

Lecture Notes in Computer Science 4593
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Alex Biryukov (Ed.)

Fast
Software Encryption

14th International Workshop, FSE 2007
Luxembourg, Luxembourg, March 26-28, 2007
Revised Selected Papers

13

Volume Editor

Alex Biryukov
FSTC, University of Luxembourg
6, rue Richard Coudenhove-Kalergi, 1359 Luxembourg-Kirchberg, Luxembourg
E-mail: alex.biryukov@uni.lu

Library of Congress Control Number: 2007933305

CR Subject Classification (1998): E.3, F.2.1, E.4, G.2, G.4

LNCS Sublibrary: SL 4 – Security and Cryptology

ISSN 0302-9743
ISBN-10 3-540-74617-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74617-1 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© International Association for Cryptologic Research 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115600 06/3180 5 4 3 2 1 0

Preface

Fast Software Encryption 2007 was the 14th annual workshop in the series, which
was sponsored by the International Association for Cryptologic Research (IACR)
for the sixth time. FSE has become a brand which attracts top research papers
on symmetric cryptology. This includes papers on fast and secure primitives for
symmetric cryptography, such as the design and analysis of block ciphers, stream
ciphers, encryption schemes, hash functions, and message authentication codes
(MACs), and on tools for analysis and evaluation. Previous editions of FSE took
place in Cambridge, Leuven, Haifa, Rome, New York, Yokohama, Lund, Delhi,
Paris, and Graz.

The Fast Software Encryption 2007 workshop was held March 26-28, 2007
in Luxembourg. It was organized by the General Chair Jean-Claude Asselborn
(University of Luxembourg) in cooperation with the research lab LACS (Labo-
ratory of Algorithms, Cryptography and Security) of the Computer Science and
Communications research unit of the University of Luxembourg. The conference
was attended by 160 registered participants from 36 different countries.

There were 104 papers submitted to FSE 2007, from which 28 were selected
for presentation. The selection of papers was a challenging task, each submission
had at least four reviewers, papers from Program Committee members having
at least five. About 450 reviews were written by the committee and the external
reviewers. The discussion phase was very fruitful, leading to more than 400 dis-
cussion comments in total, with several discussions going beyond 20 comments.
I would like to thank the Program Committee and the external reviewers, who
did an excellent job. It was a real pleasure to work with this team.

The conference program also featured an invited talk by Jean-Charles Faugére
on the topic “Groebner Bases. Applications in Cryptology.” The traditional
rump session with short informal presentations of recent results was chaired
by Joan Daemen.

We would also like to thank the following people: Thomas Baignères and
Matthieu Finiasz as the authors of the iChair review software; Dmitry Khovra-
tovich for his help with the conference Web site and compilation of the proceed-
ings; Volker Müller, Michel Carpentier, Christian Hutter, and SIU for video-
taping the talks and providing a wireless LAN for the participants. We would
like to thank the students of the Lycée Technique “Ecole de Commerce et de
Gestion” and our secretaries Elisa Ferreira, Ragga Eyjolfsdottir, and Mireille
Kies for their help in the organization of the workshop. We would also like to
thank IACR and in particular Helena Handschuh, Shai Halevi, and Bart Preneel
for constant support. Thanks to Britta Schlüter for the public relations work.
Finally we are grateful to our sponsors FNR — Luxembourg National Research
Fund — and the University of Luxembourg as well as the Centre de Culture et
de Rencontre Neumünster, Ministry of Culture, Research and Universities.

March 2007 Alex Biryukov

FSE 2007

March 26–28, 2007, Luxembourg City, Luxembourg

Sponsored by
the International Association for Cryptologic Research (IACR)

General Chair

Jean-Claude Asselborn, University of Luxembourg, Luxembourg

Program Chair

Alex Biryukov, University of Luxembourg, Luxembourg

Program Committee

Frederik Armknecht NEC, Germany
Steve Babbage Vodafone, UK
Alex Biryukov (chair) University of Luxembourg, Luxembourg
Claude Carlet University of Paris 8 and INRIA, France
Nicolas Courtois University College London, UK
Joan Daemen STMicroelectronics, Belgium
Orr Dunkelman K.U.Leuven, Belgium
Henri Gilbert France Telecom, France
Louis Granboulan EADS, France
Helena Handschuh Spansion, France
Jin Hong Seoul National University, Korea
Seokhie Hong CIST, Korea
Tetsu Iwata Nagoya University, Japan
Thomas Johansson Lund University, Sweden
Antoine Joux DGA and University of Versailles, France
Pascal Junod Nagravision, Switzerland
Charanjit Jutla IBM T.J. Watson Research Center, USA
John Kelsey NIST, USA
Lars R. Knudsen Technical University of Denmark, Denmark
Stefan Lucks University of Mannheim, Germany
Mitsuru Matsui Mitsubishi Electric, Japan
Willi Meier FHNW, Switzerland

VIII Organization

Kaisa Nyberg Nokia and Helsinki University of Technology,
Finland

Elisabeth Oswald University of Bristol, UK
Josef Pieprzyk Macquarie University, Australia
Bart Preneel K.U.Leuven, Belgium
Greg Rose Qualcomm, USA
Palash Sarkar Indian Statistical Institute, India
Serge Vaudenay EPFL, Switzerland

Subreviewers

Elena Andreeva
Thomas Baignères
Gregory V. Bard
Côme Berbain
Guido Bertoni
Olivier Billet
Nick Bone
Christophe De Cannière
Chris Charnes
Lily Chen
Scott Contini
Morris Dworkin
Martin Feldhofer
Matthieu Finiasz
Benedikt Gierlichs
Sylvain Guilley
Philip Hawkes
Christoph Herbst
Katrin Hoeper
Deukjo Hong
Alexandre Karlov
Nathan Keller
Alexander Kholosha
Dmitry Khovratovich
Jongsung Kim
Andrew Klapper
Özgül Küçük
Ulrich Kühn
Changhoon Lee
Svetla Nikova
Stefan Mangard
Stéphane Manuel
Krystian Matusiewicz
Alexander Maximov

Cameron McDonald
Florian Mendel
Marine Minier
Joydip Mitra
Jean Monnerat
Alp Öztarhan
Sylvain Pasini
Ludovic Perret
Thomas Peyrin
Gilles Piret
Thomas Popp
Norbert Pramstaller
Emmanuel Prouff
Christian Rechberger
Matt Robshaw
Allen Roginsky
Martin Schläffer
Yannick Seurin
Nicolas Sendrier
Igor Shparlinski
Soren Steffen Thomsen
Dirk Stegemann
Ron Steinfeld
Jaechul Sung
Daisuke Suzuki
Emin Tatli
Charlotte Vikkelsoe
Martin Vuagnoux
Ralf-Philipp Weinmann
Christopher Wolf
Hongjun Wu
Jin Yuan
Erik Zenner

Table of Contents

Hash Function Cryptanalysis and Design (I)

Producing Collisions for Panama, Instantaneously 1
Joan Daemen and Gilles Van Assche

Cryptanalysis of FORK-256 . 19
Krystian Matusiewicz, Thomas Peyrin, Olivier Billet,
Scott Contini, and Josef Pieprzyk

The Grindahl Hash Functions . 39
Lars R. Knudsen, Christian Rechberger, and Søren S. Thomsen

Stream Ciphers Cryptanalysis (I)

Overtaking VEST . 58
Antoine Joux and Jean-René Reinhard

Cryptanalysis of Achterbahn-128/80 . 73
Maŕıa Naya-Plasencia

Differential-Linear Attacks Against the Stream Cipher Phelix 87
Hongjun Wu and Bart Preneel

Theory

How to Enrich the Message Space of a Cipher . 101
Thomas Ristenpart and Phillip Rogaway

Security Analysis of Constructions Combining FIL Random Oracles 119
Yannick Seurin and Thomas Peyrin

Bad and Good Ways of Post-processing Biased Physical Random
Numbers . 137

Markus Dichtl

Fast Talks: Block Cipher Cryptanalysis

Improved Slide Attacks . 153
Eli Biham, Orr Dunkelman, and Nathan Keller

A New Class of Weak Keys for Blowfish . 167
Orhun Kara and Cevat Manap

X Table of Contents

Fast Talks: Block Cipher Design

The 128-Bit Blockcipher CLEFIA (Extended Abstract) 181
Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and
Tetsu Iwata

New Lightweight DES Variants . 196
Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm

Block Cipher Cryptanalysis

A New Attack on 6-Round IDEA . 211
Eli Biham, Orr Dunkelman, and Nathan Keller

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 225
Jongsung Kim, Seokhie Hong, and Bart Preneel

An Analysis of XSL Applied to BES . 242
Chu-Wee Lim and Khoongming Khoo

Stream Cipher Cryptanalysis (II)

On the Security of IV Dependent Stream Ciphers . 254
Côme Berbain and Henri Gilbert

Two General Attacks on Pomaranch-Like Keystream Generators 274
H̊akan Englund, Martin Hell, and Thomas Johansson

Analysis of QUAD . 290
Bo-Yin Yang, Owen Chia-Hsin Chen, Daniel J. Bernstein, and
Jiun-Ming Chen

Cryptanalysis of Hash Functions (II)

Message Freedom in MD4 and MD5 Collisions: Application to APOP . . . 309
Gaëtan Leurent

New Message Difference for MD4 . 329
Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro

Algebraic Cryptanalysis of 58-Round SHA-1 . 349
Makoto Sugita, Mitsuru Kawazoe, Ludovic Perret, and Hideki Imai

Theory of Stream Ciphers

Algebraic Immunity of S-Boxes and Augmented Functions 366
Simon Fischer and Willi Meier

Table of Contents XI

Generalized Correlation Analysis of Vectorial Boolean Functions 382
Claude Carlet, Khoongming Khoo, Chu-Wee Lim, and
Chuan-Wen Loe

Side Channel Attacks

An Analytical Model for Time-Driven Cache Attacks 399
Kris Tiri, Onur Acıiçmez, Michael Neve, and Flemming Andersen

MACs and Small Block Ciphers

Improving the Security of MACs Via Randomized Message
Preprocessing . 414

Yevgeniy Dodis and Krzysztof Pietrzak

New Bounds for PMAC, TMAC, and XCBC . 434
Kazuhiko Minematsu and Toshiyasu Matsushima

Perfect Block Ciphers with Small Blocks . 452
Louis Granboulan and Thomas Pornin

Author Index . 467

Producing Collisions for Panama,

Instantaneously

Joan Daemen and Gilles Van Assche

STMicroelectronics, Zaventem, Belgium
gro.noekeon@noekeon.org

Abstract. We present a practical attack on the Panama hash function
that generates a collision in 26 evaluations of the state updating function.
Our attack improves that of Rijmen and coworkers that had a complexity
282, too high to produce a collision in practice. This improvement comes
mainly from the use of techniques to transfer conditions on the state to
message words instead of trying many message pairs and using the ones
for which the conditions are satisfied. Our attack works for any arbitrary
prefix message, followed by a pair of suffix messages with a given differ-
ence. We give an example of a collision and make the collision-generating
program available. Our attack does not affect the Panama stream cipher,
that is still unbroken to the best of our knowledge.

Keywords: symmetric cryptography, hash function, collision.

1 Introduction

A cryptographic hash function maps a message of arbitrary length to a fixed-
size output called a digest. One of the requirements for a cryptographic hash
function is collision-resistance: it should be infeasible to to find two different
messages that give the same digest.

Panama can be used both as a hash function and as a stream cipher. In the
scope of this paper, we will consider only on the hash part. Our attack does not
have impact on the security of the Panama stream cipher. Internally, Panama

has a state and a buffer, which evolve using a state updating function. For every
block of message, the state updating function transforms the state and the buffer.
We describe Panama in Sec. 2.

In this article, we describe a method to produce collisions for the Panama

hash function that refines the method of Rijmen and coworkers [2] and reduces
the workload from 282 to 26 applications of the state updating function. We
can therefore generate collisions quasi instantaneously. Furthermore, there are
many degrees of freedom in the produced messages. The attack works for any
initial value of the state. This means that one can find a collision with a pair of
messages (M1|M, M1|M∗) with an arbitrary prefix M1. Here, the message parts
M and M∗ have a fixed difference M ′ = M + M∗. Furthermore, the attacker

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 1–18, 2007.
c© International Association for Cryptologic Research 2007

2 J. Daemen and G. Van Assche

can append an arbitrary suffix M2 to both collision messages, independently of
M1, M and M∗. We discuss the structure of the attack in Sec. 3.

Like in [2], we use a differential trail (called differential path in [2]) that
leads to a zero difference in state and buffer. A differential trail specifies both
the message differences and the differences in the state and in the buffer. For
a pair of messages to follow the right differences in the state, a subset of the
state bits must satisfy specific conditions. In the attack in [2], part of these
conditions were transferred to equations on message words while the remaining
ones were satisfied by trying many different message pairs and picking out those
for which these conditions happened to be satisfied. In our attack, we transfer
all conditions to equations on message bits using some simple new techniques
explained in Sec. 4. The transfer of equations has negligible workload.

Although very similar, our trail is different from that of [2]. We chose a trail
such that the conditions on the state are more easily transferable to equations
on the message bits. We describe it in Sec. 5 and all its conditions and their
transfer in Sec. 6.

2 Description of Panama

The internal memory of Panama is composed of 273 32-bit words (hereby de-
noted words) and is organized in two parts: [1]

– the state, with 17 words denoted a0 through a16, and
– the buffer, which is an array of 32 × 8 words, denoted bi,j with 0 ≤ i ≤ 31

and 0 ≤ j ≤ 7. (Note that bi indicates a block of 8 words bi,0 . . . bi,7.)

The + sign applied on bits denotes the exclusive or (xor) operation and on words
the bitwise xor. In subscripts of the state a, it denotes modulo-17 addition.

The message to hash is padded and divided into blocks of 8 words (i.e., 256
bits) each. It is processed as follows. First, both the state and the buffer are
initialized to 0. Then, for each message block p = (p0, p1, . . . , p7) (i.e., for each
round), the following operations are applied:

– the state undergoes a non-linear transformation θ ◦ π ◦ γ, with

γ : ai ← ai + (ai+1 + 0)ai+2 + 0,

π : ai ← a7i mod 17 ≫ i(i + 1)/2,

θ : ai ← ai + ai+1 + ai+4,

where the invisible multiplication indicates the bitwise and, 0 denotes the
word with 32 bits 1, and ≫ cyclic right shift of the bits within a word;

– the least significant bit of a0 is flipped: a0 ← a0 + 1;
– the message block is xored into the state:

a ← a + fi→s(p) ⇔ ai+1 ← ai+1 + pi, 0 ≤ i ≤ 7;

Producing Collisions for Panama, Instantaneously 3

– eight words of the buffer are xored into the state:

a ← a + fb→s(b16) ⇔ ai+9 ← ai+9 + b16,i, 0 ≤ i ≤ 7;

– the buffer undergoes a linear feedback shift register (LFSR) step:

bi ← bi−1 mod 32 (i �= 25),
b25 ← b24 + r(b31),

where the function r is defined as Y = r(X) ⇔ Yj = Xj+2 mod 8;
– the message block is xored into the buffer: b0,i ← b0,i + pi, 0 ≤ i ≤ 7.

After all the message blocks are processed, 33 extra rounds are performed, called
blank rounds. These rounds use the state updating function, with the difference
that a part of the state (instead of a message block) is input into the buffer:
b0,i ← b0,i + ai+1, 0 ≤ i ≤ 7.

Finally, the digest is extracted from the state after the blank rounds.

3 Structure of the Attack

The first thing to note is that the presence of the blank rounds makes it hard
to produce a collision in the digest if there is a difference in either the state or
the buffer after all the message blocks are input. Due to the invertibility of the
state updating function such a difference will not cancel out. Moreover, the lack
of external input and the propagation properties of the state updating function
give the attacker almost no control over the final difference. Therefore, our goal
is to produce a collision in both the state and the buffer before the blank rounds.

We produce a collision by following a trail. Two instances of Panama process
two different messages (p and p + dp), which have a given difference (dp). The
trail also specifies the differences in the state (da) and in the buffer (db) between
the two instances of Panama, at each round. So, not only the two messages
must have the given difference, they must also produce the right difference in
the state and in the buffer.

We shall now describe the general structure of the trail used in the scope of
this article. We will first talk about the sequence of message differences, then
about the differences in the state.

In the sequel, the round numbers are specified between brackets in superscript:
·(i). The convention is that p(i) is the message block processed during round i,
and a(i) is the value of the state after round i.

3.1 Collision in the Buffer

The buffer evolves independently from the state and is linear. As noticed in [2],
the following message difference sequence gives a collision in the buffer for any x:

dp(1) = x, dp(8) = r(x), dp(33) = x, all other differences 0. (1)

4 J. Daemen and G. Van Assche

After 32 rounds, we have db24 = r(x) and db31 = x. After the 33rd round, we get:

db25 ← db24 + r(db31) = r(x) + r(x) = 0,

db0 ← db31 + dp(33) = x + x = 0.

Thanks to the linearity of the buffer, any combination of shifted instances of
the sequence (1) results in a collision in the buffer. In [2], two such sequences
are used, one distant of two rounds from the other. In this paper, we instead use
three such sequences at three consecutive rounds. More precisely, the message
sequence is as follows (only non-zero differences are indicated):

(dp(1), dp(2), dp(3)) = (d(1), d(2), d(3)),
(dp(8), dp(9), dp(10)) = (r(d(1)), r(d(2)), r(d(3)),
(dp(33), dp(34), dp(35)) = (d(1), d(2), d(3)).

3.2 Collision in the State

The state is influenced both by the message blocks and by the buffer words in
b16. Let us summarize the sequence of differences that are xored into the state,
both from the message block and from b16:

I Rounds r = i + 0: State gets difference dp(r) = d(i)

II Rounds r = i + 7: State gets difference dp(r) = r(d(i))
III Rounds r = i + 17: State gets difference db

(r)
16 = dp(r−17) = d(i)

IV Rounds r = i + 24: State gets difference db
(r)
16 = dp(r−17) = r(d(i))

V Rounds r = i + 32: State gets difference dp(r) = d(i)

with 1 ≤ i ≤ 3.
After the three rounds in each of the five sequences described above, we will

make sure that we have a collision in the state. These are called subcollisions.
After the last subcollision, we have both a collision in the state and in the buffer,
and we are thus guaranteed to obtain the same digest after the blank rounds.

Before we explain how to obtain a subcollision, we need to detail the properties
of the difference propagation in γ, the only non-linear operation of the state
updating function.

3.3 Difference Propagation Through γ

Since γ is composed only of bitwise operations, we will only talk about γ as if
it operates on 17 bits in this current subsection. The actual γ on words can be
seen as 32 such operations in parallel.

Assume that the input of one instance of γ is a, while the input of the other
instance is a + da. For a given input difference da, not all output differences
are possible. The output difference dc = (dc0, . . . , dc16) is determined by the
following equation:

dci = γi(da) + dai+1ai+2 + dai+2ai+1 + 1,

where γi(a) = ai + (ai+1 + 1)ai+2 + 1 denotes a particular output bit of γ.

Producing Collisions for Panama, Instantaneously 5

Hence, we can obtain an output difference dc from a given input difference da
only if a satisfies some conditions. These are as follows:

If dai+1 = 1 and dai+2 = 0, then ai+2 = dci + γi(da) + 1; (2)
If dai+1 = 0 and dai+2 = 1, then ai+1 = dci + γi(da) + 1; (3)
If dai+1 = 1 and dai+2 = 1, then ai+1 + ai+2 = dci + γi(da) + 1. (4)

We call conditions of type (2) and (3) simple conditions and conditions of type
(4) two-bit parity conditions. We call a differential (da, dc) for which the set of
conditions has a solution a possible differential.

Note that the input difference da fully determines the positions of the state
bits ai that are subject to conditions. Assume that we have n consecutive 1s
in the pattern da, i.e., we have dai = dai+n+1 = 0 and in between dai+l = 1
(1 ≤ l ≤ n). Then there are simple conditions on ai and on ai+n+1, and n − 1
two-bit parity conditions on ai+l + ai+l+1 (1 ≤ l < n). This can be applied to
all such patterns in da.

From this follows that the number of conditions is equal to the Hamming
weight of da plus the number of 001 patterns in da. (For the particular case of
da = 11111111111111111, there are 16 independent two-bit parity conditions.)
We denote by w(da) the number of conditions due to da.

3.4 Specifying the Trail

For our attack to work, we wish to determine equations on the message bits that
imply the five subcollisions. In the previous subsection we have shown that given
a possible differential (da, dc) over γ, we obtain conditions on input bits of γ.

Consider now subcollision I. Before the first round, there is no difference
in the state, hence da(0) = 0. At the input of the second round, the message
difference appears in the state: da(1) = fi→s(d(1)). This determines the input
difference of γ in round 2. We now need to specify the output of γ in the second
round, but we can equivalently specify da(2), as the other operations are linear.
After the third round, the fact that we have a collision in the state imposes
that da(3) = 0, yielding at the output of the third round a difference equal
to fi→s(d(3)). Hence a value for da(2) must be chosen such that differentials
(fi→s(d(1)), π−1◦θ−1(da(2)+fi→s(d(2)))) and (da(2), π−1◦θ−1(fi→s(d(3)))) over γ
are possible. For a given message difference sequence d(1), d(2), d(3) there may be
several, one or none such values of da(2). Note that the first differential imposes
conditions on a(1) and the second one on a(2).

As θ and π are linear, it follows that a possible differential over the state-
updating function imposes conditions on bits of the state a(i). Doing this for
differentials over more rounds is more difficult and we avoid it in out attack.
Therefore, for each round in which there is non-zero input difference in the
state, we need to know the output difference.

For subcollisions II to V, applying the same reasoning leads to following round
differentials, which we write as differentials over θ ◦ π ◦ γ for compactness:

6 J. Daemen and G. Van Assche

I
�
fi→s(d

(1)), da(2) + fi→s(d
(2))

� �
da(2), fi→s(d

(3))
�

II
�
fi→s(r(d

(1))), da(9) + fi→s(r(d
(2)))

� �
da(9), fi→s(r(d

(3)))
�

III
�
fb→s(d

(1)), da(19) + fb→s(d
(2))

� �
da(19), fb→s(d

(3))
�

IV
�
fb→s(r(d

(1))), da(26) + fb→s(r(d
(2)))

� �
da(26), fb→s(r(d

(3)))
�

V
�
fi→s(d

(1)), da(34) + fi→s(d
(2))

� �
da(34), fi→s(d

(3))
�

Hence, the trail is fully determined by the sequence (d(1), d(2), d(2)), and the
5 state differences da(2), da(9), da(19), da(26) and da(34). Because the structure of
the subcollisions I and V are equal, we can fix da(34) = da(2).

3.5 Symmetric Patterns

Like in [2], we use differences with words that are either 0 or 0. This causes the
intra-word rotations in π to have no influence on the difference pattern, as all
other operations in the state updating function work in a bitwise fashion.

Let us translate this in the case of the word-oriented γ. We can view Equa-
tions (2)–(4) as 32 parallel conditions on the bits of the state words. Thanks
to the fact that all the difference words dai are either 0 or 0, the words aj on
which these conditions apply are the same for the 32 bits; either all or none of
the 32 bits of a word aj are affected by a condition. Hence, the equations can
be written word-wise. Note however that this does not restrict the value of the
state or of the message words to be either 0 or 0, only the differences.

4 Techniques for Equation Transfer

For a given trail, we have seen in Sec. 3.3 how to express conditions on the state
a to get the right output differences. In this section, we explain how to transfer
these equations to the message words that the attacker can choose.

We will see that the equations are never transferred to more than two rounds
before the start of the subcollision, so there is no overlap between the equations
derived from different subcollisions and hence we can satisfy them sequentially.

As the discussion below is generic for all five subcollisions, let us use a common
convention. For j ∈ {1, 8, 18, 25, 33}, we denote the various stages of the state
transformation with the following symbols:

+p(j−2)

−−−−−→ N
γ−→ O θ◦π−−→ P

+p(j−1)

−−−−−→ Q

Q
γ−→ R θ◦π−−→ S

+p(j)

−−−→ T

T
γ−→ U θ◦π−−→ V

+p(j+1)

−−−−−→ W

W
γ−→ X θ◦π−−→ Y

+p(j+2)

−−−−−→ Z.

At a given time, the corresponding italic letter denotes the state value.

Producing Collisions for Panama, Instantaneously 7

Although we will follow a reasoning going backwards from Z down to T, Q or
N, the attack works in practice in the forward direction. As the conditions are
being satisfied, the state is updated with the known values.

For each subcollision, we wish to have a collision in the state at time Z, hence
to have dZ = 0. This determines dY = fi→s(dp(j+2)) or dY = fb→s(db

(j+1)
16),

together with the difference pattern dX via π−1 ◦ θ−1. The trail also specifies
the patterns dW and dT (and indirectly dU). The differential (dT, dU) over γ
implies conditions on T and (dW, dX) on W . The attacker must satisfy them by
choosing appropriate values for p(j−2), p(j−1), p(j) and p(j+1).

The conditions are either simple, i.e., of type Wi = target or two-bit parity
conditions Wi + Wi+1 = target where “target” is a known value.

In the sequel, we often speak about the left and right hand sides of an equation.
As a convention, the left hand side contains one isolated variable to be solved,
while the right hand side contains other variables that are determined from other
equations or set to arbitrary values.

4.1 Immediate Satisfaction in W

Simple conditions on words W1 through W8 can be satisfied by setting the value
of p(j+1) accordingly. We call this immediate satisfaction:

Wi = target → p
(j+1)
i−1 = Vi + target (if 1 ≤ i ≤ 8). (5)

The value of Vi is determined by the value of T .
A two-bit parity condition Wi + Wi+1 = target can be satisfied whenever (at

least) one of the two words can be modified through p, that is, when 0 ≤ i ≤ 8.
For i = 0 or i = 8, we have:

W0 + W1 = target → p
(j+1)
0 = V0 + V1 + target , and

W8 + W9 = target → p
(j+1)
7 = V8 + V9 + target .

If 1 ≤ i ≤ 7, however, the value of another message word must be taken into
account. This other message word must be treated as known and its value may
either be fixed by other conditions or set to an arbitrary value. We have either

Wi + Wi+1 = target → p
(j+1)
i−1 = Vi + Vi+1 + p

(j+1)
i + target , or

Wi + Wi+1 = target → p
(j+1)
i = Vi + Vi+1 + p

(j+1)
i−1 + target .

4.2 Bridge from W to T

The conditions on W that cannot be satisfied immediately can be transferred to
equations at time U via π−1 ◦ θ−1.

A condition on some Wi can be converted into an equation in three words of
U . For instance, assume we have to satisfy W10 = 0. We know that

W10 = (U2 ≪ 3) + (U9 ≪ 45) + (U13 ≪ 91).

8 J. Daemen and G. Van Assche

In this case, U2 will be influenced directly by the message words p(j), and this
makes it an ideal candidate for immediate satisfaction in T. So, let us isolate
this variable and write:

U2 = ((U9 ≪ 45) + (U13 ≪ 91)) ≫ 3.

Remember that the terms U9 and U13 at the right hand side are treated as known
values.

In more general terms, a simple condition on Wi is converted into an equation
on Uπ

7i +Uπ
7(i+1) +Uπ

7(i+4), with Uπ
i = Ui ≪ i(i+1)/2. One can choose to isolate

one of the three variables U7i, U7(i+1) or U7(i+4). Then, the cyclic rotation on the
left hand side can be replaced by its inverse on the right hand side. For instance,
the isolation of U7i gives the following:

Wi = target → U7i = (Uπ
7(i+1) + Uπ

7(i+4) + target) ≫ 7i(7i + 1)/2, i �= 0, (6)

while the constant 1 must be taken care of in the case of the word i = 0, for
instance we can isolate U0 as U0 = Uπ

7 + Uπ
11 + target + 1.

Similarly, a two-bit parity condition on Wi + Wi+1 is converted into an equa-
tion on Uπ

7i + Uπ
7(i+2) + Uπ

7(i+4) + Uπ
7(i+5). Again, one can choose to isolate either

of the four variables.
An equation of the type Ui = target can be written as Ti + (0 + Ti+1)Ti+2 =

target + 0. One can transfer the equation on Ti by treating Ti+1 and Ti+2 as
known values:

Ui = target → Ti = (0 + Ti+1)Ti+2 + target + 0. (7)

Combining the substitutions (6) and (7) is called a bridge. Together with the
immediate satisfaction, this is the technique we used most often in our collision-
generating algorithm.

Of course, all the conditions on T1 through T8 are immediately satisfiable by
setting the appropriate value in p(j) as in Equation (5) with W and V replaced
by T and S, respectively.

4.3 Side Bridge

An interesting special case is an equation on U0 = target . Since an equation on
T0 cannot be immediately satisfied via pj , we can instead create two equations
on T1 and T2. We can choose from three ways of creating two equations:

U0 = target → T1 = T0 + target and T2 = 0
U0 = target → T1 = 0 and T2 = T0 + target + 0
U0 = target → T1 = T0 + target and T2 = T0 + target + 0

In the sequel, this technique is called a side bridge. Note that this technique can
also be used on other word positions.

Producing Collisions for Panama, Instantaneously 9

a
(j+1)

p
(j+1)

(a)

a
(j)

p
(j)

(b)

(f)

a
(j{1)

p
(j{1)

(c) (d)

(g)
(h)

(i)

(e)

Fig. 1. Schematic illustration of some of the equation transfer techniques. (a) A condi-

tion in one of the words a
(j+1)
1...8 can be immediately satisfied via p(j+1). (b) Otherwise,

this condition has to be bridged to the previous round. Preferably, it is bridged to one
of the words a

(j)
1...8 so that it can be satisfied via p(j). (c)-(d) Sometimes, a bridge (c)

must be accompanied by an additional equation (d) to remove circular dependencies.
(e) Of course, this additional equation must be also be bridged or satisfied somewhere
(not shown explicitly). (f) Conditions can also appear in round j; here is an example
of such a condition that can be immediately satisfied via p(j). (g)-(h)-(i) Bridging a
condition to the word 0 (g) does not allow immediate satisfaction. Instead, it is possible
to side-bridge it to two equations, one on word 1 (h) and one on word 2 (i).

4.4 Dependency Removal

As said in the beginning of Sec. 4, when solving an equation, all terms on the
right hand side must be known. This imposes constraints on the order in which
the equations are solved. In some cases, it may be necessary to remove circular
dependencies on the way from U to T. For instance, assume that we have three
equations on U :

U4 = target , (8)
U6 = target , (9)
U8 = U4 + target (up to rotation). (10)

When transferring from U to T, (8) requires T5 and T6 to be known, hence that
(9) is already solved for T6. In turn, (9) requires T7 and T8 to be known, hence

10 J. Daemen and G. Van Assche

that (10) is solved for T8. But (10) requires that T4 is known so that (8) must
be solved. To remove this circular set of dependencies, we can force T7 = 0 so
that U6 = T6 + (T7 + 0)T8 + 0 = T6 + 0 does not depend on T8 any more. The
dependency of (9) on (10) is removed, and we can solve (9), then (8), then (10).

In more general terms, we can set Ti+1 = 0 (resp. Ti+2 = 0) for the equation
on Ui = target , so that the converted equation on Ti has no dependency on Ti+2

(resp. Ti+1). In the sequel, this technique is called dependency removal. To sum
up, one can apply either:

Ui = target → Ti = target + 0 and Ti+1 = 0, or

Ui = target → Ti = target + 0 and Ti+2 = 0.

The dependency removal and the other techniques are illustrated in Fig. 1.

4.5 The Conditions Due to Differential (dT, dU)

The differential (dT, dU) fixes some words of T . These words are therefore not
available for bridges coming from W. Fortunately, there are some degrees of
freedom on the way from W to T to avoid conflicts. For instance, one should
choose adequately the component of U that will be isolated on the left hand side.
For the attack to work, there must be a way to satisfy and bridge the equations
in a non-conflicting way.

The equations on T in turn can be bridged to equations on Q. The conditions
on Q1 through Q8 can then be satisfied via p(j−1).

However, one must pay careful attention to equation dependencies. When for
example choosing p(j) to satisfy a condition in W , it has an impact on the state
at time T and subsequent rounds. Indeed, changing the value of Ti influences the
values of Ui−2, Ui−1 and Ui. Hence care must be taken, when solving equations
that are the result of bridges, that equations solved earlier are not affected. In
general, dependency problems become more difficult to manage as the number
of bridges grows.

4.6 Solving the Equations by Correction

When all bridges are determined along with their dependencies, solving the
equations is fairly simple and does not involve much more than an evaluation
of the state updating function. This is thanks to the fact that the equations are
made linear once the right hand side is determined. Let us illustrate this with
an example.

Assume that we need to satisfy W9 = 0. Since immediate satisfaction is not
possible, we decide to bridge this condition to T6 = target (via an equation on
U6). At this stage, we do not calculate the actual value of target , but we in-
fluence T6 through p

(j)
5 . So, we evaluate the state updating function for round

j with p
(j)
5 = 0 and then the state updating function for round j + 1. After

this, we obtain W ∗
9 , which may not be zero as we wished. However the linearity

Producing Collisions for Panama, Instantaneously 11

of the equations implies that we can reuse the value W ∗
9 (up to a rotation) to

determine p
(j)
5 . Since U6 is rotated by 6(6 + 1)/2 = 21 positions, we can simply

set p
(j)
5 = W ∗

9 ≫ 21 and we automatically get W9 = 0.
In short, the linearity allows us to satisfy a condition by correcting the corre-

sponding message word. The right value of the message word is determined (up
to a rotation) by the correction to bring to the state word under condition.

The reasoning for satisfying and bridging equations is done backwards in time.
In contrast, solving them by correction works forwards in time, and the rounds
are evaluated sequentially. The state updating function may be evaluated several
times, an extra evaluation being needed for each correction.

The dependencies between equations play an important role in the order in
which the corrections are applied. In the same way the right hand side of an
equation must be known when solving it, a correction shall not affect equations
that have been satisfied earlier.

5 The Chosen Trail

To choose a suitable trail, an important parameter to consider is the number of
conditions on T and on W in the five subcollisions. Actually, this number should
be split in the number of conditions that can be immediately satisfied and those
that need to be bridged.

To make a trail easy to exploit using the techniques described in Sec. 4, the
application of immediate satisfaction and the bridges coming from the later
rounds should as much as possible fit within the 8 message words each round.
One can chain bridges over several rounds, but as more rounds are bridged
dependencies become increasingly difficult to manage. Generally speaking, the
higher the number of conditions to bridge, the more difficult it will be to fit them
all on a small number of rounds.

The number of conditions in the first subcollision is w(da(1)) in T and w(da(2))
in W. The number of conditions for the other four subcollisions are (w(da(i)),
w(da(i+1))) with i = 8, 18, 25 and 33. Note that the fifth subcollision is identical
to the first one. We split each of these numbers w(da) as w(da) = wis(da) +
wb(da), where wis(da) is the number of conditions that can be immediately
satisfied and wb(da) that must be bridged.

As a heuristic criterion, we minimize the maximum number of conditions to
bridge:

Wb = max
i
{wb(da(i))}.

We have searched exhaustively through all 2552256 patterns (d(1), d(2), d(3)) and
selected the one that has a collision trail with a minimal Wb. This resulted in
the trail determined by following values:

– d(1) = 00000101, d(2) = 11010000, d(3) = 01111011,
– da(2) = 10111110000000101,
– da(9) = 00100011101011000,

12 J. Daemen and G. Van Assche

– da(19) = 00010111001100000 and
– da(26) = 11111100111010010,

where each digit represents a word either all-zero (0) or all-one (1); the word
positions increase from left to right. The number of conditions that can be im-
mediately satisfied or bridged is given in Table 1 below. As a comparison, the
trail used in [2] has Wb = 7, while our trail has Wb = 5.

Table 1. Number of conditions in the trail used in our attack

I II III IV

da(1) da(2) da(8) da(9) da(18) da(19) da(25) da(26)

wis 2 6 3 5 0 5 0 8
wb 1 3 0 4 3 3 3 5

6 Equation Transfer in the Chosen Trail

In this section, we describe in detail how the equations are transferred to the
message words using the techniques in Sec. 4 for the trail specified in Sec. 5.

6.1 Subcollisions I and V

For round 1, we have the following differences:

db
(0)
16 = 00000000 da(0) = 00000000000000000 = dQ

dp(1) = 00000101 Round 1

da(1) = 00000010100000000 = dT dU = 00001001100000000

From the pattern in dT , we can see that we have three conditions on T5, T7

and T9, namely

T5 = dU4 + γ4(dT) + 0 = 0, (11)

T7 = dU6 + γ6(dT) + 0 = dU5 + γ5(dT) + 0 = 0, (12)

T9 = dU8 + γ8(dT) + 0 = 0. (13)

The equations (11) and (12) can be immediately satisfied in round 1 via p
(1)
4

and p
(1)
6 , whereas (13) must be bridged to Q:

T9 = 0 → Q2 = ((0 + Q3)Q4 + 0) + (Rπ
6 + Rπ

12 + 0) ≫ 3, (14)

which can be immediately satisfied in round 0 via p
(0)
1 . Note that this implies

that Q3, Q4, . . . , Q8, Q12, Q13 and Q14 are known when solving for Q2.

Producing Collisions for Panama, Instantaneously 13

Then for round 2, we have the following differences:

db
(1)
16 = 00000000

dp(2) = 11010000 Round 2

da(2) = 10111110000000101 = dW dX = 01110010000001111

From the pattern in dW , this imposes nine conditions on W0 + W16, W1,
W2 + W3, W3 + W4, W4 + W5, W5 + W6, W7, W13 and W15. We will not detail
the right hand sides of the corresponding equations, as they can easily be found
as explained in Sec. 3.3. The equations on the words W1 through W7 can be
immediately satisfied via p(2). The other equations are solved as follows:

– The condition on W0 +W16 can be transferred to an equation on Uπ
4 +Uπ

7 +
Uπ

10 +Uπ
11. We isolate U4 on the left hand side and transfer it to an equation

on T4, which can be immediately satisfied via p
(1)
3 . (Here, T5, T6, . . . , T13

must be known.)
– The condition on W15 is transferred to an equation on Uπ

3 +Uπ
10 +Uπ

14, from
which we isolate U3, transfer it T3 and satisfy it via p

(1)
2 . Notice that when

isolating T3, this means putting T4 and T5 on the right hand side. The value
of T4 must thus be determined before that of T3, hence the condition on W15

may only be solved after the one on W0 + W16. (Here, T4, T5, T10, T11, T12,
T14, T15 and T16 must be known.)

– Similarly, the condition on W14 becomes an equation on Uπ
0 +Uπ

6 +Uπ
13, then

on U6, then on T6, then on p
(1)
5 . (Here, T0, T1, T2, T7, T8, T13, T14 and T15

must be known.)

Finally in round 3, the differences in the state cancel. We process subcollision V
in the same way, using the message blocks 32 rounds later.

6.2 Subcollision II

For round 8, we have the following differences:

db
(7)
16 = 00000000 da(7) = 00000000000000000 = dQ

dp(8) = 00010100 Round 8

da(8) = 00001010000000000 = dT dU = 00100010000000000

Hence, we have three conditions on T3, T5 and T7, which can be immediately
satisfied via p

(8)
2 , p

(8)
4 and p

(8)
6 . This is summarized in the table below.

Condition on via then on satisfied via

T3, T5, T7 p
(8)
2 , p

(8)
4 , p

(8)
6

Then for round 9, we have the following differences:

14 J. Daemen and G. Van Assche

db
(8)
16 = 00000000

dp(9) = 01000011 Round 9

da(9) = 00100011101011000 = dW dX = 10101001000011000

Here we have nine conditions on W1, W3, W5, W6 + W7, W7 + W8, W9,
W11, W12 + W13 and W14. As usual, the conditions on W1 through W8 can be
immediately satisfied via p(9).

Condition on via then on satisfied via

W1, W3, W5, W6 + W7, W7 + W8 p
(9)
0 , p

(9)
2 , p

(9)
4...6

W12 + W13 Uπ
0 + Uπ

10 + Uπ
13 + Uπ

16 T1 and T2, using side bridge p
(8)
0 and p

(8)
1

W9 Uπ
2 + Uπ

6 + Uπ
12 T6 p

(8)
5

W14 Uπ
3 + Uπ

7 + Uπ
13 T13, with T8 = 0 p

(8)
7

T13 Rπ
0 + Rπ

6 + Rπ
14 Q6 p

(7)
5

W11 Uπ
3 + Uπ

9 + Uπ
16 T9, with T11 = 0

T9 Rπ
2 + Rπ

6 + Rπ
12 Q2, with Q1 = 0 p

(7)
0 and p

(7)
1

T11 Rπ
3 + Rπ

9 + Rπ
16 Q3 p

(7)
2

For the condition on W14, we transfer it to an equation on Uπ
3 + Uπ

7 + Uπ
13.

We cannot isolate U3 or U7 and transfer it to T3 or T7 since we already have
an equation on both. Instead, we isolate U13 and transfer the condition to T13.
We also remove the dependency of U7 on T9 by setting T8 = 0, since T9 will be
needed below.

The condition on W11 can be transferred to an equation on Uπ
3 + Uπ

9 + Uπ
16.

Since T3 is already busy, we instead isolate U9 and transfer the condition to T9.
However, U9 also depends on T10, which is influenced by Q2; but Q2 is needed to
satisfy the condition on T9. To remove this circular dependency, we force T11 = 0
so that U9 = T9 + 0 does not depend on T10 any more.

The condition on T9 is bridged to a condition on Q2. However, Q2 influences
R0, whose value is needed to solve for Q6; but Q6 influences R6, whose value is
needed to solve for Q2. We force Q1 = 0 so that R0 = Q0 + 0 no longer depends
on Q2.

Finally in round 10, the differences in the state cancel.

6.3 Subcollision III

For round 18, we have the following differences:

db
(17)
16 = 00000101 da(17) = 00000000000000000 = dQ

dp(18) = 00000000 Round 18

da(18) = 00000000000000101 = dT dU = 00000000000010011

We have three conditions on T0, T13 and T16, which cannot be immediately
satisfied in round 18.

Producing Collisions for Panama, Instantaneously 15

Condition on via then on satisfied via

T0 Rπ
0 + Rπ

7 + Rπ
11 Q7 p

(17)
6

T13 Rπ
0 + Rπ

6 + Rπ
13 Q6 p

(17)
5

T14 Rπ
3 + Rπ

10 + Rπ
14 Q3 p

(17)
2

Then for round 19, we have the following differences:

db
(18)
16 = 11010000

dp(19) = 00000000 Round 19

da(19) = 00010111001100000 = dW dX = 01111011100100000

This implies conditions on W2, W4, W5 + W6, W6 + W7, W8, W9, W10 + W11,
W12.

Condition on via then on satisfied via

W2, W4, W5 + W6, W6 + W7, W8 p
(19)
1 , p

(19)
3...5, p

(19)
7

W12 Uπ
6 + Uπ

10 + Uπ
16 T6 p

(18)
5

W9 Uπ
2 + Uπ

6 + Uπ
12 T2, with T4 = 0 p

(18)
1 and p

(18)
3

W10 + W11 Uπ
2 + Uπ

3 + Uπ
13 + Uπ

16 T3 p
(18)
2

To solve the conditions on W9 and W10, we need to remove some dependencies.
On the one hand, the condition on W9 is transferred to an equation on Uπ

2 +
Uπ

6 + Uπ
12, of which we want to isolate U2 and transfer to T2; this requires to

know T3 and T4. On the other hand, the condition on W10 + W11 becomes an
equation on Uπ

2 + Uπ
3 + Uπ

13 + Uπ
16; to isolate U3 and transfer the equation to T3,

we need to know U2. This dependency can be removed by forcing T4 = 0 so that
U2 does not depend on T3.

Finally in round 20, the differences in the state cancel.

6.4 Subcollision IV

For round 25, we have the following differences:

db
(24)
16 = 00010100 da(24) = 00000000000000000 = dQ

dp(25) = 00000000 Round 25

da(25) = 00000000000010100 = dT dU = 00000000001110100

We have three conditions on T11, T13 and T15, which cannot be immediately
satisfied in round 25.

Condition on via then on satisfied via

T13 Rπ
0 + Rπ

6 + Rπ
13 Q6, with Q2 = 0 p

(24)
5 and p

(24)
1

T15 Rπ
3 + Rπ

10 + Rπ
14 Q3 p

(24)
2

T11 Rπ
3 + Rπ

9 + Rπ
16 side bridge to Q0 = 0 and to Q1 p

(24)
0 for Q1

Q0 Oπ
0 + Oπ

7 + Oπ
11 N7 p

(23)
6

16 J. Daemen and G. Van Assche

The condition on T11 cannot be satisfied neither in round 25 nor in round 24.
As we transfer it to an equation on Rπ

3 + Rπ
9 + Rπ

16, we cannot isolate R3 as it
would conflict with the condition on R15. We instead isolate R16 and side-bridge
it to Q0 = 0 and to an equation on Q1. The equation on Q1 can be satisfied in
round 24 via p

(24)
0 . Consequently, Q0 = 0 must be bridged to round 23.

To be able to solve for T13, we must prevent Q1 from influencing R0. Hence,
we force Q2 = 0.

Then for round 26, we have the following differences:

db
(25)
16 = 01000011

dp(26) = 00000000 Round 26

da(26) = 11111100111010010 = dW dX = 11000101010010000

This implies conditions on W0 +W1, W1 +W2, W2 +W3, W3 +W4, W4 +W5,
W6, W7, W8 + W9, W9 + W10, W11, W13, W14 and W16. Among them, the
conditions on W1 through W8 can be immediately satisfied via p(26).

Condition on via then on satisfied via

W0+W1, W1+W2, W2+W3, W3+W4, W4+W5, W6, W7, W8+W9 p(26)

W9 + W10 Uπ
6 + Uπ

9 + Uπ
12 + Uπ

13 T6, with T8 = 0 p
(25)
5 and p

(25)
7

W13 Uπ
0 + Uπ

6 + Uπ
13 side bridge to T1 and T2 p

(25)
0 and p

(25)
1

W16 Uπ
0 + Uπ

4 + Uπ
10 T4 p

(25)
3

W11 Uπ
3 + Uπ

9 + Uπ
16 T3 p

(25)
2

W14 Uπ
3 + Uπ

7 + Uπ
13 T7 p

(25)
6

In the condition on W9 + W10, we set T8 = 0 to remove the dependency of U6

on T7. This way, the value of T7 can be determined after that of T6.
Note that the condition on W13 becomes an equation on Uπ

0 +Uπ
6 +Uπ

13. Since
U6 is already taken, we isolate U0 and side-bridge it to T1 and T2.

Finally in round 27, the differences in the state cancel.

7 Example of Collision and Workload

We wrote a program that produces collisions based on the trail described in
Sec. 5 and using the equation transfer described in Sec. 6 [4]. The workload of
the collision-generating function is about 65 applications of the state-updating
function: 35 for the 35 message inputs and 30 additional ones for the bridges
and some XORs.

An example of pair of collision messages is given in Table 2, which was ob-
tained using our program. Each line represents a message block; for each block,
the words in hexadecimal must be read from left to right. The first message is
given by the hexadecimal digits in Table 2, while the second message is obtained
by xoring with 0 = ffffffff all the underlined words.

Producing Collisions for Panama, Instantaneously 17

Table 2. Example of pair of messages that produce a collision

p(0) 002911b8 f4046c0d 18be4673 67847de2 4ae13b51 3d6c1b7e 2cd6267d 72ae641d
p(1) 69522bd8 5f903d84 25558553 c194e805 1f7427d8 37edf3e4 bc922535 01eb3a6b
p(2) 0e8257d3 2ea67fd6 0682df75 c21387fe caa1b829 ccc994ba 9d03bd1c 00992518
p(3) 01244898 305e252b 440d462c 491c5b2e 4d061f8b 4db745f9 15473f0e 54de79dc
p(4) 39b355bc 2d1261f0 074d4fca 4dc8390e 6443663d 66bb5f6d 428b7e94 26a61a31
p(5) 701f5092 5d037474 7a5a4baf 767d758d 450940b5 12383ea4 3b253990 1e1f71d5
p(6) 6e5d785e 1ad4176a 63cb2040 6bfc19fc 7f965d80 7ff57876 4e455002 323b054b
p(7) 24168c78 d6646fb1 9a2ac8f2 030a45b1 301c3921 e58d996a 56ae7f7d 0732105a
p(8) 69bd59fc 6e3b4bdf 1adc0aac 22ee5482 4062e4cf 85f91c0a 45b21fe0 f25f2094
p(9) d7992b2c 1a491c5e 8dc2afaf 3bf6154e a8ab7031 797d40fa 475d1ef4 e842e121
p(10) 4cad0094 314f2b74 5e14301d 4df21075 494469e5 2e405ddc 13667210 1cd05258
p(11) 366b5346 66c441da 42305df2 7eb75e5b 60327a81 2c3b3ba0 15a12e7f 54220e5c
p(12) 3ef673cb 0822691d 59913a36 409d0de9 12e16f49 798b6174 121f0502 73da3555
p(13) 58b077d2 26ca08ac 3699151a 09021b0b 7bb90ef7 57724ba9 139d0f26 70494f23
p(14) 692c4a40 4a80585b 187e5da3 16c57533 689955b9 3cd52635 13e96788 40803068
p(15) 5db27fad 33ea62e1 23c91a2a 48cc15d5 575331b2 60bf1732 5c674a5d 3cd6190a
p(16) 0fbf7ae5 2f14185a 6ad630dc 047e26e9 422d0f77 54dc195d 368e05eb 0d6662b5
p(17) 79836169 75ef70c5 2cae43f4 2c49396c 3c613693 e13226d5 5bc5e69d 288f3f57
p(18) 3a615feb 58d1d14c 00795183 c49baa76 5e9d7604 79f7f59b 19166db2 617207a2
p(19) 6b723ed5 f5fe7f4e 401d5fa4 9acbcbfe 038420bc e3aac878 202e7da1 5b28d301
p(20) 440246c3 18d7068f 6be842d6 5039652a 542c5a21 19530314 6bcb5da9 0fc946d4
p(21) 0e127504 5f1e7011 28336601 78742718 249e328d 2b0c3dae 11f406bb 5dd55373
p(22) 6ad4001c 5a9f6260 4cd460ca 5fa41c20 205913cf 127e075d 003555d6 07cf042f
p(23) 67322c45 6d225953 1af46629 0ecc37d7 46cf7da8 01d35159 b428c608 3a2d3d0d
p(24) 4fe67839 304d058a 9ffce0a5 09751255 37e6124e 24851e01 591d2784 252a2fd9
p(25) 23c3189f 3362c465 d6437d3f d4bccbbe 507872ed f78a65dd aaa618d1 556224c8
p(26) 581ecd2f 305c16ce 83fde1d9 6b9f1da2 7a1f06d4 efbfe9b6 5fdcde8c 018136fc
p(27) 0c7b1785 50052d8e 0c153981 380717b0 773b727d 06334fbf 728245ee 251f74b1
p(28) 1d1842e4 62705d85 34927fe9 19da7c12 50646f07 4d546b8b 39ce12c6 3bb12fec
p(29) 4c852466 513e15e2 6d697ca3 6a155ef3 4ff85bb9 5c4603f4 486a5290 30046806
p(30) 17965e32 5e7368b9 470e0ff4 73d95c04 1f163002 182f532d 4d67752c 596871e0
p(31) 4ad4041e 2cf76301 3f4a3974 0a4a00f8 5ed01d43 4e573590 4f68140b 587675a2
p(32) 66fa4037 aa864c4d 49bb6092 6f117408 74ad1b53 4eae041c 5d2462b5 05881d37
p(33) 5579473e 7cfe6737 ebed6b2a 912f3f6a dd8bfb4b 329eae68 96076905 6f3c52cc
p(34) 06e8849c 5f456809 102bfd9d 527ab906 a1d33100 72aa5ea1 8ab21c2b 68f50f55
p(35) 45c52997 39607312 345919ca 263d7857 3b971002 40276cb6 138a726c 29593908

hash result:
h(p) 45d93522 0168bdcd e830f65a 6e46f3e9 1bb0bbd6 3d37a576 718f4032 0c65079f

8 Conclusions

In this paper, we have explained how to refine the attack [2] in order to produce
collisions in Panama using only about 26 evaluations of the state updating

18 J. Daemen and G. Van Assche

function. As noted in [2], Panama gives too many degrees of freedom per round
to the attacker.

One could consider to fix Panama to be resistant against this type of attack.
We have actually done this in [3] and the result is RadioGatún. Its design was
based on the insight obtained from the attack in [2] and the possibility of the
attack in this paper. This lead us to reduce the number of message words injected
each round from 8 to 3, giving an attacker much less freedom per round and
requiring more bridges with accompanying dependency problems for a trail with
similar complexity. More importantly, we have added feedback from the state
to the buffer, making the buffer evolution during hashing become nonlinear.
This makes the split in nicely separated subcollisions no longer possible. For
more explanations on the evolution from Panama to RadioGatún we refer to
Appendix A of [3].

Interestingly, our attack on Panama can be seen as an application of trail
backtracking [3]. In this context, we have defined a metric of a trail called its
backtracking depth. As we explain in [3], the backtracking depth gives a good
idea of the number of rounds that must be bridged at the worst point in the
trail. The backtracking depth of the trail we used in this paper turns out to be
only 2. This suggests that the conditions can be satisfied at any round in the
trail by the message words injected immediately before it and those before the
previous round and hence that the number of bridges is rather limited. In the
design of RadioGatún one of the main criteria is exactly the non-existence of
collision trails with low backtracking depth.

References

1. Daemen, J., Clapp, C.S.K.: Fast hashing and stream encryption with PANAMA.
In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

2. Rijmen, V., Van Rompay, B., Preneel, B., Vandewalle, J.: Producing Collisions for
PANAMA. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 37–51. Springer,
Heidelberg (2002)

3. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: “RADIOGATÚN a Belt-and-
Mill Hash Function”, presented at the NIST Second cryptographic hash workshop
(August 2006) available from http://radiogatun.noekeon.org/

4. Program to generate collisions for PANAMA: available from
http://radiogatun.noekeon.org/panama

http://radiogatun.noekeon.org/
http://radiogatun.noekeon.org/panama

Cryptanalysis of FORK-256

Krystian Matusiewicz1, Thomas Peyrin2, Olivier Billet2, Scott Contini1,
and Josef Pieprzyk1

1 Centre for Advanced Computing, Algorithms and Cryptography,
Department of Computing, Macquarie University

{kmatus,scontini,josef}@ics.mq.edu.au
2 France Telecom Research and Development

Network and Services Security Lab
{thomas.peyrin,olivier.billet}@orange-ftgroup.com

Abstract. In this paper we present a cryptanalysis of a new 256-bit
hash function, FORK-256, proposed by Hong et al. at FSE 2006. This
cryptanalysis is based on some unexpected differentials existing for the
step transformation. We show their possible uses in different attack sce-
narios by giving a 1-bit (resp. 2-bit) near collision attack against the
full compression function of FORK-256 running with complexity of 2125

(resp. 2120) and with negligible memory, and by exhibiting a 22-bit near
pseudo-collision. We also show that we can find collisions for the full
compression function with a small amount of memory with complexity
not exceeding 2126.6 hash evaluations. We further show how to reduce
this complexity to 2109.6 hash computations by using 273 memory words.
Finally, we show that this attack can be extended with no additional cost
to find collisions for the full hash function, i.e. with the predefined IV.

Keywords: hash functions, cryptanalysis, FORK-256, micro-collisions.

1 Introduction

Most of the dedicated hash functions published in the last 15 years follow
more or less closely ideas used by R. Rivest in the design MD4 [13,14] and
MD5 [15]. Using terminology from [16], their step transformations are all based
on source-heavy Unbalanced Feistel Networks (UFN) and employ bitwise boolean
functions. Apart from MD4 and MD5 other examples include RIPEMD [12],
HAVAL [21], SHA-1 [10] and also SHA-256 [11]. A very nice feature of all these
designs is that they are very fast in software implementations on modern 32-bit
processors and only use a small set of basic instructions executed by modern
processors in constant-time like additions, rotations, and boolean functions [4].

However, traditional wisdom says that monoculture is dangerous, and this
proved to be also true in the world of hash functions. Ground-breaking attacks
on MD4, MD5 by X. Wang et al. [19,17] were later refined and applied to attack
SHA-0 [20] and SHA-1 [18] as well as some other hash functions. Since source-
heavy UFNs with Boolean functions seem to be susceptible to attacks similar to
Wang’s because only one register is changed after each step and the attacker can

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 19–38, 2007.
c© International Association for Cryptologic Research 2007

20 K. Matusiewicz et al.

manipulate it to a certain extent, one could try designing a hash function using
the other flavour of UFNs, namely target-heavy UFNs where changes in one
register influence many others. This is the case with the hash function Tiger [1]
tailored for 64 bit platforms and designed in 1995, and a recently proposed
FORK-256 [3] which is the focus of this paper.

The paper is organized as follows. In the next section, we briefly describe
FORK-256. Then, in Section 3, we discuss some properties of the step transfor-
mation of the compression function. In Section 4 we investigate a special kind of
rather pathological differentials in the step transformation. We analyse those dif-
ferentials in details and derive an efficient necessary and sufficient condition for
their existence. Effectiveness of this test allows a fast research of suitable config-
urations. Section 5 studies simple paths using those differentials and shows how
to use them to efficiently find near-collisions for the compression function. In
Section 6, we then show how to exploit local differentials studied in Section 4 to
construct a high-level differential path for the full function as well as for its vari-
ous simplified variants. Finally, in Section 7 we present two algorithms for finding
collisions against FORK-256’s compression function, and show in Section 8 how
this method can be extended to find collisions for the full hash function.

Notation. Throughout the paper we use the following notations. Unless stated
otherwise, all words are 32-bit words and are sometimes though of as elements
of Z232 or Z2

32.

x + y addition in Z or Z232 depending on the context,
x − y subtraction in Z or Z232 ,
x ⊕ y bitwise xor of two words,
x<<<a rotation of bits of the word x by a positions to the left,
Rj,i value of register R ∈ {A, . . . , H} in branch j = 1, . . . , 4 at step i,

hw(x) Hamming weight of word x.

2 Description of FORK-256

FORK-256 is a new dedicated hash function proposed by Hong et al. [3,2]. It is
based on the classical Merkle-Damg̊ard iterative construction with a compression
function that maps 256 bits of state cvn and 512 bits of message M to 256 bits
of a new state cvn+1. For the complete description we refer to [3].

The compression function uses a set {branchj}j=1,2,3,4 of four branches run-
ning in parallel, each one of them using a different scheduling of sixteen 32 bit
message blocks Mi, i = 0, . . . , 15 by permuting them through σj . The same set
of chaining variables cv = (A0, B0, C0, D0, E0, F0, G0, H0) is used in the four
branches. After computing outputs of parallel branches hj = branchj(cv, M)
the compression function updates the set of chaining variables according to the
formula

cv := cv + [(h1 + h2) ⊕ (h3 + h4)] ,

where ‘+’ and ‘⊕’ are performed word-wise. This construction can be seen as fur-
ther extension of the design principle of two parallel lines used in RIPEMD [12].

Cryptanalysis of FORK-256 21

g

f

≪ 9

≪ 21

≪ 5

≪ 17

δ
π

j
(2

k
−

2
)

Aj,k−1 Bj,k−1 Cj,k−1 Dj,k−1

f

g

≪ 5

≪ 17

≪ 9

≪ 21

δ
π

j
(2

k
−

1
)

Ej,k−1 Fj,k−1 Gj,k−1 Hj,k−1

Mσj(2k−2) Mσj(2k−1)

QL QR

Aj,k Bj,k Cj,k Dj,k Ej,k Fj,k Gj,k Hj,k

Fig. 1. Step transformation of branch j of FORK-256. Q-structures are marked with
frames.

Each branch function branchj , j = 1, 2, 3, 4 consists of eight steps. In each
step k = 1, . . . , 8 the branch function updates its own copy of eight chaining
variables using the step transformation depicted in Fig. 1. Rj,i denotes the value
of the register R ∈ {A, . . . , H} in j-th branch after step i and all Aj,0, . . . , Hj,0

are initialised with corresponding values of eight chaining variables A0, . . . , H0.
The functions f and g are defined as f(x) = x +

(
x<<<7 ⊕ x<<<22

)
and g(x) =

x⊕
(
x<<<13 + x<<<27

)
, respectively. Finally, the constants δ0, . . . , δ15 are given in

Table 6 and permutations σj and πj are defined in Table 7 of Appendix A.

3 Preliminary Observations on FORK-256

As seen in the previous section, FORK-256 uses four parallel branches operating
on the same initial state and using the same blocks of messages but in a different
order. This seems to be the strength of FORK-256 since the first reported efforts
to break it was limited to two of the four branches [8]. In other words, the
main difficulty in cryptanalysing FORK-256 comes from the fact that the same
message blocks are input in each of the four branches in a permuted fashion.
Thus, while one or maybe two branches may be easily dealt with, the effect of
the difference is difficult to cancel in the remaining branches. There are however
some specific differential characteristics of interest.

The first one, as noted by [9] and [8], overcomes the issue by applying the same
modular difference d to every message block. Hence, just after the fourth step
has been completed, if the internal state has the same difference d on all of its
eight 32-bit words, there is a collision after the eighth step. This behavior, sum-
marized in Table 1, renders the use of four branches with message reordering as a
mean to protect against differential analysis ineffective since the same difference
is applied to every message block and the same differential pattern is occurring

22 K. Matusiewicz et al.

Table 1. A four steps differential pattern to force an inner collision for FORK-256.
The table shows the pattern in one branch and its probability to occur for each step.

step ΔA ΔB ΔC ΔD ΔE ΔF ΔG ΔH ΔML ΔMR Prob.

in d d d d d d d d −d −d

1 d 0 d d d 0 d d −d −d Pd
6

2 d 0 0 d d 0 0 d −d −d Pd
4

3 d 0 0 0 d 0 0 0 −d −d Pd
2

out 0 0 0 0 0 0 0 0 1

simultaneously in the four branches. The probability Pd is the probability that
the difference d propagates without modification in one step. This comes from
the fact that the modular difference has to pass through a ‘⊕’. Indeed, modular
differences do not propagate without modification whenever ‘⊕’ are used in the
design of the hash function (just as xor differences do not propagate without
modification whenever ‘+’ are used). This probability can be computed exactly
for any given difference d, and this computation is given in Appendix B. Note
that it does propagate without modification when it enters the step in the regis-
ter A or the register E of the internal state, but with probability Pd otherwise.
The overall probability for the differential pattern of Table 1 to occur is thus P 12

d

for each branch.

Table 2. A seven steps differential pattern to get an inner near-collision for FORK-256

step ΔA ΔB ΔC ΔD ΔE ΔF ΔG ΔH ΔML ΔMR Prob.

in 0 d 0 0 0 0 0 0 0 0
1 0 0 d 0 0 0 0 0 0 0 Pd

2 0 0 0 d 0 0 0 0 0 0 Pd

3 0 0 0 0 d 0 0 0 0 0 Pd

4 0 0 0 0 0 d 0 0 0 0 P ′

5 0 0 0 0 0 0 d 0 0 0 Pd

6 0 0 0 0 0 0 0 d 0 0 Pd

out d 0 0 0 0 0 0 0 Pd

Another way to deal with the four branches simultaneously is to apply a dif-
ference on the IV instead of the message M . This type of collisions is called
a pseudo-collision. For the compression function h of any iterated hash func-
tion, a pseudo-collision can be expressed as h(IV, M) = h(IV ′, M ′), where
(IV′, M ′) �= (IV, M). In the case of FORK-256, differences in the words of the
internal state register do not diffuse identically, see the description of the states
of FORK-256’s step function in Fig. 1. More precisely, only the differences in the
words A and E will spread to the other registers in the next step. The other dif-
ferences (in the words B, C, D, F , G, H) only shift one word to the right. Hence,
by applying a difference to the second word of IV, the difference propagates with-
out spreading during three steps. Note that it propagates without being mod-
ified with probability Pd only, just as for the first differential pattern. During
the fourth step however, the difference most likely spreads to the three internal

Cryptanalysis of FORK-256 23

registers F , G, and H in all four branches. However, we show in the next section
that there is a way to prevent the spread of the difference from registers A and E.

4 Micro-collisions in QL and QR

The step transformation described in Section 2 can be logically split into three
parts: addition of message words, two parallel mixing structures QL and QR and
a final permutation of registers (see Fig. 1). The key role is played by the two
structures QL and QR as they are the main source of diffusion in the compression
function.

In the next paragraphs, we describe a way of finding differentials of the form
(ΔA, 0, 0, 0) → (ΔA, 0, 0, 0) in QL and show that it works for QR as well. The
idea is to look for pairs of inputs to the register A and appropriate input values
of registers B, C and D such that the output differences in registers B, C, D
are equal to zero in spite of non-zero differences at the outputs of functions f
and g. Such situation is possible if we have three simultaneous micro-collisions
i.e. differences in g cancel out differences from f in all three registers B, C, D.

4.1 Necessary and Sufficient Condition for Micro-collisions

Let us denote y = f(x), y′ = f(x′) and z = g(x + δ), z′ = g(x′ + δ). We have a
micro-collision in the first line if the equation

(y + B) ⊕ z = (y′ + B)⊕ z′ (1)

is satisfied for given y, y′, z, z′ and some constant B. Our aim is to find the set
of all constants B for which (1) is satisfied. Let us first introduce three different
representations of differences between two numbers x and x′ of Z232 .

• The first representation is the xor difference. We treat it as a vector of Z2
32

representing bits of x⊕ x′ and denote it as Δ⊕(x, x′) ∈ {0, 1}32.
• The second one is the integer difference between the two numbers x and x′,

which we denote by ∂x := x − x′. Note that −232 < ∂x < 232.
• The third one is the signed binary representation which uses digits from the

set {−1, 0, 1}. A pair (x, x′) has signed binary representation Δ±(x, x′) =
(x0 − x′

0, x1 − x′
1, . . . , x31 − x′

31), i.e. the i-th component is the result of the
subtraction of corresponding i-th bits of x and x′.

A simple but important observation is that a difference with signed representa-
tion (r0, r1, . . . , r31) has a xor difference of (|r0|, |r1|, . . . , |r31|), that is the xor
difference has ones in those places where the signed difference has a non-zero
digit, either −1 or 1. The relationship between integer and signed binary repre-
sentations is more interesting. An integer difference ∂x corresponds to a signed
binary representation (r0, . . . , r31) if ∂x =

∑31
i=0 2i · ri where ri ∈ {−1, 0, 1}. Of

course this correspondence is one-to-many because of the value-preserving trans-
formations of signed representations (∗, 0, 1, ∗) ↔ (∗, 1,−1, ∗) and (∗, 0,−1, ∗) ↔

24 K. Matusiewicz et al.

(∗,−1, 1, ∗) that can stretch or shrink chunks of ones. Consider an example: as-
sume we work with 4-bit words and let Δ±(11, 2) = (1, 0, 0, 1), Δ±(14, 5) =
(1, 0, 1,−1), and Δ±(12, 3) = (1, 1,−1,−1). All these binary signed representa-
tions correspond to the integer difference ∂x = 9. Note that we can go from
one pair of values to another by adding an appropriate constant, e.g. (12, 3) =
(11 + 1, 2 + 1). This addition preserves the integer difference but can modify the
signed binary representation.

We are now equipped with the necessary tools and go back to our initial
problem. Rewriting (1) as (y +B)⊕ (y′ +B) = z⊕ z′, we can easily see that the
signed difference Δ±(y +B, y′ +B) can have non-zero digits only in those places
where the xor difference Δ⊕(z, z′) has ones. This narrows down the set of possible
signed binary representations that can “fit” into the xor difference of a particular
form to 2hw(Δ⊕(z,z′)). But since a single signed binary representation corresponds
to a unique integer difference, there are also only 2hw(Δ⊕(z,z′)) integer differences
∂y that “fit” into the given xor difference Δ⊕(z, z′) and what is important,
integer differences are preserved when adding a constant B.

Thus, to check whether a particular difference ∂y = y − y′ may “fit” into xor
difference we need to solve the following problem: given ∂y = y − y′, −232 <
∂y < 232 and a set of positions I = {k0, k1, . . . , km} ⊂ {0, . . . , 31} (that is
determined by non-zero bits of Δ⊕(z, z′)), decide whether it is possible to find
a binary signed representation r = (r0, . . . , r31) corresponding to ∂y such that:

∂y =
m∑

i=0

2ki · rki where rki ∈ {−1, 1} . (2)

Replacing ti by (rki +1)/2, this equation can be rewritten in the equivalent form:

∂y +
m∑

i=0

2ki = 2k0+1t0 + 2k1+1t1 + · · ·+ 2km+1tm , (3)

where ti ∈ {0, 1}. Deciding if there are numbers ti that satisfy (3) is an instance of
the knapsack problem and since it is superincreasing—weights are powers of two,
we can do this very efficiently. This gives us a computationally efficient necessary
condition for a micro-collision in a line: if ∂y = y − y′ cannot be represented
as (2), no constant B exists and there is no solution to (1). Moreover, we can
show that this condition is also sufficient: if we can find a solution of (2), then
there exists a constant B that modifies the signed difference so that it “fits” the
prescribed xor pattern.

Observe that since the solution of the superincreasing knapsack problem (3)
is unique, so is the solution of (2). This means that we know the unique signed
representation Δ±(u, u+ ∂y) = (r0, . . . , r31) that is compatible with the xor dif-
ference Δ⊕(z, z′) and yields the integer difference ∂y. However, a unique signed
representation corresponds to a number of concrete pairs (u, u + ∂y). If at a
particular position j ∈ I we have rj = −1, we know that in this position the
value of j-th bit of u has to change from 1 to 0. Similarly, if we have rj = 1, the
j-th bit of u should change from 0 to 1. The rest of the bits of u (corresponding

Cryptanalysis of FORK-256 25

to positions with zeros in Δ±(u, u + ∂y)) can have arbitrary values. That way,
we can easily determine the set U of all such values u. It is clear that U always
contains at least one element.

Now, since u = y + B for all u ∈ U , the set B of all constants B satisfying (1)
is simply B = {u − y : u ∈ U}. This reasoning also shows that if we can have
a micro-collision in a line, there are |B| = 232−hw(z⊕z′) constants that yield the
micro-collision if the most significant bit of z⊕z′ is zero and |B| = 232−hw(z⊕z′)+1

if the MSB of z ⊕ z′ is one. The difference is caused by the fact that if 31 ∈ I,
we do not need to change u31 in a particular way (i.e. either 1 → 0 or 0 → 1) as
any change is fine because we do not introduce carries.

Finally, since we didn’t use any properties of functions f and g, the same ar-
gument applies not only to micro-collisions in QR but also to the same structure
with any functions in place of f and g.

5 A First Attempt with a Simple Differential Path

In Section 3 we have seen that the seven step differential pattern of Table 2
with a modular difference d happens simultaneously in the four branches with
probability P 12

d as soon as we have a micro-collision in each branch. For this,
we need the registers (E, F, G, H) to reach a prescribed value at the fourth
step in the four branches, which can be easily computed thanks to the method
given in Section 3. Note that Pd is the probability that the modular difference
is unchanged when a ‘⊕’ is involved. Also, we do not care about the difference
after the fourth step, because it never spreads again. So the exponent 12 comes
from the fact that the difference has to go unchanged through the first three
steps in the four branches. We show here how to force these registers to take on
prescribed values.

5.1 Near-Collision at the Seventh Round

Our main tool here is a good scheduling in the determination of each message
block so as to be able to force the four quadruplets of each branch to their
required values.

To do this, we study the relationships between message blocks and IV blocks
with this last quadruplet. Before getting into details of the attack, let us em-
phasize the following fact that simplifies the study of these relationships in the
branch j. Forcing the value of the quadruplet (Ej,3, Fj,3, Gj,3, Hj,3) is equiva-
lent to setting the value of the quadruplet (Ej,3, Fj,3, Fj,2, Fj,1). This fact can
be easily checked by going backwards in the threads of the FORK-256’s step
transformation, which can be translated in the following sequence of equations:

Fj,2 =
(
Gj,3 ⊕ f(Fj,3)

)
− g(Fj,3 − δπj(5)),

Gj,2 =
(
Hj,3 ⊕ f(Fj,3)<<<5

)
− g(Fj,3 − δπj(5))

<<<9,

Fj,1 =
(
Gj,2 ⊕ f(Fj,2)

)
− g(Fj,2 − δπj(3)).

(4)

26 K. Matusiewicz et al.

Table 3. Relationship between the words of the quadruplets in each branch and the
message blocks and IV. The symbols ‘*’ and ‘x’ denote a degree of freedom in setting the
value of a word W by adjusting the corresponding parameter P when all the remaining
parameters of the row have already been fixed. The ‘x’ is used to emphasize that the
parameter P can be used directly to set word W to its target value.

IV message block Mi

A B C D E F G H 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

E4,3 * x * * * * * * * x * *
E3,3 * x * * * * * * * x * *
E2,3 * x * * * * x * * * * *
E1,3 * x * * * * * * * * * x
F4,3 * x * * x * * *
F3,3 * x * * x * * *
F2,3 * x * * x * * *
F1,3 * x * * * * * x

G4,3 ↔ F4,2 * x * x
G3,3 ↔ F3,2 * x * x
G2,3 ↔ F2,2 * x x *
G1,3 ↔ F1,2 * x * x
H4,3 ↔ F4,1 x x
H3,3 ↔ F3,1 x x
H2,3 ↔ F2,1 x x
H1,3 ↔ F1,1 x x

Table 3 summarizes those relationships. In the left column, there are words of
the quadruplets that we would like to force to some predetermined values, and
each row shows the dependence of one word on the message blocks and the IV
registers.

Considering Table 3, we propose the following algorithm to sequentially assign
values to the message blocks and IV values so that the four quadruplets in all four
branches take on the prescribed values. We can refine our algorithm to help the
difference to propagate without a change. For instance, we can force the input
of the function g to zero in order to be sure that the difference is unchanged.

1. Initialize. Choose A0 randomly.

2. Adjust. Do the following four assignments: M0 := −(A0 + δπ1(0)), M14 :=
−(A0 + δπ2(0)), M7 := −(A0 + δπ3(0)), M5 := −(A0 + δπ4(0)).

3. Force words Gj,3. Choose D0 so that F3,2 gets the correct value. Then,
choose M3, M9, and M8 in turn so that F1,2, F2,2 and F4,2 get their correct
values, respectively.

4. Force words Hj,3. (If this step has been run 232 times, return to step 1.)
Randomly choose H0. Adjust M11 and M1 to prevent the difference from
being modified in the second step of FORK-256 in the branches 2 and 4,
respectively. Then, set the words E0, M15, M6, and M12 so that F1,1, F2,1,
F3,1, and F4,1 get their correct values, respectively.

5. Force words Fj,3. Set C0 so that F4,3 gets its correct value. Then, set M10

and M2 in turn so that F2,3 and F3,3 get their correct values, respectively.

Cryptanalysis of FORK-256 27

Now, F1,3 is assigned a random value. If this value is the correct one, continue
to the next step, otherwise, return to the Step 4.

6. Force words E1,3, E2,3, and E4,3. (If this step has been run 232 times, return
to Step 1.) Choose a random value for G0. Fix B0 so that E4,3 takes the
correct value. Fix M4 so that E2,3 takes the correct value. Check the random
value taken by E1,3: if this is the expected value, go to Step 7, else go back
to Step 6.

7. Force word E3,3. (If this step has been run 232 times, go to Step 1.)
Choose M13 at random. Check the random value taken by E3,3: if this is
the expected value, output all messages Mi and all IV blocks. Otherwise, go
back to step 7.

Notice that the algorithm makes a few independent exhaustive searches in
spaces of size 232. Almost no memory is required, and the average time com-
plexity is 232 applications of one fourth of FORK-256, that is about 230 com-
putations of the hash function. Now, for the attack to succeed, the difference d
has to propagate unmodified up to step 3. Since the probability to propagate in
one branch is Pd, and taking into account the fact that we took care of it in the
first step (Step 2 of the algorithm) and in two of the four branches of the second
step (Step 4 of the algorithm), the overall probability is P 6

d .
We eventually remark that the word F0 of the IV does not modify the four

targeted quadruplets. Hence, in the output of our algorithm, we can make F0

to take any of the 232 possible values and the result remains valid. That is, our
algorithm outputs 232 pairs {(M, IV), (M, IV′)} such that after the seventh step
differences only appear in registers Aj,7 in all four branches.

Finally, our algorithm outputs 232 solutions with a complexity equivalent to
230 · P−6

d hash computations, and the average cost of computing a solution pair
is thus about 1/4 · P−6

d .

5.2 Choosing the Difference

In the two previous paragraphs, we saw that a useful difference has to fulfill
two constraints. The first one is that micro-collisions must happen in all four
branches of FORK-256 in the fourth step. The second one is that the probabil-
ity Pd of propagating without modification should be as high as possible. Since
differences with small Hamming weight yield bigger probabilities Pd, we checked
all differences with Hamming weights one and two, and we finally chose the dif-
ference d = 0x00000404. For this choice of difference we have Pd of about 2−3,
and a possible set of target values for each branch is:

E1,3 = 0x030e9c3f, E2,3 = 0x7e24de5c, E3,3 = 0x00fa4d1e, E4,3 = 0x20b7363f,
F1,3 = 0xa4115fb0, F2,3 = 0x10276030, F3,3 = 0x35edee6e, F4,3 = 0xefc6172f,
G1,3 = 0x22c18168, G2,3 = 0x4db27e00, G3,3 = 0xd81cdc6c, G4,3 = 0x8c2c7c00,
H1,3 = 0x1816822c, H2,3 = 0x27e004db, H3,3 = 0xcdc6bd82, H4,3 = 0xc7bff8c3.

28 K. Matusiewicz et al.

5.3 Near-Collisions for FORK-256’s Compression Function

Seven step reduced version. We focus on a seven step reduced version
of FORK-256: the two additions, the xor, and the feed-forward are kept but
the eighth step is removed except for the final permutation of registers. It may
appear that we can find a collision against this seven steps reduced version
of FORK-256, but this is not true. Indeed, we have seen that a difference re-
mains in the internal registers Aj,7. Those differences have their lowest bit set
to 1 exactly at the same position as the lowest bit of the difference d initially
introduced, in our case the third lowest significant bit. These bits are shifted
to the left by the addition in the first two branches and the last two branches,
and the xor cancels them. However, a differential bit reappears at the previous
position due to the feed-forward, and we can not get rid of it.

We thus seek 1-bit near collisions, the probability of which has been estimated
as follows. We chose a random internal state before the seventh step (i.e. the
values Aj,6, Bj,6, Cj,6, and Dj,6 in each of the four branches), and ran the seventh
step transformation, plus the recombination mechanism. After 232 experiments,
there was, on the average, 8.96 non zero bits. The probability of a 1-bit near-
collision has been evaluated to 2−15 (127665 outputs out of the 232 experiments
were 1-bit near-collisions). Since the algorithm given in the previous section
outputs 232 correct values in 230/P 6

d = 249 hash computations, the complexity
to find a set of 217 distinct 1-bit near-collisions is about 249 hash computations.

Near-Collision for the full compression function. The algorithm studied in
the previous paragraphs outputs 232 pairs for which FORK-256’s outputs collide
on four of the eight 32-bit words with a complexity of 249 hash computations.
It remains one bit of difference (at a fixed position) in the second word and
three 32-bit words to cancel. The probability of a 1-bit near collision on the
second word was experimentally found to be 2−15, and cancelling any of the
three remaining 32-bit words was experimentally found to require an average of
231 trials for d = 0x0000404. Hence the overall complexity to find a 1-bit near
collision is about 249+93+15−32 = 2125. Similarly, the probability to find a 2-bit
near collision was experimentally found to be less than 2−10 so that the overall
complexity to find such a collision is about 249+93+10−32 = 2120.

Experimental results. We exhibit a 22-bit near collision on FORK-256’s com-
pression function that was obtained by running our algorithm given in Section 5.1
together with the difference and the set of targets specified in Sect. 5.2. (Note
that this also leads to a 2-bit near collision for the seven steps reduced version.)

cvn:0x8406e290 0x5988c6af 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

cv
′
n:0x8406e290 0x5988cab3 0x76a1d478 0x0eb60cea 0xf5c5d865 0x458b2dd1 0x528590bf 0xc3bf98a1

M : 0x396eedd8 0x0e8c2a93 0xb961f8a4 0xf0a06fc6 0x9935952b 0xe01d16c9 0xddc60aa4 0x0ac1d8df

0xc6fef1d8 0x4c472ca6 0x58d9322d 0x2d087b65 0x7c8e1a26 0x71ba5da1 0xba5d2bfc 0x1988f929

cvn+1:0x9897c70a 0x4e18862d 0xb4725ac1 0xcfc9f92c 0x9aa0637d 0xae772570 0x74dd4af1 0xcd444dd7

cv
′
n+1:0x9897c70a 0x4e1880f9 0x1e677302 0x4c650966 0xf4792bf4 0xae772570 0x74dd4af1 0xcd444dd7

Cryptanalysis of FORK-256 29

6 Finding High-Level Differential Paths in FORK-256

In this section we return to the question of finding differential paths in four
branches of FORK-256 to present a general solution to that problem. If we can
avoid mixing introduced by the structures QL and QR (i.e. we know how to
find micro-collisions) and we can assume that differences in registers B, C, D
and F, G, H remain unchanged (Pd = 1), the only places where differences can
change are registers A and E, after the addition of a message word difference.
Thus, the values of registers in steps can be simply seen as linear functions of
registers of the initial vector (A0, . . . , H0) and message words M0, . . . , M15.

If we consider the most general case and assume (very optimistically) that any
two differences can cancel each other, we are in fact working over F2 and differ-
ences in all registers are F2-linear combinations of differences ΔA0, . . . , ΔH0 and
ΔM0, . . . , ΔM15 (which are now seen as elements of F2). Now, output differences
(ΔA, . . . , ΔH) of the whole compression function (with feed-forward) are also
linear combinations of differences from S = (ΔA0 . . . , ΔH0, ΔM0, . . . , ΔM15)
and this can be represented by an F2-linear mapping (ΔA, . . . , ΔH) = Lout(S).
This means we can find the set Sc of all vectors S of input differences that yield
zero output differences at the end of the function simply as the kernel of this
map, Sc = ker(Lout).

To minimise the complexity of the attack, we want to find high-level paths as
short as possible. Since each register difference in each step is a linear function of
differences ΔA0 . . . , ΔH0, ΔM0, . . . , ΔM15 and there are only 224 of them, the
straightforward approach is to enumerate them all and for any desirable subset
of registers (e.g. for collisions in two or three branches) count the number of
registers containing non-zero differences and pick those input differences S that
give the smallest one. Using simple algebra and coding theory techniques we can
make this process very efficient. Details can be found in [7].

Differences in registers other than A and E do not contribute to the complexity
of the attack that much because they do not require finding micro-collisions. The
measure based on the number of differences in registers A and E only corresponds
to the number of “difficult” differentials we need to handle that require finding
micro-collisions. Experiments show that there is a close correlation between the
number of required micro-collisions and the overall length (number of all registers
containing differences) of the differential path so it seems sufficient to use the
measure based on differences in A and E only. Results of a search for such paths
are presented in more details in [7], here we want to discuss an extension of this
method.

6.1 More General Variant of Path Finding

We can generalize this approach further. Depending on whether we force a micro-
collision to happen in a particular line or not, we have eight different models for
each Q-structure. Using the linear model that assumes that all differences cancel
each other, we can express output differences of each QL-structure as

30 K. Matusiewicz et al.

ΔAi+1 = ΔAi , ΔCi+1 = ΔCi + qC · ΔAi ,

ΔBi+1 = ΔBi + qB · ΔAi , ΔDi+1 = ΔDi + qD · ΔAi .

where qB, qC , qD ∈ F2 are fixed coefficients characterizing the QL-structure. The
same is true for QR-structures. This means that we have 864 possible linear
models of FORK-256 when we allow such varied micro-collisions to happen.
Allowing for micro-collisions in only selected lines decreases the number of active
Q-structures, however, at the expense of additional conditions required to cancel
differences coming from different parts of the structure.

Results of our search for such paths are summarized in Table 4. They show
that by introducing such an extended model of Q-structures we can significantly
decrease the number of necessary micro-collisions compared to the case when we
require micro-collisions in all three lines simultaneously. Of special interest is the
result showing that under favourable conditions, collisions can be achieved by
using a single difference in M12 with six micro-collisions in the path. We show
how to use this scenario to generate near-collisions but also collisions for the full
compression function in Section 7.

Table 4. Minimal numbers m of Q-structures with micro-collisions for different sce-
narios of finding generalized high-level differential paths. Q-structures are numbered
from 1 to 64 where 1 corresponds to QL in the first step of branch 1 and 64 to QR in
the last step of branch 4. Notation N:110 means that in Q-structure number N input
difference to A (resp. E) propagates to the second and third register but not to fourth
(e.g. to B, C or F , G resp.) For example, differential path from Fig. 2 is encoded as
13:110, 31:111, 40:000, 47:111, 50:000, 57:000.

Scenario Branches m Differences in active Q-structures

Pseudo-collisions 1,2,3,4 5 H0, M2, M11 12:000, 25:000, 35:001,
41:001, 51:010

Collisions 1,2,3,4 6 M12 13:000, 31:001, 40:000,
47:100, 50:000, 57:000

Pseudo-collisions 1,2,3 2 B0, M12 8:100, 24:0
1,2,4 3 H0, M11 3:000, 51:010, 60:000
1,3,4 3 H0, M2 35:001, 44:000, 51:000
2,3,4 3 D0, M9 36:010, 43:000, 52:000

Collisions 1,2,3 3 M0, M3, M9 1:001, 20:010, 39:100
1,2,4 4 M1, M2 2:001, 9:000, 25:100, 51:000
1,3,4 5 M9 10:000, 39:001, 42:001

43:010, 59:000
2,3,4 5 M3, M9 20:010, 27:000, 39:000

57:000, 59:010

7 Collisions for the Full Compression Function

In this section we show how to use a high-level path with differences in M12 only
presented in Section 6 in order to find very low weight output differences of the
FORK-256’s compression function. We then show two different strategies to find
full collisions faster than the bound given by the birthday paradox.

The key observation is that if we introduce a difference in M12 only and are
able to find micro-collisions in the first and fifth step of the fourth branch as

Cryptanalysis of FORK-256 31

well as in the fourth step of the third branch, and prevent the propagation of
the difference from A1,6 to E1,7 in the first branch, then the output difference
is confined to registers B, C, D, and E of the output, i.e. to at most 128 bits.
This behavior is illustrated in Fig. 2. The number of affected bits can be further
decreased by a careful selection of the modular difference i.e. differences that are
set on few most significant bits guarantee that the difference in output register B
is confined to those most significant bits as well.

In the next paragraph, we develop our first strategy which does not require
large memory. We show that pairs of messages satisfying the aforementioned
constraints can be efficiently found and thus, assuming that the output differ-
ences closely follow the uniform distribution, we can expect to find very low
weight differences and ultimately a collision. Finally, in the second paragraph,
we use another strategy relying on precomputed tables to speed up the process
of finding collisions.

7.1 Finding Collisions with Low Memory Requirements

The attack consists of two phases. During the first one, we find simultaneous
micro-collisions at the first and fifth steps of the fourth branch as well as at
the fourth step of the third branch for a modular difference injected in M12. In
the second phase we use free message words M4 and M9 that do not interfere
with already fixed messages and micro-collisions found in the third and fourth
branches in order to find messages yielding no difference in the register E1,7. This
is a reduced micro-collision in the single thread D1,6 → E1,7 during the seventh
step of the first branch. The description below is brief – for more details, see our
implementation from [6].

Finding micro-collisions in third and fourth branches. Here we assume
that a suitable modular difference d has already been chosen. We proceed as
follows:

1. Fourth branch, first step. Pick x1 s.t. the pair (x1, x1 +d) gives simultaneous
micro-collisions in QR at the first step of the branch four, set M12 := x1−E0

and assign the correct values to F0, G0, and H0 for this micro-collision to
happen.

2. Fourth branch, fifth step. Assign random values to M5, M1, M8, M15, M0,
M13, and M11. Then compute the first half of the branch, up to the fifth step
and find a pair of values (x2, x2 + d∗) (where d∗ is the modular difference
in register A4,4) yielding simultaneous micro-collisions in QL. Compute the
corresponding constants ρ1, ρ2, and ρ3. If no solution exists, repeat this step,
otherwise]

– Set M3 := x2 −A4,4.
– Fix M13 := ρ1 −A4,3 − δ8 so that B4,4 gets its correct value ρ1.
– Fix M15 := [ρ2 ⊕ g(B4,4)] − f(B4,4 − δ8)−A4,2 − δ10 so that C4,4 = ρ2.
– Similarly, fix M1 so that D4,4 = ρ3.

32 K. Matusiewicz et al.

Branch 1 Branch 2 Branch 3 Branch 4
1 140

2 3

4 5

6 7

8 9

10 11

12 13

14 15

15

11 9

8 10

3 4

2 13

0 5

6 7

12 1

7 6

10 14

13 2

9 12

11 4

15 8

5 0

1 3

5 12

1 8

15 0

13 11

3 10

9 2

7 14

4 6

Fig. 2. High level path used to find collisions for FORK-256. Thick lines show the prop-
agation of differences. Q-structures requiring micro-collisions are greyed out. Numbers
indicate message ordering.

Adjustments need to be made to M0 and M11 to compensate for the changes
in M1 and M15.

3. Third branch. Find a pair of values (x3, x3 + d) that causes simultaneous
micro-collisions in QR in the fourth step and find the corresponding constants
λ1, λ2, and λ3. Similar to above, fix M2 so that F3,3 = λ1, M14 so that
G3,3 = λ2, and M6 so that H3,3 = λ3. An adjustment needs to be made to
M10 to compensate for the change in M6. Similarly, we have to compensate
for the change in M14 but we cannot change M13 since it is set in the branch
four. Instead, we change B0 so that E3,3 gets the correct value x3.

4. Fourth branch. The only modification made in the third branch that can
spoil the arrangement of the fourth branch is B0. It can only change the
value A4,4. Thus, adjusting M11 (again) is enough to put everything back
into order.

At the end of this procedure, we have obtained a differential path in the third
and fourth branches presented in Fig. 2. For the remaining part of the attack,

Cryptanalysis of FORK-256 33

the key fact is that the values of message words M4 and M9 do not alter this
path. These 64 bits of freedom are used to perform the second part of the attack.

Single micro-collision in the first branch. We are left with taking care of
the first and second branches. Fortunately, the second branch actually does not
require any attention: M12 appears in the very last step and so only induces
differences in the output registers B, C, D, and E. The first branch however
requires a single micro-collision in the thread D1,6 → E1,7 during the seventh
step, and it seems to us that there is no better way of finding messages causing
that micro-collision than by randomly testing message words M4 and M9. The
success probability of this search heavily depends on the modular difference being
used. The two best modular differences we found are displayed in Table 5.

Table 5. Best modular differences d we could find and their probabilities of inducing a
single micro-collision in thread D1,6 → E1,7 during the seventh step in the first branch.
The number of input values A1,6 that may result in the micro-collision is denoted by η.

difference d η observed probability

0xdd080000 221.7 2−24.6

0x22f80000 221.7 2−24.6

Let us analyse the computational complexity of finding this single micro-
collision in terms of numbers of full FORK-256 evaluations. Let η denote the
number of allowable values for the chosen modular difference in use. By allowable
value we mean an input x for which there exist three constants that cause a
micro-collision for the pair (x, x + d). For the modular difference d =22f80000
we have η = 221.7 allowable input values.

Our algorithm to arrange the first branch correctly runs as follows:

1. Initialize. Fix M4 to zero.

2. Pre-compute table. Compute all the internal registers up to the seventh step.
Then, for each allowable value x, set A1,6 = x and go one step backwards to
get the corresponding H1,5, and store the result into a hash table T .

3. Search for M9. For every possible value of M9 compute the corresponding
value of H1,5 and look for a match in T . If there is a match, go to Step 4.
When all M9 are exhausted, increment M4 and go back to Step 2.

4. Check. If current value of M9 leads to a single micro-collision in thread
D1,6 → E1,7 then output the pair (M4, M9). Continue Step 3.

Step 2 requires 1/64 of a full FORK-256 computation for each of the η allowable
values. The complexity of this step is thus η/64 = 215.7 FORK-256 evaluations.
Step 3 requires 1/64 of full FORK-256 computation for each of the 232 values
for M9. The complexity of this step is thus 226 FORK-256 evaluations. Since
Step 4 succeeds with probability 2−24.6 (see Table 5), we get 27.4 solutions for a
work effort of 226. Hence the cost of finding a single solution with our algorithm
is about 218.6 FORK-256 evaluations.

34 K. Matusiewicz et al.

Experiments. Our C implementation of the algorithm is available for download
from [6]. We conducted experiments and verified that for the difference d =
0xdd080000, the distribution of output differences on 108 affected bits (there
are 109 bits that may contain differences, but we know that the differences in
bit 19 of register B will always cancel out) is very close to uniform [7]. Moreover,
after a few days of computations on a Pentium 4 running at 2.8 GHz, we were
able to find an output difference of weight 28 [6].

Complexity of the attack. Since at most 108 bits are affected and the dis-
tribution of differences is close to uniform, we expect to find a collision after
generating 2108 pairs. With a work factor of 218.6 FORK-256 computations per
pair, the total complexity required to find a collision is thus 2108 · 218.6 = 2126.6,
which is better than the bound given by the birthday paradox. Additionally, this
attack only requires about 2·222 32-bit words of memory for storing precomputed
inputs for micro-collisions and a hash table of similar size. It also parallelizes
perfectly on many computers, each one performing independent computations
starting with different seed.

The above complexity estimate is rather conservative, because if we multiply
empirical probabilities of single bit differences being zero we get the value of
2106.4 rather than 2108 and thus also a lower complexity of the attack of 2125 but
one has to be cautious as there is no guarantee that the bits are uncorrelated
enough to make this figure accurate. We refer to [7] for details.

7.2 Finding Collisions Faster with Precomputed Tables

In this paragraph we show how to speed up the collision search with the use of
precomputed tables. To this end, let us study the spreading process when no dif-
ference is involved. During the step transformation, the eight registers are split
into two subsets, namely (A, B, C, D) and (E, F, G, H). If we restrict our atten-
tion to one of them, let us say (E, F, G, H), we immediately see that the message
block M acting on the input register E allows to set the output register F to any
value. But what about the action of this message block on one of the three other
registers, say, the output register H? The answer is that, on the average, for any
input register G, there exists a value of the message block such that the output
register H takes any prescribed value. This comes from the observation that for
a fixed value of δ and G, the function ψG : y →

(
g(y)<<<9 + G

)
⊕ f(y + δ)<<<5

is very often a bijection. Hence, for any fixed value of the output register H
a table TH can be built that stores values (G, y) such that ψG(y) = H . This
table can be built during a pre-computation step in time 232 with 232 mem-
ory. By building 232 such tables (one for every possible value of H), it is then
possible, for any given pair (G, H), to find a message so that G is indeed
transformed into H during one half of the step transformation. The cost of
the pre-computation is now 264 both in time and memory, but access time is
comparable to a single operation. Obviously, as already seen in the previous

Cryptanalysis of FORK-256 35

paragraph, such a table and the freedom given by the incoming message block
can be used to fix the value of one of the thread F → G, G → H , and H → A
only.

In the following attack, we use a number of such tables. The first one, T10, is
used to control the thread C3,1→D3,2 through M10,thatis M10 =T10(C3,1, D3,2).
Another family of tables, T9,a, is used to determine what value of M9 pro-
duces the expected transition E1,4 → A1,6 given a fixed M11, that is M9 =
T9,a(E1,4, M11) so that A1,6 = a, where a is some fixed value. (There are 36 such
values for which the probability of a single micro-collision is 2−8, 1236 values
with probability 2−9 and many more with smaller probabilities.)

As in the previous attack, our goal is to use the high level path of Figure 2
by injecting a modular difference in M12 only, and to cause micro-collisions in
grayed areas of this figure. To this end, we construct a sequencing allowing to
set the message blocks fitting these constraints, but contrary to what is done
in the previous attack, we choose the three micro-collisions of the branch three
and four in advance. But now, we must ensure that the modular difference in
the register A4,4 is the same as the one injected in M12. Additionally, we note
that for the difference d = 0xdd080000 we are going to use, we consider around
29 values of a for which the difference d does not spread from A1,6 to E1,7 with
highest probability, i.e. a single micro-collision is most likely to happen.

1. Initialize. Set M12, F0, G0, and H0 in order to get a micro-collision in the
first step of the fourth branch.

2. Fourth branch. Set M1 to fix B4,2 to its correct value. Choose a random M5.
Adjust M8 so that difference d propagates unchanged. Set M15 to fix B4,3

to its correct value. Adjust M0 so that difference d propagates unchanged.
Set M13 to fix B4,4 to its correct value. Adjust M11 so that difference d
propagates unchanged, and set M3 to fix A4,4 to its correct value.

3. Third branch. Set M6 to fix F3,1 to its correct value. Choose M7 randomly.
Set M14 to fix F3,2 to its correct value. Use the hash table T10 to set M10

so that E3,3 gets its correct value. (This is possible because M5, M7, M13,
and M14 are already fixed.) Set M2 to fix F3,3 to its correct value.

4. First branch. Choose M4 randomly. Using the hash table T9,a for some value
of a, decide which value M9 will lead to the value of A1,6 equal to a. This
value prevents the difference of M12 from spreading into E1,7 with probability
at least 2−9. If the difference spreads into E1,7, restart Step 4 with another
value of a. After testing around 29 such values, difference in the first branch
does not spread to E1,7 with a high probability.

The complexity of this algorithm is close to 21.6 FORK-256 evaluations if we
assume access to tables in a single processor operation, with a pre-computation
step of complexity about 264 in time and 273 words of memory. Since at most
108 bits of the output differ for the modular difference 0xdd080000, the algorithm
finds a collision in about 2109.6 FORK-256 computations.

36 K. Matusiewicz et al.

8 Compression Function’s Collisions Turned into Hash
Ones

Here we show that the last algorithm can be turned into collision finding algo-
rithm for the full hash function, i.e. with a given IV. Our algorithm indeed relies
on the fact that three values of IV—namely F0, G0, H0—have specific values.
By prepending a well chosen 512-bit message block to the colliding inputs for
the compression function we get the expected result for the whole hash function.

Now since the targeted values are three 32-bit words, the probability to reach
these value by prepending a random 512-bit message block is 2−96, so we need
around 296 FORK-256 computations. This can be done after the execution of
our algorithm and thus the overall complexity is dominated by 2109.6 of the
FORK-256 evaluations.

9 Conclusion

In this paper we exposed a number of weaknesses of the compression function
of FORK-256. We studied in detail the properties of Q-structures and described
very efficient algorithms to finding micro-collisions for them. We further showed
how this can be exploited to mount various attacks against FORK-256’s com-
pression function. Finally, we showed that the chosen-IV collision-finding attack
for the compression function can be extended to find collisions for the full hash
function, i.e. with a given IV. We expect that more computational power would
allow to investigate slight variations of the attacks we presented, and might
improve them significantly.

Although we are intrigued by the design of FORK-256, we think it should
not be used in applications that require a high level of security against collision
attacks.

Acknowledgements

The second and third authors would like to thank Sebastien Kunz-Jacques for
his kind lending of cpu time as well as Gilles Macario-Rat for his help with
precomputed tables in paragraph 7.2.

The project was supported by ARC grant DP0663452.

References

1. Anderson, R., Biham, E.: Tiger: A fast new hash function. In: Gollmann, D. (ed.)
FSE’96. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg (1996)

2. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A
New Dedicated 256-bit Hash Function: FORK-256. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

3. Hong, D., Sung, J., Hong, S., Lee, S., Moon, D.: A new dedicated 256-bit hash
function: FORK-256. In: First NIST Workshop on Hash Functions (2005)

Cryptanalysis of FORK-256 37

4. Intel Corporation. Intel 64 and IA-32 architectures optimization reference man-
ual (2006) Appendix C, Instruction latency and throughput. Available from
http://developer.intel.com/design/processor/manuals/248966.pdf

5. Lipmaa, H., Walln, J., Dumas, P.: On the additive differential probability of
exclusive-or. In: Fast Software Encryption – FSE ’04. LNCS, vol. 3017, pp. 317–331.
Springer, Heidelberg (2004)

6. Matusiewicz, K., Contini, S., Pieprzyk, J.: Cryptanalysis of FORK-256. Web page,
http://www.ics.mq.edu.au/~kmatus/FORK/

7. Matusiewicz, K., Contini, S., Pieprzyk, J.: Weaknesses of the compression func-
tion of FORK-256. IACR e-print Archive, report 2006/317, available from
http://eprint.iacr.org/2006/317

8. Mendel, F., Lano, J., Preneel, B.: Cryptanalysis of reduced variants of the FORK-
256 hash function. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 85–100.
Springer, Heidelberg (2006)

9. Muller, F.: Personal communication (2006)
10. National Institute of Standards and Technology. Secure hash standard (SHS).

FIPS 180-1 (April 1995) Replaced by [11].
11. National Institute of Standards and Technology. Secure hash standard (SHS).

FIPS 180-2 (August 2002)
12. Preneel, B., Bosselaers, A., Dobbertin, H.: RIPEMD-160: A strenghtened Version

of RIPEMD. In: Gollmann, D. (ed.) FSE’96. LNCS, vol. 1039, pp. 71–82. Springer,
Heidelberg (1996)

13. Rivest, R.L.: The MD4 Message Digest Algorithm. In: Menezes, A.J., Vanstone,
S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg
(1991)

14. Rivest, R.L.: The MD4 Message Digest Algorithm. RFC 1320, IETF (April 1992)
15. Rivest, R.L.: The MD5 Message Digest Algorithm. RFC 1321, IETF (April 1992)
16. Schneier, B., Kesley, J.: Unbalanced Feistel networks and block cipher design. In:

Gollmann, D. (ed.) FSE’96. LNCS, vol. 1039, pp. 121–144. Springer, Heidelberg
(1996)

17. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

18. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

19. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

20. Wang, X., Yu, H., Yin, Y.L.: Efficient collision search attacks on SHA-0. In: Shoup,
V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg (2005)

21. Zheng, Y., Pieprzyk, J., Seberry, J.: HAVAL – A One-Way Hashing Algorithm
with Variable Length of Output. In: Zheng, Y., Seberry, J. (eds.) AUSCRYPT
1992. LNCS, vol. 718, pp. 83–104. Springer, Heidelberg (1993)

http://developer.intel.com/design/processor/manuals/248966.pdf
http://www.ics.mq.edu.au/~kmatus/FORK/
http://eprint.iacr.org/2006/317

38 K. Matusiewicz et al.

A Additional Details of the Specification of FORK-256

Table 6. Constants δ0, . . . , δ15 used in FORK-256. They are defined as the first 32 bits
of fractional parts of binary expansions of cube roots of the first 16 primes.

δ 0 1 2 3 4 5 6 7

0 428a2f98 71374491 b5c0fbcf e9b5dba5 3956c25b 59f111f1 923f82a4 ab1c5ed5
8 d807aa98 12835b01 243185be 550c7dc3 72be5d74 80deb1fe 9bdc06a7 c19bf174

Table 7. Message and constant permutations used in four branches of FORK-256

j message permutation σj permutation of constants, πj

1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 14 15 11 9 8 10 3 4 2 13 0 5 6 7 12 1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

3 7 6 10 14 13 2 9 12 11 4 15 8 5 0 1 3 1 0 3 2 5 4 7 6 9 8 11 10 13 12 15 14

4 5 12 1 8 15 0 13 11 3 10 9 2 7 14 4 6 14 15 12 13 10 11 8 9 6 7 4 5 2 3 0 1

B Propagation of Modular Differences Through ‘⊕’

When studying the internal step transformation of FORK-256, the problem ap-
pears of computing the probability that a given modular difference d propagates
through a ‘⊕’ without being modified. An even more general version of this prob-
lem has already been studied at FSE 2004 by Lipmaa, Wallén, and Dumas [5].
Here we give a much weaker version of their result that fits our needs:

Property 1. Given any 32-bit word d, the probability

Pd = Prx,y

[(
(x + d) ⊕ y

)
=
(
x ⊕ y
)

+ d
]

where elements x and y are 32-bit words can be expressed as the following matrix
product:

Pd = L ×Md31 ×Md30 × · · · ×Md0 × C,

where di denotes the i-th bit of d and L, C, M0, and M1 are defined as:

M0 =
1

4

�
���������

4 0 0 1 0 1 1 0
0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0

�
���������

, M1 =
1

4

�
���������

1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 1 0
1 0 0 1 0 4 1 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0

�
���������

,

L = (1 0 0 0 0 0 0 0) , T C = (1 1 1 1 1 1 1 1) .

The Grindahl Hash Functions

Lars R. Knudsen1, Christian Rechberger2, and Søren S. Thomsen1,�

1 Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
{lars@ramkilde.com,crypto@znoren.dk}

2 Graz University of Technology, A-8010 Graz, Austria
christian.rechberger@iaik.tugraz.at

Abstract. In this paper we propose the Grindahl hash functions, which
are based on components of the Rijndael algorithm. To make collision
search sufficiently difficult, this design has the important feature that no
low-weight characteristics form collisions, and at the same time it limits
access to the state. We propose two concrete hash functions, Grindahl-
256 and Grindahl-512 with claimed security levels with respect to colli-
sion, preimage and second preimage attacks of 2128 and 2256, respectively.
Both proposals have lower memory requirements than other hash func-
tions at comparable speeds and security levels.

Keywords: hash functions, Rijndael, AES, design strategy, proposal.

1 Introduction

As a result of a large number of attacks [5,6,11,19,42,44,45,46] on hash functions
such as MD5 [41] and SHA-1 [23] of the so-called MD4 family, and general attacks
[30,31,33] on the typical construction method [18,37], there is an increasing need
for considering alternative construction methods and principles for future hash
functions.

In this paper we develop an alternative design strategy for hash functions, and
we propose a collection of hash functions named Grindahl1. We also propose the
two instances Grindahl-256 and Grindahl-512. The main motivation is as fol-
lows. Among the many properties a cryptographic hash function is expected to
have, collision resistance seems to be the hardest to achieve. Shortcut collision
attacks faster than birthday attacks efficiently identify a subset of the message
space with the property that a random pair of messages from the subset collide
with probability higher than 2−n/2, where n is the output size of the hash func-
tion. A popular tool is differential cryptanalysis. In addition to restricting the
� The first two authors have been supported by the European Commission through

the IST Programme under Contract IST-2002-507932 ECRYPT. The third author is
supported by the Danish Research Council for Technology and Production Sciences,
grant no. 274-05-0151.

1 To be pronounced ’grijndael’.
grind /graind/: to break or crush sth into very small pieces [. . .] using a special
machine.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 39–57, 2007.
c© International Association for Cryptologic Research 2007

40 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

pairs that are chosen from the subset of the message space to those having a
certain difference, one might impose restrictions on the relations between actual
values of message bits. Usually, the aim is to prevent differences from spreading
uncontrollably. Most members of the MD4 family as well as recent proposals like
FORK-256 [29] allow this kind of control.

Our aim is to obtain hash functions which do not allow this type of control by
using building blocks of the block cipher Rijndael [16]. These well analysed and
well understood building blocks are used to ensure that any difference introduced
at the input needs to spread over large parts of the state before a collision is
possible. While aiming for a security level up to the birthday bound for collision
and (second) preimage attacks, we obtain speeds comparable to members of the
SHA-2 family [24], but with a fundamentally different design and lower memory
requirements for an implementation. Additionally, the computational overhead
for small messages compares favourably to other design strategies.

Our design has a structure similar to some of those of J. Daemen (et al.) such
as SubHash and StepRightUp [14], Panama [15], and the recent proposal
RadioGatún [4]. The similarity lies in the way small pieces of message via a
round function sequentially update a state in an invertible fashion.

Apart from being hash function proposals, we describe how our proposals can
be turned into compression functions accepting only a fixed-size input. In order
to test and develop cryptanalytic methods, variants with reduced cryptographic
strength are helpful. For the MD4 family of hash functions, changing the num-
ber of rounds serves this purpose very well. Our design allows for such simple
modifications and we encourage the reader to analyse such simpler variants. See
Appendix B for suggestions.

2 The Grindahl Design

In this section we present our proposal for a collection of hash functions. We start
off with a description of the general design strategy which we call “Concatenate-
Permute-Truncate”. This design principle was first proposed by R. Merkle and
used in his hash function Snefru [38], and it requires the existence of a non-linear
permutation. We propose a highly parameterisable permutation hence in effect
a collection of non-linear permutations, in Section 2.3. The general design and
our proposed permutations together form the Grindahl hash functions. Concrete
proposals are presented in Section 3.

2.1 General Strategy

The proposal of this paper was conceived from the following general design
strategy for an n-bit hash function. In the following, we denote by m the state
size, and by b the message size. We require m ≥ n and b > 0. We denote by
trunck(x) the least significant k bits of x. Let P : {0, 1}m+b → {0, 1}m+b be a
non-linear permutation, and let s0 be the initial state with |s0| = m.

The Grindahl Hash Functions 41

The principle behind our design is “Concatenate-Permute-Truncate”; let d be
the message (appropriately padded) to be hashed, and split d into t blocks of b
bits, i.e. d = d1‖ · · · ‖dt, |di| = b. Then for 0 < i ≤ t do

Si ← di‖si−1 (Concatenate) (1)

Ŝi ← P (Si) (Permute) (2)

si ← truncm(Ŝi) (Truncate) (3)

Hence, a message block is concatenated with the state to form what we shall
call the extended state, on which some permutation P is applied. Subsequently,
the extended state is truncated down to the new state. The steps (1)–(3) form
an input round.

We define an output transformation consisting of blank rounds and a trunca-
tion step at the end. Blank rounds are defined as follows. For t < i ≤ t + νbr,
νbr ≥ 0, do

Ŝi ← P (Ŝi−1) .

Hence, the blank rounds work only on the extended state, which means that in
the processing of the final message block dt, (3) above can be omitted. Finally,
the output of the hash function is truncn(Ŝt+νbr).

2.2 Invertibility

Assuming that the permutation P is invertible, the hash function is not one-way
in the sense that for a given output, some initial state and a message producing
that output can be easily found. However, this does not directly give rise to
proper (second) preimage attacks. If P has sufficient cryptographic properties
then an attacker will have no control over the initial state obtained.

The success probability of meet-in-the-middle attacks is affected in part by
the value of m above. If no weaknesses of P are exploited then internal collision
attacks (collisions before the blank rounds) and meet-in-the-middle attacks have
complexity 2m/2. If one requires that no (second) preimage attacks better than
a brute force search exist, then one has to choose m ≥ 2n.

2.3 Design Approach for the Permutation

A well-known family of permutations is the block cipher algorithm Rijndael [16],
a subset of which was adopted as the Advanced Encryption Standard (AES) by
the US government in 2001 [25]. What follows is an approach that uses the design
principle of Rijndael to build a permutation to be used in our hash proposal.
This bears some resemblance to the leak-extraction method of the stream cipher
LEX [8] or the message authentication code framework Alred [17].

We operate with a more general description of the algorithm than Rijndael
itself. As in Rijndael, we view the (in our case extended) state as a matrix of
bytes, although here the extended state is a matrix α of νrw rows and νcl columns
of bytes. The entries of α are denoted by αi,j , meaning the entry in row i, column

42 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

j (numbering starts from zero, and indices are always to be reduced modulo νrw

and νcl, respectively). Hence, the extended state is the matrix

α =

⎡

⎢⎢
⎢
⎣

α0,0 α0,1 · · · α0,νcl−1

α1,0 α1,1 · · · α1,νcl−1

...
...

. . .
...

ανrw−1,0 ανrw−1,1 · · · ανrw−1,νcl−1

⎤

⎥⎥
⎥
⎦

.

We assume that b is a multiple of 8, and we define νmb = b/8 as the number
of bytes in a message block. Hence, according to (3) and (1), in the process of
truncation followed by concatenation (with the following message block), νmb

extended state bytes are overwritten. These extended state bytes do not have to
be computed in all except the last input round.

The reader is expected to be familiar with the transformations defined in
the Rijndael specification [16]. Here we adopt the new names introduced in the
actual standard [25], i.e. SubBytes, ShiftRows, MixColumns and AddRoundKey.

We do not use AddRoundKey directly in this design. Instead, we introduce a
related transformation, AddConstant. We now comment on the four transforma-
tions used in the Grindahl design. See also Fig. 1.

SubBytes. The non-linear substitution function SubBytes is defined exactly as
in the Rijndael specification, i.e. we use the same S-box.

ShiftRows. The ShiftRows transformation cyclically shifts bytes a number of
positions along each row. We introduce the rotation constants as the νrw-tuple
(ρ0, ρ1, . . ., ρνrw−1) of integers, 0 ≤ ρi < νcl, with the meaning that in row
i bytes should be cyclically shifted ρi positions to the right. (Hence, with this
definition the rotation constants of Rijndael are (0, 3, 2, 1)).

MixColumns. The transformation MixColumns is defined as in the Rijndael spec-
ification whenever νrw = 4. For other values of νrw, the transformation must be
redefined. The important property of maximal difference propagation should be
maintained: when a difference is introduced to k > 0 bytes in a column before
MixColumns, the effect should be that after MixColumns at least νrw−k+1 bytes
have changed.

AddConstant. As mentioned we replace the AddRoundKey transformation known
from the Rijndael design by AddConstant, which introduces asymmetry to each
round: Let α be the extended state matrix, and let M be some matrix of the
same size. Then define AddConstant as

AddConstant(α) = M ⊕ α.

We note that if an extended state consists of νcl equal columns, then by defin-
ing e.g., M = 0 the extended state will still consist of νcl equal columns after
one round. By flipping some bits of the extended state we can circumvent this
property.

The four transformations operate on a matrix of bytes. However, given an
invertible mapping from an extended state to a bit string, we may also apply

The Grindahl Hash Functions 43

�
SubBytesa Σ[a]

�
ShiftRows

�
MixColumns

a

b

c

d

ab̄cd

abc̄d

abcd̄

ābcd

�
AddConstantaij aij+Mij

Fig. 1. The four transformations on the extended state. Here an example with an
extended state of 4 rows and 7 columns. Σ is the S-box, and example rotation constants
are (1, 2, 3, 5).

them on bit strings. The mapping from a bit string to an extended state matrix
is done as follows. Let x be an (8νrwνcl)-bit string. Map this into an extended
state α by splitting x into νrwνcl 8-bit chunks x0, . . . , xνrwνcl−1, and then let
αi,j = xi+νrwj , 0 ≤ i < νrw and 0 ≤ j < νcl. This mapping has a natural inverse.

Given appropriate definitions of the four transformations we define the per-
mutation P as

P (α) = MixColumns ◦ ShiftRows ◦ SubBytes ◦ AddConstant(α).

2.4 Birthday Attacks

If P were an ideal permutation, then internal collisions and (second) preimages
would have complexity 2m/2. However, P is obviously not ideal. In fact, it is easy
to see that the complexity of e.g. an internal collision attack for this choice of
P is at most 2(m−b)/2: assume that the first column of the matrix is overwritten
by the message input. Compute the extended state before the blank rounds of a
number of different messages. Now append two constant blocks to all messages.
The first constant message block overwrites the first column of the extended

44 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

state. Then the permutation is applied, where ShiftRows moves νrw bytes into
the first column of the extended state, and subsequently MixColumns mixes the
bytes in the column. The second constant message block overwrites this column.
This means that if two extended states agree on all bytes except the first column
and the bytes that are moved into the first column by the first constant message
block, then the two extended states will agree on all bytes after the second
constant message block. The expected number of messages needed for this attack
to succeed is 2(m−b)/2. In fact this approach can be generalised to every way of
mapping an input message to the extended state.

Since the permutation is invertible, the entire hash function is invertible,
and hence meet-in-the-middle attacks can be applied: Compute the intermediate
(extended) state for 2(m−b)/2 different messages all having the same last two
blocks. Given a target image of the hash function, compute in the backward
direction the intermediate state for the same number of message suffices. With
good probability, there is a match between the two sets of intermediate states.
This yields a (second) preimage with complexity about 2(m−b)/2.

2.5 Design Parameters for the Permutation

We now present some considerations with respect to the design parameters in-
troduced above.

Rotation constants. The rotation constants used in ShiftRows should be cho-
sen carefully. Most importantly, the rotation constants should ensure that the
entire state depends on the message input as quickly as possible when consid-
ering that the first νmb bytes of the state are overwritten by message input in
every round. This means, for instance, that ρi, 0 ≤ i < νmb, cannot be 0, and
that ρi �= ρj whenever i �= j.

Several tuples of rotation constants ensure full diffusion after the same (mini-
mum) number of rounds μ. However, of these some are better than others in the
sense that a larger part of the state depends on every message byte after μ − 1
rounds, after μ−2 rounds etc. In Appendix C we suggest a method for choosing
rotation constants given a particular geometry of the extended state.

State geometry. Parameters that affect the size m of the state should be
chosen with Section 2.4 in mind. Usually designers of hash functions aim for full
(second) preimage resistance, meaning these have expected complexity 2n. We
have chosen to accept a lower complexity, since it is already required that n is
large enough to resist birthday collision attacks, which have complexity 2n/2.
Other hash functions have been proposed and standardised, for which (second)
preimage resistance is lower than for an ideal hash function, e.g., the MDC-2
construction [39] which has preimage complexity at most 23n/4 [40]. Appendix A
discusses known generic attacks that depend on the state size. By adjusting the
state geometry accordingly, resistance against these attacks can be achieved
conveniently.

The Grindahl Hash Functions 45

Choices for νrw and νcl are a trade-off between two distinct properties. If
the two numbers are about the same, diffusion happens faster than with more
columns than rows. On the other hand, with a wider state and only a single
column being used for message input, the birthday attack as described above has
a higher complexity, and hence the extended state need only be slightly larger
than the output. For implementation purposes it makes sense to choose νrw to
be a multiple of 4, since then on a 32-bit machine SubBytes and MixColumns can
be performed in one by table lookups.

2.6 Design Parameters for the Output Transformation

The number νbr of blank rounds in the output transformation should be chosen
such that the last message block affects all output bytes.

It might be desirable that the output transformation have the property that
when given only black-box access to it, one is unable to distinguish the output
transformation from a pseudo-random function. It is unclear how useful this
property is in practice, since the output transformation is invertible (by guessing
the discarded state bytes), but it would seem to complicate attempts at finding
external collisions.

With νbr blank rounds, the actual number of invocations of P after the last
message block is concatenated with the state is νbr +1. During these rounds, no
extended state bytes are overwritten by message input. Hence, if the requirement
above is fulfilled after μ rounds, then one should choose νbr ≥ μ−1. Suggestions
for actual values for νbr are given in Sections 3.1 and 3.2.

3 Proposals for Hash Functions

We propose concrete instantiations of the design strategy presented in Section 2.
Hash functions with 256-bit and with 512-bit output size are given in Sections 3.1
and 3.2, respectively. For both proposals, the initial state is the all-zero state,
and padding is performed as described in Section 3.3. Additionally we give a
preliminary security analysis in Section 3.4.

In the following, constant bytes (or elements of F256) are written in hexadec-
imal using this font, e.g., c5.

3.1 Grindahl-256

Grindahl-256 is defined as follows. Let the parameters have the following val-
ues: νrw = 4, νcl = 13, νmb = 4, νbr = 8. Hence, the extended state has 4
rows and 13 columns, and the message input is 32 bits in size. In the trunca-
tion/concatenation process these overwrite the contents of the first column of the
extended state. The proposal has 8 blank rounds in the output transformation.

The rotation constants used in the ShiftRows transformation are (1, 2, 4, 10),
chosen by the method described in Appendix C. For these rotation constants
every message byte affects the entire extended state after four rounds. SubBytes

46 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

and MixColumns are defined as in Rijndael, and AddConstant is defined simply
as

α3,12 ← α3,12 ⊕ 01.

Security claim. We claim that the effort to find collisions, second preimages
and preimages is of the order of 2128 iterations.

3.2 Grindahl-512

We also propose the 512-bit hash function Grindahl-512. For this variant, we
propose the following parameter values: νrw = 8, νcl = 13, νmb = 8, νbr = 8. In
other words, the state has 8 rows and 13 columns, and the message input is 64
bits in size, corresponding to the first column of the extended state. The output
transformation contains 8 blank rounds.

The proposed rotation constants for ShiftRows are (1, 2, 3, 4, 5, 6, 7, 8), which
cause full diffusion after three rounds (these were chosen according to Appen-
dix C). MixColumns has to be redefined since the extended state contains 8 rows.
We define this transformation as

MixColumns(α) = A · α,

with

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎣

02 0c 06 08 01 04 01 01
01 02 0c 06 08 01 04 01
01 01 02 0c 06 08 01 04
04 01 01 02 0c 06 08 01
01 04 01 01 02 0c 06 08
08 01 04 01 01 02 0c 06
06 08 01 04 01 01 02 0c
0c 06 08 01 04 01 01 02

⎤

⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎦

.

In this product, bytes are to be considered elements of the field F256, which is
defined as in Rijndael. This transformation ensures maximal difference propa-
gation, since the error-correcting code over F256 with generator matrix

[
I AT
]

is MDS (see e.g., [35]). SubBytes is defined as in Rijndael, and AddConstant is
defined as

α7,12 ← α7,12 ⊕ 01.

Security claim. We claim that the effort to find collisions, second preimages
and preimages is of the order of 2256 iterations.

3.3 Padding Rule

Padding for both proposals is performed as follows. Append a ’1’-bit to the
message, and then a number of ’0’-bits to fill the last message block. Finally,
append a 64-bit representation of the number of message blocks in the padded
message. This means that both hash functions can digest messages of size at

The Grindahl Hash Functions 47

most 264 − 1 message blocks including the padding itself. (Note the difference
between this and most existing padding rules in that the number of message
blocks is appended rather than the number of message bits.)

3.4 Security Analysis

We claim the same security level against collision, preimage and second preimage
attacks. We do not know of any (second) preimage attacks with complexity as
low as the birthday bound, and we expect the actual security level against these
attacks to be higher. However, here we focus on collision resistance.

Collision resistance. Collisions can either be internal or external collisions.
In the case of external collisions we believe the number of blank rounds is high
enough to rule out any differential with a low number of active bytes. For internal
collisions, the complete state which is considerably larger than the output size
needs to collide for different input messages. Additionally, we give more evidence
that shortcut collision finding methods are unlikely. For Grindahl-256, we give
a lower bound for the number of rounds to arrive at an internal collision.

Exhaustive search through all possible input difference patterns and difference
propagation patterns shows that Grindahl-256 has the following property.

Property 1. An internal collision for Grindahl-256 requires at least 6 input
rounds. Moreover, any characteristic starting or ending in the extended state
with no difference contains at least one round where at least half the extended
state bytes (excluding the first column) are active.

A characteristic leading from a zero-difference state to a collision via different
message inputs is given in Appendix D. This characteristic spans 6 rounds, and
no shorter characteristic was found in an exhaustive search.

We cannot completely rule out the possibility that high probability char-
acteristics exist, but we believe that a classical differential attack will not be
successful.

For Grindahl-512, collisions after 4 input rounds cannot be ruled out with this
method. However, due to efficient mixing of the used building blocks, we believe
that no low-weight differentials lead to an internal collision.

It remains to be seen if and how methods that improved collision search
methods for other hash functions can be adapted to analyse the Grindahl design.
Recently developed candidate techniques are message modification as introduced
in the cryptanalysis of several members of the MD4 family [44,45,46], neutral
bits as used to speed up collision search for SHA-0 [5], internal meet-in-the-
middle techniques as used in the analysis of Tiger [32] or the greedy-like approach
as pursued in the analysis of SHA-1 in [10]. They all have in common that
they exploit the attacker’s knowledge of all intermediate states to improve the
effectiveness of traditional differential cryptanalysis. We argue that the building
blocks used and the limited direct access to the internal state in the Grindahl
design make these techniques difficult to apply efficiently.

48 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

A potential attack method. An anonymous reviewer proposed such a method
tailored to the Grindahl design. In the following, we give a brief sketch of the
proposed method. First, a chain of differentials in which in every round the
number of active bytes is low must be found. Given such a differential chain,
the attack is launched as follows. In the attack, we do not care about actual
differences; we only care about whether there is a difference or not.

For a column containing active bytes to satisfy the differential through the
MixColumns transformation, some linear constraints must be satisfied. If the
actual differences do not matter, these are the only constraints for a full round.
Additionally, the fact that new input bytes do not affect some parts of the state
for a limited number of rounds can be exploited. This means that often a (small)
number of active bytes can be arbitrary (we call these “neutral bytes”), and the
remaining ones are fixed (“control bytes”). A neutral byte may later be used as
a control byte to ensure that a characteristic is followed. Given that every round
introduces up to four neutral bytes, this attack may or may not be applicable. It
seems hard to make use of a neutral byte that has been through several S-boxes,
since (1) the S-box is non-linear, and so one cannot deterministically select a
given output difference by a given input difference, and (2) after a number of
S-boxes a message byte affects a large part of the state, and hence it becomes
less useful as a control byte. We leave it as an open problem to investigate the
feasibility of this attack.

4 Designing Secure Compression Functions

Any proposal following the Grindahl design strategy of hash functions accepting
variable length inputs can easily be turned into a compression function for fixed
length inputs. Let H be an instance of the Grindahl hash functions with initial
state s0, where padding is omitted. Hence, H accepts only messages of size an
integer multiple of b in bits. Let the output size of H be n. Based on H , define
a compression function h : {0, 1}tb → {0, 1}n, where t is an integer greater than
n/b, as h(x) = H(x).

Note that here, the compression function is defined as taking only one input,
whereas usually one thinks of a compression function as taking two inputs, a
chaining value and a message block. We think it makes good sense to treat
the two inputs as one: in most modes of operation of the compression function
an attacker is expected to have the same control over the chaining value as
over the message. In practice we would suggest that the two inputs are simply
concatenated, and hence if we instead describe the compression function as h :
{0, 1}n × {0, 1}tb−n → {0, 1}n, then we would define h as h(c, x) = H(c‖x).

The choice of t implies a certain trade-off between speed and security. By
decreasing t security is increased, but speed is reduced since in effect the rate of
blank rounds to input rounds increases.

If an additional input (e.g., a salt, a key or a counter) to the compression func-
tion is required, then we suggest that this is prepended to the chaining/message
input. This way, many of the newly proposed modes of operation which turn

The Grindahl Hash Functions 49

a secure compression function into a secure hash function are directly applica-
ble to our proposal. We now describe instances of our design strategy acting
as a compression function to be used with modes like Merkle-Damg̊ard [18,37],
EMD [2], randomized hashing [28], HAIFA [7] etc.

Compression function mode for concrete proposals. We suggest compres-
sion function modes for both Grindahl-256 and Grindahl-512 by letting t above
be equal to 40+s. Here s denotes the number of input blocks used for an addi-
tional input, with the possibility of s = 0. Hence, the compression functions both
take (40 + s)νmb-byte inputs. This corresponds to 1280+32s bits and 2560+64s
bits for Grindahl-256 and Grindahl-512, respectively. Of these, respectively 1024
and 2048 bits form the message input, and the rest is reserved for chaining input
and, if applicable, a salt/key/counter.

5 Implementation

Implementations of Grindahl can directly inherit most of the extensive research
done to optimise implementations of the AES block cipher on different platforms.
Also side-channel attacks might be an issue if a hash function is used to process
secret key material, be it as a key-derivation-function (KDF) or as a hash-based
message authentication code (MAC). Here we refer to extensive work done to
protect implementations of the AES against these kinds of attacks, e.g. a very
fast bit-sliced AES implementation immune to timing attacks [36].

5.1 Software Performance

One usually defines the rate of a hash function based on a block cipher as the
number of blocks that are processed for each block encryption. We may do the
same here, except that we have to take into account the extended state size,
and the fact that νmb bytes are processed per round, whereas in AES-128, 16
bytes are processed for every 10 rounds. Hence, the rate of a Grindahl instance is

10νmb
νrwνcl−νmb

. Here we also take into account that the νmb bytes that are overwritten
by the following message block do not have to be computed. As an example, the
rate of both Grindahl-256 and Grindahl-512 is 5/6.

In an optimised software implementation of Grindahl-n on a 32-bit platform,
n/64 tables of 256 32-bit words are needed. In the discussion (Section 5.4) on
memory requirements this is not taken into account as the need for these tables
is a consequence of the optimisation only.

Implementation report. Grindahl-256 has been implemented in C on a 32-bit
Pentium 4 processor. It runs at about 32 cycles/byte. This might be compared
with the Rijndael-128 implementation from the Crypto++ [13] package, which,
according to the website, performs at about 33 cycles/byte on a Pentium 4. As
expected, performance is similar. For additional comparison, on the same plat-
form SHA-256 is benchmarked at about 45 cycles/byte [13]. As with Rijndael,
we expect that hand-optimised implementations will improve performance by a

50 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

Table 1. Needed working memory in bits for different hash functions

128-bit security 256-bit security
name memory name memory

Grindahl-256 416 Grindahl-512 832
SHA-256 1024 SHA-512 2048
RadioGatún-14 812 RadioGatún-27 1566
FORK-256 1280 Whirlpool 1536
LASH-256 1536 LASH-512 3072

factor up to about 2. Grindahl-512 is more suited for 64-bit architectures, and
here we expect its speed to be similar to Grindahl-256 on a 32-bit architecture.

Program code and test vectors. The interested reader may find C imple-
mentations of and test vectors for Grindahl-256 and Grindahl-512 at [27].

5.2 On Hardware Implementations

For passively powered designs, the number of active registers/logic per clock cy-
cle should be small. In contrast to the MD4 family, the Grindahl hash function
design allows for hardware designs with a small data path width without penal-
ties. Also, compared to the MD4 family and other proposals a smaller number
of registers is needed in the Grindahl design, which allows for low-cost and low-
power implementations. In addition, various trade-offs towards high speed are
possible, utilising the many implementation options already pioneered for the
AES and benefiting from the smaller number of needed registers.

Regarding low-cost hardware implementations, based on [21] we estimate area
requirements to about 5-6,000 gate equivalents for Grindahl-256. This com-
pares favourably with the smallest known SHA-256 implementation [20], which
requires more than 10,000 gate equivalents.

5.3 On Hashing Small Messages

The blank rounds add fixed costs even for very small messages. However, in
absolute terms, for both Grindahl-256 and Grindahl-512 it is equivalent to only
32 bytes of additional padding. Note that members of the SHA-2 family operate
on input blocks of size 64 or 128 bytes. Hence, given the much smaller input
block size of 4 (or 8) bytes, small messages are still handled more efficiently.

5.4 Memory Requirements

Due to the small message blocks, the needed working memory for Grindahl-256
and Grindahl-512 is small. This certainly suits implementations in constrained
environments. It is interesting to note that implementations of the Grindahl
strategy need only b + m bits of working memory. Implementations of the MD4

The Grindahl Hash Functions 51

family, on the other hand, require b+ 2m bits of memory, where usually b = 512
and m is the same as the output size. The reason for the difference is the feed-
forward of the initial state which counters meet-in-the-middle attacks. However,
even if this feed-forward operation would be omitted, the general picture would
not change.

We see the low memory requirements as an important feature of our proposal,
and in Table 1 we give a comparison with other hash functions [1,3,4,24,29]
claiming a comparable security level against collision search attacks. Note that
we do not consider memory needed to store temporary variables or constants.

6 Conclusion

We proposed the Grindahl hash functions which overcome several identified
weaknesses of the commonly used MD4 family of hash functions. The identi-
fied weaknesses are addressed on two layers. By using the well analysed building
blocks of Rijndael we obtain a design for which we claim that no efficient dif-
ferential collision structures exist. In addition, we limit access to the internal
state with the idea to thwart advanced techniques that improve effectiveness for
collision search methods.

We proposed two instantiations of the Grindahl hash collection, Grindahl-256
and Grindahl-512. The claimed security level with respect to collision, preim-
age and second preimage attacks is 2128 and 2256, respectively. Grindahl-256
performs at about the same rate as AES-128 without the key schedule, and on
a 64-bit platform we expect that implementations of Grindahl-512 can achieve
similar speeds.

Other intriguing implementation aspects of the proposals are very low working
memory requirements which aid implementations in constrained environments,
as well as the efficient handling of small messages.

Acknowledgments. The authors would like to thank Charanjit Jutla and the
anonymous reviewers for many helpful comments.

References

1. Barreto, P.S.L.M., Rijmen, V.: The Whirlpool hashing function (May 2003), avail-
able at https://www.cosic.esat.kuleuven.be/nessie/tweaks.html

2. Bellare, M., Ristenpart, T.: Multi-Property-Preserving Hash Domain Extension
and the EMD Transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

3. Bentahar, K., Page, D., Saarinen, M.-J.O., Silverman, J.H., Smart, N.: LASH.
Presented at Second Cryptographic Hash Workshop, Santa Barbara (August 24-
25, 2006)

4. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: radiogatún, a belt-and-mill
hash function. Presented at Second Cryptographic Hash Workshop, Santa Barbara
(August 24-25, 2006), See http://radiogatun.noekeon.org/

https://www.cosic.esat.kuleuven.be/nessie/tweaks.html
http://radiogatun.noekeon.org/

52 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

5. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152. Springer, Heidelberg, pp. 290–305 (2004)

6. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

7. Biham, E., Dunkelman, O.: A Framework for Iterative Hash Functions – HAIFA.
Presented at Second Cryptographic Hash Workshop, Santa Barbara (August 24-25
2006)

8. Biryukov, A.: The Design of a Stream Cipher LEX. In: Selected Areas in Cryptog-
raphy, 2006, LNCS. Springer, Heidelberg (to appear)

9. Brassard, G. (ed.): CRYPTO 1989. LNCS, vol. 435, pp. 20–24. Springer, Heidelberg
(1990)

10. Cannière, C.D., Rechberger, C.: Finding SHA-1 Characteristics: General Results
and Applications. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284,
pp. 1–20. Springer, Heidelberg (2006)

11. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

12. Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

13. The Crypto++ website (2007), http://www.cryptopp.com/
14. Daemen, J.: Cipher and hash function design strategies based on linear and differ-

ential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven (March 1995)
15. Daemen, J., Clapp, C.S.K.: Fast Hashing and Stream Encryption with PANAMA.

