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Abstract. The previous key recovery attacks against Helix obtain the
key with about 2% operations using chosen nonces (reusing nonce) and
about 1000 adaptively chosen plaintext words (or 23> chosen plaintext
words). The stream cipher Phelix is the strengthened version of Helix.
In this paper we apply the differential-linear cryptanalysis to recover the
key of Phelix. With 234 chosen nonces and 2%7 chosen plaintext words,
the key of Phelix can be recovered with about 2*'® operations.

1 Introduction

Phelix [5] is a fast stream cipher with an embedded authentication mechanism.
It is one of the focus ciphers (both software and hardware) of the ECRYPT eS-
TREAM project. Phelix is a strengthened version of the stream cipher Helix [IJ.

Muller has applied differential attack to Helix [2]. He showed that the key of
Helix can be recovered faster than by brute force if the attacker can force the
initialization vectors to be used more than once. The attack requires about 212
adaptively chosen plaintext words and 288 operations. Paul and Preneel reduced
the number of adaptively chosen plaintext words by a factor of at least 3 [4].
Later Paul and Preneel showed that 23°6 chosen plaintext words can be used
instead of adaptively chosen plaintexts [3]. All these key recovery attacks against
Helix require about 2% operations.

Phelix was designed and submitted to the ECRYPT eSTREAM project in
2005. The output function of Helix has been changed so that a larger plaintext
diffusion can be achieved in Phelix. The Phelix designers claimed that Phelix is
able to resist a differential key recovery attack even if the nonce is reused: “We
claim, however, that even in such a case (referring to nonce reuse) it remains
infeasible to recover the key” [5].

In this paper, we apply differential-linear cryptanalysis to Phelix assuming
nonce reuse (this corresponds to a chosen nonce attack). We show that the key
of Phelix can be recovered with a low complexity: 237 chosen plaintext words
and 2415 operations. Although the Phelix designers did expect that Phelix would
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loose most of its security properties when the nonce is reused, this paper shows
that Phelix is completely insecure in such a setting.

This paper is organized as follows. In Sect. 2, we illustrate the operations
of Phelix. Section 3 analyzes how the addend bits affect the differential distri-
bution. Section 4 describes a basic differential key recovery attack on Phelix.
The improved attack is given in Sect. 5. We discuss how to strengthen Phelix in
Sect. 6. Section 7 concludes this paper.

2 The Stream Cipher Phelix

In this section, we only consider the encryption algorithm of Phelix. The full
description of Phelix is given in [5]. The key size and nonce size of Phelix are
256 bits and 128 bits, respectively. The designers claim that there is no attack
against Phelix with less than 228 operations.

Phelix updates fives 32-bit words: Zy, Z1, Zs, Z3 and Z4. At the ith step,
two secret 32-bit words X; o, X; 1 and one 32-bit plaintext word F; are applied
to update the internal states. One 32-bit keystream word S; is generated and
is used to encrypt the plaintext P;. Note that the plaintext is used to update
the internal state so that the authentication can be performed. The word X; o
is related to the key, and the word X; ; is related to the key and nonce in a very
simple way. Recovering any X; o and X; ; implies recovering part of the key. One
step of Phelix is given in Fig. [l

3 The Differential Propagation of Addition

In this section, we study how the addend bits affect the differential propagation.
The importance of this study is that it shows that the values of the addend bits
can be determined by observing the differential distribution of the sum.

Theorem 1. Denote ¢; as the ith least significant bit of ¢. Suppose two positive
m-bit integers ¢ and ¢ differ only at the nth least significant bit position (¢ ®
¢’ = 2™). Let B be an m-bit random integer (m is much larger than n). Let
Y = ¢+ and ' = ¢ + 3. For 3, = 0, denote the probability that 1, ; = ¥,
as Pn4,0. For B, = 1, denote the probability that v, ; = d’;zﬂ‘ as Pp+i,1- Then
the difference Apy,1i = Prtio — Putin = 2777 (i > 0).

Theorem 1 can be proved easily if we consider the bias in the carry bits. We omit
the proof here. In Theorem 1, the bias of the differential distribution decreases
quickly as the value of n increases. We need another differential property that
produces difference with a large bias even for large n. Before introducing that
property, we give the following lemma from [6].

