in the terms.

In the applied pi calculus [3], such a sequence of messages is organized into a
frame φ = νñ.σ, where ñ is a finite set of restricted names (intuitively the fresh
ones), and σ is a substitution of the form:

{M1/x1 , . . . ,
M�/x�

} with dom(σ) = {x1, . . . , x�}.

The variables enable us to refer to each Mi and we always assume that the
terms Mi are ground. The names ñ are bound and can be renamed. Moreover
names that do not appear in φ can be added or removed from ñ. In particular,
we can always assume that two frames share the same set of restricted names.
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2.3 Deduction

Given a frame φ that represents the information available to an attacker, we
may ask whether a given ground term M may be deduced from φ. Given an
equational theory E on Σ, this relation is written φ %E M and is axiomatized by
the following rules:

if ∃x ∈ dom(σ) s.t. xσ = M
νñ.σ %E M

s ∈ N � ñ
νñ.σ %E s

φ %E M1 . . . φ %E M�
f ∈ Σ

φ %E f(M1, . . . ,M�)

φ %E M
M =E M ′

φ %E M ′

Intuitively, the deducible messages are the messages of φ and the names that
are not protected in φ, closed by equality in E and closed by application of
function symbols. Note that φ and M might be built on a signature Σ′ that
possibly contains some additional function symbol not in Σ. When νñ.σ %E M ,
any occurrence of names from ñ in M is bound by νñ. So νñ.σ %E M could
be formally written νñ.(σ %E M). It is easy to prove by induction the following
characterization of deduction.

Lemma 1 (characterization of deduction). Let M be a ground term and
νñ.σ be a frame built on Σ′. Then νñ.σ %E M if and only if there exists a
term ζ ∈ T (Σ,X ) such that fn(ζ) ∩ ñ = ∅ and ζσ =E M . Such a term ζ is a
recipe of the term M .

Example 2. Consider the signature Σenc = {dec, enc, pair, proj1, proj2}. The sym-
bols dec, enc and pair are functional symbols of arity 2 that represent respectively
the decryption, encryption and pairing functions whereas proj1 and proj2 are
functional symbols of arity 1 that represent the projection function on respec-
tively the first and the second component of a pair. As usual, we may write 〈x, y〉
instead of pair(x, y). The equational theory of pairing and symmetric encryption,
denoted by Eenc, is defined by the following equations:

dec(enc(x, y), y) = x, proj1(〈x, y〉) = x and proj2(〈x, y〉) = y.

Let φ = νk, s1.{enc(〈s1,s2〉,k)/x1 ,
k/x2}. We have that φ %Eenc k, φ %Eenc s1 and also

that φ %Eenc s2. Indeed x2, proj1(dec(x1, x2)) and s2 are recipes of the terms k,
s1 and s2 respectively.

We say that deduction is decidable for the equational theory (Σ,E) if the fol-
lowing problem is decidable.

Entries A frame φ and a term M built on Σ
Question φ %E M?

2.4 Static Equivalence

Deduction does not always suffice for expressing the knowledge of an attacker,
as discussed in the introduction. Sometimes, the attacker can deduce exactly the
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same set of terms from two different frames but he could still be able to tell the
difference between these two frames.

Definition 2 (static equivalence). Let φ be a frame built on Σ′ and M
and N be two terms. We say that M and N are equal in the frame φ un-
der the theory E, and write (M =E N)φ, if there exists ñ such that φ = νñ.σ,
(fn(M) ∪ fn(N)) ∩ ñ = ∅ and Mσ =E Nσ. We say that two frames φ = νñ.σ and
φ′ = νñ.σ′ built on Σ′ are statically equivalent w.r.t. (Σ,E), and write φ ≈E φ′

(or shortly φ ≈ φ′) when

– dom(φ) = dom(φ′), and
– for all M,N ∈ T (Σ,X ) we have that (M =E N)φ ⇔ (M =E N)φ′.

Example 3. Consider the equational theory (Σenc,Eenc) provided in Example 2.
Let φ = νk.σ, φ′ = νk.σ′ where σ = {enc(s0,k)/x1 ,

k/x2}, σ′ = {enc(s1,k)/x1 ,
k/x2}.

Intuitively, s0 and s1 could be the two possible (public) values of a vote. We have
dec(x1, x2)σ =Eenc s0 whereas dec(x1, x2)σ′ =Eenc s0. Therefore we have φ ≈ φ′.
However, note that νk.{enc(s0,k)/x1} ≈ νk.{enc(s1,k)/x1}.

Let (Σ,E) be an equational theory. We define EqE(φ) to be the set of equations
satisfied by the frame φ = νñ.σ in the equational theory E:

EqE(φ) = {(M,N) ∈ T (Σ,X )× T (Σ,X ) | (M =E N)φ}.

We write ψ |= EqE(φ) if (M =E N)ψ for any (M,N) ∈ EqE(φ).

Checking for static equivalence is clearly equivalent to checking whether the
frames satisfy each other equalities.

Lemma 2 (characterization of static equivalence). Let φ1 = νñ.σ1 and
φ2 = νñ.σ2 be two frames. We have

φ1 ≈E φ2 ⇔ φ2 |= EqE(φ1) and φ1 |= EqE(φ2).

We say that static equivalence is decidable for the equational theory (Σ,E) if
the following problem is decidable.

Entries Two frames φ1 and φ2 built on Σ
Question φ1 ≈E φ2?

3 Material for Combination Algorithms

We consider two equational theories H1 = (Σ1,E1) and H2 = (Σ2,E2) that
are disjoint (Σ1 ∩Σ2 = ∅) and consistent. We denote by Σ the union of the
signatures Σ1 and Σ2 and by E the union of the equations E1 and E2. The
union of the two equational theories is H = (Σ,E). Note that the equational
theories H1 and H2 share symbols (namely names) that can be used to represent
agent identities, keys or nonces. In other words, two ground terms t1 and t2 such
that t1 ∈ T (Σ1) and t2 ∈ T (Σ2) may share some symbols. We simply require
that Σ1 ∩ Σ2 = ∅, that is intuitively, the two equational theories do not share
cryptographic operators.
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3.1 Factors, Subterms

We denote by sign(·) the function that associates to each term M , the signa-
ture (Σ1 or Σ2) of the function symbol at position ε (root position) in M .
For M ∈ N ∪ X , we define sign(M) = ⊥, where ⊥ is a new symbol. The term N
is alien to M if sign(N) = sign(M). We now introduce our notion of subterms.
A similar notion is also used in [8].

Definition 3 (factors, subterms). Let M ∈ T (Σ,X ). The factors of M are
the maximal syntactic subterms of M that are alien to M . This set is denoted
Fct(M). The set of its subterms, denoted St(M), is defined recursively by

St(M) = {M} ∪
⋃

N∈Fct(M)

St(N)

These notations are extended as expected to sets of terms and frames. Sometimes
we will use St(φ,M) instead of St(φ) ∪ St(M).

Let M ∈ T (Σ,X ). The size |M | of a term M is defined |M | = 0 if M is a name
or a variable and by 1 +

∑n
i=1 |Ni| if M = C[N1, . . . , Nn] where C is a context

built on Σ1 (or Σ2) and N1, . . . Nn are the factors of M .

Example 4. Consider the equational theories Eenc and Exor. Let M be the term
dec(〈n1 ⊕ 〈n2, n3〉, proj1(n1 ⊕ n2)〉, n3). The term n1 ⊕ 〈n2, n3〉 is a syntactic
subterm of M alien to M since sign(n1 ⊕ 〈n2, n3〉) = Σxor and sign(M) = Σenc.
We have that Fct(M) = {n1 ⊕ 〈n2, n3〉, n1 ⊕ n2, n3} and St(M) = Fct(M) ∪
{M, n1, n2, 〈n2, n3〉}. Moreover, we have that |M | = 4. Indeed, we have that

|M | = 1 + |n1 ⊕ 〈n2, n3〉|+ |n1 ⊕ n2|+ |n3| = 1 + 2 + 1 + 0 = 4

This notion of size of terms is quite non-standard and does not correspond to the
actual size of a term. It is only used for proving our lemmas by induction. Our
complexity results stated later on in the paper relies on the more usual notion
of DAG-size.

3.2 Ordered Rewriting

Most of the definitions and results in this subsection are borrowed from [9] since
we use similar techniques. We consider the notion of ordered rewriting defined
in [14], which is a useful tool that has been used (e.g. [5]) for proving correctness
of combination of unification algorithms. Let ≺ be a simplification ordering1

on ground terms assumed to be total and such that the minimum for ≺ is a
name nmin and the constants in Σ are smaller than any non-constant ground
term. We define Σ0 to be the set of the constant symbols of Σ1 and Σ2 plus the
name nmin.

Given a possibly infinite set of equations O we define the ordered rewriting
relation →O by M →O M ′ if and only if there exists an equation N1 = N2 ∈ O,
a position p in M and a substitution τ such that:
1 By definition ≺ satisfies that for all ground terms M, N1, N2, we have N1 ≺ M [N1]

when M is not the empty context and N1 ≺ N2 implies M [N1] ≺ M [N2].
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M = M [N1τ ]p, M ′ = M [N2τ ]p and N2τ ≺ N1τ .

It has been shown (see [14]) that by applying the unfailing completion proce-
dure to a set of equations E we can derive a (possibly infinite) set of equations O
such that on ground terms:

1. the relations =O and =E are equal on T (Σ),
2. the rewriting system →O is convergent on T (Σ).

Applying unfailing completion to E = E1 ∪ E2, it is easy to notice [5] that the
set of generated equations O is the disjoint union of the two systems O1 and O2

obtained by applying unfailing completion procedures to E1 and to E2 respec-
tively. The relation →O being convergent on ground terms we can define M↓E
(or briefly M↓) as the unique normal form of the ground term M for →O. We
denote by M↓E1 (resp. M↓E2) the unique normal form of the ground term M
for →O1 (resp. →O2). We can easily prove the following lemmas.

Lemma 3. Let M be a ground term such that all its factors are in normal form.
Then

– either M↓ ∈ Fct(M) ∪ {nmin},
– or sign(M) = sign(M↓) and Fct(M↓) ⊆ Fct(M) ∪ {nmin}.

Lemma 4. Let M be a ground term such that sign(M) = Σi (i = 1, 2) and all
its factors are in normal form. Then M↓ = M↓Ei.

3.3 Normalization and Replacements

If Π is a set of positions in a term M , we denote by M [Π ← N ] the term
obtained by replacing all term at a position in Π by N . We denote by δN,N ′ the
replacement of the occurrences of N which appears at a subterm position by N ′.
It is easy to establish the following lemma.

Lemma 5. Let M be a ground term such that all its factors are in normal form.
Let N ∈ Fct(M) and N ′ be a term alien to M . We have that

(MδN,N ′)↓ = ((M↓)δN,N ′)↓).

Example 5. Consider the equational theories Eenc and Exor.
Let M = dec(enc(〈n1 ⊕ n2, n1 ⊕ n2 ⊕ n3〉, n1 ⊕ n2), n1 ⊕ n2), N = n1 ⊕ n2 and
N ′ = n. We have that

– MδN,N ′ = dec(enc(〈n, n1 ⊕ n2 ⊕ n3〉, n), n),
– M↓δN,N ′ = 〈n, n1 ⊕ n2 ⊕ n3〉.

Hence, we have that MδN,N ′↓ = M↓δN,N ′↓ = 〈n, n1 ⊕ n2 ⊕ n3〉.

Let ρ : F → ñF be a replacement (that is a function) from a finite set of terms F
to names ñF . Let F = {t1, . . . , tk} be a set such that whenever ti is a syntactic
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subterm of tj then i > j. For any term M , we denote by Mρ the term obtained
by replacing in M (in an order that is consistent with the subterm relation)
any subterm N that is equal modulo E to some N ′ ∈ F by ρ(N ′). Formally,
Mρ = (Mδt1,ρ(t1)) · · · δtk,ρ(tk). This extends in a natural way to sets of terms,
substitutions, frames . . .

Example 6. Consider the equational theories Eenc and Exor and the term t =
dec(〈n1 ⊕ 〈n1 ⊕ n2, n3〉, proj1(n1 ⊕ n2)〉, n1 ⊕ n2). Let ρ2 be the replacement
{n1 ⊕ 〈n1 ⊕ n2, n3〉 → k1, n1 ⊕ n2 → k2}. tρ2 = dec(〈k1, proj1(k2)〉, k2).

4 Combining Algorithms for Deduction

This section is devoted to the (sketch of) proof of the following theorem.

Theorem 1. Let (Σ1,E1) and (Σ2,E2) be two consistent equational theories
such that Σ1 ∩ Σ2 = ∅. If deduction is decidable for (Σ1,E1) and (Σ2,E2) then
deduction is decidable for (Σ1 ∪Σ2,E1 ∪ E2).

Our algorithm consists in reducing the problem to decide whether φ %E M (E =
E1 ∪ E2) to several deduction problems. Each of them will be solved either in
the equational theory E1 or in the theory E2. Our procedure first relies on the
existence of a local proof of φ % M which involves only terms in St(φ,M).

Lemma 6 (locality lemma). Let φ = νñ.σ be a frame and M be a ground
term built on Σ such that terms in φ and M are in normal form. If φ %E M
then there exists a term ζ built on Σ such that fn(ζ)∩ ñ = ∅ and ζσ =E M , and
for all ζ′ ∈ St(ζ), we have that

– ζ′σ↓ ∈ St(φ, ζσ↓) ∪ {nmin}, and
– ζ′σ↓ ∈ St(φ) ∪ {nmin} when sign(ζ′) = sign(ζ′σ↓).

Example 7. Consider the theory E = Eenc ∪ Exor, the term M = n2 ⊕ n3 and
the frame φ = νn2, n3.{enc(〈n1⊕n2,n3〉,n4)/x1}. We have that φ %E M . The recipe
ζ = proj1(dec(x1, n4)) ⊕ proj2(dec(x1, n4)) ⊕ n1 satisfies the conditions given in
Lemma 6.

We also need to decide deducibility in the theory E1 (resp. E2) for terms built
on Σ1 ∪ Σ2. Therefore, we show that we can abstract the alien factors by new
names.

Lemma 7. Let φ be a frame and M be a ground term built on Σ such that terms
in φ and M are in normal form. Let F2 = {N | N ∈ St(φ,M) and sign(N) = Σ2},
ñF2 be a set of names, distinct from the names occurring in φ and M , of the
same cardinality as F2 and ρ2 : F2 → ñF2 be a replacement. We have that

φ %E1 M if and only if νñF2 .(φ %E1 M)ρ2 .
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A similar result holds by inverting the indices 1 and 2.
We show the lemmas above by using Lemmas 3, 4 and 5 stated in Section 3.

Then, our algorithm proceeds by saturation of φ by the subterms in St(φ,M)
which are deducible either in (Σ1,E1) or in (Σ2,E2).

Algorithm. Given a frame φ and a term M , we saturate φ as follows.

– We start with φ0 = φ ∪ {nmin}.
– For any term T ∈ St(φ,M), if νñF2 .(φk %E1 T )ρ2 or νñF1 .(φk %E2 T )ρ1 where

F1, F2, ρ1, ρ2 are defined like in Lemma 7, we add T in the set of deducible
subterms: φk+1 = φk ∪ {T }.

We start the procedure over until there are no more T ∈ St(φ,M) such that
νñF2 .(φk %E1 M)ρ2 or νñF1 .(φk %E1 M)ρ1 . Let φ∗ be the saturated set. Using
Lemma 6, we can show that φ∗ contains exactly the set of all deducible subterms
of St(φ,M). We deduce that φ %E1∪E2 M if and only if M ∈ φ∗.

Example 8. Consider again Example 7, we successively add in the frame the
terms n1 ⊕ n2, n3 and n2 ⊕ n3.

Complexity. Our reduction is polynomial. Our notion of size for terms was in-
troduced for proving our lemmas by induction. It does not correspond to the
actual size of a term since our notion of subterms does not take into account in-
termediate syntactic subterms. In addition, complexity results for deduction and
static equivalence are usually given as functions of the DAG-size of the terms.
Thus we express the complexity of our procedure as function of the DAG-size.
The DAG-size of a term T , denoted tdag(T ), is the number of distinct syntactic
subterms. We assume that φ %Ei M can be decided in time fi(tdag(φ)+ tdag(M))
where fi : N → R, i ∈ {1, 2}. Saturating φ requires at most |St(φ,M)| ≤
tdag(φ) + tdag(M) steps. At each step, we check whether νñF2 .(φk %E1 T )ρ2 or
νñF1 .(φk %E2 T )ρ1 for each T ∈ St(φ,M). We deduce that φ∗ can be computed in
time O((tdag(φ)+ tdag(M))2[f1(2(tdag(φ)+ tdag(M)))+f2(2(tdag(φ)+ tdag(M)))]).
In particular, if deciding %Ei can be done in polynomial time for i ∈ {1, 2} then
deciding %E1∪E2 is also polynomial.

5 Combination Algorithm for Static Equivalence

This section is devoted to the (sketch of) proof of the following theorem.

Theorem 2. Let (Σ1,E1) and (Σ2,E2) be two equational theories such that
Σ1 ∩ Σ2 = ∅. If deduction and static equivalence are decidable for (Σ1,E1)
and (Σ2,E2) then static equivalence is decidable for (Σ1 ∪Σ2,E1 ∪ E2).

We more precisely show that whenever static equivalence is decidable for (Σ1,E1)
and (Σ2,E2) and deduction is decidable for (Σ,E), then static equivalence is de-
cidable for (Σ,E) where Σ = Σ1∪Σ2 and E = E1∪E2. Thanks to our combination
result for deduction (Theorem 1), we know it is sufficient for deduction to be
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decidable for (Σ1,E1) and (Σ2,E2). Note that the decidability of %Ei is not nec-
essarily a consequence of the decidability of ≈Ei . The encoding proposed in [2]
works only when there exists a free function symbol in Σ1.

Our decision procedure works as follows. We first add to the frames all their
deducible subterms. This is the reason why we require the decidability of %E.
Then, we show that to decide whether φ1 |= EqE(φ2), it is sufficient to check
whether φ1 |= EqE1

(φ2) and φ1 |= EqE2
(φ2). Lastly, we abstract alien subterms

by fresh names in order to reduce the signature.

5.1 Step 1: Adding Deducible Subterms to the Frames

Given φ1 = νñ.σ1 and φ2 = νñ.σ2 such that dom(φ1) = dom(φ2), we define the
frame φ2

φ1 by extending φ2 with some of its deducible terms: those for which
there exists a recipe ζ such that ζσ1↓ is a subterm of φ1.

φ2
φ1 def= φ2 ∪ {ζ1σ2↓/y1, . . . ,

ζnσ2↓ /yn}.

where yi is a fresh variable and ζi is a recipe of ti in φ1, i.e. ζiσ1↓ = ti and
fn(ζi) ∩ ñ = ∅ such that:

– ti ∈ St(φ1) ∪ {nmin}, and
– ti is not in the image of φ1, that is ti = xσ for any x ∈ dom(φ1).

Example 9. Let E = Eenc and consider the frames φ2 = νn1, n2.{enc(n1,n2)/x1}
and φ1 = νn1, n2.{〈n1,n2〉/x1}. We have that

φ2
φ1 = νn1, n2.{enc(n1,n2)/x1 ,

proj1(enc(n1,n2)) /y1 ,
proj2(enc(n1,n2)) /y2 ,

nmin /y3}

The three corresponding recipes are proj1(x1), proj2(x1) and nmin.

In particular, we have that φ
φ

= φ∪{t1/y1, . . . ,tn /yn} where ti are the deducible
subterms of φ. When φ

φ
= φ, we say that a frame φ contains all its deducible

subterms.

Example 10. Consider the frame φ = νn2, n3.{enc(〈n1⊕n2,n3〉,n4)/x1} given in Ex-
ample 7 and let E = Eenc ∪ Exor. We have that

φ
φ

= νn2, n3.{enc(〈n1⊕n2,n3〉,n4)/x1,
n1⊕n2/y1 ,

n2/y2 ,
n3/y3 ,

n1/y4,
n4/y5 ,

nmin/y6}.

The following lemma ensures that extending frames preserves static equivalence.

Lemma 8. Let φ1 and φ2 be two frames such that dom(φ1) = dom(φ2). For
any frame ψ such that dom(ψ) = dom(φ1), we have that

φ2
ψ |= EqE(φ1

ψ
) if and only if φ2 |= EqE(φ1).

In particular, we deduce that φ1 ≈E φ2 if and only if φ1
φ2 ≈E φ2

φ2 . Since φ1
φ2

may not contain all its deducible subterms, we need to extend again the frames
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with the deducible subterms of φ1
φ2 . However, (φ2

φ2)
(φ1

φ2 )

might not contains
its deducible subterms anymore. Lemma 9 states that actually, extending a frame
preserves the property of containing all its deducible subterms. The proof of this
lemma relies on the locality lemma (Lemma 6) stated in Section 4.

Lemma 9. Let φ be a frame such that φ
φ

= φ and ψ be any frame such that
dom(ψ) = dom(φ). Let φ′ = φ

ψ
. We have that φ′ contains all its deducible

subterms, i.e. φ′φ
′

= φ′.

Thanks to Lemma 8, we deduce that deciding whether φ1 ≈E φ2 is thus

equivalent to deciding whether (φ1
φ2)

(φ1
φ2)

≈E (φ2
φ2)

(φ1
φ2)

where (φ1
φ2)

(φ1
φ2 )

and (φ2
φ2)

(φ1
φ2 )

contain all their deducible subterms.

Computing φ
ψ
. To compute φ

ψ
, we need to compute the set of deducible sub-

terms of ψ. Moreover, for each deducible subterm T of ψ, we also need to compute
a recipe ζT such that (ζT =E T )ψ. Such a recipe can usually be deduced from
the decision algorithm applied to ψ %E T [2]. However, if it is not the case, once
we know that ψ %E T (using the decision algorithm), we can enumerate all the
recipes until we find ζ such that (ζT =E T )ψ.

5.2 Step 2: Checking for Equalities in EqEi

Checking for φ ≈E ψ is equivalent to checking for φ |= EqE(ψ) and ψ |= EqE(φ).
We show that checking for ψ |= EqE(φ) can actually be done using only equalities
in E1 and E2.

Proposition 1. Let φ and ψ be two frames such that φ
φ

= φ. We have that
ψ |= EqE(φ) if and only if ψ |= EqE1

(φ) and ψ |= EqE2
(φ).

It is straightforward that ψ |= EqE(φ) implies ψ |= EqE1
(φ) and ψ |= EqE2

(φ).
The converse is more difficult. We first introduce some ordering on pairs of terms.
We have (M,N) < (M ′, N ′) if

(max(|M |, |N |), |M |+ |N |) <lex (max(|M ′|, |N ′|), |M ′|+ |N ′|)

where <lex is the lexicographic order. Now, assuming that ψ |= EqE1
(φ) and

ψ |= EqE2
(φ), we show by induction on the order on (M,N) that (M,N) ∈ EqE(φ)

implies (M,N) ∈ EqE(ψ). The key lemma for the induction step is as follows.

Lemma 10. Let φ and ψ be two frames such that φ
φ

= φ, ψ |= EqE1
(φ) and

ψ |= EqE2
(φ). Let (M,N) ∈ EqE(φ) and assume that for all terms M ′, N ′

(M ′, N ′) < (M,N) implies (M ′ =E N ′)φ ⇒ (M ′ =E N ′)ψ.
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Let φ = νñ.σ such that (fn(M) ∪ fn(N)) ∩ ñ = ∅. If there exists ζ ∈ St(M)
such that sign(ζσ) = sign(ζσ↓), then there exists M1 such that |M1| < |M |,
(M =E M1)φ and (M =E M1)ψ.

5.3 Step 3: Abstraction of Alien Subterms

Since ψ and φ are built on Σ (and not on Σi), we cannot check whether ψ ≈Ei φ
using the decision algorithm for ≈Ei . We show however that we can simply
abstract the alien subterms by fresh names.

Lemma 11. Let φ and ψ be two frames built on Σ and in normal form. Let F2 =
{N ∈ St(φ∪ψ) | sign(N) = Σ2}, ñF2 be a set of names, distinct from the names
occurring in φ and ψ, of same cardinality as F2 and ρ2 : F2 → ñF a replacement.
We have that

φ |= EqE1
(ψ) if and only if νñF2 .φ

ρ2 |= EqE1
(νñF2 .ψ

ρ2)

A similar result holds when inverting the indices 1 and 2.

5.4 Combination Algorithm for Static Equivalence

To sum up, checking for φ1 ≈E φ2 is performed in two steps:

1. Computing φ′
1 = (φ1

φ2)
(φ1

φ2)

and φ′
2 = (φ2

φ2)
(φ1

φ2 )

.
2. checking for νñF2 .(φ′

1)
ρ2 ≈E1 νñF2 .(φ′

2)
ρ2 and νñF1 .(φ′

1)
ρ1 ≈E2 νñF1 .(φ′

2)
ρ1 .

Complexity. The complexity of the procedure mostly depends on the complexity
of computing φ′

1 and φ′
2 and on their size. In particular, it depends on the time

for computing recipes and on their size. Assume that

– φ %E M can be decided in f3(tdag(φ) + tdag(M)),
– a recipe ζ such that (ζ =E M)φ can be computed in f4(tdag(φ) + tdag(M))

and that we control the size of the recipe tdag(ζ) ≤ f5(tdag(φ) + tdag(M))
– φ ≈Ei ψ can be decided in fi(tdag(φ) + tdag(M)) for i ∈ {1, 2}.

Then it is easy to check that φ ≈E ψ can be decided in time polynomial in
the fi(tdag(φ) + tdag(M)) with i ∈ {1, . . . , 5}. In particular, if the fi are polyno-
mial, ≈E is decidable in polynomial time.

6 Application to New Decidability Results

Deduction and static equivalence are decidable in polynomial time (in the DAG-
size of the inputs) for any convergent subterm theory [2]. A convergent subterm
theory is an equational theory induced by a finite set of equations of the form
u = v where v is a subterm of u or v is a constant and such that the associate
rewriting system is convergent. For example, Eenc is a convergent subterm theory.
From [12], we also know that deduction and static equivalence are decidable in
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polynomial time for the equational theory Exor of the exclusive or and also for the
theory EAG of Abelian group. Applying Theorems 1 and 2, we get the following
new decidability result.

Proposition 2. Let E be a convergent subterm theory. Deduction and static
equivalence are decidable in polynomial time for E ∪ Exor and E ∪ EAG.

Since deduction and static equivalence are also decidable for the theories of
blind signature, homomorphic encryption, exclusive or, and other associative-
commutative functions [2], we get that deduction and static equivalence are
decidable for any combination of these theories.

As further work, we consider extending our combination result for non disjoint
theories. This would allow us to consider some fragments of the modular expo-
nentiation theory such as the Diffie-Hellman one, i.e. the axioms exp(x, 1) = x
and exp(exp(x, y), z) = exp(x, y × z) where × is an Abelian group operator; or
to take into account the equation exp(x, y) · exp(x, z) = exp(x, y + z). We might
use for example a notion of hierarchy between theories like in [10].
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Abstract. We present a simple logic that combines, in a conservative
way, the implicative fragments of both classical and intuitionistic log-
ics, thus settling a problem posed by Dov Gabbay in [5]. We also show
that the logic can be given a nice complete axiomatization by adding
four simple mixed axioms to the usual axiomatizations of classical and
intuitionistic implications.

1 Introduction

In [5], Dov Gabbay pointed out a difficulty with the fibring methodology for
combining logics [6,1] that became known as the collapsing problem. The argu-
ment given there suggested that there would be no way of combining classical
and intuitionistic propositional logics, CPL and IPL respectively, in a way that
would not collapse the intuitionistic connectives into classical ones. Following
this spirit, Andreas Herzig and Luis Fariñas del Cerro have proposed in [4] a
combined logic C + J that starts from the expected combined semantic setting,
that could be axiomatized, not by adding the axiomatizations of CPL and IPL
together with some interaction rules, but rather by modifying these axioms along
with their scope of applicability.

Actually, Gabbay’s argument, which depends only on the implicative frag-
ments of the logics, holds in fact for any logic combining classical and intuition-
istic reasoning in a way that preserves the deduction theorem for both implica-
tions. However, a simple combination of the usual axiomatizations of classical
and intuitionistic implications yields a system where none of the deduction the-
orems seems to hold. The question is how to prove this. A semantic argument
would need to consider suitable, non-trivial, combined models. The natural place
to look for such combined models would be to consider a fibred semantics. Still,
a fibred model cannot do the job, because fibring classical and intuitionistic
models together will only result in models where the intuitionistic implication
becomes classical. Indeed, the semantic fibring of two logics does not always
result in a conservative extension of the logics being combined. Looking for a
way around this problem, we have proposed in [2,3] an extension of the fibring
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methodology, called cryptofibring. In the new setting, we have obtained a more
general notion of combined model and have managed to identify situations as
the above mentioned collapsing problem as particular cases of non-conservative
combinations. As a by-product, we have shown that a conservative extension of
CPL and IPL is possible, and suggested a simple way to construct combined
non-trivial models. A characterization of this (large) class of models, as well as
a number of general results about cryptofibring, can be found in [2,3].

In this paper we study in detail the implicative fragment of the combined
logic characterized by a subclass of these models. We prove that the resulting
logic, CIPL, which features both a classical and an intuitionistic implication,
is a conservative extension of the implicative fragments of both classical and
intuitionistic logics. We also show that CIPL can be given a nice complete ax-
iomatization by adding four simple mixed axioms to the usual axiomatizations of
classical and intuitionistic implications. These mixed axioms will guarantee, in
particular, that the classical implication be strictly stronger than the intuition-
istic one. We assume nothing but acquaintance with textbook logic. A useful
source on intuitionistic logic is [12].

In Section 2, we review Gabbay’s argument for the collapse when combining
classical and intuitionistic logics, namely at the light of the logic C +J of Herzig
and del Cerro, and show how to overcome these difficulties by introducing the
class of models for the combined logic CIPL. Then, in Section 3, we study a
number of interesting properties of these models, that will eventually lead us to
showing that CIPL is indeed a conservative extension of the implicative frag-
ments of both CPL and IPL. Particular emphasis will be put on studying the
interactions between classical and intuitionistic implications. Section 4 is de-
voted to proposing an axiomatization of CIPL, and to proving, using standard
techniques, its soundness and completeness with respect to the semantics. We
conclude, in Section 5, with a discussion of related and future work.

2 Combining Models

Let us consider a set P of classical propositional symbols, and let us use ⇒
to denote classical implication. It is well known that the implicative fragment
of CPL, corresponding to the language defined by the grammar Lc ::= P |
(Lc⇒Lc), can be characterized deductively by the axioms

(C1) A⇒ (B ⇒ A)
(C2) (A⇒ (B⇒ C))⇒ ((A⇒B)⇒ (A⇒ C))
(C3) ((A⇒ B)⇒A)⇒ A

and the inference rule

A (A⇒B)
B

(CMP).

Note that C3 is Peirce’s law and CMP the rule of Modus Ponens. We use %c
to denote the resulting deductive consequence relation, that is, we write Γ %c A
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to denote the fact that there exists a derivation of A from the set of hypotheses
Γ using C1-C3 and CMP.

Analogously, let us consider a set Q of intuitionistic propositional symbols,
and let us use → to denote classical implication. The implicative fragment of
IPL, corresponding to the language defined by Li ::= Q | (Li→Li), is also well
known to be characterized deductively by the axioms

(I1) A→ (B →A)
(I2) (A→ (B → C))→ ((A→B)→ (A→ C))

and the inference rule

A (A→ B)
B

(IMP).

Comparing with the classical case, we have just excluded Peirce’s law and
rephrased the first two axioms and Modus Ponens using the intuitionistic arrow.
We use now %i to denote the resulting deductive consequence relation. Obviously,
classical implication is stronger than intuitionistic implication. In particular, we
have %c ((A⇒ B)⇒A)⇒ A but %i ((A→ B)→A)→ A. Recall also that both
implications enjoy the deduction theorem, that is

– Γ,A %c B iff Γ %c A⇒ B, where Γ ∪ {A,B} ⊆ Lc, and
– Γ,A %i B iff Γ %i A→B, where Γ ∪ {A,B} ⊆ Li.

In order to combine the two fragments of CPL and IPL, let us consider adding
together the axioms C1-C3, I1-I2, and the rules CMP, IMP, now over the
combined language given by L ::= P | Q | (L ⇒ L) | (L → L). Henceforth, we
will assume that the sets of classical and intuitionistic propositional symbols are
disjoint, that is, P ∩Q = ∅. Denoting by % the resulting consequence relation, it
will be reasonable to expect that A→B % A⇒B. However, the converse would
be highly undesirable, not only because classical implication should be strictly
stronger than intuitionistic implication, but also because the two would collapse.
Gabbay’s argument for the collapse of → into ⇒ after the combination [5] was
based on the assumption that the deduction theorem of each of the two implica-
tions in isolation would be transported to their combination. If that was the case,
since we have A⇒B,A % B simply by using CMP, we could use the deduction
theorem for → and immediately obtain A⇒B % A→B. Still, in this setting, it is
not at all obvious that we can still use the deduction theorem over the combined
language. Actually, although % A→B implies % A⇒B, it is even unclear how to
obtain A→B % A⇒B in the first place. If we take a little time trying to prove
any meaningful interaction between → and ⇒ using % we will soon be convinced
that most probably the two implications do not collapse. Clearly, it would suffice
to prove that % ((A→B)→A)→A. Of course, we might try to prove this using
some sort of combinatory argument over the possible deductions. But it will be
much more enlightening to try and use a semantic argument, that is, to look for
some sort of combined model m that falsifies ((A→ B)→A)→A.
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Let Mc stand for the class of all classical two-valued models. That is, a model
in Mc is simply a function v : P → {⊥,�} where, as usual, we define satisfaction
of classical formulas inductively by:

– v �c p iff v(p) = �;
– v �c A⇒B iff v �c A or v �c B.

We will use �c to denote the induced entailment relation, that is, given Γ ∪
{A} ⊆ Lc, we have Γ �c A provided that v � Γ implies v � A for every
v ∈ Mc. It will be helpful to view classical models as logical matrices [13]. Given
v ∈ Mc, its associated matrix is M(v) = 〈{⊥,�},�, ·v〉, where {⊥,�} is the set
of possible truth-values ; � is the designated value; pv = v(p); and ⇒v is given
by the usual truth table, shown below.

⇒v ⊥ �
⊥ � �
� ⊥ �

Clearly, v satisfies the formula A if and only Av = �, the designated truth-value.
For intuitionistic logic, we shall consider Mi to be the usual class of rooted

Kripke models. That is, a model k ∈ Mi is a tuple k = 〈W,≤, V 〉 where W is
a nonempty set partially ordered by ≤ and with a least element, that we will
denote by w0, and V : Q → U≤ is a function, where U≤ is the set of all uppersets
of 〈W,≤〉, that is, all sets U ⊆ W such that if w ∈ U and w ≤ w′ then also
w′ ∈ U . Recall that k �i A iff (k, w) �i A for every w ∈ W , where the local
satisfaction relation at a fixed world w is defined inductively by

– (k, w) �i q iff w ∈ V (q);
– (k, w) �i A→ B iff for every w′ ≥ w, (k, w′) �i A or (k, w′) �i B.

As above, we will use �i to denote the induced entailment relation. Given Γ ∪
{A} ⊆ Li, we have Γ �i A provided that k � Γ implies k � A for every k ∈Mi.
The logical matrix corresponding to an intuitionistic model k = 〈W,≤, V 〉 ∈ Mi,
is M(k) = 〈U≤,W, ·k〉, where the truth-values are the uppersets; the designated
upperset is W ; qk = V (q); and U1 →k U2 = {w ∈ W : if w ≤ w′ and w′ ∈
U1 then w′ ∈ U2}. It is clear that k satisfies the formula A if and only Ak = W .

It is obvious that the sort of combined models for C +J considered by Herzig
and del Cerro in [4] does not fit our purposes, since their target was rather
to stick with the obvious way of extending the intuitionistic models with an
interpretation for classical implication, as is done in the usual Kripke structures
for modal logic, and to axiomatize these models using adapted versions of the
original axioms. Concretely, they considered an extended satisfaction relation �
over an intuitionistic model k such that

– (k, w) � A⇒B iff (k, w) � A or (k, w) � B.

However, as they show, these models will turn the axiomatization of intuitionistic
implication unsound.
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A second alternative would be to look for a convenient combined model ob-
tained by fibring [6,1] a classical and an intuitionistic model. However, this is
well-known to fail too because every fibred model will collapse the two implica-
tions. In order to understand why this happens, it suffices to note that fibring
v ∈ Mc and k ∈ Mi requires that both models, seen as logical matrices, share
the same set of truth-values and the same designated value (modulo possible
renaming). Since every possible v yields exactly two truth-values, we get stuck
with intuitionistic models k = 〈W,≤, V 〉 such that U≤ has exactly two elements:
∅ and W . This means that there is only one world, i.e., W = {w0}. By letting
⊥ = ∅ and � = W we can then get a fibred model, but one where intuitionistic
implication is interpreted as →k, whose classical truth-table is shown below.

→k ∅ W
∅ W W
W ∅ W

However, as explained in [3], cryptofibring offers another option. We need a
combined model m that behaves like v and k on the classical and intuitionistic
fragments, respectively, but which is as free as possible on combined formulas,
that is, a model m that extends k with an interpretation for ⇒ that behaves as v
on ⊥ = ∅ and � = W . The model should also guarantee the persistence require-
ment that is essential for the soundness of the intuitionistic axioms. Clearly, →k

as defined above always yields an upperset. It is easy to see that U1 →k U2 is
precisely the largest upperset contained in X = (W \ U1) ∪ U2, like the interior
operation in a topological space. We just compute X and get rid of the worlds
w ∈ X for which there exists w′ such that w ≤ w′ but w′ /∈ X . Still, there are
other ways of achieving this. Our proposal is to interpret classical implication in
such a way that U1 ⇒m U2 is the least upperset containing X , mimicking now
the closure operation in a topological space. That is, we just compute X and
add w′ provided that there exists w ∈ X such that w ≤ w′ and w′ /∈ X . To
interpret the classical propositional symbols we must add a copy of the classical
valuation v to each world of k. The interpretation of classical symbols will be
persistent in a very strong way: either p holds at all worlds, or at none.

Definition 1 (Combined models)
A combined model for the language L is a tuple m = 〈W,≤, V 〉 where 〈W,≤〉 is
a partial order with a least element and V : P ∪Q→ ℘(W ) is such that

– V (p) ∈ {∅,W} for every p ∈ P ;
– V (q) ∈ U≤ for every q ∈ Q.

The satisfaction of a formula A ∈ L is defined by m � A if and only if (m,w) � A
for every w ∈ W , where the satisfaction at a world is defined inductively by

– (m,w) � p iff w ∈ V (p);
– (m,w) � q iff w ∈ V (q);
– (m,w) � A⇒B iff there exists w′ ≤ w such that (m,w′) � A or m,w′ � B;
– (m,w) � A→B iff for every w′ ≥ w, (m,w′) � A or (m,w′) � B.
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We denote by M the class of all combined models.

We now define the semantics of our combined logic CIPL. Let Γ ∪ {A} ⊆ L.

Definition 2 (CIPL)
The entailment relation � of CIPL over the language L is defined, as usual, from
satisfaction: Γ � A if m � Γ implies m � A for every m ∈M.

Our work, in the next sections, will be to study CIPL in detail.

3 Interacting Implications

To start our study of CIPL, via a semantic analysis of the class of models M,
we first note that there is a direct correspondence between combined models
and pairs of classical and intuitionistic models. Given a combined model m =
〈W,≤, V 〉, we can define classical and intuitionistic models

– m|c : P → {⊥,�} with m|c(p) =
{
� if V (p) = W

⊥ if V (p) = ∅ ; and

– m|i = 〈W,≤, V |Q〉.

Conversely, given v ∈ Mc and k = 〈W,≤, V 〉 we can define a combined model

– v ⊕ k = 〈W,≤, V 〉 with V (p) =
{

W if v(p) = �
∅ if v(p) = ⊥ and V (q) = V (q).

Proposition 1. Let m ∈M, v ∈Mc and k ∈ Mi. We have:

1. m|c ∈Mc and m|i ∈ Mi;
2. v ⊕ k ∈M;
3. m|c ⊕m|i = m;
4. (v ⊕ k)|c = v and (v ⊕ k)|i = k.

As a consequence, M = {v ⊕ k : v ∈ Mc, k ∈Mi}.

Proof. The properties 1–4 are all straightforward from the definitions. The fact
M = {v ⊕ k : v ∈Mc, k ∈ Mi} is a simple consequence of these properties. �

A simple observation is that a combined model v⊕ k indeed extends v and k, in
the respective fragments.

Proposition 2. Let m ∈ M, x ∈ {c, i} and A ∈ Lx. We have m � A if and
only if m|x �x A.

Proof. We first prove the result for x = c. Given any w ∈ W , it suffices to show
that (m,w) � A if and only if m|c �c A. The proof follows by induction on
A ∈ Lc. For a classical propositional symbol p, we have (m,w) � p iff w ∈ V (p)
iff V (p) = ∅ iff V (p) = W iff m|c(p) = � iff m|c �c p. Consider now the
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case A ⇒ B ∈ Lc. Then, (m,w) � A ⇒ B iff there exists w′ ≤ w such that
(m,w′) � A or (m,w′) � B iff, by induction hypothesis, m|c �c A or m|c �c B
iff m|c �c A⇒ B.

The proof for x = i and A ∈ Li is similar. Given any w ∈ W , it suffices to
show that (m,w) � A if and only if (m|i, w) �i A. The proof follows by induction
on A. Consider first the case of an intuitionistic propositional symbol q. Then,
(m,w) � q iff w ∈ V (q) iff w ∈ V |Q(q) iff (m|i, w) �i q. Consider now the case
A→ B ∈ Li. Then, (m,w) � A→ B iff (m,w′) � A or (m,w′) � B, for every
w′ ≥ w, iff, by induction hypothesis, (m|i, w′) �i A or (m|i, w′) �i B, for every
w′ ≥ w, iff (m|i, w) �i A→ B. �

What we already know is enough to prove that CIPL is indeed a conservative
extension of both the implicative fragments of CPL and IPL.

Theorem 1 (Conservativeness). Let x ∈ {c, i} and Γ ∪ {A} ⊆ Lx. We have
Γ � A if and only if Γ �x A.

Proof. The proof of the left-to-right implication is a direct application of Propo-
sitions 1–2, using the fact that both Mc = ∅ and Mi = ∅. Namely, for x = c,
assume that Γ ∪ {A} ⊆ Lc and Γ � A. Let v ∈ Mc be such that v �c Γ . Since
Mi = ∅ we can pick any intuitionistic model k ∈ Mi and build v ⊕ k ∈ M,
according to Proposition 1. Hence, by using Proposition 2, we also know that
v⊕ k � Γ and by definition of entailment it follows that v⊕ k � A. Again using
Proposition 2 we can conclude that v �c A and thus Γ �c A. The proof for x = i
is analogous.

The right-to-left implication is just a consequence of Proposition 2. �

Let us now investigate, in detail, the properties of our combined models. Recall
that we claimed, as a justification for their definition, that even the interpretation
of classical formulas would be persistent.

Theorem 2 (Persistence)
Let m = 〈W,≤, V 〉 ∈ M, w ∈ W and A ∈ L. If (m,w) � A and w ≤ w′ then
(m,w′) � A.

Proof. The proof follows by case analysis on the structure of formulas. The cases
of atomic formulas, both classical and intuitionistic, follow straightforwardly
from the definition of V .

If (m,w) � A ⇒ B then there exists w′′ ≤ w such that (m,w′′) � A or
(m,w′′) � B. But, w′′ ≤ w′ and so (m,w′) � A⇒ B.

If (m,w) � A→ B then either (m,w′′) � A or (m,w′′) � B, for all w′′ ≥ w.
It is straightforward to see that for any w′ ≥ w, (m,w′) � A→B. �

Note that, as a corollary of persistence, the satisfaction of any formula A ∈ L
by a model m can be simply checked at the root world w0.

Corollary 1 (Satisfaction at the root)
Let m ∈ M and A ∈ L. We have m � A if and only if (m,w0) � A.
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Another direct consequence of Theorem 2 is that the satisfaction of formulas
involving classical implication can be simplified.

Corollary 2 (Satisfaction of classical implication)
Let A,B ∈ L, m ∈ M and w ∈ W . We have (m,w) � A ⇒ B if and only if
(m,w0) � A or (m,w) � B.

As should be expected, formulas in the classical fragment are even more than
persistent, they are constant.

Proposition 3. Let m = 〈W,≤, V 〉 ∈ M, w,w′ ∈ W and A ∈ Lc. We have
(m,w) � A if and only if (m,w′) � A.

Proof. The proof follows by induction on the structure of A. The case of atomic
formulas is straightforward from the definition of V . Consider A⇒B ∈ Lc. Then,
(m,w) � A ⇒ B iff (m,w0) � A or (m,w) � B iff, by induction hypothesis,
(m,w0) � A or (m,w′) � B iff (m,w′) � A⇒ B. �

We can now start to inspect closely the relationship between the two implica-
tions. As desired, we will show that classical implication is strictly stronger than
intuitionistic implication.

Proposition 4. Let A,B ∈ L, m = 〈W,≤, V 〉 ∈ M and w ∈ W . If (m,w) �
A→B then (m,w) � A⇒ B. As a consequence, we have A→ B � A⇒ B.

Proof. Assume that (m,w) � A→B. Then, for every w′ ≥ w, either (m,w′) � A
or (m,w′) � B. Assume now, by absurd, that (m,w) � A⇒B. Then, (m,w0) � A
and (m,w) � B. Since (m,w0) � A and w0 ≤ w, by persistence, we must also
have (m,w′) � A. Therefore, it must be the case that (m,w′) � B for every
w′ ≥ w. But then, if we let w′ = w we obtain (m,w) � B, a contradiction. �

The converse of the previous result does not hold, in general. Consider two intu-
itionistic propositional symbols q1 and q2, and take the modelm=〈{w0, w1},≤, V 〉
such that w0 ≤ w1, V (q1) = {w1} and V (q2) = ∅. It is straightforward to see that
m � q1⇒q2 but m � q1→q2. Consequently, he have that q1⇒q2 � q1→q2. Still,
there are certain particular situations in which the two implications coincide. A
simple sufficient condition is that A be a classical formula.

Proposition 5. Let A ∈ Lc, B ∈ L, m = 〈W,≤, V 〉 ∈ M and w ∈ W . Then,
(m,w) � (A⇒B)→ (A→B). As a consequence, we have � (A⇒B)→ (A→B).

Proof. Suppose, by absurd, that (m,w) � (A⇒ B) → (A→ B), for A classic.
Then, there exists w′ ≥ w such that (m,w′) � A⇒B and (m,w′) � A→B. On
one hand, there exists w′′ ≥ w′ such that (m,w′′) � A and (m,w′′) � B. On the
other hand, either (m,w0) � A or (m,w′) � B. As A is classic, by Proposition 3,
the first condition is not possible. By Theorem 2, the second condition is also
impossible. Hence, we have a contradiction. �
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Note that, as a consequence of the previous result, if A is classical then A⇒B �
A→B. The essential ingredient of the proof is that the value of classical formulas
does not change as one goes up the order on worlds. Actually, even if A is not
classical, a similar situation arises as long as the value of A can be guaranteed
not to change, that is, if A holds.

Proposition 6. Let A,B ∈ L, m = 〈W,≤, V 〉 ∈ M and w ∈ W . Then,
(m,w) � A⇒((A⇒B)→(A→B)). As a consequence, � A⇒((A⇒B)→(A→B)).

Proof. Suppose, by absurd, that (m,w) � A ⇒ ((A ⇒ B) → (A → B)). Then,
(m,w0) � A and (m,w) � (A⇒B)→ (A→B). Hence, there exists w′ ≥ w such
that (m,w′) � A⇒B and (m,w′) � A→B. On one hand, there exists w′′ ≥ w′

such that (m,w′′) � A and (m,w′′) � B. On the other hand, either (m,w0) � A
or (m,w′) � B. The first condition is clearly impossible. The second condition
is also impossible, by Theorem 2, since w ≤ w′ ≤ w′′. �

The two implication connectives further interact in a number of interesting ways.
Namely, note that if A holds in a world then also does B⇒ A.

Proposition 7. Let A,B ∈ L, m = 〈W,≤, V 〉 ∈ M and w ∈ W . Then,
(m,w) � A→ (B ⇒ A). As a consequence we have � A→ (B ⇒A).

Proof. Assume, by absurd, that (m,w) � A → (B ⇒ A). Then, there exists
w′ ≥ w such that (m,w′) � A and (m,w′) � B ⇒ A. Hence, (m,w0) � B and,
more importantly, (m,w′) � A which is a contradiction. �

Another interesting fact is that classical implication distributes over intuitionistic
implication.

Proposition 8. Given A,B ∈ L and m ∈M, then (m,w) � (X⇒ (A→B))→
((X⇒A)→ (X⇒B)). Consequently � (X⇒ (A→B))→ ((X⇒A)→ (X⇒B)).

Proof. Assume, by absurd, that (m,w) � (X⇒(A→B))→((X⇒A)→(X⇒B)).
Then, there exists w′ ≥ w such that (m,w′) � X ⇒ (A → B) and (m,w′) �
(X ⇒ A) → (X ⇒ B). Hence, there is w′′ ≥ w′ such that (m,w′′) � X ⇒ A
and (m,w′′) � X ⇒ B. So, (m,w0) � X and (m,w′′) � B. This implies that
(m,w′′) � A and (m,w′) � A → B, which is impossible because w′ ≤ w′′,
(m,w′′) � A and (m,w′′) � B. �

Finally, we should note that a semantic form of the deduction theorem for clas-
sical implication holds.

Proposition 9. Let Γ∪{A,B} ⊆ L. We have Γ,A � B if and only if Γ � A⇒B.

Proof. Assume that Γ,A � B and let m ∈ M be such that m � Γ . We need
to prove that (m,w0) � A⇒ B. If (m,w0) � A we are done. Let us suppose,
otherwise, that (m,w0) � A. Then, we know that m � A as well and by definition
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of entailment it follows that m � B and, in particular, that (m,w0) � A⇒ B.
Hence, we have Γ � A⇒B.

Conversely, assume that Γ � A ⇒ B and let m ∈ M be such that m � Γ
and m � A. By entailment, we also known that m � A⇒B. Therefore, we have
(m,w0) � A⇒B and (m,w0) � A, and it follows immediately that (m,w0) � B,
that is, m � B. Thus, we get Γ,A � B. �

For intuitionistic implication, however, the deduction theorem does not hold in
general. Given the previous result, this is not unexpected since we already know
that the two implications, in general, do not coincide. Note, in particular, that
A⇒B,A � B but A⇒B � A→ B.

4 Axiomatization and Completeness

At this point, we are ready to propose an axiomatization for the combined logic
CIPL.

Definition 3. The axiomatization of CIPL consists of the axioms

(C1) A⇒ (B ⇒ A)
(C2) (A⇒ (B⇒ C))⇒ ((A⇒B)⇒ (A⇒ C))
(C3) ((A⇒ B)⇒A)⇒ A
(I1) A→ (B → A)
(I2) (A→ (B→ C))→ ((A→B)→ (A→ C))
(X1) A→ (B ⇒ A)
(X2) (A⇒ B)→ (A→B), for A classical
(X3) A→ ((A⇒B)→ (A→ B))
(X4) (X ⇒ (A→B))→ ((X ⇒ A)→ (X ⇒B))

and the inferences rules

A (A⇒B)
B

(CMP)

A (A→ B)
B

(IMP).

We denote by % the corresponding deductive consequence relation.

As we had promised, the axiomatization was obtained by adding together the
axiomatizations of classical implication, C1-C3 and CMP, and intuitionistic
implication, I1-I2 and IMP, with four interaction axioms X1-X4. Note that
each of these interaction axioms has already been discussed in the preceding
section, namely at Propositions 7, 5, 6 and 8, respectively. The soundness of
these axioms and rules can be easily obtained.

Theorem 3 (Soundness)
Let Γ ∪ {A} ⊆ L. If Γ % A then Γ � A.
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Proof. It suffices to show that each of the axioms and rules are sound. Let m be
a model.

Let us take C1. Assume that m � A⇒ (B⇒A), i.e. (m,w) � A⇒ (B⇒A),
for some w ∈ W . Then, (m,w0) � A and (m,w) � B ⇒ A, i.e. (m,w0) � B
and (m,w) � A. By Proposition 2, (m,w0) � A and (m,w) � A constitute a
contradiction. Hence, m � A⇒ (B ⇒ A).

The proofs for C2 and C3 are similar. Let us now consider the rule CMP. As-
sume that m � A and m � A⇒B. Furthermore, assume by absurd that m � B.
Then, there is w such that (m,w) � B and by Proposition 2, (m,w0) � B.
On the other hand, (m,w0) � A and (m,w0) � A ⇒ B which implies that
(m,w0) � B, contradicting our assumption.