In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, pp. 60–74. Springer, Heidelberg
(1998)

16. Daemen, J., Rijmen, V.: The Block Cipher Rijndael. In: Schneier, B., Quisquater,
J.-J. (eds.) CARDIS 1998. LNCS, vol. 1820, pp. 277–284. Springer, Heidelberg
(2000)

17. Daemen, J., Rijmen, V.: A New MAC Construction ALRED and a Specific Instance
ALPHA-MAC. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557,
pp. 1–17. Springer, Heidelberg (2005)

18. Damg̊ard, I.: A Design Principle for Hash Functions. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

19. Dobbertin, H.: Cryptanalysis of MD4. Journal of Cryptology 11(4), 253–271 (1998)
20. Feldhofer, M., Rechberger, C.: A Case Against Currently Used Hash Functions in

RFID Protocols. Presented at the Workshop on RFID Security (2006)
21. Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on a Grain of

Sand. IEE Proceedings on Information Security 152(1), 13–20 (2005)
22. Ferguson, N., Schneier, B.: Practical Cryptography. Wiley Publishing, Chichester

(2003)
23. FIPS 180-1, Secure Hash Standard: Federal Information Processing Standards Pub-

lication 180-1, U.S. Department of Commerce/NIST, National Technical Informa-
tion Service, Springfield, Virginia, Supersedes FIPS 180 (April 1995)

24. FIPS 180-2, Secure Hash Standard. Federal Information Processing Standards Pub-
lication 180-2, U.S. Department of Commerce/NIST, National Technical Informa-
tion Service, Springfield, Virginia, Supersedes FIPS 180 and FIPS 180-1 (August
2002)

25. FIPS 197, Advanced Encryption Standard (AES): Federal Information Processing
Standards Publication 197, U.S. Department of Commerce/NIST, National Tech-
nical Information Service, Springfield, Virginia (November 2001)

http://www.cryptopp.com/

The Grindahl Hash Functions 53

26. Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)
27. The Grindahl web page (2007), http://www.ramkilde.com/grindahl
28. Halevi, S., Krawczyk, H.: Strengthening Digital Signatures via Randomized Hash-

ing. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 41–59. Springer,
Heidelberg (2006)

29. Hong, D., Chang, D., Sung, J., Lee, S., Hong, S., Lee, J., Moon, D., Chee, S.: A
New Dedicated 256-Bit Hash Function: FORK-256. In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 195–209. Springer, Heidelberg (2006)

30. Joux, A.: Multicollisions in Iterated Hash Functions. In: Franklin, M. (ed.)
CRYPTO 2004. LNCS, vol. 3152, pp. 306–316. Springer, Heidelberg (2004)

31. Kelsey, J., Kohno, T.: Herding Hash Functions and the Nostradamus Attack. In:
Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 183–200. Springer,
Heidelberg (2006)

32. Kelsey, J., Lucks, S.: Collisions and Near-Collisions for Reduced-Round Tiger. In:
Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 111–125. Springer, Heidelberg
(2006)

33. Kelsey, J., Schneier, B.: Second Preimages on n-bit Hash Functions for Much Less
than 2n Work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

34. Lai, X., Chen, K. (eds.): ASIACRYPT 2006. LNCS, vol. 4284. Springer, Heidelberg
(2006)

35. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-
Holland, Amsterdam (1977)

36. Matsui, M.: How Far Can We Go on the x64 Processors? In: Robshaw, M. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

37. Merkle, R.C.: One Way Hash Functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

38. Merkle, R.C.: A Fast Software One-Way Hash Function. Journal of Cryptol-
ogy 3(1), 43–58 (1990)

39. Meyer, C.H., Schilling, M.: Secure program load with Manipulation Detection
Code. In: Proceedings of the 6th Worldwide Congress on Computer and Com-
munications Security and Protection (SECURICOM’88), pp. 111–130 (1988)

40. Preneel, B.: Analysis and Design of Cryptographic Hash Functions. PhD thesis,
Katholieke Universiteit Leuven (January 1993)

41. RFC 1321: The MD5 Message-Digest Algorithm. Internet Request for Comments
1321, R. Rivest (April 1992)

42. Rijmen, V., Oswald, E.: Update on SHA-1. In: Menezes, A.J. (ed.) CT-RSA 2005.
LNCS, vol. 3376, pp. 58–71. Springer, Heidelberg (2005)

43. Robshaw, M. (ed.): FSE 2006 (Revised Selected Papers). LNCS, vol. 4047. Springer,
Heidelberg (2006)

44. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

45. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

46. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

http://www.ramkilde.com/grindahl

54 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

A Resistance of Concatenate-Permute-Truncate to
Known Attacks

The well-known Merkle-Damg̊ard construction [18,37] is a construction method
for hash functions based on an underlying compression function f : {0, 1}n ×
{0, 1}b → {0, 1}n. The output size of the hash function is n. The main differences
in the “Concatenate-Permute-Truncate” design are

– that we allow m > n, and hence attacking the internals of the hash function
may be different (and hopefully harder) than attacking the hash function
itself, and

– that we allow an output transformation, the blank rounds.

If m = n and νbr = 0, then the design can be seen as a special case of the
Merkle-Damg̊ard construction: we iterate “as usual” over a compression function
of a certain kind. However, the possibility of varying m and νbr makes it possible
to obtain different properties for our design than the properties of hash functions
based on the Merkle-Damg̊ard construction.

In the following we describe some known attacks on the Merkle-Damg̊ard con-
struction, and we argue whether or not our design protects against these attacks,
and, if applicable, how resistance to these attacks depends on the parameters n,
m and νbr. The analysis will assume that P is a black-box permutation, i.e. that
the internals of P are unknown.

A.1 The Length-Extension Attack

Let H be a hash function based on the Merkle-Damg̊ard construction. Then H
is susceptible to the so-called length-extension attack [22]. Given a collision, i.e.
two messages d and d′, with |d| = |d′|, such that H(d) = H(d′), then for any
suffix x it holds also that H(d‖x) = H(d′‖x).

This attack can be applied to the design described above only if the collision
occurs before the blank rounds. If m > n and we only consider the birthday
attack, then an internal collision is harder to find than a collision for the full
hash function.

A related property of the Merkle-Damg̊ard construction is that if the length
of an unknown message d, and hence the padding p of d, is known, and also
H(d) is known, then H(d‖p‖x) can be computed for any suffix x. This attack
is particularly a threat in some schemes that use a hash function for message
authentication.

The attack can be mounted on a hash function following our design only if
the attacker correctly guesses the b + m− n bits that are truncated away. If he
does so, he can go backwards through the blank rounds and obtain the extended
state after the processing of the last message block.

A.2 Multi-collisions

An efficient method for constructing multi-collisions was described by A. Joux
in 2004 [30]. A multi-collision is a set of (at least two) messages that all have

The Grindahl Hash Functions 55

the same hash. The attack of Joux has complexity t2n/2 to find a 2t-way multi-
collision for an n-bit hash function in the Merkle-Damg̊ard construction. In our
design, the complexity would be t2m/2. This is to be compared with a brute-
force search for multi-collisions, which for even a modest t gets very close to 2n.
Hence, if one wants full resistance against the Joux multi-collision attack, one
should choose m ≥ 2n.

A.3 The Herding Attack

The herding attack [31] by J. Kelsey and T. Kohno shows another slight weakness
of the Merkle-Damg̊ard construction. Here, a binary tree of collisions is used to
form a hash result h, which an attacker publishes. Subsequently he chooses a
message, finds a message linking to one of the leaves of the binary tree, and then
he has a complete, partially chosen message d with the hash h.

The complexity of the simplest version of this attack in the Merkle-Damg̊ard
construction is about 2(2n−5)/3. In our design, n can be replaced by m, and so
with m ≥ (3n+5)/2, the complexity of the attack is the same as for a preimage,
which is what one would expect from a random hash function.

There is another important version of the attack for which the complexity
decreases with increased size of the message d. If the size of d is about 2r, then
the complexity is about 2(2n−5)/3−r. Hence, for a given upper limit on the size
of messages, m must be chosen accordingly if one wants to completely protect
against this kind of attack.

A.4 Second Preimage Attack

There is a second preimage attack [33] by J. Kelsey and B. Schneier on the
Merkle-Damg̊ard construction. This attack requires finding an expandable mes-
sage, meaning a set of messages of varying sizes such that all these messages
collide internally in the hash function, given some fixed initial value. To find this
expandable message one either makes use of fixed points or the ability to find
(internal) collisions between a one-block message and a t-block message for vary-
ing values of t. Finally, the complexity of the attack depends on the complexity
of finding the expandable message, and on the length of the target message, i.e.
the message for which one tries to find a second message with the same hash.
This complexity amounts to roughly 2n/2+2n−k, where k is the number of blocks
in the target message. In our design, n can be replaced by m, and hence with
no upper limit on the message size, m should be at least 2n for this attack to
have the same complexity as a brute-force search. If the target message can have
length at most 2r blocks, then m ≥ min(2n, n + r) is required.

B Reduced Variants

We now suggest some methods of reducing the cryptographic strength of the two
proposals Grindahl-256 and Grindahl-512, without reducing the output size. The

56 L.R. Knudsen, C. Rechberger, and S.S. Thomsen

methods can be combined, but some reductions rule out others, or modify the
way that others can be applied.

– Increase the size of each message block to more than one column.
– Reduce the number of columns in the extended state. The number of columns

should be at least 8 plus twice the number of columns that are overwritten by
the message block. Otherwise, as described in Section 2.4, birthday attacks
are simplified.

– Reduce the number of blank rounds.

C A Method for Choosing Rotation Constants

We suggest the following method for choosing rotation constants in the Grindahl
hash collection, given a particular geometry of the extended state. Let R1 be the
set of νrw-tuples of rotation constants that ensure optimal diffusion, i.e. all state
bytes depend on all message bytes as quickly as possible. Let R2 ⊆ R1 be the
subset of R1 of rotation constants that ensure optimal diffusion in the blank
rounds, i.e. when no extended state bytes are overwritten by message bytes.

Now let fj(di) be the number of state bytes that message byte di affects after
j rounds. Let μ be the number of rounds needed for every state byte to be
affected by every message byte. Now let R3 ⊆ R2 be the subset of R2 of rotation
constants for which the sum

μ−1∑

j=1

νmb−1∑

i=0

fj(di)

is maximal. Sort R3 lexicographically, i.e. such that (r1, r2, r3, r4) comes before
(s1, s2, s3, s4) if and only if r1 < s1, or r1 = s1 and r2 < s2, or (r1, r2) =
(s1, s2) and r3 < s3, or (r1, r2, r3) = (s1, s2, s3) and r4 < s4. Choose as rotation
constants the first tuple in the sorted R3.

D A Characteristic Leading to a Collision in Grindahl-256

Below is given a characteristic that leads from a zero-difference state to a zero-
difference state (a collision) via message inputs containing differences. Exact dif-
ferences are not given, instead a single bit for each byte is given stating whether
or not there is a difference on that particular byte.

Evidently, after 6 rounds the state contains no difference (the only difference
in the extended state is in the first column). Hence, this characteristic spans
6 rounds, but an additional message block with no difference (e.g., a padding
block) is needed before the blank rounds in order for the difference to disappear
entirely.

The Grindahl Hash Functions 57

Round no. Initial state Message Mesg. input → ShiftRows → MixColumns →
1 0000000000000

0000000000000
0000000000000
0000000000000

1111 1000000000000
1000000000000
1000000000000
1000000000000

0100000000000
0010000000000
0000100000000
0000000000100

0110100000100
0110100000100
0110100000100
0110100000100

2 0110100000100
0110100000100
0110100000100
0110100000100

0111 0110100000100
1110100000100
1110100000100
1110100000100

0011010000010
0011101000001
0100111010000
0100000100111

0111101110111
0111011110111
0101111110111
0111111110111

3 0111101110111
0111011110111
0101111110111
0111111110111

1001 1111101110111
0111011110111
0101111110111
1111111110111

1111110111011
1101110111101
0111010111111
1111110111111

1100010010010
1000100100101
1010010010110
1011110001001

4 1100010010010
1000100100101
1010010010110
1011110001001

1100 1100010010010
1000100100101
0010010010110
0011110001001

0110001001001
0110001001001
0110001001001
1110001001001

1010000000000
1100000000000
1000000001001
1000001000000

5 1010000000000
1100000000000
1000000001001
1000001000000

0000 0010000000000
0100000000000
0000000001001
0000001000000

0001000000000
0001000000000
1001000000000
0001000000000

1000000000000
1000000000000
1000000000000
1001000000000

6 1000000000000
1000000000000
1000000000000
1001000000000

0000 0000000000000
0000000000000
0000000000000
0001000000000

0000000000000
0000000000000
0000000000000
1000000000000

1000000000000
1000000000000
1000000000000
1000000000000

7 1000000000000
1000000000000
1000000000000
1000000000000

0000 0000000000000
0000000000000
0000000000000
0000000000000

0000000000000
0000000000000
0000000000000
0000000000000

0000000000000
0000000000000
0000000000000
0000000000000

Overtaking VEST

Antoine Joux1,2 and Jean-René Reinhard3

1 DGA
2 Université de Versailles St-Quentin-en-Yvelines, PRISM
45, avenue des États-Unis, 78035 Versailles Cedex, France

antoine.joux@m4x.org
3 DCSSI Crypto Lab

51, Boulevard de La Tour-Maubourg
75700 Paris 07 SP, France

jean-rene.reinhard@m4x.org

Abstract. VEST is a set of four stream cipher families submitted by
S. O’Neil, B. Gittins and H. Landman to the eSTREAM call for stream
cipher proposals of the European project ECRYPT. The state of any
family member is made of three components: a counter, a counter diffusor
and a core accumulator. We show that collisions can be found in the
counter during the IV Setup. Moreover they can be combined with a
collision in the linear counter diffusor to form collisions on the whole
cipher. As a consequence, it is possible to retrieve 53 bits of the keyed
state of the stream cipher by performing a chosen IV attack. For the
default member of a VEST family, we present a “long” IV attack which
requires 222.24 IV setups, and a “short” IV attack which requires 228.73

IV setups on average. The 53 bits retrieved can be used to reduce the
complexity of the exhaustive key search. The chosen IV attack can be
turned into a chosen message attack on a MAC based on VEST.

Keywords: Stream cipher, inner collision, chosen IV attack.

1 Introduction

VEST [8] is a set of four stream cipher families proposed to the eSTREAM
project [6] by S. O’Neil, B. Gittins and H. Landman . VEST-v, with v ∈
{4, 8, 16, 32}, is a family of stream ciphers with expected security respectively
280, 2128, 2160 and 2256, and output rate v bits by clock cycle. All families share
the same design. Only the sizes of the components change to meet the target
security. There also is a selection algorithm which given a parameter called the
family key outputs a specific member of a VEST family.

Recently, VEST specifications have been updated [9]. Compared to the ear-
lier specification [8], changes include some modifications in the parameters used
and also the definition of additional modes, that turn VEST in a MAC or an
authenticated encryption scheme.

In this paper, we point out basic weaknesses of VEST components. The weak-
nesses can be used to create inner collisions in the algorithm, in a way similar

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 58–72, 2007.
c© International Association for Cryptologic Research 2007

Overtaking VEST 59

to local collisions in hash function of the SHA family [4]. As a consequence we
are able to mount a chosen IV attack against VEST stream cipher that recovers
53 bits of the keyed state. This information enables us to reduce by 53 bits the
complexity of an exhaustive key search. The chosen IV attack on VEST stream
cipher can also be used as an existential forgery attack against the VEST MAC.

In section 2, we give a description of VEST components and of their internal
modes of operation. Then we describe in section 3 the basic weaknesses we
found on the counter and linear counter diffusor components. In section 4, we
describe two efficient chosen IVs attacks that recover 53 bits of the keyed state
of the cipher. In section 5, we use these 53 bits to greatly speed-up exhaustive
key search. Finally, in section 6, we describe briefly how to turn the attacks of
section 4 into existential forgery attacks against VEST in MAC mode.

2 Description of VEST

Members of the VEST stream cipher families are made of four components:

– a set of 16 non linear feedback shift registers, called counter,
– a linear counter diffusor,
– an accumulator,
– a memory-less linear output filter.

There are three main internal modes of operation:

– The Key Setup mode which introduces the key into the cipher state. The
state of the cipher is first set to all 0’s, then the key is introduced and
produces a keyed state. In this mode, the cipher does not output any data.

– The IV Setup mode which introduces an IV into a keyed state. This mode
also has no output data.

– The Keystream generation mode which produces a stream of pseudo random
bits.

We review in the following the four components of a VEST stream cipher and
the Key Setup and IV Setup mechanisms.

2.1 Counter

The counter, a set of 16 registers ci, (0 ≤ i < 16), is the autonomous part of
the stream cipher in Keystream generation mode. Each register is a non linear
feedback shift register (NLFSR) of size w = 10 or 11 bits. As in [8,9], we note
cr
i j the value of bit j of register i at step r. Their update function is described

in Fig. 1.
Each register is updated independently. There are two register modes of oper-

ation. While in register counter mode, the registers are autonomously updated.
In register keying mode, the update function of a register is disturbed by one
bit at each clock cycle. The functions gi are non-linear and chosen such that the
graphs of the registers update functions are made of two cycles of approximately

60 A. Joux and J.-R. Reinhard

– Register Keying mode
• cr+1

i 0 = gi(c
r
i 0, c

r
i 1, c

r
i 2, c

r
i 6, c

r
i 7) ⊕

cr
i wi−1

• cr+1
i 1 = cr

i 0 ⊕ kr
i

• cr+1
i j = cr

i j−1

– Register Counter mode
• cr+1

i 0 = gi(c
r
i 0, c

r
i 1, c

r
i 2, c

r
i 6, c

r
i 7) ⊕

cr
i wi−1

• cr+1
i j = cr

i j−1

Fig. 1. Register update

same length, the length of all cycles being pairwise relatively prime. Thus, a
minimum period of evolution of the set of registers can be guaranteed. 32 non
linear functions meeting this requirement are specified in [9, Appendix F], 16
for registers of length 11 and 16 for registers of length 10. For a given member
of a family, every register is associated to a non linear function specified for its
length. Every cycle, bit 1 is extracted from each of the 16 registers.

2.2 Linear Counter Diffusor

The linear counter diffusor is a 10–bit value used to disturb the core accumulator.
Every cycle, the linear counter diffusor is updated linearly with the 16–bit output
from the counter. As in [8,9], we note dr

j the value at step r of bit j of the linear
counter diffusor. We note

D(r) =

⎛

⎜⎜
⎜
⎝

dr
0

dr
1
...

dr
9

⎞

⎟⎟
⎟
⎠

C(r) =

⎛

⎜⎜
⎜
⎝

cr
0 1

cr
1 1
...

cr
15 1

⎞

⎟⎟
⎟
⎠

.

The linear counter diffusor update function can be written as

D(r+1) = A · D(r) ⊕M · C(r) ⊕B,

with

A =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

M =

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢⎢
⎢
⎣

0 1 0 0 1 1 0 0 0 0 0 1 0 1 0 0
1 0 1 0 0 0 1 0 1 0 0 0 0 0 1 0
0 0 0 1 1 0 0 1 0 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0 0 1 0 0 1 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 0 0 1 0 0 1 1
0 0 1 0 0 1 1 0 0 0 1 0 1 0 0 0
1 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥⎥
⎥
⎦

B =

⎛

⎜⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1
0
0
0
1
0
0
1
1
1

⎞

⎟⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

.

Overtaking VEST 61

2.3 Accumulator

The remainder of the state of a VEST stream-cipher is an accumulator. Every
cycle the accumulator state goes through a substitution phase and a permutation
phase. Then the output of the counter diffusor is XOR-ed to the first 10 bits of
the accumulator state. For a full description of the accumulator, we refer to [9].

2.4 Output Combiner

At each clock cycle, depending on its current state the cipher outputs either
0 or n bits. Each output bit is computed by taking the exclusive-or of 6 bits
taken from the accumulator state. The number of output bits is at least 18
times smaller than the size of the accumulator. The design of the core of the
algorithm, that is to say the accumulator and this output filter follows the same
design strategy as the LEX stream cipher, another candidate to the eSTREAM
project [1,2]. The idea is to extract a small part of a state which is updated by
one round of a block cipher, the round-key being provided by an autonomous
component.

2.5 Key Setup Mode

The Key Setup takes as input a F–bit key K, where F is a multiple of 8, and
enters it in the cipher state. At the beginning of the Key Setup, all bits of the
state are set to 1. At the end of the Key Setup, the value of the state of the
cipher is called the keyed state. During Key Setup, no output is produced by
the cipher. The linear counter diffusor and the accumulator work as described
above. The registers of the counter go through two phases:

– The first phase of the keysetup introduces K in the registers. First the key is
prepended with fifteen 0’s, and appended with a single 1 followed by fifteen
0’s, creating a key K ′. During F + 16 steps the registers operate in register
keying mode. At each step r, the bits K ′

r, . . . , K
′
r+15 are used to disturb the

evolution of registers 0, . . . , 15 respectively.
– The second phase of the Key Setup introduces a 8–bit constant in the first

8 registers, and mixes the state of the cipher. During the introduction of the
constant, the first 8 registers are in keying mode, register i being disturbed
by bit i of the constant, and the last 8 registers are in counter mode. Then
the state of the cipher is mixed by going through 31 steps during which all
the registers are in counter mode.

The keyed state can be stored and reloaded later into the state of the cipher,
if one wants for example to speed up IV setups using the same key. The keyed
state is equivalent to the key introduced.

2.6 IV Setup Mode

The IV Setup may be applied after the Key Setup. It takes as input an IV of
length W bits, with W a multiple of 8. As for the Key Setup, no output is

62 A. Joux and J.-R. Reinhard

produced during IV Setup and the accumulator and counter diffusor work as
described above. The counter goes through 2 phases:

– During the first phase of the IV Setup, the IV is introduced into the counter.
This phase lasts W/8 steps. Note that the IV is not introduced in all registers
as the key. Instead it only affects 8 registers as the constant introduced in the
second phase of the keying process. As a consequence each bit of IV affects
a single register. At each clock cycle, one byte of the IV is introduced.

– The second phase is identical to the Key Setup second phase with a different
value of the constant.

3 Basic Weaknesses of VEST Components

In this section, we identify two weaknesses of VEST stream ciphers. They concern
the differential behaviour of the NLFSRs in keying mode and of the counter
diffusor.

3.1 Differential Characteristics of the Registers

During the first phase of IV Setup, the update function of register i, 0 ≤ i ≤ 7
can be viewed as a function

fi : {0, 1}wi × {0, 1}n → {0, 1}wi × {0, 1}n,

which modifies a state with an input IV of length n. The output of the function
is the modified state and an output value of length n. Studying the differential
behaviour of this function with respect to its second input, we find some kind of
imbalance.

The differential patterns relevant within the context of the IV Setup are

0 ×Δ → 0 × α :

starting from a common value (for example the keyed register state) we introduce
a pair of IVs with difference Δ and look for a collision on the register state after
the first phase of the IV Setup and a fixed difference α on the output. For an
IV pair, we call colliding states the states starting from which we get a collision
and the expected difference α on the register output after processing each IV of
the pair.

Differential behaviour over one step. In order to understand the source of
the imbalance, let us consider the effect of a single bit difference in the register
state on one step of the IV Setup. We can distinguish three cases:

– The difference is at position w−1: the update moves the difference to position
0,

– The difference is at position j /∈ {0, 1, 2, 6, 7}: the update shifts the difference
to position j + 1

Overtaking VEST 63

Fig. 2. Differential pattern and colliding states

– The difference is at position j ∈ {0, 1, 2, 6, 7}: the update shifts the difference
to position j + 1 and, depending on the non linear function, may also create
a difference at position 0.

We still have to take into account the IV bit introduction at this step. After the
computation of the feedback and the shift of the register, but before the output
at this step, one bit of IV is XOR-ed at position 1. In our differential setting this
bit can be used either to introduce a new difference in position 1 or to correct a
difference that was present at position 0 at the end of the previous step.

At the end of each step, the output is the bit in position 1 of the register
state.

Local Collisions. We now adopt a strategy very similar to the local collisions
used in [4] to attack SHA-0. The key idea is to introduce a single difference in the
register state and control its propagation until it vanishes. We first consider the
linear part of the update function. We then take into account the non-linear part.

At step 0 we introduce a difference through different IV bits. Thus, after
step 0 there is a difference in position 1 of the register. The linear part of the
update function consists solely of a rotation of the register bits. After step 1
the difference is in position 2, then after step 2 in position 3 ... and after step
w−1 the difference is in position 0. At step w it comes back in position 1, where
we can cancel it by using a secondary difference on the IV pair. Thus when the
non-linear feedback function is not used, it takes w + 1 steps to introduce and
then cancel a difference. Looking at the output difference α, taken from bit 1,
we see that it consists in a single 1 followed by w 0’s. In the sequel, we show how
to build collisions following the same pattern, w + 1 steps and same value α.

We now add the non linear function (NLF). The collision described above
does no longer occur all the time. Indeed, when the NLF is active, i.e. when
there is a difference on at least one of its input, there may be a difference on
its output. Heuristically, this happens with probability 1/2. Thus after a step
during which the NLF is active, there may be an additional difference in position
0. To prevent the propagation of this difference, we use the IV introduction in
position 1 at the next step to cancel it. Combining all the IV bit differences on
the w + 1 steps we get a corrective pattern. Note that with IV differences on
w + 1 steps, it is not possible to correct additional differences produced during
step w.

64 A. Joux and J.-R. Reinhard

Due to the propagation of the initial difference through every position of the
register, the number of active steps is at least 5 : steps 1, 2, 6, 7 and w. Heuristi-
cally, after each active step there is probability 1/2 that another difference appear
in position 0, thus that the next step is also active. We can expect that some
corrective patterns lead to collisions with probability 2−5. Thus, there should be
2w−5 colliding states for some corrective patterns.

In practice, w = 10 or w = 11. So we are able to compute all the differential
characteristic of length w + 1 of a counter. In fact, for a given IV and starting
state, there is at most one IV difference that creates a collision after w + 1 steps
and has the correct output difference α. We computed all these values and stored
for each IV pair, the initial states for which a collision occurs. We performed this
exhaustive search for each of the possible non linear functions. This computation
takes a few minutes an Intel Celeron 1.4 Ghz.

We observe that for some good pairs of IVs with appropriate difference pat-
terns, the number of colliding states is higher than 2w−5, sometimes exceeding
2w−5 by a factor of 2 or more. We give in Table 1 the maximum number of
colliding states Ni for the best IV pair for each proposed non linear function in
[9, Appendix F]. For the first (resp. last) 16 functions w = 11 (resp. 10) and the
expected number of colliding states is 64 (resp. 32).

Table 1. Size of the largest colliding states for register update functions

i Ni i Ni i Ni i Ni i Ni i Ni i Ni i Ni

0 127 4 106 8 122 12 102 16 70 20 44 24 59 28 52
1 107 5 107 9 95 13 96 17 67 21 60 25 76 29 64
2 117 6 96 10 90 14 104 18 74 22 62 26 65 30 54
3 128 7 150 11 156 15 136 19 52 23 77 27 54 31 77

3.2 Collision in the Counter Diffusor

In Section 2.2, a description of the linear counter diffusor was given. Matrix M
having more columns than rows has a non zero kernel, generated by vectors:

(1,0,0,0,1,1,1,1,0,0,0,0,0,0,0,0)T,
(1,1,1,1,0,1,1,0,1,1,1,0,0,0,0,0)T ,
(0,1,1,0,0,0,1,0,1,0,0,1,0,0,0,0)T ,
(0,1,0,1,1,0,1,0,1,0,0,0,1,0,0,0)T ,
(1,1,0,1,1,0,0,0,0,0,0,0,0,0,1,0)T ,
(0,1,0,1,0,0,0,0,0,1,0,0,0,1,0,1)T

This clearly contradicts the property of collision freeness in elementary VEST
components claimed in [9, Section 5.4]. If the output of the counter at step r
differs by a linear combination of these vectors, the contribution of the counters
to the update of the diffusion bits {dr

j}j will be the same. The highlighted kernel
vector only uses the first 8 registers which can, to some extent, be controlled
and is especially useful in our attack.

Overtaking VEST 65

4 Partial Keyed State Recovery

In this section, we exploit the vulnerabilities described in the previous section to
recover the value of a fixed part of the keyed state. All the attacks described are
chosen IVs differential attacks. The first attack assumes no constraints on the IV
length. The second attack uses an IV as short as possible and can be used when
the length of the IV is constrained to some standard value, namely 128 bits. In
fact, we show that an attack is possible as soon as the IV length is greater than
96 bits.

4.1 Attack with Long IVs

We describe in this subsection a first attack which assumes that the IV length
is greater than 23 × 8 = 184 bits. We note that [9] doesn’t specify any limit on
the IV length.

The goal of the attack is to exploit the above weaknesses to build a pair of
colliding IVs, that is to say a pair of IVs such that the state of the cipher is the
same after the Key Setup using a unknown key K and the IV Setup using each
IV of the pair. We have studied in the previous section the differential behaviour
of the NLFSRs in keying mode and of the counter diffusor. Our attack uses
the outlined properties to introduce differences into the counter and then cancel
them, while introducing no differences in the core accumulator.

Indeed, during the first phase of the IV Setup, all the NLFSRs are not up-
dated in the same way. NLFSRs 0 to 7 work in keying mode and are disturbed
by IV bits, each IV bit being used exactly once, while NLFSRs 8 to 15 work
in counter mode. As a consequence, an attacker can only influence the first 8
NLFSRs. In order to introduce no difference in the core accumulator, the counter
diffusor state must remain the same while the counter state varies. The counter
diffusor update depending linearly on the NLFSRs output through matrix M ,
this is possible if and only if the counter output difference lies in the kernel of M .
Furthermore, as the attacker can only introduce differences in the first 8 NLF-
SRs, the counter output difference can only be non zero on the corresponding
components. Unfortunately for VEST security, one such element exists in the
kernel of M (see section 3.2). Thus, if the outputs of the NLFSRs are different
for exactly NLFSRs 0, 4, 5, 6 and 7, the counter diffusor is updated in the same
way as if there were no difference. As a consequence, if there is no difference
in the counter diffusor and in the core accumulator and if the counter output
difference is as above, no difference is introduced in the counter diffusor and in
the core accumulator.

Furthermore, we described in section 3.1 differential patterns on the NLFSRs.
The output difference for these differential patterns is a single 1 followed by w
0’s. If we combine such differential patterns, one pattern for each of the five
NLFSRs 0, 4, 5, 6 and 7, making them start at the same step, and introduce no
difference on the three NLFSRs 1, 2 and 3, and no difference on NLFSRs 0, 4, 5,
6 and 7 after the differential patterns, we get a differential pattern on the whole
counter such that:

66 A. Joux and J.-R. Reinhard

– there is a collision on the whole counter state if the starting state of the
counter is in a good set;

– the output of the NLFSRs doesn’t introduce differences in the counter dif-
fusor and in the core accumulator. Indeed the counter output difference is
either all 0’s, or equal to the highlighted element of the kernel of M given
in 3.2.

In order to make the good set explicit, we first remind that during the IV
Setup first phase different NLFSRs are updated independently. Furthermore, we
can extract from the IV the part that affects a particular register. Having a global
collision on the whole counter state is thus equivalent to five partial collisions on
the registers 0, 4, 5, 6 and 7. Thus the set of initial states of the counter that leads
to collisions is the cartesian product S of the sets Sr of registers initial states
that lead to collisions for the IV pairs used. Note that due to the guaranteed
output difference of the partial collisions, this leads to a collision on the whole
cipher state at the end of the first phase of the IV Setup. As no difference is
introduced in the second phase of the IV Setup, there is a collision on the whole
cipher state at the end of the IV Setup.

The idea of the basic attack is to choose for each register an IV pair that
maximizes the number of colliding states. This also maximizes the number of
initial states leading to a collision on the whole counter. If we choose an initial
counter state randomly, the probability it yields a collision is the number of
colliding states divided by the total number of states. For the default member
of a VEST family the value of this probability is:

p ≈ 2−21.24.

We then build IV pairs of length 23 bytes, such that the first 11 bytes are random
and identical, and the last 12 bytes is a fixed IV pair, the composition of the
best IV pairs for registers 0, 4, 5, 6 and 7 and some fixed values for registers 1,
2 and 3. We note that on average 11 bits are enough to completely randomize
the counter state. As a consequence p is the probability that such an IV pair
collides on the IV Setup, resulting in a collision on the whole cipher state after
the IV Setup as explained above. To test this collision, we compare the first 32
bits of the keystream output after each IV setup. If a collision occurs in the IV
Setup the keystream bits are identical. If there is no collision, the probability of
having for two different IVs the same first 32 bits of keystream is 2−32. After
approximately 1/p pairs of IV setups we find with high probability a pair of IVs
yielding the same first keystream bits and with high probability it is because of
an inner collision on the counter.

Once such a pair is obtained, it is easy to retrieve the 53 bits of the keyed state
in registers 0, 4, 5, 6 and 7 (w = 11 for registers 0, 4 and 7, w = 10 for registers
5 and 6). We proceed register by register. Having a collision after the IV Setup,
the state of register i after step 11 is a colliding state for the IV pair extracted
from the colliding IVs by taking the IV part relative to register r, restricted to
step 12 to 23. We then make a guess on this value, among the set Sr of colliding
states. Backtracking the 11 first steps of the IV Setup, we obtain a candidate for

Overtaking VEST 67

the register value after Key Setup. In order to test this value, starting from the
colliding IV pair, we build another IV pair which only differs on its contribution
to register r. The first 11 bits are chosen to ensure that the new starting value
for register r after the randomizing step belongs to Sr if the guess is correct.
The remaining 12 bits are left unchanged in both element of the IV pair. If the
IV setup using this new pair does not give rise to a collision, we eliminate the
guessed values from the candidates. The probability for a wrong candidate to
pass one test successfully is #Sr/2wr . Iterating this procedure we get rapidly rid
of the wrong candidates. Repeating this procedure on all interesting registers for
some examples we were able to retrieve the value of the registers in the keyed
state using a little less than 500 additional IV setups. It is possible to improve
this basic approach and eliminate several values at once using a single IV setup.
This lowers the number of additional IV setups below 200.

Of course, this attack can easily be adapted to contexts were the IV is longer
than 23 bytes. It can also be adapted when using shorter IVs, as long as the
IV length is greater than 12. In that case, this version of the attack won’t work
anymore for all the keys, since the randomizing of the register states isn’t guar-
anteed to turn the keyed register states into an element of S. Thus the attack
becomes key-dependent.

The limiting part of the attack is the look-up of a collision on the whole
counter. It’s complexity is approximately 2/p ≈ 222.24 IV setups. We imple-
mented this attack. On a Pentium Xeon 2.8 GHz it takes a few minutes on the
average to find a pair of colliding IVs.

4.2 Attack with Short IVs

In the previous subsection, we described a differential attack that allows to
recover part of the keyed state provided the IV length is long enough. We also
mentioned that the attack becomes key-dependent when the IV length is reduced,
and that the minimal IV length for which an attack may be possible is 12 bytes.
In this subsection we describe an improved approach that works for all keys
using IVs of minimal length, i.e. 12 bytes.

The former attack generates random states from the keyed state until one
random state falls in a particular set S. The idea of the attack described below
is to generate a family of sets {Si}i which covers the entire state space.

Indeed, for a particular register r, we can associate to a pair of IVs Cr
i for this

register the set of the states starting from which we get the expected register
output difference (1 followed by 0’s) and a collision on the register state after
IV setups using each of the IVs of Cr

i . We saw in section 3.1 that for certain
IV pairs Cr the cardinality of the associated set Sr, #Sr, might be particularly
high. The register size w being only 10 or 11 bits, we saw it was possible to
compute for each IV pairs with IV length w+1 the set of colliding states for this
pair. By doing this we get a family of sets. We have verified that the union of
these sets covers the whole space of register values for any of the proposed non
linear function. Thus, it is possible to select N (r) < 2wr sets, Sr

1 ,Sr
2 , . . . ,Sr

N(r) ,
so that the union of these sets covers {0, 1}wr . By composing 5 families of sets

68 A. Joux and J.-R. Reinhard

picked for registers 0, 4, 5, 6 and 7 by cartesian product, we get a family of sets
whose union covers all the possible values for the 53–bit part of the keyed state
made of these registers. The size of this family {Si}i is the product of the size
of the families for each registers: N = N (0)N (4)N (5)N (6)N (7). The elements of
the family are sets of states for which a collision occurs after the IV setup using
an IV pair obtained as a combination of the IV pairs for each register.

Suppose that we have such a family {Si}i and the associated family of IV
pairs. By doing two IV setups for each pair, we are bound to find a pair of IV
for which there is a collision after the IV Setup. The complexity of this attack
in number of IV setups is 2N in the worst case. Furthermore, if we first test the
pairs whose associated set of colliding states is largest, the expected number of
IV setups on the average case becomes smaller.

In order to get the best complexity we have to build for each register a family
of covering IV pairs {Cr

i }i. In order to improve the average complexity, we use a
greedy algorithm to pick up these families. We first build all the colliding sets for
all the IV pairs. We then sort them by decreasing cardinality and pick up the first
pair. We then remove the states in the colliding set of the picked IV pair from all
the unpicked sets and sort again the list of sets by decreasing size. We iterate this
step until we get a list of pairs so that every state is in the colliding state of a pair
in the list. We give in Table 2 the length of the obtained lists for the functions used
by registers 0, 4, 5, 6 and 7 in the default member of a VEST family.

Table 2. Size of the covering families for some non linear functions

function number covering family size
0 59
1 93
19 77
20 86
2 96

Once we have obtained the families for the five interesting registers, we have
to combine them to get a family of IV pairs for the whole counter. In order
to get the best average complexity for the attack using these 5 families, we
have to test the pairs by decreasing order of their colliding sets of states. For
VEST-v default member the number of pairs is ≈ 231.70. The generic sorting
algorithms are difficult to apply because of the amount of memory required.
However, we do not really need to store the IV pairs order, as long as we are
able to enumerate them rapidly. Furthermore, the only information required to
make the comparison is the size of the colliding states sets for each IV pair. Thus
we are left with the following problem:

Given two lists of integers (ai)1≤i≤Na , (bj)1≤j≤Nb
sorted by decreasing order,

enumerate in decreasing order all the products aibj .
In [10] and [3], an algorithm is proposed to solve this problem. This algorithm

does not store all the products. Assuming Na > Nb, its time complexity is
O(NaNb log Nb) and its memory complexity O(Nb).

Overtaking VEST 69

Implementing this algorithm and using the 5 families obtained we were able
to enumerate the 231.70 IV pairs of covering family in decreasing order in less
than 2 hours on a 1.4 GHz Celeron M processor. Noting (Ci)1≤i≤N this list of
pairs, (Si)1≤i≤N the associated list of colliding states and (Ni = #Si)1≤i≤N

the decreasing list of the cardinality of these sets, the mean complexity of the
collision search, evaluated in number of pairs of IV setups is:

C =
N∑

i=1

i · Ni

253
.

Computing this sum during the enumeration of the pairs in decreasing order, we
obtain for the VEST-v default member C ≈ 227.73.

Once a collision is obtained, we have a small list of candidate values for the
keyed state value of every interesting registers. By testing these candidates sep-
arately for each register, we are able to retrieve 53 bits of the keyed state. The
number of additional IV setups for these tests is negligible before the number of
IV setups necessary to find an IV collision.

The attack described in this subsection enables an attacker to retrieve 53 bits
of the keyed state in 228.73 IV setups on average and 232.70 in the worst case. This
is slightly more than the complexity of the basic attack. However this attack uses
IVs of minimal length. Indeed, at least 12 steps are required to create a collision
in registers 0, 4 and 7. With longer IVs, of length between 12 and 23 bytes, we
can use the beginning of the IVs as a partial randomizer and add an early abort
strategy to the attack of this subsection, to improve the overall complexity of
the attack.

5 Key Recovery

In this section, we show how the partial keyed state value recovered by the
attacks of the previous section can be used to recover the key of the stream
cipher faster than exhaustive search. This enables to evaluate the impact on the
cipher security of the collisions that were discovered in the IV Setup mechanism.

5.1 Backtracking the Key Setup Second Phase

We begin by backtracking the second phase of the key setup. As all the bits
entering the interesting registers (0, 4, 5, 6 and 7) are known, we are able to
retrieve the states of these registers after the key bits introduction. We also
know that the registers are set to 1 before the key bits introduction. Thus we
are able to perform a meet-in-the-middle attack on the key, even though the key
bits are introduced in all the registers through a sliding window mechanism. The
same kind of attack disqualified double-DES as a successor of DES.

5.2 Meet-in-the-Middle Attack

One can notice that bits 0 to l − 1 (resp. l to F − 1) of the key are introduced
in register r between step 15 − r and step l − 1 + 15 − r (resp. l + 15 − r and

70 A. Joux and J.-R. Reinhard

F − 1 + 15− r). By guessing the first l bits or the last F − l bits of the key, one
can compute the values of register r before step l + 15 − r. This enables us to
implement a time/memory tradeoff attack against VEST ciphers. We build the
table A of the 53–bit values of the 5 interesting registers, at steps l + 15 − r.
This requires 2l memory.

Then, for each 2F−l values j of the end of the key we perform the following:

– backtrack the register values assuming j: we note x the 53–bit value obtained;
– look for i so that A[i] = x. The probability of the match is 2−53;
– for each match, check the key (i||j), where || designates the concatenation.

Complexity. This enables to explore all the keys which sets the states of the
interesting registers to the recovered values. This attack recovers the key used
by the cipher using 2max(F−53,F−l) time and 2l memory. The average number of
keys to test is 2F−53.

5.3 Key Recovery Through Related-Key Attack

It is also possible to mount a very efficient related key attack. Assume we are
given two ciphers keyed with key K and key K ′ which differs of K only on bit
F − l− 1. Performing our chosen IV attack, we are able to retrieve for both keys
the keyed states of the interesting registers. By guessing the last l bits of the key,
we can backtrack their introduction from the keyed state up to the step after the
key difference introduction for each register. For the correct guess, there should
only be a difference at position 1 of the registers after the backtracking. This
happens with probability 2−53. Thus we are able to check our guesses if l < 53.
For the registers to behave in a random way l should also be larger than their
length.

Once we have determined the last l bits of the key, we can iterate this process
on the unknown part of the key. For a 128–bit key, taking l = 16 we are able to
recover the whole key with 8 related keys performing ≈ 226 IV setups and ≈ 219

partial key introduction backtracking.

5.4 Security Discussion

The attacks described above show that the differential attack result can theoret-
ically be exploited to recover the cipher key faster than exhaustive key search.
It seems that this is also the case in more practical attacker models. This breaks
VEST cipher when it is used with keys of size of the security parameters. In [9,
Section 3.3], the authors of VEST recommend to use keys of size at least twice
the security parameter. In this case VEST could be considered as resistant to
this attack since the complexity of our time memory tradeoff may remain greater
than the security parameter. It will nevertheless fall to the same related-key at-
tack. Anyway, it is usually considered as a bad practice to use cryptosystems
where part of the key material can easily be recovered.

The current specification of VEST stream cipher does not forbid the common
usage consisting of taking a key the length of the security parameter. In the case

Overtaking VEST 71

of use of a key the length of the security parameter, it even recommends the use
of long IVs, which makes our attack more efficient. In its latest version, VEST
does not meet its claimed security.

6 Existential Forgeries for VEST Hash MAC Mode

VEST can be used as a keyed hash function using the procedure described in
[9, Section 3.4]. The VEST cipher is first keyed. Then the data to be MAC-
ed is introduced into the cipher as an IV during the IV Setup, using a differ-
ent constant for the second phase. Finally 2n bits are output by the cipher in
counter mode. In order to finish the description of this keyed hash function, a
padding should be described to hash messages of arbitrary length. Independently
of this padding we can transpose the chosen IV attack into an existential forgery
attack.

Indeed, IVs in the previous attacks can be replaced by messages in the current
setting. Thus, asking an oracle for approximately 222.24 chosen message MACs
enables an attacker to retrieve 53 bits of the keyed state of a VEST-v default
member. The attacker can then create a pair of messages that collide and ask
for the MAC of one of the messages. This MAC is the MAC value for the other
message of the pair. This provides an easy existential forgery chosen message
attack.

7 Conclusion

In this paper, we showed that despite its apparent complexity, the VEST stream
cipher has simple properties which allows for the easy creation of internal col-
lision. The overall result gives an efficient partial key recovery attack against
VEST.

Our chosen IV attacks are practical. We were able to generate collisions for
both attacks. The simple attack requires about 30 minutes on an Intel Xeon 2.8
GHz, the short IV attack required a few hours on the same machine.

Once again this shows that IV Setup is a very crucial part of a stream cipher
security [11,7,5,12].

Following this cryptanalysis, the authors of VEST proposed a modified version
of their algorithm. The update function of the linear counter diffusor has been
changed so that there is no inner collision in the diffusor during the IV setup.
This makes the modified version immune to the differential attack presented
in this paper. However, its security remains to be analyzed in the light of the
weaknesses presented here.

Acknowledgements. We would like to thank Dan Bernstein for his paralleliza-
tion of the key recovery attack.

72 A. Joux and J.-R. Reinhard

References

1. Biryukov, A.: A new 128 bit key stream cipher : LEX. eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/013 (2005), http://www.ecrypt.eu.org/stream

2. Biryukov, A.: The Design of a Stream Cipher LEX. In: Biham, E., Youssef, A.
(eds.) Selected Areas in Cryptography – SAC 2006, LNCS, vol. 4356, Springer,
Heidelberg (to appear, 2007)

3. Boneh, D., Joux, A., Nguyen, P.: Why Textbook ElGamal and RSA Encryption are
Insecure. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 30–43.
Springer, Heidelberg (2000)

4. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

5. Cid, C., Gilbert, H., Johansson, T.: Cryptanalysis of Pomaranch. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/060 (2005) http://
www.ecrypt.eu.org/stream

6. ECRYPT. eSTREAM: ECRYPT Stream Cipher Project, IST-2002-507932,
http://www.ecrypt.eu.org/stream

7. Jaulmes, E., Muller, F.: Cryptanalysis of ECRYPT Candidates F-FCSR-8 and F-
FCSR-H. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/046 (2005),
http://www.ecrypt.eu.org/stream

8. O’Neil, S., Gittins, B., Landman, H.: VEST – Hardware-Dedicated Stream Ci-
phers. eSTREAM, ECRYPT Stream Cipher Project, Report 2005/032 (2005),
http://www.ecrypt.eu.org/stream

9. O’Neil, S., Gittins, B., Landman, H.: VEST Ciphers. eSTREAM, ECRYPT
Stream Cipher Project (2006), http://www.ecrypt.eu.org/stream/p2ciphers/
vest/vest_p2.pdf

10. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain
NP-complete problems. SIAM Journal on Computing 10(3), 456–464 (1981)

11. Wu, H., Preneel, B.: Chosen IV Attack on Stream Cipher WG. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/045 (2005), http://
www.ecrypt.eu.org/stream

12. Wu, H., Preneel, B.: Key Recovery Attack on Py and Pypy with Chosen IVs.
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/052 (2006), http://
www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/p2ciphers/vest/vest_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/vest/vest_p2.pdf
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Cryptanalysis of Achterbahn-128/80

María Naya-Plasencia�

INRIA, projet CODES, Domaine de Voluceau
78153 Le Chesnay Cedex, France
Maria.Naya_Plasencia@inria.fr

Abstract. This paper presents two key-recovery attacks against Achter-
bahn-128/80, the last version of one of the stream cipher proposals in the
eSTREAM project. The attack against the 80-bit variant, Achterbahn-
80, has complexity 261. The attack against Achterbahn-128 requires 280.58

operations and 260 keystream bits. These attacks are based on an im-
provement of the attack due to Hell and Johansson against Achterbahn
version 2. They mainly rely on an algorithm that makes profit of the
independence of the constituent registers.

Keywords: stream cipher, eSTREAM, Achterbahn, cryptanalysis, cor-
relation attack, linear approximation, parity check, key-recovery attack.

1 Introduction

Achterbahn [4,6] is a stream cipher proposal submitted to the eSTREAM project.
After the cryptanalysis of the first two versions [10,9], it has moved on to a new
one called Achterbahn-128/80 [5] published in June 2006. Achterbahn-128/80
corresponds to two keystream generators with key sizes of 128 bits and 80 bits,
respectively. Their maximal keystream length is limited to 263.

We present here two attacks against both generators. The attack against the 80-
bit variant, Achterbahn-80, has complexity 261. The attack against Achterbahn-
128 requires 280.58 operations and 261 keystream bits. These attacks are based
on an improvement of the attack against Achterbahn version 2 and also on an
algorithm that makes profit of the independence of the constituent registers.

The paper is organized as follows. Section 2 presents the main specifications of
Achterbahn-128/80. Section 3 then describes the general principle of the attack
proposed by Hell and Johansson [9] against the previous version of the cipher
Achterbahn version 2, since our attacks rely on a similar technique. We also
exhibit a new attack against Achterbahn version 2 with complexity 253, while
the best previously known attack had complexity 264. Section 4 then presents two
distinguishing attacks against Achterbahn-80 and Achterbahn-128 respectively.
� This work was supported in part by the European Commission through the IST

Programme under Contract IST-2002-507932 ECRYPT. The information in this
document reflects only the author’s views, is provided as is and no warranty is given
that the information is fit for any particular purpose. The user thereof uses the
information at its sole risk and liability.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 73–86, 2007.
c© International Association for Cryptologic Research 2007

74 M. Naya-Plasencia

Section 5 describes how this previous distinguishing attacks can be transformed
into key-recovery attacks.

2 Main Specifications of Achterbahn-128/80

2.1 Main Specifications of Achterbahn-128

Achterbahn-128 is a keystream generator, consisting of 13 binary nonlinear feed-
back shift registers (NLFSRs) denoted by R0, R1, . . . , R12. The length of register
i is Li = 21+ i for i = 0, 1, . . . , 12. These NLFSRs are primitive in the sense that
their periods Ti are equal to 2Li − 1. The sequence which is used as an input
to the Boolean combining function is not the output sequence of the NLFSR
directly, but a shifted version of itself. The shift amount depends on the register
number, but it is fixed for each register. In the following, xi = (xi(t))t≥0 for
0 ≤ i ≤ 12 denotes the shifted version of the output of the register i at time t.
The output of the keystream generator at time t, denoted by S(t), is the one of
the Boolean combining function F with the inputs corresponding to the output
sequences of the NLFSRs correctly shifted, i.e. S(t) = F (x0(t), . . . , x12(t)). The
algebraic normal form of the 13-variable combining function F is given in [5].

Its main cryptographic properties are: balancedness, algebraic degree 4, cor-
relation immunity order 8, nonlinearity 3584, algebraic immunity 4.

2.2 Main Specifications of Achterbahn-80

Achterbahn-80 consists of 11 registers, which are the same ones as in the above
case, except for the first and the last ones. The Boolean combining function, G,
is a sub-function of F :

G(x1, . . . , x11) = F (0, x1, . . . , x11, 0).

Its main cryptographic properties are: balancedness, algebraic degree 4, correla-
tion immunity order 6, nonlinearity 896, algebraic immunity 4. As we can see,
Achterbahn-128 contains Achterbahn-80 as a substructure.

2.3 The Key-Loading Algorithm

The key-loading algorithm uses the key K of 128/80 bits and an initial value
IV of 128/80 bits. The method for initializing the registers is the following one:
first of all, all registers are filled with the bits of K||IV . After that, register i is
clocked a−Li times where a is the number of bits of K||IV , and the remaining
bits of K||IV are added to the feedback bit. Then, each register outputs one bit.
Those bits are taken as input on the Boolean combining function, which outputs
a new bit. This bit is now added to the feedbacks for 32 additional clockings.
Then we overwrite the last cell of each register with a 1, in order to avoid the
all zero state.

This algorithm has been modified in relation to the previous versions. The
aim of this modification is to prevent the attacker from recovering the key K
from the knowledge of the initial states of some registers.

Cryptanalysis of Achterbahn-128/80 75

3 Attack Against Achterbahn Version 2 in 253

3.1 Principle of Hell and Johansson Attack

Achterbahn version 2 was the previous version of Achterbahn. The main and
most important differences to this last one, which are used by the attack are
that:

– it had 10 registers, with lengths between 19 and 32 bits,
– the Boolean function, f , had correlation immunity order 5.

This version has been broken by Hell and Johansson [9] using a quadratic
approximation. Their attack is a distinguishing attack that relies on a biased
parity-check relation between the keystream bits which holds with probability

p =
1
2
(1 + η) with |η| � 1,

where η is the bias of the relation. The attack then consists of an exhaustive
search on 2k initial states. For each of those states, the parity-check relation is
computed for N samples in order to detect the bias. As noticed in [8], the usual
estimate [9,10,11] of the number of samples which are required for distinguishing
the keystream,

N ∼ 1
η2

,

is a bit underestimated. Actually, this problem can be seen as a decoding prob-
lem where the received word corresponds to the sequence formed by the N
parity-check evaluations. And this received word can be seen as the result of the
transmission of a codeword through a binary symmetric channel with cross-over
probability p. Then, the number of samples N required for decoding is

N =
k

C(p)
,

where C(p) is the capacity of the channel, i.e.,

C(p) = 1 + p log2(p) + (1 − p) log2(1 − p).

Moreover, when p = 1
2 (1 + η) with |η| � 1, we have C(p) ∼ η2

2 ln(2) , leading to

N ∼ 2k ln 2
η2

,

where 2k is the number of possible initial states of the guessing registers, as we
will see.

The attack proposed by Hell and Johansson exploits a quadratic approxima-
tion q of the combining function f :

Q(y1, . . . , yn) =
s∑

j=1

yij +
m∑

i=1

(yjiyki)

76 M. Naya-Plasencia

with m quadratic terms and which satisfies

Pr[F (y1, . . . , yn) = Q(y1, . . . , yn)] =
1
2
(1 + ε).

We build the parity-check equations, as the ones introduced by [10], that make
disappear the quadratic terms by summing up:

q(t) =
s∑

j=1

xij (t) +
m∑

i=1

xji (t)xki (t)

at 2m different epochs (t+τ), where τ varies in the set of the linear combinations
with 0−1 coefficients of Tj1Tk1 , Tj2Tk2 , . . . , TjmTkm , where Ti denotes the period
of Ri. In the following, this set is denoted by 〈Tj1Tk1 , . . . , TjmTkm〉, i.e.,

I = 〈Tj1Tk1 , . . . , TjmTkm〉 =

{
m∑

i=1

ciTjiTki , c1, . . . , cm ∈ {0, 1}
}

.

This leads to a parity-check sequence pc defined by:

pc(t) =
∑

τ∈I
q(t + τ) =

∑

τ∈I
(xi1 (t + τ) + . . . + xis(t + τ)) .

We then decimate the sequence (pc(t))t≥0 by the periods of r sequences among
(xi1 (t))t≥0, . . . , (xis (t))t≥0. We can suppose here without loss of generality that
the periods of the first r sequences have been chosen. Now a new parity-check,
pcr, can be defined by:

pcr(t) = pc(tTi1 . . . Tir).
This way, the influence of those r registers on the parity-check pcr(t) corresponds
to the addition of a constant for all t ≥ 0, so it will be 0 or 1 for all the parity-
checks.

Now, the attack consists in performing an exhaustive search for the initial
states of the (s − r) remaining registers, i.e. those of indices ir+1, . . . , is. For
each possible values for these initial states, we compute the sequence:

σ(t) =
∑

τ∈〈Tj1Tk1 ,...,TjmTkm 〉

⎡

⎣S(tTi1 . . . Tir + τ) +
s∑

j=r+1

xij (tTi1 . . . Tir + τ)

⎤

⎦(1)

We have
Pr[σ(t) = 0] ≥ 1

2
(1 + ε2m

).

It has been recently observed by Hell and Johansson that the total bias may be
much higher than this bound. However, it can be shown that equality holds in
some particular cases, as noted in [7]. An interesting case of equality is when f
is v-resilient, and we build parity-checks from the terms appearing in a linear
approximation of (v + 1) variables (see Appendix). This also provides the bias
of the parity-checks obtained in [9,8] from some quadratic approximations, since
they can also be derived from such linear approximations.

This result is going to be used all along our attacks, as we will work with
linear approximations of (v + 1) variables.

Cryptanalysis of Achterbahn-128/80 77

3.2 Complexity

Using the previously computed bias, we can distinguish the keystream (S(t))t≥0

from a random sequence and also recover the initial states of (s− r) constituent
registers.

– We will have 2m terms in each parity-check. That means that we need to com-
pute ε−2m+1×2×

∑s
j=r+1(Lij −1)× ln(2) = 2nb2

m+1 ×2×
∑s

j=r+1(Lij −1)×
ln(2)valuesofσ(t) formounting thedistinguishingattack,wherenb = log2 ε−1.
Besides, σ(t) is defined by (1), implying that the attack requires

2nb2
m+1+

�r
j=1 Lij × 2×

s∑

j=r+1

(Lij − 1)× ln(2) +
m∑

i=1

2Lji
+Lki keystream bits,

where Lij are the lengths of the registers associated to the periods by which
we have decimated, and the last term corresponds to the maximal distance
between the bits involved in each parity-check.

– Time complexity will be

2m2nb2
m+1+

�s
j=r+1(Lij

−1) × 2 ×
s∑

j=r+1

(Lij − 1)× ln(2)

where ir+1, . . . , is are the indices of the registers over whom we have made
an exhaustive search and whose initial state we are going to find.

3.3 Example with Achterbahn Version 2

Hell and Johansson [9] have used this attack against Achterbahn version 2 with
the following quadratic approximation:

Q(x1, . . . , x10) = x1 + x2 + x3x8 + x4x6.

Then, they decimate by the period of the second register, whose length is 22.
After that, they make an exhaustive search over the first register, of length 19.
Time complexity will be 267 and data complexity 264 (the complexity given in [9],
equal to 259.02, is obtained by using the estimation N = ε−2 instead of the one
given in Section 3.1). Using the small lengths of the registers, time complexity
can be reduced below data complexity, so the overall complexity of the attack
will be 264.

3.4 Improvement of the Attack Against Achterbahn Version 2

We are going to improve the previously described attack against Achterbahn
version 2 and we reduce the complexity to 253.

For this attack, we use the idea of associating the variables in order to reduce
the number of terms that we will have in the parity-checks. The only negative
effect that this could have on the final complexity of the attack is to enlarge the
number of required keystream bits; but being careful, we make it stay the same
while reducing the time complexity.

78 M. Naya-Plasencia

The chosen approximation. At first, we searched for all the quadratics approxi-
mations of f with one and two quadratic terms, as the original attack presented
by Hell and Johansson was based on a quadratic approximation. Finally, after
looking for a trade-off between the number of terms, the number of variables,
the bias, etc., we found that none quadratic approximation was better for this
attack than linear ones. It is worth noticing that, since the combining function
f is 5-resilient, any approximation of f involves at least 6 input variables. More-
over, the highest bias corresponding to an approximation of f by a 6-variable
function is achieved by a function of degree one as proved in [3]. After analyzing
all linear approximations of the Boolean combining function, we found that the
best one was:

g(x1, . . . , x10) = x8 + x6 + x4 + x3 + x2 + x1.

We have f(x1, . . . , x10) = g(x1, . . . , x10) with a probability of 1
2 (1 + 2−3).

Parity-checks. Let us build a parity-check as follows:

ggg(t) = g(t) + g(t + T1T8) + g(t + T2T6) + g(t + T1T8 + T2T6),

with
g(t) = x8(t) + x6(t) + x4(t) + x3(t) + x2(t) + x1(t).

The terms x8, x6, x2, x1 will disappear and, so, ggg(t) is a sequence that depends
uniquely on the sequences x3 and x4. Adding four times the approximation has
the effect of multiplying the bias four times, so the bias of

σ(t) = S(t) + S(t + T1T8) + S(t + T2T6) + S(t + T1T8 + T2T6)

is 2−3×4 = 2−12 because 4 is the number of terms in ggg(t). That means that
we will need 23×4×2 × 2 × (L4 − 1) × ln(2) = 229 values of the parity-check for
detecting this bias. If we decimate ggg(t) by the period of register 3, we will
need

229T3 + T1T8 + T2T6 = 229+23 + 229+19 + 227+22 = 252 bits of keystream,

and time complexity will be 229 × 2L4−1 = 253 as we only guess the initial state
of register 4. This complexity is 253 while the complexity of the previous attack
was equal to 264.

4 Distinguishing Attacks Against Achterbahn-128/80

4.1 Distinguishing Attack Against Achterbahn-80

This attack is very similar to the improvement of the attack against Achterbahn
version 2 which has been described in the previous section.

Our attack exploits the following linear approximation of the combining func-
tion G:

�(x1, . . . , x11) = x1 + x3 + x4 + x5 + x6 + x7 + x10.

Cryptanalysis of Achterbahn-128/80 79

Since G is 6-resilient, � is the best approximation by a 7-variable function.
For �(t) = x1(t)+ x3(t)+ x4(t)+ x5(t)+ x6(t)+ x7(t)+ x10(t), the keystream

(S(t))t≥0 satisfies Pr[S(t) = �(t)] = 1
2 (1 − 2−3).

Parity-checks. Let us build a parity-check as follows:

��(t) = �(t) + �(t + T4T7) + �(t + T6T5) + �(t + T4T7 + T6T5).

The terms containing the sequences x4, x5, x6, x7 vanish in ��(t), so ��(t) depends
exclusively on the sequences x1, x3 and x10.

Adding four times the approximation has the effect of multiplying the bias
four times, so the bias of

σ(t) = S(t) + S(t + T7T4) + S(t + T6T5) + S(t + T7T4 + T6T5)

where (S(t))t≥0 is the keystream, is 2−4×3.
We now decimate σ(t) by the period of the R10, which is involved in the

parity-check, so we create like this a new parity-check σ′(t) = σ(t(231 − 1)).
Then, the attack performs an exhaustive search for the initial states of reg-

isters 1 and 3. Then we need 23×4×2 × 2 × (46 − 2) × ln(2) = 230 parity-checks
σ′(t) to detect this bias. Its time complexity is 230 × 2L1+L3−2 = 274.

The number of keystream bits that we need is 230 ×T10 + T4T7 + T6T5 = 261.

4.2 Distinguishing Attack Against Achterbahn-128

Now, we present a distinguishing attack against the 128-bit version of Achter-
bahn which also recovers the initial states of two registers.

We consider the following approximation of the combining function F :

�(x0, . . . , x12) = x0 + x3 + x7 + x4 + x10 + x8 + x9 + x1 + x2.

Then, for �(t) = x0(t)+x3(t)+x7(t)+x4(t)+x10(t)+x8(t)+x9(t)+x1(t)+x2(t),
we have Pr[S(t) = �(t)] = 1

2 (1 + 2−3).

Parity-checks. The period of any sequence obtained by combining the registers
0, 3 and 7 is equal to lcm(T0, T3, T7), i.e. 259.3 as T0 T3 and T7 have common
divisors. We are going to denote this value by T0,3,7.

If we build a parity check as follows:

���(t) =
∑

τ∈〈T0,3,7,T4,10,T8,9〉
�(t + τ),

the terms containing the sequences x0, x3, x7, x4, x10, x8, x9 will disappear from
���(t), so ���(t) depends exclusively on the sequences x1 and x2:

���(t) =
∑

τ∈〈T0,3,7,T4,10,T8,9〉
�(t + τ)

=
∑

τ∈〈T0,3,7,T4,10,T8,9〉
x1(t + τ) + x2(t + τ)

= σ1(t) + σ2(t),

80 M. Naya-Plasencia

where σ1(t) and σ2(t) are the parity-checks computed over the sequences gener-
ated by NLFSRs 1 and 2.

Adding eight times the approximation has the effect of multiplying the bias
eight times, so the bias of σ(t) =

∑
τ∈〈T0,3,7,T4,10,T8,9〉 S(t + τ) where (S(t))t≥0 is

the keystream, is 2−8×3. So:

Pr[σ(t) + σ1(t) + σ2(t) = 1] =
1
2
(1 − ε8).

This means that we need 23×8×2×2×(45−2)×ln(2) = 254 values of σ(t)+σ1(t)+
σ2(t) to detect this bias, when we perform an exhaustive search on registers 1
and 2.

We now describe an algorithm for computing the sum σ(t)+σ1(t)+σ2(t) over
all values of t. This algorithm has a lower complexity than the trivial algorithm
which consists on computing the 254 parity-checks for all the initial states of the
registers 1 and 2. Here we use (254−28) values of t since (254−28) = T2×(231+28).
We can write it down as follows:

254−28−1∑

t′=0

σ(t′) ⊕ ���(t′) =
T2−1∑

k=0

231+28−1∑

t=0

σ(T2t + k)⊕ ���(T2t + k)

=
T2−1∑

k=0

231+28−1∑

t=0

σ(T2t+k)⊕ σ1(T2t + k)⊕ σ2(T2t + k)

=
T2−1∑

k=0

⎡

⎣(σ2(k)⊕1)

⎛

⎝
231+28−1∑

t=0

σ(T2t+k)⊕σ1(T2t+k)

⎞

⎠+

σ2(k)

⎛

⎝(231+28)−
231+28−1∑

t=0

σ(T2t+k)⊕σ1(T2t+k)

⎞

⎠

⎤

⎦ ,

since σ2(T2t + k) is constant for a fixed value of k.
At this point, we can obtain σ(t) from the keystream and we can make an

exhaustive search for the initial state of register 1. More precisely:

– We choose an initial state for register 2, e.g. the all one initial state. We
compute and save a binary vector V2 of length T2:

V2[k] = σ2(k),

where the sequence x2 is generated from the chosen initial state. The com-
plexity of this step is T2 × 23 operations.

– For each possible initial state of register 1:
• we compute and save a vector V1 composed of T2 integers of 32 bits.

V1[k] =
231+28−1∑

t=0

σ(T2t + k) ⊕ σ1(T2t + k).

Cryptanalysis of Achterbahn-128/80 81

The complexity of this step is 254 × (24 + 25) = 259.58 for each possible
initial state of register 1, where 24 corresponds to the number of opera-
tions required for computing each (σ(t) + σ1(t)) and (231 + 28) × 25 =
(231 + 28)× 32 is the cost of summing up 231 + 28 integers of 32 bits.

• For each possible i from 0 to T2 − 1:
∗ we define V ′

2 of length T2:

V ′
2 [k] = V2[k + i mod T2].

Actually, (V ′
2 [k])k<T2

corresponds to (σ2(k))k<T2
when the initial

state of register 2 corresponds to the internal state after clocking
register 2 i times from the all-one initial state.

∗ With the two vectors that we have obtained, we compute:

T2−1∑

k=0

[
(V ′

2 [k] ⊕ 1)V1[k] + V ′
2 [k]
(
231 + 28 − V1[k]

)]
. (2)

When we do this with the correct initial states of registers 1 and 2, we will
find the expected bias. The major difference with the classical exhaustive search
used in [9,8,10] is that the sequence V1[k] is computed independently of the
choice of the initial state of R2. As a comparison, the classical algorithm has
time complexity 2102.

Table 1. Algorithm for finding the initial states of registers 1 and 2

for each possible initial state of R1 do
for k = 0 to T2 − 1 do

V1[k] =
�231+28−1

t=0 σ(T2t + k) ⊕ σ1(T2t + k)
end for
for each possible initial i state of R2 do

for k = 0 to T2 − 1 do
V ′

2 [k] = V2[k + i mod T2]
end for�T2−1

k=0

�
(V ′

2 [k] ⊕ 1) V1[k] + V ′
2 [k]

�
231 + 28 − V1[k]

��

if we find the bias then
return the initial states of R1 and R2

end if
end for

end for

The total time complexity of the attack is going to be:

2L1−1 ×
[
254 ×
(
24 + 25

)
+ T2 × 2 × T2 × 25

]
+ T2 × 23 = 280.58,

where 2 × T2 × 25 is the time it takes to compute the sum described by (2).
Actually, we can speed up the process by rewriting the sum (2) in the following

82 M. Naya-Plasencia

way
T2−1∑

k=0

(−1)V2[k+i]

(
V1[k]− 231 + 28

2

)
+ T2

231 + 28

2
.

The issue is now to find the i that maximizes this sum, this is the same as
computing the maximum of the crosscorrelation of two sequences of length T2.
We can do that efficiently using a fast Fourier transform as explained in [1,
pages 306-312]. The final complexity will be in O(T2 log T2). Anyway, this does
not change our total complexity as the higher term is the first one.

The complexity is going to be, finally:

2L1−1 ×
[
254 ×
(
24 + 25

)
+ O(T2 log T2)

]
+ T2 × 23 = 280.58.

The length of keystream needed is T0,3,7 + T4,10 + T8,9 + 254 < 261 bits.
We can apply the algorithm to the attack against Achterbahn-80 described in

Section 4.1 and its time complexity will be reduced to:

2L1−1 ×
[
230 ×
(
23 + 22.59

)
+ O(T3 log T3)

]
+ T3 × 22 = 254.8.

4.3 Attack with a New Keystream Limitation

Recently, the authors of Achterbahn have proposed a new limitation of the
keystream length [7], which is 252 for Achterbahn-80 and 256 for Achterbahn-
128. Those limitations are not restrictive enough to prevent the cipher from
being cryptanalysed. In fact, we can mount an attack against the 128-bit version
which is very similar to the last one with the same linear approximation, where
the sequences considered for building the parity-checks are generated by only
two terms (so R1 and R10, R2 and R9, R3 and R8). Then we perform an exhaus-
tive search over registers 0, 4 and 7 with the previously described the algorithm,
where we consider register 0 and register 4 together. The complexity is, finally:

2L0−1 × 2L4−1 ×
[
254.63 ×

(
24 + 24.7

)
+ O(T7 log T7)

]
+ T7 × 23 = 2104.

The length of keystream needed is

254.63 + T1,10 + T2,9 + T3,8 = 254.63 + 253 + 253 + 253 < 256 bits.

For Achterbahn-80 there is also a succesfull attack which is only slightly different
from the one we have previously described [12].

5 Recovering the Key

As explained by Hell and Johansson in [8], if we recover the initial states of all the
registers, we will be able to retrieve the key as all the initialization steps which
do not involve the key become invertible. It is easy to show that once we have
found the initial states of two registers, the complexity of finding the remaining

Cryptanalysis of Achterbahn-128/80 83

ones will be lower (for the other registers appearing in the used approximation it
is quite obvious: we apply the same method but simplified, as now we know two
variables. For the other registers we can use the same method but with other
linear approximations making profit of the already-known variables). Once we
have found the initial states of all the registers, we can invert all the initializing
steps until the end of the second step, which corresponds to the introduction of
the key bits. At this point, there are two methods proposed in [8]. The first one
is clocking backwards register i (|k| −Li) times for each i. We do this for all the
possibles values of the last |k|−Lm key bits, where Lm is 21 for Achterbahn-128
and 22 for Achterbahn-80. When all the registers have the same first Lm bits,
we have found the correct |k|−Lm bits of the key. The second method proposed
is a meet-in-the-middle attack with time-memory tradeoff as explained in [10].
It leads to a complexity of:

– For Achterbahn-80: 258 in time or 240 in memory and 240 in time.
– For Achterbahn-128: 2107 in time or 240 in memory and 288 in time.

We can do better. We are going to explain the technique for Achterbahn-128.
The idea is that we do not need to invert all the clocking steps in the meet-in-the-
middle attack, if we split the key into 2 parts composed of the first 40 bits and
the last 88 bits, we could make an exhaustive search for the first part and store
in a table the states of the registers obtained after applying the initialization
process for each set of 40 bits. Then, if we make an exhaustive search through
the 88 remaining key bits, and we clock backwards the registers from the known
states, we will find a match in the table. But we do not need to make this search
over all the 88 remaining bits. Instead, we make it through the last 73 bits (that
means that 15 rounds are not inverted). At the end of doing this, we need that,
for all i, the first Li−15 bits of the state of register i match with the last Li−15
bits of the states of the registers saved in the table. For instance, for the register
0 we will have a match on 6 bits, and for register 12 we will have 18. We do not
have to worry about matches coming from wrong values of the 73 bits since the
number of such false alarms is:

288−15 × 240

2329−13×15
= 2−21,

as (329− 13× 15) is the number of bits we consider for a match, 240 is the size
of the table, and 273 is the number of possibilities for the exhaustive search. As
we can see, with such a match we have found 113 bits of the key. The other 15
can be found with very low complexity by clocking the registers until finding
the desired state. So the final complexity for the step of retrieving the key in
Achterbahn-128 once we have the initial states of all the registers is 273 in time
and 240 × (329 − 13 × 15) � 248 in memory. If we do the same thing with
Achterbahn-80, we could have a complexity of 240 in time and 241 in memory.

6 Conclusion

We have proposed an attack against Achterbahn-80 in 255 operations, so we
can consider as the total complexity the data complexity which is equal to 261,

84 M. Naya-Plasencia

since it is bigger. An attack against Achterbahn-128 is also proposed in 280.58

where fewer than 261 bits of keystream are required. After that we can recover
the key of Achterbahn-80 with a complexity of 240 in time and 241 in memory
(the time complexity is less than for the distinguishing part of the attack).
For Achterbahn-128 we can recover the key with a complexity of 273 in time
and 248 in memory. The complexities of the best attacks against all versions of
Achterbahn are summarized in the following table:

Table 2. Attacks complexities against all versions of Achterbahn (Each complexity
corresponds to the best key-recovery attack)

version data complexity time complexity references

v1 (80-bit) 232 255 [10]
v2 (80-bit) 264 267 [9]

v2 (80-bit) 252 253

v80 (80-bit) 261 255

v128 (128-bit) 260 280.58

Acknowledgments

The author would like to thank Anne Canteaut for her helpful advice, discus-
sions, suggestions and support. Also, many thanks to Yann Laigle-Chapuy, An-
drea Röck and Frederic Didier for their useful comments.

References

1. Blahut, R.E.: Fast Algorithms for Digital Signal Processing. Addison-Wesley, Read-
ing (1985)

2. Canteaut, A., Charpin, P.: Decomposing bent functions. IEEE Transactions on
Information Theory 49(8), 2004–2019 (2003)

3. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

4. Gammel, B.M., Gottfert, R., Kniffler, O.: The Achterbahn stream cipher. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/002 (2005), http://
www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf

5. Gammel, B.M., Gottfert, R., Kniffler, O.: Achterbahn-128/80. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/001 (2006),
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf

6. Gammel, B.M., Gottfert, R., Kniffler, O.: Status of Achterbahn and tweaks.
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/027 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf

7. Gammel, B.M., Gottfert, R., Kniffler, O.: Achterbahn-128/80: Design and analysis.
In: ECRYPT Network of Excellence - SASC Workshop Record, pp. 152–165 (2007)

http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/027.pdf

Cryptanalysis of Achterbahn-128/80 85

8. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-128/80. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/054 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/054.pdf

9. Hell, M., Johansson, T.: Cryptanalysis of Achterbahn-version 2. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/042 (2006),
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf

10. Johansson, T., Meier, W., Muller, F.: Cryptanalysis of Achterbahn. In: Robshaw,
M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 1–14. Springer, Heidelberg (2006)

11. Naya-Plasencia, M.: Cryptanalysis of Achterbahn-128/80. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2006/055 (2006),
http://www.ecrypt.eu.org/stream/papersdir/2006/055.pdf

12. Naya-Plasencia, M.: Cryptanalysis of Achterbahn-128/80 with a new keystream
limitation. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/004 (2007),
http://www.ecrypt.eu.org/stream/papersdir/2007/004.pdf

A On the Biases of Parity-Checks Derived from Linear
Approximations

Proposition 1. Given a v-resilient Boolean function f , the bias of a parity-
check built from a (v + 1)-variable linear approximation of f with bias ε is ε
raised to the power of the number of terms in the parity check.

Proof. Let f be a v-resilient Boolean function of n variables and � = xj0 +
. . . + xjv = α · x be a linear approximation of f with bias ε. We can now build
g(x1, . . . , xn) = f(x1, . . . , xn) + �(xj0 , . . . , xjv). We have

Pr[g(x1, . . . , xn) = 0] =
1
2
(1 + ε).

Let W denote the subspace of Fn
2 spanned by the basis vectors ej0 , . . . , ejv , and

let V be in direct sum with W . Then, for any n-variable function f , and any
a ∈ Fv+1

2 , f|a+V denotes the restriction of f to (a + V). In other words, f|a+V

is the function of (n − v − 1) variables derived from f when xj0 , . . . , xjv are
fixed and equal to a0, . . . , av. If we build the parity-checks with g considering
the sequences defined by the terms of the linear approximation we will have:

Pr

⎡

⎣
∑

τ∈〈Tj0 ,...,Tjv 〉
g(x1(t + τ), . . . , xn(t + τ)) = 0

⎤

⎦

=
1

2v+1

∑

a∈Fv+1
2

Pr

⎡

⎣
∑

τ∈〈Tj0 ,...,Tjv 〉
g|a+V (x1(t + τ), . . . , xn(t + τ)) = 0

⎤

⎦ .

It is quite obvious that the variables appearing in the terms of the sum over τ
are independent, as the variables that could be repeated are the (v + 1) fixed
ones. So, as all the variables appearing are independent, each sum has the effect

http://www.ecrypt.eu.org/stream/papersdir/2006/054.pdf
http://www.ecrypt.eu.org/stream/ciphers/achterbahn/achterbahn.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/055.pdf
http://www.ecrypt.eu.org/stream/papersdir/2007/004.pdf

86 M. Naya-Plasencia

of multiplying the corresponding bias by itself 2v+1 times. Now we want to show
that this bias is also equal to ε. This equivalently means that

1
2n−v−1

∑

x∈a+V

(−1)g|a+V (x) =
1
2n

∑

x∈Fn
2

(−1)g(x).

Let f̂(a) denote the Walsh coefficient of f at point a ∈ Fn
2 , i.e:

f̂(a) =
∑

x∈Fn
2

(−1)f(x)+ax.

Then, from [2, pages 2005-2006] we have

2v+1
∑

x∈a+V

(−1)g|a+V (x) =
∑

u∈W

ĝ(u)

=
∑

u∈W

f̂(α + u)

= f̂(α) = ĝ(0)

since f is v-resilient. So:

Pr

⎡

⎣
∑

τ∈〈Tj0 ,...,Tjv 〉
g(x1(t + τ), . . . , xn(t + τ)) = 0

⎤

⎦ =
1

2vr+1
×2vr+1×0.5(1+ε2v

).

And then, the bias of the parity check will be ε2v

. It is obvious that if, instead of
building the parity-checks by considering each term in the linear approximation
separately, we do it by associating several terms, the result will not change. The
final bias of the parity-check will also be the bias of the linear approximation
raised to the power of the number of terms in the parity-check. �

Differential-Linear Attacks

Against the Stream Cipher Phelix�

Hongjun Wu and Bart Preneel

Katholieke Universiteit Leuven, ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

{wu.hongjun,bart.preneel}@esat.kuleuven.be

Abstract. The previous key recovery attacks against Helix obtain the
key with about 288 operations using chosen nonces (reusing nonce) and
about 1000 adaptively chosen plaintext words (or 235.6 chosen plaintext
words). The stream cipher Phelix is the strengthened version of Helix.
In this paper we apply the differential-linear cryptanalysis to recover the
key of Phelix. With 234 chosen nonces and 237 chosen plaintext words,
the key of Phelix can be recovered with about 241.5 operations.

1 Introduction

Phelix [5] is a fast stream cipher with an embedded authentication mechanism.
It is one of the focus ciphers (both software and hardware) of the ECRYPT eS-
TREAM project. Phelix is a strengthened version of the stream cipher Helix [1].

Muller has applied differential attack to Helix [2]. He showed that the key of
Helix can be recovered faster than by brute force if the attacker can force the
initialization vectors to be used more than once. The attack requires about 212

adaptively chosen plaintext words and 288 operations. Paul and Preneel reduced
the number of adaptively chosen plaintext words by a factor of at least 3 [4].
Later Paul and Preneel showed that 235.6 chosen plaintext words can be used
instead of adaptively chosen plaintexts [3]. All these key recovery attacks against
Helix require about 288 operations.

Phelix was designed and submitted to the ECRYPT eSTREAM project in
2005. The output function of Helix has been changed so that a larger plaintext
diffusion can be achieved in Phelix. The Phelix designers claimed that Phelix is
able to resist a differential key recovery attack even if the nonce is reused: “We
claim, however, that even in such a case (referring to nonce reuse) it remains
infeasible to recover the key” [5].

In this paper, we apply differential-linear cryptanalysis to Phelix assuming
nonce reuse (this corresponds to a chosen nonce attack). We show that the key
of Phelix can be recovered with a low complexity: 237 chosen plaintext words
and 241.5 operations. Although the Phelix designers did expect that Phelix would

� This work was supported in part by the Concerted Research Action (GOA) Ambior-
ics 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 87–100, 2007.
c© International Association for Cryptologic Research 2007

88 H. Wu and B. Preneel

loose most of its security properties when the nonce is reused, this paper shows
that Phelix is completely insecure in such a setting.

This paper is organized as follows. In Sect. 2, we illustrate the operations
of Phelix. Section 3 analyzes how the addend bits affect the differential distri-
bution. Section 4 describes a basic differential key recovery attack on Phelix.
The improved attack is given in Sect. 5. We discuss how to strengthen Phelix in
Sect. 6. Section 7 concludes this paper.

2 The Stream Cipher Phelix

In this section, we only consider the encryption algorithm of Phelix. The full
description of Phelix is given in [5]. The key size and nonce size of Phelix are
256 bits and 128 bits, respectively. The designers claim that there is no attack
against Phelix with less than 2128 operations.

Phelix updates fives 32-bit words: Z0, Z1, Z2, Z3 and Z4. At the ith step,
two secret 32-bit words Xi,0, Xi,1 and one 32-bit plaintext word Pi are applied
to update the internal states. One 32-bit keystream word Si is generated and
is used to encrypt the plaintext Pi. Note that the plaintext is used to update
the internal state so that the authentication can be performed. The word Xi,0

is related to the key, and the word Xi,1 is related to the key and nonce in a very
simple way. Recovering any Xi,0 and Xi,1 implies recovering part of the key. One
step of Phelix is given in Fig. 1.

3 The Differential Propagation of Addition

In this section, we study how the addend bits affect the differential propagation.
The importance of this study is that it shows that the values of the addend bits
can be determined by observing the differential distribution of the sum.

Theorem 1. Denote φi as the ith least significant bit of φ. Suppose two positive
m-bit integers φ and φ′ differ only at the nth least significant bit position (φ ⊕
φ′ = 2n). Let β be an m-bit random integer (m is much larger than n). Let
ψ = φ+β and ψ′ = φ′ +β. For βn = 0, denote the probability that ψn+i = ψ′

n+i

as pn+i,0. For βn = 1, denote the probability that ψn+i = ψ′
n+i as pn+i,1. Then

the difference Δpn+i = pn+i,0 − pn+i,1 = 2−n−i+1 (i > 0).

Theorem 1 can be proved easily if we consider the bias in the carry bits. We omit
the proof here. In Theorem 1, the bias of the differential distribution decreases
quickly as the value of n increases. We need another differential property that
produces difference with a large bias even for large n. Before introducing that
property, we give the following lemma from [6].

Lemma 1. Denote u and v as two random and independent n-bit integers. Let
cn = (u + v) >> n, where cn denotes the carry bit at the nth least significant bit
position. Denote the most significant bit ofu asun−1. Then Pr(cn⊕un−1 = 0) = 3

4 .

The large bias of the differential distribution for large n is given below.

Differential-Linear Attacks Against the Stream Cipher Phelix 89

Fig. 1. One block of Phelix [5]

Theorem 2. Denote φi as the ith least significant bit of φ. Suppose two pos-
itive m-bit integers φ and φ′ differ only at the nth least significant bit position
(φ ⊕ φ′ = 2n). Let β be an m-bit random integer (m is much larger than n).
Let ψ = φ + β and ψ′ = φ′ + β. For βn ⊕ βn−1 = 0, denote the probability
that ψn+i = ψ′

n+i as p̄n+i,0. For βn ⊕ βn−1 = 1, denote the probability that
ψn+i = ψ′

n+i as p̄n+i,1. Then the difference Δp̄n+i = p̄n+i,0−p̄n+i,1 = 2−i (i > 0).

90 H. Wu and B. Preneel

Proof. Denote the carry bit at the ith least significant bit position in ψ = φ+β
as ci, and that in ψ′ = φ′ + β as c′i. Note that c′n = cn, thus c′n ⊕ βn = cn ⊕ βn.
When c′n ⊕ βn = cn ⊕ βn = 0, we know that ψ⊕ψ′ = 2n with probability 1, i.e.,
ψn+i = ψ′

n+i with probability 1 for i > 0. When c′n⊕βn = cn⊕βn = 1, by induc-
tion we obtain that ψn+i = ψ′

n+i with probability 1−2−i+1 for i > 0. According
to Lemma 1, we know that cn ⊕ βn−1 = 0 with probability 3

4 . If βn ⊕ βn−1 = 0,
then cn ⊕ βn = 0 with probability 3

4 , thus p̄n+i,0 = 3
4 × 1 + 1

4 × (1 − 2−i+1) =
1 − 1

4 × 2−i+1 . If βn ⊕ βn−1 = 1, then cn ⊕ βn = 0 with probability 1
4 ,

thus p̄n+i,1 = 1
4 × 1 + 3

4 × (1 − 2−i+1) = 1 − 3
4 × 2−i+1. Then the difference

Δp̄n+i = p̄n+i,0 − p̄n+i,1 = 2−i for i > 0.

The above two theorems provide the guidelines to recover the key of Phelix.
However, these two theorems deal with the ideal cases in which there is only one
bit difference between φ and φ′, and β is assumed to be random. In the attacks,
we deal with the complicated situation where each bit of φ ⊕ φ′ is biased, and
β is a fixed integer. The value of each bit of β will affect the distribution of the
higher order bits of (φ +β)⊕ (φ′ +β) in a complicated way. In order to simplify
the analysis, we will use simulations to obtain these relations in the attacks.

4 A Basic Key Recovery Attack on Phelix

We will first investigate the differential propagation in Phelix. Then we show
how to recover the key of Phelix by observing the differential distribution of the
keystream.

4.1 The Bias in the Differential Distribution of the Keystream

Assume an attacker can choose an arbitrary value for the nonce, then a nonce
can be used more than once. We introduce one-bit difference into the plaintext
at the ith step, i.e., Pi �= P ′

i , and Pi⊕P ′
i = 2n (0 ≤ n ≤ 31). Then we analyze the

difference between B
(i+1)
3 and B

′(i+1)
3 (as indicated in Fig. 1). If all the carry bits

are 0 (replacing all the additions with XORs), then the differences only appear
at the 9th, 11th, 13th, 15th and 17th least significant bits between B

(i+1)
3 and

B
′(i+1)
3 . Because of the carry bits, the differential distribution becomes compli-

cated. We run the simulation and use the randomly generated Y
(i)
k (4 ≥ k ≥ 0),

Pi, Xi,1 in the simulation. With 230 plaintext pairs, we obtain the distribution
of B

(i+1)
3 ⊕B

′(i+1)
3 in Table 1.

From Table 1, we see that the distribution of B
(i+1)
3 ⊕B

′(i+1)
3 is heavily biased.

For example, B
(i+1),8
3 = B

′(i+1),8
3 with probability close to 1, while B

(i+1),9
3 =

B
′(i+1),9
3 with probability close to 0. Note that T

(i+1)
0 = A

(i+1)
0 ⊕ (B(i+1)

3 +
Xi+1,0), according to Theorem 2, the distribution of T

(i+1)
0 ⊕ T

′(i+1)
0 will be

affected by the value of X8
i+1,0 ⊕ X9

i+1,0, thus the distribution of Bi+1 ⊕ B′
i+1

will be affected by the value of X8
i,0 ⊕ X9

i,0. By observing the distribution of
Si+1 ⊕ S′

i+1, it may be possible to determine the value of X8
i,0 ⊕ X9

i,0. Shifting

Differential-Linear Attacks Against the Stream Cipher Phelix 91

Table 1. The probability that B
(i+1),j
3 ⊕ B

′(i+1),j
3 = 0 for Pi ⊕ P ′

i = 1

j p j p j p j p

0 0.9997 8 1.0000 16 0.5001 24 0.9161
1 0.9998 9 0.0000 17 0.4348 25 0.9470
2 0.9999 10 0.5000 18 0.5000 26 0.9673
3 0.9999 11 0.4375 19 0.5486 27 0.9803
4 1.0000 12 0.5000 20 0.6366 28 0.9883
5 1.0000 13 0.4492 21 0.7283 29 0.9931
6 1.0000 14 0.5000 22 0.8083 30 0.9960
7 1.0000 15 0.4273 23 0.8708 31 0.9977

the one-bit difference between Pi and P ′
i , we may determine other values of

Xj+1
i,0 ⊕Xj

i,0 for 0 ≤ j ≤ 30, and recover in this way the key Xi,0. After recovering
eight consecutive Xi,0 values, the 256-bit key can be found immediately.

The above analysis gives a brief idea of the attack. However, the actual attacks
are quite complicated due to the interference of many differences. It is very
tedious to derive exactly how the distribution of Si+1 ⊕ S′

i+1 is affected by the
value of Xj+1

i+1,0 ⊕Xj
i+1,0. On the other hand, it is easy to search for the relation

with simulations. In the following, we carried out a simulation to find the relation
between the value of Xj+1

i+1,0 ⊕Xj
i+1,0 and the distribution of Si+1 ⊕ S′

i+1.
Let two plaintexts differ only in the ith word, and Pi ⊕ P ′

i = 1. We use the
randomly generated Y

(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

Denote with pn
j,0 the probability that Sn

i+1 ⊕ S′n
i+1 = 0 when Xj+1

i,0 ⊕ Xj
i,0 = 0.

And denote pn
j,1 as the probability that Sn

i+1 ⊕ S′n
i+1 = 0 when Xj+1

i,0 ⊕Xj
i,0 = 1.

Let Δp̃n
j = (pn

j,0−pn
j,1)× N

σ , where N denotes the number of plaintext pairs, and

σ =
√

N
2 . Assume that the values of pn

j,0 and pn
j,1 are close to 1

2 . If Δp̃n
j > 4, the

difference between pn
j,0 and pn

j,1 is larger than 4σ, hence the value of Xj+1
i,0 ⊕Xj

i,0

can be determined correctly with high probability. For every value of the two
bits Xj+1

i,0 and Xj
i,0, we use 228 pairs to generate Si+1 ⊕S′

i+1, then compute pn
j,0

and pn
j,1. Thus N = 229, and σ = 213.5. We list the large values of Δp̃n

j below:

For j = 9, Δp̃13
9 = 55.7 .

For j = 10, Δp̃13
10 = 133.9 .

For j = 14, Δp̃17
14 = 51.5 .

For j = 15, Δp̃19
15 = −9.1, Δp̃22

15 = 14.9, Δp̃23
15 = −15.7 .

For j = 16, Δp̃19
16 = −50.8, Δp̃21

16 = 62.0, Δp̃22
16 = 97.7, Δp̃23

16 = −106.6,
Δp̃25

16 = 11.8, Δp̃26
16 = 16.0, Δp̃27

16 = −17.4 .
For j = 17, Δp̃21

17 = 77.4, Δp̃22
17 = 145.3, Δp̃23

17 = −171.6, Δp̃25
17 = 12.3,

Δp̃26
17 = 28.5, Δp̃27

17 = −30.4 .
For j = 18, Δp̃21

18 = 80.2, Δp̃22
18 = 179.7, Δp̃23

18 = −241.7, Δp̃26
18 = 32.8,

Δp̃27
18 = −43.7 .

92 H. Wu and B. Preneel

For j = 19, Δp̃22
19 = 139.6, Δp̃23

19 = −220.6, Δp̃26
19 = 19.0, Δp̃27

19 = −46.5 .
For j = 20, Δp̃23

20 = −156.7, Δp̃25
20 = −5.7, Δp̃26

20 = 18.3, Δp̃27
20 = −30.6 .

For j = 21, Δp̃25
21 = −6.8, Δp̃26

21 = 9.5, Δp̃27
20 = −28.5 .

The data given above show that the distribution of Si+1 ⊕ S′
i+1 is strongly

affected by the value of Xj+1
i+1,0 ⊕Xj

i+1,0.

4.2 Recovering the Key

Note that in the above analysis, when we deal with a particular Xj+1
i+1,0⊕Xj

i+1,0,
the other bits of Xi+1,0 are random. In the key recovery attack, the value of
Xi+1,0 is fixed, so we need to consider the interference between the bits Xj+1

i+1,0⊕
Xj

i+1,0.
We notice that there are many large biases related to S23

i+1 ⊕ S′23
i+1. However,

the values of Xj+1
i+1,0 ⊕ Xj

i+1,0 (15 ≤ j ≤ 20) all have a significant effect on the
distribution of S23

i+1 ⊕ S′23
i+1. It is thus a bit complicated to determine the values

of Xj+1
i+1,0 ⊕Xj

i+1,0 (15 ≤ j ≤ 20).
In the following, we consider the bit S17

i+1⊕S′17
i+1. Its distribution is dominated

by the value of X15
i+1,0⊕X14

i+1,0. For every value of the two bits X15
i+1,0 and X14

i+1,0,
we use 230 pairs to generate Si+1 ⊕ S′

i+1, then compute p17
14,0 and p17

14,1. From
the simulation, we found that p17

14,0 = 0.50227 and p17
14,1 = 0.50117. We denote

the average of p17
14,0 and p17

14,1 as p̄17
14, i.e., p̄17

14 =
p17
14,0+p17

14,1
2 = 0.50172. Running

a similar simulation, we found that p17
13,0 = 0.50175 and p17

13,1 = 0.50169. For
all the j �= 13, j �= 14, we found that p17

j,0 ≈ p̄17
14 and p17

j,1 ≈ p̄17
14. The value of

X15
i+1,0 ⊕ X14

i+1,0 is recovered as follows: from the keystreams, we compute the
fraction for which S17

i+1 ⊕ S′17
i+1 = 0. If it is larger than p̄17

14, then the value of
X15

i+1,0 ⊕ X14
i+1,0 is considered to be 0; otherwise the value of X15

i+1,0 ⊕ X14
i+1,0 is

considered to be 1.
We now compute the number of plaintext pairs required to determine the value

of X15
i+1,0 ⊕ X14

i+1,0. Suppose that N pairs of plaintexts are used. The standard
deviation is σ =

√
N × p̄17

14 × (1 − p̄17
14). To determine the value of X15

i+1,0⊕X14
i+1,0

with success rate 0.99, we require that N × ((p17
14,0 − p17

14,1) − (p17
13,0 − p17

13,1)) >
4.66× σ (The cumulative distribution function of the normal distribution gives
value 0.99 at the point 2.33σ). Thus we require that N > 222.27.

We used the Phelix C source code submitted to eSTREAM in the
experiments.1

Experiment 1. The goal of this experiment is to recover the value of X15
1,0⊕X14

1,0.
Each plaintext has two words P0 and P1. For each plaintext pair, the two words
differ only in the least significant bit of P0. N plaintext pairs are used for each
key to determine the value of X15

1,0 ⊕ X14
1,0 as follows: if the fraction of cases for

1 Note that we have found and corrected a small bug in this source code. The output
should be computed as Si = Y

(i)
4 + Z

(i−4)
4 in stead of Si = Y

(i)
4 + Z

(i−3)
4 .

Differential-Linear Attacks Against the Stream Cipher Phelix 93

which S17
1 ⊕ S′17

1 = 0 is larger than p̄17
14 = 0.50172, then the value of X15

1,0 ⊕X14
1,0

is considered to be 0; otherwise the value of X15
1,0 ⊕ X14

1,0 is considered to be 1.
A random nonce was used for each plaintext pair. We tested 200 keys in the
experiment. For N = 222.3, the values of X15

1,0 ⊕X14
1,0 of 183 keys are determined

correctly. For N = 225, the values of X15
1,0 ⊕ X14

1,0 of 192 keys are determined
correctly.

Experiment 1 shows that the value of X15
1,0⊕X14

1,0 can be determined successfully
by introducing a difference in the least significant bit of P0, but with a higher
error rate. The reason is that other bits of X1,0 affects the determination of
X15

1,0 ⊕X14
1,0 in a subtle way.

We now proceed to recover the other bits of X1,0. By rotating the one-bit
difference between P0 and P ′

0, and using the same threshold value, we can de-
termine the value of Xj+1

1,0 ⊕Xj
1,0 for 2 ≤ j ≤ 3, 5 ≤ j ≤ 10 and 14 ≤ j ≤ 28.

Thus we are able to recover 23 bits of information on each Xi,0. Note that the
256-bit key is recovered from eight consecutive Xi,0. Thus we are able to recover
23× 8 = 184 bits of the key with success rate about 192

200 = 0.96 . The number of
plaintext pairs required in the attack is about 225 × 32× 8 = 233.

We need to improve the above attack in two approaches: recovering more
key bits and improving the success rate. The direct approach is to adjust the
threshold value for each key bit position. In the following, we illustrate a more
advanced approach which recovers the values of Z

(i)
4 before recovering the key.

5 Improving the Attack on Phelix

In the above attack, we use a random nonce for each plaintext pair, i.e., every
nonce is used twice with the same key. When the nonce is used many times with
the same key, we can introduce the difference at Pi and recover the value of Zi−3

4

by observing the distribution of Si+1⊕S′
i+1. Then we proceed to recover Xi+1,0.

5.1 Recovering Z
(i)
4

We introduce the difference to the least significant bit of Pi (Pi ⊕ P ′
i = 1). A

simulation is carried out to determine the distribution of Y
(i+1)
4 ⊕ Y

′(i+1)
4 . We

use the randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0 in the simulation.

Denote ṗn as the probability that Y
(i+1),n
4 ⊕ Y

′(i+1),n
4 = 0. With 230 pairs, we

obtain the values of ṗn in Table 2.
From Table 2, we notice that Y

(i+1)
4 ⊕ Y

′(i+1)
4 is heavily biased. For example,

Y
(i+1),2
4 = Y

′(i+1),2
4 with probability about 0.70291, while Y

(i+1),3
4 = Y

′(i+1),3
4

with probability about 0.22246. Note that Si+1 = Y
(i+1)
4 ⊕ Z

(i−3)
4 , according to

Theorem 2, the distribution of Si+1 ⊕ S′
i+1 is affected by the value of Z

(i−3),3
4 ⊕

Z
(i−3),2
4 . Next we carry out simulations to characterize this relation.
We use the randomly generated Y

(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4

in the simulation. The one-bit difference is introduced to Pi, i.e., Pi ⊕ P ′
i = 2j .

94 H. Wu and B. Preneel

Table 2. The probability that Y
(i+1),j
4 ⊕ Y

′(i+1),j
4 = 0 for Pi ⊕ P ′

i = 1

j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5 j ṗj − 0.5

0 0.03326 8 0.00003 16 −0.00003 24 0.00046
1 0.12983 9 0.03517 17 0.00268 25 0.05926
2 0.20291 10 0.00002 18 −0.00001 26 0.15064
3 −0.27754 11 0.00001 19 −0.00266 27 −0.24028
4 −0.00005 12 0.00000 20 −0.00004 28 0.00001
5 0.05663 13 0.02293 21 0.02276 29 0.05770
6 −0.15327 14 −0.00001 22 0.07434 30 0.15508
7 −0.00001 15 −0.00001 23 −0.14414 31 −0.24907

Denote p̈n
j,0 as the probability that Sn

i+1⊕S′n
i+1 = 0 when Z

(i−3),j+1
4 ⊕Z

(i−3),j
4 = 0.

And denote p̈n
j,1 as the probability that Sn

i+1 ⊕ S′n
i+1 = 0 when Z

(i−3),j+1
4 ⊕

Z
(i−3),j
4 = 1. For each value of Z

(i−3),3
4 and Z

(i−3),2
4 , we use 228 plaintext pairs.

We find that p̈5
2,0 = 0.5461 and p̈5

2,1 = 0.5193. The large difference between

p̈5
2,0 and p̈5

2,1 shows that the value of Z
(i−3),3
4 ⊕Z

(i−3),2
4 can be determined with

success rate 0.999 with about 213.9 plaintext pairs (The cumulative distribution
function of the normal distribution gives value 0.999 at the point 3.1σ).

The above approach is able to recover Z
(0)
4 , but the success rate is not that

high according to our experiment. In the following, we use a new approach
to determine Z

(0)
4 . To reduce the interference between the bits of Z

(i−3)
4 , we

recover the least significant bit of Z
(i−3)
4 first, then proceed to recover the more

significant bits bit-by-bit.
We start with determining the value of Z

(i−3),0
4 . Let Pi ⊕ P ′

i = 1. Running
the simulation with228 plaintext pairs, we found that p̈2

−1,0 = 0.70296, and

p̈2
−1,1 = 0.65422 (let Z

(i−3),−1
4 = 0). To determine the value of Z

(i−3),0
4 with

success rate 0.999, we need about 212.0 plaintext pairs.

Experiment 2. The goal of this experiment is to determine the value of Z
(0),0
4 .

Each plaintext has five random words Pi (0 ≤ i ≤ 4). For each plaintext pair,
the difference is only in the least significant bit of P3. N plaintext pairs are used
for each key/nonce pair to determine the value of Z(0),0 as follows: if the rate

that S2
4 ⊕ S′2

4 = 0 is larger than p̈2
−1,0+p̈2

−1,1
2 = 0.70296+0.65422

2 = 0.6786, then the
value of Z

(0),0
4 is considered to be 0; otherwise the value of Z

(0),0
4 is considered

to be 1. We tested 1000 key/nonce pairs in the experiment. For N = 212, the
values of Z

(0),0
4 of 998 key/nonce pairs are determined correctly. For N = 213,

the values of Z
(0),0
4 of all the key/nonce pairs are determined correctly.

After recovering the value of Z
(i−3),0
4 , we proceed to recover the values of the

other bits of Z
(i−3)
4 . Let Z

(i−3),(n−1···0)
4 denote the n least significant bits of

Z(i−3), i.e., Z
(i−3),(n−1···0)
4 = Z(i−3) mod 2n. Let the difference be introduced to

the kth least significant bit of Pi, i.e., Pi ⊕ P ′
i = 2k. Denote p̀k,j,0

Z
(i−3),(n−1···0)
4

as

Differential-Linear Attacks Against the Stream Cipher Phelix 95

the probability that the value of the jth bit of (Si+1 −Z
(i−3),(n−1···0)
4)⊕ (S′

i+1 −
Z

(i−3),(n−1···0)
4) is 0 when Z

(i−3),n
4 = 0. Denote p̀k,j,1

Z
(i−3),(n−1···0)
4

as the probability

that the value of the jth bit of (Si+1−Z
(i−3),(n−1···0)
4)⊕(S′

i+1−Z
(i−3),(n−1···0)
4) is

0 when Z
(i−3),n
4 = 1. If the value of Z

(i−3),(n−1···0)
4 is determined correctly, then

p̀k,j,0

Z
(i−3),(n−1···0)
4

= p̀k,j,0
0 , and p̀k,j,1

Z
(i−3),(n−1···0)
4

= p̀k,j,1
0 . This property is important

for recovering Z
(i−3)
4 .

Let Pi ⊕ P ′
i = 2. We use 228 plaintext pairs in the simulation. We found that

p̀1,3,0
0 = 0.66469 and p̀1,3,1

0 = 0.60220. It shows that when Z
(i−3),0
4 = 0, if the

rate that S3
i+1⊕S′3

i+1 = 0 is larger than 0.66469+0.60220
2 = 0.63345, then the value

of Z
(i−3),1
4 is determined to be 0; otherwise the value of Z

(i−3),1
4 is determined

to be 1. We need about 211.3 plaintext pairs to determine the value of Z
(i−3),1
4

correctly with success rate 0.999. Using the Phelix code in the experiment, we
tested 1000 random key/nonce pairs satisfying Z

(0),0
4 = 0, and 212 plaintext pairs

are used for each key/nonce pair with the difference P3⊕P ′
3 = 2. We found that

all the 1000 values of Z
(0),1
4 are determined correctly. If Z

(i−3),0
4 = 1, we observe

the third least significant bit of (Si+1 − 1) ⊕ (S′
i+1 − 1), and we can determine

the value of Z
(0),1
4 = 0 with success rate 0.999 with about 211.3 plaintext pairs.

Let Pi ⊕ P ′
i = 22, we are able to determine the value of Z

(i−3),2
4 by observing

the fourth least significant bit of (Si+1 −Z
(i−3),(1···0)
4)⊕ (S′

i+1 −Z
(i−3),(1···0)
4). In

general, let Pi ⊕ P ′
i = 2j , then we are able to determine the value of Z

(i−3),j
4 by

observing the (j + 2)th least significant bit of (Si+1 − Z
(i−3),(j−1···0)
4) ⊕ (S′

i+1 −
Z

(i−3),(j−1···0)
4) with about 212 plaintext pairs. Thus we are able to recover Z

(i−3)
4

(except the values of Z
(i−3),30
4 and Z

(i−3),31
4) with success rate very close to 1. The

number of plaintext pairs required in the above attack is about 212 × 30 ≈ 217.

5.2 Recovering Xi+1,0

After recovering Z
(i−3)
4 (except Z

(i−3),31
4 and Z

(i−3),30
4), we know the value

of (Si+1 − Z
(i−3),(29···0)
4) ⊕ (S′

i+1 − Z
(i−3),(29···0)
4). Thus we know the value of

Y (i+1),j ⊕ Y ′(i+1),j (0 ≤ j ≤ 30). Then we are able to recover Xi+1,0 more
efficiently.

Let two plaintexts differ only in the ith word. And let Pi⊕P ′
i = 1. We use the

randomly generated Y
(i)
k (4 ≥ k ≥ 0), Pi, Xi,1, Xi+1,0, Z

(i−3)
4 in the simulation.

For every value of the two bits Xj+1
i,0 and Xj

i,0, we use 228 plaintext pairs to gen-

erate Y
(i+1)
4 ⊕ Y

′(i+1)
4 , then compute pn

j,0 and pn
j,1 (suppose that Si+1 = Y

(i+1)
4

since Z
(i−3)
4 is known). Thus N = 229, and σ = 213.5. We list the following two

large biases Δp̃n
j :

For j = 9, Δp̃13
9 = 144.1

For j = 10, Δp̃13
10 = 362.12

96 H. Wu and B. Preneel

We use Δp̃13
9 and Δp̃13

10 in the attack. Note that the values of X10
i+1,0 ⊕ X9

i+1,0

and X11
i+1,0 ⊕ X10

i+1,0 both affect the distribution of Y
(i+1),13
4 ⊕ Y

′(i+1),13
4 . We

carried out a simulation with 230 chosen plaintext pairs to determine how the
value of X9

i+1,0 affects the value of Y
(i+1),13
4 . If X9

i+1,0 = 0, and the values
of X11

i+1,0||X0
i+1,0 are 00, 11, 01 and 11 (in binary format), we obtain that

Y
(i+1),13
4 ⊕Y

′(i+1),13
4 = 0 with probability 0.53033, 0.52334, 0.51946 and 0.51864,

respectively; if X9
i+1,0 = 1, we obtain that Y

(i+1),13
4 ⊕ Y

′(i+1),13
4 = 0 with

probability 0.52334, 0.53030, 0.51861 and 0.51948, respectively. We thus let
p13
0,0 = 0.52334, and p13

0,1 = 0.51946+0.51948
2 = 0.51947. About 219.3 plaintext

pairs are required to determine the value of X11
i+1,0 ⊕ X10

i+1,0 with success rate
0.999.

Experiment 3. Suppose that the value of Z
(0)
4 is known. The goal of this exper-

iment is to determine the value of X11
4,0 ⊕ X10

4,0. Each plaintext has five random
words Pi (0 ≤ i ≤ 4). For each plaintext pair, those five words differ only in the
least significant bit of P3. N plaintext pairs are used for each key/nonce pair to
determine the value of X11

4,0 ⊕X10
4,0 as follows: if the rate that Y 13

4 ⊕ Y ′13
4 = 0 is

larger than 0.52334+0.51947
2 = 0.52140, then the value of X11

4,0⊕X10
4,0 is considered

to be 0; otherwise the value of X11
4,0 ⊕X10

4,0 is considered to be 1. We tested 1000
key/nonce pairs in the experiment. For N = 219.3, 948 values of 1000 X11

4,0⊕X10
4,0

are determined correctly. We change the threshold value 0.52140 to 0.52035, then
970 values of 1000 X11

4,0 ⊕X10
4,0 are determined correctly for N = 220, 976 values

are determined correctly for N = 221, 990 values are determined correctly for
N = 222.

Experiment 3 shows that the value of X11
4,0⊕X10

4,0 can be determined successfully
by introducing a difference in the least significant bit of P3. With 222 chosen
pairs, we are able to determine the value of X11

4,0 ⊕X10
4,0 with success rate about

0.99.
Then we shift the one-bit difference to recover the values of Xj+1

1,0 ⊕ Xj
1,0

for 2 ≤ j ≤ 28. The threshold value needs to be modified for different values
of j. The results are given in Table 3 in Appendix A. Note that according to
Experiment 3, the threshold values should be slightly adjusted to achieve high
success rate.

The reason that the values of Xj+1
4,0 ⊕ Xj

4,0 cannot be recovered for j ≥ 29
is that the value of Xj+1

1,0 ⊕ Xj
1,0 cannot affect the distribution of Sj+3

1 ⊕ S′j+3
1

since S1⊕S′
1 is a 32-bit word. The reason that the number of plaintext required

for j = 9 is relatively small is that the difference for j = 13 is introduced to the
most significant bit of the word P3, thus it causes less difference propagation,
and results in a larger bias in the keystream.

Note that the most significant bit of Y
(i+1)
4 ⊕Y

′(i+1)
4 is not known since Zi−1,31

4

and Zi−1,30
4 are not recovered. Thus to determine the value of X29

1,0 ⊕ X28
1,0, we

Differential-Linear Attacks Against the Stream Cipher Phelix 97

need to consider the most significant bit of (Si+1 − Z
(i−3),(29···0)
4) ⊕ (S′

i+1 −
Z

(i−3),(29···0)
4). The threshold value needs to be changed to 0.51128; and the

number of plaintext pairs required is 222.1.
After recovering the values of Xj+1

1,0 ⊕ Xj
1,0 for 2 ≤ j ≤ 28, we proceed to

determine the value of X0
i+1,0, X1

i+1,0 and X2
i+1,0.

We start with recovering X0
i+1,0. Let Pi ⊕ P ′

i = 221. Running the simulation
with 228 plaintext pairs, we found that p2

21,0 = 0.51596, p2
21,1 = 0.50355. Thus

215.93 plaintext pairs are needed to determine the value of X0
i+1,0 with success

rate 0.999. Using the Phelix code in the experiment, we introduce the difference
P3 ⊕ P ′

3 = 221, and set the threshold value as 0.51596+0.50355
2 = 0.50975. We

tested 1000 key/nonce pairs in the experiment. With 216 plaintext pairs, all the
values of the 1000 X0

4,0 are determined correctly.
After determine the value of X0

i+1,0, we determine the value of X1
i+1,0 as

follows. The simulation shows that the value of X1
i+1,0 can be determined only

when X0
i+1,0 = 0. For X0

i+1,0 = 0, we set the difference as Pi⊕P ′
i = 222. With 228

chosen plaintext pairs, we found that if X1
i+1,0 = 0, then Y

(i+1),3
4 = 0 with rate

0.51528; otherwise Y
(i+1),3
4 = 0 with rate 0.50459. With 216.4 plaintext pairs,

the value of X1
i+1,0 can be determined with success rate 0.999. Using the Phelix

code in the experiement, we introduce the difference P3 ⊕ P ′
3 = 222, and set the

threshold value as 0.51528+0.50459
2 = 0.50994. We tested 1000 key/nonce pairs

with X0
4,0 = 0 in the experiment. With 216.4 plaintext pairs, all the values of

the 1000 X1
4,0 are determined correctly. It shows that the value of X1

i+1,0 can be
determined successfully if X0

4,0 = 0.
We continue to recover the value of X2

i+1,0. We introduce a difference to the

15th least significant bit of Pi, and observe the distribution of Y
(i−3),4
4 . We

carry out a simulation with 231 plaintext pairs with P3⊕P ′
3 = 215. 231 plaintext

pairs are used for each value of X1
i+1,0X

0
i+1,0. When X0

i+1,0 = 0, if X1
i+1,0 = 0,

the fraction of values for which Y
(i−3),4
4 = 0 if X2

i+1,0 = 0 and X2
i+1,0 = 1 are

0.53106 and 0.52613, respectively; if X1
i+1,0 = 1, the franction of values for which

Y
(i−3),4
4 = 0 if X2

i+1,0 = 0 and X2
i+1,0 = 1 are 0.52318 and 0.52315, respectively.

It shows that the value X2
i+1,0 can only be determined if the values of X1

i+1,0

and X1
i+1,0 are both zero, and 218.6 plaintext pairs are required to achieve the

success rate 0.999.
In the above attacks, we recovered 28.75 bits of Xi+1,0: Xj+1

i+1,0 ⊕ Xj
i+1,0 for

2 ≤ j ≤ 28, X0
i+1,0, X1

i+1,0 (only if X0
i+1,0 = 0), and X1

i+1,0 (only if X0
i+1,0 = 0

and X1
i+1,0 = 0). 27 bits of Xj+1

i+1,0 ⊕ Xj
i+1,0 (2 ≤ j ≤ 28) can be determined

according to Table 3. From Experiment 3, we know that if we slightly adjust the
threshold value, and use about 22.7 times the number of plaintext pairs compared
to Table 3, the success rate is about 0.99. The number of plaintext pairs required
to determine these 27 bits is thus about 27 × 222.2 × 22.7 = 229.7. The number
of plaintext pairs to determine X0

i+1,0, X1
i+1,0 and X2

i+1,0 is small compared to

98 H. Wu and B. Preneel

229.7. The attack to recover 28.75 bits of Xi+1,0 requires thus about 232.7 chosen
plaintext pairs.

After recovering eight consecutive Xi+1,0, we recovered 28.75 × 8 = 230 key
bits. To recover the 256-bit key, the amount of operations required is about
2256−230+(27×8

0.01×27×8) = 241.5.
The number of chosen plaintext pairs required in the attack is about 229.7×8 =

232.7. The length of each plaintext ranges from 5 to 13 words. Thus the total
amount of chosen plaintext required is about 2 × 232.7 × 5+13

2 ≈ 237 words.
(The number of plaintext pairs needed to recover 8 consecutive Z

(i)
4 is about

217 × 8 = 225. It is small compared to 232.7).

6 An Approach to Strengthen Helix and Phelix

In Helix and Phelix, the plaintext is used to affect the internal state of the cipher.
In order to achieve a high encryption speed, each plaintext word affects the
keystream without passing through sufficient confusion and diffusion layers. This
is the intrinsic weakness in the structure of Helix and Phelix. In the following,
we provide a method to reduce the effect of such weakness.

The security of the encryption of Helix and Phelix can be improved signifi-
cantly if a secure one-way function is used to generate the initial state of the
cipher from the key and nonce. Then even if the internal state of one particular
nonce is recovered, the impact on the security of the encryption is very limited
since the key of the cipher is not affected. We believe that such an approach can
be applied to improve the security of all the ciphers that use the plaintext to
affect the internal state.

However, we must point out that such an approach does not substantially
improve the security of the MAC in Helix and Phelix. Once an internal state
is recovered, the attacker can forge many messages related to that particular
nonce.

7 Conclusion

Phelix is vulnerable to a key recovery attack when chosen nonces and chosen
plaintexts are used. The computational complexity of the attack is much less
than that of the attack against Helix. Our attack shows that Phelix fails to
strengthen Helix in this respect.

We believe that one necessary requirement for a secure general-purpose stream
cipher is that the key of the cipher should not be recoverable even if the attacker
can control the generation of the nonce. In practice an attacker may gain access
to a Phelix encryption device for a while, reuse a nonce and recover the key.
We thus consider Phelix as insecure. (When the integrity checking mechanism is
not enforced, an attacker can even modify the nonces in ciphertext and obtain
repeated nonces.) Muller has pointed out the practical impact of the key recovery
attack with reused nonces on the security of Helix in detail [2]. Muller stated

Differential-Linear Attacks Against the Stream Cipher Phelix 99

clearly the difference between the nonce reusing attack against Helix and that
against a synchronous stream cipher since the attack against Helix results in key
recovery. The same comments apply to the attacks against Phelix.

Acknowledgements

The authors would like to thank the anonymous reviewers of FSE 2007 for their
helpful comments.

References

1. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix, Fast
Encryption and Authentication in a Single Cryptographic Primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

2. Muller, F.: Differential Attacks against the Helix Stream Cipher. In: Roy, B., Meier,
W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 94–108. Springer, Heidelberg (2004)

3. Paul, S., Preneel, B.: Solving Systems of Differential Equations of Addition. In:
Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 75–88.
Springer, Heidelberg (2005)

4. Paul, S., Preneel, B.: Near Optimal Algorithms for Solving Differential Equations
of Addition with Batch Queries. In: Maitra, S., Madhavan, C.E.V., Venkatesan, R.
(eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 90–103. Springer, Heidelberg (2005)

5. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix: Fast Encryption and Au-
thentication in a Single Cryptographic Primitive. eSTREAM, ECRYPT Stream
Cipher Project Report 2005/027 (2005)

6. Wu, H., Preneel, B.: Cryptanalysis of the Stream Cipher ABC v2. In: Selected Areas
in Cryptography – SAC 2006. LNCS (to appear)

A The Complexity to Recover Xi+1,0 with Z
(i−3)
4 Known

The number of plaintext pairs and the threshold value required to recover the
value of each Xj+1

i+1,0 ⊕ Xj
i+1,0 (2 ≤ j ≤ 28) are given in Table 3. Each value n

in the second column indicates that the difference is introduced in the nth least
significant bit of Pi. Each value n in the third column shows that the nth least
significant bit of Y

(i+1)
4 is used in the attack.

100 H. Wu and B. Preneel

Table 3. The number of plaintext pairs for recovering Xj+1
i+1,0 ⊕ Xj

i+1,0

j Difference
position
in Pi

Bit
position
in Y

(i+1)
4

Threshold
value

Plaintext
Pairs

2 24 5 0.51101 224.4

3 25 6 0.51110 223.1

4 26 7 0.51120 222.5

5 27 8 0.51125 222.3

6 28 9 0.51091 222.4

7 29 10 0.51116 223.6

8 30 11 0.51562 220.7

9 31 12 0.54353 218.4

10 0 13 0.52141 219.3

11 1 14 0.52099 219.3

12 2 15 0.51850 219.5

13 3 16 0.50998 221.3

14 4 17 0.51107 221.9

15 5 18 0.51128 222.2

16 6 19 0.51129 222.2

17 7 20 0.51131 222.2

18 8 21 0.51128 222.1

19 9 22 0.51117 221.7

20 10 23 0.51149 222.2

21 11 24 0.51172 222.0

22 12 25 0.51187 222.0

23 13 26 0.51191 222.0

24 14 27 0.51185 222.1

25 15 28 0.51129 222.2

26 16 29 0.51129 222.1

27 17 30 0.51131 222.2

28 18 31 0.51130 222.1

How to Enrich the Message Space of a Cipher

Thomas Ristenpart1 and Phillip Rogaway2

1 Dept. of Computer Science & Engineering, University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093-0404, USA

tristenp@cs.ucsd.edu
http://www-cse.ucsd.edu/users/tristenp

2 Dept. of Computer Science, University of California Davis
One Shields Avenue, Davis, CA 95616, USA

rogaway@cs.ucdavis.edu
http://www.cs.ucdavis.edu/~rogaway/

Abstract. Given (deterministic) ciphers E and E that can encipher mes-
sages of l and n bits, respectively, we construct a cipher E∗ = XLS[E , E]
that can encipher messages of l + s bits for any s < n. Enciphering such
a string will take one call to E and two calls to E. We prove that E∗ is
a strong pseudorandom permutation as long as E and E are. Our con-
struction works even in the tweakable and VIL (variable-input-length)
settings. It makes use of a multipermutation (a pair of orthogonal Latin
squares), a combinatorial object not previously used to get a provable-
security result.

Keywords: Deterministic encryption, enciphering scheme, symmetric
encryption, length-preserving encryption, multipermutation.

1 Introduction

Domain extension. Consider a cryptographic scheme with a message space
M =
⋃

l∈L {0, 1}l for some set L of permissible message lengths. The scheme
can handle any message of l ∈ L bits but it can’t handle messages of l∗ �∈ L
bits. Often the set of permissible message lengths L is what worked out well
for the scheme’s designers—it made the scheme simple, natural, or amenable to
analysis—but it might not be ideal for the scheme’s users who, all other things
being equal, might prefer a scheme that works across arbitrary-length messages.
To address this issue, one may wish to extend the scheme to handle more message
lengths. Examples are extending CBC encryption using ciphertext stealing [21]
and extending a pseudorandom function F with message space ({0, 1}n)+ by
appropriately padding the message and calling F .

Our work is about extending the domain of a cipher. When we speak of a
cipher in this paper we mean a deterministic map E : K × M → M where
M =
⋃

l∈L {0, 1}l and EK(·) = E(K, ·) is a length-preserving permutation. Such
an object is also called an enciphering scheme, a pseudorandom permutation, an
arbitrary-input-length blockcipher, or a deterministic cipher / encryption scheme.
Our goal is to extend a cipher E : K × M → M with permissible message

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 101–118, 2007.
c© International Association for Cryptologic Research 2007

102 T. Ristenpart and P. Rogaway

lengths L to a cipher E∗: K∗ × M∗ → M∗ with an enlarged set L∗ ⊇ L of
permissible message lengths. Being an extension of E , what E∗ does on a string
of length l ∈ L and key 〈K, K ′〉 must be identical to what E would do on key K.
Note that padding-based methods will not work: even if there is a point in the
message space of E that one can pad a plaintext to, padding M to M∗ and then
applying E would be length-increasing, and so not a cipher. Unlike signatures,
MACs, pseudorandom functions, and semantically secure encryption, there is no
obvious way to extend a cipher’s domain.

Our contribution. We show how, with the help of an n-bit blockcipher E,
to extend a cipher’s set of permissible message lengths from L ⊆ [n ..∞) to
L∗ = L+[0 .. n−1] = {�+i | � ∈ L and i ∈ [0 .. n−1]}. In other words, we enlarge
the message space from M to M∗ = M || {0, 1}<n where M ⊆ {0, 1}≥n.

We call our construction XLS (eXtension by Latin Squares). Its overhead is
two blockcipher calls, eight xor instructions, and two one-bit rotations. This is
the work beyond enciphering (or deciphering) a single l-bit string that is needed
to encipher (or decipher) an l + s bit one, where s ∈ [1 .. n − 1]. If the message
is in the original domain there is no overhead beyond determining this. As an
example, if E = E is an n-bit blockcipher then it will take three blockcipher calls
to encipher a 2n− 1 bit string.

The XLS method is described in Fig. 1. For a message M already in the
domain of E , just apply it. Otherwise, suppose that M has length l + s where
l ∈ L and s ∈ [1 .. n − 1]. To encipher M : apply the blockcipher E to the
last full n-bit block of M ; mix together the last 2s-bits; flip the immediately
preceding bit; encipher under E the first l bits; mix together the last 2s-bits;
flip the immediately preceding bit; then apply E to the last full n-bit block.
Our recommended instantiation of the mixing step uses three xors and a single
one-bit circular rotation.

We prove that XLS works. More specifically, if E is secure in the sense of
a strong pseudorandom permutation (a strong PRP) [17] then E∗ inherits this
property. This assumes that the blockcipher E is likewise a strong PRP. The
result holds even in the variable-input-length (VIL) setting [3]: if E is VIL-secure
then so is E∗. See Theorem 2. It also holds in the tweakable-enciphering-scheme
setting [16]: if E is tweakable then E∗ inherits this. See Section 7. If one makes
the weaker assumption that E and E are ordinary (not necessarily strong) PRPs,
then one can conclude that E∗ is a PRP. See Section 8.

While XLS is relatively simple, it is surprisingly delicate. We show that natural
alternative ways of mixing do not work. We show that omitting the bit flip does
not work. And attempting to get by without any mixing—say by enciphering
the last n bits, the first l bits, then the last n bits—doesn’t work even if one
demands that the “overlap” in what is enciphered is n/2 bits: there is an attack
of complexity 2n/4.

All that said, we develop sufficient conditions on the mixing function that are
enough to guarantee security, and we provide a mixing function based on mul-
tipermutations (also called orthogonal Latin squares [7]). Though conceptually
elegant, implementing multipermutations in this setting is slightly complicated,

How to Enrich the Message Space of a Cipher 103

so we provide an alternate mixing function that approximates multipermuta-
tions via bit rotations. This comes at the (insignificant) cost of a slightly larger
constant in the security reduction. XLS is the first mode of operation to em-
ploy multipermutations or approximate multipermutations to yield a provable-
security guarantee. Indeed, such mixing functions may prove to be useful in
further provable-security contexts.

We comment that we cannot handle messages of length less than n bits (the
blocklength of the blockcipher that we use)—for example, we don’t know how
to encipher a 32-bit string using AES (in an efficient way and with a known and
desirable security bound). This is a long open problem [6,12].

Related work. There are several known methods for turning a blockcipher
with message space M = {0, 1}n into a cipher with some message space {0, 1}≥n.
Halevi does this in his EME∗ and TET constructions [12,13]; Fluhrer and
McGrew do it (without a provable-security guarantee) with XCB [20]; Wang,
Feng, and Wu do it in HCTR [30]; and Chakraborty and Sarkar do it in HCH [9].
All of these constructions are somewhat complex, and their methods for deal-
ing with “inconvenient-length” strings are non-generic. Constructions of ciphers
from n-bit blockciphers that result in a message space like ({0, 1}n)+ are of-
fered by Zheng, Matsumoto, and Imai [31], Naor and Reingold [22], Halevi
and Rogaway [15,14], Patel, Ramzan, and Sundaram [24], and Chakraborty and
Sarkar [8]. One can even view Luby and Rackoff [17] in this light.

Anderson and Biham [2] and Lucks [18,19] make a wide-blocksize cipher out
of a stream cipher and a hash function, and Schroeppel provides a cipher [28]
that works on an arbitrary message space de novo.

When E = E is an n-bit blockcipher, the XLS construction solves the elastic
blockcipher problem of Cook, Yung, and Keromytis [11,10], where one wants to
extend a blockcipher from n bits to [n .. 2n− 1] bits. The Cook et. al solution is
heuristic—there is no proof of security—but with XLS we have, for example, an
“elastic AES” that provably preserves the security of AES.

When a cipher like CMC or EME [15,14] plays the role of E in XLS, one gets
a cipher with efficiency comparable to that of a mode like EME∗ [12].

Bellare and Rogaway first defined VIL ciphers [3] and built one (although it
is not secure as a strong PRP). An and Bellare [1] offer the viewpoint that cryp-
tographic constructions are often aimed at adjusting the domain of a primitive.
This viewpoint is implicit in our work.

Applications. While primarily interested in the “theoretical” question of how
to accomplish domain extension for ciphers, arbitrary-input-length enciphering
is a problem with many applications. A well-known application is disk-sector
encryption, the problem being addressed by the IEEE Security in Storage Work
Group P1619. Another application is saving bandwidth in network protocols:
if one has a 53-byte payload to be enciphered, and no IV or sequence number
to do it, the best that can be done without increasing the size of the data-
gram is to encipher this 53-byte string. A related application is the security-
retrofitting of legacy communications protocols, where there is a mandated and

104 T. Ristenpart and P. Rogaway

immutable allocation of bytes in a datagram, this value not necessarily a multiple
of, say, 16 bytes. Another application is in a database setting where it should be
manifest when two confidential database records are identical, these records
having arbitrary length that should not be changed, but nothing else about
the records should be leaked. Arbitrary-length enciphering enables bandwidth-
efficient use of the encode-then-encipher paradigm of Bellare and Rogaway [4],
where one gets authenticity by enciphering strings encoded with redundancy and
semantic security by enciphering strings that rarely collide.

2 Preliminaries

Basics and notation. For strings X, Y ∈ {0, 1}∗, we use X || Y or X Y to
denote concatenation. We write X [i] for i ∈ [1 .. |X |] to represent the ith bit of X
(thus X = X [1]X [2] · · ·X [s]). The complement of a bit b is flip(b). For a set C
and element X we write C ∪←X for C ← C ∪ {X}. We require that for any set of
bit strings S ⊆ {0, 1}∗, if X ∈ S then {0, 1}|X| ⊆ S.

A cipher is a map E : K×M →M where K is a nonempty set, M ⊆ {0, 1}∗
is a nonempty set, and EK(·) = E(K, ·) is a length-preserving permutation. The
set K is called the key space and the set M is called the message space. We can
view the message space as ∪l∈L{0, 1}l where L = {l | ∃X ∈ M s.t. |X | = l}.
Let D be the cipher with the same signature as E and defined by DK(Y) = X
iff EK(X) = Y . A blockcipher is a cipher with message space M = {0, 1}n

for some n ≥ 1 (the blocksize). For M ⊆ {0, 1}∗ let Perm(M) be the set of
all length-preserving permutations on M. By selecting K = Perm(M) we have
a cipher for which a uniformly chosen permutation on {0, 1}l is selected for
each l ∈ L. Let Func(M) be the set of all length-preserving functions on M.
Write Perm(�) and Func(�) for Perm({0, 1}�) and Func({0, 1}�), respectively.

Let S ⊆ {0, 1}≥1. Then define S2 = {XY |X, Y ∈ S ∧ |X | = |Y |}. Let
f : S2 → S2 be a length-preserving function. We define the left projection of f
as the function fL: S2 → S where fL(X) is equal to the first |X |/2 bits of f(X).
We define the right projection of f as the function fR: S2 → S where fR(X) is
equal to the last |X |/2 bits of f(X). Of course f(X) = fL(X) || fR(X).

When we say “Replace the last � bits of M , Last, by F (Last)” we mean
(1) parse M into X || Last where |X | = |M | − � and |Last| = �; (2) let Z
be F (Last); and (3) replace M by X || Z. We define the semantics of similar
uses of “Replace . . .” in the natural way.

The notation “XY Z ← M of lengths x, y, z” for any string M with |M | =
x + y + z means parse M into three strings of length x, y, and z and assign
these values to X , Y , and Z, respectively. The notation is extended to the case
of parsing M into two halves in the natural way.

Finally, an involution is a permutation g which is its own inverse: g(g(x)) = x.

Security notions. When an adversaryA is run with an oracleO we let AO ⇒ 1
denote the event that A outputs the bit 1. Let E : K ×M → M be a cipher.
Then we define the following advantages for an adversary A:

How to Enrich the Message Space of a Cipher 105

Adv±prp
E (A) = Pr

[
K

$←K : AEK , DK ⇒ 1
]
− Pr
[
π

$← Perm(M) : Aπ, π−1 ⇒ 1
]

Adv±prf
E (A) = Pr

[
K

$←K : AEK , DK ⇒ 1
]
− Pr
[
ρ, σ

$← Func(M) : Aρ, σ ⇒ 1
]

where the probabilities are over the choice of K or choice of π (resp. ρ, σ) and
the coins used by A. The first experiment represents distinguishing E and its
inverse from a random length-preserving permutation and its inverse and the
second experiment represents distinguishing E and its inverse from two random
length-preserving functions. In both settings, we demand that the adversary A,
given oracles f, g, does not repeat any query, does not ask g(Y) after receiving Y
in response to some query f(X), and does not ask f(X) after receiving X in
response to some query g(Y). Such forbidden queries are termed pointless.

While the above formalization allows variable input length (VIL) adversaries,
we can also restrict adversaries to only query messages of a single length. We
call such adversaries fixed input length (FIL) adversaries.

Informally, a cipher is called a “strong pseudorandom permutation” if no
reasonable adversary A can distinguish the enciphering and deciphering func-
tions, randomly keyed, from a randomly selected permutation and its inverse:
Adv±prp

E (A) is small. Our theorems make concrete statements about this and so
we will not have to formalize “reasonable” or “small.” Resources we pay attention
to are the adversary’s maximum running time (which, by convention, includes
the length of the program); the number of queries it asks; and the lengths of the
queries. For any cipher E with inverse D, define TimeE(μ) = max{Tkey , TE , TD}
where Tkey is the maximum time required to generate a key L for the scheme,
TE is the maximum time to run EL on a message of at most μ bits, and TD is
the maximum time to run DL on a ciphertext of at most μ bits.

3 The XLS Construction

Fix a blocksize n. Let E : KE ×M →M be a cipher with M ⊆ {0, 1}≥n and let
E: KE × {0, 1}n → {0, 1}n be a blockcipher. Finally, define a length-preserving
permutation mix: S2 → S2 where S ⊇ ∪n−1

i=1 {0, 1}i. Then we define a cipher
E∗ = XLS[mix, E , E] with key space K∗ = KE × KE and message space M∗ =
M || {0, 1}<n. For keys L ∈ KE and K ∈ KE we have E∗

L,K(·) = E∗((L, K), ·).
See Fig. 1 for the definition.

Enciphering a message M with E∗ = XLS[mix, E , E] is straightforward. If
M ∈ M, then simply apply E . Otherwise, apply E to the last full n-bit block
of M and replace those bits with the result. Then ‘mix together’ the last 2s
bits, again replacing the appropriate bits with the resulting mixture. Flip bit
|M | − 2s, which is the first bit from the right not affected by mix. Apply E to
as many bits as possible, starting from the left. Finally, just repeat the first
three steps in reverse order. Deciphering is equally simple, and in fact, if one
implements mix with an involution, as we suggest, then the inverse of E∗ is just
D∗ = XLS[mix,D, D].

106 T. Ristenpart and P. Rogaway

Algorithm E∗
L,K(M)

00 If M ∈ M then return EL(M)
01 Let l < |M | be largest number such that {0, 1}l ⊆ M; s ← |M | − l
02 If s ≥ n or l < n then Return ⊥
03 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
04 Replace the last 2s bits of M , Last, with mix(Last)
05 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
06 Replace the first l bits of M , First, with EL(First)
07 Replace the (|M | − 2s)’th bit of M , b, with flip(b)
08 Replace the last 2s bits of M , Last, with mix(Last)
09 Replace the last full n-bit block of M , LastFull, with EK(LastFull)
10 Return M

M5

EK

M2

M6

C6

C5C4

C2

flip

M4!

C4!

n bits

l bits

n bits
EK

M3M4

flip
2s bits

M7

mix

C1

C1

C1 C3

C3

M7

mix

EL

M3

M1

M1

M1

2s bits

Fig. 1. Top: Enciphering algorithm E∗ = XLS[mix, E , E]. Bottom: Enciphering M =
M1 || M2 || M3 under E∗ where M is not in M; l < |M | is the largest value such that
{0, 1}l ⊆ M; s = |M | − l; M1 ∈ {0, 1}l−n; M2 ∈ {0, 1}n; and M3 ∈ {0, 1}s.

Why, intuitively, should XLS work? “Working” entails that each output bit
strongly depends on each input bit. Since E presumably already does a good job
of this we need only worry about mixing in the “leftover” s bits for M /∈M. We
mix in these bits utilizing the mixing function mix. But since mix will be a simple
combinatorial object—it is unkeyed and will have no “cryptographic” property—
we need to “protect” its input with the blockcipher. The “symmetrizing” of the

How to Enrich the Message Space of a Cipher 107

protocol—repeating the blockcipher call and the mixing step in the reverse order
so that lines 03 → 09 are identical to lines 09 → 03—helps achieve strong PRP-
security: each input bit must strongly depend on each output bit, as queries can
be made in the forward or backward direction. Finally, the bit-flipping step is
just a symmetry-breaking technique to ensure that different-length messages are
treated differently.

If mix does a “good” job of mixing, then XLS will in fact be secure, as we
prove in Section 6. But what is the meaning of “good,” and how do we make a
mixing function that is simultaneously good, efficient, and easy to implement?
We now turn towards answering these questions.

4 The Mixing Function

We now look at several possible ways of implementing mix, to build intuition on
what properties are needed for the security of XLS. In the end we formally define,
quantitatively, the sufficient condition of interest. For ease of exposition we will
often silently parse the input to mix into its two halves, i.e., mix(AB) means
that A || B ∈ S2 and that |A| = |B|. Also we interchangeably write mix(AB)
and mix(A, B), which are equivalent.