Lemma 1. Denote u and v as two random and independent n-bit integers. Let
cn = (u + v) >> n, where c,, denotes the carry bit at the nth least significant bit
position. Denote the most significant bit of u as u,,—1. Then Pr(c, ®u,—1 = 0) = i'

The large bias of the differential distribution for large n is given below.
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Fig. 1. One block of Phelix [5]

Theorem 2. Denote ¢; as the ith least significant bit of ¢. Suppose two pos-
itive m-bit integers ¢ and ¢ differ only at the nth least significant bit position
(¢p ® ¢ = 2™). Let B be an m-bit random integer (m is much larger than n).
Let v = ¢ + B and ¢’ = ¢' + (. For 8, @ B,-1 = 0, denote the probability
that ¢,; = @Z’;zﬂ‘ as Pn+i,0- For B, @ Bp—1 = 1, denote the probability that
Unti = V)1 S Pti,1- Then the difference Appyi = Prti 0 —Pnrin = 270 (i > 0).
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Proof. Denote the carry bit at the ith least significant bit position in ¢ = ¢+ (3
as ¢;, and that in ¢’ = ¢’ 4+ (3 as ¢. Note that ¢/, = ¢, thus ¢, @ 8, = ¢n, @ Sn.
When ¢, ® 8, = ¢, ® 5, =0, we know that ¢ @)’ = 2™ with probability 1, i.e.,
Unyi = ), ; with probability 1 for i > 0. When ¢;, ® 8, = ¢, ® 3, = 1, by induc-
tion we obtain that ¢, 4; = 1)y, ; with probability 1 — 2= for 4 > 0. According
to Lemma 1, we know that ¢, ® 3,1 = 0 with probability Z. If By, @ Brn—1 =0,
then ¢, & B, = 0 with probability %, thus ppis0 = 5 x 1+ ; x (1 —2771) =
1—§ x27% If B, ® B,-1 = 1, then ¢, ® B, = 0 with probability },
thus pp4i1 = }1 x 1+ i x (1 —27H) =1~ i x 271 Then the difference
Aﬁn+i = DPn+i,0 — Pnti,l = 27" for i > 0.

The above two theorems provide the guidelines to recover the key of Phelix.
However, these two theorems deal with the ideal cases in which there is only one
bit difference between ¢ and ¢’, and 3 is assumed to be random. In the attacks,
we deal with the complicated situation where each bit of ¢ @ ¢’ is biased, and
0 is a fixed integer. The value of each bit of 8 will affect the distribution of the
higher order bits of (¢ + 3) & (¢’ + 3) in a complicated way. In order to simplify
the analysis, we will use simulations to obtain these relations in the attacks.

4 A Basic Key Recovery Attack on Phelix

We will first investigate the differential propagation in Phelix. Then we show
how to recover the key of Phelix by observing the differential distribution of the
keystream.

4.1 The Bias in the Differential Distribution of the Keystream

Assume an attacker can choose an arbitrary value for the nonce, then a nonce
can be used more than once. We introduce one-bit difference into the plaintext
at the ith step, i.e., P, # P/, and P, P/ = 2™ (0 < n < 31). Then we analyze the
difference between Bgzﬂ) and Bg(Hl) (as indicated in Fig. 1). If all the carry bits
are 0 (replacing all the additions with XORs), then the differences only appear
at the 9th, 11th, 13th, 15th and 17th least significant bits between Bélﬂ) and

Bg(i+1). Because of the carry bits, the differential distribution becomes compli-

cated. We run the simulation and use the randomly generated Yk(i) (4>k>0),
P;, X;1 in the simulation. With 23° plaintext pairs, we obtain the distribution
of B{™ @ B in Table 1.

From Table 1, we see that the distribution of Béiﬂ) EBBQ(HI) is heavily biased.
For example, B§i+1)’8 = Bg(i+1)’8 with probability close to 1, while B§i+1)’9 =
Bé(”l)’g with probability close to 0. Note that TO(”D = A(()iﬂ) ® (Béiﬂ) +
Xit1,0), according to Theorem 2, the distribution of TO(H_l) @ Té(H_l) will be
affected by the value of X, | o @ X7, o, thus the distribution of Bjy1 @ Bj,,
will be affected by the value of X @ X?. By observing the distribution of
Sit1 @ S, it may be possible to determine the value of Xffo ® X29,0~ Shifting
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Table 1. The probability that B{'™"7 @ B =0 for P, @ P/ =1

p J D J D J p
0.9997 8 1.0000 16 0.5001 24 0.9161
0.9998 9 0.0000 17 0.4348 25 0.9470
0.9999 10 0.5000 18 0.5000 26 0.9673
0.9999 11 0.4375 19 0.5486 27 0.9803