Take now I1 and assume that m � A→(B→A), i.e. (m,w) � A→(B→A), for
some w ∈ W . Then, there is w′ ≥ w such that (m,w′) � A and (m,w′) � B→A.
This implies that there is w′′ ≥ w′ such that (m,w′′) � B and (m,w′′) � A. By
Proposition 2, as w′′ ≥ w′, we have a contradiction.

The proof for I2 is similar. Let us now consider the rule IMP. Assume that
m � A and m � A→ B. Furthermore, assume, by absurd, that m � B. Then,
there exists w ∈ W such that (m,w) � B. On the other hand, (m,w) � A and
(m,w) � A→B which imply that (m,w) � B, which, again, is a contradiction.

Finally, the soundness for the interaction axioms X1-X4 was already estab-
lished in Propositions 5-8. �

We now proceed to establishing the completeness of the proposed axiomatization.
As a preliminary step, we begin by obtaining the deduction theorem for classical
implication.

Theorem 4 (Classical deduction theorem (CDED))
Let Γ ∪ {A,B} ⊆ L. We have Γ,A % B if and only if Γ % A⇒B.

Proof. Assume that Γ,A % B. We prove that Γ % A⇒ B by induction on the
length of the derivation of Γ,A % B. If B is an axiom then:

1. B Ax
2. B⇒ (A⇒B) C1
3. A⇒ B CMP : 1, 2

Hence, Γ % A⇒B. If B ∈ Γ then the proof is similar. If B is A then Γ % A⇒A,
which can be derived as usual in classical logic.

If B resulted from C ⇒B and C using CMP then, by induction hypothesis,
there are derivations for Γ % A⇒ (C ⇒ B) and Γ % A⇒ C. Then:

...
n. A⇒ (C ⇒B) Hyp.

...
n′. A⇒ C Hyp.

n′ + 1. A⇒ (C ⇒B)⇒ ((A⇒ C)⇒ (A⇒B)) C3
n′ + 2. (A⇒ C)⇒ (A⇒B) CMP : n, n′ + 1
n′ + 3. A⇒ B CMP : n′, n′ + 2
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Note that this derivation depends only on Γ , thus Γ % A⇒B.
Assume now that B resulted from C → B and C using IMP. Then, by in-

duction hypothesis, there are derivations for Γ % A⇒C and Γ % A⇒ (C →B).
Hence:

...
n. A⇒ (C →B) Hyp.

...
n′. A⇒ C Hyp.

n′ + 1. (A⇒ (C → B))→ ((A⇒ C)→ (A⇒B)) X4
n′ + 2. (A⇒ C)→ (A⇒B) IMP : n, n′ + 1
n′ + 3. A⇒ B IMP : n′, n′ + 2

Once again, this derivation depends only on Γ , thus Γ % A⇒ B.
The converse is straightforward, using CMP. �

Although it fails in general, it is possible to formulate and prove a form of
deduction theorem for the intuitionistic implication. For the purpose, we just
need to consider derivations obtained without using the rule of classical Modus
Ponens. Henceforth, we write Γ %→ A to denote the fact that there is a derivation
of A from Γ using only the axioms and the rule IMP. Obviously, if Γ %→ A
then Γ % A.

Theorem 5 (Intuitionistic deduction theorem (IDED))
Let Γ ∪ {A,B} ⊆ L. We have Γ,A %→ B if and only if Γ %→ A→ B.

Proof. Straightforward. �

Another useful result is that, as a consequence of the corresponding deduction
theorems, each of the implications enjoys a form of hypothetical syllogism.

Corollary 3 (Hypothetical syllogism)
The following deductions hold for every A,B,C ∈ L.

(CHS) A⇒B,B ⇒ C % A⇒ C
(IHS) A→B,B → C %→ A→ C

Going now towards the completeness proof, let us use Γ� to denote the theory
{A ∈ L : Γ % A}. We will also use Γ�→ to denote the set {A ∈ L : Γ %→ A}. As
usual, given a formula A, we will say that a theory Γ is maximal relatively to A
if Γ % A but Γ,B % A for every B /∈ Γ .

Theorem 6 (Completeness)
Let Γ ∪ {A} ⊆ L. If Γ � A then Γ % A.

Proof. Assume that Γ % A. We will show how to build a model m of Γ that
does not satisfy A. Let Δ0 be a theory extending Γ , such that Δ0 is maximal
relatively to A. Note that the existence of such a Δ0 is guaranteed by the general
form of Lindenbaum’s lemma [13]. Consider now the sets Δs ⊆ L satisfying the
following conditions:
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– Δ0 ⊆ Δs;
– Δs ∩ P = Δ0 ∩ P ;
– Δs = Δ�→

s .

Consider the tuple m = 〈W,⊆, V 〉 where W is the set of all Δs sets, and V
is such that V (q) = {Δs : q ∈ Δs}. We first observe that Δ0 fulfills the above
conditions on the sets Δs and, consequently, Δ0 ∈ W . Then, we also observe
that 〈W,⊆〉 is a partial order with a least element which, by construction, is Δ0.
Furthermore, we also have that if p ∈ P then either p ∈ Δ0 and V (p) = W or
p ∈ Δ0 and V (p) = ∅. Finally, if q ∈ Q, Δs ∈ V (q) and Δs ⊆ Δs′ then q ∈ Δs′

and so Δs′ ∈ V (q), i.e. q is persistent. All these conditions imply that m ∈ M.
We prove some auxiliary results about m.

Lemma 1. B ∈ Δ0 if and only if B⇒ A ∈ Δ0.

Proof. Assume that B ∈ Δ0. If B ⇒ A ∈ Δ0 then A ∈ Δ0, by CMP, which is
a contradiction. Assume now that B ∈ Δ0. As Δ0 is maximal relatively to A,
then Δ0, B % A and by CDED we have B ⇒A ∈ Δ0. �

Lemma 2. B ⇒ C ∈ Δ0 if and only if B ∈ Δ0 or C ∈ Δ0.

Proof. If B ⇒ C ∈ Δ0 and B ∈ Δ0 then by CMP C ∈ Δ0. Assume now that
C ∈ Δ0. Then, by C1 and CMP, we have B ⇒ C ∈ Δ0. If B ∈ Δ0 then, by
Lemma 1, B⇒A ∈ Δ0. On the other hand, using C3, ((A⇒C)⇒A)⇒A ∈ Δ0.
Hence, by Lemma 1, (A⇒ C)⇒ A ∈ Δ0. Again by Lemma 1, A⇒ C ∈ Δ0. If
B⇒ A ∈ Δ0 and A⇒ C ∈ Δ0 then, by CHS, B ⇒ C ∈ Δ0. �

Lemma 3. For every Δs ∈ W , A⇒B ∈ Δs if and only if A ∈ Δ0 or B ∈ Δs.

Proof. Assume that A⇒ B ∈ Δs and that A ∈ Δ0 ⊆ Δs. By X3, A⇒ ((A⇒
B)→ (A→B)) ∈ Δ0 and using CMP, (A⇒B)→ (A→B) ∈ Δ0 ⊆ Δs. As Δs

is closed for IMP it follows that A→B ∈ Δs. Again by IMP we have B ∈ Δs.
If A ∈ Δ0 then, by Lemma 2, A⇒ B ∈ Δ0 ⊆ Δs. If B ∈ Δs then, using X1

and the fact that Δs is closed for IMP, it follows that A⇒B ∈ Δs. �

Lemma 4. For every Δs ∈ W , B → C ∈ Δs if and only if for every Δ′
s such

that Δs ⊆ Δ′
s, if B ∈ Δ′

s then C ∈ Δ′
s.

Proof. The left-to-right implication is straightforward by IMP. For the converse,
consider the set Δ′

s = (Δs ∪ {B})�→ and assume that C ∈ Δ′
s. Then, either Δ′

s

has the same classical propositional symbols as Δ0 or not. Let us assume first
that Δ′

s has the same classical propositional symbols as Δ0. Then Δs, B %→ C
and by IDED, it follows that B → C ∈ Δs. Assume now that Δ′

s does not
have the same classical propositional symbols as Δ0. Then, Δs, B %→ p, for
some p ∈ P such that p ∈ Δ0. By IDED, Δs % B → p. On the other hand,
by Lemma 1, p ⇒ A ∈ Δ0, and by Lemma 2, A ⇒ C ∈ Δ0. So, by CHS,
p⇒C ∈ Δ0 ⊆ Δs. As p is classic, by X2, (p⇒C)→ (p→C) ∈ Δs and by IMP
it follows that p→ C ∈ Δs. So, by IHS, we can conclude that B → C ∈ Δs. �



Combining Classical and Intuitionistic Implications 131

Finally, we prove that, for Δs ∈ W , (m,Δs) � B if and only if B ∈ Δs. We
proceed by induction on B. If B is a propositional symbol the result follows from
the construction of V . Consider now the case B⇒C. Then (m,Δs) � B⇒C iff
either (m,Δ0) � B or (m,Δs) � C iff, by induction hypothesis, either B ∈ Δ0

or C ∈ Δs iff, by Lemma 3, B ⇒ C ∈ Δs. Finally, consider the case B → C.
In this case, (m,Δs) � B → C iff for every Δ′

s ⊇ Δs, either (m,Δ′
s) � B or

(m,Δ′
s) � C iff for every Δ′

s ⊇ Δs, either B ∈ Δ′
s or C ∈ Δ′

s, by induction
hypothesis, iff B → C ∈ Δs, by Lemma 4.

Hence, we conclude that m � Γ and (m,Δ0) � A, and so Γ � A.

5 Concluding Remarks

In this paper we have introduced an extended Kripke semantics for both CPL and
IPL, where classical and intuitionistic implications are shown not to coincide.
We have also shown that the implicative fragment of the resulting combined
logic CIPL is a conservative extension of the implicative fragments of both CPL
and IPL, thus settling a problem raised by Dov Gabbay in [5]. In addition, we
have provided a simple complete axiomatization for the combined logic, which
adds four simple interaction axioms to the usual axiomatizations of classical and
intuitionistic implications.

The logic CIPL is, to the best of our knowledge, the first logic that extends
classical and intuitionistic logics in a conservative way. Note that the complete-
ness theorem was obtained using fairly classical tools. It is interesting to note
that our axiomatization works only for rooted models. Actually, if we consider
arbitrary Kripke models we will get a logic that is similar in most respects to the
one obtained here, with the exception of axiom X3. However, we were unable
to find a property that would replace the role played by X3 in the completeness
proof. This is an open question for future research. Other topics for further in-
vestigation concern studying the combination of the full languages of CPL and
IPL, as well as the decidability and algebraizability of the logics obtained. Note,
however, that the amalgamation-like flavour of our class of models as expressed
by Proposition 1 will still guarantee conservativeness, as well as a few other
interesting independence properties, in a way similar to Robinson’s consistency
theorem for first-order theories. It is also worth mentioning that the assump-
tion that P ∩Q = ∅ plays an important role here: the combined logic will only
be a conservative extension of the classical and intuitionistic logics built over
non-shared symbols.

It is interesting to note that our extended Kripke semantics, namely where
classical implication is concerned, is very closely related to other extensions of
intuitionistic Kripke semantics that can be found in the literature. Most notably,
we should mention the coimplication of [11,14], but also Humberstone’s antic-
ipation operator [9], or the logic of bunched implications of [10]. A thorougher
comparison with our CIPL, namely with respect to their topological semantic
aspects is certainly needed. Of course, from the point of view of Grzegorczyk’s
logic of scientific reasoning [8], there is a simple meaning for our interpretation
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of classical implication. However, it is hard to say whether there is any con-
nection to constructive proofs. In any case, developments in type theories have
found that classical implication plays an essential role in typing certain control
structures occurring in functional programs [7]. This is a line of research that is
certainly worth exploring.
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Abstract. Web services send and receive messages in XML syntax with
some parts hashed, encrypted or signed, according to the WS-Security
standard. In this paper we introduce a model to formally describe the
protocols that underly these services, their security properties and the
rewriting attacks they might be subject to. Unlike other protocol models
(in symbolic analysis) ours can handle non-deterministic receive/send ac-
tions and unordered sequence of XML nodes. Then to detect the attacks
we have to consider the services as combining multiset operators and
cryptographic ones and we have to solve specific satisfiability problems
in the combined theory. By non-trivial extension of the combination tech-
niques of [3] we obtain a decision procedure for insecurity of Web services
with messages built using encryption, signature, and other cryptographic
primitives. This combination technique allows one to decide insecurity in
a modular way by reducing the associated constraint solving problems
to problems in simpler theories.

Keyword: Security, Web services, verification, cryptographic protocols,
combination of decision procedures, equational theories, rewriting.

1 Introduction

Web services promise to be a standard technology for Internet and enterprise
networks. They require the ability to transmit securely messages in XML syntax
using the SOAP protocol. Messages that travel over the networks can be observed
and modified by intruders. Hence the protocol was extended by W3C for allowing
one to sign and encrypt some parts of the contents. Nevertheless, as for classical
protocols, cryptographic mechanisms are not sufficient for securing Web services.
They can be subject to the same attacks (e.g. man-in-the middle) as classical
cryptographic protocols, but the XML syntax and the specific way messages are
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processed (e.g. not examining the full content) gives the opportunity to mount
a new class of attacks, such as XML rewriting attacks, as shown in [1].

Recently many decision procedures have been proposed for analysing crypto-
graphic protocols. These procedures rely on automated deduction and constraint
solving procedures extending semantic unification. Our objective in this work is
to investigate whether these results can be lifted to Web services. First it appears
immediately that the flexible XML format requires one to consider message con-
tents as sets of terms rather than terms: this introduces a first difficulty since no
security decidability results exist yet for protocols using such a data structure.
Second, since messages are only partially parsed by SOAP, the answer to a re-
quest might depend on the implementation: in other words we have to model a
non-deterministic behaviour of the Web service protocols.

A role-based protocol model has been proposed in previous works [2]. This
model admits two versions. In the first one, the equational model, operations
(including decryption) are explicit and the basic operations are deterministic.
We believe that this constraint is inherent to the model, as non-determinism
in equational theories leads to inconsistency. The second model, the pattern-
matching model, relies on patterns to filter incoming messages. It has been widely
studied but proofs in this model are often complex and obscure, and there is no
general combination result that would permit one to extend existing decision
procedures to a new operation (the multiset operator, in our case).

Motivated by these facts, and also for the sake of deriving a uniform frame-
work, we propose a protocol model that is more general than the two commonly
used ones. It represents XML messages as multisets of terms and simulates non-
deterministic behaviours. Moreover decidability and combination results (previ-
ous known only for the equational model [3]) have been lifted to this model. The
proofs are involved and cannot be obtained from the ones in simpler models.

Related work. The Samoa Project project [1] offers a language to express SOAP-
based security protocols which is compiled into the applied π calculus on which
the resolution based system ProVerif is run to verify secrecy and authentica-
tion properties. Our approach is a complementary one since it provides decision
procedures that are complete for finitely many sessions, even with an associative-
commutative XML message constructor and other operators such as Dolev Yao
encryption/decryption. A lot of work has been dedicated to security analysis of
protocols modulo algebraic properties (see e.g. [4,5,6]). However no decidability
results have been reported for associative or associative-commutative operators,
supporting the combination with useful cryptographic primitives (such as XOR).
To our knowledge, the ones we report here are the first of this kind, and we show
how they apply to deciding security properties of XML services. Our results rely
on extensive use of term rewriting and unification techniques [7].

Paper organization. First, we describe an example of XML-rewriting attacks
in Sec. 2, then we recall the notions of term rewriting we use on our model in
Sec. 3. Sec. 4 formally models service executions by the deductions that can be
performed by intruders and honest agents. In particular we introduce symbolic
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derivations as parameterized deductions. They can be viewed as a variant of
strand spaces, a fundamental concept in protocol analysis [8]. Security in this
model reduces to a constraint satisfiability problem. We give an algorithm for
solving it for the case of plain Web services in Sec. 5. Sec. 6 presents a combi-
nation scheme that applies to multiset and cryptographic operators: it provides
us with a decidable analysis of XML protocols.

The long version [9] of this paper contains all missing lemmas and proofs.

2 An Example of Web Service and XML Rewriting
Attack

Web services can be described as a set of receive/send action between clients and
the provider, where the messages are XML terms following the SOAP format.
Messages are constructed and parsed according to the security policy of the
service which usually requires that some parts of the message are encrypted,
signed using known algorithms like sha1, rsa,. . . , may contain timestamps, make
reference to trusted third parties,. . . . A SOAP message is an envelope consisting
of a mandatory body and of an optional header. The header contains the useful
information about the message and usually has a security part that follows the
WS-security specification defined by the OASIS organization. For instance, Alice
may order a ticket for Bremen for herself to be charged to her account by sending
send the following message to Bob, her correspondent in the travel agency:

<Envelope>
<Header>
<To> http://www.travel-for-free.com/∼bob </>
<Security>

<timestamp>2007-04-16T09:56:43Z</>
<signature>
<signedInfo>

<reference URI=#1>a string</>
<signatureValue>another string </>

</></></></>
<Body>
<Order id=1>

<beneficiary>Alice</>
<account>Alice</>
<trip>Bremen</>

</></></>

In the header, the first string is a digest of the body, and the other string is
the encryption of this digest using the private key of Alice. For efficiency pur-
poses, only parts of the messages are encrypted or signed. Since a node la-
belled by a tag ’a’ may have an arbitrary number of elements, we introduce a
unary symbol a( ) for each tag ’a’ and an associative-commutative multiset con-
structor. For instance, the body of the above message corresponds to the term
Body(Order(beneficiary(Alice) · account(Alice) · trip(Bremen))) where e1 · . . . · en
denotes the multiset {e1, . . . , en}. Another possibility is to replace the multiset

http://www.travel-for-free.com/~bob
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operator by an associative operator for sequences. In Web services, components
of messages are selected by their tag and security policies usually refer to this
name and don’t consider the possibility of multiple occurrences of the same tag.

In our example, the recipient Bob performs several security checks, including
the verification of the signature, then looks for a part of the Body labelled Order,
orders a ticket for the requested trip and charges Alice’s account. Then, he sends
to Alice a SOAP message with a security header containing the digest of the
original message and a body containing an accesscode for the trip encoded by
the public key of the beneficiary (that Alice will transfer to the beneficiary).
Like in the study of cryptographic protocols, we assume that cryptography is
perfect, but we don’t make any particular hypothesis on the implementation of
parsing XML trees. An attacker Charlie may intercept the message and forge a
new one that inserts a new Order item to the Body:

<Order id=2>
<beneficiary>Charlie </>
<account>Alice</>
<trip> Hawaii</>

</>

before the previous Order. An implementation of the service may lead to a suc-
cessful verification of the signature and to sending the accesscode to Charlie
depending on how the XML term is parsed. If the first match of Order is cho-
sen, then Charlie gets the accesscode, since the signature is correct because the
reference to the initial Order is still used. Another implementation could parse
the children of a node from right to left and select the correct Order subterm.
Therefore the behavior of the protocol is non-deterministic which we model by
rules that select a element Order( ) in a multiset. We shall model the service
by deduction rules and equations that model all the operations that the partici-
pants can do and all algebraic relations that may hold between the operators A
possible abstraction of the security protocol P that supports the service is:

A→B : se(h(order(x, y, z)), SKA) · order(x, y, z)
B→A : se(h(order(x, y, z)), PKA) · se(accesscode(z), PKx)

where h denotes a hashing function, order(x, y, z) denotes the request for trip
z for beneficiary x, with y the account to charge, h is a hash function, access-
code(z) is the code requested to get the ticket from automata, se(x, y) denotes
the encryption of x using key y, PKx is the public key of x, SKx is the private
key of x. The intruder deductive power is given by the classical Dolev-Yao rules
(see [10,11]) extended by a rule that allows us to select any element in a multi-
set. Some realistic implementations of the service (like the one in Section 4) are
subject to the following attack (assuming that C = I or C is compromised):

A→IB : se(h(order(A, A,Bremen)), SKA)·order(A,A,Bremen)
IA →B : se(h(order(A, A,Bremen)), SKA)·order(C, A,Hawaii)·order(A, A,Bremen)
B→IA : se(h(order(A, A,Bremen)), PKA)·se(accesscode(Hawaii), PKC)

where IA (resp. IB) denotes a malicious agent I masquerading the honest par-
ticipant A (resp. B), and the secret key SKC is known by I.



Towards an Automatic Analysis of Web Service Security 137

3 Terms, Subterms and Ordered Rewriting

Basic notions. We consider an infinite set of free constants C and an infinite set
of variables X . For all signatures F (i.e. a set of function symbols with arities),
we denote by T(F ) (resp. T(F , X )) the set of terms over F ∪C (resp. F ∪C∪X ).
The former is called the set of ground terms over F , while the later is simply
called the set of terms over F . Variables are denoted by x, y, terms are denoted
by s, t, u, v, and finite sets of terms are written E,F, ..., and decorations thereof,
respectively. For finite sets of terms, we abbreviate E∪F by E,F and the union
E ∪ {t} by E, t.

Given a signature F a constant is either a free constant or a function symbol
of arity 0 in F . For a term t, Var(t) is the set of variables occurring in t and by
Cons(t) is the set of constants occurring in t. An atom is either a variable or a
constant and we denote by Atoms(t) the set Var(t) ∪ Cons(t). The application
of a substitution σ to a term t (resp. a set of terms E) is denoted tσ (resp. Eσ).
An equational presentation H = (F , A) is defined by a set A of equations r = t
with r, t ∈ T(F , X ). For any equational presentation H the relation =H denotes
the equational theory generated by (F , A) on T(F , X ). An H -Unification system
S is a finite set of pairs of terms in T(F , X ) denoted by (ui

?= vi)i∈{1,...,n}. The
ground substitution σ satisfies S , denoted by σ |= S , iff for all i ∈ {1, . . . , n}
uiσ =H viσ. Syntactic subterms and positions are defined as usual (see [12,13]),
and the replacement of the subterm of t by s at position p is denoted by t[p ← s],
for a set of positions Π , t[Π ← s] denotes the replacement of all subterms at
position p ∈ Π by s.

Congruences and ordered rewriting. Let < be a simplification ordering on T(F )1,
total on T(F ), such that (i) the minimal element for < is a constant cmin ∈ C;
(ii) each non-free constant is smaller than any non-constant ground term. Cspe

denotes the set containing the constants in F and cmin. Given a possibly in-
finite set of equations O on the signature T(F ) the ordered rewriting rela-
tion →O is defined by t →O t′ iff there exists a position p in t, an equation
l = r in O, a substitution τ such that t = t[p ← lτ ], t′ = t[p ← rτ ], and
lτ > rτ .

It has been shown that by applying the unfailing completion procedure to a
set of equations H yields a (possibly infinite) set of equations O such that: (i)
the congruence relations =O and =H are equal on T(F ), (ii) the ordered rewrite
relation →O is convergent (i.e. terminating and confluent) on T(F ). We say that
O is an o-completion of H . Since the rewrite system →O is convergent on ground
terms, we can define (t)↓O as the unique normal form of the ground term t for→O .
A ground term t is in normal form, or normalised, if t = (t)↓O . Given a ground
substitution σ we denote by (σ)↓O the substitution with the same support such
that x(σ)↓O = (xσ)↓O for all variables x in the support of σ. A substitution σ is
normal if σ = (σ)↓O .

1 By definition < satisfies for all s, t, u ∈ T(F ) s < t[s] and s < u implies t[s] < t[u].
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4 Modelling Service Execution

4.1 A Model for Secure Web Services

Let us first briefly review the situation we want to model. Some simple Web ser-
vices are akin to functions in a library. Their execution is triggered by the recep-
tion of a request from a client, to which they immediately respond. These services
are advertised by a WSDL specification that defines among other things the con-
tents of the input and output messages. It is also possible to specify some cryp-
tographic protection for integrity, confidentiality and authenticity of a request by
means of a published security policy. This policy will constrain acceptable requests
by mandating that some parts have to be signed, encrypted or integrity protected.
These parts are expressed either by identifiers or by XPath expressions, and we
say that these services are protected. Finally, some WS standards, e.g. BPEL, WS-
SecureConversation, and others, permit to express sequences of simple service in-
vocations, which we call workflows. We call totally ordered sequences workflow ex-
ecutions, as they also correspond to traces of service workflows.

The analysis of Web services is thus very similar to the one of cryptographic
protocols. A protected service workflow is a composition of roles (client, ser-
vice,. . . ), and a workflow execution is akin to a protocol execution. Agents im-
personate the roles in a workflow execution.

This similarity shall not, however, hide the differences at the level of messages.
In the case of cryptographic protocols, the patterns of admissible messages are
fixed, and known by the intruder, whereas security policies just express con-
straints on the presence of some particular subterms at some position in a mes-
sage. Moreover, and since services are in most cases automatically generated,
the verification of a message is likely to be independent of the construction of a
response. Finally, some implementations may return only one node in a hedge
when several ones correspond to an XPath expression, thereby allowing for XML
injection attacks. The work described in this paper focuses on security policies
expressing paths of subterms from the root (envelope) of the message, leaving
general XPath constraints to future work.

Example 1. A client A invokes a service B by sending se(h(order(x, y, z)), SKA)·
order(x, y, z), where x, y and z are instantiated parameters of the client. Then
it receives a response r which is parsed to check that it contains the nodes
se(z, PKA) and se(u, v) at its root, with v = PKx and z = h(order(x, y, z)).

The intruder and the insecurity problem. In the Dolev-Yao model [10], attacks
on protocols are modelled by the addition of a malicious participant, called the
intruder, that controls the network. It can intercept, block and/or redirect all
messages sent by honest agents. It can also masquerade its identity and take
part in the protocol under the identity of an honest participant. Its control of
the communication network is modelled by assuming that all messages sent by
honest agents are sent directly to the intruder and that all messages received
by the honest agents are always sent by the intruder. Besides the control on the
net, the intruder has specific rules to deduce new values and compute messages.
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From the intruder’s point of view a finite execution of a protocol is therefore the
interleaving of a finite sequence of messages it has to send and a finite sequence
of messages it receives (and add to its knowledge). Therefore the intruder is
simply an additional role that runs concurrently with the honest participants.

The protocol is insecure if some secret knowledge is revealed during the exe-
cution of the protocol, which is modelled by adding a last step that reveals the
secret. The insecurity problem amounts to finding a sequence of actions of the
intruder such that its composition with the extended protocol is executable.

4.2 Deduction Systems

We give a formal model for roles and the execution of roles (including the in-
truder). Messages are ground terms and deduction rules are rewrite rules on sets
of messages representing the knowledge of an agent. Each role derives new mes-
sages from a given (finite) set of messages by using deduction rules. Furthermore,
these derivations are considered modulo the equational congruence =H generated
by the equational axioms satisfied by the function symbols of the signature F .
Let O be an o-completion of H . We write (t)↓ as a short-hand for (t)↓O .

Definition 1. A deduction rule is a rule d : t1, . . . , tn → t with t1, . . . , tn, t terms
s.t. Const((tσ)↓) ⊆ ∪ni=1Const((tiσ)↓) ∪ Cspe for any ground substitution σ.

This condition is very similar to the origination condition for well-definedness
in [14]. When the equational theory is regular (i.e. the same variables occur on
each side of axioms) then this condition holds iff Var(t) ⊆ Var(t1, . . . , tn).

Example 2. x, y → 〈x, y〉 is a deduction rule when assuming that the set of
equational axioms is empty. This rules allows an agent (who can be the intruder)
to construct a new pair from two values already known.

Deduction rules are the basic ingredients for deduction systems.

Definition 2. A deduction system D is a triple 〈F , R , H 〉 where F is a signa-
ture, R is a set of deduction rules and H is a set of equations between terms in
T(F , X ). For each deduction rule d : t1, . . . , tn → t ∈ R , the set GI(d) denotes
the set of ground instances of the rule d modulo H :

GI(d) = {l → r | ∃σ, ground substitution on F , l =H t1σ, . . . , tnσ and r =H tσ}

where =H is extended to sets of terms in the natural way. The set of rules GID

is defined as the union of the sets GI(d) for all d ∈ R .

Example 3. Let F = {〈 , 〉 , se( , ), ·, a( )}, RD = {x, y → 〈x, y〉 ;x, y → se(x, y);
se(x, y), y → x; 〈x1, x2〉 → xi;x, y → x · y;x · y → x; a(x) → x;x → a(x)},
H = {x ·y = y ·x, x · (y ·z) = (x ·y) ·z}. The rules associated with a are extended
to any n-ary operator added to the signature representing an XML node. Then
the deduction system D = 〈F , RD , H 〉 describes the classical Dolev-Yao model
with the addition of an associative-commutative operation · and of the rules that
allow us to build multisets with · or to extract parts of a multiset.
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Each deduction rule l → r in GID defines an deduction relation →l→r between
finite sets of terms: given two finite sets of terms E and F we define E →l→r F
if and only if l ⊆ E and F = E, r. We denote →D the union of the relations
→l→r for all l → r such that l → r ∈ GI(d) for some d ∈ R , and by →∗

D the
transitive closure of →D . We simply denote by → the relation →D when there is
no ambiguity about the deduction system D.

Definition 3. A derivation D of length n ≥ 0, is a sequence E0 →D E1 →D

· · · →D En where E0, . . . En are finite set of ground terms such that Ei = Ei−1, ti
for every i ∈ {1, . . . , n}. The term tn is called the goal of the derivation.

Example 4. The previous deduction system has a derivation:

{Ka, 〈se(s,Ka), a〉 , a, b} →D {Ka, 〈se(s,Ka), a〉 , se(s,Ka), a, b}
→D {Ka, 〈se(s,Ka), a〉 , se(s,Ka), s, a, b}

that shows the discovering of a secret s by an intruder that knows the encryption
key Ka, identity of agents and intercepts a message 〈se(s,Ka), a〉. The ground
deduction rules employed are 〈se(s,Ka), a〉 → se(s,Ka) and se(s,Ka),Ka → s

DerD(E) = {t | ∃F s.t. E →∗
D F and t ∈ F} is the set of terms derivable from E

is. We write Der(E) instead of DerD(E) when there is no ambiguity on D.

4.3 Symbolic Derivation

Given a deduction system 〈F , R , E〉, a role applies rules in R to construct the
response of step i and tests equalities to check the well-formedness of a message.
Hence the activity of a role can be expressed by a fixed symbolic derivation:

Definition 4. (Symbolic Derivation) A symbolic derivation for deduction sys-
tem 〈F , R , E〉 is a tuple (V , S , K , In,Out) where V is a finite sequence of vari-
ables, (xi)i∈Ind, indexed by a linearly ordered set (Ind,<), K is a set of ground
terms (the initial knowledge) In, Out are disjoint subsets of Ind and S is a set
of equations such that for all xi ∈ V one of the following holds:

– i ∈ In

– There exists a ground term t ∈ K and an equation xi
?= t in S ;

– There exists a rule l1, . . . , lm → r ∈ R such that S contains the equations
xi

?= r and xαj

?= lj for j ∈ {1, . . . ,m} with αj < i.

A symbolic derivation is closed if In = Out = ∅, in which case it may be sim-
ply denoted by (V , S , K ). A substitution σ satisfies a closed symbolic derivation
if σ |=E S .

To improve readability of the examples, we replace every index i in a set of
indices I by the variable xi associated to this index, and we do not model the
equations xi

?= t for t ∈ K , writing t directly when xi is needed, nonetheless
keeping track of these variables in a set VK . We will also employ to denote a
variable appearing only once.
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Example 5. The client A of P can be described by the deduction system D of
Ex. 3. Starting from the initial knowledge KA = {a, b,Bremen, SKa, PKa}, the
client applies the following ground instances of deduction rules. First it builds
xA1 = order(a, a,Bremen) from a,Bremen ∈ KA (ground instance of the rule
x, y, z → order(x, y, z)), then builds xA2 = h(xA1 ) from xA1 and xA3 = se(xA2 , SKa).
Finally it computes and sends xA4 = xA3 ·xA1 , and waits for the response xA5 . From
xA5 it extracts two components xA6 and xA7 , decrypts xA6 with SKa and checks
that the result is equal to xA2 and finally decrypts xA7 to obtain the accesscode.
A symbolic derivation for this role is (VKA ∪(xAi )1≤i≤9, S , KA,

{
xA5

}
,
{
xA4

}
) with:

S =

⎧
⎪⎨

⎪⎩

xA1
?=order(a, a,Bremen) xA2

?=h(xA1 ) xA3
?=se(xA2 , SKa)

xA4
?=xA3 · xA1 xA5

?=xA6 · xA5
?=xA7 ·

xA6
?=se(xA8 , PKa) xA7

?=se(xA9 , PKa) xA8
?=xA2

To compose two symbolic derivations we identify some input variables of one
derivation with some output variables of the other and vice-versa. This con-
nection should be compatible with the variable orderings inherited from each
component, as detailed in the following definition:

Definition 5. Let C1 = (V1, S1, K1, In1,Out1), C2 = (V2, S2, K2, In2,Out2) be
two symbolic derivations, with disjoint sets of variables and index sets (Ind1, <1)
and (Ind2, <2) respectively. Let I1, I2, O1, O2 be subsets of In1, In2,Out1,Out2

respectively. and assume that there is an order-preserving bijection φ from I1∪I2
to O1∪O2 such that φ(I1) = O2 and φ(I2) = O1. A composition of two symbolic
derivations along the sets I1, O1, I2, O2 is a symbolic derivation

C = (V , φ(S1 ∪ S2), K1 ∪ K2, (In1 ∪ In2) \ (I1 ∪ I2), (Out1 ∪Out2) \ (O1 ∪O2))

where φ is extended to a substitution on terms by setting φ(xi) = xj if φ(i) = j,
V is a sequence of variables indexed by Ind = (Ind1 \ I1) ∪ (Ind2 \ I2), ordered
by a linear extension of the transitive closure of the relation:

<1 ∪ <2 ∪ {(u, v) | v = φ(w) and u <1 w or u <2 w}

and such that the variable of index i in V is equal to the variable of index i in
V1 if i ∈ Ind1, and to the variable of index i in V2 if i ∈ Ind2.

A composition of two symbolic derivations is also a symbolic derivation and we
can compose an arbitrary number of symbolic derivations in the same way.

Example 6. Let us consider the symbolic derivation of the previous example,
and let us assume that the variables are ordered as yA1 , xA1 , yB1 , yB2 , xA2 , yA2 . The
normal execution of the protocol P corresponds to a composition of the two
symbolic derivations of the previous example along I1 = {xA2 }, O1 = {yA1 }, I2 =
{xB1 }, O2 = {yB1 }, i.e. where xA2 (resp.xB1 ) is replaced by yB1 (resp. yA1 ).
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4.4 The Formal Statement of Protocol Insecurity

As mentioned in Section 4.1, protocol insecurity can be reduced to the exe-
cutability of the protocol extended by a step revealing a secret. Since we are
interested to decide insecurity for combined deduction systems we will define a
slightly more general problem that is also more modular:

Ordered Satisfiability
Input: a symbolic derivation Ch for 〈F , R , E〉 (protocol), a set of terms

Ki (intruder knowledge), X the set of all variables, C the set of
free constants occurring in Ch and a linear ordering ≺ on X ∪C.

Output: Sat iff there exists a symbolic derivation Ci = (Vi, Si, Ki,
Ini,Outi) for 〈F , R , E〉, a closed composition Ca of Ci and Ch,
and a substitution σ such that σ satisfies Ca and: ∀c ∈ C, x ≺
c implies c /∈ Const(xσ)

4.5 Comparison with Pattern-Matching and Equational Models

The pattern-matching model. In this model pattern-matching is used to extract
the components of incoming messages, independently of the feasibility of the
operation by the agent. For instance, if a role A must execute the receive/send
sequence se(x, y)→se(x,K) and if the actual message is se(NB,K), then pattern-
matching yields the relation x = Nb. This allows us to get rid of the algebraic
properties of explicit destructors (like decryption or projection) and provides the
syntactic Dolev-Yao model. But when the algebraic properties of other operations
like the exclusive or ⊕ are added to the model, this may lead to meaningless
protocols (e.g. not well-defined): a step x ⊕ y → x is unrealistic, but pattern
matching succeeds. In our setting symbolic derivations are well-defined and can
be translated into a well-defined protocol. Therefore decidability results on well-
defined protocols for some signature transfer immediately to symbolic derivations
on the same signature.

The equational model. The original Dolev-Yao model [10] used explicit con-
structors (e.g. for encryption) and destructors (e.g. for decryption) and the cor-
responding equational theory. To retrieve components of a message, pattern-
matching is replaced by an explicit computation using destructors. For instance,
to retrieve x in m = se(x,K) yields the equation x = sd(m,K). The executabil-
ity of the protocol is guaranteed by the satisfiability of the system of equations
modulo the equational theory enriched by axioms stating that a destructor is
the inverse of a constructor. This approach is sound for classical cryptographic
protocols but this no longer the case for non-deterministic security protocols
arising in Web services. If fa extracts the component a( ) in a multiset m, we
get that fa(m) = a(x1) and fa(m) = a(x2) for m = a(x1) · a(x2), hence we get
a(x1) = a(x2) which leads to some inconsistencies (all terms headed by a are
equal modulo the equational theory.)
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5 Plain Web Services

In a first abstraction, Web services are protocols that exchange multisets of nodes.
Hence we will consider first a signature that is reduced to a multiset operator, a
constant (the empty multiset) and unary operators. We call Plain Web services
protocols defined on this signature. We shall present now a procedure to de-
cide ordered satisfiability for plain Web services. We note first that the ordered
satisfiability for a deduction system in which one can enclose data in a node a
(rule x → a(x)) or expose the data contained in the node a (rule a(x) → x) is
easily decidable (by [15] and the fact that the deduction system is local and the
equational theory is empty). Then for applying the combination result of next
section, it remains to decide ordered satisfiability problems for the deduction
system associated to the multiset operator that is employed in the construction
and analysis of XML messages. We believe that the proof can be adapted for
sets (with union and subset extraction). A related result for words (i.e. when
the ordering of nodes matters) can be found in [16].

We consider the signature F = {·, 1} with the following equational theory:

E = {x · (y · z) = (x · y) · z (A), x · y = y · x (C), x · 1 = x (U)}
(usually denoted ACU). Our decidability result is independent of the presence
or absence of the (U) axiom. The deduction rules are:

R = {x · y → x, x, y → x · y, → 1}
This theory is regular and the set of variables of the right-hand side is included
in the set of variables of the left-hand side for each rule, hence the rules are
indeed deduction rules. We state now some some basic facts on M = 〈F , R , E〉.
Proposition 1. Let E and t be respectively a set of terms and a term in normal
form modulo E. We have: (i) Const(E) ⊆ DerD(E), (ii) E ⊆ DerD(Const(E));
(iii) DerD(E) = DerD(Const(E)); (iv) t ∈ DerD(E) iff Const(t) ⊆ Const(E).
Proof. Let c ∈ Const(E) be a constant, and e ∈ E be a term such that
c ∈ Const(e). We have therefore e = e′ · c. Thus in one step we have E → E, c.
Since c is arbitrary, we have Const(E) ⊆ DerD(E). We easily see that we also
have E ⊆ DerD(Const(E)) and (i) follows. From this, (ii) follows by double
inclusion. For (iii) we have t ∈ DerD(E) is equivalent to DerD(E) = DerD(E, t),
and thus by (ii) it is equivalent to DerD(Const(E)) = DerD(Const(E, t)). By
contradiction assume there exists c ∈ Const(t) \Const(E). Given the constraint
on constants in deduction rules we have c /∈ DerD(Const(E)) whereas c trivially
is in DerD(Const(E, t)), which contradicts the equality, and thus t ∈ DerD(E) �
The decision procedure is given by Algorithm 1. The completeness of this algo-
rithm is easy and the correctness derives from Proposition 1.
Complexity. Step one and checking satisfiability of linear equation systems over
positive integers are in NP. Step three can be performed in PTIME.

Theorem 1. Ordered satisfiability of multiset deduction systems is in NP.

Similar results have been obtained for pure AC-symbols under some restrictions
in [17] but they do not cover our case.
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Algorithm 1. Ordered satisfiability for multiset deduction systems
Input: - C = (V , S , K , In,Out);

- A finite set of ground terms KD ;
- An ordering ≺ on Var(C) ∪ Const(C).

1: For each variable x in V guess the set of constants Px = {a1, . . . , ak} that may
occur in the solution, where ai ≺ x for i = 1, . . . , k.

2: Check the satisfiability of S by reduction to satisfiability of a set of linear equations
over N by setting x = Σc∈Px(λx,c + 1)c for each variable x ∈ V .

3: Check for each variable x ∈ In that Px ⊆ Const(KD) ∪
�

x′∈Out

x′<V x

Px′

4: If both checks are successful return Sat else fail

6 Protected Web Services

Protected Web services are Web services that contain cryptographic operators.
Many results have been obtained for proving security of cryptographic protocols
with various equational theories (xor, . . . ), and we want to be able to use these
results in our framework. 2. In this last section we present a combination algo-
rithm that allows us to reuse previous results, either from the equational model or
the pattern-matching model. In particular it provides the first modularity result
covering the pattern-matching model for cryptographic protocols.

From now on, we shall assume that F is the disjoint union of two signatures
F1 and F2, and we assume that E1 (resp. E2) is a consistent equational theory
on F1 (resp. F2). We recall that C is an infinite set of free constants, that X is
an infinite set of variables and that T(F1, X ) (resp. T(F2, X )) denotes the set of
terms on F1 ∪ C (resp. F2 ∪ C). The ordering < is a simplification ordering on
T(F , X ) total on T(F ) and the constant cmin is the minimal element for <.

A term t in T(F1, X ) (resp. in T(F2, X )) is called a pure 1-term (resp. a pure
2-term). The term s is alien to the term u if the top operators of s and u are
not both in F1 or both in F2.

Definition 6. Let t be a term in T(F1 ∪ F2, X ). The set of its factors is denoted
Factors(t) and is the set of maximal syntactic strict subterms of t that are either
alien to t or atoms. The set of its subterm values is denoted by Sub(t) and is
defined recursively by Sub(t) = {t} ∪

⋃
u∈Factors(t) Sub(u).

For a set of terms E, the set Sub(E) is the union of the subterm values of the
elements of E. A set of equations S is called homogeneous iff it contains only
pure equations. We denote by tδs the term obtained by replacing all subterm
occurrences of s in t by cmin.

Lemma 1. Let l → r be a rule in GI(d) with d : t1, . . . , tn → t and s /∈ Cspe

alien to some ti or t. Then (lδs)↓ → (rδs)↓ is also a rule in GI(d).

2 The freshness of nonces will be handled as for protocols and not discussed here.
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Proof. Let σ be a ground normal substitution such that (t1σ, . . . , tnσ)↓ = l
and (tσ)↓ = r. Let us prove that for u ∈ {t1, . . . , tn, t} one has ((uσ)↓δs)↓ =
(u(σδs))↓. This suffices to find a ground instance (lδs)↓ → (rδs)↓ in GI(d). If u
is a variable then σ in normal form implies (uσ)↓ = uσ and thus ((uσ)δs)↓ =
((uσ)↓δs)↓. Otherwise, and since the rule is pure, the assumption implies that s
is alien to u. Since σ is a normal substitution, and since for u ∈ {t1, . . . , tn, t}
the term u is pure, the factors of uσ are in normal form.

These facts and Lemma 10 from [9] imply that for all u ∈ {t1, . . . , tn, t} one
has ((uσ)↓δs)↓ = ((uσ)δs)↓. Since s is alien to the term u we also have (uσ)δs =
u(σδs). By applying a bottom-up normalisation we have u(σδs) =E u(σδs)↓.
Putting together these equalities we obtain a substitution σ′ = (σδs)↓ such that
the rule d instantiated by σ′ is (lδs)↓ → (rδs)↓. �

Let 〈F1, S1, E1〉 and 〈F2, S2, E2〉 be two deduction systems on disjoint signatures.
Our combination algorithm relies on the following lemma stating that a satis-
fiable closed symbolic derivation for the union of 〈F1, S1, E1〉 and 〈F2, S2, E2〉
can be split into satisfiable symbolic derivations on F1 and F2 respectively. The
abstraction of a term t in a signature Fi, denoted Absi(t), consists in replacing
the maximal subterms of t with root in Fj , j = i by new constants.

The abstraction Absi(σ) of a substitution σ in Fi is the substitution such
that for all x in the support of σ, xAbsi(σ) is the abstraction of xσ in Fi. In
the statement of next lemma, Sig(t) designates the signature to which the top
symbol of the term t belongs. From a system of equations S , one notes that one
can derive, by introducing new variables, an equisatisfiable homogeneous set of
equations S1 ∪ S2 such that terms in Si are pure Fi-terms for i = 1, 2.

The proof idea is to “abstract” a solution σ for a symbolic derivation C in
deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉 and to apply iteratively Lemma 1
in order to show for i = 1, 2 that Absi(σ) is a solution of the symbolic derivation
in the deduction system 〈Fi, Si, Ei〉.

Lemma 2. Let C = (V , S , K ) be a closed derivation satisfied by a normal sub-
stitution σ for the deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉. For i = 1, 2 let
Si denote the purification of S 3 and:

Ki={Absi(t) ∈ Sub(K ) | Sig(t) = i and ∃x ∈ V , xσ = t}∪{x ∈ V | Sig(xσ) = i}

Then two closed symbolic derivations Ci = (V , Si, Ki) (for i = 1, 2) can be
computed such that they are satisfied by Absi(σ) for intruder 〈Fi, Si, Ei〉
respectively.

Algorithm 2 reduces satisfiability of a D-symbolic derivation C to satisfiability
of D1 and D2, symbolic derivations augmented with ordering constraints on the
variables of C and the ordering constraints between variables and constants of C .
A partial symbolic derivation denotes a symbolic derivation for which variables
in V whose index is not in In may have no associated equation in S . This leads
to the following theorem:
3 As in unification.
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Theorem 2. If the ordered satisfiability problem for closed symbolic derivation
is decidable for two deduction systems 〈F1, S1, E1〉 and 〈F2, S2, E2〉 with disjoint
signatures F1 and F2 then the ordered satisfiability problem for closed symbolic
derivation is decidable for the deduction system 〈F1 ∪ F2, S1 ∪ S2, E1 ∪ E2〉.

Algorithm 2. Combination Algorithm SolveD(C ,≺)
Input: C = (V , S , K , In,Out) where S homogeneous;

A finite set of ground terms KD ;
A linear ordering ≺ on Var(C) ∪ Const(C).

1: Choose a partial symbolic derivation CD = (VD , SD , KD , InD ,OutD) such that:

– |VD | ≤ |Sub(C)| + |In| + |Out| + |KD |
– |InD | = |Out| and |OutD | = |In|
– A composition C ◦ CD(KD) is defined

– SD is homogeneous, contains equations x
?
= t with t ∈ Sub(C) ∪ VD and x ∈ X,

a set of new variables with |X| ≤ |Sub(C) ∪ VD |, and defines an equivalence
relation on Sub(C) ∪ VD

2: Choose a linear ordering ≺X on variables in X ∪ Const(C) ∪ Var(C) extending ≺.
Let X1 and X2 be two disjoint subsets of X

3: Form the closed partial symbolic derivation C ′ = C ◦CD , and purify it into two pure
symbolic derivations C1 and C2, where variables of X1 (resp. X2) are considered as
constants in C2 (resp. C1).

4: If SolveD1(C1, ≺X) and SolveD2(C2, ≺X) return Sat else fail

The proof of completeness of Alg. 2 is intricate, and relies on a locality result
for deductions and on a pumping lemma for solutions. Its correctness relies on
the ordering ≺X to construct a solution σ from two partial solutions σ1 and σ2.

7 Conclusion

Web service XML messages are often vulnerable to rewriting attacks since the
associated message format and processing model are quite tolerant to inclusion
of new elements. We have developed a verification procedure that accounts for
this and moreover can be extended with most existing protocol analysis proce-
dures for algebraic operators. The combination algorithm applies in particular to
encryption/decryption operators [18], list with associative concatenation [16],
XOR [15], abelian groups [14]. Our framework allows us to describe specific
implementation of XML/XPath library and we aim at extending this work to
take the various security standards for Web services into account. We also plan
to implement it in the AVISPA platform [19].
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Abstract. Nowadays, formal methods rely on tools of different kinds: proof as-
sistants with which the user interacts to discover a proof step by step; and fully
automated tools which make use of (intricate) decision procedures. But while
some proof assistants can check the soundness of a proof, they lack automa-
tion. Regarding automated tools, one still has to be satisfied with their answers
Yes/No/Donotknow, the validity of which can be subject to question, in par-
ticular because of the increasing size and complexity of these tools.

In the context of rewriting techniques, we aim at bridging the gap between
proof assistants that yield formal guarantees of reliability and highly automated
tools one has to trust. We present an approach making use of both shallow and
deep embeddings. We illustrate this approach with a prototype based on the CiME
rewriting toolbox, which can discover involved termination proofs that can be
certified by the COQ proof assistant, using the COCCINELLE library for rewriting.

1 Introduction

Formal methods play an increasingly important role when it comes to guaranteeing
good properties for complex, sensitive or critical systems. In the context of proving,
they rely on tools of different kinds: proof assistants with which the user interacts step
by step, and fully automated tools which make use of (intricate) decision procedures.

Reducing the cost of formal proofs amounts to using more and more automation.
However, while some proof assistants can check the soundness of a proof, one still
has to be satisfied with the answer of automated tools. Yet, since application fields
include possibly critical sectors as security, code verification, cryptographic protocols,
etc., reliance on verification tools is crucial.

Some proof assistants, like COQ [28], need to check mechanically the proof of each
notion used. Among the strengths of these assistants are firstly a powerful specification
language that can express both logical assertions and programs, hence properties of
programs, and secondly a highly reliable procedure that checks the soundness of proofs.

For instance, COQ or ISABELLE/HOL [26] have a small and highly reliable ker-
nel. In COQ, the kernel type-checks a proof term to ensure the soundness of a proof.
Certified-programming environments based on these proof assistants find here an addi-
tional guarantee. Yet, among the weaknesses of these assistants, one may regret the lack
of automation in the proof discovery process. Automation is indeed difficult to obtain
in this framework: the proof assistant has to check a property proven by an external
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procedure before accepting it. Therefore, such a procedure has to return a proof trace
checkable by the assistant.

We want to meet the important need of proofs delegation for some properties in
the framework of rewriting techniques. We will focus on generic ways to provide
reasonably-sized proof traces for complex properties, for instance termination.

Termination is the property of a program any execution of which always yields a re-
sult. Fundamental when recursion and induction are involved, it is an unavoidable pre-
liminary for proving many various properties of a program. Confluence of a rewriting
system, for instance, becomes decidable when the system terminates. More generally,
proving termination is a boundary between total and partial correctness of programs.
Hence, automating termination is of great interest for provers like COQ, in which func-
tions can be defined only if they are proven to be terminating.

The last decade has been very fertile w.r.t. automation of termination proofs, and
yielded many efficient tools (APROVE [17], CiME [8], JAMBOX [15], TPA [22],
TTT [20] and others) referenced on the website of the Termination Competition [24].
Some of them display nice output for human reading. However, there is still a clear
gap between proof assistants that provide formal guarantees of reliability and highly
automated tools that do not. In the sequel, we aim at bridging this gap.

We present here a methodology for the particularly important challenge of automat-
ically generating proof traces in the domain of first order term rewrite systems and in
particular for termination proofs of such systems. We do not restrict to classical ap-
proaches of all-shallow embedding or, like Color [4], of all-deep embedding to model
properties or techniques. Instead we use a mixed approach so as to get the best of both
worlds. We implemented our principles and methodology within the rewrite tool box
CiME 2.99. This version uses parts of the termination engine of CiME2.04; with our
mixed approach it can certify (with COQ) termination proofs of more than 370 prob-
lems (i.e. approximately 34.5% of the TPDB 3.2 directory TRS excluding termination
modulo equational theories), and using involved criteria. This is made possible thanks
to a COQ library for rewriting (COCCINELLE) developed by E. Contejean in our project.

Problem

Certificate
Compilation

Trace generation

Required

CiME

COQ

COCCINELLE

We make our notations precise and give some prerequisites about first order term
rewriting and about the COQ proof assistant in Section 2. Then, in Section 3, we present
our modelling of termination of rewriting in COQ, which mixes deep and shallow em-
beddings in order to take benefits of both. We briefly present the COQ library COC-
CINELLE developed in the project to that purpose. In section 4 we present the certifi-
cation of proofs using involved criteria such as Dependency Pairs [1] with graphs re-
finement, mixing orderings based on polynomial interpretations [23] or RPO [10] with
AFS [1]. We shall adopt the end-user point of view and provide some experimental
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results of CiME 2.99 in Section 5. Eventually we briefly compare with related works
and conclude in Section 6.