A naive approach. Let’s start with a natural construction that, perhaps sur-
prisingly, does not lead to a secure construction. Suppose we define mixWrong by
saying that mixWrong(AB) = A⊕B || B for equal-length A, B: the mixing func-
tion xors the right half of the input into the left half, outputting the result and
the original right half. Clearly mixWrong is a length-preserving permutation. Fur-
thermore, it might seem sufficient for XLS because it will mix the “leftover” bits
into those handled by E . But this intuition is flawed: E∗ = XLS[mixWrong, E , E]
is easily distinguished from a length-preserving permutation on M∗. An adver-
sary can simply query 0n || 0n−1 and 1n || 0n−1. As one can easily verify, both
E∗(0n || 0n−1) and E∗(1n || 0n−1) will have output with the last n− 1 bits equal
to 0n−1. This would be true of a random permutation with probability at most
1/2n−1, and so the adversary’s advantage is close to one. In fact mixWrong does
not do a good job of mixing: the right half of the output is only a function of
the right half of the input. One can try various fixes, but ultimately it appears
that using just xors is inherently inadequate.

Using orthogonal latin squares. The failure above suggests that what is
needed is a mixing function with symmetry, in the sense that both the left and
right halves of the output are dependent on both the left and right halves of
the input. To achieve such a goal we can turn to the classical combinatorial
objects known as a pair of orthogonal Latin squares [7], also called a multiper-
mutation [27,29]. This is a permutation mix: S2 → S2 such that, for any C ∈ S,
mixL(C, ·), mixL(·, C), mixL(C, ·), and mixR(·, C) are all permutations, where mixL

and mixR denote the projection of mix onto its first and second component. Let
us describe a concrete realization. Fix a finite field F2s for each s and view each

108 T. Ristenpart and P. Rogaway

YX

BA

dbl

YX

BA

rol

Fig. 2. The mixing functions mix1 (left) and mix2 (right). Here A, B ∈ {0, 1}<n with
s = |A| = |B|. The operation dbl is a multiplication by 2 = 0s−210 = x in the finite
field F2s and rol is a circular left rotation by one bit.

s-bit string as an element of this field. Then we can build a mixing function mix1
by saying that

mix1(AB) = (3A + 2B) || (2A + 3B) = (A + 2(A + B), B + 2(A + B))

for equal-length strings A and B (we will assume the length to be at least 2).
Here addition and multiplication are over F2s and 2 = 0s−210 = x and 3 =
0s−211 = x + 1. Addition is bitwise xor and multiplication by 2, which we also
denote dbl, can be implemented by a shift and a conditional xor. The mixing
function mix1 has several nice properties. First, it is a permutation and, in fact,
an involution (meaning mix = mix−1). Moreover, for any C ∈ {0, 1}s we have
that mix1L(C, ·), mix1R(C, ·), mix1L(·, C), and mix1R(·, C) are all permutations
on {0, 1}s.

We show later that, when used in XLS, mixing function mix1 leads to a secure
construction. Moreover, it is fast and relatively simple. But implementing it in
XLS requires a table of constants corresponding to irreducible polynomials, one
for each s ≤ n − 1. As it turns out, we can do better.

The simplified mixing function. We now simplify the mixing function mix1.
Let rol(X) represent left circular bit-rotation, that is, for any string X of
length s let rol(X) = X [2]X [3] · · ·X [s]X [1]. Then define mix2 by

mix2(AB) = (A⊕ rol(A⊕B)) || (B⊕ rol(A⊕B))

where A and B are equal-length strings. See Fig. 2. Notice the similarity with
mix1: we replaced multiplication by two with a left circular rotation. The bit
rotation “approximates” a proper multiplication, eliminating, in an implemen-
tation, the conditional xor and the table of constants. As before, mix2 is an
involution.

Quantifying the quality of mixing functions. We now formalize the
properties of a mixing function that are needed in the proof of XLS.

Definition 1. Fix a set S ⊆ {0, 1}≥1, let mix: S2 → S2 be a length-preserving
permutation, and let ε: N → [0, 1]. We say that mix is an ε(s)-good mixing
function if, for all s such that {0, 1}s ⊆ S, we have that

How to Enrich the Message Space of a Cipher 109

(1) mixL(A, ·) is a permutation for all A ∈ {0, 1}s,
(2) mixR(·, B) is a permutation for all B ∈ {0, 1}s,

(3) Pr[R $←{0, 1}s : C = mixL(R, B)] ≤ ε(s) for all B, C ∈ {0, 1}s, and

(4) Pr[R $←{0, 1}s : C = mixR(A, R)] ≤ ε(s) for all A, C ∈ {0, 1}s . �

The best one can hope for is a 2−s-good mixing function. In fact mix1 is such a
function, while the mix2 function is just a factor of two off.

Lemma 1. The mixing function mix1 is a 2−s-good mixing function. The mixing
function mix2 is a 2−s+1-good mixing function. �

Proof: Since for any s ∈ [1 .. n−1] and any C ∈ {0, 1}s we have that mix1L(C, ·),
mix1R(C, ·), mix1L(·, C), and mix1R(·, C) are all permutations, the first half of
the lemma is clear.

That mix2 meets parts 1 and 2 of the definition is clear. For the third part,
we have that

mix2L(R, B) = R⊕ rol(R⊕B) = R⊕ rol(R)⊕ rol(B)

and so we bound the number of values R such that C ⊕ rol(B) = R⊕ rol(R).
Let C′ = C ⊕ rol(B), which is a constant. Then we have that

R[1]⊕R[s] = C′[1]
R[2]⊕R[1] = C′[2]

...
R[s− 1]⊕R[s− 2] = C′[s − 1]

R[s]⊕R[s− 1] = C′[s]

Note that there only exists a string R that satisfies the above equalities if
C′[1]⊕C′[2]⊕ · · · ⊕C′[s] = 0. If there exists a solution, then pick a value
for R[1]. That choice and the equations above combine to specify R[2], . . . , R[s].
This means that there are at most two possible values of R and so the prob-
ability that C = mix2L(R, B) is at most 2/2s. The proof of the fourth part is
symmetric.

We point out that the properties of circular rotations combined with xors as
utilized in mix2 have been used before in different settings, such as [23].

We have introduced two mixing functions for the following reason: mix1 is
conceptually more elegant, while mix2 is operationally more elegant. In addi-
tion, mix2 is in effect an approximation of mix1, making the latter an important
conceptual building block. Such mixing functions might prove useful in future
provable-security results.

Note that our definition of an ε(s)-good mixing function is general, but XLS
requires a mixing function for which S ⊇ ∪n−1

i=1 {0, 1}i. This is clearly the case for
mix1 and mix2. For the rest of the paper when we refer to an ε(s)-good mixing
function, we implicitly require that this function is well-defined for such an S.

110 T. Ristenpart and P. Rogaway

5 The Bit Flips

In steps 05 and 07 of XLS (see Fig. 1) we flip a single bit. Flipping bits in
this manner is unintuitive and might seem unimportant for the security of XLS.
However, the bit flips are actually crucial for the security of the scheme when in
the VIL setting. Let E† be the cipher defined by running the algorithm of Fig. 1
except with lines 05 and 07 omitted. Then the following VIL adversary A easily
distinguishes E† from a family of random permutations. The adversary A makes
two enciphering queries on M = 0n+1 and M ′ = 0n+2, getting return values C
and C′ respectively. If the first n bits of C and C′ are equal, then A outputs 1
(the oracles are likely the construction) and otherwise outputs 0 (the oracles are
likely a random permutation). We have that Pr[K $←K∗ : AE†(·),D†(·) ⇒ 1] = 1.
This is so because for both queries the inputs to E are necessarily the same (as
one can verify quickly by following along in the diagram in Fig. 1; remember to
omit the flip steps). Clearly Pr[π $← Perm(M∗) : Aπ(·),π−1(·) ⇒ 1] = 2−n and
so A has large advantage.

6 Security of XLS

We are now ready to prove the security of XLS. The proof is broken into two
parts: first we show that XLS is secure in an information-theoretic setting (i.e.,
using actual random permutations as components). Afterwards we pass to a
complexity-theoretic setting to get our main result.

Theorem 1. Fix n and an ε(s)-good mixing function mix. Let M ⊆ {0, 1}≥n

and E∗ = XLS[mix, Perm(M), Perm(n)]. Then for any adversary A that asks
at most q queries we have that Adv±prf

E∗ (A) ≤ 5q2 ε(s)/2n−s + 3q2/2n for any
s ∈ [1 .. n− 1], and so, by Lemma 1,

Adv±prf
E∗ (A) ≤ 8q2

2n
and Adv±prf

E∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. �

Proof. Due to space constraints, we only present a self-contained chunk of the
proof together with a sketch of the other portion of the proof. See the full
version [25] for the complete proof. Fix n and let mix: S2 → S2 be an ε(s)-good
mixing permutation. Let E : Perm(M)×M→M be a cipher with message space
M and let E: Perm(n)×{0, 1}n → {0, 1}n be a blockcipher. Note that these last
two simply implement a family of random length-preserving permutations on M
and a random permutation on {0, 1}n, respectively. Let A be a ±prf adversary
against E∗ = XLS[mix, E , E]. We therefore must bound

Adv±prf
E∗ (A) = Pr

[
K

$←K∗ : AE∗
K ,D∗

K ⇒ 1
]
− Pr
[
ρ, σ

$← Func(M∗) : Aρ, σ ⇒ 1
]
.

Recall that we disallow A from making pointless queries. We utilize a game-
playing argument [5] and the first two games are G0 and G1, shown in Fig. 3.

How to Enrich the Message Space of a Cipher 111

procedure ChooseE(X)

Y
$← {0, 1}|X|

If Y ∈ RE then bad ← true , Y
$← RE

If X ∈ DE then bad ← true , Y ← E(X)

E(X) ← Y ; D(Y) ← X

RE ∪← Y ; DE ∪← X; Return Y

procedure ChooseD(Y) G0 G1

X
$← {0, 1}|Y |

If X ∈ DE then bad ← true , Y
$← DE

If Y ∈ RE then bad ← true , X ← D(Y)

E(X) ← Y ; D(Y) ← X

RE ∪← Y ; DE ∪← X; Return X

procedure ChooseE(X)

Y
$← {0, 1}|X|

If Y ∈ RE then bad ← true , Y
$← RE

If X ∈ DE then bad ← true , Y ← E(X)

E(X) ← Y ; D(Y) ← X

RE ∪← Y ; DE ∪← X; Return Y

procedure ChooseD(Y)

X
$← {0, 1}|Y |

If X ∈ DE then bad ← true , Y
$← DE

If Y ∈ RE then bad ← true , X ← D(Y)

E(X) ← Y ; D(Y) ← X

RE ∪← Y ; DE ∪← X; Return X

procedure Enc(M)
j ← j + 1; M j ← M ; If M j ∈ M then Return Cj ← ChooseE(M j)

Let s be smallest number s.t. {0, 1}|Mj |−s ∈ M
m ← |M j | − n − s; M j

1 M j
2 M j

3 ← M j of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. M j

2 = M i
2

If i < j then M j
4 ← M i

4; M j
5 ← M i

5

Else M j
4 M j

5 ← ChooseE(M j
2) of lengths n − s, s

M j
6 M j

7 ← mix(M j
4 , M j

3) of lengths s, s
Cj

1 Cj
4! Cj

6 ← ChooseE(M j
1 || flip1(M j

4) || M j
6) of lengths m, n − s, s

Cj
5 Cj

3 ← mix(Cj
6 , M j

7) of lengths s, s
Cj

2 ← ChooseE(flip1(Cj
4!) || Cj

5)
Return Cj

1 Cj
2 Cj

3

procedure Dec(C)
j ← j + 1; Cj ← C; If Cj ∈ M then Return M j ← ChooseD(Cj)

Let s be smallest number s.t. {0, 1}|Cj |−s ∈ M
m ← |Cj | − n − s; Cj

1 Cj
2 Cj

3 ← Cj of lengths m, n, s
Let i ∈ [1 .. j] be smallest index s.t. Cj

2 = Ci
2

If i < j then Cj
4 ← Ci

4, Cj
5 ← Ci

5

Else Cj
4 Cj

5 ← ChooseD(Cj
2) of lengths n − s, s

Cj
6 M j

7 ← mix(Cj
4 , Cj

3) of lengths s, s
M j

1 M j
4! M j

6 ← ChooseD(Cj
1 || flip1(Cj

4) || Cj
5) of lengths m, n − s, s

M j
5 M j

3 ← mix(M j
6 M j

7) of lengths s, s
M j

2 ← ChooseD(flip1(M j
4!) || M j

5)
Return M j

1 M j
2 M j

3

Fig. 3. Games G0 (boxed statements included) and G1 (boxed statements dropped)
used in the proof of Theorem 1. Initially, j = 0 and DE , RE ,DE, RE are empty sets
and the partial functions E ,D, E, D are everywhere undefined. The function flip1(X),
for any bit string X = X[1] · · · X[s], outputs the string with last bit complemented:
X[1] · · · X[s − 1]flip(X[s]).

112 T. Ristenpart and P. Rogaway

In G0 we build E and E lazily using the appropriate Choose procedures, and
so E and E are partial functions in this context. Note that DE ,RE , DE, RE are
initially empty and the functions E ,D, E, D are everywhere undefined. As usual,
D and D represent the inverses of E and E. While game G0, which includes
the boxed statements, enforces that E and E be length-preserving permutations,
game G1 dispenses with that requirement (the boxed statements are not included
in G1). A flag bad is initially false and set to true when, in the course of building
E and E, a duplicate domain or range point is initially selected. In G0 these
points are not used (enforcing that the functions are permutations), but in G1
we use them and thus duplicate points can be added to DE , RE , DE, and RE.
A collision is just a pair of equal strings in one of the sets. Note that for DE
and RE , only strings of the same length can collide.

Game G0 exactly simulates E∗ and its inverse while G1 always returns random
bits. This second statement needs to be justified for the case of a query M /∈M
(or C /∈ M). Particularly, if the jth query is to encipher M j /∈ M, then the
last s bits returned are Cj

3 = mixR(Cj
6 , M j

7). Here Cj
6 is uniformly selected, and

by the definition of an ε(s)-good mixing function, we have that mixR(Cj
6 , M j

7) is a
permutation of Cj

6 . So Cj
3 inherits its distribution. The same reasoning justifies

the distribution of deciphering queries C /∈ M. We can therefore replace the
oracles A queries with the two described games and apply the fundamental
lemma of game playing [5] to get

Adv±prf
E∗ (A) = Pr

[
AG0 ⇒ 1

]
− Pr
[
AG1 ⇒ 1

]
≤ Pr
[
AG1 sets bad

]
. (1)

The following lemma captures the bound on the ability of A to set bad.

Lemma 2. Pr
[
AG1 sets bad

]
≤5q2 ε(s)/2n−s+3q2/2n for any s ∈ [1 .. n− 1]. �

Combining Lemma 2 with Equation 1 implies the theorem statement, and a full
proof of the lemma appears in [25]. Here we informally sketch one of the more
interesting cases for proving the lemma above. In particular, we reason about
the probability that A can set bad by causing a collision in the set DE , which
represents the domain of E . Note that in the full proof in [25], we go through
several game transitions before reasoning about this case—here we do it in the
context of game G1 and thus end up being a bit informal. For simplicity we’ll
just focus on enciphering queries. Suppose that the ith and jth (with i < j)
enciphering queries result in applying E to the same domain point. That is, if
we let X i and Xj be the bit strings added to DE during queries i and j, then
a collision in DE occurs if X i = Xj and l ≡ |X i| = |Xj|. If such a collision
occurs with high probability, then A would be able to distinguish easily. There
are two main cases to consider, based on the lengths of the queried messages M i

and M j . The cases are marked by triangles.

� Suppose that |M i| /∈ M and |M j | /∈ M. Then the two domain points are
X i = M i

1 || flip1(M i
4) || M i

6 and Xj = M j
1 || flip1(M j

4) || M j
6 . Let si = |M i

6|
and sj = |M j

6 | (necessarily we have that |M i| − si = |M j| − sj). We break down
the analysis into two subcases:

How to Enrich the Message Space of a Cipher 113

• If M i
2 �= M j

2 then M j
4 || M j

5 are selected uniformly and independently from
any random choices made during query i. We have then that flip1(M j

4)
consists of n − sj randomly selected bits, which will collide with the ap-
propriate n − sj bits of X i with probability 2−n+s. Furthermore, M j

6 =
mixL(M j

5 , M j
3) where M j

5 is a string of sj random bits. We can apply the
definition of an ε(s)-good mixing function to get that the probability that
M j

6 collides with some other value is at most ε(s). Combining the two prob-
abilities, we see that the probability that X i = M j

1 || flip1(M j
4) || M j

6 is
at most ε(s)/2n−s.

• If M i
2 = M j

2 then we can show that the probability that X i = Xj is
zero. First consider if s ≡ si = sj . Then we have that M i

4 = M j
4 and

M i
5 = M j

5 . For a collision to occur it must be that M i
1 = M j

1 and M i
6 =

M j
6 . But because of the permutivity of mixL(A, ·), as given by Definition 1

part 1, this last equivalence implies that M i
3 = M j

3 . In turn this means
that M i = M j , which would make query j pointless. But since we disallow
A from making pointless queries, we have a contradiction. Second consider,
without loss of generality, that si < sj . Then we have that X i can not equal
Xj (recall that |X i| = |Xj | = l) because flip1 ensures that X i

[
l − sj
]
�=

Xj
[
l − sj
]
. Thus, in either situation, the probability of a collision is zero.

� Now suppose that |M i| ∈ M and |M j | /∈ M. The two domain points are M i

and Xj = M j
1 || flip1(M j

4) || M j
6 . Let sj = |M j

6 |. We have that M j
4 and M j

5

are uniformly selected after the adversary has specified M i (since i < j). Thus,
flip1(M j

4) will collide with the appropriate bits of M i with probability 2−n+s.
Since M j

6 = mixL(M j
5 , M j

3) we can apply the definition of a good mixing function.
This gives that the probability of M j

6 colliding with the appropriate sj bits of M i

is at most ε(s). Therefore the probability that M i = Xj is at most ε(s)/2n−s.
If on the other hand |M i| /∈ M while |M j| ∈ M, then we can only apply

similar reasoning if we show that A learns nothing about certain random choices
made in the course of answering query i. We do just that rigorously in the full
proof.

So in the cases above the probability of a collision is no greater than ε(s)/2n−s,
where s ∈ [1 .. n − 1]. Because each query adds one string to DE , we have that
|DE| = q. Thus, the total probability of bad being set due to a collision in the
domain of E is at most (

q

2

)
ε(s)
2n−s

≤ q2 ε(s)
2n−s+1

.

Combining this (via a union bound) with analyses of the other ways in which
bad can be set yields a sketch of the lemma.

The next theorem captures the security of XLS in a complexity-theoretic setting.
It’s proof is by a standard hybrid argument, which utilizes as one step Theorem 1.
See the full version for details [25].

Theorem 2. Fix n and an ε(s)-good mixing function mix. Let E : KE ×M →
M be a cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher. Let E∗ =

114 T. Ristenpart and P. Rogaway

XLS[mix, E , E] and let A be an adversary that runs in time t and asks at most q
queries, each of at most μ bits. Then there exists adversaries B and C and
an absolute constant c such that Adv±prp

E∗ (A) ≤ Adv±prp
E (B) + Adv±prp

E (C) +
5q2 ε(s)/2n−s + 4q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1

Adv±prp
E∗ (A) ≤ Adv±prp

E (B) + Adv±prp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cμq log q and asks qB = q queries,
each of length at most μ, and C runs in time tC ≤ t + (q + 1) · TimeE(μ) + cμq
and asks qC ≤ 2q queries, each of length at most n. �

7 Supporting Tweaks

A tweakable cipher [16,15] is a function Ẽ : KE × T ×M →M where KE �= ∅ is
the key space, T �= ∅ is the tweak space, and M is the message space. We require
that ẼT

K(·) is a length-preserving permutation for all K ∈ KE and T ∈ T . We
write the inverse of Ẽ as D̃. A tweakable blockcipher is a tweakable cipher with
M = {0, 1}n for some fixed n. Tweakable ciphers are useful tools for building
higher-level protocols. The tweak of a cipher can be used as, for example, a
sector index.

The security of a tweakable cipher is based on indistinguishability of the
scheme and a tweakable random permutation. More formally, we define the fol-
lowing advantages

Adv±�prp
�E

(A) = Pr
[
K

$←KE : A�EK , �DK ⇒ 1
]
− Pr
[
π̃

$← PermT (M) : A�π,�π−1⇒ 1
]

Adv±�prf
�E

(A) = Pr
[
K

$←KE : A�EK , �DK ⇒ 1
]
− Pr
[
ρ, σ

$← FuncT (M) : Aρ,σ ⇒ 1
]

where the probabilities are over the choice of K or π̃ (resp. ρ, σ) and the coins
used by A. Here PermT (M) is the set of all functions π̃: T ×M → M where
π̃(T, ·) is a length-preserving permutation and FuncT (M) is the set of all func-
tions ρ: T ×M →M where ρ(T, ·) is length-preserving.

XLS and tweaks. The XLS construction works for tweaks. By this we mean
that if the cipher E utilized in XLS is tweakable, then the resulting cipher with
the enlarged message space is also tweakable. More specifically, fix an ε(s)-good
mixing function. If we construct Ẽ∗ = XLS[mix, Ẽ , E] where Ẽ : KE×T ×M→M
is a tweakable cipher and E: KE×{0, 1}n → {0, 1}n is a conventional blockcipher
then the resulting scheme Ẽ∗ is tweakable with tweak space T and enlarged
message space M∗ = M || {0, 1}<n. Here XLS is implicitly changed by adding
the tweak T as a superscript to E on lines 00 and 06 of Fig. 1. The following
theorem statements, which are analogous to Theorem 1 and Theorem 2, establish
the security of XLS with tweaks.

How to Enrich the Message Space of a Cipher 115

Theorem 3. Fix n and an ε(s)-good mixing function mix. Let M ⊂ {0, 1}≥n,
let T be a nonempty set, and let Ẽ∗ = XLS[mix, PermT (M), Perm(n)]. Then

for any adversary A that asks at most q queries we have that Adv±�prf
�E∗ (A) ≤

5q2 ε(s)/2n−s + 3q2/2n for any s ∈ [1 .. n− 1], and so, by Lemma 1

Adv±prf
E∗ (A) ≤ 8q2

2n
and Adv±prf

E∗ (A) ≤ 13q2

2n

for mix = mix1 and mix = mix2, respectively. �

To prove this theorem, we can adjust the proof of Theorem 1 as follows. Re-
place E with Ẽ throughout. Modify games G0 and G1 so enciphering and deci-
phering queries take a tweak, and lazily build separate random length-preserving
functions Ẽ for each tweak queried (in G0 they are permutations while in G1
they are just functions). Lemma 2, and its proof, can be modified in the natural
way. See [25] for details. Combining Theorem 1 with a standard hybrid argument
proves the next theorem.

Theorem 4. Fix n and an ε(s)-good mixing function mix. Let Ẽ : KE×T ×M →
M be a tweakable cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher.
Let E∗ = XLS[mix, Ẽ , E] and let A be an adversary that runs in time t and
asks at most q queries, with maximal query length being μ bits Then there ex-
ists adversaries B and C and an absolute constant c such that Adv±�prp

�E∗ (A) ≤
Adv±�prp

�E
(B) + Adv±prp

E (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n − 1], and
so, by Lemma 1

Adv±�prp
E∗ (A) ≤ Adv±�prp

�E
(B) + Adv±prp

E (C) +
9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cμq log q and asks qB = q queries,
none longer than μ, and where C runs in time tC ≤ t + (q + 1) ·Time

�E(μ) + cμq
and asks qC ≤ 2q queries, each of length at most n. �

Note that the concrete security bounds are the same in both the tweaked and
untweaked settings. Intuitively this is because having a tweakable family of per-
mutations is a stronger primitive than a normal family of permutations, and the
adversary might as well just focus its attack on a single tweak.

8 XLS with Ordinary PRPs

If we apply the XLS construction to cipher Ẽ and blockcipher E that are both
secure as (ordinary) pseudorandom permutations (i.e., adversaries are restricted
to chosen-plaintext attacks), then the resulting cipher with expanded message
space is also secure as a PRP. More formally, we define the following advantage

Adv�prp
�E (A) = Pr

[
K

$←KE : A�EK ⇒ 1
]
− Pr
[
π̃

$← PermT (M) : A�π⇒ 1
]

116 T. Ristenpart and P. Rogaway

where the probability is over the random choice of K or π and the random
coins used by A. While the theorems from Section 7 do not imply the security
of XLS using ordinary (tweaked) PRPs, their proofs can be (simplified) in a
straightforward manner to derive the PRP security of XLS as captured by the
next theorem statement.

Theorem 5. Fix n and an ε(s)-good mixing function mix. Let Ẽ : KE×T ×M →
M be a tweakable cipher and E: KE × {0, 1}n → {0, 1}n be a blockcipher.
Let E∗ = XLS[mix, E , E] and let A be an adversary that runs in time t and
asks at most q queries, with maximal query length being μ bits Then there ex-
ists adversaries B and C and an absolute constant c such that Adv�prp

�E∗ (A) ≤
Adv�prp

�E (B) + Advprp
E (C) + 5q2 ε(s)/2n−s + 4q2/2n where s ∈ [0 .. n− 1], and so,

by Lemma 1

Adv�prp
E∗ (A) ≤ Adv�prp

E (B) + Advprp
E (C) +

9q2

2n

when mix = mix1, and the same expression, but with the 9 replaced by 14, when
mix = mix2. Here B runs in time tB = t + cμq log q and asks qB = q queries,
none longer than μ, and where C runs in time tC ≤ t + (q + 1) ·Time

�E(μ) + cμq
and asks qC ≤ 2q queries, each of length at most n. �

An immediate corollary of the theorem is security of XLS for ordinary, untweaked
PRPs (just set the tweak space T to a single value).

Acknowledgments

We thank Mihir Bellare, Jesse Walker, and the anonymous referees. This work
was supported in part by NSF grants CCR-0208842, CNS-0524765, and a gift
from Intel Corp; thanks to the NSF and Intel for their kind support.

References

1. An, J., Bellare, M.: Constructing VIL-MACs from FIL-MACs: Message authenti-
cation under weakened assumptions. In: Wiener, M.J. (ed.) CRYPTO 1999. LNCS,
vol. 1666, pp. 252–269. Springer, Heidelberg (1999)

2. Anderson, R., Biham, E.: Two practical and provably secure block ciphers: BEAR
and LION. In: Gollmann, D. (ed.) Fast Software Encryption. LNCS, vol. 1039, pp.
113–120. Springer, Heidelberg (1996)

3. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In:
Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg
(1999)

4. Bellare, M., Rogaway, P.: Encode-then-encipher encryption: How to exploit nonces
or redundancy in plaintexts for efficient cryptography. In: Okamoto, T. (ed.) ASI-
ACRYPT 2000. LNCS, vol. 1976, pp. 317–330. Springer, Heidelberg (2000)

5. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for
code-based game-playing proofs. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS,
vol. 4004, pp. 409–426. Springer, Heidelberg (2006)

How to Enrich the Message Space of a Cipher 117

6. Black, J., Rogaway, P.: Ciphers with arbitrary finite domains. In: Preneel, B. (ed.)
CT-RSA 2002. LNCS, vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

7. Cayley, A.: On Latin squares. Oxford Cambridge Dublin Messenger Math. 19, 135–
137 (1890)

8. Chakraborty, D., Sarkar, P.: A new mode of encryption providing a strong
tweakable pseudo-random permutation. In: Robshaw, M. (ed.) FSE 2006. LNCS,
vol. 4047, pp. 293–309. Springer, Heidelberg (2006)

9. Chakraborty, D., Sarkar, P.: HCH: A new tweakable enciphering scheme using the
Hash-Encrypt-Hash approach. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006.
LNCS, vol. 4329, pp. 287–302. Springer, Heidelberg (2006)

10. Cook, D., Yung, M., Keromytis, A.: Elastic AES. Cryptology ePrint archive, report
2004/141 (2004)

11. Cook, D., Yung, M., Keromytis, A.: Elastic block ciphers. Cryptology ePrint
archive, report 2004/128 (2004)

12. Halevi, S.: EME∗: Extending EME to handle arbitrary-length messages with asso-
ciated data. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS,
vol. 3348, pp. 315–327. Springer, Heidelberg (2004)

13. Halevi, S.: TET: A wide-block tweakable mode based on Naor-Reingold. Cryptol-
ogy ePrint archive, report 20007/14 (2007)

14. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.)
CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)

15. Halevi, S., Rogaway, P.: A tweakable enciphering mode. In: Boneh, D. (ed.)
CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)

16. Liskov, M., Rivest, R., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

17. Luby, M., Rackoff, C.: How to construct pseudorandom permutations from pseudo-
random functions. SIAM Journal of Computing 17(2), 373–386 (1988)

18. Lucks, S.: BEAST: A fast block cipher for arbitrary blocksizes. In: Communications
and Multimedia Security, IFIP, vol. 70, pp. 144–153. Chapman & Hill, Sydney,
Australia (1996)

19. Lucks, S.: Faster Luby-Rackoff ciphers. In: Gollmann, D. (ed.) Fast Software En-
cryption. LNCS, vol. 1039, pp. 189–203. Springer, Heidelberg (1996)

20. McGrew, D., Fluhrer, S.: The extended codebook (XCB) mode of operation. Cryp-
tology ePrint archive, report 2004/278 (2004)

21. Meyer, C., Matyas, M.: Cryptography: A New Dimension in Data Security. John
Wiley & Sons, New York (1982)

22. Naor, M., Reingold, O.: On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology 12(1), 29–66 (1999)

23. Patarin, J.: How to construct pseudorandom and super pseudorandom permu-
tations from one single pseudorandom function. In: Rueppel, R.A. (ed.) EURO-
CRYPT 1992. LNCS, vol. 658, pp. 256–266. Springer, Heidelberg (1993)

24. Patel, S., Ramzan, Z., Sundaram, G.: Efficient constructions of variable-input-
length block ciphers. In: Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS,
vol. 3357, pp. 326–340. Springer, Heidelberg (2004)

25. Ristenpart, T., Rogaway, P.: How to enrich the Message Space of a Cipher (full
version of this paper), http://www.cse.ucsd.edu/users/tristenp/

26. Schneier, B., Kelsey, J.: Unbalanced Feistel networks and block cipher design.
In: Gollmann, D. (ed.) Fast Software Encryption. LNCS, vol. 1039, pp. 121–144.
Springer, Heidelberg (1996)

http://www.cse.ucsd.edu/users/tristenp/

118 T. Ristenpart and P. Rogaway

27. Schnorr, C., Vaudenay, S.: Black box cryptanalysis of hash networks based on
multipermutations. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 47–57. Springer, Heidelberg (1995)

28. Schroeppel, R.: Hasty pudding cipher specification. First AES Candidate Workshop
(1998)

29. Vaudenay, S.: On the need for multipermutations: cryptanalysis of MD4 and
SAFER. In: Preneel, B. (ed.) Fast Software Encryption. LNCS, vol. 1008, pp.
286–297. Springer, Heidelberg (1995)

30. Wang, P., Feng, D., Wu, W.: HCTR: a variable-input-length enciphering mode.
In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS, vol. 3822, pp. 175–188.
Springer, Heidelberg (2005)

31. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

Security Analysis of Constructions Combining
FIL Random Oracles

Yannick Seurin and Thomas Peyrin

France Telecom R&D, 38-40 rue du Général Leclerc, F-92794 Issy-les-Moulineaux,
France

Université de Versailles, 45 avenue des Etats-Unis, F-78035 Versailles, France
yannick.seurin@m4x.org, thomas.peyrin@orange-ftgroup.com

Abstract. We consider the security of compression functions built by
combining smaller perfectly secure compression functions modeled as
fixed input length random oracles. We give tight security bounds and
generic attacks for various parameters of these constructions and apply
our results to recent proposals of block cipher-based hash functions.

Keywords: block ciphers, compression functions, hash functions, prov-
able security, random oracle.

1 Introduction

Cryptographic hash functions are fundamental primitives in information secu-
rity [17] used in a variety of applications such as message integrity, authenti-
cation schemes or digital signatures. Mathematically speaking, it is a function
from {0, 1}∗, the set of all finite length bit strings, to {0, 1}l where l is the fixed
size of the hash value. Ideally, a cryptographic hash function should possess the
following properties:

– collision resistance: finding a pair x �= x′ ∈ {0, 1}∗ such that H(x) = H(x′)
should require 2l/2 operations

– 2nd preimage resistance: for a given x ∈ {0, 1}∗, finding a x′ �= x such that
H(x) = H(x′) should require 2l operations

– preimage resistance: for a given y ∈ {0, 1}l, finding a x ∈ {0, 1}∗ such that
H(x) = y should require 2l operations.

All currently used hash functions are so-called iterated hash functions which
are designed by iterating a compression function with a fixed-length input, say
h : {0, 1}l+l′ → {0, 1}l. The iterated hash function H is then defined thanks
to domain extension methods. The most popular one is the Merkle-Damgård
method [5,18] which consists in first padding the input x so that the length of
the padded message is a multiple of l′ and outputing, for a padded message
consisting of m l′-bit blocks Pad(x) = x1‖ . . . ‖xm, the value ym defined by the
recurrence yi = h(xi‖yi−1), where y0 is a fixed constant of {0, 1}l. The yi’s are
called chaining variables. The popularity of the MD method comes from the

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 119–136, 2007.
c© International Association for Cryptologic Research 2007

120 Y. Seurin and T. Peyrin

fact that the hash function obtained is at least as resistant to collision attacks as
the compression function. However, recent results have highlighted the intrinsic
limitations of the MD approach [8,9] and motivated the study of other domain
extension methods [1,4].

Most popular hash functions (e.g. MD5, SHA1) make use of compression
functions build “from scratch”, not appealing to any lower-level primitive. An-
other direction of research consists in trying to turn a block cipher into a com-
pression function. This approach has been revived by the recent attacks on hash
function using compression functions of dedicated design [28,27]. The question of
how to turn a block cipher into a single block length (SBL) compression function
(i.e. whose output length is the same as the block length of the block cipher)
can be more or less considered as closed since the systematic study of Preneel
et al. [23] and Black et al. [2]. However, the block length of the most trusted
and standardized block ciphers such as DES and AES is too short to prevent
collision attacks by the birthday paradox on SBL hash functions based on them.
This is why there has been much effort in order to build a double block length
(DBL) or more generally a multiple block length (MBL) compression function
whose output is twice (or more) the block length of the block cipher. Most of the
earlier proposals [3,15,16,22,24] turned out to have weaknesses [10,15]. Proofs of
security for block cipher-based hash functions date back to Winternitz [29], who
used the ideal cipher model of Shannon [25] to prove the security of the Davies-
Meyer scheme against preimage attacks. Black et al. [2] used the same paradigm
to study all the natural ways of building SBL compression functions, a work
which had been initiated in [23]. Hirose [6,7] demonstrated the security of a fam-
ily of DBL compression functions using two independent block ciphers with key
length twice the block length, again in the ideal block cipher model. However, no
secure DBL scheme using block ciphers with key length equal to the block length
has been proposed so far. Nandi et al. [20] proposed DBL schemes with better
rates than those of Hirose and claimed to have proved that an adversary must
make Ω(22n/3) oracle queries to get a collision and Ω(24n/3) oracle queries to get
a preimage. However, in light of the attacks presented in [11] (where a preimage
attack requiring only O(2n) queries is described), we spotted a mistake in the
security proof of [20]. One of the goal of this paper is to remedy the strategy
they adopted.

At Asiacrypt ’06 [21], Peyrin et al. presented a general framework to analyse
how to combine secure compression functions in order to obtain compression
functions with longer output. This approach had already been adopted in a
series of papers [12,13,14] where partial answers were given thanks to error-
correcting codes theory. Analysing two types of generic attacks, Peyrin et al.
derived necessary conditions for the compression functions of their framework
to be secure. Nevertheless, no security proofs were given. The aim of this paper
is to analyse the constructions of the general framework introduced in [21] in
a proof oriented manner. Though we will work in the fixed input length (FIL)
random oracle model, this must be understood as a first step in the systematic
study of MBL compression functions based on block ciphers.

Security Analysis of Constructions Combining FIL Random Oracles 121

The paper is organized as follows. In section 2 we establish the notations and
some useful lemmas. In section 3 and 4 we carry out the security analysis for
preimage resistance and collision resistance respectively. In section 5 we apply
our results to previous proposals of block cipher-based hash functions and we
draw our conclusions and propose future work in section 6.

2 Definitions and Notations
Basic Notations. In all the following, In will denote the set {0, 1}n, and F(a, b)
the set of all functions from {0, 1}a to {0, 1}b. We will often consider vectors of
elements of In of various length which will be denoted by bold letters. For a
binary vector l = (l1, . . . , lr) ∈ {0, 1}r and X = (X1, . . . , Xr) ∈ (In)r, X · lT =
l1X1 ⊕ · · ·⊕ lrXr. Similarly, for a binary matrix L = [lT1 , . . . , lTs] ∈Mr,s({0, 1}),
X ·L is the vector (X · lT1 , . . . , X · lTs). Given two vectors X = (X1, . . . , Xr) and
Y = (Y1, . . . , Ys), X‖Y will denote the vector (X1, . . . , Xr, Y1, . . . , Ys). Finally,
‖·‖H will denote the Hamming weight of a vector and E the expected value of a
random variable.

Generic Constructions. The aim of this paper is to analyse the security of
a very general class of compression functions build from smaller secure com-
pression functions. Namely, our building blocks will be t compression functions
f (1), . . . , f (t) taking each k n-bit blocks as input and outputing one n-bit block.
For the security analysis, we will assume that these functions are independent
random oracles. The larger compression function will take as input m n-bit
message blocks and c n-bit chaining variable blocks, which will be denoted re-
spectively M = (M1, . . . , Mm) and H = (H1, . . . , Hc). These blocks will be
named external input blocks to distinguish them from the t ∗ k input blocks
to the inner compression functions, which will be named internal input blocks.
They are obtained as linear combinations of the external input blocks. Namely,
for each i ∈ [1..t], there is a binary matrix Ai ∈ M(m+c,k)({0, 1}) such that the
input to the i-th internal compression function is M‖H · Ai.

The output blocks of the internal compression functions

F = (f (1)(M‖H · A1), . . . , f (t)(M‖H · At))

are then mixed by a linear output layer B ∈ M(t,c)({0, 1}) to give the external
output blocks H ′ = (H ′

1, . . . , H
′
c) according to H ′ = F · B. In all the following,

it will be assumed that B has full rank (otherwise the external output blocks are
linearly dependent, which is clearly undesirable).

A compression function construction h is thus completely determined by the
parameters (c, t, k, m) and the input and output layers (Ai)i∈[1..t] and B. The
compression function obtained once the internal compression functions
f (1), . . . , f (t) are instantiated will be noted h(f(1),...,f(t)). The construction can
be summarized by the formula (see also Fig. 1)

h(f(1),...,f(t))(M‖H) =
(
f (1)(M‖H · A1), . . . , f (t)(M‖H · At)

)
· B. (1)

122 Y. Seurin and T. Peyrin

A1,...,t
H1

h
f(1) f(2) f(i) f(t)

k ������

m + c ������

Mm

H′
i

���	��

M1 Mi Hi Hc

H′
1 H′

c

������
������� ������
�	��

B

c ������

Fig. 1. The compression function h taking (m+ c) n-bit blocks in input and delivering
c n-bit output blocks. It is build from t compression functions f (i) taking k n-bit input
blocks and outputing one n-bit block.

A more general framework could encompass a feedforward of the external input
blocks, i.e. allowing to xor some external input blocks with some internal output
blocks. Though it would definitely be useful in the ideal block cipher model, we
do not believe this would strengthen in any way the constructions in the random
oracle model, and thus we consider this feature as out of the scope of the article.
In the following, we will often consider linear combinations of the coordinates of
the function h. For this, we will use the following notations. For x ∈ {0, 1}c, Gx

will be the function

Gx : M‖H → h(f(1),...,f(t))(M‖H) · xT .

Alternatively, Gx may be seen as a linear combination of the t functions M‖H →
f (i)(M‖H · Ai). Indeed, writing y = x · BT ∈ {0, 1}t, one has

Gx(M‖H) = (f (1)(M‖H · A1), . . . , f (t)(M‖H · At)) · yT .

It will often be more convenient to define the set Sx of “active” inner compression
functions, i.e. the set of integers j ∈ [1..c] such that the j-th coordinate of x · BT

is 1. Then Gx can be expressed by

Gx(M‖H) =
⊕

j∈Sx

f (j)(M‖H · Aj).

Security Model. In the following we will analyse the resistance of the compres-
sion functions we just described against preimage attacks and collision attacks.

Security Analysis of Constructions Combining FIL Random Oracles 123

An adversary will be an algorithm with access to oracles for the inner compres-
sion functions f (1), . . . , f (t). Given a finite set S, s

$←− S denotes the operation of
selecting s in the probability space S endowed with the uniform distribution. We
will work in the random oracle model, meaning that the inner compression func-
tions are uniformly and independently selected in the set F(kn, n). When these
functions are asked queries from an algorithm, their output is uniform and inde-
pendent from all other outputs, but consistent with answers to queries already
asked. We now define the preimage and collision resistance of the compression
function constructions.

Definition 1 (Preimage resistance of a compression function). Let h be
a (c, t, k, m)-compression function construction and let A be an adversary. Then
the advantage of A in finding a preimage for h is the real number

Advpre
h (A) = Pr

[
(f (1), . . . , f (t)) $←− F(kn, n)t; H ′ $←− (In)c;

M‖H $←− A(H ′) : h(f(1),...,f(t))(M‖H) = H ′
]
.

We associate to each compression function construction h the insecurity measure

Advpre
h (q) = max

A
{Advpre

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries
to each inner compression function f (1), . . . , f (t).

Definition 2 (Collision resistance of a compression function). Let h be
a (c, t, k, m)-compression function construction and let A be an adversary. Then
the advantage of A in finding a collision for h is the real number

Advcoll
h (A) = Pr

[
(f (1), . . . , f (t)) $←− F(kn, n)t; (M1‖H1, M2‖H2) $←− A :

M1‖H1 �= M2‖H2 ∧ h(f(1),...,f(t))(M1‖H1) = h(f(1),...,f(t))(M2‖H2)
]
.

We associate to each compression function construction h the insecurity measure

Advcoll
h (q) = max

A
{Advcoll

h (A)}

where the maximum is taken over all adversaries making at most q oracle queries
to each inner compression function f (1), . . . , f (t).

For the remainder of this paper we will make the following classical assump-
tions regarding the adversaries. First, they are computationally unbounded, in
consequence of what we can restrain ourselves wlog to deterministic adversaries
(so that we do not have to take into account any more the randomness com-
ing from the random choices of the algorithm). Second, an adversary does not
make the same oracle query more than once. Third, we will restrain ourselves to
adversaries making exactly q queries to each inner compression function. These
assumptions does not restrict the generality of the analysis in that for any ad-
versary A asking at most q queries there exists another adversary A′ verifying
the assumptions that achieves at least the same advantage as A.

124 Y. Seurin and T. Peyrin

Type I Constructions. A natural requirement for the compression functions
studied here would be that the image of two distinct inputs by any linear com-
bination of the output blocks are independent. This is generally not the case,
and compressions functions which does not possess this property are subject to
devastating attack called DF attacks (degrees of freedom) in [21]. This feature
is achieved by letting every external output block depend on all external input
block, no matter which invertible transformations of the external inputs and
outputs are used. Expressing it mathematically yields the following definition.

Definition 3 (Type I (for Independent) compression function cons-
truction). A (c, t, k, m)-compression function construction will be said to be of
type I iff for all x ∈ {0, 1}c \ {0},

⋂
j∈Sx

kerAj = {0}.

For such constructions, one can prove the following property (the proof is given
in Appendix A).

Lemma 1. Let h be a (c, t, k, m) compression function construction of type
I. Then for all x ∈ {0, 1}c \ {0}, and for all distinct M1‖H1 and M2‖H2,
Gx(M1‖H1) and Gx(M2‖H2) are uniformly random and independent.

Not all parameter sets permit to build type I compression function constructions.
More precisely, one has the following necessary condition, which was proved
in [21].

Lemma 2 ([21]). Let h be a (c, t, k, m) compression function construction of
type I. Then necessarily ∀x ∈ {0, 1}c \ {0}, ‖x · BT‖H ≥ m+c

k . In other words, B
must have minimal distance at least !m+c

k ".

Computable Inputs. In order to make our explanations more rigorous, we
will need the following notions of computability, which are generalizations of
concepts introduced in [20]. Informally speaking, once an adversary has made
certain queries to the inner compression functions, we want to define for each
M‖H the number of coordinates of h(M‖H) the adversary is able to compute.

Definition 4 (Gx-computable input). Let Q1, . . . ,Qt ⊂ (In)k be sets of
queries to each of the inner compression functions. For x ∈ {0, 1}c, we will
say that an external input M‖H ∈ (In)m+c is Gx-computable with respect to
these sets of queries if M‖H · Ai ∈ Qi, for each i ∈ Sx.

It is easy to verify that given sets of queries Q1, . . . ,Qt and x1, . . . , xr ∈ {0, 1}c,
M‖H is Gxi-computable for all i ∈ [1..r] implies that M‖H is Gx-computable
for all x ∈ Vec(x1, . . . , xr). It is thus natural to give the following definitions.

Definition 5 (V -computable input). Let V be a subspace of {0, 1}c, V �= ∅,
let Q1, . . . ,Qt ⊂ (In)k be the sets of queries to each of the inner compression
functions. We will say that an external input M‖H ∈ (In)m+c is V -computable
with respect to these sets of queries if M‖H is Gx-computable for all x ∈ V .

Let VM‖H be the biggest subspace such that M‖H is V -computable (possi-
bly reduced to {0}). If r is the dimension of VM‖H , we will say that M‖H

Security Analysis of Constructions Combining FIL Random Oracles 125

is r-computable. We will also talk of h-computable input when r = c and of
uncomputable input when r = 0 .

Definition 6 (Maximal number of (at least) r-computable inputs with
q queries). Let h be a compression function construction and q ≥ 1. We define
the maximal number of (at least) r-computable inputs with q queries βr(q) as
being

βr(q) = max
Q1,...,Qt

#{M‖H ∈ (In)m+c | M‖H is at least r-computable}

where the maximum is taken over all the possible sets of q queries to the inner
compression functions.

We will also need the following slightly different notion for r = 1:

β′
1(q) = max

x∈{0,1}c\{0}
max

Q1,...,Qt

#{M‖H ∈ (In)m+c | M‖H is Gx-computable}

where the maximum is taken over all the non-zero linear combinations of out-
put blocks and over all the possible sets of q queries to the inner compression
functions.

The following proposition is rather obvious and given without proof.

Proposition 1
q ≤ βc(q) ≤ βc−1(q) ≤ . . . ≤ β1(q).

β1(q) and β′
1(q) capture approximately the same characteristic of the compres-

sion function for it is immediate to verify that

β′
1(q) ≤ β1(q) ≤ 2cβ′

1(q). (2)

In our security analysis, we will make an extensive use of the following lemma
(see the proof in Appendix A).

Lemma 3 (Independency lemma). Let Q1, . . . ,Qt ⊂ (In)k be sets of queries
to the inner compression functions such that M‖H is r-computable. Let
(x1, . . . , xr) be a basis of VM‖H , and X1, . . . , Xr, X ∈ In. Then ∀x ∈ {0, 1}c \
VM‖H ,

Pr[Gx(M‖H) = X | Gx1(M‖H) = X1, . . . , Gxr (M‖H) = Xr] =
1
2n

.

More generally, if H ′ is such that for all i ∈ [1..r], H ′ · xT
i = Xi, then

Pr[h(M‖H) = H ′ | Gx1(M‖H) = X1, . . . , Gxr(M‖H) = Xr] =
1

2(c−r)n
.

126 Y. Seurin and T. Peyrin

3 Security Analysis for Preimage Resistance

In this section we begin with providing a security bound to preimage attacks for
the constructions of the general framework studied in this paper. Then we show
that this security bound is tight by analysing an attack whose advantage is close
to the security bound.

Theorem 1 (Security bound for preimage resistance). Let h be a (c, t,
k, m)-compression function construction (non necessarily of type I) with para-
meter β1(q) defined by definition 6. Then

Advpre
h (q) ≤ 1

2n
+

β1(q)
2cn

.

Proof. Let A be a preimage-finding adversary attacking the compression function
h. We suppose wlog that the random input H ′ to the adversary is 0. We first
define Preim as being the set of external inputs M‖H which are h-computable
with respect to the final sets of queries of A and such that h(f(1),...,f(t))(M‖H) =
0. First of all, if A does not find any external input in this set, its probability
of success is very low. Indeed, A is bound to output an M‖H which is not h-
computable. According to Lemma 3, the probability for this output to be a good
preimage is ≤ 1/2n. Therefore we have Pr[A wins] ≤ 1/2n + Pr[Preim �= ∅].

We now bound Pr[Preim �= ∅]. For this, we analyse the behavior of A in a
sequential manner: A makes its queries to the inner functions in a certain order.
During this process, each external input M‖H goes through successive states:
either it is uncomputable, or it is r-computable and still a potential candidate
to be mapped on to 0, or it is r-computable and discarded because there exists
x ∈ VM‖H such that Gx(M‖H) �= 0. More precisely, consider partial sets
of queries Q′

1, . . . ,Q′
t ⊂ (In)k. We will say that an external input M‖H is

compatible with these partial sets of queries if ∀x ∈ VM‖H , Gx(M‖H) = 0.
Note that an external input which is h-computable with respect to the final sets
of queries of A was necessarily 1-computable at some stage in the sequential
queries of A. Said differently, an external input cannot “jump” from the state
uncomputable to a state where it is r-computable for r > 1 with one single query
because one single query never enables to compute more than one output block
or linear combination of output blocks1. When it exists, we will note G1

M‖H the
linear combination of output blocks associated with the first x ∈ {0, 1}c \ {0}
such that M‖H is Gx-computable. Let us define the set Pot1 as being the set
of all M‖H such that, at some stage in the sequential queries of A, M‖H was
1-computable and compatible. Then one clearly has Pot1 ⊃ Preim, so that

Pr[M‖H ∈ Preim] = Pr[M‖H ∈ Preim|M‖H ∈ Pot1] · Pr[M‖H ∈ Pot1].

1 Suppose that one single query enables to compute both Gx1(M‖H) and
Gx2(M‖H). This means that all the other queries necessary to compute them have
been made previously. But this implies that M‖H is already Gx1⊕x2 -computable,
so that in fact the computability of M‖H has only been increased by 1.

Security Analysis of Constructions Combining FIL Random Oracles 127

The key point in the proof is the fact that according to Lemma 3, one has, for
all M‖H,

Pr[M‖H ∈ Preim|M‖H ∈ Pot1] ≤ Pr[h(f(1),...,f(t))(M‖H) = 0|M‖H ∈ Pot1]

≤ 1
2(c−1)n

.

In consequence,

Pr[Preim �= ∅] ≤ 1
2(c−1)n

∑

M‖H

Pr[M‖H ∈ Pot1].

Now we want to bound the sum
∑

M‖H Pr[M‖H ∈ Pot1]. Recall that by the
definition of Pot1, M‖H ∈ Pot1 is the event that M‖H is at least 1-computable
with respect to the final sets of queries of A, and G1

M‖H(M‖H) = 0. Now
conditioning on the event that M‖H is at least 1-computable with respect to
the final sets of queries of A, the probability that G1

M‖H(M‖H) = 0 is 1/2n.
Summing up this reasoning with formulas yields
∑

M‖H

Pr[M‖H ∈ Pot1] ≤
∑

M‖H

Pr[G1
M‖H(M‖H) = 0|M‖H is 1-computable]·

Pr[M‖H is 1-computable]

≤ 1
2n

∑

M‖H

Pr[M‖H is 1-computable]

≤ 1
2n

E (#{M‖H | M‖H is 1-computable})

≤ β1(q)
2n

.

The theorem follows immediately. $%

Remark 1. The reasoning used in [20] concludes that preimage resistance is
O(βc(q)/2cn), which cannot be in view of the generic attack presented hereafter.
We reproduce this faulty reasoning and point out the mistake in Appendix C.

Theorem 2 (Preimage attack matching the security bound). Let h be
a (c, t, k, m)-compression function construction of type I with parameter β′

1(q)
defined by definition 6. Then β′

1(q) = Ω(2cn) and q = Ω(2(c−1)n) implies that
Advpre

h (q) = Ω(1).

Proof. Once again we suppose wlog that the random input H ′ to the adversary
is 0. Consider the following adversary: A first identifies x ∈ {0, 1}c \ {0} such
that β′

1(q) is reached and makes the q queries to the inner compression functions
f (i) involved in the calculation of Gx (i.e. such that i ∈ Sx), thus obtaining
β′

1(q) images by Gx. Let NGx be the random variable counting among these

128 Y. Seurin and T. Peyrin

β′
1(q) Gx-computable inputs the number of them such that Gx(M‖H) = 0.

The compression function construction considered being of type I, the β′
1(q) im-

ages by Gx obtained are random and pairwise independent. As β′
1(q) = Ω(2cn),

with overwhelming probability NGx = Ω(2(c−1)n). After this first step, A selects
min(NGx , q) M‖H such that Gx(M‖H) = 0. If NGx > q, it selects them ran-
domly. A then queries the remaining compression functions in order to obtain
the full image of the selected external inputs. Restricting the number of selected
external inputs to q ensures that A is always able to obtain their image by h. The
probability for one of these external inputs to be a good preimage is 1/2(c−1)n.
As q = Ω(2(c−1)n) by hypothesis, the adversary finds a preimage of 0 with non-
negligible probability. Hence the result. $%

Conclusion for Preimage Resistance. The results of this section show that
preimage resistance of a (c, t, k, m)-compression function construction of type I
is governed by the parameter β1(q). Combining Theorems 1 and 2, and recalling
inequality (2) proves that, at least for constructions such that one may have
β′

1(q) = Ω(2cn) and q = Ω(2(c−1)n) at the same time, preimage resistance is
Θ(β1(q)/2cn).

4 Security Analysis for Collision Resistance

Theorem 3 (Security bound for collision resistance). Let h be a (c, t, k, m)
compression function construction (non necessarily of type I) with parameter β1(q)
defined by definition 6. Then

Advcoll
h (q) ≤ 1

2n
+

β1(q)2

2 · 2cn
.

The proof of this theorem is very similar to the proof of Theorem 1 and is given
in Appendix B. We now exhibit two collision attacks matching sometimes the
security bound.

First Collision Attack. The first attack presented here is very simple and
meets the security bound in some cases. It simply consists in computing the
image by h of βc(q) external inputs. For a type I construction, they are random
and independent, and a classical calculus tells us that the probability to obtain
a collision is 1 −

∏βc(q)−1
i=1 (1 − i/2cn). As a consequence we have the following

result:

Theorem 4 (First collision attack.). Let h be a (c, t, k, m)-compression func-
tion construction of type I with parameter βc(q) defined by definition 6. Then
Advcoll

h (q) ≥ 0.6βc(q)(βc(q)−1)
2·2cn .

In consequence, for constructions such that βc(q) ∼ β1(q) when q → ∞, the
security bound given in Theorem 3 is tight.

Proof. We have the following inequalities:

Security Analysis of Constructions Combining FIL Random Oracles 129

Advcoll
h (q) ≥ 1 −

βc(q)−1∏

i=1

(1 − i

2cn
)

≥ 1 − exp

⎛

⎝−
βc(q)−1∑

i=1

i

2cn

⎞

⎠

= 1 − exp
(
−βc(q)(βc(q) − 1)

2 · 2cn

)

≥
(

1 − 1
e

)
βc(q)(βc(q) − 1)

2 · 2cn
.

The inequality (1 − e−1) > 0.6 completes the proof. $%

Second Collision Attack. The second attack is more similar to the preimage
attack presented previously and may achieve or not a better advantage than
the first one depending on the input and output mappings. The adversary pro-
ceeds as follows. A first identifies x ∈ {0, 1}c \ {0} such that β′

1(q) is reached
and makes the q queries to the inner compression functions involved in the
calculation of Gx, thus obtaining β′

1(q) images by Gx. A quotients the set of
the external inputs which are Gx-computable at this stage by the equivalence
relation Gx(M1‖H1) = Gx(M2‖H2) and orders the quotient classes by de-
creasing cardinal. It then calculates the full image by h of the elements of the
quotient classes, looking for a collision on the (c − 1) remaining output blocks,
and beginning with the quotient class of larger cardinal in order to maximize
its probability of success. A is able to calculate at least q images. Analysing this
adversary enables to enunciate the following result.

Theorem 5 (Second collision attack). Let h be a (c, t, k, m)-compression
function construction of type I with parameter β′

1(q) defined by definition 6.
Then qβ′

1(q) = Ω(2cn) and β′
1(q) = Ω(n2n) implies Advcoll

h (q) = Ω(1).

Proof. Let us analyse the probability of success of the adversarywe just described.
The fact that β′

1(q) = Ω(n2n) implies that with probability 1 − O(1), A obtains
2n quotient classes containing Θ(β′

1(q)/2n) elements each (this is a classical “balls
and bins” result, see for example [19]). Though A will not always be able to obtain
the image by h of all the β′

1(q) inputs, we can ensure that it will be able to do so
for at least q inputs. So the number C of quotient classes in which it will be able
to look for a full collision under h is such that C · β′

1(q)
2n = q, i.e. C = q2n

β′
1(q)

. The
events “finding a collision in quotient class i”, i ∈ [1..C] are independent and their
probability pi verify (the proof is analog to the proof of Theorem 4)

pi ≥ 0.6
#Ci(#Ci − 1)

2(c−1)n

where #Ci is the cardinal of the quotient class being explored for a full collision.
As #Ci = Θ(β′

1(q)/2n)) with overwhelming probability, we have that the total
probability to find a collision is

130 Y. Seurin and T. Peyrin

Ω

⎛

⎜
⎝C ·

(
β′
1(q)
2n

)2

2(c−1)n

⎞

⎟
⎠ = Ω

(
qβ′

1(q)
2cn

)
.

Consequently qβ′
1(q) = Ω(2cn) implies that the probability of success of the

adversary is Ω(1). This concludes the proof. $%

Conclusion for Collision Resistance. The security analysis of (c, t, k, m)-
compression functions for collision resistance is not as tight as for preimage
resistance. We proved in this section that collision resistance is O(β1(q)2/2cn),
while the attacks we described show that a lower bound for collision resistance
is Ω(max(βc(q)2, qβ1(q))/2cn).

5 Application to Previously Proposed Schemes

Hirose Schemes. We call Hirose schemes the (c, t, k, m)-compression function
constructions where k = m + c. In this case, using only t = c inner compression
functions, setting M‖H · Ai = M‖H for all i ∈ [0, t] and taking for B the
c× c identity matrix yields a compression function such that β1(q) = βc(q) = q,
so that its preimage resistance is Θ(q

2cn) and its collision resistance is Θ(q2

2cn),
which is optimal. This is not a surprising result since it is easy to see that in
the random oracle model, the compression function obtained is itself a random
function from F((m + c)n, cn). These type of schemes have been studied by
Hirose in [6,7], where it is shown how to construct such an optimally resistant
compression function with one ideal block cipher when c = 2.

Nandi et al. Schemes. Nandi et al. proposed two schemes in [20] which are
depicted in Fig. 2. For these schemes, it was shown in [20] that β2(q) ≤ q3/2 and

f (1) f (2) f (3)

H ′
1 H ′

2

H1 M1 H1 H2 H2 M1

(M1, H1, H2)

f (1) f (2) f (3)

H ′
1 H ′

2

H1 H2 M1 H1 M1 M2 H1 H2 M2

(M1, M2, H1, H2)

N1 N2

Fig. 2. Nandi et al. schemes [20]

Security Analysis of Constructions Combining FIL Random Oracles 131

it is not difficult to convince oneself that β′
1(q) ≤ q2. Conversely, β2(q) ≥ &q1/2'3

and, for q ≤ 2n, β1(q) ≥ q2. Consequently their preimage resistance is Θ(q2/22n),
and an attack requiring Θ(2n) operations was described in [11]. For the collision
resistance, our security proof shows that it is O(q4/22n) while the two collision
attacks we described achieve advantage Ω(q3/22n). The authors of [20] claimed
to have proved that collision resistance for their schemes is O(q3/22n), however
we explain in Appendix C why their reasoning is incorrect. Nevertheless, we
conjecture that our security proof can be enhanced to prove that collision resis-
tance is indeed O(q3/22n). But this must not discourage to look in the direction
of finding better collision attacks than the one described in [11], which needs
Θ(22n/3) oracle queries.

Peyrin et al. Schemes. Peyrin et al. proposed two schemes in [21] which
verified the necessary conditions they established for a scheme to be secure.
They are depicted in Fig. 3. For the first scheme, one can prove with techniques
similar to the ones used for Nandi et al. schemes that β1(q) = Θ(q3/2) and
β2(q) = Θ(q3/2), so that the security analysis is tight in the collision case (colli-
sion resistance is Θ(q3/22n) as well as in the preimage case (preimage resistance
is Θ(q3/2/22n)). For the second scheme, β1(q) = Θ(q3/2) and β2(q) = Θ(q4/3).

f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 H2 M1 M1 H1 ⊕H2 H1 M1 H1 H2

f (1) f (2) f (3) f (4) f (5)

H ′
1 H ′

2

H1 H2 M1 H1 H2 M2 H1 M1 M2 H1 H2 M1 H2 M1 M2

Fig. 3. Peyrin et al. schemes [21]

132 Y. Seurin and T. Peyrin

Here preimage resistance is Θ(q3/2/22n), and collision resistance is O(q3/22n),
while the first collision attack achieves advantage Ω(q8/3/22n). Here again it is
an open question to close the gap between the security proof and the attack.

Related Algorithmic Problems. We want to emphasize that one must make
a clear distinction between security analysis in terms of number of oracle queries
and number of operations. While the number of queries is an obvious lower bound
for the number of operations, it is not always clear how an attacker will be able
to reach this lower complexity bound. For example for the scheme N1 of Fig.
2, the preimage resistance is Θ(q2/22n) so that an adversary must make Θ(2n)
oracle queries to find a preimage with non negligible probability. The authors
of [11] presented an attack also requiring Θ(2n) operations. Fundamentally, this
is achievable thanks to an efficient algorithm for solving the so-called 2-sum
problem which consists in finding, in two lists L1 and L2, two elements x1 ∈ L1

and x2 ∈ L2 such that x1 ⊕ x2 = 0. The generalization to k lists was thoroughly
studied by Wagner [26]. In the same way as the (in)security of the schemes of
Nandi et al. is linked to efficient ways of solving the 2-sum problem [26], we
conjecture that the security in terms of operations of the schemes of Peyrin
et al. is related to the 3-sum problem, for which no good algorithm is known.
Giving a reductionist security proof linking the security of these schemes to a
3-sum hard problem would be an elegant result.

6 Concluding Remarks

In this paper we conducted the security analysis in terms of oracle queries of
very general constructions combining compression functions modeled as indepen-
dent FIL random oracles to obtain a compression function with longer output.
Using the concept of computable input, we gave a security bound for preimage
resistance and collision resistance which is tight for some constructions.

Future work includes carrying the security analysis in the ideal block cipher
model as it was done for Hirose schemes [6,7], a more systematic study of the
parameters βi(q), and closing in the general case the security gap, especially for
collision resistance.

Acknowledgements

The authors are grateful to Henri Gilbert for his helpful comments.

References

1. Bellare, M., Ristenpart, T.: Multi-property-preserving hash domain extension and
the EMD transform. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 299–314. Springer, Heidelberg (2006)

Security Analysis of Constructions Combining FIL Random Oracles 133

2. Black, J.R., Rogaway, P., Shrimpton, T.: Black-box analysis of the block-cipher-
based hash-function constructions from PGV. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 320–335. Springer, Heidelberg (2002)

3. Coppersmith, D., Pilpel, S., Meyer, C.H., Matyas, S.M., Hyden, M.M., Oseas, J.,
Brachtl, B., Schilling, M.: Data authentication using modification dectection codes
based on a public one way encryption function. U.S. Patent No. 4,908,861 (March
13, 1990)

4. Coron, J.-S., Dodis, Y., Malinaud, C., Puniya, P.: Merkle-Damgård revisited: How
to construct a hash function. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621,
pp. 430–448. Springer, Heidelberg (2005)

5. Damgård, I.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 416–427. Springer, Heidelberg (1990)

6. Hirose, S.: Provably secure double-block-length hash functions in a black-box
model. In: Park, C.-s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 330–342.
Springer, Heidelberg (2005)

7. Hirose, S.: In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, Springer, Heidelberg
(2006)

8. Joux, A.: Multicollisions in iterated hash functions. application to cascaded con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

9. Kelsey, J., Schneier, B.: Second preimages on n-bit hash functions for much less
than 2n work. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp.
474–490. Springer, Heidelberg (2005)

10. Knudsen, L.R, Lai, X.: New attacks on all double block length hash functions of
hash rate 1, including the parallel-DM. In: De Santis, A. (ed.) EUROCRYPT 1994.
LNCS, vol. 950, pp. 410–418. Springer, Heidelberg (1995)

11. Knudsen, L.R., Muller, F.: Some attacks against a double length hash proposal.
In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 462–473. Springer, Hei-
delberg (2005)

12. Knudsen, L.R., Preneel, B.: Hash functions based on block ciphers and quaternary
codes. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163,
pp. 77–90. Springer, Heidelberg (1996)

13. Knudsen, L.R., Preneel, B.: Fast and secure hashing based on codes. In: Kaliski
Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 485–498. Springer, Heidelberg
(1997)

14. Knudsen, L.R., Preneel, B.: Construction of secure and fast hash functions using
nonbinary error-correcting codes. IEEE Transactions on Information Theory 48(9),
2524–2539 (2002)

15. Lai, X., Massey, J.L.: Hash function based on block ciphers. In: Rueppel, R.A.
(ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 55–70. Springer, Heidelberg (1993)

16. Lai, X., Waldvogel, C., Hohl, W., Meier, T.: Security of iterated hash functions
based on block ciphers. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773,
pp. 379–390. Springer, Heidelberg (1994)

17. Menezes, A., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptog-
raphy. CRC Press (1996)

18. Merkle, R.C.: One way hash functions and DES. In: Brassard, G. (ed.) CRYPTO
1989. LNCS, vol. 435, pp. 428–446. Springer, Heidelberg (1990)

19. Motwani, R., Raghavan, P.: Randomized algorithms. Cambridge University Press,
Cambridge (1995)

134 Y. Seurin and T. Peyrin

20. Nandi, M., Lee, W., Sakurai, K., Lee, S.: Security analysis of a 2/3-rate double
length compression function in black-box model. In: Gilbert, H., Handschuh, H.
(eds.) FSE 2005. LNCS, vol. 3557, pp. 243–254. Springer, Heidelberg (2005)

21. Peyrin, T., Gilbert, H., Muller, F., Robshaw, M.J.B.: Combining compression func-
tions and block cipher-based hash functions. In: Lai, X., Chen, K. (eds.) ASI-
ACRYPT 2006. LNCS, vol. 4284, pp. 315–331. Springer, Heidelberg (2006)

22. Preneel, B., Bosselaers, A., Govaerts, R., Vandewalle, J.: Collision-free hash func-
tions based on block cipher algorithms. In: Proceedings, International Carnahan
Conference on Security Technology, IEEE 1989, IEEE catalog number 89CH2774-8,
pp. 203–210 (1989)

23. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers:
A synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp.
368–378. Springer, Heidelberg (1994)

24. Quisquater, J.-J., Girault, M.: 2n-bit hash-functions using n-bit symmetric block
cipher algorithms. In: Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989.
LNCS, vol. 434, pp. 102–109. Springer, Heidelberg (1990)

25. Shannon, C.: Communication theory of secrecy systems. Bell System Technical
Journal 28(4), 656–715 (1949)

26. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.) CRYPTO 2002.
LNCS, vol. 2442, pp. 288–303. Springer, Heidelberg (2002)

27. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

28. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R.J.F.
(ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005)

29. Winternitz, R.S.: A secure one-way hash function built from DES. In: IEEE Sym-
posium on Security and Privacy, pp. 88–90. IEEE Computer Society Press, Los
Alamitos (1984)

A Proof of Lemmata

Proof of Lemma 1. Consider x ∈ {0, 1}c \ {0} and two distinct inputs M1‖H1

and M2‖H2. By definition of Sx, we have that

Gx(M‖H) =
⊕

j∈Sx

f (j)(M‖H · Aj).

The fact that Gx(M1‖H1) and Gx(M2‖H2) are uniformly random is obvious
because they are linear combination of the uniformly random outputs of the
f (j)’s. Moreover the internal input blocks of the f (j)’s differ in at least one bit for
M1‖H1 and M2‖H2, otherwise, as M1‖H1 �= M2‖H2 it would be possible to
construct a non zero element in

⋂
j∈Sx

kerAj , which is {0} by hypothesis. As the
output of the f (j)’s are random and independent, Gx(M1‖H1) and Gx(M2‖H2)
are also independent.

Proof of Lemma 3. As x ∈ {0, 1}c \ Vec(x1, . . . , xr), and as B has full rank,
then necessarily x · BT is not a linear combination of the (xi · BT)i∈[1..r]. Conse-
quently, there exists j ∈ [1..t] such that f (j) intervenes in Gx but in none of the
(Gxi)i∈[1..r]. As the outputs of the inner compression functions are independent,
Gx(M‖H) is independent from (Gxi(M‖H))i∈[1..r]. The generalization follows
easily by induction.

Security Analysis of Constructions Combining FIL Random Oracles 135

B Proof of Theorem 3

Let A be a collision-finding adversary attacking the compression function h.
Instead of working on single external inputs as for the proof of Theorem 1, we
will work on pairs of distinct external inputs, but the reasoning will be quite
similar and readers are recommended to read the preimage proof before this
one. Let P2 be the set of all 2-elements subsets of {0, 1}m+c. External inputs
will be noted X instead of M‖H for concision. Let define Coll as being the set of
pairs of distinct external inputs {X1, X2} which are h-computable with respect
to the final set of queries of A and which collide under h. As for preimage, it is
easy to see that Pr[A wins] ≤ 1/2n + Pr[Coll �= ∅].

We now bound Pr[Coll �= ∅]. Given partial sets of queries Q′
1, . . . ,Q′

t ⊂ (In)k,
we will say that the pair {X1, X2} ∈ P2 is compatible if X1 and X2 collide
on V{X1,X2} = VX1 ∩ VX2 , meaning that for all x ∈ V{X1,X2}, Gx(X1) =
Gx(X2). Here also it is possible to show that if V{X1,X2} �= {0} with respect
to the final sets of queries of A, then there is an unique x ∈ {0, 1}c \ {0} such
that V{X1,X2} = Vec(x) when it becomes strictly bigger than {0}. We will
note G1

{X1,X2} the linear combination of output blocks associated with this
x. We define Pot1 as being the set of all {X1, X2} ∈ P2 such that X1 and
X2 are at least 1-compatible with respect to the final sets of queries of A and
G1

{X1,X2}(X1) = G1
{X1,X2}(X2). It is now straightforward to follow the same

reasoning as for the preimage proof, which we do without further justification:

Pr[Coll �= /0]≤ ∑
{X1,X2}

Pr[{X1,X2} ∈ Coll]

≤ ∑
{X1,X2}

Pr[{X1,X2} ∈ Coll|{X1,X2} ∈ Pot1]·

Pr[{X1,X2} ∈ Pot1]

≤ 1
2(c−1)n ∑

{X1,X2}
Pr[{X1,X2} ∈ Poti]

≤ 1
2(c−1)n ∑

{X1,X2}
Pr[G1

{X1,X2}(X1) = G1
{X1,X2}(X2)|X1 and X2 are

1−computable] ·Pr[X1 and X2 are 1−computable]

≤ 1
2(c−1)n

1
2n ∑

{X1,X2}
Pr[X1 and X2 are 1−computable]

≤ β1(q)2

2 ·2cn .

Hence the result.

C Why the Reasoning of [20] Was Faulty

We’d like to emphasize why the following reasoning, which was the one used
in [20] for their security proof for preimage attacks, is tempting but fallacious.

136 Y. Seurin and T. Peyrin

One can surely write (see the proof of Theorem 1 for the notations)

Pr[Preim �= ∅] ≤
∑

M‖H

Pr[M‖H ∈ Preim]

≤
∑

M‖H

Pr[M‖H is h-computable ∧ h(f(1),...,f(t))(M‖H) = 0].

At this stage, it is tempting to claim that the events “M‖H is h-computable”
and “h(f(1),...,f(t))(M‖H) = 0” are independent, thus concluding that

Pr[Preim �= ∅] ≤ 1
2cn

∑

M‖H

Pr[M‖H is h-computable]

≤ 1
2cn

E(#{M‖H | M‖H is h-computable})

≤ βc(q)
2cn

.

However, this is false because these two events are not independent. Indeed, one
can intuitively argue that the fact that h(f(1),...,f(t))(M‖H) = 0, being detected
on one of the output blocks by the adversary, will increase the probability that
A makes the queries needed to compute M‖H on other output blocks, thus
increasing the probability for M‖H to be h-computable.

The same type of problem arises for collision resistance, where an analogue
but still hasty reasoning would conclude that Pr[Coll �= ∅] ≤ βc(q)

2

2·2cn .

Bad and Good Ways of Post-processing

Biased Physical Random Numbers

Markus Dichtl

Siemens AG
Corporate Technology

81730 München
Germany

Markus.Dichtl@siemens.com

Abstract. Algorithmic post-processing is used to overcome statistical
deficiencies of physical random number generators. We show that the
quasigroup based approach for post-processing random numbers
described in [MGK05] is ineffective and very easy to attack. We also
suggest new algorithms which extract considerably more entropy from
their input than the known algorithms with an upper bound for the
number of input bits needed before the next output is produced.

Keywords: quasigroup, physical random numbers, post-processing, bias.

1 Introduction

It seems that all physical random number generators show some deviation from
the mathematical ideal of statistically independent and uniformly distributed
bits.

Algorithmic post-processing is used to eliminate or reduce the imperfections
of the output. Clearly, the per bit entropy of the output can only be increased if
the post-processing algorithm is compressing, that is, more than one bit of input
is used to get one bit of output.

Bias, that is a deviation of the 1-probability from 1/2, is a very frequent
problem. There are various ways to deal with it, when one assumes that bias is
the only problem, that is, the bits are statistically independent.

In the rest of the paper, it is assumed that the physical random number
generator produces statistically independent bits. It is also assumed that the
generator is stationary, that is, the bias is constant.

We show that the post-processing algorithm based on quasigroups suggested
in [MGK05] is ineffective. We describe an attack on the post-processed output
bits which requires very little computational effort.

We show that post-processing algorithms for biased random numbers which
produce completely unbiased output cannot have upper bounds on the number
of input bits required until the next output bit is produced. We describe new
algorithms for post-processing biased random numbers which have a fixed num-
ber of input bits. The new algorithms extract considerably more entropy from
the input than the known algorithms with a fixed number of input bits.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 137–152, 2007.
c© International Association for Cryptologic Research 2007

Markus.Dichtl@siemens.com

138 M. Dichtl

2 An Ineffective Post-processing Method for Biased
Random Numbers

At FSE 2005, S. Markovski. D. Gligoroski, and L. Kocarev suggested in [MGK05]
a method based on quasigroups for post-processing biased random numbers. In
this paper, we only give results for their E-algorithm, but all results can be
transferred trivially to the E’-algorithm.

2.1 The E-Transform

A quasigroup (A, ∗) of finite order s is a set A of cardinality s with an operation
∗ on A such that the operation table of ∗ is a Latin square (that is, all elements
of A appear exactly once in each row and column of the table).

The mapping eb0,∗ maps a finite string of elements a1, a2, . . . , an of A to a
finite string b1, b2, . . . bn such that bi+1 = ai+1 ∗ bi for i = 0, 1, . . . , n − 1. b0 is
called the leader of the mapping eb0,∗. The leader must be chosen in such a way
that b0 ∗ b0 �= b0 holds.

For a fixed positive integer k, the E-transform of a finite string of elements
from A is just the k-fold application of the function eb0,∗. Here we deviate slightly
from the terminology of [MGK05]. There, the E-transform allows different lead-
ers for the k applications of the function e, but later in the description of the
post-processing algorithm the leader is a fixed element.

2.2 True and Claimed Properties of the E-Transform

Why the suggested quasi group approach is ineffective for post-
processing biased random numbers. Theorem 1 of [MGK05] states cor-
rectly that the E-transform is bijective. As a consequence of this theorem the
E-transform is ineffective for post-processing biased random numbers. As a bi-
jection, it cannot extract entropy from its input bits. The entropy of its output
bits is just the same as the entropy of the input bits. Of course, applying a
bijection to some random bits does not do any harm either.

The output of the E-transform is not uniformly distributed. Theorem 2
of [MGK05] claims incorrectly that the substrings of length l ≤ k are uniformly
distributed in the E-transform of a sufficiently long arbitrary input string.

Let x be an element of the quasigroup A. The E-transform is a bijection,
so for each string length n, there is an input string w which is mapped by the
E-transform to the string with n times x in sequence. Clearly, all substrings of the
E-transform of w are just repetitions of x. Hence, the distribution of substrings
of length l ≤ k in the E-transform of w is as far from uniform as possible.

When we look at the proof of the theorem, we see that the authors do not
deal with an arbitrary input string, but with one where all elements of the string
are chosen randomly and statistically independently according to a fixed distri-
bution. In their proof, the authors do not try to show that the distribution of
the output substrings is exactly uniform, but refer to the stationary state of

Bad and Good Ways of Post-processing Biased Physical Random Numbers 139

a Markov chain. So their result could hold at most asymptotically. However,
the Lemma 1 they use in their proof, is completely wrong. Let x be the input
string for the first application of eb0,∗. Then the lemma states that for all m the
probability of a fixed element of A at the mth position of eb0,∗(x) is approxi-
mately 1/s, s being the order of the quasigroup. To see how wrong this is, we
consider a highly biased generator suggested in [MGK05]. We assume that the
probability of 0-bits is 999/1000 and the probability of 1-bits is 1/1000. The
bits are assumed to be statistically independent. We name this generator HB
(highly biased). (The value of the bias is -0.499 .) For post-processing, we use a
quasigroup ({0, 1, 2, 3}, ∗) of order 4. We map each pair of input bits bijectively
to a quasigroup element by using the binary value of the pair. Hence the post-
processing input 0 has probability 0.998001, 1 and 2 have probability 0.000999,
and the probability of 3 is 0.000001. The first element of eb0,∗(x) depends only
on the first element of x. So, one element of A appears as first element of the
output string with probability 0.998001, two with probability 0.000999, and one
with probability 0.000001. All these values are very far away from the value 1/4
suggested by the lemma.

One should note that the generator HB, which we consider several times in
this paper, was not constructed to demonstrate the weakness of the quasigroup
post-processing, but that the authors of [MGK05] claim explicitly that their
method is suited for post-processing the output of HB.

2.3 What Is Really Going on in the E-Transform

The elements at the end of the output string of the E-transform approach the
uniform distribution very slowly, when the input string from a strongly biased
source is growing longer. This is shown in Figure 1. We used the quasigroup
of order 4 from the Example 1 in [MGK05] and the leader 1 with k = 128 (as
suggested by the authors of [MGK05] for highly biased input) to post-process
10000 samples of 100000 bits (50000 input elements) from the generator HB.

To achieve an approximately uniform distribution, about 50000 input ele-
ments, or 100000 bits have to be processed.

Now, it would be wrong to conclude that everything is fine after 100000 bits.
Since the E-transform is bijective for all input lengths, the entropy of the later
output elements is as low as the entropy of the first ones. How can the entropy of
the later output bits be so low if they are approximately uniformly distributed?
The low entropy is the result of strong statistical dependencies between the
output elements. For the later output elements, the E-transform just replaces
one statistical problem, bias, with another one, dependency. Of course one cannot
expect anything better from a bijective post-processing function.

2.4 Attacking the Post-processed Output of the E-Transform

Since the E-transform is bijective, it is, from an information theoretical point of
view, clear that its output resulting from an input with biased probabilities can
be predicted with a probability greater than 1/s, where s is the cardinality of A.

140 M. Dichtl

10000 20000 30000 40000 50000
Position in output string

2000

4000

6000

8000

10000

Frequency of output element 0

Fig. 1. Frequencies of the element 0 in the post-processed output of the generator HB.
For each position in the output string, one dot indicates the frequency of the output
element 0 at that position in 10000 experiments. To be visible, the dots have to be so
large the individual dots are not discernible and give the impression of three ”curves”.
For subsequent output elements, the output frequency sometimes jumps from one of
the three ”curves” visible in the figure to another one.

We will show now that the computation of the output element with the highest
probability is very easy.

The first output element of the E-transform is the easiest to guess. We just
choose the string containing the most frequent input symbol and apply the
E-transform to get the most probable first output element. For predicting later
output elements, we have to know the previous input elements. They can be
easily computed from the output elements. Due to the Latin square property
of the operation table of ∗, the equation bi+1 = ai+1 ∗ bi, which defines eb0,∗
can be uniquely resolved for ai+1 if bi+1 and bi are given. To the previous input
elements we append the most probable input symbol and apply the E-transform.
The last element of the output string is the most probable next output element.
Our prediction is correct if the most probable input symbol occurred. For the
generator HB and a quasigroup of order 4, this means that we have a probabil-
ity of 0.998001 to predict the next output element correctly. The computational
effort for the attack is about the same as for the application of the E-transform.

2.5 Attacking Unknown Quasigroups and Leaders

The authors of [MGK05] do not suggest to keep secret the quasigroup and the
leader chosen for post-processing the random numbers. We show here for one set
of parameters suggested in [MGK05] that even keeping the parameters secret
would not prevent the prediction of output bits. For the attack, we assume
that the attacker gets to see all output bits from post-processing, and that she
may restart the generator such that the post-processing is reinitialized. Since
the post-processing is bijective, an attacker can learn nothing from observing

Bad and Good Ways of Post-processing Biased Physical Random Numbers 141

the post-processed output of a perfect random number generator. Instead, we
consider again the highly biased generator HB.

We choose the parameters for the post-processing function according to the
suggestions of [MGK05]. The order of the quasigroup was chosen to be 4, and
the number k of applications of eb0,∗ as 128.

Normalised Latin squares of order 4 have 0, 1, 2, 3 as their first row and
column. By trying out all possibilities, one sees easily that there are exactly 4
normalised Latin squares of order 4. By permuting all four columns and the last
three rows of the 4 normalised Latin squares we find all possible Latin squares
of order 4. Hence, there are 4 · 4! · 3! = 576 quasigroups of order 4. With 4
leaders for each, this would mean 2304 choices of parameters to consider for the
E-transform. However, we have to take into account that the leader l may not
have the property l ∗ l = l. After sorting out those undesired cases, we are left
with 1728 cases.

From the observed post-processed bits, we want to uniquely determine the
parameters used.

The attack is very simple. We apply the inverse E-transform for all 1728 possi-
ble choices of quasigroup and leaders to the first n of the observed postprocessed
bits. With high probability, the correct choice of parameters is revealed by an
overwhelming majority of 0 bits in the inverse. When choosing n = 32, the cor-
rect parameters are uniquely identified by an inverse of 32 0 bits in 61 % of all
cases. Using more post-processed bits, we can get arbitrarily close to certainty
about having found the right parameters. This variant of the attack is due to an
anonymous reviewer of FSE 2007, mine was unnecessarily complicated.

When we have determined the parameters of the E-transform, the attack can
continue as described in the previous section.

This finishes our treatment of quasigroup post-processing for true random
numbers.

3 Two Classes of Random Number Post-processing
Functions

We have seen that bijective methods of post-processing random numbers are not
useful, as they can not increase entropy. We have to accept that efficient post-
processing functions have less output bits than input bits. This paper only deals
with the post-processing of random bits which are assumed to be statistically
independent, but which are possibly biased. The source of randomness is assumed
to be stationary, that is the bias does not change with time. Although the bias is
constant, it is unrealistic to assume that its numerical value, that is the deviation
of the probability of 1 bits from 1/2, is exactly known. A useful post-processing
function should work for all biases from a not too small range.

Probably the oldest method of post-processing biased random numbers was
invented by John von Neumann [vN63]. He partitions the bits from the true
random number generator in adjacent, non-overlapping pairs. The result of a
01 pair is a 0 output bit. A 10 pair results in a 1 output bit. Pairs 00 and 11

142 M. Dichtl

are just discarded. Since the bits are assumed to be independent and the bias is
assumed to be constant, the pairs 01 and 10 have exactly the same probability.
The output is therefore completely unbiased.

However, this method has two drawbacks: firstly, even for a perfect true ran-
dom number generator it results in an average output data rate 4 times slower
than the input data rate, and secondly, the waiting times until output bits are
available can become arbitrarily large. Although pairs 01 or 10 statistically turn
up quite often, it is not certain that they will do so within any fixed number
of pairs considered. This is a unsatisfactory situation for the software developer
who has to use the random numbers. In many protocols, time-outs occur when
reactions to messages take too long. Although the probability for this event
can be made arbitrarily low, it can not be reduced to zero when using the von
Neumann post-processing method.

The low output date rate may be overcome by using methods like the one de-
scribed by Peres [Per92]. A very general method for post-processing any station-
ary, statistcally independent data is given in [JJSH00]. The algorithm described
there can asymptotically extract all the entropy from its input. So the data
rate is asymptotically optimal. The problem of arbitrarily long waiting times,
however, can not be solved. This is proved in the following theorem:

Theorem 1. Let f be an arbitrary post-processing function which maps n bits
to one bit, n being a positive integer. Let X1, . . . , Xn be n independent random
bits with the same probability p of 1-bits. Let S be an infinite subset of the unit
interval. Then Pr[f(X1, . . . , Xn) = 1] �= 1/2 holds for infinitely many p ∈ S.

Proof: Pr[f(X1, . . . , Xn) = 1] is a polynomial of at most n-th degree in p.
Its value for p = 0 is either 0 or 1. If the function is constant, it is unequal
1/2 on the whole unit interval. If it is a non-constant polynomial, there are at
most n p-values, for which it assumes the value 1/2. For all other p ∈ S holds
Pr[f(X1, . . . , Xn) = 1] �= 1/2. q. e. d.

So we have two classes of functions for post-processing true random numbers:
those with bounded numbers of input bits to produce one bit of output, and
those with unbounded. We can reformulate our theorem as

An algorithm for post-processing biased, but statistically independent random
bits with a bounded number of input bits for one output bit cannot produce un-
biased output bits for an infinite set of biases.

For practical implementations, an unbounded number of input bits means an
unbounded waiting time until the next output is produced.

So we have to accept some output bias for bounded waiting time post-processing
functions, but we will show subsequently how to make this bias very small.

Although not as well known as the von Neumann post-processing algorithm,
some algorithms with a fixed number of input bits are frequently used to improve
the statistical quality of the output of true random number generators.

Probably the simplest method is to XOR n bits from the generator in order
to get one bit of output where n is a fixed integer greater than 1.

Bad and Good Ways of Post-processing Biased Physical Random Numbers 143

Another popular method is to use a linear feedback shift register where the
bits from the true random number generator are XORed to the feedback value
computed according to the feedback polynomial. The result of this XOR opera-
tion is then fed back to the shift register. After clocking m bits from the physical
random number generator into the shift register, one bit of output is taken from
a cell of the shift register. This method tries to make use of the good statisti-
cal properties of linear feedback shift registers. Even when the physical source
of randomness breaks down completely and produces only constant bits, the
LFSR computes output which at first sight looks random. When the bits from
the physical source are non-constant but biased, some of the bias is removed,
but additional dependencies between output bits are introduced by this LFSR
method.

4 Improved Random Number Post-processing Functions
with a Fixed Number of Input Bits

4.1 The Concrete Problem Considered

We consider the following problem: we have a stationary source of random bits
which produces statistically independent, but biased output bits. Let p be the
probability for a 1 bit. The post-processing algorithm we are looking for must
not depend on the value of p. The post-processing algorithm uses 16 bits from
the physical source of randomness in order to produce 8 bits of output. Our aim
is to choose an algorithm such that the entropy of the output byte is high.

The number of input bits of the function we are looking for is 16. This is a
trivial upper bound on the number of input bits needed before the next output
is produced. Clearly, any decent implementation will also produce the output
after a bounded waiting time.

4.2 A Solution for Low Area Hardware Implementation

Let a0, a1, . . . , a15 be the input bits for post-processing. We define the 8 bits
b0, b1, . . . , b7 by bi = ai XOR a(i+1) mod 8. We note that the mapping from
a0, . . . , a7 to b0, . . . , b7 defined in this way is not bijective. Only 128 different
values for b0, b1, . . . , b7 are possible. When the input is a perfect random num-
ber generator, we destroy one bit of entropy by mapping a0, . . . , a7 to b0, . . . , b7.
The output c0, c1, . . . , c7 of the suggested post-processing function is defined by
ci = bi XOR ai+8. We call this function, which maps 16 input bits to 8 output
bits, H .

If we split the 16 input bits of H into two bytes we name a1 and a2, we can
write H in pseudocode as

H(a1,a2)= XOR(XOR(a1,rotateleft(a1,1)),a2)

Figure 2 shows the design of this post-processing function.
The entropy of the output of H is shown in Figure 3 as a function of p.

144 M. Dichtl

XOR XOR XOR XOR XOR XORXOR

XOR XOR XOR XOR XOR XOR XORXOR

XOR

Output

In
p
u
t

Fig. 2. The post-processing function H

0.4 0.5 0.6 0.7

7.86

7.88

7.9

7.92

7.94

7.96

7.98

8.00

Entropy

XOR

H

Probability of 1- bit

Fig. 3. The entropy of H

The dashed line in the figure shows, for comparison, the entropy one gets
when compressing two input bytes to one output byte by bitwise XOR. We see
that H extracts significantly more entropy from its input than the XOR.

Figure 3 might suggest that for low biases the entropies of H and XOR are
quite comparable. Indeed both are close to 8, but H is considerably closer. Let’s
look at a generator which produces 1-bits with a probability of 0.51. This is quite
good for a physical random number generator. When we use XOR to compress
two bytes from this generator to one output byte, the output byte has an entropy
of 7.9999990766751 . Using H , we get eH = 7.9999999996305 . So in this case
the deviation from the ideal value 8 is reduced by a factor more than 2499 if we
use H instead of XOR. How good must a generator be to produce output bytes

Bad and Good Ways of Post-processing Biased Physical Random Numbers 145

with entropy eH when using XOR for postprocessing? From 2 input-bytes with
a 1-probability of 0.501417 we get an output entropy of eh if we XOR them.
With XOR the 1-probability must be seven times closer to 0.5 than with H to
get the output entropy eH .

The improved entropy of H is achieved with very low hardware costs, just 16
XOR gates with two inputs are needed.

4.3 Analysis of H

What is going on in H? Why is its entropy higher than the entropy of XOR
although one first discards one bit of entropy from one input byte? Let us look
at the probabilities in more detail.

We define the quantitative value of the bias as

ε = p− 1/2.

First we compute the probability that the source produces a raw (unprocessed)
byte B. Since the bits of B are independent, the probability depends only on
the Hamming weight w of B. It is

(1/2− ε)8−w · (1/2 + ε)w
.

For the different values of w we obtain

w byte probability for a raw data byte
0 1

256 −
ε
16 + 7 ε2

16 − 7 ε3

4 + 35 ε4

8 − 7 ε5 + 7 ε6 − 4 ε7 + ε8

1 1
256 −

3 ε
64 + 7 ε2

32 − 7 ε3

16 + 7 ε5

4 − 7 ε 6

2 + 3 ε7 − ε8

2 1
256 −

ε
32 + ε2

16 + ε3

8 − 5 ε4

8 + ε 5

2 + ε6 − 2 ε7 + ε8

3 1
256 −

ε
64 −

ε2

32 + 3 ε3

16 − 3 ε5

4 + ε 6

2 + ε7 − ε8

4 1
256 −

ε2

16 + 3 ε4

8 − ε6 + ε8

5 1
256 + ε

64 −
ε2

32 −
3 ε3

16 + 3 ε5

4 + ε 6

2 − ε7 − ε8

6 1
256 + ε

32 + ε2

16 −
ε3

8 − 5 ε4

8 − ε 5

2 + ε6 + 2 ε7 + ε8

7 1
256 + 3 ε

64 + 7 ε2

32 + 7 ε3

16 − 7 ε5

4 − 7 ε 6

2 − 3 ε7 − ε8

8 1
256 + ε

16 + 7 ε2

16 + 7 ε3

4 + 35 ε4

8 + 7 ε5 + 7 ε6 + 4 ε7 + ε8

For a good generator, ε should be small. As a consequence, the terms with
the lower powers of ε are the more disturbing ones, the linear ones being the
worst.

Before we start the analysis of H , we consider the XOR post-processing. The
XOR of two raw input bits results in a 1-bit with a probability of 2p(1 − p) =
1/2− 2ε2. That is, the bias of the resulting bit is −2ε2. When we insert this bias
term for the ε in the table above we obtain the byte probabilities for the bitwise
XOR of two raw data bytes:

146 M. Dichtl

w byte probability for the XOR of two raw data bytes

0 1
256 − ε2

8 + 7 ε4

4 − 14 ε6 + 70 ε8 − 224 ε10 + 448 ε12 − 512 ε14 + 256 ε16

1 1
256 − 3 ε2

32 + 7 ε4

8 − 7 ε6

2 + 56 ε10 − 224 ε12 + 384 ε14 − 256 ε16

2 1
256 − ε2

16 + ε4

4 + ε6 − 10 ε8 + 16 ε10 + 64 ε12 − 256 ε14 + 256 ε16

3 1
256 − ε2

32 − ε4

8 + 3 ε6

2 − 24 ε10 + 32 ε12 + 128 ε14 − 256 ε16

4 1
256 − ε4

4 + 6 ε8 − 64 ε12 + 256 ε16

5 1
256 + ε2

32 − ε4

8 − 3 ε6

2 + 24 ε10 + 32 ε12 − 128 ε14 − 256 ε16

6 1
256 + ε2

16 + ε4

4 − ε6 − 10 ε8 − 16 ε10 + 64 ε12 + 256 ε14 + 256 ε16

7 1
256 + 3 ε2

32 + 7 ε4

8 + 7 ε6

2 − 56 ε10 − 224 ε12 − 384 ε14 − 256 ε16

8 1
256 + ε2

8 + 7 ε4

4 + 14 ε6 + 70 ε8 + 224 ε10 + 448 ε12 + 512 ε14 + 256 ε16

Indeed, all the linear terms in ε are gone.
We also analysed some linear feedback shift registers used for true random

number post-processing. In the cases we considered, the ratio of the numbers
of input and output bits was 2. We observed that the output probabilities con-
tained no linear powers of ε, but squares occurred. So XOR and LFSRs with an
input/output ratio of 2 seem to be random number post-processing functions of
similar quality.

Now we compute the probabilities of the output bytes of H . One approach
is to consider every possible pair of input bytes to determine its probability as
the product of the byte probabilities from the table for raw bytes above, and
to sum up these probabilities separately for all input byte pairs which lead to
the same value of H . We obtain 30 different probabilities. Formulas for theses
probabilities are shown in Table 1. In all these probabilities, there are no linear
or quadratic terms in ε! This explains why H is better than the simple XOR of
2 input bytes.

But now, there is a challenge: Can we eliminate further powers of ε?

4.4 Improving

Can we eliminate further powers of ε? Surprisingly, slight modifications of H also
eleminate the third and forth power of ε. Again, we split up the 16 input bits
into two bytes a1 and a2 and define the functions H2 and H3 by the following
pseudocode:

H2(a1,a2)= XOR(XOR(XOR(a1,rotateleft(a1,1)),rotateleft(a1,2)),a2)

H4(a1,a2)= XOR(XOR(XOR(XOR(a1,rotateleft(a1,1)),
rotateleft(a1,2)),rotateleft(a1,4)),a2)

For H2 we find that the lowest powers of ε in the probabilities of the output
bytes are ε4. For H3 they are ε5.

Bad and Good Ways of Post-processing Biased Physical Random Numbers 147

Table 1. Probabilities of the outputs of H for bias ε

output byte probability for H
1

256 + ε3

16 − ε4

4 − 3 ε5

4 + ε6

2 + 3 ε7 + 3 ε8 − 4 ε9 − 8 ε10

1
256 − ε3

16 − ε4

4 + 3 ε5

4 + ε6

2 − 3 ε7 + 3 ε8 + 4 ε9 − 8 ε10

1
256 − ε3

16 − ε5

4 − ε6

2 + 5 ε7 − ε8 − 12 ε9 + 8 ε10

1
256 + ε3

16 + ε5

4 − ε6

2 − 5 ε7 − ε8 + 12 ε9 + 8 ε10

1
256 − ε3

16 + ε4

4 − ε5

4 − 3 ε6

2 + ε7 − 5 ε8 + 20 ε9 + 24 ε10 − 64 ε11

1
256 + 3 ε3

16 + ε4

4 + ε5

4 + 5 ε6

2 + 3 ε7 − 5 ε8 − 20 ε9 − 40 ε10 − 32 ε11

1
256 + ε3

16 − ε4

4 − ε5

4 + ε6

2 − 3 ε7 + 3 ε8 + 20 ε9 − 8 ε10 − 32 ε11

1
256 − ε3

16 + ε5

4 − ε6

2 − ε7 − ε8 + 12 ε9 + 8 ε10 − 32 ε11

1
256 − 3 ε3

16 + ε4

4 − ε5

4 + 5 ε6

2 − 3 ε7 − 5 ε8 + 20 ε9 − 40 ε10 + 32 ε11

1
256 − ε3

16 − ε4

4 + ε5

4 + ε6

2 + 3 ε7 + 3 ε8 − 20 ε9 − 8 ε10 + 32 ε11

1
256 + ε3

16 − ε5

4 − ε6

2 + ε7 − ε8 − 12 ε9 + 8 ε10 + 32 ε11

1
256 + ε3

16 + ε4

4 + ε5

4 − 3 ε6

2 − ε7 − 5 ε8 − 20 ε9 + 24 ε10 + 64 ε11

1
256 − 2 ε6 + 9 ε8 − 32 ε12

1
256 − ε4

4 + ε6 − 3 ε8 + 16 ε10 − 32 ε12

1
256 − ε3

8 + ε5

2 + 2 ε7 − 7 ε8 − 8 ε9 + 32 ε10 − 32 ε12

1
256 + ε3

8 − ε5

2 − 2 ε7 − 7 ε8 + 8 ε9 + 32 ε10 − 32 ε12

1
256 + ε3

8 + ε4

4 + ε5

2 + ε6 + 2 ε7 + 5 ε8 − 8 ε9 − 48 ε10 − 64 ε11 − 32 ε12

1
256 − ε3

8 + ε4

4 − ε5

2 + ε6 − 2 ε7 + 5 ε8 + 8 ε9 − 48 ε10 + 64 ε11 − 32 ε12

1
256 + ε4

4 − 2 ε6 + ε8 + 32 ε12

1
256 − ε4

4 + 9 ε8 − 32 ε10 + 32 ε12

1
256 − ε4

2 + 3 ε6 − 3 ε8 − 16 ε10 + 32 ε12

1
256 − ε3

8 + ε5

2 − ε6 + 2 ε7 + 5 ε8 − 8 ε9 − 16 ε10 + 32 ε12

1
256 + ε3

8 − ε5

2 − ε6 − 2 ε7 + 5 ε8 + 8 ε9 − 16 ε10 + 32 ε12

1
256 + ε6 − 11 ε8 + 16 ε10 + 32 ε12,
1

256 − ε3

4 + ε4

2 − ε5 + 7 ε6 − 20 ε7 + 45 ε8 − 112 ε9 + 176 ε10 − 128 ε11 + 32 ε12

1
256 − ε5

2 − ε6 + 2 ε7 + 5 ε8 + 8 ε9 − 16 ε10 − 32 ε11 + 32 ε12

1
256 − ε3

8 + ε6 + 4 ε7 − 11 ε8 + 16 ε10 − 32 ε11 + 32 ε12

1
256 + ε5

2 − ε6 − 2 ε7 + 5 ε8 − 8 ε9 − 16 ε10 + 32 ε11 + 32 ε12

1
256 + ε3

8 + ε6 − 4 ε7 − 11 ε8 + 16 ε10 + 32 ε11 + 32 ε12

1
256 + ε3

4 + ε4

2 + ε5 + 7 ε6 + 20 ε7 + 45 ε8 + 112 ε9 + 176 ε10 + 128 ε11 + 32 ε12

4.5 An Even Better Solution

It seems that the linear methods which could eliminate all powers of ε up to the
forth do not work for the fifth. Whereas the linear solutions turned up rather
wondrously, we have to labour now. What must we do in order to eliminate the
first through fifth powers of ε? We have to partition the set of 65536 inputs into
256 sets of cardinality 256 in such a way that the first through fifth powers of
ε disappear in all 256 sums over the 256 input probabilities. Fortunately, we do
not have to deal with too many different input probabilities, since they depend

148 M. Dichtl

Table 2. Probabilities of 16-bit-vectors with bit bias ε

w Occurrences Probability of 16 bit input with Hamming weight w

0 1 1
65536 − ε

2048 + 15 ε2

2048 − 35 ε3

512 + 455 ε4

1024 − 273 ε5

128 + 1001 ε6

128 − 715 ε7

32 + 6435 ε8

128 −
715 ε9

8 + 1001 ε10

8 − 273 ε11

2 + 455 ε12

4 − 70 ε13 + 30 ε14 − 8 ε15 + ε16

1 16 1
65536 − 7 ε

16384 + 45 ε2

8192 − 175 ε3

4096 + 455 ε4

2048 − 819 ε5

1024 + 1001 ε6

512 − 715 ε7

256 +
715 ε9

64 − 1001 ε10

32 + 819 ε11

16 − 455 ε12

8 + 175 ε13

4 − 45 ε14

2 + 7 ε15 − ε16

2 120 1
65536 − 3 ε

8192 + ε2

256 − 49 ε3

2048 + 91 ε4

1024 − 91 ε5

512 + 143 ε7

128 − 429 ε8

128 + 143 ε9

32 −
91 ε11

8 + 91 ε12

4 − 49 ε13

2 + 16 ε14 − 6 ε15 + ε16

3 560 1
65536 − 5 ε

16384 + 21 ε2

8192 − 45 ε3

4096 + 39 ε4

2048 + 39 ε5

1024 − 143 ε6

512 + 143 ε7

256 − 143 ε9

64 +
143 ε10

32 − 39 ε11

16 − 39 ε12

8 + 45 ε13

4 − 21 ε14

2 + 5 ε15 − ε16

4 1820 1
65536 − ε

4096 + 3 ε2

2048 − 3 ε3

1024 − 9 ε4

1024 + 15 ε5

256 − 11 ε6

128 − 11 ε7

64 + 99 ε8

128 −
11 ε9

16 − 11 ε10

8 + 15 ε11

4 − 9 ε12

4 − 3 ε13 + 6 ε14 − 4 ε15 + ε16

5 4368 1
65536 − 3 ε

16384 + 5 ε2

8192 + 5 ε3

4096 − 25 ε4

2048 + 17 ε5

1024 + 33 ε6

512 − 55 ε7

256 + 55 ε9

64 −
33 ε10

32 − 17 ε11

16 + 25 ε12

8 − 5 ε13

4 − 5 ε14

2 + 3 ε15 − ε16

6 8008 1
65536 − ε

8192 + 5 ε3

2048 − 5 ε4

1024 − 9 ε5

512 + ε6

16 + 5 ε7

128 − 45 ε8

128 + 5 ε9

32 + ε10 −
9 ε11

8 − 5 ε12

4 + 5 ε13

2 − 2 ε15 + ε16

7 11440 1
65536 − ε

16384 − 3 ε2

8192 + 7 ε3

4096 + 7 ε4

2048 − 21 ε5

1024 − 7 ε6

512 + 35 ε7

256 − 35 ε9

64 +
7 ε10

32 + 21 ε11

16 − 7 ε12

8 − 7 ε13

4 + 3 ε14

2 + ε15 − ε16

8 12870 1
65536 − ε2

2048 + 7 ε4

1024 − 7 ε6

128 + 35 ε8

128 − 7 ε10

8 + 7 ε12

4 − 2 ε14 + ε16

9 11440 1
65536 + ε

16384 − 3 ε2

8192 − 7 ε3

4096 + 7 ε4

2048 + 21 ε5

1024 − 7 ε6

512 − 35 ε7

256 + 35 ε9

64 +
7 ε10

32 − 21 ε11

16 − 7 ε12

8 + 7 ε13

4 + 3 ε14

2 − ε15 − ε16

10 8008 1
65536 + ε

8192 − 5 ε3

2048 − 5 ε4

1024 + 9 ε5

512 + ε6

16 − 5 ε7

128 − 45 ε8

128 − 5 ε9

32 + ε10 +
9 ε11

8 − 5 ε12

4 − 5 ε13

2 + 2 ε15 + ε16

11 4368 1
65536 + 3 ε

16384 + 5 ε2

8192 − 5 ε3

4096 − 25 ε4

2048 − 17 ε5

1024 + 33 ε6

512 + 55 ε7

256 − 55 ε9

64 −
33 ε10

32 + 17 ε11

16 + 25 ε12

8 + 5 ε13

4 − 5 ε14

2 − 3 ε15 − ε16

12 1820 1
65536 + ε

4096 + 3 ε2

2048 + 3 ε3

1024 − 9 ε4

1024 − 15 ε5

256 − 11 ε6

128 + 11 ε7

64 + 99 ε8

128 +
11 ε9

16 − 11 ε10

8 − 15 ε11

4 − 9 ε12

4 + 3 ε13 + 6 ε14 + 4 ε15 + ε16

13 560 1
65536 + 5 ε

16384 + 21 ε2

8192 + 45 ε3

4096 + 39 ε4

2048 − 39 ε5

1024 − 143 ε6

512 − 143 ε7

256 + 143 ε9

64 +
143 ε10

32 + 39 ε11

16 − 39 ε12

8 − 45 ε13

4 − 21 ε14

2 − 5 ε15 − ε16

14 120 1
65536 + 3 ε

8192 + ε2

256 + 49 ε3

2048 + 91 ε4

1024 + 91 ε5

512 − 143 ε7

128 − 429 ε8

128 − 143 ε9

32 +
91 ε11

8 + 91 ε12

4 + 49 ε13

2 + 16 ε14 + 6 ε15 + ε16

15 16 1
65536 + 7 ε

16384 + 45 ε2

8192 + 175 ε3

4096 + 455 ε4

2048 + 819 ε5

1024 + 1001 ε6

512 + 715 ε7

256 −
715 ε9

64 − 1001 ε10

32 − 819 ε11

16 − 455 ε12

8 − 175 ε13

4 − 45 ε14

2 − 7 ε15 − ε16

16 1 1
65536 + ε

2048 + 15 ε2

2048 + 35 ε3

512 + 455 ε4

1024 + 273 ε5

128 + 1001 ε6

128 + 715 ε7

32 + 6435 ε8

128 +
715 ε9

8 + 1001 ε10

8 + 273 ε11

2 + 455 ε12

4 + 70 ε13 + 30 ε14 + 8 ε15 + ε16

only on the Hamming weight w of the 16 bit input. The probabilities and their
numbers of occurrences are given in Table 2.

A careful look at this table shows that all odd powers of ε disappear in the
probabilities, if we partition the inputs in such a way that 16 bit input values

Bad and Good Ways of Post-processing Biased Physical Random Numbers 149

and their bitwise complements are always in the same partition. This makes our
problem significantly easier and leads to the much simpler Table 3.

Table 3. Probabilities for combining 16 bit inputs and their complements (bit bias ε)

w Occurrences Probability of input + probability of complement

0 1 1
32768 + 15 ε2

1024 + 455 ε4

512 + 1001 ε6

64 + 6435 ε8

64 + 1001 ε10

4 + 455 ε12

2 + 60 ε14 + 2 ε16

1 16 1
32768 + 45 ε2

4096 + 455 ε4

1024 + 1001 ε6

256 − 1001 ε10

16 − 455 ε12

4 − 45 ε14 − 2 ε16

2 120 1
32768 + ε2

128 + 91 ε4

512 − 429 ε8

64 + 91 ε12

2 + 32 ε14 + 2 ε16

3 560 1
32768 + 21 ε2

4096 + 39 ε4

1024 − 143 ε6

256 + 143 ε10

16 − 39 ε12

4 − 21 ε14 − 2 ε16

4 1820 1
32768 + 3 ε2

1024 − 9 ε4

512 − 11 ε6

64 + 99 ε8

64 − 11 ε10

4 − 9 ε12

2 + 12 ε14 + 2 ε16

5 4368 1
32768 + 5 ε2

4096 − 25 ε4

1024 + 33 ε6

256 − 33 ε10

16 + 25 ε12

4 − 5 ε14 − 2 ε16

6 8008 1
32768 − 5 ε4

512 + ε6

8 − 45 ε8

64 + 2 ε10 − 5 ε12

2 + 2 ε16

7 11440 1
32768 − 3 ε2

4096 + 7 ε4

1024 − 7 ε6

256 + 7 ε10

16 − 7 ε12

4 + 3 ε14 − 2 ε16

8 6435 1
32768 − ε2

1024 + 7 ε4

512 − 7 ε6

64 + 35 ε8

64 − 7 ε10

4 + 7 ε12

2 − 4 ε14 + 2 ε16

For the Hamming weight 8, the number of occurrences in Table 3 is only half
of the number in Table 2, because the Hamming weight of complements of inputs
with Hamming weight 8 is also 8.

Now, we have to partition the 32768 values from this table into 256 sets with
128 elements, such that the first through fifth powers of ε eliminate each other.
Here is the solution we found:

Among the 256 sets, we distinguish 7 different types:
Type A consists of once the Hamming weight 0, 112 times the Hamming

weight 6, and 15 times the Hamming weight 8. There is only one set of type A.
Type B consists of once the Hamming weight 1, 42 times the Hamming

weight 5, and 85 times the Hamming weight 7. There are 16 sets of type B.
Type C consists of 14 times the Hamming weight 4, 28 times the Hamming

weight 5, 36 times the Hamming weight 7, and 50 times the Hamming weight 8.
There are 46 sets of type C.

Type D consists of twice the Hamming weight 2, 37 times the Hamming
weight 5, 16 times the Hamming weight 6, 43 times the Hamming weight 7, and
30 times the Hamming weight 8. There are 60 sets of type D.

Type E consists of 5 times the Hamming weight 3, 7 times the Hamming
weight 4, 58 times the Hamming weight 6, 43 times the Hamming weight 7, and
15 times the Hamming weight 8. There are 112 sets of type E.

Type F consists of 13 times the Hamming weight 4, 30 times the Hamming
weight 5, 8 times the Hamming weight 6, 2 times the Hamming weight 7, and
75 times the Hamming weight 8. There are 4 sets of type F.

Type G consists of 20 times the Hamming weight 4, 4 times the Hamming
weight 5, 24 times the Hamming weight 6, 60 times the Hamming weight 7, and
20 times the Hamming weight 8. There are 17 sets of type G.

The following table shows the output probability for each type:

150 M. Dichtl

Type Probability of output byte

A 1
256 + 28 ε6 + 30 ε8 + 448 ε10 + 256 ε16

B 1
256 + 7 ε6 − 112 ε10 − 256 ε16

C 1
256 − 21 ε6

4 + 49 ε8 − 168 ε10 + 224 ε12 − 64 ε14

D 1
256 + 37 ε6

16 − 33 ε8

4 − 78 ε10 + 312 ε12 − 112 ε14 − 64 ε16

E 1
256 + 7 ε6

16 − 87 ε8

4 + 134 ε10 − 248 ε12 + 48 ε14 + 64 ε16

F 1
256 − 45 ε6

8 + 111 ε8

2 − 212 ε10 + 368 ε12 − 288 ε14 + 128 ε16

G 1
256 − 15 ε6

4 + 25 ε8 − 24 ε10 − 160 ε12 + 320 ε14

All ε powers up to the fifth are gone!
In order to define a concrete post-processing function, we have to fix which

inputs are mapped to which outputs. We can do this arbitrarily, taking into
account the rules indicated above. The many choices we have for defining the
concrete function do not influence the statistical quality of the function, but
they can be used to ease the implementation of the function. Let S be a fixed
function constructed according to the principles described above.

4.6 What About Going Further?

Naturally, we want to go on to eliminate the sixth powers of ε. Linear program-
ming shows that the probability for Hamming weight 1 can be used at most
296/891 times when we want to arrange the probabilities in such a way that for
sets of 256 probabilities the ε-powers cancel out up to the sixth. As a fraction
does not make sense here, we have shown that it is impossible to eliminate the
sixth powers of ε. We do not claim that S is optimal, as there might be solutions
with sixth powers of ε with smaller absolute values of the coefficients than S.

We used the linear progamming approach to prove another negative result:
When considering postprocessing with 32 input and 16 output bits, the proba-
bility of the outputs contains nineth or lower powers of ε.

4.7 The Entropy of S

Figure 4 shows, as expected, that S extracts even more entropy from its input
than H .

In the evaluation directive AIS 31 for true random number generators of
the German BSI [KS01], a bias of 0.02 is still considered acceptable. This bias
corresponds to an entropy of 0.998846 per bit, or 7.99076 per byte. This entropy
is achieved by a source with bias 0.1, if each output bit is the XOR of two input
bits. With the post-processing function H , the same entropy is achieved with a
source bias of 0.16835. And for the post-processing function S, we obtain this
entropy even for a source bias of 0.23106.

4.8 On the Implementation of S

A hardware implementation of the post-processing function S would probably
require a considerable amount of chip area. The easiest way to implement S is

Bad and Good Ways of Post-processing Biased Physical Random Numbers 151

Entropy XOR

SH

H

H

H

H
H

Probability of 1- bit

0.3 0.4 0.5 0.6 0.7

7.98

7.985

7.99

7.995

8

Fig. 4. The entropy of S

just a lookup table, which assigns output bytes to all possible 16 bit inputs. Such
a table requires 64 kBytes of ROM. This should be no problem on a modern
PC, but could be prohibitive for some smart-card applications. We can halve
this storage requirement, if we take into account that inputs and their bitwise
complements lead to the same output. If the leading bit of the input is 1, we use
the output for its bitwise complement from the table. Therefore, we can use a
table of 32 kBytes.

We can implement really compact software for S, if we make use of the freedom
we have for fixing the values for the function S. We will only sketch the principle
of such a software implementation. The main idea is to use the lexicographically
first possible solution for all situations, where one has a choice. Following this
principle, the only instance of type A leads to the output of 0, the 16 instances of
type B to the output values 1, . . . , 16. The 46 instances of type C are assigned the
output values 17, . . . , 62, and so on. The assignment of input values to instances
of types also follows this lexicographic principle. As an example, we consider
inputs of Hamming weight 8. The 15 lexicographically lowest 16 bit values with
Hamming weight 8 are assigned to the only instance of type A. Type B does not
use inputs of Hamming weight 8, so the lexicographically next inputs with this
Hamming weight are assigned to instances of type C. The lexicographically next
50 inputs with Hamming weight 8 are assigned to the first instance of type C,
the next 50 to the second instance of type C, and so on. When we follow this
lexicographic design principle, the tables needed for the computation of S can
be stored very compactly in about 50 bytes.

This lexicographic principle can only be used profitably for a software im-
plementation, if we are able to determine the rank of a given 16 bit value of
Hamming weight w in the lexicographic order of the inputs of this Hamming
weight. Let p0, p1, . . . , pw−1 with p0 < p1 < · · · < pw−2 < pw−1 be the bit
positions of the 1-bits of the input. Let the bit position of the least significant

152 M. Dichtl

bit be 0, and let the bit position of the most significant bit be 15. Then the
lexicographic rank is given by
∑w−1

i=0

(
pi

i + 1

)
.

5 Conclusion and Further Research Topics

We have shown that the quasigroup post-processing method for physical random
numbers described in [MGK05] is ineffective and very easy to attack.

We have also shown that there are post-processing functions with a fixed
number of input bits for biased physical random number generators which are
much better than the ones usually used up to now.

The results of section 4 of this paper can be extended in many directions: e. g.,
compression rates greater than 2, other input sizes, systematic construction of good
post-processing functions.

Acknowledgment

The author would like to thank Bernd Meyer (Siemens AG) for his help and for
many valuable discussions.

References

[JJSH00] Juels, A., Jakobsson, M., Shriver, E., Hillyer, B.K.: How to turn loaded dice
into fair coins. IEEE Trans. Information Theory 46(3), 911–921 (2000)

[KS01] Killmann, W., Schindler, W.: A proposal for: Functionality classes and eval-
uation methodology for true (physical) random number generators (2001),
http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf

[MGK05] Markovski, S., Gligoroski, D., Kocarev, L.: Unbiased random sequences from
quasigroup string transformations. In: Gilbert, H., Handschuh, H. (eds.)
FSE 2005. LNCS, vol. 3557, pp. 163–180. Springer, Heidelberg (2005)

[Per92] Peres, Y.: Iterating von Neumann’s procedure for extracting random bits.
The Annals of Statistics 20(3), 590–597 (1992)

[vN63] von Neumann, J.: Various techniques for use in connection with random
digits. Von Neumann’s Collected Works, pp. 768–770. Pergamon, London
(1963)

http://www.bsi.bund.de/zertifiz/zert/interpr/trngk31e.pdf

Improved Slide Attacks

Eli Biham1,�, Orr Dunkelman2,�, and Nathan Keller3,��

1Computer Science Department, Technion
Haifa 32000, Israel

biham@cs.technion.ac.il
2Katholieke Universiteit Leuven,

Dept. of Electrical Engineering ESAT/SCD-COSIC
Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium

orr.dunkelman@esat.kuleuven.be
3Einstein Institute of Mathematics, Hebrew University

Jerusalem 91904, Israel
nkeller@math.huji.ac.il

Abstract. The slide attack is applicable to ciphers that can be repre-
sented as an iterative application of the same keyed permutation. The
slide attack leverages simple attacks on the keyed permutation to more
complicated (and time consuming) attacks on the entire cipher.

In this paper we extend the slide attack by examining the cycle struc-
tures of the entire cipher and of the underlying keyed permutation. Our
method allows to find slid pairs much faster than was previously known,
and hence reduces the time complexity of the entire slide attack sig-
nificantly. In addition, since our attack finds as many slid pairs as the
attacker requires, it allows to leverage all types of attacks on the un-
derlying permutation (and not only simple attacks) to an attack on the
entire cipher.

We demonstrate the strength of our technique by presenting an attack
on 24-round reduced GOST whose S-boxes are unknown. Our attack
retrieves the unknown S-boxes as well as the secret key with a time
complexity of about 263 encryptions. Thus, this attack allows an easier
attack on other instances of GOST that use the same S-boxes. When the
S-boxes are known to the attacker, our attack can retrieve the secret key
of 30-round GOST (out of the 32 rounds).

1 Introduction

Most of the modern block ciphers are constructed as a cascade of repeated keyed
components, called rounds (or round functions). The security of such ciphers
relies on applying the round function sufficiently many times. This is mainly due
� This work was supported in part by the Israel MOD Research and Technology Unit.

�� The research presented in this paper was supported by the Adams fellowship.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 153–166, 2007.
c© International Association for Cryptologic Research 2007

154 E. Biham, O. Dunkelman, and N. Keller

to the fact that most attacks on block ciphers, e.g., differential cryptanalysis [3]
and linear cryptanalysis [16], are statistical in nature and their effectiveness
reduces as the number of rounds increases. Even non-statistical techniques, such
as the SQUARE attack [7], are also affected by increasing the number of rounds
of the cipher.

There are only few attacks on block ciphers that are independent of the num-
ber of rounds. One of them is the related key attack [1] presented by Biham in
1993. The attack uses encryption under unknown but related keys to derive the
actual values of the keys.

In 1999, Biryukov and Wagner explored the framework of related key attacks
and introduced the slide attack [4]. The slide attack is applied against ciphers
that are a cascade of some identical “simple” functions, e.g., Ek = f l

k = fk ◦
fk ◦ · · · ◦ fk, where fk is a relatively weak keyed permutation. The attacker
uses the birthday paradox to find slid pairs (P1, P2) such that P2 = fk(P1).
Due to the structure of Ek, the corresponding ciphertexts (C1, C2) satisfy that
C2 = fk(C1). Once a slid pair is found, the attacker uses the “simplicity” of
fk and the input/output pairs (P1, P2) and (C1, C2) to attack fk, and thus, to
attack Ek. The attack can be used only if fk is “simple”, i.e., can be broken
using only two known input/output pairs.

In 2000, Biryukov and Wagner presented new variants of the slide attack,
called complementation slide and sliding with a twist [5]. These variants allow
for treating more complex functions in the slide framework. Nevertheless, there
are no widely used ciphers that can be attacked using these techniques.

In addition to these new variants, the authors of [5] presented several tech-
niques aimed at finding several slid pairs simultaneously, thus enabling to use the
attack even if several input/output pairs are required to break fk. One of these
techniques, fully explored by Furuya [9], uses the fact that if (P1, P2) is a slid
pair then (Et

k(P1), Et
k(P2)) are also slid pairs for all values of t. This technique

allows the attacker to transform any known plaintext attack on fk that requires
m known plaintexts to an attack on Ek. The data complexity of the attack is
O(m · 2n/2) adaptively chosen plaintexts, where n is the block size, and the time
complexity of O(2n) applications of the known plaintext attack. Other attacks
on the underlying function, e.g., chosen plaintext attacks, can be also leveraged
to an attack on the entire cipher using the standard transformation to a known
plaintext attack. However, in this case both the data complexity and the time
complexity become very large, since the attack on the underlying function is
applied O(2n) times during the attack on the whole cipher.

In this paper we present a new variant of the slide attack which enables to find
slid pairs much more quickly. In our attack, instead of constructing slid pairs by
the birthday paradox, we use the cycle structures of Ek and fk for the detection
of a large set of slid pairs. Then, we can use these pairs in any attack on fk,
whether it is a known plaintext attack, or if enough pairs are found, a chosen
plaintext attack (or even an adaptive chosen plaintext and ciphertext attack).
Unlike previous attacks, in our attack, the attack on fk is repeated only once
(as the slid pairs are given), no matter what fk is.

Improved Slide Attacks 155

The data complexity of our attack is high — it requires almost the entire
codebook. On the other hand, the time complexity is surprisingly low — the first
stage of the attack (finding the slid pairs) takes no more than 2n encryptions,
where n is the block size, while the second stage is a (much faster) attack on fk.
Despite the large data requirements, the attack can be useful, as we demonstrate
in our attack on 24-round reduced GOST with unknown S-boxes.

The block cipher GOST [10] is the Russian Encryption Standard. Since its
publication in 1989 it withstood extensive cryptanalytic efforts. GOST has 64-
bit blocks and keys of 256 bits. The main special feature of GOST is the S-boxes
that were not published. Every industry was issued a different set of secret
S-boxes. An example of a set that leaked is the set used in the Russian banking
industry [19], and few attacks have been published on variants of GOST with
these S-boxes [12,15,20]. There are also attacks on several variants of GOST
with unknown S-boxes, but these attacks are either applicable to only a small
number of rounds [20] or to relatively small classes of weak keys [4]. Another
attack retrieves the unknown S-boxes by choosing a key from a set of weak keys
for which it is possible to apply the slide attack [18].

In this paper we apply our technique to devise an attack on GOST reduced to
its 24 first rounds with unknown S-boxes that allows to retrieve both the S-boxes
and the secret key, a total of 768 key bits. The data complexity of our attack is
263 adaptively chosen plaintexts and the time complexity is 263 encryptions. A
known plaintext variant of the attack has data and time complexities of a little
less than 264 encryptions.

A possible application of our attack is by an authorized user that has legiti-
mate access to an instance of 24-round GOST that cannot be reverse engineered.
Such a user can apply our attack to find the unknown S-boxes. As these S-boxes
are shared by an entire industry, such an attack compromises the security of the
entire industry.

When the S-boxes are known, it is possible to apply our attack to 30-round
GOST (out of the 32 rounds), such that it is still faster than exhaustive key
search. In addition, we present a new class of weak keys consisting of 2128 keys,
for which our attack can break the entire GOST with unknown S-boxes with the
same data and time complexities as the 24-round attack.

This paper is organized as follows: In Section 2 we give a brief description of
the related key attacks and the slide attacks. In Section 3 we present our new
technique. In Section 4 we present an attack on 24-round GOST with unknown
S-boxes and on 30-round GOST with known S-boxes. Appendix A outlines a 7-
round truncated differential of GOST with probability 0.494. Finally, Section 5
summarizes this paper.

2 Related-Key Attacks and Slide Attacks

In this section we survey the previous results on related-key attacks. We start
with describing the related-key attacks suggested by Biham [1] and Knudsen [14].

156 E. Biham, O. Dunkelman, and N. Keller

Then, we describe the slide attacks by Biryukov and Wagner [4]. We also present
some of the extensions of the slide attack.

2.1 Related-Key Attacks

Related-key attacks, introduced in [1,14], are attacks exploiting related-key
plaintext pairs. The main idea behind the attack is to find instances of keys
for which the encryption processes deploy the same permutation (or almost the
same permutation). To illustrate the technique, we shortly present the attack
from [1].

Consider a variant of DES in which all the rotate left operations in the key
schedule algorithm are by a fixed number of bits.1 For any key K there exists
another key K̂ such that the round subkeys KRi, K̂Ri produced by K and K̂,
respectively, satisfy:

KRi+1 = K̂Ri, for i = 1, . . . , 15.

For such pair of keys, if a pair of plaintexts (P1, P2) satisfies P2 = fKR1(P1),
where fsk(P) denotes one round DES encryption of P under the subkey sk, then
the corresponding ciphertexts, C1 and C2, respectively, satisfy C2 = f

�KR16
(C1).

Given such a pair of plaintexts (called in the sequel “a related-key plaintext
pair”), the subkeys KR1 and K̂R16 can be easily extracted [1]. Due to the
Feistel structure of DES, the related-key plaintext pairs can be detected easily.
Therefore, this attack can be applied using only 216 chosen plaintexts encrypted
under K and 216 chosen plaintexts encrypted under K̂, with a time complexity
of 217 encryptions.

In the more general case, the related-key attack has three parts: Obtaining
related-key plaintexts, identifying the related-key plaintext pairs, and using them
to deduce the key. In many cases, identifying the related-key plaintext pairs
is best achieved by assuming for each candidate pair that it is a related-key
plaintext pair, and then using it as an input for the key recovery phase of the
attack. In other cases, the round functions’ weaknesses allow the attacker to
identify these pairs easily.

2.2 Slide Attacks

When a cipher has self-related keys, i.e., it can be written as Ek = f l
k = fk ◦

fk ◦ · · · ◦ fk, then it is susceptible to a variant of the related-key attack called
the slide attack [4]. In this case, it is possible to apply the related-key attack
to the cipher with K = K̂, thus eliminating the key requirement of having two
keys. The attacker looks for a slid pair, i.e., two plaintexts (P1, P2) such that
P2 = fk(P1). In this case, the pair satisfies C2 = fk(C1) as well. When the
round function fk is simple enough, it is possible to use these two pairs in order
to deduce information about the key.
1 Such a variant was proposed by Brown and Seberry [6].

Improved Slide Attacks 157

In the slide attack the attacker obtains enough plaintext/ciphertext pairs to
contain a slid pair, and has to check for each possible pair of plaintexts whether
it is a slid pair by applying the attack on fk. When dealing with a general block
cipher this approach requires O(2n/2) known plaintexts and O(2n) applications
of the attack on fk, where n is the block size. For Feistel block ciphers, the attack
can be optimized using O(2n/4) chosen plaintexts and O(1) applications of the
attack. Note that as in the original related-key attacks, the main drawback of
this approach is that the attack can be used only if fk can be broken using only
two known input/output pairs, i.e., given one slid pair.

In 2000, Biryukov and Wagner [5] presented two variants of the slide attack,
named complementation slide and sliding with a twist. These variants allow for
treating more complex functions in a slide attack. Nevertheless, there are no
widely used ciphers that can be attacked using these techniques.

The authors of [5] also presented several techniques aimed at finding several
slid pairs simultaneously, enabling to use the attack even if several input/output
pairs are needed for attacking fk. One of these techniques, fully explored by
Furuya [9], uses the fact that when (P1, P2) is a slid pair then (Et

k(P1), Et
k(P2))

are also slid pairs for all values of t. This allows the attacker to transform any
known plaintext attack on fk that requires m known plaintexts to an attack
on Ek with a data complexity of O(m · 2n/2) adaptively chosen plaintexts. The
time complexity of this approach is O(2n) applications of the known plaintext
attack on fk. It is worth mentioning that the technique can be easily improved
when fk is one Feistel round, for which O(2n/4) chosen plaintexts and O(m)
adaptive chosen plaintexts are sufficient to achieve m slid pairs, which are easily
identified.

This approach can be also used if there is only a chosen plaintext attack on
fk. The attacker can repeatedly generate slid pairs until the “plaintext” parts of
the slid pairs contain a set of plaintexts satisfying the data requirements of the
attack on fk. However, the attack still requires O(2n) applications of the attack
on fk (unless there is a special property that allows easy identification of the
slid pairs).

3 Our New Technique

Before we start our discussion, let us recall the notations used in the previous
section. In our discussion, Ek = f l

k is a block cipher composed of l applications
of the same keyed permutation fk. The attacker looks for a slid pair, i.e., a pair
of plaintexts (P1, P2) such that P2 = fk(P1).

3.1 Studying the Cycle Structure

As noted earlier, in the previous variants of the slide attack there was no imme-
diate indication which of the possible pairs is a slid pair (for a general cipher).
Thus, an attacker had to try all possible pairs as candidates.

In our attack we use the cycle structure of Ek and of fk to find a large amount
of slid pairs. We emphasize that the attack uses only the cycle structure and is

158 E. Biham, O. Dunkelman, and N. Keller

independent of any other properties of the functions Ek and fk. As a result, the
attacker can detect the slid pairs even if there is no efficient attack on fk. After
finding the slid pairs, the attacker can use them to mount any attack she wishes
on fk, in order to retrieve the key material used in fk.

First we recall several facts regarding the cycle structure of permutations that
are used in our attack. Let g : GF (2n) → GF (2n) be a random permutation.
For every x ∈ GF (2n) we denote CycleLength(x) = min{k > 0|gk(x) = x}.
The lengths of the cycles of g are close to be uniformly distributed [8]. The
expectation of the cycle length is E[CycleLength(x)] = 2n−1. Therefore, we
expect that the largest cycle Cyclemax has a size of O(2n−1) and for every
x ∈ GF (2n), Pr[x ∈ Cyclemax] ≈ 1/2. Moreover, we expect that the second
largest cycle has a size of O(2n−2), and generally, the i-th largest cycle has a
size of O(2n−i). We note that for most of the permutations there are about n
cycles that are distributed according to a Poisson distribution (confirming the
above claims for most of the cases) [11].

The main observation used in our attack is the following: Let P be a ran-
domly chosen plaintext. We consider the cycles of P with respect to fk and
Ek, denoted by Cyclefk

(P) and CycleEk
(P), respectively. Denote the length of

Cyclefk
(P) by m1, i.e., m1 = min{t > 0|f t

k(P) = P}. Similarly, denote the
length of CycleEk

(P) by m2. As Ek = f l
k the relation Em2

k (P) = P can be writ-
ten as f l·m2

k (P) = P . Thus, from the definition of cycle lengths m1|l ·m2. On the
other hand, m2 = min{t > 0|Et

k(P) = P} = min{t > 0|f (t·l) mod m1
k (P) = P}.

Combining these two statements, we get m2 = min{t > 0|tl = 0 mod m1}. We
conclude that

m2 = m1/gcd(m1, l).

In particular, if gcd(m1, l)=1, then m1 = m2.
If gcd(m1, l) = 1 we can find 1 ≤ d1 ≤ l − 1 and d2 such that d1 · m1 = (−1)

(mod l) = d2 · l− 1 using Euclid’s extended algorithm. These two values d1 and
d2 satisfy both fd1·m1+1

k (P) = fk(P) and fd1·m1+1
k (P) = fd2·l

k (P) = Ed2
k (P).

Therefore, the pair (P, Ed2
k (P)) is a slid pair for E. Moreover, as already observed

in [5], the pairs (Et
k(P), Ed2+t

k (P)) are also slid pairs for every t.
When gcd(m1, l) �= 1, there is no general way to identify slid pairs as this

case may be the product of several reasons. For example, when there is only one
cycle (of size 2n), then the slid counterpart of any given plaintext P is found in
the cycle, but in an unknown location (or more precisely, any information that
can be used to find the slid pair in the cycle, can be used without the need to
construct the cycle).

In other cases, using the cycle structure can help a little bit. Assume that
there are many cycles of different lengths, but a small group of cycles with the
same size. It is very likely that this group contains slid pairs with one element
in one cycle, and its slid counterpart in the other cycle. However, even if this is
the case, the order between the different cycles, or even which is the counterpart
of a given plaintext, is not necessarily disclosed by studying the cycle structure.

Improved Slide Attacks 159

3.2 Using the Cycles in the Slide Attack

Our attack starts at some random plaintext P0. We apply Ek to it repeatedly
until we get P0 once again. When this happens, we have identified a cycle and
the value of CycleLengthEk

(P0). Note that the attack cannot obtain the cycle
of fk, nor its length.

However, when the corresponding values m1 and l satisfy gcd(m1, l) = 1 our
attack can find the cycle length of fk, as m1 = m2. Under this assumption we
can calculate d2, and then we get m2 slid pairs in the cycle of Ek. These slid
pairs can be used in any attack on fk.

For a random value of x, E[CycleLength(x)] = 2n−1, thus, we expect to
get about 2n−1 slid pairs. This amount is sufficient for most possible attacks,
including adaptive chosen plaintext and ciphertext attacks. In case the block
ciphers (fk or Ek) have a different behavior, they can be easily distinguished
from random permutations using this property.

In our attack, we assume that m1 = m2. In case this assumption is wrong,
our attack fails. The probability of a failure for a random permutation fk is
1−ϕ(l)/l, where ϕ(l) = |{1 ≤ d ≤ (l−1) : gcd(d, l) = 1}| is the Euler’s function.
In this case, we start with another plaintext P1 �∈ CycleEk

(P0) and repeat the
attack. If the attack fails again, we take a new plaintext P2 etc. Assuming that
all the cycles lengths are independent of each other, after t applications of the
attack, the total success probability is 1 − (1 − ϕ(l)/l)t. This assumption is
quite appropriate for random permutations, as long as t is smaller than the total
number of cycles.

The data complexity of the attack is very large — the attack requires O(2n−1)
adaptively chosen plaintexts. However, as we shall see in the attack on GOST,
there are scenarios in which such an attack can be used despite the large data
requirements.

We note that the attack can be transformed into a known plaintext attack
that requires almost the entire code book. In that case, using birthday arguments
we expect that few long cycles are found, suggesting a large amount of slid pairs.

4 Several Attacks on Reduced Round GOST

In this section we present a slide attack on 24-round GOST. The data complexity
of the attack is about 263 adaptive chosen plaintexts or 264 known plaintexts
(as required by our technique described in Section 3). The time complexity of
the best attack we suggest is dominated by the time required to encrypt the
plaintexts.