1.0000 12 0.5000 20 0.6366 28 0.9883
1.0000 13 0.4492 21 0.7283 29 0.9931
1.0000 14 0.5000 22 0.8083 30 0.9960
1.0000 15 0.4273 23 0.8708 31 0.9977

N O U W OS.

the one-bit difference between P; and P/, we may determine other values of
Xij;)rl EBXZ-J;O for 0 < j < 30, and recover in this way the key X, o. After recovering
eight consecutive X; o values, the 256-bit key can be found immediately.

The above analysis gives a brief idea of the attack. However, the actual attacks
are quite complicated due to the interference of many differences. It is very
tedious to derive exactly how the distribution of S;y; & S 11 is affected by the
value of XH_1 0@ Xz+1 o- On the other hand, it is easy to search for the relation
with simulations. In the following7 we carried out a simulation to find the relation
between the value of X 0 ® X/ +1,0 and the distribution of S;y1 © S}, ;.

Let two plaintexts dlffer only in the ith word, and P, @ P/ = 1. We use the
randomly generated Y(Z (4>k>0), P, Xi1, Xit1,0 Z(“?’) in the simulation.
Denote with p'' the probability that z+1 @ Sn, =0 when X/ @ X/ = 0.
And denote p7, as the probablhty that S7, & S/"; =0 when ngl ® Xz?,o =1
Let Ap? = (po—P}1) X 5 N where N denotes the number of plaintext pairs, and

= \/N . Assume that the values of p7, and p7, are close to 1 I Ap% > 4, the

dlfference between p}, and p7; is larger than 4o, hence the Value of XJ+1 @Xij,o
can be determined correctly with high probability. For every value of the two
bits Xf)f,rl and X7, we use 2% pairs to generate S; 1 @ S}, ,, then compute p7,
and p},. Thus N = 2%, and ¢ = 2. We list the large values of Ap} below:

For j =9, Aps3 = 55.7 .

For j = 10, Aplg =1339.

For j = 14, Api] =515 .

For j = 15, Apl? = —9.1, Ap22 = 14.9, Ap? = —15.7 .

For j = 16, Apl) = —50.8, Ap2t = 62.0, Ap32 = 97.7, Ap23 = —106.6,
Aﬁ%g =11.8, Aﬁ%g = 16.0, Aﬁ% =-174.

For j = 17, Ap2t = 77.4, Ap32 = 145.3, Ap¥s = —171.6, Ap32 = 12.3,
Ap3S =285, Ap3L = —30.4 .

For j = 18, Ap3s = 80.2, Ap32 = 179.7, Ap?3 = —241.7, Ap3S = 32.8,
Ap3l = —43.7 .
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For j =19, Ap?2 = 139.6, Ap?g = —220.6, Ap?§ = 19.0, Ap? = —46.5 .
For j = 20, Ap33 = —156.7, Ap33 = —5.7, Ap3s = 18.3, Ap3y = —30.6 .
For j = 21, Ap3} = —6.8, Ap3S = 9.5, Ap3] = —28.5 .

The data given above show that the distribution of ;11 @ S}, is strongly

affected by the value of Xf::ll)o & Xijﬂ’o.

4.2 Recovering the Key

Note that in the above analysis, when we deal with a particular X ijjllyo oX z?;s-l,O’
the other bits of X;, 1 are random. In the key recovery attack, the value of
Xit1,0 is fixed, so we need to consider the interference between the bits X 5I1170 ®

J
Xi+1,0'
123

We notice that there are many large biases related to 5S¢, & S/3% . However,
the values of Xijfllyo ® Xin’O (15 < j < 20) all have a significant effect on the
distribution of S}, & S/2%. It is thus a bit complicated to determine the values
of X/l ge X7, (15 < j < 20).