2 Preliminaries

2.1 Rewriting

We assume the reader familiar with basic concepts of term rewriting [13, 2] and ter-
mination, in particular with the Dependency Pairs (DP) approach [1]. We recall usual
notions, and give notations. A signature F is a finite set of symbols with arities. Let X
be a countable set of variables; T (F , X) denotes the set of finite terms on F and X .
Λ(t) is the symbol at root position in term t. We write t|p for subterm of t at position p
and t[u]p for term t where t|p has been replaced by u. Substitutions are mappings from
variables to terms and tσ denotes the application of a substitution σ to a term t.

A term rewriting system (TRS for short) over a signatureF is a set R of rewrite rules
l → r with l, r ∈ T (F , X). A TRS R defines a monotonic relation →R closed under
substitution (aka a rewrite relation) in the following way: s →R t (s reduces to t) if
there is a position p such that s|p = lσ and t = s[rσ]p for a rule l → r ∈ R and a
substitution σ. In the following, we shall omit systems and positions that are clear from
the context. We denote the reflexive-transitive closure of a relation → by →�. Symbols
occurring at root position in the left-hand sides of rules in R are said to be defined, the
others are said to be constructors.

A term is R-strongly normalizing (R-SN) if it cannot reduce infinitely many times for
the relation defined by System R1. A rewrite relation terminates if any term is SN. Ter-
mination is usually proven with the help of reduction orderings [11] or ordering pairs
with dependency pairs. The set of unmarked dependency pairs2 of a TRS R, denoted
DP (R) is defined as {〈u, v〉 such that u → t ∈ R and t|p = v and Λ(v) is defined}. An
ordering pair is a pair (�, >) of relations over T (F , X) such that: 1) � is a stable and
monotonic quasi-ordering, i.e. reflexive and transitive, 2) > is a stable strict ordering,
i.e. irreflexive and transitive, and 3) > · � = > or � · > = >. An ordering pair is
well-founded if there is no infinite strictly decreasing sequence t1 > t2 > . . .

2.2 The COQ Proof Assistant

The COQ proof assistant is based on type theory and features: 1) A formal language
to express objects, properties and proofs in a unified way; all these are represented as
terms of an expressive λ-calculus: the Calculus of Inductive Constructions (CIC) [9].
λ-abstraction is denoted fun x:T => t, and application is denoted t u. 2) A proof
checker which checks the validity of proofs written as CIC-terms. Indeed, in this frame-
work, a term is a proof of its type, and checking a proof consists in typing a term. The
tool’s correctness relies on this type checker, which is a small kernel of 5 000 lines of
OBJECTIVE CAML code.

For example the following simple terms are proofs of the following (tautological)
types (remember that implication arrow → is right associative): the identity function

1 When R is clear from the context, we shall write SN.
2 For readability’s sake we detail only unmarked DP, see Sec. 4.4 for how we deal with marks.



Certification of Automated Termination Proofs 151

fun x:A => x is a proof of A → A, and fun (x:A) (f:A→ B) => f x is a proof
of A → (A → B) → B.

A very powerful feature of COQ is the ability to define inductive types to express in-
ductive data types and inductive properties. For example the following inductive types
define the data type nat of natural numbers, O and S (successor) being the two con-
structors3, and the property even of being an even natural number.

Inductive nat : Set := | O : nat | S : nat → nat.
Inductive even : nat → Prop := | even_O : even O
| even_S : ∀n : nat, even n → even (S (S n)).

Hence the term even_S (S (S O)) (even_S O (even_O)) is of type
even (S (S (S (S O)))) so it is a proof that 4 is even.

2.3 Termination in COQ

We focus in this paper on termination. This property is defined in COQ standard li-
brary as the well-foundedness of an ordering. Hence we model TRS as orderings in the
following. This notion is defined using the accessibility predicate. A term t : A is ac-
cessible for an ordering < if all its predecessors are, and < is well-founded if all terms
of type A are accessible (R y x stands for y < x):

Inductive Acc (A : Type) (R : A → A → Prop) (x : A) : Prop :=
| Acc_intro : (∀ y : A, R y x → Acc R y) → Acc R x

Definition well_founded (A : Type) (R : A → A → Prop) :=
∀ a : A, Acc R a.

This inductive definition contains both the basis case (that is when an element has no
predecessor w.r.t. the relation R) and the general inductive case. For example, in a re-
lation R on bool defined by R true false, true is accessible because it has no pre-
decessor, and so is false because its only predecessor is true. Hence Acc R true

and Acc R false are provable, hence well-founded R is provable.
The usual ordering < is not well-founded over the integers, there are infinite descend-

ing chains as for example . . .− (n+ 1) < −n < −(n− 1) < . . . < −1 < 0. However,
it is possible to reason by well-founded induction over the integer using a well-founded
relation <wf defined by x <wf y if |x| < |y| or (|x| = |y| and x > 0 > y).
The relation is of the form: 0 <wf 1 <wf −1 <wf 2 <wf −2 <wf . . .

3 Modelling Termination of Rewriting in COQ

If R is the relation modelling a TRS R, we should write R u t (which means u < t)
when a term t rewrites to a term u. For the sake of readability we will use as much as
possible the COQ notation: t -[R]> u (and t -[R]*> u for t →∗ u) instead.

The wanted final theorem stating that R is terminating has the following form:

Theorem well_founded_R: well_founded R.

3 Note that this notion of constructors is different from the one in Section 2.1.
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Since we want certified automated proofs, the definition of R and the proof of this theo-
rem are discovered and generated in COQ syntax with full automation by our prototype.
In order to ensure that the original rewriting system R terminates, the only things the
user has to check is firstly that the generated relation R corresponds to R (which is easy
as we shall see in Section 3.2), and secondly that the generated COQ files do compile.

3.1 Shallow vs Deep Embedding

In order to prove properties on our objects (terms, rewriting systems, polynomial inter-
pretations. . . ), we have to model these objects in the proof assistant by defining a theory
of rewriting. There are classically two opposite ways of doing this: shallow embedding
and deep embedding. When using shallow embedding, one defines ad hoc translations
for the different notions, and proves criteria on the translation of each considered sys-
tem. For instance TRSs will be inductive definitions with one constructor per rule.

When using deep embedding, one defines generic notions for rewriting and proves
generic criteria on them, and then instantiates notions and criteria on the considered
system. Both shallow and deep embedding have advantages and drawbacks. On the
plus side of shallow embedding are: an easy implementation of rewriting notions, and
the absence of need of meta notions (as substitutions or term well-formedness w.r.t. a
signature). On the minus side, one cannot certify a criterion but only its instantiation
on a particular problem, which often leads to large scripts and proof terms. Regarding
deep embedding, it usually leads (not always as we explain below) to simpler scripts
and proof terms since one can reuse generic lemmas but at the cost of a rather technical
first step consisting in defining the generic notions and proving generic lemmas.

We present here an hybrid approach where some notions are deep (Σ-algebra, RPO)
and others are shallow (rewriting system, dependency graphs, polynomial interpreta-
tions). The reason for this is mainly due to our proof concern which makes sometimes
deep embedding not worth the efforts it requires: some premises of generic lemmas,
which have to be proven on each considered problem, are as hard (if not harder) to
prove than the shallow lemmas themselves. We will show that using both embeddings
in a single proof is not a problem, and moreover that we can take full benefit of both.

3.2 The COCCINELLE Library

The deep part of the modelling is formalised in a public COQ library called COC-
CINELLE [6]. To start with, it contains a modelling of the mathematical notions needed
for rewriting, such as term algebras, generic rewriting, generic and AC equational the-
ories and RPO with status. It contains also proofs of properties of these notions, for
example that RPO is well-founded whenever the underlying precedence is.

Moreover COCCINELLE is intended to be a mirror of the CiME tool in COQ;
this means that some of the types of COCCINELLE (terms, etc.) are translated from
CiME (in OBJECTIVE CAML) to COQ, as well as some functions (AC matching)4.

4 It should be noticed that COCCINELLE is not a full mirror of CiME: some parts of CiME
are actually search algorithms for proving for instance equality of terms modulo a theory
or termination of TRSs. These search algorithms are much more efficient when written in
OBJECTIVE CAML than in COQ, they just need to provide a trace for COCCINELLE.
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Translating functions and proving their full correctness obviously provide a certifica-
tion of the underlying algorithm. Note that some proofs may require that all objects
satisfying a certain property have been built: for instance in order to prove local conflu-
ence of a TRS, one need to get all critical pairs, hence a unification algorithm which is
complete5.

Since module systems in OBJECTIVE CAML and COQ are similar, both CiME and
COCCINELLE have the same structure, except that CiME contains only types and func-
tions whereas COCCINELLE also contains properties over these types and functions.

Terms. A signature is defined by a set of symbols with decidable equality, and a func-
tion arity mapping each symbol to its arity.

The arity is not simply an integer, it mentions also whether a symbol is free of arity
n, AC or C (of implicit arity 2) since there is a special treatment in the AC/C case.

Inductive arity_type : Set :=
| Free : nat → arity_type | AC : arity_type | C : arity_type.

Module Type Signature.
Declare Module Export Symb : decidable_set.S.
Parameter arity : Symb.A → arity_type.

End Signature.

Up to now, our automatic proof generator does not deal with AC nor C symbols,
hence in this work all symbols have an arity Free n. However, AC/C symbols are used
in other parts of COCCINELLE, in particular the formalisation of AC matching [5].

A term algebra is a module defined from its signature F and the set of variables X.

Module Type Term.
Declare Module Import F : Signature.
Declare Module Import X : decidable_set.S.

Terms are defined as variables or symbols applied to lists of terms. Lists are built
from two constructors nil and ::, and enjoy the usual [ x ; y; ...] notation.

Inductive term : Set :=
| Var : variable → term | Term : symbol → list term → term.

This type allows to share terms in a standard representation as well as in a canonical
form; but this also implies that terms may be ill-formed w.r.t. the signature. The module
contains decidable definitions of well-formedness. However, the rewriting systems we
consider do not apply on ill-formed terms, so we will not have to worry about it to prove
termination.

The term module type contains other useful definitions and properties that we
omit here for the sake of clarity. The COCCINELLE library contains also a functor
term.Make which, given a signature and a set of variables, returns a module of type
Term. We will not show its definition here.

Module Make (F1 : Signature) (X1 : decidable_set.S) : Term.

5 Local confluence is not part of COCCINELLE yet.
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Rewriting systems. TRSs provided as sets of rewrite rules are not modelled directly in
COCCINELLE. Instead, as explained in the introduction of this section, we use orderings
built from any arbitrary relation R : relation term (by definition relation A is
A → A → Prop). The usual definition can be retrieved obviously from a list of
rewrite rules (i.e. pairs of terms) R by defining R as:

∀s, t ∈ T (F , X), s -[R]> t ⇐⇒ (s → t) ∈ R
The COCCINELLE library provides a module type RWR which defines a reduction

relation (w.r.t. the "rules" R) and its properties.

Module Type RWR.
Declare Module Import T : Term.

The first step toward definition of the rewrite relation is the closure by instantiation:

Inductive rwr_at_top (R : relation term) : relation term :=
| instance : ∀t1 t2 sigma, t1 -[R]> t2

→ (apply_subst sigma t1) -[rwr_at_top R]> (apply_subst sigma t2).

Then we define a rewrite step as the closure by context of the previous closure. Notice
the use of mutual inductive relations to deal with lists of terms.

(∗∗ One step at any position. ∗)
Inductive one_step (R : relation term) : relation term :=
| at_top : ∀t1 t2, t1 -[rwr_at_top R]> t2 → t1 -[one_step R]> t2
| in_context : ∀f l1 l2, l1 -[one_step_list R]> l2

→ (Term f l1 -[one_step R]> Term f l2)
with one_step_list (R : relation term): relation (list term) :=
| head_step : ∀t1 t2 l, t1 -[one_step R]> t2

→ (t1 :: l -[one_step_list R]> t2 :: l)
| tail_step : ∀t l1 l2, l1 -[one_step_list R]> l2

→ (t :: l1) -[one_step_list R]> (t :: l2).

This module type contains properties declared using the keyword Parameter. This
means that to build a module of this type, one must prove these properties. For instance
it contains the following property stating that if t1 →+ t2 then t1σ →+ t2σ

6 for any
substitution σ.

Parameter rwr_apply_subst :
∀ R t1 t2 sigma, t1 -[rwr R]> t2 →
(apply_subst sigma t1 -[rwr R]> apply_subst sigma t2).

The library contains a functor rewriting.Make building a module of type RWR

from a module T of type Term. This functor builds in particular the proof of all prop-
erties required by RWR. For an R representing the rules of the TRS under consideration,
the final theorem we want to generate is:

Theorem well_founded_R: well_founded (one_step R).

To ensure that one_step R corresponds to the original TRS R, it suffices for the
user to perform the easy check that R corresponds to the set of rules defining R.

6 The transitive closure of one_step is defined as rwr in COCCINELLE.
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Note that since the datatype term represents any Σ-algebra (via application of the
functor Make), we can say that terms are represented in a deep embedding. However,
to simplify proofs, we avoid using substitutions by quantifying on subterms as much as
possible. That makes our use of the type term slightly more shallow on this point.

4 Generation of Proof Traces

We will illustrate our approach by presenting proof generation techniques at work on a
small example in our prototype, namely CiME 2.99. While being based on the CiME2
tool box, this prototype does not certify all its predecessor’s termination power. For
instance, modular criteria [29] and termination modulo equational theories are not sup-
ported yet. In the following, we restrict to (marked/unmarked) Dependency Pairs [1]
with/without graphs refinements. The orderings we deal with include strictly the or-
derings that CiME generates: (non-linear) polynomial interpretations (section 4.6) and
RPO with status7 (section 4.7).

4.1 Global Structure of a Generated Proof

A close look at different termination tools reveals a common underlying methodology
which we use as the skeleton of our generated proofs. It consists in deriving recursively
from a relation R a set of other relations Ri such that if all Ris are terminating, then so is
R. For instance, this structure appears explicitly with the processors [18] of APROVE.

This recursive decomposition is done using termination criteria like DP criteria,
(complex) graph criteria, modular criteria, etc. Some tools may use some backtracking
but if the procedure succeeds, it means that an implicit tree was built:

<
<1 (poly. interp.)

{. . . 〈t1,i, u1,i〉 . . .}

<
<2 (RPO)

{. . . 〈t2,1,i, u2,1,i〉 . . . }
<3 (poly. interp.)

{. . . 〈t2,2,i, u2,2,i〉 . . . }
<

{. . . 〈t2,i, u2,i〉 . . . }
SUB-GRAPH

Rdp = {. . . 〈t i, ui〉 . . . }
GRAPH

Rinit = {. . . li → ri . . . }
DP

This tree is rooted by the initial problem, namely the initial rewriting system and the
first termination criterion used. Each intermediate node is also labelled by a relation and
the termination criterion used to decompose the node into its children. Finally each leaf
must be labelled by a relation Ri and a well-founded ordering which includes it.

The tree structure is reflected in the generated file. Indeed, for each criterion step
(R replaced by sufficient conditions {Ri}), we will generate a lemma of the form:

Lemma wf_R_if_wf_Ri : well_founded R1 → well_founded R2 ...
→ well_founded R.

The proof of this lemma depends on the termination criterion used (Sec. 4.4 and 4.5).
Each time a leaf is proven using an ordering, we generate a lemma of the form:

Lemma wf_Ri : well_founded Ri.

7 To date, CiME can discover polynomials and LPO with AFS.
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The proof is made by induction on the ordering built by the automated tool. Once all
leaves have been proven this way, one can easily build the proof of the initial termination
property by applying lemmas from leaves to the root:

Lemma final: well_founded R.
Proof. apply (wf_R_if_wf_Ri wf_R1 wf_R2 ...). Qed.

4.2 The Running Example

We illustrate our method with a very simple TRS R = Rack∪Radd (over a signature F )
where Rack computes the Ackerman function on Peano integers, and Radd computes ad-
dition on binary integers. Digits are denoted as postfix operators (_)0 and (_)1, whereas
# is the constant 0 seen as a number, shared between binary and Peano integers.

R

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Rack

{
ack(#, y) → s(y) ack(s(x),#) → ack(x, s(#))
ack(s(x), s(y)) → ack(x, ack(s(x), y))

Radd

⎧
⎨

⎩

(#)0 → # # + x → x x + # → x
(x)0 + (y)0 → (x + y)0 (x)1 + (y)0 → (x + y)1
(x)0 + (y)1 → (x + y)1 (x)1 + (y)1 → ((x + y) + (#)1)0

4.3 Generation of the TRS Definition

For sake of clarity we will use COQ notations that are different than in previous sections:
Term X (Y::Z::...::nil) will now be denoted by X(Y,Z...).

The generation of the Σ-algebra corresponding to a signature in the automated tool
is straightforward. We show here the signature corresponding to the Σ-algebra of F .
Notice the module type constraint <: Signature making COQ check that definitions
and properties of SIGMA_F comply with Signature as defined in Section 3.2.

Module SIGMA_F <: Signature.
Inductive symb : Set := | # : symb | s : symb ...
Module Export Symb.

Definition A := symb.
Lemma eq_dec : ∀f1 f2 : symb, {f1 = f2} + {f1 <> f2}...

End Symb.
Definition arity (f:symb) : arity_type :=

match f with | # => Free 0 | s => Free 1... end.
End SIGMA_F.

We define a module VARS for variables, apply functors building the term algebra
and rewrite system on it, and then the rewriting system corresponding to R:

Module Import TERMS := term.Make(SIGMA)(VARS).
Module Import Rwr := rewriting.Make(TERMS).
Inductive R_rules : term → term → Prop :=
| R0 : ∀V1 : term, ack(#,V1) -[R_rules]> s(V1)...
Definition R := Rwr.one_step R_rules.

Notice that from now on notation T -[R]> U denotes that T rewrites to U in the
sense of Section 2.1, i.e. there exists two subterms t and u at the same position in
respectively T and U, such that R u t (see the definition of one_step in section 3.2).
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4.4 Criterion: Dependency Pairs

The (unmarked) dependency pairs of R generated by CiME are the following:

〈ack(s(x), #), ack(x, s(#))〉
〈ack(s(x), s(y)), ack(x, ack(s(x), y))〉 〈ack(s(x), s(y)), ack(s(x), y)〉
〈(x)1 + (y)0, x + y〉 〈(x)0 + (y)1, x + y〉 〈(x)0 + (y)0, x + y〉 〈(x)0 + (y)0, (x + y)0〉
〈(x)1 + (y)1, x + y〉 〈(x)1 + (y)1, (x + y) + (#)1〉 〈(x)1 + (y)1, ((x + y) + (#)1)0〉

An inductive relation representing the dependency chains [1] is built automatically.
A step of this relation models the (finite) reductions by R in the strict subterms of DP
instances (e.g. x0 →� s(V0), . . .) and one step of the relevant dependency pair. We
illustrate this on 〈ack(s(x),#), ack(x, s(#))〉 with σ = {x +→ V0}:

Inductive DPR : term → term → Prop :=
| DPR0: ∀x0 x1 V0, x0 -[R]*> s(V0) → x1 -[R]*> #

→ ack(x0,x1) -[DPR]> ack(V0,s(#))

The main lemma on DPs fits in the general structure we explained on Section 4.1:

Lemma wfR_if_wfDPR: well_founded DPR → well_founded R.

The proof follows a general scheme due to Hubert [21]. It involves several nested
inductions instantiating the proof of the criterion in the particular setting of DPR and R.

Note that we can also prove this lemma in the case of an enhancement of DPs by
Dershowitz [12] consisting in discarding DPs whose rhs is a subterm of the lhs8.

Marked symbols. A refinement of the DP criterion consists in marking head symbols
in lhs and rhs of dependency pairs in order to relax ordering constraints. We simply
generate the symbol type with two versions of each symbol and adapt the definition of
orderings. The proof strategy needs no change.

4.5 Criterion: Dependency Pairs with Graph

Not all DPs can follow one another in a dependency chain: one may consider the graph
of possible sequences of DPs (dependency graph). This graph is not computable, so one
uses graphs containing it. We consider here Arts & Giesl’s simple approximation [1].

The graph criterion [1] takes benefit from working on the (approximated) graph. In
its weak version, it consists in providing for each strongly connected component (SCC)
an ordering pair that decreases strictly for all its nodes, and weakly for all rules. In its
strong version, it considers cycles:

Theorem 1 (Arts and Giesl [1]). A TRS R is terminating iff for each cycle P in its
dependency graph there is a reduction pair (�P ,�P) such that: (1) l �P r for any
l → r ∈ R, (2) s �P t for any 〈s, t〉 ∈ P , and (3) s �P t for at least one pair in P .

In practice, our tool uses a procedure due to Middledorp and Hirokawa [19] which
splits recursively the graph into sub-components using different orders. The proof uses
shallow embedding. One reason for this choice is that a generic theorem for a complex

8 Such DPs cannot occur in minimal chains. Thus they can be discarded.
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graph criterion is not easy to prove since it involves a substantial part of graph theory
(e.g. the notion of cycle). Moreover, verifying the premises of such a theorem amounts
to checking that all SCCs found by the prover are really SCCs and that they are ter-
minating, but also to proving that it found all SCCs of the graph. That is tedious. On
the contrary, using shallow embedding we use these facts implicitly by focusing on the
termination proof of each component.

Weak version. The first thing we generate is the definition of each component as com-
puted by CiME. To illustrate the graph criterion on our example we may take the whole
system R. CiME detects two components (sub0 with some DPs of Radd, sub1 with
some DPs of Rack): we generate the two corresponding sub-relations of DPR.

Inductive DPR_sub0 : term → term → Prop :=
| DPR_sub00: ∀x0 x1 V0, x0 -[R]*> s(V0) → x1 -[R]*> #
→ ack(x0,x1)-[DPR_sub0]> ack(V0,s(#)) (∗<ack(s(V0),#) , ack(V0,s(#))>∗)...
Inductive DPR_sub1 : term → term → Prop := ...

The following lemma states the criterion and fits the general structure in Section 4.1.

Lemma wf_DPR_if_wf_sub0_sub1 : well_founded DPR_sub0 →
well_founded DPR_sub1 → well_founded DPR.

The proof of these lemmas uses the idea that if we collapse each SCC into one node,
they form a DAG on which we can reason by cases on the edges in a depth-first fashion.

Strong version. In addition, when the strong version of the criterion is used, the ter-
mination of each sub-component may itself be proven from the termination of smaller
components, each one with a different ordering. Due to lack of space, we will not go
into the details of this methodology.

It remains to conclude by providing well-suited ordering pairs.

4.6 Orderings: Polynomial Interpretations

In our framework a polynomial interpretation is defined as a recursive function on terms.
CiME outputs an interpretation for the SCC sub0 (other symbols are mapped to 0):

[#]= 0; [0](X0)= X0 + 1; [1](X0)= X0 + 1; [+](X0,X1)= X1 + X0;

From this interpretation we produce a measure: term→ Z:

Fixpoint measure_DPR_sub0 (t:term) {struct t} : Z :=
match t with
| Var _ => 0 | # => 0
| 0(x0) => measure_DPR x0 + 1 | 1(x0) => measure_DPR x0 + 1
| plus (x0, x1) => measure_DPR x1 + measure_DPR x0 | _ => 0
end.

Notice that although our term definition is a deep embedding, the measure is defined
as if we were in a shallow embedding9. Indeed it is defined by a direct recursive func-
tion on terms and does not refer to polynomials, substitutions or variables (x0 above

9 In particular it is completely handled by the trace generation part of CiME since our library
COCCINELLE focuses on deep embedding.
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is a COQ variable, it is not a rewriting variable which would be of the form Var n).
This choice makes, once again, our proofs simpler to generate. In a deep embedding
we would need a theory for polynomials, and a generic theorem stating that a polyno-
mial on positive integers with positive factors is monotonic. But actually this property
instantiated on measure_DPR_sub0 above can be proven by a trivial induction on t.
So again the effort of a deep embedding is not worth this effort. The following lemma
proves the well-foundedness of measure_DPR_sub0:

Lemma Well_founded_DPR_sub0 : well_founded DPR_sub0.

which is equivalent to ∀ x, Acc DPR x. This is proven firstly by induction on the
value of (measure_DPR_sub0 x), then by cases on each DP of DPR_sub0, finally
by applying the induction hypothesis using the fact that each pair is decreases w.r.t.
measure_DPR_sub0. One concludes by polynomial comparison. It is well known that
the comparison of non-linear polynomials on N is not decidable in general. We have a
decision procedure for the particular kind of non linear polynomials CiME produces.

4.7 Orderings: RPO

The COCCINELLE library formalises RPO in a generic way, and proves it to be well-
suited for ordering pairs. RPO is defined using a precedence (a decidable strict ordering
prec over symbols) and a status (multiset/lexicographic) for each symbol.

Inductive status_type: Set := Lex:status_type | Mul:status_type.
Module Type Precedence.
Parameter (A: Set)(prec: relation A)(status: A → status_type).
Parameter prec_dec : ∀a1 a2 : A, {prec a1 a2} + {∼prec a1 a2}.
Parameter prec_antisym : ∀s, prec s s → False.
Parameter prec_transitive : transitive A prec.

End Precedence.

A module type for an RPO should be built from a term algebra and a precedence:

Module Type RPO.
Declare Module Import T : term.Term.
Declare Module Import P : Precedence with Definition A:= T.symbol.

The library contains a functor rpo.Make building an RPO from two modules of
type Term and Precedence. It also builds among other usual properties of RPO,
the proof that if the precedence is well-founded, then so is the RPO. This part of the
library is in a deep embedding style. Proofs of termination using RPOs are very easy to
generate as it is sufficient to generate the precedence, the proof that it is well-founded
and to apply the functor rpo.Make. It should be noticed that the fact that the generic
RPO uses a strict precedence and a comparison from left to right in the lexicographic
case is not a restriction in practice: a simple translation from terms to terms mapping
equivalent symbols onto the same symbol, and performing the wanted permutation over
the subterms under a given lexicographic symbol is both monotonic and stable. Hence
the relation defined by comparing the translations of terms by the generic RPO still has
the desired properties.
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The generated definition of the RPO used for proving well-foundedness of sub1 is:

Module precedence <: Precedence.
Definition A : Set := symb.
Definition prec (a b:symb) : Prop :=

match a,b with | s,ack => True | _,_ => False end.
Definition status: symb → status_type:= fun x => Lex.
Lemma prec_dec: ∀a1 a2: symb, {prec a1 a2}+{∼ prec a1 a2}. ...
Lemma prec_antisym: ∀s, prec s s → False. ...
Lemma prec_transitive: transitive symb prec. ...

End precedence.

And as previously:Lemma Well_founded_DPR_sub1 : well_founded DPR_sub1.

Argument filtering systems The use of Dependency Pairs allows a wide choice of order-
ings by dropping the condition of strict monotonicity. Regarding path orderings, this can
be achieved using argument filtering systems (AFS) [1]. We define AFSs as fixpoints
and apply them at comparison time. This does not affect the (COQ) proof scheme.

5 Results and Benchmarks

CiME 2.99 can be downloaded and tested from the A3PAT website10. Once the system
is defined, we have to choose the termination criterion and the orderings. For instance,
we may select DP with graphs refinement and both linear polynomials (bound 2) and
RPO with AFSs, then ask CiME to check termination and generate the proof trace:

CiME> termcrit "dp"; termcrit "nomarks"; termcrit "graph";
CiME> polyinterpkind {("linear",2);("rpo",1)}; termination R;
CiME> coq_certify_proof "example.v" R;

We used the Termination Problems Data Base11 v3.2 as challenge. Until now we
have produced a COQ certificate for 374 TRS that CiME proves terminating without us-
ing modular technique or AC termination12; this number rises over 545 on TPDB v4.0.
We will now give some details on our experiments. We give below, depending on the
use of graphs, the average and max. sizes of compiled COQ proofs, as well as the av-
erage compilation time (together with the number of problem solved) using marks on
a 2GHz, 1GB machine, running Linux. RPO + Pol. means that selected orderings for
proof search are RPOs and polynomials.

with graph without graph
s. av. s. max t. av ( nb ) s. av. s. max t. av ( nb )

RPO 3.6MB 9.09MB 9.9s (228) 3.64MB 5.31MB 7.8s (196)
Linear Pol. 0.72MB 12.27MB 7.8s (295) 0.42MB 4.89MB 2.5s (225)
Simple Pol. 0.84MB 12.40MB 10.1s (314) 0.45MB 1.26MB 6.3s (264)
RPO + Pol. 1.20MB 12.30MB 10.6s (374) 0.69MB 4.91MB 8.7s (300)

10 http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html
11 http://www.lri.fr/~marche/tpdb
12 Not all the systems of the TPDB are terminating. Some are proven by the full termination

engine of CiME 2.04 using techniques for which CiME 2.99 does not produce a certificate yet.

http://www3.ensiie.fr/~urbain/a3pat/pub/index.en.html
http://www.lri.fr/~marche/tpdb
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6 Related Works and Conclusion

There are several works to be mentioned w.r.t. the communication between automated
provers and COQ. Amongst them, the theorem-prover ZÉNON [14], based on tableaux,
produces COQ proof terms as certificates. ELAN enjoys techniques to produce COQ

certificates for rewriting [25]. Bezem describes an approach regarding resolution [3].
However, these systems do not tackle the problem of termination proofs.

To our knowledge the only other approach to generate termination certificates for
rewriting systems relies on the CoLoR/Rainbow libraries [4]. In this approach, term
algebras and TRSs are handled via an embedding even deeper than in COCCINELLE,
since a TRS is given by a set of pairs of terms. Rainbow is a relatively efficient tool
thanks to orderings built with matrix interpretations (which we don’t handle yet). But it
does not handle the following techniques: enhanced or marked dependency pairs, com-
plex graphs, RPO with AFS. We think that adding these techniques to CoLoR/Rainbow
will be hard, due to the pure deep embedding approach. There are currently 167 out of
864 termination problems in TPDB (v3.2) proven by TPA [22] and certified by CoL-
oR/Rainbow using polynomial interpretations and the webpage mentions 237 problems
certified using matrix interpretations.

We presented a methodology to make automated termination tools generate traces
in a proof assistant format. The approach is validated by a prototype generating COQ

traces. The performances of the prototype on the examples of the TPDB database are
promising. Our approach is easy to extend, in particular because extensions may be
done in deep or shallow embedding.

To apply this methodology on different tools and targeted proof assistants, one needs
a termination trace language. An ongoing work in the A3PAT group is to define a more
general language that can even tackle proofs of various rewriting properties such as
termination, confluence (which needs termination), equational proofs [7], etc. We think
that a good candidate could be based on the tree structure we explained on Section 4.1.

One particularly interesting follow-up of this work is the possibility to plug auto-
mated termination tools as external termination tactics for proof assistants. Indeed ter-
mination is a key property of many algorithms to be proven in proof assistants. More-
over, in type theory based proof assistants like COQ, one cannot define a function with-
out simultaneously proving its termination. This would allow to define functions whose
termination is not obvious without the great proof effort it currently needs.
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Abstract. Often when modelling systems, physical constraints on the resources
available are needed. For example, we might say that at most N processes can
access a particular resource at any moment or exactly M participants are needed
for an agreement. Such situations are concisely modelled where propositions are
constrained such that at most N , or exactly M , can hold at any moment in time.
This paper describes both the logical basis and a verification method for propo-
sitional linear time temporal logics which allow such constraints as input. The
method incorporates ideas developed earlier for a resolution method for the tem-
poral logic TLX and a tableaux-like procedure for PTL. The complexity of this
procedure is discussed and case studies are examined. The logic itself represents
a combination of standard temporal logic with classical constraints restricting the
numbers of propositions that can be satisfied at any moment in time.

1 Introduction

Although temporal logic is widely used in the specification and verification of con-
current and reactive systems [21,20] , there are cases where full temporal logic is too
expressive. In particular, if we wish to describe the temporal properties of a restricted
number of components, not all of which can occur at every moment in time, then the full
temporal language forces us to describe the behaviour of all these components explic-
itly. In [8], it was shown that, simply by incorporating “exactly one” constraints into a
propositional temporal logic, much better computational complexity could be achieved.
Essentially, the basic set of propositions within the temporal logic was partitioned into
“exactly one” sets. So

Props = X1 ∪ X2 ∪ . . . ∪ Xn

where each Xi is disjoint. Then the propositions within each “exactly one” set, for
example

X1 = {p1, p2, p3, p4}

were implicitly constrained so that, at any moment in time, exactly one of p1, p2, p3,
or p4 is satisfied. Not only did this allow the concise specification of examples such as
the representation of automata, planning problems, and agent negotiation protocols, but
also greatly reduced the complexity of the associated decision procedure [7,8]. Essen-
tially, this is because (as the name suggests) exactly one element of each “exactly one”
set must be satisfied at every temporal state. So, in the above example, we can only have
exactly one of p1, p2, p3, or p4 in any state; we can never have combinations of these
propositions holding at the same moment or none of them holding.

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 163–177, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Although being able to constrain the logic so that exactly one of a particular set
of propositions is satisfied is useful, especially for representing finite automata, we
have found this to be quite restrictive at times. So, in this paper, we will generalise
the approach from [8] beyond simply “exactly one” sets. We will allow the specifier to
constrain the logic so that up to k propositions, or exactly k propositions from some
subset of propositions, are true at any moment in time. Thus, in this paper, rather than
working with a temporal logic extended with “exactly one” sets, we instead use more
flexible constrained sets, which provide more sophisticated restrictions on the capacity
within the logic. Note that this approach involves reasoning in the presence of con-
straints rather than reasoning about them. That is, the resulting logic represents a com-
bination of standard temporal logic with (fixed) constraints that restrict the numbers of
propositions that can be satisfied at any moment in time.

This new approach is particularly useful for:

– ensuring that a fixed bound is kept on the number of propositions satisfied at any
moment to prevent overload;

– in finite collections of communicating automata, ensuring that no more than k au-
tomata are in a particular state;

– modelling restrictions on resources, for example at most k vehicles are available or
there are at most k seats available;

– modelling the necessity to elect exactly k from n participants.

Motivating Example. Consider a fixed number, n, of robots that can each work, rest or
recharge. We assume that that there are only k < n recharging points and only j < n
workstations. Let:

– worki represent the fact that robot i is working;
– resti represent the fact that robot i is resting; and
– rechargei represent the fact that robot i is recharging.

Now, we typically want to specify that exactly j of the n robots are working at any one
time. In the syntax given later, such a logic might be defined as TLC(W=j,R<k+1),
where

W=j = {work1, . . . , workn}
R<k+1 = {recharge1, . . . , rechargen}

This represents the logic with the constraints that exactly j robots must work at any
moment and at most k can recharge at any moment.

The above represents exactly the kind of logical base and case studies we consider
in this paper.

The paper is organised as follows. Section 2 gives the syntax and semantics of the
constrained temporal logic, together with a normal form for this logic. Section 3 ad-
dresses its complexity. In Section 4 we show how to construct a structure representing
the underlying models of formulae and relate satisfiability of the formula with a prop-
erty of the structure. In Section 5 we provide examples and, in Section 6 we provide
concluding remarks, incorporating both related and future work.
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2 A Constrained Temporal Logic

The logic we consider is called “TLC”, and its syntax and semantics essentially fol-
low that of PTL [12], with models being isomorphic to the Natural Numbers, N.
The main novelty in TLC is that it is parameterised by (not necessarily disjoint)
sets Pr1,d11 , Pr2,d22 ,. . . , where ri ∈ {=, <} and di ∈ N and the formulae of
TLC(Pr1,d11 ,Pr2,d22 , . . .) are constructed under the restriction that, dependent on ri ex-
actly or less than di propositions from every set Pri,di

i are true in every state.

For example, consider TLC(P<4, Q=2), where P<4 = {a, b, c, d, e, f}, and Q=2 =
{x, y, z}. Then, at any moment in time, less than four of a, b, c, d, e, or f are true, and
exactly two of x, y, or z are true.

Furthermore, we assume that there exists a set of propositions,A, in addition to those
defined by the parameters, and that these propositions are unconstrained as normal in
PTL. The set A is disjoint with

⋃

i

Pri,di

i .

Thus, TLC with no parameters, i.e. TLC( ) is essentially a standard propositional, linear
temporal logic, while TLC(P=1,Q=1,R=1) is a temporal logic containing the sets of
propositionsP ,Q, and R, where these sets are constrained by a standard “exactly one”
operator as in [7].

2.1 TLC Syntax

The future-time temporal connectives that we use include ♦ (sometime in the future),
(always in the future), �(in the next moment in time), U (until), and W (unless,

or weak until). Formally, TLC(Pr1,d11 , . . .Prn,dn
n ) formulae are constructed from the

following elements:

– a set, Props = Pr1,d11 ∪ . . .Prn,dn
n ∪ A of propositional symbols;

– propositional connectives, true , false , ¬, ∨, ∧, and ⇒; and
– temporal connectives, �,♦, , U , and W .

The set of well-formed formulae of TLC, denoted by WFF, is inductively defined as the
smallest set satisfying the following.

– Any element of Props and true and false are in WFF.
– If A and B are in WFF then so are

¬A A ∨B A ∧B A ⇒ B ♦A A AUB AWB �A .

A literal is defined as either a proposition symbol or the negation of a proposition
symbol.
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2.2 TLC Semantics

A model for TLC formulae can be characterised as a sequence of states of the form:

σ = t0, t1, t2, t3, . . .

where each state, ti, is a set of proposition symbols, representing those propositions
which are satisfied in the ith moment in time. Note that every ti should satisfy the
constraints on propositions. For example, for TLC(Q=2), every state ti must contain
exactly two propositions from the constraint set Q=2.

The notation (σ, i) |= A denotes the truth of formula A in the model σ at state index
i ∈ N defined as follows.

(σ, i) |= true
(σ, i) |= false
(σ, i) |= p iff p ∈ ti where p ∈ Props
(σ, i) |= A ∧B iff (σ, i) |= A and (σ, i) |= B
(σ, i) |= A ∨B iff (σ, i) |= A or (σ, i) |= B
(σ, i) |= A ⇒ B iff (σ, i) |= ¬A or (σ, i) |= B
(σ, i) |= ¬A iff (σ, i) |= A
(σ, i) |= �A iff (σ, i + 1) |= A
(σ, i) |= ♦A iff ∃k ∈ N. (k � i) and (σ, k) |= A
(σ, i) |= A iff ∀j ∈ N. if (j � i) then (σ, j) |= A
(σ, i) |= AUB iff ∃k ∈ N. k � i and (σ, k) |= B

and ∀j ∈ N, if i 	 j < k then (σ, j) |= A
(σ, i) |= AWB iff (σ, i) |= AUB or (σ, i) |= A

For any formula A, model σ, and state index i ∈ N, then either (σ, i) |= A holds
or (σ, i) |= A does not hold, denoted by (σ, i) |= A. If there is some σ such that
(σ, 0) |= A, then A is said to be satisfiable. If (σ, 0) |= A for all models, σ, then A is
said to be valid and is written |= A. Note that formulae here are interpreted at t0; this is
an anchored definition of satisfiability and validity [9].

2.3 Normal Form

To assist in the definition of the normal form we introduce a further (nullary) connective
‘start ’ that holds only at the beginning of time, i.e.,

(σ, i) |= start iff i = 0.

This allows the general form of the (clauses of the) normal form to be implications.

Assume we have n sets of constrained propositions Pr1,d11 = {p11, . . . p1N1}, . . .,
Prn,dn
n = {pn1, . . . pnNn} and a set of additional propositions A = {a1, . . . aNa}.

In the following, small Latin letters, ki, lj , m represent literals in the language Props.
A normal form for TLC is of the form

∧
iCi where each Ci is an initial, step, or

sometime clause (respectively) as
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start ⇒
∨

i

li (initial)

∧

i

k ⇒ �
∨

j

lj (step)

true ⇒♦m (sometime)

Theorem 1. [11] Any TLC formula can be transformed into an equi-satisfiable TLC
formula in the normal form with at most a linear increase in the size of the problem.

Transformation into the normal form may introduce new (unconstrained) propositions;
note, however, that many temporal formulae stemming from realistic specifications are
already in the normal form, or very close to the normal form and require few extra
variables for the translation [13].

3 Complexity of TLC

We now prove the upper complexity bound on satisfiability of TLC by an explicit con-
struction of a directed graph known as a behaviour graph. The notion of a behaviour
graph for a set of clauses was introduced in [11]. It is a directed graph for a set of tem-
poral clauses such that (after reductions) any infinite path through the graph is a model
for the set of clauses. Satisfiability of TLC formulae is equivalent to a property of the
graph; in what follows, we estimate the size of the graph and time needed both for its
construction and for checking the property.

Given a formula ϕ in the normal form over a set of (both constrained and uncon-
strained) propositional symbols Props, we construct a finite directed graph G as fol-
lows. The nodes of G are interpretations of Props, satisfying the required constraints.

For each node, I , we construct an edge in G to a node I ′ if, and only if, the following
condition is satisfied:

– For every step rule ,
∧

i

k ⇒ �
∨

j

lj , if I |=
∧

i

k then I ′ |=
∨

j

lj .

A node, I , is designated an initial node of G if I |=
∨

i

li for every initial clause

start ⇒
∨

i

li of the given temporal formula.

The behaviour graph, H , of ϕ is the maximal subgraph of G given by the set of all
nodes reachable from initial nodes. The reduced behaviour graph, HR, of ϕ is a graph
obtained from the behaviour graph of ϕ by repeated deletion of nodes I such that

a) I does not have a successor; or
b) for some eventuality clause true ⇒ ♦m within ϕ, there is no path from I to a

node J where m is true, that is, J |= m.

The following theorem can be obtained by an adaptation of results in [11,5] to the
terminology of this paper.
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Theorem 2. [11,5] A TLC formula in the normal form ϕ is satisfied if, and only if, its
reduced behaviour graph is non-empty.

The link between the satisfiability of TLC formulae and properties of the behaviour
graph allows us to prove the complexity bound for our logic.

Theorem 3. Satisfiability of a TLC(Pr1,d11 , . . .Prn,dn
n ) formula ϕ can be decided in

time

O

(

|ϕ| ×
(
|Pr1,d11 |d1 × . . .× |Prn,dn

n |dn × 2|A|
)2

)

where |ϕ| is the length of ϕ, |Pri,di

i | is the size of the set Pri,di

i of constrained proposi-
tions, and |A| is the size of the set A of non-constrained propositions.

Proof. There exist O(|Pr1,d1 |d1 × . . .× |Prn,dn
n |dn × 2|A|) different interpretations of

propositions from Props; moreover, they can all be enumerated in time O(|Pr1,d1 |d1 ×
. . . × |Prn,dn

n |dn × 2|A|). Therefore, one can explicitly build the reduced behaviour
graph HR in time O(|ϕ| × (|Pr1,d1|d1 × . . .× |Prn,dn

n |dn × 2|A|)2).

Corollary 1. If the number n of sets of constrained propositions, the number di of
propositions from the set Pri,di that can be true at any time, and the size |A| of the
set of non-constrained propositions is fixed, satisfiability of TLC(Pr1,d11 , . . .Prn,dn

n )
formulae can be decided in polynomial time.

4 Checking Satisfiability

Based on the proof of complexity of TLC given in Section 3, one can provide an algo-
rithm checking the satisfiability of TLC formulae as follows.

4.1 Incremental Algorithm

A straightforward approach is to construct the graph G representing all possible inter-
pretations of Props, and then ‘carve’ the behaviour graph H from G. However, such
a procedure might consider some nodes that are actually unreachable from the initial
nodes and, thus, do excess work. In this section we present an incremental, tableaux-like
algorithm, which avoids building these unnecessary nodes.

Let Assignments(ϕ, cons) be a procedure, which, when given a formula, ϕ, and
a set of constraints on variables, cons, returns the set of all interpretations within
the language Props that both satisfy the conditions cons and make ϕ true. Clearly,
Assignments(ϕ, {Pr1,d11 , . . . ,Prn,dn

n }) can be computed deterministically in time
O(int) where int = (|Pr1,d1 |d1 × . . . × |Prn,dn

n |dn × 2|A|) returning at most O(int)
interpretations for any ϕ.

Example. If Props = {p, q, r, s} then Assignments(p ∨ q, {{p, q, r, s}=1})
will return two interpretations: {p,¬q,¬r,¬s} and {¬p, q,¬r,¬s}; whereas
Assignments(p ∨ q, {{p, q}=1, {q, r, s}=2}) will return three: {p,¬q, r, s},
{¬p, q, r,¬s}, and {¬p, q,¬r, s} .
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Now, we use Assignments(ϕ, cons) to construct nodes of the behaviour graph H for a
formula ϕ incrementally. Nodes of H can be marked or unmarked. A node is marked
if all its successors are already represented in H , otherwise, it is unmarked. The incre-
mental algorithm is given in detail in Fig. 1. Note that if the set of clauses contains no
initial clauses, then the formula ψ in line 1 of the algorithm is true , and if the con-
junction in line 7 is empty then χ is true . After the behaviour graph is constructed,
we compute the reduced behaviour graph in time quadratic in the size of the behaviour
graph.

1: Let ψ =
�

{Cj | start ⇒ Cj is an initial clause}
2: for all I in Assignments(ψ, cons) do
3: Add an unmarked node I to H
4: end for

5: while Not all nodes in H are marked do
6: Pick an unmarked node I and mark I
7: Let χ =

�
{Dk | Ck ⇒ �Dk is a step clause, I |= Ck}

8: for all J in Assignments(χ, cons) do
9: if J is not already in H then

10: Add an unmarked node J to H
11: end if
12: Add an edge (I, J) to H
13: end for
14: end while

Fig. 1. Incremental behaviour graph construction algorithm

The following theorem follows from the Incremental Algorithm given in Figure 1.

Theorem 4. Given a TLC formula φ, the incremental procedure terminates and builds
the behaviour graph H of φ.

5 Case Studies

In this section we will consider case studies and show how they can be specified and
verified in TLC.

5.1 Multiprocessor Job-Shop Scheduling

The first problem we consider is a generalisation of the classic job-shop scheduling
problem, called the Multiprocessor Job-shop Scheduling (MJS) problem [4,2]. Here, a
set of jobs (j1, j2, . . ., jn) have to be processed on a set of machines running in parallel.
In general, each job might require several processor steps to complete but, to begin
with we will assume each job is completed after only one step; see Fig. 2. While in
these settings deciding if a schedule exists at all is comparatively easy, once we add
constraints such that one job must be run before another, deciding the existence of a
schedule becomes exponentially hard [2].
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Processors

Jobs

j1 j2 jn

p1 pk

Fig. 2. Basic Multiprocessor Job Scheduling.

In what follows, we will begin with a basic specification (in TLC) corresponding to
the easy form of the problem, but will then add formulae constraining particular jobs,
thus giving a harder form of problem.

Basic Specification. We will now model this in TLC. Assume that we have just one
constrained set

{run1, run2, . . . , runn}=k .

Since this constrained set is of dimensionality k, then we know that at any moment
in time, exactly k propositions from run1, run2, . . ., runn are satisfied. (N.B., later
we will relax this constraint and allow < (k + 1) propositions to be satisfied at any
moment.)

Now, we define other propositions using the following clauses in the normal form
(for every 1 ≤ i ≤ n):

start ⇒ ¬hasruni
(¬hasruni ∧ ¬runi) ⇒ �¬hasruni

runi ⇒ �hasruni
hasruni ⇒ �hasruni

N.B., the last two clauses effectively define runi ⇒ � hasruni.

So, we have defined hasruni to be true if ji has been run in the past.

Now, to allow us to establish some simple properties, we will also constrain each job
to only run once. So, we add (though we must translate to the normal form), for each
1 ≤ i ≤ n

runi ⇒ � ¬runi .

Synthesising a Schedule. Let us term the basic system, comprising the above clauses,
as ‘ϕ’. Now, we can simply ask whether

start ⇒ (ϕ ⇒♦
n∧

i=1

hasruni)
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is satisfiable or not. In other words, is there a point in the future by which time all jobs
j1, . . ., jn have run?

If this is satisfiable, then there is a way to run the jobs such that exactly k run at
every moment in time. If the above is not satisfiable, then it is not possible to find such
a moment.

However, the strict k bound on the constrained set is a little restrictive, especially
when n is not a multiple of k. So, we can reformulate the problem with a constrained
set {run1, run2, . . . , runn}<(k+1), allowing at most k jobs to be run at any moment
in time. Thus, checking that

start ⇒ (ϕ ⇒♦
n∧

i=1

hasruni)

is satisfiable tells us whether there is a way to schedule the jobs successfully on k
processors. Note that, since we build a behaviour graph for this, then if the above is
satisfiable we can extract a satisfying linear path from the graph. This path corresponds
to the schedule for achieving the required job runs.

Now, once we know that♦
n∧

i=1

hasruni is satisfied, we can go further. We can check

start ⇒ (ϕ ⇒ �m
n∧

i=1

hasruni) .

If this is satisfiable, then decrease m and try again; if it is unsatisfiable, increase m and
try again. In this way, we find the minimum value of m such that

�m
n∧

i=1

hasruni

is satisfied. Thus, there is no way to schedule the jobs any faster than in m steps —
in this sense, we generate an optimal schedule through carrying out such satisfiability
checks. Note that finding an optimal schedule for the MJS problem is typically an NP-
hard problem [4].

Refined Specification. Now let us constrain this scenario still further. It is only to be
expected that there will be dependencies between some of the jobs. We can also specify
these simply in TLC. In order to show this, below are some examples.

– job y must run immediately after job x: runx ⇒ �runy
– job b must not run before job a has run: runa ⇒ �♦runb
– jobs p and q must only run at exactly the same time: (runp ⇔ runq)
– jobs f and g must never run simultaneously (¬runf ∨ ¬rung)
– and so on ...

In this way we can specify job interdependencies and, via satisfiability checking, can
extract the (optimal) schedule (if there is one)1.

1 We could also have specified jobs of varying durations (rather than just one step) in TLC.
However, this would have taken more space than was available.
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Note. It is obviously possible to generate a set of job interdependencies such that the
specification is unsatisfiable, for example

(run1 ⇔ run2) ∧ (run2 ⇔ run3) ∧ . . . ∧ (runh−1 ⇔ runh)

where h > k. Thus, it is natural to check satisfiability of the basic specification, ϕ,

before checking♦
n∧

i=1

¬runi, etc.

5.2 Robots

Consider the robots example outlined earlier. Let us assume there are 5 robots and at
any moment 3 must work and up to 2 may recharge. Further, each robot must do exactly
one of work, rest or recharge at any moment. In the terminology we have provided, the
problem is defined as TLC(W=3,R<3,S=1

1 ,S=1
2 ,S=1

3 ,S=1
4 ,S=1

5 ), where

W=j = {work1, . . . , work5}
R<3 = {recharge1, . . . , recharge5}
S=1
i = {worki, resti, rechargei}

We assume that each robot has a specification relating to when it works, rests and
recharges. For example, we could assume that each robot has the same specification
and that after working for one time unit it must recharge for one time unit.

(worki ⇒ �rechargei)

We assume initially that robots 1,2 and 3 are working, i.e.

start ⇒ work1

start ⇒ work2

start ⇒ work3

Informally we can see that this specification plus the constraints are unsatisfiable. This
is because at any moment there must be exactly three robots working. The specification
will then require that at the following moment all the three robots that were working in
the previous moment are now recharging which will contradict the constraint relating
to recharging.

Applying the Incremental Algorithm where ψ = work1 ∧ work2 ∧ work3 and

Assignments(ψ, cons) =

⎧
⎪⎪⎨

⎪⎪⎩

{work1, work2, work3, recharge4, recharge5},
{work1, work2, work3, rest4, rest5},
{work1, work2, work3, recharge4, rest5},
{work1, work2, work3, rest4, recharge5}

⎫
⎪⎪⎬

⎪⎪⎭

we add an unmarked node for each assignment to the behaviour graph. Consider the first
of these assignments and call its related node I . Extending the structure we construct χ
from the robot specification. Here χ = recharge1∧recharge2∧recharge3. Now when
we try construct Assignments(χ, cons) we obtain an empty set as χ and the constraints
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cannot be satisfied together. Reasoning is similar from the other unmarked nodes, hence
the reduced behaviour graph is empty and the specification plus constraints must be
unsatisfiable.

Next we loosen the robot specifications to say that if a robot has worked for two
moments in time it must recharge in the next moment. To specify this we need an
additional proposition for each robot, xi which holds at the moment after worki holds.
Informally, if xi is true then either we are at the start of time, or the i-th robot has
worked in the previous moment.

(worki ⇒ �xi)
(worki ∧ xi ⇒ �rechargei)

Again we assume that robots 1, 2 and 3 must work initially. Now our behaviour graph
construction has an extra five propositions. The specification is now satisfiable, a sample
model being the following.

work1, work2, work3,
recharge4,

rest5, x1, x4, x5

State 0

−→

work2, work3, work4,
recharge1,

rest5, x1, x2, x3

State 1

↖ ↙

work1, work4, work5,
recharge2, recharge3,

x2, x3, x4

State 2

Further, we may want to strengthen the specification to ensure that each robot gets a
chance to work infinitely often.

true ⇒♦worki

We can observe that this is satisfied in the above model.
Finally observing the model suggested above we can see that robot 5 never recharges

as it just works intermittently. To avoid such a situation we may want to specify that the
robot needs to recharge after working for two moments in time since last recharging
even if these moments are not immediately one after the other. Again informally, if yi
is true then either we are at start of time or the i-th robot has worked one time unit since
the last recharge.