4.1 A Short Description of GOST

GOST [10] is a 64-bit block and 256-bit key cipher with a Feistel structure of 32
rounds. The round function accepts an input and a subkey of 32 bits each. The
input and the subkey are added (modulo 232), and the outcome is divided into

160 E. Biham, O. Dunkelman, and N. Keller

eight groups of four bits each. Each such group enters a different S-box, where the
least significant group enters S1, and the most significant group enters S8. The
actual S-boxes that are used are kept secret, and are assigned by the government
to a given set of users in each industry.2 The outputs of all S-boxes are combined
to 32 bits, which are then rotated to the left by 11 bits.

The key schedule algorithm takes the 256-bit key and treats it as eight 32-bit
words, i.e., K = K1, . . . , K8. The subkey SKr of round r is

SKr =
{

K(r−1) mod 8+1 r ∈ {1, . . . , 24};
K33−r r ∈ {25, . . . , 32}.

Thus, the 24 rounds of GOST we attack can be described as f3
k , where fk is the

first eight rounds of GOST.
There are few results on GOST with the S-boxes used in the banking indus-

try: A differential attack on 13-round GOST requiring 251 chosen plaintexts is
described in [20] along with a related-key attack on 21-round GOST that re-
quires 256 related-key chosen plaintexts. A 24-round related-key attack (whose
actual complexity and success rate depend on the S-boxes used) is described
in [12]. A related-key attack on the full GOST with a data complexity of 235

related-key chosen plaintexts and a time complexity of 236 encryptions is pre-
sented in [15]. Only few results on GOST when the S-boxes are unknown were
published before: A related-key distinguisher for the entire cipher that requires
two related-key chosen plaintexts is presented in [15]. In [5] a slide attack on
a 20-round variant of GOST in which the key additions are replaced by XOR
with the key is described, along with a weak key class of 2128 keys that exists
for that variant. A weak key class consisting of 232 keys identified using a slide
attack is presented in [9]. A chosen-key attack with a key in the weak key class
that retrieves the unknown S-boxes is described in [18]. The attack uses 16 · 232

chosen plaintexts and has a running time of 211 encryptions. The attack is a slide
attack (that can be improved to an attack that requires 217 chosen plaintexts),
and the key can be any of the 232 values K = (K∗, K∗, K∗, K∗, K∗, K∗, K∗, K∗).
However, we note that it is very easy to protect GOST against this attack, by
preventing the usage of such keys.

4.2 Description of the Attack

As noted earlier, we attack 24 rounds of GOST for which Ek = f3
k . Our attack

first finds a large set of slid pairs (Pa, Pb) and their corresponding ciphertexts
(Ca, Cb) such that fk(Pa) = Pb and fk(Ca) = Cb. These slid pairs are found
using the algorithm suggested in Section 3. Once these slid pairs are found,
we apply a differential attack to fk. We attack eight rounds of GOST using the
following seven round differential that is independent of the actual S-boxes used:

P ′ = 00 01 00 00 00 00 00 00x → T ′ =?? ?? ?? ?? ?U8 L9? ?? ??
2 We note that according to the published documentation [10], the S-boxes are not

necessarily permutations. Hence, an S-box can be modeled as an unknown 64-bit
key.

Improved Slide Attacks 161

where ? denotes an unknown value, L9 ∈ {0, 1x, . . . , 7x}, and U8 ∈ {0x, 8x}. The
complete description of the differential is presented in Figure 1 in Appendix A.
We note that as the differential is independent of the actual S-boxes used, we
can apply the attack to any instance of GOST.

Roughly speaking, the attack takes pairs of slid pairs (Pa, Pb) and (Pc, Pd) for
which the difference Pa ⊕ Pc equals the input difference of the differential, i.e.,
pairs for which Pa⊕Pc = P ′. As Pb is the “encryption” of Pa through fk and Pd

is the “encryption” of Pc through fk, then we treat the two plaintexts Pb and
Pd, as the ciphertexts in a differential attack on fk. Once enough pairs of slid
pairs are encountered, we partially decrypt the “ciphertexts” to find whether
they satisfy the differential.

For the right guess of S-boxes and subkeys, the probability that a pair with
input difference P ′ has an output difference T ′ is 0.494. This is a lower bound
on the probability that the difference in the four bits 23–26 of the right half (left
half after the swap operation) is zero. For a randomly selected pair of values
this probability is 2−4. The way to check whether the differential holds, is to
partially decrypt the pairs one round, and check whether the difference in these
bits is 0 or not.

Our attack on GOST uses the following observations:

Observation 1. Each cycle suggests many pairs that can be used. Thus, we can
impose more conditions on the ciphertexts we analyze, in order to reduce the time
complexity of the attack.

Observation 2. In order to determine the difference in bits 23–26 of the right half
in round 7, it is sufficient to determine the output of S4 in round 8 (bits 12–15).

Observation 3. It is possible to consider only ciphertexts that have predeter-
mined inputs to the relevant S-box.

Based on these observations, the attack algorithm is the following:

1. Obtain about 243.5 slid pairs (Pa, Pb) such that fk(Pa) = Pb.
2. Identify 222 pairs of slid pairs (Pa, Pb) and (Pc, Pd) such that Pa ⊕ Pc = P ′.
3. Consider the pairs of slid pairs ((Pa, Pb), (Pc, Pd)) such that

(a) The value of the right half of Pb is X0 in bits 8–15, (X is the value that
enters S4 in round 8), where X ∈ {0, . . . , Fx} is a predetermined value.

(b) The value of the right half of Pd is Z0 in bits 8–15, (Z is the value that
enters S4 in round 8), where Z ∈ {0, . . . , Fx}\{X} is a predetermined
value.

4. For each remaining pair ((Pa, Pb), (Pc, Pd)) of slid pairs:
(a) Guess the four bits leaving S4 in round 8 for the pair (Pa, Pb) (assuming

that the value is the same for all the examined pairs), and guess the four
bits leaving S4 in round 8 for the pairs (Pc, Pd) (assuming that the value
is the same for all the examined pairs).

(b) Partially decrypt Pb and Pd through S4, and check whether the difference
in round 7 in bits 23–26 of the left half is 0.

162 E. Biham, O. Dunkelman, and N. Keller

(c) If the difference in these bits after the partial decryption is 0, increment a
counter that corresponds to the specific guesses made (a total of 4+4=8
bits).

5. Output all the guesses whose corresponding counter has a value greater than
19.

4.3 Analysis of the Attack

For a wrong guess of the S-boxes outputs there is probability of 2−4 that a
partially decrypted pair has zero difference in bits 23–26, thus incrementing the
counter. For the correct guess, this probability is about 0.494.

Of the 243.5 slid pairs, we expect that (243.5)2/2 ·2−64 = 222 pairs of slid pairs
have “plaintext” difference of P ′. Out of these pairs, about 222 ·(2−8)2 = 26 pairs
are analyzed in Step 4 (due to the 8-bit condition on each of the ciphertexts).

In Step 4(a) and Step 4(b) the ciphertexts are partially decrypted through
round 8. If the actual inputs to S4 in round 8 are fixed, then so do their outputs
that compose the four output bits that are needed for the partial decryption.
Thus, we choose a value for bits 12–15 (those entering S-box S4) for each of
the two pairs, i.e., we require that one ciphertext has some arbitrary value X
in the S-box and that the second ciphertext has some other arbitrary value Z,
where X, Z ∈ {0, . . . , Fx}. Setting these conditions does not necessarily imply
that in all pairs the ciphertexts have the same four output bits (four from each
ciphertext) due to the carry that the key addition may cause. Thus, we also
require that in all the ciphertexts bits 8–11 have the value zero, and this reduces
the probability that a carry changes the values entering S-box S4.3

For a wrong guess, the expected value of the counter is 26 · 2−4 = 4, while for
the right guess it is 26 · 0.494 = 31.6. There are 28 guesses, and the probability
that one of them has a counter whose value is greater than 19 is less than 2−22,
while the correct guess is suggested with probability of 1 − 2−7.6. We note that
the attack returns two outputs of the S-box S4 in round 8. Using more pairs
with different inputs to S4, enables mapping all the outputs of S4, up to the 16
combinations of key and S-box that are all equivalent (as the key bits are used to
decide on the actual entries that lead to the output). The exact combination can
be identified using different entries to the S-box and using auxiliary techniques.

We conclude that our attack uses 243.5 slid pairs. The time complexity of
Step 4 in the attack is less than 28 24-round GOST encryptions for the retrieval
of 8 bits of information about the key and S4. In this case, the time complexity
of the attack is dominated mostly by the first step of the attack, i.e., finding the
slid pairs, a step that requires 263 encryptions.

After finding the entire S4 (up to the exact order, due to the addition with
the key), we can use a rotated version of the differential (that may have a slightly
3 There is a difference in the carry when the four key bits that enter S3 are all 1’s,

and in addition there is a difference in the carry operation in the most significant
bit that enters S2. If the attack fails, we deduce that this is the case, and we can
continue to impose conditions on the ciphertexts, until either the attack succeeds, or
we obtain the 12 least significant bits of K8.

Improved Slide Attacks 163

smaller probability) to retrieve other S-boxes. The remaining key words can be
found using auxiliary techniques (e.g., using the differential in the decryption
direction).

As the attack finds the S-boxes along with the key it can be used by an
authorized user who wishes to find the S-boxes used in a given implementation
of GOST. In this case, the attacker can even know the encryption key (which
can help in the process of the attack), and retrieve the unknown S-boxes in time
complexity of 263 encryptions (which as a valid user of GOST he can achieve).
We note that the work of Saarinen in [18] addresses the same problem for a
fixed key for which the slide properties are easily applied. However, it is easy
to protect GOST from this attack by preventing the usage of keys of the form
(k, k, k, k, k, k, k, k).

We note that the data complexity is about 263 adaptive chosen plaintexts, or
about 264 − 218 known plaintexts. In the latter case, it is expected that three
cycles of expected lengths of at least 243.5 values are encountered. There is a
high probability that one of these three cycles can be used in our attack (if the
gcd of the cycle length with 3 is 1).

4.4 Other Results on GOST

Our attack can be extended for two cases: a weak key class of the full GOST
that can be detected even when the S-boxes are unknown, and a 30-round attack
when the S-boxes are known.

Our weak key class has 2128 keys of the form K1, K2, K3, K4, K4, K3, K2, K1,
i.e., K9−i = Ki. Thus, the last eight rounds define the same permutation as
the first eight rounds. Hence, it is possible to treat the full GOST of this form
as GOSTK = f4

K , and apply our attack (even when the S-boxes are unknown).
We note that this weak key class was suggested in [5] for a weakened variant of
GOST where the key is XORed and not added.

The attack on 30-round GOST with known S-boxes is of the following nature:

– Ask for almost the entire code book
– For each guess of K3, K4, . . . , K8:

• Partially decrypt all the ciphertexts through rounds 30–25
• Apply a variant of the 24-round attack described earlier
• If the attack succeeds, output the key guess of K3, . . . , K8

– Exhaustively search over all possible values of K1, K2

The time complexity of this attack is equivalent to partially decrypting each
ciphertext 2192 times. As the attack requires almost the entire code book, then
the actual time complexity of the attack is almost 2256 partial decryptions which
are equivalent to 2253.7 30-round GOST encryptions.

5 Summary and Conclusions

In this paper we have presented a new variant of the slide attack. Our attack
uses the relation between the cycle structure of the entire cipher and that of

164 E. Biham, O. Dunkelman, and N. Keller

the underlying permutation, and allows to detect a large amount of slid pairs
in an efficient way. These pairs are then used to mount various attacks on the
underlying permutation.

The new technique allows us to attack 24-round GOST, even when the S-
boxes are unknown, and to retrieve both the key and the unknown S-boxes.
When the S-boxes are known, this attack can be extended to up to 30-round
GOST. In addition, for a weak key class of GOST containing 2128 weak keys,
the attack is applicable against the full GOST with unknown S-boxes. All the
attacks have a data complexity of a little less than 264 known plaintexts (or 263

adaptively chosen plaintexts) with time complexity of 264 (besides the 30-round
attack whose time complexity is 2253.7). The 24-round attack reveals the S-boxes
used in GOST, and thus it can be used by an authorized user who wishes to
declassify the S-boxes he was given.

References

1. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

2. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

4. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

5. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 586–606. Springer, Heidelberg (2000)

6. Brown, L., Seberry, J.: Key Scheduling in DES Type Cryptosystems. In: Seberry,
J., Pieprzyk, J.P. (eds.) AUSCRYPT 1990. LNCS, vol. 453, pp. 221–228. Springer,
Heidelberg (1990)

7. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

8. Davies, D.W., Parkin, G.I.P.: The Average Cycle Size of the Key Stream in Out-
put Feedback Encipherment (Abstract). In: McCurley, K.S., Ziegler, C.D. (eds.)
CRYPTO 1982. LNCS, vol. 1440, pp. 97–98. Springer, Heidelberg (1982)

9. Furuya, S.: Slide Attacks with a Known-Plaintext Cryptanalysis. In: Kim, K.-c.
(ed.) ICISC 2001. LNCS, vol. 2288, pp. 214–225. Springer, Heidelberg (2002)

10. GOST: Gosudarstvennei Standard 28147-89, Cryptographic Protection for Data
Processing Systems, Government Committee of the USSR for Standards (1989)

11. Granville, A.: Cycle lengths in a permutation are typically Poisson distrib-
uted. Electronic Journal of Combinatorics 13(1), 107 (2006), http://www.dms.
umontreal.ca/ andrew/PDF/CycleLengths.pdf

12. Kelsey, J., Schneier, B., Wagner, D.: Key-Schedule Cryptoanalysis of IDEA, G-
DES, GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

13. Kelsey, J., Schneier, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

http://www.dms.umontreal.ca/~andrew/PDF/CycleLengths.pdf
http://www.dms.umontreal.ca/~andrew/PDF/CycleLengths.pdf

Improved Slide Attacks 165

14. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

15. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.-S.: Related Key Differential Attacks
on 27 Rounds of XTEA and Full-Round GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

16. Matsui, M.: Linear Cryptanalysis Method for DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

17. National Bureau of Standards: Data Encryption Standard, Federal Information
Processing Standards Publications No. 46 (1977)

18. Saarinen, M.-J.: A Chosen Key Attack against the Secret S-boxes of GOST (1998),
http://citeseer.ist.psu.edu/saarinen98chosen.html

19. Schneier, B.: Applied Cryptography, 2nd edn. John Wiley & Sons, Chichester
(1996)

20. Seki, H., Kaneko, T.: Differential Cryptanalysis of Reduced Rounds of GOST. In:
Stinson, D.R., Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 315–323. Springer,
Heidelberg (2001)

21. Yuval, G.: Reinventing the wheel——– Travois: Encryption/MAC in 30 ROM Bytes.
In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 205–209. Springer, Heidelberg
(1997)

A A 7-Round Differential of GOST with Unknown
S-Boxes

The input difference of the differential is of the form P ′=00 01 00 00 00 00 00 00x.
The zero difference enters the first round and has a zero output difference. In the
second round a difference of 00 01 00 00x enters the round function. As there is
an addition, with probability 15/16 the differences in the carry of the addition
operation (if there are such) do not affect other S-boxes. Thus, there is a non-
zero input difference to one of the S-boxes of round 2, while all the rest have a
zero input difference. The differential evolves, and after seven rounds there are
four bits whose difference is known to be zero.

http://citeseer.ist.psu.edu/saarinen98chosen.html

166 E. Biham, O. Dunkelman, and N. Keller

P ′ = 00 01 00 00 00 00 00 00x

A′ = 00 00 00 00 a′ = 00 00 00 00 p = 1

B′ = L1U1 00 00 00 b′ = 00 01 00 00x p = 15/16

ROL11(00 0? 00 00)

C′ = 00 00 0L2 ?U2 c′ = L1U1 00 00 00 p = 1

ROL11(?? 00 00 00)

D′ = L4U4 L3? ?U3 00 d′ = 00 01 0L2 ?U2 p = 45/64

ROL11(00 0? 0? ??)

E′ =?? ?U6 0L6 ?? e′ = L5U5 L3? ?U3 00 p = 1

ROL11(?? ?? ?? 00)

F ′ =?U7 L8? ?? ?? f ′ =?? ?U1 0L7 ?? p = 3/4

ROL11(?? ?? 0? ??)

G′ =?? ?? ?? ?? g′ =?U8 L9? ?? ?? p = 1

ROL11(?? ?? ?? ??)

T ′ =?? ?? ?? ?? ?U8 L9? ?? ??

F

F

F

F

F

F

F

? denotes an unknown value.
Ui ∈ {0, 8x}, Li ∈ {0, 1x, . . . , 7x}, U1 ∈ {1x, 9x}

Fig. 1. A 7-Round Differential of GOST with Probability 15
16 · 45

64 · 3
4 = 0.494

A New Class of Weak Keys for Blowfish

Orhun Kara and Cevat Manap

TÜBİTAK UEKAE, Gebze, Kocaeli, Turkey
{orhun,cmanap}@uekae.tubitak.gov.tr

Abstract. The reflection attack is a recently discovered self similarity
analysis which is usually mounted on ciphers with many fixed points.
In this paper, we describe two reflection attacks on r-round Blowfish
which is a fast, software oriented encryption algorithm with a variable
key length k. The attacks work successfully on approximately 2k+32−16r

number of keys which we call reflectively weak keys. We give an almost
precise characterization of these keys. One interesting result is that 234

known plaintexts are enough to determine if the unknown key is a reflec-
tively weak key, for any key length and any number of rounds. Once a
reflectively weak key is identified, a large amount of subkey information
is revealed with no cost. Then, we recover the key in roughly r · 216r+22

steps. Furthermore, it is possible to improve the attack for some key
lengths by using memory to store all reflectively weak keys in a table
in advance. The pre-computation phase costs roughly r · 2k−11 steps.
Then the unknown key can be recovered in 2(k+32−16r)/64 steps. As an
independent result, we improve Vaudenay’s analysis on Blowfish for re-
flectively weak keys. Moreover, we propose a new success criterion for an
attack working on some subset of the key space when the key generator
is random.

Keywords: Blowfish, cryptanalysis, reflection attack, fixed point, key
dependent S-Box, self similarity analysis, weak key.

1 Introduction

Self similarity attacks, such as slide attack [4,5], related key attack [2], and a
very recently discovered attack, reflection attack [10], generally work on ciphers
with very simple key schedules. In this paper, we propose reflection attacks on
full-round Blowfish which has a very complicated key schedule.

Blowfish is a widely used, unpatented, license-free, fast block cipher designed
by Schneier in 1994 [16]. Blowfish is a 16-round Feistel network and uses a
large number of subkeys. Security of the algorithm is particularly based on the
key dependent S-boxes and the difficulty of recovering the key from a partial
knowledge of some subkeys. No attacks have been published on a full version
of Blowfish so far. Nevertheless, there have been a few studies on cryptanalysis
of Blowfish. The analysis by Rijmen [14] is a second order differential attack
against 4-round Blowfish. Another differential cryptanalysis is by Vaudenay [18]
and uses 3 · 251 chosen plaintexts with the assumption that the round function

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 167–180, 2007.
c© International Association for Cryptologic Research 2007

168 O. Kara and C. Manap

F is known and weak in the sense that some of its S-boxes are not one to one.
The number of the keys producing the weak F functions is approximately 2k−15.
The slide attack by Biryukov and Wagner [4] uses only 227 chosen plaintexts and
works under the powerful assumption that all the P subkeys are equal to zero
which happens with a probability of roughly 2−576.

1.1 Our Contributions and Organization of the Paper

The notion of fixed points of weak DES keys is well known[9,6,12,13]1. These
works focus on algebraic properties of DES permutations and their short cycles.
In this paper, we also exploit permutations with many fixed points. However, we
aim to identify weak keys and recover these keys in Blowfish.

We give two new models of description of Blowfish and deduce some reflection
properties of Blowfish by utilizing these models. In particular, we show that
certain keys produce (r−2)-round Blowfish encryption function with many fixed
points. We call these keys as reflectively weak keys. The number of reflectively
weak keys is approximately 2k+32−16r. We propose two reflection attacks on
Blowfish with variable number of rounds. These attacks work on reflectively
weak keys.

We identify a reflectively weak key using roughly 234 known plaintexts for
any number of rounds and any key length. Moreover, we characterize a reflec-
tively weak key by certain equalities among its subkeys. The characterization
is not precise, but it is true with a probability almost 1. Theorem 1 states the
characterization in detail. The first attack is a guess-and-determine type attack
utilizing this characterization. First, we determine whether the unknown key is a
reflectively weak key. Once a reflectively weak key is identified, we obtain a large
amount of subkey information with no cost. This information leads to a guess-
and-determine attack. The time complexity of the attack is roughly r · 216r+22

steps where each step is equal to one step of exhaustive search. In the second
attack, we improve the time complexity of the first attack by using memory for
some key lengths. We detect all reflectively weak keys and save them in a table
in advance by checking all keys. The check mechanism deduced from the char-
acterization of reflectively weak keys reduces the workload since we do not have
to implement the whole key schedule, even though we check all the keys. The
pre-computation phase costs roughly r · 2k−11 steps and we recover the key in
2(k+32−16r)/64 steps using 2k+32−16r memory. Note that this is an improvement
of the first attack when k < 16r + 32. Some interesting examples are given in
Table 1 for r = 8 and r = 16.

Another result is a straightforward improvement of Vaudenay’s attack. We
reduce the number of chosen plaintexts from 3 · 251 to 3 · 244 on a set of keys of
size roughly 2k−271.

In addition, we propose a new success criterion for an attack working on some
subset of the key space. We argue that such an attack is successful if the workload

1 We would like to thank the anonymous referees for pointing these references.

A New Class of Weak Keys for Blowfish 169

Table 1. Some Complexity Examples of The Attack. w is the average number of weak
keys; PC is Pre-computation steps; M is Memory Space Used; T is Time Steps. Each
step is equal to one step in exhaustive search. Data complexity is roughly 234 known
plaintexts. Complexities without memory are the examples of the first attack.

r k w PC M T
128 232 2120.6 232 -
160 264 2152.6 264 1

8 192 296 2184.6 296 232

192 296 - - 2153.3

256 232 2249.3 232 -
288 264 2281.3 264 1

16 320 296 2313.3 296 232

384 2160 - - 2282.1

448 2224 - - 2282.1

of determining that the unknown key is in the subset, is less than the number
of keys in the subset, and recovering it is less than that of exhaustive search.

The paper is organized as follows. Blowfish is described briefly in Section 2.
Moreover, we give two new descriptions of the Blowfish algorithm. We state
reflection properties of Blowfish in Section 3 as a preparation phase for the
statements of the attacks. The notion of reflectively weak key and its charac-
terization is introduced in this section. Then, we give the details of the attack
and its improvement in Section 4. The improvement of Vaudenay’s analysis for a
subset of keys is given in Section 5. In the last section, we discuss the similarity
degrees of the functions producing subkeys and the parameters of Blowfish, and
give the argument about the success criterion for attacks working on some keys.

1.2 Notation

We use the following notation throughout the paper: k is the bit length of the key;
r is the number of rounds; F is the key dependent round function of Blowfish;
P is the array of 32 bit subkeys of Blowfish and Pi is its i-th component for
i = 1, .., r+2; I is the array of hexadecimal digits of π XORed with the key bits;
and ⊕ is the XOR operator.

2 High Level Descriptions of Blowfish

Blowfish is a 16-round Feistel network with 64 bit block length and a variable
key length of at most 448 bits. It is also specified as an 8-round cipher with a
key length of at most 192 bits [17]. Blowfish uses a large number of subkeys. The
set of subkeys consists of two parts: The P array which contains r+2 number of
32-bit subkeys, P1, ..., Pr+2, and four 8 × 32 key dependent S-boxes used in the
F function. The encryption process starts after the P array and the S-boxes are

170 O. Kara and C. Manap

generated. Let (x1, y1) be a plaintext for x1, y1 ∈ GF (2)32. Then, i-th round of
the encryption process is given as (xi+1, yi+1) = (F (Pi ⊕ xi) ⊕ yi, Pi ⊕ xi). The
corresponding ciphertext is defined as (yr+1 ⊕ Pr+2, xr+1 ⊕ Pr+1). We do not
give the details of F function since we do not use it in the analyses. The high
level description of Blowfish is depicted as Type I in Figure 1.

Generating the P array and the S-boxes is as follows:

– Initialize the I array and the S-boxes with hexadecimal digits of π.
– XOR I1 with the first 32 bits of the key, I2 with the second 32 bits of the key

and so on for all bits of the key. Repeatedly cycle through the key bits until
the entire I array has been XORed with key bits. Then copy the contents of
the I array to the P array.

– Encrypt the all-zero string with the Blowfish algorithm, using the P array
as subkeys. Replace P1 and P2 with the output.

– Repeat the last process, replacing all entries of P array, four S-boxes in order,
with the output of continuously changing Blowfish algorithm.

2.1 New Models for Description

The XOR operator is commutative. Hence, an XOR operator of a subkey in
Blowfish can be pushed through other XOR operators until a non-commutative
operation such as an F operation is obtained. So, by moving certain subkeys
we can obtain various descriptions of Blowfish. Two descriptions are depicted
in Figure 1. We call them the Type II description of Blowfish and the Type
III description of Blowfish. For example, in the Type II description we move
the third round key through the second round to the first round and the fourth
round key through the third round to the second round. So we consider the third
round key as a part of the first round and the fourth round key as a part of the
second round.

Repeating this process we obtain a new description of Blowfish where half of
the rounds use two subkeys and the other half of the rounds use no subkey. The
type III description can be obtained similarly. These descriptions facilitate the
attack idea. Particularly, we treat two-round Blowfish as keyed or unkeyed:

Definition 1. Two-rounds of Blowfish given as

x′ = F (Pi1 ⊕ x) ⊕ y ⊕ Pi3 ⊕ Pi4 and
y′ = F (F (Pi1 ⊕ x) ⊕ y ⊕ Pi3)⊕ Pi1 ⊕ Pi2 ⊕ x

is called a two-round keyed Blowfish function (K2 in short) and

x′ = F (x) ⊕ y and
y′ = F (F (x) ⊕ y)⊕ x

is called a two-round unkeyed Blowfish function (U2 in short). Here (x, y) is an
input and (x′, y′) is the corresponding output.

Two-round keyed/unkeyed Blowfish functions are depicted in Figure 2.

A New Class of Weak Keys for Blowfish 171

F

F

F

F

F

U2

F

F

F F

F

F

F

F

F

F

F

Pr+1 Pr+1

P2

K2

K2

K2

U2

U2

F

F

F

F

F

Standard Description (Type I) Type II Description Type III Description

Pr−2

Pr−1

Pr

Pr+2 Pr+2

Pr

Pr−2

Pr−1

Pr−3

Pr+2 Pr+1

K2

F

F

0

Pr−1

Pr

Pr−2

P4

P3

P2

P1 P1

P3

P2

P4

P1

0

P4

P3

P5

Fig. 1. Three different descriptions of r-round Blowfish

3 Reflection Properties of Blowfish

One of the very recent cryptanalysis methods is the reflection attack [10]. This
attack exploits the similarities between the round functions of the encryption
and the round functions of the decryption. It can be very powerful especially
against product ciphers using involutions, such as Feistel networks. In general,
self-similarity attacks are mounted on ciphers with simple key schedules. We

172 O. Kara and C. Manap

F

F
Pi1

Pi2

Pi3

Pi4

x′ y′ x′ y′

F

F

x xy y

K2 U2

Fig. 2. General Description of K2 and U2

apply reflection attack on Blowfish, as an exceptional example with a very com-
plicated key schedule, and successfully recover the key in some special cases.

Let us note that Blowfish can be written as a composition of K2 and U2

functions (see Figure 1). The reflection attack exploits certain properties of these
functions. U2 has many fixed points and so does K2 for some subkeys. Moreover,
any U2 is an involution and K−1

2 has the same structure as K2.

Lemma 1. Consider a two-round keyed Blowfish function given as

x′ = F (Pi1 ⊕ x) ⊕ y ⊕ Pi3 ⊕ Pi4 and
y′ = F (F (Pi1 ⊕ x) ⊕ y ⊕ Pi3)⊕ Pi1 ⊕ Pi2 ⊕ x

where (x, y) is the input and (x′, y′) is the corresponding output. If the subkeys
Pi1 = Pi4 and Pi2 = Pi3 , then the two-round keyed Blowfish function has 232

fixed points.

Proof. Assume that Pi1 = Pi4 and Pi2 = Pi3 . Then, (x, y) is encrypted to (x, y)
if and only if y = F (Pi1 ⊕ x)⊕ x⊕Pi1 ⊕Pi2 . However, we have 232 plaintexts of
the form (x, F (Pi1 ⊕ x)⊕ x⊕ Pi1 ⊕Pi2). Therefore, the K2 has 232 fixed points.

$%

A straightforward corollary of Lemma 1 is obtained when two-round Blowfish is
unkeyed, i.e., P1 = P2 = P3 = P4 = 0. Hence, any two-round unkeyed Blowfish
function (U2) has 232 fixed points of the form (x, F (x) ⊕ x).

Definition 2. A (4r′ − 2)-round function K2SU2SK2SU2S · · ·SU2SK2 is called
a (4r′ − 2)-round Blowfish function, where S is the swap operation of Feistel
network.

Note that, we have r′ number of K2 and r′ − 1 number of U2 operations in a
(4r′ − 2)-round Blowfish function.

A New Class of Weak Keys for Blowfish 173

We show that when there are certain relations among the round subkeys used
in a (4r′ − 2)-round Blowfish function, then (4r′ − 2)-round Blowfish function
has many fixed points.

Proposition 1. Let B be a (4r′ − 2)-round Blowfish function. Assume that the
i-th K2 of B is the inverse of the (r′ − i + 1)-th K2 of B for i = 1, ..., & r′

2 ' where
& r′

2 ' is the integer part of r′

2 . If r′ is odd, then assume also that the (r′+1
2)-th K2

has 232 fixed points. Then the function B has 232 fixed points.

Proof. Let x be an input of B. The intermediate two-round in the center of
encryption is (r′+1

2)-th K2 if r′ is odd and (r′

2)-th U2 if r′ is even. U2 has 232

fixed points by Lemma 1 and the (r′+1
2)-th K2 also has 232 fixed points by

the assumption. Moreover, the i-th K2 is the inverse of (r′ − i + 1)-th K2 by
the assumption. Then, the input of the i-th K2 is equal to the output of the
(r′ − i + 1)-th K2 for any i = 1, ..., & r′

2 ' corresponding to x means x is a fixed of
B. Hence, any fixed point of the central round produces a fixed point of B and
any fixed point of B gives a fixed point of the central round. Therefore, B has
232 fixed points.

$%

Observe that, the i-th K2 is the inverse of the (r′ − i + 1)-th K2 if and only if
their subkeys are equal in twist order. That is, if Pi1 , Pi2 , Pi3 , Pi4 are the subkeys
of i-th K2 and P ′

i1
, P ′

i2
, P ′

i3
, P ′

i4
are the subkeys of (r′− i+1)-th K2 then we have

Pi1 = P ′
i4

, Pi2 = P ′
i3

, Pi3 = P ′
i2

and Pi4 = P ′
i1

. On the other hand, a sufficient
condition for having 232 fixed points of (r′+1

2)-th K2 is given by Lemma 1.

Definition 3. A key is called a reflectively weak key with respect to a (4r′ − 2)-
round Blowfish function B if B has 232 fixed points.

Assumptions of Proposition 1 and Lemma 1 are satisfied when certain equalities
among subkeys hold. In this case, we have many fixed points. In the following
theorem, we prove that this is the only case resulting in many fixed points, by
assuming that Blowfish is a random permutation when the assumptions do not
hold.

Theorem 1. Assume that a given key is reflectively weak with respect to an
(r − 2)-round Blowfish function B and also assume that B is a random permu-
tation when the assumptions of Proposition 1 and Lemma 1 do not hold. Then,
the subkeys of B satisfy the assumptions of Proposition 1 and Lemma 1 with a
probability approximately

1 − 216·r − 1
232! · e + 216·r − 1

where e is the Euler constant.

Proof. Let XA be the event that B satisfies the assumptions of Proposition 1
and Lemma 1 and XF be the event that B has 232 fixed points. Assumptions of

174 O. Kara and C. Manap

Proposition 1 and Lemma 1 imply that we have r
2 equalities between r subkeys of

B. Each equality holds with a probability approximately 2−32. Hence, Pr(XA) =
2−16·r. We have Pr(XF | XA) = 1 by Proposition 1. The rencontres numbers,
i.e., the number D(n, m) of permutations of n containing m fixed points, is given
as

D(n, m) =
n!
m!

n−m∑

k=0

(−1)k

k!

which immediately implies that D(n,m)
n! ≈ e−1

m! for large n (see [15] for details).
Since B is a random permutation when the assumptions of Proposition 1 and
Lemma 1 do not hold, we have Pr(XF | XA) = e−1

232! . Then,

Pr(XF) = Pr(XA) Pr(XF | XA) + Pr(XA) Pr(XF | XA)

= 2−16·r +
e−1

232!
(1 − 2−16·r).

Now, applying Bayes Rule we get,

Pr(XA | XF) =
Pr(XF | XA) · Pr(XA)

Pr(XF)
= 1 − 216r − 1

232! · e + 216r − 1

which is the probability that the assumptions of Proposition 1 and Lemma 1
hold, given that B has 232 fixed points. $%

Remark 1. Using Stirling’s approximation, we have 232! ≈ (232)2
32

= 2237
and

the probability given in Theorem 1 is almost 1 (roughly 1−2−237
). Therefore, the

converses of both Proposition 1 and Lemma 1 are true with a probability almost
1. This probability affects the success rate of the attacks. However, Theorem 1
implies that the false alarm probability is negligible. Hence, we can assume that
we have r

2 equalities between r subkeys of B if B has 232 fixed points.

Example 1. Let r = 16 and let B be the 14-round Blowfish function obtained by
removing the first and the last rounds in Type III description of Blowfish. Then,
loosely speaking, a key is a reflectively weak key with respect to B means that
the following 7 equalities are satisfied: P4 = P15, P3 = P16, P5 = P14, P6 = P13,
P7 = P12, P8 = P11 and P9 = P10. The eighth equality already holds (0=0) by
the definition of Type III description of Blowfish.

4 Two Reflection Attacks

In this section, we introduce an attack and its improvement for some key lengths.
The improvement has two phases: Reflectively weak keys are collected in the pre-
computation phase, and the reflectively weak key is recovered during the on-line
phase.

A New Class of Weak Keys for Blowfish 175

4.1 First Attack

The attack consists of two parts. In the first part, we identify if the key is
reflectively weak. Subkeys of a reflectively weak key satisfies certain equalities
and we utilize these equalities to recover the key in the second part.

We use several known plaintext-ciphertext pairs to identify a reflectively weak
key . Let (x, y) denote plaintext and (x′, y′) denote the corresponding ciphertext.
Assume that a reflectively weak key is used with respect to the (r − 2)-round
Blowfish function B, obtained by removing the first and the last rounds in Type
III description of Blowfish. Then, B will have 232 fixed points by Proposition 1.
Observe that, if B has a fixed point for (x, y), then we have P1 ⊕ Pr+2 = x⊕ x′

and P2 ⊕ Pr+1 = y ⊕ y′. Hence, we expect the value (P1 ⊕ Pr+2, P2 ⊕ Pr+1)
to occur with probability 2−32 and other values to occur with probability 2−64

when a reflectively weak key is used. On the other hand, we expect that each
vector,(x⊕x′, y⊕y′), occurs with probability 2−64 if the key is not a reflectively
weak key. Consequently, we identify a reflectively weak key and obtain (P1 ⊕
Pr+2, P2 ⊕ Pr+1) with 234 known plaintexts.

Once we identify a reflectively weak key, we can recover information on r
2 + 1

subkeys of P array since we have r
2 +1 equalities between r+2 subkeys. r

2 −1 of
the equalities are deduced by Theorem 1 and two equalities are obtained while
identifying the reflectively weak key. By guessing r

2 +1 subkeys we can determine
remaining r

2 + 1 subkeys and obtain the whole P array. One can recover the I
array and the key by reversing the key schedule by the following Lemma.

Lemma 2. Assume that the P array of a key is known. Then it is possible to
recover the key by r

2 + 1 encryptions.

Proof. For any i = 1, ..., r
2 +1, (P2i−1, P2i) is the encryption of the all-zero string

with the Blowfish algorithm with the subkeys

(P1, P2, · · · , P2i−3, P2i−2, I2i−1, I2i, · · · , Ir+1, Ir+2)

and a publicly known F function.
We encrypt the all-zero string up to r rounds with subkeys (P1, P2, · · · , Pr−1,

Pr) and obtain (Pr+1⊕Ir+2, Pr+2⊕Ir+1). Then, we can easily recover the subkeys
(Ir+1, Ir+2). We need to recover (Ir−1, Ir) by using the P array and (Ir+1, Ir+2),
and recover (Ir−3, Ir−2) by using the P array and (Ir−1, Ir, Ir+1, Ir+2). We repeat
this process until the whole I array is obtained. So, the problem of reversing the
key schedule and recovering the I array from the P array is reduced to the prob-
lem of recovering the value of (I2i−1, I2i) using (P1, P2, · · · , P2i−3, P2i−2, I2i+1,
I2i+2, · · · , Ir+1, Ir+2) and (P2i−1, P2i). Observe that this problem is recovering
the subkeys for two-round Blowfish given an input-output pair. The second sub-
key can be moved up to the first round and both subkeys can be considered as
an initial whitening. Hence we can decrypt the output for two rounds, XOR the
result with the input and obtain the subkeys (I2i−1, I2i). This process costs only
one Blowfish encryption. Therefore we recover the whole I array with a cost of
r
2 + 1 encryptions. Then the key is extracted from I with no cost. $%

176 O. Kara and C. Manap

Observe that repetition of 32 bit key words in the construction of the I array
allows one to check whether the obtained I array is a valid array. Although
several candidates may turn out to give valid I arrays, complexity of exhaustively
searching these candidates is dominated by the complexity of the attack.

We guess 16r+32 bits in total and each guess is checked in r
2 +1 encryptions

by Lemma 2. On the other hand, each step of exhaustive search costs r
2 + 514

encryptions. Therefore, the time complexity is 216r+32·(r+2)
r+1028 exhaustive search

steps. Hence we have the following theorem.

Theorem 2. Let B be the (r−2)-round Blowfish function obtained by removing
the first and the last rounds in the type III description of Blowfish. Then, one
may determine if an unknown key is a reflectively weak key with respect to B by
using approximately 234 known plaintexts and then recover the key in 216r+32·(r+2)

r+1028
steps if it is reflectively weak, where each step is a key loading time plus one
encryption.

Let us note that the time complexity of the attack is independent of the key
length. On the other hand, a key is a reflectively weak key with respect to the
(r − 2)-round Blowfish function B in Type III description of Blowfish if r

2 − 1
equalities are satisfied among r − 2 subkeys of B by Theorem 1. Therefore,
assuming the Blowfish key schedule is random, the probability that a key is a
reflectively weak key is 232−16r.

4.2 Second Attack

For some key lengths, the previous attack can be improved using memory. We
search all the keys and collect reflectively weak keys in a table with their subkeys
(P1 ⊕ Pr+2, P2 ⊕ Pr+1), sorted with respect to (P1 ⊕ Pr+2, P2 ⊕ Pr+1). A key is
loaded to the key schedule and the P array is generated. Then, we check whether
the subkeys P2, ..., Pr satisfy the equalities so as to satisfy the assumptions of
Proposition 1. Note that the first check is the equality Pr/2+1 = Pr/2+2 and most
of the keys are eliminated in this step where it is enough to produce P arrays
up to Pr/2+2 which costs r

4 + 1 encryptions. We need to produce P subkeys up
to Pr/2+4 for only one in 232 keys, up to Pr/2+6 for only one in 264 keys and so
on. Hence, the total time complexity is given as

2k−1(r + 4)
r + 1028

+
2k−33(r + 8)

r + 1028
+

2k−65(r + 12)
r + 1028

+ · · · ≈ 2k−1(r + 4)
r + 1028

which seems to cost almost that of exhaustive search. However, it is done once
and faster than exhaustive search.

The table of weak keys occupies 2k+32−16r spaces in memory. The attack is
now straightforward. First, we determine if the unknown key is reflectively weak
with 234 known plaintexts as in the first attack. If the key is a reflectively weak
key, then we obtain (P1 ⊕ Pr+2, P2 ⊕ Pr+1). By searching the table sorted with
respect to (P1⊕Pr+2, P2⊕Pr+1), we get approximately 2(k+32−16r)/64 candidates.
The correct key can be recovered by searching these candidates. Therefore, the
time complexity will be 2(k+32−16r)/64 steps.

A New Class of Weak Keys for Blowfish 177

5 Improvement of Vaudenay’s Cryptanalysis on a Subset
of Keys

In [18], Vaudenay proposes a differential attack on 16-round Blowfish with 3 ·251

chosen plaintexts with the assumption that the F function is known and weak
in the sense that some of the S-boxes are not one to one. The attack works
for approximately 2k−15 keys. The number of chosen plaintexts required for the
attack can be generalized as 22+7·! r−2

2 " for r ≤ 10 and 3 · 22+7·! r−2
2 " for r ≥ 11.

We improve Vaudenay’s attack on 16-round Blowfish in a certain subset of
Vaudenay’s weak key class by reducing the amount of chosen plaintext required
for the attack. The improved version has two steps: In the first step, we recover
both whitening keys P17 and P18, by a reflection attack to reduce the algorithm
to 14 rounds. In the second step, we apply Vaudenay’s differential attack to the
14-round algorithm.

Assume that F is known and weak. Assume also that a reflectively weak key
with respect to the first 14 rounds of the Type II description of Blowfish is
used. The latter assumption can be checked by collecting roughly 234 vectors
(F (x) ⊕ y ⊕ x′, F (F (x) ⊕ y) ⊕ x ⊕ y′) where (x, y) is a plaintext and (x′, y′) is
the corresponding ciphertext. If a plaintext (x, y) is a fixed point of the first 14
rounds, then

(P18, P17) = (F (x) ⊕ y ⊕ x′, F (F (x) ⊕ y)⊕ x ⊕ y′).

Hence, we expect one of the vectors to occur approximately four times in the
collection of approximately 234 plaintexts, encrypted by a reflectively weak key.
This vector is (P18, P17) since the probability that (P18, P17) occurs is slightly
more than 2−32 whereas the probability that any arbitrary vector occurs is ap-
proximately 2−64. Therefore, if a reflectively weak key with respect to the first 14
rounds of the Type II description is used, then we can identify it and recover the
whitening keys (P18, P17) by using approximately 234 known plaintexts. Then, we
peel the last two rounds, obtaining 14-round Blowfish. Applying the differential
attack in [18] to 14 round Blowfish requires 3 · 244 chosen plaintexts. Therefore,
we reduce the number of chosen plaintexts from 3 · 251 to 3 · 244.

The attack works if the key is weak both in terms of Vaudenay’s attack and
reflectively. F is weak for 2−15 of key space. On the other hand, by Proposition
1 and Theorem 1, if a key is reflectively weak with respect to the first 14 rounds
of the Type II description of Blowfish, then certain eight equalities between
subkeys in these 14 rounds hold. Thus, the probability that a reflectively weak
key is used is approximately 2−256 since each equation holds with probability
2−32. Therefore, the attack works for a subset of key space of size 2k−271.

6 Discussion of Attacks

A new definition of similarity degree between two functions is given in [10]. The
definition is as follows:

178 O. Kara and C. Manap

Definition 4. Let F1, F2 : GF (2)n → GF (2)m be two functions. Then, F1 and
F2 are called similar of degree (d1, d2) with probability p if the number of (x, x′) ∈
GF (2)n ×GF (2)n satisfying

HW (x ⊕ x′) ≤ n− d1 ⇒ HW (F1(x) ⊕ F2(x′)) ≤ m− d2

is p · 2n ·
∑n−d1

i=0

(
n
i

)
where HW () is the Hamming Weight of binary vectors.

It is argued in [10] that round functions should not be similar of large degrees
with large probabilities. In Blowfish the functions producing round keys are given
as

φi : GF (2)k −→ GF (2)32800, φi(K) = (Pi, F), for i = 1, ..., r.

Hence, any two functions φi and φj are similar of degree (k, 32768) with prob-
ability 1. In other words, they are similar of the full degree, (k, 32800), with
probability 2−32. That is, the functions producing round keys are highly sim-
ilar even though they are one way functions by themselves. We exploited this
property to mount a reflection attack on Blowfish. This example indicates that
ciphers having round functions which are similar of high degree with high prob-
ability, may be vulnerable to self similarity attacks even though they have very
complicated key schedules. Moreover, we argue that the attacks presented here
can be improved further by taking different degrees of similarity or by decreasing
the number of pairs of the functions compared.

Another property that we exploited is the relatively short block length of
Blowfish. Its key length can be as long as 448 bits whereas its block length is
always 64 bits. We propose that block length of a block cipher should not be
smaller than key length. This is also necessary to provide resistance to tradeoff
attacks [8,1,7] when the cipher is operated in a stream mode.

By Lemma 2, it is easy to take inverse of the key schedule of Blowfish and
deduce the key if one knows the P array . For example, if the P array were
updated once more after the F function were constructed in the key schedule,
then we could not recover the key from the P array. For 16-round Blowfish, this
change makes the key schedule only 1.7% slower than the original key schedule.

Unlike typical Feistel structure, Pi’s are XORed outside F . Adding the sub-
keys to left half of the Feistel network seems to hinder the self similarity attacks
since it destroys the typical symmetry of Feistel network. However, we recon-
structed the symmetry by describing Blowfish in different manners (see Figure 1).
Moreover, one can push some of the subkey XORs to the whitening which allows
to increase the number of weak keys.

A recent phenomenon is how to evaluate an attack mounted on some so called
weak keys. Most conventional attacks such as differential cryptanalysis [3] or
linear cryptanalysis [11] work generally on any key. On the other hand, the
attacks working only on a subset of the keys form a new class. These attacks
have two important parameters: The number of weak keys and the workload to
identify that the unknown key is weak. For a given attack, let W be the workload
of identifying a weak key and w be the number weak keys. Given a set of 2k

w
randomly generated keys, we expect one weak key on the average. To identify the

A New Class of Weak Keys for Blowfish 179

weak key, we run the identification process on all 2k

w keys with a cost of W 2k

w . So,
a necessary condition for the success of the attack is W 2k

w < 2k, i.e., W < w. This
leads to the following criteria: Assuming that the keys are produced randomly,
we propose that an attack on weak keys should be considered successful, if the
workload of identification of a weak key is less than the number of weak keys, in
addition to the widely adopted phenomenon that the workload of key recovery
is less than that of exhaustive search.

Acknowledgments

We thank Hüseyin Demirci, Nezih Geçkinli, Atilla Hasekioğlu and Ali Aydın
Selçuk for their comments.

References

1. Babbage, S.: Improved Exhaustive Search Attacks on Stream Ciphers. European
Convention on Security and Detection, IEE Conference publication No. 408, pp.
161-166, IEE (1995)

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. J. of Cryp-
tology 7, 229–246 (1994)

3. Biham, E., Shamir, A.: Differential Cryptanalysis of Data Encryption Standard.
Springer, Heidelberg (1993)

4. Biryukov, A., Wagner, D.: Slide Attacks. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 245–259. Springer, Heidelberg (1999)

5. Biryukov, A., Wagner, D.: Advanced Slide Attacks. In: Preneel, B. (ed.) EURO-
CRYPT 2000. LNCS, vol. 1807, pp. 589–606. Springer, Heidelberg (2000)

6. Coppersmith, D.: The Real Reason for Rivest’s Phenomenon. In: Williams, H.C.
(ed.) CRYPTO 1985. LNCS, vol. 218, pp. 535. Springer, Heidelberg (1986)

7. Golić, J.: Cryptanalysis of Alleged A5 Stream Cipher, In: Fumy, W. (ed.) EURO-
CRYPT 1997. LNCS, vol. 1233, pp. 239–255. Springer, Heidelberg (1997)

8. Hong, J., Sarkar, P.: Rediscovery of the Time Memory Tradeoff, Cryptology ePrint
Archive, Report 2005/090 (2005)

9. Kaliski, B.S., Rivest, R.L., Sherman, A.T.: Is DES a pure Cipher(Results of More
Cycling Experiments on DES). In: Williams, H.C. (ed.) CRYPTO 1985. LNCS,
vol. 218, p. 212. Springer, Heidelberg (1986)

10. Kara, O.: Reflection Attacks on Product Ciphers, Cryptology ePrint Archive, Re-
port 2007/043 (2007)

11. Matsui, M.: Linear Cryptanalysis Method of DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994)

12. Moore, J.H., Simmons, G.J.: Cycle Structures of the DES with Weak and Semi-
Weak Keys, In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 9–32.
Springer, Heidelberg (1987)

13. Moore, J.H., Simmons, G.J.: Cycle Structure of the DES for Keys Having Palin-
dromic (or Antipalindromic) Sequences of Round Keys. In: IEEE Transactions on
Software Engineering, vol. SE-13, pp. 262–273. IEEE Computer Society Press, Los
Alamitos (1987)

14. Rijmen, V.: Cryptanalysis and Design of Iterated Block Ciphers, Doctoral Disser-
tation, K.U. Leuven (1997)

180 O. Kara and C. Manap

15. Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)
16. Schneier, B.: Description of a New Variable - Length Key, 64 Bit Block Cipher

(Blowfish). In: Anderson, R. (ed.) Fast Software Encryption. LNCS, vol. 809, pp.
191–204. Springer, Heidelberg (1994)

17. http://www.schneier.com/blowfish.html
18. Vaudenay, S.: On the Weak Keys of Blowfish. In: Gollmann, D. (ed.) Fast Software

Encryption. LNCS, vol. 1039, pp. 27–32. Springer, Heidelberg (1996)

http://www.schneier.com/blowfish.html

The 128-Bit Blockcipher CLEFIA

(Extended Abstract)

Taizo Shirai1, Kyoji Shibutani1, Toru Akishita1,
Shiho Moriai1, and Tetsu Iwata2

1 Sony Corporation
1-7-1 Konan, Minato-ku, Tokyo 108-0075, Japan

{taizo.shirai,kyoji.shibutani,toru.akishita,shiho.moriai}@jp.sony.com
2 Nagoya University

Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
iwata@cse.nagoya-u.ac.jp

Abstract. We propose a new 128-bit blockcipher CLEFIA supporting
key lengths of 128, 192 and 256 bits, which is compatible with AES.
CLEFIA achieves enough immunity against known attacks and flexibility
for efficient implementation in both hardware and software by adopting
several novel and state-of-the-art design techniques. CLEFIA achieves a
good performance profile both in hardware and software. In hardware
using a 0.09 μm CMOS ASIC library, about 1.60 Gbps with less than
6 Kgates, and in software, about 13 cycles/byte, 1.48 Gbps on 2.4 GHz
AMD Athlon 64 is achieved. CLEFIA is a highly efficient blockcipher,
especially in hardware.

Keywords: blockcipher, generalized Feistel structure, DSM, CLEFIA.

1 Introduction

A lot of secure and high performance blockciphers have been designed bene-
fited from advancing research which started since the development of DES [11].
For example, IDEA, MISTY1, AES, and Camellia are fruits of such research
activities [1, 10, 15, 19]. New design and evaluation techniques are evolved day
by day; topics on algebraic immunity and related-key attacks are paid attention
recently [8,6]. Moreover, light-weight ciphers suitable for a very limited resource
environment are still active research fields. FOX and HIGHT are examples of
such newly developed blockciphers [12, 13].

We think it is good timing to show a new blockcipher design based on current
state-of-the-art techniques. In this paper, we propose a new 128-bit blockcipher
CLEFIA supporting key lengths of 128, 192 and 256 bits, which are compati-
ble with AES. CLEFIA achieves enough immunity against known cryptanalyses
and flexibility for very efficient implementation in hardware and software. The
fundamental structure of CLEFIA is a generalized Feistel structure consisting of
4 data lines, in which there are two 32-bit F-functions per one round.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 181–195, 2007.
c© International Association for Cryptologic Research 2007

182 T. Shirai et al.

One of novel design approaches of CLEFIA is that these F-functions employ the
Diffusion Switching Mechanism (DSM) [22,23]: they use different diffusion matri-
ces, and two different S-boxes are used to obtain stronger immunity against a cer-
tain class of attacks. Consequently, the required number of rounds can be reduced.
Moreover, the two S-boxes are based on different algebraic structures, which is ex-
pected to increase algebraic immunity. Other novel ideas include the secure and
compact key scheduling design and the DoubleSwap function used in it. The key
scheduling part uses a generalized Feistel structure, and it is possible to share it
with the data processing part. The DoubleSwap function can be compactly imple-
mented to enable efficient round key generation in encryption and decryption.

CLEFIA achieves about 1.60 Gbps with less than 6 Kgates in hardware using
a 0.09 μm CMOS ASIC library, and about 13 cycles/byte, 1.48 Gbps on 2.4 GHz
AMD Athlon 64 processor in software. We consider CLEFIA is a well-balanced
blockcipher in security and performance, and the performance is advantageous
among other blockciphers especially in hardware.

This paper is organized as follows: in Sect. 2, notations are first introduced.
In Sect. 3, we give the specification of CLEFIA. Then design rationale is shown
in Sect. 4. Sect. 5 describes the evaluation results on both of security and per-
formance aspects. Finally Sect. 6 concludes the paper.

2 Notations

This section describes mathematical notations, conventions and symbols used
throughout this paper.

0x : A prefix for a binary string in a hexadecimal form
a(b) : b denotes the bit length of a

a|b or (a|b) : Concatenation
(a, b) or (a b) : Vector style representation of a|b

a ← b : Updating a value of a by a value of b
ta : Transposition of a vector or a matrix a

a ⊕ b : Bitwise exclusive-OR. Addition in GF(2n)
a · b : Multiplication in GF(2n)
a : Logical negation

a ≪ b : b-bit left cyclic shift operation
wb(a) : For an 8n-bit string a = a0|a1| . . . |an−1, ai ∈ {0, 1}8,

wb(a) denotes the number of non-zero ais.

3 Specification

This section describes the specification of CLEFIA. We first define a function
GFNd,r which is a fundamental structure for CLEFIA, followed by definitions of
a data processing part and a key scheduling part.

The 128-Bit Blockcipher CLEFIA 183

3.1 Definition of GFNd,r

CLEFIA uses a 4-branch and an 8-branch Type-2 generalized Feistel network [24].
We denote d-branch r-round generalized Feistel network employed in CLEFIAas
GFNd,r. GFNd,r employs two different 32-bit F-functions F0 and F1 whose in-
put/output are defined as follows.

F0, F1 :
{
{0, 1}32 × {0, 1}32 → {0, 1}32

(RK(32), x(32)) → y(32)

For d 32-bit input Xi and output Yi (0 ≤ i < d), and dr/2 32-bit round keys
RKi (0 ≤ i < dr/2), GFNd,r (d = 4, 8) are defined as follows.

GFN4,r :
{
{{0, 1}32}2r × {{0, 1}32}4 → {{0, 1}32}4

(RK0(32), . . . , RK2r−1(32), X0(32), . . . , X3(32)) → Y0(32), . . . , Y3(32)

Step 1. T0 | T1 | T2 | T3 ← X0 | X1 | X2 | X3

Step 2. For i = 0 to r − 1 do the following:
Step 2.1 T1 ← T1 ⊕ F0(RK2i, T0), T3 ← T3 ⊕ F1(RK2i+1, T2)
Step 2.2 T0 | T1 | T2 | T3 ← T1 | T2 | T3 | T0

Step 3. Y0 | Y1 | Y2 | Y3 ← T3 | T0 | T1 | T2

GFN8,r :
{
{{0, 1}32}4r × {{0, 1}32}8 → {{0, 1}32}8

(RK0(32), . . . , RK4r−1(32), X0(32), . . . , X7(32)) → Y0(32), . . . , Y7(32)

Step 1. T0 | T1 | . . . | T7 ← X0 | X1 | . . . | X7

Step 2. For i = 0 to r − 1 do the following:
Step 2.1 T1 ← T1 ⊕ F0(RK4i, T0), T3 ← T3 ⊕ F1(RK4i+1, T2)

T5 ← T5 ⊕ F0(RK4i+2, T4), T7 ← T7 ⊕ F1(RK4i+3, T6)
Step 2.2 T0 | T1 | . . . | T6 | T7 ← T1 | T2 | . . . | T7 | T0

Step 3. Y0 | Y1 | . . . | Y6 | Y7 ← T7 | T0 | . . . | T5 | T6

The inverse function GFN−1
d,r are realized by changing the order of RKi and

the direction of word rotation at Step 2.2 and Step 3.

3.2 Data Processing Part

The data processing part of CLEFIA consists of ENCr for encryption and DECr

for decryption. ENCr and DECr use a 4-branch generalized Feistel structure
GFN4,r. Let P, C ∈ {0, 1}128 be a plaintext and a ciphertext, and let Pi, Ci ∈
{0, 1}32 (0 ≤ i < 4) be divided plaintext and ciphertext where P = P0|P1|P2|P3

and C = C0|C1|C2|C3, and let WK0, WK1, WK2, WK3 ∈ {0, 1}32 be whitening
keys and RKi ∈ {0, 1}32 (0 ≤ i < 2r) be round keys provided by the key
scheduling part. Then, r-round encryption function ENCr is defined as follows:

ENCr :

⎧
⎨

⎩

{{0, 1}32}4 × {{0, 1}32}2r × {{0, 1}32}4 → {{0, 1}32}4

(WK0(32), . . . , WK3(32), RK0(32), . . . , RK2r−1(32), P0(32), . . . , P3(32))
→ C0(32), . . . , C3(32)

184 T. Shirai et al.

Step 1. T0 | T1 | T2 | T3 ← P0 | (P1 ⊕ WK0) | P2 | (P3 ⊕ WK1)
Step 2. T0 | T1 | T2 | T3 ← GFN4,r(RK0, . . . , RK2r−1, T0, T1, T2, T3)
Step 3. C0 | C1 | C2 | C3 ← T0 | (T1 ⊕ WK2) | T2 | (T3 ⊕ WK3)

The decryption function DECr is the inverse function of ENCr which is defined
by using GFN−1

d,r. Fig. 1 in Appendix C illustrates the ENCr function. The
number of rounds, r, is 18, 22 and 26 for 128-bit, 192-bit and 256-bit keys,
respectively.

3.3 Key Scheduling Part

The key scheduling part of CLEFIA supports 128, 192 and 256-bit keys and
outputs whitening keys WKi (0 ≤ i < 4) and round keys RKj (0 ≤ j < 2r) for
the data processing part. We first define the DoubleSwap function which is used
in the key scheduling part.

Definition 1 (The DoubleSwap Function Σ).
The DoubleSwap function Σ : {0, 1}128 → {0, 1}128 is defined as follows:

X(128) → Y(128)

Y = X [7− 63] | X [121− 127] | X [0− 6] | X [64− 120] ,

where X [a− b] denotes a bit string cut from the a-th bit to the b-th bit of X. 0-th
bit is the most significant bit (See Fig. 2 in Appendix C).

Let K be a k-bit key, where k is 128, 192 or 256. The key scheduling part is
divided into the following two sub-parts. (1) Generating an intermediate key
L from K, and (2) Expanding K and L to generate WKi and RKj . The key
scheduling is explained according to the sub-parts.

Key Scheduling for a 128-bit Key. The 128-bit intermediate key L is
generated by applying GFN4,12 which takes twenty-four 32-bit constant values
CON(128)

i (0 ≤ i < 24) as round keys and K = K0|K1|K2|K3 as an input. Then
K and L are used to generate WKi (0 ≤ i < 4) and RKj (0 ≤ j < 36) in
the following steps. In the latter part, thirty-six 32-bit constant values CON(128)

i

(24 ≤ i < 60) are used. The generation steps of CON are explained in Sect 3.5.

(Generating L from K)

Step 1. L ← GFN4,12(CON(128)
0 , . . . ,CON(128)

23 , K0, . . . , K3)

(Expanding K and L)
Step 2. WK0|WK1|WK2|WK3 ← K
Step 3. For i = 0 to 8 do the following:

T ← L ⊕ (CON(128)
24+4i | CON(128)

24+4i+1 | CON(128)
24+4i+2 | CON(128)

24+4i+3)
L ← Σ(L)
if i is odd: T ← T ⊕ K
RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

The 128-Bit Blockcipher CLEFIA 185

Key Scheduling for a 192-bit Key. Two 128-bit values KL, KR are generated
from a 192-bit key K = K0|K1|K2|K3|K4|K5, Ki ∈ {0, 1}32. Then two 128-
bit values LL, LR are generated by applying GFN8,10 which takes CON(192)

i

(0 ≤ i < 40) as round keys and KL|KR as a 256-bit input. Then KL, KR and
LL, LR are used to generate WKi (0 ≤ i < 4) and RKj (0 ≤ j < 44) in the
following steps. In the latter part, forty-four 32-bit constant values CON(192)

i

(40 ≤ i < 84) are used.
The following steps show the 192-bit/256-bit key scheduling. For the 192-bit

key scheduling, the value of k is set as 192.

(Generating LL, LR from KL, KR for a k-bit key)
Step 1. Set k = 192 or k = 256

Step 2. If k = 192 : KL ← K0|K1|K2|K3, KR ← K4|K5|K0|K1

else if k = 256 : KL ← K0|K1|K2|K3, KR ← K4|K5|K6|K7

Step 3. Let KL = KL0|KL1|KL2|KL3, KR = KR0|KR1|KR2|KR3

LL|LR ← GFN8,10(CON(k)
0 , . . . ,CON(k)

39 , KL0, . . . , KL3, KR0, . . . , KR3)

(Expanding KL, KR and LL, LR for a k-bit key)
Step 4. WK0|WK1|WK2|WK3 ← KL ⊕ KR

Step 5. For i = 0 to 10 (if k = 192), or 12 (if k = 256) do the following:
If (i mod 4) = 0 or 1:

T ← LL ⊕ (CON(k)
40+4i | CON(k)

40+4i+1 | CON(k)
40+4i+2 | CON(k)

40+4i+3)
LL ← Σ(LL)
if i is odd: T ← T ⊕ KR

else:

T ← LR ⊕ (CON(k)
40+4i | CON(k)

40+4i+1 | CON(k)
40+4i+2 | CON(k)

40+4i+3)
LR ← Σ(LR)
if i is odd: T ← T ⊕ KL

RK4i|RK4i+1|RK4i+2|RK4i+3 ← T

Key Scheduling for a 256-bit Key. For a 256-bit key, the value of k is set as
256, and the steps are almost the same as in the 192-bit key case. The difference
is that we use CON(256)

i (0 ≤ i < 40) as round keys to generate LL and LR,
and then to generate RKj (0 ≤ j < 52), we use fifty-two 32-bit constant values
CON(256)

i (40 ≤ i < 92).

3.4 F-Functions

F-functions F0, F1 : (RK(32), x(32)) → y(32) are defined as follows:

[F-function F0] [F-function F1]
Step 1. T ← RK ⊕ x Step 1. T ← RK ⊕ x
Step 2. Let T = T0|T1|T2|T3, Ti ∈ {0, 1}8 Step 2. Let T = T0|T1|T2|T3, Ti ∈ {0, 1}8

T0 ← S0(T0), T1 ← S1(T1) T0 ← S1(T0), T1 ← S0(T1)
T2 ← S0(T2), T3 ← S1(T3) T2 ← S1(T2), T3 ← S0(T3)

Step 3. Let y = y0|y1|y2|y3, yi ∈ {0, 1}8 Step 3. Let y = y0|y1|y2|y3, yi ∈ {0, 1}8

t(y0, y1, y2, y3) = M0
t(T0, T1, T2, T3)

t(y0, y1, y2, y3) = M1
t(T0, T1, T2, T3)

186 T. Shirai et al.

S0 and S1 are nonlinear 8-bit S-boxes. The orders of these S-boxes are different
in F0 and F1. Tables in Appendix B show the input/output values of each S-
box. In these tables all values are expressed in hexadecimal form, suffixes ’0x’
are omitted. For an 8-bit input of an S-box, the upper 4-bit indicates a row and
the lower 4-bit indicates a column .

Two matrices M0 and M1 in Step 3 are defined as follows.

M0 =

�
���

0x01 0x02 0x04 0x06
0x02 0x01 0x06 0x04
0x04 0x06 0x01 0x02
0x06 0x04 0x02 0x01

�
��� , M1 =

�
���

0x01 0x08 0x02 0x0a
0x08 0x01 0x0a 0x02
0x02 0x0a 0x01 0x08
0x0a 0x02 0x08 0x01

�
��� .

These are 4× 4 Hadamard-type matrices with elements hij = ai⊕j for a certain
set {a0, a1, a2, a3}1.

The multiplications between matrices and vectors are performed in GF(28)
defined by the lexicographically first primitive polynomial z8 + z4 + z3 + z2 + 1.
Fig. 3 in Appendix C illustrates the construction of F0 and F1.

3.5 Constant Values

32-bit constant values CON(k)
i are used in the key scheduling algorithm. We

need 60, 84 and 92 constant values for 128, 192 and 256-bit keys, respectively.
Let P(16) = 0xb7e1 (= (e − 2) · 216) and Q(16) = 0x243f (= (π − 3) · 216),
where e is the base of the natural logarithm (2.71828...) and π is the circle ratio
(3.14159...). CON(k)

i , for k = 128, 192, 256, are generated by the following way
(See Table 1 for the repetition numbers l(k) and the initial values IV (k)).

Step 1. T ← IV (k)

Step 2. For i = 0 to l(k) − 1 do the following:

Step 2.1. CON(k)
2i ← (T ⊕ P) | (T <<< 1)

Step 2.2. CON(k)
2i+1 ← (T ⊕ Q) | (T <<< 8)

Step 2.3. T ← T · 0x0002−1

In Step 2.3, multiplications are performed in GF(216) defined by a primitive
polynomial z16 + z15 + z13 + z11 + z5 + z4 + 1 (=0x1a831)2.

Table 1. Required Numbers of Constant Values

k # of CON l(k) IV (k)

128 60 30 0x428a (= (3
√

2 − 1) · 216)

192 84 42 0x7137 (= (3
√

3 − 1) · 216)

256 92 46 0xb5c0 (= (3
√

5 − 1) · 216)

1 An Hadamard-type matrix is used in the blockcipher Anubis [2].
2 The lower 16-bit value is defined as 0xa831=(3

√
101 − 4) · 216. ‘101’ is the smallest

prime number satisfying the primitive polynomial condition in this form.

The 128-Bit Blockcipher CLEFIA 187

4 Design Rationale

CLEFIA is designed to realize good balance on three fundamental directions for
practical ciphers: (1) security, (2) speed, and (3) cost for implementations. This
section describes the design rationale of several aspects of CLEFIA.

Structure. CLEFIA employs a 4-branch generalized Feistel structure which is
considered as an extension of a 2-branch traditional Feistel structure. There are
many types of generalized Feistel structures. We choose one instance which is
known as “Generalized type-2 transformations” defined by Zheng et al. [24]. The
type-2 structure has two F-functions in one round for the four data lines case.
The type-2 structure has the following features:

– F-functions are smaller than that of the traditional Feistel structure
– Plural F-functions can be processed simultaneously
– Tends to require more rounds than the traditional Feistel structure

The first feature is a great advantage for software and hardware implementations,
and the second one is suitable for efficient implementation especially in hardware.
We conclude that the advantages of the type-2 structure surpass the disadvantage
of the third one for our blockcipher design. Moreover, the new design technique,
which is explained in the next, enables to reduce the number of rounds effectively.

Diffusion Switching Mechanism. CLEFIA employs two different diffusion
matrices to enhance the immunity against differential attacks and linear attacks
by using the Diffusion Switching Mechanism (DSM). This design technique was
originally developed for the traditional Feistel structures [22,23]. We customized
this technique suitable for GFNd,r, which is one of the unique propositions of
this cipher. Due to the DSM, we can prevent difference cancellations and linear
mask cancellations in the neighborhood rounds in the cipher. As a result the
guaranteed number of active S-boxes is increased.

Let the branch number of a function P be B(P) = mina�=0{wb(a)+wb(P (a))}.
The two matrices M0 and M1 used in CLEFIA satisfy the following branch
number conditions of the DSM.

B(M0) = B(M1) = 5, B(M0|M1) = B(tM−1
0 |tM−1

1) = 5 .

Table 2 shows the guaranteed numbers of active S-boxes of CLEFIA. The
guaranteed data are obtained from computer simulations using a exhaustive-
type search algorithm. Now we focus on the columns indexed by ‘GFN4,r’. The
columns of ‘D’ and ‘L’ in the table show the guaranteed number of differential
and linear active S-boxes, respectively. The ‘DSM’ denotes that the DSM is used,
and the ‘w/o DSM’ denotes that DSM is not used, where only one matrix with
branch number 5 is employed. From this table we can confirm the effects of the
DSM when r ≥ 3, and these guaranteed numbers increase about 20% − 40%
than the structure without DSM. Consequently, the numbers of rounds can be
reduced, which implies that the performance is improved.

188 T. Shirai et al.

Table 2. Guaranteed Numbers of Active S-boxes

GFN4,r GFN8,r GFN4,r GFN8,r

D & L D L D D & L D L D
r w/o DSM DSM DSM DSM r w/o DSM DSM DSM DSM

1 0 0 0 0 14 25 34 34 48
2 1 1 1 1 15 26 36 36 50
3 2 2 5 2 16 30 38 39 53
4 6 6 6 6 17 32 40 42 56
5 8 8 10 8 18 36 44 46 59
6 12 12 15 12 19 36 46 48 62
7 12 14 16 14 20 37 50 50 66
8 13 18 18 21 21 38 52 52 71
9 14 20 20 24 22 42 55 55 76
10 18 22 23 29 23 44 56 58 81
11 20 24 26 34 24 48 59 62 86
12 24 28 30 39 25 48 62 64 91
13 24 30 32 44 26 49 65 66 94

Table 3. Tables of SSi (0 ≤ i < 4)

x 0 1 2 3 4 5 6 7 8 9 a b c d e f x 0 1 2 3 4 5 6 7 8 9 a b c d e f
SS0(x) e 6 c a 8 7 2 f b 1 4 0 5 9 d 3 SS1(x) 6 4 0 d 2 b a 3 9 c e f 8 7 5 1
SS2(x) b 8 5 e a 6 4 c f 7 2 3 1 0 d 9 SS3(x) a 2 6 d 3 4 5 e 0 7 8 9 b f c 1

Choices of two S-boxes. CLEFIA employs two different types of 8-bit S-
boxes: one is based on four 4-bit random S-boxes, and the other is based on the
inverse function over GF(28) which has the best possible maximum differential
probability DPmax and linear probability LPmax. The both S-boxes are selected
to be implemented efficiently especially in hardware. The two 8-bit S-boxes S0

and S1 are defined as:

S0, S1 :
{
{0, 1}8 → {0, 1}8

x(8) → y(8)

S0 is generated by combining four 4-bit S-boxes SS0, SS1, SS2 and SS3 in the
following way. The values of these S-boxes are defined as Table 3.

Step 1. t0 ← SS0(x0), t1 ← SS1(x1), where x = x0|x1, xi ∈ {0, 1}4

Step 2. u0 ← t0 ⊕ 0x2 · t1, u1 ← 0x2 · t0 ⊕ t1
Step 3. y0 ← SS2(u0), y1 ← SS3(u1), where y = y0|y1, yi ∈ {0, 1}4

The multiplication in 0x2 · ti is performed in GF(24) defined by the lexico-
graphically first primitive polynomial z4 + z + 1.

S1 is defined as follows:

y =
{

g(f(x)−1) if f(x) �= 0
g(0) if f(x) = 0 .

The 128-Bit Blockcipher CLEFIA 189

The inverse function is performed in GF(28) defined by a primitive polynomial
z8 + z4 + z3 + z2 + 1. f(·) and g(·) are affine transformations over GF(2), which
are defined as follows.

f : x(8) �→ y(8) g : x(8) �→ y(8)�
����������

y0
y1
y2
y3
y4
y5
y6
y7

�
����������

=

�
����������

0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 1
0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 0
0 1 1 0 0 1 0 1
0 1 0 1 1 1 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1

�
����������

�
����������

x0
x1
x2
x3
x4
x5
x6
x7

�
����������

+

�
����������

0
0
0
1
1
1
1
0

�
����������

�
����������

y0
y1
y2
y3
y4
y5
y6
y7

�
����������

=

�
����������

0 0 0 0 1 0 1 0
0 1 0 0 0 0 0 1
0 1 0 1 1 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 0 0 1 0
1 0 0 1 0 0 0 0
0 1 0 0 0 1 0 0

�
����������

�
����������

x0
x1
x2
x3
x4
x5
x6
x7

�
����������

+

�
����������

0
1
1
0
1
0
0
1

�
����������

Here, x = x0|x1|x2|x3|x4|x5|x6|x7 and y = y0|y1|y2|y3|y4|y5|y6|y7, xi, yi ∈
{0, 1}. The constants in f and g can be represented as 0x1e and 0x69, respec-
tively. If we apply isomorphic mapping φ from GF(28) to GF((24)2) defined by
an irreducible polynomial z2 + z + ω3, where ω is a root of z4 + z + 1 = 0, the
merged transformations φ ◦ f and g ◦ φ−1 require only few XOR operations.

For security parameters, DPmax of S0 is 2−4.67 and its LPmax is 2−4.38, the
minimum Boolean degree is 6, and the minimum number of terms over GF(28)
is 244. For S1, DPmax and LPmax are both 2−6.00, the minimum Boolean degree
is 7 and it has at least 252 terms over GF(28).

Designs for Efficient Implementations. CLEFIA can be implemented ef-
ficiently both in hardware and software. In Table 4, we summarize the design
aspects for efficient implementations.

Table 4. Design Aspects for Efficient Implementations

GFN · Small size F-functions (32-bit in/out)
· No need for the inverse F-functions

SP-type F-function · Enabling the fast table implementation in software

DSM · Reducing the numbers of rounds

S-boxes · Very small footprint of S0 and S1 in hardware

Matrices · Using elements with low hamming weights only

· Sharing the structure with the data processing part
Key Schedule · Requiring only a 128-bit register for a 128-bit key

· Small footprint of DoubleSwap

5 Evaluations

5.1 Security

As a result of our security evaluation, full-round CLEFIA is considered as a
secure blockcipher against known attacks. Here, we mention the cryptanalytic
results of several attacks which are considered effective for reduced-round CLE-
FIA.

190 T. Shirai et al.

Differential Cryptanalysis [7]. For differential attack, we adopt an approach
to count the number of active S-boxes of differential characteristics. This method
was adopted by AES, Camellia and other blockciphers [10, 1]. We found the
guaranteed number of differential active S-boxes of CLEFIA by computer search
as shown in Table 2. Using 28 active S-boxes for 12-round CLEFIA and DPS0

max =
2−4.67, it is shown that DCP 12r

max ≤ 228×(−4.67) = 2−130.76. This means there is
no useful 12-round differential characteristic for an attacker. Moreover, since S1

has lower DPmax, the actual upper-bound of DCP is expected to be lower than
the above estimation. As a result, we believe that full-round CLEFIA is secure
against differential cryptanalysis.

Linear Cryptanalysis [17]. We also apply active S-boxes based approach
for the evaluation of linear cryptanalysis. Since LPS0

max = 2−4.38, combining 30
active S-boxes for 12-round CLEFIA, LCP 12r

max ≤ 230×(−4.38) = 2−131.40. We
conclude that it is difficult for an attacker to find 12-round linear-hulls which
can be used to distinguish CLEFIA from a random permutation. As a result,
full-round CLEFIA is secure enough against linear cryptanalysis.

Impossible Differential Cryptanalysis [4]. We consider that impossible
differential attack is one of the most powerful attacks against CLEFIA. The
following two impossible differential paths are found.

(0, α, 0, 0)
9r

�→ (0, α, 0, 0) and (0, 0, 0, α)
9r

�→ (0, 0, 0, α) p = 1

where α ∈ {0, 1}32 is any non-zero difference. These paths are confirmed by
the check algorithm proposed by Kim et al. [14]. Using the above distinguisher,
we can mount actual key-recovery attacks for each key length. Table 5 shows
the summary of the complexity required for the impossible differential attacks.
According to Table 5, it is expected that full-round CLEFIA has enough security
margin against this attack.

Table 5. Summary of Impossible Differential Cryptanalysis

of rounds key length key # of chosen time
whitening plaintexts complexity

10 128, 192, 256 yes 2101.7 2102

11 192, 256 yes 2103.5 2188

12 256 no 2103.8 2252

Saturation Cryptanalysis [9]. We also consider that saturation attack is one
of the most powerful attacks against CLEFIA. In this analysis, we consider a
32-bit word based saturation attack. Let Xi ∈ {0, 1}32 (0 ≤ i < 232) be 232

32-bit variables. Now we classify Xi into four states depending on the conditions
satisfied.

Const (C) : ∀i, j Xi = Xj , All (A) : ∀i, j i �= j ⇔ Xi �= Xj ,

Balance (B) :
⊕232−1

i=0 Xi = 0 , Unknown (U) : unknown .

The 128-Bit Blockcipher CLEFIA 191

Using the above notation, the following 6-round distinguishers are found.

(C, A, C, C) 6r→ (B, U, U, U) and (C, C, C, A) 6r→ (U, U, B, U) p = 1

These distinguishers can be extended to an 8-round distinguisher by adding two
more rounds before the above 6 round path. Let A(96) be an “All” state of 96-bit
word, and we divide it into 3 segments as A(96) = A0|A1|A2. Then the 8-round
distinguishers are given as follows.

(A0, C, A1, A2)
8r→ (B, U, U, U) and (A0, A1, A2, C) 8r→ (U, U, B, U) p = 1

Using the above 8-round distinguisher, it turns out that 10-round 128-bit
key CLEFIA can be attacked with complexity slightly less than 2128 F-function
calculations. From the above observations, we conclude that full-round CLEFIA
has enough security margin against this attack.

Algebraic Attack [8]. Let CLEFIA-I be a modified version of CLEFIA by
replacing all 4-bit S-boxes by the identity function I, I : {0, 1}4 → {0, 1}4, where
I(x) = x. Based on the estimation method by Courtois and Pieprzyk the total
number of terms can be estimated as follows [8]. T = 818

(
144
8

)
> 250+41 = 291 for

CLEFIA-I with r = 18, which gives the complexity T 2.376 = 2216 and T 3 = 2273.
For CLEFIA-I with r = 22, we have T = 818

(
352
8

)
> 250+52 = 2102, and thus

T 2.376 = 2242 and T 3 = 2306. Finally, for CLEFIA-I with r = 26, we have
T = 818

(
416
8

)
> 250+54 = 2104, T 2.376 = 2247, and T 3 = 2312. Although we

give the results of the estimation, we should interpret these estimations with an
extreme care: the real complexity of the XSL attacks is by no means clear at the
time of writing and is the subject of much controversy [20,16].

Related-Key Attack [3]. As for CLEFIA with a 128-bit key, L is generated
by L = GFN4,12(CON(128), K). As in Table 2, GFN4,12 has at least 28 active
S-boxes, and we have DCPmax ≤ 2−130.76. Therefore, for any ΔK and ΔL, a
differential probability of (ΔK → ΔL) is expected to be less than 2−128, i.e., no
useful differential (ΔK → ΔL) exists.

Also for 192 and 256-bit keys, (LL, LR) is generated by applying GFN8,10

to KL, KR. From Table 2, it has at least 29 differential active S-boxes, which
implies there are no differential characteristics with probability more than 2−128.

The above observations imply the probability of any related-key differential
(ΔP, ΔC, ΔK) is less than 2−128, if all the information on ΔL is needed for
differential. Because all the bits in L are used in 2 or 6 consecutive rounds.
As a result, we believe that CLEFIA holds strong immunity against related-
key cryptanalysis. We also expect that CLEFIA holds enough immunity against
other related-key type attacks including related-key boomerang and related-key
rectangle attacks [5].

Security against Other Attacks. Due to the page limitation, the details of
the security evaluation against known general attacks are omitted. Immunity
against some of the known attacks can be estimated by the evaluation results of
similar type attacks already mentioned in this section. We consider any attack
does not threat full-round CLEFIA.

192 T. Shirai et al.

Table 6. Results on Hardware Performance of CLEFIA

Key Enc/Dec Key Setup Optimi- Area Freq. Speed Speed/Area
Length (cycles) (cycles) zation (gates) (MHz) (Mbps) (Kbps/gate)

18 12 area 5,979 225.83 1,605.94 268.63
128 speed 12,009 422.29 3,003.00 250.06

CLEFIA 36 24 area 4,950 201.28 715.69 144.59
speed 9,377 389.55 1,385.10 147.71

(0.09 μm) 192 22 20 area 8,536 206.56 1,201.85 140.81
256 26 20 area 8,482 206.56 1,016.95 119.89

AES [21] 128 11 N/A area 12,454 145.35 1,691.35 135.81
(0.13 μm) 54 N/A area 5,398 131.24 311.09 57.63

Table 7. Results on Software Performance of CLEFIA (assembly language)

Type of Key Encryption Decryption Key Setup Table size
implementation Length (cycles/byte) (cycles/byte) (cycles) (KB)

128 12.9 13.3 217
single-block 192 15.8 16.2 272 8

CLEFIA 256 18.3 18.4 328
two-block 128 11.1 11.1 217
parallel 192 13.3 13.3 272 16

encryption 256 15.6 15.6 328

AES [18] single-block 128 10.6 N/A N/A 8

5.2 Performance

Table 6 shows evaluation results of hardware performance of CLEFIA using a
0.09μm CMOS ASIC library, where one gate is equivalent to a 2-way NAND and
the speed is evaluated under the worst-case condition. The Verilog-HDL models
were synthesized by specifying area or speed optimization to a logic synthesis
tool. The synthesized circuit of CLEFIA with 128-bit key by area optimization
occupies only 5,979 gates at a throughput of about 1.60 Gbps. Although we take
into account the difference of ASIC libraries, these figures indicate high efficiency
of CLEFIA in hardware implementation compared to the best known results of
hardware performance of AES [21].

Table 7 shows software performance results on Athlon 64 (AMD64) 4000+
2.4 GHz processor running Windows XP 64-bit Edition. We measured soft-
ware processing speed of enc/dec and key setup using the rdtsc instruction. In
the single-block (common) implementation, 12.9 cycle/byte (1.48 Gbps on the
processor) is achieved. The two-block parallel encryption is suitable for CTR
mode, because two blocks can be processed simultaneously [18].

The 128-Bit Blockcipher CLEFIA 193

6 Conclusion

We proposed a 128-bit blockcipher CLEFIA, which supports 128-bit, 192-bit, and
256-bit keys. CLEFIA employs several new design approaches, including the DSM
technique. As a result, enough immunity against known attacks is achieved. More-
over, the design of CLEFIA allows very efficient implementation in a variety of
environments. Some results of highly efficient implementation are exemplified.

Acknowledgment

The authors thank Lars Knudsen, Bart Preneel, Vincent Rijmen, and Serge
Vaudenay for their helpful comments. The authors also thank the anonymous
referees for their valuable comments.

References

1. Aoki, K., Ichikawa, T., Kanda, M., Matsui, M., Moriai, S., Nakajima, J., Tokita, T.:
Camellia: A 128-bit block cipher suitable for multiple platforms. In: Stinson, D.R.,
Tavares, S. (eds.) SAC 2000. LNCS, vol. 2012, pp. 41–54. Springer, Heidelberg
(2001)

2. Barreto, P.S.L.M., Rijmen, V.: The Anubis block cipher. NESSIE, September 2000
(primitive submitted), Available at http://www.cryptonessie.org/

3. Biham, E.: New types of cryptanalytic attacks using related keys. Journal of Cryp-
tology 7(4), 229–246 (1994)

4. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31
rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS,
vol. 1592, pp. 12–23. Springer, Heidelberg (1999)

5. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle at-
tacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525.
Springer, Heidelberg (2005)

6. Biham, E., Dunkelman, O., Keller, N.: Related-key impossible differential attacks
on 8-round AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp.
21–33. Springer, Heidelberg (2006)

7. Biham, E., Shamir, A.: Differential Cryptanalysis of the Data Encryption Standard.
Springer, Heidelberg (1993)

8. Courtois, N., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined systems
of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

9. Daemen, J., Knudsen, L.R., Rijmen, V.: The block cipher SQUARE. In: Biham,
E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

10. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption
Standard (Information Security and Cryptography). Springer, Heidelberg (2002)

11. Data Encryption Standard: Federal Information Processing Standard (FIPS), Pub-
lication 46, National Bureau of Standards, U.S. Department of Commerce, Wash-
ington, DC (January 1977)

12. Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B., Lee, C., Chang, D., Lee, J.,
Jeong, K., Kim, H., Kim, J., Chee, S.: Hight: A new block cipher suitable for low-
resource device. In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249,
pp. 46–59. Springer, Heidelberg (2006)

http://www.cryptonessie.org/

194 T. Shirai et al.

13. Junod, P., Vaudenay, S.: FOX: A new family of block ciphers. In: Handschuh, H.,
Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, pp. 114–129. Springer, Heidelberg
(2004)

14. Kim, J., Hong, S., Sung, J., Lee, C., Lee, S.: Impossible differential cryptanalysis
for block cipher structure. In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003.
LNCS, vol. 2904, pp. 82–96. Springer, Heidelberg (2003)

15. Lai, X., Massey, J.L., Murphy, S.: Markov ciphers and differential cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

16. Lim, C., Khoo, K.: An Analysis of XSL Applied to BES. In: Pre-proceedings of
Fast Software Encryption ’07, FSE’07, pp. 253–265 (2007)

17. Matsui, M.: Linear cryptanalysis of the data encryption standard. In: Helleseth,
T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg
(1994)

18. Matsui, M.: How far can we go on the x64 processors? In: Robshaw, M. (ed.) FSE
2006. LNCS, vol. 4047, pp. 341–358. Springer, Heidelberg (2006)

19. Matsui, M.: New block encryption algorithm MISTY. In: Biham, E. (ed.) FSE
1997. LNCS, vol. 1267, pp. 54–68. Springer, Heidelberg (1997)

20. Murphy, S., Robshaw, M.: Comments on the security of the AES and the XSL
technique. Electronic Letters 39(1), 36–38 (2003)

21. Satoh, A., Morioka, S.: Hardware-focused performance comparison for the standard
block ciphers AES, Camellia, and Triple-DES. In: Boyd, C., Mao, W. (eds.) ISC
2003. LNCS, vol. 2851, pp. 252–266. Springer, Heidelberg (2003)

22. Shirai, T., Preneel, B.: On Feistel ciphers using optimal diffusion mappings across
multiple rounds. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329, pp. 1–15.
Springer, Heidelberg (2004)

23. Shirai, T., Shibutani, K.: On Feistel structures using a diffusion switching mech-
anism. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 41–56. Springer,
Heidelberg (2006)

24. Zheng, Y., Matsumoto, T., Imai, H.: On the construction of block ciphers prov-
ably secure and not relying on any unproved hypotheses. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)

A Test Vectors

We give test vectors of CLEFIA for each key length. The data are expressed in
hexadecimal form.

128-bit key:
key ffeeddcc bbaa9988 77665544 33221100
plaintext 00010203 04050607 08090a0b 0c0d0e0f
ciphertext de2bf2fd 9b74aacd f1298555 459494fd
192-bit key:
key ffeeddcc bbaa9988 77665544 33221100 f0e0d0c0 b0a09080
plaintext 00010203 04050607 08090a0b 0c0d0e0f
ciphertext e2482f64 9f028dc4 80dda184 fde181ad
256-bit key:
key ffeeddcc bbaa9988 77665544 33221100

f0e0d0c0 b0a09080 70605040 30201000
plaintext 00010203 04050607 08090a0b 0c0d0e0f
ciphertext a1397814 289de80c 10da46d1 fa48b38a

The 128-Bit Blockcipher CLEFIA 195

B Tables of S0 and S1

S0 S1
.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f .0 .1 .2 .3 .4 .5 .6 .7 .8 .9 .a .b .c .d .e .f

0. 57 49 d1 c6 2f 33 74 fb 95 6d 82 ea 0e b0 a8 1c 6c da c3 e9 4e 9d 0a 3d b8 36 b4 38 13 34 0c d9
1. 28 d0 4b 92 5c ee 85 b1 c4 0a 76 3d 63 f9 17 af bf 74 94 8f b7 9c e5 dc 9e 07 49 4f 98 2c b0 93
2. bf a1 19 65 f7 7a 32 20 06 ce e4 83 9d 5b 4c d8 12 eb cd b3 92 e7 41 60 e3 21 27 3b e6 19 d2 0e
3. 42 5d 2e e8 d4 9b 0f 13 3c 89 67 c0 71 aa b6 f5 91 11 c7 3f 2a 8e a1 bc 2b c8 c5 0f 5b f3 87 8b
4. a4 be fd 8c 12 00 97 da 78 e1 cf 6b 39 43 55 26 fb f5 de 20 c6 a7 84 ce d8 65 51 c9 a4 ef 43 53
5. 30 98 cc dd eb 54 b3 8f 4e 16 fa 22 a5 77 09 61 25 5d 9b 31 e8 3e 0d d7 80 ff 69 8a ba 0b 73 5c
6. d6 2a 53 37 45 c1 6c ae ef 70 08 99 8b 1d f2 b4 6e 54 15 62 f6 35 30 52 a3 16 d3 28 32 fa aa 5e
7. e9 c7 9f 4a 31 25 fe 7c d3 a2 bd 56 14 88 60 0b cf ea ed 78 33 58 09 7b 63 c0 c1 46 1e df a9 99
8. cd e2 34 50 9e dc 11 05 2b b7 a9 48 ff 66 8a 73 55 04 c4 86 39 77 82 ec 40 18 90 97 59 dd 83 1f
9. 03 75 86 f1 6a a7 40 c2 b9 2c db 1f 58 94 3e ed 9a 37 06 24 64 7c a5 56 48 08 85 d0 61 26 ca 6f
a. fc 1b a0 04 b8 8d e6 59 62 93 35 7e ca 21 df 47 7e 6a b6 71 a0 70 05 d1 45 8c 23 1c f0 ee 89 ad
b. 15 f3 ba 7f a6 69 c8 4d 87 3b 9c 01 e0 de 24 52 7a 4b c2 2f db 5a 4d 76 67 17 2d f4 cb b1 4a a8
c. 7b 0c 68 1e 80 b2 5a e7 ad d5 23 f4 46 3f 91 c9 b5 22 47 3a d5 10 4c 72 cc 00 f9 e0 fd e2 fe ae
d. 6e 84 72 bb 0d 18 d9 96 f0 5f 41 ac 27 c5 e3 3a f8 5f ab f1 1b 42 81 d6 be 44 29 a6 57 b9 af f2
e. 81 6f 07 a3 79 f6 2d 38 1a 44 5e b5 d2 ec cb 90 d4 75 66 bb 68 9f 50 02 01 3c 7f 8d 1a 88 bd ac
f. 9a 36 e5 29 c3 4f ab 64 51 f8 10 d7 bc 02 7d 8e f7 e4 79 96 a2 fc 6d b2 6b 03 e1 2e 7d 14 95 1d

C Figures

F0

RK0 WK0

P1

/32

P0

/32

F1

RK1 WK1

P3

/32

P2

/32

RK2r−2 RK2r−1

F0

RK2

F1

RK3

F0 F1

WK2 WK3

/32 /32/32 /32

C0 C1 C2 C3

...
...

...
...

F0

RK4

F1

RK5

Fig. 1. ENCr

7 7

7 7

57 57

57 57

128 bits

Fig. 2. DoubleSwap

0

1

2

3

x0

x1

x2

x3

k0 k1 k2 k3

S0

S1

S0

S1

y

y

y

y

M0

/ / / /

/

/

/

/

/

/

/

/

8

8

8

8

8

8

8

8

8 8 8 8

F0

x0

x1

x2

x3

k0 k1 k2 k3

S1

S0

S1

S0

y0

y1

y2

y3

M1

/ / / /

/

/

/

/

/

/

/

/

8

8

8

8

8

8

8

8

8 8 8 8

F1

Fig. 3. F-functions

New Lightweight DES Variants

Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm

Horst Görtz Institute for IT Security
Communication Security Group (COSY)

Ruhr-University Bochum, Germany
{cpaar,poschmann,schramm}@crypto.rub.de,

leander@rub.de

Abstract. In this paper we propose a new block cipher, DESL (DES
Lightweight), which is based on the classical DES (Data Encryption
Standard) design, but unlike DES it uses a single S-box repeated eight
times.1 On this account we adapt well-known DES S-box design criteria,
such that they can be applied to the special case of a single S-box. Fur-
thermore, we show that DESL is resistant against certain types of the
most common attacks, i.e., linear and differential cryptanalyses, and the
Davies-Murphy attack. Our hardware implementation results of DESL
are very promising (1848 GE), therefore DESL is well suited for ultra-
constrained devices such as RFID tags.

Keywords: RFID, DES, DESL, lightweight cryptography, S-box design
criteria.

1 Introduction

A flawless and remote identification of products, people or animals plays an
important role in many areas of daily life. For example, farmers often have
to keep track of the fertility rate of their cattle and hence, identify calf-bearing
cows. Other examples are the permanent identification of industrial goods, which
improves the supply chain in factories and countersteers thievery, or the need of
reliable access control devices, e.g. in form of ski passes or train tickets.

An automatic identification can be achieved with RFID (Radio Frequency
Identification) tags. Basically, RFID tags consist of a transponder and an an-
tenna and are able to remotely receive data from an RFID host or reader device.
In general, RFID tags can be divided into passive and active devices: active
tags provide their own power supply (i.e. in form of a battery), whereas passive
tags solely rely on the energy of the carrier signal transmitted by the reader
device. As a result, passive RFID devices are not only much less expensive, but
also require less chip size and have a longer life cycle [Fin03]. Our proposed
DESL algorithm and its low-power, size-optimized implementation aims at very
constrained devices such as passive RFID tags.
1 Part of this work has already been presented at RFIDSec ’06, a non-proceeding

workshop.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 196–210, 2007.
c© International Association for Cryptologic Research 2007

New Lightweight DES Variants 197

Very often it is desired to use RFID tags as cryptographic tokens, e.g. in a chal-
lenge response protocol. In this case the tag must be able to execute a secure cryp-
tographic primitive. Contactless microprocessor cards [RE02], which are capable
to execute cryptographic algorithms, are not only expensive and, hence, not nec-
essarily suited for mass production, but also draw a lot of current. The high, non-
optimal power consumption of a microprocessor can usually only be provided by
close coupling systems, i.e. a short distance between reader and RFID device has
to be ensured [Fin03]. A better approach is to use a custom made RFID chip,
which consists of a receiver circuit, a control unit2, some kind of volatile and/or
non-volatile memory and a cryptographic primitive. In [FWR05], Feldhofer et al.
propose a very small AES implementation with 3400 gates, which draws a maxi-
mum current of 3.0μA @ 100kHz. Their AES design is based on a byte-per-byte
serialization, which only requires the implementation of a single S-box [DR02] and
achieves an encryption within 1032 clock cycles (= 10.32ms @ 100kHz). Unfortu-
nately, the ISO/IEC 18000 standard requires that the latency of a response of an
RFID tag does not exceed 320μs, which is why Feldhofer et al. propose a slightly
modified challenge-response protocol based on interleaving.

The remainder of this work is organized as follows: In Section 2 we stress why
DES was chosen as the basis for our new family of lightweight algorithms, which
we present in Section 3. Subsequently, in Section 4 we show the design criteria
for DESL and its lightweight implementation in Section 5. Finally, in Section 6
we summarize our results and conclude this work.

2 Design Considerations for Lightweight Block Ciphers

The pretext of our algorithm family is the desire to find a design for a cipher for
extremely lightweight applications such as passive RFIDs. Thus far, there have
been two approaches for providing cryptographic primitives for such situations:
1) Optimized low-cost implementations for standardized and trusted algorithms,
which means in practice in essence block ciphers such as AES, see e.g., [FDW04].
And 2) design new ciphers with the goal of having low hardware implementation
costs (see, e.g., the profile 2 algorithms of the eStream project). Even though
both approaches are valid and yielding results, we believe both are not optimum.
The problem with the first approach is that most modern block ciphers were
primarily designed with good software implementation properties in mind, and
not necessarily with hardware-friendly properties. We strongly believe that this
was the right approach for today’s block ciphers since on the one hand the vast
majority of algorithms run in software on PCs or embedded devices, and on the
other hand silicon area has become so inexpensive that very high performance
hardware implementations (achieved through large chip area) are not a problem
any more. However, if the goal is to provide extremely low-cost security on
devices where both of those assumptions do not hold, one has to wonder whether
modern block ciphers are the best solution.

2 i.e. a finite state machine.

198 G. Leander et al.

There are also problems with the second approach, designing low cost ciphers
anew. First it is well known that it is painfully difficult to design new ciphers
without security flaws. Furthermore, as can be seen from the eStream profile
2 algorithms (which have low-cost hardware properties as a main objective), it
is far from straightforward to design a new cipher which has a lower hardware
complexity than standard DES.

It is fair to claim that an optimum approach would be to have a well inves-
tigated cipher, the design of which was driven by low hardware costs. The only
known cipher to this respect is the Data Encryption Standard, DES. (The obvi-
ous drawback of DES is that its key length is not adequate for many of today’s
applications, but this will be addressed in Section 3 below.) The promise that
DES holds for lightweight hardware implementation can easily be seen by the
following observation. If we compare a standard, one-round implementation3 of
AES and DES, the latter consumes about 6% (!) of the logic resources of AES,
while having a shorter critical path [VHVM88], [ASM01]. Of course, DES uses a
much shorter key so that a direct comparison is not completely accurate, but the
time-area advantage of more than one order of magnitude gives an indication.
We would also like to stress that it is not a coincidence that DES is so efficient
in hardware. DES was designed in the first half of the 1970s and the targeted
implementation platform was hardware. However, by today’s standard, digital
technology was extremely limited in the early 1970s. Hence, virtually all compo-
nents of DES were heavily driven by low hardware complexity: bit permutation
and small S-Boxes.

3 DESL and DESXL: Design Ideas and Security
Consideration

The main design ideas of the new cipher family, which are either original DES
efficiently implemented or a variant of DES, are:

1. Use of a serial hardware architecture which reduces the gate complexity.
2. Optionally apply key-whitening in order to render brute-force attacks im-

possible.
3. Optionally replace the 8 original S-Boxes by a single one which further re-

duces the gate complexity.

If we make use of the first idea, we obtain a lightweight implementation of
the original DES algorithm which consumes about 35% less gates than the best
known AES implementation [FWR05]. To our knowledge, this is the smallest
reported DES implementation, trading area for throughput. The implementation
requires also about 86% fewer clock cycles for encrypting of one block than the
serialized AES implementation in [FWR05](1032 cycles vs. 144) which makes it
easier to use in standardized RFID protocols. However, the security provided
is limited by the 56 bit key. Brute forcing this key space takes a few months
3 i.e. one plaintext block is encrypted in one clock cycle.

New Lightweight DES Variants 199

and hundreds of PCs in software, and only a few days with a special-purpose
machine such as COPACOBANA [KPP+06]. Hence, this implementation is only
relevant for application where short-term security is needed, or where the values
protected are relatively low. However, we can imagine that in certain low cost
applications such a security level is adequate.

In situation where a higher security level is needed key whitening, which we
define here as follows:

DESXk.k1.k2(x) = k2⊕DESk(k1 ⊕ x)

can be added to standard DES, yielding DESX. The bank of XOR gates and
registers increase the gate count by about 14%4. The best known key search at-
tack uses a time-memory trade-off and requires 2120 time steps and 264 memory
locations, which renders this attack entirely out of reach. The best known math-
ematical attack is linear cryptanalysis [Mat94]. Linear cryptanalysis requires
about 243 chosen ciphertext blocks together with the corresponding plaintexts.
At a clock speed of 500 kHz, our DESX implementation will take more than 80
years, so that analytical attacks do not pose a realistic threat. Please note that
parallelization is only an option if devices with identical keys are available.

In situations where extremely lightweight cryptography is needed, we can fur-
ther decrease the gate complexity of DES by replacing the eight original S-Boxes
by a single new one. This lightweight variant of DES is named DESL and has
a brute-force resistance of 256. In order to strengthen the cipher, key whitening
can be applied yielding the cipher DESXL. The crucial question is what the
strength of DESL and DESXL is with respect to analytical attacks. We are fully
aware that any changes to a cipher might open the door to new attacks, even if
the changes have been done very carefully and checked against known attacks.
Hence, we believe that DESL (or DESXL) should primarily not be viewed as
competitors to AES, but should be used in applications where established algo-
rithms are too costly. In such applications which have to trade security (really:
trust in an algorithm) for cost, we argue that it is a cryptographically sounder
approach to modestly modify a well studied cipher (in fact, the world’s best
studied crypto algorithm), rather than designing a new algorithm altogether.

4 Design Criteria of DESL

In this section we describe how a variant of DES with a single S-box can be made
resistant against the differential, linear, and Davis-Murphy attack. The work
is based on the original design criteria for DES as published by Coppersmith
[Cop94] and the work of Kim et al. [KPL93], [KLPL94], [KLPL95] where several
criteria for DES type S-boxes are presented to strengthen the resistance against
the above mentioned attacks.

Coppersmith states the following eight criteria as the ”only cryptographically
relevant” ones for the DES S-boxes (see [Cop94]).
4 This number only includes additional XOR gates, because we assume that all keys

have to be stored at different memory locations anyway.

200 G. Leander et al.

(S-1) Each S-box has six bits of input and four bits of output.
(S-2) No output bit of an S-box should be too close to a linear function of the

input bits.
(S-3) If we fix the leftmost and rightmost input bits of the S-box and vary the

four middle bits, each possible 4-bit output is attained exactly once as
the middle input bits range over their 16 possibilities.

(S-4) If two inputs to an S-box differ in exactly one bit, the outputs must differ
in at least two bits.

(S-5) If two inputs to an S-box differ in the two middle bits exactly, the outputs
must differ in at least two bits.

(S-6) If two inputs to an S-box differ in their first two bits and are identical in
their last two bits, the two outputs must not be the same.

(S-7) For any nonzero 6-bit-difference between inputs, ΔI, no more than eight of
the 32 pairs of inputs exhibiting ΔI may result in the same output differ-
ence ΔO.

(S-8) Minimize the probability that a non zero input difference to three adjacent
S-boxes yield a zero output difference.

4.1 Improved Resistance Against Differential Cryptanalysis and
Davis Murphy Attack

The criteria (S-1) to (S-7) refer to one single S-box. The only criterion which
deals with the combination of S-boxes is criterion (S-8). The designers’ goal
was to minimize the probability of collisions at the output of the S-boxes and
thus at the output of the f-function. As a matter of fact, it is only possible to
cause a collision, i.e. two different inputs are mapped to the same output, in
three adjacent S-boxes, but not in a single S-box or a pair of S-boxes due to the
diffusion caused by the expansion permutation. The possibility to have a collision
in three adjacent S-boxes leads to the most successful differential attack based
on a 2-round iterative characteristic with probability 1

234 .
Clearly better than minimizing the probability for collisions in three or more

adjacent S-boxes, is to eliminate them. This was the approach used in [KPL93],
[KLPL94], [KLPL95] and can easily be reached by improving one of the design
criteria.

We replace (S-6) and (S-8) by an improved design criterion similar to the one
given in [KPL93].

Condition 1. If two inputs to an S-box differ in their first bit and are identical
in their last two bits, the two outputs must not be the same.

This criterion ensures that differential attacks using 2-round iterative characteris-
tics, as the one presentedbyBihamandShamir in [BS92], willhave all eightS-boxes
active and therefore will not be more efficient than exhaustive search anymore.

Moreover, the only criterion that refers to more than one S-box, i.e. (S-8), is
now replaced by a condition that refers to one S-box, only. Thus, most of the
security analysis remains unchanged when we replace the eight different S-boxes
by one S-box repeated eight times.

New Lightweight DES Variants 201

Note that as described by Biham in [BB97] and by Kim et at. in [KLPL95]
this condition also ensures resistance against the Davis Murphy attack [DM95].

4.2 Improved Resistance Against Linear Cryptanalysis

To improve the resistance of our variant of DES with only one S-Box against
linear cryptanalysis (LC) is more complex than the protection against the dif-
ferential cryptanalysis. Kim et.al presented a number of conditions that, when
fulfilled by a set of S-boxes, ensure the resistance of DES variants against LC.
However several of these conditions focus on different S-boxes and this implies
that if one wants to replace all eight S-boxes by just one S-box, there are very
tight restrictions to the choice of the S-box. This one S-box has to fulfill all
conditions given in [KLPL95] referring to any S-box.

Let Sb = 〈b, S (x)〉 denote a combination of output bits that is determined by
b ∈ GF(2)4. Then, the Walsh-coefficient SW

b (a) for an element a ∈ GF(2)6 is
defined by

SW
b (a) =

∑

x∈GF(2)6

(−1)〈b,S(x)〉+〈a,x〉. (1)

The probability of a linear approximation of a combination of output bits Sb by
a linear combination a of input bits can be written as

p =
{x|Sb (x) = 〈a, x〉}

26
. (2)

Combining equations 1 and 2 leads to

p =
SW

b (a)
27

+
1
2
.

The linear probability bias ε is a correlation measure for this deviation from
probability 1

2 for which it is entirely uncorrelated. We have

ε =
∣
∣
∣
∣p−

1
2

∣
∣
∣
∣ =
∣
∣
∣
∣
SW

b (a)
27

∣
∣
∣
∣ .

Let us denote the maximum absolute value of the Walsh-Transformation by
SW

max. Then clearly

ε ≤
∣
∣∣
∣
SW

max (a)
27

∣
∣∣
∣

The smaller the linear probability bias ε is, the more secure the S-box is against
linear cryptanalysis. We defined our criterion (S-2”) by setting the threshold for
SW

max to 28.

Condition 2. |SW
b (a)| ≤ 28 for all a ∈ GF(2)6, b ∈ GF(2)4.

Note that this is a tightened version of Condition 2 given in [KLPL95] where
the threshold was set to 32. In the original DES the best linear approximation
has a maximum absolute Walsh coefficient of 40 for S-box S5.

202 G. Leander et al.

If an LC attack is based on an approximation that involves n S-boxes, under
the standard assumption that the round keys are statistically independent, the
overall bias ε is (see [Mat94])

ε = 2n−1
n∏

i=1

εi

where the values εi are the biases for each of the involved S-box.
A rough approximation of the effort of a linear attack based on a linear ap-

proximation with bias ε is ε−2, thus if we require that such an attack is no more
efficient than exhaustive search we need ε < 2−28.

It can be easily seen that any linear approximation for 15 round DES involves
at least 7 approximations for S-boxes. But as

26
7∏

i=1

εi ≤ 26
7∏

i=1

7
32

≈ 2−9.35

this bound is clearly insufficient.
Thus in order to prove the resistance against linear attack, we have to make

sure that either enough S-boxes are active, i.e. enough S-Boxes are involved
in the linear approximation, or, if fewer S-boxes are active, the bound on the
probabilities can be tightened. In the first case we need more than 23 active
S-boxes as

221

(
SW

max

128

)22

> 2−28 > 222

(
SW

max

128

)23

(3)

For the second case several conditions have been developed in [KLPL94],
[KLPL95]. Due to our special constraints we have to slightly modify these con-
ditions. Following [KLPL95] we discuss several cases of iterative linear approxi-
mations. We denote a linear approximation of the F function of DES by

〈I, Z1〉+ 〈K, Z3〉 = 〈O, Z2〉

where Z1, Z2, Z3 ∈ GF(2)32 specify the input, output and key bits used in the
linear approximation.

An n round iterative linear approximation is of the form

〈I1, ·〉 + 〈In, ·〉 = 〈K2, ·〉+ · · · + 〈Kn−1, ·〉

and consists of linear approximations for the rounds 2 until n− 1.
Similar as it was done in [KLPL94] it can be shown that a three round (3R)

iterative linear approximation is not possible with a non zero bias, due to con-
dition 1.

We therefore focus on the case of a 4 and 5 round iterative approximation only.

4.3 4R Iterative Linear Approximation

A four round iterative linear approximation consists of two linear approximations
for the F function of the second and third round. We denote these approxima-
tions as

New Lightweight DES Variants 203

A : 〈I2, Z1〉 + 〈K2, Z3〉 = 〈O2, Z2〉
B : 〈I3, Y1〉 + 〈K3, Y3〉 = 〈O3, Y2〉

In order to get a linear approximation of the form

〈I1, ·〉 + 〈I4, ·〉 = 〈K2, ·〉 + 〈K3, ·〉

Using O2 = I1 + I3 and O3 = I2 + I4 it must hold that

Z2 = Y1 and Z1 = Y2

The 15 round approximation is

−AB − BA−AB −BA −AB

If the number of S-boxes involved in the approximation of A is a and for B is b
we denote by A = (a, b). First assume that A = (1, 1). Due to Z2 = Y1 and the
property of the P-permutation, which distributes the output bits of one S-box
to 6 different S-Boxes in the next round, it must hold that |Y1| = |Z2| = 1. For
the same reason we get |Z1| = |Y2| = 1. To minimize the probability of such an
approximation we stipulate the following condition

Condition 3. The S-box has to fulfill SW
b (a) ≤ 4 for all a ∈ GF(2)6, b ∈ GF(2)4

with wt(a) = wt(b) = 1.

This condition is comparable to Condition 4 in [KLPL95], however, as we only
have a single S-box, we could not find a single S-box fulfilling all the restrictions
from condition 4 in [KLPL95]. If the S-box fulfils condition 3 the overall bias for
the linear approximation described above is bounded by

ε ≤ 29

(
4

128

)10

< 2−40.

As this is (much) smaller than 2−28 this does not yield to a useful approximation.
Assume now that A = (1, 2) (the case A = (2, 1) is very similar). If B involves

two S-boxes we have |Y1| = |Y2| = 2 and thus |Y2| = |Z1| = 2. In particular for
both S-boxes involved in B Condition 3 applies which results in a threshold

ε ≤ 214

(
4

128

)10 (28
128

)5

< 2−46

for the overall linear bias.
Next we assume that A = (2, 2) . In this case we get (through the properties

of the P function) that each S-box involved in A and B has at most two input
and output bits involved in the linear approximation. In order to avoid this kind
of approximation we add another condition.

Condition 4. The S-box has to fulfill SW
b (a) ≤ 16 for all a ∈ GF(2)6, b ∈

GF(2)4 with wt(a), wt(b) ≤ 2.

204 G. Leander et al.

This condition is a tightened version of Condition 5 in [KLPL95] where the
threshold was set to 20 . In this case (remember that we now have 20 S-boxes
involved) we get

ε ≤ 219

(
16
128

)20

< 2−40.

In all other cases, more than 23 S-boxes involved and thus the general upper
bound (3) can be applied.

4.4 5R Iterative Linear Approximation

A five round iterative linear approximation consists of three linear approxima-
tions for the F function of the second, third and fourth round. We denote these
approximations as

A : 〈I2, Z1〉 + 〈K2, Z3〉 = 〈O2, Z2〉
B : 〈I3, Y1〉 + 〈K3, Y3〉 = 〈O3, Y2〉

C : 〈I4, X1〉 + 〈K4, X3〉 = 〈O4, X2〉.

In order to get a linear approximation of the form

〈I1, ·〉+ 〈I5, ·〉 = 〈K2, ·〉 + 〈K3, ·〉 + 〈K4, ·〉

it must hold that

Z1 = Y2 = X1 and Y1 + Z2 + X2 = 0

The 15 round approximation is

−ABC − CBA −ABC −DE

for some linear approximations D and E each involving at least one S-box.
Clearly, as the inputs of A and C are the same we have A = (a, b, a), i.e. the
number of involved S-boxes in A and C are the same.

Case b = 1: Assume that b = 1, i.e. only one S-box is involved in the linear
approximation B. If |Z1| ≥ 3 than we must have a ≥ 3 and so the number
of S-boxes involved is at least 23, which makes the approximation useless. If
|Z1| = 2 we have two active S-boxes for A and B. Moreover as b = 1 we must
have |Y1| = |Z2 + X2| = 1. Due to properties of the P function, the S-boxes
involved in A and B are never adjacent S-boxes, therefore exactly one input
bit is involved in the approximation for each of the two S-boxes. In order to
minimize the probability for such an approximation, we stipulate the following
condition

Condition 5. The S-box has to fulfill

|SW
b1 (a)SW

b2 (a)| ≤ 240

for all a ∈ GF(2)6, b1, b2 ∈ GF(2)4 with wt(a) = 1, wt(b1 + b2) = 1.

New Lightweight DES Variants 205

This is a modified version of Condition 7 in [KLPL95]. With an S-box fulfilling
this condition we derive an upper bound for the overall bias

ε ≤ 216

(
240
1282

)6(16
128

)3 (28
128

)2

< 2−33

If |Z1| = 1 then a = 1 and we have |Y1| = |Z2 + X2| = 1 and |Z1| = 1. We
stipulate one more condition.

Condition 6. The S-box has to fulfill

SW
b (a) = 0

for a ∈ {(010000), (000010)}, b ∈ GF(2)4 with wt(b) = 1.

This implies that the input to B is such that a middle bit is affected. Due to the
properties of the P function this implies that in the input of A and C a non-
middle bit is affected. As for any DES type S-box it holds that SW

b (100000) =
SW

b (000001) = 0 for all b the only possible input values for the S-box involved
in A and C are (010000) and (000010). To avoid the second one we define the
next condition.

Condition 7
|SW

b1 (000010)SW
b2 (000010)| = 0

for all b1, b2 ∈ GF(2)4 with wt(b1 + b2) = 1.

The other possible input value, i.e. 01000 occurs only when S-box 1 is active in
B and S-box 5 is active in A and C. In this case the input values for the S-box
in B is (000100) and the output value is (0100). The next condition makes this
approximation impossible.

Condition 8. The S-box has to fulfill

SW
(0100)(000100) = 0

Case b = 2: Assume that b = 2, i.e. exactly two S-boxes are involved for B. If
a > 2 then at least 23 S-boxes are involved in total. If a = 2 we have for each
S-box involved in B at most 2 input bits and at most 2 output bits. Therefore
we can apply the bound from condition 4 to the two S-boxes from B. Applying
the general bound for all the other S-boxes we get

ε ≤ 219

(
16
128

)6(28
128

)14

< 2−29.

In the case where a = 1 the two S-boxes involved in B have one input and one
output bit involved each, thus we can apply the strong bound from condition 3
for these S-boxes (6 in total) and the general bound for the other S-boxes to get

ε ≤ 213

(
4

128

)6 (28
128

)8

< 2−34.

206 G. Leander et al.

Case b > 2: In this case we must have a, b ≥ 2 and thus at least 29 S-boxes are
involved in total.

4.5 nR Iterative Linear Approximation

For an n round iterative linear approximation with only one S-box involved in
each round (denoted as Type-I by Matsui) our condition 3 ensures that if more
than 7 S-boxes are involved in total the approximation will not be useful for an
attack as

ε ≤ 26

(
4

128

)7

= 2−29 (4)

4.6 Resistance Against Algebraic Attacks

There is no structural reason why algebraic attacks should pose a greater threat to
DESL than to DES. The DESL S-box has been randomly generated in the set of all
S-boxes fulfilling the design criteria described above. Therefore we do not expect
any special weakness of the chosen S-box. Indeed we computed the number of low
degree equations between the input and output bits of the S-box. There exist one
quadratic equation and 88 equations of degree 3. Note that for each 6 to 4 Bit S-
box, there exist at least 88 equations of degree 3. Given the comparison with the
corresponding results for the original DES S-boxes in Table 1 we anticipate that
DESL is as secure as DES with respect to algebraic attacks.

Table 1. Number of Degree two and Degree three Equations

DES S-box S1 S2 S3 S4 S5 S6 S7 S8 DESL

deg 2 1 0 0 5 1 0 0 0 1

deg 3 88 88 88 88 88 88 88 88 88

4.7 Improved S-Box

We randomly generated S-boxes, which fulfill the original DES criteria (S-1),
(S-3), (S-4), (S-5), (S-7), the condition 1 and our modified conditions 2 to 8. Our
goal was to find one single S-box, which is significantly more resistant against
differential and linear cryptanalyses than the original eight S-boxes of DES. In
our DESL algorithm this S-box is repeated eight times and replaces all eight
S-boxes in DES.

5 Lightweight Implementation of DESL

We implemented DES in the hardware description language VHDL, where we
sacrificed time for area wherever possible. In this serialized DES ASIC design,
registers take up the main part of chip size (33.78%), followed by the S-boxes
(32.11%), and multiplexors (31.19%). Chip size of registers and multiplexors can

New Lightweight DES Variants 207

Table 2. Improved DESL S-box

S

14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13

not be minimized any further, hence we thought about further possibilities to
optimize the chip size of the S-boxes.

While it does not seem to be possible to find better logic minimizations of the
original DES S-boxes, there have been other approaches to alter the S-boxes,
e.g. key-dependent S-boxes [BB94], [BS92] or the so-called siDES [KLPL94],
[KLPL95], [KPL93]. While all these approaches, despite the fact that some of
them have worse cryptographic properties than DES [Knu92], just change the
content and not the number of S-boxes. To the best of our knowledge, no DES
variant has been proposed in the past which uses a single S-box, repeated eight
times.

The main difference between DESL and DES lies in the f -function. We substi-
tuted the eight original DES S-boxes by a single but cryptographically stronger
S-box (see Table 2), which is repeated eight times. Furthermore, we omitted
the initial permutation (IP) and its inverse (IP−1), because they do not provide
additional cryptographic strength, but at the same time require area for wiring.
The design of our DESL algorithm is exactly the same as for the DES algorithm,
except for the (IP) and (IP−1) wiring and the sbox module.

We used Synopsys Design Vision V-2004.06-SP2 to map our DESL design to
the Artisan UMC 0.18μm L180 Process 1.8-Volt Sage-X Standard Cell Library
and Cadence Silicon Ensemble 5.4 for the Placement & Routing-step. Synopsys
NanoSim was used to simulate the power consumption of the back-annotated
verilog netlist of the ASIC.

Our serialized DESL ASIC implementation has an area requirement of 1848
GE (gate equivalences) and it takes 144 clock cycles to encrypt one 64-bit block
of plaintext. For one encryption at 100 kHz the average current consumption is
0.89 μA and the throughput reaches 5.55 KB/s. For further details on the im-
plementational aspects of our DES and DESL architecture we refer to [PLSP07].

6 Results and Conclusion

In Section 2 we stated eight conditions which a single S-box has to fulfill in order
to be resistant against certain types of linear and differential cryptanalyses, and
the Davies-Murphy attack. We presented a strengthened S-box, which is used in
the single S-box DES variants DESL and DESXL. Furthermore, we showed, that
a differential cryptanalysis with characteristics similar to the characteristics used
by Biham and Shamir in [BS91] is not feasible anymore. We also showed, that

208 G. Leander et al.

DESL is more resistant against the most promising types of linear cryptanalysis
than DES due to the improved non-linearity of the S-box.

Table 3 shows, that our DESL cipher needs 20% less gate equivalences and
uses 25% less average current than our DES implementation. In comparison with
the AES design presented by Feldhofer et al. [FWR05], our design needs 45%
less gate equivalents and 86% less clock cycles. Note that the AES design by
Feldhofer et al. was implemented in a 0.35μm standard cell technology, whereas
our design was implemented in a 0.18μm standard cell technology. Therefore a
fair comparison is only possible with regard to the gate equivalences. Regarding
area consumption, our DESL is competitive even to stream ciphers recently
proposed within the eSTREAM project [GB07]. More interesting, DESL would
be the second smallest stream cipher in terms of gate count compared to all
eSTREAM candidates (see Table 3). Due to the low current consumption and
the small chip size required for our DESL design, it is especially suited for
resource limited applications, for example RFID tags and wireless sensor nodes.

Table 3. Comparison of Efficient Ciphers based on Gate Count, Clock Cycles, and
Current Consumption

gate equiv. cycles / μA at Process
total rel. block 100 kHz μm

DESL 1848 1 144 0.89 0.18

DES 2309 1.25 144 1.19 0.18

DESX 2629 1.42 144 – 0.18

DESXL 2168 1.17 144 – 0.18

AES-128 [FWR05] 3400 1.84 1032 3.0 0.35

HIGHT [HSH+06] 3048 1.65 1 – 0.25

Trivium [GB07] 2599 1.41 – – 0.13

Grain-80 [GB07] 1294 0.70 – – 0.13

Finally, we can conclude, that DESL is more secure against certain types of
linear and differential Cryptanalyses and the Davies-Murphy attack, more size-
optimized, and more power efficient than DES. Furthermore, DESL is worth to
be considered as an alternative for stream ciphers.

Acknowledgments

The authors would like to thank Matt Robshaw for his insights and valuable
comments on various aspects of the S-boxes. The work presented in this pa-
per was supported in part by the European Commission within the STREP
UbiSec&Sens of the EU Framework Programme 6 for Research and Develop-
ment (www.ist-ubisecsens.org). The views and conclusions contained herein
are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of the
UbiSecSens project or the European Commission.

www.ist-ubisecsens.org

New Lightweight DES Variants 209

References

[ASM01] Satoh, K.T.A., Morioka, S., Munetoh, S.: A Compact Rijndael Hardware
Architecture with S-Box Optimization. In: Boyd, C. (ed.) ASIACRYPT
2001. LNCS, vol. 2248, pp. 239–254. Springer, Heidelberg (2001)

[BB94] Biham, Biryukov,: How to Strengthen DES Using Existing Hard-
ware. In: Safavi-Naini, R., Pieprzyk, J.P. (eds.) ASIACRYPT 1994.
LNCS, vol. 917, Springer, Heidelberg (1995), available for download at
citeseer.ist.psu.edu/biham94how.html

[BB97] Biham, E., Biryukov, A.: An Improvement of Davies’ Attack on DES.
Journal of Cryptology: the journal of the International Association for
Cryptologic Research 10(3), 195–205 (1997), available for download at
citeseer.ist.psu.edu/467934.html

[BS91] Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosys-
tems. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS,
vol. 537, pp. 2–21. Springer, Heidelberg (1991)

[BS92] Biham, E., Shamir, A.: Differential Cryptanalysis of the Full 16-
Round DES. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740,
pp. 487–496. Springer, Heidelberg (1993), available for download at
citeseer.ist.psu.edu/biham93differential.html

[Cop94] Coppersmith, D.: The Data Encryption Standard (DES) and its Strength
Against Attacks. Technical report rc 186131994, IBM Thomas J. Watson
Research Center (December 1994)

[DM95] Davies, D., Murphy, S.: Pairs and Triplets of DES S-Boxes. Journal of
Cryptology 8(1), 1–25 (1995)

[DR02] Daemen, J., Rijmen, V.: The Design of Rijndael. Springer Verlag, Berlin,
Heidelberg (2002)

[FDW04] Feldhofer, M., Dominikus, S., Wolkerstorfer, J.: Strong Authentication
for RFID Systems. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004.
LNCS, vol. 3156, pp. 357–370. Springer, Heidelberg (2004)

[Fin03] Finkenzeller, K.: RFID-Handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification. John Wiley and Sons,
Chichester (2003)

[FWR05] Feldhofer, M., Wolkerstorfer, J., Rijmen, V.: AES Implementation on
a Grain of Sand. Information Security, IEE Proceedings 152(1), 13–20
(2005)

[GB07] Good, T., Benaissa, M.: Hardware Results for selected Stream Cipher
Candidates. State of the Art of Stream Ciphers 2007 (SASC 2007), Work-
shop Record (February 2007)

[HSH+06] Hong, D., Sung, J., Hong, S., Lim, J., Lee, S., Koo, B.-S., Lee, C., Chang,
D., Lee, J., Jeong, K., Kim, H., Kim, J., Chee, S.: HIGHT: A New Block
Cipher Suitable for Low-Resource Device. In: Goubin, L., Matsui, M.
(eds.) CHES 2006. LNCS, vol. 4249, pp. 46–59. Springer, Heidelberg
(2006)

[KLPL94] Kim, K., Lee, S., Park, S., Lee, D.: DES Can Be Immune to Linear
Cryptanalysis. In: Proceedings of the Workshop on Selected Areas in
Cryptography SAC’94, pp. 70–81 (May 1994), available for download at
citeseer.csail.mit.edu/kim94des.html

[KLPL95] Kim, K., Lee, S., Park, S., Lee, D.: Securing DES S-boxes Against Three
Robust Cryptanalysis. In: Proceedings of the Workshop on Selected Ar-

citeseer.ist.psu.edu/biham94how.html
citeseer.ist.psu.edu/467934.html
citeseer.ist.psu.edu/biham93differential.html
citeseer.csail.mit.edu/kim94des.html

210 G. Leander et al.

eas in Cryptography SAC’95, pp. 145–157 (1995), available for download
at citeseer.ist.psu.edu/kim95securing.html

[Knu92] Knudsen, L.R.: Iterative Characteristics of DES and s2-DES. In: Brick-
ell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 497–511. Springer,
Heidelberg (1993)

[KPL93] Kim, K., Park, S., Lee, S.: Reconstruction of s2-DES S-Boxes
and their Immunity to Differential Cryptanalysis. In: Proceedings
of 1993 Korea-Japan Joint Workshop on Information Security and
Cryptology (JW-ISC’93) (October 1993), available for download at
citeseer.csail.mit.edu/kim93reconstruction.html

[KPP+06] Kumar, S., Paar, C., Pelzl, J., Pfeiffer, G., Schimmler, M.: Breaking Ci-
phers with COPACOBANA - A Cost-Optimized Parallel Code Breaker.
In: Goubin, L., Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, Springer,
Heidelberg (2006)

[Mat94] Matsui, M.: Linear Cryptanalysis of DES Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 286–397. Springer, Heidelberg
(1994)

[PLSP07] Poschmann, A., Leander, G., Schramm, K., Paar, C.: New Ligh-Weight
Crypto Algorithms for RFID. In: Proceedings of The IEEE International
Symposium on Circuits and Systems 2007 – ISCAS 2007, IEEE Com-
puter Society Press, Los Alamitos, 2007 (to appear)

[RE02] Rankl, W., Effing, W.: Smart Card Handbook. Carl Hanser Verlag,
München, Germany, 2nd edn. (2002)

[VHVM88] Verbauwhede, I., Hoornaert, F., Vandewalle, J., De Man, H.: Security
and Performance Optimization of a New DES Data Encryption Chip.
IEEE Journal of Solid-State Circuits 23(3), 647–656 (1988)

citeseer.ist.psu.edu/kim95securing.html
citeseer.csail.mit.edu/kim93reconstruction.html

A New Attack on 6-Round IDEA

Eli Biham1,�, Orr Dunkelman2,�, and Nathan Keller3,��

1 Computer Science Department, Technion
Haifa 32000, Israel

biham@cs.technion.ac.il
2 Katholieke Universiteit Leuven, Dept. of Electrical Engineering ESAT/SCD-COSIC

Kasteelpark Arenberg 10, B-3001 Leuven-Heverlee, Belgium
orr.dunkelman@esat.kuleuven.be

3 Einstein Institute of Mathematics, Hebrew University
Jerusalem 91904, Israel

nkeller@math.huji.ac.il

Abstract. IDEA is a 64-bit block cipher with 128-bit keys introduced
by Lai and Massey in 1991. IDEA is one of the most widely used block
ciphers, due to its inclusion in several cryptographic packages, such as
PGP. Since its introduction in 1991, IDEA has withstood extensive crypt-
analytic effort, but no attack was found on the full (8.5-round) variant
of the cipher.

In this paper we present the first known attack on 6-round IDEA
faster than exhaustive key search. The attack exploits the weak key-
schedule algorithm of IDEA, and combines Square-like techniques with
linear cryptanalysis to increase the number of rounds that can be at-
tacked. The attack is the best known attack on IDEA. We also improve
previous attacks on 5-round IDEA and introduce a 5-round attack which
uses only 16 known plaintexts.

1 Introduction

The International Data Encryption Algorithm (IDEA) is a 64-bit, 8.5-round
block cipher with 128-bit keys proposed by Lai and Massey in 1991 [19]. Due
to its inclusion in several cryptographic packages, such as PGP , IDEA is one
of the most widely used block ciphers. Since its introduction, IDEA resisted in-
tensive cryptanalytic efforts [1,2,3,5,6,9,10,11,13,14,15,16,17,21,22,23]. The best
published chosen-plaintext attack on IDEA is an attack on 5-round IDEA that
requires 219 chosen plaintexts, and has time complexity of 2103 encryptions [3].
The best published related-key attack is an attack on 7.5-round IDEA that
requires 243.5 known plaintexts and has a time complexity of 2115.1 encryp-
tions [3]. Along with the attacks on reduced-round variants, several weak-key

� This work was supported in part by the Israel MOD Research and Technology Unit.
�� The research presented in this paper was supported by the Adams fellowship.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 211–224, 2007.
c© International Association for Cryptologic Research 2007

212 E. Biham, O. Dunkelman, and N. Keller

classes for the entire IDEA were found. The largest weak key class (identified
by a boomerang technique) contains 264 keys, and the membership test requires
216 adaptive chosen plaintexts and ciphertexts and has a time complexity of 216

encryptions [6].
In this paper we present the first known attacks against 5.5-round and

6-round IDEA. These higher-order differential-linear [4] attacks consist of three
components:

1. Constructing linear equations involving the least significant bits of the inter-
mediate values of the cipher. We note that this idea was proposed and used
in [3,17,23].

2. Using a higher-order differential (or a Square property) to simplify the linear
equations. We note that this modification was proposed in [17]. However, as
we show later, the Square distinguisher used in [17] is incorrect, and hence,
we replace it by another distinguisher.

3. Taking advantage of the weak key schedule of IDEA — we observe that in
some cases, guessing only 103 of the 128 key bits of IDEA is sufficient for
encrypting two full rounds of the cipher, and even more than that.

The 5.5-round attack requires 232 chosen plaintexts and has a time complexity
of about 2127 encryptions, about twice faster than exhaustive key search. The
6-round attack requires almost the entire code book and has a time complexity
similar to that of the 5.5-round attack. We note that the time complexity of
the attacks could be improved significantly if the Square distinguisher could be
replaced by a better one, like the one presented in [17]. However, we were not
able to find such a distinguisher at this stage.

We then show two improvements to the 5-round attack presented in [3]. The
first improvement reduces the data complexity of the attack by a factor of

√
2

to 218.5 known plaintexts, without affecting the time complexity of the attack
of 2103 encryptions. The second improvement reduces the data complexity to 16
known plaintexts, while raising the data complexity to 2114 encryptions.

The complexities of the new attacks, along with selected previously known
attacks, are summarized in Table 1.

The paper is organized as follows: In Section 2 we briefly describe the structure
of IDEA. In Section 3 we present the new attack on 5.5-round IDEA. In Section 4
we extend the 5.5-round attack to an attack on 6-round IDEA. We present
improved attacks on 5-round IDEA in Section 5. Finally, Section 6 summarizes
the paper.

2 Description of IDEA and the Notations Used in the
Paper

IDEA [19] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a com-
position of XOR operations, additions modulo 216, and multiplications over
GF (216 + 1).

A New Attack on 6-Round IDEA 213

Table 1. Selected Known Attacks on IDEA and Our New Results

Rounds Attack Type Complexity Source
Data Time

4 Impossible Differential 237 CP 270 [2]
4 Linear 114 KP 2114 [23]
4 Square 232 CP 2114 [13]

4 Square 223 CP 298 [17]†

4.5 Impossible Differential 264 CP 2112 [2]
4.5 Linear 16 CP 2103 [3]
5 Meet-in-the-Middle Attack 224 CP 2126 [14]
5 Meet-in-the-Middle Attack 224.6 CP 2124 [1]
5 Linear 219 KP 2103 [3]

5 Linear 218.5 KP 2103 Section 5
5 Linear 16 KP 2114 Section 5

5.5 Higher-Order Differential-Linear 232 CP 2126.85 Section 3
6 Higher-Order Differential-Linear 264 − 252 KP 2126.8 Section 4

KP – Known plaintexts, CP – Chosen plaintexts
Time complexity is measured in encryption units
† – As we show in Section 3.2, this attack does not work

Every round of IDEA is composed of two layers. The round input of round i
is composed of four 16-bit words denoted by (X i

1, X
i
2, X

i
3, X

i
4). In the first layer,

denoted by KA, the first and the fourth words are multiplied by subkey words
(mod 216 + 1) where 0 is replaced by 216, and the second and the third words
are added to subkey words in (mod 216). The intermediate values after this half-
round are denoted by (Y i

1 , Y i
2 , Y i

3 , Y i
4). Formally, let Zi

1, Z
i
2, Z

i
3, and Zi

4 be the
four subkey words, then

Y i
1 = Zi

1 * X i
1; Y i

2 = Zi
2 � X i

2; Y i
3 = Zi

3 � X i
3; Y i

4 = Zi
4 *X i

4

Then, (pi, qi) = (Y i
1 ⊕ Y i

3 , Y i
2 ⊕ Y i

4) enters to the second layer, a structure com-
posed of multiplications and additions denoted by MA. We denote the two out-
put words of the MA transformation by (ui, ti). Denoting the subkey words that
enter the MA function by Zi

5 and Zi
6,

ui = (pi * Zi
5) � ti; ti = (qi � (pi * Zi

5)) * Zi
6

Another notation we use in the attack refers to the intermediate value in the
MA layer: we denote the value pi * Zi

5 by si.
The output of the i-th round is (Y i

1⊕ti, Y i
3⊕ti, Y i

2⊕ui, Y i
4⊕ui). In the last round

(round 9) the MA layer is omitted. Thus, the ciphertext is (Y 9
1 ||Y 9

2 ||Y 9
3 ||Y 9

4). The
structure of a single round of IDEA is shown in Figure 1.

IDEA’s key schedule is linear. Each subkey is composed of bits selected from
the key. However, the exact structure of the key schedule is crucial for our attacks
and hence the entire key schedule is described in Table 2.

214 E. Biham, O. Dunkelman, and N. Keller

Z
i

4

Y
i

4

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

MA

X X X

i
Z

1

i
X 2

i X 3

i

4

i

X X

i+1 i+1 i+1 i+1

4321

Z Z
i

Z
i i

321

Z 6

i

5

Y
i

3Y
i

1

Y
i

2

X

pi qi

tiui

si

Fig. 1. One Round of IDEA

Table 2. The Key Schedule Algorithm of IDEA

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

3 A New Attack on 5.5-Round IDEA

In this section we present the new attack on 5.5-round IDEA. First we present
the three components of the attack.