In the following, we consider the bit S}7, & S/17 . Its distribution is dominated
by the value of X}fw @X}fl,o' For every value of the two bits X'?; ; and X}, o,
we use 230 pairs to generate S;1 ® Si,1, then compute pﬂ,o and pﬂyl. From
the simulation, we found that pﬂyo = 0.50227 and p%ZJ = 0.50117. We denote

the average of pii, and pif, as piy, ie., pij = pﬁ’(’;pﬁ‘l = 0.50172. Running
a similar simulation, we found that pij, = 0.50175 and pi}; = 0.50169. For
all the j # 13,5 # 14, we found that p} ~ pii and p}i =~ pii. The value of
X2 0 ® X[ is recovered as follows: from the keystreams, we compute the
fraction for which S}f, & ST = 0. If it is larger than pij, then the value of
X2 0@ X} o is considered to be 0; otherwise the value of X7, , @ X}  is
considered to be 1.

We now compute the number of plaintext pairs required to determine the value
of X5, o & Xil-ﬁl,()' Suppose that N pairs of plaintexts are used. The standard
deviation is o = /N x p}] x (1 — pi]). To determine the value of X% ;@ X}, g
with success rate 0.99, we require that N x ((pio —pii,) — (p150 — Pi%1)) >
4.66 x ¢ (The cumulative distribution function of the normal distribution gives
value 0.99 at the point 2.330). Thus we require that N > 222:27,

We used the Phelix C source code submitted to eSTREAM in the
experimentsﬂ

Experiment 1. The goal of this experiment is to recover the value of X 11750€DX 117%.
Each plaintext has two words Py and P;. For each plaintext pair, the two words
differ only in the least significant bit of Py. N plaintext pairs are used for each
key to determine the value of X{% @ X7 as follows: if the fraction of cases for

! Note that we have found and corrected a small bug in this source code. The output
should be computed as S; = Y4(Z) + Zil_4) in stead of S; = Y4(Z) + Zflz_d).
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which S17@® S{17 = 0 is larger than pi] = 0. 50172 then the value of X1% @ X14

is considered to be 0; otherwise the value of X{% @ X{4 is consldered to be 1.
A random nonce was used for each plaintext palr We tested 200 keys in the
experiment. For N = 2223 the values of X 2 EB X 14 of 183 keys are determined
correctly. For N = 225 the values of Xi? 1.0 1.0 of 192 keys are determined
correctly.

Experiment 1 shows that the value of X% ® X1 can be determined successfully
by introducing a difference in the least 51gn1ﬁcant bit of Py, but with a higher
error rate. The reason is that other bits of X affects the determination of
X1% @ X{4 in a subtle way.

We now proceed to recover the other bits of X; . By rotating the one-bit
difference between Py and P}, and using the same threshold value, we can de-
termine the value of XJ'H Xio for2<j<3,5<j<10and 14 < j < 28.

Thus we are able to recover 23 bits of information on each Xi,0. Note that the
256-bit key is recovered from eight consecutive X; o. Thus we are able to recover
23 x 8 = 184 bits of the key with success rate about égg = 0.96 . The number of
plaintext pairs required in the attack is about 22° x 32 x 8 = 233,

We need to improve the above attack in two approaches: recovering more
key bits and improving the success rate. The direct approach is to adjust the
threshold value for each key bit position. In the following, we illustrate a more

advanced approach which recovers the values of Z before recovering the key.

5 Improving the Attack on Phelix

In the above attack, we use a random nonce for each plaintext pair, i.e., every
nonce is used twice with the same key. When the nonce is used many times with
the same key, we can introduce the difference at P; and recover the value of Z} =3
by observing the distribution of S; 41 @ S}, ;. Then we proceed to recover X; 1.

5.1 Recovering Zf)
We introduce the difference to the least significant bit of P; (P, @ P} = 1) A
simulation is carried out to determine the distribution of Yzl(iﬂ) oY, 0+ We
use the randomly generated Yk(i) (4>k>0), P, X;1, Xit1,0 in the simulation.
Denote p,, as the probability that Y4(i+1)’n ® Y4/(i+1)’n = 0. With 2% pairs, we
obtain the values of p,, in Table 2.

From Table 2, we notice that Y4(i+1) @ Y4/(i+1) is heavily biased. For example,
y T2 =y 0D2 Gith probability about 0.70291, while Y,T# = y;(1)3
with probability about 0.22246. Note that S;;1 = Y(H_l) @ Z(i_3 , according to
Theorem 2, the distribution of S;;11 & S i1 is affected by the value of Z (i=3),3 ®
Z£i73)’2. Next we carry out simulations to characterize this relation.