(worki ⇒ �yi)
(worki ∧ yi ⇒ �rechargei)
(resti ∧ yi ⇒ �yi)
(rechargei ⇒ �¬yi)

Now extending the above model with suitable yi propositions and removing the xi
propositions won’t satisfy the new specification and constraints as robot 5 works infi-
nitely often but never gets to recharge. However we can easily specify a model which
does satisfy the new specification and constraints.
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work1, work2, work3,
recharge4,
rest5, y1, y5

State 0

−→

work2, work3, work4,
recharge1, recharge5,

y1, y2, y3, y5

State 1

↗ ↓

work1, work2, work5,
recharge4,

rest3, y1, y4, y5

State 3

←−

work1, work4, work5,
recharge2, recharge3,

y2, y3, y4

State 2

5.3 Petri Nets

Consider now 1-safe Petri nets (see for example [10]), which are used to model sys-
tems with limited resources. In 1-safe nets, every place may contain at most one token.
This restriction allows us to represent 1-safe Petri nets in propositional temporal logic.
Encoding places with propositions (proposition pi is true if, and only if, a token is at
place Pi), given a 1-safe Petri net N , one can construct a PTL formula φN of the size
polynomial in the size of N , such that models of φN correspond to infinite trajectories
of N .

For example, the following transition

P1

P2

Q

can be represented as

(p1 ∧ p2 ⇒ �(q ∧ ¬p1 ∧ ¬p2))

i.e. the transition fires if both P1 and P2 contain a token, plus suitable frame axioms
to prevent tokens from arbitrarily appearing or disappearing. Similarly, reachability in
these nets, for example the reachability of the state PF corresponds to the satisfiability
of ♦pF from an initial state. Since the reachability problem (as well as many other
interesting problems) for 1-safe nets is PSPACE-complete [10], such translation is op-
timal.

We can then use capacity constraints to impose place invariants: for a subset of
places in a Petri net, the total number of tokens in places from this subset remains con-
stant. Such invariants are used, for example, in the verification of distributed protocols
with Petri nets [18,19]. Note that imposing such extra restrictions actually makes the
complexity of reasoning lower.
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6 Concluding Remarks

In this paper we have introduced TLC, a propositional temporal logic that allows the
specifier to put powerful additional constraints on how many propositions can be sat-
isfied at any one time. This logic represents a combination of standard propositional
linear-time temporal logic with constraints relating to restrictions on the number of
propositions, for particular subsets of propositions, at each moment in time. This is
not only an interesting extension of PTL, but can potentially be decided in polynomial,
rather than exponential time. This improved complexity makes TLC a strong candidate
for practical verification based upon temporal satisfiability.

We provide a graph construction algorithm to check satisfiability by enumerating
only the reachable nodes that satisfy the required constraints. The definition of resolu-
tion rules incorporating these constraints appear complex and non-trivial. Similarly, the
adaption of tableau algorithms for PTL [24] to this constrained situation lead, in some
cases, to the generation of exponentially many successors to nodes in the tableau.

There is little related work in this area. Refinements of PTL have been considered,
particularly in relation to model checking, by Demri and Schnoebelen [6]. Mutually
exclusive conditions (stemming e.g. from automata representation) and numbers from a
fixed range can often be handled through efficient translation — consider, for example,
logarithmic encoding or property-driven partitioning used in model checking [23] and
SAT [1] — however, we are not aware of others who have explicitly studied constraints
directly in the logic itself, such as those described in this paper, apart from ourselves in
earlier work just on XOR extensions of PTL [7,8].

Our explicit graph construction has a similar flavour to that of tableau algorithms
developed for PTL [24,15] which attempt to explicitly construct a model for formulae.
Here the expansion rules focus on formulae in the normal form rather than any well-
formed formula. Implementations of the tableau procedures [22,17] are available within
the logics workbench [16], and powerful tools for constructing automata from PTL
formulae now exist [3,14].

Future Work. Work on TLC has uncovered a new, and potentially very sophisticated,
approach to temporal specification. Rather than concentrating solely on the behaviour
of components, the use of TLC encourages specifiers to partition the propositions, and
also to consider what constraints need to be put upon these partitioned sets. Thus, this
leads us towards the approach of engineering the sets and constraints first, before even
addressing the temporal specification of the component behaviours.

Furthermore, the incremental algorithm in Fig. 1 can potentially be modified to al-
low for dynamic changes of the set of constraints. This allows us to accommodate con-
straints into the language as a logical connective. Let ⊕=s denote a logical operator of
flexible arity, which states that exactly s of its arguments is true, while ⊕<d states that
fewer than d of its arguments can be true. Expressions of the form

∧

i

k ⇒ �⊕=d
j lj

are called⊕=d-step clauses (⊕<d-step clauses are defined similarly). If in the algorithm
in Fig. 1, lines 6–12, I |=

∧
i k, we look for interpretations, which make χ true and
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satisfy both constraints, cons, and the right-hand side of the of⊕=d step clause. A more
elaborate language even allows us to dynamically disallow existing constraints as well
as introduce new ones.

The development of an implementation of the algorithms discussed in this paper
together with practical verification case studies, form the basis for our future work. Fur-
ther, the extension to dynamic constraints and a deeper comparison to related methods
are future work.
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Abstract. We investigate the extension of modal logics by bisimulation quan-
tifiers and present a class of modal logics which is decidable when augmented
with bisimulation quantifiers. These logics are refered to as the idempotent trans-
duction logics and are defined using the programs of propositional dynamic logic
including converse and tests. This is a nontrivial extension of the decidability of
the positive idempotent transduction logics which do not use converse operators
in the programs (French, 2006). This extension allows us to apply bisimulation
quantifiers to, for example, logics of knowledge, logics of belief and tense logics.
We show the idempotent transduction logics preserve the axioms of propositional
quantification and are decidable. The definition of idempotent transduction log-
ics allows us to apply these results to a number of combined modal logics with a
variety of interactions between modalities.

1 Introduction

Bisimulation quantifiers were introduced by Visser [1] and Ghilardi [2] as a semantic
characterization of uniform interpolants in modal logics such as K, Grz and GL. More
recently, bisimulation quantifiers have been investigated as an expressive extension of
many modal logics such as PDL [3], and S4 [4].

Syntactically, bisimulation quantifiers are the same as propositional quantifiers. Se-
mantically, they quantify over all interpretations of the specified propositional atom
in all bisimilar models. Thus bisimulation quantified modal logics are typically less
expressive than standard propositional quantified modal logics (which are generally un-
decidable [5]).

The motivation for considering bisimulation quantifiers is to extend modal logics
with the ability to reason about hypothetical assignments of atoms. That is we may ex-
press the property, “there could be an interpretation of atoms that agrees with the present
interpretation on all atoms except x, that makes α true.” To evaluate this statement we
must decide what it means for two interpretations to agree. In our case we suppose
two interpretations agree if they are structures that are bisimilar up to the proposition
x. This is a very natural standard to apply. Bisimulations were defined by Milner [6],
Park [7] and (as p-relations) van Benthem [8]. Stirling [9] surveys the relationships
between bisimulations and modal logic. In [8] it is shown that properties definable in
modal logic are exactly the first-order properties that are bisimulation invariant. There-
fore modal formulas are unable to distinguish between bisimilar structures, and this
degree of abstraction has allowed modal logics to be easily applied in a range of con-
texts (such as reasoning about time [10] or knowledge [11]). We consider quantification
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modulo bisimulation because we would like to preserve this degree of abstraction whilst
considering hypothetical assignments of atoms.

Bisimulation quantifiers were originally investigated in [1] and [2] as abbreviations
for uniform interpolants in some modal logics. In [3] this characterization was extended
to abbreviations for uniform interpolants in the modal μ-calculus. More recently, bisim-
ulation quantifiers have been investigated independently of uniform interpolants. We
briefly survey some of these results here: In [4] axiomatizations are given for the bisim-
ulation quantified extension of K and the bisimulation quantified extension of PDL. In
[12] bisimulation quantifiers are considered in the context of arbitrary modal logics.
It is shown that there are cases where extension by bisimulation quantifiers does not
preserve decidability, or the axioms for propositional quantification. The paper [13] ex-
plores the relationship between fixed-point operators and bisimulation quantifiers, and
it is shown that there are cases where bisimulation quantified logics are more expressive
than the corresponding fixed-point logic. The paper [14] introduces the positive idem-
potent transduction logics. This is a decidable class of bisimulation quantified logics
which includes many of the well-known and applied modal logics (such as K4, GL and
a fragment of CTL).

In this paper we enhance the results of [14]. We extend the definition of idempotent
transduction logics in such a way as to capture the logics S5, KD45 and many more
besides1. The logic S5 is applied for reasoning about knowledge and security [11] and
KD45 is used for reasoning about belief in agent systems, so there are practical reasons
to extend the class of idempotent transduction logics to include such logics as these.
We show that the idempotent transduction logics are decidable, and preserve the ax-
ioms of propositional quantification. This work is a non-trivial extension of the results
of [14], which presented the class of positive idempotent transduction logics. Positive
idempotent transductions specified modalities as μ-programs without converse, whereas
idempotent transduction specify modalities as μ-programs with converse. While this
significantly complicates the proofs, it allows us to extend our generalized results to
combinations of logics including knowledge and belief.

These results have been presented in [15], although the proofs are improved here.

2 Preliminaries

In this section we give the basic notation, definitions and lemmas required throughout
this paper.

2.1 Modal Logic

Definition 1. Let Λ be a non-empty set. A Λ-frame is a tuple (S,R) where S is some
set and R : Λ −→ ℘(S × S).

The set S corresponds to the set of possible worlds, and for each a ∈ Λ, R(a) refers
to some relation between the possible worlds. A model adds a valuation to a Λ-frame

1 Using the language of [15] we will refer to the idempotent transduction logics of [14] as
positive idempotent transduction logics.
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which defines which atomic propositions are true at each element of S, and identifies
the current world.

Definition 2. A Λ-V-model is a tuple (S,R, ρ, s) where (S,R) is a Λ-frame, ρ : S −→
℘(V), and s ∈ S.

Here V is a countable set of atomic propositions, ρ assigns those propositions to states
(so that x ∈ ρ(t) if and only if x is true at t), and s is the current state of the model.
We will refer to Λ-V-models as Λ-models when there is no ambiguity about V . The
use of the term model rather than structure or system is quite deliberate. A structure
implies some concrete entity, whereas we consider the models to be abstractions of
some real-world entity (but importantly, an abstraction that is equally as good as any
other bisimilar model).

The syntax of the modal logic (LΛ) is given with respect to the sets Λ (the set of
modalities) and V (the set of atomic propositions).

α ::= x | ¬α | α1 ∨ α2 | ♦aα (1)

where x ∈ V and a ∈ Λ. Correspondingly, we will refer to Λ-V-models as Λ-models
when there is no ambiguity about V . We let the abbreviations ∧, →, ↔, � and ⊥ be
defined as usual and let �aα abbreviate ¬♦a¬α. We let var(α) be the set of proposi-
tional atoms appearing in α.

The modal logic LΛ has the following semantics. Given some Λ-model M =
(S,R, ρ, s) for each t ∈ S let Mt = (S,R, ρ, t). We then define:

M |= x ⇐⇒ x ∈ ρ(s)
M |= ♦aα ⇐⇒ for some (s, t) ∈ R(a), Mt |= α

where ¬ and ∨ have their usual interpretation.
From a purely semantic view of logic, we can define a variety of modal logics by

restricting the class of models over which formulas are evaluated.

Definition 3. Given some set Λ, a Λ-class C is a class of Λ-frames. The logic LC is the
set of all LΛ formulas which are true on all Λ-V-models, (S,R, ρ, s), where (S,R) ∈ C.

In an abuse of notation we may refer to M ∈ C, where M = (S,R, ρ, s) and (S,R) ∈ C.

2.2 Bisimulation Quantifiers

The bisimulation quantified logic of C (BQLC) is the extension of LC by bisimulation
quantifiers. The syntax is given by:

α ::= x | ¬α | α1 ∨ α2 | ♦aα | ∃xα (2)

where x ∈ V and a ∈ Λ. To give the formal semantics we require bisimulations. These
are well-known and we extend this definition to Θ-bisimulations.

Definition 4. Let M = (S,R, ρ, s0) and N = (T, P, λ, t0) be Λ-V-models and sup-
pose Θ ⊆ V . We say the models M and N are Θ-bisimilar (written M ∼=Θ N ) if there
is some relation B ⊆ S × T such that:
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1. (s0, t0) ∈ B;
2. for all (s, t) ∈ B, ρ(s)\Θ = λ(t)\Θ;2

3. for all (s, t) ∈ B, for all a ∈ Λ, for all u ∈ S such that (s, u) ∈ R(a) there is some
v ∈ T such that (u, v) ∈ B and (t, v) ∈ P (a);

4. for all (s, t) ∈ B, for all a ∈ Λ, for all v ∈ T such that (t, v) ∈ P (a) there is some
u ∈ S such that (u, v) ∈ B and (s, u) ∈ R(a).

We call such a relation B a Θ-bisimulation from M to N and if M ∼={x} N we say M
and N are x-bisimilar (written M ∼=x N ).

Given M = (S,R, ρ, s) is a C-model the interpretation of ∃xα in BQLC is M |=C
∃xα if and only if there is some C-model N where N ∼=x M and N |=C α.

We note that the class C appears explicitly in the semantics, and thus has a direct
effect on the meaning of formulas. For example, we might have some Λ-model M and
some formula α such that for two classes, C andDM |=C α and M |=D ¬α. Consider,
for example, the formula α = ∀x(x → ♦ax), and suppose M is a {a}-model consisting
of a single world related to itself by R(a).

– In the class C of all reflexive {a}-frames we would have M |=C α.
– However, in the class of all {a}-frames, D, we have M |=D ¬α, since M is {x}-

bisimilar to some model (T, P, τ, t) where x ∈ τ(t) and (t, t) /∈ P (a).

This is in contrast to the case of pure modal logic, where there is one semantics for all
logics, so that LC and LD will always agree on the meaning of a formula (i.e. whether a
given formula is satisfied by a given model), but they may differ on whether a formula
is valid.

In the remainder of this paper we will let BQLΛ refer to the logic BQLC where C is
the class of all Λ-frames, and write M |=Λ α to denote satisfaction in this class.

2.3 Amalgamation

It was shown in [12] that bisimulation quantifiers are not well behaved for all classes of
frames. Particularly we can define a class of frames C such that BQLC does not validate
the standard rules of propositional quantification:

1. Existential elimination: If φ → ψ is a validity and ψ does not contain free occur-
rences of the variable x, then ∃xφ → ψ should also be a validity.

2. Existential introduction: Suppose α is a formula such that β is free for x in α. Then
α[x\β] → ∃xα is a validity.

Here α[x\β] is the formula α with every free occurrence of the variable x replaced by
the formula β, and β is free for x in α if and only if for every free variable, y, of β the
variable x is not in the scope of a quantifier, ∃y, in α. In [15], it is shown that these
laws, along with the tautologies of propositional logic, are sufficient to give a sound
and complete axiomatization of the extension of propositional logic by propositional
quantification.

Several classes of frames that do not validate these rules are presented in [12]. These
rules are sound for all logics, BQLC , where C has the amalgamation property.

2 Here, \ is used to indicate set subtraction.
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Definition 5. We say the class of frames C has the amalgamation property (or C is
amalgamative) if and only if for any Θ1, Θ2 ⊂ V , for any C-models M and N such that
M ∼=Θ1∪Θ2 N , there is some C-model, K such that M ∼=Θ1 K and N ∼=Θ2 K .

The following was shown in [12] (where amalgamation was refered to as safety).

Lemma 1. If C enjoys amalgamation, then the rules existential elimination and exis-
tential introduction are sound for BQLC .

Note that the soundness of existential elimination rule implies bisimulation invariance,
so as a corollary we have, if C is amalgamative, then BQLC is bisimulation invariant.

3 Motivation and Examples

We will present some examples of bisimulation quantified modal logics, and then con-
sider some of the applications for bisimulation quantifiers. The first two examples
demonstrate the use of bisimulation quantifiers in the context of knowledge and belief.
As the modalities of knowledge and belief are, respectively, symmetric and Euclidean
[16], their interpretation relies on the converse relations. As such they cannot be pre-
sented using the positive idempotent transductions of [14].

3.1 Knowledge

We consider a very simple example in the context of epistemic logic. Suppose that
Λ = {a, b} (for Alice and Bob). We let C be the Λ-class of frames (S,R) where both
R(a) and R(b) are equivalence relations. This corresponds to a very simple logic of
knowledge where two worlds u and v are related by R(a) if and only if Alice cannot
distinguish between those two worlds, and thus �aα is true at the current world if and
only if α is true at every world that Alice cannot distinguish from the current world (i.e.
Alice knows α). See [11] for a good introduction to epistemic logics.

Consider a simple model which consists of only two worlds, locked and unlocked,
that Alice can distinguish, but which Bob cannot. That is, in all worlds the formula
locked ↔ �alocked is true. Even though Bob does not know whether the door is
locked or not, he does know that Alice knows. Now suppose that (hypothetically) Bob
announces he is going to flip a coin and keep the result secret. We can consider the
hypothetical proposition heads, where �bheads∧¬�aheads is true. As a bisimulation
quantified formula this is expressed as ∃heads(�bheads∧¬�aheads) and its semantic
interpretation is illustrated in Figure 1. The model on the right is {heads}-bisimilar to
the one on the left, and satisfies �bheads ∧ ¬�aheads at its bottom left world.

This is a very simple example, but we can see how bisimulation quantifiers can be
applied in different contexts. In this example we supposed it was possible for Bob to
be able to flip a coin and keep the result secret from Alice. However, if we restricted
the class C so that the equivalence classes of R(a) were always subsets of equivalence
classes that belong to R(b) we would have a semantic where Alice always knows more
than Bob (for example Alice might be a super-user who has access to all of Bob’s files).
In this case ∃heads(�bheads ∧ ¬�aheads) would not be satisfied. Such hierarchical
logics of knowledge (without bisimulation quantifiers) are considered in [17]. In [18] a
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Fig. 1. Two models demonstrating the interpretation of the formula ∃heads(�bheads ∧
¬�aheads) in bisimulation quantified epistemic logic

bisimulation quantified logic of knowledge is presented, although several of the proofs
are flawed. The results of this paper redress some of those errors.

3.2 Belief

Another interesting example of the application of bisimulation quantifiers is in the logic
KD45, which is Kripke complete for the class of serial, transitive, Euclidean frames
(a frame is Euclidean if any two successors of a world are related to each other). In
BQLKD45,

♦(∃x(x ∧�¬x)) (3)

is a validity, but ∃x♦(x ∧ �¬x) is a contradiction. The unsatisfiability of the second
follows from the fact that �(x → ♦x) is a validity of KD45. Figure 2 demonstrates
how formula (3) is satisfied. Here, M is a KD45 model, and Mt

∼=x Nt′ , but there
is no KD45-model K = (U,Q, γ, u) where K ∼=x M and Kv

∼= Nt′ for some v
where (u, v) ∈ Q. That is, the bisimulation quantifier does not necessarily commute
with modalities, so bisimulation quantified KD45 does not satisfy the Barcan formula,
∀x�α → �∀xα. This may appear to be a flaw in the interpretation of bisimulation
quantifiers. However, KD45 is the logic of belief and in this context it makes sense.
An agent believes that some set of worlds are possible, and refuses to believe any other
world is possible. Suppose that we are dealing with an informed agent that knows the
difference between belief and knowledge. The agent would believe that in principle it
is possible that he believes some (hypothetical) property to be true, even though that
property is not satisfied at the current world. That is, ♦∃x(¬x ∧�x) is valid. However
the agent would still not concede that any of the real, non-hypothetical properties (i.e.
unquantified propositions) that he believes are false.

3.3 Expressing Refinement

We consider the applications of modal logic to the verification and modeling of compu-
tational systems. Such systems can be specified at many levels of abstraction, ranging
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Fig. 2. A depiction of the validity (3) with respect to the class of KD45 frames

from the individual transistors that make up a circuit, to objects of high level program-
ming languages.

Abadi and Lamport [19] examine the problem of specifying and reasoning about
systems at multiple levels of abstraction. They divide the properties at any level of
abstraction into external properties and internal properties, where the external properties
describe the visible behavior of a system. At a higher level of abstraction less properties
are externally visible. Abadi and Lamport use finite state machines to represent the
behavior of systems, and apply the notion of a refinement mapping [20] to verify if one
specification implements another specification (or agrees with the external properties of
that specification).

In the context of general modal logics, such refinements can be modeled by bisimula-
tion quantifiers. For example two security protocols could be specified by the formulas
of epistemic logic, S1(x, y) and S2(x, z), respectively. We are able to express that the
specification S1 always agrees with the specification S2 with respect to the proposi-
tional atoms (or properties), x using the bisimulation quantified epistemic formula

∀x∀y(S1(x, y) → ∃zS2(x, z)). (4)

We note that the use of bisimulation quantifiers rather than naive propositional quan-
tifiers is significant here. For example, it is possible that the specification S1(x, y) is
satisfiable in a model containing only three worlds, whilst S2(x, z), can only be satis-
fied by models with more than three worlds. In such a case the formula (4) would not
be valid.

We do not consider any particular specifications, or any specification languages here.
Rather we simply note that bisimulation quantifiers seem to naturally capture the intu-
itive meaning of one specification implementing another. A general aim of this paper
and other works [14,15,13] is to develop a formal framework for the iterative refinement
of specifications in different ontologies.

4 The Modal μ-Calculus with Converse

In this section we examine the modal μ-calculus with converse[21]. The converse op-
erators inverts the modal accessibility relation allowing us to “see” backwards along a
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relation. Including converse programs is important to allow us to capture the symmet-
ric nature of the modal relations in S5 and other similar logics. However, the converse
operators also significantly increase the complexity of the decidability proof.

4.1 Syntax and Semantics

The full μ-calculus, μLΛ is an extension of modal logic that includes the least fixed
point operator μ, and converse modalities:

α ::= x | ¬α | α ∨ α | 〈a〉α | 〈a−〉α | μxα (5)

where x ∈ V , a ∈ Λ and in the recursion for μxα we require that x only occurs in
the scope of an even number of negations in α. We let νxα be an abbreviation for
¬μx¬α[x\¬x], (where α[x\¬x] is α with every free occurrence of x replaced by ¬x).

The interpretation of 〈a〉α is the same as the interpretation of ♦aα and the interpre-
tation of 〈a−〉α is given as:

Mt |= 〈a−〉α ⇐⇒ for some (s, t) ∈ R(a), Ms |= α.

The interpretation of μxα is the least of all assignments of x such that x is true
exactly where α is true, and the operator ν refers to the greatest such assignment[22].

4.2 Results for the Modal μ-Calculus with Converse

The modal μ-calculus without converse was introduced by Kozen in [22]. In [23] it was
shown that μLΛ corresponds to the bisimulation invariant fragment of monadic second-
order logic. Emerson and Jutla presented an exponential time decision procedure for
the modal μ-calculus in [24]. In [3] it was shown that the μ-calculus was closed under
bisimulation quantifiers. That is, for all formulas of the μ-calculus α, for all atomic
propositions x, there is some formula of the μ-calculus, ∃̃xα, such that for all models,
M , M |= ∃̃xα if and only if there is some model N ∼=x M such that N |= α.

The μ-calculus with converse (or the full μ-calculus) was shown to be decidable in
[21]. The proof of decidability defined two-way alternating automata to accept models
of full μ-calculus formulas, and then reduced the two-way alternating automata to (one-
way) non-deterministic automata.

It is well-known that the μ-calculus can express dynamic modalities (or programs).

Definition 6. Let Λ be a set of atomic programs. The μ-programs π over Λ (ProgΛ)
are:

π := a | π;π | π ∪ π | π∗ | π− | α?;

where a ∈ Λ and
α := P | ¬φ | α ∨ α | 〈π〉φ | μPα,

provided P is under an even number of negations in α.

The modalities, 〈π〉, corresponding to programs, π are defined as usual by extending
the function R to map all programs, π, to a binary relation over S, R(π). This is done
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inductively where: the base case is given by R(a) for a ∈ Λ; R(π1;π2) is the compo-
sition of the relations R(π1) and R(π2); R(π1 ∪ π2) is the union of R(π1) and R(π2);
R(π∗) is the reflexive transitive closure of R(π); R(π−) is the converse of the relation
R(π) (so that (u, v) ∈ R(π−) if and only if (v, u) ∈ R(π)); and α? is a test program
defined by R(α?) = {(u, u) |Mu |=C α}.

We use the μ-programs defined here to describe a large class of bisimulation quan-
tified modal logics. Whilst these classes of logics may be defined using converse pro-
grams, the logics themselves only use forward modalities. To address this asymmetry
we give the following definitions.

We first focus on translating the class of CΛ-models to a class of models where the
converse of each atomic modality is explicitly represented by another atomic modality.

Definition 7. 1. Given the set Λ = {a1, a2, . . .}, let Λ′ be a set {b1, b2, . . .} such
that Λ ∩ Λ′ = ∅. The converse closure of Λ, with respect to Λ′, is the set Λ =
{a1, b1, a2, b2, . . .}, and for all i, we let ai = bi and bi = ai.

2. Given the Λ-class of frames C, let the converse extension of C be the Λ-class C =
{(S,R)|(S,R) ∈ C} where R : Λ −→ S × S is defined such that for all a ∈ Λ,
R(a) = R(a) and (u, v) ∈ R(a) if and only if (v, u) ∈ R(a).

3. Given the C-model M = (S,R, ρ, s) let the converse extension of M be the C-
model M = (S,R, ρ, s).

4. Given any CΛ-model M = (S,R, ρ, s) we define the converse closure of M to be
the CΛ-model M+ = (S,R+, ρ, s) where for o ∈ Λ, R+(o) = R(o)∪{(u, v)|(v, u)
∈ R(o)}.

The following definition introduces tree-like models. Tree-like models are useful since
they require that every world in the model is reachable from the current world. This
allows us to interpret converse modalities in terms of atomic modalities.

Definition 8. For any Λ, we say a Λ-model M = (S,R, ρ, s) is tree-like if

1. for all u ∈ S\{s}, there is exactly one pair (o, v) ∈ Λ×S such that (v, u) ∈ R(o);
and

2. for all u ∈ S, for all o ∈ Λ, (u, s) /∈ R(o)
3. for all u ∈ S\{s}, there is some finite sequence u0, u1, . . . , un such that u0 = s,

un = u and for all i < n, there is some o ∈ Λ such that (ui, ui+1) ∈ R(o).

Lemma 2. For every CΛ-model M , there is some tree-like CΛ-model N such that
M ∼= N .

The proof is given in [15] (Lemma 5.89).

Lemma 3. For every CΛ model, M , for every tree-like CΛ model N where N ∼=x M ,
we have N+ ∼=x M .

The proof is given in [15] (Lemma 5.93).
Using these definitions, we can describe a translation from the modal μ-calculus with

converse, to the modal μ-calculus without converse.

Theorem 1. There exists a translation (·)′ from μLΛ with converse to μLΛ without
converse, such that for all tree-like Λ-models M , for all μLΛ formulas α, M+ |= α if
and only if M |= α′.
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We sketch the proof of this theorem via alternating automata and μ-automata here (see
[25] for an overview of these formalisms). As the language of alternating automata is
equivalent to the modal μ-calculus we can define an alternating automaton, A (over the
set of programs {a, a− | a ∈ Λ}) such that A accepts M+ if and only if M+ |= α.

From A, we can define a μ-automaton A2, such that A2 accepts tree-like Λ-model M
if and only if A accepts M+. This is based on Vardi’s construction [21] and a complete
description is given in [15], Appendix C.

Finally, as there is an effective translation from μ-automata to the μ-calculus [23],
we can convert A2 to the μLΛ formula α′, so that M+ |= α if and only if M |= α′.

5 Idempotent Transductions

Here we consider a class of decidable bisimulation quantified modal logics which in-
cludes the bisimulation quantified extensions of S4, GL, S5 and KD45. We refer to this
class of logics as the idempotent transduction logics. Aside from the well-known logics
above there are many other idempotent transduction logics. These logics are defined by
encoding modalities as μ-programs, so potentially we can rapidly provide expressive
and decidable logics for different ontologies “on the fly”.

Recall the definition of ProgΛ (Definition 6).

Definition 9. Given a finite set of modalities Λ, a Λ-transduction is a function Π :
Λ −→ ProgΛ.

We can apply Λ-transductions to frames as described in the following definition:

Definition 10. Given a Λ-transduction,Π , and a Λ-frame F = (S,R) we define FΠ =
(S,Rπ) where for all u, v ∈ S, (u, v) ∈ RΠ(a) if and only if for all models M =
(S,R, ρ, s), (u, v) ∈ R(Π(a)). We define the transduction class of Π (written CΠ ) to
be the class of Λ-frames FΠ where F is any Λ-frame.

Definition 11. A Λ-transductionΠ is an idempotent transduction if for all a ∈ Λ, Π(a)
contains no free atomic propositions and for all Λ-models M , for all tree-like Λ-models
N such that N ∼= MΠ we have MΠ ∼= NΠ . If Π is a idempotent transduction, then
CΠ is an idempotent transduction class of frames and the logic BQLCΠ

is an idempotent
transduction logic.

Positive Idempotent transductions were identified for transductions that did not use the
converse operator [14]. Positive idempotent transductions are truly idempotent (where
idempotent means MΠ = (MΠ)Π ). To accommodate converse operators in the trans-
ductions the definition has been generalized.

5.1 Amalgamation for Idempotent Transduction Logics

Amalgamation is an important property as it allows us to use the tautologies of propo-
sitional quantification in a logic. We can show that all idempotent transduction logics
enjoy amalgamation.
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Lemma 4. Given any two tree-like Λ-models M and N , and some Λ-transduction Π
such that for all a ∈ Λ, Π(a) contains no free atomic propositions from Θ, if M ∼=Θ N
then MΠ ∼=Θ NΠ

The proof is given in [15] (Lemma 6.133).
Given any idempotent transduction, Π , we can show that CΠ enjoys the amalgama-

tion property (Definition 5).

Lemma 5. Every idempotent transduction class is amalgamative.

Proof. Suppose that Π is an idempotent Λ-transduction, M = (S,R, ρ, s) and N =
(T, P, τ, t) are CΠ-models and M ∼=Θ∪Γ N . By Lemma 2 there is some tree-like Λ-
model M ′ = (S′, R′, ρ′, s′) and some tree like Λ-model N ′ = (T ′, P ′, τ ′, t′) such that
M ′ ∼= M and N ′ ∼= N . Therefore M ′ ∼=Θ∪Γ N ′ via some bisimulation B ⊆ S′ × T ′.
Let L = (B,Q, η, (s′, t′)) be a Λ-model where

1. for all a ∈ Λ, ((u, v), (w, z)) ∈ Q(a) if and only if (u,w) ∈ R(a) and (v, z) ∈
P (a), and

2. η(u, v) = (ρ′(u)\Θ) ∪ (τ ′(v)\Γ ).

Clearly, L ∼=Θ M ′ and L ∼=Γ N ′. Again by Lemma 2 there is some tree-like Λ-model
K such that K ∼= L and thus K ∼=Θ M ′ and K ∼=Γ N ′. By Lemma 4 and the fact that
Π is idempotent,

M ∼= (M ′)Π ∼=Θ KΠ ∼=Γ (N ′)Π ∼= N,

so CΠ is amalgamative.

The following lemma can be shown by a simple induction over the complexity of
programs.

Lemma 6. Given any Λ-models, M and N such that M ∼=2
Θ N , and a Λ-transduction

Π such that for all a ∈ Θ, Π(a) does not contain any free propositional atoms from Θ,
we have MΠ ∼=2

Θ NΠ .

5.2 Examples

Before we proceed with the proof of decidability, let us consider some examples. The
logic S4 has been shown to be equivalent to the pure modal logic of all reflexive, tran-
sitive frames. The class of all reflexive transitive {a}-frames (where a is some arbitrary
label on a modality) is equivalent to the class CΠ where Π is the {a}-transduction
defined by Π(a) = a∗. Therefore the bisimulation quantified extension of S4 is an
idempotent transduction logic. Similarly:

1. S5 is the pure modal logic of all reflexive, symmetric and transitive frames. It is
defined by the transduction Π(a) = (a ∪ a−)∗.

2. GL is the pure modal logic of all transitive, well-founded frames. It is defined by
the transduction

Π(a) = (μx[a]x)?; a; a∗.

The test ensures the for all (u, v) ∈ Π(a), every a-path starting at u is finite. The
correctness of this transduction (using a different notation) is presented in [15],
Lemma 6.139.
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3. KD45 is the pure modal logic of all serial, transitive, Euclidean frames (where a
frame is Euclidean if every successor of any given world is related to one another,
see Figure 2). It is defined by the transduction Π(a) = ((a ∪ a−)∗; a) ∪ ([a]⊥)?.

Idempotent transductions also allow us to define the interactions between different
modalities. Consider the following logic of hierarchical knowledge. Let S5⊆n be the
class of Λ-frames, (S,R) where

– Λ = {1, 2, . . . , n},
– for all i ∈ Λ, R(i) is reflexive, transitive and symmetric, and
– for all i ∈ Λ, for all j < i, R(j) ⊆ R(i).

This describes a system of hierarchical knowledge so that �i is a knowledge operator
for agent i, and if j < i, agent j knows at least as much as agent i. See [17] for
a discussion of logics of hierarchical knowledge. For each i in Λ we define Π(i) =
(1 ∪ 1− ∪ . . . ∪ i ∪ i−)∗.

An advantage of idempotent transduction logics is that they allow us to easily define
powerful combinations of logics. For example, to reason about a system of belief and
knowledge, we may suppose the standard interpretations for belief and knowledge hold,
and also that knowledge implies belief, but not necessarily vice-versa. This situation can
be described using the idempotent transduction, Π :

Π(k) = (k ∪ k− ∪ b ∪ b−)∗

Π(b) = ((b ∪ b−)∗; b) ∪ ([b]⊥)?

where [k]φ means the agent knows φ, and [b]φ means the agent believes φ.

5.3 The Decidability of Idempotent Transduction Logics

We can now show that all idempotent transduction logics are decidable by reducing
their satisfiability problem to the satisfiability problem for the full μ-calculus.

Theorem 2. For every idempotent Λ-transduction, Π , there is a translation (·)Π from
BQLCΠ

to μLΛ such that for all Λ-models, M

M |=CΠ α ⇐⇒ M |= αΠ . (6)

Proof. The proof follows from the inductive construction of αΠ which we describe
here. As the base of this induction we may suppose that α contains no bisimulation
quantifiers at all. In this case we let αΠ = α[a\Π(a)]a∈Λ, where α[a\Π(a)]a∈Λ is the
formula α with every modality, ♦a, replaced by 〈Π(a)〉. By comparing the definition
of MΠ with the semantics for μLΛ extended with dynamic modalities (Definition 6),
we can see

MΠ |=CΠ α ⇐⇒ M |= α[a\Π(a)]a∈Λ. (7)

Now we proceed by induction. For all operators except the bisimulation quantifier the
constructions are trivial: (α1 ∨ α2)Π = αΠ1 ∨ αΠ2 ; (¬α)Π = ¬αΠ ; and ♦aα =
〈Π(a)〉α. The proofs follow directly from the semantic definitions of the operators.
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We are left to define the translation for the bisimulation quantifier. Suppose that for
all Λ-models N , NΠ |=CΠ α if and only if N |= αΠ , and suppose that MΠ |=CΠ ∃xα.
By the definition,

MΠ |=CΠ ∃xα ⇐⇒ ∃NΠ ∈ CΠ , NΠ ∼=x MΠ , and NΠ |=CΠ α. (8)

Since Π is an idempotent transduction, if T is a tree-like Λ-model such that T ∼= NΠ ,
then TΠ ∼= NΠ . Let TΛ the the set of tree-like Λ-models. By Lemma 2, the transitivity
of bisimulation and Lemma 1

MΠ |=CΠ ∃xα ⇐⇒ ∃T ∈ TΛ, T ∼=x MΠ , and TΠ |=CΠ α. (9)

Now, by applying the induction hypothesis it follows:

MΠ |=CΠ ∃xα ⇐⇒ ∃T ∈ TΛ, T ∼=x MΠ , and T |= αΠ . (10)

The full μ-calculus is not closed under bisimulation quantifiers (since bisimulations
only respect forward modalities). As αΠ is a formula of the full μ-calculus, by The-
orem 1 there is a μLΛ formula without converse, (αΠ)′, such that T |= (αΠ)′ if and
only if T+ |= αΠ . As T is a Λ-model (and thus a Λ-model), we have T |= αΠ if and
only if T+ |= αΠ . Furthermore, we may suppose that (αΠ)′ does not contain converse
modalities a, (since 〈a〉φ will always be false). Therefore (αΠ)′ is a formula of μLΛ
without converse, which is closed under bisimulation quantifiers [3]. That is, there is
a computable μLΛ formula, ∃̃x(αΠ)′ such that for all Λ-models N , N |= ∃̃x(αΠ)′ if
and only if, for some model K ∼=x N , K |= (αΠ)′. Therefore

MΠ |=CΠ ∃xα ⇐⇒ MΠ |= ∃̃x(αΠ )′. (11)

Finally, from the semantic interpretation of the full modal μ-calculus we can see

MΠ |=CΠ ∃xα ⇐⇒ M |= (∃̃x(αΠ )′)[a\Π(a)]a∈Λ, (12)

where where α[a\Π(a)]a∈Λ is the formula α with every atomic program, a, replaced
by Π(a). To complete the proof we let (∃xα)Π = (∃̃x(αΠ)′)[a\Π(a)]a∈Λ.

In [14] a more simple reduction that did not consider converse modalities was used
to prove decidability for positive idempotent transduction logics. A more complex de-
cidability proof for idempotent transduction logics is given in [15] (Theorem 6.136).

We proof in [15] relied on the following theorem for BQDLΛ, (which is proposi-
tional dynamic logic with converse programs extended by bisimulation quantifiers).

Theorem 3. Given any Λ, for all formulas α of BQDLΛ there is some computable
BQDLΛ formula α∗ such that for any Λ-class C, for any C-model M , M |=C α∗ if and
only if M |=Λ α.

The proof is given in [15] (Theorem 5.108) and follows the same strategy as the proof
of Theorem 2, where α∗ is inductively defined to be μ-calculus formula equivalent to
α. As the interpretation of the μ-calculus is independent of the class of frames, the
Theorem follows.
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6 Conclusion

This paper presents a general class of bisimulation quantified modal logics, the idem-
potent transduction logics, that are amalgamative and decidable. This class is defined
by taking the fixed points (modulo bisimulation) of transductions defined by programs
of propositional dynamic logic with converse.

The benefits of this approach are as follows:

1. This definition provides a powerful methodology for extending and combining
bisimulation quantified modal logics. A number of logics can be combined, where
the modalities interaction can be expressed using programs of propositional dy-
namic logic.

2. Including bisimulation quantifiers in a logic can greatly increase the expressivity of
the logic, allowing us to represent operators such as the until operator of temporal
logic or fixed point operators. Furthermore in [15] it is shown that BQDLΛ is non-
elementarily more succinct than the modal μ-calculus.

3. Bisimulation quantifiers have a natural interpretation as a hypothetical assignment
of atoms. This allows them to be applied directly to refinement and simulation
problems in a variety of ontologies.

Future work will examine further generalizations of the class of idempotent transduc-
tion logics. However, we note that this great generality comes at the cost of complexity.
Therefore, we will also consider sub-classes of the idempotent transduction logics and
look for efficient model-checking procedures, decision procedures, and axiomatizations.
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Abstract. It can be desirable to specify polices that require a system
to achieve some outcome even if a certain number of failures occur. This
paper proposes a logic, RoCTL*, which extends CTL* with operators
from Deontic logic, and a novel operator referred to as “Robustly”. This
novel operator acts as variety of path quantifier allowing us to consider
paths which deviate from the desired behaviour of the system. Unlike
most path quantifiers, the Robustly operator must be evaluated over
a path rather than just a state; the Robustly operator quantifies over
paths produced from the current path by altering a single step. The
Robustly operator roughly represents the phrase “even if an additional
failure occurs now or in the future”. This paper examines the expressivity
of this new logic, motivates its use and shows that it is decidable.

Keywords: RoCTL*, Decidability, Modal Logic, Robustness, Branching
Time Logic, QCTL*.

1 Introduction

Temporal logic has been particularly useful in reasoning about properties of
systems. In particular, the branching temporal logics CTL* [1] and CTL [2] have
been used to verify the properties of non-deterministic and concurrent programs.

The logic RoCTL* divides the set of all futures/histories of the CTL* model
into successful paths and faulty paths. There is a temporal aspect to faults, so
that after the final fault, the path is successful. That is, a path with a finite
number of failures has a successful suffix. We augment the operators of CTL*
with a Deontic operator, which quantifies over all successful paths, and a novel
operator “Robustly” which quantifies over paths which deviate from the current
path. Thus there are three path quantifiers in RoCTL*. These quantifiers will
be discussed below.

The CTL* “All paths” operator describes hard constraints on the behavior
of the system, statements which must be true regardless of how many failures
occur. A hard constraint may result from some law of physics, or it may represent
something that the system can always be expected to achieve. For example, a
real time system may be known to miss some deadlines, but never return an
incorrect result. RoCTL* is a conservative extension of LTL and CTL* [3].

To allow us to reason about the consequences of failures, we add an operator
“Robustly” (�) that allows us to quantify over “deviations” from the current
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path. For a statement to be robustly true, it must be true on the current path
and any path produced by altering a single step. We can represent the statement
“if up to n additional failures occur” by chaining n instances of the Robustly
operator. To strengthen the meaning of the Robustly operator, we allow the
deviating event to be a success as well as a failure. The future after the deviating
event may bear no resemblance to the current path. However, to preserve the
intuition of the Robustly operator as introducing no more than a single additional
failure, no failures occur after the deviating event.

The “Obligatory” operator from Standard Deontic Logic (SDL) is embedded
in RoCTL*. This operator is used to describe what the future must be like if no
further failures occur. All of the validities of O from SDL hold in RoCTL*. Ad-
ditionally, as O is used as a path quantifier, all true state formulæ are obligatory
in RoCTL*.

The addition of the Robustly operator and temporal operators to Deontic
logic allows RoCTL* to deal with Contrary-to-Duty obligations. SDL is able to
distinguish what ought to be true from what is true, but is unable to specify
obligations that come into force only when we behave incorrectly. For example,
SDL is inadequate to represent the obligation “if you murder, you must murder
gently” [4]. Addition of temporal operators to Deontic logic allows us to specify
correct responses to failures that have occurred in the past [5]. However, this
approach alone is not sufficient [5] to represent obligations such as “You must
assist your neighbour, and you must warn them iff you will not assist them”.
In RoCTL* these obligations can be represented if the obligation to warn your
neighbour is robust but the obligation to assist them is not.

Other approaches to dealing with Contrary-to-Duty obligations exist. Defea-
sible logic is often used [6], and logics of agency, such as STIT [7], can be useful
as they can allow obligations to be conditional on the agent’s ability to carry
out the obligation.

This paper provides some examples of robust systems that can be effectively
represented in RoCTL*. It is easy to solve the coordinated attack problem if our
protocol is allowed to assume that only n messages will be lost. The logic may
also be useful to represent the resilience of some economy to temporary failures
to acquire or send some resource. For example, a remote mining colony may have
interacting requirements for communications, food, electricity and fuel. RoCTL*
may be more suitable than Resource Logics (see e.g. [8]) for representing systems
where a failure may cause a resource to become temporarily unavailable. This
paper presents a simple example where the only requirement is to provide a cat
with food when it is hungry.

A number of other extensions of temporal logics have been proposed to deal
with Deontic or Robustness issues [9,10,11,12,13]. Each of these logics are sub-
stantially different from RoCTL*. Some of these logics are designed specifically
to deal with deadlines [9,11]. An Agent Communication Language was formed
by adding Deontic and other modal operators to CTL [13]; this language does
not explicitly deal with robustness or failures. Hansson and Johnsson [11] pro-
posed an extension of CTL to deal with reliability. However their logic reasons
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about reliability using probabilities rather than numbers of failures, and their
paper does not contain any discussion of the relationship of their logic to De-
ontic logics. Like our embedding into QCTL*, Aldewereld et al. [12] uses a Viol
atom to represent failure. However, their logic also uses probability instead of
failure counts and is thus suited to a different class of problems than RoCTL*.
Additionally, adding the Viol atom has different expressivity properties to the
Robustly operator. CTL* with a special “Viol” atom can express statements
such as “If at least one failure occurs” which cannot be expressed in RoCTL*,
and it is not known whether all statements that can be expressed in RoCTL* can
be trivially translated into CTL*. In particular, it is not known how to translate
the phrase “even if a deviation from the current path occurs” into CTL*. None
of these logics appear to have an operator that is substantially similar to the
Robustly operator of RoCTL*.

Diagnosis problems in control theory [14,15] also deals with failures of systems.
Diagnosis is in some sense the dual of the purpose of the RoCTL* logic, as
diagnosis requires that failure cause something (detection of the failure) whereas
robustness involves showing that failure will not cause something.

This paper shows that all RoCTL* statements can be expressed in QCTL*.
Furthermore, it is easy to represent statements like “even if n failures occur” in
CTL*. However, this paper will show how the RoCTL* logic can represent and
make explicit different interactions between the time that failures occur and the
time or duration of the effect. There is no known trivial embedding into CTL*
that preserves these properties.

2 RoCTL* Logic

2.1 RoCTL* Syntax

RoCTL* extends CTL*, which uses the path operators from LTL:

Next Nφ indicates that φ is true at the next step.
Globally Gφ indicates that φ is true and will always be true.
Finally Fφ indicates that φ will be true at some point in the future.
Until φUψ indicates that φ will be true until ψ is true
Weak until φWψ indicates that either φUψ or Gφ is true.

CTL* includes two path-quantifiers:

Always Aφ indicates that φ is true in all possible futures.
Exists Eφ indicates that there is a future in which φ is true.

RoCTL* Includes the Deontic operators O and P as path-quantifiers.

Obligatory Oφ indicates that in every failure-free future φ holds
Permissible Pφ indicates that there is a failure-free future where φ holds

RoCTL* has a new pair of path-quantifiers to deal with failures. Unlike A and
E which are S5 operators, � is a T operator.
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Robustly �φ indicates that φ is true on this path and any path that differs
from this path by a single deviating event.

Prone to Δφ indicates that φ is true, either on this path or a path differing by
a single deviating event, and is the dual of �.

The RoCTL* Logic has a set V of atomic propositions that we call variables.
Where p varies over V , the formulæ of RoCTL* are defined by the abstract
syntax φ := � | p | ¬φ | (φ ∧ φ) | (φUφ) |Nφ |Aφ |Oφ |�φ.

The �, ¬, ∧, N, U and A are the familiar “true”, “not”, “and”, “next”, “un-
til” and “all paths” operators from CTL. The abbreviations ⊥, ∨, F , G, W , E
→ and ↔ are defined as in CTL* logic. As with SDL logic, we define P ≡ ¬O¬.
Finally, we define the abbreviation Δ ≡ ¬�¬. We say that φ is a state formula
iff φ is equivalent to Aφ.

2.2 RoCTL-Structures

Definition 1. A valuation α is a map from a set of states A to the power set
of the variables; we represent the statement “the variable p is true at state w”
with p ∈ α(w).

Definition 2. A CTL-structure M∗ = (A∗,→∗, α∗) is a 3-tuple containing a
set of states A∗, a serial (total) binary relation →∗ and a valuation α∗ on the
set of states A∗. We define C as the class of such structures and Ct as the class
of such structures where →∗ forms a tree.

Definition 3. A RoCTL-structure M is a 4-tuple (A,→s ,→f , α), consisting of a
set of states A, a serial (total) binary “success” relation →s , a binary “failure”
relation →f and a valuation α on the set of states A. We define M as the class
of such RoCTL-structures.

Definition 4. We use →sf as an abbreviation for
(
→s ∪ →f

)
. For all n ∈ N we

call an ω-sequence σ = 〈w0, w1, . . .〉 of states a fullpath iff for all non-negative
integers i we have wi →sf wi+1. For all i in N we define σ≥i to be the full-
path 〈wi, wi+1, . . .〉, we define σi to be wi and we define σ≤i to be the sequence
〈w0, w1, . . . , wi〉.

Definition 5. We say that a fullpath σ is failure-free iff for all i ∈ N we have
σi →s σi+1. We define SF (w) to be the set of all fullpaths in M starting with w
and S(w) to be the set of all failure-free fullpaths in M starting with w.

Definition 6. For two fullpaths σ and π we say that π is an i-deviation from σ
iff σ≤i = π≤i and π≥i+1 ∈ S(πi+1). We say that π is a deviation from σ if there
exists a non-negative integer i such that π is an i-deviation from σ. We define
a function δ from a fullpath to a set of fullpaths such that where σ and π are
fullpaths, π is a member of δ(σ) iff π is a deviation from σ.

Below is an example of an i-deviation π from a fullpath σ. The arrows not labeled
with s can be either →s or →f . After π diverges from σ, it avoids any failures that
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may have been on σ>i. We require that a deviation not introduce any failures
except for the deviating event itself, hence π≥i+1 is failure-free.

s s · · ·s
πi+1 πi+2 πi+3

σ0 σi σi+1 σi+2σ1 σi+3

Note that after the deviation, all transitions must be success transitions while
steps before the deviation may be either success or failure transitions. This fol-
lows from the intuition of Robustly representing “even if an additional failure
occurs”, as the failures that are prior to the deviation are already on the existing
path. Additionally, allowing failures to occur before the deviation also allows n
Robustly operators to be nested to represent the statement “even if n additional
failures occur”.

2.3 RoCTL* Semantics

We define truth of a RoCTL* formula φ on a fullpath σ = 〈w0, w1, . . .〉 in
RoCTL-structure M recursively as follows:

M,σ � Nφ iff M,σ≥1 � φ

M, σ � φUψ iff ∃i∈N s.t. M,σ≥i � ψ and ∀j∈Nj < i =⇒ M,σ≥j � ψ

M, σ � Aφ iff ∀π∈SF (σ0)M,π � φ

M, σ � Oφ iff ∀π∈S(σ0)M,π � φ

M, σ � �φ iff ∀π∈δ(σ)M,π � φ and M,σ � φ .

The definitions for �, p, ¬ and ∧ are as we would expect from classical logic.
We say that a formula φ is valid in RoCTL* iff for all structures M in M, for all
fullpaths σ in M we have M,σ � φ.

The operator O is similar to A. If ψ is a CTL* formula and ψ′ is ψ with
all instances of A replaced with O, then Oψ′ is a validity of RoCTL* iff ψ is a
validity [3]. It is also easy to show that if →f is empty, the O and � operators
are equivalent to the A operator. Restricting the class of structures such that
→s ∩ →f = ∅ and/or such that →f is serial does not affect the validities of the logic.

3 Properties of RoCTL*

The behaviour of the A operator is the same as in CTL*, and the behaviour of
the O operator is similar to that of the O operator in SDL. It is easy to show [3]
that the axiom class Oφ → Pφ is valid in RoCTL* (and SDL); neither the
axiom class φ → Pφ, nor the axiom class Oφ → φ, is valid in RoCTL* (or SDL).
However, unlike SDL, the axiom class p → Op is valid in RoCTL* [3]. This is
due to O being a path quantifier in RoCTL*. In this section, combinations of
operators and differences between the operators will be discussed.
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3.1 Interpretations of Combinations of Operators

As both A and O are traditional path-quantifiers, AO and OA are of little use
and reduce to O and A respectively. Similarly, �O reduces to O. However, O�
does not reduce to �. Indeed, �φ is not a state formula, while O�φ is. The pair
O� quantifies over any path starting at the present state that has at most one
failure.

The order of � and N affects the meaning of the combination, �Nφ represents
the statement “Even if one or fewer deviations occur now or in the future, φ
will be true at the next step”. The formula N�φ is similar, but only requires
φ to be true if the deviation occurs after the next step. As with the A path-
quantifier from CTL*, �Nφ → N�φ and �Gφ → G�φ are valid in RoCTL* but
�Nφ ← N�φ and G�φ → �Gφ are not [3]. The statement G�φ indicates that
for every state along the present path, φ holds at the beginning of all deviations;
the statement �Gφ indicates that φ will be true not only at the beginning of
the deviation, but along the deviation as well.

The order of the N and O operators is important, even more so than of N and
A. As with NAφ → ANφ, the formula form NOφ → ONφ is not valid. However,
unlike ANφ → NAφ, the form ONφ → NOφ is not valid. The combination NO
represents what will obligatory after the next transition, which might be a failure
transition. The ON combination instead discusses what should be true at the
next step. For further discussion of this combination, see Example 1.