3.1 The First Component — A Linear Equation Involving the LSBs
of the Intermediate Encryption Values

We start with an observation due to Biryukov (according to [23]) and Demirci [14].
Let us examine the second and the third words in all the intermediate stages of

A New Attack on 6-Round IDEA 215

the encryption. There is a relation between the values of these words and the
outputs of the MA layer in the intermediate rounds that uses only XOR and
modular addition, but not multiplication. Let P = (P1, P2, P3, P4) be a plaintext
and let C = (C1, C2, C3, C4) be its corresponding ciphertext, then

(((((((((((((((((P2 � Z1
2) ⊕ u1) � Z2

3) ⊕ t2) � Z3
2) ⊕ u3) � Z4

3) ⊕ t4) � Z5
2)⊕ u5)

�Z6
3) ⊕ t6) � Z7

2)⊕ u7) � Z8
3)⊕ t8) � Z9

2) = C2.
(1)

Similarly,

(((((((((((((((((P3 � Z1
3) ⊕ t1) � Z2

2) ⊕ u2) � Z3
3)⊕ t3) � Z4

2) ⊕ u4) � Z5
3) ⊕ t5)

�Z6
2) ⊕ u6) � Z7

3)⊕ t7) � Z8
2) ⊕ u8) � Z9

3) = C3.
(2)

When we consider the value of the least significant bit (LSB) of the words,
modular addition is equivalent to XOR and we can simplify the above equations
into:

LSB(P2 ⊕ Z1
2 ⊕ u1 ⊕ Z2

3 ⊕ t2 ⊕ Z3
2 ⊕ u3 ⊕ Z4

3 ⊕ t4 ⊕ Z5
2 ⊕ u5 ⊕ Z6

3 ⊕ t6 ⊕ Z7
2

⊕u7 ⊕ Z8
3 ⊕ t8 ⊕ Z9

2) = LSB(C2),
(3)

and

LSB(P3 ⊕ Z1
3 ⊕ t1 ⊕ Z2

2 ⊕ u2 ⊕ Z3
3 ⊕ t3 ⊕ Z4

2 ⊕ u4 ⊕ Z5
3 ⊕ t5 ⊕ Z6

2 ⊕ u6 ⊕ Z7
3

⊕t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3) = LSB(C3).
(4)

Since ui = ti�si then LSB(ui) = LSB(ti�si), thus, LSB(ui⊕ti) = LSB(si).
Taking this into consideration and XORing the above two equations we obtain

LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2 ⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4

⊕Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3)
= LSB(C2 ⊕ C3).

(5)
This equation is called in [17] “the Biryukov-Demirci relation”.

In order to simplify this equation, we consider the XOR of the intermediate
values of several encrypted plaintexts. In [3] the XOR difference between two
plaintexts is used; in our attack we use the XOR value of larger sets of plaintexts.

Consider a structure of plaintexts P 1, . . . , Pm, where m is an even integer.
Then the XOR of the equations of the form (5) given by P 1, . . . , Pm gives

LSB

⎛

⎝
m⊕

j=1

(P j
2 ⊕ P j

3)⊕
8⊕

i=1

Si

⎞

⎠ = LSB

⎛

⎝
m⊕

j=1

(Cj
2 ⊕ Cj

3)

⎞

⎠ , (6)

where Si = ⊕m
j=1s

i(P j).
Equation (6) is the basic equation used in our attack, where m and the exact

structure of plaintexts are specified later.

216 E. Biham, O. Dunkelman, and N. Keller

3.2 The Second Component — A Square-Like Structure

In order to further simplify Equation (6) we want to use special structures of
plaintexts, for which we will get S1 = S2 = 0, independently of the key. Our
structures are higher-order differentials, a special case of Square-like structures
that were used in [7,12,18,20]. The structures we use and their properties are
described in the following proposition.

Proposition 1. Let T be a structure of m = 216 plaintexts, such that the in-
termediate values after the first KA layer, denoted by Y 1,j, where 1 ≤ j ≤ m,
satisfy the following requirements:

1. Y 1,j
2 and Y 1,j

4 are fixed for all j.
2. The 216 values Y 1,j

1 (for 1 ≤ j ≤ 216) are different.
3. Y 1,j

3 = Y 1,j
1 ⊕ C for some fixed C.

Then for T = {P 1, . . . , Pm} the relation S1 = S2 = 0 holds, independently of
the key.

Proof. First, note that by the assumption, (p1, q1) is fixed for all the 216 elements
of the structure. Hence, s1 is fixed as well, leading to S1 =

⊕216

j=1 s1(P j) = 0.
The output values of the MA structure, (u1, t1), are also fixed. Thus, the values
X2

3 are constant for all the elements of the structure, as well as the values X2
4 .

In addition, all the values X2
1 are different, as well as the values X2

2 . As a result,
all the values Y 2

1 are different and all the values Y 2
3 are constant. Hence, all the

values p2 = Y 2
1 ⊕Y 2

3 are different. Thus, all the values s2 = Z2
5 *p2 are different.

However, since there are only 216 possible values of s2, it means that s2 assumes
each possible value once and only once. Hence, S2 = ⊕216

j=1s
2(P j) = 0, and this

completes the proof.

In the sequel of the paper we call structures which satisfy the above conditions,
“right structures”.

It follows from the proposition that if we take a right structure as {P 1, . . . , Pm},
Equation (6) is simplified to

LSB

⎛

⎝
m⊕

j=1

(P j
2 ⊕ P j

3)⊕
8⊕

i=3

Si

⎞

⎠ = LSB

⎛

⎝
m⊕

j=1

(Cj
2 ⊕ Cj

3)

⎞

⎠ . (7)

We note that [17] makes use of a seemingly better Square-like structure that
is described in the following statement [17, Section 3.7, Lemma 2]:

Statement 1. Let L be a structure of m = 216 plaintexts, denoted by P 1, . . . ,
Pm, having the following properties:

1. P j
1 , P j

2 , P j
3 are fixed for all j.

2. The 216 values P j
4 (for 1 ≤ j ≤ 216) are different.

A New Attack on 6-Round IDEA 217

Then for T = {P 1, . . . , Pm} we have S1 = S2 = 0, independently of the key.

If this statement was correct, it could be used to improve significantly the time
complexity of our attack. However, it appears that the statement is incorrect.
For the structure described in the statement we indeed have S1 = 0, but we
do not have S2 = 0, since nothing can be said about the values s2(P j). The
following set of constants is a counterexample for Statement 1:

P j
1 = F78bx; P j

2 = 245x; P j
3 = ABCDx;

Z1
1 = 8x; Z1

2 = 567Ax; Z1
3 = 2C68x; Z1

4 = 4x;
Z1

5 = 5x; Z1
6 = 6x; Z2

1 = 1238x; Z2
2 = 999x;

We note that Z2
2 is not relevant to the approximation, but it is required for

defining the key for which the above statement fails. Using the key schedule, we
derive the following subkeys as well: Z2

3 = F458x, Z2
4 = D000x, Z2

5 = 800x, and
Z2

6 = A00x.

3.3 The Third Component — Exploiting the Weak Key Schedule

The fact that the key schedule of IDEA is relatively weak has been known for a
long time, and was already used to devise related-key attacks on reduced-round
IDEA (e.g.,[5]) and to find large weak key classes for the entire cipher (e.g.,[6]).
However, other key recovery attacks (e.g.,[2]) usually exploited other properties
of IDEA and took only a small advantage of the key schedule.

In our attack, we use the weakness of the key schedule in order to calculate
all the remaining Si values, while guessing a relatively small number of key bits.

Consider a 5.5-round variant of IDEA starting with the third round. We
observe that in order to compute the values S5, S6, S7 from the ciphertexts, it is
sufficient to know only 103 key bits. The values S5, S6, S7 are determined by the
values of the ciphertext and of the subkeys Z8

4 , Z8
3 , Z8

2 , Z8
1 , Z7

6 , Z7
5 , Z7

4 , Z7
3 , Z7

2 , Z7
1 ,

Z6
6 , Z6

5 , Z6
1 , Z6

2 , Z5
5 . These subkeys are sufficient in order to partially decrypt the

ciphertexts through the last two rounds and to find the value of S5. Note that
S5 is independent of the values of Z6

3 and Z6
4 . All the required 15 subkeys use

only 103 bits of the master key, whereas bits 100–124 of the master key remain
unused.

Since in our case (for 5.5 rounds), Equation (7) is reduced to

LSB

⎛

⎝
m⊕

j=1

(P j
2 ⊕ P j

3)⊕
7⊕

i=5

Si

⎞

⎠ = LSB

⎛

⎝
m⊕

j=1

(Cj
2 ⊕ Cj

3)

⎞

⎠ , (8)

we can guess 103 key bits and check whether the equation holds.

3.4 The Basic 5.5-Round Attack

In this subsection we combine the components presented in the previous sub-
sections to devise an attack on 5.5-round IDEA. As was shown in Section 3.3,

218 E. Biham, O. Dunkelman, and N. Keller

once we have a right structure, it is possible to check the guess of 103 key bits.
This is done by partially decrypting the entire set under the subkey guess, and
checking whether Equation (8) holds.

The problem in finding a right structure is the key addition layer, which pre-
vents constructing the right structures immediately. The solution to this problem
is to use more plaintexts, which increases the data complexity, but in exchange,
the set is ensured to contain (several) right structures. We use a set of 232 plain-
texts, such that the second and the fourth words are fixed to some arbitrary
constant, and the first and the third words obtain all possible values. In such a
structure, for any given subkeys, it is possible to find 216 right structures of 216

plaintexts each.
The basic algorithm of the attack is the following:

1. Data collection phase: Ask for the encryption of a structure of cho-
sen plaintexts, of the form (x, B, y, D) for two randomly selected constants
(B, D) and all possible values of x and y.

2. Constructing a right structure: For each possible value of bits 89–104
and 121–8 of the key, perform the following:
(a) Choose an arbitrary 16-bit value F1 (a candidate for p3).
(b) For all 0 ≤ j ≤ 216 − 1, partially decrypt the words j under the guess of

Z3
1 and F1 ⊕ j under the guess of Z3

3 . Denote the list of resulting values
by (Aj

1, C
j
1).

3. Checking the linear equation: Choose all plaintexts of the form (Aj
1, B,

Cj
1 , D). For each possible value of key bits 0–104 and 121–127 (note that from

these bits we already guessed key bits 89–104 and 121–8) partially decrypt
the ciphertexts corresponding to the plaintexts of the right structure to get
the values S5, S6, S7. Check whether Equation (8) holds. If not, discard
the partial key guess. If the equation holds, pass the key guess for further
analysis.

4. Filtering the remaining key guesses:For the remaining key guesses, take
another right structure of plaintexts, i.e., pick a different value for F , and re-
peat Steps 2–3, with three different selections. If a partial key guess passed all
the four tests, perform exhaustive key search on the remaining key bits.

3.5 Analysis and Improvement of the Basic Attack

The attack requires one structure of 232 plaintexts, and thus the data complexity
of the attack is 232 chosen plaintexts. The time complexity of Step (1) is 232

encryptions.
The time complexity of Step (2) is 248 partial decryptions. We note that

this step can be performed as a precomputation, but there is no need to do it
since the time complexity of this step is negligible with respect to the total time
complexity of the attack.

The most time consuming part of the attack is Step (3) which is repeated
232 times (for each guess of bits 89–104 and 121–8). In this step, the attacker
guesses 80 key bits and performs a partial decryption of 216 ciphertexts. The

A New Attack on 6-Round IDEA 219

partial decryption includes two full rounds and three out of the eight operations
of an additional round. Hence, the time complexity of this stage is about 0.43·2128

encryptions in total. About half of the keys are expected to pass to Step (4).
For these keys, the attacker performs three additional filterings in Step (4),
with time complexity of (0.22 + 0.11 + 0.05) · 2128. The 2124 remaining keys are
checked by exhaustive key search. Hence, the total time complexity of the attack
is (0.43+ 0.22 + 0.11 + 0.05 + 0.06) · 2128 = 0.87 · 2128 encryptions, which is only
slightly better than exhaustive key search.

In order to reduce the time complexity of the attack, we introduce a small
change in Step (2). We observe, that there is no need to fix a concrete value of
F such that p3 = F for all the values of the structure; it is sufficient to have for
all the plaintexts in the considered structure a fixed value for p3. We exploit this
observation by eliminating the need to guess bit 121 of the key in Step (2). We
do not guess the value of this bit, but rather assume that its value is zero. As a
result, when we decrypt the values j ⊕ F through the addition with Z3

3 , all the
bits except for the MSB are correct, but the MSB might be wrong. However,
if our assumption was incorrect and the values of the MSBs are wrong, this
happens to all the elements of the structure simultaneously, since

x � (y � 8000x) = (x � y) � 8000x = (x � y) ⊕ 8000x. (9)

Hence, if we take the plaintext structure (Aj
1, B, Cj

1 , D) as in the basic attack,
we have two possibilities: If our assumption was correct, we get a right structure
as in the basic attack. If our assumption was incorrect, then for all the elements
of the structure we have p3 = F ⊕ 8000x. However, p3 still assumes the same
value for all the elements of the structure, and hence, the structure is a right
structure.

Therefore, we can obtain right structures without guessing the value of bit
121 of the key (by making sure to choose the F values without using two values
which differ only in the MSB). This improvement reduces the time complexity of
all the steps of the attack (except for the final exhaustive key search) by a factor
of two. Hence, the time complexity of the improved attack is (0.22+0.11+0.05+
0.03 + 0.06) · 2128 = 0.45 · 2128 = 2126.85, about twice faster than exhaustive key
search.

It is also possible to use up to 215 right structures from a given plaintext
structure, and use them to filter wrong subkey guesses. When using k right
structures with the improved attack, the data complexity is 232 chosen plaintexts,
and the time complexity is

2111 · 216 ·
2 3

8

5 1
2

·
(

1 +
1
2

+ · · ·+ 1
2k−1

)
+ 2128−k

encryptions. When using 16 right structures, the time complexity is 2126.8 en-
cryptions. The memory requirements of the attack are mostly for storing the
data, i.e., 232 blocks of 128-bit each (or 236 bytes).

220 E. Biham, O. Dunkelman, and N. Keller

4 The 6-Round Attack

In this section we extend the 5.5-round attack to an attack on 6-round IDEA.
The variant we attack starts before the MA layer of round 2 and ends before
the MA layer of round 8.

We observe that the key bits used in the MA layer of round 2 (bits 57–88)
are included in the bits that are guessed in the 5.5-round attack. Hence, we can
add this half round in the beginning of the attack without enlarging the time
complexity.

However, in this case it is much harder to construct right structures, and the
data complexity is significantly increased. Our best method is to ask for the
encryption of almost the entire code book, and look for the right structures after
a partial encryption. We note that if a way to construct right structures is found,
then the data complexity of the attack can be reduced. However, we did not find
appropriate structures at this stage.

Assume that we start with 264−a known plaintexts, where a is a constant we
determine later. For a fixed value of the subkeys Z2

5 , Z2
6 , Z3

1 , Z3
3 , we can divide

the plaintexts into 248 classes according to the value of the triplet (X3
2 , X3

4 , p3)
(obtained from the plaintexts using the fixed subkeys). Each class consists of 216

plaintexts, and forms a right structure. Hence, a has to be small enough, such
that for almost every value of the subkeys, there will be at least four “full” classes
in the pool of known plaintexts. In order to estimate the number of full classes,
we look at the plaintexts that are not known to the attacker. Assuming that
these plaintexts are uniformly distributed over the 248 classes, the probability
that none of them falls in some prescribed class is (1− 2−48)a ≈ e−a/248

. Hence,
the expected number of classes that are not ruined by missing plaintexts, i.e.,
the full classes, is 248e−a/248

. If we take a = 253, this expected number is close
to four. However, we want that for most of the possible values of the subkeys
there will be four right structures. Hence, we take a = 252. In this case, the
expected number of right structures is about 225, and for most of the possible
values of the subkeys, there will be enough right structures. If for some subkey
guess, there are not enough right structures, the attacker has to check this guess
separately by exhaustive key search over the remaining key bits.1 We note that
this improvement can also reduce the data complexity of the 5.5-round attack
by about 218 chosen plaintexts.

Therefore, our 6-round attack requires 264 − 252 known plaintexts. The first
stage of the attack is slightly changed to the following:

1. Ask for the encryption of 264 − 252 arbitrary plaintexts.
2. For every possible value of key bits 57—104 and 121—8:

(a) Repeat until a candidate right structure is found in the data set —
Choose (X3

2 , X3
4 , p3) at random. Partially decrypt the set (j, X3

2 , j ⊕
p3, X3

4) for j = 0, . . . 216 − 1 under the subkey guess, and check that all

1 The probability that for 264 −252 random plaintexts, there exists such a key is about
e−33554367.2 .

A New Attack on 6-Round IDEA 221

the resulting plaintexts are in the data set.2 Stop once at least four such
sets are found.

(b) Apply Steps (2) and (3) of the 5.5-round attack given the four right
structures using the guessed key bits.

This algorithm allows to detect four right structures that are used in the
same way as in the 5.5-round attack. We note that since the expected number
of right structures is about 225, we expect that after about 225 checked triples
(X3

2 , X3
4 , p3), four right structures are found with a high probability. Hence, the

time complexity of this stage is 264 · 225 · 216 = 2105 partial decryptions, which
is negligible compared to Step (3) of the 5.5-round attack.

The rest of the attack is the same as in the 5.5-round attack. However, the time
complexity measured in encryption units is reduced, since we still decrypt only
2.375 rounds, while the total number of rounds is increased to six. Hence, the time
complexity of the attack is (0.2+0.1+0.05+0.02+0.06)·2128 = 0.43·2128 = 2126.8

six-round encryptions. Like in the 5.5-round attack, the memory complexity of
the 6-round attack is dominated mostly by the memory required for the data
itself, i.e., 264 − 252 blocks of 128 bits each. We note that as this value is very
close to the entire code book, it can be improved by a factor of 2, by not storing
the plaintexts themselves (and keeping only the ciphertexts).

5 An Improved 5-Round Attack

In [3] a 5-round attack on IDEA with data complexity of 219 known plaintexts
and time complexity of 2103 operations is presented. The attack is based on the
Biryukov-Demirci relation, when two plaintexts (P 1, P 2) are used. The relation
is used for the four and a half rounds from the beginning of round 4 till after
the key addition layer of round 8. For this case the Biryukov-Demirci relation is
reduced to:

LSB(P 1
2 ⊕P 1

3 ⊕P 2
2 ⊕P 2

3 ⊕Δs4⊕Δs5⊕Δs6⊕Δs7) = LSB(C1
2 ⊕C1

3 ⊕C2
2 ⊕C2

3),
(10)

where P 1
2 , P 1

3 , P 2
2 , and P 2

3 are taken at the beginning of round 4.
By requiring that Δ(X4

1 , X4
2 , X4

3 , X4
4) = (0, β, 0, γ), the attacker ensures that

Δs4 = 0. Due to the key schedule of IDEA, it is sufficient to guess 103 bits of the
key in order to compute Δs5, Δs6, and Δs7. The attack is then quite a straight-
forward filtering of wrong subkey guesses which suggest that the Biryukov-
Demirci relation does not hold.

In [3], the relation Δ(X4
1 , X4

2 , X4
3 , X4

4) = (0, β, 0, γ) is achieved by using 219

known plaintexts, which compose about 237 pairs. On average, about 32 satisfy
the requirement on Δ(X4

1 , X4
2 , X4

3 , X4
4).

2 We alert the reader to the abuse we have taken in the notations. While j and j ⊕ p3

are given after the KA layer of round 3, X3
2 and X3

4 are given before it. Thus, we
partially decrypt two words through the KA layer of round 3, and then continue to
partially decrypt all four words under the MA layer of round 2.

222 E. Biham, O. Dunkelman, and N. Keller

Our first improvement reduces the data complexity of the attack. We note
that Δs4 = 0 is satisfied whenever Δp4 = 0 holds. In addition, we observe
that the subkey Z4

1 is covered by the 103 key bits guessed during the attack.
We also note that a difference in the MSB is preserved by addition with an
unknown subkey. Using these three observations, we can enlarge the number of
plaintext pairs that can be used in the attack. Instead of using only pairs for
which Δ(X4

1 , X4
3) = (0, 0), we can use also pairs for which ΔY 4

1 = 8000x and
ΔX4

3 = 8000x, since for such pairs we also have Δs4 = 0. As a result, we can
start with 218.5 known plaintexts, and out of the 236 possible pairs we can still
find 32 pairs satisfying Δs4 = 0. The rest of the attack is similar to the attack
algorithm of [3].

5.1 A 5-Round Attack Using Only 16 Known Plaintexts

Our second improvement has much in common with the first improvement. We
note that guessing the subkey Z4

3 adds only eleven bits to the total number of
guessed key bits. On the other hand, after guessing this subkey, we are able to
compute the exact value of p4 for all the plaintexts. Moreover, since the subkey
Z4

5 is also covered by the guessed key bits, we are able also to compute the exact
values of s4 for all the plaintexts, and hence to compute the value of Δs4 for
any pair of plaintexts. As a result, all the plaintext pairs, and not only a part of
them, can be used to filter subkey candidates. Since each plaintext pair filters
about half of the subkey candidates, 16 pairs are sufficient to reduce the number
of possible keys to 2113, and these candidates can be checked by exhaustive key
search.

We note that the 16 known plaintexts compose 16 ·15/2 = 120 pairs. However,
only 15 of these pairs can be linearly independent, and hence only 15 pairs can
be used for filtering key candidates. Using a smart ordering of the operations, it
can be shown that the time complexity of this attack is 2114 encryptions.

6 Summary and Conclusions

In this paper we presented the first known attacks on 5.5-round and 6-round
variants of IDEA. Our attack on 6-round IDEA has a time complexity of 2126.8

encryptions and data complexity of 264 − 252 known plaintexts. The attacks
exploit three techniques: Constructing a linear equation involving the LSBs of
several intermediate encryption values, using Square-like structures, and exploit-
ing the weak key schedule. Each of these techniques was already used to attack
reduced variants of IDEA, but the novel combination of the techniques allows
to improve the previously known attacks significantly.

We also showed that it possible to attack 5-round IDEA using only 16 known
plaintexts with time complexity of 2114 encryptions. The 5-round attack exploits
the weakness of the key schedule of IDEA, that allows to recover many subkeys
while guessing only a subset of the key bits.

A New Attack on 6-Round IDEA 223

References

1. Ayaz, E.S., Selçuk, A.A.: Improved DST Cryptanalysis of IDEA. In: Proceedings
of Selected Areas in Cryptography 2006, SAC 2006, LNCS, vol. 4356, Springer,
Heidelberg (to appear, 2007)

2. Biham, E., Biryukov, A., Shamir, A.: Miss in the Middle Attacks on IDEA and
Khufu. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 124–138. Springer,
Heidelberg (1999)

3. Biham, E., Dunkelman, O., Keller, N.: New Cryptanalytic Results on IDEA.
In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 412–427.
Springer, Heidelberg (2006)

4. Biham, E., Dunkelman, O., Keller, N.: New Combined Attacks on Block Ciphers.
In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 126–144.
Springer, Heidelberg (2005)

5. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

6. Biryukov, A., Nakahara Jr., J., Preneel, B., Vandewalle, J.: New Weak-Key Classes
of IDEA. In: Deng, R.H., Qing, S., Bao, F., Zhou, J. (eds.) ICICS 2002. LNCS,
vol. 2513, pp. 315–326. Springer, Heidelberg (2002)

7. Biryukov, A., Shamir, A.: Structural Cryptanalysis of SASAS. In: Pfitzmann, B.
(ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 394–405. Springer, Heidelberg
(2001)

8. Borisov, N., Chew, M., Johnson, R., Wagner, D.: Multiplicative Differentials. In:
Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 17–33. Springer,
Heidelberg (2002)

9. Borst, J., Knudsen, L.R., Rijmen, V.: Two Attacks on Reduced Round IDEA.
In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 1–13. Springer,
Heidelberg (1997)

10. Daemen, J., Govaerts, R., Vandewalle, J.: Cryptanalysis of 2.5 Rounds of IDEA
(Extended Abstract), technical report 93/1, Department of Electrical Engineering,
ESAT–COSIC, Belgium (1993)

11. Daemen, J., Govaerts, R., Vandewalle, J.: Weak Keys for IDEA. In: Stinson, D.R.
(ed.) CRYPTO 1993. LNCS, vol. 773, pp. 224–231. Springer, Heidelberg (1994)

12. Daemen, J., Knudsen, L.R., Rijmen, V.: The Block Cipher Square. In: Biham, E.
(ed.) FSE 1997. LNCS, vol. 1267, pp. 149–165. Springer, Heidelberg (1997)

13. Demirci, H.: Square-like Attacks on Reduced Rounds of IDEA. In: Nyberg, K.,
Heys, H.M. (eds.) SAC 2002. LNCS, vol. 2595, pp. 147–159. Springer, Heidelberg
(2003)

14. Demirci, H., Selçuk, A.A., Türe, E.: A New Meet-in-the-Middle Attack on the
IDEA Block Cipher. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS,
vol. 3006, pp. 117–129. Springer, Heidelberg (2004)

15. Hawkes, P.: Differential-Linear Weak Keys Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

16. Hawkes, P., O’Connor, L.: On Applying Linear Cryptanalysis to IDEA. In: Kim,
K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 105–115.
Springer, Heidelberg (1996)

17. Junod, P.: New Attacks Against Reduced-Round Versions of IDEA. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 384–397. Springer, Heidelberg
(2005)

224 E. Biham, O. Dunkelman, and N. Keller

18. Knudsen, L.R., Wagner, D.: Integral Cryptanalysis. In: Daemen, J., Rijmen, V.
(eds.) FSE 2002. LNCS, vol. 2365, pp. 112–127. Springer, Heidelberg (2002)

19. Lai, X., Massey, J.L., Murphy, S.: Markov Ciphers and Differential Cryptanalysis.
In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 17–38. Springer,
Heidelberg (1991)

20. Lucks, S.: The Saturation Attack — A Bait for Twofish. In: Matsui, M. (ed.) FSE
2001. LNCS, vol. 2355, pp. 1–15. Springer, Heidelberg (2002)

21. Meier, W.: On the Security of the IDEA Block Cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 371–385. Springer, Heidelberg (1994)

22. Nakahara Jr., J., Barreto, P.S.L.M., Preneel, B., Vandewalle, J., Kim, H.Y.:
SQUARE Attacks Against Reduced-Round PES and IDEA Block Ciphers, IACR
Cryptology ePrint Archive, Report 2001/068 (2001)

23. Nakahara. Jr., J., Preneel, B., Vandewalle, J.: The Biryukov-Demirci Attack on
Reduced-Round Versions of IDEA and MESH Ciphers. In: Wang, H., Pieprzyk,
J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 98–109. Springer,
Heidelberg (2004)

24. NESSIE, Performance of Optimized Implementations of the NESSIE Primi-
tives, NES/DOC/TEC/WP6/D21/a, available on-line at http://www.nessie.eu.
org/nessie

25. Raddum, H.: Cryptanalysis of IDEA-X/2. In: Johansson, T. (ed.) FSE 2003. LNCS,
vol. 2887, pp. 1–8. Springer, Heidelberg (2003)

http://www.nessie.eu.org/nessie
http://www.nessie.eu.org/nessie

Related-Key Rectangle Attacks on Reduced

AES-192 and AES-256�

Jongsung Kim1, Seokhie Hong1, and Bart Preneel2

1 Center for Information Security Technologies (CIST),
Korea University, Anam Dong, Sungbuk Gu, Seoul, Korea

{joshep,hsh}@cist.korea.ac.kr
2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, B-3001 Heverlee, Belgium
Bart.Preneel@esat.kuleuven.be

Abstract. This paper examines the security of AES-192 and AES-256
against a related-key rectangle attack. We find the following new attacks:
8-round reduced AES-192 with 2 related keys, 10-round reduced AES-192
with 64 or 256 related keys and 9-round reduced AES-256 with 4 related
keys. Our attacks reduce the complexity of earlier attacks presented at
FSE 2005 and Eurocrypt 2005: for reduced AES-192 with 8 rounds, we
decrease the required number of related keys from 4 to 2 at the cost of a
higher data and time complexity; we present the first shortcut attack on
AES-192 reduced to 10 rounds; for reduced AES-256 with 9 rounds, we
decrease the required number of related keys from 256 to 4 and both the
data and time complexity at the cost of a smaller number of attacked
rounds. Furthermore, we point out some flaw in the 9-round AES-192
attack presented at Eurocrypt 2005, show how to fix it and enhance the
attack in terms of the number of related keys.

Keywords: Block Ciphers, Cryptanalysis, AES, Related-Key Rectangle
Attack.

1 Introduction

The Advanced Encryption Standard (AES), the successor to the Data En-
cryption Standard (DES), is a block cipher adopted as mandatory encryption
standard by the US government. Since NIST announced that the block cipher
Rijndael, designed by Daemen and Rijmen [12], was selected for the AES in 2000,
it has gradually become one of the most widely used encryption algorithms in
the world. Therefore, it is important to continue studying the security of AES.
� This work was supported in part by the Concerted Research Action (GOA) Am-

biorics 2005/11 of the Flemish Government, by the IUAP P6/26 BCRYPT of the
Belgian Federal Science Policy Office and by the European Commission through
the IST Programme under Contract IST 2002-507932 ECRYPT and in part by the
MIC (Ministry of Information and Communication), Korea, under the ITRC (Infor-
mation Technology Research Center) support program supervised by the IITA (In-
stitute of Information Technology Assessment).

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 225–241, 2007.
c© International Association for Cryptologic Research 2007

226 J. Kim, S. Hong, and B. Preneel

The AES algorithm is a 128-bit SP-network block cipher, which uses 128-bit,
192-bit or 256-bit keys. According to the length of the keys, the AES per-
forms different key scheduling algorithms, different numbers of rounds, but the
same round function which is made up of SubBytes (SB), ShiftRows (SR), Mix-
Columns (MC) and AddRoundKey (ARK). These different versions of AES are
referred to as AES-128, AES-192 and AES-256.

One of the most powerful known attacks on block ciphers is differential crypt-
analysis [1] introduced by Biham and Shamir in 1990. It uses a differential with a
non-trivial probability to retrieve subkeys for the first or last few rounds. After this
attack was introduced, it has been applied effectively to many known block ciphers
and various variants of this attack have been proposed such as the truncated dif-
ferential attack [24], the higher order differential attack [24], the differential-linear
attack [26], the impossible differential attack [3], the boomerang attack [32] and
the rectangle attack [5]. Unlike differential cryptanalysis, in the boomerang and
rectangle attacks [32,5], two consecutive differentials are used, which are indepen-
dent of each other, in order to retrieve subkeys for the first or last few rounds.

In 1992 and 1993, Knudsen [23] and Biham [2] independently introduced a
cryptanalytic method using related keys, called the related-key attack [2], which
applies differential cryptanalysis to the cipher with different, but related un-
known keys. This attack is based on the key scheduling algorithm and on the
encryption/decryption algorithms, hence a block cipher with a weak key schedul-
ing algorithm may be vulnerable to this kind of attack. Several cryptanalytic
results of this attack were reported in [18,19,10,20].

The related-key rectangle attack introduced in [21,16,6] combines the rectan-
gle and related-key attacks by applying the rectangle attack to the cipher with
different, but related unknown keys: [21,16,6] show how to apply the rectangle
attack with 2, 4, and more than 4 related keys, and show that this kind of attack
can be applied to 8-round reduced AES-192 with 4 related keys [16], 9-round
reduced AES-192 with 256 related keys [6], and 10-round reduced AES-256 with
256 related keys [6]. Several other articles have been published that demonstrate
the power of this attack [7,13,27,28].

In this paper we examine the security of AES-192 and AES-256 against a
related-key rectangle attack in other related-key settings. We show that a related-
key rectangle attack is applicable to 8-round reduced AES-192 with 2 related
keys, 10-round reduced AES-192 with 64 or 256 related keys and 9-round reduced
AES-256 with 4 related keys. Our 10-round AES-192 attack leads to the best
known attack on AES-192 and our 8-round AES-192, 9-round AES-256 attacks
are both better than the previously best known attacks on AES-192 with 2
related keys and AES-256 with 4 related keys in terms of the number of attacked
rounds and a data or time complexity. We also demonstrate a flaw in the 9-round
AES-192 attack presented at Eurocrypt 2005 [6], show how to fix it and enhance
the attack in terms of the number of related keys (from 256 to 64 related keys).
See Table 1 for the comparison of our results and the previous ones on AES.

The outline of this paper is as follows: in Sect. 2, we give a brief description
of AES and in Sect. 3, we describe a general method of the related-key rectangle

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 227

Table 1. Summary of the previous attacks and our attacks on AES

Block Type of Number of Number of Complexity
Cipher Attack Rounds keys Data / Time

AES-128 Imp. Diff. 5 1 229.5CP / 231[4]
(10 rounds) 6 1 291.5CP / 2122[11]

Boomerang 6 1 271ACPC / 271[9]

Partial Sums 6 1 6 · 232CP / 244[14]
7 1 2128 − 2119CP / 2120[14]

AES-192 Imp. Diff. 7 1 292CP / 2186 [31]

(12 rounds) Square 7 1 232CP / 2184 [29]

Partial Sums 7 1 19 · 232CP / 2155 [14]
7 1 2128 − 2119CP / 2120[14]
8 1 2128 − 2119CP / 2188[14]

RK Imp. Diff. 7 2 2111RK-CP / 2116 [17]
7 32 256CP / 294 [8]
8 2 288RK-CP / 2183 [17]
8 32 2116CP / 2134 [8]
8 32 292CP / 2159 [8]
8 32 268.5CP / 2184 [8]

RK Rectangle 8 4 286.5RK-CP / 286.5[16]
8 2 294RK-CP / 2120(New)
9† 256 286RK-CP / 2125[6]
9‡ 64 285RK-CP / 2182(New)
10 256 2125RK-CP / 2182(New)
10 64 2124RK-CP / 2183(New)

AES-256 Partial Sums 8 1 2128 − 2119CP / 2204 [14]
(14 rounds) 9 256 285CP / 5 · 2224 [14]

RK Rectangle 9 4 299RK-CP / 2120(New)
10 256 2114.9RK-CP / 2171.8[6]
10 64 2113.9RK-CP / 2172.8(New)

CP: Chosen Plaintexts, ACPC: Adaptive Chosen Plaintexts and Ciphertexts.
RK: Related-Key, Time: Encryption units.
†: the attack with some flaw, ‡: the attack correcting the flaw in †.

attack. Sections 4 and 5 present our related-key rectangle attacks on reduced
AES-192 and AES-256. Section 6 gives some comments on the previous 9-round
AES-192 attack. Finally, we conclude the paper in Sect. 7.

2 Description of AES

AES encrypts data blocks of 128 bits with 128, 192 or 256-bit keys. According
to the length of the keys, AES uses a different number of rounds, i.e., it has 10,
12 and 14 rounds when used with 128, 192 and 256-bit keys, respectively. The
round function of AES consists of the following four basic transformations:

– SubBytes (SB) is a nonlinear byte-wise substitution that applies the same
8 × 8 S-box to every byte.

– ShiftRows (SR) is a cyclic shift of the i-th row by i bytes to the left.
– MixColumns (MC) is a matrix multiplication applied to each column.
– AddRoundKey (ARK) is an exclusive-or with the round key.

228 J. Kim, S. Hong, and B. Preneel

Each round function of AES applies the SB, SR, MC and ARK steps in order,
but MC is omitted in the last round. Before the first round, an extra ARK step
is applied. We call the key used in this step a whitening key. For more details of
the above four transformations, we refer to [12].

AES uses different key scheduling algorithms according to the length of the sup-
plied keys. The key schedule of AES-128 accepts a 128-bit key (W0, W1, W2, W3)
and generates subkeys W4, W5, · · · , W43, where each Wi is a 32-bit word composed
of 4 bytes in column. The subkeys are generated by the following procedure:

– For i = s till i = t do the following (for AES-128, s = 4 and t = 43),
• If i ≡ 0 mod s, then Wi = Wi−s ⊕ SB(RotByte(Wi−1)) ⊕ Rcon(i/s),
• else Wi = Wi−s ⊕Wi−1,

where RotByte represents one byte rotation and Rcon denotes fixed constants
depending on its input. In AES-128, the whitening key is (W0, W1, W2, W3) and
the subkey of round i is (W4i+4, W4i+5,W4i+6,W4i+7), where 0 ≤ i ≤ 9.

Similarly, the key schedules of AES-192 and AES-256 accept 192- and 256-bit
keys, and generate as many subkeys as required. The key schedule of AES-192
is exactly the same as that of AES-128 except for the use of s = 6 and t = 51.
The subkeys of AES-256 are derived from the following procedure:

– For i = 8 till i = 59 do the following,
• If i ≡ 0 mod 8 then Wi = Wi−8 ⊕ SB(RotByte(Wi−1)) ⊕ Rcon(i/8),
• If i ≡ 4 mod 8 then Wi = Wi−8 ⊕ SB(Wi−1),
• else Wi = Wi−8 ⊕Wi−1.

In this paper a 128-bit block of AES is represented by a 4 × 4 byte matrix as
in Fig. 1 or by ((X0, X1, X2, X3), (X4, X5, X6, X7), (X8, X9, X10, X11), (X12, X13,
X14, X15)) .

X0 X4 X8 X12

X1 X5 X9 X13

X2 X6 X10 X14

X3 X7 X11 X15

�

�

�

�

�� � �

R0

R1

R2

R3

C0 C1 C2 C3

Fig. 1. Byte coordinate of a 128-bit block of AES (Ri: Row i, Ci: Column i, Xi: Byte i)

3 The Related-Key Rectangle Attack

The related-key rectangle attack is based on two consecutive related-key differ-
entials with relatively high probabilities which are independent of each other:
the underlying cipher E : {0, 1}n × {0, 1}k → {0, 1}n is treated as a cascade of

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 229

two sub-ciphers E = E1 ◦ E0, where {0, 1}k and {0, 1}n are the key space and
the plaintext/ciphertext space, respectively. We assume that for E0 there exists
a related-key differential α → β with probability p and for E1 there exists a
related-key differential γ → δ with probability q. More precisely,

p = Pr[E0
K(X)⊕ E0

K∗(X ⊕ α) = β] = Pr[E0
K′ (X)⊕ E0

K′∗(X ⊕ α) = β],

q = Pr[E1
K(X)⊕ E1

K′(X ⊕ γ) = δ] = Pr[E1
K∗(X)⊕ E1

K′∗(X ⊕ γ) = δ],

where K∗ = K ⊕ ΔK, K ′ = K ⊕ ΔK ′ and K ′∗ = K ⊕ ΔK ⊕ ΔK ′, i.e.,
K ⊕ K∗ = K ′ ⊕ K ′∗ = ΔK and K ⊕ K ′ = K∗ ⊕ K ′∗ = ΔK ′ for known key
differences ΔK and ΔK ′. Then, these consecutive related-key differentials can
be used efficiently to the following related-key rectangle distinguisher:

– Choose two random n-bit plaintexts P and P ′ and compute two other plain-
texts P ∗ = P ⊕ α and P ′∗ = P ′ ⊕ α.

– With a chosen plaintext attack scenario, obtain the corresponding cipher-
texts C = EK(P), C∗ = EK∗(P ∗), C′ = EK′(P ′) and C′∗ = EK′∗(P ′∗).

– Check if C ⊕ C′ = C∗ ⊕ C′∗ = δ.

The probability that the ciphertext quartet (C, C∗, C′C′∗) satisfies the last δ
test is computed as follows: let X, X∗, X ′ and X ′∗ denote the encrypted values
of P, P ∗, P ′ and P ′∗ under E0 with K, K∗, K ′ and K ′∗, respectively. Then,
the probability that X ⊕ X∗ = X ′ ⊕ X ′∗ = β is about p2 by the related-key
differential for E0. In the above process, we randomly choose two plaintexts P
and P ′, so we expect X ⊕ X ′ = γ with probability 2−n. Once the two above
events occur, X∗ ⊕X ′∗ = (X ⊕ X∗) ⊕ (X ′ ⊕X ′∗) ⊕ (X ⊕X ′) = β ⊕ β ⊕ γ = γ
with probability 1. Since the probability of the related-key differential γ → δ
for E1 is q, X ⊕ X ′ = X∗ ⊕ X ′∗ = γ goes to C ⊕ C′ = C∗ ⊕ C′∗ = δ with a
probability of about q2. Therefore, the total probability that the last δ test in
the above process is satisfied is about

∑

β,γ

p2 · 2−n · q2 = p̂2 · q̂2 · 2−n, where p̂ =
√∑

β

p2 and q̂ =
√∑

γ

q2 .

On the other hand, for a random cipher, the δ test holds with probabil-
ity 2−2n and thus if the above probability is larger than 2−2n for any 4-tuple
(α, δ, ΔK, ΔK ′), i.e., if p̂ · q̂ > 2−n/2, the related-key rectangle distinguisher
can be used to distinguish E from a random cipher. Similarly, two consecutive
related-key truncated differentials can be used to form a related-key rectangle
distinguisher.

According to the condition of the key differences ΔK and ΔK ′, the above
related-key rectangle distinguisher is used in different ways. If ΔK �= 0 and
ΔK ′ = 0, then the distinguisher works with two related keys; a related-key dif-
ferential for E0 and a regular (non-related-key) differential for E1. If ΔK = 0
and ΔK ′ �= 0, then the distinguisher also works with two related keys; however,
a regular differential for E0 and a related-key differential for E1 are used. If

230 J. Kim, S. Hong, and B. Preneel

ΔK �= 0, ΔK ′ �= 0 and ΔK �= ΔK ′, then the distinguisher works with four
related keys, in which related-key differentials for both E0 and E1 are used.
Further, more than four related keys can be used in the related-key rectangle
distinguisher as in [6,7]; the basic idea is the same as that of the distinguisher
with two or four related keys.

4 Related-Key Rectangle Attack on 10-Round AES-192

This section shows how to exploit the related-key rectangle attack to devise key
recovery attacks on 10-round AES-192 with 64 or 256 related keys. We first focus
on 10-round AES-192 with 256 related keys.

Denote the 10 rounds of AES-192 by E = Ef ◦ E1 ◦ E0 ◦ Eb, where Eb

is round 0 including the whitening key addition step and excluding the key
addition step of round 0, E0 is rounds 1-4 including the key addition step of
round 0, E1 is rounds 5-8 and Ef is round 9. In our 10-round AES-192 attack,
we use a related-key truncated differential for E0 depicted in Fig. 2 and another
related-key truncated differential for E1 depicted in Fig. 3. After we convert these
related-key truncated differentials for E0 and E1 into a related-key rectangle
distinguisher for E1 ◦E0, we apply it to recover some portions of the keys in Eb

and Ef . Before describing our attack, we define some notation which is used in
our attacks on AES.

– Kw, K∗
w, K ′

w, K ′∗
w : whitening keys generated from master keys K, K∗, K ′,

K ′∗, respectively.
– Ki, K

∗
i , K ′

i, K
′∗
i : subkeys of round i generated from K, K∗, K ′, K ′∗, respec-

tively.
– P, P ∗, P ′, P ′∗: plaintexts encrypted under K, K∗, K ′, K ′∗, respectively.
– Ii, I

∗
i , I ′i, I

′∗
i : input values to round i caused by plaintexts P, P ∗, P ′, P ′∗ under

K, K∗, K ′, K ′∗, respectively.
– a: a fixed nonzero byte value.
– b, c: output differences of S-box for the fixed nonzero input difference a.
– ∗: a variable and unknown byte.

4.1 8-Round Related-Key Rectangle Distinguisher

Our related-key truncated differentials depicted in Figs. 2 and 3 exploit the
slow difference propagation of the key schedule of AES-192, which makes it
possible that 3-round key differences ΔK0||ΔK1||ΔK2 and ΔK ′

5||ΔK ′
6||ΔK ′

7

satisfy HWb(ΔK0) = HWb(ΔK ′
5) = 2, HWb(ΔK1) = HWb(ΔK ′

6) = 0 and
HWb(ΔK2) = HWb(ΔK ′

7) = 1, where HWb(X) is the byte Hamming weight of
X . Using these key differences with small byte Hamming weights we make ΔI1 =
ΔI ′6 = 0 in our related-key truncated differentials which induce HWb(ΔI3) =
HWb(ΔI ′8) = 1 (see Figs. 2 and 3 for ΔKi, ΔK ′

i, ΔIi and ΔI ′i) and we add
one or two more rounds to get longer related-key differentials. Note that our
related-key truncated differential for E0 is the same as the one for rounds 0-3
(including the whitening key addition step) used in [16].

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 231

In order to convert the two 4-round related-key truncated differentials into
an 8-round related-key rectangle distinguisher, we first make the following As-
sumptions 1, 2 and 3.

Assumption 1. The key quartet (K, K∗, K ′, K ′∗) is related as follows;

K ⊕K∗ = K ′ ⊕K ′∗ = ΔK, K ⊕K ′ = K∗ ⊕K ′∗ = ΔK ′ .

Assumption 2. A plaintext quartet (P, P ∗, P ′, P ′∗) is related as follows;

P ⊕ P ∗, P ′ ⊕ P ′∗ ∈ ΔP .

Assumption 3. Eb
K(P) ⊕ Eb

K∗(P ∗) = Eb
K′(P ′)⊕ Eb

K′∗(P ′∗) = ΔK0 .

wK 0K 1K 2K

aa aa a

SB,SR,MC SB,SR,MC BS,SR,MC SB,SR,MC

* *

* *a

* *

* *

P

* *

* *

* *

* *

*

a *

*

*

K

S

K

S

K

S

3K

a aK

S

SB,SR,MC

* * * *

* * * *

* * * *

* * * *

4K

a a a aK

S

a

Round before

the differential

I 1 I2 3I 4I 5II 0

Fig. 2. The first related-key truncated differential for rounds 1-4 including the key
addition step of round 0 (E0), and the preceding differential for round 0 including the
whitening key addition step and excluding the key addition step of round 0 (Eb)

Note that ΔK is the same as the first six columns of ΔKw||ΔK0 in Fig. 2. As
stated in our notation, I5 = E0

K(Eb
K(P)), I∗5 = E0

K∗(Eb
K∗(P ∗)), I ′5 = E0

K′(Eb
K′

(P ′)) and I ′∗5 = E0
K′∗(Eb

K′∗(P ′∗)). By the related-key truncated differential for
E0, I5⊕I∗5 is equal to I ′5⊕I ′∗5 with a probability of about (2−32·2−7)2·(27−2)·232+
(2−32 ·2−6)2 ·232 ≈ 2−39 (this probability has been used for the 8-round AES-192
attack presented in [16]). It follows from counting over all the differentials that
can be generated by the active S-box with input difference a and the other four
active S-boxes in round 4. Since ShiftRows and MixColumns are linear layers,
they can be ignored in round 4 when computing the probability (see Fig. 2).
Moreover, the probability that I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5 is about 2−64 under the
condition I5 ⊕ I∗5 = I ′5 ⊕ I ′∗5 (see Fig. 3 for ΔI ′5). Hence the probability that
I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5 is about 2−39 · 2−64 = 2−103. Since eK(I5)⊕ eK′(I ′5) = 0
with probability 2−64 and eK∗(I∗5) ⊕ eK′∗(I ′∗5) = 0 with a probability of about
2−64 under the condition I5 ⊕ I ′5, I∗5 ⊕ I ′∗5 ∈ ΔI ′5, where e is the encryption for
round 5,

E1
K(I5)⊕ E1

K′(I ′5), E1
K∗(I∗5) ⊕ E1

K′∗(I ′∗5) ∈ ΔI ′9

232 J. Kim, S. Hong, and B. Preneel

7K' 8K'K'
a aaa aa a

b b

SB,SR,MC SB,SR,MC SB,SR,MC SB,SR

* *

* *

* *

* *

I'

a * a a

*

*

*

* a * *

*

*

* c c

K

S

K

S

K

S

K

S

SB,SR,MC

5K' 6K' 9K'
a a

c c

K

S

I'65

Pr=2
-64

Round after

the differential

I'9I'7 I'8 I'10

Fig. 3. The second related key truncated differential for rounds 5-8 (E1) and the fol-
lowing differential for round 9 (Ef)

with a probability of 2−231 (see Fig. 3 for ΔI ′9). However, the same statement
can be applied to a random cipher with probability (2−128 · (27 − 1))2 ≈ 2−242,
since the number of elements in ΔI ′9 is 27 − 1. The first column of ΔI ′9 is

B = {MC(y, 0, 0, 0) | y = BS(x) ⊕ BS(x ⊕ a), x = 0, 1, 2, · · · , 255}. (1)

4.2 Key Recovery Attack on 10-Round AES-192 with 256 Related
Keys

In order to produce the round-key differences depicted in Fig. 3, the 8-bit differ-
ence a should satisfy the 8-bit difference b after S-box during the key generation
for the third column of ΔK ′

3. Given the 8-bit difference a there are 127 possible
candidates for the b difference, hence the attack starts by gathering all possible
key quartets (K, K∗, K̃ ′, K̃ ′∗) of which one satisfies the desired key condition.
Note that the keys K∗ = K ⊕ΔK, K̃ ′ = K ⊕ΔK̃ ′ and K̃ ′∗ = K ⊕ΔK ⊕ΔK̃ ′

where ΔK is fixed as ΔKw and the first two columns of ΔK0 in Fig. 2 and ΔK̃ ′

is one of the 127 possible differences; bytes 8 and 12 are both a, bytes 3 and
11 are both b′ and other bytes are all zeros, where b′ is one of the 127 possible
candidates for the b difference. So the total number of required related keys is
256. We apply the related-key rectangle attack to 10-round AES-192 for each
key quartet. During this procedure, we stop our attack when we have found a
key quartet (K, K∗, K̃ ′, K̃ ′∗) that satisfies the desired key condition b′ = b, i.e.,
ΔK̃ ′ = ΔK ′, (K, K∗, K̃ ′, K̃ ′∗) = (K, K∗, K ′, K ′∗).

The aim of our attack is to recover bytes 1, 2, 6, 7, 8, 11, 12, 13 of the
whitening key quartet (Kw, K∗

w, K ′
w, K ′∗

w) and bytes 0, 7, 8, 10, 12, 13 of the
subkey quartet (K9, K

∗
9 , K ′

9, K
′∗
9), for which the byte positions are marked as

∗ on ΔP and ΔI ′10 depicted in Fig. 2 and Fig. 3. This attack distinguishes a
right key quartet from wrong ones by analyzing enough plaintext quartets with
each guessed key quartet. In this attack, we need 264 guesses for the whitening
key quartet and 272 guesses for the subkey quartet in round 9, since bytes 0,
7, 8, 10, 12, 13 of ΔK9 are d, 0, d, e, 0, f , respectively, where d, e and f

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 233

are unknown 8-bit values (note that bytes 0, 7, 8, 10, 12, 13 of ΔK ′
9 are fixed

by a, 0, 0, 0, 0, 0, respectively). Thus, taking into account the guessing of
candidates for the difference b, we need about 2143 key guesses in total (in our
attack it can be reduced by a factor of two on average).

The attack algorithm goes as follows:

1. Choose 254 structures S1, S2, · · · , S254 of 264 plaintexts each, where in each
structure the 64 bits of bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed. With a chosen
plaintext attack scenario, obtain all their corresponding ciphertexts under
the key K. (Step 1 takes 2118 chosen plaintexts and about 2118 encryptions.
Note that n encrpytions mean n 10-round AES-192 encryptions.)

2. Compute 254 structures S∗
1 , S∗

2 , · · · , S∗
254 of 264 plaintexts each by XORing

the plaintexts in S1, S2, · · · , S254 with a 128-bit value M of which byte 9 is a
and all the other bytes are 0. With a chosen plaintext attack scenario, obtain
all their corresponding ciphertexts under the key K∗, where K∗ = K ⊕ΔK.
(Similarly, Step 2 takes 2118 chosen plaintexts and about 2118 encryptions.)

3. Guess a candidate for the difference b and compute ΔK̃ ′. For the key differ-
ence ΔK̃ ′, do the following:

3.1 Choose 254 structures S′
1, S′

2, · · · , S′
254 of 264 plaintexts each, where in

each structure the 64 bits of bytes 0, 3, 4, 5, 9, 10, 14, 15 are fixed.
With a chosen plaintext attack scenario, obtain all their corresponding
ciphertexts under the key K̃ ′, where K̃ ′ = K ⊕ΔK̃ ′. (For each guess of
ΔK̃ ′, Step 3.1 takes 2118 chosen plaintexts and about 2118 encryptions.)

3.2 Compute 254 structures S′∗
1 , S′∗

2 , · · · , S′∗
254 of 264 plaintexts each by

XORing the plaintexts in S′
1, S′

2, · · · , S′
254 with M . With a chosen

plaintext attack scenario, obtain all their corresponding ciphertexts un-
der the key K̃ ′∗, where K̃ ′∗ = K ⊕ΔK ⊕ΔK̃ ′. Go to Step 4. (For each
guess of ΔK̃ ′, this step also takes 2118 chosen plaintexts and about 2118

encryptions.)
4. Guess a 64-bit subkey kw in the position of bytes 1, 2, 6, 7, 8, 11, 12,

13 of the whitening key and compute k∗
w = kw ⊕ Δkw, k′

w = kw ⊕ Δk̃′
w,

k′∗
w = kw ⊕Δkw ⊕Δk̃′

w, where Δkw and Δk̃′
w are the fixed 64-bit key differ-

ences in the position of bytes 1, 2, 6, 7, 8, 11, 12, 13 of ΔKw (depicted in
Fig. 2) and ΔK̃ ′

w, respectively. For the subkey quartet (kw , k∗
w, k′

w, k′∗
w), do

the following:

4.1 Partially encrypt each plaintext Pi,l0 in Si through Eb under kw, i =
1, 2, · · · , 254, l0 = 1, 2, · · · , 264. We denote the partially encrypted value
by xi,l0 . Partially decrypt each xi,l0 ⊕ΔK0,R through Eb under k∗

w, and
find the corresponding plaintext in S∗

i , denoted P ∗
i,l0

. We denote the cor-
responding ciphertexts of Pi,l0 and P ∗

i,l0
by Ci,l0 and C∗

i,l0
, respectively.

(For each guess of 64-bit kw, Step 4.1 takes about 264+1 ·(8/16)·(1/10) =
260.7 encryptions. Note that this step is independent of ΔK̃ ′ in Step 3,
so there is no need to run this step for every iteration of Step 3.)

234 J. Kim, S. Hong, and B. Preneel

4.2 Partially encrypt each plaintext P ′
j,l1

in S′
j through Eb under k′

w, j =
1, 2, · · · , 254, l1 = 1, 2, · · · , 264. We denote the partially encrypted value
by x′

j,l1
. Partially decrypt each x′

j,l1
⊕ ΔK0,R through Eb under k′∗

w ,
and find the corresponding plaintext in S′∗

j , denoted P ′∗
j,l1

. We denote
the corresponding ciphertexts of P ′

j,l1
and P ′∗

j,l1
by C′

j,l1
and C′∗

j,l1
, re-

spectively. (For each guess of 71-bit (kw, ΔK̃ ′), Step 4.2 takes about
264+1 · (8/16) · (1/10) = 260.7 encryptions.)

4.3 Insert Ci,l0 ||C∗
i,l0

in a hash table (indexed by bytes 1, 2, 3, 4, 5, 6, 9, 14)
and then check that (Ci,l0 ||C∗

i,l0
) ⊕ (C′

j,l1
||C′∗

j,l1
) ∈ ΔI ′10(1)||ΔI ′10(2) for

all i, j, l0 and l1, where ΔI ′10(1) = {((∗, 0, 0, 0), (a, 0, 0, ∗), (b1, 0, ∗, b2),
(b3, ∗, 0, b2))}, ΔI ′10(2) = {((∗, 0, 0, 0), (a, 0, 0, ∗), (b4, 0, ∗, b2), (b5, ∗, 0,
b2))}, ∗ is any 8-bit value, and bi is one of the output differences caused
by the input difference a to the S-box. Note that ΔI ′10(1) and ΔI ′10(2)
are both candidates for ΔI ′10, i.e., b2 is a candidate for c (see Fig. 3).
Keep in a table all the ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

) pass-
ing the both tests and go to Step 5 with this table. Since ΔI ′10(1) in
the first test has 253 out of 2128 values and ΔI ′10(2) in the second test
has 246 out of 2128 values, the expected number of quartets kept in the
table is about 2(54+64)·2 · 2−128+53 · 2−128+46 = 279. (For each guess of
71-bit (kw , ΔK̃ ′), Step 4.3 takes about 2119 memory accesses that are
equivalent to approximately 2112 encryptions according to the imple-
mentations of NESSIE primitives [30].)

5. Guess an 8-bit subkey k9,v in the position of byte 12 in round 9 and set
k∗
9,v = k′

9,v = k′∗
9,v = k9,v. For the 8-bit subkey quartet (k9,v, k

∗
9,v, k′

9,v, k
′∗
9,v),

do the following:

5.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,v and k′

9,v through Ef , respec-
tively. If the partially decrypted pairs do not have the difference a,
then discard the corresponding ciphertext quartets. Since it has approx-
imately a 7-bit filtering, the number of remaining quartets after this step
is about 272. (The partial decryptions can be done after the remaining
ciphertext quartets have been sorted by byte 12 of (Ci,l0 , C

′
j,l1

) or this
step can use a pre-computed table, so Step 5.1 takes a relatively small
time complexity.)

5.2 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,v and k′∗
9,v through Ef , respec-

tively. If the partially decrypted pairs do not have the difference a,
discard the corresponding ciphertext quartets and then go to Step 6.
It also imposes approximately a 7-bit filtering, hence the number of re-
maining quartets after this step is about 265. (Similarly, Step 5.2 can
be performed efficiently.)

6. Guess an 8-bit subkey k9,w in the position of byte 8 in round 9 and set
k′
9,w = k9,w. For the 8-bit subkey pair (k9,w,k′

9,w), do the following:

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 235

6.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,w and k′

9,w through Ef , respec-
tively. If the partially decrypted pairs do not have the difference a, then
discard the corresponding ciphertext quartets. Since this imposes ap-
proximately a 7-bit filtering, the number of remaining quartets after this
step is about 258.

6.2 Guess an 8-bit value d to form an 8-bit subkey pair (k∗
9,w = k9,w ⊕ d,

k′∗
9,w = k9,w⊕d) in the position of byte 8 in round 9. For the 8-bit subkey

pair (k∗
9,w,k′∗

9,w), do the following:
6.2.1 For all the remaining ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

),
partially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,w and k′∗
9,w through Ef ,

respectively. If the partially decrypted pairs do not have the dif-
ference a, discard the corresponding ciphertext quartets and then
go to Step 7. It also induces approximately a 7-bit filtering, hence
the number of remaining quartets after this step is about 251.
(Similarly, Step 6 can be performed efficiently.)

7. Guess a 32-bit subkey k9,y in the position of bytes 0, 7, 10, 13 in round 9
and compute k′

9,y = k9,y ⊕ (a, 0, 0, 0). For the 32-bit subkey pair (k9,y , k′
9,y),

do the following:

7.1 For all the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), par-
tially decrypt Ci,l0 and C′

j,l1
under k9,y and k′

9,y through Ef , respec-
tively. If the differences of the partially decrypted pairs are not in B
(see Eq. (1)), then discard the corresponding ciphertext quartets. Since
B has 27 − 1 out of 232 values, the remaining quartets after this step
is about 226. (For each guess of 127-bit (k9,y , d, k9,w, k9,v, kw, ΔK̃ ′),
Step 7.1 takes 251+1 · (4/16) · (1/10) = 246.7 encryptions.)

7.2 Guess two 8-bit values e, f to form a 32-bit subkey pair (k∗
9,y = k9,y ⊕

(d, 0, e, f), k′∗
9,y = k9,y ⊕ (d⊕ a, 0, e, f)) in the position of bytes 0, 7, 10,

13 in round 9. For the 32-bit subkey pair (k∗
9,y,k′∗

9,y), do the following:
7.2.1 For all the remaining ciphertext quartets (Ci,l0 , C

′
j,l1

, C∗
i,l0

, C′∗
j,l1

),
partially decrypt C∗

i,l0
and C′∗

j,l1
under k∗

9,y and k′∗
9,y through Ef ,

respectively. If the differences of the partially decrypted pairs are
not in B, discard the corresponding ciphertext quartets and then
go to Step 8. This also induces approximately about a 25-bit
filtering, hence the number of remaining quartets after this step
is about 2 for each wrong key guess. (For each guess of 143-bit
(e, f, k9,y, d, k9,w, k9,v, kw, ΔK̃ ′), this step takes 226+1 · (4/16) ·
(1/10) = 221.7 encryptions.)

8. For the remaining ciphertext quartets (Ci,l0 , C
′
j,l1

, C∗
i,l0

, C′∗
j,l1

), classify the
quartets according to the differences of Ci,l0 and C′

j,l1
by byte 11. Discard

all the ciphertext quartets except for the group with the largest number of
quartets and then go to Step 9. Since this results in approximately a 7-bit
filtering for each pair of quartets, the remaining quartets after this step is
expected to be about 2−6 for each wrong key guess. (It takes a relatively
small time complexity.)

236 J. Kim, S. Hong, and B. Preneel

9. If there are more than 16 quartets in the table, then output the guessed
subkey quartet as the right one. Otherwise, run the above steps with another
guess for the subkey quartet, i.e., (e, f, k9,y, d, k9,w, k9,v, kw, ΔK̃ ′).

About 2125 chosen plaintexts in Steps 1, 2 and 3 are encrypted on average,
hence the data complexity of this attack is about 2125 related-key chosen plain-
texts and the time complexity of Steps 1, 2 and 3 is about 2125 encryptions. Step 4
runs about 270 times, so the time complexity of Step 4.2 is about 260.7+70 = 2130.7

encryptions (it can be improved by a factor of about 24 by using a pre-computed
table1) and the time complexity of Step 4.3 is about 2112+70 = 2182 encryptions.
As stated above, Steps 5, 6 and 8 take relatively small time complexities com-
pared to other steps.

The time complexity for Step 7 depends on how many times this step runs,
which can be measured by the number of guessed subkeys (including d, e and
f). Since Steps 7.1 and 7.2 run in this attack 2126 and 2142 times on average,
these steps take 2172.7 and 2163.7 encryptions, respectively. However, the time
complexities of these steps can be improved by using a divide and conquer tech-
nique. In Step 7.1, two of the four bytes of the remaining ciphertext quartets are
first decrypted (these partial decryptions can be performed after the remaining
ciphertext quartets are sorted by these two bytes) and discard the ciphertext
quartets of which the decrypted two bytes do not have a difference in B with
respect to the two-byte position, and then do this test with other two bytes of
the remaining ciphertext quartets byte by byte. With this divide and conquer
technique, we can also run Step 7.2. This method allows Steps 7.1 and 7.2 to
decrease their time complexities down to about 2135.7 and 2146.7 encryptions,
respectively.

We can calculate the success rate of the attack by using the Poisson distrib-
ution. Since the expected number of remaining quartets for each wrong subkey
quartet is 2−6, the probability that the number of remaining quartets for each
wrong subkey quartet is larger than 16 is 2−150 by the Poisson distribution,
X ∼ Poi(λ = 2−6), PrX [X > 16] ≈ 2−150. It follows that the probability that
the attack outputs a wrong subkey quartet is quite low, since the total num-
ber of guessed wrong subkey quartets is about 2142. On the other hand, the
expected number of remaining quartets for the right subkey quartet is about
25 = 2236 · 2−231 due to our 8-round related-key rectangle distinguisher. Thus,
the probability that the number of remaining quartets for the right key quar-
tet is larger than 16 is 0.99 by the Poisson distribution, Y ∼ Poi(λ = 25),
PrY [Y > 16] ≈ 0.99.

Therefore, this attack works with a data complexity of about 2125 related-key
chosen plaintexts and with a time complexity of about 2182 encryptions and with
a success rate of 0.99.

1 Before running this attack, we can pre-compute a table which keeps 264 input pairs
(I0, I

∗
0) to round 0, where I∗

0 = BS−1(SR−1(MC−1(MC(SR(BS(I0))) ⊕ ΔK0,R))).
If Step 4.1 has access to this table for each guessed subkey (kw, k∗

w), it can find
plaintext pairs (Pi,l, P

∗
i,l) by XORing (kw, k∗

w) with (I0, I
∗
0).

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 237

4.3 Reducing the Number of Related Keys from 256 to 64

If we take more delicate related keys in our attack, we can reduce the number
of related keys from 256 to 64 (note that the basic idea of this method has been
introduced in [8]). The following 64 related keys can be used in our attack:

– 16 key candidates Ki (i = 0, 1, · · · , 15) for the key K such that all the bytes
of the 16 Ki have the same values in each byte position except that byte 3 is
the same as byte 11 in each Ki, say si, but s0, s1, · · · , s15 are all pairwise
distinct.

– 16 key candidates K∗i for the key K∗ such that bytes 1 and 9 of Ki ⊕ K∗i

are both a, and the other bytes of Ki ⊕K∗i are all 0.
– 16 key candidates K ′j (j = 0, 1, · · · , 15) for the key K ′ such that all the

bytes of the 16 K ′j are the same as those of Ki for some i except that byte 3
is the same as byte 11 in each K ′j , say tj , but t0, t1, · · · , t15 are all pairwise
distinct, and bytes 8 and 12 of K ′j ⊕Ki are both a.

– 16 key candidates K ′∗j for the key K ′∗ such that bytes 1 and 9 of K ′∗j ⊕K ′j

are both a, and the other bytes of K ′∗j ⊕K ′j are all 0.

Using these delicately chosen key relationships, we can make 256 key quartets
(Ki, K∗i, K ′j , K ′∗j) of which one is expected to satisfy the desired key condition,
Ki ⊕ K∗i = K ′j ⊕ K ′∗j = ΔK and Ki ⊕ K ′j = K∗i ⊕ K ′∗j = ΔK ′ (note that
bytes 3 and 11 of Ki ⊕ K ′j and K∗i ⊕ K ′∗j are both si ⊕ tj of which one is
expected to be b).

If the above 64 related keys are used in our attack algorithm, the attack
works with a data complexity of 2124 related-key chosen plaintexts (due to the
fact that the attack takes 2118 chosen plaintext queries for each key) and with a
time complexity of 2183 encryptions (due to the fact that Step 4.3 is iterated 27

times on average by the 256 key quartets).

5 Related-Key Rectangle Attacks on 8-Round AES-192
and 9-Round AES-256

Similarly, we can construct related-key rectangle attacks on 8-round AES-192
with two related keys (ΔK �= 0 and ΔK ′ = 0) and on 9-round AES-256 with
four related keys (ΔK �= 0, ΔK ′ �= 0 and ΔK �= ΔK ′).

The attack on 8-round AES-192 with two related keys recovers bytes 1, 2, 6,
7, 8, 11, 12, 13 of the whitening key pair (Kw, K∗

w) and bytes 3, 6, 9, 12 of the
subkey pair (K7, K

∗
7) with a data complexity of about 294 related-key chosen

plaintexts, a time complexity of about 2120 encryptions and a success rate of
0.9. See Figs. 2 and 4 for a schematic description of our 8-round AES-192 attack
(note that the related-key truncated differential in Fig. 2 is used for Eb and E0

in this attack).
The attack on 9-round AES-256 with four related keys recovers bytes 1, 2, 6,

7, 8, 11, 12, 13 of the whitening key quartet (Kw, K∗
w, K ′

w, K ′∗
w) and bytes 0, 4,

8, 12 of the subkey quartet (K8, K
∗
8 , K ′

8, K
′∗
8) with a data complexity of about

238 J. Kim, S. Hong, and B. Preneel

7K'K'

SB,SR,MC SB,SR

*

*

*

*

I'

* *

*

*

*

*

*

*

*

K

S

K

S

K

S

SB,SR,MC

5K' 6K'

I'65

Pr=2
-24

Round after

the differential

I'7 I'8

Fig. 4. The second truncated differential for rounds 5-6 (E1) and the following differ-
ential for round 7 (Ef)

wK 0K 1K 2K
aa a

SB,SR,MC SB,SR,MC SB,SR,MC SB,SR,MC

* *

* *

* *

* *

P

* *

* *

* *

* *

*

*

*

*

K

S

K

S

K

S

3K

K

S

SB,SR,MC

* * * *

* * * *

* * * *

* * * *

4K
a a a a

K

S

a

Round before

the differential

I 1 I2 3I 4I 5II 0

Fig. 5. The first related-key truncated differential for rounds 1-4 including the key
addition step of round 0 (E0), and the preceding differential for round 0 including the
whitening key addition step and excluding the key addition step of round 0 (Eb)

7K'K'
a a a aaa a a a

SB,SR,MC SB,SR,MC SB,SR

*

*

*

I'

a a a a * * * *

K

S

K

S

K

S

SB,SR,MC

5K' 6K' 8K'
b b b b

K

S

I'65

Pr=2
-32

Round after

the differential

I'7 I'8 I' 9

*

Fig. 6. The second related-key truncated differential for rounds 5-7 (E1) and the fol-
lowing differential for round 8 (Ef)

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 239

299 related-key chosen plaintexts, a time complexity of about 2120 encryptions
and a success rate of 0.9. See Figs. 5 and 6 for a schematic description of our
9-round AES-256 attack.

6 Comments on the 9-Round AES-192 Attack Presented
at Eurocrypt 2005

At Eurocrypt 2005, Biham, Dunkelman and Keller [6] presented a 9-round
AES-192 attack which requires 256 related keys, a data complexity of 286 related-
key chosen plaintexts and a time complexity of 2125 encryptions. However, we
have observed that there is some flaw in the key guessing step in their attack.
In order to complete their attack, we need to guess in addition 56 bits of the
subkey in the last round, hence the attack requires a larger time complexity of
2181 = 2125 · 256 rather than 2125 encryptions.

Moreover, their attack can be mounted based on 64 related keys as in our
10-round AES-192 attack. Similarly, it allows the 9-round AES-192 attack to work
with a smaller data complexity, but a larger time complexity than the original ones;
in our observation their attack works with 64 related keys, a data complexity of 285

related-key chosen plaintexts and a time complexity of 2182. This method (for re-
ducing thenumber of related keys) can alsobeused in the 10-roundAES-256 attack
presented at Eurocrypt 2005. See Table 1 for the attack complexity.

7 Conclusion

In this paper we have presented related-key rectangle attacks on 8-round AES-192
with 2 related keys, 10-round AES-192 with 64 or 256 related keys and 9-round
AES-256 with 4 related keys, which are faster than exhaustive key search. All our
attacks have been designed based on the key scheduling algorithms of AES-192
and AES-256 which have relatively slow difference propagations.

Our 10-round AES-192 attack leads to the best known attack on AES-192 and
our 8-round AES-192, 9-round AES-256 attacks are both better than previously
best known attacks on AES-192 with 2 related keys and AES-256 with 4 related
keys in terms of the number of attacked rounds and the data or time complexity.
It should be clear, however, that none of these attacks presents a realistic threat
to the security of the AES.

Acknowledgements. We thank Orr Dunkelman and Nathan Keller for their
helpful comments.

References

1. Biham, E., Shamir, A.: Differential Cryptanalysis of DES-like Cryptosystems. In:
Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 2–21.
Springer, Heidelberg (1991)

2. Biham, E.: New Types of Cryptanalytic Attacks Using Related Keys. Journal of
Cryptology 7(4), 229–246 (1994)

240 J. Kim, S. Hong, and B. Preneel

3. Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack Reduced to 31
Rounds Using Impossible Differentials. Journal of Cryptology 18(4), 291–311
(2005)

4. Biham, E., Keller, N.: Cryptanalysis of Reduced Variants of Rijndael,
http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

5. Biham, E., Dunkelman, O., Keller, N.: The Rectangle Attack – Rectangling the
Serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–
357. Springer, Heidelberg (2001)

6. Biham, E., Dunkelman, O., Keller, N.: Related-Key Boomerang and Rectangle
Attacks. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–
525. Springer, Heidelberg (2005)

7. Biham, E., Dunkelman, O., Keller, N.: A Related-Key Rectangle Attack on the
Full KASUMI. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 443–461.
Springer, Heidelberg (2005)

8. Biham, E., Dunkelman, O., Keller, N.: Related-Key Impossible Differential Attacks
on AES-192. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 21–31.
Springer, Heidelberg (2006)

9. Biryukov, A.: The Boomerang Attack on 5 and 6-Round AES. In: Dobbertin,
H., Rijmen, V., Sowa, A. (eds.) Advanced Encryption Standard – AES. LNCS,
vol. 3373, pp. 11–16. Springer, Heidelberg (2005)

10. Blunden, M., Escott, A.: Related Key Attacks on Reduced Round KASUMI. In:
Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 277–285. Springer, Heidelberg
(2002)

11. Cheon, J., Kim, M., Kim, K., Lee, J., Kang, S.: Improved Impossible Differential
Cryptanalysis of Rijndael and Crypton. In: Kim, K.-c. (ed.) ICISC 2001. LNCS,
vol. 2288, pp. 39–49. Springer, Heidelberg (2002)

12. Daemen, J., Rijmen, V.: The Design of Rijndael: AES – the Advanced Encryption
Standard. Springer, Heidelberg (2002)

13. Dunkelman, O., Keller, N., Kim, J.: Related-Key Rectangle Attack on the Full
SHACAL-1. In: Proceedings of Selected Areas in Cryptography 2006, SAC 2006,
LNCS, vol. 4356, Springer, Heidelberg (to appear, 2007)

14. Ferguson, N., Kelsey, J., Schneier, B., Stay, M., Wagner, D., Whiting, D.: Improved
Cryptanalysis of Rijndael. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp.
213–230. Springer, Heidelberg (2001)

15. Hawkes, P.: Differential-Linear Weak-Key Classes of IDEA. In: Nyberg, K. (ed.)
EUROCRYPT 1998. LNCS, vol. 1403, pp. 112–126. Springer, Heidelberg (1998)

16. Hong, S., Kim, J., Lee, S., Preneel, B.: Related-Key Rectangle Attacks on Reduced
Versions of SHACAL-1 and AES-192. In: Gilbert, H., Handschuh, H. (eds.) FSE
2005. LNCS, vol. 3557, pp. 368–383. Springer, Heidelberg (2005)

17. Jakimoski, G., Desmedt, Y.: Related-Key Differential Cryptanalysis of 192-bit Key
AES Variants. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006,
pp. 208–221. Springer, Heidelberg (2004)

18. Kelsey, J., Schneier, B., Wagner, D.: Key Schedule Cryptanalysis of IDEA, G-DES,
GOST, SAFER, and Triple-DES. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS,
vol. 1109, pp. 237–251. Springer, Heidelberg (1996)

19. Kelsey, J., Schneir, B., Wagner, D.: Related-Key Cryptanalysis of 3-WAY, Biham-
DES, CAST, DES-X, NewDES, RC2, and TEA. In: Han, Y., Quing, S. (eds.) ICICS
1997. LNCS, vol. 1334, pp. 233–246. Springer, Heidelberg (1997)

20. Kelsey, J., Kohno, T., Schneier, B.: Amplified Boomerang Attacks Against
Reduced-Round MARS and Serpent. In: Schneier, B. (ed.) FSE 2000. LNCS,
vol. 1978, pp. 75–93. Springer, Heidelberg (2001)

http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html

Related-Key Rectangle Attacks on Reduced AES-192 and AES-256 241

21. Kim, J., Kim, G., Hong, S., Lee, S., Hong, D.: The Related-Key Rectangle Attack
– Application to SHACAL-1. In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.)
ACISP 2004. LNCS, vol. 3108, pp. 123–136. Springer, Heidelberg (2004)

22. Kim, J., Kim, G., Lee, S., Lim, J., Song, J.: Related-Key Attacks on Reduced
Rounds of SHACAL-2. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT
2004. LNCS, vol. 3348, pp. 175–189. Springer, Heidelberg (2004)

23. Knudsen, L.R.: Cryptanalysis of LOKI91. In: Zheng, Y., Seberry, J. (eds.)
AUSCRYPT 1992. LNCS, vol. 718, pp. 196–208. Springer, Heidelberg (1993)

24. Knudsen, L.R.: Truncated and Higher Order Differentials. In: Preneel, B. (ed.) Fast
Software Encryption. LNCS, vol. 1008, pp. 196–211. Springer, Heidelberg (1995)

25. Ko, Y., Hong, S., Lee, W., Lee, S., Kang, J.: Related Key Differential Attacks on
26 Rounds of XTEA and Full Rounds of GOST. In: Roy, B., Meier, W. (eds.) FSE
2004. LNCS, vol. 3017, pp. 299–316. Springer, Heidelberg (2004)

26. Langford, S.K., Hellman, M.E.: Differential-Linear Cryptanalysis. In: Desmedt,
Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 17–25. Springer, Heidelberg (1994)

27. Lu, J., Kim, J., Keller, N., Dunkelman, O.: Related-Key Rectangle Attack on 42-
Round SHACAL-2. In: Katsikas, S.K., Lopez, J., Backes, M., Gritzalis, S., Preneel,
B. (eds.) ISC 2006. LNCS, vol. 4176, pp. 85–100. Springer, Heidelberg (2006)

28. Lu, J., Lee, C., Kim, J.: Related-Key Attacks on the Full-Round Cobra-F64a and
Cobra-F64b. In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp.
95–110. Springer, Heidelberg (2006)

29. Lucks, S.: Attacking Seven Rounds of Rijndael under 192-bit and 256-bit Keys. In:
Proceedings of AES 3, NIST (2000)

30. NESSIE — New European Schemes for Signatures, Integrity and Encryption, Per-
formance of Optimized Implementations of the NESSIE Primitives, version 2.0,
https://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf

31. Phan, R.C.-W.: Impossible Differential Cryptanalysis of 7-round Advanced En-
cryption Standard (AES). Information Processing Letters 91(1), 33–38 (2004)

32. Wagner, D.: The Boomerang Attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS,
vol. 1636, pp. 156–170. Springer, Heidelberg (1999)

https://www.cosic.esat.kuleuven.be/nessie/deliverables/D21-v2.pdf

An Analysis of XSL Applied to BES

Chu-Wee Lim and Khoongming Khoo

DSO National Laboratories, 20 Science Park Drive, S118230, Singapore
lchuwee@dso.org.sg, kkhoongm@dso.org.sg

Abstract. Currently, the only plausible attack on the Advanced En-
cryption System (AES) is the XSL attack over F256 through the Big
Encryption System (BES) embedding. In this paper, we give an analysis
of the XSL attack when applied to BES and conclude that the complex-
ity estimate is too optimistic. For example, the complexity of XSL on
BES-128 should be at least 2401 instead of the value of 287 from current
literature. Our analysis applies to the eprint version of the XSL attack,
which is different from the compact XSL attack studied by Cid and
Leurent at Asiacrypt 2005. Moreover, we study the attack on the BES
embedding of AES, while Cid and Leurent studies the attack on AES
itself. Thus our analysis can be considered as a parallel work, which to-
gether with Cid and Leurent’s study, disproves the effectiveness of both
versions of the XSL attack against AES.

Keywords: XSL algorithm, AES, BES, linearisation.

1 Introduction

In 2001, after a standardisation period of 5 years, NIST finally adopted the Ri-
jndael block cipher as the AES standard. A year later, Courtois and Pieprzyk
surprised the cryptographic community by proposing an algebraic attack [3,4]
on Rijndael and Serpent, which could obtain the key faster than an exhaustive
search. This attack was named XSL for eXtended Sparse Linearisation [3,4],
which is a modification of the earlier XL (eXtended Linearisation) attack pro-
posed by Courtois et al [2]. In XSL, the authors exploited the algebraic simplic-
ity of Rijndael’s S-box and obtained a number of quadratic equations. Then in
order to apply linearisation, equations are multiplied by S-box monomials (as
compared to arbitrary monomials in the case of the XL attack). This enables
the number of occurring monomials to be kept within a manageable range, and
so upon linearisation, the system of linear equations can be solved faster than
an exhaustive key search.

At around the same time, Murphy and Robshaw [6] proposed a method of re-
interpreting the AES system by writing its equations over the field F256 instead
of the smaller field F2. Over F256, the input x and output y of the Rijndael S-box
satisfies the simple equation xy = 1. In this way, the number of equations of each
S-box remains the same while the number of monomials involved is reduced by
half. The authors later noted [7] that the BES embedding can lead to a dramatic

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 242–253, 2007.
c© International Association for Cryptologic Research 2007

An Analysis of XSL Applied to BES 243

decrease in the complexity of XSL attack. For example, as Courtois observed in
§7 of [4], AES-128 can be broken with complexity 287.

However, Murphy and Robshaw also expressed skepticism at the practicality
of XSL in [7], and concluded that it was unlikely to work. T. T. Moh and D.
Coppersmith were similarly skeptical and remarked that XSL was unlikely to
work.

In Asiacrypt 2005, Cid and Leurent [1] gave an analysis of the compact XSL
attack [4] on AES-128 and proved that it is equivalent to a substitution-then-
XL (sXL) method. They concluded that XSL attack is essentially an XL attack
on a system of equations larger than that of the original AES. Thus compact
XSL is not an effective attack against the AES cipher. This partly answers some
uncertainties of the compact XSL attack and suggests that it may not be an
effective method against block ciphers.

However, it does not give us the full answer on whether XSL is effective against
AES. This is because:

1. In [1], only the compact XSL attack [4] is analysed. But the eprint version
of the XSL attack (eprint XSL) [3] is different from the compact XSL attack
as it uses a larger set of monomials. Moreover, the bounds derived from the
eprint XSL are better than that of the compact XSL.

2. In [1], only the complexity of the compact XSL attack on AES over F2 is
analyzed. However the best attack on AES in the current literature is the
eprint XSL attack on AES over the bigger field F256.

In this paper, we provide a more complete answer to the effectiveness of the
XSL attacks on AES by analyzing the above two points. We will focus on the
embedding of the AES in the Big Encryption System (BES) over F256. Because
of the nice algebraic structure of the equations of the Rijndael S-box over F256,
we can provide an exact analysis of the linear dependencies that exist between
the equations of BES. This allows us to give a more accurate estimate of the
number of linearly independent equations in the eprint XSL attack. Based on our
estimate, we deduce that the complexity of the eprint XSL attack on BES-128
is at least 2401 instead of 287 from the known literature. Similar complexity esti-
mates for BES-192 and BES-256 proves that the eprint XSL attack is ineffective
against them.

2 The XSL Attack on BES

There are currently two versions of XSL. In this paper, we shall consider the
version in [3]. Furthermore, in that paper, the authors described two forms of
XSL - the first and the second. We shall look at the second version, which
only requires at most two plaintext-ciphertext pairs. This section is essentially
a summary of [3], [6] and [7], but we need it to establish notations which will be
used in subsequent sections.

Note: we often mention linear equations from the AES cipher, when a tech-
nically more accurate name would be affine. This is in accordance with the
literature.

244 C.-W. Lim and K. Khoo

2.1 A Summary of the XSL Attack

First, recall the S-box in the AES cipher. This comprises of the inverse map1 on
the finite field F256, followed by an F2-affine map on the output. Thus, the only
nonlinear component of the cipher is the map x → x−1 on the finite field F256.
The authors of [3] believe that this algebraic definition of the S-box presents an
opportunity for algebraic attacks on the cipher. They noted that if y = x−1 in
F256, then we get xy = 1, x2y = x and xy2 = y. The Frobenius map x → x2 is
F2-linear on F256, so by taking the components, we get 3 × 8 = 24 equations in
F2. There is a slight caveat though: since xy = 1 is only true most of the time,
it only produces 7 equations instead of 8. The eighth equation only holds 255

256 of
the time. Nevertheless, for the sake of our argument, we shall assume that we
get 24 equations. It can be easily verified that up to linear dependence, these
are the only equations we can get.

Thus, let x0, . . . , x7 and y0, . . . , y7 denote the input and output bits of an
S-box respectively, We get 24 equations which are linear combinations of the
monomials 1, xi, yj , xiyj (0 ≤ i, j ≤ 7); i.e. , we have 24 equations involving 81
monomials. Such a monomial is said to belong to the S-box. Furthermore, if S
and S′ are distinct S-boxes, then the set of monomials belonging to S and S′

are disjoint.
On the other hand, there are also F2-linear equations for the Shiftrows and

MixColumns algorithms. Hence, we can write down all the S-box and linear
equations and solve them in order to extract the key. We shall use the following
notation subsequently:

S = number of S-boxes in the cipher and key schedule,
L = number of linear equations in the cipher and key schedule,
r = number of equations in each S-box = 24,

t = number of terms used in the equations for each S-box = 81,

P = XSL parameter (to be described later).

The values for S and L for AES-128, -192 and -256 respectively are given in
Table 1 below:

Table 1. Parameters for Various AES Ciphers

AES-128 AES-192 AES-256

S 201 417 501
L 1664 3520 4128

Note that the values of S and L in Table 1 are based on one plaintext-ciphertext
pair for the second XSL attack on AES-128 and two plaintext-ciphertext pairs for

1 Strictly speaking, this is not true since the map x → x−1 is not defined at 0. It
would be correct mathematically to write this map as x → x254.

An Analysis of XSL Applied to BES 245

the second XSL attack on AES-192, AES-256. They are derived from Section 7
and Appendix B of [3].

The XSL method can be summarised in the following steps, for a parameter P :

1. Pick P distinct S-boxes, and select one of them to be active; the others are
declared passive. From the active S-box, select one equation out of the r
quadratic ones; from each of the P − 1 passive S-boxes, select a monomial ti
(i = 2, . . . , P). We then multiply the active S-box equation with t2t3 . . . tP
to obtain a new equation. Let us call such an equation an extended S-box
equation. Take the collection ΣS of all extended S-box equations. Also, we
call the monomials which occur in the equations of ΣS the extended S-box
monomials.

2. Pick a linear equation and select P − 1 distinct S-boxes. From each of the
selected S-boxes, choose a monomial ti (i = 2, 3, . . . , P). We then multiply
the linear equation by t2t3 . . . tP to obtain a new equation. Let us call such
an equation an extended linear equation. Take the collection ΣL of all
extended linear equations.

3. Take the equations in Σ := ΣS∪ΣL and solve them via linearisation. In other
words, replace each occurring monomial by a new variable and solve the set
of linear equations by (say) Gaussian elimination. Furthermore, these linear
equations are sparse so we can apply advanced techniques like the block
Lanczos algorithm [5] to solve them.

4. If there are not enough equations for a complete solution, we can apply the
T ′-method to produce more equations. This comprises of (i) fixing a variable,
say xi, and (ii) attempting to find equations whose degrees remain the same
upon multiplication by xi.

In [3], it was noted that the equations in ΣS have a lot of linear dependen-
cies after linearisation. For example, if we pick two active S-boxes and equations
eqn1 and eqn2 from them, as well as P − 2 passive S-boxes with monomials
t3, t4, . . . , tP , then by expanding the equation eqn1 ·eqn2 ·(t3 . . . tP) we obtain lin-
ear dependencies between extended S-box equations of the form eqn1·(t2t3 . . . tP)
and t1 · eqn2 · (t3 . . . tP). After removing some obvious dependencies like these,
we get

R =
(

S

P

)
(tP − (t − r)P) (1)

equations. Likewise, by fixing t−r linearly independent terms in each S-box and
expressing the remaining terms as linear combinations of them, the number of
extended linear equations2 is (after removing obvious linear dependencies):

R′ = L × (t − r)P−1

(
S

P − 1

)
. (2)

2 Note that in [3], the author used R′ and R′′ to denote the extended linear equations
from the cipher and the key schedule respectively. Here we denote all extended linear
equations by R′.

246 C.-W. Lim and K. Khoo

Hence, the total number of equations obtained is R + R′.
On the other hand, it was assumed that the monomials in ΣL are also extended

S-box monomials. Hence, the total number of terms occurring in Σ is the number
of extended S-box monomials:

T = tP
(

S

P

)
. (3)

Finally, for the T ′-method, the authors of [3] remarked that to apply T ′, we
need at least 99.4%× T equations in the first place. In other words, T ′-method
can only be applied if the number of equations we have is very very close to being
sufficient; in which case, the method helps to increase the number of equations
slightly. Thus we shall leave it out in our discussion.

The objective of XSL is to select an appropriate P so that we get enough
equations. The following computations apply for AES-128, AES-192 and AES-
256.

1. AES-128: The smallest P where R + R′ > T is P = 7. The parame-
ters are R = 4.95 × 1025, R′ = 4.85 × 1024, T = 5.41 × 1025. We have
(R + R′)/T = 1.004 and the complexity of XSL attack is T 2.376 ≈ 2203.

2. AES-192: The smallest P where R + R′ > T is P = 7. The parame-
ters are R = 8.65 × 1027, R′ = 8.50 × 1026, T = 9.46 × 1027. We have
(R + R′)/T = 1.004 and the complexity of XSL attack is T 2.376 ≈ 2221.

3. AES-256: The smallest P where R+R′ > T is P = 7. The parameters are
R = 3.15× 1028, R′ = 3.02× 1027, T = 3.45× 1028. We have (R + R′)/T =
1.002 and the complexity of XSL attack is T 2.376 ≈ 2225.

2.2 A Summary of the BES Cipher

At Crypto 2002, Robshaw and Murphy introduced the Big Encryption System
(BES) embedding for the AES cipher [6]. In this embedding, the quadratic equa-
tions describing the S-box input-output become much simpler. This results in
a substantial reduction in the number of monomials occurring in the system of
equations, which can lead to an exponential reduction in the complexity of the
XSL attack [7].

While AES performs its operations in the field F2, BES achieves the same pur-
pose by performing operations in the field F256. The advantage of this rewriting
lies in the simplicity of the S-box equation: we have xy = 1 immediately instead
of 8 quadratic equations in the input and output bits. This, of course, conve-
niently ignores the case when x = y = 0. However this can be countered by other
means.

The problem occurs with some of the linear equations, which are F2-linear but
not F256-linear. This is overcome by introducing the conjugates of each variable
x ∈ F256, i.e. we have to consider xi := x2i

for 0 ≤ i ≤ 7. Upon introducing these
variables, all F2-linear equations can be expressed as F256-linear equations, by
virtue of the following result.

An Analysis of XSL Applied to BES 247

Lemma 1. Consider the finite field K = F2n . Then any F2-affine map K → K
can be written in the form:

f(x) = c + a0x + a1x
2 + · · · + an−1x

2n−1
,

for some constants c, a0, a1, . . . , an−1 ∈ K.

We will skip the proof, though it suffices to say that the result follows easily
from dimension counting (over F2).

In introducing the conjugates to the S-boxes, we have to express their rela-
tionship as xi+1 = x2

i , where the subscript is taken from Z/8Z (the integers
modulo 8). This gives 24 equations for each S-box: indeed, if we denote the
input and output variables by x0, x1, . . . , x7 ∈ F256 and y0, y1, . . . , y7 ∈ F256

respectively, then

x0y0 = 1, x1y1 = 1, x2y2 = 1, . . . , x7y7 = 1,

x2
0 = x1, x2

1 = x2, x2
2 = x3, . . . , x2

7 = x0,

y2
0 = y1, y2

1 = y2, y2
2 = y3, . . . , y2

7 = y0.

For convenience, we make the following definition.

Definition 1. Let xi be an input variable of an S-box and yi be the corresponding
output variable such that xiyi = 1. We shall say xi and yi are dual to each other.

Although the number of equations per S-box remains r = 24, we now only have
41 monomials! These are: 1, xi, yi, x

2
i , y

2
i , xiyi for 0 ≤ i ≤ 7. Hence, we can apply

the technique of XSL to this cipher, in which case formulae (1), (2) and (3) in the
previous section still hold, with t = 81 replaced with t = 41. With this new value of
t, it turns out that we can pick a smaller P and dramatically reduce the complexity:

1. BES-128: The smallest P where R +R′ > T is P = 3. The parameters are

R = 85341866400, R′ = 9666009600, T = 91892369300.

So (R + R′)/T = 1.03 and the complexity of XSL attack is T 2.376 ≈ 287.
2. BES-192: The smallest P where R +R′ > T is P = 3. The parameters are

R = 767998707840, R′ = 88234798080, T = 826947240080.

So (R + R′)/T = 1.04 and the complexity of XSL attack is T 2.376 ≈ 294.
3. BES-256: The smallest P where R +R′ > T is P = 3. The parameters are

R = 1333494666000, R′ = 149422248000, T = 1435848423250.

So (R + R′)/T = 1.03 and the complexity of XSL attack is T 2.376 ≈ 296.

Finally, the T ′-method for BES was not mentioned in [7]. Although the
premise of the method should remain the same - find equations whose degree
remain the same upon multiplication by some variable - it’s not entirely clear
if this is effective. This is because the set of monomials involved in the S-box
equations forms a very small subset of the set of monomials, thus multiplying
an equation by a variable would almost certainly introduce new monomials even
if the degree of the equation does not increase.

248 C.-W. Lim and K. Khoo

3 An Analysis of This Attack

In this section, we shall provide an in-depth analysis of the XSL attack when
applied to the BES cipher [6]. Due to the nice structure of the BES S-box
equations, we can obtain accurate numbers in many cases. Throughout this
section, let us fix the XSL parameter P .

3.1 Analysing the Extended S-Box Equations

First, let us consider the S-box equations, each of which is an equality of two
monomials. Hence, each extended S-box equation is also of the form (monomial1)
= (monomial2). Solving them linearly is rather easy: we get a collection of
equivalence classes of monomials, where two monomials are considered equivalent
if and only if we can obtain one from the other by a finite number of extended
S-box equations.

Example 1. Consider three S-boxes, given by S1, S2 and S3. The input and out-
put pairs of these S-boxes are given by (ai, bi), (ci, di) and (ei, fi) respectively,
for 0 ≤ i ≤ 7. To clarify the notation further, aibi = 1 and e2

i = ei+1 are exam-
ples of their equations. Then the monomials a3b3c

2
2e5 and c3e5 are considered

equivalent:
(a3b3)c2

2e5 = (1)c2
2e5 = (1)c3e5,

since the first equality follows from an extended S1-equation, while the second
follows from an extended S2-equation.

Inspired by this example, we make the following definition.

Definition 2. Let α = α1α2 . . . αQ be an extended S-box monomial, where each
αi is a variable belonging to some S-box. Then α is said to be reduced if no two
variables belong to the same S-box. The set of reduced S-box monomials of degree
Q is denoted by ΦQ.

It follows that a reduced monomial of degree Q is a product of monomials from
Q distinct S-boxes, and so Q ≤ P . Furthermore, we have the following theorem:

Theorem 1. Every extended S-box monomial α is equivalent to a unique reduced
monomial β. Furthermore, it is possible to obtain the equivalence via:

α = γ1 = γ2 = γ3 = · · · = γr = β,

where each equality is an extended S-box equation, and the degree of each term
is strictly less than the previous one.

Proof. Let α = α1α2 . . . αQ be an extended S-box monomial, where each αi is
an S-box variable. If α were reduced, there is nothing to do. Otherwise, if αi and
αj belong to the same S-box then they are either identical or dual.

In the first case, we have αi = αj = xk for some input/output variable
xk; hence upon removing αi and αj and adding an xk+1, we get an equivalent

An Analysis of XSL Applied to BES 249

monomial of degree Q− 1. In the second case, we have αiαj = 1 and we get an
equivalent monomial of degree Q− 2. This gives us an extended S-box equation

α = γ1,

where deg γ1 < deg α. Repeating the above process with α replaced by γ1, we
get the desired result.

Finally, we need to prove uniqueness, i.e. two distinct reduced monomials are
not equivalent. This is quite easy: write α1α2 . . . αQ = β1β2 . . . βQ′ , where the
αi and βi are S-box variables. Now, the αi all belong to distinct S-boxes, as do
the βi. For equality to hold, some αi and βj must belong to the same S-box. It
immediately follows that αi = βj , so we may cancel them from the equation and
repeat. $%

Note that each Φi has cardinality
(
S
i

)
16i. Thus, upon solving the extended S-box

equations, the number of linearly independent terms is exactly

D0 =
P∑

i=0

|Φi| =
P∑

i=0

(
S

i

)
16i.

According to theoretical bound in [3], that should have been:

T −R =
(

S

P

)
(t − r)P =

(
S

P

)
17P .

Hence, we see that the estimate in [3] was rather close.

3.2 Adding the Extended Linear Equations

The second step is to multiply each linear equation by an extended S-box mono-
mial. However, by Theorem 1 it is equivalent to multiply each linear equation by
a reduced S-box monomial of degree at most P −1 (note: we cannot multiply by
a reduced monomial of degree P since we only multiply P − 1 monomials from
passive S-boxes). In a nutshell, the XSL method is equivalent to the following:

1. Obtain the set ΣS of extended S-box equations.
2. For each linear equation, we multiply it by a reduced monomial from Φ0 ∪

Φ1 ∪ · · · ∪ ΦP−1 and obtain the set Σ′
L of extended linear equations.

3. Solve ΣS ∪ Σ′
L together via linearisation.

Consider hypothetically the case where we just do steps 2 and 3 (i.e. step
3 is performed with ΣS = ∅). In short, we took a bunch of linear equations,
multiply them by some monomials and attempt to solve them by linearisation.
The question is: how many linearly independent terms will we get from this
attempt?

It is not difficult to give a lower bound for this number. First, consider the
set of non-reduced S-box equations and linear equations. If we fix the 8 input

250 C.-W. Lim and K. Khoo

S S SS

Linear map

Linear map

S S SS

Linear map

Linear map

Linear map

Linear map

Fig. 1. Removal of the S-boxes gives 8S free variables

variables of an S-box, then its output is known. Thus the removal of each S-box
contribute 8 free variables. Then the removal of the S S-boxes results in the
introduction of 8S totally free variables, as the diagram in figure 1 shows.

Without loss of generality, we take the 8S input variables of the S-boxes to be
the free variables. In other words, the equations in Σ′

L can be satisfied regardless
of the values these 8S variables take. Hence, the number of linearly independent
terms is at least the number of reduced monomials formed by these 8S free
variables:

D1 =
P∑

i=0

(
S

i

)
8i.

Next, we ask ourselves: does step 1 provide sufficiently many equations to
remove this number of linearly independent terms?

By theorem 1, we can replace each monomial in Σ′
L by a corresponding re-

duced one. Furthermore, after such replacements, the extended S-box equations
are no longer of any use. This brings us to the next theorem.

Theorem 2. When solving Σ′
L with the extended S-box equations, we only need

to include those extended S-box equations of the form:

(v)(m1) = (m2),

where:

1. m1, m2 ∈ Φ0 ∪ Φ1 ∪ · · · ∪ ΦP−1, i.e. m1 and m2 are reduced monomials of
degree at most P − 1;

2. v is an S-box variable such that it or its dual occurs in m1;
3. the remaining variables in m1 are among the 8S free (input) variables.

Proof. Recall that each equation of Σ′
L is of the form: l · m = 0, where l is a

linear equation and m is a reduced monomial of degree at most P−1. Hence, after

An Analysis of XSL Applied to BES 251

linearisation, the only occurring monomials in Σ′
L are those of the form v · m,

where v is an S-box variable and m is a reduced monomial of degree ≤ P − 1. If
neither v nor its dual occur in m, then this monomial itself is already reduced.
Otherwise, we can use an extended S-box equation satisfying conditions 1 and
2 to reduce the monomial further. By Theorem 1, these are the only extended
S-box equations we need.

Finally, note that any variable which is not one of the 8S free variables, can be
expressed as a linear combination of these 8S variables. Hence, if (v)(m1) = (m2)
is an equation satisfying conditions 1 and 2, we can replace each of the remain-
ing variables in m1 with a linear combination of the 8S variables and expand
the resulting monomial. Thus, the set of extended S-box equations satisfying
conditions 1-3 suffices. $%
We say that an extended S-box equations is “relevant” if it satisfies conditions
1-3 in theorem 2.

Now let us compute the number of such equations. Take (v)(m1) = (m2), and
v′ occurs in m1 where v′ = v or the dual of v.

For the case v = v′, there are 16S choices for the pair (v, v′) = (v, v), where
v can be one of 16 input or output variables of an S-box. For the case where v′

is the dual of v, there are 8S choices for the unordered pair (v, v′), which is one
of 8 dual pairs of an S-box satisfying vv′ = 1. Thus there are 16S + 8S = 24S
choices for the unordered pair (v, v′) in the equation (v)(m1) = (m2).

For the remaining P − 2 variables in m1, there are
∑P−2

i=0

(
S−1

i

)
8i choices.

Thus, the number of “relevant” equations is

D2 = 24S ×
P−2∑

i=0

(
S − 1

i

)
8i.

For the equations in ΣS ∪ Σ′
L to be solved via linearisation, we must have

D2 ≥ D1. However, the values in Table 2 indicate that the stipulated values of
P which were supposed to work (see §2.2), actually don’t.

To be able to solve for the secret key, we need D2 > D1. From Table 2, the
smallest P where this condition is satisfied is when P = 23, 33, 36 for BES-
128, BES-192 and BES-256 respectively. In that case, we have the following
complexity for the XSL attack:

1. BES-128: S = 201, P = 23.

Complexity = D2.376
1 = (5.9 × 1050)2.376 ≈ 2401.

2. BES-192: S = 417, P = 33.

Complexity = D2.376
1 = (5.857× 1078)2.376 ≈ 2622.

3. BES-256: S = 501, P = 36.

Complexity = D2.376
1 = (3.798× 1087)2.376 ≈ 2691.

In comparison, the XL attack against the AES-128 cipher has complexity 2330

[3, Section 5.2].Thus we see that the XSL attack is not effective against the BES
cipher. In fact, it gives worse complexity than the XL attack against AES-128.

252 C.-W. Lim and K. Khoo

Table 2. Number of linearly independent monomials D1 from the extended linear
equations and number of relevant extended S-box equations D2 for various P

BES-128 BES-192 BES-256

P = 2
D1 = 1.288 × 106

D2 = 4.824 × 103
D1 = 5.554 × 106

D2 = 1.001 × 104
D1 = 8.02 × 106

D2 = 1.202 × 104

P = 3
D1 = 6.839 × 108

D2 = 7.723 × 106
D1 = 6.149 × 109

D2 = 3.332 × 107
D1 = 5.093 × 1010

D2 = 4.811 × 107

P = 4
D1 = 2.71 × 1011

D2 = 6.152 × 109
D1 = 5.093 × 1012

D2 = 5.532 × 1010
D1 = 1.063 × 1013

D2 = 9.605 × 1010

...
...

...
...

P = 23
D1 = 5.9 × 1050

D2 = 6.245 × 1050

...
...

P = 33
...

D1 = 5.857 × 1078

D2 = 6.02 × 1078

...

P = 36
...

...
D1 = 3.798 × 1087

D2 = 3.849 × 1087

3.3 Further Analysis

The above results show that there are many hidden linear dependencies which
were not accounted for in the computations in §2. Here, we attempt to account
for some of this discrepancy.

(a) It is not true that all the monomials which occur are extended S-box monomi-
als. The problem occurs with the extended linear equations. It can happen
that l is a linear equation which involves (say) x2 from a certain S-box,
while the chosen passive S-boxes also include the term (say) y5 from the
same S-box; in which case, the term x2y5 is part of an occurring monomial.
This monomial is then not an extended S-box monomial. Heuristically, the
number of monomials unaccounted for is not very significant.

(b) The second and worse problem is the presence of inherent linear dependen-
cies among the extended linear equations. This is essentially identical to the
linear dependencies among the extended S-box equations mentioned in §2.1.
For example, suppose linear1 = 0 and linear2 = 0 are two different linear
equations. By taking terms from P − 2 distinct passive S-boxes, we get the
monomial t3 . . . tP ; expanding the equation (linear1)(linear2)(t3 . . . tP) = 0
results in a linear relation between the equations extended from linear1 = 0
and those extended from linear2 = 0. Notice that this linear dependency is
inherent among the extended linear equations. It is completely unrelated to
the S-box equations or their extended counterparts. Unfortunately, this has
been neglected in the original estimates.

While (a) appears to be a minor oversight, (b) has a much larger effect on
the estimates. As mentioned in [3], the removal of obvious linear dependencies
on the S-box equations causes the number of such equations to reduce from

An Analysis of XSL Applied to BES 253

Rold = rStP−1
(

S−1
P−1

)
to R =

(
S
P

)
(tP − (t − r)P), which is quite a significant

difference. It is likely that similar considerations on the extended linear equations
would also result in a significant reduction of useful equations.

4 Conclusion

The purpose of our paper is to analyse XSL when applied to BES, and determine
if it would work in practice. Due to the nice S-box equations of BES, we can
explicitly deduce the linear dependencies between the equations. Our conclusion
is that if XSL works on BES, then it is worse than brute foce. However, it leaves
open the question of whether XSL works for some P at all.

Furthermore, our computations do not carry over to the original Rijndael
(with equations over F2 instead of F256) or to the Serpent cipher. Due to the
complexity of the S-box equations, an explicit list of linearly independent terms
of the extended S-box equations cannot be easily described. Naturally, we ask if
XSL works in those cases.

First, it should be noted that the linear dependencies among the extended
linear equations - as mentioned in §3.3 - hold in general, so it is likely that the
number of linearly independent equations obtained after linearisation is actually
smaller than expected. Second, in the XSL method, the final ratio (number of
equations)/(number of terms) after linearisation is about 1.004, which is precar-
iously close to 1. Hence, the presence of a large number of linear dependencies
can have an adverse effect on the solvability of the system. Finally, note that we
had left the T ′-method out of the discussion totally. However we had noted that
the T ′-method is only effective if the number of linearly independent equations
is already extremely close to being sufficient (about 99.4% of what is needed).
Thus, even the application of the T ′-method is unlikely to help.

References

1. Cid, C., Leurent, G.: An Analysis of the XSL Algorithm. In: Roy, B. (ed.) ASI-
ACRYPT 2005. LNCS, vol. 3788, pp. 333–352. Springer, Heidelberg (2005)

2. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient Algorithms for Solving
Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.) EUROCRYPT
2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000)

3. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations. IACR eprint server, 2002/044 (March 2002), http://www.iacr.org

4. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Systems
of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 267–287.
Springer, Heidelberg (2002)

5. Montgomery, P.L.: A Block Lanczos Algorithm for Finding Linear Dependencies
over GF(2). In: Guillou, L.C., Quisquater, J.-J. (eds.) EUROCRYPT 1995. LNCS,
vol. 921, pp. 106–120. Springer, Heidelberg (1995)

6. Murphy, S., Robshaw, M.: Essential Algebraic Structure Within the AES. In: Yung,
M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 1–16. Springer, Heidelberg (2002)

7. Murphy, S., Robshaw, M.: Comments on the Security of the AES and the XSL
Technique. Electronic Letters 39, 26–38 (2003)

http://www.iacr.org

On the Security

of
IV Dependent Stream Ciphers�

Côme Berbain and Henri Gilbert

France Télécom R&D
38–40, rue du Général Leclerc

92794 Issy les Moulineaux Cedex 9 — France
{firstname.lastname}@orange-ftgroup.com

Abstract. Almost all the existing stream ciphers are using two inputs:
a secret key and an initial value (IV). However recent attacks indicate
that designing a secure IV-dependent stream cipher and especially the
key and IV setup component of such a cipher remains a difficult task. In
this paper we first formally establish the security of a well known generic
construction for deriving an IV-dependent stream cipher, namely the
composition of a key and IV setup pseudo-random function (PRF) with
a keystream generation pseudo-random number generator (PRNG). We
then present a tree-based construction allowing to derive a IV-dependent
stream cipher from a PRNG for a moderate cost that can be viewed as a
subcase of the former generic construction. Finally we show that the re-
cently proposed stream cipher quad [3] uses this tree-based construction
and that consequently the security proof for quad’s keystream genera-
tion part given in [3] can be extended to incorporate the key and IV setup.

Keywords: stream cipher, PRNG, IV setup, provable security.

1 Introduction

Stream ciphers and block ciphers are the two most popular families of symmet-
ric encryption algorithms. Unlike block ciphers, stream ciphers do not produce
a key-dependent permutation over a large blocks space, but a key-dependent
sequence of numbers over a small alphabet, typically the binary alphabet {0, 1}.
To encrypt a plaintext sequence, each plaintext symbol is combined with the cor-
responding symbol of the keystream sequence using a group operation, usually
the exclusive or operation over {0, 1}.

Nearly all stream ciphers specified recently use two inputs to generate a
keystream sequence: a secret key and an additional parameter named the ini-
tial value (IV), that is generally not secret. The purpose of the initial value is
to allow to derive several “independent” keystream sequences from one single
� The work described in this paper has been supported by the European Commission

through the IST Program under Contract IST-2002-507932 ECRYPT.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 254–273, 2007.
c© International Association for Cryptologic Research 2007

On the Security of IV Dependent Stream Ciphers 255

key, and thus to provide a convenient method for encrypting several plaintext
sequences under the same secret key, by “resynchronizing” the stream cipher
each time with a new IV value. This represents an obvious practical advantage
over formerly proposed stream ciphers which single input was the secret key.
But on the other hand, the use of an IV input has considerable impacts on the
cryptanalysis and on the formalization of the security requirements on stream
ciphers.

As for cryptanalytic implications, the quite numerous attacks of IV-dependent
stream ciphers published in the past years clearly indicate that IVs result in ad-
ditional attack opportunities, and that the key and IV setup procedure still
represents one of the less well understood aspects of stream ciphers design. As
a matter of fact an adversary can compare the keystream sequences associated
with several known, related or chosen IV values, and potentially derive infor-
mation upon the corresponding internal state values that could not be derived
from one single keystream sequence. This is illustrated by Fluhrer, Mantin, and
Shamir’s attack on the key and IV loading method of the RC4-based cipher
used in certain WiFi systems [10], by Ekdahl and Johansson’s cryptanalysis of
the GSM cipher A5/1 [9], by Joux and Muller’s differential known or chosen
IV attacks on various ciphers [16,17], by Daemen, Govaerts, and Vandewalle’s
and by Armknecht, Lano, and Preneel’s resynchronization attacks [8,1] or more
recently by attacks against some of the eSTREAM candidates.

As for the implications of IVs on the formalization of security requirements
on stream ciphers, they can be outlined as follows:

In the case of a stream cipher without IV, the requirements are con-
veniently captured by the theory of pseudo-random numbers generators which
has been stemming from the seminal work of Shamir [18], Yao [19], Blum and
Micali [6] in the early 80’s. A stream cipher is considered secure if the associated
key to keystream function is a pseudo-random number generator (PRNG), i.e.
an input-expanding function allowing to expand a short seed (the key) into a
strictly longer output (the keystream) in such a way that if the secret input seed
is uniformly distributed, then the probability distribution of the corresponding
output is computationally indistinguishable with non negligible probability from
the uniform distribution.

In the case of an IV-dependent stream cipher, no as unanimously ac-
cepted formalization of the security requirements has emerged so far. However,
most cryptologists would probably agree that a sufficient security condition is
that the associated function generator which maps the secret key onto the IV
to keystream function be a pseudo-random function generator (PRF), i.e. a ran-
dom function generator indistinguishable with non negligible probability from a
perfect random function generator. To quote an example, this is the condition
Halevi, Coppersmith, and Jutla are using to express the security requirements
on the IV-dependent stream cipher Scream [15]. We will briefly discuss the va-
lidity of this PRF-based formalization in Section 3 hereafter, and conclude that
it indeed captures the most natural generalization to IV-dependent stream ci-
phers of the well accepted (PRNG based) formalization of IV less stream ciphers.

256 C. Berbain and H. Gilbert

One might argue that since constructing a secure PRF can be expected to be
more demanding than constructing a secure PRNG and nearly as difficult as
constructing a block cipher, introducing IVs in stream ciphers looses all perfor-
mance advantages of stream ciphers over block ciphers and requires the same
kind of techniques than designing a block cipher. This is however not necessarily
the case, as will be shown in the sequel.

The purpose of this paper is twofold. Firstly, to clarify the security require-
ments upon an IV-dependent stream cipher (Section 3) and to identify sufficient
conditions on its key and IV setup and key generation parts in order for the
whole stream cipher to be secure (Section 4). Secondly, to propose a practical
construction allowing to meet these conditions (Section 5), and therefore to de-
rive an IV-dependent stream cipher with a provable security argument. Finally
we show that as an application of this construction the security arguments of
quad can be extended in order to include the key and IV setup (Section 6). An
overview of our main results is given in Section 2.

2 Outline of Our Results

For all the stream ciphers we consider in this paper, the keystream derivation is
split, as in nearly all existing IV-dependent stream ciphers, into the two following
separate phases, according to the generic construction illustrated in Figure 1:

– (1) Key and IV setup: an m-bit initial state value is derived from the key
and IV value.

– (2) Keystream generation: the keystream is derived from the m-bit initial
state obtained in the key and IV-setup phase. For that purpose, the m-bit
initial state is taken as the seed input of a number generator 1.

We formally establish, in Section 4, the validity of the following “folklore”
belief implicitly invoked in the security argumentation of several existing IV-
dependent stream ciphers [5,2]: if the family {FK} of IV to initial state functions
parametrized by the key K is a PRF and if the number generator g is a PRNG,
then the family {GK = g ◦FK} of IV to keystream sequence functions is a PRF.
This provides useful sufficient conditions in order for the IV-dependent stream
cipher resulting from the generic construction of Figure 1 to be secure. Our se-
curity proof relies upon a simple “composition theorem”. A specific construction
directly suggested by the former security results might consist of using a trusted
block cipher for the IV-setup, as done for instance in the stream cipher candi-
dates LEX [5] and SOSEMANUK [2], both selected as focus ciphers for third
1 Though our constructions are potentially applicable to any number generator with

a sufficiently long input size, they are mainly intended for number generators based
upon the iterated invocation of a finite state machine (FSM). The keystream se-
quence generation procedure of nearly all existing stream ciphers has this specific
structure, i.e. uses the state transition function of a FSM to update an m-bit inter-
nal state and derive at each iteration a t-bit keystream portion by means of a fixed
output function.

On the Security of IV Dependent Stream Ciphers 257

K

IV (n bits)

Key and
IV Setup

Initial State (m bits)

Number
Generator

Keystream (L bits)

Fig. 1. IV-dependent stream cipher: (generic construction)

evaluation phase of the stream cipher initiative eSTREAM of the European net-
work ECRYPT. One may however argue that this construction results in a lack
of design unity when (unlike in LEX) the keystream generation does not reuse
the trusted block cipher used for the key and IV setup.

We propose, in Section 5 hereafter, another specific construction also sup-
ported by former security results, which has the additional advantage that it
better preserves the design unity of stream ciphers. This construction consists
of applying the so called tree-based construction proposed by Goldreich, Gold-
wasser, and Micali in [13] for deriving the PRF needed for the key and IV setup
from any n-bit to 2n-bit PRNG. This PRNG can be essentially the same as the
one used in the keystream generation phase. The later option allows to even
better preserve the unity of the design, and to achieve substantial savings in the
hardware and software implementation complexity of the stream cipher, since
the key and IV setup and the keystream generation are then using the same
computational ingredients.

Last of all, we focus in Section 6 on a particular stream cipher where the
tree-based construction of Section 5 is applied in the key and IV setup, namely
the recently proposed stream cipher quad [3]. We show that the partial proof of
security of [3] (which gives some evidence that the keystream generation part of
quad is secure) can be extended to incorporate the key and IV setup. This allows
to reduce the security of the whole stream cipher to the difficulty of solving a
random multivariate quadratic system.

3 Security Model

3.1 Basic Security Notions

We first recall definitions of advantages for distinguishing a number generator
from a perfect random generator and a function generator from a perfect ran-
dom function generator, and the notions of Pseudo-Random Number Generator

258 C. Berbain and H. Gilbert

(PRNG) and Pseudo-Random Function (PRF). All the security definitions used
throughout this paper relate to the concrete (non asymptotic) security model.
In the sequel, when we state that a value u is randomly chosen in a set U , we
implicitly mean that u is drawn according to the uniform law over U .

Single-query distinguisher for a number generator: let us consider a num-
ber generator g : {0, 1}n −→ {0, 1}L with input and output lengths L > n, used
to expand an n-bit secret random seed into an L-bit sequence. A distinguisher
in time t for g is a probabilistic testing algorithm A which when input with an
L-bit string outputs either 0 or 1 with time complexity at most t. We define the
advantage of A for distinguishing g from a perfect random generator as

Advprng
g (A) =

∣∣Prx∈{0,1}n(A(g(x)) = 1)− Pry∈{0,1}L(A(y) = 1)
∣∣,

where the probabilities are not only taken over the value of an unknown ran-
domly chosen x ∈ {0, 1}n (resp. of a randomly chosen y ∈ {0, 1}L), as explicitly
stated in the above formula, but also over the random choices of the probabilistic
algorithm A.

We define the advantage for distinguishing the function g in time t as

Advprng
g (t) = max

A
{Advprng

g (A)},

where the maximum is taken over all testing algorithms of time complexity at
most t.

A function g is said to be a PRNG if Advprng
g (t) is negligible (for example

less than 2−40) for values of t strictly lower than a fixed threshold (for example
280 or 2128). The definition of a PRNG is therefore dependent upon thresholds
reflecting the current perception of an acceptably secure number generator.

Multiple-query distinguisher for a number generator: let us still consider
a function g from n bits to L bits. A q-query distinguisher in time t for g is a
probabilistic testing algorithm A which when input with a q-tuple of L-bit words
outputs either 0 or 1 with time complexity at most t. We define the advantage
of A for distinguishing g from a perfect random generator as

Advprng
g (A) =

∣
∣Pr(A(g(x1), . . . , g(xq)) = 1)− Pr(A(y1, . . . , yq) = 1)

∣
∣,

where the probabilities are taken over the q-tuples of n-bit values xi (resp. of
L-bit values yi) and on the random choices of the probabilistic algorithm A.
We also define the advantage for distinguishing the function g in time t with q
queries as

Advprng
g (t, q) = max

A
{Advprng

g (A)},

where the maximum is taken over all testing algorithms A having time-complexity
at most t and using q inputs.

Distinguisher for a function generator: let us now consider a function
generator, i.e. a family F = {fK} of {0, 1}n −→ {0, 1}m functions indexed by a

On the Security of IV Dependent Stream Ciphers 259

key K randomly chosen from {0, 1}k. A distinguisher in time t with q queries for
F is a probabilistic testing algorithm Af able to query an n-bit to m-bit oracle
function f up to q times. Such an algorithm allows to distinguish a randomly
chosen function fK of F from a perfect random function f∗ randomly chosen in
the set F ∗

n,m of all {0, 1}n −→ {0, 1}m functions with a distinguishing advantage

Advprf
F (A) =

∣
∣Pr(AfK = 1) − Pr(Af∗

= 1)
∣
∣,

where the probabilities are taken over K ∈ {0, 1}k (resp f∗ ∈ F ∗
n,m) and over the

random choices of A. We define the advantage for distinguishing the family F
in time t with q queries as

Advprf
F (t, q) = max

A
{Advprf

F (A)},

where the maximum is taken over all testing algorithms A working in time at
most t and capable to query an n-bit to m-bit oracle function up to q times.

A family of functions F = {fK} is said to be a PRF if Advprf
F (t, q) is negligible

for values of t and q strictly lower than the respective threshold (for example 280

or 2128 for t and 240 for q).

3.2 Security Requirements for an IV-Dependent Stream Ciphers

Let us consider an IV-dependent stream cipher, i.e. a family G = {gK}K∈{0,1}k

of IV to keystream functions gK : {0, 1}n −→ {0, 1}L, where k is the size of the
key, n is the size of the IVs and L is the maximum number of keystream bits
that can be produced for a given IV.

Such an IV-dependent stream cipher can be viewed as a special number gener-
ator, allowing to expand a k-bit secret seed onto an exponentially long sequence
of 2n L-bit keystream words {ZIV = gK(IV)}IV ∈{0,1}n , with the additional
property that while this sequence is too long to be entirely accessed in a sequen-
tial manner, it can be directly accessed, i.e. that for any value of IV ∈ {0, 1}n

the computational cost for accessing the L-bit subsequence ZIV is constant.

{ZIV } =

L

Z0

L

Z1

L

ZIV

L

Z2n−1

Fig. 2. Exponentially long sequence with direct access associated to an IV-dependent
stream cipher g

This observation can be used in order to try to generalize the well accepted
formalization of the security requirements on an IV-less stream cipher by means
of a PRNG in a natural manner. An IV-less stream cipher is considered secure if
and only if no testing algorithm, when given access either to a Λ-bit output of the
generator corresponding to a random secret input or to a random Λ-bit sequence,

260 C. Berbain and H. Gilbert

can distinguish both situations in time less than a sufficiently large threshold
(say 280) with a non-negligible advantage. It can be reasonably argued that in
the case of an IV-dependent stream cipher, the most natural generalization of
the above security definition is to require that no testing algorithm, when given
a sufficiently large number q (say for instance min(280, 2n)) of direct accesses to
L-bit subsequences of a sequence {ZIV } associated with a random unknown key
K or to a uniformly drawn sequence of 2n L-bit subsequences, can distinguish
both situations in time less than a sufficiently large threshold (say 280) with a
non-negligible advantage.

But it is easy to see that both the sequence {ZIV } and the uniformly drawn
sequence of 2n ·L bits can be viewed as n-bit to L-bit functions, and that direct
accesses to these sequences can be viewed as oracle queries to these functions.
Therefore the requirements formulated above are strictly equivalent to saying
that the function family G = {gK}K∈{0,1}k is a PRF.

In other words, we have given some evidence that an IV-dependent stream
cipher G = {gK} for K ∈ {0, 1}k with gK : {0, 1}n −→ {0, 1}L can be viewed as
a family of functions, and can be considered secure if and only if it is a PRF ,
i.e. sufficiently indistinguishable from a perfect random function.

Related key attacks, which relevance, when it comes to security requirements
on symmetric ciphers, is a controversial issue [4], are not covered by our security
model.

4 Security of the Generic Construction

4.1 A Simple Composition Theorem

In this Section, we define the composition G of a family of function F and a
function g, relate the indistinguishability of G to the one of F and g, and show
that this composition theorem results in a secure construction allowing to derive
a secure IV-dependent stream cipher from a PRF and a PRNG.

Definition 1. The composition G = g◦F of an n-bit to m-bit family of functions
F = {fK} and of an m-bit to L-bit function g is the n-bit to L-bit family of
functions

G = {g ◦ fK}.

Theorem 1. Let us consider a PRF F = {fK} where fK : {0, 1}n −→ {0, 1}m

and a PRNG g : {0, 1}m −→ {0, 1}L that produces L bits in time T L
g . The

advantage in time t with q queries of G = g ◦F = {g ◦fK} can be upper bounded
as follows

Advprf
G (t, q) ≤ Advprf

F (t + qT L
g) + qAdvprng

g (t + qT L
g).

In order to prove Theorem 1 we first establish a useful lemma which relates the
single-query and multiple-queries advantages of any PRNG.

On the Security of IV Dependent Stream Ciphers 261

K K

x (n bits) IV (n bits)

F PRF F PRF

y (m bits) Initial state (m bits)

g PRNG g PRNG

G = g ◦ F PRF G = g ◦ F PRF

z (L bits) Keystream (L bits)

≡

Fig. 3. Composing a PRF and a PRNG gives a PRF

Lemma 1. Let g : {0, 1}m −→ {0, 1}L be a PRNG which can be computed in
time T L

g . The q-query advantage for distinguishing g in time t is related to the
single-query advantage for distinguishing g by the inequality

Advprng
g (t, q) ≤ qAdvprng

g (t + qT L
g).

A proof of the above lemma is given in Appendix 1; this proof is similar to
the one of a proposition relating the single-sample indistinguishability and the
multiple-sample indistinguishability of polynomial-time constructible ensembles
established by Goldreich and Krawczyk [14,12]. Using this lemma, we can prove
Theorem 1. Our proof is given in Appendix 2. Theorem 1 is illustrated on the
left part of Figure 3.

Application to the Security of IV-Dependent Stream Ciphers. A direct
application of Theorem 1 is depicted on the right part of Figure 3. As said in
Section 3, an IV-dependent stream cipher can be considered secure if and only if
the IV to keystream function gK parametrized by the key is a PRF. Theorem 1
implies that this is indeed the case, i.e. that the stream cipher is secure if:

1) the n-bit to m-bit IV to initial state function parametrized by the key rep-
resenting the IV setup of a stream cipher is a PRF;

2) the m-bit to L-bit initial state to keystream function is a PRNG;
3) the upper bounds on the advantage for distinguishing {gK} given by Theo-

rem 1 guarantee a sufficient resistance against attacks.

From now on, we consider the following stream cipher design problem. Let us
assume that a trusted number generator g allowing to expand an m-bit initial
state into an L-bit sequence is available. We are now faced with the issue of
constructing a key and IV setup PRF in order to compose this PRF with g to
get a secure IV-dependent stream cipher.

A straightforward construction for such a PRF, directly suggested by the
former security results, would consist of using a trusted block cipher with a

262 C. Berbain and H. Gilbert

sufficient block-length to fit the initial state length m of g. As a matter of fact it
is usual to conjecture that the family of key dependent encryption permutations
associated with a secure block cipher represents both a pseudo-random family
of permutations (PRP) and a PRF. The value of m must be typically at least
160 bits in the frequent case where g has a finite state automaton structure, in
order to avoid generic time-memory trade-offs. This suggests that one could for
instance use the variant of Rijndael with a 256-bit block size, or a truncated
instance of this cipher if m is smaller than 256, or an appropriate “one to many
blocks” mode of operation of any block cipher [11] for initial state sizes larger
than 256 bits. This would allow to accommodate keys and IVs of size up to
one block. Such an approach can certainly be considered more conservative than
the key and IV setup procedure of many existing stream ciphers. On the other
hand, one may argue that it results in a strong performance penalty for the
encryption of short messages and an increased implementation complexity, and
in a lack of design unity if the trusted number generator g does not reuse the
same ingredients as the trusted block cipher.

5 A Tree Based Stream Cipher Construction

Is this Section we present a key and IV setup procedure derived from the Tree
Based Construction introduced by Goldreich, Goldwasser, and Micali in [13].
This construction allows to derive a PRF from a PRNG and to relate their
securities. Though initially introduced for theoretical purposes (namely show in
the asymptotic model that the existence of a PRNG implies the existence of a
PRF) it is also of practical interest since it allows, as shown here, to build a
stream cipher from two number generators: the Tree Based Construction is used
to transform the first number generator into an efficiently computable key and IV
setup; the second number generator is initialized with the value given by the key
and IV setup, and generates the keystream. These two number generators can
advantageously be the same. Thus it becomes possible to build an IV-dependent
stream cipher from one single number generator.

5.1 The Tree Based Construction

The Tree Based Construction allows to derive a PRF F g from a PRNG g. Let us
consider a PRNG g : {0, 1}m −→ {0, 1}L where L ≥ 2m and let us denote the L
bit image of y ∈ {0, 1}m by g(y) = z0z1 . . . zL−1. We derive from g two functions
g0 : y ∈ {0, 1}m −→ z0, . . . , zm−1 and g1 : y ∈ {0, 1}m −→ zm, . . . , z2m−1 from
m bits to m bits which on input y ∈ {0, 1}m respectively produce the first and
the second m-bit string generated by g when input with y.

The PRF F g is the family of functions {fy}y∈{0,1}m where

fy : {0, 1}n −→ {0, 1}m

(x1, x2, . . . , xn) −→ fy(x1, x2, . . . , xn) = gxn ◦ gxn−1 . . . ◦ gx1(y)

This construction is illustrated on Figure 4: the input bits determine a path
trough the binary tree leading to the output of the function.

On the Security of IV Dependent Stream Ciphers 263

y

g

g0(y) g1(y)

y (m bits)
g

0 1x1

g g

0 1x2

g g

0 1x3

g g
. . .

g g

0 1xn−1

g g

0 1xn

fg
y (x) (m bits)

Fig. 4. Tree Based Construction

Theorem 2. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L ≥
2m outputs bits and produces its 2m first output bits in time T 2m

g and let
F g = {fy}y∈{0,1}m be the family of n-bit to m-bit functions derived from g
by the Tree Based Construction. The (t, q) advantage of PRF F g is related to
the single-query advantage of PRNG g by the following inequality:

Advprf
F g (t, q) ≤ nqAdvprng

g (t + q(n + 1)T 2m
g).

A proof of Theorem 2 is given in Appendix 3. This proof is essentially the same as
the security proof of the Tree Based Construction due to Goldreich, Goldwasser,
and Micali[13], a detailed version of which is given by Goldreich in [12], up to
the fact that we consider the concrete security model instead of the asymptotic
(polynomial time indistinguishability) security model.

5.2 Resulting Stream Cipher Construction

To build an IV-dependent stream cipher from a m-bit to L-bit PRNG g repre-
senting an IV-less stream cipher, we apply the Tree Based Construction to a m
to L′-bit PRNG g′ (L′ ≥ 2m) typically equal to g itself, in order to derive the
key and IV setup function, which produces the initial state of g, following the
construction of Figure 4. For a key K and an IV IV , the value fg′

K (IV) is the
initial state of g. Thanks to Theorem 1 and since the Tree Based Construction
provides a PRF, the resulting stream cipher is also a PRF. The security of the
final stream cipher only depends on the security of the PRNG.

In case K is smaller than m bits, we need to extend K to a value randomly
chosen in {0, 1}m. In order to achieve this we can use an additional PRNG
h : {0, 1}k −→ {0, 1}m. The proof for the Tree Based Construction can easily be
extended and we have:

Advprf
F g (t, q) ≤ nqAdvprng

g′ (t + q(n + 1)T 2m
g′) + qAdvprng

h (t + q(n + 1)T m
h).

264 C. Berbain and H. Gilbert

Theorem 3. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L outputs
bits in time T L

g and g′ : {0, 1}m −→ {0, 1}2m be a PRNG. We can define a
stream cipher G = {GK} = g ◦ F g′

, where F g′
is derived from g′ using the Tree

Based Construction
GK(IV) = g ◦ fg′

K (IV)

Moreover G is a PRF and we have:

Advprf
G (t, q) ≤ nqAdvprng

g′ (t + qT L
g + q(n + 1)T 2m

g′) + qAdvprng
g (t + qT L

g)

If g and g′ are equal, then we have

Advprf
G (t, q) ≤ q(n + 1)Advprng

g (t + q(n + 2)T L
g)

Proof. To prove this result we only have to use Theorem 1 and Theorem 2.

The above key and IV setup construction is of practical interest: suppose we
have a trusted PRNG, for example the Shrinking Generator [7], we can build
an IV-dependent stream cipher based on this PRNG without introducing any
additional feature for a moderate computational cost.

5.3 Efficiency Considerations

Let us assume for instance that we want to build from a PRNG g of initial
state length 160 bits a stream cipher with a 160-bit key, a 80-bit IV, and a
target security of 280, using the previously described construction. Then the time
required to compute the key and IV setup with the above construction is the time
required by g to produce 3200 bytes. Considering a very fast PRNG, running at
5 cycles per byte, the key and IV setup requires about 16000 cycles on a standard
PC. This is slower than using a block cipher like AES, which would require about
1000 cycles. Therefore for software applications where resynchronization has to
be done frequently, this construction is not at all efficient and using a block
cipher for the key and IV setup should be considered. However for applications
where the keystream generated for a single IV is very long compared to these
3200 bytes our construction can be competitive.

Now in the case of hardware applications, the above construction can be of
real interest, in order to minimize the hardware complexity since it uses a single
PRNG for the key and IV setup and the keystream generation. Then only a
few additional gates are required to implement the key and IV setup. If a block
cipher were used instead, then the total number of gates required to implement
the stream cipher would be much higher than the number of gates required for
a PRNG.

6 Application to the quad Stream Cipher

The stream cipher quad is a practical stream cipher with some provable security
which was introduced [3] by Berbain, Gilbert, and Patarin at Eurocrypt 2006.

On the Security of IV Dependent Stream Ciphers 265

The provable security argument relates, in the GF (2) case, the indistinguishabil-
ity of the keystream generated by quad to the conjectured hardness of solving
random quadratic systems. quad iterates a one way function, namely a quadratic
system, upon an internal state and extracts a certain number of bits of this step
at each iteration.

The keystream generation makes use of two systems Sin = (Q1, . . . , Qm)
and Sout = (Qm+1, . . . , Qkm) of multivariate quadratic equations both sharing
the same m unknowns over GF(q), typically GF (2) as described on Fig. 5. The
first system Sin is used to update the internal state and thus contains m equa-
tions, whereas the second system Sout produces the keystream and contains
(k − 1)m equations. As explained in [3], the quadratic systems Sin and Sout,
though randomly generated, are both publicly known.

x

Sin(x) Sout(x)

Fig. 5. Stream cipher quad

Given an internal state x = (x1, . . . , xm), the keystream generation amounts
to iterating the following steps:

– compute
(
Sin(x), Sout(x)

)
=
(
Q1(x), . . . , Qkm(x)

)
, from the internal state x;

– output the sequence Sout(x) =
(
Qm+1(x), . . . , Qkm(x)

)
of (k−1)m keystream

elements of GF(q);
– update the internal state x with the sequence Sin(x) =

(
Q1(x), . . . , Qm(x)

)
.

Before generating any keystream the internal state x needs to be initialized,
with the key K and the initialization vector IV , which are respectively repre-
sented by a sequence of GF (q) elements of length |K| and a binary sequence of
{0, 1} values of length |IV |. We will assume in the sequel that |K| is equal to
m. The initialization is done as follows: two publicly known chosen multivariate
quadratic systems S0 and S1 of m equations over m unknowns are used. The
initial state is filled with the key. Then for each of the |IV | bits IV1 to IV|IV | of
the IV value the internal state x is updated as follows: if IVi = 0, x is replaced
by the GF (q)m value S0(x); if IVi = 1, x is replaced by the GF (q)m value S1(x).
Finally the cipher is clocked m additional times as described before, but without
outputting the keystream.

We now extend the partial proof over GF(2) given in [3] to incorporate the
key and IV Setup. We denote by S = (Sin||Sout) the randomly chosen system of

266 C. Berbain and H. Gilbert

km equations on m variables and S′ = (S0||S1) the randomly chosen system of
2m equations in m variables. We also denote by gS : {0, 1}m −→ {0, 1}L and
gS′

: {0, 1}m −→ {0, 1}2m the corresponding PRNGs.
The key and IV setup proposed in [3] can be divided into two parts: in the first

part the Tree Based Construction for gS′
is applied and the value y = fgS′

K (IV)
is computed. Then in the second part, y is used to initialize gS which is clocked
m times but the corresponding (k − 1)m2 bits of keystream are not used. The
value of the internal state after these m clocks is used to produce L bits of
keystream. The security of the first part is related to the security of gS′

thanks
to Theorem 2.

Advprf

F gS′ (t, q) ≤ 2qAdvprng

gS′ (t + q(n + 2)T 2m
gS′)

The security of the PRNG greal which starts by running m clocks like gS

without producing any keystream to reflect the runup of quad and then pro-
duces L bits of keystream as gS does, is related to the security of generator
g̃S : {0, 1}m −→ {0, 1}L+(k−1)m2

which iterates S to produce L + (k − 1)m2

bits, since greal produces the same keystream as g̃S up to the fact that the first
(k − 1)m2 bits of gS′

are discarded. Consequently a distinguisher on greal is
also a distinguisher for g̃S. Thus the advantage of greal is upper-bounded by the
advantage of g̃S .

Advprng
greal

(t) ≤ Advprng
g̃S (t + T

L+(k−1)m2

g̃S)

Finally the security of the stream cipher is related to the securities of g̃S and
of gS′

by the composition theorem of Section 4.

Advprf
quad

(t, q) ≤ 2qAdvprng

gS′ (t+q(n+3)T L
gS′)+qAdvprng

g̃S (t+qT L
g̃S +T

L+(k−1)m2

g̃S)

Those two generators are based on the iteration of a randomly chosen quadratic
system of km equations in m variables (with k = 2 for S′). We can use the main
result of [3], which relates the security of this kind of PRNG to the difficulty of
inverting a randomly chosen multivariate quadratic system to say that the security
of quad as a stream cipher is related to the difficulty of the MQ Problem, i.e. an
adversary able to distinguish quad from a PRF in time t with q queries is then
able to construct a MQ solver:

Advprf
quad

(t, q) ≤ 3qAdvprng
gS (t + qT

L+(k−1)m2

g̃S)

≤ AdvMQinversion(t′[t + qT
L+(k−1)m2

g̃S]),

where t′[t + qT
L+(k−1)m2

g̃S] is the running time of the MQ inverter algorithm
given by the main reduction theorem of [3], which is recalled in Appendix.