We use the randomly generated Yk(i) 4>k>0), P, Xi1, Xit10, Zﬁi_:g)
in the simulation. The one-bit difference is introduced to P;, i.e., P; & P/ = 27.
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Table 2. The probability that Y;(H'l)’j &) YZ(Hl)’j =0for Lo P =1

J pi—05 J pi—05 p;—05 j Pj — 0.5
0 0.03326 8 0.00003 16 —0.00003 24 0.00046
1 0.12983 9 0.03517 17 0.00268 25 0.05926
2 0.20291 10 0.00002 18 —0.00001 26 0.15064
3 —0.27754 11 0.00001 19 —0.00266 27 —0.24028
4 —0.00005 12 0.00000 20 —0.00004 28 0.00001
5 0.05663 13 0.02293 21 0.02276 29 0.05770
6 —0.15327 14 —0.00001 22 0.07434 30 0.15508
7 —0.00001 15 —0.00001 23 —0.14414 31 —0.24907

Denote jj’! ; as the probability that S} ; S/, = 0 when Z(Z 3)’J+1@Z( =3 _ .
And denote j7, as the probability that Sp, ® Si%; = 0 when Z{=IH g

Zil i — 1. For each value of Z(Z 93 and Zil 8.2 , we use 22® plaintext pairs.
We find that (3 o = 0.5461 and p2 1 = 0.5193. The large difference between

75,0 and 3 ; shows that the value of Z;' (=33 ¢ 7 ff?’m can be determined with
success rate 0.999 with about 2139 plamtext pairs (The cumulative distribution
function of the normal distribution gives value 0.999 at the point 3.10).

The above approach is able to recover ZAEO)7 but the success rate is not that

high according to our experiment. In the following, we use a new approach
to determine Z, (9 To reduce the interference between the bits of z,' (i= ) we
recover the least significant bit of Z, (i=3) ﬁrst7 then proceed to recover the more
significant bits bit-by-bit.

We start with determining the value of Z,'
the simulation with22®

(i=8:0 Let P; ® P! = 1. Running

plaintext pairs, we found that ]52_170 = 0.70296, and
7210 = 0.65422 (let Z{®" 7" =0 ). To determine the value of Z{' *"* with
success rate 0.999, we need about 229 plaintext pairs.

Experiment 2. The goal of this experiment is to determine the value of Z, (0.0,

Each plaintext has five random words P; (0 < ¢ < 4). For each plaintext pair,
the difference is only in the least significant bit of P3. N plaintext pairs are used
for each key/nonce pair to determine the value of Z(9:0 as follows: if the rate

.2 .2
that S? @ S2 = 0 is larger than p’l");p’l’l = 0.7029670.65422 — () 6786, then the

value of ZAEO)’O is considered to be 0; otherwise the value of ZAEO)’O is considered

to be 1. We tested 1000 key/nonce pairs in the experiment. For N = 22, the

(0),0

values of Z, of 998 key/nonce pairs are determined correctly. For N = 213,

the values of Z4 O of all the key/nonce pairs are determined correctly.

After recovering the value of Z4i_3)’07 we proceed to recover the values of the

other bits of Zf*?’) Let Z,' (i=3).(n=10) Jenote the n least significant bits of
A Z(l_g) (n=1-0) _ 7(i=3) 1110d 27, Let the difference be introduced to
the kth leaet significant bit of P, i.e., P, @ P/ = 2*. Denote p f Dm0y AS
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the probability that the value of the jth bit of (511 — 2y """ )@ (57, —
Z£173)’(”71"'0)) is 0 when Z( ~3m _ (). Denote p’;’(;’;),(n 1.0y as the probability

4
that the value of the jth bit of (S;11 —Z(Z_g) (n_l"'o))EB( 1 Z(Z 8),(n=1- ) is

0 when Z£ —3)m 1 If the value of Z ~3(1=10) g determined correctly, then

k,3,0 Ve J> 3Js
pZ{L 3),(n—1---0) — pO b0 9 a‘nd pZ{L 3),(n—1---0) p bt
for recovering Z i 3,