It is easy to show that the following formulæ forms are valid in RoCTL*:
Aφ → Oφ, AOφ ↔ Oφ, OAφ ↔ Aφ, Aφ → �φ, �φ → Oφ, A�φ ↔ Aφ,
�Aφ ↔ Aφ and �Oφ ↔ Oφ.

3.2 Differences Between A, � and O

The A, � and O operators have similar properties since they quantify over paths.
The � operator is an unusual path quantifier as �φ is not a state formula. This
paper will not present a full axiomatization of RoCTL*. However, it will examine
which axioms of A are also valid for � and O . The axioms [16] that reference
the A operator are:

C9 A (φ → ψ) → (Aφ → Aψ)
C10 Aφ → AAφ
C11 Aφ → φ
C12 φ → AEφ
LC AG (Aφ → EN (AψUAφ)) → (Aφ → EG (AψUAφ)) .

C13 A¬φ ↔ ¬Eφ
C14 p → Ap
C15 ANφ → NAφ

As the real world may not be in a desirable state, neither Oφ → φ nor φ →
OPφ are valid. As mentioned previously ONφ → NOφ is not valid in RoCTL*.
It is easy to show that the C9, C10, C13, C14 and LC axioms are still valid if A
is replaced with O.

The formula φ → �Δφ is not valid in RoCTL*. The reason for this is that
a deviation can prevent any number of failures occurring in the future, but
the second deviation can cause only a single new failure. The � operator is
not transitive, so �φ → ��φ is not valid in RoCTL*. The axiom forms C9,
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C13, C14, C15 are still valid in RoCTL* if A is replaced with �. The formula
�G (Aφ → PN (AψUAφ)) → (Aφ → ΔG (AψUAφ)) is also valid in RoCTL*.

4 Examples

In this section a number of examples are presented. The first example examines
the difference between the formula NOφ and the formula ONφ. The second
example shows how RoCTL* may be used to specify a robust network protocol.
Then an example of feeding a cat will be introduced to explain how we may
reason about consequences of polices. These examples will frequently use the
�/Δ operator to form the pair O�. In the final example we use the simple
formula O(ΔFe → Fw) which nests �/Δ in a less trivial way.

Example 1. Here is an example of a simple Contrary-to-Duty obligation. This
provides a counter example to both ONφ → NOφ and NOφ → ONφ.
ON(Gp): You should commit to the proper decision.
NO (G¬p ∨Gp): Once you have made your decision, you must stick with it.

It is consistent with the above that we do not make the proper decision (N¬p).
Once we have made the wrong decision we cannot satisfy Gp, so we must stick
with the wrong decision G¬p. Hence, in this case, both ON(Gp) and NO(G¬p)
are true. Likewise ON(G¬p) and NO(Gp) are false. This demonstrates how
obligations can change with time in RoCTL*. We will now give an example of a
structure M = (A,→s ,→f , α) that satisfies these formulae:

A = {u, v, w},
→s = {(u, v), (v, v), (w,w)} ,

→f = {(u,w)} ,
α(v) = {p} , α(w) = ∅ .

s

s

u

v : p

w : ¬p

s

f

Let σ be the fullpath 〈u,w,w, . . . 〉 corresponding to making the wrong de-
cision. We see that M,σ≥1 � ¬p, so M,σ≥1 � O¬p and M,σ≥1 � ¬Op. Thus
M,σ � NO¬p and M,σ � N¬Op. It follows that M,σ � ¬NOp.

Let π = 〈v, v, . . .〉. We see that M,π � p. We see that S(u) = {〈u, v, v, . . .〉}.
Hence M,σ � ONp and it follows that M,σ � ¬O¬Np and so M,σ � ¬ON¬p.

Hence M,σ � (ONp ∧ ¬NOp) and so M,σ � (ONφ → NOφ) where φ = p.
Likewise M,σ � (NO¬p ∧ ¬ON¬p), so M,σ � (NOφ → ONφ) where φ = ¬p.
Example 2. In the coordinated attack problem we have two generals A and B.
General A wants to organise an attack with B. A communication protocol will be
presented such that a coordinated attack will occur if no more than one message
is lost.

AG (sA → ONrB): If A sends a message, B should receive it at the next step.
AG (¬sA → ¬NrB): If A does not send a message now, B will not receive a

message at the next step.
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AG(fA → AGfA): If A commits to an attack, A cannot withdraw.
AG(fA → ¬sA): If A has committed to an attack, it is too late to send messages.
A (¬fAWrA): A cannot commit to an attack until A has received plans from B

Similar constraints to the above also apply to B. Below we add a constraints
requiring A to be the general planning the attack

A (¬sBWrB): General B will not send a message until B has received a message.

No protocol exists to satisfy the original coordination problem, since an un-
bounded number of messages can be lost. Here we only attempt to ensure correct
behaviour if one or fewer messages are lost.

A (sAUrA): General A will send plans until a response is received.
AG (rA → fA): Once general A receives a response, A will commit to an attack.
A (¬rBW (rB ∧ (sB ∧NsB ∧NNfB))): Once general B receives plans, B will

send two messages to A and then commit to an attack.

Having the formal statement of the policy above and the semantics of RoCTL*
we may prove that the policy φ̂ is consistent and that it implies correct behaviour
even if a single failure occurs:

φ̂ → O�F (fA ∧ fB) .

Indeed, we will show in Section 5 that such issues can be decided in finite time.

Example 3. We have a cat that does not eat the hour after it has eaten. If the
cat bowl is empty we might forget to fill it. We must ensure that the cat never
goes hungry, even if we forget to fill the cat bowl one hour. At the beginning of
the first hour, the cat bowl is full. We have the following variables:

b “The cat bowl is full at the beginning of this hour”
d “This hour is feeding time”

We can translate the statements above into RoCTL* statements:

1. AG(d → ¬Nd): If this hour is feeding time, the next is not.
2. AG((d ∨ ¬b) → ΔN¬b): If it is feeding time or the cat bowl was empty, a

single failure may result in an empty bowl at the next step
3. AG((¬d ∧ b) → Nb): If the bowl is full and it is not feeding time, the bowl

will be full at the beginning of the next hour.
4. O�G (d → b): It is obligatory that, even if a single failure occurs, it is always

the case that the bowl must be full at feeding time.
5. b: The cat bowl starts full.

Having the formalised the policy it can be proven that the policy is consistent
and that the policy implies O�GONb, indicating that the bowl must be filled
at every step (in case we forget at the next step), unless we have already failed
twice. The formula AGONb → O�G (d → b) can also be derived, indicating that
following a policy requiring us to always attempt to fill the cat bowl ensures that
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we will not starve the cat even if we make a single mistake. Thus following this
simpler policy is sufficient to discharge our original obligation.

Example 4. We define a system that will warn the user if the system enters an
unsafe state:

1. AGONs: The system should always ensure that the system reaches a safe
state by the next step.

2. AG(s → N¬e): If the system is in a safe state an error e will not occur at
the next step.

3. s ∧ ¬e: The system starts in a safe state with no error.
4. AG(¬s → Nw): If the system is in an unsafe state, the system will warn the

user at the next step.

We may prove that if an error e almost occurs, the system will finally warn the
user, i.e. O(ΔFe → Fw).

See [3] for more examples, such as nesting Δ within � to discuss liveness of
failure detection.

5 Embeddings

In this section it will be shown that RoCTL* can be embedded in QCTL*, and
hence is decidable.

5.1 Converting a RoCTL-Structure M to a CTL-Structure M∗

For a RoCTL-structure M we construct a CTL tree structure M∗ as follows. We
define an interim CTL-structure M sf . The atoms of M sf are the atoms of M
plus an additional atom “Viol” representing the statement “The last transition
was a failing (f) transition” and an additional set Y of anonymous atoms. For
each state w of M we have two states ws and wf in M sf , with Viol being true
at wf but not ws. For each pair of states wi and wj in M , we have

wsi → wsj ⇐⇒ wi →s wj wsi → wfj ⇐⇒ wi →f wj

wfi → wsj ⇐⇒ wi →s wj wfi → wfj ⇐⇒ wi →f wj .

It is easy to rewrite a RoCTL* formula to use the Δ operator instead of �. To
ease the embedding of the Δ operator we will add a countable set Y of atoms
to M sf and unwind it into a tree to form the tree structure M∗.

Translating a CTL tree structure M∗ = (A∗,→∗, α∗) with a Viol atom into a
RoCTL-structure M = (A,→s ,→f , α) is trivial. We set A = A∗ and let α∗ = α.
We set →s and →f such that for each pair of states wi and wj we have:

wi →s wj ⇐⇒ (wi →∗ wj) ∧ (Viol /∈ α(wj))

wi →f wj ⇐⇒ (wi →∗ wj) ∧ (Viol ∈ α(wj)) .
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5.2 Translating a RoCTL* Formula into a QCTL* Formula

Definition 7. Given some CTL structure M = (A,→, α) and some x ∈ A, an
x-variant of M is some structure M = (A,→, α′) where α′(w)\{x} = α(w)\{x}
for all w ∈ A.

QCTL* has the syntax φ := � | p | ¬φ | (φ ∧ φ) | (φUφ) |Nφ |Aφ | ∃pφ . The se-
mantics of �, p, ¬, ∧, U , N , and A are the same as in CTL* and RoCTL*.
Under the Kripke semantics for QCTL*, ∃pφ is defined as

M, b |= ∃pα ⇐⇒ There is some p-variant M ′ of M such that M ′, b |= α .

This paper uses the tree semantics for QCTL*. These semantics are the same
as the Kripke semantics except that, whereas the Kripke semantics evaluates
validity over the class C of CTL-structures, the tree semantics evaluate validity
over the class Ct of tree CTL-structures. This changes the validities of the logic
as, unlike CTL* [17], QCTL* is sensitive to unwinding into a tree structure [18].

We let γ be the (Q)CTL* formula NNG¬Viol. The γ formula is used to
represent the requirement that all transitions after a deviation must be successes.

We define a translation function tΔ such that for any formula φ∗ and for some
atom y not in φ∗:

tΔ (φ∗) =∀y [Gy → E [(Gy ∨ F (y ∧ γ)) ∧ φ∗]] .

Note that for tΔ (φ∗) to hold, E [(Gy ∨ F (y ∧ γ)) ∧ φ∗] must hold for all pos-
sible values of y that satisfy Gy, including the case where y is true only along
the current fullpath σ∗. The diagram below shows a fullpath π∗ that satisfies
F (y ∧ γ) for all such y.

s s · · ·

σ∗
i+1σ∗

iσ∗
i−1σ∗

1σ∗
0

¬y¬y

σ∗
i+2

y y y y y y

π∗
i+1 π∗

i+2

π∗
iπ∗

i−1π∗
1π∗

0

Lemma 1. Say that φ is a RoCTL* formula and φ∗ is a QCTL* formula such
that for all M and σ it is the case that M,σ � φ iff M∗, σ∗ � φ∗. Then, for all
M and σ it is the case that M,σ � Δφ iff M∗, σ∗ � tΔ (φ∗).

Proof. ( =⇒ ) Say that M,σ � Δφ. Then M,σ � φ or there exists a deviation π
from σ such that M,π � φ. If M,σ � φ then M∗, σ∗ � φ∗ from which it follows
that M∗, σ∗ � ∀y [Gy → E [Gy ∧ φ∗]], and so M∗, σ∗ � tΔ (φ∗).

If M,σ � φ then, for some i, there exists an i-deviation π from σ such that
M,π � φ. If Gy holds along σ∗ then y holds at π∗

i = σ∗
i . As π is an i-deviation, all

transitions following πi+1 are success transitions, so M∗, π∗
≥i � γ and M∗, π∗ �

F (y ∧ γ) ∧ φ∗ from which it follows that M∗, σ∗ � tΔ (φ∗).
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(⇐=) Say that M∗, σ∗ � tΔ (φ∗). Then

My, σ∗ � [Gy → E [(Gy ∨ F (y ∧ γ)) ∧ φ∗]] ,

where My is any tree structure that is y-bisimilar to M∗. Consider an My for
which y is true at a state w iff w ∈ σ∗. Then My, σ∗ � E [(Gy ∨ F (y ∧ γ)) ∧ φ∗].
Thus there exists some fullpath σy such that σy0 = σ∗

0 and My, σy � F (y ∧ γ)∧φ∗

or My, σy � Gy ∧ φ∗.
If My, σy � Gy ∧ φ∗ then σy = σ∗, so M∗, σ∗ � φ∗ and M,σ � φ. If My, σy �

F (y ∧ γ)∧φ∗ then there exists an integer i such that My, σy≥i � y∧γ. Let σ and
π be translations of σ∗ and σy respectively into fullpaths through the original
structure M . As My is a tree structure and y is only true along σ∗, it follows
that σy≤i = σ∗

≤i and π≤i = σ≤i. This, together with the fact that My, σy≥i � γ,
means that π is an i-deviation from σ. As My, σy � φ∗ it follows that M,π � φ,
and so M,σ � Δφ.

Theorem 1. We may express any RoCTL* formula φ of length n as a QCTL*
formula φ∗ of length O(n) that is equivalent to φ when φ∗ is interpreted according
to the tree semantics for QCTL*.

Proof. Using tΔ (φ∗) defined above, tO(φ∗) ≡ A (NG¬Viol → φ∗), t¬(φ∗) ≡
¬φ∗, tN (φ∗) ≡ Nφ∗, tA(φ∗) ≡ Aφ∗, t∧(φ∗

1, φ
∗
2) ≡ φ∗

1 ∧ φ∗
2, tU (φ∗

1, φ
∗
2) ≡ φ∗

1Uφ∗
2,

t� = � and tp(p) ≡ p, we may recursively translate any RoCTL* formula φ into
a QCTL* formula φ∗ such that M,σ � φ iff M∗, σ∗ � φ∗ where M∗, σ∗ are the
transformations of M, σ described above.

Corollary 1. RoCTL* is decidable.

Proof. In Section 5.1 we have shown that for every RoCTL-structure M there
is a corresponding CTL tree structure M∗ and visa versa. As the tree semantics
for QCTL* are decidable [19,20], it is obvious from Theorem 1 that RoCTL* is
decidable.

6 Conclusion

We have proposed a logic RoCTL* for reasoning about robust systems. This
logic introduced a Robustly operator that provides a bridge between what should
happen and what actually does. We have given examples of simple robust systems
that can be represented in RoCTL*. We have proven that RoCTL* has a linear
embedding into QCTL*, and hence is decidable. Never-the-less there is much
more to be understood about this logic.

Although we can decide RoCTL* via QCTL*, it is important to find a more
efficient decision procedure as QCTL* is not elementary [21,22]. Determining
whether a particular model satisfies a RoCTL* policy is also useful. It is easy
to show that the model checking problem is decidable via reduction to QCTL*
and μ-calculus. However, a more efficient decision procedure is needed.
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Restricting the expressivity of RoCTL* may lead to better complexity results.
It may be productive to look for a restriction of RoCTL* that more closely
resembles CTL or LTL than CTL*. However, as the Robustly operator is a path-
quantifier that is not a state formulae, it is quite different from the operators
found in CTL and LTL. For this reason, finding a restriction that preserves the
usefulness and uniqueness of the Robustly operator while gaining some of the
simplicity of CTL or LTL will be non-trivial.

Finding an axiomatization for RoCTL* may be a challenging task. Although
this paper has compared the validities of the � and O operators to the axioms
for the A operator, we are far from finding a sound axiomatization of RoCTL*,
and have not examined how to prove that such an axiomatization is complete.

More work needs to be done in applying RoCTL* to practical problems. This
paper has presented some trivial examples where RoCTL* succinctly represents
robustness properties of simple systems. To test the expressivity of RoCTL* and
find real world applications, much larger and more complex examples need to
be formalised and examined. For some uses, RoCTL* may need to be extended.
RoCTL* can use the prone operator to discuss whether it is possible for a failure
to be detected at a particular step. Diagnosis problems require that failures will
be detected. For these purposes, an “If at least one additional failure occurs”
operator and a knowledge operator are desirable. It would be useful to find an
extension that satisfies these requirements while preserving decidability.
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Abstract. In abstract algebra, a structure is said to be Noetherian if it
does not admit infinite strictly ascending chains of congruences. In this
paper, we adapt this notion to first-order logic by defining the class of
Noetherian theories. Examples of theories in this class are Linear Arith-
metics without ordering and the empty theory containing only a unary
function symbol. Interestingly, it is possible to design a non-disjoint com-
bination method for extensions of Noetherian theories. We investigate
sufficient conditions for adding a temporal dimension to such theories
in such a way that the decidability of the satisfiability problem for the
quantifier-free fragment of the resulting temporal logic is guaranteed.
This problem is firstly investigated for the case of Linear time Tempo-
ral Logic and then generalized to arbitrary modal/temporal logics whose
propositional relativized satisfiability problem is decidable.

1 Introduction

Since full first-order temporal logics are known to be highly undecidable, re-
searchers concentrated on finding fragments having good computational prop-
erties, such as the decidable monodic fragments investigated in, e.g., [17,9,12].
Although such fragments may also be used in verification, widely adopted for-
malisms for the specification of reactive or distributed systems (e.g., the one
proposed by Manna and Pnueli [23] or the Temporal Logic of Actions by Lam-
port [19]) are such that the temporal part, used to describe the dynamic behavior
of the systems, is parametric with respect to the underlying language of first-
order logic, used to formalize the data structures manipulated by the systems.
While the expressiveness of these formalisms helps in writing concise and ab-
stract specifications, it is not clear how these can be amenable to automated
analysis. The work presented in this paper contributes towards the solution of
this problem, by analyzing what happens when we “add a temporal dimension”
(in a sense similar to that investigated in [11]) to a decidable fragment of a
first-order theory T with identity. By doing this, the hope is to transfer the de-
cidability of the theory T to its “temporalized” version. This point of view has
been pioneered by Plaisted in [29], where he further refined the semantics of
the “temporalized T ” by partitioning the symbols of the signature of T in rigid
(whose interpretation is time-independent) and flexible (whose interpretation is
time-dependent). This facilitates the expression of properties of both open and
closed systems (see, e.g., [11] for more on this issue).

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 206–220, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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In [14], we have presented a uniform framework where the approach in [29] has
been clarified and extended. In particular, we have obtained undecidability and
decidability results for quantifier-free satisfiability and model-checking problems
in a temporal logic obtained by extending a decidable theory T with the opera-
tors of Linear time Temporal Logic (LTL). The key to obtain the results in [14]
is a reduction of satisfiability and model-checking to the combination of (infi-
nitely many) partially renamed copies of T (the symbols that are not renamed
are those belonging to the rigid sub-signature Σr). The viewpoint of combina-
tion helps clarifying both decidability and undecidability issues. In fact, it is
not always possible to transfer the decidability of the quantifier-free fragment
of T to its “temporalized” version as shown by a simple reduction to known
undecidable combination problems [5], even when the rigid subsignature Σr is
empty. Fortunately, it is possible to use combination methods for non-disjoint
theories in first-order logic [13] and find suitable requirements on the theory
T to derive the decidability of both the satisfiability and the model-checking
problem for the quantifier-free formulae of the “temporalized” version of T . The
key ingredients are two. First (for correctness), it is assumed that T has a de-
cidable universal fragment and is Tr-compatible [13], where Tr is the Σr-reduct
of the universal fragment of T . Second (for termination), Tr is assumed to be
locally finite [13]. Under these hypotheses, a (non-deterministic) combination
schema can be obtained by using guessings over the finitely many (because of
local finiteness) literals in the shared theory. This also simplifies the proof of
correctness.

In this paper, we weaken the requirement of local finiteness to that of Noethe-
rianity (cf. Section 3), and we focus our attention to the satisfiability prob-
lem, since model-checking is easily shown to be undecidable when considering
Noetherian theories [15]. The first contribution of this paper is to show that our
combinability requirements related to Noetherianity are met by any extension
with a free unary function symbol of a stably infinite theory (cf. Section 3.2).
The second contribution is to derive an amalgamation lemma (cf. Lemma 3.7)
for combinations of (infinitely many) theories sharing a Noetherian theory (cf.
Section 3.1). The combination procedure is more complex than in the locally
finite case, since the exhaustive enumeration of guessings can no more be used
to abstract away the exchange of now (possibly) infinitely many literals be-
tween the component theories and the combination results in [13,14] do not
apply. The exchange mechanism is formalized by residue enumerators, i.e. com-
putable functions returning entailed positive clauses in the shared theory. The
third contribution of the paper is the application of the amalgamation lemma
to show the decidability of the satisfiability problem for quantifier-free LTL for-
mulae modulo a first order theory T , when T is an effectively Noetherian and
Tr-compatible extension of Tr (cf. Section 4). Finally, the decidability result is
extended to any modal/temporal logic whose propositional relativized satisfia-
bility problem is decidable (cf. Section 5). Full proofs and all the technical details
can be found in the extended version of this paper available online at the address
http://homes.dsi.unimi.it/∼zucchell

http://homes.dsi.unimi.it/~zucchell


208 S. Ghilardi et al.

2 Formal Preliminaries

We adopt the usual first-order syntactic notions of signature, term, position,
atom, (ground) formula, sentence, and so on. Let Σ be a first-order signature; we
assume the binary equality predicate symbol ‘=’ to be in any signature (so, if Σ =
∅, then Σ does not contain other symbols than equality). The signature obtained
from Σ by adding it a set a of new constants (i.e., 0-ary function symbols) is
denoted by Σa. A positive clause is a disjunction of atoms. A constraint is a
conjunctions of literals. A Σ-theory T is a set of sentences (called the axioms
of T ) in the signature Σ and it is universal iff it has universal closures of open
formulae as axioms.

We also assume the usual first-order notion of interpretation and truth of a
formula, with the proviso that the equality predicate = is always interpreted as
the identity relation. We let ⊥ denote an arbitrary formula which is true in no
structure. A formula ϕ is satisfiable in M iff its existential closure is true in M.
A Σ-structure M is a model of a Σ-theory T (in symbols M |= T ) iff all the
sentences of T are true in M. If ϕ is a formula, T |= ϕ (‘ϕ is a logical consequence
of T ’) means that the universal closure of ϕ is true in all the models of T . A
Σ-theory T is complete iff for every Σ-sentence ϕ, either ϕ or ¬ϕ is a logical
consequence of T . T admits quantifier elimination iff for every formula ϕ(x)
there is a quantifier-free formula ϕ′(x) such that T |= ϕ(x) ↔ ϕ′(x) (notations
like ϕ(x) mean that ϕ contains free variables only among the tuple x). T is
consistent iff it has a model, i.e., if T |= ⊥. A sentence ϕ is T -consistent iff
T ∪ {ϕ} is consistent.

The constraint satisfiability problem for the constraint theory T is the problem
of deciding whether a Σ-constraint is satisfiable in a model of T (or, equivalently,
T -satisfiable). In the following, we use free constants instead of variables in con-
straint satisfiability problems, so that we (equivalently) redefine a constraint
satisfiability problem for the theory T as the problem of establishing the consis-
tency of T ∪ Γ for a finite set Γ of ground Σa-literals (where a is a finite set of
new constants). For the same reason, we abbreviate ‘ground Σa-constraint’ with
‘Σ-constraint,’ when a is clear from the context.

If Σ0 ⊆ Σ is a subsignature of Σ and if M is a Σ-structure, the Σ0-reduct of
M is the Σ0-structure M|Σ0 obtained from M by forgetting the interpretation
of function and predicate symbols from Σ \ Σ0. A Σ-embedding (or, simply, an
embedding) between two Σ-structures M = (M, I) and N = (N,J ) is any
mapping μ : M −→ N among the corresponding support sets satisfying the
condition

M |= ϕ iff N |= ϕ (1)

for all ΣM -atoms ϕ (here M is regarded as a ΣM -structure, by interpreting each
additional constant a ∈ M into itself and N is regarded as a ΣM -structure by
interpreting each additional constant a ∈ M into μ(a)). If M ⊆ N and if the
embedding μ : M−→ N is just the identity inclusion M ⊆ N , we say that M is
a substructure of N or that N is an extension of M. In case condition (1) holds
for all first order formulae, the embedding μ is said to be elementary.
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3 Noetherian Theories

In abstract algebra, the adjective Noetherian is used to describe structures that
satisfy an ascending chain condition on congruences (see, e.g., [22]): since con-
gruences can have special representations, Noetherianity concerns, e.g., chains
of ideals in the case of rings and chains of submodules in the case of modules.
Although this is somewhat non-standard, we may take a more abstract view
and say that a variety (i.e. an equational class of structures) is Noetherian iff
finitely generated free algebras satisfy the ascending chain condition for congru-
ences or, equivalently, iff finitely generated algebras are finitely presented. Now,
congruences over finitely generated free algebras may be represented as sets of
equations among terms. This allows us to equivalently re-state the Noetherianity
of varieties as “there are no infinite ascending chains of sets of equations modulo
logical consequence”. This observation was the basis for the abstract notion of
Noetherian Fragment introduced in [16], here adapted for an arbitrary first-order
theory.

Definition 3.1 (Noetherian Theory). A Σ0-theory T0 is Noetherian if and
only if for every finite set of free constants a, every infinite ascending chain

Θ1 ⊆ Θ2 ⊆ · · · ⊆ Θn ⊆ · · ·

of sets of ground Σ
a
0 -atoms is eventually constant modulo T0, i.e. there is an n

such that T0 ∪Θn |= A, for every natural number m and atom A ∈ Θm.

Natural examples of Noetherian theories are the first-order axiomatization (in
equational logic) of varieties like K-algebras, K-vector spaces, and R-modules,
where K is a field and R is a Noetherian ring (see [22] for further details). Abelian
semigroups are also Noetherian (cf. Theorem 3.11 in [8]). Notice that, since any
extension (in the same signature) of a Noetherian theory is also Noetherian,
any theory extending the theory of a single Associative-Commutative symbol
is Noetherian. This shows that the family of Noetherian theories is important
for verification because theories axiomatizing integer addition or multiset union
formalize crucial aspects of a system to be verified (e.g., multisets may be used
to check that the result of some operations like sorting on a collection of objects
yields a permutation of the initial collection). More examples will be considered
below.

Before being able to describe our new combination method, we need to in-
troduce some preliminary notions. In the remaining of this section, we fix two
theories T0 ⊆ T in their respective signatures Σ0 ⊆ Σ.

Definition 3.2 (T0-basis). Given a finite set Θ of ground clauses (built out
of symbols from Σ and possibly further free constants) and a finite set of free
constants a, a T0-basis for Θ w.r.t. a is a set Δ of positive ground Σ

a
0 -clauses

such that

(i) T ∪Θ |= C, for all C ∈ Δ and
(ii) if T ∪Θ |= C then T0 ∪Δ |= C, for every positive ground Σ

a
0 -clause C.
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Notice that only constants in a may occur in a T0-basis for Θ w.r.t. a, although
Θ may contain constants not in a.

Definition 3.3 (Residue Enumerator). Given a finite set a of free constants,
a T -residue enumerator for T0 w.r.t. a is a computable function Res

a
T (Γ ) map-

ping a Σ-constraint Γ to a finite T0-basis of Γ w.r.t. a.

If Γ is T -unsatisfiable, then a residue enumerator can always return the singleton
set containing the empty clause. The concept of (Noetherian) residue enumerator
is inspired by the work on partial theory reasoning (see, e.g., [3]) and generalizes
the notion of deduction complete procedure of [18]. Given a residue enumerator
for constraints (cf. Definition 3.3), it is always possible to build one for clauses
(this will be useful for the combination method, see below).

Lemma 3.4. Given a finite set a of free constants and a T -residue enumerator
for T0 w.r.t. a, there exists a computable function Res

a
T (Θ) mapping a finite set

of ground clauses Θ to a finite T0-basis of Θ w.r.t. a.

If T0 is Noetherian, then it is possible to show that a finite T0-basis for Γ w.r.t.
a always exists, for every Σ-constraint Γ and for every set a of constants, by
using König lemma. Unfortunately, such a basis is not always computable; this
motivates the following notion.

Definition 3.5. The theory T is an effectively Noetherian extension of T0 if
and only if T0 is Noetherian and there exists a T -residue enumerator for T0

w.r.t. every finite set a of free constants.

For example, the theory of commutative K-algebras is an effectively Noetherian
extension of the theory of K-vector spaces, where K is a field (see [16,28] for
details). Locally finite theories and Linear Real Arithmetic are further examples
taken from the literature about automated theorem proving.

A Σ0-theory T0 is locally finite iff Σ0 is finite and, for every finite set of
free constants a, there are finitely many ground Σ

a
0 -terms t1, . . . , tka such that

for every ground Σ
a
0 -term u, T0 |= u = ti (for some i ∈ {1, . . . , ka}). If such

t1, . . . , tka are effectively computable from a, then T0 is effectively locally finite
and there are finitely many (representative) Σ

a
0 -atoms ψ1(a), . . . , ψm(a) such

that for any Σ
a
0 -atom ψ(a), there is some i such that T0 |= ψi(a) ↔ ψ(a). Ex-

amples of effectively locally finite theories are Boolean algebras, Linear Integer
Arithmetic modulo a given integer, and any theory over a finite purely relational
signature. Also, theories consisting of sentences which are true in a fixed finite
Σ0-structure M = (M, I) are locally finite. Enumerated datatypes can be for-
malized by theories in this class. The class of locally finite theories is (strictly)
contained in that of Noetherian theories: to see this, it is sufficient to notice
that, once fixed a finite set of free constants a, there are only finitely many Σ

a
0 -

atoms which are not equivalent to each other modulo the locally finite theory.
From this, it is obvious that any infinite ascending chain of sets of such atoms
must be eventually constant. Under the hypotheses that T0 is effectively locally
finite and its extension T has decidable constraint satisfiability problem, it is
straightforward to build a T -residue enumerator for T0.
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Example. Let us consider the signature Σ = {0,+,−, {fr}r∈R,≤} where 0 is a
constant, − and fr are unary function symbols, + is a binary function symbol,
≤ is a binary predicate symbol, and Σ0 = Σ \{≤}. We consider the theory T≤

R =
ThΣ(R), i.e. the set of all Σ-sentences true in R, which is seen as an R-vector
space equipped with a linear ordering, where the fr’s represent the external
product so that terms are all equivalent to homogeneous linear polynomials.
Finally, let TR be ThΣ0(R), i.e. the set of all Σ0-sentences true in R, which is
seen as an R-vector space without the ordering (so TR is the theory of the R-
vector spaces, not reduced to {0}). The Noetherianity of TR follows from general
algebraic properties (see, e.g., [22]). A T≤

R -residue enumerator for TR can be
obtained as follows. Let Γ = {C1, . . . , Cm} be a set of inequalities, i.e. Σ-atoms
whose main predicate symbol is ≤. By Definition 3.2, a Σ0-basis for Γ is the set
of all the disjunctions of equalities implied by Γ . Actually, to compute a basis,
it is sufficient to identify the set of implicit equalities in Γ , i.e. the equalities C=

i

such that T≤
R |= Γ → C=

i (here C=
i is obtained from Ci by substituting ≤ with

=). This is so because (i) T≤
R is Σ0-convex (i.e. if T≤

R |= Γ → (e1 ∨ · · · ∨ en),
then there exists i ∈ {1, . . . , n} such that T≤

R |= Γ → ei, for n ≥ 1 and equalities
e1, . . . , en) and (ii) given a system of inequalities Γ , if Δ is the collection of all
the implicit equalities of Γ and e is an equality such that T≤

R |= Γ → e, then
TR |= Δ → e (see [21] for full details, [28] for the adaptation to our context).
The interest of implicit equalities is that they can be easily identified by using
the Fourier-Motzkin variable elimination method (see [20] for details on how to
do this).

3.1 Combination over Noetherian Theories

Preliminarily, we recall the notion of T0-compatibility [13] which is crucial for
the completeness of our combination technique.

Definition 3.6 (T0-compatibility [13]). Let T be a theory in the signature Σ
and let T0 be a universal theory in a subsignature Σ0 ⊆ Σ. We say that T is
T0-compatible iff T0 ⊆ T and there is a Σ0-theory T �0 such that (i) T0 ⊆ T �0 ; (ii)
T �0 has quantifier elimination; (iii) every model of T0 can be embedded into a
model of T �0 ; and (iv) every model of T can be embedded into a model of T ∪T �0 .

The requirements (i)-(iii) guarantee the uniqueness of the theory T �0 , provided
it exists (T �0 is the model completion of T0, see e.g. [7]). Notice that if T0 is
the empty theory over the empty signature, then T ∗

0 is the theory axiomatizing
an infinite domain, (i)-(iii) hold trivially, and (iv) can be shown equivalent to
the stably infinite requirement of the Nelson-Oppen schema [27,31]. Examples of
theories satisfying the compatibility condition are the following: (a) the theory
of K-algebras is compatible with the theory of K-vector spaces, where K is a
field (see [16,28]), (b) T≤

R is compatible with the universal fragment of TR (this is
so for T≤

R ⊇ TR and TR eliminates quantifiers), (c) any equational extension over
a larger signature of the theory BA of Boolean algebras is BA-compatible [13],
and (d) any extension of T0 whatsoever is T0-compatible whenever T0 eliminates
quantifiers.
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The following lemma is our main technical tool allowing us to reduce satisfia-
bility in a “temporalized” extension of a (Noetherian) theory to satisfiability in
first-order logic.

Lemma 3.7 (Amalgamation). Let I be a (possibly infinite) set of indexes;
Σ
c,ai
i (for i ∈ I) be signatures (expanded with free constants c, ai), whose pairwise

intersections are all equal to a certain signature Σ
c
r (i.e. Σ

c,ai

i ∩Σ
c,aj

j = Σ
c
r , for

all distinct i, j ∈ I); Ti be Σi-theories (for i ∈ I) which are all Tr-compatible,
where Tr ⊆

⋂
i Ti is a universal Σr-theory; {Γi}i∈I be sets of ground Σ

c,ai

i -
clauses; and B� be a set of positive ground Σ

c
r-clauses not containing the empty

clause and satisfying the following condition:

if Ti ∪ Γi ∪ B� |= C, then C ∈ B�,

for i ∈ I and every positive ground Σ
c
r-clause C. Then, there exists a

⋃
i(Σ

c,ai

i )-
structure M such that M |=

⋃
i(Ti ∪ Γi) or, equivalently, there exist Σ

c,ai

i -
structures Mi (i ∈ I) satisfying Ti ∪ Γi, whose Σ

c
r-reducts coincide.

This lemma can also be used to prove the “first-order version” of the combination
result in [16], where residue enumerators permit the exchange of positive clauses
between theories.

3.2 The Theory of a Free Unary Function Symbol

By collecting the observations above, it is easy to identify pairs of theories (T, T0)
such that T satisfies our relevant requirements to be ‘combined over T0’ (i.e. T
is such that T0 ⊆ T and T is a T0-compatible effectively Noetherian extension
of T0). Here, we consider an entirely new (and somewhat remarkable) class of
examples of such pairs (T, T0) of theories.

Let f be a unary function symbol. If T is a theory, then Tf is the theory
obtained from T by adding f to its signature (as a new free function symbol).
So, e.g., if E the empty theory over the empty signature, Ef denotes the empty
theory over the signature {f}.

Proposition 3.8. Ef is Noetherian.

A theory T is stably infinite (see, e.g., [27,31]) iff it is E-compatible, or, equiva-
lently, iff any T -satisfiable constraint is satisfiable in a model of T whose domain
is infinite.

Proposition 3.9. If T is stably infinite and has decidable constraint satisfiabil-
ity problem, then Tf is an effectively Noetherian extension of Ef .

Proposition 3.10. If T is stably infinite, then Tf is Ef -compatible.

We are now ready to characterize our new class of theories.

Theorem 3.11. Let T be a theory with decidable constraint satisfiability prob-
lem. If T is stably infinite, then Tf is an effectively Noetherian extension of Ef ,
which is also Ef -compatible.
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This result is a first step towards the integration in our framework of some
theories that are useful for verification. For example, the theory of integer offsets
can be seen as an extension of the theory of a loop-free unary function symbol
(see, e.g., [1]). Properties of hardware systems can be expressed in a mixture of
temporal logic – e.g., LTL or Computation Tree Logic (CTL) – and the theory of
integer offsets [6]. Our decidability results on “temporalized” first-order theories
below (see Theorems 4.11 and 5.4) can then be used to augment the degree of
automation of tools attempting to solve this kind of verification problems.

4 Temporalizing a First-Order Theory

We introduce “temporalized” first-order theories, by using LTL to describe the
temporal dimension. We use the formal framework introduced in [14] where
formulae are obtained by applying temporal and Boolean operators (but no
quantifiers) to first-order formulae over a given signature.

Definition 4.1 (LTL(Σa)-Sentences [14]). Given a signature Σ and a (finite
or infinite) set of free constants a, the set of LTL(Σa)-sentences is inductively
defined as follows: (a) if ϕ is a first-order Σa-sentence, then ϕ is an LTL(Σa)-
sentence and (b) if ψ1, ψ2 are LTL(Σa)-sentence, so are ψ1 ∧ψ2, ψ1 ∨ψ2, ¬ψ1,
Xψ1, �ψ1, ♦ψ1, ψ1Uψ2.

The free constants a allowed in LTL(Σa)-sentences will be used to model the
variables and the parameters of (reactive) systems.

Definition 4.2 ([14]). Given a signature Σ and a set a of free constants,
an LTL(Σa)-structure (or simply a structure) is a sequence M = {Mn =
(M, In)}n∈N of Σa-structures. The set M is called the domain (or the universe)
and In is called the n-th level interpretation function of the LTL(Σa)-structure.1

When considering a background Σ-theory T , the structures Mn = (Mn, In) will
be taken to be models of T (further requirements will be analyzed later on).

Definition 4.3 ([14]). Given an LTL(Σa)-sentence ϕ and t ∈ N, the notion
of “ϕ being true in the LTL(Σa)-structure M = {Mn = (M, In)}n∈N at the
instant t” (in symbols M |=t ϕ) is inductively defined as follows:

– if ϕ is an first-order sentence, M |=t ϕ iff Mt |= ϕ;
– M |=t ¬ϕ iff M |=t ϕ;
– M |=t ϕ ∧ ψ iff M |=t ϕ and M |=t ψ;
– M |=t ϕ ∨ ψ iff M |=t ϕ or M |=t ψ;
– M |=t Xϕ iff M |=t+1 ϕ;
– M |=t �ϕ iff for each t′ ≥ t, M |=t′ ϕ;
– M |=t ♦ϕ iff for some t′ ≥ t, M |=t′ ϕ;
– M |=t ϕUψ iff there exists t′ ≥ t such that M |=t′ ψ and for each t′′,

t ≤ t′′ < t′ ⇒ M |=t′′ ϕ.
1 In more detail, In is such that In(P ) ⊆ Mk for every predicate symbols P ∈ Σ of

arity k, and In(f) : Mk −→ M for each function symbol f ∈ Σ of arity k.
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Let ϕ be an LTL(Σa)-sentence; we say that ϕ is true in M or, equivalently, that
M satisfies ϕ (in symbols M |= ϕ) iff M |=0 ϕ.

Since we distinguish between rigid (i.e. time-independent) and flexible (i.e.
time-dependent) symbols of the signature, we need to introduce a notion of
first-order theory that fixes a sub-signature and distinguish between two kinds
of free constants.

Definition 4.4. A data-flow theory is a 5-tuple T = 〈Σ, T,Σr, a, c〉 where Σ is
a signature, T is a Σ-theory (called the underlying theory of T ), Σr is the rigid
subsignature of Σ, a is a set of free constants (called system variables), and c
is a set of free constants (called system parameters).

A data-flow theory T = 〈Σ, T,Σr, a, c〉 is totally flexible iff Σr is empty and is
totally rigid iff Σr = Σ. In [14], data-flow theories are called LTL-theories. Here,
we prefer to use the more abstract term of data-flow theory in order to prepare
for the generalization of the decidability result in the next section.

Definition 4.5 ([14]). An LTL(Σa,c)-structure M = {Mn = (M, In)}n∈N is
appropriate for a data-flow theory T = 〈Σ, T,Σr, a, c〉 iff for all m,n ∈ N, for
all function symbol f ∈ Σr, for all relational symbol P ∈ Σr, and for all constant
c ∈ c, we have

Mn |= T, In(f) = Im(f), In(P ) = Im(P ), In(c) = Im(c).

The satisfiability problem for T is the following: given an LTL(Σa,c)-sentence
ϕ, decide whether there is an LTL(Σa,c)-structure M appropriate for T such
that M |= ϕ. The ground satisfiability problem for T is similarly introduced,
but ϕ is assumed to be ground.

Notice that appropriate structures are such that the equality symbol is always
interpreted as the identity relation, since the equality is included in every signa-
ture (hence also in the rigid signature Σr).

In the sequel, we shall concentrate on the ground satisfiability problem for
data-flow theories; for this reason, we shall assume from now on that the un-
derlying theory T of any data-flow theory T = 〈Σ, T,Σr, a, c〉 has de-
cidable constraint satisfiability problem. Unfortunately, this assumption is
insufficient to guarantee decidability.

Theorem 4.6 ([14]). There exists a totally flexible data-flow theory T whose
ground satisfiability problem is undecidable.

Notwithstanding the undecidability of the ground satisfiability problem, the fol-
lowing compatibility requirement can be used to re-gain decidability.

Definition 4.7. A data-flow theory T = 〈Σ, T,Σr, a, c〉 is said to be Noetherian
compatible iff there is a Σr-universal theory Tr such that T is an effectively
Noetherian and Tr-compatible extension of Tr.

The definition above refers to a Σr-theory Tr such that T is Tr-compatible.
Although not relevant for the results in this paper, we notice that if such a
theory Tr exists, then one can always take Tr to be the theory axiomatized by
the universal Σr-sentences which are logical consequences of T .
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4.1 A Decision Procedure for the Noetherian Compatible Case

Preliminarily, we recall that it is possible to define the notion of ground model-
checking problem in our framework [14] and to show its undecidability when
the underlying theory is Noetherian. The argument of the proof is a simple
reduction to the (undecidable) reachability problem of Minsky machines [26,10]
by using the reduct of Presburger Arithmetic obtained by forgetting addition
and ordering, which is capable of encoding counters (see [15] for details). This
is why here we focus on the ground satisfiability problem in the Noetherian
compatible case.

Before developing our decision procedure, some preliminary notions are
required.

Definition 4.8 (PLTL-Abstraction [14]). Given a signature Σa and a set
of propositional letters L of the appropriate cardinality, let [[ · ]] be a bijection
from the set of ground Σa-atoms into L. By translating identically Boolean and
temporal connectives, the map is inductively extended to a bijective map (also
called [[ · ]]) from the set of LTL(Σa)-sentences onto the set of propositional L-
formulae.

Given a ground LTL(Σa)-sentence ϕ, we call [[ϕ ]] the PLTL-abstraction of ϕ;
moreover, if Θ is a set of ground LTL(Σa)-sentences, the PLTL-abstraction [[Θ ]]
of Θ denotes the set {[[ϕ ]] | ϕ ∈ Θ}.

Definition 4.9 (ϕ-Guessing). Let ϕ be a ground LTL(Σa,c)-sentence. A ϕ-
guessing is a Boolean assignment to literals of ϕ (we view a guessing as the set
{ |  is an atom occurring in ϕ and  is assigned to true} ∪ {¬ |  is an atom
occurring in ϕ and  is assigned to false}).

We say that a (non-empty) set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compat-
ible if and only if [[ϕ ∧�

∨k
i=1 Gi ]] is PLTL-satisfiable.

Let T = 〈Σ, T,Σr, a, c〉 be a Noetherian compatible data-flow theory. The
procedure NSat (see Algorithm 1) takes a ground LTL(Σa,c)-sentence ϕ as input
and returns “satisfiable” if there is an appropriate LTL(Σa,c)-structure M for T
such that M |= ϕ; otherwise, it returns “unsatisfiable”. The procedure relies on
a decision procedure for the PLTL-satisfiability problem in order to recognize
the ϕ-compatible sets of ϕ-guessings (cf. the outer loop of NSat). Moreover,
Dp-t is a decision procedure for the satisfiability problem of arbitrary Boolean
combinations of atoms of the theory T (i.e., it is capable of checking the T -
satisfiability of sets of ground Σa,c-clauses and not only of ground Σa,c-literals).
Notice that Dp-t can be implemented by Satisfiability Modulo Theories solvers
(see, e.g., [30]). Finally, Res

c
T is the T -residue enumerator for Tr w.r.t. c.

In the outer loop of NSat, all possible ϕ-compatible sets of ϕ-guessings are
enumerated. Let G(ϕ) := {G1, . . . , Gn} be the current ϕ-guessing. The local
variable B is initialized to the empty set (line 3) and then updated in the inner
loop (lines 4-10) as follows: the Tr-bases Bi for Gi ∪ B w.r.t. c are computed
(for i = 1, . . . , n), and the new value of B is set to

⋃
i Bi (line 5 saves in B′ the

old value of B). The inner loop is iterated until B is logically equivalent to B′
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Algorithm 1. The satisfiability procedure for the Noetherian compatible case
Require: ϕ ground LTL(Σa,c)-sentence
1: procedure NSat(ϕ)
2: for all ϕ-compatible set of ϕ-guessing G(ϕ) do
3: B ← ∅
4: repeat
5: B′ ← B
6: for all Gi ∈ G(ϕ) do
7: Bi ← Resc

T (Gi ∪ B)
8: end for
9: B ←

�
i Bi

10: until Dp-t(B′ ∧ ¬B) = “unsatisfiable”
11: if Dp-t(B) = “satisfiable” then
12: return “satisfiable”
13: end if
14: end for
15: return “unsatisfiable”
16: end procedure

modulo T . At this point, if B is T -consistent, the procedure stops and returns
“satisfiable”; otherwise it tries another ϕ-compatible set of ϕ-guessings. If for
all ϕ-compatible sets of ϕ-guessings the B’s returned after the execution of the
inner loop are T -inconsistent, the procedure returns “unsatisfiable”.

Proposition 4.10 (Correctness of NSat). Let T = 〈Σ, T,Σr, a, c〉 be a
Noetherian compatible data-flow theory and ϕ be a ground LTL(Σa,c)-sentence.
Then, NSat(ϕ) returns “satisfiable” iff there exists an LTL(Σa,c)-structure M
appropriate for T such that M |= ϕ.

Indeed, the termination of NSat is a consequence of the Noetherianity of the
underlying theory of T by using the fact that every infinite ascending chain of
sets of positive ground Σ

c
r-clauses is eventually constant for logical consequence.

The correctness and termination of NSat yield our main decidability result.

Theorem 4.11. The ground satisfiability problem for Noetherian compatible
data-flow theories is decidable.

The theories considered in the previous section (especially, those in Section 3.2)
satisfy the hypothesis of the theorem above.

5 Extensions to Abstract Temporal Logics

By considering the proof of the correctness of NSat, it becomes evident that
only very few of the characteristic properties of LTL are used. It turns out that
a simple generalization of NSat can be used to decide satisfiability problems
of “temporalized” extensions of Noetherian theories whose flow of time is not
linear, e.g., branching as in CTL.
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In order to formalize the observation above, we regard modal/temporal oper-
ators as functions operating on powerset Boolean algebras. In this way, logics for
various flows of time, as well as CTL, Propositional Dynamic Logic (PDL), and
the μ-calculus fall within the scope of our result (see [2] for a similar approach).

Definition 5.1. An abstract temporal signature2 I is a purely functional sig-
nature extending the signature BA of Boolean algebras.3 An abstract temporal
logic L is a class of I-structures, whose Boolean reducts are powerset Boolean
algebras. Given an I-term t, deciding whether t = 0 is satisfied in some mem-
ber of L is the satisfiability problem for L. Given I-terms t, u, deciding whether
u = 1 & t = 0 is satisfied in some member of L is the relativized satisfiability
problem for L.

In many cases (e.g., LTL, CTL, PDL, and the μ-calculus), it is possible to
reduce the relativized satisfiability problem to that of satisfiability (by using the
so-called “master modality”); however, there are logics for which the latter is
decidable whereas the former is undecidable (see [12]).

Definition 5.2 (I(Σa)-sentence). Given a signature Σ, a (finite or infinite)
set of free constants a, and an abstract temporal signature I, the set of I(Σa)-
sentences is inductively defined as follows: (a) if ϕ is a first-order Σa-sentence,
then ϕ is an I(Σa)-sentence, (b) if ϕ1, ϕ2 are I(Σa)-sentences, so are ϕ1 ∧
ϕ2, ϕ1 ∨ϕ2,¬ϕ1, and (c) if ψ1, . . . , ψn are I(Σa)-sentences and O ∈ I \BA has
arity n, then O(ψ1, . . . , ψn) is a I(Σa)-sentence.

When I is LTL, I(Σa,c)-sentences coincide with LTL(Σa,c)-sentences (cf. Def-
inition 4.1). We defined an abstract temporal logic L (based on I) as a class
of I-structures based on powerset Boolean algebras: such structures (also called
I-frames) will be denoted with F = (℘(F ), {OF}O∈I\BA).

Definition 5.3. Let a signature Σ, a set a of free constants, and an abstract
temporal signature I be given; an I(Σa)-structure (or simply a structure) is a
pair formed by an I-frame F = (℘(F ), {OF}O∈I\BA) and a collection M =
{Mn = (M, In)}n∈F of Σa-structures (all based on the same domain).

An I(Σa)-sentence ϕ is true in the I(Σa)-structure (F ,M) at t ∈ F (noted
F ,M |=t ϕ) iff the following holds: (a) if ϕ is a first-order sentence, then
F ,M |=t ϕ holds iff Mt |= ϕ and (b) if the main operator of ϕ is a Boolean
connective, truth of ϕ is defined in a truth-table manner; (c) if ϕ is of the kind
O(ψ1, . . . , ψn), then F ,M |=t ϕ holds iff t ∈ OF ({u | F ,M |=u ψ1}, . . . , {u |
F ,M |=u ψn}).

2 From the modal/temporal literature viewpoint, the adjective “intensional” might be
preferable to “abstract temporal”. We have chosen the latter, in order to emphasize
that our results are deemed as significant for a class of logics whose modalities
concern flows of time.

3 This signature contains two binary function symbols for meet and join, a unary
function symbol for complement, and two constants for zero and one (the latter are
denoted with 0 and 1, respectively).
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If a data-flow theory T is given, we say that an I(Σa)-structure is appropriate
for T iff it satisfies the requirements of Definition 4.5. The (ground) satisfiability
problem for an abstract temporal logic L (based on I) and for a data-flow theory
T is now the following: given a (ground) I(Σa)-sentence ϕ, decide whether there
is a I(Σa)-structure (F ,M) appropriate for T , such that F ∈ L and such that
F ,M |=t ϕ holds for some t.

Theorem 5.4. The ground satisfiability problem for T and L is decidable if (i)
T is Noetherian compatible and (ii) the relativized satisfiability problem for L is
decidable.

When I is LTL, this result simplifies to Theorem 4.11. To prove Theorem 5.4, it is
possible to re-use NSat (cf. Algorithm 1) almost ‘off-the-shelf’, by preliminarily
adapting the definition of PLTL-abstraction function [[ · ]] (cf. Definition 4.8) to
L in the obvious way. It turns out that only the compatibility of guessings should
be changed: a finite set of ϕ-guessings G(ϕ) := {G1, . . . , Gk} is ϕ-compatible if
and only if the relativized satisfiability problem

[[ϕ ]] = 0 & [[
k∨

i=1

Gi ]] = 1

is satisfiable in L (this is the only modification required to the definitions and
proofs from Section 4.1).

While Theorem 4.11 is relevant to augment the degree of mechanization of
deductive approaches for the verification of reactive systems based on LTL (e.g.,
the one put-forward by Manna and Pnueli [23]), one may wonder about the
relevance of its generalization, i.e. Theorem 5.4. To see its usefulness, consider
TLA [19]. For such a specification formalism, it is difficult to reuse techniques and
tools for (classic) temporal/modal logic since TLA features some non-standard
characteristics which are quite useful for practitioners (see [25] for an extensive
discussion on this and related issues). On the other hand, deductive verification
of TLA specifications can be supported by proof assistants (e.g., [24]). While
applying the inference rules of TLA [19], it has been observed [25] that some
of the resulting sub-goals may belong to a fragment of TLA which is equiva-
lent to the modal logic S4.2 [4]. Now, the relativized satisfiability problem for
this logic is decidable (see again [4]) so that NSat can be used to automati-
cally discharge some of the sub-goals, whenever the data-flow theory formalizing
the data structure manipulated by the system modelled in TLA is Noetherian
compatible.

6 Conclusions

We have investigated the role of Noetherianity for the decidability of the satis-
fiability problem for “temporalized” first-order theories (cf. Sections 4 and 5).
The key technical contribution is Lemma 3.7, which allows us to obtain amal-
gamations of (possibly infinite) sequences of first-order structures corresponding
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to temporal structures. This lemma is the basis of a method for combinations
of first-order theories over Noetherian theories. An important class of stably in-
finite theories extending the empty theory over a single unary function symbol
has been shown to satisfy the hypotheses for the decidability of both the com-
bination schema and the satisfiability of “temporalized” first-order theories (cf.
Section 3.2).