7 Conclusion

In this paper we investigated security issues arising for IV-dependent stream
ciphers. We confirmed the ”folklore” belief that the composition of a key and IV

On the Security of IV Dependent Stream Ciphers 267

setup PRF and a key generation PRNG provides a secure stream cipher, which
furnishes a proof that initializing a PRNG with a block cipher is secure provided
that the block cipher’s block length is sufficiently large. Moreover we described a
practical construction that allows to derive an IV-dependent stream cipher from
a PRNG (or equivalently an IV-less stream cipher) for a moderate additional
cost. This construction is quite simple and does not require additional compo-
nents. Finally we showed an application of this provably secure construction to
the stream cipher quad, by incorporating the key and IV setup in the security
proof given by the authors of quad. The resulting extended proof relates the
security of the whole stream cipher (not only the keystream generation part) to
the conjectured intractability of the MQ problem.

References

1. Armknecht, F., Lano, J., Preneel, B.: Extending the Resynchronization Attack. In:
Handschuh, H., Hasan, M.A. (eds.) SAC 2004. LNCS, vol. 3357, p. 19. Springer,
Heidelberg (2004)

2. Berbain, C., Billet, O., Canteaut, A., Courtois, N., Gilbert, H., Goubin, L., Gouget,
A., Granboulan, L., Lauradoux, C., Minier, M., Pornin, T., Sibert, H.: Sosemanuk,
a Fast Software-Oriented Stream Cipher. eSTREAM, ECRYPT Stream Cipher
Project, Report 2005/001 (2005), http://www.ecrypt.eu.org/stream

3. Berbain, C., Gilbert, H., Patarin, J.: QUAD: a Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
Springer, Heidelberg (2006)

4. Bernstein, D.J.: Related-key attacks: Who cares? eSTREAM, ECRYPT Stream
Cipher Project (2006), http://www.ecrypt.eu.org/stream/phorum

5. Biryukov, A.: A new 128 bit key Stream Cipher : LEX. eSTREAM, ECRYPT
Stream Cipher Project, Report 2005/001 (2005), http://www.ecrypt.eu.org/
stream

6. Blum, M., Micali, S.: How to Generate Cryptographically Strong Sequences of
Pseudo-Random Bits. SIAM J. Comput. 13(4), 850–864 (1984)

7. Coppersmith, D., Krawczyk, H., Mansour, Y.: The Shrinking Generator. In: Stin-
son, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 22–39. Springer, Heidelberg
(1994)

8. Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Syn-
chronous Stream Ciphers. In: Helleseth, T. (ed.) Advances in Cryptology – EU-
ROCRYPT ’93. LNCS, vol. 765, pp. 159–167. Springer, Heidelberg (1993)

9. Ekdahl, P., Johansson, T.: Another Attack on A5/1. IEEE Transactions on Infor-
mation Theory 49(1), 284–289 (2003)

10. Fluhrer, S.R., Mantin, I., Shamir, A.: Weaknesses in the Key Scheduling Algorithm
of RC4. In: Selected Areas in Cryptography, pp. 1–24 (2001)

11. Gilbert, H.: The Security of ”One-Block-to-Many” Modes of Operation. In: Jo-
hansson, T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 376–395. Springer, Heidelberg
(2003)

12. Goldreich, O.: The Foundations of Cryptography - Volume 1. Cambridge University
Press, Cambridge (2001)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J.
ACM 33(4), 792–807 (1986)

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream/phorum
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

268 C. Berbain and H. Gilbert

14. Goldreich, O., Krawczyk, H.: Sparse Pseudorandom Distributions. In: Brassard, G.
(ed.) CRYPTO 1989. LNCS, vol. 435, pp. 113–127. Springer, Heidelberg (1990)

15. Halevi, S., Coppersmith, D., Jutla, C.S.: Scream: A Software-Efficient Stream Ci-
pher. In: Daemen, J., Rijmen, V. (eds.) FSE 2002. LNCS, vol. 2365, pp. 195–209.
Springer, Heidelberg (2002)

16. Joux, A., Muller, F.: A Chosen IV Attack Against Turing. In: Matsui, M., Zuc-
cherato, R.J. (eds.) SAC 2003. LNCS, vol. 3006, pp. 194–207. Springer, Heidelberg
(2004)

17. Muller, F.: Differential Attacks against the Helix Stream Cipher. In: Roy, B., Meier,
W. (eds.) FSE 2004. LNCS, vol. 3017, Springer, Heidelberg (2004)

18. Shamir, A.: On the Generation of Cryptographically Strong Pseudo-Random Se-
quences. In: Even, S., Kariv, O. (eds.) Automata, Languages and Programming.
LNCS, vol. 115, pp. 544–550. Springer, Heidelberg (1981)

19. Yao, A.: Theory and Applications of Trapdoor Function. In: Foundations of Cryp-
tography FOCS 1982 (1982)

Appendix

Proof of Lemma 1

Lemma 1. Let us consider a PRNG g : {0, 1}m −→ {0, 1}L which can be
computed in time T L

g . Then we have

Advprng
g (t, q) ≤ qAdvprng

g (t + qT L
g).

Proof. Suppose there is an algorithm A that distinguishes q L-bit keystream
sequence produced by g from q unknown randomly chosen initial internal state
xi ∈ {0, 1}m from q random L-bit sequences in time t with advantage ε. Then
we are going to build an algorithm B that distinguishes g(x) corresponding to
an unknown random input x, from a random value of size L in time t′ = t+ qT L

g

with advantage ε
q .

We introduce the hybrid probability distributions Di over {0, 1}L for any
0 ≤ i ≤ q respectively associated with the random variables

Zi = (g(x1), g(x2), . . . , g(xi), ri+1, . . . , rq)

where the rj and xi are random independent uniformly distributed values of
{0, 1}L and {0, 1}m respectively. Consequently Dq is the distribution of the q
L-bit keystream produced by g and D0 is the distribution of q L-bit uniformly
distributed values of {0, 1}L.

We denote by pi the probability that A accepts a random qL-bit sequence
distributed according to Di.

We have supposed that algorithm A distinguishes between D0 and Dq with
advantage ε, in other words that |p0 − pq| ≥ ε.

Algorithm B works as follows : on input y ∈ {0, 1}L it selects randomly an i
such that 1 ≤ i ≤ q and constructs the vector

Z(y) = (g(x1), g(x2), . . . , g(xi−1), y, ri+1, ri+2, . . . , rq)

On the Security of IV Dependent Stream Ciphers 269

with xi and ri randomly chosen values. If y is distributed accordingly to the
output distribution of g, i.e. y = g(x) for a uniformly distributed value of x,
then

Z(y) = (g(x1), g(x2), . . . , g(xi−1), g(x), ri+1, ri+2, . . . , rq)

is distributed according to Di. Now if y is distributed according to the uniform
distribution, then

Z(y) = (g(x1), g(x2), . . . , g(xi−1), y, ri+1, ri+2, . . . , rq).

Thus Z(y) is distributed according to Di−1. In order to distinguish the output
distribution of g from the uniform law, algorithm B calls algorithm A with inputs
Z(y) and returns the value returned by A. Thus

∣
∣Prx(B(g(x)) = 1)− Pry(B(y) = 1)

∣
∣

=
∣∣1
q

q−1∑

i=0

pi − 1
q

q∑

i=1

pi
∣∣ =

1
q
|p0 − pq| ≥ ε

q
.

Thus B distinguishes the output distribution of g from the uniform distribution
with probability at least ε

q in time t + qT L
g . Consequently we have:

Advprng
g (A) = qAdvprng

g (B)

≤ qAdvprng
g (t + qT L

g)

which gives us the final result:

Advprng
g (t, q) ≤ qAdvprng

g (t + qT L
g).

Proof of Theorem 1

Theorem 1. Let us consider F = {fK} where fK : {0, 1}n −→ {0, 1}m a PRF
and g : {0, 1}m −→ {0, 1}L a PRNG that produces L bits in time T L

g . The
advantage in time t with q queries of G = g ◦ F = {g ◦ fK} can be upper
bounded as follows

Advprf
G (t, q) ≤ Advprf

F (t + qT L
g) + qAdvprng

g (t + qT L
g).

Proof. We want to upper bound the advantage of an algorithm A that in time t
with q requests distinguishes a random instance gK = g ◦ fK of G = g ◦ F from
a perfect random function g∗ ∈ F ∗

n,L. We can write the advantage of A as

Advprf
G (A) =

∣
∣Pr(AgK = 1)− Pr(Ag∗

= 1))
∣
∣.

A is making at most q distinct queries to an oracle function instantiated by
gK , resp. g∗. In order to upper bound Advprf

G (A), we consider the intermediate
situation where the oracle function is neither gk nor g∗, but a random instance

270 C. Berbain and H. Gilbert

g ◦ f∗ of the composition of a perfect random function f∗ ∈ F ∗
n,m and g. Due to

the triangular inequality, we have

Advprf
G (A) ≤

∣
∣Pr(AgK = 1) − Pr(Ag◦f∗

= 1)
∣
∣

+
∣
∣Pr(Ag◦f∗

= 1) − Pr(Ag∗
= 1)
∣
∣.

We denote the first and the second absolute values of the right expression by
δ1 and δ2.

Let us first upper bound δ2. It is easy to see that instantiating the oracle
function of A with g ◦ f∗ (resp. g∗) amounts to answering the up to q distinct
oracle queries of A with a q-tuple (g(y1), . . . , g(yq)) of L-bit values, where the
q-tuple (y1, . . . , yq) is a randomly drawn from {0, 1}mq, resp. with a q-tuple
(z1, . . . , zq) of answers randomly drawn from {0, 1}Lq. In both case, the q-tuple
of oracle answers is independent of the up to q distinct values of the oracle
queries. Using this fact we can derive an algorithm B that distinguishes q val-
ues (g(x1), . . . , g(xq)) from q random values of {0, 1}L. Algorithm B works as
follows: on input (y1, . . . , yq) it runs algorithm A. Consequently it has to answer
A’s n-bit oracle queries xi with L-bit responses. On each distinct query xi, B
simply answers yi. When A halts, B halts also and returns the output of A.
We can easily see that Pr(B(g(x1), . . . g(xq)) = 1) = Pr(Ag◦f∗

= 1) and that
Pr(B(y1, . . . yq) = 1) = Pr(Ag∗

= 1). Consequently we have

δ2 = Advprng
g (B) ≤ Advprng

g (t, q).

Lemma 1 now provides:

δ2 ≤ qAdvprng
g (t + qT L

g).

In order to upper-bound Advprf
G (A) we still have to upper bound δ1. This can

be done by deriving from algorithm A an algorithm C that is able by invoking A
one single time to distinguish a random instance of the n-bit to m-bit PRF F
from a perfect random function f∗ ∈ F ∗

n,m with an advantage also equal to δ1.
Algorithm C has access to an n-bit to m-bit oracle function f . C works as

follows: first it invokes algorithm A. Consequently it has to answer A’s n-bit
oracle queries xi with L-bit responses. For such a query, C queries its own
oracle function f with the same query value xi, gets an m-bit answer yi =
f(xi), computes the L-bit value g(yi), and answers this value to algorithm A.
When A halts, C halts as well and outputs the same output as A. Therefore
we have Pr(CfK = 1) = Pr(Ag◦fK = 1) = Pr(AgK = 1) and Pr(Cf∗ = 1) =
Pr(Ag◦f∗ = 1). This implies that

∣
∣Pr(CfK = 1) − Pr(Cf∗ = 1)

∣
∣ is equal to∣∣Pr(AgK = 1)− Pr(Ag◦f∗

= 1)
∣∣, i.e.

Advprf
F (C) = δ1.

Furthermore the time required for algorithm C is equal to the time required
for algorithm A plus q times the time of computing g. Therefore Advprf

F (C) is

On the Security of IV Dependent Stream Ciphers 271

upper-bounded by Advprf
F (t + qT L

g , q), i.e. δ1 ≤ Advprf
F (t + qT L

g , q). Finally we
have for any A

Advprf
G (A) ≤ δ1 + δ2 ≤ Advprf

F (t + qT L
g , q) + qAdvprng

g (t + qT L
g).

Consequently

Advprf
G (t, q) ≤ Advprf

F (t + qT L
g , q) + qAdvprng

g (t + qT L
g).$%

Proof of Theorem 2

Theorem 2. Let g : {0, 1}m −→ {0, 1}L be a PRNG which generates L ≥ 2m
outputs bits and produces its 2m first output bits in time T 2m

g and let F g =
{fy}y∈{0,1}m be the family of n-bit to m-bit functions derived from g by the
Tree Based Construction. The (t, q) advantage of PRF F g is related to the
single-query advantage of PRNG g by the following inequality:

Advprf
F g (t, q) ≤ nqAdvprng

g (t + q(n + 1)T 2m
g).

Proof. First we define, for 0 ≤ i ≤ n, a family F g
i of {0, 1}n −→ {0, 1}m func-

tions; each F g
i can be viewed as an intermediate PRF between F g and the set

F ∗
n,m of perfect random n-bits to m-bit functions.

– F g
0 = {fg

y0
}y0∈{0,1}n where fg

y0
: (x1, . . . , xn) −→ gxn ◦ . . . ◦ gx1(y0).

– F g
1 = {fg

y0,y1
}(y0,y1)∈{0,1}2n

where fg
y0,y1

: (x1, . . . , xn) −→ gxn ◦ . . . ◦ gx2(yx1).

– F g
i = {fg

y0,y1,...,y2i−1
}y0,y1,...,y2i−1∈{0,1}2in

where fg
y0,...,y2i−1

: (x1, . . . , xn) −→ gxn ◦ . . . ◦ gxi+1(yx1...xi)
(in the former expression yx1,...xi represents y�i

t=1 xi2i−1)

– F g
n = {fg

y0,y1,...,y2n−1
}y0,y1,...,y2n−1∈{0,1}2n

where fg
y0,...,y2n−1

: (x1, . . . , xn) −→ (yx1...xn).

It is easy to see that F g
0 is equal to F g, and that F g

n is the set F ∗
n,m of all

n-bit to m-bit functions.
Let us consider any (t, q) distinguishing algorithm A for F g, i.e. a testing

algorithm capable to query an n-bit to m-bit oracle function up to q times, and
let us denote its distinguishing probability by

ε =
∣∣Prf∈F g(Af = 1) − Prf∈F ∗

n,m
(Af = 1)

∣∣.

We denote Prf∈F g
i
(Af = 1) by pi. Thus we have

ε = |p0 − pn|.

272 C. Berbain and H. Gilbert

We now construct a q-query distinguisher B for g, which when input with a
q-tuple (z1, . . . , zq) of 2m-bit words is using one invocation of algorithm A to
output either 0 or 1. In order to processes an input q-tuple (z1, . . . , zq), B first
randomly draws an integer i comprised between 0 and n − 1, and then inputs
(z1, zq) to a testing algorithm Bi, and outputs Bi’s binary output. Each testing
algorithm Bi is defined as follows: Bi invokes algorithm A, and computes the
answers to the up to q distinct n-bit oracle queries of A. For that purpose, Bi

uses its random generation capability to simulate an auxiliary random function
α : {0, 1}i −→ {1, q} that is initially undetermined. At each novel n bit oracle
query xj = (xj

1, . . . , x
j
n) of A, algorithm Bi uses:

– the bits xj
1 to xj

i to determine a 2m-bit value zk as follows: Bi first checks
if α is defined on point (xj

1, . . . , x
j
i). If not, it selects randomly a value in

{1, q}, affects it to α(xj
1, . . . x

j
i) and stores the new point of α. Otherwise Bi

simply read the previously stored value. In both case, we denote by k the
obtained value of α(xj

1, . . . x
j
i); k is used to select the k-th input zk from Bi’s

input (z1, . . . , zq);
– the bit xj

i+1 to select an m-bit word y equal to the substring of the m left
bits of zk if xj

i+1 = 0, and of the m right bits of zk if xj
i+1 = 1;

– the bits xj
i+2 to xj

n to compute As L-bit oracle response gxj
n
◦ . . . ◦ gxj

i+2
(y).

Finally when A halts, Bi halts also and returns A’s binary output.
It is not too difficult to see that:

– if Bi’s input is (g(a1), . . . , g(aq)), where (a1, . . . , aq) is a randomly drawn
q-tuple of m-bit, then A’s oracle queries and response pairs have exactly the
same probability distribution as if A were run with an n-bit to m-bit oracle
function f randomly drawn from the family F g

i :

Pr(Bi((g(a1), . . . , g(aq)) = 1) = Prf∈F g
i
(Af = 1) = pi.

– if Bi’s input is is a randomly drawn q-tuple (z1, . . . , zq) of 2m-bit values,
then A’s oracle queries and response pairs have exactly the same probability
distribution as if A was run with an n-bit to m-bit oracle function f randomly
drawn from the family F g

i+1:

Pr(Bi(z1, . . . , zq) = 1) = Prf∈F g
i+1

= (Af = 1) = pi+1.

The above equalities imply:
∣
∣Pr(B((g(a1), . . . , g(aq)) = 1)− Pr(B(z1, . . . , zq) = 1)

∣
∣

=
∣
∣ 1
n

n−1∑

i=0

pi −
1
n

n∑

i=1

pi

∣
∣ =

1
n
|p0 − pn| =

ε

n
.

In other words:
Advprng

g (B) =
1
n
Advprf

F g (A).

On the Security of IV Dependent Stream Ciphers 273

However, algorithm B requires at most t+qnT 2m
g , where t is the time required

by A and T 2m
g′ is the time required by g′ to produce 2m bits. Therefore for any

A we have
Advprf

F g (A) ≤ nAdvprng
g (t + qnT 2m

g , q).

Finally, since Advprng
g (t + qnT 2m

g , q) ≤ qAdvprng
g (t + q(n + 1)T 2m

g) due to
Lemma 1, we obtain

Advprf
F g (t, q) ≤ qnAdvprng

g (t+q(n+1)T 2m
g). $%

Main Reduction Theorem of [3]

Theorem 4. Let L = λ(k − 1)n be the number of keystream bits produced by in
time λTS using λ iterations of our construction. Suppose there exists an algo-
rithm A that distinguishes the L-bit keystream sequence associated with a known
randomly chosen system S and an unknown randomly chosen initial internal
state x ∈ {0, 1}n from a random L-bit sequence in time T with advantage ε.
Then there exists an algorithm C, which given the image S(x) of a randomly
chosen (unknown) n-bit value x by a randomly chosen n-bit to m-bit quadratic
system S produces a preimage of S(x) with probability at least ε

23λ over all pos-
sible values of x and S in time upper bounded by T ′.

T ′ =
27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2
)

+
27nλ2

ε2
TS .

Two General Attacks on Pomaranch-Like

Keystream Generators

H̊akan Englund, Martin Hell, and Thomas Johansson

Dept. of Information Technology, Lund University,
P.O. Box 118, 221 00 Lund, Sweden

Abstract. Two general attacks that can be applied to all versions and
variants of the Pomaranch stream cipher are presented. The attacks
are demonstrated on all versions and succeed with complexity less than
exhaustive keysearch. The first attack is a distinguisher which needs
keystream from only one or a few IVs to succeed. The attack is not only
successful on Pomaranch Version 3 but has also less computational com-
plexity than all previously known distinguishers for the first two versions
of the cipher. The second attack is an attack which requires keystream
from an amount of IVs exponential in the state size. It can be used as
a distinguisher but it can also be used to predict future keystream bits
corresponding to an IV if the first few bits are known. The attack will
succeed on all versions of Pomaranch with complexities much lower than
previously known attacks.

Keywords: Stream ciphers, distinguishing attack, resynchronization at-
tack, eSTREAM, Pomaranch.

1 Introduction

Pomaranch is one of many cipher constructions in the eSTREAM stream cipher
project. The Pomaranch family consists of several versions and variants. The
first two versions have been cryptanalyzed in [2,10,6]. For each new version, the
cipher has been changed such that the attacks on the previous versions would
not be successful.

In this paper we present two general attacks that can be applied to all ver-
sions and variants of the Pomaranch family of stream cipher. The first attack
is a statistical distinguisher, which can be applied to all Pomaranch-like ciphers
having one or several types of jump registers and both linear and nonlinear filter
function. We improve the computational complexity of all known distinguishers
on Version 1 and Version 2. Our attack is also applied to Pomaranch Version 3
and it is shown that the attack will succeed on the 80-bit variant with compu-
tational complexity 271.10, significantly less than exhaustive key search. For the
128-bit variant, the attack will have computational complexity 2126, almost that
of exhaustive key search. The complexity of the attack given in the theorems
can be seen as design criteria for subsequent versions of Pomaranch.

The second attack is an IV attack. It first stores many samples from the
keystream corresponding to one IV in a table. Given short keystream samples

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 274–289, 2007.
c© International Association for Cryptologic Research 2007

Two General Attacks on Pomaranch-Like Keystream Generators 275

from several other IVs, we can find collisions with the samples in the stored table.
When a collision is found, future keystream bits can be predicted. The key will
not be recovered but the attack is still more powerful than a distinguisher. Also
this attack can be applied to all versions and variants of Pomaranch, e.g., by
using a table of size 271.3 bytes, 298 different IVs and a computational complexity
of 2104, the 128 bit version of Pomaranch Version 3 can be attacked.

The outline of the paper is as follows. Section 2 will describe the Pomaranch
stream ciphers and Section 3 will briefly describe the previous attack on Po-
maranch. In Section 4 the first attack is given and in Section 5 we give the
second attack. Section 6 concludes the paper.

2 Description of Pomaranch

In this section, we will give a brief overview of the design of Pomaranch. There
are 3 versions of Pomaranch. First the overall design idea is presented and then
we give the specific parameters for the different versions. The attacks described
in this paper are independent of the initialization procedure and thus, only the
keystream generation will be described here. For more details we refer to the
respective design documents, see [7,8,9].

Pomaranch is a synchronous stream cipher designed primarily for being effi-
cient in hardware. It follows the classical design of a filter generator where the
contents of an internal state is filtered through a Boolean function to produce
the keystream. The design of Pomaranch is illustrated in Figure 1.

JRn

�

jn(t)

JRn−1
�9

KeyMap�
kn−1

�

�

⊕

�

jn−1(t)
�

· · ·

j3(t)
⊕�

JR2
�9

KeyMap�
k2

�

�

j2(t)

JR1
�9

KeyMap�
k1

�

�

00 . . .

H�

xn(t)

�
xn−1(t)

	

x2(t) x1(t)

�
z(t)

Fig. 1. General overview of Pomaranch

Pomaranch is based on a cascade of n Jump Registers (JR). A jump register
can be seen as an irregularly clocked Linear Finite State Machine (LFSM). The
clocking of a register can be done in one of two ways, either it jumps c0 steps
or it jumps c1 steps. The clocking is decided by a binary jump control sequence,
denoted by ji(t) for register i at time t.

ji(t) =
{

0, JRi is clocked c0 times
1, JRi is clocked c1 times

276 H. Englund, M. Hell, and T. Johansson

The jump registers are implemented using two different kinds of delay shift
cells, S-cells and F-cells. The S-cell is a normal D-element and the F-cell is a
D-element where the output is fed back and XORed with the input. Half of the
cells are implemented as S-cells and half are implemented as F-cells. When the
register is clocked it will jump c0 steps. When the jump control ji(t) is one, all
cells in JRi are switched to the opposite mode, i.e., all S-cells become F-cells
and vice versa. This switch of cells results in a jump through the state space
corresponding to c1. The jump index of a register is the number of c0 clockings
that is equivalent to one c1 clocking.

Notations and Assumptions. As seen in Figure 1 we denote Jump Reg-
ister i by JRi and its period by Ti. The key is denoted by K and the sub-
key used for JRi is denoted ki. The length of the registers is denoted by L.
The filter function is denoted by H (more specifically we will use the notation
H(1), H

(2)
80 , H

(2)
128, H

(3)
80 , H

(3)
128 for the different filter functions used, where the su-

perscript denotes the version of Pomaranch of interest, and the subscript denotes
the key length used in the version). Similarly we will denote the number of regis-
ters used by n(1), n

(2)
80 , n

(2)
128, n

(3)
80 , n

(3)
128. The bit taken from the register i as input

to the filter function at time t is denoted by xi(t). The keystream bit produced
at time t is denoted z(t) and sometimes only z. Both addition modulo 2 and
integer addition is denoted by + since there should be no risk of confusion. Only
absolute values of biases of approximations will be given.

2.1 Pomaranch Version 1

The first version of Pomaranch was introduced in [7]. In this version, 128 bit
keys were used together with an IV in the range of 64 to 112 bits. The cipher
is built upon n(1) = 9 identical jump registers. Each register uses 14 memory
cells together with a characteristic polynomial with the jump index 5945, i.e.,
(c0, c1) = (1, 5945). From register i 9 bits are taken as input to a key dependent
function, denoted KeyMap in Figure 1. The output of this function is XORed
to the jump sequence from register i− 1, ji(t) to produce the jump sequence for
the next register, ji+1(t). The keystream bit z is given as the XOR of the bit in
cell 13 from all the registers, i.e.,

z = H(1)
(
x1, . . . , x9

)
= x1 + x2 + . . . + x9.

2.2 Pomaranch Version 2

The second version of Pomaranch [8], comes in two variants, an 80-bit with
n

(2)
80 = 6, and a 128-bit key variant using n

(2)
128 = 9 registers. The registers

are still 14 memory cells long but to prevent the attacks on the first version,
different tap positions are used as input to the KeyMap function in Figure 1.
The characteristic polynomial is also changed and the new jump index is 13994.
A new initialization procedure was introduced to prevent the attacks in [2,5].
The keystream is still taken as the XOR of the bits in cell 13 of all registers and
is given by

Two General Attacks on Pomaranch-Like Keystream Generators 277

z =

{
H

(2)
80

(
x1, . . . , x6

)
= x1 + x2 + . . . + x6

H
(2)
128

(
x1, . . . , x9

)
= x1 + x2 + . . . + x9

.

2.3 Pomaranch Version 3

As in the second version, there are two variants of Pomaranch Version 3 [9],
an 80-bit and a 128-bit key variant. The number of registers used are still the
same as in Pomaranch Version 2, i.e., n

(3)
80 = 6 respectively n

(3)
128 = 9. In the case

of Pomaranch Version 3, two different jump registers are used, the first using
jump index 84074 which is referred to as type I and the second using jump index
27044, referred to as type II. The type I registers are used for odd numbered
sections in Figure 1, and type II for the even numbered sections. Both registers
are built on 18 memory cells, and have primitive characteristic polynomials, i.e.,
when only clocked with zeros or ones they have a period of 218 − 1. From each
register one bit is taken from cell 17 and is fed into H . The filter functions used
are

z =

{
H

(3)
80

(
x1, . . . , x6

)
= G
(
x1, . . . , x5

)
+ x6

H
(3)
128

(
x1, . . . , x9

)
= x1 + x2 + . . . + x9

,

where

G(x1, . . . , x5) = x1 + x2 + x5 + x1x3 + x2x4 + x1x3x4 + x2x3x4 + x3x4x5

is a 1-resilient Boolean function. The keystream length per IV/key pair is limited
to 264 bits in Version 3.

3 Previous Attacks on the Pomaranch Stream Ciphers

The first attack on Pomaranch, given in [2], was an attack on the initialization
procedure. Soon after, an attack on the keystream generation was presented
in [10]. This attack considered the best linear approximation of bits distance
L+1 apart. Register JR1 was exhaustively searched since this register is always
fed with the all zero jump control sequence and the linear approximation is
not valid for this register. When the state of JR1 was known, JR2 and 16
bits of the key was guessed. This was iterated until the full key was recovered.
A distinguisher was not explicitly mentioned in [10] but it is very easy to see
that if the attack is stopped after JR1 is recovered, it would be equivalent
to a distinguishing attack. This distinguisher needed 272.8 keystream bits and
computational complexity 286.8.

Pomaranch Version 2 was designed to resist the attacks in [2,10]. However, it
was still possible to find biased linear approximations by looking at keystream
bits further apart. This was done in [6] and the new approximation made it
possible to mount distinguishing and key recovery attacks on both the 80-bit
and the 128-bit variants. The distinguisher for the 80-bit variant needed 244.59

keystream bits and a computational complexity of 258.59. For the 128-bit variant
the complexities were 273.53 and 287.53 respectively.

278 H. Englund, M. Hell, and T. Johansson

4 Distinguishing Attacks on Pomaranch-Like Ciphers

In this section we will present general distinguishers for Pomaranch-like ciphers,
in particular we will study the constructions that have been proposed in Po-
maranch Version 1-3. We will give general results for these cipher families that
can be used as design criteria for future Pomaranch ciphers.

4.1 Period of Registers

The first jump register, denoted JR1 in Figure 1, is during keystream generation
mode fed by the jump sequence only containing zeros. Hence JR1 is a LFSM.
The period of the register is denoted by T1, hence x1(t) = x1(t + T1) with
T1 = 2L − 1.

From JR1 a jump control sequence is calculated which controls the jumping
of JR2. Assume that after T1 clocks of JR1, register JR2 has jumped C steps.
Then after T 2

1 clocks JR2 has jumped CT1 steps, a multiple of T1 and is thus
back to its initial state. If primitive characteristic polynomials are used for the
registers, it can be shown that the period for register JRi is

Ti = T i
1,

and hence
xi(t) = xi(t + T i

1).

Consequently, at time t and t + T p
1 , the filter function H has p inputs with

exactly the same value, namely the contribution from registers JR1, . . . , JRp.
This observation will be used in our attack.

4.2 Filter Function

The filter function used in Pomaranch can be a nonlinear Boolean function or
just the linear XOR of the output bits of each jump register. Our attack can be
applied to both variants. The keystream bit at time t, denoted by z(t), can be
described as

z(t) = H
(
x1(t), . . . , xn(t)

)
.

Using the results from Section 4.1 and taking our samples as z(t)+ z(t+T p
1) we

can write the expression for the samples as

z(t) + z(t + T p
1) = H

(
x1(t), . . . , xn(t)

)
+ H
(
x1(t + T p

1), . . . , xn(t + T p
1)
)
. (1)

4.2.1 Linear Filter Function
When the filter function H is linear, i.e., H(x1, . . . , xn) =

∑n
i=1 xi, and our

samples are taken as z(t) + z(t + T p
1) we know from Section 4.1 that p inputs

to the filter function are the same at time t and at time t + T p
1 , hence we can

rewrite (1) as

z(t) + z(t + T p
1) =

n∑

i=p+1

xi(t) + xi(t + T p
1).

Two General Attacks on Pomaranch-Like Keystream Generators 279

4.2.2 Nonlinear Filter Function
When the filter function H is nonlinear, xi(t) and xi(t + T p

1) will not cancel out
in the keystream with probability one, as in Section 4.2.1. But, the input to H
at time t and t + T p

1 has p inputs x1, . . . , xp with the exact same value. This
might lead to a biased distribution,

Pr
(
H
(
x1(t), . . . , xn(t)

)
+ H
(
x1(t + T p

1), . . . , xn(t + T p
1)
)

= 0
)

=

Pr (z(t) + z(t + T p
i) = 0) =

1
2
(1 ± ε),

where ε denotes the bias and |ε| ≤ 1.

4.3 Linear Approximations of Jump Registers

In our attack, we need to find a linear approximation for the output bits of the
jump registers that is biased, i.e., that holds with probability different from one
half. We assume that all states of the register are equally probable, except for
the all zero state which has probability 0. Further, it is assumed that all jump
control sequences have the same probability. Finding the best linear approxima-
tion can be done by exhaustive search. Under certain circumstances much faster
approaches can be used, see [6]. We search for a set A of size w such that

Pr(
∑

i∈A
x(t + i) = 0) =

1
2
(1 ± ε), |ε| ≤ 1,

i.e., the weight of the approximation is w and the terms are given by the set
A. For our attack to work it is important that the bias of this approximation is
sufficiently high.

It is assumed that jump register JR1 will always have the all zero jump control
sequence. Hence, the linear approximation will never apply for this register.

4.3.1 Different Registers
In the case when not all registers use the same kind of jump registers, we are
not interested in the most biased linear approximation of single registers. In-
stead we have to search for a linear approximation that has a good bias for all
types of registers at the same time. This is much harder to find than a single
approximation for one register. This is the case in Pomaranch Version 3.

4.4 Attacking Different Versions of Pomaranch

A Pomaranch stream cipher can be designed using one or several types of jump
registers. It can also use a linear or a nonlinear Boolean filter function. In this
section we take a closer look at the different design possibilities that has been
used and give an expression for the number of samples needed in a distinguisher
for each possibility.

The general expressions for the amount of keystream needed in an attack can
be seen as a new design criteria for Pomaranch-like stream ciphers.

280 H. Englund, M. Hell, and T. Johansson

4.4.1 One Type of Registers with Linear Filter Function
In this family of Pomaranch stream ciphers we assume that all jump register
sections use the same type of register and that the filter function H is linear,
i.e., H(x1, . . . , xn) =

∑n
i=1 xi. Pomaranch Version 1 and Pomaranch Version 2

are both included in this family.
Assume that we have found a linear approximation, as described in Section

4.3, of weight w of the register used. We consider samples at t and t + T p
1 such

that p positions into H are the same according to Section 4.1. Our samples will
be taken as
∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T p

1) =
n∑

j=1

∑

i∈A

(
xj(t + i) + xj(t + i + T p

1)
)

(2)

=
n∑

j=p+1

∑

i∈A

(
xj(t + i) + xj(t + i + T p

1)
)
.

Since the bias of
∑

i∈A xi(t + i) is ε and we have 2(n− p) such relations the
total bias of the samples is given by

εtot = ε2(n−p).

Using the approximation that 1/ε2
tot samples are needed to reliably distin-

guish the cipher from a truly random source, we get an estimate of the keystream
length needed. (In practice, this number should be multiplied by a small con-
stant.)

Theorem 1. The computational complexity and the number N of keystream
bits needed to reliably distinguish the Pomaranch family of stream ciphers using
a linear filter function and n jump registers of the same type is bounded by

N = T p
1 +

1
ε4(n−p)

, p > 0,

where ε is the bias of the best linear approximation of the jump register.

4.4.2 Different Registers with Linear Filter Function
In this family of generators different types of jump registers are used and the
filter function is assumed to be H(x1, . . . , xn) =

∑n
i=1 xi.

This case is very similar to the case when all registers are of the same type. The
difference is that, in this case, we are not looking for the best linear approxima-
tion of the registers separately. Instead, we have to find a linear approximation
that have a bias for all the registers JRp+1, . . . , JRn. This can be difficult if
there are several types of registers. Approximations with a large bias for one
type might have a very small bias for other types. Anyway, assume that we have
found such a linear approximation. Our samples will still be taken as in (2). If
we denote the bias for the approximation of register i by εi, then the total bias
will be given as

εtot =
n∏

i=p+1

ε2
i .

Two General Attacks on Pomaranch-Like Keystream Generators 281

Theorem 2. Assume that there is a linear relation that is biased in all registers.
The computational complexity and the number N of keystream bits needed to
reliably distinguish the Pomaranch family of stream ciphers using a linear filter
function and n jump registers of different types is bounded by

N = T p
1 +

1
n∏

i=p+1

ε4
i

, p > 0,

where εi is the bias of jump register JRi.

The 128-bit variant of Pomaranch Version 3 belongs to a special subclass of
this family, namely all registers in odd positions are of type I and registers in
even positions are of type II. In this case we only have to search for a linear
approximation that is biased for type I and type II registers at the same time.
The bias of

∑
i∈A xi(t + i) is denoted εtype I and εtype II , respectively, for the

different registers. In total we have 2!n−p
2 " type I relations and 2&n−p

2 ' type II
relations when n is odd. Hence, the total bias of the samples is given by

εtot = ε
2�n−p

2 �
type I ε

2�n−p
2 �

type II .

If we apply Theorem 2 to the 128-bit variant of Pomaranch Version 3, the number
of samples in the distinguisher is given by

N = T p
1 +

1

ε
4�n−p

2 �
type I ε

4�n−p
2 �

type II

. (3)

4.4.3 Nonlinear Filter Function
Now we consider the case when the Boolean filter function is a nonlinear function.
We only consider the case when the filter function H can be written in the form

H(x1, . . . , xn) = G(x1, . . . , xn−1) + xn. (4)

The attack can easily be extended to filter functions with more (or less) linear
terms but to simplify the presentation, and the fact that the 80-bit variant of
Pomaranch Version 3 is in this form, we only consider this special case in this
paper.

Attacks on this family use a biased linear approximation of JRn, see Section
4.3, together with the fact that the input to G at time t and t+T p

1 have p inputs
in common and hence in some cases a biased distribution, see Section 4.2.2.

Let ε denote the bias of G
(
x1(t), . . . , xn−1(t)

)
+ G
(
x1(t + T p

1), . . . , xn−1(t +
T p

i)
)
, and ε the bias of our linear approximation for JRn,

∑
i∈A xi(t + i). The

samples are taken as

282 H. Englund, M. Hell, and T. Johansson

∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T p

1) =
∑

i∈A
xn(t + i) +

∑

i∈A
xn(t + i + T p

1)

+
∑

i∈A
G
(
x1(t + i), . . . , xn−1(t + i)

)
+ G(x1(t + i + T p

1), . . . , xn−1(t + i + T p
1)
)
,

and the bias of the samples is given by

εtot = ε2εw. (5)

This relation tells us that we need to keep the weight of the linear approximation
of JRn as low as possible, i.e., there is a trade off between the bias ε of the
approximation and the number of terms w in the relation.

Theorem 3. The computational complexity and the number N of keystream
bits needed to reliably distinguish the Pomaranch family of stream ciphers using
a filter function of the form (4) is bounded by

N = T p
1 +

1
(ε2εw)2

.

where ε is the bias of the approximation of weight w of register JRn and ε is the
bias of G

(
x1(t), . . . , xn−1(t)

)
+ G
(
x1(t + T p

1), . . . , xn−1(t + T p
i)
)
.

Note that in this presentation it does not matter if all registers are of the same
type or if they are of different types. Since only register JRn is completely linear
in the output function H , we only need to have an approximation of this register.

4.5 Attack Complexities for the Existing Versions of the Pomaranch
Family

In this section, we look at the existing versions and variants of Pomaranch that
have been proposed so far. These are Pomaranch Version 1, the 80-bit and 128-bit
variants of Pomaranch Version 2 and the 80-and 128-bit variants of Pomaranch
Version 3. Applying the attack proposed in this paper, we show that we can find
distinguishers with better complexity than previously known for all 5 ciphers.

4.5.1 Pomaranch Version 1
In Pomaranch Version 1 all registers are the same, so the attack will be according
to Section 4.4.1. The best known linear approximation for this register, as given
in [10], is

ε = |2 Pr(x(t) + x(t + 8) + x(t + 14) = 0) − 1| = 2−4.286.

Using Theorem 1 for different values of p we get Table 1. We see that the best
attack is achieved when p = 5. The computational complexity and the amount
of keystream needed is then 270.46.

Two General Attacks on Pomaranch-Like Keystream Generators 283

Table 1. Number of samples and computational complexity needed to distinguish
Pomaranch Version 1 from random

p 1 2 3 4 5 6 7

N (1) 2137.15 2120.01 2102.86 285.72 270.46 283.99 297.99

4.5.2 Pomaranch Version 2
Similarly as in Pomaranch Version 1, in Pomaranch Version 2 all registers are
the same and the attack will be performed according to Section 4.4.1. The best
bias of a linear approximation for the registers used was found in [6] and is given
by

ε = |2 Pr(x(t) + x(t + 2) + x(t + 6) + x(t + 18) = 0)− 1| = 2−4.788.

Using Theorem 1 for different values of p gives Table 2. For the 80-bit variant
the computational complexity and the number of samples is 256.00 and for the
128-bit variant it is 276.62.

Table 2. Number of samples needed to distinguish Pomaranch Version 2 according to
Theorem 1

p 1 2 3 4 5 6

N
(2)
80 295.76 276.61 257.46 256.00 270.00 284.00

N
(2)
128 2153.22 2134.06 2114.91 295.76 276.62 284.00

4.5.3 Pomaranch Version 3
There is a significant difference between the 80-bit and the 128-bit variants of
Pomaranch Version 3, so this section will be divided into two parts.

80-bit Variant.The 80-bit variant of Pomaranch Version 3 uses a non-linear filter
function, the attack will hence follow the procedure described in Section 4.4.3.

We started by estimating the bias of

G
(
x1(t), . . . , x5(t)

)
+ G
(
x1(t + T p

1), . . . , x5(t + T p
1)
)
.

The results for different p are summarized in Table 3. The keystream per IV/key
pair of Pomaranch Version 3 is limited to 264. Because of this we limit p to
p ∈ {1, 2, 3}, otherwise T p

1 > 264. We looked for a linear relation of JR6 that,
together with a value of p ∈ {1, 2, 3}, minimizes the amount of keystream needed
as given by Theorem 3. The best approximation found was

Pr
(
x6(t)+x6(t+5)+x6(t+7)+x6(t+9)+x6(t+12)+x6(t+18) = 0

)
=

1
2
(1−2−8.774),

using p = 3. The total bias of our samples using this approximation is

284 H. Englund, M. Hell, and T. Johansson

εtot = (2−8.774)2 · (2−3)6 = 2−35.548,

according to (5). The samples used in the attack are taken according to

∑

i∈A
z(t + i) +

∑

i∈A
z(t + i + T 3

1),

where A = {0, 5, 7, 9, 12, 18}. According to Theorem 3, the amount of keystream
needed is 254+271.096 = 271.096. This is also the computational complexity of the
attack. In the specification of Pomaranch Version 3 the frame length (keystream
per IV/key pair) is limited to 264. This does not prevent our attack since all
samples will have this bias regardless of the key and IV used. We only need to
consider 264 keystream bits from !27.096" = 137 different key/IV pairs.

Table 3. The bias of G
�
x1(t), . . . , x5(t)

�
+ G

�
x1(t + T p

1), . . . , x5(t + T p
1)

�
in the 80 bit

variant of Pomaranch Version 3 for different values of p

p 1 2 3 4 5

ε 0 2−4 2−3 2−2 1

128-bit Variant. In Pomaranch Version 3 two different registers are used, so
we start by searching for a linear approximation that is good for both types of
registers. The best approximation we found was

x(t)+x(t+1)+x(t+2)+x(t+5)+x(t+7)+x(t+11)+x(t+12)+x(t+15)+x(t+21),

which has the same bias for both types of registers, namely

εeven = εodd = 2−10.934.

Using (3) for different values of p we get Table 4. Our best distinguishing attack
needs 2126.00 keystream bits. This figure is determined by T 7

1 = 2126.00 so it is not
possible to look at different key/IV pairs in this case since the distance between
the bits in each sample has to be 2126.00. Since the frame length is limited to 264

it will not be possible to get any biased samples at all with p = 7.

Table 4. Number of samples needed to distinguish the 128-bit variant of Pomaranch
Version 3 according to (3)

p 1 2 3 4 5 6 7 8

N
(3)
128 2349.89 2306.15 2262.42 2218.68 2174.94 2131.21 2126.00 2144.00

Two General Attacks on Pomaranch-Like Keystream Generators 285

5 Square Root IV Attack

In this section we will give an attack that works for all families of Pomaranch
where the key is longer than half of the total register length. The size of the
state in Pomaranch is always larger than twice the key size, e.g., the 128-bit
variant of Pomaranch Version 3 has a state size of 290 bits. Thus, the generic
time-memory tradeoff attacks will not be applicable in general. Our attack is a
variant of the time-memory tradeoff attack and is generic for all stream ciphers.
Let us divide the internal state of the cipher into two parts,

State = (StateK , StateK+IV),

where StateK is a part of the state that statically holds the key and StateK+IV

is a part of the state that is updated, depending on both the key and the IV .
If the key size |K| > |StateK+IV |/2, then the attack will always succeed with
complexity below exhaustive key search. In Pomaranch, StateK will consist of
the |K| key bits and StateK+IV will consist of the register cells.

In the attack scenario, we assume that the key is fixed and that the cipher
is initialized with many different IVs. Further, we assume that we have access
to one long keystream sequence produced from one of the IVs, denoted IV0. We
intercept the ciphertext corresponding to many other IVs and we know the first
l plaintext bits corresponding to every ciphertext. Our goal is to recover the rest
of the plaintext for one of the messages.

The key map used to produce the jump control bits is key dependent but
independent of the IV. Hence, a fixed key will define a state graph of size (2L −
1)n ≈ 2nL states, where L is the register length and n the number of registers.
We can apply the following attack.

Let a sample of l consecutive keystream bits at time t be denoted S(t) =(
z(t), z(t + 1), . . . , z(t + l − 1)

)
. If the sample stems from IVi we denote it by

SIVi(t). We first store a large amount of samples from IV0 in a table. We would
like to find another IV, denoted IVc, that results in a sample such that

SIVc(tc) = SIV0(t0).

If a collision is found, then with high probability the following keystream of
IV0 and IVc will also be identical. That means that if we just know the first l
keystream bits generated by IVc, we can predict future keystream bits from IVc.
The attack is visualized in Figure 2.

Assume that 2βnL (0 ≤ β ≤ 1) samples of length l from a keystream se-
quence of 2βnL + l bits, originating from IV0 and key K, is saved in a table. The
table is then sorted with complexity O(βnL · 2βnL). This table covers a frac-
tion of 2−(1−β)nL of the entire cycle. The number of samples (IVs with l known
keystream bits) we need to test to find a collision is geometrically distributed
with expected value 2(1−β)nL. For each sample, a logarithmic search with com-
plexity O(βnL) in the table is performed to see if there is a collision. To be sure
that a collision in the table actually means that we have found a collision in the
state cycle, l must be l ≈ nL. The attack complexities are then given by

286 H. Englund, M. Hell, and T. Johansson

�

SIV0

Samples saved in table

�

SIVc

Fig. 2. State graph for a fixed key, a sample is visualized by a small ring

2βnL + nL, from one IV andKeystream :
nL, from 2(1−β)nL IVs

T ime : βnL2βnL + βnL2(1−β)nL

Memory : nL2βnL

where 0 ≤ β ≤ 1. By decreasing β it is possible to achieve smaller memory
complexity at the expense of more IVs and higher time complexity. We can also
see that the best time complexity is achieved when β = 0.5 for large nL. The
proposed attack is summarized in Figure 3. In the figure, SIVi(t) represents a
sample from the keystream from IVi at time t, and T represents the table where
samples are stored.

for i = 1, . . . , 2
nL
2

T [i] = SIV0(t + i)
end for
sort T

for i = 1, . . . , 2
nL
2

if SIVi(t) ∈ T
return cipher

end for
return random

Fig. 3. Summary of square root attack

5.1 Attack Complexities on Pomaranch

In this section we will look at the existing versions of Pomaranch and show
that the square root IV attack can be mounted with complexity significantly
less than exhaustive key search. We assume β = 0.5 so the time complexity and
the memory complexity in bits are equal. The 128-bit variants of Pomaranch

Two General Attacks on Pomaranch-Like Keystream Generators 287

Version 1 and Version 2 can be attacked using a table of size 267.0 bytes together
with keystream from 263.0 different IVs. The 80-bit variant of Pomaranch Ver-
sion 2 can be attacked using only a table of 245.4 bytes and 242.0 different IVs.
Pomaranch Version 3 uses larger registers, and the complexity of the attack on
the 80-bit variant is a table of size 257.8 bytes and 254.0 IVs. The 128-bit variant
needs a table of 285.3 bytes and 281 IVs. However, if we respect the maximum
frame length of 264 bits, we need to choose β = 0.395. Then we need a table of
271.3 bytes and 298 IVs. The time complexity is in this case 2104.

The success probability of the attack has been simulated on a reduced version
of the 128 bit variant of Pomaranch Version 3, using two registers. Choosing
β = 0.5 implies that we know 218 keystream bits from IV0, we store all samples
of length nL = 36 in a table, and that we need samples from 218 different IVs in
order to find a collision. The simulation results are summarized in Table 5. We
also verified the attack using 3 registers. The attack given in this section suggests
a new design criteria for the Pomaranch family of stream ciphers, namely that
the total register length must be at least twice the keysize.

Table 5. Simulation results using 2 register Pomaranch version 3 with linear filter
funtion, the table summarizes how many times the attack succeeds out of 100 attacks
for a specific table size and number of IVs

Number of IVs

Success rate 217 218 219 220 221

Table size

217 28 45 64 87 98

218 38 67 91 98 100

219 71 86 98 100 100

6 Conclusions

We have presented two general attacks on Pomaranch-like keystream generators.
The attack complexities are summarized in Table 6.

The first attack is a distinguishing attack that can be applied to all known
versions and variants of the stream cipher Pomaranch. For Pomaranch Version
1 and Pomaranch Version 2, the distinguisher will succeed with better compu-
tational complexity than any other known distinguisher for these versions. For
the 80-bit variant of Pomaranch Version 3, the attack will succeed using 271.1

bits and computational complexity 271.1. Since the frame length is restricted to
264 bits we can instead collect 264 bits from 137 key/IV pairs. For the 128-bit
variant our distinguisher needs about 2126 samples and will not succeed if the
frame length is restricted.

We have also presented a general IV attack that works for all ciphers where
the key size is larger than half of the state size, when the part of the state

288 H. Englund, M. Hell, and T. Johansson

only affected by the key is not considered. The attack was demonstrated on all
versions and variants of Pomaranch with complexity far below exhaustive search.
This attack has much lower complexity than the first and will work even if the
frame length is restricted. The attack will not recover the key but is different
from a distinguishing attack. It will recover the plaintext corresponding to one
IV if only the ciphertext together with the first few keystream bits are known.
On the other hand, this attack will require keystream from a large amount of
IVs. This attack will also be applicable to the stream cipher LEX [1] and to any
block cipher used in OFB mode of operation as shown in [3]. The attack scenario
here is somewhat similar to the attack scenarios in disk encryption, see e.g., [4],
where the adversary has write access to the disk encryptor and read access to
the storage medium.

Table 6. Summary of attack complexities, for the two proposed attacks, on all versions
and variants of Pomaranch

Attack Complexities Distinguishing Attack Square Root IV attack

Keystream/Compl. Memory/IVs/Compl.

Pomaranch v1 128 bit 271 / 271 267 / 263 / 263

Pomaranch v2
80 bit 256 / 256 245 / 242 / 242

128 bit 277 / 277 267 / 263 / 263

Pomaranch v3
80 bit 271 / 271 258 / 254 / 254

128 bit ∗ 2126 / 2126 271 / 298 / 2104

* Without frame length restriction.

References

1. Biryukov, A.: The design of a stream cipher LEX. Selected Areas in
Cryptography—SAC, 2006. Preproceedings (2006)

2. Cid, C., Gilbert, H., Johansson, T.: Cryptanalysis of Pomaranch. IEE Proceedings
- Information Security 153(2), 51–53 (2006)

3. Englund, H., Hell, M., Johansson, T.: A note on distinguishing attacks. The State
of the Art of Stream Ciphers, Workshop Record, SASC 2007, Bochum, Germany
(January 2007)

4. Gjøsteen, K.: Security notions for disk encryption. In: di Vimercati, S.d.C., Syver-
son, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 455–474.
Springer, Heidelberg (2005)

5. Hasanzadeh, M., Khazaei, S., Kholosha, A.: On IV setup of Pomaranch. eS-
TREAM, ECRYPT Stream Cipher Project, Report 2005/082 (2005),
http://www.ecrypt.eu.org/stream

6. Hell, M., Johansson, T.: On the problem of finding linear approximations and
cryptanalysis of Pomaranch version 2. Selected Areas in Cryptography—SAC 2006.
Preproceedings (2006)

http://www.ecrypt.eu.org/stream

Two General Attacks on Pomaranch-Like Keystream Generators 289

7. Jansen, C.J.A., Helleseth, T., Kholosha, A.: Cascade jump controlled sequence gen-
erator (CJCSG). eSTREAM, ECRYPT Stream Cipher Project, Report 2005/022
(2005), http://www.ecrypt.eu.org/stream

8. Jansen, C.J.A., Helleseth, T., Kholosha, A.: Cascade jump controlled sequence
generator and Pomaranch stream cipher (version 2). eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/006 (2006), http://www.ecrypt.eu.org/stream

9. Jansen, C.J.A., Helleseth, T., Kholosha, A.: Cascade jump controlled sequence
generator and Pomaranch stream cipher (version 3). eSTREAM, ECRYPT Stream
Cipher Project, http://www.ecrypt.eu.org/stream

10. Khazaei, S.: Cryptanalysis of Pomaranch (CJCSG). eSTREAM, ECRYPT Stream
Cipher Project, Report 2005/065 (2005), http://www.ecrypt.eu.org/stream

http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream

Analysis of QUAD

Bo-Yin Yang1, Owen Chia-Hsin Chen2,
Daniel J. Bernstein3, and Jiun-Ming Chen4

1 Academia Sinica and Taiwan Information Security Center
by@moscito.org

2 National Taiwan University
owenhsin@gmail.com

3 University of Illinois at Chicago
djb@cr.yp.to

4 Nat’l Taiwan University and Nat’l Cheng Kung University
jmchen@ntu.edu.tw

Abstract. In a Eurocrypt 2006 article entitled “QUAD: A Practical
Stream Cipher with Provable Security,” Berbain, Gilbert, and Patarin
introduced QUAD, a parametrized family of stream ciphers. The arti-
cle stated that “the security of the novel stream cipher is provably
reducible to the intractability of the MQ problem”; this reduction de-
duces the infeasibility of attacks on QUAD from the hypothesized infeasi-
bility (with an extra looseness factor) of attacks on the well-known hard
problem of solving systems of multivariate quadratic equations over fi-
nite fields. The QUAD talk at Eurocrypt 2006 reported speeds for QUAD
instances with 160-bit state and output block over the fields GF(2),
GF(16), and GF(256).

This paper discusses both theoretical and practical aspects of attack-
ing QUAD and of attacking the underlying hard problem. For example, this
paper shows how to use XL-Wiedemann to break the GF(256) instance
QUAD(256, 20, 20) in approximately 266 Opteron cycles, and to break the
underlying hard problem in approximately 245 cycles. For each of the
QUAD parameters presented at Eurocrypt 2006, this analysis shows the
implications and limitations of the security proofs, pointing out which
QUAD instances are not secure, and which ones will never be proven se-
cure. Empirical data backs up the theoretical conclusions; in particular,
the 245-cycle attack was carried out successfully.

1 Introduction

1.1 Questions

Berbain, Gilbert, and Patarin introduced QUAD at Eurocrypt 2006. Their article
[7] is titled “A Practical Stream Cipher,” but QUAD is not actually a single stream
cipher; it is a parametrized family of stream ciphers. The most important pa-
rameters are the QUAD field size, the number of QUAD variables, and the number
of QUAD outputs per round. We will write QUAD(q, n, r) to mean any instance of
QUAD that has field size q, uses n variables, and produces r outputs per round.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 290–308, 2007.
c© International Association for Cryptologic Research 2007

Analysis of QUAD 291

The speed and security of QUAD are (obviously) functions of the QUAD para-
meters. The Performance section [7, Section 6] of the QUAD paper reported a
speed of 2915 Pentium-IV cycles/byte for the “recommended version of QUAD,”
namely QUAD(2, 160, 160). The section closed with the following intriguing com-
ment: “Though QUAD is significantly slower than AES, which runs at 25 cy-
cles/byte, it is much more efficient than other provably secure pseudo random
generator. Moreover, implementations of QUAD with quadratic system over larger
fields (e.g. GF(16) or GF(256) are much faster and even reach 106 cycles/byte.”

Further performance details were revealed in the QUAD talk at Eurocrypt 2006.
In that talk, the QUAD authors reported the following implementation results:

• QUAD(2, 160, 160): 2930 cycles/byte for 32-bit architecture, 2081 for 64-bit;
• QUAD(16, 40, 40): 990 cycles/byte for 32-bit architecture, 745 for 64-bit;
• QUAD(256, 20, 20): 530 cycles/byte for 32-bit architecture, 417 (confirmed in

[5], correcting the erroneous “106” in [7]) for 64-bit.

We wrote privately to the QUAD authors to ask about parameters. The authors
confirmed in response that the Eurocrypt 2006 speed reports were for “160 bits of
internal state, and 160 bits produced at each round,” i.e., QUAD(q, n, n) with qn =
2160; and that the talk reported the above speeds for q = 2, 16, and 256. Speed
was never reported for the “proven secure” QUAD(2, 256, 256) or QUAD(2, 350, 350).

Which of these QUAD instances are actually secure? What is the security level
under the best known attack? What does the “provable security” of QUAD mean
for these parameter choices? What about other parameter choices?

1.2 Conclusions

This paper discusses both theoretical and practical aspects of solving the non-
linear multivariate systems associated with the security of QUAD. Our analysis
produces the following conclusions regarding the security of QUAD:

• Section 4: For a surprisingly wide range of parameters (which we call “bro-
ken” parameters), a feasible computation distinguishes the QUAD output
stream from uniform; in fact, an attacker can compute QUAD’s secret in-
ternal state from a few output blocks. For example, QUAD(256, 20, 20), one of
the three QUAD instances for which timings were reported in the QUAD talks at
Eurocrypt 2006 and SAC 2006 [5], is breakable in no more than 266 cycles.

• Section 5: For an even wider range of parameters (which we call “unprovable”),
a feasible attack breaks the “hard problem” underlying QUAD. For example, the
“hard problems” underlying QUAD(16, 40, 40) and QUAD(256, 20, 20) are break-
able in approximately 271 and 245 cycles respectively. An “unprovable” in-
stance can never be provably secure. This does not mean that the QUAD instance
is breakable!

• Section 6: For an extremely wide range of parameters (which we call “un-
proven”), including QUAD(256, 20, 20), QUAD(16, 40, 40), QUAD(2, 160, 160), and
QUAD(2, 256, 256), a “loosely feasible” attack breaks the “hard problem” un-
derlying QUAD. “Loosely feasible” means that the attack time is smaller than

292 B.-Y. Yang et al.

280L where L is the looseness factor in QUAD’s “provable security” theorem.
This does not mean that the proof is in error, and it does not mean that the
QUAD instance is breakable!

Our algorithm analysis—in particular, our analysis of XL-Wiedemann—may also
be useful for readers interested in other applications of solving systems of mul-
tivariate equations.

We do not claim that all QUAD parameters are broken, or unprovable, or un-
proven. All of our attacks against QUAD(q, n, n) have cost growing exponentially
with n when q is fixed. The problem for QUAD is that—especially for large q—the
base of the exponential is surprisingly small, so n must be surprisingly large to
achieve proven security against these attacks.

We see ample justification for future investigation of QUAD. The QUAD security
argument is that a feasible attack against QUAD(q, n, n) for moderately large n
would imply an advance in attacks against the MQ problem, the problem of
solving systems of multivariate quadratic equations over finite fields:

Problem MQ: Solve the system P1 = P2 = · · · = Pm = 0, where each Pi is a
quadratic polynomial in x = (x1, . . . , xn). All coefficients and variables are
in the field K = GF(q).

This is a well-known difficult problem [20] and the basis for multivariate-quadratic
public-key cryptosystems [16,27]. However, we are concerned by the choice of
QUAD(2, 160, 160), QUAD(16, 40, 40), and QUAD(256, 20, 20) as the subjects of speed
reports in the QUAD talk at Eurocrypt 2006. QUAD(256, 20, 20) is now broken; no
extension of the security arguments in [7] will ever prove QUAD(16, 40, 40) secure;
and QUAD(2, 160, 160), while apparently unbroken, is currently rather far from be-
ing provably secure. There is no single QUAD stream cipher that simultaneously
provides the advertised levels of speed and provable security. We recommend that
future QUAD evaluations stop describing QUAD as “a stream cipher” and start care-
fully distinguishing between different choices of the QUAD parameters.

1.3 Previous Work

QUAD is a new proposal, but we are certainly not the first to observe difficulties
in the parameter choices for “provably secure” cryptosystems.

Consider, for example, the famous BBS stream generator. Blum, Blum, and
Shub [8] proved that an attack against this generator can be converted into
an integer-factorization algorithm with a polynomially bounded loss of effi-
ciency and effectiveness. Koblitz and Menezes [22, Section 6.1], after compar-
ing the latest refinements in the BBS security theorem, the speeds of existing
factorization algorithms, and the BBS parameter choices in the literature, con-
cluded that common BBS parameter choices destroy the “provable security”
of BBS. The speed comparison between 1024-bit BBS and QUAD(2, 160, 160) in
[7, Section 6] issues the same warning regarding 1024-bit BBS (“far from the
number of bits of the internal state required for proven security”), but does not

Analysis of QUAD 293

highlight the comparable lack of proof for “recommended” QUAD(2, 160, 160). See
[21] and [22] for more discussions of the limits of “provable security.”

Of course, a cryptosystem can be unbroken, and perhaps acceptable to users,
without having a security proof. We are not aware of any feasible attacks on
any proposed BBS parameter choices. The situation for QUAD is qualitatively
different: The QUAD authors reported speeds for QUAD(256, 20, 20). This cipher is
not merely unprovable but has now actually been broken.

The QUAD paper contains some analysis of parameter choices: [7, page 121]
summarizes Bardet’s estimates [2] of equation-solving time for q = 2, and
concludes that there is no “contradiction”—i.e., the QUAD security proof does
not guarantee 80-bit security for 240 output bits against known attacks—for
QUAD(2, n, n) for n < 350. We analyze QUAD in much more depth. We go beyond
q = 2, showing that QUAD(16, 40, 40) is unprovable; we consider not just the cost
of solving the underlying “hard problem” but also the extra cost of attacking
QUAD, showing that QUAD(256, 20, 20) is not merely unprovable but also broken;
and we cover both theoretical and practical attack complexity, for example dis-
cussing the implications of parallelizing communication costs.

1.4 Future Work

We suggest using the same classification of levels of danger for parameter choices
in other “provably secure” systems—systems having security theorems that de-
duce the infeasibility of attacks on the cryptosystem, assuming the loose infea-
sibility of attacks on the underlying “hard problem”:

• Unproven parameter choices (e.g., 2048-bit BBS or QUAD(2, 160, 160) as “rec-
ommended”): Known attacks on the underlying “hard problem” are loosely
feasible. They might not be feasible, but the gap is smaller than the loose-
ness of the security proof. It is unjustified and somewhat misleading to label
these parameters as “provably secure.”

• Unprovable parameter choices (e.g., 512-bit BBS or QUAD(16, 40, 40)): Known
attacks on the underlying “hard problem” are feasible. These parameters
would not be “provably secure” even if the proof were tightened.

• Broken parameter choices (e.g., QUAD(256, 20, 20)): Feasible attacks are known
on the cryptosystem per se. Users must avoid these parameters.

It would be interesting to see a careful comparison of speeds for “provably secure”
systems with parameters that avoid all of these dangers. This is a quite different
task from comparing systems such as 1024-bit BBS and QUAD(2, 160, 160), both
of which are unbroken but have no security proof; the motivation for “provably
secure” systems does not apply to unproven parameter choices.

Our security analysis is essentially independent of the choice of polynomials
in QUAD. [7, page 113, second paragraph] suggests, but neither quantifies nor
justifies, a few “extra precautions” regarding “weak” choices of polynomials.
Are some polynomial choices weaker than others? For example, one can save
stream-generation time by reducing the density of the quadratic polynomials in

294 B.-Y. Yang et al.

QUAD from 1/2 to some small ε; what effect does this have on security? How
much time can we save in our attacks as ε decreases? Exactly how small would
ε have to be before the Raddum-Semaev attack [26] becomes a problem? There
are many obvious directions for future security analysis.

2 The QUAD Family of Stream Ciphers

2.1 Definition of QUAD

To specify a particular QUAD stream cipher one must specify a prime power q;
positive integers n and r; an “output filter” P : GF(q)n → GF(q)r consisting of
r quadratic polynomials P1, P2, . . . , Pr in n variables; and an “update function”
Q : GF(q)n → GF(q)n consisting of n quadratic polynomials Q1, Q2, . . . , Qn in
n variables. These quantities q, n, r,P,Q are not meant to be secret; they can
be published and standardized.

The QUAD cipher expands a secret initial state x0 ∈ GF(q)n into a sequence
of secret states x0,x1,x2,x3, . . . ∈ GF(q)n and a sequence of output vectors
y0,y1,y2,y3, . . . ∈ GF(q)r as follows:

x0 ��

��

x1 = Q(x0) ��

��

x2 = Q(x1) ��

��

x3 = Q(x2) ��

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·

Typically q is a power of 2, allowing each output vector yi ∈ GF(q)r to encrypt
the next r lg q bits of plaintext in a straightforward way.

2.2 Parameter Restrictions

Can users expect QUAD to be secure no matter how the parameters are chosen?
Certainly not. For example, QUAD(2, 20, 20,P,Q) has only 20 bits in its initial
state x0, so the initial state can be discovered from some known plaintext by
a brute-force search. As another example, QUAD(2, 512, 512, 0,Q) is the “all-zero
cipher,” a silly stream cipher that always outputs 0. There are other, less obvious,
attacks; users considering QUAD need to understand which parameters are broken
or potentially so.

The QUAD paper [7, page 114] requires that the public polynomials P1, . . . , Pr

and Q1, . . . , Qn be “chosen randomly.” We see conflicting statements regarding
the distribution of these random variables: [7, page 112] defines “chosen ran-
domly” as a uniform random choice (coefficients “uniformly and independently
drawn”), but [7, page 113] suggests checking for and discarding some choices.
Either way, one can reasonably conjecture that “bad” choices of P and Q have a
negligible chance of occurring. There is no proof of this conjecture, and as men-
tioned in the introduction we would like to know exactly how P and Q affect
security, but that is not the focus of this paper; we consider attacks that work
for most choices of P and Q.

Analysis of QUAD 295

2.3 Example: QUAD(256, 20, 20)

Choose q = 256, n = 20, and r = 20. Also choose 40 quadratic polynomials
P1, . . . , P20, Q1, . . . , Q20 in 20 variables. These choices specify a particular QUAD
stream cipher. The cipher starts with a secret 20-byte state x0 ∈ GF(256)20;
computes another secret 20-byte state x1 = (Q1(x0), . . . , Q20(x0)); computes
another secret 20-byte state x2 = (Q1(x1), . . . , Q20(x1)); and so on. The ci-
pher outputs y0 = (P1(x0), . . . , P20(x0)); y1 = (P1(x1), . . . , P20(x1)); y2 =
(P1(x2), . . . , P20(x2)); and so on.

We specifically warn against using QUAD(256, 20, 20). Given the public polyno-
mials P1, . . . , P20, Q1, . . . , Q20 and the first 40 bytes y0,y1 of the output stream,
our attacks compute the secret 20-byte initial state x0 in approximately 266

cycles. See Section 4.2 for details.

2.4 Nonces

Old-fashioned stream ciphers, such as RC4, compute an output stream starting
from a secret key. Modern stream ciphers, such as the eSTREAM submissions,
compute an output stream starting from a secret key and a nonce, allowing the
same secret key to be used for many separate output streams.

We have presented QUAD as an old-fashioned stream cipher. The QUAD paper
actually presents a modern stream cipher. The modern stream cipher begins with
an “initialization,” converting a secret key and a nonce into a secret initial state
x0. The modern stream cipher then generates output in exactly the way we have
described. Details of the initialization are not relevant to this paper; our attacks
recover x0 no matter how x0 was generated, breaking both the old-fashioned
stream cipher and the modern stream cipher.

Stream ciphers can have “refresh” rules to disrupt the state after some given
number of clocks. We do not concern ourselves with this either: initialization
and refresh are both considered to be perfectly secure hereafter. For reference,
[6] proves one particular setup procedure secure with an extra loss of efficiency.

3 How to Solve Multivariate Systems

Modern methods for system all descend spiritually from Buchberger’s algorithm
of finding Gröbner Bases [9], which is still widespread in symbolic mathematics
packages both commercial and free (e.g., Maple and Singular). We present some
state-of-the-art improvements below, not nearly as well known in general.

3.1 History of Lazard-Faugère Solvers: F4, F5, XL, XL2, FXL

Macaulay generalized Sylvester’s matrix to multivariate polynomials [24]. The
idea is to construct a matrix whose lines contain the multiples of the polynomials
in the original system, the columns representing a basis of monomials up to a
given degree. It was observed by D. Lazard [23] that for a large enough degree,

296 B.-Y. Yang et al.

ordering the columns according to a monomial ordering and performing row
reduction without column pivoting on the matrix is equivalent to Buchberger’s
algorithm. In this correspondence, reductions to 0 correspond to lines that are
linearly dependent upon the previous ones and the leading term of a polynomial
is given by the leftmost nonzero entry in the corresponding line.

Lazard’s idea was rediscovered in 1999 by Courtois, Klimov, Patarin, and
Shamir [12] as XL. Courtois et al proposed several adjuncts [11,13,14] to XL.
One tweak called XL2 merits a mention as an easy to understand precursor to
F4. Another of these proved to be a real improvement to F4/F5 as well as XL.
This is FXL, where F means “fixing” (guessing at) variables.

Some time prior to this, J. -C. Faugère had proposed a much improved
Gröbner bases algorithm called F4 [17]. A later version, F5 [18], made head-
lines [19] when it was used to solve HFE Challenge 1 in 2002. Commercially, F4

is only implemented in the computer algebra system MAGMA [10].

3.2 Algorithm XL (eXtended Linearization) at Degree D

For the rest of this paper, we will denote the monomial xb1
1 xb2

2 · · ·xbn
n by xb,

and its total degree |b| = b1 + · · ·+ bn. The set of degree-D-or-lower monomials
is denoted T = T (D) = {xb : |b| ≤ D}. |T | is the number of degree ≤ D
monomials and denoted T (D) = T .

Start by multiplying each equation pi, i = 1 · · ·m by all monomials xb ∈
T (D−2). Reduce as a linear system of the equations R(D) = {xbpj(x) = 0 :
1 ≤ j ≤ m, |b| ≤ D − 2}, with the monomials xb ∈ T (D) as independent
variables. Repeat with higher D until we have a solution, a contradiction, or
reduce the system to a univariate equation in some variable. The number of
equations and independent equations are denoted R(D) = R = |R| and I(D) =
I = dim(spanR).

If we accept solutions in arbitrary extensions of K = GF(q), then T =
(
n+D

D

)

regardless of q. However, most crypto applications require solutions in GF(q)
only. The above expression for T then only holds for large q, since we may
identify xq

i with xi and cut substantially the number of monomials we need to
manage. This “Reduced XL” (cf. C. Diem [15]) can lead to extreme savings
compared to “Original XL,” e.g., if q = 2, then T =

∑D
j=0

(
n
j

)
.

Proposition 3.3 ([3,30]). The number of monomials is T = [tD]
(1 − tq)n

(1 − t)n+1

which reduces to
(
n+D

D

)
when q is large. We can then find R = R(D) = mT (D−2).

We note that the XL of [12,13] terminates more or less reliably when T − I ≤
min(D, q − 1), but sparse matrix computation is only possible when T − I ≤ 1
[29]. Further, Lazard-Faugère methods work for equations of any degree [4,30]. If
deg(pi) = d, we will only multiply the equation pi with monomials up to degree
D − d in generating R(D). The principal result is:

Proposition 3.4 ([30, Theorem 7]). If the equations pi, with deg pi := di,
and the relations R(D) has no other dependencies than the obvious

Analysis of QUAD 297

ones generated by pipj = pjpi and pq
i = pi, then

T − I = [tD] G(t) = [tD]
(1 − tq)n

(1 − t)n+1

m∏

j=1

(
1 − tdj

1− tq dj

)
. (1)

After a certain degree DXL, called the degree of regularity for XL, such that
DXL := min{D : [tD] G(t) ≤ 0} is the smallest D such that Eq. 1 cannot hold if
the system has a solution, because the right hand side of Eq. 1 goes nonpositive.
If the boldfaced condition above holds for as long as possible (which means for
degrees up to DXL), we say that the system is K-semi-regular or q-semi-
regular (cf. [3,30]). Diem proves [15] for char 0 fields, and conjectures for all K
that (i) a generic system (no algebraic relationship betweem the coefficients) is
K-semi-regular and (b) if (pi)i=1···m are not K-semi-regular, I can only decrease
from the Eq. 1 prediction. Most experts [15] believe the conjecture that a random
system behaves like a generic system with probability close to 1.

Corollary 3.5. T−I = [tD]
(
(1 − t)−n−1

∏m
j=1

(
1 − tdi
))

for generic equations
if D ≤ min(q, D∞

XL), where D∞
XL is the degree of the lowest term with a non-

positive coefficient in G(t) =
(
(1 − t)−n−1

∏m
j=1

(
1 − tdi
))

.

We would note that (F)XL is a solver and not a true Gröbner basis method as
F4 and F5 is. However, the analysis much parallels that of F4-F5 by Dr. Faugère
et al, hence the categorical name “Lazard-Faugère” solvers.

3.6 XL2, F4 and F5

XL2 [13] is a tweak of XL as follows: Tag each equation with its maximal degree.
Run an elimination on the system with monomials in degree-reverse-lex. In the
remaining (row echelon form) system, multiply by each variable x1, x2 · · · all
remaining equations with the maximum tagged degree and eliminate again. When
we cannot eliminate all remaining monomials of the maximum degree, increment
the operating degree and reallocate more memory.

XL+XL2 can be considered a primitive or inferior matrix form of F4 or F5

[1]. F4 inserts elimination between expansion stages, which compresses the num-
ber of rows that needs to be handled. F5 is a further refinement of F4. The set
of equations is actually generated one by one (or the matrix row by row). In
the process, an algebraic criterion is used to determine, ahead of an elimination
process, whether a row will be reduced to zero or not and only the meaningful
rows are retained. A complication resulting from the tagging is that the elimina-
tion must be done in a strictly ordered way. This corresponds in the matrix form
to no row exchanges in a Gaussian. There are two separate degrees in F4/F5,
an apparent operating degree DF4 and a higher intrinsic degree equal to that of
the equivalent XL system. For the full power of F4 or F5, auxillary algorithms
such as FGLM are needed. See [17,18] for complete details.

298 B.-Y. Yang et al.

Proposition 3.7 ([3]). If the eqs. pi are q-semi-regular, at the operating degree

Dreg := min

{

D : [tD]
(1 − tq)n

(1 − t)n

m∏

i=1

(
1 − tdi

1 − tqdi

)
< 0

}

both F4-F5 will terminate. Note that by specializing to a large field, we find

D∞
reg := min

{

D : [tD] (1 − t)−n
m∏

i=1

(
1 − tdi
)

< 0

}

. (2)

If we compare this formula with Cor. 3.5, we see that the only difference is a
substitution of n for n + 1. In other words, we are effectively running with one
fewer variable in the large field case. This explains why F4-F5 can be much faster
than XL. However, the savings is smaller over small fields like GF(2), and even
for large fields, removing one variable may not be enough of a savings, because
the systems that we aim to solve will spawn millions of monomials (variables).
Eliminating in the usual way means that we will run out of memory before time.

According to the description we received from the MAGMA project and
Dr. Faugère, even though memory management is very critical, elimination is
still relatively straightforward in current implementations of F4-F5, and in the
process we see reasonably dense matrices, not extremely sparse ones. All said,
F4-F5 are still the most sophisticated general system-solving algorithms today.

3.8 Practicalities: XL with Wiedemann, and Ramifications

Table 1 lists our tests in solving generic equations with F4 over GF(256). That
we only have 2GB main memory is not critical to our inability to solve equations
in the realm of 20 byte-sized variable in as many equations, because we also ran
into a SIGMEM (out of memory) error with a 15-variable, 15-equation system
on a 16 GB RAM system.

Table 1. System-solving time (sec): MAGMA 2.12, 2GB RAM, Athlon64x2 2.2GHz

m − n DXL Dreg n = 9 n = 10 n = 11 n = 12 n = 13

0 2m m 6.090 46.770 350.530 3322.630 sigmem

1 m �m+1
2 � 1.240 8.970 53.730 413.780 2538.870

2 �m+1
2 � �m+2−

√
m+2

2 � 0.320 2.230 12.450 88.180 436.600

Conclusion: We will run out of memory using any Lazard-Faugère solver, in-
cluding F4-F5, if our equation-solving is not tailored to sparse matrices. Many
authors used T 2.8 (or T 2.376!) as the cost function. This is why we don’t.

Example 1. If we try to attack QUAD directly using F4-F5, we will be solving
20 variables from 20 quadratic equations and 20 quartic equations over (say

Analysis of QUAD 299

GF(256)). We will run into 6906900 monomials at degree 9 with (eventually) a
fairly dense matrix. This is not feasible.

We must take advantage of the sparsity of Macaulay matrix. Solving the
same system via XL with a Krylov subspace method means that we will run
into 30045105 monomials at degree 10, but with a sparse matrix of only 200 or
so entries per row with 5 bytes per entry. The whole thing can fit in a single
machine with 32GB or (much easier) distributed among a cluster.

Three well-known methods (all utilizing the existence of Krylov subspaces) adapt
well to sparse matrices: Conjugate Gradient, Lanczos, and Wiedemann. There
are two reasons to prefer Wiedemann. While Lanczos and CG usually takes about
N (as opposed to 3N) multiplications by the matrix A, they are restricted to
symmetric matrices. Furthermore, Wiedemann has no worries about the self-
orthogonality issue and is easier to program.

Algorithm: XL (with homogenous Wiedemann)

1. Create the extended Macaulay matrix of the system to a certain degree DXL.
2. Randomly delete some rows then add some columns to form a square system,

Ax = 0 where dim A = βT + (1 − β)R. Usually we can succeed with β = 1.
3. Apply the homogeneous version of Wiedemann’s method to solve for x:

(a) Set k = 0 and g0(z) = 1, and take a random b.
(b) Choose a random uk+1 [usually the (k + 1)-st unit vector].
(c) Find the sequence uk+1A

ib starting from i = 0 and going up to 2N − 1.
(d) Apply gk as a difference operator to this sequence, and run the

Berlekamp-Massey over GF(q) on the result to find the minimal polyno-
mial fk+1.

(e) Set gk+1 := fk+1gk and k := k + 1. If deg(gk) < N and k < n, go to (b).

4. Compute the solutionx using the minpoly f(z)=gk(z) = cmzm+cm−1z
m−1+

· · ·+c�z
�: Take another random b. Start from x = (cmAm−� +cm−1A

m−�−1+
· · ·+ c�1)b, continuing to multiply by A until we find a solution to Ax = 0.

5. In the event that the random choice in Step 2 went awry and we dropped
an essential equation, or if the system had more than one solution to begin
with, the nullity � will be more than 1, and we will have to repeat the check
below at every point of a linear subspace (q points).

6. Obtain the solution from the last few elements of x and check its correctness.

Proposition 3.9 (cf. [4,30]). The expected running time of XL is roughly
CXL ∼ 3τTm where τ = kT is the total (and k the average) number of terms in
an equation, one multiplication m ≈ (c0 + c1 lg T) cycles, and c0, c1 depend on
the architecture. E.g. on x86, when q = 256, T < 224, each multiplication cost
about 14 cycles on a P4 (3 consecutively dependent loads from L1 cache plus
change). On a K8 or P-M/Core, it takes 11 cycles on the same serial code, but
in x86-64 mode, some loop-unrolling can get it down to about 8.

300 B.-Y. Yang et al.

4 Broken Parameters for QUAD

4.1 Overview: Using Algebraic Attacks Against QUAD

The QUAD paper [7, Section 5] contains the following statement regarding alge-
braic attacks: “QUAD was designed to resist algebraic attack techniques. As a
matter of fact, the key and IV loading and keystream generation mechanisms of
QUAD are based upon the iteration of quadratic systems whose associated equa-
tions are conjectured to be computationally impossible to solve.”

Can we try to solve P(x0) = y0 directly? Yes, but even for q = 256, r = 20,
that takes about 280 cycles [29]. We propose instead to solve the equations
P(x0) = y0 and P(Q(x0)) = y1 for the initial state x0 using (F)XL-Wiedemann.

The attacker is given the quadratic polynomials P and Q, which presumably
are public, and the two initial stream-cipher outputs y0,y1, for example from
a successful guess regarding the initial bytes of plaintext. The unknown state
x0 consists of n variables from GF(q). The equation P(x0) = y0 consists of r
quadratic equations in those n variables. The equation P(Q(x0)) = y1 consists
of r quartic equations in those n variables. The attack solves the combined
quadratic-quartic system to find x0. At this point the attacker can compute the
subsequent stream-cipher output y2,y3,

Note: we can also frame the attack as given any consecutive stream-cipher output
blocks yi, yi+1, compute the state xi and all subsequent state and output blocks.
This means that known-plaintext attacks will be particularly effective.

The cost of this attack is, aside from negligible setup costs, the cost of solving
r quadratic equations and r quartic equations in n variables over GF(q), which
in turn is dominated by solving a large sparse matrix equation. In the rest of this
section we consider the cost of (F)XL-Wiedemann for various choices of (q, n, r).
In particular, we show that the attack is feasible against QUAD(256, 20, 20).

4.2 Example: Breaking QUAD(256, 20, 20)

Proposition 4.3. For q > 10, a q-semiregular system of 20 quadratics and 20
quartics can be solved over GF(q) in no more than 263 GF(q)-multiplications
(for q = 256, about 266 cycles).

Proof. The minimum degree to find a nonpositive coefficient in (1 − t)−21(1 −
t2)20(1− t4)20 is DXL = 10, we have T =

(
30
10

)
= 30045015, the number of initial

equations is R = 20 ×
(
28
8

)
+ 20 ×

(
26
6

)
= 66766700, and the total number of

terms in those equations is τ = 20
(
28
8

)(
22
2

)
+ 20
(
26
6

)(
24
4

)
= 63287924700. Hence

the number of multiplications needed is bounded by 3Tτ � 263, or about 266

cycles. If we can cut down to a T × T system (which usually succeeds),
then it takes 3T (τT/R) ∼ 260 multiplications, or about 263 cycles.

In contrast, QUAD(16, 40, 40) is not directly breakable by this attack. Here, the first
non-positive coefficient of (1 − t)−41(1 − t2)40(1 − t4)40 happens at DXL = 14.
So for q > 14, T = 3245372870670. We find solving a q-semiregular system

Analysis of QUAD 301

of 40 quadratics and 40 quartics over GF(q) XL-Wiedemann to take � 295m
(about 2100 cycles). Guessing variables may cut the memory requirement and
aid parallelization but does not decrease the number of multiplications. This
means that QUAD(q, 40, 40) is considerably below a 128-bit security level, but we
know of no attack below the 80-bit security level considered in [7].

Observation: Unless it is possible to run the elimination in F4-F5 with a speed
that matches the sparse matrix solvers, these more sophisticated methods would
be dragged down by the amount of memory and memory operations required.
E.g., against QUAD(256, 20, 20), even though we are operating F5 with a lower
DF5 = 9. TF5 = 6906900, and there is just too much memory needed.

Conjecture: For generic (i.e., most random) P,Q and y0,y1, P(x) = y0 and
P(Q(x)) = y1 is 256-semiregular.

We cannot produce a hard proof, but we include a set of our test results (all
using i386 code on a P4) as Table 2. The timings for n = 6 all the way up to
n = 15 are consistent with our theoretical predictions. Furthermore, the timings
for a QUAD(256, n, n) attack are identical to the timings for n randomly generated
quadratics plus n randomly generated quartics in n variables.

Table 2. Direct XL-Wiedemann attack on QUAD(256, n, n), MS C++ 7; P-D 3.0GHz,
2GB DDR2-533

n 6 7 8 9 10 11 12 13 14 15
D 6 6 7 7 7 7 8 8 8 8

CXL 1.22 4.49 6.08 · 10 2.29 · 102 7.55 · 102 2.30 · 103 5.12 · 104 1.54 · 105 4.39 · 105 1.17 · 106

lgCXL 2.85 · 10−1 2.17 5.92 7.84 9.56 1.12 · 10 1.56 · 10 1.72 · 10 1.87 · 10 2.02 · 10

T 9.24 · 102 1.72 · 103 6.44 · 103 1.14 · 104 1.94 · 104 3.28 · 104 1.26 · 105 2.03 · 105 3.20 · 105 4.90 · 105

aTm 49 65 96 120 147 177 245 288 335 385
clks 28.8 23.5 15.3 14.6 13.6 12.1 13.1 12.9 12.8 12.7

T: #monomials, aTm: average terms in a row, clks: number of clocks per multiplication.

y = 2.2817x - 13.085

-5

0

5

10

15

20

25

30

35

0 5 10 15 20 25

number of variables

lg
 (

ti
m

e)

Fig. 1. Logarithmic growth of direct QUAD attack time over GF(256), optimal D

302 B.-Y. Yang et al.

y = 2.0817x - 10.817

-2

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

number of variables

lg
 (

ti
m

e)

Fig. 2. Logarithmic growth of direct QUAD attack time over GF(256), D = 7

����������	�
������

�

�

�

�

�

��

��

��

��

� � � � �� ��

�������������������

��
��
��
�	

Fig. 3. Logarithmic growth of direct QUAD attack time over GF(256), D = 8

4.3 Asymptotics for Attacking QUAD(q, n, n) Directly (q large)

DXL = min
{

D : [tD]
1

(1 − t)n+1

(
(1 − t2)(1 − t4)

)n
< 0
}

,

gives the degree D of the eventual XL operation. Here, D = (w + o(1))n, and

w ≈ smallest positive zero w of
∮ (1−z2)n(1−z4)n

(1−z)n+1zwn+1 dz =
∮

dz
z(1−z)

(
(1+z)(1−z4)

zw

)n

(cf. [28]). As usual in such situations, the expression on the RHS can only vanish
when the saddle point equation of this integral has double roots (a “monkey
saddle”), and here the saddle point equation is (w − 5)z4 + z3 − z2 + z −w = 0

Analysis of QUAD 303

which has a double root when w is very close to 0.2 (actually ≈ 0.200157957).
So lg T/n → (1 + w) lg(1 + w) − w lg w ≈ 0.78. Assuming Wiedemann solving
to continue without a problem, this means that the system will be solvable in
21.56n+o(n) × (polynomial in n) asymptotically.

Suppose we use, in addition to the degree-2 and degree-4 equations, the degree-
8 equations P(Q(Q(x0))) = y2. This reduces the final degree to

DXL = min
{

D : [tD]
1

(1 − t)n+1

(
(1 − t2)(1 − t4)(1 − t8)

)n
< 0
}

,

differentiating with respect to z and then finding the root of the discriminant gets
us w ≈ 0.1991777370 which confirms our suspicion that higher-degree equations
provide very little improvement in the cost of the attack for large q.

4.4 Asymptotics for Attacking QUAD(2, n, n) Directly

For q = 2 there is noticeably more benefit from using higher-degree equations
and from guessing variables. We combine n quadratic equations P(x0) = y0, n
quartic equations P(Q(x0)) = y1, and so on through n equations P(Q�(x0)) =
y� of degree 2�. The degree of operation of XL is

DXL � min
{

D : [tD]
(1 + t)n

(1 − t)

(
(1 + t2)(1 + t4) · · · (1 + t2

�

)
)−n

< 0
}

,

where equality holds for 2-semi-regular systems, and which for � → ∞ becomes
DXL = min

{
D : [tD] (1 − t)n−1(1 + t)2n < 0

}
. If we guess at f variables, then

we have DFXL = min
{
D : [tD] (1 − t)n−1(1 + t)2n−f < 0

}
. Let c = f/n. We

would like to find a c for which the running time is smallest.

Proposition 4.5 ([4]). We have the following asymptotics

1. If f/m → α as f, m →∞, then

Dreg = min
{
D : [tD] (1 − t)f (1 + t)m < 0

}
∼
(

1
2
−
√

α +
α

2

)
m+ o(m1/3).

2. If D/n → w, then lg T/n → −w lg w − (1 − w) lg(1 − w).

Using the above, we see that DFXL ∼
(

1
2
−
√

2 − c +
2 − c

2

)
n, hence for

XL-Wiedemann, as n →∞, the limiting exponential factor
lg CFXL

n
→

2((2−c) lg(2−c)−(3−c
2 −

√
2−c) lg(3−c

2 −
√

2−c)−(1−c
2 +

√
2−c) lg(1−c

2 +
√

2−c))+c.

Due to constraints in asymptotic analysis which are too lengthy to discuss here,
this expression is only guaranteed to hold for small c and may not continue to
hold as c goes up. But it is clear that asymptotically, FXL is the correct approach
here. A rough estimate is that the security under the direct attack is 21.02n with
XL, and 20.86n with best FXL.

304 B.-Y. Yang et al.

4.6 Which Field Is Best?

Our analysis suggests that after taking into account all known improvements,
to achieve any particular level of security against known attacks, q = 2 needs
considerably more variables than a large q, the ratio being about 1.56/0.86 ≈
1.81. The QUAD user can try to save time by increasing q and reducing the number
of variables. Our current impression is that q = 256 is not a good choice: the
extra cost of arithmetic in GF(q) offsets the smaller number of variables and
polynomial coefficients to be manipulated. However, q = 16 or q = 4 may be
better. These estimates will have to be updated if faster attacks are discovered.

4.7 The State of System-Solving Cryptanalysis

We have shown that Lazard-Faugère solvers, particularly XL with a sparse ma-
trix solver, can be very useful in attacking generic systems, or at least systems
that have generic or randomly created elements. In some cases such simple ap-
proaches are more useful than the really sophisticated variations.

There is a problem we ran into when trying to organize a medium-scale parallel
cluster to help crack a QUAD instance. It is desirable to partition the matrix
because memory capacity is always a problem. Yet in Block Lanczos and Block
Wiedemann each computer must hold a copy of the entire matrix. If we do
the naive parallelization, then the communications cost goes up squarely as the
cluster size but the efficiency gain only linearly. This will take a good tuning.

5 Unprovable Parameters for QUAD

5.1 Overview: Attacking the Underlying Hard Problem

The QUAD paper [7, page 110] states that the security of QUAD “is provably re-
ducible to the intractability of the MQ problem [15], which consists of finding a
solution (if any) to a multivariate quadratic system of m quadratic equations in n
variables over a finite field GF(q), typically GF(2).” Here m = n+r. The quoted
statement means that there is a proof that assumes that MQ is intractable and
concludes that QUAD is secure.

We emphasize that the intractability of the MQ problem is not a theorem;
it is a hypothesis. For some parameter choices, the hypothesis is plausible. For
other parameter choices, the hypothesis is false. For example, we show in this
section how to break 80 quadratic equations in 40 variables over GF(16).

For parameters where the associated MQ instance is shown to be not “hard,”
any attempt to show provable security starting from the hardness of the MQ
problem becomes hopeless; hence our terminology “unprovable.” Note that un-
provable parameters can be analyzed even before a proof has been claimed or
written down; unprovability is deduced purely from the parameter choices for
the underlying “hard problem.”

Analysis of QUAD 305

5.2 Example: QUAD(256, 20, 20)

We return to QUAD(256, 20, 20) as an illustrative example. What the quoted state-
ment says in this case is that the security of QUAD(256, 20, 20) follows from the
difficulty of solving 40 quadratic equations in 20 variables over GF(256).

Is solving 40 random quadratic equations in 20 variables over GF(256) actually
difficult? No, not at all! We can compute from Prop. 3.5 that DXL = 5 and
T = 53130. The maximum number of terms per equation is k � 231, so on a
P4, CXL ≈ 9 × 1012 � 245. To summarize: XL-Wiedemann takes < 245 cycles,
which is only a few hours on a decent computer.

To verify our estimates, we carried out this computation the same evening that
we began to study the security of QUAD. XL-Wiedemann solved the equations on
schedule. The fairly mature F4 in MAGMA version 2.12 did the same job in
about a quarter of the time, presumably using more memory.

Of course, after establishing the breakability of QUAD(256, 20, 20) in Section 4,
we could apply the contrapositive of the “provable security” of QUAD to deduce
the breakability of the corresponding MQ system. However, this circuitous ap-
proach would be considerably harder to verify than a direct attack on MQ. We
also observe a significant gap between the cost of the MQ attack and the cost
of the QUAD attack. Showing unprovability of a set of QUAD parameters is easier
than showing breakability.

5.3 Example: QUAD(16, 40, 40)

For QUAD(16, 40, 40), we can verify (cf. Prop. 3.5) D = 8, T = 377348994, and
k � 861. Since the storage will come to about 800 GB among a small cluster, we
will assume AMD64 or a similar architecture, and it will take about 8 cycles a
multiplication before tuning, and a total of 3×8×3773489942×861 ≈ 3×1020 �
272 cycles. With a little work, such as unrolling by hand the critical loop, we can
expect to cut this down to 271 on an Opteron.

These attacks are considerably below the specified 280 security level. We con-
clude that QUAD(16, 40, 40) is unprovable.

5.4 Examples: QUAD(2, 160, 160), (2, 256, 256), (2, 350, 350)

For QUAD(2, 160, 160): D = 13 (this time cf. Prop. 3.4), but this time T =
4801989157032669149, and k � 12881 which makes it rather difficult to fit
everything into memory. An optimistic 6-cycles-per-multiplication hypothesis,
ignoring space problems, leads to an estimate of approximately 2140 cycles.

For QUAD(2, 256, 256): D = 19, T = 25707968047799666061215057489 or �
294. CXL ≈ 2205m. For QUAD (2,350,350), D = 24, T � 2123. CXL � 2263m. [In
the astronomical realm, a multiplication may take rather more than 6 cycles.]

6 Proven and Unproven Parameters for QUAD

There are several limitations on what was actually proven in [7]. We focus on
one limitation, namely the lack of tightness in [7, Theorem 4].

306 B.-Y. Yang et al.

The theorem does not claim that a QUAD attack implies an MQ attack with
the same efficiency. It says that a QUAD attack implies an MQ attack with a
bounded loss of efficiency: specifically, if λn bits of output from QUAD(2, n, r)
can be distinguished from uniform with advantage ε in time T , then a random
MQ system of n + r equations in n variables over GF(2) can be solved with
probability 2−3ε/λ in time

T ′ ≤ 27n2λ2

ε2

(
T + (λ + 2)TS + log

(
27nλ2

ε2

)
+ 2
)

+
27nλ2

ε2
TS,

where TS := time to run one block of QUAD(2, n, r).
How could we conclude the security of QUAD—a lower bound on T , such as

T ≥ 280—from this theorem? A minor point is that the theorem would need to
be extended to all q, not just q = 2, and proven; we will make the (questionable)
assumption that this is done, and that it does not produce worse time bounds.
The major point is that we would need to assume a much larger lower bound on
T ′, compensating for (among other things) a factor of 210n2λ3/ε3. For example,
as in [7] let’s accept ε as large as 0.01, and let’s put L = λn = 240. The extra
factor is then 2150/n. The theorem cannot conclude T ≥ 280 without assuming
that T ′ ≥ 2230/n. Let’s check this against cases studied in Section 5:

• QUAD(256, 20, 20): Unproven. Our (computer-verified) estimate is T ′ ≤ 245.
• QUAD(16, 40, 40): Unproven, we estimate T ′ ≤ 271.
• QUAD(2, 350, 350): Proven, if there are no better MQ attacks. We estimate

T ′ ≈ 2263m. A 280 distinguishing attack would lead to an ≈ 2221m expected-
time solution. Note T ′ ≈ 2222m for QUAD(2, 320, 320), which should suffice.

• QUAD(2, 160, 160): Unproven (T ′ ≤ 2140, [7] specified this as unproven).
• QUAD(2, 256, 256): Proven for the parameters [7] L = 222, ε = 0.01, if there

are no better MQ attacks. We estimate T ′ ≈ 2205m where we need 2168m.

Why did [7] overestimate n? The N2.376 formula discounts an expected big coef-
ficient, compensating for our improvement to N2+ε and then some.

The bottom line is that all three QUAD parameter choices used for speed re-
ports in the QUAD talk at Eurocrypt 2006 are unproven, although the gap in the
QUAD(2, 160, 160) case might be closed by a tighter security proof.

Acknowledgement

The authors would all like to thank the TWISC project (Taiwan Information
Security Center, NSC95-2218-E-001-001) for sponsoring a series of lectures on
cryptology at its Nat’l Taiwan U. of Sci. and Tech. location (NSC95-2218-E-011-
015) in 2006, the discussions following which led to this work. BY would like to
thank the Taiwan’s National Science Council for support under project 95-2115-
M-001-021 and indirectly via TWISC. JMC was partially supported by TWISC
at NCKU (NSC94-3114-P-006-001-Y). Date of this document: 2007.04.18.

Analysis of QUAD 307

References

1. Ars, G., Faugère, J.-C., Imai, H., Kawazoe, M., Sugita, M.: Comparison between
XL and Gröbner Basis algorithms. In: AsiaCrypt [25], pp. 338–353.

2. Bardet, M.: Étude des systèmes algébriques surdétermininés. Applications aux
codes correcteurs et á la cryptographie. PhD thesis, Université Paris VI (2004)

3. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004)

4. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.)
MEGA 2005 Sardinia, Italy (2005)

5. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate
quadratic systems. In: Workshop record distributed at 13th Annual Workshop on
Selected Areas in Cryptography (August 2006)

6. Berbain, C., Gilbert, H.: On the security of IV dependent stream ciphers. In: Work-
shop record distributed at 14th Annual Workshop on Fast Software Encryption
(March 2007)

7. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A practical stream cipher with prov-
able security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
109–128. Springer, Heidelberg (2006)

8. Blum, L., Blum, M., Shub, M.: Comparison of two pseudo-random number gener-
ators, pp. 61–78. Plenum Press, New York (1983)

9. Buchberger, B.: Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal. PhD thesis, Innsbruck
(1965)

10. Computational Algebra Group, University of Sydney. The MAGMA Computa-
tional Algebra System for Algebra, Number Theory and Geometry, http://magma.
maths.usyd.edu.au/magma/

11. Courtois, N.: Algebraic attacks over GF (2k), application to HFE challenge 2 and
Sflash-v2. In: Bao, F., Deng, R.H., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp.
201–217. Springer, Heidelberg (2004)

12. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000),
http://www.minrank.org/xlfull.pdf

13. Courtois, N.T., Patarin, J.: About the xl algorithm over gf(2). In: Joye, M. (ed.)
CT-RSA 2003. LNCS, vol. 2612, pp. 141–157. Springer, Heidelberg (2003)

14. Courtois, N.T., Pieprzyk, J.: Cryptanalysis of block ciphers with overdefined sys-
tems of equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp.
267–287. Springer, Heidelberg (2002)

15. Diem, C.: The xl-algorithm and a conjecture from commutative algebra. In Asia-
Crypt [25], pp. 323–337

16. Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. Ad-
vances in Information Security. Springer, Heidelberg (2006)

17. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

18. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

http://magma.maths.usyd.edu.au/magma/
http://magma.maths.usyd.edu.au/magma/
http://www.minrank.org/xlfull.pdf

308 B.-Y. Yang et al.

19. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equations (HFE)
using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–
60. Springer, Heidelberg (2003)

20. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the The-
ory of NP-Completeness. In: W.H. Freeman and Company (1979) ISBN 0-7167-
1044-7 or 0-7167-1045-5.

21. Koblitz, N., Menezes, A.: Another look at “provable security”. Cryptology ePrint
Archive, Report 2004/152 (2004), http://eprint.iacr.org/

22. Koblitz, N., Menezes, A.: Another look at ”provable security”. ii. In: Barua, R.,
Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 148–175. Springer, Hei-
delberg (2006)

23. Lazard, D.: Gröbner-bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In: van Hulzen, J.A. (ed.) ISSAC 1983 and EUROCAL 1983.
LNCS, vol. 162, pp. 146–156. Springer, Heidelberg (1983)

24. Macaulay, F.S.: The algebraic theory of modular systems. Cambridge Mathematical
Library, vol. xxxi. Cambridge University Press, Cambridge (1916)

25. Lee, P.J. (ed.): ASIACRYPT 2004. LNCS, vol. 3329, pp. 3–540. Springer, Heidel-
berg (2004)

26. Raddum, H., Semaev, I.: New technique for solving sparse equation systems. Cryp-
tology ePrint Archive, Report 2006/475 (2006), http://eprint.iacr.org/

27. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of
multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, 64
pages (May 12 th 2005), http://eprint.iacr.org/2005/077/

28. Wong, R.: Asymptotic approximations of integrals, vol. 34 of Classics in Applied
Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadel-
phia, PA, (2001) Corrected reprint of the 1989 original

29. Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-
s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

30. Yang, B.-Y., Chen, J.-M.: Theoretical analysis of XL over small fields. In: Wang, H.,
Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 277–288.
Springer, Heidelberg (2004)

http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/2005/077/

Message Freedom in MD4 and MD5 Collisions:
Application to APOP

Gaëtan Leurent

Laboratoire d’Informatique de l’École Normale Supérieure,
Département d’Informatique,

45 rue d’Ulm, 75230 Paris Cedex 05, France
gaetan.leurent@ens.fr

Abstract. In Wang’s attack, message modifications allow to determinis-
tically satisfy certain sufficient conditions to find collisions efficiently. Un-
fortunately, message modifications significantly change the messages and
one has little control over the colliding blocks. In this paper, we show how
to choose small parts of the colliding messages. Consequently, we break
a security countermeasure proposed by Szydlo and Yin at CT-RSA ’06,
where a fixed padding is added at the end of each block.

Furthermore, we also apply this technique to recover part of the pass-
words in the Authentication Protocol of the Post Office Protocol (POP).
This shows that collision attacks can be used to attack real protocols,
which means that finding collisions is a real threat.

Keywords: Hash function, MD4, MD5, message modification, meaning-
ful collisions, APOP security.

1 Introduction

At EUROCRYPT ’05 and CRYPTO ’05, Wang et al. described a new class of
attacks on most of the hash functions of the MD4 family, MD4, MD5, HAVAL,
RIPEMD, SHA-0 and SHA-1 in [21,23,24,22], which allows to find collisions for
these hash functions very efficiently. However, the practical impact is unclear
as many real-life applications of hash functions do not just rely on collision
resistance.

One drawback with Wang’s attacks when used against practical schemes is
that due to the message modification technique, the colliding blocks cannot be
chosen and look random. However, these attacks work with any IV, so one can
choose a common prefix for the two colliding messages, and the Merkle-Damgård
construction allows to add a common suffix to the colliding messages. Therefore,
an attacker can choose a prefix and a suffix, but he must somehow hide the
colliding blocks (1 block in MD4 and SHA-0, and 2 blocks in MD5 and SHA-1).
The poisoned message attack [6] exploits this property to create two different
PostScript files that display two different chosen texts but whose digests are
equal. In this construction, the two different texts are in both PS files and the
collision blocks are used by an if-then-else instruction to choose which part

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 309–328, 2007.
© International Association for Cryptologic Research 2007

310 G. Leurent

to display. This attack was extended to other file formats in [8]. Lenstra and
de Weger also used the free prefix and free suffix property to create different
X.509 certificates for the same Distinguished Name but with different secure
RSA moduli in [12]. Here, the colliding blocks are hidden in the second part of
the RSA moduli.

Recently, more concrete attacks have appeared: Stevens, Lenstra and de Weger
in [19] found colliding X.509 certificates for two different Distinguished Name. In
this work, the technique used is far more complex and allows to find messages
colliding under MD5 with two different chosen prefixes. They used an approach
suggested by Wang to find a near-collision for different IVs and used different
differential paths to absorb the remaining differences. However, the messages
B, B′ are not controlled, and this randomness must still be hidden in the moduli.

Other applications of Wang collisions have been proposed to attack HMAC
with several hash functions in [3,9]. The techniques use Wang’s differential path
as a black box but with particular messages to recover some keys in the related-
key model or to construct advanced distinguishers.

Our Results. In the paper we try to extend Wang’s attack to break more
hash function uses. More precisely, we address the question of message freedom
inside the colliding blocks, and we show that this can be used to attack APOP,
a challenge-response authentication protocol.

The first contribution of this paper is a technique to gain partial control
over the colliding blocks; this can be combined with previous work to make
the colliding blocks easier to hide. More concretely, we show that we can select
some part at the end of the messages which will collide. Our attack can use any
differential path, and only requires a set a sufficient conditions. We are able to
choose the last three message words in a one-block MD4 collision, and three
specific message words in a two-block MD5 collision with almost no overhead.
We are also able to choose the 11 last words of a one-block MD4 collision with
a work factor of about 231 MD4 computations.

An important point is that the technique used is nearly as efficient as the
best message modifications on MD4 or MD5, even when we choose some parts
of the messages. This contradicts the usual assumption that Wang’s collisions
are mostly random. As a first application of this new message modification tech-
nique, we show that a countermeasure recently proposed by Szydlo and Yin at
CT-RSA ’06 in [20] is almost useless for MD4 and can be partially broken for
MD5. This can also be used to handle the padding inside the colliding blocks.

The second contribution is a partial password-recovery attack against the
APOP authentication protocol, based on the message freedom in MD5 collisions.
We are able to recover 3 characters of the password, therefore greatly reducing
its entropy. Even though we do not achieve the full recovery of the password,
we reduce the complexity of the exhaustive search and it is sufficient in practice
to reduce this search to a reasonable time for small passwords, i.e. less than 9
characters.

Related Work. The first MD4 collision was found by Dobbertin [7], and his
attack has a time complexity of about 220 MD4; it combines algebraic techniques

Message Freedom in MD4 and MD5 Collisions: Application to APOP 311

and optimization techniques such as genetic algorithms. His attack also allows
to choose a large part of the colliding blocks at some extra cost: one can choose
11 words out of 16 with a complexity of about 230 MD4 computations (little
details are given and only an experimental time complexity).

Our work is based on Wang’s collision attack [21,23], which have the following
advantages over Dobbertin’s:
– it can be adapted to other hash functions (Dobbertin’s method can give

collisions on the MD5 compression function, but has not been able to provide
MD5 collisions);

– it is somewhat more efficient.
More recently, Yu et al.[25] proposed a differential path for MD4 collisions

with a small number of sufficient conditions. This allows to build a collision
(M, M ′) which is close to a given message M̄ (about 44 different bits). This
is quite different from what we are trying to do since the changed bits will be
spread all over the message. We are trying to choose many consecutive bits,
which is useful for different applications. However we studied their work and
propose some improvements in Appendix C.

De Cannière and Rechberger announced at the rump session of CRYPTO ’06
that they can find reduced-SHA-1 collisions and chose up to 25% of the message.
However, they gave few details on their technique, and the conference version
does not talk about this aspect of their work. Their idea seems to be to compute
a differential path with the chosen message as conditions.

Organization of the Paper. This paper is divided in three sections: in the first
part we describe APOP, how the attack works, and give background on MD4,
MD5 and Wang’s attack; then we describe our new collision finding algorithm
and how to choose a part of the message; and eventually we describe some
applications of these results, including the practical attack against APOP.

2 Background and Notation

2.1 APOP

APOP is a command of the Post Office Protocol Version 3 [13] implementing
a simple challenge-response authentication protocol; it was introduced in the
POP protocol to avoid sending the password in clear over the network. Servers
implementing the APOP command send a challenge (formatted as a message
identifier, or msg-id) in their greeting message, and the client authenticates itself
by sending the username, and the MD5 of the challenge concatenated with the
password: MD5(msg-id||passwd). The server performs the same computation on
his side, and checks if the digests match. Thanks to this trick, an eavesdropper
will not learn the password, provided MD5 is a partial one-way function. As
there is no integrity protection and no authentication of the server, this protocol
is subject to a man-in-the-middle attack, but the man-in-the-middle should not
be able to learn the password or to re-authenticate later. Quoting RFC 1939 [13]:

312 G. Leurent

It is conjectured that use of the APOP command provides origin identi-
fication and replay protection for a POP3 session.

This challenge-response can be seen as a MAC algorithm, known as the suffix
method: MACk(M) = MD5(M ||k). This construction is weak for at least two
reasons: first, it allows off-line collision search so there is a generic forgery attack
with 2n/2 computations and one chosen-text MAC; second, the key-recovery
attack against the envelope method of Preneel and van Oorschot [15] can be
used on the suffix method with 267 offline computations and 213 chosen text
MACs.

This is a hint that APOP is weak, but these attacks require more computations
than the birthday paradox, and the first one is mostly useless in a challenge-
response protocol. However, we can combine these weaknesses with the collision
attack against MD5 to build a practical attack against APOP.

The APOP Attack. In this attack, we will act as the server, and we will send
some specially crafted challenges to the client. We will use pairs of challenges,
such that the corresponding digest will collide only if some part of the password
was correctly guessed.

Let us assume we can generate a MD5 collision with some specific format:
M = “<‽‽‽...‽‽‽>x” and M ′ = “< ‽‽‽

...

‽‽‽

>x”, where M and M ′ have both
size 128 bytes (2 MD5 blocks). The ‘‽’ and ‘ ‽’ represent any character chosen by
the collision finding algorithm. We will send “<‽‽‽...‽‽‽>” and “< ‽‽‽

...

‽‽‽

>”
as a challenge, and the client returns MD5(“<‽‽‽...‽‽‽>p0p1p2...pn−1”) and
MD5(“< ‽‽‽

...

‽‽‽

>p0p1p2...pn−1”), where “p0p1p2...pn−1” is the user password
(the pi’s are the characters of the password).

<‽‽‽ ... ‽‽‽> x c = <‽‽‽...‽‽‽>M =

<

‽‽‽

...

‽‽‽

> x c′ = <

‽‽‽

...

‽‽‽

>M ′ =

<‽‽‽ ... ‽‽‽> p0 p1p2... padAuth(c) = MD5
` ´

<

‽‽‽

...

‽‽‽

> p0 p1p2... padAuth(c′) = MD5
` ´

Fig. 1. APOP password recovery through MD5 collisions

As we can see in Figure 1, if p0 = ‘x’, the two hashes will collide after the
second block, and since the end of the password and the padding are the same,
we will see this collision in the full hashes (and it is very unlikely that the two
hashes collide for p0 �= ‘x’). Therefore we are able to test the first password
character without knowing the others. We will construct pairs of challenge to
test the 256 possible values, and stop once we have found the first password
character.

Message Freedom in MD4 and MD5 Collisions: Application to APOP 313

Then we generate a new collision pair to recover the second character of the
password: M = “<‽‽‽...‽‽‽>p0y” and M ′ = “< ‽‽‽

...

‽‽‽

>p0y”, so as to test if
p1 = ‘y’. Thus, we can learn the password characters one by one in linear time.

This motivates the need for message freedom in MD5 collisions: we need to
generate collisions with a specific format, and some chosen characters. We will
see in section 4.1 that this attack can be used in practice to recover the first
3 characters of the password. We believe most passwords in real use are short
enough to be found by exhaustive search once we know these first characters,
and this attack will allow us to re-authenticate later. We stress that this attack
is practical: it needs less than one hour of computation, and a few hundreds
authentications.

Since people often read their mail from different places (including insecure
wireless networks and Internet cafés), we believe that this man-in-the-middle
setting is rather realistic for an attack against APOP. Moreover most mail clients
automatically check the mailbox on a regular basis, so it seems reasonable to
ask for a few hundred authentications.

2.2 MD4 and MD5

MD4 and MD5 follow the Merkle-Damgård construction. Their compression
functions are designed to be very efficient, using 32-bit words and operations
implemented in hardware in most processors:

– rotation ≪;
– addition mod 232 �;
– bitwise boolean functions Φi.

The message block M is first split into 16 words 〈Mi〉15i=0, then expanded to
provide one word mi for each step of the compression function. In MD4 and
MD5 this message expansion is simple, it just reuses many times the words Mi.
More precisely, the full message is read in a different order at each round: we
have mi = Mπ(i) (π is given below).

The compression function uses an internal state of four words, and updates
them one by one in 48 steps for MD4, and 64 steps for MD5. Here, we will assign
a name to every different value of these registers, so the description is different
from the standard one: the value changed on step i is called Qi (this follows the
notations of Daum [5]).

Then MD4 is given by:

Step update: Qi = (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 � Q44||Q−1 � Q47||Q−2 � Q46||Q−3 � Q45

π(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
π(32..47): 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

314 G. Leurent

And for MD5, we have:

Step update: Qi = Qi−1 � (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

Input: Q−4||Q−1||Q−2||Q−3

Output: Q−4 � Q60||Q−1 � Q63||Q−2 � Q62||Q−3 � Q61

π(0..15): 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
π(16..31): 1 6 11 0 5 10 15 4 9 14 3 8 13 2 7 12
π(32..47): 5 8 11 14 1 4 7 10 13 0 3 6 9 12 15 2
π(48..64): 0 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9

The security of the compression function was based on the fact that the op-
erations are not “compatible” and mix the properties of the input.

We will use x[k] to represent the k+1-th bit of x, that is x[k] = (x ≫ k) mod 2
(note that we count bits and steps starting from 0).

2.3 Wang’s Attack Against MD4 and MD5

Wang et al. attacks against the hash functions of the MD4 family are differential
attacks, and have the same structure with two main parts:

1. A precomputation phase:
– choose a message difference Δ
– find a differential path
– compute a set of sufficient conditions

2. Search for a message M that satisfies the conditions;
then H(M) = H(M + Δ).

The differential path specifies how the computations of H(M) and H(M +Δ)
are related: it tells how the differences introduced in the message will evolve in
the internal state Qi. If we choose Δ with a low hamming weight, and some extra
properties, we can find some differences in the Qi’s that are very likely. Then
we look at each step of the compression function, and we can express a set of
sufficient conditions that will make the Qi’s follow the path. These conditions are
on the bits of Qi, so we can not directly find a message satisfying them; however
some of them can be fulfilled deterministically through message modifications,
and the rest will be statistical by trial and error.

3 A New Approach to Collision Finding

In this paper we assume that we are given a set of sufficient conditions on the
internal state variables Qi that produces collisions. We will try to find a message
M such that when one computes a hash of this message, the conditions on the
Qi’s hold. We will first describe the general idea that applies to both MD4 and
MD5, and we will then study in more details those two hash functions.

In contrast to previous works [14,11,2], we will not focus on a particular path
and give message modification techniques for every single condition, but we will
give a generic algorithm that can take any path as input, like Klima in [10] and
Stevens in [18]. Our method is based on two important facts:

Message Freedom in MD4 and MD5 Collisions: Application to APOP 315

1. We can search a suitable internal state rather than searching a suitable
message, because the step update function is invertible: if Qi+1, Qi+2 and
Qi+3 are known, then we can compute any one of Qi, Qi+4 or mi from the
two others (see Algorithm 2 in Appendix B for explicit formulas).

2. We do not need to search for the internal state from the beginning to the
end. If we start from the middle we can satisfy the conditions in the first
round and some conditions in the second round at the time; additionally we
can choose the end of the message before running the search with little extra
cost.

3.1 Previous Works

Wang’s method to find a message satisfying a set of conditions is roughly de-
scribed in Algorithm 3 in Appendix B: one basically picks many messages at
random, modifies them to fulfill some of the conditions, and checks if the other
conditions are fulfilled.

The best message modifications known allow to satisfy every condition up to
round 22 in MD4 (which gives a collision probability of 2−2) and up to round
24 in MD5 (which gives a collision probability of 2−29). Basically, message mod-
ifications for the conditions in the first round are very easy, but in the second
round it becomes much more difficult because we cannot freely change message
words without breaking the Qi in the first round (and therefore also in the
second round). At the beginning of the second round it is still possible to find
message modifications, but it becomes increasingly difficult as we go forward.
Wang’s differential paths are chosen with this constraint in mind, and most of
their conditions are in the first round and at the beginning of the second.

The algorithm can be rewritten more efficiently: instead of choosing a random
message and modify it, we can choose the Qi in the first round and compute
the corresponding message. Since all the conditions in MD4 and MD5 are on the
Qi’s, this will avoid the need for message modifications in the first round.

To further enhance this algorithm, Klima introduced the idea of tunnels
in [11], which is closely related to Biham and Chen’s neutral bits used in the
cryptanalysis of SHA-0 [1]. A tunnel is a message modification that does not
affect the conditions up to some step pv − 1 (point of verification). Therefore, if
we have one message that fulfill the conditions up to pv − 1 and τ tunnels, we
can generate 2τ messages that fulfills conditions up to step pv −1. This does not
change the number of messages we have to try, but it greatly reduces the cost
of a single try, and therefore speeds up collision search a lot. This is described
in Algorithm 4 in Appendix B.

In MD4 and MD5, the point of verification will be in the second round, and we
put it after the last condition in the second round (step 22 in MD4, 24 in MD5).
We have message modifications for almost every condition before the point of
verification, and it seems impossible to find message modifications for round 3
and later.

316 G. Leurent

3.2 Our Method

Our method is somewhat different: we will not fix the Qi from the beginning to
the end, but we will start from the middle, and this will allow us to deal with
the first round and the beginning of the second round at the same time.

First we choose a point of choice pc of and a point of verification pv. The
point of verification is the step where we will start using tunnels, and the point
of choice is the first step whose conditions will not be satisfied deterministically.
The value of pc depends on the message expansion used in the second round: we
must have π(16) < π(17) < ... < π(pc − 1) < 12, so we will choose pc = 19 in
MD4 (π(18) = 8), and pc = 19 in MD5 (π(18) = 11).

The key idea of our collision search is to first choose the end of the first round,
i.e. Q12 to Q15. Then we can follow the computations in the first round and in
the second round at the same time, and choose mi’s that satisfy the conditions
in both rounds. There is no difficulty when the first round meets the values we
fixed in the beginning: since we only fixed the Qi’s, we just have to compute
the corresponding mi’s. More precisely, we will choose the Qi from step 0 to
π(pc − 1), and when we hit a message mi that is also used in the second round
with i = π(j), we can modify it to generate a good Qj since we have already
fixed Qj−4, Qj−3, Qj−2 and Qj−1. Thus, we can fulfill conditions up to round
pc − 1 almost for free.

In the end, we will make random choices for the remaining steps (Qπ(pc−1)+1

to Q11), until we have a message that follows the path up to step pv − 1, and
finally we use the tunnels. For a more detailed description of the algorithm, see
Algorithm 1 in Appendix B, and take t = 0 (this algorithm is more generic and
will be described in the next section).

Since we do not choose the Qi’s in the natural order, we have to modify a
little bit the set of sufficient conditions: if we have a condition Q

[k]
12 = Q

[k]
11 , we

will instead use Q
[k]
11 = Q

[k]
12 because we choose Q12 before Q11.

Compared to standard message modifications, our algorithm has an extra cost
when we try to satisfy conditions in steps pc to pv − 1. However, this is not so
important for two reasons:

– Testing one message only requires to compute a few steps, and we will typi-
cally have less than 10 conditions to satisfy, so this step will only cost about
a hundred hash computations.

– This cost will be shared between all the messages which we find with the
tunnels. In the case of MD5, we have to use a lot of tunnels to satisfy the
29 conditions in round 3 and 4 anyway, and in MD4 we will use a lot of
tunnels if we look for many collisions (if one needs a single MD4 collision,
the collision search cost should not be a problem).

3.3 Choosing a Part of the Message

This method can be extended to allow some message words to be fixed in the
collision search. This will make the search for a first message following the path

Message Freedom in MD4 and MD5 Collisions: Application to APOP 317

up to the point of verification harder, and it will forbid the use of some tunnels.
Actually, we are buying some message freedom with computation time, but we
can still find collisions very efficiently. We will show which message words can
be chosen, and how to adapt the algorithm to find a first message following the
path up to the step pv − 1 with some message words chosen.

Choosing the Beginning. If the first steps in the first round are such that in
the second round m0...mi are only used after the step pc or in a step j with no
condition on Qj, then we can choose m0...mi before running the algorithm. The
choice of m0...mi will only fix Q0...Qi (if there are some conditions on Q0...Qi,
we must make sure they are satisfied by the message chosen), and the algorithm
will work without needing any modification.

On MD5, this allows to choose m0. Using Wang’s path, there are no conditions
on Q0 for the first block, so m0 is really free, but in the second block there are
many conditions. On MD4, we have π(16) = 0, so this can only be used if we
use pc = 16, which will significantly increase the cost of the collision search.

Choosing the End. The main advantage of our algorithm is that it allows
to choose the end of the message. This is an unsuspected property of Wang’s
attack, and it will be the core of our attack against APOP. Our idea is to split
the search in two: first deal with fixed message words, then choose the other
internal state variables. This is made possible because our algorithm starts at
the end of the first round; the conditions in those steps do not directly fix bits
of the message, they also depend on the beginning of the message.

More precisely, if we are looking for collisions where the last t words are chosen,
we begin by fixing Q12−t, Q13−t, Q14−t and Q15−t, and we compute Q16−t to
Q15 using the chosen message words. We can modify Q12−t if the conditions
on the first state Q16−t are not satisfied, but for the remaining t − 1 steps this
is impossible because it would break the previous steps. So, these conditions
will be fulfilled only statistically, and we might have to try many choices of
Q12−t, Q13−t, Q14−t, Q15−t (note that each choice does not cost a full MD4
computation, but only a few steps).

Once we have a partial state that matches the chosen message, we run the
same algorithm as in the previous section, but we will be able to deal with less
steps of the second round due to the extra fixed states Q12−t to Q11. The full
algorithm is given in Algorithm 1 in Appendix B.

3.4 MD4 Message Freedom

Using Wang’s EUROCRYPT path [21]. If we use Wang’s EUROCRYPT
path, we will choose pv = 23 so as to use tunnels only for the third round.
Therefore, the tunnels will have to preserve the values of m0, m4, m8, m12, m1,
m5 and m9 when they modify the Qi’s in the first round.

There are two easy tunnels we can use, in Q2 and Q6. If we change the value of
Q2, we will have to recompute m2 to m6 as we do not want to change any other
Qi, but if we look at step 4, we see that Q2 is only used trough IF(Q3, Q2, Q1).

318 G. Leurent

So some bits of Q2 can be changed without changing Q4: if Q
[k]
3 = 0 then we can

modify Q
[k]
2 . The same thing happens is step 5: Q2 is only used in IF(Q4, Q3, Q2),

and we can switch Q
[k]
2 if Q

[k]
4 = 1. So on the average, we have 8 bits of Q2 that

can be used as a tunnel. The same thing occurs in Q6: if Q
[k]
7 = 0 and Q

[k]
8 = 1,

then we can change Q
[k]
6 without altering m8 and m9. If we add some extra

conditions on the path we can enlarge these tunnels, but we believe it’s not
necessary for MD4.

We can use our collision finding algorithm with up to 5 fixed words; Table 1
gives the number of conditions we will have to satisfy probabilistically. Of course,
the cost of the search increases with t, but with t = 3 it should be about one
29 MD4 computations, which is still very low. Note that this cost is only for the
first collision; if one is looking for a bunch of collisions, this cost will be shared
between all the collisions found through the tunnels, and we expect 214 of them.
Another important remark is that this path has a non-zero difference in m12;
therefore when choosing more than 3 words, the chosen part in M and M ′ will
have a one bit difference.

Table 1. Complexity estimates for MD4 collision search with t fixed words, and com-
parison with Dobbertin’s technique [7]. We assume that a single trial costs 2−3 MD4
on the average due to early abort techniques.

message words chosen: t 0 1 2 3 4 5 0 11 0 11
path used [21] [25] [7]

point of choice: pc 19 19 19 18 18 18 19 17
point of verification: pv 23 23 23 23 23 23 23 17

conditions in steps 17 − t to 15 0 0 6 12 18 24 0 17
conditions in steps pc to pv − 1 8 8 8 11 11 11 11 0

conditions in steps pv to N 2 2 2 2 2 2 17 34
complexity (MD4 computations log2) 5 5 5 9 15 21 14 31 20 30

Using Yu et al.’s CANS path [25]. To push this technique to the limit, we
will try to use t = 11: this leaves only m0 to m4 free, which is the minimum
freedom to keep a tunnel. In this setting, the conditions in steps 6 to 15 can only
be satisfied statistically, which will be very expensive with Wang’s path [21] (its
goal was to concentrate the conditions in the first round). Therefore we will use
the path from [25], which has only 17 conditions in steps 6 to 15.

Since we fix almost the full message, the second phase of the search where
we satisfy conditions in the first and second round at the same time will be
very limited, and we have pc = 17. Then we use the tunnel in Q0, which is
equivalent to iterating over the possible Q16’s, computing m0 from Q16, and
then recomputing Q0 and m1, m2, m3, m4. There are 34 remaining conditions,
so we will have to use the tunnel about 234 times. Roughly, we break the message
search in two: first find m0..m4 such that the message follows steps 0 to 16, then
modify it to follow up to the end by changing Q0. This path is well suited for
this approach, with few conditions well spread over the first two rounds.

Message Freedom in MD4 and MD5 Collisions: Application to APOP 319

This gives us a lot of freedom in MD4 collisions, but the collision search
becomes more expensive. Another interesting property of this path is that it
only introduces a difference in m4, so the 11 chosen words will be the same in
M and M ′.

3.5 MD5 Message Freedom

Using Wang’s MD5 path [23], we will choose pv = 24 so as to use tunnels only
for the third round. Therefore, when we modify the Qi’s in the first round to use
the tunnels, we have to keep the values of m1, m6, m11, m0, m5, m10, m15 and
m4. We will not describe the available tunnels here, since they are extensively
described in Klima’s paper [11].

We use the set of conditions from Stevens [18], which adds the conditions
on the rotations that were missing in Wang’s paper [23]. We had to remove
the condition because it is incompatible with some choices of m15, so we check
instead the less restrictive condition on Φ15 (Φ[31]

15 = 0). We also found out that
some conditions mark as optimization conditions were actually needed for the
set of conditions to be sufficient.

As already stated, we can choose m0 in the first block, and we will see how
many words we can choose in the end of the message. With t = 0, we set pc = 19,
so we have 7 conditions in steps pc to pv−1, and after pv, there are 29 conditions
for the first block, and 22 for the second block. With t = 1, we use pc = 18,
which increase the number of conditions between steps pc and pv − 1 to 9, but
since we will use a lot of tunnels, this has very little impact on the computing
time. We can also try to set t = 2, but this adds a lot of conditions when we
search the states in the end of the first round. According to our experiments,
the conditions on the Qi’s also imply some conditions on m14, so m14 could not
be chosen freely anyway.

As a summary, in a two-block MD5 collision (M ||N, M ′||N ′), we can choose
M0, M15 and N15, and the complexity of the collision search is roughly the same
as a collision search without extra constraints.

We only implemented a little number of tunnels, but we find the first block in
a few minutes with m0 and m15 chosen, and the second block in a few seconds
with m15 chosen. This is close to Klima’s results in [11].

4 Applications

Freedom in colliding blocks can be used to break some protocols and to create
collisions of special shape. The applications we show here requires that the chosen
part is identical in M and M ′, i.e. the differential path must not use a difference
there.

Fixing the Padding. We can use this technique to find messages with the
padding included in the colliding block. For instance, this can be useful to build
pseudo-collision of the hash function: if there is a padding block after the pseudo-
colliding messages, the pseudo-collision will be completely broken.

320 G. Leurent

We can also find collisions on messages shorter than one block, if we fix the
rest of the block to the correct padding. An example of a 160 bit MD4 collision
is given in Table 2 in Appendix A.

Zeroed Collisions. Szydlo and Yin proposed some message preprocessing tech-
niques to avoid collisions attacks against MD5 and SHA-1 in [20]. Their idea is
to impose some restrictions on the message, so that collision attacks become
harder. One of their schemes is called message whitening : the message is broken
into blocks smaller than 16 words, and the last t words are filled with zeroes.
Using our technique we can break this strengthening for MD4 and MD5: in Ap-
pendix A we show a 11-whitened MD4 collision in Table 3 and a 1-whitened
MD5 collision in Table 4.

4.1 The APOP Attack in Practice

To implement this attack, we need to efficiently generate MD5 collisions with
some chosen parts; we mainly have to fix the last word, which is precisely what
we can do cheaply on MD5.

Additionally, the POP3 RFC [13] requires the challenge to be a msg-id, which
means that:
– It has to begin with ‘<’ and end with ‘>’
– It must contain exactly one ‘@’, and the remaining characters are very re-

stricted. In particular, they should be ASCII characters, but we can not find
two colliding ASCII messages with Wang’s path.

In practice most mail clients do not check these requirements, leaving us a lot of
freedom. According to our experiments with Thunderbird1 and Evolution2 there
are only four characters which they reject in the challenge:
– 0x00 Null: used as end-of-string in the C language
– 0x3e Greater-Than Sign (‘>’): used to mark the end of the msg-id
– 0x0a Line-Feed: used for end-of-line (POP is a text-based protocol)
– 0x0d Carriage-Return: also used for end-of-line

Thunderbird also needs at least one ‘@’ in the msg-id.
We will use Wang’s path [23], which gives two-block collisions. The first block

is more expensive to find, so we will use the same for every msg-id, and we will
fix the first character as a ‘<’, and the last character as a ‘@’. Then we have to
generate a second block for every password character test; each time the last
word is chosen, and we must avoid 4 characters in the message. Using the ideas
from Section 3.5 we can do this in less than 5 seconds per collision on a standard
desktop computer.

Unfortunately, this path uses a difference δM14 = 232 and this makes a dif-
ference in character 60. In order to learn the i-th password character pi−1, we
need to generate a collision where we fix the last i + 1 characters (i password
characters, plus a ‘>’ to form a correct msg-id). Therefore, we will only be able to
1 Available at http://www.mozilla.com/en-US/thunderbird/
2 Available at http://www.gnome.org/projects/evolution/

http://www.mozilla.com/en-US/thunderbird/
http://www.gnome.org/projects/evolution/

Message Freedom in MD4 and MD5 Collisions: Application to APOP 321

retrieve 3 characters of the password with Wang’s path. This points out a need
for new paths following Wang’s ideas, but adapted to other specific attacks; here
a path less efficient for collision finding but with better placed differences could
be used to learn more characters of the password.

Complexity. To estimate the complexity of this attack, we will assume the
user’s password is 8-characters long, and each character has 6 bits of entropy.
This seems to be the kind of password most people use (when they don’t use
a dictionary word...). Under these assumptions, we will have to generate 3 × 25

collisions, and wait for about 3 × 26 identifications. Each collision takes about
5 seconds to generate; if we assume that the client identifies once per minute
this will be the limiting factor, and our attack will take about 3 hours. In a
second phase we can do an offline exhaustive search over the missing password
characters. We expect to find them after 230 MD5 computations and this will
take about half an hour according to typical OpenSSL benchmarks.

Recent Developments. The attack against APOP had been independently
found by Sasaki et al. almost simultaneously; they put a summary of their work
on the eprint [16]. Moreover, Sasaki announced at the rump session of FSE ’07
that he had improved the attack; he can recover 31 password characters using a
new differential path.

Recommendations. We believe APOP is to be considered broken, and we
suggest users to switch to an other authentication protocol if possible. Since the
current attack needs non-RFC-compliant challenges, an easy countermeasure in
the mail user agent is to strictly check if the challenge follows the RFC, but
maybe this could be defeated by an improved attack.

Acknowledgement

We thank the anonymous reviewers of FSE, for their helpful comments and for
pointing out related work. Thanks are also due to Phong Nguyen and Pierre-
Alain Fouque for their precious help and proofreading. Finally, we would also
like to thank Yu Sasaki for the explanations of his improvements over the APOP
attack.

Part of this work is supported by the Commission of the European Commu-
nities through the IST program under contract IST-2002-507932 ECRYPT, and
by the French government through the Saphir RNRT project.

References

1. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

2. Black, J., Cochran, M., Highland, T.: A Study of the MD5 Attacks: Insights and
Improvements. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 262–277.
Springer, Heidelberg (2006)

322 G. Leurent

3. Contini, S., Yin, Y.L.: Forgery and Partial Key-Recovery Attacks on HMAC and
NMAC Using Hash Collisions. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006.
LNCS, vol. 4284, Springer, Heidelberg (2006)

4. Cramer, R.J.F. (ed.): EUROCRYPT 2005. LNCS, vol. 3494. Springer, Heidelberg
(2005)

5. Daum, M.: Cryptanalysis of Hash Functions of the MD4-Family. PhD thesis, Ruhr-
University of Bochum (2005)

6. Daum, M., Lucks, S.: Hash Collisions (The Poisoned Message Attack) “The Story
of Alice and her Boss”. Presented at the rump session of Eurocrypt ’05. http://
th.informatik.uni-mannheim.de/people/lucks/HashCollisions/

7. Dobbertin, H.: Cryptanalysis of MD4. J. Cryptology 11(4), 253–271 (1998)
8. Gebhardt, M., Illies, G., Schindler, W.: A Note on the Practical Value of Single

Hash Collisions for Special File Formats.In: Dittmann, J. (ed.) Sicherheit, vol. 77
of LNI, pp. 333–344. GI (2006)

9. Kim, J., Biryukov, A., Preneel, B., Hong, S.: On the Security of HMAC and NMAC
Based on HAVAL, MD4, MD5, SHA-0 and SHA-1. In: De Prisco, R., Yung, M.
(eds.) SCN 2006. LNCS, vol. 4116, pp. 242–256. Springer, Heidelberg (2006)

10. Klima, V.: Finding MD5 Collisions on a Notebook PC Using Multi-message Mod-
ifications. Cryptology ePrint Archive, Report 2005/102 (2005), http://eprint.
iacr.org/

11. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptol-
ogy ePrint Archive, Report 2006/105 (2006), http://eprint.iacr.org/

12. Lenstra, A.K., Weger, B.d.: On the Possibility of Constructing Meaningful Hash
Collisions for Public Keys.. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 267–279. Springer, Heidelberg (2005)

13. Myers, J., Rose, M.: Post Office Protocol - Version 3. RFC 1939 (Standard) (May
1996) Updated by RFCs 1957, 2449.

14. Naito, Y., Sasaki, Y., Kunihiro, N., Ohta, K.: Improved Collision Attack on MD4
with Probability Almost 1. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS,
vol. 3935, pp. 129–145. Springer, Heidelberg (2006)

15. Preneel, B., van Oorschot, P.C.: On the Security of Two MAC Algorithms. In:
EUROCRYPT, pp. 19–32 (1996)

16. Sasaki, Y., Yamamoto, G., Aoki, K.: Practical password recovery on an md5 chal-
lenge and response. Cryptology ePrint Archive, Report 2007/101(2007), http://
eprint.iacr.org/

17. Shoup, V. (ed.): CRYPTO 2005. LNCS, vol. 3621, pp. 14–18. Springer, Heidelberg
(2005)

18. Stevens, M.: Fast Collision Attack on MD5. Cryptology ePrint Archive, Report
2006/104 (2006), http://eprint.iacr.org/

19. Stevens, M., Lenstra, A., de Weger, B.: Target Collisions for MD5 and Collid-
ing X.509 Certificates for Different Identities. Cryptology ePrint Archive, Report
2006/360 (2006), http://eprint.iacr.org/

20. Szydlo, M., Yin, Y.L.: Collision-Resistant Usage of MD5 and SHA-1 Via Message
Preprocessing. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 99–
114. Springer, Heidelberg (2006)

21. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer [4], pp. 1–18.

22. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup [17],
pp. 17–36 (2005)

23. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer [4],
pp. 19–35 (2005)

http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://th.informatik.uni-mannheim.de/people/lucks/HashCollisions/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/
http://eprint.iacr.org/

Message Freedom in MD4 and MD5 Collisions: Application to APOP 323

24. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In: Shoup
[17], pp. 1–16 (2005)

25. Yu, H., Wang, G., Zhang, G., Wang, X.: The Second-Preimage Attack on MD4.
In: Desmedt, Y.G., Wang, H., Mu, Y., Li, Y. (eds.) CANS 2005. LNCS, vol. 3810,
pp. 1–12. Springer, Heidelberg (2005)

A Collision Examples

Table 2. A 160-bit MD4 collision

Message M

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa

Message M ′

42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac

Message M padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c aa 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

Message M ′ padded to one block
42 79 2d 65 f0 f8 4f d8 d5 7d 86 bf 78 54 9d 67
3f b3 8c ac 80 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 a0 00 00 00 00 00 00 00

MD4
46 6d cb bd 04 66 2c 43 75 12 18 f6 f4 e5 68 71

Table 3. A 11-whitened MD4 collision

Whitened Message M

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 18 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Whitened Message M ′

b9 39 4f 51 3b 43 68 dd d6 1d 6f 1c 5d b6 a0 b2
44 d4 69 1a 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

MD4 without padding
1d ba e9 89 02 22 9f a6 a9 bb 88 f8 30 c1 38 ab

MD4 with padding
e1 54 1e 65 46 d8 4b 79 db b3 5b b2 13 00 06 9b

324 G. Leurent

Table 4. A 1-whitened MD5 collision

Whitened Message M

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 bf ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 83 b2 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 77 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b 37 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 ac d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 f2 00 00 00 00

Whitened Message M ′

00 00 00 00 23 f9 5a 1c c8 4f 18 59 1b ef 74 a9
02 7a b6 3f ff 47 53 be c3 29 a9 dd b1 1e 62 94
d1 2c 24 05 07 5e b4 42 1b e2 58 72 25 03 b3 52
12 97 d8 24 ca 8c ae 13 e1 e9 34 f7 00 00 00 00
54 01 42 6f b4 b5 4a 77 d2 15 90 5a 7a 42 cf dd
9f 76 5b b7 90 dd 7e 3d 0a fd 77 d7 d1 4c 55 de
49 ff 3e f2 f5 52 b8 86 72 c0 49 7e 80 2c d1 1f
c7 38 b4 96 a8 d3 73 f0 4b 5c d8 72 00 00 00 00

MD5 without padding
98 28 90 7a 75 75 ae 7a 25 f9 80 94 62 ea 52 76

MD5 with padding
7c c4 3c db a7 a6 f6 9e c5 10 8e 46 95 00 fd 82

Table 5. APOP MD5 collision. These two msg-id’s collide if padded with “bar”.

Message M

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀACn]EBØ\4UBSµiQP1 6d 58 c0 9f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc’áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 27 e1 d2
ÝìVSôGECû49¾VHJxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 89 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4$½MH-:y6ÇÊ©ÜFS c4 94 34 24 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DCþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 90 fe be
ïL´ïªØ#»ì])ü> ef 4c b4 ef aa d8 23 bb ec 5d 29 fc 3e

Message M ′

<xxxÑÕç\HSØºä4PD<HO 3c 78 78 78 d1 d5 e7 5c 88 d8 ba e4 34 8b 3c 81
mXÀUSn]EBØ\4UBSµiQP1 6d 58 c0 1f 6e 5d 17 d8 5c 34 55 08 b5 69 51 91
Åì"AKSXxô!¿ïFsc§áÒ c5 ec 22 06 02 78 f4 21 bf ef 46 73 63 a7 e1 d2
ÝìVSôGECû49¾VHTxxx@ dd ec 8a f4 47 1b fb 34 39 be 56 09 78 78 78 40
ÚcCòßPºEQÙÖHTNHRIRéý da 63 43 f2 df 50 ba 05 d9 d6 09 83 8d 52 e9 fd
ÄCC4¤½MH-:y6ÇÊ©ÜFS c4 94 34 a4 bd 4d 48 2d 3a 79 36 c7 ca a9 dc 1c
-0:ÞñMW|enPUë5{DLþ¾ 2d 30 3a de f1 95 7c 65 6e 8c eb 35 7b 10 fe be
ïL´ïªØ#»ì])|> ef 4c b4 ef aa d8 23 bb ec 5d 29 7c 3e

MD5(M ||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ′||“bar”) b8 98 53 57 f8 06 8c 23 72 cf f8 c2 4c 22 c3 81
MD5(M ||“ban”) 40 c6 ee cc 6f e1 e5 2b 53 74 a0 e8 3e f7 4f 54
MD5(M ′||“ban”) 02 c1 8c 29 49 91 04 99 8f 88 33 77 a1 eb 81 be

Message Freedom in MD4 and MD5 Collisions: Application to APOP 325

B Algorithms

All the algorithms take the set of condition as an implicit input, and will modify
a shared state containing the mi’s and the Qi’s.

Algorithm 1. Our collision finding algorithm
1: procedure FindMessage(pv, pc, t)
2: repeat
3: choose Q12−t, Q13−t, Q14−t, Q15−t

4: if t �= 0 then
5: StepForward(16 − t)
6: FixState(16 − t)
7: StepBackward(16 − t)
8: if not CheckConditions(12 − t) then
9: goto 3

10: for 17 − t ≤ i < 16 do
11: StepForward(i)
12: if not CheckConditions(i) then
13: goto 3
14: i ← 0
15: for 16 ≤ j < pc do
16: while i < π(j) do
17: choose Qi

18: StepMessage(i)
19: i ← i + 1

20: StepForward(j)
21: FixState(j)
22: StepMessage(j)
23: StepForward(i)
24: if not CheckConditions(i) then
25: goto 16
26: for π(pc − 1) + 1 ≤ i < 12 − t do
27: choose Qi

28: StepMessage(i)
29: StepMessage(12-t ... 15-t)
30: for pc ≤ i < pv do
31: StepForward(i)
32: if not CheckConditions(i) then
33: goto 26
34: for all tunneled message do
35: for pv ≤ i < N do
36: StepForward(i)
37: if not CheckConditions(i) then
38: use the next message
39: until all conditions are fulfilled

326 G. Leurent

Algorithm 2. Step functions
1: function MD4StepForward(i)
2: Qi ← (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

3: function MD4StepBackward(i)
4: Qi−4 ← (Qi ≫ si) 	 Φi(Qi−1, Qi−2, Qi−3) 	 mi 	 ki

5: function MD4StepMessage(i)
6: mi ← (Qi ≫ si) 	 Qi−4 	 Φi(Qi−1, Qi−2, Qi−3) 	 ki

7: function MD5StepForward(i)
8: Qi ← Qi−1 � (Qi−4 � Φi(Qi−1, Qi−2, Qi−3) � mi � ki) ≪ si

9: function MD5StepBackward(i)
10: Qi−4 ← (Qi 	 Qi−1) ≫ si 	 Φi(Qi−1, Qi−2, Qi−3) 	 mi 	 ki

11: function MD5StepMessage(i)
12: mi ← (Qi 	 Qi−1) ≫ si 	 Qi−4 	 Φi(Qi−1, Qi−2, Qi−3) 	 ki

Algorithm 3. Wang’s message finding algorithm
1: procedure FindMessageWang
2: repeat
3: choose a random message
4: for 0 ≤ i < N do
5: StepForward(i)
6: if not CheckConditions(i) then
7: try to modify the message
8: until all conditions are fulfilled

Algorithm 4. Klima’s message finding algorithm
1: procedure FindMessageKlima
2: repeat
3: for 0 ≤ i < 16 do
4: choose Qi

5: StepMessage(i)
6: for 16 ≤ i < pv do
7: StepForward(i)
8: if not CheckConditions(i) then
9: modify the message

10: for all tunneled message do
11: for pv ≤ i < N do
12: StepForward(i)
13: if not CheckConditions(i) then
14: use the next message
15: until all conditions are fulfilled

Message Freedom in MD4 and MD5 Collisions: Application to APOP 327

C Collisions with a High Number of Chosen Bits

In this paper, we considered the problem of finding collisions with some chosen
words but some other works addressed the problem of choosing bits (mainly [25]).
We believe it is more useful to choose consecutive bits and the applications we give
in Section 4 all need this property. Specifically, the APOP attack requires to choose
consecutive bits in the end of the block; it will fail if one of these bits is uncontrolled.
However let us say a few words about collisions with many chosen bits.

Following the ideas of Yu et al.[25], we will use a collision path with very few
conditions. Such paths are only known in the case of MD4, and we found out
that the path from [25] can be slightly enhanced: if we put the difference in the
bit 25 instead of the bit 22, we get only 58 conditions (instead of 62). Now the
basic idea is to take a message M , and apply message modifications in the first
round: this will give a message M∗ that has about 10 bit difference from M
(there are 20 conditions in the first round) and it gives a collision (M∗, M∗ +Δ)
with probability 2−38. Therefore we will generate about 238 messages Mi close
to M and the corresponding M∗

i , and one of them will give a collision.
Little detail is given in Yu et al. paper, but we can guess from their collision

example that they generated the Mi’s by changing m14 and m15. This makes the
attack more efficient since the M∗

i will all have the same first 14 words, but it will
modify about 32 extra bits. Actually, one only needs to iterate over 38 bits, which
gives on the average 19 modified bits, but Yu et al. used the whole 64 bits.

In fact, if the goal is to have a high number of chosen bits, it is better to choose
the Mi in another way: instead of iterating over some bits, we will switch a few
bits in the whole message, and iterate over the positions of the differences. We
have
(
512
5

)
≈ 238, so it should be enough to select 5 positions, but we will have

to run the full message modifications in the first round for every message, which
is quite expensive (about 237 MD4 computations). Instead, one can choose 4
positions in the first 480 bits, and two in the last 32 bits: we have

(
480
4

)(
32
2

)
≈ 240,

Table 6. A MD4 collision close to 1512

Message M

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff fd ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

Message M ′

ff ff ff ff bf ff ff ff ff f7 ff ff ff ff df ff
ff ff ff ff ff ff df ff ff ff fd ff ff ef ff ff
ff ff ff ef ff ff ff fe ff ff ef 7f ff 7f ff ff
7f ff fd 7f ff bf ff ff ff ff ff ff ff bf ff fd

MD4 without padding
ff a3 b5 2d 51 63 59 36 11 e5 9a d0 a6 cf 8b 33

MD4 with padding
59 93 19 84 d0 6f 55 9f f3 d0 87 4b c6 24 f4 8d

328 G. Leurent

and the message modification on the first 15 words will only be run every 29

messages; the main cost will be that of testing 238 messages for the second and
third rounds: using early abort techniques, this cost will be about 233 MD43.

On the average, we expect to have 6 bit differences coming from this iteration,
plus 10 coming from the message modification in the first round. An example
of such message is given in Table 6, it has 18 bit differences from the target (a
block consisting only of 1’s), which is much better than achieved by Yu et al.
(43 bit differences).

3 There are two conditions on step 15, three on step 16 and one on step 17: so 3 · 236

messages will stop after 1 step, 7·233 after 2 steps, 232 after 3 steps, and the remaining
232 messages will need at most 16 steps. This gives less than 95 ·232 MD4 steps, that
is less than 233 full MD4.

New Message Difference for MD4

Yu Sasaki, Lei Wang, Kazuo Ohta, and Noboru Kunihiro

The University of Electro-Communications
Chofugaoka 1-5-1, Chofu-shi, Tokyo, 182-8585, Japan

{yu339,wanglei,ota,kunihiro}@ice.uec.ac.jp

Abstract. This paper proposes several approaches to improve the colli-
sion attack on MD4 proposed by Wang et al. First, we propose a new local
collision that is the best for the MD4 collision attack. Selection of a good
message difference is the most important step in achieving effective colli-
sion attacks. This is the first paper to introduce an improvement to the
message difference approach of Wang et al., where we propose a new local
collision. Second, we propose a new algorithm for constructing differential
paths. While similar algorithms have been proposed, they do not support
the new local collision technique. Finally, we complete a collision attack,
and show that the complexity is smaller than the previous best work.

Keywords: Hash Function, Collision Attack, MD4, Local Collision, Mes-
sage Difference, Differential Path.

1 Introduction

Hash functions play an important role in modern cryptology. Hash functions
must hold the property of collision resistance. This means that it must be com-
putationally hard to find a pair of messages M and M ′ such that H(M) = H(M ′)
and M �= M ′.

MD4 is a hash function that was proposed by Rivest in 1990 [5]. MD4 has the
Merkle-Damg̊ard structure, and is designed for fast calculation. MD4 has been
used to design other hash functions such as MD5 or SHA-1, which are widely
used today. Therefore, cryptanalysis on MD4 is important since it affects the
cryptanalysis of other hash functions based on MD4.

Several papers have found and reported the weaknesses of MD4. In 1996,
the first collision attack was proposed by Dobbertin [1]. This attack finds a
collision with probability of 2−22. In 1998, Dobbertin pointed out that the first
two rounds of MD4 did not have an property of one way. In 2004, at the CRYPTO
rump session, Wang presented that collisions of MD4 could be generated very
rapidly [7]. In 2005, Wang et al. reported the details of this attack which finds
a collision with probability of 2−2 to 2−6, and its complexity is less than 28

MD4 operations. This attack is highly efficient and many papers have suggested
further improvements to this attack. In 2005, Naito et al. presented an improved
attack [4]. They pointed out the mistakes of the sufficient conditions detailed
in [8], and made improvements to the message modification techniques. This

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 329–348, 2007.
c© International Association for Cryptologic Research 2007

330 Y. Sasaki et al.

attack finds a collision with complexity less than 3 MD4 operations, and it is the
fastest approach up to this time. In 2006, Schläffer and Oswald [6] analyzed how
message differences given by [8] worked, and proposed an automated differential
path search algorithm. As a result, they found a differential path that needed
fewer sufficient conditions than Wang et al.’s.

An important characteristic of previous attacks is that they all used the same
local collision, i.e. the message differences and differential path as proposed by
Wang et al. In [8], the authors claim that their message differences, which are
derived from their local collision, are optimized for collision attack. However,
our research shows that local collision of [8] is not optimized.

For collision attacks, selecting good message differences is very important.
Message differences are derived from a local collision, so selecting a good local
collision is an important aspect of this work. If better local collisions or message
differences are found, attack complexity can be drastically reduced. Moreover,
an effective way to find a good local collision or message difference for MD4 may
be applicable to other hash functions. This fact motivated our research on MD4.

This paper makes two contributions.
1. We propose a new local collision and new message differences that appear

to be the best for collision attack on MD4. We use less than one half of the
non-negligible sufficient conditions for new differences needed by Wang et
al.’s approach.

2. We show that the differential path construction algorithm proposed by [6]
does not work for the new local collision technique. Therefore, we analyze
the problems of [6], and develop a new algorithm.

The improved collision attack is realized by combining the above two contri-
butions and the message modification technique described by [3,4]. Since local
collision and message differences are improved, we can find a collision with com-
plexity less than 2 MD4 operations, which is the fastest of all existing attacks.
We show the new local collision in the right side of Table 1 and Figure 2.2, new
message differences and differential path in Table 7, new sufficient conditions
in Table 8, and all message modification procedures in Table 9 to Table 20; an
example of a collision generated by our attack is shown in Table 4.

The organization of this paper is as follows. In section 2, we explain the
specification of MD4 and related works. In section 3, we explain why the local
collision of [8] is not best, and propose a new local collision for MD4. In section
4, we explain why the algorithm of [6] does not support the new local collision,
and propose a new algorithm that constructs differential paths for the first round
of MD4. Section 5 completes the improved attack, and compares its efficiency to
previous works. Finally, we conclude this paper in section 6.

2 Preliminaries

2.1 Specification of MD4 [5]

MD4 input is an arbitrary length message M , and MD4 output is 128-bit data
H(M). MD4 has a Merkle-Damg̊ard structure. First, the input message is padded

New Message Difference for MD4 331

to be a multiple of 512 bits. Since padding does not affect collision attack,
we omit its explanation. The padded message M∗ is divided into 512-bit mes-
sages M∗ = (M0, . . . , Mn−1). The initial value (IV) for the hash value is set to
be H0 = (0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476). The output of the
compression function H1 is calculated using M0 and H0. In this paper, we call
the calculation performed in a single run of the compression function 1 block.
Next, H2 is calculated using M1 and H1. Similarly, the compression function is
calculated until the last message Mn−1 is used. Let Hn be the hash value of M .

Compression Function of MD4
All calculations in the compression function are 32-bit. We omit the notation of
“mod 232”. The input to the compression function is a 512-bit message Mj and a
128-bit value Hj . First, Mj is divided into (m0, . . .m15), where each mi is a 32-
bit message. The compression function consists of 48 steps. Steps 1-16 are called
the first round (1R). Steps 17-32 and 33-48 are the second and third rounds (2R
and 3R), respectively. In step i, chaining variables ai, bi, ci, di(1 ≤ i ≤ 48) are
updated by the following expression (a0, b0, c0, d0 are the IV).
ai = di−1,
bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si,
ci = bi−1,
di = ci−1,
where f is a Boolean function defined in each round, mk is one of (m0, . . .m15),
and index k is defined in each step. If m0, . . . m15 are fixed, all other mi(16 ≤
i ≤ 47) are also fixed. In this paper we call this “Message Expansion”. t is a
constant number defined in each round, ≪ si denotes left rotation by si bits,
and si is defined in each step. Details of f and t are as follows.

1R : t = 0x00000000, f(X, Y, Z) = (X ∧ Y) ∨ (¬X ∧ Z),
2R : t = 0x5a827999, f(X, Y, Z) = (X ∧ Y) ∨ (Y ∧ Z) ∨ (X ∧ Z),
3R : t = 0x6ed9eba1, f(X, Y, Z) = X ⊕ Y ⊕ Z.

After 48 steps are calculated, Hj+1 is calculated as follows.
aa0 ← a48 + a0, bb0 ← b48 + b0,
cc0 ← c48 + c0, dd0 ← d48 + d0,
Hj+1 ← (aa0|bb0|cc0|dd0).

2.2 Related Work 1: Collision Attack by Wang et al. and Its
Improvement by Previous Works

The first collision attack on MD4 was proposed by Wang et al. in 2005. Many
researchers have improved this attack since its publication. Our paper also im-
proves this attack. In this section, we explain the attack procedure and which
part of the attack has been improved so far.

This attack is a differential attack, and generates a collision with complexity
less than 28 MD4 operations. Let m and m′ be a pair of messages that yield a
collision. Difference Δ is defined to be the value yielded by subtracting value for

332 Y. Sasaki et al.

m from value for m′. For example, Δm = m′ − m. The attack procedure is as
follows.

1. Find the “Message Difference (ΔM)” that yields a collision with high prob-
ability.

2. Determine how the impact of ΔM propagates. The propagation of this dif-
ference is called the “Differential Path (DP).”

3. Generate “Sufficient Conditions (SC)” for realizing the differential path on
the value of chaining variables for calculating the hash value of m.

4. Determine the procedures of “Message Modification (MM)” that satisfy suf-
ficient conditions.

5. Locate a message that satisfies all sufficient conditions by randomly generat-
ing messages and applying Message Modification. Let such a message be M∗.

6. Calculate M ′
∗ = M∗ + ΔM . Finally, M∗ and M ′

∗ become a collision pair.

ΔM of Wang et al.’s attack is as follows.

ΔM = M ′ −M = (Δm0, Δm1, . . . , Δm15),
Δm1 = 231, Δm2 = 231 − 228, Δm12 = −216, Δmi = 0, 0 ≤ i ≤ 15, i �= 1, 2, 12.

[8] introduces two kinds of message modification: Single-Step Modification and
Multi-Step Modification. Later, these names were changed to Basic Message
Modification (BMM) and Advanced Message Modification (AMM). They are
related as follows.

- Basic message modification is the technique that can satisfy all sufficient
conditions in the first round with probability of 1.

- Advanced message modification can satisfy several sufficient conditions in
the second round. (If the sufficient conditions exist in an early step of the
second round, they may be satisfied by advanced message modification. On
the other hand, if they exist in a later step of the second round, it’s almost
impossible to satisfy them.)

- No technique is known to satisfy any sufficient conditions in the third round.

For details about the differential path, sufficient condition and message modifi-
cation, please refer to [8].

Strategy of Selecting ΔM
The strategy of selecting ΔM is explained by Schläffer and Oswald [6]. They
showed that ΔM was determined by the Local Collision (LC) in the third round,
although the reason was not explained. They then showed how Wang et al.’s local
collision worked. We show the local collision of Wang et al. in the left side of
Table 1, and its diagram in Figure 2.2.

Improvement of Collision Attack
So far, several papers [4,6] have improved the collision attack proposed by Wang
et al. Naito et al. [4] pointed out the sufficient condition mistakes in [8], and made
improvements to message modification. They used the same ΔM , differential

New Message Difference for MD4 333

Table 1. Comparison of Wang et al.’s Local Collision and Ours

Wang et al.’s Local Collision New Local Collision
Step Δak Δbk Δck Δdk Δmk−1 Step Δak Δbk Δck Δdk Δmk−1

i 231 231−si i 231 231−si

i + 1 231 231 231−si+1 , 231 i + 1 231 231

i + 2 231 231 i + 2 231 231

i + 3 231 231 i + 3 231 231

i + 4 231 i + 4 231

i + 5 231

Fig. 1. Diagram of Wang et al.’s Local Collision and Ours

path and sufficient condition as given by [8], but proposed advanced message
modification that could satisfy all sufficient conditions in the second round and
quickly satisfy sufficient conditions in the third round1. Their attack finds a
collision of MD4 with complexity less than 3 MD4 operations. Schläffer and
Oswald [6] proposed an algorithm that could construct differential paths when
ΔM was given. They used the same ΔM as given by [8], and showed a differential
path that needed fewer sufficient conditions than Wang et al.’s.

For Wang et al.’s attack, selection of ΔM gives the most significant impact
to the attack complexity. However, no paper has attempted to improve the ΔM
of Wang et al. In this paper, we propose new ΔM in section 3.

2.3 Related Work 2: Differential Path Search by Schläffer and
Oswald [6]

At FSE06, Schläffer and Oswald [6] proposed an algorithm on how to construct
differential paths for MD4 collision attack, when message differences are given.
1 This technique is restarting collision search from an intermediate step, which is

different from message modification for the third round.

334 Y. Sasaki et al.

They used Wang et al.’s message differences. We show this algorithm can not
be applied to the new ΔM (see section 4.2 and 4.3). In this section, we explain
their algorithm as follows.

1. Calculate “Target Differences.” In step i, target differences mean differences
that are used to cancel Δm in steps i + 4k(k = 0,±1,±2 · · ·).

2. Determine the actual output differences of f function. f function can not
produce differences that are not elements of target differences. Resulted dif-
ferential path usually has some contradictions in sufficient conditions.

3. Resolve contradictions in the sufficient conditions to construct a differential
path.

For more details, please refer to [6].

3 New Local Collision

As mentioned in section 2.2, no paper has proposed a better ΔM than that of
Wang et al. In this section, we propose a superior local collision and ΔM that
are the best for collision attack on MD4.

3.1 Importance of Selecting ΔM

[6] determined ΔM was set by local collision in the third round, however, they
didn’t mention a reason for this. This motivated us to start with an explanation.

Thanks to the various message modification techniques which are available
to us, following the differential path during the first two rounds (32 steps) of
MD4 has very low cost. The computational cost of the attack comes from the
probability of following the path during the third round. As a consequence, in
order to get a more efficient collision attack on MD4, minimizing the number
of sufficient conditions in the third round is the most important. Therefore, we
start by looking for a very efficient local collision in the third round.

3.2 Problem of Wang et al.’s Local Collision and Constructing New
Local Collision

In order to minimize the number of sufficient conditions in the third round,
the method of Wang et al. applies local collision there. Their local collision is
shown in left side of Table 1. They insert single message difference to step i in
the third round, and insert other message differences to minimize the impact of
the propagation of the inserted difference. As a result, the inserted difference is
cancelled in following 6 steps. In Wang et al.’s local collision, two differences are
made in the MSB of bi and bi+1 for ensuring that differences don’t propagate in
step i+ 2, i+3 and i+ 4 (obviates the need to insert other message differences).
Here, due to the addition and left rotation, the following fact is achieved. (We
show the proof of this in Appendix A.)

New Message Difference for MD4 335

Fact: To make Δbi = ±231 from Δmk = ±231−si , we need the following suffi-
cient condition:

{
bi,31 = 0 (if Δmk = +231−si)
bi,31 = 1 (if Δmk = −231−si)

Wang et al.’s local collision makes two differences. Therefore, it needs two
sufficient conditions to realize the local collision.

In a collision attack on MD4, at least one message difference in the third
round is necessary since collision messages must be different. Considering the
Fact, it is obvious that if a local collision yielding one difference in the MSB of
bi can be constructed, that local collision is the best.

3.3 Construction of New Local Collision

We construct a new local collision by making only one difference in the MSB of
bi. The new local collision is summarized in right side of Table 1 and Figure 2.2.
In step i, we make Δbi = ±231 by inserting ±231−si on mi−1. From the Fact,
we need one sufficient condition to make Δbi = ±231. In step i + 1, ±231 of bi

propagates through function f = (bi ⊕ ci ⊕ di). Therefore, we insert ±231 on
mi in order to cancel ±231 from f . A similar situation occurs in step i + 2 and
i + 3, so we insert ±231 on m, to cancel the difference that propagates from f .
In step 4, we cancel Δai+3 = ±231 by Δmi+3 = ±231, and finally all differences
are cancelled. (Since all Δm are in MSB, any sign for Δm is acceptable.)

3.4 New Message Difference

As described in section 3.3, the new local collision makes only one difference,
therefore, the new local collision needs only one sufficient condition in the third
round, and this is the best local collision for MD4. In order to complete the
entire collision attack, the impact of the message expansion on the previous
rounds needs to be considered. The local collision constructed in section 3.3
does not fix step i that is the initial step of the local collision. Therefore, we
analyze the impact of message expansion, and select the best i that minimizes
the impact on the previous rounds.

We show details of this analysis in Appendix B. As a result, we found that
i = 33 is the best, and obtained following message differences.

Δm0 = 228, Δm2 = 231, Δm4 = 231, Δm8 = 231, Δm12 = 231,

Δmi = 0 for i = 1, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15.

The differential path for the third round is also determined by local collision.
It is shown in Table 7 in Appendix C.

Remaining work is to construct a differential path for the first and second
round. In the first round, all sufficient conditions are satisfied by basic message
modification, whereas, some of sufficient conditions in the second round may not

336 Y. Sasaki et al.

be satisfied by advanced message modification. Therefore, we should minimize
the number of sufficient conditions in the second round even if the differential
path for the first round becomes more complicated. Since constructing the dif-
ferential path for the second round is simple, we show only the result in Table 7
in Appendix C.

4 Differential Path Search Algorithm

In this section, we describe the DP construction algorithm, denoted as DPC.

4.1 Definition of Good DPC

Input of DPC is ΔM . A good DPC should not just work for one specified ΔM .
It should be able to work for all ΔM . Moreover, it should be finished in reason-
able time. If a DPC is able to work for all ΔM in reasonable time, we will call
it “Good DPC.”

Crucial technique to Realize Good DPC
For DPC, how to control difference propagation through f function is important.
Therefore, in design of good DPC, it is crucial to control difference propagation
through f function to search DP in a large space efficiently.

4.2 Overview of Problems of Previous Work [6] and Our
Improvement

Schläffer and Oswald proposed an algorithm to construct differential paths, based
on Wang et al.’s message differences. Unfortunately the algorithm can not work
for our new message differences. Therefore, we will propose a new DPC, which
is able to work for our new ΔM . We will give an overview of comparison of these
two algorithms.

Problem of Schläffer and Oswald’s Algorithm
By Schläffer and Oswald’s algorithm, the differences produced by f function in
step i can only be used in step i+4k, and no others. Although their rule reduced
the search space considerably, they found, fortunately, a better differential path
than Wang et al’s algorithm. However, reduced search space is too small, and
consequently, their algorithm can not work for our new message differences.

Advantage of Our Algorithm
In our algorithm, we found a way to control difference propagation through f
function efficiently in larger search space.

Important improvement: for step i, Schläffer and Oswald’s algorithm only pro-
duces difference of f to cancel ΔM in step i+4k. By our algorithm, besides this
kind of difference, f can also produce difference to guarantee that ΔM in other
steps can be cancelled.

The search space of our algorithm is larger, which makes our algorithm work
for the new ΔM proposed in section 3.

New Message Difference for MD4 337

4.3 Details of Our New Proposed Algorithm for the First Round

The goal of our algorithm is to construct a differential path for the first round
with given chaining variable differences after step 16 and given message differ-
ences. Our algorithm consists of three major parts: Forward search, Backward
search and Joint algorithm.

i. Forward search
Forward search is done from step 1 to step 4. As mentioned in section 4.1, the
crucial technique for making good DPC is controlling difference propagation
through f function in a large search space. In forward search, we exhaustively
search the possibility of difference through f . After forward search is finished,
there are possible differences for chaining variables after step 4. Possible differ-
ences for a4, b4, c4, d4 are called “Potential Differences.”

ii. Backward search
First of all, we will redefine the concept “Target Difference” for backward search.
Backward Search is done from step 16 to step 8.

Target Differences: for step i, target differences Δti are calculated by differ-
ences of chaining variable bi and message differences Δmi−1 as follows:

Δti = −Δmi−1 + (Δbi ≫ si)(8 ≤ i ≤ 16)
Chaining variable differences after step 16 are already fixed, in other words,

differences of bi(12 ≤ i ≤ 16) are fixed, it is easy to calculate target differences
from step 16 to step 12. In step i, a target difference can be achieved by differences
of ai−1 or f function. We need to determine each target difference which should
be produced by ai−1 or f function. During backward search, we assume that
differences of ai−1 and input differences of f function can always be produced
in previous steps, so any target difference can be produced by ai−1. This is
main idea of Schläffer and Oswald’s algorithm. We enlarge the search space by
considering how to guarantee target differences produced by f function.

If we determine that a target difference will be achieved by f , input chaining
variables bi−1, ci−1, or di−1 should have a difference at the same position. If
bi−1, ci−1, or di−1 has a difference, it should be cancelled in the following step.
If it can not be cancelled, it can not be used.

Considering that the chaining variable differences after step 16 are already
fixed, from step 16 to step 12, it is very easy to check whether a difference of
bi−1, ci−1 or di−1 can be cancelled in the following steps.

After backward search from step 16 to step 12 is done, there are some candi-
dates for chaining variable differences in step 12. For every candidate, backward
search from step 12 to step 8 is done by applying the same method.

After backward search from step 16 to 8 is done, there are some candidates
for chaining variable differences in step 8, which are called “Aimed Differences.”

iii. Joint algorithm
From step 4 to step 8, aimed differences will select potential differences. In the
joint algorithm, only potential differences that match aimed differences can be

338 Y. Sasaki et al.

produced by f function. Selected potential differences need to be cancelled in the
following steps, To cancel these differences, carry can be used to expand input
differences of f function. More differences can also be introduced.

After all the selected differences are canceled, that is, after the joint algorithm
is finished, a differential path is constructed.

5 Attack Implementation

5.1 Message Modification

The results of Section 3 and 4 yield the new ΔM , differential path and sufficient
conditions. To complete the collision attack, what remains is to propose advanced
message modification procedures for satisfying sufficient conditions in the second
and third round. Therefore, we propose advanced message modification, and
evaluate the total attack complexity of proposed attack. Papers [3,4] give some
good ideas of advanced message modification. Since proposing advanced message
modification is outside the scope of this paper, we show only the procedures of
advanced message modification in Table 9 to Table 20 in Appendix D. As a result
of applying advanced message modification, all sufficient conditions in the second
round are satisfied with very high probability. Furthermore, by applying the
technique called “Shortcut Modification” by [4] or “Tunnel” by [3], the sufficient
condition in the third round is also quickly satisfied.

5.2 Attack Procedure and Complexity Estimation

The attack procedure is shown in Table 2. (Note extra conditions are set for
advanced message modification. These are introduced in Appendix D.)

For line 1 to 5: Computation for mi needs almost 1 MD4 step. Therefore, for
line 4, we need 16 MD4 steps. Line 2 and 3 can be done very quickly compared
to line 4.

For line 6 to 13: For line 7, computation for bi is 1 MD4 step. Therefore, for
line 7, we need 13 MD4 steps. For line 10, there are 11 message modification
procedures. According to our evaluation, each procedure requires less than 3
MD4 steps (See Table 9 to 19 for details). Since each condition is satisfied
with probability 1/2, we expect half of the message modification procedures are
executed. Therefore, we need 3 × 11÷ 2 = 16.5 MD4 steps.

For line 14 to 18: Line 14 needs 4 steps of MD4 operations. Then, if “b33,31 = 0”
is not satisfied, we apply message modification. According to our evaluation,
modifying message for “b33,31 = 0” takes less than 1 MD4 step, and the proba-
bility that this condition is satisfied after repeating line 14 to 16 is 1/2. Therefore,
this condition is expected to be satisfied at most 2 trial. Complexity of satisfying
in the first trial is 4 MD4 steps and by the second trial is 4 + 4 + 1 = 9 MD4
steps. Therefore, average complexity is (4+9)÷ 2 = 6.5 MD4 steps. Complexity
for line 18 is negligible.

New Message Difference for MD4 339

Table 2. Attack Procedure

1. for (1 ≤ i ≤ 16) {
2. Randomly take the value of bi.
3. Change bi to satisfy all sufficient conds and extra conds for bi.
4. Compute mi−1 = (bi ≫ si) − ai−1 − f(bi−1, ci−1, di−1) − t.
5. }
6. for (17 ≤ i ≤ 29) {
7. Compute bi in standard way.
8. for (0 ≤ j ≤ 31) {
9. if (sufficient conds or extra conds on bi,j is not satisfied) {

10. Do message modification described in Appendix D.
11. }
12. }
13. }
14. Compute b30 to b33 in standard way.
15. if (“b33,31 = 0” is not satisfied) {
16. Do message modification for “b33,31 = 0”, and goto line 14.
17. }
18. Let the present message be M . Finally, M and M +ΔM become a collision pair.

Total complexity: Total complexity is addition of above three parts, that is,
16+13+16.5+7.5=53 MD4 steps. Considering other trivial complexity, we evalu-
ate that the complexity of our attack is less than 2 MD4 operations(=96 steps).

5.3 Comparison with Previous Attacks

The efficiencies of the proposed attack and previous attacks are compared in
Table 3.

Table 3. Comparison of Previous Attacks and Our Result

Method ΔM #SCs #SCs Total complexity
in 2R in 3R (Unit MD4 operations)

Wang et al. Wang’s ΔM 25 2 Less than 28

Naito et al. Wang’s ΔM 25 2 Less than 3

Schläffer and Oswald Wang’s ΔM 22 2 -

Proposed attack ΔM for new LC 9 1 Less than 2

From Table 3, it can be said that improvement of local collision is very impor-
tant. With the new local collision, number of sufficient conditions in the second
and third round becomes less than half those of previous attacks, and this enables
us to further reduce the complexity of generating a collision.

340 Y. Sasaki et al.

6 Conclusion

This paper proposed a new local collision that is the best for collision attack
on MD4. This was achieved by the first improvement to the message difference
approach of Wang et al.

For successful collision attacks, ΔM must be carefully selected to reduce the
number of sufficient conditions that cannot be satisfied by message modification.
In this paper, we showed how efficient the proposed improvement to ΔM is. With
the new ΔM , number of sufficient conditions in the second and third round is
less than half those of previous studies; attack complexity is also improved.

Improving the attack on MD4 is not the final goal. As future works, we will
apply our analysis to other hash functions, and aim to find more efficient ΔM .

We realized that differential path construction algorithm proposed by [6]
did not work with the new ΔM . Therefore, we analyzed the problems of [6],
and proposed a new algorithm for constructing differential path for the first
round.

Finally, we show a collision generated by using the new local collision in
Table 4. We note that ΔM of this example is different from all previous works.

Table 4. An Example of MD4 Collision Generated with New Local Collision

M m0=0xbcdd2674 m1=0x53fce1ed m2=0x25d202ce m3=0xe87d102e
m4=0xf45be728 m5=0xacc992cc m6=0x6acfb3ea m7=0x7dbb29d4
m8=0xed03bf75 m9=0xc6aedc45 m10=0xd442b710 m11=0xfca27d99
m12=0xa5f5eff1 m13=0xfb2ee79b m14=0x0f590d68 m15=0x4989f380

M ′ m′
0=0xccdd2674 m′

1=0x53fce1ed m′
2=0xa5d202ce m′

3=0xe87d102e
m′

4=0x745be728 m′
5=0xacc992cc m′

6=0x6acfb3ea m′
7=0x7dbb29d4

m′
8=0x6d03bf75 m′

9=0xc6aedc45 m′
10=0xd442b710 m′

11=0xfca27d99
m′

12=0x25f5eff1 m′
13=0xfb2ee79b m′

14=0x0f590d68 m′
15=0x4989f380

Hash 0x c257b7be 324f26ef 69d3d290 b01be001

Acknowledgements

We would like to thank Antoine Joux for improving our paper and anonymous
reviewers for helpful comments.

References

1. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) Fast Software Encryp-
tion. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

2. Dobbertin, H.: The First Two Rounds of MD4 are Not One-Way. In: Vaudenay, S.
(ed.) FSE 1998. LNCS, vol. 1372, pp. 284–292. Springer, Heidelberg (1998)

3. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute. Cryptology
ePrint Archive, Report (2006)/105

4. Naito, Y., Sasaki, Y., Kunihiro, N., Ohta, K.: Improved Collision Attack on MD4
with Probability Almost 1. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS,
vol. 3935, pp. 129–145. Springer, Heidelberg (2006)

New Message Difference for MD4 341

5. Rivest, R.: The MD4 Message Digest Algorithm. In: Menezes, A.J., Vanstone, S.A.
(eds.) CRYPTO 1990. LNCS, vol. 537, pp. 303–311. Springer, Heidelberg (1991),
http://www.ietf.org/rfc/rfc1320.txt

6. Schläffer, M., Oswald, E.: Searching for Differential Paths in MD4. In: Robshaw, M.
(ed.) FSE 2006. LNCS, vol. 4047, pp. 242–261. Springer, Heidelberg (2006)

7. Wang, X., Feng, D., Chen, H., Lai, X., Yu, X.: Collision for Hash Functions MD4,
MD5, HAVAL-128 and RIPEMD. In: Franklin, M. (ed.) CRYPTO 2004. LNCS,
vol. 3152, Springer, Heidelberg (2004)

8. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

A Proof of the Fact in Section 3.2

Proof. Remember that the calculation of bi in step i is as follows.
bi = (ai−1 + f(bi−1, ci−1, di−1) + mk + t) ≪ si

Here, we make Δbi = 231 or −231 by adding the difference Δmk = +231−si or
−231−si . Let the value of ai−1 + f(bi−1, ci−1, di−1) + mk + t be Σ. We focus on
the value of Σ in bit position 31− si (In short, Σ31−si). Σ31−si is 0 or 1. First,
we consider the case that Σ31−si is 0. In this case, if Δmk is positive, Σ31−si

changes from 0 to 1, and other bits are kept unchanged. Therefore, it becomes
Δbi = +231 after the rotation. However, if Δmk is negative, Σ31−si changes
from 0 to 1, and bit position 31 − si + 1 also changes because of carry. Here,
assume that carry is stopped in bit position 31 − si + 1, therefore, the value in
bit position 31 − si + 1 changes from 1 to 0, and other bits are unchanged. In
this case, after the rotation, it becomes Δbi = +231 − 20, and thus, we cannot
obtain the desired difference. The same analysis is applied in the case of Σ31−si

is 1. The result of the analysis is summarized below.

Table 5. Summary of Proof

Δmk = +231−si Δmk = −231−si

Σ31−si = 0 Success Failure

Σ31−si = 1 Failure Success

Consider the fact that Σ31−si = bi,31, we get following conclusion; To make
success, bi,31 = 0 if Δmk = +231−si , or bi,31 = 1 if Δmk = −231−si . (Q.E.D)

B Selecting ΔM by Considering Message Expansion

As described in section 3.3, the new local collision makes one difference in the
third round. This does not fix step i that is the initial step of the local collision.

http://www.ietf.org/rfc/rfc1320.txt

342 Y. Sasaki et al.

Therefore, we analyze the impact of message expansion, and select the best i
that minimizes the impact on the previous rounds.

However, thanks to the basic message modification, even if the differential
path becomes complicated and many sufficient conditions are required, all suffi-
cient conditions in the first round can be satisfied with probability 1. Therefore,
we only have to care about the impact on the second round.

The third round consists of step 33-48. Since the new local collision takes
5 steps to realize cancellation, we have 12 choices for the initial step of local
collision (IniLC), (33 ≤ IniLC ≤ 44). To determine a good IniLC, we consider
following characteristics of the second round.

- We need to cancel all differences by the final step of the second round since
local collision in the third round must start from no-difference state.

- Let the last step with some message difference in the second round be cp,
which stands for Cancellation Point. If all differences are cancelled at step
cp, remaining steps of the second round are guaranteed to be no-difference
without sufficient conditions.

Therefore, in order to reduce number of sufficient conditions in the second round,
cp should be as early a step as possible. Finally, we select IniLC to minimize cp.
We show the analysis of message expansion in Table 6. In Table 6, gray highlight
shows an example of the analysis for IniLC = 33. Messages that have differences
on the second round and third round are colored. From the table, we see that
cp for IniLC = 33 is 25. The same analysis is applied for all IniLC. cp for all
IniLC are listed in the bottom of Table 6.

Table 6. Analysis of Impact of Message Expansion

Message index for each step in 2R and 3R

2R step number 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

message index 0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15

3R step number 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48

message index 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

The value of cp for all IniLC

IniLC 33 34 35 36 37 38 39 40 41 42 43 44

cp 25 27 27 28 28 28 28 28 29 31 31 32

From Table 6, finally, we find that IniLC = 33 is the best since its cp is the
smallest. The obtained ΔM and differential path for the third round is shown
in Table 7 in Appendix C2.

2 We also calculate the good ΔM for Wang et al.’s local collision by using this analysis.
Then, we found that the resulting ΔM is the same as proposed by Wang et al.’s.

New Message Difference for MD4 343

C Differential Path and Sufficient Conditions

Table 7. Differential Path of MD4 for New Local Collision

Step Shift Δbi

i si Δmi−1 Numerical difference Difference in each bit

1 3 228 −231 Δ[−31]
−20 Δ[0, −1]

2 7 −27 Δ[7]
−28 Δ[−9]

3 11 231 −211 Δ[−11]

4 19 −219 Δ[19, 20, −21]

5 3 231 23 Δ[3]
222 Δ[−22, −23, 24]

6 7 −218 Δ[18, 19, −20]
231 Δ[31]

7 11 21 Δ[−1, · · · , 9]
−222 Δ[22, 23, −24]
231 Δ[31]

8 19

9 3 231 222 Δ[−22, 23]
225 Δ[25]

10 7 −212 Δ[−12]
−225 Δ[25, 26, −27]
229 Δ[−29, −30, 31]

11 11 212 Δ[12]

12 19 −212 Δ[−12]

13 3 231 225 Δ[25]
−228 Δ[28, −29]

14 7

15 11

16 19 −231 Δ[−31]

17 3 228 228 Δ[28]

18 5 231

19 9 231

20 13 231

21 3 231 Δ[31]

22 5

23 9

24 13

25 3 231

· · ·
33 3 228 231 Δ[31]

34 9 231

35 11 231

36 15 231

37 3 231

The symbol ‘Δ[i]’ means the value of chaining variable in bit position i
changes from 0 to 1 by difference. The symbol ‘Δ[−i]’ means it changes
from 1 to 0 instead.

344 Y. Sasaki et al.

Table 8. Sufficient Conditions and Extra Conditions for New Local Collision

Chaining Conditions on bits
variables 31 - 24 23 - 16 15 - 8 7 - 0

b1 1 0̄ - - - - - - ā - - - - - - - - - - - - - a - a - - - ā - 0 1

b2 1 0̄ - 0̄ - ā - - - - - - 0 - - - - - - - a - 1 - 0 - - - - - 0 1

b3 1 1̄ - 1̄ ā - ā 0 0̄ - a a 1 - ā ā ā ā ā ā 1 ā 0 - 0 - - - 1̄ - 1 0

b4 1 - ā - 1̄ 0̄ 1̄ 1 a a 1 0 0 - 0̄ 1̄ 1̄ 1̄ 1̄ 1̄ 0 1̄ 1 a 1 a a a a - - -

b5 a - - - 0̄ 0̄ 0̄ 0 1 1 0 0 0 a 1̄ 0̄ 0̄ 0̄ 0̄ 0̄ 0 0̄ 0 1 1 1 1 1 1 - - -

b6 0 - 0̄ - 1̄ - 1̄ 1 1 1 1 1 0 0 1̄ 1̄ 1̄ 1̄ 1̄ 1̄ - 1̄ 0 0 0 0 0 0 0 a a -

b7 0 - 1̄ - - - 1 1 0 0 - 0 1 0 - - - - - - - - 0 1 1 1 1 1 1 1 1 -

b8 1 - - - - - a 0 0 0 - 1 0 1 - - - - - 0 - - 0 0 0 0 0 0 1 0 0 -

b9 0 a a - a a 0 1 0 1 - - - - - - - - - a - - 1 1 1 1 0 1 1 1 1 -

b10 0 1 1 - 1 0 0 - 1 1 - - - ā - - - - - 1 - 0̄ 0̄ - - - - - - - - -

b11 0 0 0 - 1 1 0 - 1 1 - - - - - - - - - 0 - 1̄ 1̄ - - - - - - - - -

b12 0 1 1 a 0 0 1 - - - - - - 1̄ - - - - - 1 - 1̄ 0̄ - - - - - - - - -

b13 - - 1 0 - - 0 - - - - - - 1̄ - - - - - 0 - 0̄ 0̄ - - - - - - - - -

b14 - - 0 0 - - 0 - - - - - ā - - - - - - 0 - 1̄ 1̄ - - - - - - - - -

b15 a - 1 1 b̄ - 1 - - - - - - - - b̄ - - - - - - - - - - - - - - - -

b16 1 - - a 0̄ - - - - - - - c̄ - - - - - - - - - - - - - - - - - - -

b17 b - - 0 - - - - - - - - ā - - - - - - - - - - - - - - - - - - -

b18 b - - c -

b19 - - - a -

b20 a -

b21 0 - - - - - - - - b̄ -

b22 c -

b23 a -

b24 -

· · ·
b33 0 -

· · ·

The notation ‘0’ stands for the conditions bi,j = 0, the notation ‘1’
stands for the conditions bi,j = 1, the notation ‘a’ stands for the con-
ditions bi,j = bi−1,j , ‘b’ stands for the condition bi,j �= bi−1,j and ‘c’
stands for the condition bi,j = bi−2,j . Conditions without upper bar
are sufficient conditions for the new differential path. Conditions with
upper bar are extra conditions that are introduced in Appendix D.

D List of Message Modification Procedures

Table 9 to Table 20 show the procedure for advanced message modification for
each condition. These procedures are executed only if the target condition is not
satisfied. Several procedures need to satisfy “extra conditions (EC)” in advance.
ECs guarantee that each modification procedure is executed without breaking
other sufficient conditions. ECs in the first round are set together with sufficient
conditions in the first round by basic message modification.

New Message Difference for MD4 345

We explain how these procedures work, by explaining Table 10 as an exam-
ple. Before we execute Table 10, we check whether the target sufficient con-
dition “b17,28 = 0” is satisfied or not. If it’s satisfied, do nothing. Otherwise,
execute procedures shown in Table 10. In the table, the first and second col-
umn show the rounds and steps where we are looking on. The third column
shows the procedure to be executed. The last column shows how differences
are used in each calculation. In case of Table 10, we first modify m0. Then,
by considering the expression in step 1, we modify b1. We make sure that a
carry doesn’t occur in b1. Therefore, if b1,28 = 0 we choose “+,” otherwise, we
choose “-.” After that, to make sure that the result of step 2 keeps unchanged,
we modify m1. In 3rd step, from the property of f , if b2,28 is fixed to be 0,
the result of step 3 keeps unchanged. Therefore, we set the extra condition
“b2,28 = 0.” Step 4 and 5 are the almost same. After step 5 is calculated, all
differences in the first round are cancelled. Since m0 is modified, step 17 in the
second round is also modified. From the expression of b17, b17 has difference 228,
and this difference flips the value of b17,28. Therefore, the sufficient condition is
satisfied.

In this section, “bi ← standard computation” means computing bi ← (ai−1 +
f(bi−1, ci−1, di−1)+mk + t) ≪ si. “mi ← inverse computation” means comput-
ing mi ← (bi ≫ si) − ai−1 − f(bi−1, ci−1, di−1) − t.

Table 9. Modification Procedure for Extra Condition “b17,19 = c17,19”

Round Step Actual procedure Expression with difference in each step

1R 16 m15 ← m15 ± 229 b16 ← (a15 + f(b15, c15, d15) + m15 ± 229 + t) ≪ 19
b16 ← b16 ± 216

(Take sign to avoid b16 carry.)
2R 17 EC:“c16,16 �= d16,16” b17 ← (a16 + f(b16[±16], c16, d16) + m0 + t) ≪ 3

b17 ← standard computation

Table 10. Modification Procedure for “b17,28 = 0”

Round Step Actual procedure Expression with difference in each step

1R 1 m0 ← m0 ± 225 b1 ← (a0 + f(b0, c0, d0) + m0 ± 225 + t) ≪ 3
b1 ← b1 ± 228

(Take sign to avoid b1 carry.)
2 m1 ← inverse computation b2 ← (a1 + f(b1[±28], c1, d1) + m1 + t) ≪ 7
3 EC: “b2,28 = 0” b3 ← (a2 + f(b2, c2[±28], d2) + m2 + t) ≪ 11
4 EC: “b3,28 = 1” b4 ← (a3 + f(b3, c3, d3[±28]) + m3 + t) ≪ 19
5 m4 ← m4 ∓ 228 b5 ← (a4 ± 228 + f(b4, c4, d4) + m4 ∓ 228 + t) ≪ 3

2R 17 b17 ← standard computation b17 ← (a16 + f(b16, c16, d16) + m0 ± 225 + t) ≪ 3

346 Y. Sasaki et al.

Table 11. Modification Procedure for “b17,31 �= b16,31”

Round Step Actual procedure Expression with difference in each step

1R 1 m0 ← m0 + 227 b1 ← (a0 + f(b0, c0, d0) + m0 + 227 + t) ≪ 3
b1 ← b1 + 230

EC: “b1,30 = 0”
2 m1 ← inverse operation b2 ← (a1 + f(b1[+30], c1, d1) + m1 + t) ≪ 7
3 EC: “b2,30 = 0” b3 ← (a2 + f(b2, c2[+30], d2) + m2 + t) ≪ 11
4 EC: “b3,30 = 1” b4 ← (a3 + f(b3, c3, d3[+30]) + m3 + t) ≪ 19
5 m4 ← m4 − 230 b5 ← (a4 + 230 + f(b4, c4, d4) + m4 − 230 + t) ≪ 3

1-2R 16 m15 ← m15 + 28 b16 ← (a15 + f(b15, c15, d15) + m15 + 28 + t) ≪ 19
EC: “b16,27 = 0”

17 b17 ← standard operation b17 ← (a16 + f(b16[+27], c16, d16) + m0 + 227 + t) ≪ 3
EC: “c16,27 �= d16,27”

Table 12. Modification Procedure for “b18,28 = 0”

Round Step Actual procedure Expression with difference in each step

1R 2 m1 ← m1 ± 216 b2 ← (a1 + f(b1, c1, d1) + m1 ± 216 + t) ≪ 7
b2 ← b2 ± 223

(Take sign to avoid b2 carry.)
3 EC: “c2,23 = d2,23” b3 ← (a2 + f(b2[±23], c2, d2) + m2 + t) ≪ 11
4 EC: “b3,23 = 0” b4 ← (a3 + f(b3, c3[±23], d3) + m3 + t) ≪ 19
5 m4 ← m4 ∓ 223 b5 ← (a4 + f(b4, c4, d4[±23]) + m4 ∓ 223 + t) ≪ 3

EC: “b4,23 = 0”
6 m5 ← m5 ∓ 223 b6 ← (a5 ± 223 + f(b5, c5, d5) + m5 ∓ 223 + t) ≪ 7

2R 17 b18 ← standard computation b18 ← (a17 + f(b17, c17, d17) + m4 ∓ 223 + t) ≪ 5

Table 13. Modification Procedure for “b18,31 �= b17,31”

Round Step Actual procedure Expression with difference in each step

1R 5 m4 ← m4 ± 226 b5 ← (a4 + f(b4, c4, d4) + m4 ± 226 + t) ≪ 3
b5 ← b5 ± 229

(Take sign to avoid b5 carry.)
6 EC: “c5,29 = d5,29” b6 ← (a5 + f(b5[±29], c5, d5) + m5 + t) ≪ 7
7 EC: “b6,29 = 0” b7 ← (a6 + f(b6, c6[±29], d6) + m6 + t) ≪ 11
8 EC: “b7,29 = 1” b8 ← (a7 + f(b7, c7, d7[±29]) + m7 + t) ≪ 19
9 m8 ← m8 ∓ 229 b9 ← (a8 ± 229 + (f(b8, c8, d8) + m8 ∓ 229 + t) ≪ 3

2R 17 b18 ← standard computation b18 ← (a17 + f(b17, c17, d17) + m4 ± 226 + t) ≪ 5

Table 14. Modification Procedure for “b19,28 = b18,28”

Round Step Actual procedure Expression with difference in each step

1-2R 15 m14 ← m14 ± 28 b15 ← (a14 + f(b14, c14, d14) + m14 ± 28 + t) ≪ 11
b15 ← b15 ± 219

(Take sign to avoid b15 carry.)
16 EC:“c15,19 = d15,19” b16 ← (a15 + f(b15[±19], c15, d15) + m15 + t) ≪ 19
17 EC:“b16,19 = d16,19” b17 ← (a16 + f(b16, c16[±19], d16) + m0 + t) ≪ 3
18 EC:“b17,19 = c17,19” b18 ← (a17 + f(b17, c17, d17[±19]) + m4 + t) ≪ 5
19 b19 ← standard computation b19 ← (a18 ± 219 + f(b18, c18, d18) + m8 + t) ≪ 9

New Message Difference for MD4 347

Table 15. Modification Procedure for “b20,31 = b19,31”

round step Actual procedure Expression with difference in each step

1R 11 m10 ← m10 ± 27 b11 ← (a10 + f(b10, c10, d10) + m10 ± 27 + t) ≪ 11
b11 ← b11 ± 218

take sign to avoid b11 carry
12 EC: “c11,18 = d11,18” b12 ← (a11 + f(b11[±18], c11, d11) + m11 + t) ≪ 19
13 m12 ← m12 ∓ 218 b13 ← (a12 + f(b12, c12[±18], d12) + m12 ∓ 218 + t) ≪ 3

EC: “b12,18 = 1”
14 EC: “b13,18 = 1” b14 ← (a13 + f(b13, c13, d13[±18]) + m13 + t) ≪ 7
15 m14 ← m14 ∓ 218 b15 ← (a14 ± 218 + f(b14, c14, d14) + m14 ∓ 218 + t) ≪ 11

2R 20 b20 ← standard operation b20 ← (a19 + f(b19, c19, d19) + m12 ∓ 218 + t) ≪ 13

Table 16. Modification Procedure for Extra Condition “b21,22 �= b20,22”

Round Step Actual procedure Expression with difference in each step

1R 12 m11 ← m11 ± 222 b12 ← (a11 + f(b11, c11, d11)+
b12 ← b12 ± 29 +m11 ± 222 + t) ≪ 19

EC: “b12,10 = 1”, “b12,9 = 0”
(if sign is +, b3[9], else b3[−10, 9].)

13 m12 ← m12 ∓ 29 b13 ← (a12 + f(b12[9]/[−10, 9], c12, d12)
(Take sign to avoid b20 carry.) +m12 ∓ 29 + t) ≪ 3
EC: “c12,10 = 1”, “d12,10 = 0”,

“c12,9 = 1”, “d12,9 = 0”
14 EC: “b13,10 = 0”, “b13,9 = 1” b14 ← (a13 + f(b13, c13[9]/[−10, 9], d13)

+m13 + t) ≪ 7
15 EC: “b14,10 = 1”, “b14,9 = 1” b15 ← (a14 + f(b14, c14, d14[9]/[−10, 9])

+m14 + t) ≪ 11
16 m15 ← m15 ∓ 29 b16 ← (a15 ± 29 + f(b15, c54, d15)

+m15 ∓ 29 + t) ≪ 19
2R 20 b20 ← standard computation b20 ← (a19 + f(b19, c19, d19)

+m12 ∓ 29 + t) ≪ 13
21 b21 ← standard computation b21 ← (a20 + f(b20[∓22], c20, d20)

(b21,22 is never changed by this calculation). +m1 + t) ≪ 3

Table 17. Modification Procedure for “b21,31 = 0”

Round Step Actual procedure Expression with difference in each step

1R 2 m1 ← m1 ± 228 b2 ← (a1 + f(b1, c1, d1) + m1 ± 228 + t) ≪ 7
b2 ← b2 ± 23

(Take sign to avoid b2 carry.)
3 EC: “c2,3 = d2,3” b3 ← (a2 + f(b2[±3], c2, d2) + m2 + t) ≪ 11
4 m3 ← inverse computation b4 ← (a3 + f(b3, c3[±3], d3) + m3 + t) ≪ 19
5 EC: “b4,3 = 1” b5 ← (a4 + f(b4, c4, d4[±3]) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 23 b6 ← (a5 ± 23 + f(b5, c5, d5) + m5 ∓ 23 + t) ≪ 7

2R 21 b21 ← standard computation b21 ← (a20 + f(b20, c20, d20) + m1 ± 228 + t) ≪ 3

Table 18. Modification Procedure for “b22,31 = b21,31”

Round Step Actual procedure Expression with difference in each step

1R 3 m2 ← m2 ± 215 b3 ← (a2 + f(b2, c2, d2) + m2 ± 215 + t) ≪ 11
b3 ← b3 ± 226

(Take sign to avoid b3 carry.)
4 EC: “c3,26 = d3,26” b4 ← (a3 + f(b3[±26], c3, d3) + m3 + t) ≪ 19
5 EC: “b4,26 = 0” b5 ← (a4 + f(b4, c4[±26], d4) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 226 b6 ← (a5 + f(b5, c5, d5[±26]) + m5 + t) ≪ 7

EC: “b5,26 = 0”
7 m6 ← m6 ∓ 226 b7 ← (a6 ± 226 + f(b6, c6, d6) + m6 ∓ 226 + t) ≪ 11

2R 21 b22 ← standard computation b22 ← (a21 + f(b21, c21, d21) + m5 ∓ 226 + t) ≪ 5

348 Y. Sasaki et al.

Table 19. Modification Procedure for “b23,31 = b22,31”

Round Step Actual procedure Expression with difference in each step

1R 4 m3 ← m3 ± 230 b4 ← (a3 + f(b3, c3, d3) + m3 ± 230 + t) ≪ 19
b4 ← b4 ± 217

(Take sign to avoid b4 carry.)
5 EC: “c4,17 = d4,17” b5 ← (a4 + f(b4[±17], c4, d4) + m4 + t) ≪ 3
6 m5 ← m5 ∓ 217 b6 ← (a5 + f(b5, c5[±17], d5) + m5 ∓ 217 + t) ≪ 7

EC: “b5,17 = 1”
7 EC: “b6,17 = 1” b7 ← (a6 + f(b6, c6, d6[±17]) + m6 + t) ≪ 11
8 m7 ← m7 ∓ 217 b8 ← (a7 ± 217 + f(b7, c7, d7) + m7 ∓ 217 + t) ≪ 19

2R 22 b22 ← standard computation b22 ← (a21 + f(b21, c21, d21) + m5 ∓ 217 + t) ≪ 5
(This breaks SC on b22,31

with probability 2−9.)
23 b23 ← standard computation b23 ← (a22 + f(b22[∓22], c22, d22) + m9 + t) ≪ 9

EC: “c22,22 �= d22,22”

Table 20. Modification Procedure for Starting Collision Search from Middle of the
Second Round

In order to satisfy a condition “b33,31 = 0” in the third round, we
modify the value of chaining variable in step 29, which is a late
step of the second round, This difference will propagate until step
33, and can flip the value of b33,31. In this modification, we need to
set several extra conditions. We can set all extra conditions when
i = 0, 9, 11, 26, 28, 29, 30, 31. Therefore, we can make 28 values for
b29 that satisfy all sufficient conditions in previous steps. Since, we
don’t control how the difference is propagated from step 29 to 33, the
probability of satisfying “b33,31 = 0” is not 1. However, 256 times of
trials enable us to quickly find a message that also satisfies “b33,31 = 0.”

Round Step Actual procedure Expression with difference in each step

1R 4 m3 ← m3 − 2i−3 b4 ← (a3 + f(b3, c3, d3)+
b4 ← b4 − 2i+16 m3 − 2i−3 + t) ≪ 19

EC: “b4,i+16 = 0”
5 EC: “c4,i+16 = d4,i+16” b5 ← (a4 + f(b4[−(i + 16)], c4, d4)+

m4 + t) ≪ 3
6 EC: “b5,i+16 = 0” b6 ← (a5 + f(b5, c5[−(i + 16)], d5)+

m5 + t) ≪ 7
7 EC: “b6,i+16 = 1” b7 ← (a6 + f(b6, c6, d6[−(i + 16)])+

m6 + t) ≪ 11

8 m7 ← m7 + 2i+16 b8 ← (a7 − 2i+16 + (f(b7, c7, d7)+

m7 + 2i+16 + t) ≪ 19
2R 29 b29 ← standard computation b29 ← (a28 + f(b28, c28, d28)+

m3 − 2i−3 + t) ≪ 3
30 b30 ← standard computation
31 b31 ← standard computation Difference propagation is out of control.
32 b32 ← standard computation Probabilistically flip the value of b33,31.

3R 33 b33 ← standard computation

Algebraic Cryptanalysis of 58-Round SHA-1

Makoto Sugita1, Mitsuru Kawazoe2, Ludovic Perret3, and Hideki Imai4

1 IT Security Center, Information-technology Promotion Agency, Japan
2-28-8 Honkomagome, Bunkyo-ku Tokyo, 113-6591, Japan

m-sugita@ipa.go.jp
2 Faculty of Liberal Arts and Sciences

Osaka Prefecture University
1-1 Gakuen-cho Naka-ku Sakai Osaka 599-8531 Japan

kawazoe@las.osakafu-u.ac.jp
3 SPIRAL/SALSA
Site Passy-Kennedy

LIP6 – Paris 6 University
104 avenue du Président Kennedy

75016 Paris France
ludovic.perret@lip6.fr

4 National Institute of Advanced Industrial Science and Technology (AIST)
Akihabara Dai Bldg., 1-18-13 Sotokanda, Chiyoda-ku, Tokyo 101-0021, Japan

Department of Electrical, Electronic and Communication Engineering
Faculty of Science and Engineering, Chuo University
1-13-27 Kasuga Bunkyo-ku, Tokyo 112-8551 Japan

h-imai@aist.go.jp

Abstract. In 2004, a new attack against SHA-1 has been proposed by
a team leaded by Wang [15]. The aim of this article1 is to sophisticate
and improve Wang’s attack by using algebraic techniques. We introduce
new notions, namely semi-neutral bit and adjuster and propose then an
improved message modification technique based on algebraic techniques.
In the case of the 58-round SHA-1, the experimental complexity of our
improved attack is 231 SHA-1 computations, whereas Wang’s method
needs 234 SHA-1 computations. We have found many new collisions for
the 58-round SHA-1. We also study the complexity of our attack for the
full SHA-1.

Keywords: SHA-1, Gröbner basis, differential attack.

1 Introduction

Conceptually, we can split Wang’s attack in four different steps.

Step 1. Choose a suitable 80× 32-bit vector Γ .
Step 2. Choose a differential characteristic.

1 A part of this work has been done when the third author was invited at Research
Center for Information Security (RCIS) at Tokyo (Japan).

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 349–365, 2007.
c© International Association for Cryptologic Research 2007

350 M. Sugita et al.

Step 3. Find a set of sufficient conditions on a message m and the chain-
ing variables which guarantees with high probability that the message pair
(m, m + Γ) follows the differential characteristic. This implies that the two
messages do collide.
Step 4. Choose a message m randomly and modify it until all sufficient
conditions hold.

Using this method, Wang’s team succeeded in finding collisions on the most
popular hash functions, namely MD4, MD5, RIPEMD, SHA-0 and 58-round
SHA-1 [11,17,15]. The attack is conceptually simple, but its implementation
turns out to be very laborious in practice. To fill this gap between theory and
practice, several teams decided to compensate their lack of intuition by the power
of a computer, that is to say they tried to automatize the different steps of the
attack.

For instance, coding theory can be used for finding a suitable difference in
Step 1[8] of the attack. Recently, De Cannière and Rechberger [3] presented an
algorithm allowing to find optimal differential characteristics in Step 2. The third
step is tightly coupled with the previous one; most sufficient conditions follow
from the choice of the differential characteristic.

We use algebraic techniques for actually finding collisions on 58-round SHA-1.
In this case, the complexity of our method for finding a collision is equivalent
to 231 SHA-1 computations (experimentally), whereas Wang’s method needs 234

SHA-1 computations. As a proof of concept, we have found many new collisions
for 58-round SHA-1, which have never been reported so far. We also apply our
method for the case of the full SHA-1, and study the complexity of our approach.

The key idea is to describe the message modification technique into an alge-
braic framework. This is done by viewing the set of sufficient conditions as a
non-linear system of Boolean equations. We hope that this will be a first step
towards the use of algebraic tools (such as Gröbner bases) in the cryptanalysis
of hash functions.

We will focus our attention on the last step of Wang’s et al attack [15]. Namely,
find a message satisfying a set of sufficient conditions depending on a disturbance
vector and a differential path. This message can be then use to produce a colli-
sion. We shall call conventional message modification the process [15] permitting
to construct such a suitable message. Here, we will present an improved message
modification technique. To do so, we introduce the concepts semi-neutral bits
and adjusters.

This paper is organized as follows. In Section 2, we give a description of
SHA-1. Along the way, we introduce the notations and definitions that will
be used throughout this paper. In Section 3, we describe our improved message
modification technique. We explain how to use Gaussian elimination to construct
a set controlled relations from the sufficient conditions. We also introduce a
new notion, that we called semi-neutral bit, and describe then our improved
message modification. We also give an algebraic descriptions of our improved
message modification. This permits to give an interesting connection between
the cryptanalysis of hash functions and the use of Gröbner bases. In Section 4,

Algebraic Cryptanalysis of 58-Round SHA-1 351

we present the details of our method on 58-round SHA-1. In the appendix, we
provide the details for the full SHA-1.

2 Preliminaries

2.1 Description of SHA-1

The hash function SHA-1 generates a 160-bit hash value (or digest) from a mes-
sage of length less than 264 bits. The input message is padded and then processed
in 512-bit message blocks through the Merkle/Damgard iterative structure.

A 80-step compression function is then applied to each of these 512-bit mes-
sage blocks. It has two types of inputs: a chaining input of 160 bits and a message
input of 512 bits. The initial chaining value (called IV) is a set of fixed constants,
and the result of the last call to the compression function is the hash of the
message.

In SHA-1, the message expansion is defined as follows: each 512-bit block of
the padded message is divided into a 16 × 32-bit word (m0, m1, . . . , m15), and
then expanded according to the following linear relation :

mi ← (mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16) ≪ 1, for all i, 16 ≤ i ≤ 79,

x ≪ n, denoting the n-bit left rotation of a 32-bit word x. The compression
function is defined for all i, 1,≤ i ≤ 80 as follows:

ai ← (ai−1 ≪ 5) + fi(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki

bi ← ai−1

ci ← bi−1 ≪ 30
di ← ci−1

ei ← di−1

The initial chaining value IV=(a0, b0, c0, d0, e0) being equal to:
(
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0

)
.

Note that we express as usual 32-bit words as hexadecimal numbers.
For n, 58 ≤ n ≤ 80, we call n-round SHA-1, the restriction of SHA-1 to the

first n rounds. The Boolean function fi and constant ki employed at each step
are defined as in Table 1.

Table 1. Definition of fi and ki w.r.t. the step

Step Boolean function fi Constant ki

1 − 20 IF: (x ∧ y) ∨ (¬x ∧ z) 0x5a827999
21 − 40 XOR: x ⊕ y ⊕ z 0x6ed6eba1
41 − 60 MAJ: (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) 0x8fabbcdc
61 − 80 XOR: x ⊕ y ⊕ z 0xca62c1d6

352 M. Sugita et al.

2.2 Definition and Notation

We will identify the ring Z/232Z with {0, 1, 2, . . . , 232 − 1}. If we ignore carry
effects in the arithmetic of Z/232Z, we can identify the ring Z/232Z with the
vector space F32

2 by using the canonical bijective mapping �:

� : x31231 + x30230 + · · ·+ x121 + x020 ∈ Z/232Z −→ (x31, x30, . . . , x0) ∈ F32
2 .

Here and in the rest of the paper, we try to find a collision between two messages
m = (m0, m1, . . . , m79) and m′ = (m′

0, m
′
1, . . . , m

′
79) of
(
F32

2

)80. The correspond-
ing chaining variables will be denoted by ai, bi, ci, di, ei and a′

i, b
′
i, c

′
i, d

′
i, e

′
i respec-

tively. For each mi = (mi,31, mi,30, . . . , mi,0) and m′
i = (m′

i,31, m
′
i,30, . . . , m

′
i,0),

we define:

Δmi,j = mi,j ⊕m′
i,j ∈ F2,

Δmi = mi ⊕m′
i ∈ F32

2 ,

δmi = �−1(mi) − �−1(m′
i) ∈ Z/232Z.

Moreover, we set :

Δ+mi,j =

{
1 if (mi,j , m

′
i,j)=(0, 1)

0 otherwise,
Δ−mi,j =

{
1 if (mi,j , m

′
i,j) = (1, 0)

0 otherwise.

and

Δ+mi =
(
Δ+mi,31, . . . , Δ

+mi,1, Δ
+mi,0

)
, Δ−mi =

(
Δ−mi,31, . . . , Δ

−mi,1, Δ
−mi,0

)
.

Note that Δmi = Δ+mi ⊕ Δ−m′
i ∈ F32

2 . Similarly, we define Δ, Δ+, Δ−, δ for
the chaining variables bi, ci, di and ei (resp. b′i, c

′
i, d

′
i and e′i). Using the above

definition, a differential characteristic and a differential are defined as follows.

Definition 1. We call differential characteristic the sequence:
(
Δmi, Δai, Δbi, Δci, Δdi, Δei

)
0≤i≤79

,

and differential:
(
Δ+mi, Δ

−mi, Δ
+ai, Δ

−ai, . . . , Δ
+ei, Δ

−ei

)
0≤i≤79

.

3 An Improved Message Modification Technique

Here, we will consider a n-round SHA-1, with n, 58 ≤ n ≤ 80. We will focus
our attention on the last step of Wang’s attack. Thus, we will suppose that
a disturbance vector is fixed, as well as a suitable differential. We can then
determine sufficient conditions on the messages permitting to produce collisions.
Remark that sufficient conditions depend on the choice of a disturbance vector
and its differential.

Algebraic Cryptanalysis of 58-Round SHA-1 353

3.1 How to Calculate Sufficient Conditions on the ai ?

In this step, we only consider expanded messages by ignoring relations arising
from the message expansion. We compute the sufficient conditions on chaining
variables by adjusting bi, ci and di such that for all i, 0 ≤ i ≤ n− 1:

δfi(bi, ci, di) = δai+1 − (δai ≪ 5)− δei − δmi.

In this calculation, we must adjust carry effects by “hand”. It is indeed difficult to
calculate this full-automatically. In Table 2 and Table 6, we present the sufficient
conditions that we have obtained on the chaining variables for 58-round and the
full SHA-1, respectively. Note that sufficient conditions on the messages are also
quoted in this table.

3.2 Gaussian Elimination and Controlled Relations

To calculate sufficient conditions on the {mi,j}0≤j≤31
0≤i≤n−1, we take into account

that Δ+mi,j = 1 implies mi,j = 0 and Δ−mi,j = 0 implies mi,j = 1. We also
consider the relations derived from the key expansion:

mi,j ← (mi−3,j ⊕mi−8,j ⊕mi−14,j ⊕mi−16,j) ≪ 1, for all i, 16 ≤ i ≤ n− 1.

We shall call controlled relations a particular set of F2-linear equations on
the mi,j on one hand, and on the chaining variables ai,j on the other. For the
mi,j , we consider the relations obtained by performing a Gaussian elimination
on the linear equations defined by the key expansion, and the equations derived
from the sufficient conditions. To perform this Gaussian elimination, we have
considered the following order on the mi,j :

mi′,j′ < mi,j , if i′ < i or i′ = i and j′ < j.

For n = 58, we obtain for instance the following controlled relations :
m15,31 = 1, m15,30 = 1, m15,29 = 0,m15,28 +m10,28 +m8,29 +m7,29 +m4,28 +m2,28 = 1,

m15,27 + m14,25 + m12,28 + m12,26 + m10,28 + m9,27 + m9,25 + m8,29 + m8,28 + m7,28 +

m7,27 + m6,26 + m5,28 + m4,26 + m3,25 + m2,28 + m1,25 + m0,28 = 1, m15,26 + m10,28 +

m10,26 + m8,28 + m8,27 + m7,27 + m6,29 + m5,27 + m4,26 + m2,27 + m2,26 + m0,27 = 1,

m15,25 + m11,28 + m10,27 + m10,25 + m9,28 + m8,27 + m8,26 + m7,26 + m6,29 + m6,28 +

m5,26 + m4,25 + m3,28 + m2,28 + m2,26 + m2,25 + m1,28 + m0,28 + m0,26 = 0, m15,24 +

m12,28 + m11,27 + m10,26 + m10,24 + m9,28 + m9,27 + m8,29 + m8,26 + m8,25 + m7,25 +

m6,29 +m6,28 +m6,27 +m5,25 +m4,28 +m4,24 +m3,28 +m3,27 +m2,27 +m2,25 +m2,24 +

m1,28 +m1,27 +m0,27 +m0,25 = 1, m15,23 +m12,28 +m12,27 +m11,26 +m10,25 +m10,23 +

m9,27 +m9,26 +m8,28 +m8,25 +m8,24 +m7,29 +m7,24 +m6,28 +m6,27 +m6,26 +m5,24 +

m4,27+m4,23+m3,27+m3,26+m2,26+m2,24+m2,23+m1,27+m1,26+m0,26+m0,24 = 1,

m15,22 +m14,25 +m12,28 +m12,27 +m11,25 +m10,27 +m10,24 +m10,22 +m9,28 +m9,27 +

m9,26 +m8,27 +m8,24 +m8,23 +m7,28 +m7,27 +m7,23 +m6,27 +m6,25 +m5,23 +m4,28 +

m4,27+m4,22+m3,26+m2,28+m2,27+m2,25+m2,23+m2,22+m1,26+m0,25+m0,23 = 0,

. . . , m5,0 + m3,0 + m1,31 = 1, m4,31 = 0, m4,30 = 0, m4,29 = 0, m4,6 = 0, m4,1 = 1,

354 M. Sugita et al.

m3,30 = 1, m3,29 = 0, m3,6 = 1, m2,31 = 0, m2,30 = 1, m2,29 = 0, m2,6 = 1, m2,1 = 1,

m2,0 = 1, m1,30 = 0, m1,29 = 1, m1,5 = 0, m1,4 = 1, m1,1 = 1, m0,31 = 0, m0,30 = 0,

m0,29 = 0.

The controlled relations also include a subset of the sufficient conditions on the
chaining variables. Precisely, we will only consider the conditions involving ai,j ,
with i ≤ R. The bound R is a positive integer that will be defined later. We will
call uncontrolled relations, the sufficient conditions which are not a controlled
relation.

We define now the notions of semi-neutral bit, control bit and adjuster. The
concept of semi-neutral bit is closely related to Biham and Chen’s “neutral bit”
[2] and Klima’s “tunnels” [22]. Namely, if the effect of flipping a bit corresponding
to a chaining variable can be “easily” eliminated (i.e. such that all conditions
previously satisfied can be satisfied by modifying few bits), then we shall call
this bit a semi-neutral bit. Thus, the effect of changing a semi-neutral bit can be
eliminated by controlling a little number of bits. We shall call these particular
bits adjusters. Note that the choice of semi-neutral bits and adjusters is not
unique. Thus, we have to choose it heuristically.

We emphasize that each mi,j can be viewed as a polynomial on the ak,�’s,
with k ≤ i + 1. Indeed, each mi,j can be viewed as a Boolean function on the
ak,�’s, with k ≤ i + 1, by the definition of SHA-1. Note that when we view mi,j

as a Boolean function, we do not approximate (based on approximating MAJ
by XOR, ignoring carry effect, etc.), but consider it as exact polynomial on the
ak,�. Control bits are determined for each controlled relation. Control bits are
chosen among the ak,� which appear as a leading term or a term ’near’ leading
term in mi,j , where mi,j is considered as a Boolean function on the ak,�. The
notion of leading term being related to a term ordering, we mention that we
have considered here the following order on the ak,� :

ak,� < ak′,�′ if k′ < k or k′ = k and �′ < �.

3.3 Conventional/Advanced Message Modification Techniques

The last step of Wang’s attack consists of randomly choosing a message and
modify some of its bits until all sufficient conditions are satisfied. To our knowl-
edge, this technique has been described for the first time in [18,19]. We shall call
this method conventional message modification technique.

Here, we introduce an improved message modification. The conventional mes-
sage modification will be used to obtain a “pre-collision”, i.e. a collision from the
first round to a given round R. This bound R will depend on the number n of
rounds considered. We take R = 23 in the case of 58-round SHA-1 and R = 26
for the full SHA-1. The improved message modification will then allow to extend
the pre-collision into a real collision on n-round SHA-1.

We would like to emphasize that our procedure will modify the chaining vari-
able and not the message. Since IV=(a0, b0, c0, d0, e0) is fixed, it is clear that

Algebraic Cryptanalysis of 58-Round SHA-1 355

SHA-1 induces a bijection between (m0, m1, . . . , m15) and (a1, a2, . . . , a16). This
implies that a modification on the ai,j can be mapped into a modification on
the mi,j .

Using our new terminology, we describe the conventional message modifica-
tion. For this, we use a list of controlled relations CR, and a list of control bits
CB.

Algorithm 1. Conventional Message Modification
CMM
Input : A positive integer R, a list CR of controlled relations, and a list CB of
control bits
Output : a = (a1, a2, . . . , a16) ∈

(
F32

2

)16 satisfying all the controlled relations
Randomly choose (a1, a2, . . . , a16) ∈

(
F32

2

)16

a ← (a1, a2, . . . , a16)
While all the controlled relations CB are not satisfied do
Perform an exhaustive search on the bits ai,j ∈ CB

If all the relations CB are satisfied then return the updaded a
Else a ← Randomly choose (a1, a2, . . . , a16) ∈

(
F32

2

)16

The CMM algorithm permits then to find a collision on R-round SHA-1. Using
semi-neutral bits and adjusters, we present an improved algorithm permitting
to find a collision on a n-round SHA-1 (with n > R). The new procedure is as
follows.

Algorithm 2. Improved Message Modification
IMM
Input : Positive integers n, R, two lists (SNB, Ad) of semi-neutral bits and
adjusters, a list CR of controlled relations, a list CB of control bits, and a list
SC of sufficient conditions
Output : a = (a1, a2, . . . , a16) ∈

(
F32

2

)16 satisfying all the sufficient conditions
a = (a1, a2, . . . , a16) ← CMM(R, CR, CB)
While all the sufficient conditions of SC are not satisfied do
Adjust the ai,j of a corresponding to a semi-neutral bit of SNB or an adjuster
of Ad
EndWhile
Return a

Remark 1. We mention that a different version of the CMM and IMM algorithms
can be found in [9,10]. These versions could be more suitable for those wishing
to actually implement these two algorithms.

We now analyze the complexity of the IMM algorithm for finding a collision on
58-round SHA-1. In this case, we choose R = 23, i.e. the CMM algorithm will
be used to find a collision on 23-round SHA-1. It will remain 5 uncontrolled
relations in rounds 17–23. Therefore, the CMM algorithm needs at most 25

356 M. Sugita et al.

iterations for returning a collision on 23-round SHA-1. There are 29 remaining
conditions from rounds 23–58. To adjust these 29 conditions, we use 21 semi-
neutral bits and 16 adjusters. Experimentally, the total complexity is improved
to 231 SHA-1 computation – with our latest implementation – whereas Wang’s
method needs theoretically 234 SHA-1 computations. Note that the cost of the
IMM algorithm is dominated by the exhaustive search among 21 semi-neutral
bits, which means that we could neglect the cost of the CMM algorithm.

As a proof of concept, we give here a new collision on 58-round SHA-1.

m = 0x1ead6636319fe59e4ea7ddcbc79616420ad9523af98f28db0ad135d0e4d62aec

6c2da52c3c7160b606ec74b2b02d545ebdd9e4663f1563194f497592dd1506f9

m′ = 0x3ead6636519fe5ac2ea7dd88e7961602ead95278998f28d98ad135d1e4d62acc

6c2da52f7c7160e446ec74f2502d540c1dd9e466bf1563596f497593fd150699

3.4 An Algebraic Description of the Improved Message Modification

We present here an algebraic description of the IMM and CMM algorithms which
could be useful for further improvements. For this, we remark that the CMM
algorithm is equivalent to the solving of a polynomial system of equations via
controlled relations with control bits as unknown variables. Similarly, the while-
loop of the IMM algorithm is equivalent to the solving of an algebraic system
of equations via sufficient conditions with semi-neutral bits and adjusters as
unknown variables.

In other words, let X = {Xi,j}0≤j≤31
1≤i≤n and let F2[X] be the polynomial ring

over F2 whose variables are X. Remark that sufficient conditions can be consid-
ered as polynomial equations via Boolean functions. Thus, they can be expressed
as algebraic polynomials on the ai,j . Therefore – by replacing each ai,j by the
variable Xi,j – we can associate a set of polynomials on F2[X] to the set of
sufficient conditions. With an obvious notation, we shall call controlled polyno-
mial (resp. uncontrolled polynomial) the polynomial associated to a controlled
relation (resp. uncontrolled relation).

Let J be an ideal in F2[X] generated by {X2
i,j + Xi,j}0≤j≤31

1≤i≤n , i.e. J = 〈X2
i,j +

Xi,j〉0≤j≤31
1≤i≤n . Let then Bn be a quotient ring F2[X]/J . Note that Bn represents

the set of all Boolean functions on the variables Xi,j .
Let f = (f1, f2, . . .) be the set of controlled polynomials. Note that all con-

trolled polynomials of f are in the subring F2[{Xi,j}0≤j≤31
1≤i≤R], where R is deter-

mined by n (for instance, R = 23 when n = 58 and R = 26 when n = 80).
For a randomly taken a = (a1, a2, . . . , a16) ∈ (F32

2)16, let CR(a) be the system
obtain from the sufficient conditions by replacing each variables Xi,j – not cor-
responding to a control bit – by ai,j . Similarly, let SC(a) be the system obtain
from the sufficient conditions by replacing each variables Xi,j – not correspond-
ing to a semi-neutral bit or adjuster – by ai,j . In this setting, the CMM and
IMM algorithms can roughly be described as follows:

Algebraic Cryptanalysis of 58-Round SHA-1 357

Algorithm 3. Algebraic Message Modification
Randomly choose (a1, a2, . . . , a16) ∈

(
F32

2

)16

a ← (a1, a2, . . . , a16)
Solve the algebraic system of equations CR(a): The solutions correspond to
affectations of control bits verifying all controlled polynomials
Solve the algebraic system of equations SC(a): The solutions correspond to
affectations of semi-neutral bits and adjusters verifying all
uncontrolled polynomials
Update a according to the solutions of the two previous systems
Return a

Relation Between Message Modification and Decoding of Error- Cor-
recting Codes. Let S be the set of all points in F =

(
F32

2

)16 satisfying advanced
sufficient conditions on {ai,j}. Note that S is a non-linear subset of F because
there are non-linear conditions. Then, for a given a ∈ F which is not necessarily
contained in S, to find an element in S by modifying a is analogous to a decoding
problem in error-correcting codes. Hence, a conventional message modification
and a proposed improved message modification including changing semi-neutral
bits can be viewed as an error-correcting process for a non-linear code S in F .
More precisely, for a non-linear code S in F , an error-correction can be achieved
by manipulating control bits and semi-neutral bits.

4 Analysis of the 58-Round SHA-1 Using the Improved
Message Modification

In this part, we detail the different steps of our technique for finding a collision on
58-round SHA-1. In Table 2, we give the sufficient conditions. Note that we have
only quoted the sufficient conditions for the first 20 rounds due to space limitation.
For the complete list of the conditions, see [9,10]. The control bits and controlled
relations are given in Table 3. Semi-neutral bits and adjusters are given in Table 4.

– ’a’ means ai,j = ai−1,j

– ’A’ means ai,j = ai−1,j + 1
– ’b’ means ai,j = ai−1,(j+2 mod 32)

– ’B’ means ai,j = ai−1,(j+2 mod 32) + 1
– ’c’ means ai,j = ai−2,(j+2 mod 32)

– ’C’ means ai,j = ai−2,(j+2 mod 32) + 1
– ’L’ means the leading term of controlled relation of Table 3
– ’w’, ’W’: adjust ai,j so that mi+1,j = 0, 1, respectively
– ’v’, ’V’: adjust ai,j so that mi,(j+27 mod 32) = 0, 1, respectively
– ’h’: adjust ai,j so that corresponding controlled relation including mi+1,j as
leading term holds
– ’r’ means to adjust ai,j so that corresponding controlled relation including
mi,(j+27 mod 32) as leading term holds

358 M. Sugita et al.

Table 2. Sufficient condition on the mi,j (resp. ai,j)

message
variable 31 - 24 23 - 16 15 - 8 8 - 0

m0 --0----- -------- -------- --------
m1 -01----- -------- -------- --01--1-
m2 -10----- -------- -------- -1----11
m3 --0----- -------- -------- -1------
m4 000----- -------- -------- -0----1-

m5 -11----- -------- -------- ------1-
m6 0------- -------- -------- -------0
m7 -------- -------- -------- --1-----
m8 -------- -------- -------- ------00
m9 -0------ -------- -------- -0-1--1-

m10 -0------ -------- -------- -0------
m11 101----- -------- -------- -1-1--1-
m12 1-1----- -------- -------- --------

m13 0------- -------- -------- -0------
m14 --0----- -------- -------- -------0
m15 --0----- -------- -------- -11-----
m16 0------- -------- -------- -------0
m17 -0------ -------- -------- -1----0-
m18 00------ -------- -------- -1----01
m19 -0------ -------- -------- --1---1-

m20 -------- -------- -------- ------11

chaining
variable 31 - 24 23 - 16 15 - 8 8 - 0

a0 01100111 01000101 00100011 00000001
a1 101----- -------- -------- -1-a10aa
a2 01100--- ------0- ----a--- 1--00010
a3 0010---- -10---1a ------0- 0a-1a0-0
a4 11010--- -01----- 01aaa--- 0-10-100

a5 10-01a-- -1-01-aa --00100- 0---01-1
a6 11--0110 -a-1001- 01100010 1-a111-1
a7 -1--1110 a1a1111- -101-001 1---0-10
a8 -0----10 0000000a a001a1-- 100-0-1-
a9 00------ 11000100 00000000 101-1-1-

a10 0-1----- 11111011 11100000 00--0-1-
a11 1-0----- -------1 01111110 11----0-
a12 0-1----- -------- -------- -1--a---

a13 1-0----- -------- -------- -1---01-
a14 1------- -------- -------- -1---1--
a15 0------- -------- -------- ----0--0
a16 -1------ -------- -------- ----a---
a17 -0------ -------- -------- ----100-
a18 1-1----- -------- -------- -----00-
a19 -------- -------- -------- -------0

a20 -C------ -------- -------- ----A---

Table 3. Control bits and controlled relations

Control Control Controlled relation ri
sequence bit

si bi
s124 a16,7, a15,9, a14,9 a23,0 = 0
s123 a16,9 a22,2 + a21,2 = 1
s122 a16,13, a15,15, a15,12, a15,11 a22,1 = 1
s121 a16,10 a21,3 + m20,3 = 0
s120 a16,8 a21,1 = 1
s119 a16,15, a16,20 a20,3 + m19,3 = 1
s118 a16,17 a19,0 = 0
s117 a16,21 a18,31 = 1
s116 a16,19 a18,29 = 1
s115 a13,4 a18,2 = 0
s114 a13,3 a18,1 = 0
s113 a14,15 a17,30 = 0
s112 a16,31 m15,31 = 1
s111 a16,29 m15,29 = 0
s110 a16,28 m15,28 + m10,28 + m8,29 + m7,29 + m4,28 + m2,28 = 1
s109 a16,27, a13,28 m15,27 + m14,25 + m12,28 + m12,26 + m10,28 +m9,27 + m9,25 + m8,29 +

m8,28+m7,28+m7,27+m6,26+m5,28+m4,26+m3,25+m2,28+m1,25+
m0,28 = 1

s108 a16,26 m15,26 + m10,28 + m10,26 + m8,28 + m8,27 + m7,27 + m6,29 + m5,27 +
m4,26 + m2,27 + m2,26 + m0,27 = 1

s107 a16,25 m15,25 + m11,28 + m10,27 + m10,25 + m9,28 + m8,27 + m8,26 + m7,26 +
m6,29+m6,28+m5,26+m4,25+m3,28+m2,28+m2,26+m2,25+m1,28+
m0,28 + m0,26 = 0

s106 a16,24 m15,24 + m12,28 + m11,27 + m10,26 + m10,24 +m9,28 + m9,27 + m8,29 +
m8,26+m8,25+m7,25+m6,29+m6,28+m6,27+m5,25+m4,28+m4,24+
m3,28+m3,27+m2,27+m2,25+m2,24+m1,28+m1,27+m0,27+m0,25 = 1

s105 a16,23 m15,23 +m12,28 +m12,27 +m11,26 +m10,25 +m10,23 +m9,27 +m9,26 +
m8,28+m8,25+m8,24+m7,29+m7,24+m6,28+m6,27+m6,26+m5,24+
m4,27+m4,23+m3,27+m3,26+m2,26+m2,24+m2,23+m1,27+m1,26+
m0,26 + m0,24 = 1

s104 a16,22 m15,22+m14,25+m12,28+m12,27+m11,25+m10,27+m10,24+m10,22+
m9,28+m9,27+m9,26+m8,27+m8,24+m8,23+m7,28+m7,27+m7,23+
m6,27+m6,25+m5,23+m4,28+m4,27+m4,22+m3,26+m2,28+m2,27+
m2,25 + m2,23 + m2,22 + m1,26 + m0,25 + m0,23 = 0

s103 a16,6 m15,6 = 1
s102 a16,5 m15,5 = 1
s101 a16,4 m15,4 + m12,5 + m10,4 + m4,5 + m4,4 + m2,5 + m2,4 = 1

.

.

.
s3 a1,28 m1,1 = 1
s2 a1,25 m1,30 = 0
s1 a1,24 m1,29 = 1
s0 a1,23 m1,29 = 1

Algebraic Cryptanalysis of 58-Round SHA-1 359

Table 4. Semi-neutral bits and adjusters

message
variable 31 - 24 23 - 16 15 - 8 8 - 0

m0 --0----- -------- -------- --------
m1 -01----- -------- -------- --01--1-
m2 L10----- -------- -------- -1----11
m3 -L0----- -------- -------- -1------
m4 000----- -------- -------- -0----1-
m5 L11----- -------- -------- ------1L
m6 0L------ -------- -------- -------0

m7 LL------ -------- -------- --1----L
m8 LL------ -------- -------- ------00
m9 L0L----- -------- -------- -0L1--1L

m10 L0L----- -------- -------- -0L----L
m11 101----- -------- -------- -1-1--1L
m12 1L1----- -------- -------- -------L
m13 0LLLLL-L LL------ -------- -0LLLLLL
m14 LL0LLL-L LLLL---- -------- --LLLLL0

m15 LL0LLLLL LL------ -------- -11LLLLL
m16 0------- -------- -------- -------0
m17 -0------ -------- -------- -1----0-
m18 00------ -------- -------- -1----01
m19 -0------ -------- -------- --1---1-
m20 -------- -------- -------- ------11
m21 -0------ -------- -------- -0----1-

m22 01------ -------- -------- -0----10
m23 11------ -------- -------- --1---0-
m24 -------- -------- -------- -------0
m25 -1------ -------- -------- ------1-
m26 10------ -------- -------- -0----10
m27 -1------ -------- -------- -01---0-
m28 1------- -------- -------- -------0
m29 -1------ -------- -------- -1----0-

m30 -0------ -------- -------- -1----0-
m31 -1------ -------- -------- ------0-
m32 -------- -------- -------- ------1-
m33 -------- -------- -------- -0------
m34 0------- -------- -------- ------1-
m35 0------- -------- -------- --------
m36 1------- -------- -------- ------1-

m37 1------- -------- -------- -0------
m38 -------- -------- -------- --------
m39 0------- -------- -------- -1------
m40 1------- -------- -------- --------
m41 -------- -------- -------- -1------
m42 1------- -------- -------- --------
m43 -------- -------- -------- -1------
m44 1------- -------- -------- ------1-

m45 -------- -------- -------- --------
m46 1------- -------- -------- --------
m47 0------- -------- -------- --------

mi (i ≥ 48) -------- -------- -------- --------

chaining
variable 31 - 24 23 - 16 15 - 8 8 - 0

a0 01100111 01000101 00100011 00000001
a1 101V--vV Y------- -------- -1-a10aa
a2 01100vVv ------0- ----a--- 1-w00010
a3 0010--Vv -10---1a ------0- 0aX1a0W0
a4 11010vv- -01----- 01aaa--- 0W10-100
a5 10w01aV- -1-01-aa --00100- 0w--01W1

a6 11W-0110 -a-1001- 01100010 1-a111W1
a7 w1x-1110 a1a1111- -101-001 1---0-10
a8 h0Xvvv10 0000000a a001a1-- 100X0-1h
a9 00XVrr-V 11000100 00000000 101-1-1y

a10 0w1-rv-v 11111011 11100000 00hW0-1h
a11 1w0--V-V -------1 01111110 11x---0Y
a12 0w1-rV-V -------- -------- -1XWa-Wh
a13 1w0--vv- -rr----- -------- -1-qq01y

a14 1rhhvvVh hh------ qNNNNNqN N1hhh1hh
a15 0rwhhhVh hhhh---N qNNqqNqN NNhh0hh0
a16 W1whhhhh hhqNqNqN NNqNNqqq qWWhahhh
a17 -0------ -------- -------- ----100-
a18 1-1----- -------- -------- -----00-
a19 -------- -------- -------- -------0
a20 -C------ -------- -------- ----A---

a21 -b------ -------- -------- ----a-1-
a22 -------- -------- -------- -----A1-
a23 -------- -------- -------- -------0
a24 -c------ -------- -------- --------
a25 -B------ -------- -------- ----a---
a26 -------- -------- -------- -----A1-
a27 -------- -------- -------- -------1
a28 -c------ -------- -------- ----A---

a29 -B------ -------- -------- ----A-0-
a30 -------- -------- -------- ------0-
a31 -------- -------- -------- --------
a32 -------- -------- -------- ----A---
a33 -------- -------- -------- ------1-
a34 -------- -------- -------- --------
a35 -------- -------- -------- --------

a36 -------- -------- -------- ----A---
a37 -------- -------- -------- ------1-
a38 -------- -------- -------- ----A---
a39 B------- -------- -------- ------0-
a40 C------- -------- -------- ----A---
a41 B------- -------- -------- ------0-
a42 C------- -------- -------- ----A---
a43 B------- -------- -------- ------0-

a44 C------- -------- -------- --------
a45 B------- -------- -------- --------

ai (i ≥ 46) -------- -------- -------- --------

– ’x’, ’y’: adjust ai+1,j−1, ai,j−1 so that mi,j = 0, respectively
– ’X’, ’Y’: adjust ai+1,j−1, ai,j−1 so that mi,j = 1, respectively
– ’N’: semi-neutral bit
– ’q’ : adjust ai,j so that relations after 17-round hold

In this case, the set of bits corresponding to ’q’ is exactly same to the set of
adjusters.

The conditions remaining after the conventional message modification are
listed below: a17,3 = 1, a17,2 = 0, a17,1 = 0, a26,1 = 1, a27,0 = 1, a29,1 = 0, a30,1 =
0, a33,1 = 1, a37,1 = 1, a39,1 = 0, a41,1 = 0, a43,1 = 0, a20,30 + a18,0 = 1, a21,30 +
a20,0 = 0, a24,30 + a22,0 = 0, a25,30 + a24,0 = 1, a25,3 + a24,3 = 0, a26,2 + a25,2 =
1, a28,30 + a26,0 = 0, a28,3 + a27,3 = 1, a29,30 + a28,0 = 1, a29,3 + a28,3 = 1, a32,3 +
a31,3 = 1, a36,3 + a35,3 = 1, a38,3 + a37,3 = 1, a39,31 + a38,1 = 1, a40,3 + a39,3 =
1, a40,31 +a38,1 = 1, a41,31 +a40,1 = 1, a42,31 +a40,1 = 1, a43,31 +a42,1 = 1, a42,3 +
a41,3 = 1, a44,31 + a42,1 = 1, a45,31 + a44,1 = 1.

360 M. Sugita et al.

There are five conditions a17,3 = 1, a17,2 = 0, a17,1=0, a20,30+a18,0 = 1, a21,30+
a20,0 = 0 which are only related to first 23 rounds. For other 29 conditions,
we adjust by using 21 semi-neutral bits and 11 adjusters as explained in the
improved message modification algorithm (see Algorithm 2).

5 A Concluding Note

This paper present an improved method for finding collision on SHA-1. To do so,
we use algebraic techniques for describing the message modification technique
and propose an improvement. The details of our attack can be found in the
appendices. The proposed method improves the complexity of an attack against
58-round SHA-1 and we found many new collisions.

References

1. Biham, E., Chen, R., Joux, A., Carribault, P., Lemuet, C., Jalby, W.: Collisions of
SHA-0 and Reduced SHA-1. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS,
vol. 3494, pp. 36–57. Springer, Heidelberg (2005)

2. Biham, E., Chen, R.: Near-Collisions of SHA-0. In: Franklin, M. (ed.) CRYPTO
2004. LNCS, vol. 3152, pp. 290–305. Springer, Heidelberg (2004)

3. De Cannière, C., Rechberger, C.: Finding SHA-1 Characteristics. In: Lai, X., Chen,
K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 1–20. Springer, Heidelberg
(2006)

4. Chabaud, F., Joux, A.: Differential Collisions in SHA-0. In: Krawczyk, H. (ed.)
CRYPTO 1998. LNCS, vol. 1462, pp. 56–71. Springer, Heidelberg (1998)

5. Dobbertin, H.: Cryptanalysis of MD4. In: Gollmann, D. (ed.) Fast Software En-
cryption. LNCS, vol. 1039, pp. 53–69. Springer, Heidelberg (1996)

6. Hui, L.C.K., Wang, X., Chow, K.P., Tsang, W.W., Chong, C.F., Chan, H.W.: The
Differential Analysis of Skipjack Variants from the first Round. In: Advance in
Cryptography – CHINACRYPT 2002 Science Publishing House (2002)

7. Joux, A.: Multicollisions in Iterated Hash Functions. Application to Cascaded Con-
structions. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 306–316.
Springer, Heidelberg (2004)

8. Pramstaller, N., Rechberger, C., Rijmen, V.: Exploiting Coding Theory for Colli-
sion Attacks on SHA-1. In: Smart, N.P. (ed.) Cryptography and Coding. LNCS,
vol. 3796, pp. 78–95. Springer, Heidelberg (2005)

9. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis Based Cryptanalysis of SHA-1.
IACR Cryptology ePrint Archive 2006/098 (2006),
http://eprint.iacr.org/2006/098.pdf

10. Sugita, M., Kawazoe, M., Imai, H.: Gröbner Basis Based Cryptanalysis of SHA-1.
In: Proc. of SECOND NIST CRYPTOGRAPHIC HASH WORKSHOP (2006)

11. Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the Hash Functions
MD4 and RIPEMD. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494,
pp. 1–18. Springer, Heidelberg (2005)

12. Wang, X., Feng, D., Yu, X.: An Attack on Hash Function HAVAL-128. Science in
China Series 48, 545–556 (2005)

13. Wang, X., Yao, A.C., Yao, F.: Cryptanalysis on SHA-1. In: Proc. of NIST Cryp-
tographic Hash Workshop (2005)

http://eprint.iacr.org/2006/098.pdf

Algebraic Cryptanalysis of 58-Round SHA-1 361

14. Wang, X., Yin, Y.L., Yu, H.: New Collision Search for SHA-1. In: Rump Session
of CRYPTO (2005)

15. Wang, X., Yin, Y.L., Yu, H.: Finding Collisions in the Full SHA-1. In: Shoup, V.
(ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

16. Wang, X., Yu, H.: How to Break MD5 and Other Hash Functions. In: Cramer,
R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg
(2005)

17. Wang, X., Yu, H., Yin, Y.L.: Efficient Collision Search Attacks on SHA-0. In:
Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 1–16. Springer, Heidelberg
(2005)

18. Wang, X.: The Collision attack on SHA-0 (1997)
19. Wang, X.: The Improved Collision attack on SHA-0 (1998)
20. Wang, X.: Collisions for Some Hash Functions MD4, MD5, HAVAL-128, RIPEMD.

In: Rump Session of Crypto’04
21. Wang, X.: Cryptanalysis of Hash Functions and Potential Dangers. In: RSA Con-

ference 2006, San Jose, USA (2006)
22. Klima, V.: Tunnels in Hash Functions: MD5 Collisions Within a Minute.

IACR Cryptology ePrint Archive 2006/105 (2006), http://eprint.iacr.org/
2006/098.pdf

Appendix

A Analysis of the Full SHA-1

We present here the details of our method on the full SHA-1.

A.1 Disturbance Vector and Differential

We start from the disturbance vector and differential given by Wang et al [13].
From these, we construct a new differential. We modify Wang’s differential by

Table 5. A differential for the full SHA-1

Δm Δ+m Δ−m

i = 0 a0000003 00000001 a0000002
i = 1 20000030 20000020 00000010
i = 2 60000000 60000000 00000000
i = 3 e000002a 40000000 a000002a

i = 4 20000043 20000042 00000001
i = 5 b0000040 a0000000 10000040
i = 6 d0000053 d0000042 00000011
i = 7 d0000022 d0000000 00000022
i = 8 20000000 00000000 20000000
i = 9 60000032 20000030 40000002

i = 10 60000043 60000041 00000002
i = 11 20000040 00000000 20000040
i = 12 e0000042 c0000000 20000042
i = 13 60000002 00000002 60000000
i = 14 80000001 00000001 80000000
i = 15 00000020 00000020 00000000
i = 16 00000003 00000002 00000001
i = 17 40000052 00000002 40000050
i = 18 40000040 00000000 40000040
i = 19 e0000052 00000002 e0000050
i = 20 a0000000 00000000 a0000000

.

.

.
i = 78 0000004a 00000002 00000048
i = 79 0000080a 00000808 00000002
i = 80 00000000 00000000 00000000

Δa Δ+a Δ−a

i = 0 00000000 00000000 00000000
i = 1 e0000001 a0000000 40000001
i = 2 20000004 20000000 00000004
i = 3 c07fff84 803fff84 40400000
i = 4 800030e2 800010a0 00002042
i = 5 084080b0 08008020 00400090
i = 6 80003a00 00001a00 80002000
i = 7 0fff8001 08000001 07ff8000
i = 8 00000008 00000008 00000000
i = 9 80000101 80000100 00000001

i = 10 00000002 00000002 00000000
i = 11 00000100 00000000 00000100
i = 12 00000002 00000002 00000000
i = 13 00000000 00000000 00000000
i = 14 00000000 00000000 00000000
i = 15 00000001 00000001 00000000
i = 16 00000000 00000000 00000000
i = 17 80000002 80000002 00000000
i = 18 00000002 00000002 00000000
i = 19 80000002 80000002 00000000
i = 20 00000000 00000000 00000000

.

.

.
i = 78 00000000 00000000 00000000
i = 79 00000040 00000000 00000040
i = 80 00000000 00000000 00000000

http://eprint.iacr.org/2006/098.pdf
http://eprint.iacr.org/2006/098.pdf

362 M. Sugita et al.

changing Δa+
14,31 and Δa−

14,31. For our method, it is important to choose Δ+m,
Δ−m, Δ+a and Δ−a carefully. A bad choice of plus/minus could lead to an
underdefined system of equations (as result of the Gaussian elimination). For
this reason, we have to correct Wang’s differential. We present in Table 5 the
new differential constructed.

A.2 Sufficient Conditions

For the disturbance vector, and the differential given in the previous step, we
give in Table 6 the sufficient conditions for the full SHA-1. In Table 6: ’a’ means
ai,j = ai−1,j , ’A’ means ai,j = ai−1,j + 1, ’b’ means ai,j = ai−1,(j+2 mod 32), ’B’
means ai,j = ai−1,(j+2 mod 32) + 1, ’c’ means ai,j = ai−2,(j+2 mod 32) and ’C’
means ai,j = ai−2,(j+2 mod 32) + 1.

Table 6. Sufficient conditions for the full SHA-1

message
variable 31 - 24 23 - 16 15 - 8 8 - 0

m0 1-1----- -------- -------- ------10

m1 --0----- -------- -------- --01----
m2 -00----- -------- -------- --------
m3 101----- -------- -------- --1-1-1-
m4 --0----- -------- -------- -0----01
m5 0-01---- -------- -------- -1------
m6 00-0---- -------- -------- -0-1--01
m7 00-0---- -------- -------- --1---1-
m8 --1----- -------- -------- --------

m9 -10----- -------- -------- --00--1-
m10 -00----- -------- -------- -0----10
m11 --1----- -------- -------- -1------
m12 001----- -------- -------- -1----1-
m13 -11----- -------- -------- ------0-
m14 1------- -------- -------- -------0
m15 -------- -------- -------- --0-----

m16 -------- -------- -------- ------01
m17 -1------ -------- -------- -1-1--0-
m18 -1------ -------- -------- -1------
m19 111----- -------- -------- -1-1--0-
m20 1-1----- -------- -------- --------

.

.

.
m78 -------- -------- -------- -1--1-0-
m79 -------- -------- ----0--- ----0-1-
m80 -------- -------- -------- --------

chaining
variable 31 - 24 23 - 16 15 - 8 8 - 0

a0 01100111 01000101 00100011 00000001

a1 010----0 -0-01-0- 10-0-10- ---a0101
a2 -100---1 0aa10a1a 01a1a011 1--a11a1
a3 01011--- -1000000 00000000 01--a0a1
a4 0-101--a ---10000 00101000 010---10
a5 0-0101-1 -1-11110 00111-00 10010100
a6 1-0a1a0a a0a1aaa- --10010- --01-0--
a7 --0-0111 11111111 111-010- 0-0-0110
a8 -10---01 11110000 010-111- 1---000-

a9 00----11 11111111 111----0 ----1-01
a10 -11----- -------- -----a-- -1--1-0-
a11 100----- -------- -------1 -1--0---
a12 -------- -------- -------- -1----0-
a13 0------- -------- -------- -1---0--
a14 1------- -------- -------- -----1--
a15 -------- -------- -------- ----0--0

a16 -1------ -------- -------- ----1-A-
a17 00------ -------- -------- ----0-0-
a18 1-1----- -------- -------- ----a-0-
a19 0-b----- -------- -------- ------0-
a20 --0----- -------- -------- ----a---

.

.

.
a78 -------- -------- -------- ----b---
a79 -------- -------- -------- -1------
a80 -------- -------- -------- --------

By a Gaussian elimination, we reduce all conditions on the mi. The result of
Gaussian elimination is listed below. There are 167 conditions on mi,j :
m15,31 = 0, m15,30 = 1, m15,29 = 1, m15,28 + m10,28 + m4,28 + m2,28 = 0, m15,27 + m10,27 + m8,28 +

m4,27 + m2,28 + m2,27 + m0,28 = 1, m15,26 + m10,28 + m10,26 + m8,28 + m8,27 + m7,27 + m5,27 + m4,26 +

m2,27 + m2,26 + m0,27 = 0, m15,25 + m11,28 + m10,27 + m10,25 + m9,28 + m8,27 + m8,26 + m7,26 + m5,26 +

m4,25 + m3,28 + m2,28 + m2,26 + m2,25 + m1,28 + m0,28 + m0,26 = 0, m15,24 + m12,28 + m11,27 + m10,26 +

m10,24 + m9,28 + m9,27 + m8,26 + m8,25 + m7,25 + m6,27 + m5,25 + m4,28 + m4,24 + m3,28 + m3,27 + m2,27 +

m2,25 + m2,24 + m1,28 + m1,27 + m0,27 + m0,25 = 1, m15,23 + m12,28 + m12,27 + m11,26 + m10,25 + m10,23 +

m9,27 + m9,26 + m8,28 + m8,25 + m8,24 + m7,24 + m7,0 + m6,27 + m6,26 + m5,24 + m4,27 + m4,23 + m3,27 +

m3,26 + m2,26 + m2,24 + m2,23 + m1,30 + m1,27 + m1,26 + m1,0 + m0,26 + m0,24 = 0,

· · · ,

m5,0 + m1,30 + m1,0 = 0, m4,31 = 0, m4,30 = 0, m4,29 = 0, m4,6 = 0, m4,1 = 0, m4,0 = 1, m3,31 = 1,

m3,30 = 0, m3,29 = 1, m3,5 = 1, m3,3 = 1, m3,1 = 1, m3,0 + m1,0 = 0, m2,31 = 1, m2,30 = 0, m2,29 = 0,

m2,0 + m1,30 = 1, m1,31 + m1,30 = 1, m1,29 = 0, m1,5 = 0, m1,4 = 1, m0,31 = 1, m0,30 = 0, m0,29 = 1,

m0,1 = 1, m0,0 = 0.

Algebraic Cryptanalysis of 58-Round SHA-1 363

A.3 Control Bits and Controlled Relations

The control bits and controlled relations are presented in Table 7.
Now we give the semi-neutral bits and adjuster in Table 8. In this table :

– ’a’, ’A’, ’b’, ’B’, ’c’, ’C’: as in Section A.2.
– ’L’ means the leading term of controlled relation of Table 7.
– ’w’, ’W’: adjust ai,j so that mi+1,j = 0, 1, respectively.
– ’v’, ’V’: adjust ai,j so that mi,(j+27 mod 32) = 0, 1, respectively.
– ’h’: adjust ai,j so that corresponding controlled relation including mi+1,j as

leading term holds.
– ’r’ means to adjust ai,j so that corresponding controlled relation including

mi,(j+27 mod 32) as leading term holds.
– ’x’, ’y’: adjust ai+1,j−1, ai,j−1 so that mi,j = 0, respectively.
– ’X’, ’Y’: adjust ai+1,j−1, ai,j−1 so that mi,j = 1, respectively.
– ’N’: semi-neutral bit.
– ’q’ : adjust ai,j so that relations after 17-round hold.
– ’F’ : etc.

Table 7. Control bits and controlled relations for the full SHA-1

ctrl. seq. control bits controlled relation
s168 a15,8 a30,2 + a29,2 = 1
s167 a16,6 a26,2 + a25,2 = 1
s166 a15,7 a25,3 + a24,3 = 0
s165 a13,7 a24,3 + a23,3 = 0
s164 a13,9 a23,0 = 0
s163 a16,10 a22,3 + a21,3 = 0
s162 a16,11 a21,29 + a20,31 = 0
s161 a16,8 a21,1 = 0
s160 a16,9 a20,29 = 0
s159 a15,10 a20,3 + a19,3 = 0
s158 a15,11 a19,31 = 0
s157 a15,9 a19,29 + a18,31 = 0
s156 a14,8 a19,1 = 0
s155 a14,11 a18,31 = 1
s154 a15,14 a18,29 = 1
s153 a13,8 a18,1 = 0
s152 a13,11 a17,31 = 0
s151 a13,10 a17,30 = 0
s150 a13,13 a17,1 = 0
s149 a16,31 m15,31 = 0
s148 a16,29 m15,29 = 1
s147 a16,28 m15,28 + m10,28 + m4,28 + m2,28 = 0
s146 a16,27 m15,27 + m10,27 + m8,28 + m4,27 + m2,28 + m2,27 + m0,28 = 1
s145 a16,26 m15,26 +m10,28 +m10,26 +m8,28 +m8,27 +m7,27 +m5,27 +m4,26 +m2,27 +m2,26 +

m0,27 = 0
s144 a16,25 m15,25 + m11,28 + m10,27 + m10,25 + m9,28 + m8,27 + m8,26 + m7,26 + m5,26 +

m4,25 + m3,28 + m2,28 + m2,26 + m2,25 + m1,28 + m0,28 + m0,26 = 0
s143 a16,24 m15,24 + m12,28 + m11,27 + m10,26 + m10,24 + m9,28 + m9,27 + m8,26 + m8,25 +

m7,25 + m6,27 + m5,25 + m4,28 + m4,24 + m3,28 + m3,27 + m2,27 + m2,25 + m2,24 +
m1,28 + m1,27 + m0,27 + m0,25 = 1

s142 a16,23 m15,23 + m12,28 + m12,27 + m11,26 + m10,25 + m10,23 + m9,27 + m9,26 + m8,28 +
m8,25 + m8,24 + m7,24 + m7,0 + m6,27 + m6,26 + m5,24 + m4,27 + m4,23 + m3,27 +
m3,26 + m2,26 + m2,24 + m2,23 + m1,30 + m1,27 + m1,26 + m1,0 + m0,26 + m0,24 = 0

.

.

.
s3 a2,5 m1,5 = 0
s2 a1,26 m1,31 + m1,30 = 1
s1 a1,23 m1,29 = 0

364 M. Sugita et al.

Table 8. Semi-neutral bits and Adjusters

message
variable 31 - 24 23 - 16 15 - 8 8 - 0

m0 1-1----- -------- -------- ------10
m1 L-0----- -------- -------- --01----
m2 L00----- -------- -------- -------L
m3 101----- -------- -------- --1-1-1L
m4 LL0----- -------- -------- -0----01
m5 0L01---- -------- -------- -1-----L

m6 00L0---- -------- -------- -0-1--01
m7 00-0---- -------- -------- --1L--1-
m8 L-1----- -------- -------- ----L--L
m9 L10----- -------- -------- --00-L1L

m10 L00----- -------- -------- -0LLLL10
m11 LL1----- -------- -------- -1LLLLLL
m12 001----- -------- -------- -1LLL-1L
m13 L11LLLLL LLLLLLLL L-L----- --LLLL0L

m14 1LLLLLLL LLLLLLLL L-LL---- --LLLLL0
m15 LLLLLLLL LLLLLLLL LL-L---- L-0LLLLL
m16 -------- -------- -------- ------01
m17 -1------ -------- -------- -1-1--0-
m18 -1------ -------- -------- -1------
m19 111----- -------- -------- -1-1--0-
m20 1-1----- -------- -------- --------

m21 0------- -------- -------- -1------
m22 --1----- -------- -------- -------0
m23 --1----- -------- -------- -11-----
m24 1------- -------- -------- -------1
m25 -1------ -------- -------- -1----1-
m26 10------ -------- -------- -0----10
m27 -1------ -------- -------- --1---0-
m28 -------- -------- -------- ------10

m29 -0------ -------- -------- -0----0-
m30 11------ -------- -------- -1----01
m31 11------ -------- -------- --0---1-
m32 -------- -------- -------- -------1
m33 -0------ -------- -------- ------0-
m34 00------ -------- -------- -1----00
m35 -0------ -------- -------- -11---1-

m36 1------- -------- -------- -------0
m37 -1------ -------- -------- -0----0-
m38 -0------ -------- -------- -1----1-
m39 -1------ -------- -------- ------0-
m40 -------- -------- -------- ------1-
m41 -------- -------- -------- -0------
m42 0------- -------- -------- ------0-
m43 1------- -------- -------- --------

m44 0------- -------- -------- ------0-
m45 0------- -------- -------- -1------
m46 -------- -------- -------- --------
m47 0------- -------- -------- -1------
m48 0------- -------- -------- --------
m49 -------- -------- -------- -1------
m50 0------- -------- -------- --------

m51 -------- -------- -------- -1------
m52 1------- -------- -------- ------1-
m53 -------- -------- -------- --------
m54 1------- -------- -------- --------
m55 0------- -------- -------- --------
m56 -------- -------- -------- --------
m57 -------- -------- -------- --------
m58 -------- -------- -------- --------

m59 -------- -------- -------- --------
m60 -------- -------- -------- --------
m61 -------- -------- -------- --------
m62 -------- -------- -------- --------
m63 -------- -------- -------- --------
m64 -------- -------- -------- --------
m65 -------- -------- -------- --------

m66 -------- -------- -------- -----0--
m67 -------- -------- -------- 1-------
m68 -------- -------- -------- -----0--
m69 -------- -------- -------- ----0--0
m70 -------- -------- -------1 -------0
m71 -------- -------- -------- ----0--1
m72 -------- -------- -------- ---0--0-
m73 -------- -------- ------1- ------0-

m74 -------- -------- -------- ---00-1-
m75 -------- -------- -------1 --1--0--
m76 -------- -------- -----0-- ----00--
m77 -------- -------- -------- --1--10-
m78 -------- -------- -------- -1--1-0-
m79 -------- -------- ----0--- ----0-1-
m80 -------- -------- -------- --------

chaining
variable 31 - 24 23 - 16 15 - 8 8 - 0

a0 01100111 01000101 00100011 00000001
a1 010-FrF0 y0-01-0- 10-0-10- F-Fa0101
a2 F100-Vv1 0aa10a1a 01a1a011 1-wa11a1
a3 01011VFV -1000000 00000000 01FFa0a1
a4 0w101v-a y--10000 00101000 010XWF10
a5 0w0101y1 V1-11110 00111-00 10010100

a6 1w0a1a0a a0a1aaa- --10010F -W01F0Fh
a7 ww0w0111 11111111 111-010F 0w0W0110
a8 w10wvv01 11110000 010-111F 1-Wh000F
a9 00WV--11 11111111 111----0 ---F1F01

a10 W11x-Vvv -------- -----a-- -1ww1h0w
a11 100V---- -------- -------1 -1hh0hWw
a12 wwWF-v-- -------- -------- -1hhhh0h
a13 0wW--V-- -F-F-F-- FNqNqqqq q1hhh0WW

a14 1WWhhhhh hhhhhhhh hNhNqNNq NNhhh1wh
a15 WWwhhhhh hhhhhhhh hqhhqqqq qNwh0hh0
a16 w1Whhhhh hhhhhhhh hhNhqqqq hqwh1hAh
a17 00------ -------- -------- ----0-0-
a18 1-1----- -------- -------- ----a-0-
a19 0-b----- -------- -------- ------0-
a20 --0----- -------- -------- ----a---

a21 --b----- -------- -------- ------0-
a22 -------- -------- -------- ----aa--
a23 -------- -------- -------- ------00
a24 -c------ -------- -------- ----a---
a25 -B------ -------- -------- ----a-0-
a26 -------- -------- -------- -----A1-
a27 -------- -------- -------- -------0
a28 -C------ -------- -------- ----a---

a29 -b------ -------- -------- ----a-1-
a30 -------- -------- -------- -----A0-
a31 -------- -------- -------- -------1
a32 -c------ -------- -------- --------
a33 -b------ -------- -------- ----a---
a34 -------- -------- -------- ----AA0-
a35 -------- -------- -------- ------00

a36 -c------ -------- -------- ----A---
a37 -B------ -------- -------- ----A-1-
a38 -------- -------- -------- ------0-
a39 -------- -------- -------- --------
a40 B------- -------- -------- ----A---
a41 -------- -------- -------- ------1-
a42 C------- -------- -------- --------
a43 B------- -------- -------- --------

a44 -------- -------- -------- ----A---
a45 -------- -------- -------- ------0-
a46 C------- -------- -------- ----A---
a47 B------- -------- -------- ------0-
a48 C------- -------- -------- ----A---
a49 B------- -------- -------- ------0-
a50 C------- -------- -------- ----A---

a51 B------- -------- -------- ------0-
a52 C------- -------- -------- --------
a53 B------- -------- -------- --------
a54 -------- -------- -------- --------
a55 -------- -------- -------- --------
a56 -------- -------- -------- --------
a57 -------- -------- -------- --------
a58 -------- -------- -------- --------

a59 -------- -------- -------- --------
a60 -------- -------- -------- --------
a61 -------- -------- -------- --------
a62 -------- -------- -------- --------
a63 -------- -------- -------- --------
a64 -------- -------- -------- --------
a65 -------- -------- -------- --------

a66 -------- -------- -------- ---A----
a67 -------- -------- -------- -----0--
a68 -------- -------- -------- -------C
a69 -------- -------- -------- --A----B
a70 -------- -------- -------- ----0---
a71 -------- -------- -------- ------C-
a72 -------- -------- -------- -A----B-
a73 -------- -------- -------- ---0----

a74 -------- -------- -------- --A--C--
a75 -------- -------- -------- A---0B--
a76 -------- -------- -------- --1---C-
a77 -------- -------- -------- ----C-B-
a78 -------- -------- -------- ----b---
a79 -------- -------- -------- -1------
a80 -------- -------- -------- --------

Algebraic Cryptanalysis of 58-Round SHA-1 365

For the full SHA-1, the CMM algorithm will be used to find a collision on 26-
round SHA-1. After the conventional message modification, it will remain the 9
following conditions; which are only related to rounds 17-26:
a17,3 = 0, a18,3+a17,3 = 0, a22,2+a21,2 = 0, a23,1 = 0, a24,30+a22,0 = 0, a24,3+a23,3 = 0,

a25,30 + a24,0 = 1, a25,1 = 0, a26,1 = 1.

Uncontrolled Relations. There is 64 uncontrolled relations on the ai,j :

a27,0 = 0, a28,30 + a26,0 = 1, a28,3 + a27,3 = 0, a29,30 + a28,0 = 0, a29,3 + a28,3 = 0,

a29,1 = 1, a30,1 = 0, a31,0 = 1, a32,30 + a30,0 = 0, a33,30 + a32,0 = 0, a33,3 + a32,3 = 0,

a34,3 + a33,3 = 1, a34,2 + a33,2 = 1, a34,1 = 0, a35,1 = 0, a35,0 = 0, a36,30 + a34,0 = 0,

a36,3+a35,3 = 1, a37,30+a36,0 = 1, a37,3+a36,3 = 1, a37,1 = 1, a38,1 = 0, a40,31+a39,1 =

1, a40,3 + a39,3 = 1, a41,1 = 1, a42,31 + a40,1 = 1, a43,31 + a42,1 = 1, a44,3 + a43,3 =

1, a45,1 = 0, a46,31 + a44,1 = 1, a46,3 + a45,3 = 1, a47,31 + a46,1 = 1, a47,1 = 0,

a48,31 + a46,1 = 1, a48,3 + a47,3 = 1, a49,31 + a48,1 = 1, a49,1 = 0, a50,31 + a48,1 = 1,

a50,3 + a49,3 = 1, a51,31 + a50,1 = 1, a51,1 = 0, a52,31 + a50,1 = 1, a53,31 + a52,1 = 1,

a66,4 + a65,4 = 1, a67,2 = 0, a68,0 + a66,2 = 1, a69,5 + a68,5 = 1, a69,0 + a68,2 = 1,

a70,3 = 0, a71,1+a69,3 = 1, a72,6+a71,6 = 1, a72,1+a71,3 = 1, a73,4 = 0, a74,5+a73,5 = 1,

a74,2+a72,4 = 1, a75,7+a74,7 = 1, a75,3 = 0, a75,2+a74,4 = 1, a76,5 = 1, a76,1+a74,3 = 1,

a77,3 + a75,5 = 1, a77,1 + a76,3 = 1, a78,3 + a77,5 = 0, a79,6 = 1.

To adjust these 64 conditions, we have tried to use semi-neutral bits and adjusters
as explained in the IMM algorithm. We use 10 semi-neutral bits (corresponding
to ’N’ in Table 8) and 8 adjusters which are the bits 1-bit-left to ’N’. We present
an example of message m = (m0, m1, . . . , m15) obtained by Algorithm 2.

m = b8550bb2 5b2e1a15 88a0e568 b0d7cbaf 0b430105 1e7f1b5e 0637da31 0dc9d562

7d857448 defac00e 9d06ba9e 2dd8235a 324e9acb f7c56578 c69dfd0e 71bf1d08

The above m satisfies all message conditions of 0-80 rounds and all chaining
variable conditions of 0-28 rounds.

Algebraic Immunity of S-Boxes

and Augmented Functions

Simon Fischer and Willi Meier

FHNW, CH-5210 Windisch, Switzerland
{simon.fischer,willi.meier}@fhnw.ch

Abstract. In this paper, the algebraic immunity of S-boxes and aug-
mented functions of stream ciphers is investigated. Augmented functions
are shown to have some algebraic properties that are not covered by pre-
vious measures of immunity. As a result, efficient algebraic attacks with
very low data complexity on certain filter generators become possible.
In a similar line, the algebraic immunity of the augmented function of
the eSTREAM candidate Trivium is experimentally tested. These tests
suggest that Trivium has some immunity against algebraic attacks on
augmented functions.

Keywords: S-box, Stream Cipher, Augmented Function, Algebraic At-
tack, Filter Generator, Trivium.

1 Introduction

Algebraic attacks can be efficient against stream ciphers based on LFSR’s [12],
and potentially against block ciphers based on S-boxes [13]. In the case of stream
ciphers, the algebraic immunity AI of the filter function is a measure for the
complexity of conventional algebraic attacks. However, it turned out in some
cases that large AI did not help to prevent fast algebraic attacks (FAA’s). It
is an open question if immunity against FAA’s is a sufficient criterion for any
kind of algebraic attacks on stream ciphers. In the case of block ciphers, the
algebraic immunity of S-boxes is a measure for the complexity of a very general
type of algebraic attacks, considering implicit or conditional equations [13, 2].
Present methods for computation of AI of S-boxes are not very efficient, only
about n = 20 variables are computationally feasible (except for power mappings,
see [20,11]).

In this paper, we integrate the general approach for S-boxes in the context
of stream ciphers and generalise the concept of algebraic immunity of stream
ciphers (see Open Problem 7 in [7]). More precisely, we investigate conditional
equations for augmented functions of stream ciphers and observe some algebraic
properties (to be used in an attack), which are not covered by the previous
definitions of AI. As a consequence, immunity against FAA’s is not sufficient
to prevent any kind of algebraic attack: Depending on the Boolean functions
used in a stream cipher, we demonstrate that algebraic properties of the aug-
mented function allow for attacks which need much less known output than

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 366–381, 2007.
c© International Association for Cryptologic Research 2007

Algebraic Immunity of S-Boxes and Augmented Functions 367

established algebraic attacks. This induces some new design criteria for stream
ciphers. Time complexity of our attacks is derived by intrinsic properties of the
augmented function. Our framework can be applied to a large variety of situa-
tions. We present two applications (which both have been implemented). First,
we describe efficient attacks on some filter generators. For example, we can effi-
ciently recover the state of a filter generator based on certain Boolean functions
when an amount of output data is available which is only linear in the length of
the driving LFSR. This should be compared to the data complexity of conven-
tional algebraic attacks, which is about

(
n
e

)
, where n is the length of the LFSR

and e equals the algebraic immunity of the filter function. Our investigation of
the augmented function allows to contribute to open problems posed in [15], and
explains why algebraic attacks using Gröbner bases against filter generators are
in certain cases successful even for a known output segment only slightly larger
than the LFSR length. In a second direction, a large scale experiment carried
out with the eSTREAM focus candidate Trivium suggests some immunity of this
cipher against algebraic attacks on augmented functions. This experiment be-
comes feasible as for Trivium with its 288-bit state one can find preimages of
144-bit outputs in polynomial time.

Augmented functions of LFSR-based stream ciphers have previously been
studied, e.g. in [1], [16] and [19], where it had been noticed that the augmented
function can be weaker than a single output function, with regard to (condi-
tional) correlation attacks as well as to inversion attacks. However, for the first
time, we analyse the AI of (sometimes quite large) augmented functions. Sur-
prisingly, augmented functions did not receive much attention in this context
yet.

The paper is organised as follows: In Sect. 2, we investigate some algebraic
properties of S-boxes. Our general ideas of algebraic attacks on augmented func-
tions (which are some special S-boxes) are presented in Sec. 3. In Sect. 4, this
framework is discussed for filter generators. Sect. 5 and Sect. 6 contain applica-
tions of our method, namely for some specific filter generators and for eSTREAM
candidate Trivium.

2 Algebraic Properties of S-Boxes

Let F denote the finite field GF(2), and consider the vectorial Boolean function
(or S-box) S : Fn → Fm with S(x) = y, where x := (x1, . . . , xn) and y :=
(y1, . . . , ym). In the case of m = 1, the S-box reduces to a Boolean function, and
in general, the S-box consists of m Boolean functions Si(x). These functions give
rise to the explicit equations Si(x) = yi. Here, we assume that y is known and
x is unknown.

2.1 Implicit Equations

The S-box can hide implicit equations, namely F (x, y) = 0 for each x ∈ Fn

and with y = S(x). The algebraic normal form of such an equation is denoted

368 S. Fischer and W. Meier

F (x, y) =
∑

cα,βxαyβ = 0 mod 2, with coefficients cα,β ∈ F, multi-indices
α, β ∈ Fn (which can likewise be identified by their integers) and the notation
xα := (xα1

1 · · ·xαn
n). In the context of algebraic attacks, it is of interest to focus

on implicit equations with special structure, e.g. on sparse equations or equations
of small degree. Let the degree in x be d := max{|α|, cα,β = 1} ≤ n with the
weight |α| of α, and consider an unrestricted degree for the known y, hence
max{|β|, cα,β = 1} ≤ m. The maximum number of monomials (or coefficients)
in an equation of degree d corresponds to 2mD, where D :=

∑d
i=0

(
n
i

)
. In order

to determine the existence of an implicit equation of degree d, consider a matrix
M in F of size 2n × 2mD. Each row corresponds to an input x, and each column
corresponds to an evaluated monomial (with some fixed order). If the number
of columns in M is larger than the number of rows, then linearly dependent
columns (i.e. monomials) exist, see [9,13]. The rank of M determines the number
of solutions, and the solutions correspond to the kernel of MT . Any non-zero
implicit equation (which holds for each input x) may then depend on x and y,
or on y only. If it depends on x and y, then the equation may degenerate for
some values of y. For example, x1y1 + x2y1 = 0 degenerates for y1 = 0.

2.2 Conditional Equations

As the output is assumed to be known, one could investigate equations which
are conditioned by the output y, hence Fy(x) = 0 for each preimage x ∈ S−1(y)
and of degree d in x. The number of preimages is denoted Uy := |S−1(y)|, where
Uy = 2n−m for balanced S and m ≤ n. Notice that conditional equations for
different outputs y need not be connected in a common implicit equation, and
one can find an optimum equation (i.e. an equation of minimum degree) for
each output y. Degenerated equations are not existing in this situation, and the
corresponding matrix My has a reduced size of Uy × D. Similar to the case of
implicit equations, one obtains:

Proposition 1. Consider an S-box S : Fn → Fm and let S(x) = y. Then, the
number of (independent) conditional equations of degree at most d for some y
is Ry = D − rank(My). A sufficient criterion for the existence of a non-zero
conditional equation is 0 < Uy < D.

The condition Ry > 0 requires some minimum value of d, which can depend on
y. As already proposed in [2], this motivates the following definition of algebraic
immunity for S-boxes:

Definition 1. Consider an S-box S : Fn → Fm. Given some fixed output y, let
d be the minimum degree of a non-zero conditional equation Fy(x) = 0 which
holds for all x ∈ S−1(y). Then the algebraic immunity AI of S is defined by the
minimum of d over all y ∈ Fm.

The AI can be bounded, using the sufficient condition of Prop. 1. Let d0 be
the minimum degree such that D > 2n−m. If the S-box is surjective, then there
exists at least one y with a non-zero conditional equation of degree at most d0,

Algebraic Immunity of S-Boxes and Augmented Functions 369

hence AI ≤ d0. In addition, the block size m of the output could be considered
as a parameter (by investigating truncated S-boxes Sm, corresponding to partial
conditioned equations for S). Let m0 := &n−log2 D+1' for some degree d. Then,
the minimum block size m to find non-zero conditional equations of degree at
most d is bounded by m0. See Tab. 1 for some numerical values of m0.

Table 1. Theoretical block size m0 for different parameters n and d

d
n 16 18 20 32 64 128

1 12 14 16 27 58 121
2 9 11 13 23 53 115
3 7 9 10 20 49 110

A single output y is called weak, if non-zero conditional equations of degree
d exist for Uy , D (or if the output is strongly imbalanced). This roughly
corresponds to the condition d � d0, or m � m0.

2.3 Algorithmic Methods

As already mentioned in [7], memory requirements to determine the rank of
M are impractical for about n > 20. In the case of conditional equations, the
matrix My can be much smaller, but the bottleneck is to compute an exhaus-
tive list of preimages, which requires a time complexity of 2n. However, one
could use a probabilistic variant of this basic method: Instead of determining
the rank of My which contains all Uy inputs x, one may solve for a smaller
matrix M ′

y with V < Uy random inputs. Then, one can determine the non-
existence of a solution: If no solution exists for M ′

y, then no solution exists for
My either. On the other hand, if one or more solutions exist for M ′

y, then they
hold true for the subsystem of V inputs, but possibly not for all Uy inputs.
Let the probability p be the fraction of preimages that satisfy the equation cor-
responding to such a solution. With the heuristical argument (1 − p)V < 1,
we expect that p > 1 − 1/V . However, this argument holds only for V > D,
because otherwise, there are always at least D − V solutions (which could be
balanced). Consequently, if V is a small multiple of D, the probability can be
quite close to one. For this reason, all solutions of the smaller system can be
useful in later attacks. Determining only a few random preimages can be very
efficient: In a naive approach, time complexity to find a random preimage of an
output y is about 2n/Uy (which is 2m for balanced S), and complexity to find
D preimages is about 2nD/Uy. This is an improvement compared to the exact
method if Uy , D, i.e. equations can be found efficiently for weak outputs.
Memory requirements of the probabilistic algorithm are about CM = D2, and
time complexity is about CT = D2m + D3. Computation of AI requires about
CT = D2m + D32m = O(D32m).

370 S. Fischer and W. Meier

3 Algebraic Attacks Based on the Augmented Function

In this section, we focus on algebraic cryptanalysis of S-boxes in the context of
stream ciphers. Given a stream cipher, one may construct an S-box as follows:

Definition 2. Consider a stream cipher with internal state x of n bits, an up-
date function L, and an output function f which outputs one bit of keystream in
a single iteration. Then, the augmented function Sm is defined by

Sm : Fn → Fm

x → (f(x), f(L(x)), . . . , f(Lm−1(x)) .
(1)

The update L can be linear (e.g. for filter generators), or nonlinear (e.g. for
Trivium). The input x correspond to the internal state at some time t, and the
output y corresponds to an m-bit block of the known keystream. Notice that
m is a very natural parameter here. The goal is to recover the initial state
x by algebraic attacks, using (potentially probabilistic) conditional equations
Fy(x) = 0 of degree d for outputs y of the augmented function Sm. This way,
one can set up equations for state variables of different time steps t. In the case of
a linear update function L, each equation can be transformed into an equation
of degree d in the initial state variables x. In the case of a nonlinear update
function L, the degree of the equations is increasing with time. However, the
nonlinear part of the update is sometimes very simple, such that equations for
different time steps can be efficiently combined. Finally, the system of equations
in the initial state variables x is solved.