Let P, ® P! = 2. We use 228 plaintext pairs in the simulation. We found that

Po30 = 0.66469 and pL*! = 0.60220. It shows that when Zi' " = 0, if the
rate that 52, & S/3, = 0 is larger than 0-0646970-60220 — (0 63345, then the value

of Z (i=3).1 is determined to be 0; otherwise the value of Z (i=3).1 is determined

to be 1. We need about 2''? plaintext pairs to determine the value of Zii_g)’l
correctly with success rate 0.999. Using the Phelix code in the experiment, we

. This property is important

tested 1000 random key /nonce pairs satisfying 2 4&0)’0 = 0, and 2'? plaintext pairs
are used for each key/nonce pair with the difference P; @ P = 2. We found that
all the 1000 values of Z io)’l are determined correctly. If Z ii_g)’o =1, we observe
the third least significant bit of (Siy1 — 1) ® (Sj,; — 1), and we can determine
the value of Z io)’l = ( with success rate 0.999 with about 2'!3 plaintext pairs.

Let P; @ P! = 22, we are able to determine the value of Z ff?’m by observing
the fourth least significant bit of (S;+1 — Zii_g)’(lmo)) ® (Siy1— Z(i_g) (1"'0)) In
general, let P; @ P/ = 27, then we are able to determine the Value of Z =3 by
observing the (j + 2)th least significant bit of (S;41 — ZAE =301 O)) @ (S

i+1
2910, (i-3)

with about 212 plaintext pairs. Thus we are able to recover Z,
(except the values of Z, (=330 5 nd Z -3 31) with success rate very close to 1. The

number of plaintext pairs required in the above attack is about 2'2 x 30 ~ 217.

5.2 Recovering X; 1,0

After recovering Ziii?’) (except Z(Z 931 and Z =3 %) we know the value
of (Si+1 — Zf_g)’(%”'o)) ® (Sip — ZLE —3).(29- O)). Thus we know the value of
y+Dd @ y’(+1)J (0 < j < 30). Then we are able to recover X410 more
efficiently.

Let two plaintexts differ only in the ith word. And let P; @ P/ = 1. We use the
randomly generated Y(i) 4>k>0), P, Xi1, Xit1,05 Zzii_:g in the simulation.
For every value of the two bits X7/ 31 and X; J (0 We use 228 plaintext pairs to gen-
erate Y4(Z+1) @ 5’4(”1)7 then compute p}, and p}, (suppose that S = }CFH)

since Z{""% is known). Thus N = 229, and o = 2135 We list the following two
large biases Apj:

For j =9, Apd3 = 144.1
For j = 10, Apl3 = 362.12
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We use Apg® and Apjj in the attack. Note that the values of X}'?; o & X7,

and X! o @ X [P 5 both affect the distribution of Y18 g y D18y
carried out a simulation with 230 chosen plaintext pairs to determine how the
value of XJrl o affects the value of Y(ZH) R U XJrl o = 0, and the values

of Xi1+11,0”Xz+1,0 are 00, 11, 01 and 11 (in binary format), we obtain that
y D8 gy GFDA3 — o with probability 0.53033, 0.52334, 0.51946 and 0.51864,

respectively; if X7,,, = 1, we obtain that Y(ZH) B gy — 0 with
probablhty 0.52334, 0. 53030 0.51861 and 0.51948, respectlvely We thus let
poh = 0.52334, and pgy = OP19I0TOSIMS — 051947 About 2'9? plaintext
pairs are required to determine the value of XH 1,0 D Xi1+01,0 with success rate

0.999.

Experiment 3. Suppose that the value of Z 4&0) is known. The goal of this exper-
iment is to determine the value of X}, & X;%. Each plaintext has five random
words P; (0 < ¢ < 4). For each plaintext pair, those five words differ only in the
least significant bit of P;. N plaintext pairs are used for each key/nonce pair to
determine the value of X} @ X9 as follows: if the rate that ¥,'3 @ Y/ = 0 is
larger than 0'52334'50'51947 0. 52140 then the value of X}} @ X1 is considered
to be 0; otherwise the value of X @ X}, is considered to be 1. We tested 1000
key /nonce pairs in the experiment. For N = 293, 948 values of 1000 X, ® X
are determined correctly. We change the threshold value 0.52140 to 0.52035, then
970 values of 1000 X}, & X{ are determined correctly for N = 220, 976 values
are determined correctly for N = 22!, 990 values are determined correctly for
N =222,

Experiment 3 shows that the value of X1 & X% can be determined successfully
by introducing a difference in the least 51gn1ﬁcant blt of P3. With 222 chosen
pairs, we are able to determine the value of X o ® X o With success rate about
0.99.