The results in this paper extends those of [14] in two ways. First, the re-
quirement of local finiteness of the (rigid) sub-theory is weakened to that of
Noetherianity. Second, decidability is parametric w.r.t. a modal/temporal logic,
provided that relativized satisfiability problem is decidable in the latter.
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Abstract. We propose a new class of tree automata, called tree automata
with normalization (TAN).This framework is obtained by extending equa-
tional tree automata, and improves the results of the previous work, such
as: recognized tree languages modulo the idempotency f(x, x) = x are
closed under complement,which arenot closed in equational tree automata,
besides we do not lose important decidability. In the paper, first we inves-
tigate the closure properties of this class for Boolean operations and the
decidability relative to the equational tree automata. Next we consider the
relationship to other automata frameworks, in particular, hedge automata,
which is a class of unranked tree automata. Hedge automata have been
recognized in the XML database community as a theoretical basis for mod-
eling the manipulation of semi-structured data. Through the observation
about transformations from hedge automata to tree automata, we discuss
advantages in the expressiveness and complexity ofTAN.As an application
of our framework, we show an example that XML schema with constraints
that can not be dealt with by other tree automata frameworks is manipu-
lated by TAN.

Keywords: tree automata modulo axioms, equational rewriting,
Boolean closedness, decidability, regularity, hedge automata and XML
schema.

1 Introduction

Tree automata accept trees as word automata accept words. It is often considered
that the class of tree automata inherits by definition the benefit from word
automata that guarantees important bases for automated reasoning, including
closure properties for Boolean operations and the positive decidability results.
Propertywise there is no doubt in regular tree automata being a generalization
of regular word automata, and in fact, several verification tools are designed
based on useful properties of tree automata [9,11,12].

However, tree automata accept irregular words. That means, for instance,
the set of trees ti+1 = f(a, f(ti, b)) and t1 = f(a, b) is regular in the sense of tree
automata, while ai bi, which are the leaves of ti, are no longer regular in words.
This is a natural consequence from the fact that trees accepted by regular tree
automata are the derivation trees of context-free grammar, and thus, Pumping

Lemma for regular tree automata, e.g. [3], can be seen as a variant of uvwxy-
lemma for context-free grammar, where for every context-free grammar G, there

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 221–236, 2007.
© Springer-Verlag Berlin Heidelberg 2007
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exists a natural number k such that, whenever a word z whose length |z| is
greater than k is generated by G, z can be decomposed to be uvwxy containing
non-empty words v, x and for every n � 0, uvnwxny is generated by G.

In the setting of equational tree automata, this becomes much more clear.
We showed in [22] that the class of regular tree automata modulo associa-
tivity axioms is closely related to the class of context-free grammar. More-
over, monotone tree automata modulo associativity which are the super-class
of regular tree automata modulo associativity are related to context-sensitive.
These observations are obtained from the property that regular tree automata
modulo associativity (for short, regular A-TA) are not closed under intersec-
tion or complement, and also from that the class of monotone tree automata
modulo associativity (monotone A-TA) is not decidable in the emptiness, uni-
versality and inclusion problems. Furthermore, looking at the transition rules,
regular rules f(α1(x1), . . . , αn(xn)) → β(f(x1, . . . , xn)) in tree automata are the
production rules β → α1 · · ·αn of context-free grammar, and monotone rules
f(α1(x1), . . . , αn(xn)) → f(β1(x1), . . . , βn(xn)) in tree automata are the rules
β1 · · ·βn → α1 · · ·αn of context-sensitive grammar.

What should be then the counterpart of regular word languages in tree lan-
guages? In the paper, we introduce a new tree automata framework, called tree
automata with normalization, that extends equational tree automata and gen-
eralizes the results of them. This class of tree automata includes regular tree
automata with associativity normalization (regular TA + RA) that accept a can-
didate of the counterpart of regular word languages.

In equational tree automata, depending on the equational theory, we may
lose the Boolean closedness or an important decidability result. In addition to
the above-mentioned problems, it is known that regular tree automata modulo
ACI theory (associativity, commutativity and idempotency) are not closed under
complement. There is the same problem in the classes of tree automata modulo
exclusive-or and Abelian group theories [29]. In the table below, we summarize
the closure properties and decidability results. The class of languages accepted
by regular tree automata with associativity normalization is closed under associa-
tivity (=A), union (∪), intersection (∩) and complement (( )

C). The membership
(∈?), emptiness (=∅?), universality (=T?) and inclusion (⊆?) problems are de-
cidable. In the table, the positive results are indicated by �, and the negative
results are – . These results for regular TA + RA and for other useful classes are
the consequence of Theorems 1–5 in the following Sections 3 and 4.

=A ∪ ∩ ( )
C ∈? =∅? =T? ⊆?

monotone A-TA (CSG) � � � � � – – –

regular A-TA (CFG) � � – – � � – –

regular TA + RA (RG) � � � � � � � �

The class of the above regular TA + RA is closely related to hedge automata.
Hedge automata, originated from [27], are the automata which accepts unranked
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trees, whose transition rules have special patterns which matches regular se-
quence of state symbols as the arity of each function symbol is flexible. Every
hedge automaton can be minimized, determinized and completely defined. More-
over, though the instances of transition rules are essentially not finite, most of the
decidability questions are solvable. In Section 5, we investigate the relationship
between the ranked and unranked tree automata frameworks.

As an early work of bi-directional translation between ranked and unranked
tree languages, we should address the work of Carme, Niehren and Tommasi [2].
They showed that the hedges over the alphabet Σ are manipulated by a special
class of regular tree automata, called stepwise tree automata, whose signature
is constants from Σ and the binary symbol @. In our tree automata frame-
work, their interpretation of hedges and the recognition in stepwise automata
are performed by normalization and transition. We discuss the related work in
Section 6, and then conclude this paper in Section 7.

2 Preliminaries

We assume the reader is familiar with term rewriting [1] and tree automata [3].
An equational theory is a pair E = (F,E) in which F is a finite set of function
symbols, each with an associated arity, and E is a finite set of (orientation
sensitive) axioms over the function symbols in F with possibly some variables
from V . The binary relation→E induced by E is the rewrite relation, i.e. s →E t if
there is an axiom l = r in E, a context C and a substitution σ such that s = C[lσ]
and t = C[rσ]. The equivalence closure of →E is denoted by =E . Associative and
commutative theory is an equational theory whose axioms are the associativity
and commutativity for some of the binary function symbols. Given a binary
function symbol f ∈ F , f(f(x, y), z) = f(x, f(y, z)) is an associativity (A) axiom,
and f(x, y) = f(y, x) is a commutativity (C) axiom.

An equational rewriting system is a pair R = (E , R) in which R is a finite
set of rewrite rules over F with V and E is an equational theory over the same
signature F . The binary relation →R is a rewrite relation modulo axioms, i.e.
s →R t if there is a rewrite rule l → r in R, a context C and a substitution σ
such that s =E C[lσ] and t =E C[rσ]. The reflexive transitive closure and the
transitive closure of →R are denoted by →∗

R and →+
R, respectively. Given a term

s, s →!
R t if s →∗

R t and t is some normal form. We write (s)↓!
R to denote such t.

For the set T (F ) of ground terms over the signature F , NFF (R) represents the
set of normal forms of R. An equational rewrite system R is weakly normalizing
if for every term t, there exists some (t)↓!

R . We say R (i.e. R modulo E) is
confluent / strongly normalizing if →R is confluent / strongly normalizing.

Given an equational theory E = (F,E) and an equational rewriting system
R = (E , R), the E-closure of a subset L of terms, denoted by E(L), is the small-
est set containing L closed under =E , i.e. if s =E t and s ∈ E(L) then t ∈ E(L).
The R-descendant closure of L, R∗(L), is the smallest set containing L closed
under →∗

R. Similarly, the R-ascendant closure (R−1)∗(L) is the smallest set
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containing L closed under →∗
R−1 and the R-equivalence closure (R∪R−1)∗(L)

is the smallest set containing L closed under =R.
A tree automaton with normalization (TAN) is a tuple A = (R, Q,Qfin, Δ),

consisting of the equational rewrite system R = (E , R) with E = (F,E), a finite
set Q of states disjoint from the symbols in F , a subset Qfin of Q, and a finite
set Δ of transition rules whose shapes are in the following forms:

(Regular) (Epsilon)

f(α1(x1), . . . , αn(xn)) → β(f(x1, . . . , xn)) α(x1) → β(x1)

for some f ∈ F with arity(f) = n and α1, . . . , αn, α, β ∈ Q. Every state is a
unary symbol, and variables xi, xj in the transition rule are different if i = j.

A move relation of A is concatenation of the two kinds of relations over
T (F ∪Q), the normalization →!

R and the transition →Δ modulo E , that means:
s →A t if (1) there is a normal form u of s with respect to →R and (2) there is a
transition rule l → r in Δ, a context C and a substitution σ such that u =E C[lσ]
and t =E C[rσ]. If there is no normal form (s)↓!

R , the transition fails.
A tree t is accepted by A if t ∈ T (F ) and t →∗

A α(t′) for some α ∈ Qfin

and t′ ∈ T (F ). The set of trees accepted by A is denoted by L(A). We say
a TAN A = (R, Q,QfinΔ) with R = (F,E,R) is regular if transition rules in
Δ are all in the regular form. In case of R = ∅ and E = ∅, regular TAN

are called regular tree automata. A tree language accepted by a regular tree
automaton is called regular. These notions of regularity coincide with, if R = ∅

and E = ∅, the standard definition, e.g. [3]. Leaves of a tree t are the sequence in
the left-to-right order of constants occurring in t. We denote leaf for the mapping
leaf(f(t1, . . . , tn)) = leaf(t1) · · · leaf(tn) if n � 1; leaf(a) = a, otherwise. The leaf
language associated to a tree language L is the set of leaves obtained from L.

As an example, we consider the TAN A1 with

R1 : f(h(x), h(x)) → h(x)

E1 : f(f(x, y), z) = f(x, f(y, z)) f(x, y) = f(y, x)

Δ1 : a → α(a) g(α(x)) → α(g(x)) h(α(x)) → β(h(x))

Let β be the final state, then h(g(a)) is accepted by A1, since h(g(a)) →!
R1

h(g(a))
and h(g(a)) →Δ1 h(g(α(a))), and it turns out that h(g(a)) →∗

A1
β(h(g(a))).

Regarding the language accepted by this example, we observe that

if a tree t consists of nodes f with the same tree h(gi(a)) at each leaf position
(i � 0), t is accepted by A1,

because for every such tree t, t →!
R1

h(gi(a)), and then h(gi(a)) →∗
A1

β(h(gi(a))).
For instance, f(h(g(a)), h(g(a))) →!

R1
h(g(a)), and thus h(g(a)) →∗

A1
β(h(g(a)))

from the above example.
In the next example, we compare the expressiveness between TAN and ETA.

ETA (equational tree automata [23]) are the special class of TAN whose set R of
rewrite rules is empty. We take the TAN A2 with the following components:
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R2 : f(h(x), h(x)) → h(x)

E2 : f(f(x, y), z) = f(x, f(y, z)) f(x, y) = f(y, x)

Δ2 : a → α(a) g(α(x)) → α(g(x)) h(α(x)) → β(h(x))

f(β(x), β(y)) → γ(f(x, y))

In this example,A2 has the the additional transition rule f(β(x), β(y)) → γ(f(x, y))
with the final state γ. Similar to the previous example, we observe that

if a tree t consists of nodes f with two different kinds of trees h(gi(a)) and
h(gj(a)) at its leaf position (i = j), t is accepted by A2.

For instance, f(h(a), f(h(g(a)), h(a))) is accepted: f(h(a), f(h(g(a)), h(a))) →!
R2

f(h(a), h(g(a))), and therefore f(h(a), f(h(g(a)), h(a))) →∗
A2

γ(f(h(a), h(g(a)))).
However, f(h(a), h(a)) is not accepted by A2, because f(h(a), h(a)) →!

R2
h(a)

and h(a) →∗
A2

β(h(a)). In fact, f(h(a), h(a)) →∗
A2

β(h(a)).

Remark 1. The previous language L(A2) can not be represented by ETA if E =
{ f(h(x), h(x)) = h(x), f(f(x, y), z) = f(x, f(y, z)), f(x, y) = f(y, x) }.

Furthermore, the language L(A2) is not accepted by multitree automata [14]
or two-way equational tree automata [28] either.

3 Relative Decidability

We begin with the membership problem for the class of TAN. Hereafter in the
following two sections, we suppose E = (F,E) and R = (E , R).

Theorem 1. The membership question for a TAN A is solvable if R is strongly
normalizing over T (F ) and the membership question for an equational tree au-
tomaton A′ is solvable, where A′ is defined by replacing R in A with ∅.  !

In the framework of TAN, the decidability result depends upon that of the cor-
responding equational tree automata, because (→!

R ·→A′)+ ⊆ →!
R ·→+

A′ . To be
precise, we state the following lemma.

Lemma 1. Given A = (R, Q,Qfin, Δ), let A′ = (R′, Q,Qfin, Δ) and R′ =
(E ,∅). Then for every t ∈ T (F ), if t →+

A t′, there exists a normal form (t)↓!
R

such that (t)↓!
R→∗

A′ t′.  !

Accordingly, the question if t ∈ L(A) is determined by testing (t)↓!
R ∈ L(A′) for

all (t)↓!
R . From König’s Lemma, when R is strongly normalizing, there are only

finitely many candidates for (t)↓!
R . In fact, in Theorem 1, strong normalization

can not be weakened to weak normalization (Appendix A.2 [20]).
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Every language accepted by a TAN A = (R, Q,Qfin, Δ) is the R-ascendant
closure of some subset of normal forms: Let A′ = ((E ,∅), Q,Qfin, Δ),

(i) L(A) = (R−1)∗(NFF (R) ∩ L(A′)).

Moreover,

(ii) E(L(A)) = L(A),

(iii) (R∪R−1)∗(L(A)) = R∗(L(A)) = L(A) if R is confluent.

For instance, we consider the TAN A1 with

R : f(h(x), h(x)) → h(x)

E : f(f(x, y), z) = f(x, f(y, z)) f(x, y) = f(y, x)

Δ : a → α(a) g(α(x)) → α(g(x)) h(α(x)) → β(h(x))

We have L(A1) = (R−1)∗(L(A′
1)). This follows from Property (i) and NFF (R)∩

L(A′
1) = L(A′

1). Furthermore, (R ∪ R−1)∗(L(A′
1)) = L(A1), because L(A′

1) ⊆
L(A1) from L(A1) = (R−1)∗(L(A′

1)). SinceR is confluent, (R∪R−1)∗(L(A1)) =
L(A1) from Property (iii). Therefore, (R−1)∗(L(A′

1)) ⊆ (R ∪R−1)∗(L(A′
1)) ⊆

(R∪R−1)∗(L(A1)).

Theorem 2. The emptiness problem is decidable for tree automata with nor-
malization if

(1) there effectively exists an equational tree automaton (with the same equa-
tional theory) which accepts the set of normal forms of R,

(2) this class of equational tree automata is closed under the intersection.

Proof. Let AR = ((E , R), P, Pfin, Δ) and A∅ = ((E ,∅), P, Pfin, Δ). The ETA A∅

is obtained from the TAN AR by replacing R with ∅. From the assumption (1),
we obtain an ETA B, equipped with the same theory E = (F,E), that accepts
NFF (R). This implies from Property (i) that

L(AR ) = ∅ ⇔ L(A∅) ∩ L(B) = ∅.

From the assumption (2), we have an ETA C = ((F,E,∅), Q,Qfin, Λ) that accepts
L(A∅) ∩ L(B). Let C′ = ((F,∅,∅), Q,Qfin, Λ). Thanks to Lemma 1 [28], L(C )
is the E-closure of L(C′) regardless of E. (Cf. Lemma 2 [23].) This implies that
L(AR ) = ∅ ⇔ L(C′) = ∅. By assumption, since C′ is a regular tree automaton,
the question if L(C′) = ∅ can be solved.  !

The first equivalence in the above proof is rephrased as follows: L(AR ) = ∅ if
and only if L(A∅) ∩NFF (R) = ∅. If E = ∅, checking L(A∅) ∩NFF (R) = ∅ is
known to be an EXPTIME-complete problem, regardless of R [4].

Corollary 1. If E = ∅, the conditions (1) and (2) can be omitted.  !
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Theorem 3. The inclusion problem is decidable for tree automata with normal-
ization if the conditions (1),(2) hold and the inclusion problem is decidable for
this class of equational tree automata.  !

It is known that, if E is AC theory for a binary symbol f , the inclusion problem
for ETA is decidable. Even if E also contains the axioms of f(x, 0) = x and/or
g(f(x, y)) = f(g(x), g(y)), the inclusion problem is decidable.

Let B and D be ETA equipped with the equational theory E , such that B ac-
cepts NFF (R) and D accepts trees which are not normalizable. The universality
question if L(AR) = T (F ) is equivalent to ask if L(B) ⊆ L(A∅) and L(D) = ∅:

Theorem 4. The universality is decidable for tree automata with normalization
if the conditions (1),(3) hold and the inclusion problem is decidable for this class
of equational tree automata:

(3) there effectively exists an equational tree automaton (with the same equa-
tional theory) which accepts the set of non-normalizable trees.  !

Corollary 2. If R is weakly normalizing, the condition (3) can be omitted.  !

4 Closedness Under Boolean Operations

Theorem 5. For every equational rewrite system R = (E , R), the class of tree
automata with R-normalization is closed under Boolean operations if R is weakly
normalizing and confluent over T (F ) and the class of equational tree automata
equipped with E is closed under Boolean operations.  !

In the above theorem, weak normalization is essential for closure under comple-
ment. Let us consider the rewrite system R1 = (({ a, b },∅), { a → a }). Because
a is not normalized, by definition, a is not accepted by any TAN with R1. The
language accepted by A1 = (R1, {α }, {α }, { b → α(b) }) is { b }, but then the
complement of L(A1) is not accepted by any TAN with R1.

Also, confluence is essential for closure under complement and intersection. We
consider the TAN A2 = (R2, {α }, {α }, { b → α(b) }) with the rewrite system
R2 = (({ a, b, c },∅), { a → b, a → c }). Because a is normalized to b, a is
accepted by A2 as b is accepted. Every TAN with R2 accepting c accepts a,
because a →!

R2
c. This implies that the complement of L(A2) is not accepted by

any TAN with R2. For confluence, we take A3 = (R2, {α }, {α }, { c → α(c) }).
The intersection of the two languages L(A2) and L(A3), which is { a, b }∩{ a, c },
is not accepted by any TAN with R2, because every TAN with R2 accepting a
accepts b or c.

However, weak normalization is not needed for closure under intersection.
Moreover, weak normalization and confluence are not required for the union.

Example 1. Let EAC = (F,EAC) whose second component EAC is the set of AC

axioms for f. For each R ∈ {RU, RI, RN, RD, RUI,RUN, RUD, RG } defined be-
low, (E , R) is strongly normalizing and confluent over T (F ):
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RU : f(x, 0) → x RUI : RU ∪RI RUN : RU ∪RN RUD : RU ∪RD

R I : f(x, x) → x

RN : f(x, x) → 0

RD : g(f(x, y)) → f(g(x), g(y)) g(0) → 0 g(g(x)) → x

RG : RUD ∪ { f(x, g(x)) → 0 } (Abelian Group)

The above claim can be easily justified. Tool support, e.g. that of CiME [5], is
helpful in proving strongly normalization and checking all AC critical pairs to
be joinable. Thus, from Theorem 5, the above observation yields that: for every
R ∈ {RU, RI, RN, RD, RUI, RUN, RUD, RG }, the class of TAN with (EAC, R) is
closed under Boolean operations. Moreover, from Theorem 1, the membership
problem is decidable for this class of TAN.

Remark 2. ETA with ACUI (resp. ACUN) axioms are not closed under comple-
ment. This is the same reason why two-way equational automata with ACUI

(resp. ACUN) are not closed under complement [29]. Moreover, we can show
that ETA with ACI (resp. ACN) axioms are also not closed under complement.
In contrast, there is no such problem in TAN if we take RI and RN for I and N.

It is not obvious for ETA how we can deal with Boolean operations in the ACD

or ACUD case. Though it is shown in [29] that the class of tree languages modulo
ACUD is closed under Boolean operations, the computation algorithm is quite
involved. In case of TAN, Boolean computation for TAN with (EAC, RUD) can be
manipulated by using the operations for AC tree automata. Furthermore,

Corollary 3. The emptiness, universality and inclusion problems are decidable
for TAN with RU, RD or RUD modulo EAC.  !

Because these problems are decidable for the class of AC tree automata, the
above corollary follows from the fact that we can define AC tree automata,
each of which accepts normal forms of RU, RD, RUD modulo EAC. For instance,
we consider (EAC, RU). Since RU is left-linear, we have the tree automaton AU =
((F,∅,∅), Q,Qfin, ΔU) that accepts NFF ((F,∅, RU)). Normal forms of (EAC, RU)
are the EAC-closure of L(AU), which is accepted by ((F, EAC,∅), Q,Qfin, ΔU).
Similarly, AC tree automata for (EAC, RD) and (EAC, RUD) can be obtained.

However, it is unclear whether the emptiness problem is decidable for TAN

with (EAC, R) if R is RI, RN, RUI, RUN or RG, because it is not known that
the question if, given an AC tree automaton A and an AC rewrite system R,
L(A) ∩ NFF (R) = ∅ can be solved. According to the proof of Theorem 2, the
decidability of the emptiness problem in the above cases is rephrased as follows.

Corollary 4. The emptiness problem is decidable for TAN with RI (resp. RN)
modulo EAC if and only if the following question is decidable: given a tree au-
tomaton, does its language contain an instance of f(x, x) modulo EAC?  !
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5 Regular Leaf Languages and Hedge Automata

When discussing the expressiveness of tree languages, we often take the images
of them into word languages. Given a signature F , the mapping from trees to
right-associative trees but whose leaves can be preserved is the rewrite system
Rreg that consists of the rewrite rules, for arbitrary function symbols f, g in F ,

f(x1, . . . , g(y1, y2, . . . , yk), xi, . . . , xn) → f(x1, . . . , y1, g(y2, . . . , yk, xi), . . . , xn)

such that arity(f) � 2 and arity(g) � 1. Here f and g are possibly the same.
Obviously, Rreg is strongly normalizing if E = ∅, but Rreg is not confluent,
because f(g(h(a, b), c), d) →!

Rreg f(a, h(b, g(c, d))) and f(g(h(a, b), c), d) →!
Rreg

f(a, g(b, h(c, d))).
The above rewrite system preserves the leaves when E = ∅:

Lemma 2. For every s, t in T (F ), s =Rreg t if and only if leaf(s) = leaf(t).  !

Trees in Rreg-normal form, if E = ∅, are right -associative as derivation trees
of regular word grammar are right-associative. For instance, when the grammar
has the production rules α → aβ, β → bγ, γ → c, we have α(a ◦ β(b ◦ γ(c)))
for the derivation starting from α. The word abc is the leaves of this derivation
tree. Meanwhile, in tree automata setting, the word abc can be represented to
be a · (b · c). Tree automaton accepting a · (b · c) is equipped with the transition
rules a → pa(a), pa(x) · β(y) → α(x · y), b → pb(b), pb(x) · γ(y) → β(x · y),
c → γ(c). Here we use the infix operators ◦ and · for denoting the branching
node of derivations and the concatenation of alphabet.

Accordingly, trees which have such regular leaves should contain constants
that appear on the left in a tree whenever non-constant trees appear at the
same level in the tree. If A is a tree automaton, the leaf language { leaf(t) |
(t)↓!

Rreg accepted by A} is regular, while { leaf(t) | t accepted by A} is context-
free. Since trees accepted by tree automata are derivation trees generated by
context-free grammar, this observation can be easily obtained. But what about
a tree automaton accepting { t | leaf(t) generated by G }?

Lemma 3. Given a regular grammar G = (Σ,S, s0, Λ), we can construct a regu-
lar tree automaton A which accepts all trees whose leaves are generated by G.  !

Corollary 5. The above lemma can be extended to the case of an arbitrary
signature F if F contains constants from Σ and a binary function symbol.  !

Of particular interest about Lemma 3 is that this property does not hold for
context-free grammar. The proof of this observation is found in [20].

Lemma 4. For every regular tree automaton A, { t | (t)↓!
Rreg accepted by A} is

a regular tree language.  !

Hence, the class of tree automata, each of which accepts all trees whose leaves is
generated by a regular grammar, is a proper sub-class of regular tree automata.
In the framework of TAN, this statement can be represented as follows.
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Theorem 6. The class of TAN with Rreg is a sub-class of regular tree automata.
Moreover, for every confluent sub-system R of Rreg, the class of TAN with R is
also a sub-class of regular tree automata, and is
– decidable in the membership, emptiness, universality and inclusion problems,
– closed under =R,
– closed under Boolean operations.  !

An associativity rewrite system RA, whose rewrite rules are f(f(x, y), z) →
f(x, f(y, z)) for some of the binary function symbols, is such an example of
confluent sub-systems. Note that RA is a special case of Rreg. This class of
rewrite systems is often used for modeling unranked tree automata by ranked
signature.

In case of unranked signature, trees with regular leaves are manipulated by
hedge automata. The hedge automata theory has been accepted in XML com-
munity [19], in which XML documents are considered as tree-structured objects,
called hedges. Hence, as if an XML schema matches documents, a hedge automa-
ton accepts the set of hedges. Hedges in Hdg(Σ,C) over a finite set Σ of label
symbols and a finite set C of constants are recursively defined as follows:

t ∈ Hdg(Σ,C) if t = c for some c ∈ C

if t = a〈w 〉 for some a ∈ Σ, w ∈ Hdgs(Σ,C)

w ∈ Hdgs(Σ,C) if w = ε (null hedge)

if w = t for some t ∈ Hdg(Σ,C)

if w = u ◦ v for some u, v ∈ Hdgs(Σ,C)

The infix operator ◦ over hedges is associative over hedges with the identity
axiom for ε. In the unranked setting, t1 ◦ · · · ◦ tn can be denoted as ◦(t1, . . . , tn),
and it satisfies that ◦(t1, . . . , ti, ε, ti+1, . . . , tn) = ◦(t1, . . . , ti, ti+1, . . . , tn).

One should remark on hedges defined above. In the literature, e.g. [18] the null
hedge ε and the sequence of hedges are defined as well-formed hedges. However,
this leads us to confusion in distinguishing elements from contents in the con-
text of XML. According to XML schema recommended by W3C [30], an empty-
element tag, that corresponds to some c in C, is an element but is not the empty
sequence of elements. On the other hand, an element (tagged a) with no content
means the element having the empty sequence in between start-tag and end-tag,
that corresponds a〈 〉.

A hedge automaton is a tuple H = (Σ,C,N,Nfin, Δ), in which N is a finite
set of unary state symbols disjoint from Σ and C, Nfin is a set of final states
with Nfin ⊆ N , and Δ is a set of transition rules for Σ and C. Transition rules
in Δ are in the two shapes of

c → β(c)

a〈α1(x1) ◦ · · · ◦ αn(xn) 〉 → β(a〈x1 ◦ · · · ◦ xn 〉) ⇐ α1 · · ·αn ∈ L(G)

with a ∈ Σ, x1, . . . , xn ∈ V and α1, . . . , αn, β ∈ N .
The grammar G over N , that appears in the second type of rules, must be

regular, but that can be different for each transition rule. The left-arrow (⇐)
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together with the membership condition represents the guard, meaning that, if
the sequence α1 · · ·αn of states is generated by G, the transition fires. Variables
x1, . . . , xn in a rule are instantiated to certain hedges when the rule is applied.
Formally, we should introduce sequence variables ([13]) for the second type of
rules, so the left-hand side can match an arbitrary sequence α1(x1)◦· · ·◦αn(xn).
This implies in the sense of tree automata, that we allow hedge automata to
contain in Δ infinite number of regular transition rules in special shapes.

In tree automata framework, hedges can be modeled over the signature

FΣ,C : { a | a ∈ Σ } arity(a) = 1 for each a, { ◦ } arity(◦) = 2,

{ c | c ∈ C } arity(c) = 0 for each c, { ε } arity(ε) = 0.

Hereafter, to discuss the translation from unranked to ranked signatures, we
define the unflattening operation:

unflat(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

a(unflat(t1) ◦ · · · (unflat(tn) ◦ unflat(tn+1)) · · · )
if t = a〈 t1 · · · tn tn+1 〉 with n � 0,

a(ε) if t = a〈 〉,
t if t ∈ C.

Moreover, we use flat for the reverse translation, e.g. flat( f((a ◦ b) ◦ g(c)) ) =
f〈a ◦ b ◦ g〈 c 〉 〉.

Proposition 1. For every hedge automaton H over Σ and C, we can construct
a tree automaton AH over the previous FΣ,C such that for every t ∈ Hdg(Σ,C),
t is accepted by H if and only if unflat(t) is accepted by AH.  !

In the above setting, f(a ◦ (b ◦ c)) and f((a ◦ b) ◦ c) are distinguished, because we
do not assume that (x ◦ y) ◦ z = x ◦ (y ◦ z) is given. However, due to Lemma 4,
we can generalize Proposition 1 as follows.

Corollary 6. For every hedge automaton H over Σ and C, we can construct
a tree automaton BH over the previous FΣ,C such that for every t ∈ T (FΣ,C),
flat(t) is accepted by H if and only if t is accepted by BH.  !

One should notice that L(AH) ⊆ L(BH). The sizes |AH| and |BH| are O(|H|)
and O(|H|3), respectively. The time complexities are linear for the construction
ofAH, and cubic for BH to the size ofH. In Corollary 6, we can take the TANAH
with RA, instead of BH. In this case, Proposition 1 is generalized without losing
the advantages of the size and time complexities. Detailed complexity analysis
is found in [20].

As an application for XML manipulation, we consider the simple example
(Fig. 1) that contains the hedge automaton Hin, whose final state is γ. The lan-
guage accepted by Hin consists of the hedges f〈 g〈a∗ 〉g〈b∗ 〉 〉. Here ◦ is omitted,
and a∗ (b∗) denotes an arbitrary sequence of a (resp. b). In the example, we
suppose that a and b are the elements with different types, and f and g are the
tags, such that g contains a or b only. According to Lemma 4, we can construct
tree automata AHin over FΣ,C , which corresponds to Hin.
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Hin : f〈 γ(x) ◦ δ(y) 〉 → θ(f〈x ◦ y 〉)

g〈α(z1) ◦ · · · ◦ α(zm) 〉 → γ(g〈 z1 ◦ · · · ◦ zm 〉)

g〈β(w1) ◦ · · · ◦ β(wn) 〉 → δ(g〈w1 ◦ · · · ◦ wn 〉)

a → α(a)

b → β(b)

Fig. 1. Example of hedge automaton

Now we consider the constraint Ψ� for hedges, such that Ψ�(t) holds if t =
f〈 g〈a∗ 〉g〈b∗ 〉 〉 and the number of occurrences of a is less than or equals to the
number of b. For instance, Ψ�(f〈 g〈aa 〉g〈bbb 〉〉) is true.

In tree automata framework, the above predicate Ψ� can be translated to the
TAN A� = (R, Q,Qfin, Δ�) with R� = (FΣ,C ,∅, R�) as follows.

Δ� : f(η(x)) → θ(f(x)) γ(x) ◦ δ(y) → η(x ◦ y)

g(α(x)) → γ(g(x)) ε → α(ε)

g(β(x)) → δ(g(x)) ε → β(ε) b → β(b) β(x) ◦ β(y) → β(x ◦ y)

Q : α β γ δ η θ

Qfin : θ

R� : f(g(a ◦ x) ◦ g(b ◦ y)) → f(g(x) ◦ g(y)) f(g(a) ◦ g(b)) → f(g(ε) ◦ g(ε))

f(g(a ◦ x) ◦ g(b)) → f(g(x) ◦ g(ε)) f(g(a) ◦ g(b ◦ y)) → f(g(ε) ◦ g(y))

(x ◦ y) ◦ z → x ◦ (y ◦ z) ε ◦ x → x x ◦ ε → x

Lemma 5. A� with R� accepts t if and only if flat(t) satisfies Ψ�.  !

Using a similar construction, we can define the TAN A<, A�, A> for the con-
straints Ψ< (less than), Ψ� (greater than or equals to) and Ψ> (greater than).

Remark 3. The languages L(A� ), L(A<), L(A�), L(A> ) are not regular.

Furthermore, the class of TAN with the above R� is closed under Boolean op-
erations and the membership problem is decidable, because R� is strongly nor-
malizing and confluent as there are 9 critical pairs and they are all joinable.
Besides, the emptiness, universality and inclusion problems are decidable, since
R� is left-linear and E = ∅. Similar properties hold also for R<, R� and R>.

6 Related Work

Recently, Dal Zilio and Lugiez [6] and Seidl et al. [25] proposed the extension of
hedge automata in which a commutative infix operator over hedges is allowed.
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We denote below this operator by ⊗. The concatenation of hedges by ⊗ is repre-
sented as t1 ⊗ · · · ⊗ tn in [6], and as the multiset {{t1, . . . , tn}} in [25]. Due to this
extension, their frameworks require the additional sort of transition rules

a〈α1(x1)⊗ · · · ⊗αn(xn) 〉 → β(a〈x1 ⊗ · · · ⊗xn 〉) ⇐ α1 · · ·αn ∈ L(G/C)

A commutative regular grammar G/C, which appear in the guard, is a regular
grammar modulo the commutativity. The language generated by G/C coincides
with the commutative closure of L(G), meaning that: u ∈ L(G/C) if and only
if u =C v and v ∈ L(G). Moreover, the Parikh image [24] of regular languages
is characterized by Presburger arithmetic. Using this fact, Dal Zilio and Lugiez
defined a query language for XML, called sheaves logic, in which the formulas
may contain Presburger constraints over the number of occurrences of contents
in XML documents.

In case of ranked signature, this extension to hedge automata can be simulated
by assuming the associativity (x⊗ y)⊗z = x⊗ (y⊗ z) and commutativity x⊗y =
y⊗x axioms, and therefore, hedge automata equipped with this ⊗ are modeled
by AC tree automata. For example, if we allow ⊗ in the schemaHin in Section 5, it
can be translated to an AC tree automaton. One should notice that the predicates
Ψ�, Ψ<, Ψ�, Ψ> are beyond this class of ETA, and moreover,

Remark 4. Ψ�, Ψ<, Ψ�, Ψ> can not be expressed by sheaves logic.

Regarding the translation of hedge automata, the special class of tree automata,
called stepwise tree automata, is studied [2]. The signature of this class consists
of constant symbols from Σ and the binary symbol @. Their transition rules are
in the two forms:

a → α(a) α(x)@ β(y) → γ(x@ y)

for some a ∈ Σ and α, β, γ are state symbols. Epsilon transition rules α(x) →
β(x) can be permitted though they do not appear formally in the original defin-
ition. This class of tree automata has the bi-directional correspondence to hedge
automata in terms of Proposition 1. We can simulate their curried binary en-
coding translation by TAN with the associativity rule x@ (y @ z) → (x@ y)@ z
and the left- and right-identity for ε.

In the research of XML document processing, one of the prominent topics is the
type checking problem. This question asks us if, for XML document types τin and
τout and an XML transformer Φ, every document transformed by Φ from of type
τin is of type τout. In practice, these document types τin and τout are described in
an XML schema language, and this problem is represented as the inclusion prob-
lem { t | ∃s ∈ L(τin) : t = Φ(s) } ⊆ L(τout). For reasoning about this problem,
Milo et al. [17] studied a special class of transformer on ranked trees, called k-
pebble tree transducer (k-PTT), and they showed that the complexity of the type
checking problem for k-PTT is k-tower of exponential. Engelfriet et al. showed
in [7] that k-PTT is simulated by (k + 1)-fold compositions of another kind of
transformer, called stay macro tree transducers (SMTT). Recently, Maneth et al.
showed in [15] that the type checking can be solved in polynomial time if SMTT
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is n-bounded copying, that is, if nodes in an input tree are copied by transformer
at most n-times in the output tree.

In rewriting, the type checking problem can be reformulated as the problem
{ t | ∃s ∈ L(τin) : s →!

RΦ
t } ⊆ L(τout). In [26], Takai et al. proposed a class of

rewrite systems that effectively preserves the regularity. This result enables us to
handle the type checking problem whenever RΦ is in this class. For automated
reasoning, Ohsaki and Takai have developed the verification tool ACTAS [21],
and Genet et al. independently developed another tool Timbuk [8], that com-
putes the exact and under-approximated R-descendant closure of regular tree
languages.

7 Conclusions

In rewriting community, equational rewriting has been studied over the years.
This theory underlies several practical challenges, and in fact, there are many
equational rewriting based software available for public, including executable
specification languages, verification tools, and program optimization tools.
Among elaborated studies on equational rewriting, tree automata with normal-
ization (TAN) may have the roots in normalized rewriting [16]. The theory of
normalized rewriting brought the idea in dealing with completion modulo ax-
ioms, and in practice that developed the software CiME [5].

In the paper, we showed the decidability (Theorems 1–4 and Corollaries 1–3)
and the closure properties (Theorem 5) of our tree automata framework. Corol-
lary 4 can be improved if the intersection-emptiness of AC regular language and
RI-normal forms is a decidable question. In Section 5 we discussed advantages of
TAN through the observation about the translation from unranked tree automata
to ranked tree automata. In the example of XML manipulation, we demonstrated
that the XML schema Hin (hedge automaton) and predicates Ψ�, Ψ<, Ψ�, Ψ>
can be translated to TAN, and showed that the recognized languages are effec-
tively closed under Boolean operations and the decidability questions can be
solved.

For further exploration, we have an interest in the extension of TAN, in the
direction of PTA [10] and of monotone ETA [23]. The tool development based
on our framework is useful in practice. Thanks to Lemma 1 and Properties (i)–
(iii), a tool that supports AC tree automata computation (e.g. [21]) can easily
manipulate TAN if the tool is equipped with plug-in functions for exporting data
to and importing the result from rewriting engines.
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Combining Proof-Producing Decision

Procedures
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LORIA & INRIA-Lorraine

Abstract. Constraint solvers are key modules in many systems with
reasoning capabilities (e.g., automated theorem provers). To incorporate
constraint solvers in such systems, the capability of producing conflict
sets or explanations of their results is crucial. For expressiveness, con-
straints are usually built out in unions of theories and constraint solvers
in such unions are obtained by modularly combining solvers for the com-
ponent theories. In this paper, we consider the problem of modularly
constructing conflict sets for a combined theory by re-using available
proof-producing procedures for the component theories. The key idea of
our solution to this problem is the concept of explanation graph, which
is a labelled, acyclic and undirected graph capable of recording the en-
tailment of some equalities. Explanation graphs allow us to record ex-
planations computed by a proof-producing procedure and to refine the
Nelson-Oppen combination method to modularly build conflict sets for
disjoint unions of theories. We also study how the computed conflict sets
relate to an appropriate notion of minimality.

1 Introduction

Constraint solvers are key modules in many systems, such as automated theorem
provers, expert systems, and constraint logic programming (CLP) environments.
To efficiently or correctly incorporate constraint solvers in such systems, the ca-
pability of producing conflict sets or explanations of the results of the solvers is
crucial. For example, conflict sets are useful to prune the search space of Satisfi-
ability Modulo Theories (SMT) solvers (see, e.g., [14]) or to direct backtracking
in CLP systems [3] whereas explanations can be used to safely import the results
of external reasoning modules (e.g., decision procedures for selected theories or
unification algorithms) in skeptical proof assistants (see, e.g., [8]).

For expressiveness, constraints are usually built out in unions of theories and
constraint solvers in such unions are obtained by modularly combining solvers
for the component theories. So, it is desirable to build conflict sets or explana-
tions in unions of theories by modularly combining the conflict sets computed
by the available solvers for the component theories. In this paper, we consider
the problem of modularly combining conflict sets or explanations produced by
decision procedures for the satisfiability problem of conjunctions of quantifier-
free literals in a first-order theory T . The hope is to reuse the work on extending

B. Konev and F. Wolter (Eds.): FroCos 2007, LNAI 4720, pp. 237–251, 2007.
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satisfiability with proof-producing capabilities available in the literature (see,
e.g., [7,4,11,17]).

The main contribution of this paper is an abstract account of how to extend
the well-known and widely used Nelson-Oppen combination method [10,13] to
build a satisfiability procedure capable of producing conflict sets in the union
of theories T1 and T2, whenever the satisfiability procedures for T1 and T2 pro-
vide certain interface capabilities. To this end, we first introduce the concept
of explanation graph (Section 3), a data structure which compactly encodes the
fact that a certain equality between variables (called elementary equality) is a
logical consequence of a set of elementary equalities. Explanation graphs can be
easily implemented by using efficient algorithms based on the Union-Find data
structure [18,5]. Then (Section 4), we show how to combine satisfiability pro-
cedures, called explanation engines, capable of building explanation graphs so
as to obtain a satisfiability procedure with the capability of producing conflict
sets in the union of the component theories. Then (Section 5), we introduce the
concept of quasi-conflict set, which allows us to precisely characterize a (weak)
form of minimality satisfied by the explanations computed by our combina-
tion method. Finally (Section 6), we show how to build explanation engines by
adding explanation capabilities to a procedure for the theory of uninterpreted
functions (Section 6.1) and one for an important fragment of Linear Arithmetic
(Section 6.2, proofs can be found in [19] for lack of space).

2 Background

First-Order Logic. We assume the usual syntactic and semantic notions of term,
formula, interpretation, satisfiability, etc. for first-order logic as given, e.g., in
[6]. A first-order theory is a set of first-order sentences. A Σ-theory is a theory
all of whose sentences have signature Σ. Since we are concerned with satisfia-
bility, we may consider all symbols with arity 0 as constants since a formula is
equisatisfiable to its existential closure and existentially quantified variables can
be replaced by Skolem constants. This explains why we may talk about con-
stants instead of variables depending on the context. A theory is consistent if it
admits a model and trivial if the cardinality of each of its models is one. In this
paper, we restrict ourselves to non-trivial and consistent theories. We will be
concerned with the following theories. The theory of equality E whose signature
contains a finite set of function and constant symbols, and such that the equality
symbol = is interpreted as the identity relation. The theory Ec consisting only
of equalities or disequalities between constants. We will also refer to the literals
of Ec as elementary equalities or disequalities and to Ec as the theory of pure
equality. The quantifier-free fragment of Linear Rational Arithmetic is denoted
with LA≤ and its restriction to equalities or disequalities only is denoted with
LA. A term is flat if it is a variable or a term of the form f(c1, ..., cn) where
f is an n-ary function symbol and the ci’s are variables. A literal is flat if it
has one of the following forms: c1 = c2, ¬(c1 = c2) (also abbreviated with c1 =
c2), f(c1, ..., cn) = cn+1, p(c1, ..., cn), or ¬p(c1, ..., cn), where f (p) is an n-ary
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function (predicate, resp.) symbol and the ci’s are variables. A literal which
is neither an elementary equality nor an elementary disequality is called non-
elementary. In the following, ϕ denotes an arbitrary set of literals, Ω denotes a
set of non-elementary flat literals, E denotes a set of elementary equalities, and
Δ denotes a set of elementary disequalities. The set of variables occurring in ϕ
is denoted by V ar(ϕ). The reflexive, symmetric and transitive closure of E is
denoted by E∗. The set E of elementary equalities is minimal iff E′∗ ⊂ E∗, for
any E′ ⊂ E.

A Σ-structure M is a model of a Σ-theory T if M satisfies every sentence in
T . A Σ-formula is satisfiable in T (or T -satisfiable) if it is satisfiable in a model
of T . Two Σ-formulas ϕ and ψ are equisatisfiable in T if for every model M
of T , ϕ is satisfiable in M iff ψ is satisfiable in M. We will omit the “Σ-” of
Σ-theory, Σ-structure , . . . , when it is clear from the context.

Satisfiability procedures and conflict sets. The satisfiability problem for a the-
ory T amounts to establishing whether any (finite) quantifier-free conjunction
of literals is T -satisfiable or not. We can use (free) constants instead of variables
in a satisfiability problem, so that we can redefine it as the problem of estab-
lishing the satisfiability of T ∪ Γ , for any (finite) set of ground literals. Below,
we will indifferently use constants or variables when discussing notions related
to satisfiability problems. A satisfiability procedure for T is any algorithm that
solves the satisfiability problem for T . A T -conflict set is a T -unsatisfiable set of
literals. A T -conflict set CS of literals is minimal if there is no CS′ ⊂ CS such
that CS′ is a T -conflict set. A T -explanation of an equality e is a T -satisfiable
set ϕ of literals such that T |= ϕ ⇒ e. A T -explanation of e is minimal if there
is no ϕ′ ⊂ ϕ such that T |= ϕ′ ⇒ e. We will omit the theory T when it is clear
from the context.

Proposition 1. A T -satisfiable set of literals ϕ is a minimal T -explanation for
an equality e iff ϕ ∪ {¬e} is a minimal T -conflict set.

Classes of theories and conflict sets. For simplicity, we will only consider convex
and stably infinite theories in this paper. A set ϕ of T -literals is convex iff for
any disjunction x1 = y1 ∨ · · · ∨ xn = yn for n > 1, where xi, yi are constants
(i = 1, ..., n) we have that T ∪ϕ |= x1 = y1∨· · ·∨xn = yn iff T ∪ϕ |= xi = yi for
some i ∈ {1, ..., n}. A theory T is convex iff all sets of T -literals are convex. We
say that T is stably infinite if for every T -satisfiable set of literals ϕ there exists
a model of T satisfying ϕ such that its interpretation domain is infinite. For
example, Ec, E and LA≤ (and its “reduct” LA) are convex and stably infinite
theories.

Proposition 2. If T is a convex theory, then any minimal conflict set contains
at most one disequality. If T is a convex theory axiomatized by a set of equalities,
then any minimal conflict set contains exactly one disequality.

For example, Ec and E are convex theories such that any minimal conflict set
contains exactly one disequality. Notice that LA, and hence also LA≤, does not
satisfy this property (e.g, {x− y = 3, x− y = 2} is a minimal LA-conflict set).
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Graphs. We use some standard notions as undirected graph, acyclic graph, sub-
graph, connected graph, path, simple path, elementary path, and connected com-
ponents. In the rest of the paper, we only consider acyclic undirected graphs,
which will be often called graphs for the sake of simplicity. An undirected
graph G is a pair (V,E) where V (also written as Vertex(G)) is a finite set
and E (also written as Edge(G)) is a set of unordered pairs written as (v, w)
for v, w in V . GV

∅ denotes the graph whose vertices are in the set V which
are connected by no edges, i.e. GV

∅ = (V, ∅). The “is a sub-graph of” rela-
tion is denoted by ⊆. Let G = (V,E) be an acyclic undirected graph. The set
ElemPath(G, x, y) denotes the set of edges in an elementary path between x
and y in G, i.e. if v0, ..., vn is an elementary path where v0 is x and vn is y, then
ElemPath(G, x, y) is the set of edges (vi−1, vi) ∈ Edge(G), for i = 1, ..., n. Given
two distinct vertices x and y, ElemPath(G, x, y) is empty iff x and y are not in
the same connected component of G. The set of pairs of connected vertices in G is
CP (G) = {(x, y) | x, y ∈ V and ElemPath(G, x, y) = ∅}. Notice that the reflex-
ive, symmetric, and transitive closure of E is equal to CP (G)∪{(x, x) | x ∈ V }.

3 Explanation Graphs

Two preliminary remarks about the relationship between an acyclic undirected
graph G = (V,E) and a set of elementary equalities are useful. First, observe
that an elementary equality can be regarded as an unordered pair and edges of
G are unordered pairs. So, we will write (x, y) ∈ E as x = y and define the set
of elementary equalities of the graph G as Eq(G) =

⋃
x=y∈E{x = y}. Second, it

is easy to see that a set of elementary equalities Γ is minimal iff there exists an
acyclic undirected graph G such that Eq(G) = Γ ; furthermore, Γ ∗ is equal to
the reflexive, symmetric, and transitive closure of Edge(G)∗ or, equivalently, to
CP (G) ∪ {x = x | x ∈ V ertex(G)}. In other words, G avoids redundancy.

Roughly, an explanation graph for a set ϕ of literals and a theory T is an
acyclic undirected graph G = (V,E) such that Eq(G)∗ is equal to the sub-set
of elementary equalities in ϕ and each edge x = y ∈ Edge(G) is labelled by
a satisfiable sub-set of ϕ implying x = y in T . In a label, we may find literals
occurring in ϕ as well as auxiliary elementary equalities which are entailed by
other equalities in the graph.

Definition 1. Let T be a theory, ϕ be a set of T -literals, and G = (V,E) be an
acyclic undirected graph such that E is a set totally ordered by some ordering
<E. G is an explanation graph of ϕ if (i) V is the set of constants occurring
in ϕ, (ii) there exists a labelling function LG with domain E and co-domain
2ϕ∪CP (G),1 (iii) the following properties are satisfied for any v1 = v2 ∈ E:

(iii.a) LG(v1 = v2) is T -satisfiable and T |= LG(v1 = v2) ⇒ v1 = v2,
(iii.b) for each v′1 = v′2 in LG(v1 = v2)\ϕ we have that e <E (v1 = v2), for any

e in ElemPath(G, v′1, v
′
2).

1 Let X be a set, 2X denotes the power-set of X.
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The set of literals of ϕ in G is Lit(G) = ϕ∩(
⋃
e∈E LG(e)). An edge v1 = v2 ∈ E is

minimally explained if LG(v1 = v2) is a minimal T -explanation for v1 = v2. An
explanation graph is said edge-minimal if all its edges are minimally explained.

In the definition above, edges are ordered to express the fact that explanation
graphs are built dynamically and this determines how explanations and conflict
sets are computed. The ordering <E on edges corresponds to the order of in-
sertion of edges in the graph. Adding an edge x = y to the explanation graph
G = (V,E) of the set ϕ of literals is defined as follows: if x and y are two distinct
vertices in V such that x = y /∈ CP (G), and L is a set of T -literals in ϕ∪CP (G)
such that L is T -satisfiable and T |= L ⇒ x = y, then

Insert(G, x = y, L)

denotes the explanation graph G′ = (V,E′), where E′ = E∪{x = y}, LG′ is such
that LG′(x = y) = L, ∀e ∈ E,LG′(e) = LG(e), and <E′ is the smallest ordering
containing <E such that ∀e ∈ E, e <E′ x = y. From now on, we assume that
<E′ and <E coincide on elements of E whenever G = (V,E) and G′ = (V ′, E′)
are two explanation graphs such that E ⊆ E′.

We now consider the case of an explanation graph G obtained by adding a
set of elementary equalities in a given order. (This will be important for our
combination schema; see Section 4.1 below.) More precisely, G is obtained by
adding one after the other each elementary equality in E := {e1, ..., en}, ac-
cording to an ordering <E (such that, wlog, ei <E ei+1 for i = 1, ..., n) to
G0 := G

Var(ϕ)
∅ (equipped with an empty labelling LG0), i.e. G := Gn where

Gj+1 := Insert(Gj , ej , {ej}) for j = 0, ..., n− 1. For the sake of conciseness, we
will write UF (E) to abbreviate the graph obtained by the sequence of insertions
above.2 If V is a set of variables, UFV (E) is the explanation graph obtained by
adding V to the set of vertices of UF (E). It is not difficult to see that for any
set E of elementary equalities, UF (E) is an edge-minimal explanation graph
of E such that Eq(UF (E)) is a minimal set of elementary equalities (included
in E).

For efficiency, it is important to consider explanation graphs from which all
possible entailed elementary equalities can be extracted.

Definition 2. Let T be a theory and let ϕ be a T -satisfiable set of literals. A
set of elementary equalities E is deduction complete for ϕ (modulo T ) if

∀x, y ∈ V ar(ϕ), T |= ϕ ⇒ x = y iff (x, y) ∈ E∗.

An explanation graph G of a T -satisfiable set ϕ of literals is deduction complete
(modulo T ) if Eq(G) is deduction complete for ϕ (modulo T ).

For example, UF (E) is a deduction complete explanation graph of E (modulo
Ec). For convex theories, deduction complete explanation graphs allow us to
handle elementary disequalities one by one.
2 UF abbreviates Union-Find since the sequence of insertions is typically implemented

using this data structure (see [7,4,11]).
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Proposition 3. Let T be a convex theory. Given a deduction complete explana-
tion graph G of a T -satisfiable set of literals ϕ, and a set of elementary disequal-
ities Δ, we have that ϕ ∪Δ is unsatisfiable if and only there exists x = y ∈ Δ
such that x = y ∈ CP (G).