Then we shift the one-bit difference to recover the values of Xf;l @ Xf,o
for 2 < j < 28. The threshold value needs to be modified for different values
of j. The results are given in Table 3 in Appendix A. Note that according to
Experiment 3, the threshold values should be slightly adjusted to achieve high
success rate. A ‘

The reason that the values of XZ{)J{,I @ X3, cannot be recovered for j > 29

is that the value of X{fgl & X{,o cannot affect the distribution of $7% @ §7/+?
since S @S] is a 32-bit word. The reason that the number of plaintext required
for j =9 is relatively small is that the difference for j = 13 is introduced to the
most significant bit of the word Pj3, thus it causes less difference propagation,
and results in a larger bias in the keystream.

Note that the most significant bit of Y(ZH) @Y/(ZH) is not known since Z;
and Zfl 130 are not recovered. Thus to determine the value of Xf% o X1, we

i—1,31
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need to consider the most significant bit of (S;y; — Zﬁ”*?’)’(”“'o)) @ (Sip1 —
Z§i73)’(29”'0)). The threshold value needs to be changed to 0.51128; and the
number of plaintext pairs required is 2221, ‘

After recovering the values of X{Bl © Xy for 2 < j < 28, we proceed to
determine the value of X7, 5, X}, o and X7, | .

We start with recovering XZOJrl o- Let P, & P/ = 221, Running the simulation
with 2% plaintext pairs, we found that p3, o = 0.51596, p3, ; = 0.50355. Thus
21593 plaintext pairs are needed to determine the value of XZ 1,0 With success
rate 0.999. Using the Phelix code in the experiment, we introduce the difference
Py @ P§ = 22! and set the threshold value as 19907050355 — (.50975. We
tested 1000 key /nonce pairs in the experiment. With 21¢ plaintext pairs, all the
values of the 1000 X{ ; are determined correctly.

After determine the value of X9 +1,0, we determine the value of X} 41,0 a8
follows. The simulation shows that the value of X}, ; can be determined only

when Xi+1,0 = 0. For Xi+1,0 = 0, we set the difference as P; EBPZ’ = 222 With 228
chosen plaintext pairs, we found that if X}, j =0, then K,‘(H'l)’g = 0 with rate
0.51528; otherwise Y, ™* = 0 with rate 0.50459. With 2164 plaintext pairs,
the value of Xi1+1,0 can be determined with success rate 0.999. Using the Phelix
code in the experiement, we introduce the difference Ps @ P = 222 and set the
threshold value as * 51528'50 50459 — 0.50994. We tested 1000 key/nonce pairs
with X4 o = 0 in the experiment. With 2164 plaintext pairs, all the values of
the 1000 X} 1,0 are determined correctly. It shows that the value of X} i+1,0 can be
determined successfully if X, = 0.

We continue to recover the value of X2 +1,0- We introduce a dlfference to the
15th least significant bit of P;, and observe the distribution of Y4 1 We
carry out a simulation with 23! plaintext pairs with P3¢ P§ = 215, 23! plamtext
pairs are used for each value of X}, (X7, ;. When X?er =0,if X}, =0,
the fraction of values for which Y,"~%* = 0 if X}10=0and X7, =1 are
0.53106 and 0.52613, respectively; if Xi1+1,0 =1, the franction of values for which
Y™ = 0if X2, o= 0 and X2, o = 1 are 0.52318 and 0.52315, respectively.
It shows that the value Xi2+1,0 can only be determined if the values of Xilﬂ)0
and X}, | o are both zero, and 2'® plaintext pairs are required to achieve the
success rate 0.999.

In the above attacks, we recovered 28.75 bits of X1 o: XZJrl 0 @ XZ+1 o for
2<5 <28, X240, Xiyp (only if X2 5 =0), and X}, (only if X7\, =0
and X!\, o = 0). 27 bits of ijllo ® Xij_~_170 (2 < j < 28) can be determined
according to Table 3. From Experiment 3, we know that if we slightly adjust the
threshold value, and use about 227 times the number of plaintext pairs compared
to Table 3, the success rate is about 0.99. The number of plaintext pairs required
to determine these 27 bits is thus about 27 x 2222 x 227 = 2297 The number
of plaintext pairs to determine XZ-OH)O, Xilﬂ)0 and Xi2+1,0 is small compared to
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2297 The attack to recover 28.75 bits of X;1 0 requires thus about 2327 chosen
plaintext pairs.