A näıve brute-force method to build explanation graphs consists in considering
one by one each possible elementary equality made of disconnected vertices of the
graph and check if it is implied by the input set of literals. Fortunately, there are
satisfiability procedures with the capability of generating deduction complete
and edge-minimal explanation graphs without resorting to such a brute-force
method and are thus more efficient (see Section 6 for more on this issue).

4 Conflict Sets for Combination of Theories

We adapt the deterministic Nelson-Oppen combination method [10] to compute
T1 ∪ T2-conflict sets. This combination method allows us to build a satisfiabil-
ity procedure for T1 ∪T2 by using satisfiability procedures known for T1 and T2,
provided that T1 and T2 are signature-disjoint, convex, and stably-infinite. Infor-
mally, this combination method works as follows: entailed elementary equalities
are exchanged between the two procedures until either unsatisfiability is derived
by one of the two, or no more elementary equalities can be exchanged. In the
first case, we derive the unsatisfiability of the input formula; in the second case,
we derive its satisfiability. Thus, the unsatisfiability in T1 ∪ T2 can be explained
according to two kinds of explanations: (i) the explanation of entailed elemen-
tary equalities and (ii) the explanation of the unsatisfiability in a component
theory. To develop our main combination result (cf. Section 4.1), we introduce
the notion of explanation engine: a module capable of computing (i) and (ii)
which may be obtained by re-using available proof-producing procedures (see
Section 6).

Definition 3 (Explanation engine). Let T be a theory, Ω be a set of non-
elementary flat T -literals, and E be a minimal set of elementary equalities. A
T -explanation engine is a T -satisfiability procedure, denoted by μEXT , which
computes an edge-minimal explanation graph G of Ω∪E such that E ⊆ Eq(G)
and

1. if Ω ∪ E is T -unsatisfiable, then μEXT returns false{(Ω′, E′, G)} where
Ω′ ⊆ Ω, E′ is a set of elementary equalities such that Ω′ ∪E′ is a minimal
T -conflict set and E′ ⊆ CP (G).

2. if Ω ∪E is T -satisfiable, then μEXT returns true{G} where G is deduction
complete for Ω ∪ E modulo T .

Given a T -satisfiability procedure equipped with the capabilities of computing
minimal conflict sets (CST ) and minimal explanations for entailed elementary
equalities (EXx=y

T ), Figure 1 shows how to construct a T -explanation engine.
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Function μEXT (Ω, E)
G := (V ar(Ω ∪ E), E)
If Ω ∪ E is T -unsatisfiable Then

Ω′ := CST (Ω ∪ E) ∩ Ω
E′ := CST (Ω ∪ E)\Ω
Return false{(Ω′, E′, G)}

Else
Foreach x = y such that (x, y) /∈ CP (G) and T |= Ω ∪ E ⇒ x = y

G := Insert(G,x = y, EXx=y
T (Ω ∪ E))

EndForeach
Return true{G}

Fig. 1. Construction of an explanation engine

4.1 Combination Algorithm

Figure 2 presents a variant of the Nelson-Oppen combination method for the
union of two arbitrary signature-disjoint, stably infinite, and convex theories
where explanation engines are used in place of satisfiability procedures. For ex-
ample, it applies to E ∪ LA since E and LA are known to be stably infinite and
convex, and it is possible to build explanation engines for both E and LA as
shown in Section 6. The rules of Figure 2 (derived from [13]) aim at providing a
T1∪T2-satisfiability procedure for sets of literals of the form ϕ = Ω1∪Ω2∪E∪Δ,
where Ωi is a set of non-elementary Ti-literals (for i = 1, 2), E is a set of el-
ementary equalities and Δ is a set of elementary disequalities. Configurations
manipulated by the rules consist of Ω1, Ω2, Δ together with an explanation graph
G of ϕ. Initially, G is UFV ar(ϕ)(E). The combination algorithm works as follows.
Each explanation engine computes new entailed equalities stored (with their ex-
planations) in a (local) explanation graph. Then, these are used to update the
(global) explanation graph G for the union of the theories. This updating (for-
malized by the Merge in Figure 2) consists in adding some new edges to G.
Unsatisfiability is detected either by an explanation engine (rule Unsat=i, for
i = 1, 2) or by a contradiction between the entailed elementary equalities stored
in G and the elementary disequalities in Δ (rule Unsat �=). By the results in [13],
one can easily show that the repeated application of rules in Figure 2 terminates
with false{· · · } if and only if the initial configuration is unsatisfiable.

Theorem 1. Let T1 and T2 be two signature-disjoint convex and stably infinite
theories such that for each i = 1, 2, a Ti-explanation engine is available. Let Ωi

be a set of non-elementary Ti-literals for i = 1, 2, let E be a set of elementary
equalities and let Δ be a set of elementary disequalities. Consider ϕ = (Ω1 ∪
Ω2 ∪Δ ∪E) and fc be a final configuration obtained by the repeated application
of the rules of Figure 2 on the initial configuration Ω1;Δ;UFV ar(ϕ)(E);Ω2.

– If fc is of the form false{(Ω′, E′, G)}, then ϕ is T1 ∪ T2-unsatisfiable. Fur-
thermore, Ω′ ∪E′ is a minimal conflict set such that E′ ⊆ CP (G).
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Unsat=1 Ω1; Δ; G; Ω2

�
false{(Ω′

1, E
′
1, G

′)}

if
�

μEX1(Ω1, Eq(G)) = false{(Ω′
1, E

′
1, G1)}

G′ = Merge(G,G1)

Unsat �= Ω1; Δ; G; Ω2

�
false{({x �= y}, {x = y}, G)}
if (x, y) ∈ CP (G) and x �= y ∈ Δ

Deduction1 Ω1; Δ; G; Ω2

�
Ω1; Δ; G′; Ω2

if

��
�

μEX1(Ω1, Eq(G)) = true{G1}
G′ = Merge(G,G1)
G′ �= G

Legenda: Ωi is a set of non-elementary Ti-literals, for i = 1, 2. Δ is a set
of elementary disequalities. Symmetric rules are not depicted here for the
sake of conciseness and they can be obtained by changing the subscript 1
into 2 in the rules above. The function Merge is defined as follows:

Function Merge(G,G′)
G′′ := G

Foreach (x, y) ∈ Edge(G′)\Edge(G)
G′′ := Insert(G′′, x = y, LG′(x = y))

EndForeach
Return G′′

Fig. 2. Combination of explanation engines

– Otherwise, fc is of the form Ω1;Δ;G;Ω2 and ϕ is T1 ∪ T2-satisfiable. Fur-
thermore, G is deduction complete for ϕ modulo T1 ∪ T2.

Moreover, G is an edge-minimal explanation graph of ϕ.

Theorem 1 has an interesting consequence. The combination algorithm can be
applied to a set of flat T1∪T2-literals without any disequalities, and in that case
it provides a T1 ∪ T2-explanation engine. Thus, we have a modular construction
of explanation engines since T1 ∪ T2 is convex and stably infinite when T1 and
T2 are signature-disjoint, convex, and stably infinite theories.

Corollary 1 (Modular construction of explanation engines). Let T1 and
T2 be two signature-disjoint, convex, and stably infinite theories such that for
each i = 1, 2, a Ti-explanation engine is known. Then, the combination rules
depicted in Figure 2 provide a T1 ∪ T2-explanation engine.

This refinement of the Nelson and Oppen method allows us to obtain a truly
modular combination method to build conflict sets in unions of n theories (with
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n ≥ 2) by combining explanation engines via the repeated application of the
Corollary above.

Remark. It is not difficult to adapt the above method to combine the interface
functionalities for computing conflict sets (CSTi) and explanations (EXx=y

Ti
) of

the component theories. In this scenario, a single explanation graph is needed
which is updated by CSTi and EXx=y

Ti
, for i = 1, 2; thereby avoiding the need

of the Merge operation. We have not taken this option here, since it would have
made more complex our study of the minimality of the conflict sets, as it will
be apparent in the next Section where the output of explanation engines plays
a key role.

5 Quasi-conflict Sets

In the previous combination algorithm, one can observe that some additional
information, encoded as a triplet (ψ,E,G), is returned whenever an unsatisfiable
set ϕ of literals is considered. This triplet contains two sets of literals ψ, E,
and an explanation graph G such that ψ ∪ E is unsatisfiable, ψ is a satisfiable
subset of ϕ, and E is a set of (entailed) elementary equalities explained in G.
Strictly speaking, ψ ∪ E is not a conflict set of ϕ since it may contain literals
which are not in ϕ. However, it is easy to extract a “real” conflict set from
ψ ∪ E since E is entailed by ϕ and the related explanations are encoded in the
associated explanation graph G. In the following, we investigate how to formalize
this observation by defining the concept of quasi-conflict set as a triplet (ψ,E,G).
The interest of this notion is that it is possible to define an ordering on such
triplets and that the quasi-conflict sets computed by the combination algorithm
in the previous Section are minimal according to this ordering.

Before being able to define the ordering on quasi-conflict sets, we need to
introduce a suitable order on explanation graphs.

Definition 4. Given two explanation graphs G and G′ of ϕ, we define the re-
lation � as follows:

G′ � G if Edge(G′) ⊆ Edge(G) and ∀e ∈ Edge(G′), LG′(e) ⊆ LG(e).

Given two explanation graphs G and G′ of ϕ and four sets of literals ψ,E, ψ′, E′,
we define the relation � as follows:

(ψ′, E′, G′) � (ψ,E,G) if ψ′ ⊆ ψ, E′ ⊆ E and G′ � G

It is not difficult to see that � is a quasi-ordering. The strict ordering ≺ induced
by � will be used to define the notion of minimality.

Definition 5 (Quasi-conflict sets). Let ϕ be an unsatisfiable set of literals, ψ
be a subset of ϕ, G be an explanation graph of ϕ, and E be a set of equalities. The
triplet (ψ,E,G) is a quasi-conflict set of ϕ if E ⊆ CP (G), ψ∪E is unsatisfiable,
and E = ∅ implies that ψ is satisfiable. The triplet (ψ,E,G) is a minimal quasi-
conflict set if there is no (ψ′, E′, G′) ≺ (ψ,E,G) such that (ψ′, E′, G′) is a
quasi-conflict set of ϕ.
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Notice that if (ψ,E,G) is a quasi-conflict set, then E = ∅ iff ψ is satisfiable.
Also, if ϕ is a conflict set, then (ϕ, ∅, GV ar(ϕ)

∅ ) is a quasi-conflict set.

Proposition 4. If (ψ,E,G) is a quasi-conflict set of ϕ, then ψ ∪ Lit(G) is a
conflict set of ϕ.

Given a quasi-conflict set (ψ,E,G) of ϕ, ψ∪Lit(G) is the conflict set associated
to (ψ,E,G). The set Lit(G) provides an explanation of equalities in E, but it
is a super-set of what we need: it is sufficient to consider the sub-graph of G
obtained by focusing only on the paths in G “connecting” the equalities in E.

Definition 6. Let G be an explanation graph of ϕ, x = y ∈ CP (G) and E ⊆
CP (G). The set of explanation edges of x = y in G is the subset of Edge(G)
defined as follows:

Exe(G, x = y) = ElemPath(G, x, y) ∪ (
⋃

e∈ElemPath(G,x,y)

⋃

e′∈LG(e)\ϕ
Exe(G, e′)).

The set of explanation edges of E in G is ExE(G,E) =
⋃
e∈E Exe(G, e).

The restriction of G to E is the sub-graph G|E of G such that Edge(G|E) =
ExE(G,E) and ∀e ∈ Edge(G|E), LG|E (e) = LG(e).

We are now ready to show how to compute minimal quasi-conflict sets.

Theorem 2. Let (ψ,E,G) be a quasi-conflict set of ϕ such that ψ ∪ E is a
minimal conflict set. If all edges of G|E are minimally explained then (ψ,E,G|E)
is a minimal quasi-conflict set of ϕ.

Proof. (ψ,E,G|E) is a quasi-conflict set since E ⊆ CP (G|E) and ψ ∪ E is un-
satisfiable.

Assume there exists a quasi-conflict set (ψ′, E′, G′) of ϕ such that (ψ′, E′, G′) ≺
(ψ,E,G|E). Since edges of G|E are minimally explained, we have necessarily ∀e ∈
Edge(G′), LG′(e) = LG|E (e), and the following cases:

1. ψ′ ⊂ ψ, E′ ⊆ E, G′ ⊆ G|E ,
2. or ψ′ ⊆ ψ, E′ ⊂ E, G′ ⊆ G|E ,
3. or ψ′ ⊆ ψ, E′ ⊆ E, G′ ⊂ G|E . In that case, suppose E′ = E. Then, we have

E ⊆ CP (G′). But this contradicts the fact that G′ ⊂ G|E . Consequently,
E′ ⊂ E.

In all cases, we get the strict inclusion ψ′ ∪E′ ⊂ ψ∪E. Since ψ∪E is a minimal
conflict set, ψ′ ∪ E′ is satisfiable. This contradicts the assumption.  !

Theorem 2 is the key to study the minimality of the our proof-producing
procedures.

Corollary 2. Consider a T -explanation engine μEX.
If μEX(Ω,E) = false{(Ω′, E′, G)}, then Ω′ ∪ E′ is a minimal conflict set and
(Ω′, E′, G|E′) is a minimal quasi-conflict set.
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Cong Ω; G
�
Ω; Insert(G,z = z′, {z = f(y1, . . . , yn), z′ = f(y′

1, . . . , y
′
n)} ∪

�
j∈J{yj = y′

j})

if

����
���

z = f(y1, . . . , yn), z′ = f(y′
1, . . . , y

′
n) ∈ Ω

z �= z′, (z, z′) /∈ CP (G)
I, J is a partition of {1, . . . , n} such that
(∀i ∈ I : yi = y′

i), (∀j ∈ J : (yj , y
′
j) ∈ CP (G))

Fig. 3. Congruence Closure with Explanation

Theorem 2 has also an interesting consequence when considering procedures for
convex theories (cf. Proposition 3).

Corollary 3. Let T be a convex (and non-trivial) theory. Given a deduction
complete and edge-minimal explanation graph G of a T -satisfiable set of literals
ϕ, and a set of elementary disequalities Δ, for any x = y ∈ Δ such that (x, y) ∈
CP (G), ({x = y}, {x = y}, G|{x=y}) is a minimal quasi-conflict set of ϕ∪Δ.

6 Explaining Satisfiability Procedures

We briefly discuss the problem of constructing deduction complete and edge-
minimal explanation graphs for E and LA and some of their extensions (e.g.,
the theory of lists or LA≤). The purpose of this Section is to illustrate how
readily available proof-producing procedures can be used in our framework, not
to provide new insights into the problem of building proof-producing procedures
for selected theories.

6.1 An E-Explanation Engine

Preliminarily, recall that given a set E of elementary equalities, UF (E) is a
deduction complete and edge-minimal explanation graph for Ec (see Section 3).
It is possible to build a congruence closure-like algorithm by using the rule
Cong in Figure 3. In fact, it is sufficient to exhaustively apply the rule Cong with
(Ω;UFV ar(Ω)(E)) as the initial configuration, where Ω is a set of non-elementary
flat literals and E is a set of elementary equalities. It is easy to see that this
process always terminates and the last component of a final configuration is a
deduction complete and edge-minimal explanation graph. We observe that this
abstract process can be efficiently implemented by using the algorithm in [11],
where entailment of equalities is encoded by a proof forest. Such a notion is quite
similar to that of explanation graph; the only difference being in the labelling of
edges: in a proof forest, when an edge (x, y) is labelled by {x = f(x1), y = f(y1)},
the equality x1 = y1 is left implicit, whereas in an explanation graph, the label
would be {x = f(x1), y = f(y1), x1 = y1}.

Unfortunately, the general method of Figure 1 to build explanations engines
cannot be applied here since the congruence closure algorithm above allows us to



248 S. Ranise, C. Ringeissen, and D.-K. Tran

Function μEXE (Ω,E)

G := UF V ar(Ω)(E)
If (∃G′ : (Ω; G) �Cong (Ω; G′)) Then Return true{G′}
Else Return true{G}

Fig. 4. An E-explanation engine

compute neither minimal conflict sets nor minimal explanations.3 Fortunately, it
is not difficult to obtain an E-explanation engine by using the rule Cong of Figure 3
as depicted in Figure 4, where %Cong denotes the exhaustive application of Cong.

Remark. In [9], we have shown that rewriting-based satisfiability procedures are
deduction complete for equational andHorn theories (e.g., the theory of lists) in the
sense that deduction complete sets of elementary equalities (cf. Definition 2) can
be extracted from saturated (w.r.t. a completion-like procedure) sets of clauses.
It is not difficult to obtain explanation engines from such rewriting-based proce-
dures by using the derived elementary equalities to build an explanation graph.
The following observations suggest how. First, recall that any sets of equalities is
satisfiable in equational and Horn theories. Second, the redundancy criteria of the
completion process subsumes the redundancy notion of the explanation graph (cf.
Section 3). Third, for every elementary equality e entailed by a satisfiable set ϕ of
literals, the set E of elementary equalities returned by the procedure is such that
E |= e iff e ∈ E∗. Finally, the labels of the graph can easily be obtained by using
the proof producing capabilities of many completion-based provers (such as the
E-prover [16]). So, the idea is simply to add an edge to the explanation graph and
label it with the set of literals used by the prover to derive it.

6.2 An LA-Explanation Engine

We show how a variant of the Gauss elimination algorithm (see, e.g., [15]) can be
used to build minimal conflict sets and explanations of elementary equalities. In
this way, the method in Figure 1 can be used to obtain an LA-explanation engine.

Below, GA denotes our variant of Gauss elimination. The input to GA is of
the form Γ |Δ, where Γ is a set of linear equalities and Δ is a set of disequalities.
Observe that l = r is equisatisfiable to l − r = s ∧ s = 0 where s is a fresh
variable, also called slack variable. The first step of GA consists in replacing each
disequality l = r in Δ with the equality l − r = s, where s is a slack variable.
From Γ |Δ , we obtain a system Γ |Γ ′ of equalities. The second step of GA is to
perform Gauss elimination on Γ |Γ ′ with the proviso that two equalities in Γ ′

should never be linearly combined4 (in other words, only combinations of two
3 To the best of our knowledge, this is a feature which is common to many proof-

producing procedures for equality [7,4,11].
4 We say that e + k ∗ e′ (for some number k �= 0) is a linear combination of the

equality e of the form a1 ∗ x1 + · · · + an ∗ xn = b and the equality e′ of the form
a′
1 ∗x1 + · · ·+ a′

n ∗xn = b′ if it is the result of simplifying the equality a1 ∗x1 + · · ·+
an ∗ xn + k ∗ (a′

1 ∗ x1 + · · · + a′
n ∗ xn) = b + k ∗ b′.
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equalities in Γ or an equality in Γ and one in Γ ′ are allowed). If we obtain an
equality of the form 0 = c (where c is a non zero constant) from Γ , then GA
returns the LA-unsatisfiability of Γ∪Δ. Also, if we obtain an equality of the form
s = 0 from Γ ′ where s is a slack variable, then GA returns the LA-unsatisfiability
of Γ ∪Δ. Otherwise, GA returns the LA-satisfiability of Γ ∪Δ.

Generating minimal conflict sets. When considering a new equality e, GA labels
it with a unique identifier  producing  : e. If  1 : t1 = 0 and  2 : t2 = 0 are
linearly combined so to obtain t1 +c∗ t2 = 0, then its label will be the expression
 1 + c∗  2. We also assume that expressions for labels are simplified according to
the usual arithmetic rules. In this way, when an unsatisfiable equality  : 0 = c
(with c = 0) or  : s = 0 (with s a slack variable) is detected by GA, the identifiers
occurring in the expression  will yield a minimal conflict set. To illustrate the
idea, consider the following example.

Example 1. Consider the input set ΓI to GA, and the related output:

ΓI :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 1 : x4 = x1

 2 : x5 = x2

 3 : x6 = x3

 4 : x5 + x4 = 4
 5 : x7 = x4

 6 : x7 = x5

 7 : x6 = 2
 8 : x1 = x2

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

−→GA

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

 1 : x4 = x1

 2 : x5 = x2

 3 : x6 = x3

 1 +  2 −  4 : x1 + x2 = 4
 5 −  1 : x7 = x1

0.5 6 − 0.5 5 + 0.5 4 −  1 : x1 = 2
 7 : x6 = 2

 8 +  6 +  2 −  5 −  1 : s = 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Notice that the disequality  8 : x1 = x2 in ΓI has been translated to  8 : x1−x2 =
s, where s is a slack variable. The unsatisfiable equation s = 0 (since s is a slack
variable) in the output set is labelled by the expression  8 +  6 +  2−  5−  1 and
so the minimal conflict is { 1,  2,  5,  6,  8}.

Explaining elementary equalities. Observe that if an equality x = y is entailed
by a system of linear equalities ti = 0 for i = 1, . . . , n, then x − y must be
a linear combination of ti, i ∈ {1, . . . , n}, i.e. x − y =

∑
i∈{1,...,n} λi ∗ ti such

that λk = 0 for (at least one) k in {1, . . . , n}. When GA cannot perform linear
combinations any more, it back-substitutes variables in order to compute the
most general solution of the system. As a consequence, equalities of the form
 ′i : xi = ti for i = 1, ...n are obtained where xi does not occur in ti. Then, GA
performs a guessing step, i.e. it picks two equalities  ′i : xi = ti and  ′j : xj = tj
(i = j) and checks the syntactical identity of ti and tj . If this is the case, then
xi − xj = 0 is entailed by the set of literals and its label is  ′i −  ′j.

Example 2. Consider the input set ΓI \ {x1 = x2} to GA, where ΓI is the same
of Example 1. It is easy to see that  6 −  5 −  1 −  2 : x1 − x2 = 0 is entailed
by  1, ...,  7 since the right hand sides of the labelled equalities, namely 0.5 6 −
0.5 5 + 0.5 4 −  1 : x1 = 2 and 0.5 5 + 0.5 4 −  2 − 0.5 6 : x2 = 2 are identical.
So, the minimal explanation of x1 = x2 is { 1,  2,  5,  6}.
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GA can be efficiently implemented as explained in [3]. However, notice that GA
has the additional capability to compute minimal explanations of elementary
equalities, which is crucial to enable the application of the method in Figure 1.

Remark. The technique underlying GA can be extended to produce minimal
conflict sets and explanations in LA≤. The key idea is to couple GA with a variant
of the Simplex algorithm (see, e.g., [15]) which keeps track of the constraints used
during its pivoting phase in a way similar to the one described above for GA.

7 Discussion

In this paper, we have proposed a method to modularly build conflict sets in
unions of theories by refining the Nelson-Oppen combination schema. The key
concept is that of explanation graph, which allows us to encode the fact that
a certain elementary equality is a logical consequence of a set of elementary
equalities. Explanation engines formalize proof-producing procedures capable of
computing explanation graphs. We have shown how to re-use (efficient) proof-
producing procedures available in the literature to build explanation engines.
Furthermore, explanation engines for unions of several theories can be obtained
as a by-product of our combination method. A suitable notion of minimality
(related to quasi-conflict sets) in unions of theories is also investigated.

In a slightly different context, our techniques could also be used to build
“equational reasoners” having the capability of computing a (small) witness
of unsatisfiability for equational problems such as unification, matching, and
word problems. For equational theories, there are satisfiability procedures with
the property of deriving elementary equalities (like unification or matching algo-
rithms) and deductive combination methods based on the propagation of elemen-
tary equalities [1,12]. Applying the techniques developed here to more general
equational reasoners appears to be a promising line of research.

Regarding the integration of constraint solvers in generic reasoning systems,
(e.g., SMT solvers), an alternative approach to producing conflict sets in com-
binations of theories have been proposed [2], which does not require the (direct)
combination of the solvers for the component theories. While the technique of [2]
may yield better performances for SMT problems, we believe our combination
method could become a key ingredient in the certification of the results produced
by solvers to be integrated in skeptical proof assistants (see, e.g., [8]).
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{Jacques.Chabin, Pierre.Rety}@univ-orleans.fr
http://www.univ-orleans.fr/lifo/Members/rety

Abstract. To combine tree languages with term rewriting, we introduce
a new class of tree languages, that both extends regular languages and
restricts context-free languages, and that is closed under intersection
(unlike context-free languages). To do it, we combine the concept of
visibly pushdown language, with top-down pushdown tree automata, and
we get the visibly pushdown tree automata. Then, we use them to express
the sets of descendants for a sub-class of growing term rewrite systems,
and thanks to closure under intersection, we get that joinability and
(restricted) unifiability are decidable.

Keywords: tree languages, term rewriting.

1 Introduction

Tree languages allow to express, manipulate, and decide properties over infi-
nite sets of first-order terms. This is why tree languages have been combined
with several other domains, like term rewriting [3,9], logic programming [10],
concurrency [12,5] (process algebra), protocol verification [4],...

We want to combine tree languages with term rewriting. However, to get
something interesting, it is desirable that the considered tree languages have
both a big expressivity and good properties. Since these two requirements are
contradictory, one will look for a middle-way in between. Regular tree languages
have good properties, but have a poor expressivity. Context-free tree languages
are much more expressive, but have fewer good properties, in particular they
are not closed under intersection. Some other expressive tree languages have the
same disadvantages [14,5,11], or do not extend regular languages [7].

In this paper, we introduce a new class of tree languages, that both extends
regular languages and restricts context-free languages, and that is closed under
intersection. To do it, we combine the concept of visibly pushdown language, al-
ready used for string languages [2], with the top-down pushdown tree automata
of I. Guessarian [6]. We call these new languages Visibly Pushdown Tree Lan-
guages (VPTL), and show that they are closed under union and intersection. As
a sub-class of context-free languages, membership and emptiness are decidable.
This work is presented in Section 2.
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Next, we define the Visibly Context-free Term Rewrite Systems (VCF-TRS)
as a sub-class of growing term rewrite systems. In [8] it is proved that the set
of predecessors of a given regular tree language by a linear (weakened to left-
linear in [13]) growing rewrite system, is also regular. Consequently reachability
is decidable. However, nothing has been proved about descendants (successors).
In this paper, we prove that the descendants of a given VPTL (which may be
regular) by a linear VCF-TRS, is also a VPTL. Since VPTL’s are closed under
intersection, joinability is decidable in linear VCF-TRS’s, whereas it is undecid-
able in growing rewrite systems. As a consequence, it is decidable whether two
linear terms with disjoint variables are unifiable modulo a confluent linear VCF-
TRS. Thanks to expressivity and closure under intersection, other applications
of VPTL’s should arise. This work is presented in Section 3.

2 Visibly Pushdown Tree Languages

A pushdown alphabet is a finite set Σ = Σc∪Σr∪Σl where Σc, Σr, Σl are disjoint.
Σc is the set of call symbols, Σr is the set of return symbols, Σl is the set of local
symbols. Intuitively, the automaton pushes onto the stack when it reads a call
symbol, it pops the stack when it reads a return symbol, and it leaves the stack
unchanged when it reads a local symbol.

Each symbol f ∈ Σ has a unique arity, denoted by ar(f). We consider a set
of variables V ar. The notions of first-order term, position, substitution, term
rewriting, are defined as usual. Let us just precise some notations. TΣ denotes
the set of ground terms over Σ. For a term t, V ar(t) is the set of variables
of t, Pos(t) is the set of positions of t. For p ∈ Pos(t), t(p) is the symbol of
Σ ∪ V ar occurring at position p in t, and t|p is the subterm of t at position p.
PosV ar(t) = {p ∈ Pos(t) | t(p) ∈ V ar}, PosNonV ar(t) = {p ∈ Pos(t) | t(p) ∈
V ar}. Note that if p ∈ PosNonV ar(t), t|p = f(t1, . . . , tn), and i ∈ {1, . . . , n},
then p.i is the position of ti in t. For p, p′ ∈ Pos(t), p < p′ means that p occurs
in t strictly above p′.

The automata defined below work top-down. States are binary symbols, whose
first argument is a term in TΣ∪V ar and the second argument is a stack. Stacks
are terms over the signature Π , which contains only unary symbols and one
constant.

Definition 1. A Visibly Pushdown Tree Automaton (VPTA) is a tuple A =
(Σ,Q, q0, Π, z0, Δ) where Σ is a pushdown alphabet, Q is a finite set of states
of arity 2, q0 ∈ Q is the initial state, Π is a finite set of stack symbols of arities
in {0, 1} which contains only one constant z0 (z0 is the empty stack), Δ is a
set of rewrite rules, called transitions, of the form (q, q1, . . . , qn ∈ Q, f ∈ Σ,
e, e1, . . . , en ∈ Π, x1, . . . , xn and z are variables) :

- q(f(x1, . . . , xn), z) → f(q1(x1, e1(z)), . . . , qn(xn, en(z))) if f ∈ Σc

- q(f(x1, . . . , xn), e(z)) → f(q1(x1, z), . . . , qn(xn, z)) if f ∈ Σr

- q(f(x1, . . . , xn), z0) → f(q1(x1, z0), . . . , qn(xn, z0)) if f ∈ Σr
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- q(f(x1, . . . , xn), z) → f(q1(x1, z), . . . , qn(xn, z)) if f ∈ Σl

- q(x, z) → q1(x, z) (empty transition)

f may be a constant, whereas e, e1, . . . , en are always unary.
The language L(A) recognized by A is L(A) = {t ∈ TΣ | q0(t, z0) →∗

Δ t}. A
set of terms that can be recognized be a VPTA is called Visibly Pushdown Tree
Language (VPTL).

Note that the automaton can check the stack top only if it reads a return symbol.

Example 1. Let
E = { cn

f

gn

a

s

hn

a

| n ∈ IN}

where cn = c(c(· · · c(. . .))) in which c occurs n times. E is a VPTL recognized
by the automaton A = (Σ,Q, q0, Π, z0, Δ) where Σc = {c}, Σr = {g, h, a},
Σl = {f, s}, Q = {q0, q1, q2, q3}, Π = {e}, and Δ = {

q0(c(x), z) → c(q0(x, e(z)))
q0(f(x, y), z) → f(q1(x, z), q2(y, z))

q1(g(x), e(z)) → g(q1(x), z)
q1(a, z0) → a

q2(s(x), z) → s(q3(x, z))
q3(h(x), e(z)) → h(q3(x), z)

q3(a, z0) → a }
Note that a checks that the current stack is the empty stack z0, which ensures
that there are exactly n occurrences of g and n occurrences of h.

Example 2. Let
E′ = { cn

f

gn

a

si

hj

a

| n, i, j ∈ IN ∧ i + j = n} and E′′ = { cn

f

gn

a

sn

hn

a

| n ∈ IN}

E′ is a VPTL if s is a return symbol. E′′ is not a VPTL : c should be call and
s, h should be return to be able to count n, but reading one c necessarily pushes
exactly one symbol onto the stack, and reading one s or one h pops exactly one
symbol from the stack.
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On the other hand, a language like {f(gn(a), hn(a)) | n ∈ IN} is not a VPTL,
since to check that the number of g and h are the same, we need to pop a stack
of height n in both branches, and no symbol (it was c in Languages E and E′)
enables to build such a stack.

Theorem 2

- If L is a regular tree language over Σ, then L is also a visibly pushdown
tree language over any partition Σc ∪Σr ∪Σl of Σ.

- Every visibly pushdown tree language is a context-free language.

Proof 1) Since L is regular, it can be recognized by a top-down automaton
without a stack A = (Σ,Q, q0, Δ). Let Π = {e, z0}, and Q′ be the set composed
of the states of Q considered as symbols of arity 2. Let Δ′ be the set of transitions
built as follows : for each non-empty transition
q(f(x1, . . . , xn)) → f(q1(x1), . . . , qn(xn)) of Δ, we add into Δ′ :

- q(f(x1, . . . , xn), z) → f(q1(x1, e(z)), . . . , qn(xn, e(z))) if f ∈ Σc

- q(f(x1, . . . , xn), e(z)) → f(q1(x1, z), . . . , qn(xn, z)) if f ∈ Σr

- q(f(x1, . . . , xn), z0) → f(q1(x1, z0), . . . , qn(xn, z0)) if f ∈ Σr

- q(f(x1, . . . , xn), z) → f(q1(x1, z), . . . , qn(xn, z)) if f ∈ Σl

and for each empty transition q(x) → q1(x) of Δ, we add into Δ′ :
- q(x, z) → q1(x, z)

The automaton A′ = (Σ,Q′, q0, Π, z0, Δ
′) is a VPTA which also recognizes L.

2) VPTA’s are particular cases of the top-down pushdown automata of [6],
which recognize exactly context-free tree languages.

Although VPTL’s are more expressive than regular tree languages, they still
have good properties.

Theorem 3. Visibly Pushdown Tree Languages are closed under union and in-
tersection. Emptiness and membership are decidable.

Unsurprisingly, the number of states (resp. transitions) of the union automaton
is in the order of the sum of the number of states (resp. transitions) of the initial
automata. The number of states (resp. transitions) of the intersection automaton
is in the order of the product of the number of states (resp. transitions) of the
initial automata if they have no empty transitions.

Proof. Let L1 and L2 be VPTL’s over the same pushdown alphabet Σ. Let
A1 = (Σ,Q1, q

1
0 , Π1, z

1
0 , Δ1) and A2 = (Σ,Q2, q

2
0 , Π2, z

2
0 , Δ2) be automata that

recognize L1 and L2 respectively. We assume that Q1 and Q2 are disjoint, and
Π1 and Π2 are disjoint.

1) L1∪L2 is recognized by A = (Σ,Q, q0, Π, z0, Δ) where Q = Q1∪Q2∪{q0},
Π = Π1∪Π2∪{z0} and Δ = Δ1∪Δ2∪{q0(x, z) → q1

0(x, z), q0(x, z) → q2
0(x, z)}.

2) L1 ∩L2 is recognized by A = (Σ,Q, q0, Π, z0, Δ) where Q = Q1×Q2, q0 =
(q1

0 , q
2
0), Π = Π1 ×Π2, z0 = (z1

0 , z
2
0), and Δ is the following set of transitions :
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- (q1, q2)(f(x1, . . . , xn), z) →
f((q1

1 , q
2
1)(x1, (e1

1, e
2
1)(z)), . . . , (q

1
n, q

2
n)(xn, (e

1
n, e

2
n)(z)))

if f ∈ Σc, q1(f(x1, . . . , xn), z) → f(q1
1(x1, e

1
1(z)), . . . , q1

n(xn, e1
n(z))) ∈ Δ1

and q2(f(x1, . . . , xn), z) → f(q2
1(x1, e

2
1(z)), . . . , q

2
n(xn, e2

n(z))) ∈ Δ2.
- (q1, q2)(f(x1, . . . , xn), (e1, e2)(z)) → f((q1

1 , q
2
1)(x1, z), . . . , (q1

n, q
2
n)(xn, z))

if f ∈ Σr, q1(f(x1, . . . , xn), e1(z)) → f(q1
1(x1, z), . . . , q1

n(xn, z)) ∈ Δ1 and
q2(f(x1, . . . , xn), e2(z)) → f(q2

1(x1, z), . . . , q2
n(xn, z)) ∈ Δ2.

- (q1, q2)(f(x1, . . . , xn), z0) → f((q1
1 , q

2
1)(x1, z0), . . . , (q1

n, q
2
n)(xn, z0))

if f ∈ Σr, q1(f(x1, . . . , xn), z1
0) → f(q1

1(x1, z
1
0), . . . , q1

n(xn, z1
0)) ∈ Δ1 and

q2(f(x1, . . . , xn), z2
0) → f(q2

1(x1, z
2
0), . . . , q2

n(xn, z2
0)) ∈ Δ2.

- (q1, q2)(f(x1, . . . , xn), z) → f((q1
1 , q

2
1)(x1, z), . . . , (q1

n, q
2
n)(xn, z))

if f ∈ Σl, q1(f(x1, . . . , xn), z) → f(q1
1(x1, z), . . . , q1

n(xn, z)) ∈ Δ1 and
q2(f(x1, . . . , xn), z) → f(q2

1(x1, z), . . . , q2
n(xn, z)) ∈ Δ2.

- (q1, q)(x, z) → (q1
1 , q)(x, z) if q ∈ Q2 and q1(x, z) → q1

1(x, z) ∈ Δ1.
- (q, q2)(x, z) → (q, q2

1)(x, z) if q ∈ Q1 and q2(x, z) → q2
1(x, z) ∈ Δ2.

Note that we crucially use the fact that A1 and A2 being VPTA’s over the same
pushdown alphabet, they synchronize on the push and pop operations on the
stack.

3) VPTA’s are particular Guessarian’s pushdown tree automata [6], which
have been proved to be equivalent to context-free languages (i.e. generated by
context-free grammars). Therefore emptiness and membership are decidable.

Remark 4. : VPTL’s are different from languages accepted by NP-NTA’s [1],
even if they have the same closure and decidability properties. Indeed, NP-NTA’s
deal with binary nested trees (sort of DAG’s), which are necessarily infinite (all
branches are infinite). Moreover, statuses call, return, local, are not attached to
symbols in Σ, they are attached to nodes, i.e. positions.

3 Visibly Context-Free Term Rewrite Systems

Definition 5. A rewrite system R is growing [8] if for every l → r ∈ R, each
variable occurring both in l and in r occurs at depth 0 or 1 in l.
A rewrite system R is context-free if for every l → r ∈ R, l = f(x1, . . . , xn)
where x1, . . . , xn are distinct variables.
A symbol is reducible if it occurs at the top of at least one rewrite rule. So, the
set of reducible symbols is RED(R) = {f ∈ Σ | ∃l → r ∈ R, l(ε) = f}.

Note that context-free is a restriction stronger than growing. However, even
if R is context free, joinability is undecidable, and in general the set of descen-
dants R∗({t}) is not a VPTL (otherwise emptiness of VPTL’s would be undecid-
able). This is why the stronger restriction visibly context-free is introduced in the
following.

Proposition 6. Joinability in context-free rewrite systems is undecidable.



Visibly Pushdown Languages and Term Rewriting 257

Proof. Let (u1, v1), . . . , (um, vm) be an instance of PCP (Post Correspondence
Problem). Let R = {f(x) → ui(f(i(x))) | i ∈ {1, . . . ,m}}∪{g(x)→ vi(g(i(x))) |
i ∈ {1, . . . ,m}} ∪ {f(x) → s(x), g(x) → s(x)}.
R is context-free. However
∃t | f(a) →∗

R t ∗R← g(a) ⇐⇒ R∗(f(a)) ∩R∗(g(a)) = ∅ ⇐⇒
∃i1, . . . , ik, j1, . . . , jk′ | ui1 . . . uiks ik . . . i1 = vj1 . . . vjk′ s jk′ . . . j1 ⇐⇒
k = k′ ∧ i1 = j1, . . . ik = jk ∧ ui1 . . . uik = vi1 . . . vik ⇐⇒ this PCP instance
has at least one solution.

Given a pushdown alphabet Σ and a term t, if we try to reduce q(t, z0) with
transitions of a VPTA over Σ, for each p ∈ Pos(t) the height of the current stack
obtained when reducing at position p depends only on call and return symbols
within t, and does not depend on q.

Definition 7. We define the weight w(f) of f ∈ Σ ∪ V ar by :
- w(f) = 1 if f ∈ Σc,
- w(f) = −1 if f ∈ Σr,
- w(f) = 0 if f ∈ Σl or f is a variable.

The height of stack is the mapping h : Pos(t) → Z defined inductively by :
- h(ε) = w(t(ε)),
- ∀p ∈ PosNonV ar(t), ∀i ∈ {1, . . . , ar(t(p))}, h(p.i) = h(p) + w(t(p.i)).

Definition 8. The linear context-free rewrite system R is visibly over the push-
down alphabet Σ = Σc ∪Σr ∪Σl if

- RED(R) ⊆ Σl

- ∀l → r ∈ R, V ar(l) = V ar(r) and ∀p ∈ PosNonV ar(r) :
- h(p) ≥ 0
- ∀i ∈ {1, . . . , ar(t(p))}(t(p.i) ∈ V ar =⇒ (h(p) = 0 ∧ ∀p′ < p, h(p′) > 0))

VCF-TRS means Visibly Context-Free Term Rewrite System.

Consequently, if l → r ∈ R, then l(ε) ∈ Σl, and
- r is a variable
- or r is shallow1 and r(ε) ∈ Σl

- or r(ε) ∈ Σc and every position just above a variable is the corresponding
return (it pops from the stack the symbol pushed by r(ε)).

Example 3. R = {f(x) → f(f(x)) is not visibly context-free, because f ∈
RED(R) ⊆ Σl and for Positions p = 1, p′ = ε in the right-hand-side, p is
just above a variable whereas p′ < p ∧ ¬(h(p′) > 0). Intuitively, in the right-
hand-side, to distinguish the language generated by reducing the inner f from
the one generated by the outer f , we need the stack. But the stack is not used
since every symbol is local.
1 Every variable occurs at depth 1.
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Now let c ∈ Σc and s ∈ Σr. R′ = {f(x) → c(f(f(s(x))))} is visibly context-
free.

R′′ = { f

x y

→ c

f

s

x

a

f

b u

y

}

is visibly-context free with Σc = {c}, Σr = {s, a, b, u}, Σl = {f}.
The TRS given in Example 4 (page 260) is visibly context-free.

Definition 9. Given a rewrite system R and a set of ground terms E, the set
of descendants of E by R is R∗(E) = {t′ ∈ TΣ | ∃t ∈ E, t →∗

R t′}.

Theorem 10. Let R be a linear visibly context-free rewrite system and E be a
visibly pushdown tree language over the same pushdown alphabet Σ. Then R∗(E)
is a also a visibly pushdown tree language over Σ.

Theorem 10 comes from the algorithm presented in the following section, which
is proved to be terminating, complete, and sound.

Corollary 11. Reachability and joinability are decidable for linear visibly context-
free rewrite systems.

Consequently, and according to the proof of Proposition 6, the PCP instances
such that R is visibly context-free form a decidable sub-class of PCP.

Theorem 12. It is decidable whether two linear terms with disjoint variables
are unifiable modulo a confluent linear VCF-TRS.

Proof. Let S be the set of all ground substitutions.
Since t and t′ have disjoint variables and R is confluent, t and t′ are R-unifiable
iff there exists θ, θ′ ∈ S s.t. θt →∗

R u ∗
R← θ′t′, which is equivalent to

R∗({σt | σ ∈ S}) ∩R∗({σ′t′ | σ′ ∈ S}) = ∅
Since t and t′ are linear, {σt | σ ∈ S} and {σ′t′ | σ′ ∈ S} are regular languages,
and from Theorem 2 are also VPTL’s. From Theorem 10, their descendants are
also VPTL’s. Then we can compute their intersection and check the emptiness.

3.1 Algorithm for Computing Descendants

The algorithm is illustrated by Example 4 (see below).
The algorithm starts with an automaton AE that recognizes E, and achieves

overlap steps. An overlap step overlaps a rewrite rule of R with a transition of
Δ , and adds new states and new transitions into the automaton. If a transition
existed already, it is not added.

Let l → r ∈ R. Since R is supposed to be linear visible context-free, l has
the form l = f(x1, . . . , xn) where f ∈ Σl (because f is reducible). If Δ contains
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a transition like q(f(x1, . . . , xn), z) → f(q1(x1, z), . . . , qn(xn, z)), a term of the
form C[σl] may be recognized by the automaton. In order to recognize C[σr]
as well, the algorithms adds states and transitions so that q(r, z) →∗

Δ θr where
θ = (x1/q1(x1, z), . . . , xn/qn(xn, z)). To do it, we introduce states qp for each
p ∈ PosNonV ar(r)\{ε}. If l → r causes several overlap steps, we re-use the
same states qp (otherwise, the algorithm would not terminate). Thanks to the
stack and the restrictions on R, it does not make a confusion, i.e. the algorithm is
sound. However, if r contains call and return symbols, we use new stack symbols
for each overlap step (otherwise the algorithm would not be sound).

To each transition is associated a unique identifier (i, p) where i ∈ IN and p is
a position. Intuitively, transition (i, p) has been created by the ith overlap step,
and allows to recognize the symbol r(p) for some l → r ∈ R. By convention, the
transitions of the initial automaton AE have identifiers of the form (0, p) (and
in this case, p’s are chosen arbitrarily).
We will write (i, p) ⊕ (l → r) to denote the overlap step between the transition
(i, p) and the rewrite rule l → r.

The Overlap Step (x, u) ⊕ (lj → rj). Let A be the current automaton, and
suppose that imax overlap steps have already been done. Let i = imax + 1.
Suppose there are lj → rj ∈ R and a transition in Δ of the form q(lj , z) → θlj
identified by (x, u).

In order to know which stack symbols should be popped by return symbols,
we first define a mapping stack : Pos(rj) → T{ek

i |k∈{1,...,armax(Σ)}}∪{z0}, in an
inductive way (armax(Σ) is the maximum arity of symbols in Σ). Intuitively,
stack(p) is the stack obtained when starting with the initial stack z0 and reading
rj until position p (just before reading the symbol that occurs at position p). For
a stack s, head(s) denotes the top symbol of s, and tail(s) is the stack obtained
by popping the head of s.

stack(ε) = z0

stack(p.k) =

∣
∣
∣
∣
∣
∣

stack(p) if rj(p) ∈ Σl

eki (stack(p)) if rj(p) ∈ Σc

tail(stack(p)) if rj(p) ∈ Σr

In the transitions below, each symbol of the form qyj is a state that encodes
position y of rj , except for border positions of rj , i.e. when y ∈ {ε}∪PosV ar(rj).
In this case we use the states coming from transition (x, u), hence :

- qεj = q

- ∀p.k ∈ PosV ar(rj), q
p.k
j = (θ(rj(p.k)))(ε).

For each p ∈ PosNonV ar(rj), we add into Δ the following transition (except if
it is already in Δ) identified by (i, p) :

- if rj(p) ∈ Σl : qpj (rj(p)(x1, . . . , xn), z) → rj(p)(q
p.1
j (x1, z), . . . , q

p.n
j (xn, z))

- if rj(p) ∈ Σc :
qpj (rj(p)(x1, . . . , xn), z) → rj(p)(q

p.1
j (x1, e

1
i (z)), . . . , q

p.n
j (xn, eni (z)))
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- if rj(p) ∈ Σr (let eki = head(stack(p))) : qpj (rj(p)(x1, . . . , xn), eki (z)) →
rj(p)(q

p.1
j (x1, z), . . . , q

p.n
j (xn, z))

- however, if rj ∈ V ar, we add : q(rj , z) → θrj (identified by (i, ε)).

Note that states do not depend on the current overlap step i, whereas stack
symbols do. States depend only on the rewrite rule number j.

Definition 13. Let Qsat denote the set of states, and Δsat denote the set of
transitions, saturated by overlap steps (all overlap steps have been achieved).

Example 4. Let Σc = {c, u}, Σr = {g, s, w}, Σl = {f, h, a}.

R = { f

x y

1→ c

f

g

x

h

s

y

, h

x

2→ u

h

w

x

} E = { f

a a

} then R∗(E) = { cn

f

gn

a

(uihwis)n

a

| n ∈ IN}

cn means c(c(· · · (c where c occurs n times, and
(uihwis)n

a

means ui1(h(wi1 (s(· · · (uin(h(win(s(a))))))))) for any i1, . . . , in ∈ IN.

We start with the following transitions which recognize E :
(0, ε) : qε0(f(x, y), z) → f(q1

0(x, z), q
1
0(y, z))

(0, 1) : q1
0(a, z) → a

The algorithm computes the overlaps steps and adds new transitions. Note that
once the first overlap step for one particular rewrite rule has been processed, the
other overlap steps for this rule add fewer transitions since some of the generated
transitions already exist.

- Overlap step (0, ε)⊕ rule1
(1, ε) : qε0(c(x), z) → c(q1

1(x, e1
1(z)))

(1, 1) : q1
1(f(x, y), z) → f(q1.1

1 (x, z), q1.2
1 (y, z))

(1, 1.1) : q1.1
1 (g(x), e1

1(z)) → g(q1
0(x, z))

(1, 1.2) : q1.2
1 (h(x), z) → h(q1.2.1

1 (x, z))
(1, 1.2.1) : q1.2.1

1 (s(x), e1
1(z)) → s(q1

0(x, z))

- Overlap step (1, 1)⊕ rule1
(2, ε) : q1

1(c(x), z) → c(q1
1(x, e1

2(z)))
(2, 1.1) : q1.1

1 (g(x), e1
2(z)) → g(q1.1

1 (x, z))
(2, 1.2.1) : q1.2.1

1 (s(x), e1
2(z)) → s(q1.2

1 (x, z))

- Overlap step (1, 1.2)⊕ rule2
(3, ε) : q1.2

1 (u(x), z) → u(q1
2(x, e1

3(z)))
(3, 1) : q1

2(h(x), z) → h(q1.1
2 (x, z))

(3, 1.1) : q1.1
2 (w(x), e1

3(z)) → w(q1.2.1
1 (x, z))
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- Overlap step (3, 1)⊕ rule2
(4, ε) : q1

2(u(x), z) → u(q1
2(x, e

1
4(z)))

(4, 1.1) : q1.1
2 (w(x), e1

4(z)) → w(q1.1
2 (x, z))

For readability, we omit parentheses for unary symbols. Consider the term
ccf(gga, uhwshsa), also denoted ccf(α, βγ) where α = gga, β = uhws, and
γ = hsa. This term is in R∗(E), and is recognized in the following way :

q0

c

c

f

α β

γ

z0

→(1,ε) c

q1
1

c

f

α β

γ

e1
1

z0

→(2,ε) c

c

q1
1

f

α β

γ

e1
2

e1
1

z0

→(1,1) c

c

f

q1.1
1

α e1
2

e1
1

z0

q1.2
1

β

γ

e1
2

e1
1

z0

Now, let us replace α, β, γ by their values :
q1.1
1 (α, e1

2e
1
1(z0)) = q1.1

1 (gg(a), e1
2e

1
1(z0)) →(2,1.1) g(q1.1

1 (g(a), e1
1(z0))) →(1,1.1)

gg(q1
0(a, z0)) →(0,1) gg(a) = α

On the other hand,
q1.2
1 (βγ, e1

2e
1
1(z0)) = q1.2

1 (uhwsγ, e1
2e

1
1(z0)) →(3,ε) u(q1

2(hwsγ, e1
3e

1
2e

1
1(z0))) →(3,1)

uh(q1.1
2 (wsγ, e1

3e
1
2e

1
1(z0))) →(3,1.1) uhw(q1.2.1

1 (sγ, e1
2e

1
1(z0))) →(2,1.2.1)

uhws(q1.2
1 (γ, e1

1(z0))) = β(q1.2
1 (hs(a), e1

1(z0))) →(1,1.2)

βh(q1.2.1
1 (s(a), e1

1(z0))) →(1,1.2.1) βhs(q1
0(a, z0)) →(0,1) βhsa = βγ

Note that although a is local (then does not check the stack top), the stack is
necessarily empty when a is recognized, which ensures that there are as many
c occurrences as g occurrences. This is due to the fact that the transitions deal
with the outermost c and the innermost g as particular cases.

A consequence of Example 4 is :

Proposition 14. Regular languages are not closed under rewriting by linear
VCF-TRS.

3.2 Termination

Although each overlap step uses new stack symbols, the algorithm terminates.
It comes from the fact that when computing an overlap step (x, u)⊕ (lj → rj),
transition (x, u) necessarily deals with a reducible symbol of Σ, which is local.

Proposition 15. Qsat and Δsat are finite.

Proof. Let AE = (Σ,QE , q0, ΠE , z0, ΔE) be the initial automaton, i.e. an au-
tomaton that recognizes the initial language E. ¿From the algorithm

Qsat = QE ∪ {qpj | lj → rj ∈ R, p ∈ PosNonV ar(rj)\{ε}}
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Then Qsat is finite.
In the following, for any finite set S, |S| will denote the number of elements

of S. Let f ∈ RED(R). Since RED(R) ⊆ Σl, every transition in Δsat that uses
f is of the form :

s(f(x1, . . . , xn), z) → f(s1(x1, z), . . . , sn(xn, z))

where s, s1, . . . , sn ∈ Qsat. Then the number of transitions in Δsat that uses
a reducible symbol is less than or equal to x = |RED(R)| × |Qsat|armax(Σ)+1

where armax(Σ) is the maximum arity of symbols in Σ.
Then the number of overlap steps is less than or equal to y = x× |R|. Therefore

|Δsat| ≤ |ΔE | + y ×Max({|PosNonV ar(rj)| | lj → rj ∈ R} ∪ {1})

Note that · · · ∪{1} comes from the fact that in an overlap step, a collapsing rule
generates one new empty transition, whereas the number of positions of its rhs
is 0.

3.3 Completeness

Lemma 16. Let l → r ∈ R, q ∈ Qsat, s be a stack, and σ be a substitution.
If q(l, s) →Δsat σl, then q(r, s) →∗

Δsat
σr.

Proof. According to the form of transitions, σ is necessarily of the form σ =
(x1/q1(x1, s), . . . , xn/qn(xn, s)).
By hypothesis q(l, s) →(i,j) σl. Then Transition (i, j) = (q(l, z) → θl) where z is
a variable and θ = (x1/q1(x1, z), . . . , xn/qn(xn, z)).
The overlap step (i, j) ⊕ (l → r) has been computed within Δsat, then q(r, z)
→∗
Δsat

θr. By instantiating z by s, we get q(r, s) →∗
Δsat

σr.

Lemma 17. Let t ∈ TΣ and l → r ∈ R. Recall that q0 is the initial state and
z0 is the initial stack.
If q0(t, z0) →∗

Δsat
t and t →[p,l→r,γ] t

′, then q0(t′, z0) →∗
Δsat

t′.

Proof. From the hypotheses, t|p = γl and
q0(t, z0) →∗

Δsat
t[p← q(γl, s)] →Δsat t[p ← θl] →∗

Δsat
t[p ← γl] = t

where θ = (x1/q1(γx1, s), . . . , xn/qn(γxn, s)).
Then q(l, s) →Δsat σl where σ = (x1/q1(x1, s), . . . , xn/qn(xn, s)). ¿From the

previous lemma, q(r, s) →∗
Δsat

σr, then γq(r, s) = q(γr, s) →∗
Δsat

γσr = θr.
Therefore
q0(t

′, z0)=q0(t[p←γr], z0)→∗
Δsat

t[p←q(γr, s)]→∗
Δsat

t[p←θr]→∗
Δsat

t[p←γr]= t′

Proposition 18. If t is recognized by the saturated automaton, and t →∗
R t′,

then t′ is also recognized by the saturated automaton.

Proof. From the previous lemma, and by induction on the length of t →∗
R t′.
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3.4 Soundness

Proving soundness is more difficult, and needs to take into account all the re-
strictions.

Definition 19. A transition in Δsat identified by (i, p) is a base-transition if
i = 0 and p = ε.
In other words, a base-transition is a transition created by an overlap step and
that recognizes the top symbol r(ε) for some l → r ∈ R.

Definition 20. If the transition identified by (i′, p′) has been added into Δsat

by the overlap step (i, p)⊕ l → r, we write parent(i′, p′) = (i, p)⊕ l → r.

The following lemma means that if a base transition is used, then an instance of
the right-hand-side of some rewrite rule is recognized.

Lemma 21. If q0(t, z0) →∗
Δsat

→[p,(x′,y′)] t
′ →∗

Δsat
t such that (x′, y′) is a base-

transition (let parent(x′, y′) = (x, y)⊕ lk→rk) and no base-transition is used in
t′ →∗

Δsat
t, then there is a substitution σ such that t|p = σ(rk).

Proof. - If rk is a variable, necessarily ∃σ | t|p = σ(rk).
- if rk is of the form f(x1, . . . , xn), rewriting by (x′, y′) generates f(. . .), then
t|p(ε) = f . Consequently tp is an instance of rk.

- Otherwise, rewriting by (x′, y′) generates rk(ε)(q1
k(. . .), . . . , q

n
k (. . .)). Accord-

ing to the form of the transitions added by the algorithm, rewriting (in one
step) any state quj generates rj(u), except if a base-transition is used. Since
no base-transition is used within t′ →∗

Δsat
t, then each qik(. . .) generates an

instance of rk|i, therefore the sub-derivation →[p,(x′,y′)] t
′ →∗

Δsat
t generates

an instance of rk. Thus t|p is an instance of rk.

The following lemma means (loosely) that if the right-hand-side of some rewrite
rule is recognized using a base-transition (which is a transition added by the
algorithm), then the corresponding left-hand-side is also recognized. The idea is :
if a right-hand-side is not recognized by the initial automaton, but is recognized
using some transitions added by the algorithm, then it should be a descendant
of a term (the corresponding lhs) recognized by older transitions.

Lemma 22. Let l → r ∈ R, and we write V ar(r) = {x1, . . . , xn}. Let s be a
stack, q, q1, . . . , qn ∈ Qsat, σ = (x1/q1(x1, s), . . . , xn/qn(xn, s)), and (i, ε) be a
base-transition in Δsat such that parent(i, ε) = (j, u)⊕ l→r.
If q(r, s) →[(i,ε)] t

′ →∗
Δsat

σr and no base-transition is used within t′ →∗
Δsat

σr,
then q(l, s) →[(j,u)] σl and j < i.

Proof. Since R is visibly context-free :
- If r is shallow or is a variable, then r(ε) ∈ V ar∪Σl. So, Transition (i, ε) does
not modify the stack, and variables of r occurs at depth at most 1. Therefore
t′ = σ(r(ε)(r|1 , . . . , r|k)). ¿From the algorithm, (j, u) = (q(l, z)→ θl) where
θ = (x1/q1(x1, z), . . . , xn/qn(xn, z)), and j < i. By instantiating z by s we
get q(l, s) →[(j,u)] σl.
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- Otherwise, r(ε) ∈ Σc and for every p ∈ PosNonV ar(r) located just above
a variable, r(p) is the corresponding return. Since each overlap step uses
new stack symbols, rewrite steps within t′ →∗

Δsat
σr at such positions p use

transitions also created by the overlap step (j, u) ⊕ l → r (i.e. transitions
identified by (i, . . .)). ¿From the algorithm, (j, u) = (q(l, z) → θl) where
θ = (x1/q1(x1, z), . . . , xn/qn(xn, z)), and j < i. By instantiating z by s we
get q(l, s) →[(j,u)] σl.

Definition 23. Let t be a ground term. A successful derivation for t is a deriva-
tion D that allows to recognizes t, i.e. of the form

D = q0(t, z0) →[(i1,p1)] . . . →[(ik,pk)] t

The composed length of D is |D| = i1 + · · ·+ ik.
The term recognized by D is term(D) = t.

Terms recognized by successful derivations are descendants indeed.

Proposition 24. For every successful derivation D in the saturated automaton,
term(D) ∈ R∗(E).

Proof. By strong induction on |D|.
If D uses only transitions of the initial automaton AE (that recognizes E),

the property trivially holds. Otherwise D uses at least one transition created by
an overlap step. Consider the first step of D that uses a transition (say (il, pl))
created by an overlap step :

D = q0(t, z0) →∗
ΔE

t1 →[(il,pl)]→∗
Δsat

t

t1 does not contains states added by the algorithm, i.e. states of the form qpj .
But the transitions created by an overlap step that are not base-transitions are
of the form qpj (. . .) → . . .. Therefore (il, pl) is necessarily a base-transition.

Thus D contains at least one base-transition. Now consider the last step of D
that uses a base transition (say (i, p′)) :

D = q0(t, z0) →∗
Δsat

t′′ →[p,(i,p′)] t
′ →∗

Δsat
t

No base-transition is used within t′ →∗
Δsat

t. Then we have the derivation :

E = t′′|p=q(t|p, s) →[ε,(i,p′)] u →∗
Δsat

t|p
and no base-transition is used within u →∗

Δsat
t|p.

Let parent(i, p′) = (j, p′′)⊕ lk→ rk. Then j < i. From Lemma 21, ∃σ | t|p =
σrk, then

E = q(σrk, s) →[ε,(i,p′)] u →∗
Δsat

σrk

From the form of transitions, and since rk is linear, we can deduce from E :
q(rk, s) →[ε,(i,p′)] u →∗

Δsat
θrk and σθrk →∗

Δsat
σrk

where V ar(rk) = {x1, . . . , xn} and θ = (x1/q1(x1, s), . . . , xn/qn(xn, s)), because
the stack is not modified since ∀p ∈ PosV ar(rk), w(p) = 0.

From Lemma 22, q(lk, s) →[(j,p′′)] θlk. Then we have the derivation :

G = q(σlk, s) →[(j,p′′)] σθlk →∗
Δsat

σlk
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|G| < |E| since j < i.
Consider D again. t′′|p = q(t|p, s) and σlk is a ground term without states.

Therefore we have the derivation :
H = q0(t[p←σlk], z0) →∗

Δsat
t′′[p←q(σlk, s)] →∗

Δsat
t[p←σlk]

H is a successful derivation and |H | < |D|. By induction hypothesis t[p←σlk] ∈
R∗(E). Since t[p←σlk] →R t[p←σrk]= t, we have t ∈ R∗(E).

4 Conclusion

A question arises : are visibly pushdown tree languages closed under complemen-
tation ? This property holds for visibly pushdown string languages [2]. When
dealing with trees, it seems to hold as well. However, it is difficult to prove it,
since our automata work top-down, and top-down automata cannot be deter-
minized, unlike bottom-up automata. Moreover, the stack is duplicated by n-ary
symbols, which is a major difference with respect to strings.

On the other hand, the algorithm for computing descendants could be ex-
tended to allow reducible symbols that are call or return.

Thanks to expressivity and properties, we hope that visibly pushdown tree
languages, as well as visibly context-free rewrite systems, could be used in other
domains as decision procedures.
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Abstract. We introduce a propositional encoding of the recursive path
order with status (RPO). RPO is a combination of a multiset path order
and a lexicographic path order which considers permutations of the argu-
ments in the lexicographic comparison. Our encoding allows us to apply
SAT solvers in order to determine whether a given term rewrite system
is RPO-terminating. Furthermore, to apply RPO within the dependency
pair framework, we combined our novel encoding for RPO with an exist-
ing encoding for argument filters. We implemented our contributions in
the termination prover AProVE. Our experiments show that due to our
encoding, combining termination provers with SAT solvers improves the
performance of RPO-implementations by orders of magnitude.

1 Introduction

Since the past year, several papers have illustrated the huge potential in applying
SAT solvers for various types of termination problems for term rewrite systems
(TRSs). The key idea is classic: the specific termination problem for a TRS R is
encoded to a propositional formula ϕ which is satisfiable if and only if R has the
desired termination property. Satisfiability of ϕ is tested using a state-of-the-art
SAT solver and the termination proof for R is reconstructed from a satisfying
assignment of ϕ. However, in order to obtain significant speedups, it is crucial
to base the approach on polynomial encodings which are also small in practice.

The first such attempt addresses LPO-termination [16]. This work is based
on BDDs and does not yield competitive results. A significant improvement is
described in [3] and further extended in [4,23] for argument filters as used in
the popular dependency pair framework [1,10] for termination of TRSs. Both [3]
and [4,23] describe extremely fast SAT-based implementations. Successful SAT
encodings of other termination techniques are presented in [8,9,14,24]. A common
theme in all of these works is to represent (finite domain) integer variables as
binary numbers in bit representation and to encode arithmetic constraints as
Boolean functions on these representations.
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This paper introduces the first SAT-based encoding for recursive path or-
ders. The main new and interesting contributions are (1) the encoding for the
lexicographic comparison w.r.t. permutations, (2) the encoding for the multi-
set extension of the base order, and (3) the combination of the encoding for
precedences and argument filters in order to use RPO with dependency pairs.

Our encoding of RPO is implemented in the termination prover AProVE [11].
The combination of a termination prover with a SAT solver yields a surprisingly
fast implementation of RPO. All 865 TRSs in the Termination Problem Data
Base (TPDB) [21] are analyzed in about 100 seconds for the case of strict prece-
dences. Allowing non-strict precedences takes about 3 times longer. Moreover,
power increases considerably compared to the implementation of LPO described
in [4]: 27 additional termination proofs are obtained. The TPDB is the collection
of examples used in the annual International Termination Competition [19].

After the necessary preliminaries on RPO in Sect. 2, Sect. 3 shows how to
encode both multiset comparisons and lexicographic comparisons w.r.t. permu-
tations, and how to combine them into a single class of orders. Sect. 4 combines
these encodings with the concept of argument filters. In Sect. 5 we describe
the implementation of our results and provide extensive experimental evidence
indicating speedups in orders of magnitude. We conclude in Sect. 6.

2 Preliminaries

The classical approach to prove termination of a TRS R is to find a reduction
order � which orients all rules  → r in R (i.e.,  � r). A reduction order is an
order which is well founded, monotonic, and stable (closed under contexts and
substitutions). In practice, most reduction orders amenable to automation are
simplification orders [6]. We refer to [2] for further details on term rewriting.

Three of the most prominent simplification orders are the lexicographic path
order (LPO) [15], the multiset path order (MPO) [6], and the recursive path order
(RPO) [18] which combines the lexicographic and multiset path order allowing
also permutations in the lexicographic comparison. This section introduces their
definitions using a formulation that is suitable for the subsequent SAT encoding.

We assume an algebra of terms constructed over sets of function symbols F
and variables V . For a quasi-order  (i.e., a transitive and reflexive relation), we
define s � t iff s  t and t  s and we define s ∼ t iff both s  t and t  s.
Path orders are defined in terms of lexicographic and multiset extensions of a
base order (on terms). We often denote tuples of terms as s̄ = 〈s1, . . . sn〉, etc.

Definition 1 (lexicographic extension). Let  be a quasi-order. The lexico-
graphic extensions of �, ∼, and  are defined on sequences of terms:

• 〈s1, . . . , sn〉∼lex 〈t1, . . . , tm〉 if and only if n = m and si ∼ ti for all 1 ≤ i ≤ n
• 〈s1, . . . , sn〉 �lex 〈t1, . . . , tm〉 if and only if (a) m = 0 and n > 0;

or (b) s1 � t1; or (c) s1 ∼ t1 and 〈s2, . . . , sn〉 �lex 〈t2, . . . , tm〉.
• lex = ∼lex ∪ �lex
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So for tuples of numbers s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈3, 2, 5, 6〉, we have s̄ >lex t̄ as
s1 = t1 and s2 > t2 (where > is the usual order on numbers).

The multiset extension of an order � is defined as follows: s̄ �mul t̄ holds if t̄
is obtained by replacing at least one element of s̄ by a finite number of (strictly)
smaller elements. However, the order of the elements in s̄ and t̄ is irrelevant.
For example, let s̄ = 〈3, 3, 4, 0〉 and t̄ = 〈4, 3, 2, 1, 1〉. We have s̄ >mul t̄ because
s1 = 3 is replaced by the smaller elements t3 = 2, t4 = 1, t5 = 1 and s4 = 0
is replaced by zero smaller elements. So each element in t̄ is “covered” by some
element in s̄. Such a cover is either by a larger si (then si may cover several tj) or
by an equal si (then one si covers one tj). In this paper we formalize the multiset
extension by a multiset cover which is a pair of mappings (γ, ε). Intuitively, γ
expresses which elements of s̄ cover which elements in t̄ and ε expresses for which
si this cover is by means of equal terms and for which by means of greater terms.
This formalization facilitates encodings to propositional logic.

So in the example above, we have γ(1) = 3, γ(2) = 2 (since t1 is covered by
s3 and t2 is covered by s2), and γ(3) = γ(4) = γ(5) = 1 (since t3, t4, and t5 are
all covered by s1). Moreover, ε(2) = ε(3) = true (since s2 and s3 are replaced
by equal components), whereas ε(1) = ε(4) = false (since s1 and s4 are replaced
by (possibly zero) smaller components). Of course, in general multiset covers are
not unique. For example, t2 could also be covered by s1 instead of s2.

Definition 2 (multiset cover). Let s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 be
tuples of terms. A multiset cover (γ, ε) is a pair of mappings γ : {1, . . . ,m} →
{1, . . . , n} and ε : {1, . . . , n} → {false, true} such that for each 1 ≤ i ≤ n, if ε(i)
(indicating equality) then {j | γ(j) = i} is a singleton set.

For s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉 we define that s̄ mul t̄ if there exists
a multiset cover (γ, ε) such that γ(j) = i implies that either: ε(i) = true and
si ∼ tj , or ε(i) = false and si � tj .

Definition 3 (multiset extension). Let  be a quasi-order on terms. The
multiset extensions of , �, and ∼ are defined on tuples of terms:

• 〈s1, . . . , sn〉 mul 〈t1, . . . , tm〉 if and only if there exists a multiset cover (γ, ε)
such that for all i, j, γ(j) = i ⇒ (if ε(i) then si ∼ tj else si � tj).

• 〈s1, . . . , sn〉 �mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 mul 〈t1, . . . , tm〉
and for some i, ¬ε(i), i.e., some si is not used for equality but rather replaced
by zero or more smaller arguments tj.

• 〈s1, . . . , sn〉 ∼mul 〈t1, . . . , tm〉 if and only if 〈s1, . . . , sn〉 mul 〈t1, . . . , tm〉,
n = m, and for all i, ε(i), i.e., all si are used to cover some tj by equality.

Let ≥F denote a quasi-order (a so-called precedence) on the set of function
symbols F and let >F = (≥F \ ≤F) and ≈F = (≥F ∩ ≤F ). Then ≥F induces
corresponding lexicographic and multiset path orders on terms.

Definition 4 (lexicographic and multiset path orders). For a precedence
≥F and ρ ∈ {lpo,mpo} we define the relations �ρ and ∼ρ on terms. We use the
notation s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉.
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• s �ρ t iff s = f(s̄) and one of the following holds:
(1) si �ρ t or si ∼ρ t for some 1 ≤ i ≤ n; or
(2) t = g(t̄) and s �ρ tj for all 1 ≤ j ≤ m and either:

(i) f >F g or (ii) f ≈F g and s̄ �extρ t̄;
• s ∼ρ t iff (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈F g, and s̄ ∼extρ t̄;

where �extρ and ∼extρ are the lexicographic or multiset extensions of �ρ and ∼ρ
for the respective cases when ρ = lpo and ρ = mpo.

Example 1. Consider the following three TRSs for adding numbers:

(a) { add(0, y) → y , add(s(x), y) → add(x, s(y)) }
(b) { add(x, 0) → x , add(x, s(y)) → s(add(y, x)) }
(c) { add(x, 0) → x , add(x, s(y)) → add(s(x), y) }
Example (a) is LPO-terminating for the precedence add >F s, but not MPO-
terminating for any precedence. Example (b) is MPO-terminating for add >F s,
but not LPO-terminating for any precedence as the second rule swaps x and y.
Example (c) is neither LPO- nor MPO-terminating. However, termination could
be proved using a path order where lexicographic comparison proceeds from right
to left instead of left to right. The following definitions extend this observation
to arbitrary permutations of the order in which we compare arguments.

As remarked before, the RPO combines such an extension of the LPO with
MPO. This combination is facilitated by a status function which indicates for
each function symbol if its arguments are to be compared based on a multiset
extension or based on a lexicographic extension using some permutation μ.

Definition 5 (status function). A status function σ maps each symbol f ∈ F
of arity n either to the symbol mul or to a permutation μf on {1, . . . , n}.

Definition 6 (recursive path order with status). For a precedence ≥F and
status function σ we define the relations �rpo and ∼rpo on terms. We use the
notation s̄ = 〈s1, . . . sn〉 and t̄ = 〈t1, . . . tm〉.

• s �rpo t iff s = f(s̄) and one of the following holds:
(1) si �rpo t or si ∼rpo t for some 1 ≤ i ≤ n; or
(2) t = g(t̄) and s �rpo tj for all 1 ≤ j ≤ m and either:

(i) f >F g or (ii) f ≈F g and s̄ �f,grpo t̄;
• s ∼rpo t iff (a) s = t; or (b) s = f(s̄), t = g(t̄), f ≈F g, and s̄ ∼f,grpo t̄;

where �f,grpo and ∼f,grpo are the tuple extensions of �rpo and ∼rpo defined by:

• 〈s1, . . . sn〉 �f,grpo 〈t1, . . . tm〉 iff one of the following holds:
(1) σ maps f and g to permutations μf and μg; and

μf 〈s1, . . . , sn〉 �lexrpo μg〈t1, . . . , tm〉;
(2) σ maps f and g to mul; and 〈s1, . . . sn〉 �mulrpo 〈t1, . . . tm〉.

• 〈s1, . . . sn〉 ∼f,grpo 〈t1, . . . tm〉 iff one of the following holds:
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(1) σ maps f and g to μf and μg; and μf 〈s1, . . . , sn〉 ∼lexrpo μg〈t1, . . . , tm〉;
(2) σ maps f and g to mul; and 〈s1, . . . sn〉 ∼mulrpo 〈t1, . . . tm〉.

Def. 6 can be specialized to capture the previous path orders by taking spe-
cific forms of status functions: LPO when σ maps all symbols to the identity
permutation; lexicographic path order w.r.t. permutation (LPOS) when σ maps
all symbols to some permutation; MPO when σ maps all symbols to mul.

The RPO termination problem is to determine for a given TRS if there exists
a precedence and a status function such that the system is RPO-terminating.
There are two variants of the problem: “strict-” and “quasi-RPO termination”
depending on if the precedence ≥F is strict or not (i.e., on whether f ≈F g
can hold for f = g). The corresponding decision problems, strict- and quasi-
RPO termination, are decidable and NP complete [5]. In this paper we address
the implementation of decision procedures for RPO termination problems by
encoding them into corresponding SAT problems.

3 Encoding RPO Problems

We introduce an encoding τ which maps constraints of the form s �rpo t to
propositional statements about the status and the precedence of the symbols in
the terms s and t. A satisfying assignment for the encoding of such a constraint
indicates a precedence and a status function such that the constraint holds.

The first part of the encoding is straightforward and similar to the one in
[3,4]. All “missing” cases (e.g., τ(x �rpo t) for variables x) are defined to be
false.

τ(f(s̄) �rpo t) =

n�
i=1

(τ(si �rpo t) ∨ τ(si ∼rpo t)) ∨ τ2(f(s̄) �rpo t) (1)

τ2(f(s̄) �rpo g(t̄)) =
m�

j=1

τ(f(s̄) �rpo tj) ∧
�

(f >F g)∨
((f ≈F g) ∧ τ(s̄ �f,g

rpo t̄))

�
(2)

τ(s ∼rpo s) = true (3)

τ(f(s̄) ∼rpo g(t̄)) = (f ≈F g) ∧ τ(s̄ ∼f,g
rpo t̄) (4)

The propositional encoding of the “partial order constraints” of the form f >F g
and f ≈F g is performed following the approach applied in [3,4]. The basic idea
is to interpret the symbols in F as indices in a partial order taking finite domain
values from the set {0, . . . ,m−1} where m is the number of symbols in F . Each
symbol f ∈ F is then represented using 2log2 m3 propositional variables and the
constraints are encoded as integer constraints on the binary representations.

In Sect. 3.1 and 3.2. we encode lexicographic comparisons w.r.t. permutations
and multiset comparison. Then in Sect. 3.3 we combine them into �f,grpo and ∼f,grpo.

3.1 Encoding Lexicographic Comparisons w.r.t. Permutation

For lexicographic comparisons with permutations, we associate with each symbol
f ∈ F (of arity n) a permutation μf encoded through n2 propositional variables
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fi,k with i, k ∈ {1, . . . , n}. Here, fi,k is true iff μf (i) = k (i.e., the i-th argument
of f(s1, . . . , sn) is considered at k-th position when comparing lexicographically).
To ease presentation, we define that fi,k is false for k > n.

For the encoding to be correct, we impose constraints on the variables fi,k
to ensure that they indeed correspond to a permutation on {1, . . . , n}. So for
each i ∈ {1, . . . , n} there must be exactly one k ∈ {1, . . . , n} and for each
k ∈ {1, . . . , n} there must be exactly one i ∈ {1, . . . , n} such that fi,k is true.

We denote by one(b1, . . . , bn) the constraint expressing that exactly one of the
bits b1, . . . , bn is true. Then our encoding includes a formula of the form

�
f/n∈F

�
n�

i=1

one(fi,1, . . . , fi,n) ∧
n�

k=1

one(f1,k, . . . , fn,k)

�
(5)

We apply a linear encoding to propositional logic for constraints of the form
one(b1, . . . , bn) which introduces ≈ 2n fresh Boolean variables which we denote
here as one(bi, . . . , bn) (expressing that one of the variables bi, . . . , bn is true)
and zero(bi, . . . , bn) (expressing that all of the variables bi, . . . , bn are false) for
1 < i ≤ n. The encoding applies a ternary propositional connective x → y ; z
(denoting if-then-else) equivalent to (x → y) ∧ (¬x → z):

�
1≤i≤n

�
�

�
one(bi, . . . , bn) ↔

�
(bi → zero(bi+1, . . . , bn)

; one(bi+1, . . . , bn)

��
∧ (zero(bi, . . . , bn) ↔ ¬bi ∧ zero(bi+1, . . . , bn))

	



where one(bn+1, . . . , bn) = false and zero(bn+1, . . . , bn) = true. This encoding
introduces ≈ 2n conjuncts each involving a formula with at most 4 Boolean
variables. So the encoding is more concise than the more straightforward one
which introduces a quadratic number of conjuncts ¬bi∨¬bj for all 1 ≤ i < j ≤ n.

Now consider the encoding of s̄ ∼f,grpo t̄ and s̄ �f,grpo t̄ for the case where the
arguments of f and g are compared lexicographically (thus, we use the notation
∼f,glex and �f,glex). Like in Def. 6, let s̄ = 〈s1, . . . , sn〉 and t̄ = 〈t1, . . . , tm〉. Now
equality constraints of the form s̄ ∼f,glex t̄ are encoded by stating that for all k, the
arguments si and tj used at the k-th position in the comparison (as denoted by
fi,k and and gj,k) must be equal. This implies that s̄ ∼f,glex t̄ only holds if n = m.

τ(s̄ ∼f,g
lex t̄) = (n = m) ∧

�
� n�

k=1

n�
i=1

m�
j=1

fi,k ∧ gj,k → τ(si ∼rpo tj)

	

 (6)

To encode s̄ �f,glex t̄, we define auxiliary relations �f,g,klex , where k ∈ IN denotes
that the k-th component of s̄ and t̄ is currently being compared. Thus �f,glex =
�f,g,1lex , since the comparison starts with the first component. For any k, there
are three cases to consider when encoding s̄ �f,g,klex t̄. If there is no si that can
be used for the k-th comparison (i.e., k > n), then we encode to false. If there
is such an si but no such tj (i.e., m < k ≤ n), then we encode to true. If there
are both an si and a tj used for the k-th comparison (i.e., fi,k and gj,k hold),
then we encode to a disjunction that either si is greater than tj , or si is equal
to tj , and we continue the encoding at position k + 1. Since exactly one fi,k is
true, the disjunction and conjunction over all fi,k (with i ∈ {1, ..., n}) coincide
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(similar for gj,k). Here, we use a disjunction of conjunctions, as this will be more
convenient in Sect. 4.

τ(s̄ �f,g,k
lex t̄) =

�����
�����

false if k > n

true if m < k ≤ n�n
i=1

�
fi,k ∧

��m
j=1 gj,k → otherwise

(τ(si �rpo tj) ∨ (τ(si ∼rpo tj) ∧ τ(s̄ �f,g,k+1
lex t̄)))

�� (7)

Example 2. Consider again the TRS of Ex. 1(c):

{ add(x, 0) → x , add(x, s(y)) → add(s(x), y) }
In the encoding of the constraints for the second rule, we have to encode the
comparison 〈x, s(y)〉 �add,add,1

lex 〈s(x), y〉, which yields:�
add1,1 ∧

�
add1,1 →

�
τ(x �rpo s(x)) ∨ (τ(x ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �add,add,2

lex
〈s(x), y〉))

��
∧
�
add2,1 →

�
τ(x �rpo y) ∨ (τ(x ∼rpo y) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
�� �

∨
�
add2,1 ∧

�
add1,1 →

�
τ(s(y) �rpo s(x)) ∨ (τ(s(y) ∼rpo s(x)) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
��

∧
�
add2,1 →

�
τ(s(y) �rpo y) ∨ (τ(s(y) ∼rpo y) ∧ τ(〈x, s(y)〉 �add,add,2

lex 〈s(x), y〉))
���

Seeing that τ(x �rpo s(x)) = τ(x ∼rpo s(x)) = τ(x �rpo y) = τ(x ∼rpo y) =
τ(s(y) �rpo s(x)) = τ(s(y) ∼rpo s(x)) = false and τ(s(y) �rpo y) = true, the
above formula can be simplified to add2,1∧¬add1,1. Together with the constraint
(5) which ensures that the variables addi,k specify a valid permutation μadd, this
implies that add1,2 and ¬add2,2 must be true. And indeed, for the permuta-
tion μadd = 〈2, 1〉 the tuple μadd(〈x, s(y)〉) = 〈s(y), x〉 is greater than the tuple
μadd(〈s(x), y〉) = 〈y, s(x)〉.

3.2 Encoding Multiset Comparisons

For multiset comparisons, we associate s̄ and t̄ with a multiset cover (γ, ε) enco-
ded by n ∗m propositional variables γi,j and n variables εi. Here, γi,j is true iff
γ(j) = i (si covers tj) and εi is true iff ε(i) = true (si is used for equality).

For the encoding to be correct, we again have to impose constraints on these
variables to ensure that (γ, ε) indeed forms a multiset cover. So for each j ∈
{1, . . . ,m} there must be exactly one i ∈ {1, . . . , n} such that γi,j is true, and
for each i ∈ {1, . . . , n}, if εi is true then there must be exactly one j ∈ {1, . . . ,m}
such that γi,j is true. Thus, our encoding includes the following formula:

m�
j=1

one(γ1,j , . . . , γn,j) ∧
n�

i=1

(εi → one(γi,1, . . . , γi,m)) (8)

Now we encode s̄ �f,grpo t̄ for the case where f and g have multiset status. To
have an analogous notation to the case of lexicographic comparisons, we use the
notation �f,gmul instead of �mulrpo . This will also be convenient later in Sect. 4. The
encoding of f,g

mul, �
f,g
mul, and ∼f,gmul is similar to Def. 3. To encode s̄ f,g

mul t̄, one
has to require that if γi,j and εi are true, si ∼rpo tj holds, and else, if γi,j is
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true and εi is not, si �rpo tj holds. For �f,gmul, we must have at least one si that
is not used for equality, and for ∼f,gmul, all si must be used for equality.

τ(s̄ �f,g
mul t̄) =

n�
i=1

m�
j=1

(γi,j → ((εi → τ(si ∼rpo tj)) ∧ (¬εi → τ(si �rpo tj)))) (9)

τ(s̄ �f,g
mul

t̄) = τ(s̄ �f,g
mul

t̄) ∧ ¬
n�

i=1
εi (10)

τ(s̄ ∼f,g
mul t̄) = τ(s̄ �f,g

mul t̄) ∧
n�

i=1
εi (11)

Example 3. Consider again the rules for the TRS from Ex. 1(b):

{ add(x, 0) → x , add(x, s(y)) → s(add(y, x)) }.

In the encoding of the constraints for the second rule, we have to encode the
comparison 〈x, s(y)〉 �f,gmul 〈y, x〉, which yields:

�
γ1,1 →

�
(ε1 → τ(x ∼rpo y)) ∧ (¬ε1 → τ(x �rpo y))

��
∧
�
γ1,2 →

�
(ε1 → τ(x ∼rpo x)) ∧ (¬ε1 → τ(x �rpo x))

��

∧
�
γ2,1 →

�
(ε2 → τ(s(y) ∼rpo y)) ∧ (¬ε2 → τ(s(y) �rpo y))

��
∧
�
γ2,2 →

�
(ε2 → τ(s(y) ∼rpo x)) ∧ (¬ε2 → τ(s(y) �rpo x))

��

Seeing that τ(x ∼rpo y) = τ(x �rpo y) = τ(x �rpo x) = τ(s(y) ∼rpo y) =
τ(s(y) ∼rpo x) = τ(s(y) �rpo x) = false and τ(x ∼rpo x) = τ(s(y) �rpo y) =
true, the above formula can be simplified to ¬γ1,1∧ (¬γ1,2∨ ε1)∧ (¬γ2,1∨¬ε2)∧
¬γ2,2. Together with the constraint (8) which ensures that the variables γi,j and
εi specify a valid multiset cover (γ, ε), this implies that γ2,1, ¬ε2, γ1,2, and ε1

must hold. And indeed, for the multiset cover (γ, ε) with γ(1) = 2, γ(2) = 1,
ε(1) = true, and ε(2) = false, the tuple 〈x, s(y)〉 is greater than 〈y, x〉.

3.3 Combining Lexicographic and Multiset Comparisons

We have shown how to encode lexicographic and multiset comparisons. In order
to combine �f,glex and �f,gmul into �f,grpo as well as ∼f,glex and ∼f,gmul into ∼f,grpo, we
introduce for each symbol f ∈ F a variable mf , which is true iff the arguments
of f are to be compared as multisets (i.e., the status function maps f to mul ).

τ(s̄ �f,g
rpo t̄) =

�
mf ∧mg ∧ τ(s̄ �f,g

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1

lex t̄)
�

(12)

τ(s̄ ∼f,g
rpo t̄) =

�
mf ∧mg ∧ τ(s̄ ∼f,g

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g

lex t̄)
�

(13)

Similar to Def. 6, the above encoding function τ can be specialized to other
standard path orderings: lexicographic path order w.r.t. permutation (LPOS)
when mf is set to false for all f ∈ F ; LPO when additionally fi,k is set to true
iff i = k; MPO when mf is set to true for all f ∈ F .

We conclude this section with an approximation of the size of the proposi-
tional formula obtained when encoding s �rpo t where s = f(s1, . . . , sn) and
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t = g(t1, . . . , tm) with the total size of terms s and t being k. A single step of
unfolding Def. 6 results in a formula containing at least n copies of t (with all its
subterms) and m copies of s (with all its subterms) occurring in constraints of
the form s′ �rpo t′. Hence, without memoing, the final encoding is clearly expo-
nential in k. To obtain a polynomial encoding, we introduce sharing of common
subformulas in the propositional formula. The approach is similar to that pro-
posed by Tseitin to obtain a linear CNF transformation of Boolean formulas [22].
If τ(s′ �rpo t′) occurs in the encoding τ(s �rpo t), then we do not immediately
perform the encoding of s′ �rpo t′ as well. Instead, we introduce a fresh Boolean
variable of the form Xs′ �rpo t′ , and encode also the meaning of such fresh vari-
ables. The encoding of Xs′ �rpo t′ is of the form Xs′ �rpo t′ ↔ τ(s′ �rpo t′). Again,
when constructing τ(s′ �rpo t′), all subformulas τ(s′′ �rpo t′′) encountered are
replaced by Boolean variables Xs′′ �rpo t′′ . In total, there are at most O(k2) fresh
Boolean variables to encode. As the encodings of multiset comparisons and lex-
icographic comparisons are both of size O(k3), the size of the overall encoding
is in O(k5). Thus, the size of the encoding is indeed polynomial.3

4 RPO and Dependency Pairs

One of the most powerful and popular techniques for proving termination of
term rewriting is the dependency pair (DP) method [1,10]. This method has
proven highly successful for systems which are not simply terminating, i.e., where
termination cannot be shown directly using simplification orders such as LPO,
MPO, and RPO. Instead it is the combination of the simplification order, in our
case RPO, with the DP method which significantly increases termination proving
power. A main advantage of the DP method is that it permits the use of orders
that are not monotonic and thus allows the application of argument filters.

An argument filter is a function which specifies for every function symbol f ,
which parts of a term f(. . .) may be eliminated before comparing terms with the
underlying simplification order. More formally (we adopt notation of [17]):

Definition 7 (argument filter). An argument filter π maps every n-ary func-
tion symbol to an argument position i ∈ {1, . . . , n} or to a (possibly empty) list
[i1, . . . , ip] with 1 ≤ i1 < · · · < ip ≤ n. An argument filter π induces a mapping
from terms to terms:

π(t) =

⎧
⎨

⎩

t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1 ), . . . , π(tip)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation � on terms, let �π be the relation where s �π t holds if and only
if π(s) � π(t). An argument filter with π(f) = i is called collapsing on f .
3 A finer analysis shows that not all multiset and lexicographic comparisons are large.

For example, for s = f(a1, . . . , an) and t = g(b1, . . . , bn) with constants ai and bj ,
there is one comparison of two n-tuples with encoding size O(n3), but the other
n2 + 2n comparisons only need size O(n) each. In fact, one can show that the size
of the overall encoding is in O(k3).
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Example 4. Consider the following rewrite rule (which will later turn out to be
a dependency pair when proving the termination of Ex. 5):

ADD′(x, s(y), z) → ADD′(y, x, s(z))

The rule cannot be oriented by RPO. Lexicographic comparison fails as the
first two arguments are swapped. Multiset comparison is prevented by the third
argument (s(z) cannot be covered). But an argument filter π(ADD′) = {1, 2},
which eliminates the third argument of ADD′, enables the multiset comparison.

While very powerful in the context of the DP method, argument filters also
present a severe bottleneck for automation, as the search space for argument
filters is enormous (exponential in the arities of the function symbols). A SAT
encoding for the LPO with argument filters is presented in [4] where the com-
bined constraints on the argument filter and on the precedence of the LPO
(which influence each other) are encoded as a single SAT problem.

This paper applies a similar strategy to combine RPO with argument filters.
The combined search for an argument filter π, a precedence >F , and a status
function σ are encoded into a single propositional formula. This formula is satis-
fiable iff there is an argument filter and an RPO which orient a set of inequalities.
Each model of the encoding indicates such an argument filter and RPO.

4.1 Dependency Pairs and Argument Filters

We provide here a simplified presentation of the DP method and refer to [1,10] for
further details. For a TRS R over the symbols F , the defined symbols DR ⊆ F
consist of all root symbols of left-hand sides of R. The signature F is extended
by a fresh tuple symbol F for each defined symbol f ∈ DR. Then for each
rule f(s1, . . . , sn) → r in R and each subterm g(t1, . . . , tm) of r with g ∈ DR,
F (s1, . . . , sn) → G(t1, . . . , tm) is a dependency pair, intuitively indicating that a
function call to f may lead to a function call to g. The set of dependency pairs
of R is denoted DP (R). So in Ex. 1(b), add is the only defined symbol and there
is one dependency pair: ADD(x, s(y)) → ADD(y, x).

The main result of the DP method states that a TRS R is terminating iff
there is no infinite R-chain of its dependency pairs P = DP (R). This means
that there is no infinite sequence of dependency pairs s1 → t1, s2 → t2, . . . from
P such that for all i there is a substitution σi where tiσi is terminating w.r.t.
R and tiσi →∗

R si+1σi+1. Termination proofs in the DP method are stated in
terms of DP problems which are pairs of the form (P ,R) where P is a set of
dependency pairs and R a TRS. Such a pair is read as posing the question: “Is
there an infinite R-chain of dependency pairs from P?” Hence, termination of
R is stated as the initial DP problem (P ,R) with P = DP (R).

Starting from the initial DP problem, termination proofs repeatedly restrict
(P ,R) to obtain a smaller DP problem (P ′,R) with P ′ ⊂ P while maintaining
a soundness property to guarantee that there is an infinite R-chain of pairs from
P ′ whenever there is an infinite R-chain of pairs from P . Thus, if one reaches
the DP problem (∅,R), then termination is proved.
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One of the main techniques to restrict DP problems involves the notion of a
reduction pair (,�) where  is reflexive, transitive, monotonic, and stable and
� is a stable well-founded order compatible with  (i.e.,  ◦ � ⊆ � or � ◦  ⊆
�). But � need not be monotonic. Given a DP problem (P ,R) and a reduction
pair (,�), the technique requires that (a) the dependency pairs in P are weakly
or strictly decreasing and, (b) all rules in R are weakly decreasing. Then it is
sound to obtain P ′ by removing all strictly decreasing dependency pairs from P .
It is possible to further strengthen the approach [12,13] by introducing a notion
of usable rules and considering these in (b) instead of all rules. Arts and Giesl
show in [1] that if (,�) is a reduction pair and π is an argument filter, then
(π,�π) is also a reduction pair. In particular, we focus on reduction pairs of
this form to prove termination of TRS where the direct application of RPO fails.

Example 5. Building on the rule from Ex. 4, consider the TRS (on the left) for
addition using an accumulator and its three dependency pairs (on the right):

add(x, y) → add′(x, y, 0) ADD(x, y) → ADD′(x, y, 0)
add′(0, 0, z) → z

add′(s(x), y, z) → add′(x, y, s(z)) ADD′(s(x), y, z) → ADD′(x, y, s(z))
add′(x, s(y), z) → add′(y, x, s(z)) ADD′(x, s(y), z) → ADD′(y, x, s(z))

To orient the DPs we use (π
rpo,�πrpo) where π(ADD)=π(ADD′)=[1, 2], π(s)=[1],

and where rpo and �rpo are induced by the precedence ADD >F ADD′ and the
status function σ that maps ADD and ADD′ to mul. Since the problematic third
accumulator argument (in the last two DPs) is filtered away, all three DPs are
strictly decreasing and can be removed, as there are no usable rules. This results
in the DP problem (∅,R) which proves termination for the TRS.

4.2 Encoding RPO with Argument Filters

To encode argument filters, each n-ary function symbol f ∈ F is associated with
n propositional variables f1, . . . , fn, and another variable listf . Here, fi is true
iff i ∈ π(f) or i = π(f), and listf is true iff π is not collapsing on f . To ensure
that these n+1 propositional variables indeed correspond to an argument filter,
we impose the following constraints which express that if π collapses f then it
is replaced by exactly one of its subterms:

¬listf → one(f1, . . . , fn).

To encode the combination of RPO with argument filters, consider again the
equations (1) - (4). Each reference to a subterm must now be “wrapped” by the
question: “has this subterm been filtered by π?” In the following, similar to the
encoding of Sect. 3, all “missing” cases are defined to be false. Equations (1′) -
(3′) enhance Equations (1) - (3). Equations (4a′) and (4b′) enhance Equation (4)
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in the cases when one of the terms is a variable x and (4c′) considers the other
case and examines whether the filter collapses the root symbols or not.

τ(f(s̄) �π
rpo t) =

n�
i=1

�
fi ∧

�
τ(si �π

rpo t) ∨
(listf ∧ τ(si ∼π

rpo t))

��
∨ τ2(f(s̄) �π

rpo t) (1′)

τ2(f(s̄) �π
rpo g(t̄)) =

m�
j=1

�
gj → τ(f(s̄) �π

rpo tj)
�

∧ (2′)

�
listg →

�
listf ∧

�
(f >F g) ∨ ((f ≈F g) ∧ τ(s̄ �f,g,π

rpo t̄))
���

τ(s ∼π
rpo s) = true (3′)

τ(f(s̄) ∼π
rpo x) = (¬listf ∧

n�
i=1

�
fi → τ(si ∼π

rpo x)
�

for variables x (4a′)

τ(x ∼π
rpo g(t̄)) = (¬listg ∧

m�
j=1

�
gj → τ(x ∼π

rpo tj)
�

for variables x (4b′)

τ(f(s̄) ∼π
rpo g(t̄)) =

�
¬listf →

n�
i=1

�
fi → τ(si ∼π

rpo g(t̄))
��

∧ (4c′)

�
�(listf ∧ ¬listg) →

m�
j=1

�
gj → τ(f(s̄) ∼π

rpo tj)
�	
 ∧

�
(listf ∧ listg) →

�
(f ≈F g) ∧ τ(s̄ ∼f,g,π

rpo t̄)
��

For the lexicographic comparison with permutations, we enhance Formula (5)
to specify the relation between filters and permutations. Only non-filtered argu-
ments are permuted. Moreover, for an n-ary symbol f with  < n non-filtered
arguments, the permutation should map all  non-filtered arguments to positions
from {1, . . . ,  }. Formula (5a′) states that if some argument of f is considered
at the k-th position (i.e., some fi,k is true), then there is exactly one such
argument. Formula (5b′) specifies that filtered arguments may not be used in
the permutation. So if the i-th argument of f is filtered (i.e., fi is false), then
the permutation variables fi,k (for 1 ≤ k ≤ n) are also false. Formula (5c′)
states that if the i-th argument of f is not filtered (i.e., fi is true), then the
i-th argument of f is considered at exactly one position in the permutation.
Finally, Formula (5d′) expresses that all  non-filtered arguments are permuted
“to the left”, i.e., to positions from {1, . . . ,  }. Hence, if an argument is mapped
to position k, then some argument is also mapped to position k − 1.

n̂

k=1

 
n_

i=1

fi,k → one(f1,k, . . . , fn,k)

!
(5a′)

n̂

i=1

(fi → one(fi,1, . . . , fi,n)) (5c′)

n̂

i=1

 
¬fi →

n̂

k=1

¬fi,k

!
(5b′)

n̂

k=2

 
n_

i=1

fi,k →
n_

i=1

fi,k−1

!
(5d′)

For the encoding of f(s̄) ∼f,g,πrpo g(t̄) and f(s̄) �f,g,πrpo g(t̄) when the arguments
of f and g are compared lexicographically, we use the notation ∼f,g,πlex and �f,g,πlex .
For an equality constraint of the form s̄ ∼f,g,πlex t̄ we enhance Equation (6). There
must be a one-to-one correspondence between the non-filtered arguments of s̄
and of t̄ via the permutations for f and for g. To express this, we use a constraint
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of the form eq arity(f,g) in Equation (6′) which states that the number of non-
filtered arguments of f and of g are the same. It corresponds to the constraint
(n = m) in Equation (6) and is encoded as

eq arity(f, g) =

max(n,m)�
k=1

�
� n�

i=1

fi,k ↔
m�

j=1

gj,k

	



τ(s̄ ∼f,g,π
lex t̄) = eq arity(f, g) ∧

n�
k=1

n�
i=1

m�
j=1

�
fi,k ∧ gj,k → τ(si ∼π

rpo tj)
�

(6′)

Next we enhance Equation (7) to define �f,g,πrpo = �f,g,1,πrpo . For m < k ≤ n we
now require that f considers an argument at the k-th position. The remaining
cases are structurally identical to the corresponding cases of Equation (7).

τ(s̄ �f,g,k,π
lex t̄) =

�����
�����

false if k > n�n
i=1 fi,k if m < k ≤ n�n
i=1

�
fi,k ∧

��m
j=1 gj,k → otherwise

(τ(si �π
rpo tj) ∨ (τ(si ∼π

rpo tj) ∧ τ(s̄ �f,g,k+1,π
lex t̄)))

�� (7′)

For the multiset comparison, we enhance Formula (8) such that the multiset
cover only considers non-filtered arguments of f(s̄) and g(t̄). Formula (8a′) states
that if the j-th argument of g is not filtered (i.e., gj is true), then there must
be exactly one argument of f that covers it. Formula (8b′) states that if the i-th
argument of f is filtered (i.e., fi is false), then it cannot cover any arguments
of g. Formula (8c′) specifies that if the j-th argument of g is filtered (i.e., gj is
false), then there is no argument of f that covers it. Finally, Formula (8d′) is
taken straight from the original Formula (8).

m�
j=1

(gj → one(γ1,j , . . . , γn,j)) (8a′)
n�

i=1

�
�¬fi → ¬

m�
j=1

γi,j

	

 (8b′)

m�
j=1

�
¬gj → ¬

n�
i=1

γi,j

�
(8c′)

n�
i=1

�
εi → one(γi,1, . . . , γi,m)

�
(8d′)

Now we define τ(s̄ f,g,π
mul t̄) = τ(s̄ f,g

mul t̄). For the encoding of �f,g,πmul and
∼f,g,πmul , we restrict Equations (10) and (11) to arguments that are not filtered:

τ(s̄ �f,g,π
mul t̄) = τ(s̄ �f,g

mul t̄) ∧ ¬
n�

i=1

(fi → εi) (10′)

τ(s̄ ∼f,g,π
mul t̄) = τ(s̄ �f,g

mul t̄) ∧
n�

i=1

(fi → εi) (11′)

Finally, for the combination of lexicographic and multiset comparisons, we
simply change the equations (12) and (13) to use �f,g,πmul instead of �f,gmul etc.:

τ(s̄ �f,g,π
rpo t̄) =

�
mf ∧mg ∧ τ(s̄ �f,g,π

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ �f,g,1,π

lex t̄)
�

(12′)

τ(s̄ ∼f,g,π
rpo t̄) =

�
mf ∧mg ∧ τ(s̄ ∼f,g,π

mul t̄)
�
∨
�
¬mf ∧ ¬mg ∧ τ(s̄ ∼f,g,π

lex t̄)
�

(13′)
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Example 6. We solved the inequality ADD′(x, s(y), z) ()ADD′(y, x, s(z)) in Ex.
5 by the argument filter π(ADD′) = [1, 2] and RPO. To find such argument filters
and the status and precedence of the RPO, such inequalities are now encoded
into propositional formulas. Indeed, the formula resulting from our inequality
is satisfiable by the corresponding setting of the propositional variables (i.e.,
mADD′ = listADD′ = ADD′

1 = ADD′
2 = true and ADD′

3 = false). So we use a
multiset comparison for the filtered tuples 〈x, s(y)〉 and 〈y, x〉. Hence, as in Ex. 3
we set γ1,2 = ε1 = γ2,1 = true and ε2 = false .

In recent refinements of the DP method [12], the choice of the argument filter
π also influences the set of usable rules which contribute to the inequalities
that have to be oriented. We showed in [4] how to extend the encoding of LPO
and argument filters in order to take this refinement into account as well. In a
similar way, this refinement can also be integrated into our encoding of RPO
and argument filters. Finally, similar to Sect. 3.3 one can easily show that the
size of our encoding is again polynomial.

5 Implementation and Experiments

We implemented the encoding of RPO (also in combination with argument fil-
ters) in the termination analyzer AProVE [11], using the SAT4J solver [20]. (We
also tried other SAT solvers like MiniSAT [7] and obtained similar results.) The
encoding can also be restricted to instances of RPO like LPO or MPO.

We tested the implementation on all 865 TRSs from the TPDB [21]. The
experiments were run on a 2.2 GHz AMD Athlon 64 with a time-out of 60 seconds
(as in the International Termination Competition [19]). For each encoding we
give the number of TRSs which could be proved terminating (with the number of
time-outs in brackets) and the analysis time (in seconds) for the full collection.

The first two rows compare our new SAT-based approach for direct application
of path orders to the previous dedicated solvers for path orders in AProVE 1.2
which did not use SAT solving. The last two rows give a similar comparison for
path orders within the DP framework. The columns contain the data for LPO
with strict and non-strict precedence (denoted lpo/qlpo), for LPO with status
(lpos/qlpos), for MPO (mpo/qmpo), and for RPO with status (rpo/qrpo).

Solver lpo qlpo lpos qlpos mpo qmpo rpo qrpo

1 SAT-based 123 (0) 127 (0) 141 (0) 155 (0) 92 (0) 98 (0) 146 (0) 162 (0)
(direct) 31.0 44.7 26.1 40.6 49.4 74.2 50.0 85.3

2 dedicated 123 (5) 127(16) 141 (6) 154(45) 92 (7) 98(31) 145(10) 158 (65)
(direct) 334.4 1426.3 460.4 3291.7 653.2 2669.1 908.6 4708.2

3 SAT-based 357 (0) 389 (0) 362 (0) 395 (2) 369 (0) 408 (1) 375 (0) 416 (2)
(arg. filt.) 79.3 199.6 69.0 261.1 110.9 267.8 108.8 331.4

4 dedicated 350(55) 374(79) 355(57) 380(92) 359(69) 391(82) 364(74) 394(102)
(arg. filt.) 4039.6 5469.4 4522.8 6476.5 5169.7 5839.5 5536.6 7186.1

The table shows that with our new SAT encoding, performance improves by or-
ders of magnitude over existing solvers both for direct analysis with path orders
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and for the combination of path orders and argument filters in the DP frame-
work. Note that without a time-out, this effect would be aggravated. By using
SAT, the number of time-outs reduces dramatically from up to 102 to at most 2.
The two remaining SAT examples with time-out have function symbols of high
arity and can only be shown terminating by further sophisticated termination
techniques in addition to RPO. Apart from these two, there are only 15 examples
that take longer than two seconds and only 3 of these take longer than 10 sec-
onds. The table also shows that the use of RPO instead of LPO increases power
substantially, while in the SAT-based setting, runtimes increase only mildly.

6 Conclusion

In [4] we demonstrated the power of propositional encoding and application of
SAT solving to LPO termination analysis. This paper extends this approach to
the more powerful class of recursive path orders. The main new challenges were
the encoding of multiset comparisons and of lexicographic comparisons w.r.t.
permutations as well as the combination with argument filters.

We solved this problem by a novel SAT encoding which combines all of the
constraints originating from these notions into a single search process. Through
implementation and experimentation we showed that our encoding leads to
speedups in orders of magnitude over existing termination tools as well as in-
creased termination proving power. To experiment with our SAT-based imple-
mentation and for further details on our experiments please visit our evaluation
web site at http://aprove.informatik.rwth-aachen.de/eval/SATRPO/.
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(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 579–590. Springer, Heidelberg (2007)

24. Zankl, H., Middeldorp, A.: Satisfying KBO constraints. In: Baader, F. (ed.) RTA
2007. LNCS, vol. 4533, pp. 389–403. Springer, Heidelberg (2007)

http://www.sat4j.org
http://www.lri.fr/~marche/tpdb/


Author Index

Alarcón, Beatriz 73
Amjad, Hasan 88
Annov, Elena 267
Arnaud, Mathilde 103

Caleiro, Carlos 118
Chabin, Jacques 252
Chevalier, Yannick 133
Codish, Michael 267
Contejean, Evelyne 148
Cortier, Véronique 103
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