After recovering eight consecutive X1, we recovered 28.75 x 8 = 230 key
bits. To recover the 256-bit key, the amount of operations required is about
9256—230+ (g 01 Y orxs) — 9415

The number of chosen plaintext pairs required in the attack is about 2277 x8 =
2327 The length of each plaintext ranges from 5 to 13 words. Thus the total
amount of chosen plaintext required is about 2 x 237 x 113 ~ 237 words.

(The number of plaintext pairs needed to recover 8 consecutive Zy) is about
217 x 8 = 2% Tt is small compared to 23%7).

6 An Approach to Strengthen Helix and Phelix

In Helix and Phelix, the plaintext is used to affect the internal state of the cipher.
In order to achieve a high encryption speed, each plaintext word affects the
keystream without passing through sufficient confusion and diffusion layers. This
is the intrinsic weakness in the structure of Helix and Phelix. In the following,
we provide a method to reduce the effect of such weakness.

The security of the encryption of Helix and Phelix can be improved signifi-
cantly if a secure one-way function is used to generate the initial state of the
cipher from the key and nonce. Then even if the internal state of one particular
nonce is recovered, the impact on the security of the encryption is very limited
since the key of the cipher is not affected. We believe that such an approach can
be applied to improve the security of all the ciphers that use the plaintext to
affect the internal state.

However, we must point out that such an approach does not substantially
improve the security of the MAC in Helix and Phelix. Once an internal state
is recovered, the attacker can forge many messages related to that particular
nonce.

7 Conclusion

Phelix is vulnerable to a key recovery attack when chosen nonces and chosen
plaintexts are used. The computational complexity of the attack is much less
than that of the attack against Helix. Our attack shows that Phelix fails to
strengthen Helix in this respect.

We believe that one necessary requirement for a secure general-purpose stream
cipher is that the key of the cipher should not be recoverable even if the attacker
can control the generation of the nonce. In practice an attacker may gain access
to a Phelix encryption device for a while, reuse a nonce and recover the key.
We thus consider Phelix as insecure. (When the integrity checking mechanism is
not enforced, an attacker can even modify the nonces in ciphertext and obtain
repeated nonces.) Muller has pointed out the practical impact of the key recovery
attack with reused nonces on the security of Helix in detail [2]. Muller stated
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clearly the difference between the nonce reusing attack against Helix and that
against a synchronous stream cipher since the attack against Helix results in key
recovery. The same comments apply to the attacks against Phelix.
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A The Complexity to Recover X, ;o with Zf_s) Known

The number of plaintext pairs and the threshold value required to recover the
value of each X7 & X7, , (2 < j < 28) are given in Table 3. Each value n
in the second column indicates that the difference is introduced in the nth least

significant bit of P;. Each value n in the third column shows that the nth least
significant bit of Y™ is used in the attack.
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Table 3. The number of plaintext pairs for recovering Xfi'llyo @® X ij+1,0

K Difference Bit Threshold Plaintext
position  position value Pairs
in P, in Y™V
2 24 5 0.51101 9244
3 25 6 0.51110 2231
4 26 7 0.51120 2225
5 27 8 0.51125 2223
6 28 9 0.51091 9224
7 29 10 0.51116 2236
8 30 11 0.51562 220.7
9 31 12 0.54353 Q184
10 0 13 0.52141 2193
11 1 14 0.52099 219:3
12 2 15 0.51850 219:5
13 3 16 0.50998 2213
14 4 17 0.51107 2219
15 5 18 0.51128 9222
16 6 19 0.51129 2222
17 7 20 0.51131 2222
18 8 21 0.51128 2221
19 9 22 0.51117 2217
20 10 23 0.51149 2222
21 11 24 0.51172 2220
22 12 25 0.51187 2220
23 13 26 0.51191 2220
24 14 27 0.51185 2221
25 15 28 0.51129 9222
26 16 29 0.51129 2221
27 17 30 0.51131 9222
28 18 31 0.51130 2221
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