If the augmented function has some weak outputs, then conditional equations
can be found with the probabilistic algorithm of Sect. 2.3, which requires about
D preimages of a single m-bit output. One may ask if there is a dedicated way to
compute random preimages of m-bit outputs in the context of augmented func-
tions. Any stream cipher as in Def. 2 can be described by a system of equations.
Nonlinear systems of equations with roughly the same number of equations as
unknowns are in general NP-hard to solve. However, due to the special (simple)
structure of some stream ciphers, it may be easy to partially invert the nonlinear
system. For example, given a single bit of output of a filter generator, it is easy
to find a state which gives out this bit. Efficient computation of random preim-
ages for m-bit outputs is called sampling. The maximal value of m for which
states can be sampled without trial and error is called sampling resistance of the
stream cipher. Some constructions have very low sampling resistance, see [5,4].

The parameters of our framework are the degree d of equations, and the block-
size m of the output. An optimal tradeoff between these parameters depends on
the algebraic properties of the augmented function. The attack is expected to
be efficient, if:

1. There are many low-degree conditional equations for Sm.
2. Efficient sampling is possible for this block size m.

This measure is well adapted to the situation of augmented functions, and can
be applied to sometimes quite large augmented functions, see Sect. 5 and 6. This

Algebraic Immunity of S-Boxes and Augmented Functions 371

way, we intend to prove some immunity of a stream cipher, or present attacks
with reduced complexity.

4 Generic Scenarios for Filter Generators

Our framework is investigated in-depth in the context of LFSR-based stream
ciphers (and notably for filter generators), which are the main target of con-
ventional and fast algebraic attacks (see also Appendix A). We describe some
elementary conditional equations induced by annihilators. Then, we investigate
different methods for sampling, which are necessary to efficiently set up condi-
tional equations. We suggest a basic scenario and estimate data complexity of
an attack, the scenario is refined and improved.

4.1 Equations Induced by Annihilators

Let us first discuss the existence of conditional equations of degree d = AI, where
AI is the ordinary algebraic immunity of f here. With m = 1, the number of
conditional equations for y = 0 (resp. y = 1) corresponds to the number of
annihilators of f + 1 (resp. f) of degree d. If one increases m, then all equations
originating from annihilators are involved: For example, if there is 1 annihilator
of degree d for both f and f + 1, then the number of equations is expected to
be at least m for any m-bit output y. Notice that equations of fast algebraic
attacks are not involved if m is small compared to n.

4.2 Sampling

Given an augmented function Sm of a filter generator, the goal of sampling is to
efficiently determine preimages x for fixed output y = Sm(x) of m bits. Due to
the special structure of the augmented function, there are some efficient methods
for sampling:

Filter Inversion. One could choose a fixed value for the k input bits of the filter,
such that the observed output bit is correct (using a table of the filter function).
This can be done for about n/k successive output bits, until the state is unique.
This way, preimages of an output y of n/k bits can be found in polynomial
time, and by partial search, preimages of larger outputs can be computed. Time
complexity to find a preimage of m > n/k bits is about 2m−n/k, i.e. the method
is efficient if there are only few inputs k.

Linear Sampling. In each time step, a number of l linear conditions are im-
posed on the input variables of f , such that the filter becomes linear. The lin-
earised filter gives one additional linear equation for each keystream bit. Notice
that all variables can be expressed by a linear function of the n variables of the
initial state. Consequently, for an output y of m bits, one obtains (l+1)m (inho-
mogeneous) linear equations for n unknowns, i.e. we expect that preimages can
be found in polynomial time if m ≤ n/(l +1). To find many different preimages,

372 S. Fischer and W. Meier

one should have several independent conditions (which can be combined in a
different way for each clock cycle).

In practice, sampling should be implemented carefully in order to avoid contra-
dictions (e.g. with appropriate conditions depending on the keystream), see [5].

4.3 Basic Scenario

We describe a basic scenario for algebraic attacks on filter generators based on
the augmented function: With CD bits of keystream, one has C′

D = CD −m + 1
(overlapping) windows of m bits. Assume that there are R :=

∑
y Ry equations

of degree d for m-bit outputs y. For each window, we have about r := R/2m

equations, which gives a total of N = rC′
D equations.1 Each equation has at most

D monomials in the initial state variables, so we need about the same number
of equations to solve the system by linearisation. Consequently, data complexity
is CD = D/r + m − 1 bits. The initial state can then be recovered in CT = D3.
This should be compared with the complexity of conventional algebraic attacks
CD = 2E/RA and CT = E3, where e := AI, E :=

∑e
i=0

(
n
i

)
, and RA the

number of annihilators of degree e. Notice that the augmented function may give
low-degree equations, which are not visible for single-bit outputs; this increases
information density and may reduce data complexity. Our approach has reduced
time complexity if d < e, provided that sampling (and solving the matrix) is
efficient.

4.4 Refined Basic Scenario

The basic scenario for filter generators should be refined in two aspects, concern-
ing the existence of dependent and probabilistic equations: First, with overlap-
ping windows of m bits, it may well happen that the same equation is counted
several times, namely if the equation already exists for a substring of m′ < m bits
(e.g. in the case of equations produced by annihilators). In addition, equations
may be linearly dependent by chance. If this is not considered in the compu-
tation of R, one may have to enlarge data complexity a little bit. Second, one
can expect to obtain probabilistic solutions. However, depending on the number
of computed preimages, the probability p may be large and the corresponding
equations can still be used in our framework, as they increase R and reduce
data complexity, but potentially with some more cost in time. As we need about
D (correct and linearly independent) equations to recover the initial state, the
probability p should be at least 1 − 1/D (together with our estimation for p,
this justifies that the number of preimages should be at least D). In the case
of a contradiction, one could complement a few equations in a partial search
and solve again, until the keystream can be verified. Depending on the actual
situation, one may find an optimal tradeoff in the number of computed preim-
ages. Notice that our probabilistic attack deduced from an algebraic attack with

1 From a heuristical point of view, the parameter r is only meaningful if the conditional
equations are approximately uniformly distributed over all outputs y.

Algebraic Immunity of S-Boxes and Augmented Functions 373

equations of degree 1 is a powerful variant of a conditional correlation attack,
see [19]. A probabilistic attack with nonlinear equations is a kind of higher order
correlation attack, see [8].

4.5 Substitution of Equations

It is possible to further reduce data complexity in some cases. Consider the
scenario where one has N = rC′

D linear equations. On the other hand, given
an annihilator of degree e := AI, one can set up a system of degree e as
in conventional algebraic attacks. The N linear equations can be substituted
into this system in order to eliminate N variables. This results in a system of
D′ :=
∑e

i=0

(
n−N

i

)
monomials, requiring a data complexity of CD = D′ and time

complexity CT = D′3. Notice that data can be reused in this case, which gives
the implicit equation in CD. Obviously, a necessary condition for the success of
this method is rE > 1. A similar improvement of data complexity is possible for
nonlinear equations of degree d. One can multiply the equations by all monomi-
als of degree e− d in order to obtain additional equations of degree e, along the
lines of XL [14] and Gröbner bases algorithms.

5 First Application: Some Specific Filter Generators

Many conventional algebraic attacks on filter generators require about
(
n
e

)
output

bits where e equals the algebraic immunity of the filter function. On the other
hand, in [15], algebraic attacks based on Gröbner bases are presented, which in a
few cases require only n+ε data. It is an open issue to understand such a behavior
from the Boolean function and the tapping sequence. We present attacks on the
corresponding augmented functions, requiring very low data complexity. This
means, we can identify the source of the above behavior, and in addition, we can
use our method also for other functions.

5.1 Existence of Equations

In this subsection, we give extensive experimental results for different filter gen-
erators. Our setup is chosen as follows: The filter functions are instances of the
CanFil family (see [15]) or the Majority functions. These instances all have five
inputs and algebraic immunity 2 or 3. Feedback taps correspond to a random
primitive feedback polynomial, and filter taps are chosen randomly in the class
of full positive difference sets, see Tab. 4 in Appendix B for an enumerated speci-
fication of our setups. Given a specified filter generator and parameters d and m,
we compute the number Ry of independent conditional equations Fy(x) = 0 of
degree d for each output y ∈ Fm. The overall number of equations R :=

∑
y Ry

for n = 20 is recorded in Tab. 2. Thereby, preimages are computed by exhaustive
search in order to exclude probabilistic solutions.

In the case of CanFil1 and CanFil2, linear equations exist only for m ≥ m0−1,
independent of the setup. On the other hand, for CanFil5 and Majority5, there

374 S. Fischer and W. Meier

Table 2. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 20 bit input and m bit output

Filter m R for setups 6 − 10

CanFil1 14 0 0 0 0 0
15 3139 4211 3071 4601 3844

CanFil2 14 0 0 0 0 0
15 2136 2901 2717 2702 2456

CanFil5 6 0 0 0 2 0
7 0 0 0 8 0
8 0 0 0 24 0
9 0 0 0 64 0

10 6 0 0 163 0
11 113 0 2 476 0
12 960 16 215 1678 29

Majority5 9 0 0 0 2 0
10 1 10 1 18 1
11 22 437 40 148 56

exist many setups where a large number of linear equations already exists for
m ≈ n/2, see Ex. 1. We conclude that the number of equations weakly depends
on the setup, but is mainly a property of the filter function. The situation is
very similar for other values of n, see Appendix C. This suggests that our results
can be scaled to larger values of n. Let us also investigate existence of equations
of higher degree: CanFil1 and CanFil2 have AI = 2 and there is 1 annihilator
for both f and f + 1, which means that at least m quadratic equations can be
expected for an m-bit output. For each setup and m < m0 − 1, we observed
only few additional equations, whereas the number of additional equations is
exploding for larger values of m. This was observed for many different setups
and different values of n.

Example 1. Consider CanFil5 with n = 20 and setup 9. For the output y =
000000 of m = 6 bits, there are exactly 214 preimages, hence the matrix My has
214 rows and D = 21 columns for d = 1. Evaluation of My yields a rank of 20,
i.e. a nontrivial solution exists. The explicit solution is Fy(x) = x2 + x4 + x5 +
x6 + x10 + x11 + x12 + x13 + x14 + x15 + x17 = 0. $%

5.2 Probabilistic Equations

In the previous subsection, the size n of the state was small enough to compute
a complete set of preimages for some m-bit output y. However, in any practical
situation where n is larger, the number of available preimages is only a small
multiple of D, which may introduce probabilistic solutions. Here is an example
with n = 20, where the probability can be computed exactly:

Example 2. Consider again CanFil5 with n = 20 and setup 9. For the output
y = 000000 of m = 6 bits, there are 214 preimages and one exact conditional

Algebraic Immunity of S-Boxes and Augmented Functions 375

equation of degree d = 1. We picked 80 random preimages and determined
all (correct or probabilistic) linear conditional equations. This experiment was
repeated 20 times with different preimages. In each run, we obtained between
2 and 4 independent equations with probabilities p = 0.98, . . . , 1. For example,
the (probabilistic) conditional equation Fy(x) = x2 + x3 + x4 + x7 + x10 + x16 +
x17 + x18 = 0 holds with probability p = 1 − 2−9. $%

In the above example, there are only few probabilistic solutions and they have im-
pressively large probability, which makes the equations very useful in an attack.
Notice that experimental probability is in good agreement with our estimation
p > 1− 1/80 = 0.9875. The situation is very similar for other parameters. With
the above setup and m = 10, not only y = 000 . . .0 but a majority of outputs
y give rise to linear probabilistic equations. In the case of CanFil1 and CanFil2,
we did not observe linear equations of large probability for m < m0 − 1. It is
interesting to investigate the situation for larger values of n:

Example 3. Consider CanFil5 with n = 40 and setup 11. For the output y =
000 . . .0 of m = 20 bits, we determine 200 random preimages. With d = 1,
evaluation of My yields a rank of 30, i.e. 11 (independent) solutions exist. With
2000 random preimages, we observed a rank of 33, i.e. only 3 solutions of the
first system were detected to be merely probabilistic. An example of an equation
is Fy(x) = x1 + x8 + x10 + x14 + x15 + x18 + x19 + x26 + x31 + x34 = 0. $%

The remaining 8 solutions of the above example may be exact, or probabilistic
with very high probability. By sampling, one could find (probabilistic) condi-
tional equations for much larger values of n. For example, with CanFil5, n = 80,
m = 40 and filter inversion, time complexity to find a linear equation for a weak
output is around 232.

5.3 Discussion of Attacks

Our experimental results reveal that some filter functions are very vulnerable to
algebraic attacks based on the corresponding augmented function. For CanFil5
with n = 20 and setup 9, we observed R = 163 exact equations using the para-
meters m = 10 and d = 1, which gives a ratio of r = 0.16. Including probabilistic
equations, this ratio may be even larger. Here, preimages of any y can be found
efficiently by sampling: using filter inversion, a single preimage can be found in
2m−n/k = 26 steps, and a single equation in around 213 steps. Provided that
equations are independent and the probability is large, data complexity is about
CD = (n + 1)/r + m − 1 = 140. The linear equations could also be substi-
tuted into the system of degree AI = 2, which results in a data complexity
of about CD = 66. Notice that conventional algebraic attacks would require
CD = E = 211 bits (and time complexity E3). As we expect that our obser-
vation can be scaled, (i.e. that r remains constant for larger values of n and
m = n/2), data complexity is a linear function in n. Considering time com-
plexity for variable n, the matrix M and the final system of equations can be

376 S. Fischer and W. Meier

solved in polynomial time, whereas sampling is subexponential (and polynomial
in some cases, where linear sampling is possible).

In [15], CanFil5 has been attacked experimentally with n + ε data, where
n = 40, . . . , 70 and ε < 10. Our analysis gives a conclusive justification for their
observation. Other functions such as Majority5 could be attacked in a similar
way, whereas CanFil1 and CanFil2 are shown to be much more resistant against
this general attack: No linear equations have been found for m < m0 − 1, and
only few quadratic equations.

6 Second Application: Trivium

Trivium [6] is a stream cipher with a state of 288 bits, a nonlinear update and a
linear output. It has a simple algebraic structure, which makes it an interesting
candidate for our framework. We consider the S-box Sm(x) = y, where S is the
augmented function of Trivium, x the state of n = 288 bits, and y the output of
m bits. We will first analyse the sampling of Sm, which is very similar to linear
sampling of filter generators.

6.1 Sampling

The state consists of the 3 registers R1 = (x1, . . . , x93), R2 = (x94, . . . , x177)
and R3 = (x178, . . . , x288). In each clock cycle, a linear combination of 6 bits
of the state (2 bits of each register) is output. Then, the registers are shifted
to the right by one position, with a nonlinear feedback to the first position of
each register. In the first 66 clocks, each keystream bit is a linear function of the
input, whereas the subsequent keystream bit involves a nonlinear expression.
Consequently, given any output of m = 66 bits, one can efficiently determine
some preimages by solving a linear system. It is possible to find preimages of
even larger output size. Observe that the nonlinear function is quadratic, where
the two factors of the product have subsequent indices. Consequently, one could
fix some alternating bits of the state, which results in additional linear equations
for the remaining variables. Let c, l, q denote constant, linear, and quadratic
dependence on the initial state. Let all the even bits of the initial state be c, see
Tab. 3. After update 83, bits 82 and 83 of R2 are both l. Variable t2 takes bits
82 and 83 of R2 to compute the nonlinear term. So after update 84, t2 = x178 is
q (where nonlinear terms in t1 and t3 appear somewhat later).

Table 3. Evolution of states with partially fixed input

Initial state After 1 update After 84 updates

R1 = lclcl . . . R1 = llclcl . . . R1 = lllll . . .
R2 = clclc . . . R2 = lclclc . . . R2 = lllll . . .
R3 = clclc . . . R3 = lclclc . . . R3 = qllll . . .

Algebraic Immunity of S-Boxes and Augmented Functions 377

After 65 more updates, x243 is quadratic, where x243 is filtered out from R3 in
the next update (after 84 updates, other bits are also q and are filtered out from
registers R1 and R2, but on a later point in time). Consequently, keystream bit
number 66 + 84 = 150 (counting from 1) is q, and the first 149 keystream bits
are linear in the remaining variables.

The number of remaining variables in the state (the degree of freedom) is
144. Consequently, for an output of size m = 144 bits, we can expect to find
one solution for the remaining variables; this was verified experimentally. The
solution (combined with the fixed bits) yields a preimage of y. Notice that we
do not exclude any preimages this way. In addition, m can be somewhat larger
with partial search for the additional bits.

Example 4. Consider the special output y = 000 . . .0 of m = 160 bits. By sam-
pling and partial exhaustive search, we find the nontrivial preimage

x =

100010111100010111001100010101001101000010010010
000100100100110011111011011101100001001100101000
110000000101011001110000111111011001100001101010
011100000101010011001101111010101011111110100001
000001000001101000100001111001101010100010101111
101000001110100101010011000100111001010010101101 $%

6.2 Potential Attacks

The nonlinear update of Trivium results in equations Sm(x) = y of increasing
degree for increasing values of m. However, for any output y, there are at least 66
linear equations in the input variables. It is an important and security related
question, if there are additional linear equations for some fixed output y. A
linear equation is determined by D = 289 coefficients, thus we have to compute
somewhat more than 289 preimages for this output. By sampling, this can be
done in polynomial time. Here is an experiment:

Example 5. Consider a prescribed output y of 144 bits, and compute 400 preim-
ages x such that Sm(x) = y (where the preimages are computed by a uniform
random choice of 144 fixed bits of x). Given these preimages, set up and solve
the matrix M of linear monomials in x. For 30 uniform random choices of y, we
always observed 66 linearly independent solutions. $%

Consequently, Trivium seems to be immune against additional linear equations,
that might help in an attack. Because of the lack of probabilistic solutions,
Trivium is also supposed to be immune against equations of large probability
(compare with CanFil1 and CanFil2). As pointed out in [17], there are some
states resulting in a weak output: If R1, R2 and R3 are initialised by some
period-3 states, then the whole state (and hence the output) repeats itself every
3 iterations. Each of these states results in y = 000 . . .0. Here is an extended
experiment (with partial exhaustive search) for this special output:

378 S. Fischer and W. Meier

Example 6. Consider the output y = 000 . . .0 of 150 bits, and compute 400
random preimages x such that Sm(x) = y. By solving the matrix M of linear
monomials in x, we still observed 66 linearly independent solutions. $%

7 Conclusions

Intrinsic properties of augmented functions of stream ciphers have been inves-
tigated with regard to algebraic attacks. Certain properties of the augmented
function enable efficient algebraic attacks with lower data complexity than es-
tablished algebraic attacks. In order to assess resistance of augmented functions
against such improved algebraic attacks, a prespecified number of preimages of
outputs of various size of these functions have to be found. For a random func-
tion, the difficulty of finding preimages increases exponentially with the output
size. However, due to a special structure of the augmented function of a stream
cipher, this can be much simpler than in the random case. For any such stream
cipher, our results show the necessity of checking the augmented function for
algebraic relations of low degree for output sizes for which finding preimages is
feasible. In this paper, this has been successfully carried out for various filter
generators as well as for the eSTREAM candidate Trivium.

Acknowledgments

This work is supported in part by the National Competence Center in Research
on Mobile Information and Communication Systems (NCCR-MICS), a center
of the Swiss National Science Foundation under grant number 5005-67322. The
second author is supported by Hasler Foundation www.haslerfoundation.ch
under project number 2005. We would like to thank Steve Babbage for encour-
aging us to study algebraic immunity of large S-boxes.

References

1. Anderson, R.J.: Searching for the Optimum Correlation Attack. In: Preneel, B.
(ed.) Fast Software Encryption - FSE 1994. LNCS, vol. 1008, Springer, Heidelberg
(1995)

2. Armknecht, F., Krause, M.: Constructing Single- and Multi-Output Boolean Func-
tions with Maximal Algebraic Immunity. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, Springer, Heidelberg (2006)

3. Armknecht, F., Carlet, C., Gaborit, P., Künzli, S., Meier, W., Ruatta, O.: Efficient
Computation of Algebraic Immunity for Algebraic and Fast Algebraic Attacks.
In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, Springer, Heidelberg
(2006)

4. Babbage, S.: A Space/Time Tradeoff in Exhaustive Search Attacks on Stream Ci-
phers. In: European Convention on Security and Detection. IEE Conference Pub-
lication No. 408 (1995)

www.haslerfoundation.ch

Algebraic Immunity of S-Boxes and Augmented Functions 379

5. Biryukov, A., Shamir, A.: Cryptanalytic Time/Memory/Data Tradeoffs for Stream
Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, Springer,
Heidelberg (2000)

6. de Cannière, C., Preneel, B.: Trivium - A Stream Cipher Construction Inspired by
Block Cipher Design Principles. In: eSTREAM, ECRYPT Stream Cipher Project,
Report 2005/030

7. Canteaut, A.: Open Problems Related to Algebraic Attacks on Stream Ciphers.
In: Ytrehus, Ø. (ed.) WCC 2005. LNCS, vol. 3969, Springer, Heidelberg (2006)

8. Courtois, N.: Higher Order Correlation Attacks, XL algorithm and Cryptanalysis
of Toyocrypt. In: Cryptology ePrint Archive, Report 2002/087

9. Courtois, N.: Algebraic Attacks on Combiners with Memory and Several Outputs.
In: Cryptology ePrint Archive, Report 2003/125

10. Courtois, N.: How Fast can be Algebraic Attacks on Block Ciphers. In: Cryptology
ePrint Archive, Report 2006/168

11. Courtois, N., Debraize, B., Garrido, E.: On Exact Algebraic (Non-)Immunity of S-
boxes Based on Power Functions. In: Cryptology ePrint Archive, Report 2005/203

12. Courtois, N., Meier, W.: Algebraic Attacks on Stream Ciphers with Linear Feed-
back. In: Biham, E. (ed.) Advances in Cryptology – EUROCRPYT 2003. LNCS,
vol. 2656, Springer, Heidelberg (2003)

13. Courtois, N., Pieprzyk, J.: Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501,
Springer, Heidelberg (2002)

14. Courtois, N., Shamir, A., Patarin, J., Klimov, A.: Efficient Algorithms for solving
Overdefined Systems of Multivariate Polynomial Equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, Springer, Heidelberg (2000)

15. Faugère, J.-C., Ars, G.: An Algebraic Cryptanalysis of Nonlinear Filter Generators
using Gröbner Bases. In: Rapport de Recherche de l’INRIA (2003)

16. Golić, J.Dj.: On the Security of Nonlinear Filter Generators. In: Gollmann, D. (ed.)
Fast Software Encryption. LNCS, vol. 1039, Springer, Heidelberg (1996)

17. Hong, J.: Some Trivial States of Trivium. In: eSTREAM Discussion Forum (2005)
18. Krause, M.: BDD-Based Cryptanalysis of Keystream Generators. In: Knudsen,

L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, Springer, Heidelberg (2002)
19. Löhlein, B.: Attacks based on Conditional Correlations against the Nonlinear Filter

Generator. In: Cryptology ePrint Archive, Report 2003/020
20. Nawaz, Y., Gupta, K.C., Gong, G.: Algebraic Immunity of S-boxes Based on

Power Mappings: Analysis and Construction. In: Cryptology ePrint Archive, Re-
port 2006/322

A Algebraic and Fast Algebraic Attacks

The algebraic immunity AI of a Boolean function f is defined by the minimum
degree d of a function g, such that fg = 0 or (f + 1)g = 0. In the case fg =
0, one can multiply yt = f(Lt(x)) by g and obtains g(Lt(x)) · yt = 0. For
yt = 1, this is an equation of degree d. Similarly, for (f + 1)g = 0, one obtains
g(Lt(x)) · (yt + 1) = 0. With RA linearly independent annihilators of degree d
for f and f + 1, a single output bit can be used to set up (in average) RA/2
equations in x at time t. The number of monomials in these equations is at most
D :=
∑d

i=0

(
n
i

)
, hence by linearisation, data complexity of conventional algebraic

attacks becomes about 2D/RA, and time complexity CT = D3.

380 S. Fischer and W. Meier

In fast algebraic attacks, one considers equations of type fg = h for deg h ≥
AI and deg g < AI. The equation yt = f(Lt(x)) is multiplied by g such that
g(Lt(x)) · yt = h(Lt(x)). One can precompute then a linear combination

∑
i ci ·

h(Lt+i(x)) = 0 for all t, such that
∑

i ci · g(Lt+i(x)) · yt+i = 0 of lower degree
deg g. The linear combination utilises the structure of the LFSR, and helps to
cancel out all monomials of degree larger than deg g. However, the equation
depends on several output bits yt. It is a special case of implicit equation, where
the degree in y is 1. Depending on the degrees of g and h, time complexity can
be smaller than in algebraic attacks, and data complexity is about CD = D +E,
where E :=

∑e
i=0

(
n
i

)
. This is not much larger than in algebraic attacks (with the

same asymptotic complexity). See [3] for an efficient computation of annihilators
and low-degree multiples.

B Experimental Setup for Filter Generators

In Tab. 4, we collect the setups of our experiments with filter generators, where
n is the size of the LFSR, and k the number of inputs to the filter function. The
feedback taps are chosen such that the LFSR has maximum period (i.e., the
corresponding polynomial is primitive), and filter taps are chosen according to a
full positive difference set (i.e., all the positive pairwise differences are distinct).
Tap positions are counted from the left (starting by 1), and the LFSR is shifted
to the right.

Table 4. Different setups for our experiments with filter generators

Setup n k feedback taps filter taps

1 18 5 [2, 3, 5, 15, 17, 18] [1, 2, 7, 11, 18]
2 18 5 [1, 2, 5, 7, 9, 14, 15, 16, 17, 18] [1, 3, 7, 17, 18]
3 18 5 [3, 5, 7, 15, 17, 18] [1, 5, 8, 16, 18]
4 18 5 [4, 5, 6, 10, 13, 15, 16, 18] [1, 6, 7, 15, 18]
5 18 5 [2, 3, 5, 7, 11, 15, 17, 18] [1, 3, 6, 10, 18]

6 20 5 [7, 10, 13, 17, 18, 20] [1, 3, 9, 16, 20]
7 20 5 [1, 2, 4, 7, 8, 10, 11, 12, 13, 15, 19, 20] [1, 5, 15, 18, 20]
8 20 5 [2, 3, 4, 5, 6, 7, 8, 11, 13, 14, 19, 20] [1, 4, 9, 16, 20]
9 20 5 [1, 2, 3, 4, 5, 8, 10, 11, 12, 13, 15, 17, 19, 20] [1, 2, 15, 17, 20]
10 20 5 [1, 2, 6, 7, 9, 11, 15, 20] [1, 5, 13, 18, 20]

11 40 5 [3, 8, 9, 10, 11, 13, 14, 15, 18, 19, [1, 3, 10, 27, 40]
23, 24, 25, 26, 27, 30, 33, 34, 36, 40]

C Additional Experimental Results

In Tab. 5, we present the number of conditional equations for different filters
and different parameters, where the size of the LFSR is n = 18.

Algebraic Immunity of S-Boxes and Augmented Functions 381

Table 5. Counting the number of linear equations R for the augmented function of
different filter generators, with n = 18 bit input and m bit output

Filter m R for setups 1-5

CanFil1 12 0 0 0 0 0
13 625 288 908 335 493

CanFil2 12 0 0 0 0 0
13 144 346 514 207 418

CanFil3 12 0 0 4 0 0
13 1272 1759 2173 2097 983

CanFil4 7 0 0 0 0 0
8 19 4 0 0 0
9 102 17 1 0 12

10 533 69 9 20 167

CanFil5 6 1 0 0 0 0
7 4 0 0 0 0
8 15 0 0 0 1
9 55 1 0 0 39

10 411 61 3 0 360
11 2142 1017 166 10 1958

CanFil6 8 0 0 0 0 0
9 0 10 64 0 0

10 0 97 256 0 0
11 0 517 1024 0 0
12 0 2841 3533 1068 0
13 152 19531 17626 12627 9828

CanFil7 11 0 2 0 0 6
12 68 191 36 26 178

Majority5 8 1 0 0 0 0
9 8 3 42 27 14

10 97 94 401 282 158

Generalized Correlation Analysis of Vectorial

Boolean Functions

Claude Carlet1, Khoongming Khoo2, Chu-Wee Lim2, and Chuan-Wen Loe2

1 University of Paris 8 (MAATICAH)
also with INRIA, Projet CODES, BP 105, 78153, Le Chesney Cedex, France

2 DSO National Laboratories, 20 Science Park Drive, S118230, Singapore
claude.carlet@inria.fr, kkhoongm@dso.org.sg, lchuwee@dso.org.sg,

lchuanwe@dso.org.sg

Abstract. We investigate the security of n-bit to m-bit vectorial
Boolean functions in stream ciphers. Such stream ciphers have higher
throughput than those using single-bit output Boolean functions. How-
ever, as shown by Zhang and Chan at Crypto 2000, linear approximations
based on composing the vector output with any Boolean functions have
higher bias than those based on the usual correlation attack. In this pa-
per, we introduce a new approach for analyzing vector Boolean functions
called generalized correlation analysis. It is based on approximate equa-
tions which are linear in the input x but of free degree in the output
z = F (x). Based on experimental results, we observe that the new gen-
eralized correlation attack gives linear approximation with much higher
bias than the Zhang-Chan and usual correlation attacks. Thus it can be
more effective than previous methods.

First, the complexity for computing the generalized nonlinearity for
this new attack is reduced from 22m×n+n to 22n. Second, we prove a theo-
retical upper bound for generalized nonlinearity which is much lower than
the unrestricted nonlinearity (for Zhang-Chan’s attack) or usual nonlin-
earity. This again proves that generalized correlation attack performs
better than previous correlation attacks. Third, we introduce a gener-
alized divide-and-conquer correlation attack and prove that the usual
notion of resiliency is enough to protect against it. Finally, we deduce
the generalized nonlinearity of some known secondary constructions for
secure vector Boolean functions.

Keywords: Vectorial Boolean Functions, Unrestricted Nonlinearity, Re-
siliency.

1 Introduction

In this paper, we consider n-bit to m-bit vectorial Boolean functions when they
are used in stream ciphers. There are two basic designs for such stream ciphers
based on linear feedback shift registers (LFSR). One is a combinatorial generator
[12] which consists of n LFSR’s and a vector function F (x). At each clock, one
bit is tapped from the secret state of each LFSR as an input bit of F (x) to

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 382–398, 2007.
c© International Association for Cryptologic Research 2007

Generalized Correlation Analysis of Vectorial Boolean Functions 383

produce m bits of output keystream. This keystream is then XORed with the
plaintext to form the ciphertext. The other model is the filter function generator
[12] where n bits are tapped from one LFSR as input to F (x) to produce the
keystream output. The advantage of using vector Boolean functions is that the
stream ciphers have higher throughput, i.e. the encryption and decryption speed
is m times faster than single output Boolean functions. However, we need to
study its security when compared to the single-bit output case.

Basic attacks on these stream ciphers are the correlation attack by Siegen-
thaler [14] and its improvements (see e.g. [2]). In the case of the filter function
model, a linear approximation is formed between the LFSR state bits and output
keystream. If the approximation has probability p �= 1/2, then we can recover
the secret LFSR bits when enough keystream bits are known. In the case of the
combinatorial model, an approximation of the output is made by the combina-
tion of t out of the n input bits produced by the LFSRs and it is shown in [2] that
the attack is optimal with the linear combination of these t bits. Siegenthaler’s
attack was described for single-output Boolean functions but it can be general-
ized naturally to the vector output case where we take any linear combination
of output bits [3].

This attack can be improved as shown by Zhang and Chan at Crypto 2000
[15] where they consider linear approximation based on any Boolean function
of the output vector (instead of just linear combination of the output vector).
Since there are 22m+n linear approximations to choose from in the Zhang-Chan
approach compared to just 2n+m linear approximations in the usual approach, it
is easier to choose one with higher bias, i.e. where probability p is further away
from 1/2.

In Section 2, we introduce the generalized correlation attack by considering
linear approximations which are linear in the input x and of free degree in the
output z = F (x). Now there are 22m×(n+1) linear approximations from which we
can choose one with even higher bias than the Zhang-Chan and usual correlation
attack. However, choosing the best linear approximation out of that many choices
is infeasible. Therefore in Section 3, we reduce the complexity of choosing the
best linear approximation for generalized correlation attack from 22m×(n+1)+n

to 22n, which is much more manageable.
The generalized nonlinearity is an analogue of the usual nonlinearity, which

measures the effectiveness of a function against generalized correlation attack.
Based on efficient computation for finding the best generalized linear approxima-
tion, we computed the generalized nonlinearity of highly nonlinear vector func-
tions and randomly generated vector functions in Section 3.2. We observe that
the generalized nonlinearity is much lower than the usual nonlinearity and unre-
stricted nonlinearity (corresponding to Zhang-Chan’s attack) for these functions.
For example, when the inverse function on GF (28) is restricted to 5, 6, 7 output
bits, the usual and unrestricted nonlinearities are non-zero while the generalized
nonlinearity is already zero. That means the stream cipher can be attacked as a
deterministic linear system while the Zhang-Chan and usual correlation attack
are still probabilistic. Theoretical results on the generalized nonlinearity are also

384 C. Carlet et al.

studied. In Section 4, we derive an upper bound for generalized nonlinearity
which is much lower than the upper bound for usual correlation attack (covering
radius bound [3]) and that for Zhang-Chan’s attack (unrestricted nonlinearity
bound [4]). Thus it gives further evidence that generalized correlation attack is
more effective than the other correlation attacks on vector Boolean functions.

The Siegenthaler divide-and-conquer attack on combinatorial stream ciphers
[14] resulted in the notion of t-th order correlation immune function (called t-
resilient when the function is balanced, which is necessary). To protect against
this attack, we require the combining function F (x) to be t-resilient for large
t. In Section 5.1, we introduce the concept of generalized divide-and-conquer
correlation attack and generalized resiliency to protect against it. We observe
that usual resiliency is equivalent to generalized resiliency and thus is sufficient
to protect the cipher against the generalized divide-and-conquer attack.

In Section 6, we investigate the generalized nonlinearity of two secondary
constructions for vector Boolean functions that are resilient and/or possess high
nonlinearity. We conclude output composition (e.g. dropping output bits) of
balanced vector functions may increase generalized nonlinearity. For a concate-
nated function to possess high generalized nonlinearity, we require all component
functions to possess high generalized nonlinearity.

2 Generalized Correlation Analysis of Vector Output
Stream Ciphers

We consider a stream cipher where the state bits of one or more linear feedback
shift registers are filtered by a vector Boolean function F : GF (2)n → GF (2)m

to form keystream bits. The keystream bits will be XORed with the plaintext
to form the ciphertext. Traditionally, an adversary who wants to perform cor-
relation attack on this stream cipher tries to find an approximation of a linear
combination of output bits by a linear combination of input bits u ·F (x) ≈ w ·x.
For correlation attack to be successful, we require that the bias defined by:

Bias = |Pr(u · F (x) = w · x) − 1/2|, u ∈ GF (2)m, w ∈ GF (2)n,

is large. Conversely, if all linear approximations of u · F (x) have small bias,
then it is secure against correlation attack. A concept related to the correlation
attack is the Hadamard transform f̂ : GF (2)n → R of a Boolean function f :
GF (2)n → GF (2) which is defined as f̂(w) =

∑
x∈GF (2)n(−1)f(x)+w·x. Based

on the Hadamard transform, we can define the nonlinearity [3,10] of F (x) as:

NF = 2n−1 − 1/2 max
0�=u∈GF (2)m,w∈GF (2)n

|û · F (w)|. (1)

From the above equation, we deduce that a high nonlinearity ensures protection
against correlation attack. It is well known that 0 ≤ NF ≤ 2n−1 − 2n/2−1 [3].

At Crypto 2000, Zhang and Chan [15] observed that instead of taking linear
combination of the output bit functions u ·F (x), we can compose F (x) with any

Generalized Correlation Analysis of Vectorial Boolean Functions 385

Boolean function g : GF (2)m → GF (2) and consider the probability:

Pr(g(z) = w · x) where z = F (x). (2)

Because z = F (x) corresponds to the output keystream which is known, then
g(z) is also known. Therefore g(z) ≈ w ·x is a linear approximation which can be
used in correlation attacks. Since we are choosing from a larger set of equations
now, we can find linear approximations with larger bias |Pr(g(z) = w ·x)−1/2|.
Let us define the unrestricted nonlinearity [4] which measures the effectiveness of
the Zhang-Chan attack. Denote by wt(f) the number of ones among the output
of f : GF (2)n → GF (2).

Definition 1. Let F : GF (2)n → GF (2)m and let G = Set of m-bit Boolean
functions g : GF (2)m → GF (2). We define the unrestricted nonlinearity as:

UNF = min{ min
0�=u∈GF (2)m

(wt(u · F), 2n − wt(u · F)), nonlinUNF}

where
nonlinUNF = 2n−1 − 1

2
max

w �=0,g∈G
ĝ ◦ F (w). (3)

Remark 1. If w = 0 in equation (2), then it does not involve the input x and it is
not useful for correlation attack. Thus we let w �= 0 when computing nonlinUNF
which gauge the effectiveness of equation (2) for correlation attack. The other
part minu�=0(wt(u · F), 2n − wt(u · F)) ensures that F (x) is close to balanced
when UNF is high.

From equation (3), we deduce that a high unrestricted nonlinearity is required
for protection against correlation attack on g ◦ F (x).

In this paper, we introduce a linear approximation for performing correlation
attack, which is more effective than the Zhang-Chan attack [15]. The idea is to
consider implicit equations which are linear in the input variable x and of any
degree in the output variable z = F (x). In the pre-processing stage, we compute

Pr(g(z) + w1(z)x1 + w2(z)x2 + · · · + wn(z)xn = 0), (4)

where z = F (x) and wi : GF (2)m → GF (2). In other words, we consider the
probability Pr(g(F (x)) + w1(F (x))x1 + w2(F (x))x2 + · · · + wn(F (x))xn = 0),
where x uniformly ranges over Fn

2 . Then in the attack, because z = F (x) corre-
sponds to the output keystream which is known, g(z) and wi(z) are known for
all i = 1, . . . , n. This means that we can substitute the known values z = F (x)
and treat equation (4) as a linear approximation.

We call the attack based on this linear approximation the generalized correla-
tion attack. This attack can be considered as a generalization of Zhang-Chan’s
correlation attack because if we let wi(z) constant for i = 1 . . . n, equation (4)
becomes equation (2). Since we are choosing from a larger set than that of
Zhang and Chan, it is easier to find a linear approximation with larger bias
|Pr(g(z) + w1(z)x1 + w2(z)x2 + · · ·wn(z)xn = 0)− 1/2|.

In relation to the approximation of equation (4), we make the following
definition:

386 C. Carlet et al.

Definition 2. Let F : GF (2)n → GF (2)m. The generalized Hadamard trans-
form F̂ : (GF (2)2

m

)n+1 → R is defined as:

F̂ (g(·), w1(·), . . . , wn(·)) =
∑

x∈GF (2)n

(−1)g(F (x))+w1(F (x))x1+···wn(F (x))xn ,

where the input is an (n+1)-tuple of Boolean functions g, wi : GF (2)m → GF (2),
i = 1, . . . , n.

Let G be defined as in Definition 1 and let

W = Set of all n-tuple functions {w(·) = (w1(·), . . . , wn(·))|wi ∈ G}
such that w(z) = (w1(z), . . . , wn(z)) �= (0, . . . , 0) for all z ∈ GF (2)m.

The generalized nonlinearity is defined as:

GNF = min{ min
0�=u∈GF (2)m

(wt(u · F), 2n − wt(u · F)), nonlingenF},

where
nonlingenF = 2n−1 − 1

2
max

g∈G,w∈W
F̂ (g(·), w1(·), . . . , wn(·)). (5)

Remark 2. We introduce the set W to give a meaningful definition to the gen-
eralized nonlinearity. This is because if there exists z ∈ GF (2)m such that
(w1(z), . . . , wn(z)) = (0, . . . , 0), then the equation (4) resulting from this value
of z will not involve the input x and will therefore not be useful in the at-
tack stage. Thus we let w ∈ W when computing nonlingenF . The other part
minu�=0(wt(u · F), 2n − wt(u · F)) ensures that F (x) is close to balanced when
GNF is high.

From equation (5), we deduce that a high generalized nonlinearity is required
for protection against generalized correlation attack.

In Proposition 1, we show that the generalized nonlinearity is lower than the
other nonlinearity measures and thus provides linear approximations with better
bias for correlation attack. The proof follows naturally from the definitions of
the various nonlinearities.

Proposition 1. Let F : GF (2)n → GF (2)m. Then the nonlinearity, unre-
stricted nonlinearity and generalized nonlinearity are related by the following
inequality:

GNF ≤ UNF ≤ NF . (6)

I.e., the generalized correlation attack is more effective than the Zhang-Chan’s
correlation attack, which itself is more effective than the usual correlation attack.

Remark 3. A vector function F : GF (2)n → GF (2)m is said to be balanced if
|F−1(z)| = 2n−m for all z ∈ GF (2)m. It can be deduced that wt(u · F) = 2n−1

for all u ∈ GF (2)m − {0} if and only if F is balanced [3]. Thus

GNF = min{ min
0�=u∈GF (2)m

(wt(u · F), 2n − wt(u · F)), nonlingenF}

= min(2n−1, nonlingenF) = nonlingenF,

Generalized Correlation Analysis of Vectorial Boolean Functions 387

because GNF ≤ NF ≤ 2n−1 − 2(n−1)/2 [3]. Therefore GNF = nonlingenF if F
is balanced. In a similar way, UNF = nonlinUNF if F is balanced.

3 Efficient Computation of the Generalized Nonlinearity

To compute the generalized nonlinearity GNF , we first compute minu�=0(wt(u ·
F), 2n−wt(u ·F)) with complexity 2m+n. Then we need to compute nonlingenF
which requires computation of the generalized Hadamard transform over all in-
put. But the complexity of computing F̂ (g(·), w1(·), . . . , wn(·)) directly for all
possible (n+1)-tuple of m-bit functions is ≈ 2n×22m×(n+1). This is because for
each fixed (g(·), w1(·), . . . , wn(·)), we sum over 2n elements x to compute F̂ and
there are approximately1 22m×(n+1) tuples of functions g, wi : GF (2)m → GF (2),
i = 1, . . . , n. This computation quickly becomes unmanageable even for small
values of n, m. Since the bulk of the computational time comes from nonlingenF ,
we need to make it more efficient to compute. Theorem 1 below gives an efficient
way to compute nonlingenF .

Theorem 1. Let F : GF (2)n → GF (2)m and let w(·) denote the n-tuple of
m-bit Boolean functions (w1(·), . . . , wn(·)). Then

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣
∣
∣∣
∣
∣

∑

x∈F −1(z)

(−1)w(z)·x

∣
∣
∣∣
∣
∣
.

Because of editorial constraints, the proof of Theorem 1 can be found in the
Appendix, Section 7.2.

Remark 4. The proof of Theorem 1 also provides the functions g(·), wi(·), i =
1, . . . , n, for the best generalized linear approximation. At each z, the opti-
mal g(z) is the one that makes the inner sum positive while the optimal tuple
(w1(z), . . . , wn(z)) is the n-bit vector that maximizes the inner sum.

3.1 Reduction in Complexity

To compute nonlingenF based on Theorem 1, we first perform a pre-computation
to identify the sets {x : x ∈ F−1(z)} with complexity 2n and store them with
memory of size n×2n. This is needed in computing the sum

∑
x∈F −1(z)(−1)w(z)·x.

To compute nonlingenF , we consider the 2m elements z ∈ GF (2m). For each

z, we find w(z) ∈ GF (2)n which maximizes the sum
∣∣
∣
∑

x∈F −1(z)(−1)w(z)·x
∣∣
∣.

Thus the computational complexity is:

Complexity =
∑

z∈GF (2)m

2n × |{x : x ∈ F−1(z)}| = 2n
∑

z∈GF (2)m

|{x : x ∈ F−1(z)}|

= 2n × |Domain(F)| = 2n × 2n = 22n.

1 We say approximately 22m×(n+1) functions because we do not range over all tuples
of functions (w1(·), . . . , wn(·)) but only over those in the set W of Defintion 2.

388 C. Carlet et al.

Together with a complexity of 2m+n to compute min0�=u∈GF (2)m(wt(u·F), 2n−
wt(u · F)), the total complexity for computing GNF is:

Precomputation = 2n, Memory = n× 2n, Time Complexity = 2m+n + 22n.

This is much less than a time complexity of 2m+n + 2n+2m×(n+1) by the direct
approach.

3.2 Experimental Results

Based on Theorem 1, we can compute the generalized nonlinearity of some highly
nonlinear functions. We also computed the unrestricted nonlinearity of these
functions for comparison. We shall apply Proposition 6 (in Section 7.3 of the
Appendix) to help us compute nonlinUNF efficiently. First, let us look at bent
functions, which have the highest nonlinearity.

Example 1. Consider the bent function F : GF (2)4 → GF (2)2 (i.e. the function
whose component functions u·F , u �=0, are all bent) defined by F (x1, x2, x3, x4)=
(z1, z2)=(x1+x1x4+x2x3, x1+x1x3+x1x4+x2x4). The truth table of F (which
lists the output F (0000), F (0001), . . . , F (1111) where every number represents
its binary representation) is as follows.

0 0 0 0 0 1 2 3 3 0 2 1 3 1 0 2

The various nonlinearity and bias take the following values:

Usual nonlinearity NF = 6 ⇒ Bias = 0.125
unrestricted nonlinearity UNF = 5 ⇒ Bias = 0.1875
Generalized nonlinearity GNF = 2 ⇒ Bias = 0.375.

From Remark 4, we deduce that the following approximation holds with bias
0.375.

Pr(z1 + z2 = (z1 + 1)(z2 + 1)x2 + z1x3 + z2x4) =
14
16

,

where x = 0100, 1110 are the only two points not satisfying the relation.

Next we look at the inverse S-box on GF (28) with truncated output.

Example 2. Let GF (28) be the finite field defined by the relation α8 +α4 +α3 +
α2 + 1 = 0. Consider the S-box Inv : GF (2)8 → GF (2)8 defined by Inv(0) = 0
and Inv(x) = x−1 if x �= 0. We use the correspondence:

(x1, x2, x3, x4, x5, x6, x7, x8) ↔ x1α
7 + x2α

6 + · · ·+ x7α + x8

Consider Inv(x) restricted to the least significant m bits. Then the nonlinearity,
unrestricted nonlinearity and generalized nonlinearity are given by Table 1. We
see that the generalized nonlinearity for the inverse function restricted to m
output bits is lower than the usual and unrestricted nonlinearities. Therefore
generalized correlation attack works better in this case. Moreover, for m ≥ 5
output bits, the generalized nonlinearity is already 0 which means the system
can be broken by linear algebra with very few keystream bits.

Generalized Correlation Analysis of Vectorial Boolean Functions 389

Table 1. Nonlinearities for x−1 on GF (28) restricted to m least significant output bits

m 1 2 3 4 5 6 7

NF 112 112 112 112 112 112 112

UNF 112 108 100 94 84 70 56

GNF 112 80 66 40 0 0 0

Example 3. Lastly in Table 2, we tabulate the average nonlinearity measures for
100 randomly generated balanced functions F : GF (2)n → GF (2)m, n = 2m, for
various n. Again, we see that the average generalized nonlinearity is much lower
than the unrestricted and usual nonlinearities. Therefore generalized correlation
attack can be more effective.

Table 2. Average nonlinearity for randomly generated balanced functions, n = 2m

n 6 8 10 12 14

NF 18 100 443 1897 7856

UNF 16 88 407 1768 7454

GNF 6 36 213 1101 5224

4 Upper Bound on Generalized Nonlinearity

In this Section, we prove an upper bound for the generalized nonlinearity. This
allows us to gauge theoretically the effectiveness of the generalized correlation
attack.

Theorem 2. Let F : GF (2)n → GF (2)m. Then the following inequality holds.

nonlingenF ≤ 2n−1 − 1
4

∑

z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

Furthermore if F (x) is balanced, then we have:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1

Proof. According to Theorem 1, we have:

nonlingenF = 2n−1 − 1/2
∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣
∣
∣∣
∣
∣

∑

x∈F −1(z)

(−1)a·x

∣
∣
∣∣
∣
∣
.

390 C. Carlet et al.

Let φz(x) be the indicator function of F−1(z). I.e., φz(x) = 1 if F (x) = z else
φz(x) = 0.

∑

x∈F −1(z)

(−1)a·x =
∑

x∈GF (2)n

φz(x)(−1)a·x =
∑

x∈GF (2)n

1 − (−1)φz(x)

2
(−1)a·x

= −1
2

∑

x∈GF (2)n

(−1)φz(x)+a·x = −1
2
φ̂z(a), when a �= 0.

Thus
nonlingenF = 2n−1 − 1/4

∑

z∈GF (2)m

max
a∈GF (2)n−{0}

∣
∣
∣φ̂z(a)
∣
∣
∣ .

In a similar way to the computation of
∑

x∈F −1(z)(−1)a·x, we can prove that

|F−1(z)| =
∑

x∈F −1(z)(−1)0·x = 2n−1 − 1
2 φ̂z(0). This implies φ̂z(0) = 2n −

2|F−1(z)|.
By Parseval’s relation,
∑

a∈GF (2)n−{0}
φ̂z(a)2 = 22n − φ̂z(0)2

= 22n − (2n − 2|F−1(z)|)2 = 2n+2|F−1(z)| − 4|F−1(z)|2.

By the pigeon hole principle, we deduce that

max
a∈GF (2)n−{0}

φ̂z(a)2 ≥ 2n+2|F−1(z)| − 4|F−1(z)|2
2n − 1

.

and therefore

nonlingenF ≤ 2n−1 − 1
4

∑

z∈GF (2)m

√
2n+2|F−1(z)| − 4|F−1(z)|2

2n − 1
.

When F (x) is balanced, nonlingenF = GNF , |F−1(z)| = 2n−m for all z ∈
GF (2)m and we deduce:

GNF ≤ 2n−1 − 2n−1

√
2m − 1
2n − 1

$%

This upper bound is much lower than the covering radius bound 2n−1 − 2n/2−1

and the upper bound for UNF deduced in [4]:

UNF ≤ 2n−1 − 1
2

⎛

⎝22m − 2m

2n − 1
+

√
22n − 22n−m

2n − 1
+
(

22m − 2m

2n − 1
− 1
)2

− 1

⎞

⎠ .

when F : GF (2)n → GF (2)m is balanced. Thus Theorem 2 provides further
evidence that generalized correlation attack can be more effective than the usual
and Zhang-Chan correlation attacks on vector Boolean functions.

Generalized Correlation Analysis of Vectorial Boolean Functions 391

5 Spectral Characterization and Generalized Correlation
Immunity

In Theorem 3, we express the generalized correlation in terms of the Hadamard
transform (also called the spectrum) of F (x). This allows us to deduce general
correlation properties based on the spectral distribution.

Theorem 3. Let F : GF (2)n → GF (2)m and wi : GF (2)m → GF (2). Let
w(·) denote the n-tuple of m-bit Boolean functions (w1(·), . . . , wn(·)). Then the
generalized Hadamard transform can be expressed as:

F̂ (g(·), w1(·), . . . , wn(·)) =
1

2m

∑

z∈GF (2)m

(−1)g(z)
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

The proof of Theorem 3 is easy and can be found in the Appendix, Section 7.4.

Remark 5. Based on Theorem 3 and equation (5), we get

nonlingenF = 2n−1− 1
2m+1

∑

z∈GF (2)m

max
0�=w(z)∈
GF (2)n

∣
∣
∣
∣∣
∣

∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z))

∣
∣
∣
∣∣
∣
. (7)

If the Hadamard transform distribution of F (x) is known, then we can have a
more efficient computation of GNF . By equation (7), we compute nonlingenF
by an outer sum over 2m elements z, each of which finds the maximum inner sum
(over 2m elements v) for 2n choices of w(z). Thus the complexity of computing
nonlingenF is 2n+2m. Together with a complexity of 2m+n for determining the
balanceness of F (x), the complexity for computing GNF is 2m+n + 2n+2m. This
is more efficient than the computation of Theorem 1 because usually, m is much
smaller than n in applications. Furthermore, we do not need pre-computation
and memory to store the sets {x : x ∈ F−1(z)} as in Theorem 1. Some examples
of vector functions with known spectral distribution is the Maiorana-McFarland
class which can be used to construct bent functions and highly nonlinear resilient
functions, e.g. see [3,5].

5.1 Equivalence of Generalized Correlation Immunity and Usual
Correlation Immunity

In this section, we extend the definition of correlation immunity (resiliency) for
vectorial Boolean function to the generalized case with respect to the correlation
attack based on equation (4). Then we show that the usual correlation immunity
(resiliency) implies generalized correlation immunity (resiliency). First let us
recall the definition of correlation immune vectorial Boolean functions. For a
vector w ∈ GF (2)n, denote by wt(w) the number of ones in w.

Definition 3. The vector function F : GF (2)n → GF (2)m is correlation im-
mune of order t (denoted CI(t)) if

u · F (x) + w · x is balanced, or equivalently û · F (w) = 0

whenever 1 ≤ wt(w) ≤ t. Moreover if F (x) is balanced, then F (x) is t-resilient.

392 C. Carlet et al.

Resiliency is essential for protection against divide-and-conquer correlation at-
tack on combinatorial generator (for more details, please see Siegenthaler [14]).

Next, let us describe a generalized divide-and-conquer attack against vector
combinatorial stream ciphers. In a combinatorial generator involving n LFSR’s,
suppose there is a subset of outputs z ∈ GF (2)m for which the linear approxima-
tions Pr(wi1 (z)xi1 + · · ·+wit(z)xit = g(z)) = pz �= 1/2, involve the correspond-
ing set of t linear feedback shift registers, LFSRi1 , . . . , LFSRit. The attacker
guesses the initial state of LFSRi1 , . . . , LFSRit . If the guess is correct, then
this relation should hold between the t LFSR’s states and the relevant output2

z with probability pz �= 1/2. If the guess is wrong, then the LFSR states and the
output are uncorrelated. Thus the complexity of guessing the secret initial state
is reduced because we only need to guess the content of t instead of n LFSR’s. To
protect against such an attack, we define the concept of generalized correlation
immunity and resiliency as follows.

Definition 4. Let F : GF (2)n → GF (2)m and g, wi : GF (2)m → GF (2). We
say F (x) is generalized correlation immune of order t (generalized CI(t)) if

g(F (x)) + w1(F (x))x1 + · · ·+ wn(F (x))xn is balanced,

or equivalently,
F̂ (g(·), w1(·), . . . , wn(·)) = 0,

whenever 1 ≤ wt(w1(z), . . . , wn(z)) ≤ t for all z ∈ GF (2)m. Moreover if F (x) is
balanced, then we say F (x) is generalized t-resilient.

Generalized t-resiliency ensures protection against generalized divide-and-
conquer correlation attack on t or less LFSR’s in a combinatorial stream cipher.

Theorem 4. Let F : GF (2)n → GF (2)m. Then F (x) is CI(t) (t-resilient) if
and only if F (x) is generalized CI(t) (generalized t-resilient).

Proof. If F (x) is generalized CI(t) (resp. generalized t-resilient), then it fol-
lows from Definitions 3 and 4 that F (x) is CI(t) (resp. t-resilient). Now as-
sume F (x) is CI(t), we shall prove that F (x) is generalized CI(t). Suppose
1 ≤ wt(w1(z), . . . , wn(z)) ≤ t for all z ∈ GF (2)m. Then v̂ · F (w(z)) = 0 for all
v, z ∈ GF (2)m because F (x) is CI(t). By Theorem 3, we see that

F̂ (g(·), w1(·), . . . , wn(·))= 1
2m

∑

z∈GF (2)m

(−1)g(z)
∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)) = 0.

This is because the inner summands is a sum of v̂ · F (w(z)) which are zeroes for
all v, z ∈ GF (2)m. Thus F (x) is generalized CI(t). The proof that t-resiliency
implies generalized t-resiliency is identical to the CI(t) case except that F (x) is
now balanced. $%

Thus we see that usual resiliency is sufficient to ensure generalized resiliency.
2 By relevant output, we mean those z ∈ GF (2)m for which there exist a linear

approximation with positive bias involving the same set of input xi1 , . . . , xit .

Generalized Correlation Analysis of Vectorial Boolean Functions 393

6 Generalized Nonlinearity of Secondary Constructions

Secondary constructions produce Boolean functions with high nonlinearity, re-
siliency and other good cryptographic properties from other Boolean functions
as building blocks. With respect to the generalized correlation attack, it would
be useful to check if these constructions yield functions with high generalized
nonlinearity. Moreover by Theorem 4, vector functions that satisfy the usual
correlation immunity are also generalized correlation immune. Thus we would
also like to check that secondary construction for resilient functions have high
generalized nonlinearity.

The first secondary construction we look at is output composition. One com-
mon candidate for output composition is the projection function, i.e. dropping
output bits. For example, there are many known permutations with high non-
linearity [1] and by dropping output bits, we form vectorial Boolean functions
with the same or higher nonlinearity.

Proposition 2. Let F : GF (2)n → GF (2)m and G : GF (2)m → GF (2)k

be balanced functions. Then GNG◦F ≥ GNF . If G(z) is a permutation, then
GNG◦F = GNF .

The proof of Proposition 2 can be found in the Appendix, Section 7.5. By Propo-
sition 2, we see that output composition, e.g. dropping output bits, is good for
enhancing security as it may increase the generalized nonlinearity.

Another common construction for vectorial resilient functions is concatena-
tion. Let us look at the known results on this construction.

Proposition 3. ([16, Corollary 4]) Let F1 : GF (2)n1 → GF (2)m1 be a t1-
resilient function and F2 : GF (2)n2 → GF (2)m2 be a t2-resilient function. Then
F1||F2 : GF (2)n1+n2 → GF (2)m1+m2 defined by

F1||F2(x, y) = (F1(x), F2(y))

is a t-resilient function where t = min(t1, t2).

By Proposition 3, given two smaller vector Boolean functions which are t-
resilient, we can form a bigger Boolean function which is t-resilient. With re-
spect to generalized correlation attack, we would like to know its generalized
nonlinearity.

Proposition 4. Let F1 : GF (2)n1 → GF (2)m1 and F2 : GF (2)n2 → GF (2)m2

be balanced functions. Then the generalized nonlinearity of their concatenation
F (x, y) = F1(x)||F2(y) satisfies:

GNF ≤ 2n1+n2−1 − 1
2
(2n1 − 2GNF1)(2

n2 − 2GNF2).

The proof of Proposition 4 can be found in the Appendix, Section 7.6. By Propo-
sition 4, we see that for a concatenated function to possess high generalized
nonlinearity, both the component functions have to possess high generalized
nonlinearity.

394 C. Carlet et al.

References

1. Canteaut, A., Charpin, P., Dobbertin, H.: Binary m-sequences with three-valued
cross correlation: a proof of Welch’s conjecture. IEEE Trans. Inform. Theory 46(1),
4–8 (2000)

2. Canteaut, A., Trabbia, M.: Improved fast correlation attacks using parity-check
equations of weight 4 and 5. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS,
vol. 1807, pp. 573–588. Springer, Heidelberg (2000)

3. Carlet, C.: Vectorial Boolean Functions for Cryptography. In: Crama, E.Y.,
Hammer, P. (eds.) Boolean Methods and Models, Cambridge University Press,
Cambridge (to appear), http://www-rocq.inria.fr/codes/Claude.Carlet/
chap-vectorial-fcts.pdf

4. Carlet, C., Prouff, E.: On a New Notion of Nonlinearity Relevant to Multi-Output
Pseudo-Random Generators. In: Matsui, M., Zuccherato, R.J. (eds.) SAC 2003.
LNCS, vol. 3006, pp. 291–305. Springer, Heidelberg (2004)

5. Carlet, C., Prouff, E.: Vectorial Functions and Covering Sequences. In: Mullen,
G.L., Poli, A., Stichtenoth, H. (eds.) Finite Fields and Applications. LNCS,
vol. 2948, pp. 215–248. Springer, Heidelberg (2004)

6. Chor, B., Goldreich, O., Hastad, J., Friedman, J., Rudich, S., Smolensky, R.: The
Bit Extraction Problem or t-resilient Functions. In: IEEE Symposium on Foun-
dations of Computer Science 26, pp. 396–407. IEEE Computer Society Press, Los
Alamitos (1985)

7. Dillon, J.F.: Multiplicative Difference Sets via Additive Characters. Designs, Codes
and Cryptography 17, 225–235 (1999)

8. Gold, R.: Maximal Recursive Sequences with 3-valued Cross Correlation Functions.
IEEE Trans. Inform. Theory 14, 154–156 (1968)

9. Gupta, K.C., Sarkar, P.: Improved Construction of Nonlinear Resilient S-boxes.
In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 466–483. Springer,
Heidelberg (2002)

10. Nyberg, K.: On the Construction of Highly Nonlinear Permutations. In: Rueppel,
R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 92–98. Springer, Heidelberg
(1993)

11. Pasalic, E., Maitra, S.: Linear Codes in Constructing Resilient Functions with High
Nonlinearity. In: Vaudenay, S., Youssef, A.M. (eds.) SAC 2001. LNCS, vol. 2259,
pp. 60–74. Springer, Heidelberg (2001)

12. Rueppel, R.: Analysis and Design of Stream Ciphers. Springer, Heidelberg (1986)

13. Sarkar, P.: The Filter-Combiner Model for Memoryless Synchronous Stream Ci-
phers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 533–548. Springer,
Heidelberg (2002)

14. Siegenthaler, T.: Decrypting a Class of Stream Ciphers using Ciphertexts only.
IEEE Transactions on Computers C34(1), 81–85 (1985)

15. Zhang, M., Chan, A.: Maximum Correlation Analysis of Nonlinear S-boxes in
Stream Ciphers. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 501–
514. Springer, Heidelberg (2000)

16. Zhang, X.M., Zheng, Y.: On Cryptographically Resilient Functions. EUROCRYPT
1995 43(5), 1740–1747 (1997) (Also presented at Eurocrypt’95, LNCS 921, pp. 274-
288, Springer, Heidelberg (1995))

http://www-rocq.inria.fr/codes/Claude.Carlet/chap-vectorial-fcts.pdf
http://www-rocq.inria.fr/codes/Claude.Carlet/chap-vectorial-fcts.pdf

Generalized Correlation Analysis of Vectorial Boolean Functions 395

7 Appendix

7.1 The Single-Bit Output Case and Bilinear Cryptanalysis

It is easy to see that in the single output case (m = 1), the Zhang-Chan cor-
relation attack is equivalent to the usual correlation attack, i.e. UNF = NF .
However, it is not so obvious whether the generalized correlation attack is better
than the usual correlation attack. The four functions from GF (2) to GF (2) are
of the form w(z) = az + b, where a, b ∈ GF (2). Hence, the expression used for
the generalized correlation attack is a bilinear approximation:

Pr(a0z+b0+(a1z+b1)x1+(a2z+b2)x2+· · ·+(anz+bn)xn = 0), ai, bi ∈ GF (2),

where for any z ∈ GF (2), we have (a1z + b1, . . . , anz + bn) �= (0, . . . , 0). The
above equation can also be written as:

Pr(za′(x) = a(x)) where a(x), a′(x) are affine functions, (8)

such that za′(x)+a(x) is a non-constant function for every z ∈ GF (2). In Propo-
sition 5, we show that generalized nonlinearity is equal to the usual nonlinearity
in the single output case.

Proposition 5. Let f : GF (2)n → GF (2). Then GNf = Nf .

Proof. In this proof, a(x), a′(x) and a′′(x) = a(x)+a′(x)+1 are affine functions.
We also require that a(x) and a′′(x) be non-constant functions, so that the
approximation in equation (8) is useful for correlation attack. From equation (5)
and the discussion in Section 7.1, we deduce that:

nonlingenF = min
a(x),a′(x)

|{x : f(x)a′(x) = a(x)}|

= min
a(x),a′(x)

(|{x : f(x) = a(x) = 0}|+ |{x : f(x) = a(x) + a′(x) + 1 = 1}|)

= min
a(x)

|{x : f(x) = a(x) = 0}|+ min
a′′(x)

|{x : f(x) = a′′(x) = 1}|.

On the other hand, we see from equation (1) that:

Nf = min
a(x)

|{x : f(x) = a(x)}|

= min
a(x)

(|{x : f(x) = a(x) = 0}|+ |{x : f(x) = a(x) = 1}|).

But

|{x : f(x) = a(x) = 1}| = |f−1(1)|+ |{x : f(x) = a(x) = 0}| − |a−1(0)|
= |f−1(1)|+ |{x : f(x) = a(x) = 0}| − 2n−1.

Thus

Nf = min
a(x)

(2 × |{x : f(x) = a(x) = 0}|+ c) where c = |f−1(1)| − 2n−1.

396 C. Carlet et al.

From this, we deduce that:

min
a(x)

|{x : f(x) = a(x) = 0}|= Nf − c

2
, min

a′′(x)
|{x : f(x) = a′′(x) = 1}| = Nf + c

2
.

By combining the above two expressions, we get:

Nf = min
a(x)

|{x : f(x) = a(x) = 0}|+ min
a′′(x)

|{x : f(x) = a′′(x) = 1}| = nonlingenF.

Also min0�=u∈GF (2)m(wt(u · F), 2n − wt(u · F)) ≥ Nf . Thus GNf = Nf . $%

Although generalized correlation attack does not improve on the usual correla-
tion attack when m = 1, we can see in Section 3.2 many examples where gen-
eralized correlation attack yields better results than the usual and Zhang-Chan
correlation attack when the number of output bits is m ≥ 2.

7.2 Proof of Theorem 1

Proof. We have:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·))

= max
g∈G,w∈W

∑

z∈GF (2)m

(−1)g(z)
∑

x∈F −1(z)

(−1)w(z)·x

=
∑

z∈GF (2)m

max
g(z)∈GF (2),w(z)∈GF (2)n−{0}

(−1)g(z)
∑

x∈F −1(z)

(−1)w(z)·x.

To maximize this expression, we choose g(z) = 0 if
∑

x∈F −1(z)(−1)w(z)·x > 0,
else we choose g(z) = 1. Thus we can equivalently write the expression as:

max
g∈G,w∈W

F̂ (g(·), w1(·), . . . , wn(·))=
∑

z∈GF (2)m

max
w(z)∈GF (2)n−{0}

∣∣
∣
∣
∣
∣

∑

x∈F −1(z)

(−1)w(z)·x

∣∣
∣
∣
∣
∣
.

By substituting this expression in equation (5), we get nonlingenF . $%

7.3 Efficient Computation of Unrestricted Nonlinearity

The bulk of the work in computing UNF comes from the computation of
nonlinUNF . Proposition 6 gives an efficient way to compute nonlinUNF .

Proposition 6. Let F : GF (2)n → GF (2)m. Then nonlinUNF can be com-
puted as:

nonlinUNF = 2n−1 − 1
2

max
w �=0

∑

z∈GF (2)m

∣∣
∣
∣
∣
∣

∑

x∈F −1(z)

(−1)w·x

∣∣
∣
∣
∣
∣
.

Generalized Correlation Analysis of Vectorial Boolean Functions 397

Proof.

max
w �=0,g∈G

ĝ ◦ F (w) = max
w �=0,g∈G

∑

x∈GF (2)n

(−1)g◦F (x)+w·x

= max
w �=0,g∈G

∑

z∈GF (2)m

(−1)g(z)
∑

x∈F −1(z)

(−1)w·x

= max
w �=0

∑

z∈GF (2)m

∣
∣
∣
∣
∣
∣

∑

x∈F −1(z)

(−1)w·x

∣
∣
∣
∣
∣
∣
.

where we choose g(z) = 0 if the inner sum is positive and g(z) = 1 is the inner
sum is negative. By substituting this expression in equation (3), Proposition 6
is proved. $%

7.4 Proof of Theorem 3

Proof. Let φz(x) be as defined in the proof of Theorem 2. For a fixed z ∈
GF (2)m,

∑

x∈F −1(z)

(−1)w(z)·x =
1

2m

∑

x∈GF (2)n

(−1)w(z)·x × 2mφz(x)

=
1

2m

∑

x∈GF (2)n

(−1)w(z)·x ×
∑

v∈GF (2)m

(−1)v·(F (x)+z)

(because
∑

v∈GF (2)m

(−1)v·a = 2m if and only if a = 0)

=
1

2m

∑

v∈GF (2)m

(−1)v·z ×
∑

x∈GF (2)n

(−1)w(z)·x+v·F (x)

=
1

2m

∑

v∈GF (2)m

(−1)v·z v̂ · F (w(z)).

By substituting this expression in Lemma 1, the proof is complete. $%

7.5 Proof of Proposition 2

Proof. Let G,W and G′,W ′ be the set of m-bit and k-bit Boolean functions in
Definitions 1 and 2 respectively.

max
g′∈G′,w′∈W′

Ĝ ◦ F (g′, w′
1, . . . , w

′
n) = max

g′∈G′,w′∈W′
F̂ (g′ ◦ G, w′

1 ◦G, . . . , w′
n ◦ G)

≤ max
g∈G,w∈W

F̂ (g, w1, . . . , wn).

Therefore by equation (5), nonlingenG ◦ F ≥ nonlingenF . Note that w′ ∈ W ′

implies w′ ◦ G ∈ W in the above inequality.

398 C. Carlet et al.

Since F (x) is balanced, nonlingenF = GNF by remark 3. It is easy to deduce
that G ◦ F is balanced if both F and G are balanced. Thus nonlingenG ◦ F =
GNG◦F by remark 3 and we have GNG◦F ≥ GNF .

If G(z) is a permutation, then {g ◦ G|g ∈ G} = G and {(w1 ◦ G, . . . , wn ◦
G)|w ∈ W} = W . Thus we have nonlingenG ◦ F = nonlingenF which implies
GNG◦F = GNF . $%

7.6 Proof of Proposition 4

Proof. Consider any gi : GF (2)mi → GF (2), i = 1, 2 and any wi,1, . . . , wi,ni :
GF (2)mi → GF (2), i = 1, 2 where for all z ∈ GF (2)mi , (wi,1(z), . . . , wi,ni(z)) �=
(0, . . . , 0). We see that:

F̂1(g1(·), w1,1(·), . . . , w1,n1(·)) × F̂2(g2(·), w2,1(·), . . . , w2,n2(·))
=
∑

x

(−1)g1(F1(x))+w1,1(F1(x))x1+...+w1,n1(F1(x))xn1

×
∑

y

(−1)g2(F2(y))+w2,1(F2(y))y1+...+w2,n2 (F2(y))yn2

=
∑

x,y

(−1)g(F1(x),F2(y))+w1(F1(x),F2(y))x1+...+wn1+n2(F1(x),F2(y))yn2

= ̂(F1, F2)(g(·), w1(·), . . . , wn1+n2(·)).

where we let g : GF (2)m1+m2 → GF (2) be defined by g(z1, z2) = g1(z1)+g2(z2).
Let

w1(z1, z2) = w1,1(z1), . . . , wn1(z1, z2) = w1,n1(z1),
wn1+1(z1, z2) = w2,1(z2), . . . , wn1+n2(z1, z2) = w2,n2(z2).

For all (z1, z2) ∈ GF (2)m1+m2 , it is obvious that (w1(z1, z2), . . . , wn1+n2

(z1, z2)) �= (0, . . . , 0).
Since on the left hand side of the above equations g(·) and wi,j(·) can be any

functions while the g, wi defined on the right hand side are only functions on
(z1, z2) ∈ GF (2)m1+m2 of a special form, we have:

max
g1,w1,i

F̂1(g1(·), w1,i(·)) × max
g2,w2,i

F̂2(g2(·), w2,i(·))

≤ max
g,wi

̂(F1||F2)(g(·), w1(·), . . . , wn1+n2(·).

By substituting this inequality in equation (5), we get

nonlingen(F1||F2) ≤ 2n1+n2−1 − 1
2
(2n1 − 2nonlingenF1)(2n2 − 2nonlingenF2).

(9)
Since F1(x) and F2(y) are balanced functions, we have nonlingenFi = GNFi by
remark 3. Furthermore, it is easy to see that (F1(x), F2(y)) is a balanced function.
Thus nonlingen(F1||F2) = GN(F1||F2) by remark 3. Thus we can substitute all
the nonlingenF in equation (9) by GNF and we are done. $%

An Analytical Model

for Time-Driven Cache Attacks

Kris Tiri1, Onur Acıiçmez3,�, Michael Neve1, and Flemming Andersen2

1 Platform Validation Architecture
2 Visual Computing Group

Intel Corporation
2111 NE 25th Avenue, Hillsboro Oregon 97124, USA

{kris.tiri,michael.neve.de.mevergnies,flemming.l.andersen}@intel.com
3 Computer Science Lab

Samsung Information Systems America, USA
o.aciicmez@samsung.com

Abstract. Cache attacks exploit side-channel information that is leaked
by a microprocessor’s cache. There has been a significant amount of re-
search effort on the subject to analyze and identify cache side-channel
vulnerabilities since early 2002. Experimental results support the fact
that the effectiveness of a cache attack depends on the particular im-
plementation of the cryptosystem under attack and on the cache archi-
tecture of the device this implementation is running on. Yet, the precise
effect of the mutual impact between the software implementation and the
cache architecture is still an unknown. In this manuscript, we explain the
effect and present an analytical model for time-driven cache attacks that
accurately forecasts the strength of a symmetric key cryptosystem based
on 3 simple parameters: (1) the number of lookup tables; (2) the size
of the lookup tables; (3) and the length of the microprocessor’s cache
line. The accuracy of the model has been experimentally verified on 3
different platforms with different implementations of the AES algorithm
attacked by adversaries with different capabilities.

1 Introduction

Exploiting cache behavior was presumed possible by early works [7,8]. Yet, Page
was the first to study the cache-based side-channel attacks. In a theoretical work
[14], he classified the cache attacks based on the method of leakage observation
into two types of attacks: trace-driven and time-driven cache attacks.

In trace-driven attacks (e.g. [1, 4, 9]), the adversary observes the succession
of cache hits and cache misses during a cryptographic cipher operation. Given
(some of) the implementation details of the cipher, she is then able to derive
key material from whether a particular key-dependent memory access results
in a cache hit or a cache miss. In time-driven attacks (e.g. [2, 3, 5, 16]), the
adversary observes the total execution time of a cryptographic cipher operation.
� Work done while being with Intel Corporation for an internship.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 399–413, 2007.
c© International Association for Cryptologic Research 2007

{kris.tiri,michael.neve.de.mevergnies,flemming.l.andersen}@intel.com
o.aciicmez@samsung.com

400 K. Tiri et al.

She is then able to derive key material as the execution time depends on the
number of key-dependent memory accesses that result in cache misses. Since
the cache behavior is only one of the many elements that affect the overall
execution time of a cryptosystem, time-driven attacks require statistical analysis
using a large number of samples to infer key material. However, they are more
generic and easier to apply than trace-driven attacks, because simple and pure
software methods are sufficient to carry out time-driven attacks. On the other
hand, the current trace-driven attacks are based on power analysis and mandate
physical access and alteration of the processing device, and thus their use is very
restricted. To the best of our knowledge, trace-driven attacks have not been
demonstrated in practice.

Recently, another type of cache attack has been demonstrated: the access-
driven cache attacks [15, 13, 11]. In this attack type, the adversary observes
the individual cache lines accessed by the cryptographic cipher operation. She
derives key material from knowing which cache lines and thus also which table
entries have been touched during the key-dependent memory accesses. A single
observation caries a lot of information and access-driven attacks generally require
a significantly lower number of measurements than other cache attacks.

Numerous mitigations have been proposed alongside and as a reaction to the
cache-attacks (e.g. [14, 9, 3, 13, 6, 5]). Most of them are software based and alter
the size or the deployment of the lookup tables. For instance, with compact
lookup tables [6], where a cache line contains relatively more table entries, or
with dynamic lookup table permutations [6], where a cache line contains different
table entries over time, less information is disclosed through knowledge of a
cache line access. Yet, it is never specified how strong these mitigations are.
The mitigations appear to be ad hoc and we are unaware of any formal proofs
attesting their effectiveness.

Limited experimental results, however, do exist to support the mitigations
[6, 5]. Yet the results are not available for all microprocessors, are only valid
for a single algorithm and are unclear with respect to the actual strength of
the mitigation. In this manuscript, we will present an analytical model that
allows to quickly evaluate any mitigated or non-mitigated implementation on
any microprocessor of any symmetric key encryption algorithm using lookup
tables that are being exploited in time-driven cache attacks. The model provides
a strict lower bound on the required number of measurements for a successful
time-driven cache attack. The analytical model allows further to modify the
threat level: it can incorporate adversaries with a sampling resolution as small
as a single encryption round or as large as several complete encryptions.

The remainder of this document is organized as follows. The next section
briefly describes time-driven attacks and illustrates them with the last round
correlation attack. Section 3 first derives the analytical model and then shows
that it is universal and valid for any time-driven cache attack as the resulting
metric is based on the signal-to-noise ratio present in the measurements. In
section 4, the analytical model is experimentally verified on different platforms

An Analytical Model for Time-Driven Cache Attacks 401

using the unmitigated OpenSSL and several mitigated implementations of the
AES algorithm. Finally a conclusion will be formulated.

2 Time-Driven Cache Attacks

The cache is a processor component that stores recently used data in a fast
memory block close to the microprocessor. Whenever the processor tries to re-
trieve data from the main memory, it can be delivered more quickly if this data
is already stored in the cache (a.k.a. cache hit). On the other hand, if the data is
not available in the cache (a.k.a. cache miss), it has to be fetched from the main
memory (or a higher level of cache), which has a much larger latency compared
to the cache. The difference between both cache access events, i.e. a cache hit
and a cache miss, is measurable and provides the attacker with information on
the state and the execution of the algorithm to extract secret key material.

Observing each single cache access event, however, is extremely hard when
performing a local attack and even impossible for remote attacks. Hence in a
time-driven cache attack, the adversary observes the aggregated effect of all the
memory accesses in a cryptographic operation, i.e. the total number of cache
misses and hits or at least its effect on the execution time of the operation. To
infer key material, she then analyzes cache collisions in a lookup table of interest.

In this paper, we define a cache collision as the situation involving two different
memory accesses attempting to access the same memory location or different but
very close memory locations that are stored in the same cache line. A cache line,
aka. cache block or entry, is the smallest unit of memory that can be transferred
between the main memory and the cache. The effect is ideally that the first
access ensures that the data is in the cache such that the second access results
in a cache hit. The attack is based on the assumption that when there is a
cache collision between two particular table lookup operations, the total number
of cache misses tends to be lower. On the other hand, if there is no collision
between these two table lookup operations, then the overall number of cache
misses tends be higher.

Note that even when there is no cache collision between the two particular
table lookup operations under investigation, the second cache access might still
result in a cache hit because of a cache collision with another table lookup oper-
ation. However, if enough observations are taken into account, the distribution
of the number of cache misses when the cache collisions are always correctly pre-
dicted will be different from the distribution obtained when they are not. Hence,
the resistance against an attack is measured as the required number of samples
for a successful attack or in other words the number of samples that must be
analyzed to distinguish the correct key guess from the incorrect key guesses.

An adversary tries to estimate whether a cache collision occurs between two
particular table lookup operations by examining the indices of the lookup oper-
ations. She computes these indices based on the known and observable data and
also based on a guess on a fragment of the secret key. Note that the secret key
fragment is relatively small and that the computational complexity of a cache

402 K. Tiri et al.

attack is significantly reduced compared to a brute-force attack on the entire
secret key. The complete secret key is revealed by finding all of the composing
key fragments.

Several statistical techniques are available to decide on the correct key value.
For instance, Bonneau et al. suggest the t-test to find statistical significant differ-
ent averages between distributions [5]. We use the correlation coefficient between
the measurements and the estimations. This method is common practice in side-
channel analysis, and especially in power analysis. This method allows us to
deduce our analytical model for time-driven cache attacks that can be used to
compute the strength of a given implementation on a given platform instead of
relying on cumbersome empirical assessments to estimate the required number
of measurements for a successful attack.

With the correlation coefficient method, the secret key fragment Ksecret is
found by evaluating the following cost function:

Ksecret = maxK(|corr(M, EK)|) (1)

The vector M consists of the measurement scores that represent the number
of cache misses that occur during the cryptographic cipher operation on the mes-
sages in a sample set. To be more precise, a measurement score is a value that
approximates the number of cache misses realized during the operation such as
the execution time of the operation or the cache miss count obtained via the use
of performance counters. The vector EK consists of the corresponding estima-
tions of the adversary on the actual number of cache misses. As mentioned above,
she computes these estimations by using the known values of the ciphertext or
the plaintext and her guess K on a portion of the secret key.

2.1 Last Round Correlation Attack

For a better understanding, we now describe the correlation attack on the last
round of AES-128. We successfully mounted this attack on 10 different platforms
(2 servers and 8 PCs) from 3 different processor manufacturers with 7 different
operating systems.

Figure 1 shows a snippet of the last round of the OpenSSL AES implemen-
tation [12]. This implementation uses four lookup tables Te0, Te1, Te2, and Te3
for the first 9 rounds and a single table Te4 for the 10th (i.e. last) round. Each
table contains 256 4-byte words. The input to the tables is a single byte output
of the preceding key addition.

The attack will estimate a single cache miss of the last round accesses and
compare it with the measurement score for the total number of cache misses of
the complete AES encryption. The estimation assumes that if 2 inputs to the
table of interest Te4 point to the same cache line, there is a cache hit; while if
they point to different cache lines, there will be a cache miss. The table indexes
–i.e. (t0>>24),(t1>>16)&0xff,(t2>>8)&0xff), etc. in figure 1– are a single
byte of the input to the last encryption round. The model thus estimates whether
< p

(10)
i > equals < p

(10)
j >, where p

(10)
i is the ith byte input to the 10th and

An Analytical Model for Time-Driven Cache Attacks 403

void AES_encrypt(const unsigned char *in,
unsigned char *out, const AES_KEY *key) {

...
// apply last round and
// map cipher state to byte array block:
s0 =

(Te4[(t0 >> 24)] & 0xff000000) ^
(Te4[(t1 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t2 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t3) & 0xff] & 0x000000ff) ^
rk[0];

PUTU32(out , s0);
s1 =

(Te4[(t1 >> 24)] & 0xff000000) ^
(Te4[(t2 >> 16) & 0xff] & 0x00ff0000) ^
(Te4[(t3 >> 8) & 0xff] & 0x0000ff00) ^
(Te4[(t0) & 0xff] & 0x000000ff) ^
rk[1];

...
}

Fig. 1. Last round snippet of OpenSSL AES encrypt function [10]

last encryption round and where the <> operator selects the most significant
bits to account for the fact that a cache line contains several table elements
ordered in function of the table index. The values < p

(10)
i > and < p

(10)
j >

can be calculated as < sbox−1(RK
(10)
i ⊕ Ci) > and < sbox−1(RK

(10)
j ⊕ Cj) >

based on the ciphertext bytes Ci and Cj , which are known to the attacker, and
a guess on the last round key bytes RK

(10)
i and RK

(10)
j . The correct values of

RK
(10)
i and RK

(10)
j are the ones that result in the highest correlation coefficient

between the measurements and the estimations. The key search space equals 216

to find the 2 initial key bytes and 14 · 28 to find the remaining 14 key bytes. In
the remainder of this manuscript, we will refer to this attack as the cache line
estimation (CLE) attack. The attack can be simplified if the estimation neglects
the fact that a cache line contains several table elements and simply assumes
that only when two inputs to the table Te4 are equal, there is a cache hit; while
if they are different, there will be a cache miss. In that case, the model estimates
if p

(10)
i equals p

(10)
j or not. The substitution box is a nonlinear bijection and can

be removed from the equality estimation. The model thus estimates whether
RK

(10)
i ⊕ Ci equals RK

(10)
j ⊕ Cj , which can be simplified further to estimating

whether Ci equals RK
(10)
ij ⊕Cj with RK

(10)
ij = RK

(10)
i ⊕RKj. The correct value

of RK
(10)
ij is the one that results in the highest correlation coefficient between

the measurements and the estimations. The key search space now equals 15 · 28

to find the 15 offsets RK
(10)
ij from RK

(10)
i and 28 to brute-force RK

(10)
i . In the

remainder of this manuscript, we will refer to this attack as the table index
estimation (TIE) attack. Note that the idea behind the last round correlation
attack is universal and can be applied to any implementation of a symmetric key
encryption algorithm using lookup tables. In the remainder of this manuscript,
we will refer to the lookup table of which the collisions are analyzed as the lookup
table of interest.

404 K. Tiri et al.

3 Analytical Model

For a correlation attack, Mangard derived that the number of measurements N
required for a successful attack can be computed as follows [10]:

N = 3 + 8 ·

⎛

⎝ Zα

ln
(

1+ρ
1−ρ

)

⎞

⎠

2

≈ 2 · Z2
α

ρ2
(2)

The parameter ρ is the correlation coefficient between the measurement vec-
tor M and the vector EKsecret , which is the estimation vector computed from
the correct secret key fragment Ksecret. The parameter α is the probability to
discover the secret key, while Zα is the quantile of the standard normal distrib-
ution for a probability α. With a probability of 0.99 to discover the secret key
fragment, N can be approximated as 11/ρ2.

Given equation 2, the attack resistance of an implementation can be deter-
mined by (1) modeling the measurements; and by (2) computing the correlation
coefficient between the estimations and the modeled measurements:

ρ =
E (EKsecret ·M)− E (EKsecret) · E (M)

√
E
(
E2

Ksecret

)
− E (EKsecret)

2
√

E (M2)− E (M)2
(3)

We will construct the analytical model of the measurements based on the
following 5 assumptions:

1. The cache does not contain any data related to the cryptographic cipher op-
eration until the operation begins. In other words, the cache is assumed to be
“clean” before the operation starts. Note that this is a valid assumption as
in order for the adversary to analyze the observed side-channel information
she must hypothesize a known initial state of the cache.

2. There are no collisions between different tables used in the cryptographic ci-
pher operation. The cache areas on which each table maps to are mutually
disjoint. Note that this is a valid assumption as the cache size of contempo-
rary platforms is large enough to store all the tables of nearly all common
symmetric key algorithms.

3. The cache accesses during the cryptographic cipher operation are random and
independent from each other. Note that this is a valid assumption because
of the avalanche effect of cryptographic algorithms.

4. The cryptographic cipher operation operates uninterrupted. There is no out-
side effect on the operation and its cache access pattern. Note that this is
a valid assumption as the model models a cryptographic cipher operation.
The operation can be a single encryption for a normal adversary; multiple
encryptions for a limited adversary; and a single round or even a more atomic
operation for a powerful adversary.

5. The execution time of the cryptographic cipher operation is proportional to
the number of cache misses. Note that this is the foundation for time-driven
cache attacks. Figure 2 shows the linear relationship between the encryption

An Analytical Model for Time-Driven Cache Attacks 405

 860

 870

 880

 890

 900

 910

 50 55 60 65 70 75 80 85

en
cr

yp
tio

n
tim

e
-

[c
lo

ck
 c

yc
le

]

number of cache misses

Fig. 2. Linear relationship between number of cache misses and execution time

time and the total number of cache misses for the AES algorithm on an arbi-
trary platform. The results were computed based on 100 million encryptions
of random data and averaging the encryption times of those that yield the
same number of cache misses. The non-linear effects of the outliers are due
to an insufficient number of those events.

Since the execution time is proportional to the number of cache misses, the
analytical model can draw on the number of cache misses instead of on the
execution time. Furthermore, using the exact number of cache misses will assure
a lower bound on N since any practical measurement score for the number of
cache misses will be noisier than the actual number as can be observed from the
outliers in figure 2 for which insufficient samples were available to average out
the noise.

We will now derive the individual components of equation 3. Since the cache
accesses are independent, the 1st and 2nd moment of the number of cache misses
equal the sum of the moments of the T tables used in the cryptographic cipher
operation, as shown in equation 4. Mt denotes the number of cache misses due
to accesses to table t.

E (M) =
T∑

t=1

E (Mt) ; E
(
M2
)

=
T∑

t=1

E
(
M2

t

)
(4)

As a result, we can concentrate on calculating the moments for a single lookup
table and combine them afterwards. It can be shown that the probability Pk,l(j)
that of a table occupying l cache lines exactly j cache lines are accessed after
k accesses to the table is expressed by equation 5, where Cr

n: is the binomial

406 K. Tiri et al.

coefficient expressing the number of combinations of r items that can be selected
from a set of n items.

Pk,l(j) =

Cj
l

(
j∑

i=1

(−1)j−iCi
ji

k

)

lk
(5)

Using these probabilities, the expected value of the number of cache misses
E(M) and the variance on the number of cache misses E(M2) − E(M)2 for k
accesses to a table occupying l cache lines can be calculated as in equations 6
and 7 respectively. A simple expression for the expected value can be derived by
noting that the probability of a single cache line not being loaded into the cache
after k accesses to l cache lines is (1−1/l)k. As a result, the expected number of
cache lines that are not loaded becomes l− (1− 1/l)k and the expected number
of lines that are loaded μM (k, l) equals l − l · (1 − 1/l)k.

μM (k, l) =
l∑

j=1

j · P(k,l)(j) = l − l ·
(

l − 1
l

)k

(6)

σ2
M (k, l) =

l∑

j=1

j2 · P(k,l)(j) − μ2
M (k, l) (7)

For ease of calculation, we now adjust the estimation to output a 1 if a cache
hit has been predicted and a 0 if a cache miss has been predicted. This only
changes the sign of the correlation coefficient with respect to our earlier assump-
tion that the estimation outputs a 0 for a cache hit and a 1 for a cache miss as
ρ(A −X, Y) = −ρ(X, Y) with X , Y random variables and A constant.

To find the 1st and 2nd moment of the estimations, we note that the estimation
is either a 1 or a 0. Only the 1 value will contribute to the moments, which are
thus equal to 1 · P (E = 1) and 12 · P (E = 1), with P (E = 1) the probability
of having an estimation equal to 1. To find P (E = 1), we need to differentiate
between the 2 estimation models. For the table index estimation, the probability
that 2 independent accesses to a table use the same table index is equal to 1/r,
with r the number of elements in the table. For the cache line estimation, the
probability that 2 independent accesses use the same cache line is equal to 1/l,
with l the number of cache lines occupied by the table. The expected value of
the estimated number of cache misses E(E) and the variance on the estimated
number of cache misses E(E2)−E(E)2 can be calculated as in equations 8 and 9
respectively.

μE |T IE
=

1
r

; μE |CLE
=

1
l

(8)

σ2
E = μE − μ2

E (9)

Finally, to find E(E.M), we need to differentiate between the table of interest
and the other tables that are part of the cryptographic cipher operation. For

An Analytical Model for Time-Driven Cache Attacks 407

the tables that are not of interest, the estimation and the measurements are
independent and E(E ·M) is simply E(E) ·E(M). For the table of interest, only
the estimation with value 1 will contribute to the moment and E(E ·M) is equal
to P (E = 1) · 1 · μH(k, l) where μH(k, l) is the expected number of cache misses
with k accesses to l cache lines when a cache hit is correctly estimated. Since
a cache hit will occur we can ignore the first access and the expected number
of cache misses is the expected number of cache misses for the remaining k − 1
accesses:

μH(k, l) = μM (k − 1, l) (10)

Using the previous equations and derivations, the correlation coefficient be-
tween the estimations and the measurement score observing the cache misses of
T tables, with table T the table of interest, is equal to:

ρ =

μE ·
(

T−1∑

t=1

μM (kt, lt) + μH(kT , lT)

)

− μE ·
(

T−1∑

t=1

μM (kt, lt)

)

σE

√√√
√

T∑

t=1

σ2
M (kt, lt)

(11)

=
μE · μD(kT , lT)

σE

√√
√
√

T∑

t=1

σ2
M (kt, lt)

where μD(kT , lT) = μH(kT , lT)− μM (kT , lT)

=
(

lT − 1
lT

)kr−1

Combining equation 2 and equation 11 results in the analytical model for
time-driven cache attacks:

N =
2 · Z2

α

μ2
E

σ2
E
· μ2

D(kT ,lT)

T∑

t=1

σ2
M (kt, lt)

(12)

As an example, for the last round correlation attack using the cache line es-
timation to attack the OpenSSL AES implementation running on a processor
with cache lines of length 64 bytes, N can be found by noting that in addition to
the 16 accesses to the table of interest Te4, which occupies 16 cache lines, there
are 36 accesses to each of the other 4 tables Te0, Te1, Te2 and Te3, which each
also occupy 16 cache lines. With a probability for success equal to 0.99, the re-
sulting expected number of measurements for success N is forecasted to be 6592:

408 K. Tiri et al.

M
2

D

cache misses

cache miss
distribution
of all tables
with cache
collision in
table of
interest

f(X
)/ cache miss

distribution
of all tables

T-1

M+ H
T

M

Fig. 3. Cache miss probability distribution (not drawn to scale)

N |
α=0.99 =

11
1/162

1/16−1/162 · μ2
D(16,16)

4·σ2
M (36,16)+σ2

M (16,16)

= 6592 (13)

Equation 14 tells us that for the same implementation on the same platform,
the cache line estimation attack is about r/l times more effective than the table
index estimation attack. This means for instance that in order to attack a regular
OpenSSL implementation on a platform with 64 byte cache lines 16 times less
measurements are needed when the cache miss estimation is based on cache
collisions instead of internal collisions.

N |
TIE

N |CLE

=
μ2

E

σ2
E
|CLE

μ2
E

σ2
E
|T IE

≈ r

l
(14)

Equation 15 tells us that the analytical model is based on the signal-to-noise
ratio that is present in the measurements and hence is independent of the actual
method a time-driven attack with a given estimation model uses to select the
secret key fragment. Indeed, for the same attack on two different implementations
A and B on the same platform, the increase in resistance can be expressed as
follows:

NB

NA
=

μ2
D(kTA

,lTA
)

TA∑

tA=1

σ2
M (ktA , ltA)

μ2
D(kTB

,lTB
)

TB∑

tB=1

σ2
M (ktB , ltB)

=
SNRA

SNRB
(15)

As can be seen in figure 3, μD is the distance between the distributions of
the expected number of cache misses and the expected number of cache misses
when a cache hit is correctly predicted. This is the signal that the adversary
tries to observe and μ2

D is the power that is present in this signal. The noise
of the measurements is the variance of the expected number of cache misses of
all tables which is equal to

∑
σ2

M . The increase in resistance NB/NA is thus

An Analytical Model for Time-Driven Cache Attacks 409

SNRA/SNRB, which is the ratio between the signal-to-noise ratios of the two
implementations.

4 Experimental Results

The following 5 AES implementations or attack scenarios have been used to
experimentally verify the correctness of the analytical model:

– OSSL (OpenSSL): The original OpenSSL implementation of the AES algo-
rithm using 5 lookup tables Te0, Te1, Te2, Te3, and Te4, each of length 1024
bytes.

– CLR (Compact Last Round): OSSL but the last round employs a single
compact S-box table of length 256 bytes instead of table Te4.

– NOT4 (NO table Te4): OSSL but the last round is implemented without the
use of table Te4. Instead tables Te0, Te1, Te2, and Te3 are used.

– 2ENC (2 ENCryptions): OSSL observed by a limited adversary that is only
able to observe the aggregated effect of 2 encryptions.

– OT4 (observe Only table Te4): OSSL observed by a powerful adversary who
is able to observe a single round. Note that the same effect can be obtained
by only cleaning out table Te4 but leaving tables Te0, Te1, Te2, and Te3 in
the cache.

All experiments have been repeated on 3 different platforms from 2 different
processor manufacturers with 2 different operating systems. Platform A and
platform B each have L1 cache lines of length 32 bytes, while platform C has
L1 cache lines of length 64 bytes. The length of the cache line is important as
it specifies the number of cache lines that a lookup table occupies. If perfectly
aligned in a processor with cache lines of length 32 bytes, a table of 1024 bytes
occupies 32 lines, while a table of 256 bytes occupies 8 cache lines. With 64 byte
cache lines, these tables occupy 16 and 4 cache lines respectively.

Since we are only interested in validating the correctness of the analytical
model, the last round correlation attack of section 2.1 has been mounted in a
single process setup and not with a spy and target process as would be the case
for an actual attack. In the process, the cache is cleaned before the encryption
of random plaintext data and the state of the performance counters, which have
been programmed to count the L1 cache misses, is read just before and just after
the encryption. A single measurement output consists of the ciphertext and the
measurement score for the number of L1 cache misses.

Unlike the timestamp counter, the performance counters are only accessible in
a high-privilege mode. Yet, a device driver and an application program interface
can be installed to use the counters at any privilege level. Hence, the security
evaluation of an implementation should be based on the measurement scores
provided by the performance counters as this is the worst case scenario. If an
adversary with access to the performance counters cannot succeed, then a more
realistic adversary cannot succeed either.

Table 1 shows the required number of measurements for a successful table in-
dex estimation attack, in which the cache miss estimation is based on the table

410 K. Tiri et al.

index of 2 table lookup operations. Table 2 shows the experimental results for
the cache line estimation attack, in which the cache miss estimation is based
on the cache line of 2 table lookup operations. The predicted results have been
computed with a probability of 0.99 to discover the secret key. The measure-
ment results are based on 100 assessments, except those that required a massive
amount of measurement and processing time, which have been marked with a
double dagger. For each assessment a new and random key has been generated.
Note that each table entry contains 2 results: the minimum and the median re-
quired number of measurements over the 100 assessments to successfully extract
the full 128-bit key. Figures 4 and 5 in the appendix are a graphic representation
of the data in tables 1 and 2.

The results attest that the model accurately predicts a strict lower bound
on the required number of measurements. Independent of the platform or the
implementation or the adversary’s observation capability, the prediction is lower
than but very close to the minimum required number of measurements. Note that
in order to obtain a prediction for the median required number of measurements,
the confidence level, or in other words Zα in equation 2 should be increased to
account for the fact that in the majority of the experiments the correct key
fragment would be extracted. Increasing the probability to discover the secret
key fragment to 0.999 returns an approximate number for the median required
number of measurements.

Table 1. Required number of measurements for a successful table index estimation
attack

32 byte cache line 64 byte cache line
measured (min/median)† measured (min/median)†

predicted
A B

predicted
C

OSSL 105K 150K/230K 140K/220K 112K 160K/270K
CLR 2.06M 2.23M/3.85M 2.03M/4.00M 66.8M 109M/160M‡

NOT4 430K 420K/880K 440K/830K 1.52M 1.64M/3.30M
2ENC 234K 290K/520K 340K/510K 278K 450K/825K

OT4 12.4K 15.0K/26.0K 17.0K/26.0K 30.1K 38.0K/79.0K
†based on 100 experiments

‡based on 10 experiments

Given that the analytical model accurately predicts the required number
of measurements, it is now possible to evaluate mitigated implementations for
which experimental results can not be obtained as too many measurements would
be required to extract the full 128-bit key. For instance the model forecasts that
changing the OpenSSL implementation to use a single compact S-box table of
length 256 bytes in the first and the last round increases the required number
of measurements to 9 · 109 (≈ 233) for an adversary that is capable to observe a
single encryption on contemporary platforms with 64 byte cache lines, while us-
ing an implementation that uses a single compact table in each round increases
the required number of measurements to 1023 (≈ 276).

An Analytical Model for Time-Driven Cache Attacks 411

Table 2. Required number of measurements for a successful cache line estimation
attack

32 byte cache line 64 byte cache line
measured (min/median)† measured (min/median)†

predicted
A B

predicted
C

OSSL 12.7K 21.1K/35.6K 20.0K/32.5K 6.59K 10.0K/17.5K
CLR 56.5K 55.0K/125K 82.0K/148K 787K 1.23M/2.18M‡

2ENC 28.5K 35.0K/75.6K 33.7K/75.0K 16.3K 28.7K/49.4K
OT4 1.50K 1.87K/3.75K 2.12K/3.75K 1.77K 4.12K/7.00K

†based on 100 experiments
‡based on 25 experiments

5 Conclusions

We have provided cryptographers and software developers with a tool to evaluate
the strength of their encryption algorithm or software implementation against
time-driven cache attacks. The analytical model accurately forecasts the strength
of a symmetric key cryptosystem based on a few simple parameters that describe
the adversary’s observation capabilities, the software implementation, and the
platform the algorithm is running on. The accuracy of the model has been con-
firmed with concrete measurement results for different implementations, attack
scenarios and platforms.

References

1. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Trace Driven Cache Attack on AES. e-print
of the IACR (2006), Available online at http://eprint.iacr.org/2006/138.pdf

2. Acıiçmez, O., Schindler, W., Koç, Ç.K.: Cache based remote timing attack on the
aes. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 271–286. Springer,
Heidelberg (2006)

3. Bernstein, D.J.: Cache-timing attacks on AES (2004), Available online at
http://cr.yp.to/papers.html#cachetiming

4. Bertoni, G., Zaccaria, V., Breveglieri, L., Monchiero, M., Palermo, G.: AES Power
Attack Based on Induced Cache Miss and Countermeasure. In: ITCC (1), pp. 586–
591. IEEE Computer Society, Los Alamitos (2005)

5. Bonneau, J., Mironov, I.: Cache-collision timing attacks against aes. In: Goubin, L.,
Matsui, M. (eds.) CHES 2006. LNCS, vol. 4249, pp. 201–215. Springer, Heidelberg
(2006)

6. Brickell, E., Graunke, G., Neve, M., Seifert, J.-P.: Software mitigations to hedge
AES against cache-based software side channel vulnerabilities. Cryptology ePrint
Archive, Report 2006/052 (2006), Available online at http://eprint.iacr.org/

7. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Side channel cryptanalysis of product
ciphers. Journal of Computer Security 8(2/3) (2000)

8. Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp.
104–113. Springer, Heidelberg (1996)

http://eprint.iacr.org/2006/138.pdf
http://cr.yp.to/papers.html#cachetiming
http://eprint.iacr.org/

412 K. Tiri et al.

9. Lauradoux, C.: Collision attacks on processors with cache and countermeasures. In:
Wolf, C., Lucks, S., Yau, P.-W. (eds.) Proceedings of Western European Workshop
on Research in Cryptplogy (WeWorc 2005). GI edn. Lecture Notes in Informatics
(LNI), p. 74. Bonner Köllen Verlag (2005)

10. Mangard, S.: Hardware countermeasures against dpa? a statistical analysis of their
effectiveness. In: CT-RSA, pp. 222–235 (2004)

11. Neve, M., Seifert, J.-P.: Advances on access-driven cache attacks on aes. Selected
Areas of Cryptography – SAC 2006, LNCS, vol. 4356, Springer, Heidelberg (to
appear, 2007)

12. OpenSSL. OpenSSL: the Open-source toolkit for SSL / TLS, Available online at
http://www.openssl.org/

13. Osvik, D., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The
Case of AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 1–
20. Springer, Heidelberg (2006)

14. Page, D.: Theoretical use of cache memory as a cryptanalytic side-channel. Techni-
cal Report CSTR-02-003, Department of Computer Science, University of Bristol
(June 2002)

15. Percival, C.: Cache missing for fun and profit (2005), Available online at
http://www.daemonology.net/hyperthreading-considered-harmful/

16. Tsunoo, Y., Saito, T., Suzaki, T., Shigeri, M., Miyauchi, H.: Cryptanalysis of DES
Implemented on Computers with Cache. In: Walter, C.D., Koç, Ç.K., Paar, C.
(eds.) CHES 2003. LNCS, vol. 2779, pp. 62–76. Springer, Heidelberg (2003)

Appendix

Figures 4 and 5 show the required number of measurements for a successful time-
driven cache attack obtained through the analytical model and obtained through
experimental results for the table index estimation and the cache line estimation
attack respectively. Note that these figures are a graphic representation of the
data in tables 1 and 2. For completeness, the description of the attack scenarios
is repeated below:

– OSSL: OpenSSL implementation of the AES algorithm.
– CLR: OSSL with compact S-box table in last round.
– NOT4: OSSL without table Te4 in last round.
– 2ENC: OSSL attacked by a limited adversary observing 2 encryptions.
– OT4: OSSL attacked by a powerful adversary observing only last round.

http://www.openssl.org/
http://www.daemonology.net/hyperthreading-considered-harmful/

An Analytical Model for Time-Driven Cache Attacks 413

nu
m

be
r

of
 m

ea
su

re
m

en
ts

 10K

 100K

 1M

 10M

 100M

OT4

OSSL

 2
ENC

NOT4
 C

LR

64 byte cache line

32 byte cache line

model
experimental
results

Fig. 4. Required number of measurements for a successful table index estimation attack

 1K

 10K

 100K

 1M

nu
m

be
r

of
 m

ea
su

re
m

en
ts

64 byte cache line

32 byte cache line

OT4

OSSL

 2
ENC

 C
LR

model
experimental
results

Fig. 5. Required number of measurements for a successful cache line estimation attack

Improving the Security of MACs Via

Randomized Message Preprocessing

Yevgeniy Dodis1 and Krzysztof Pietrzak2

1 New York University
dodis@cs.nyu.edu
2 CWI Amsterdam

k.z.pietrzak@cwi.nl

Abstract. “Hash then encrypt” is an approach to message authentica-
tion, where first the message is hashed down using an ε-universal hash
function, and then the resulting k-bit value is encrypted, say with a
block-cipher. The security of this scheme is proportional to εq2, where
q is the number of MACs the adversary can request. As ε is at least
2−k, the best one can hope for is O(q2/2k) security. Unfortunately, such
small ε is not achieved by simple hash functions used in practice, such as
the polynomial evaluation or the Merkle-Damg̊ard construction, where ε
grows with the message length L.

The main insight of this work comes from the fact that, by using ran-
domized message preprocessing via a short random salt p (which must
then be sent as part of the authentication tag), we can use the “hash then
encrypt” paradigm with suboptimal “practical” ε-universal hash func-
tions, and still improve its exact security to optimal O(q2/2k). Specif-
ically, by using at most an O(log L)-bit salt p, one can always regain
the optimal exact security O(q2/2k), even in situations where ε grows
polynomially with L. We also give very simple preprocessing maps for
popular “suboptimal” hash functions, namely polynomial evaluation and
the Merkle-Damg̊ard construction.

Our results come from a general extension of the classical Carter-
Wegman paradigm, which we believe is of independent interest. On a
high level, it shows that public randomization allows one to use the
potentially much smaller “average-case” collision probability in place of
the “worst-case” collision probability ε.

1 Introduction

Hash then Encrypt. A popular paradigm to message authentication is “hash
then encrypt”, where the authentication tag for a message m is computed as
f(h(m)) where h is a hash function and f a pseudorandom permutation (say
AES). This approach is appealing for several reasons: (1) it is stateless, (2) h
needs not to be a cryptographic hash function, but only ε-universal1 and (3) the
“slow” cryptographic f is then only applied on a short input (i.e. on the range
of h).
1 A family of hash functions H is ε-universal, if for any x �=x′, Prh←H[h(x)=h(x′)] ≤ε.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 414–433, 2007.
c© International Association for Cryptologic Research 2007

Improving the Security of MACs Via Randomized Message Preprocessing 415

As f is indistinguishable from a uniformly random permutation, everything an
attacker learns about h(m1), h(m2), . . . from the authentication tags f(h(m1)),
f(h(m2)), . . . is whether there is a collision (as f(h(mi)) = f(h(mj)) iff h(mi) =
h(mj)). Since h is not cryptographic, finding such a collision is usually enough
for an adversary to come up with a forgery for a new message. If f is over {0, 1}k

(say, f is AES-128 where k = 128) then by the birthday bound the best security
we can hope for is something in the order of q2/2k where q = qmac + qforge is the
number of MAC queries and forgery attempts the adversary is allowed to make.
More precisely, assuming that f is ideal (i.e. a uniform random permutation),
the probability of a successful forgery can be upper bounded by2

ε · q2
mac + ε · qforge

As ε ≥ 1/2k the best one can hope for by the “hash then encrypt” approach is
O(q2/2k) security. In the sequel, we will call this optimal security.

Using Suboptimal Hash Functions. Unfortunately, hash functions used in
practice, such as polynomial evaluation and the cascade (aka Merkle-Damg̊ard)
construction3, do not yield optimal security, since the value ε they achieve grows
linearly with the length of the message. There are several ways to improve the
exact security with such hash functions. Most obviously, one can increase the
security parameter k. However, this does not regain the optimal security relative
to this larger k (although the absolute exact security is improved). More crit-
ically, increasing k is typically not an option in practice, since k is tied to the
block length of the block cipher which is usually fixed (say, to 128 bits for AES)
and pretty inflexible to any changes.4 Another option is to design a different ε-
universal hash function achieving optimal ε = O(1/2k). For one thing, replacing
existing and popular implementations is not so easy in practice, so this option
is usually ruled out anyway. More importantly, and this is part of the reason
practical hash functions are not “optimally universal”, O(1/2k)-universal hash
functions tend to be much less efficient or convenient than their slightly sub-
optimal counter-parts. For example, achieving perfect ε = 1/2k requires a key
of size L [23], where L is the length of the message, which is very impracti-
cal. In theory, one can achieve ε = 2/2k by composing a “practical” δ-universal
hash function from L to k + � bits, where � is chosen large enough to bring δ
below 1/2k (typically δ = O(L)/2k+� which gives � = log(L) + O(1)), with the
2 If f is not ideal but a pseudorandom permutation, then there should also be a term

counting the insecurity of f . However, since this term is always the same and is
independent of the hash component, we will omit it from all our bounds.

3 This construction uses a fixed input length shrinking function iteratively in order
to get a function for arbitrary long inputs. In this paper we always assume that the
iterated function is ideal, i.e. a uniformly random function.

4 Though, if one is willing to make two invocations to the block-cipher, one can use
it in CBC-mode in order to get a {0, 1}2k → {0, 1}k PRF, which can then be used
instead of the block-cipher. This mode of operation should not be called “hash then
encrypt”, as the application of the (shrinking) PRF is not invertible, i.e. not an
encryption scheme.

416 Y. Dodis and K. Pietrzak

perfectly universal hash function from k+� to k bits, whose key is then only k+�
bits long. In practice, however, this composition is quite inconvenient to imple-
ment. Aside from the obvious inefficiency that the key size is at least doubled
compared to using practical hash functions, the latter are usually optimized to
operate on a specific value of k, and do not extend easily to larger outputs k + �,
even if � is very small. For example, the polynomial evaluation function with
k = 128 corresponds to performing fast field operations over GF (2128), which
could be implemented in hardware. In contrast, evaluating field operations over
GF (2128+�) would be much slower even for � = 1, since a 129-bit element would
not fit into a register. Similarly, the cascade construction typically uses a very
specific compression function with fixed k, which is usually undefined for larger k.

To summarize, in practice the “hash then encrypt” paradigm does not achieve
optimal exact security O(q2/2k).

The question addressed in this paper is whether one can reclaim — with lit-
tle extra cost — the optimal exact security of the “hash then encrypt” MAC
when using such popular but sub-optimal ε-universal hash functions. Moreover,
we would like a solution which does not change the value of k and does not
modify the internals of the underlying hash function, so that our solution can be
easily applied to existing implementations. Finally, the solution should remain
stateless. Quite surprisingly, we answer this question in the affirmative for the
popular polynomial evaluation and the cascade constructions, by using random-
ized message preprocessing before applying the actual MAC. We motivate our
approach below.

Using Randomization. Recall, a hash function is ε-universal if the collision
probability of two messages is at most ε for all possible message pairs. But the
actual collision probability could be much smaller for most pairs. To illustrate
this on an example, let us consider the polynomial-based ε-universal hash func-
tion: here the message m ∈ {0, 1}Lk is viewed as a degree (L − 1) polynomial
fm over GF (2k), the secret key s is an element of GF (2k), and hs(m) is the
value of the polynomial fm at s. Given two distinct messages m1 and m2, their
probability of collision is r/2k, where r is the number of roots of the non-zero
polynomial g = fm1 − fm2 . Although g can have up to (L − 1) roots for some
pairs (m1, m2), Hartman and Raz [11] showed that the fraction of polynomials
(of any degree) with t roots decays proportional to 1/t!, which means that a
vast majority of polynomials have at most a constant number of roots. Thus, a
vast majority of pairs (m1, m2) have collision probability O(1/2k) rather than
the worst-case bound (L − 1)/2k.

This brings up the following idea to improve the security of a MAC based on
the “hash then encrypt” paradigm: apply some randomized preprocessing func-
tion m′ = Pre(m, p) to the message m (where p is a fresh random salt), and
return (p, f(hs(m′))) as the randomized MAC of m. The hope is that preprocess-
ing should thwart the attempts of the adversary to choose messages which have
a large collision probability and thus increase the security of the MAC. To put
it differently, by designing a clever randomized message preprocessing, we will
try to ensure that two processed messages cannot collide with probability more

Improving the Security of MACs Via Randomized Message Preprocessing 417

than O(1/2k), even if the worst-case ε is much larger. Another advantage of
preprocessing comes from the fact that the original “suboptimal” MAC is used
in a “black-box” manner, while suddenly becoming more secure!

Of course, there is a price we need to pay for regaining optimal exact security:
we need to tell the receiving party how we randomized the message. Thus, aside
from showing that randomized message preprocessing can always yield optimal
exact security, — which is a non-obvious statement we will prove later, — the
secondary objective is to minimize the number of random bits needed to avoid
“bad” message pairs in a given ε-universal family.

The Salted Hash Function Paradigm. To capture the intuition just de-
scribed, we introduce the concept of salted (εforge, εmac)-universal hash func-
tions. As the name suggests, the key of such a function has two parts, a “secret”
part and a “public” salt. If the salt is empty, then εforge = εmac and we have a
usual ε-universal hash function with ε = εforge. Here εforge is an upper bound
on the probability (over a choice of the secret key) that the hash values of two
messages collide when the adversary can choose the messages and the public salt
for both hashes, and εmac is the same probability but where at least one of the
two public salts is chosen at random (clearly we always have εforge ≥ εmac).

From such a salted hash function we can construct a MAC-scheme like from
the usual ε-universal hash function (i.e. “hash then encrypt”), but where for
every message to be authenticated the public salt is chosen at random and must
be sent as a part of the authentication tag. As our first result, we generalize
the standard “one-key” hash then encrypt MAC and show that the generalized
MAC has security

εmac · q2
mac + εforge · qforge

In particular, to get optimal O(q2/2k) security here it is sufficient to have εmac

in the order of 1/2k, while εforge can be considerably larger.
We also remark that the above salted hash paradigm is strictly more general

than the “randomized preprocessing paradigm” advertised earlier. In particular,
the latter corresponds to the salted hash functions of the form hs(Pre(m, p)),
where Pre(m, p) is the preprocessing map. However, we find it more intuitive
to state some of results for the general salted hash paradigm (which also makes
them more general).

Salted Hash Functions with Short Salt. In this paper we propose ran-
domized preprocessing mechanisms for several ε-universal hash functions and
show that this turns them into (εforge, εmac)-universal ones with εforge ≈ ε and
εmac = O(1/2k). Moreover, in each case we use a very short public salt p.

Our first result is very general. In §4 we show (non-constructively) that for
every balanced ε-universal hash function (where ε = ε(L) can grow polynomially
in the length of the messages L; i.e., ε(L) = Lc/2k for some constant c) there
is a randomized preprocessing using only O(log L) random bits which gives an
(εforge, εmac)-universal hash function with εforge ≈ ε and εmac = O(1/2k).
Although this result is non-constructive (i.e., the preprocessing map is inefficient
and is only shown to exist), we believe the result is interesting given its generality.

418 Y. Dodis and K. Pietrzak

Construction ε length length of domain

εforge εmac hash key public salt

(εforge, εmac)-universal hash functions from ε-universal ones

Generic: for each balanced H(.) as below there is a permutation g(.) such that

H(.) Lc/2k key for H − {0, 1}L

 H(g(.)) (L + �)c/2k 2/2k key for H � ≈ (2c+1) log(L) {0, 1}L

Construction based on polynomial evaluation over GF (2k)

poly (L−1)/2k k − ({0, 1}k)≤L

polyGF (2k) L/2k 1/2k k k ({0, 1}k)≤L

� polyP L/2k 2/2k k 3 log(L)+log(k) ({0, 1}k)≤L

Cascade (Merkle-Damg̊ard) based on function func : {0, 1}k+b → {0, 1}k

MD L/2k key for func − {0, 1}bL

MDR (L + 1)/2k 2/2k key for func log(L) {0, 1}bL

(εforge, εmac)-Δ universal hash functions from ε-Δ universal ones

Generic: for each H(.) as below there is a “small” set P such that

H(.) Lc/2k key for H − {0, 1}L

� generic HP(.) (L + �)c/2k 2/2k key for H � ≈ (2c+1) log(L) {0, 1}L

Fig. 1. Parameters for the hash functions considered in this paper. A leading
 denotes
a non-constructive, and a leading � a non-uniform result. The bounds for the cascade
construction assume that func is a uniform random function, also the higher order
terms that appear in the bounds for this construction are omitted in this table.

Our next results involve simple and efficient implementations of the above
generic result for popular ε-universal hash functions, such as the polynomial
evaluation (denoted poly in the sequel) and the cascade (aka. Merkle-Damg̊ard)
construction. We describe these results in more details in §5 and §6, but mention
that in each case we manage to design extremely simple preprocessing maps using
an O(log L)-bit public salt promised by the generic existence result: roughly, in
the cascade construction we simply append a random string, and for poly the
map consists of prepending a string chosen from a small set. Unfortunately the
construction for poly is only non-uniform, i.e. we prove that maps with a succinct
description (of length O(L3)) exist, but do not give a specific map that works.
Fortunately, we can show that almost all such succinct descriptions yield a good
map, so one can just sample and “hardwire” a random string which will then
define a good map almost certainly.

As our final result in §7, for hash functions which satisfy the slightly stronger
property of being ε-Δ universal [16], we also show a constructive general result
stating that we can always regain the optimal security by doing O(log L)-bit
postprocessing instead of preprocessing. By this we mean randomizing the hash

Improving the Security of MACs Via Randomized Message Preprocessing 419

value hs(m), rather than the message m, with an O(log L)-bit public salt p.
Moreover, we do not need the hash function to be balanced (which is necessary
for the general result with preprocessing).

Figure 1 summarizes our results (see future sections for some of the notation).
In Section §8 we give a numerical example to illustrate what security can be
gained by using “salted” hash then encrypt. In Section §9 we review some related
work and give some open problems.

2 Notation and Basic Definitions

For any integer x ≥ 0 we denote by 〈x〉k its binary representation padded
with leading 0’s to length k, e.g. 〈7〉5 = 00111. For two strings A, B we de-
note with A‖B their concatenation. For k ∈ N we define Bk

def= {0, 1}k and
B≤i

k
def= ∪j=1...iB

j
k to be the set of all strings of length at most i k-bit blocks. For

a set X we denote with x ← X that x is sampled uniformly at random from X .

Definition 1 (ε-almost 2-universal hash function). A hash function H :
S × X → Y is ε-almost 2-universal if for all x, y ∈ X ,x �= y and hs(.)

def= H(s, .)

Pr[s ← S; hs(x) = hs(y)] ≤ ε

To save on notation we only write “ε-universal” for “ε-almost 2-universal”. We
also often consider the case where ε = ε(X) can be a function of the message
space X .

3 Salted Hashing and MACs

In this section we first review the “hash then encrypt” approach for message
authentication. We then define salted universal hash functions, which are a ran-
domized version of normal ε-universal hash functions. Based on such hash func-
tions, we propose a randomized version of “hash then encrypt” and show that
its security is mainly bounded by the “average-case” collision probability of the
salted hash function, which can be much smaller than the “worst-case” proba-
bility which appears in the bound of the standard hash then encrypt approach.
We now define what we mean by (the security of) a randomized MAC. Let us
note that the definition given below becomes the standard definition for (deter-
ministic) MACs when R is a singleton set.

Definition 2 (Randomized MAC). A randomized message authentication
scheme MAC is a function S ×X ×P → Y. P is the randomness-space, S is the
(secret) key-space, X the message domain and Y the tag-space.

We denote with FRGMAC(qmac , qforge) the advantage of any adversary A in
finding an existential forgery for MAC where A is allowed to ask for at most
qmac MACs and make qforge forgery attempts. More formally we consider the
following experiment: first s ← S is sampled, then A may query the MACing
oracle, which

on input m outputs (MAC(s, m, p), p) where p ← P

420 Y. Dodis and K. Pietrzak

at most qmac times and a verification oracle which

on input (m, a, p) outputs 1 if MAC(s, m, p) = a and 0 otherwise.

at most qforge times. Now FRGMAC(qmac, qforge) is an upper bound on the proba-
bility that any A succeeds in receiving 1 from the verification oracle on an input
(m, a, p) where he did not already receive the output (a, p) on input m from the
MACing oracle. Note that the adversary may choose the salt p when querying
the verification oracle, but the MACing oracle chooses the p at random.

This definition is an information theoretic one as we did only bound the number
of queries A is allowed to make but we make no other computational assumption.
We can do this as we will consider only MACs which as a final step involve an ap-
plication of a uniform random permutation. In reality one would have to replace
this uniform random permutation (URP) with a pseudorandom permutation
(PRP), as otherwise the construction is not practical, and to restrict the above
definition to computationally bounded adversaries (as unbounded adversaries
can distinguish a PRP from a URP). The security of such a computational MAC
then can be upper bounded by FRGMAC(qmac , qforge) + AdvPRP where AdvPRP is
the distinguishing advantage for the pseudorandom permutation of the adver-
sary considered. From now on, we will no longer mention this simple fact. The
following proposition is well known.

Proposition 1 (Security of hash then encrypt). Let H : S × X → Y be
ε-universal and f(.) a uniform random permutation over Y.

If 1/(|Y| − qmac) ≤ ε, then the MAC scheme with secret key s ← S where the
authentication tag for a message m ∈ X is computed as

MAC(s, m) = f(hs(m))

has security
FRGMAC(qmac, qforge) ≤ ε · q2

mac + ε · qforge
We do not prove this proposition, as it is just a special case of Theorem 1 below.

We now define the concept of salted hash functions described in the introduc-
tion.

Definition 3 ((εforge, εmac)-almost 2-universal salted hash function).
A hash function H : S×X ×P → Y is (εforge, εmac)-universal if (below x1, x2 ∈
X , p1, p2 ∈ P and hs(., .)

def= H(s, ., .))

εforge ≥ max
(x1,p1) �=(x2,p2)

Pr[s ← S; hs(x1, p1) = hs(x2, p2)]

εmac ≥ max
x1,x2,p1

Pr[s ← S; p2 ← P ; hs(x1, p1) = hs(x2, p2) ∧ (x1, p1) �= (x2, p2)]

Every ε-universal hash function is an (ε, ε)-universal salted hash function with
P = ∅. We can now generalize the hash then encrypt paradigm to salted hash
functions.

Improving the Security of MACs Via Randomized Message Preprocessing 421

Theorem 1 (Security of salted hash then encrypt). Let H : S×X×P → Y
be (εforge, εmac)-universal and f(.) a uniform random permutation over Y.

If 1/(|Y| − qmac) ≤ εforge,5 then the MAC scheme with secret key s ← S
where the authentication tag for a message m ∈ X is computed by first sampling
p ← P and then setting

MAC(s, m, p) = (f(hs(m, p)), p)

has security

FRGMAC(qmac , qforge) ≤ εmac · q2
mac + εforge · qforge

Proof. Instead of bounding FRGMAC(qmac, qforge) we bound the (larger) probabil-
ity P that any adversary A can forge a MAC or he finds a collision. By a collision
we mean that two outputs (a1, p1),(a2, p2) from the MACing oracle on two (not
necessarily distinct) queries m1 and m2, satisfy a1 = a2 and (m1, p1) �= (m2, p2).

Let Pcol denote the probability that a collision occurs before A found a forgery,
and Pfrg be the probability that A found a forgery before any collision occurred,
so P = Pcol +Pfrg. Below we bound Pcol ≤ εmac · q2

mac and Pfrg ≤ εforge · qforge
which then proves the theorem.

We can bound Pcol ≤ εmac · q2
mac as follows: first, we can assume that A

makes no forgery attempts (as trying to forge can only lower the probability of
finding a collision before there was a successful forgery). Now we will show that
for any 1 ≤ i < j ≤ qmac, the probability that the first collision is amongst the
i’th and j’th query is at most εmac: as we are interested in the first collision,
we can assume that i = 1 and j = 2, as making any intermediate queries
can only lower the success probability (to see this, note that because of the
application of the uniform random permutation, all the adversary learns about
the outputs of the hash function is whether there were collisions or not). Next,
for an adversary which makes only two queries, εmac is a trivial upper bound
on the collision probability (even if we allow A to choose the salt for the first
query). Applying the union bound we get that the probability that there are
any i, j, 1 ≤ i < j ≤ qmac such that the i’th and j’th output collide, is at most
εmac · qmac · (qmac − 1)/2, which thus is an upper bound for Pcol.

We will now prove the bound Pfrg ≤ εforge · qforge . For any j, 1 ≤ j ≤ qforge ,
let Pj denote the probability that the j’th forgery query is the first successful
forgery and there was no collision before this forgery attempt. We will show
Pj ≤ εforge, this proves Pfrg ≤ εforge · qforge as Pfrg =

∑qforge
j=1 Pj . To upper

bound Pj we can assume that A skips the j − 1 first forgery attempts (this can
only increase the success probability of the considered forgery attempt to be
the first successful forgery). Moreover we allow A to chose all the salts for his

5 This is satisfied if the hash function is input shrinking and εforge is at least slightly
bigger than the optimal 1/|Y|, which is the setting that interests us. To see that
the restriction is necessary, consider a hash function which is a permutation on
X ×P ≡ Y, then εforge = εmac = 0, but the forgery probability is not 0 as a random
guess will always be successful with prob. 1/|Y|.

422 Y. Dodis and K. Pietrzak

(up to qmac) MACing queries he can ask before his forgery attempt. Again, this
can only increase his success probability.

So we must upper bound (by εforge) the probability of any A winning the
following game: A gets σi = f(hs(xi)) for i = 1, . . . , k (with k ≤ qmac) and xi’s
of his choice. Then he must come up with a σ, x (where x �= xi for all 1 ≤ i ≤ k).
He wins if f(hs(x)) = σ and σi �= σj for all 1 ≤ i < j ≤ k.

If A chooses a σ where σ �= σi for all i = 1, . . . , k, then the success prob-
ability (even conditioned on all σi being distinct), is at most 1/(|Y| − k) ≤
1/(|Y| − qmac) ≤ εforge (the last step by assumption), as then Pr[f(hs(x)) =
σ] ≤ Pr[f(hs(x)) = σ|∀i, 1 ≤ i ≤ k : hs(xi) �= hs(x)] = 1/(|Y| − k), here the
first step used that if hs(xi) = hs(x), then σ = σi, and the second used that
f is a uniform random permutation and thus if hs(x) is new, then f(hs(x)) is
uniformly random over Y \ {σi, . . . , σk}.

Now consider the other case, i.e. when A chooses a σ where for some i : σ = σi.
From this A we construct an adversary A′ which has at least the same probability
of winning as follows. A′ runs A and answers each of A’s queries x1, . . . , xk

with uniformly random but distinct σ′
1, . . . , σ

′
k. When now A outputs his forgery

attempt (σ = σ′
i, x), A′ makes the single MACing query xi, gets σi and outputs

the forgery attempt (σ = σi, x). It’s not hard to verify that A′ success probability
is at least the one of A (it can be larger as A′ will never lose the game due to
collisions amongst the σ1, . . . , σk, as he only asks one for each σi). Moreover A′’s
success probability is at most εforge as A′ just chooses two values x, xi before
even using any oracle, and then wins if hs(x) = hs(xi). $%

4 A Generic Construction

In this section we show that for every balanced ε-universal hash function H ,
where ε can even grow polynomially in the message length L, there exists a
preprocessing using only O(log L) random bits, which makes the hash function
(εforge, εmac)-universal where εforge ≈ ε and εmac is of the smallest possible
order.

Let H : S×{0, 1}∗ → {0, 1}k be ε(.)-almost 2-universal, by this we mean that
for all x1, x2 ∈ {0, 1}∗ where x1 �= x2, � = max{|x1|, |x2|} and hs(.)

def= H(s, .)

Pr[s ← S; hs(x1) = hs(x2)] ≤ ε(�)

Definition 4. A hash function H as above is balanced if for all � ≥ k, s ∈ S
and y ∈ {0, 1}k

Pr[x ← {0, 1}�; hs(x) = y] = 2−k

The following lemma states that from any such hash function H which is ε(.)-
almost 2-universal and balanced we can get (non-constructively) a (εforge, εmac)
salted hash function (with domain {0, 1}L for any L > k) where εmac = O(2/2k)
and εforge = ε(L + r). Here r is the length of the public salt and if ε(L) =
O(Lc/2k) we will get r ≈ (2c + 1) log(L).

Improving the Security of MACs Via Randomized Message Preprocessing 423

The construction is very simple, the salted hash function with key s ∈ S, salt
p ∈ {0, 1}r and message x is computed as hs(g(p‖x)) for some permutation g
(we show that a random permutation is appropriate with high probability).

Lemma 1. Let H : S × {0, 1}∗ → {0, 1}k be a balanced ε(.)-almost 2-universal
hash function. Fix some integer L ≥ k and let r be the smallest integer satisfying

2r ≥ 22k · ε(L + r)2 · (2L + r)
log(e)

(1)

then there exists a permutation g over {0, 1}L+r s.t. the salted hash function
H ′ : S × {0, 1}L × P → {0, 1}k with P = {0, 1}r defined as

H ′(s, m, p) def= H(s, g(p‖m))

is (εforge, εmac)− universal with εforge = ε(L + r) εmac = 2/2k.

Proof. Let R
def= 2r and gi(m) def= g(i‖m). The bound on εforge is straightforward:

εforge = max
x1,x2∈{0,1}L,p1,p2∈{0,1}r,(p1,x1) �=(p2,x2)

Pr[s ← S; hs(gp1(x1)) = hs(gp2(x2))]

= max
y1,y2∈{0,1}L+r,y1 �=y2

Pr[s ← S; hs(y1) = hs(y2)]

= ε(L + r)

Above we used that (p1, x1) �= (p2, x2) implies y1 �= y2 which holds as y1 =
g(p1‖x1) and y2 = g(p2‖x2) and g is a permutation.

The proof for εmac is by the probabilistic method. We will show that a per-
mutation g chosen at random has the desired property with probability > 0. For
any a, b ∈ {0, 1}L and i, j ∈ {0, 1}r let Ci,j,a,b denote the random variable (the
probability is over g)

Ci,j,a,b = Pr[s ← S; hs(gi(a)) = hs(gj(b))]

As hs is balanced we have for any (i, a) �= (j, b) : E[Ci,j,a,b] ≤ 1/2k, and as hs is
ε(.)-almost 2-universal and |gi(a)| = |gj(b)| = L + r

Ci,j,a,b ≤ ε(L + r)

Let
Ci,a,b =

∑

j∈{0,1}r ,(i,a) �=(j,b)

Ci,j,a,b (2)

As the sum ranges over R terms (resp. R− 1 if a = b) we have E[Ci,a,b] ≤ R/2k.
We can apply Hoeffding’s inequality (see Appendix A), for the case a �= b (then
the sum in eq.(2) has exactly R terms, if a = b then we have only R − 1 terms
and can use the same bound as proven below) we get

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp
(
− 2 · (R/2k)2

R · ε(L + r)2

)
≤ 2−2L−r

424 Y. Dodis and K. Pietrzak

Where in the last step we used (1) (recall that R
def= 2r). So there is a g such

that Ci,a,b ≤ 2 · E[Ci,a,b] ≤ 2R/2k for all i ∈ {0, 1}r and a, b ∈ {0, 1}L, for this g

εmac = max
i∈{0,1}r

a,b∈{0,1}L

Pr[j ← {0, 1}r; s ← S; hs(gi(a)) = hs(gj(b)) ∧ ((i, a) �= (j, b))]

= max
i∈{0,1}r ,a,b∈{0,1}L

R−1
∑

j∈{0,1}r ,(i,a) �=(j,b)

Ci,j,a,b

= R−1 max
i∈{0,1}r,a,b∈{0,1}L

Ci,a,b

≤ 2−k+1 $%

5 poly: Hashing by Polynomial Evaluation

A popular way of ε-almost universal hashing is to parse the message into coef-
ficients of a polynomial over some field (we will use GF (2k)) and evaluate it on
a random point. We propose a simple randomized preprocessing for this hash
function: just set the constant coefficient at random. If this coefficient is set uni-
formly at random, this gives a salted hash function with an optimal εmac = 1/2k.
We then show that one can also sample the coefficient from a small set, thus
using fewer randomness, and still achieve an almost optimal εmac ≤ 2/2k. We
will come back to this construction later in Section 7, where we prove some
generic results which imply Lemma 3 and Lemma 4 from this section (though
with somewhat worse parameters).

Definition 5. For M = (M1, . . . , Mm) (each Mi ∈ GF (2k) ∼= Bk) we denote
with fM (.) the polynomial of degree m− 1 over GF (2k) given by

fM (x) =
m∑

i=1

Mi · xi−1

Definition 6. With poly we denote the hash function which on input M ∈
GF (2k)∗ ∼= B∗

k with key s ← GF (2k) is computed as polys(M) = fM (s).

Lemma 2 (see [22]). poly with domain B≤L
k is ε-almost universal with ε =

(L − 1)/2k.

Definition 7. polyGF (2k) is the salted hash function with secret key part s ←
GF (2k) and public salt p ← GF (2k) which on input M ∈ B∗

k is computed as

polyGF (2k)
s,p (M) = f(p,M)(s)

Lemma 3. polyGF (2k) with domain B≤L
k is (εforge, εmac)-universal where

εforge = L/2k (3)
εmac = 1/2k (4)

Improving the Security of MACs Via Randomized Message Preprocessing 425

The bound on εforge follows from Lemma 2, and the bound on εmac is obvious.
We now consider another salted version of the poly hash function which is similar
to polyGF (2k) but where the public salt is not chosen from the whole of GF (2k)
but only from a subset P ⊂ GF (2k).

Definition 8. For any P ⊂ GF (2k) we denote with polyP the salted hash func-
tion with secret key part s ← GF (2k) and public salt p ← P which on input
M ∈ GF (2k)∗ ∼= B∗

k is computed as

polyPs,p(M) = f(p,M)(s)

We will show (constructively, but “non-uniformly”) that there is a “small” P
such that the construction is (εmac, εforge)-universal with εmac = 2/2k. Namely,
a random “small” P works with all but negligible probability (in particular,
once such P is chosen once, it can be fixed forever and “hardwired” into the
implementation).

Lemma 4. For any L ∈ N and a random subset P ⊂ GF (2k) of size |P| =
k(L+2)L2

log(e) , with probability 1−2−k (over the choice of P) the hash function polyP

with domain B≤L
k is (εforge, εmac)-universal with

εforge = L/2k (5)
εmac = 2/2k (6)

Proof. The bound (5) on εforge follows from Lemma 2 (and holds for any P).
To prove the bound (6) on εmac we must show that a P chosen at random has

the claimed property with probability 1− 2−k. For a polynomial f over GF (2k)
we denote with z(f) = |{x ∈ GF (2k) : f(x) = 0}| the number of zeros of f . Let
f be any polynomial over GF (2k) of degree at most L and (for some m to be
defined) let P = (p1, . . . , pm) denote a subset of GF (2k) sampled uniformly at
random (with repetition).

Xi denotes the random variable z(fi) where fi is f + pi (i.e. f with pi added
to the constant coefficient). As pi is random we have Pr[fi(x) = 0] = 1/2k for
any x ∈ GF (2k) and thus

E[Xi] =
∑

x∈GF (2k)

Pr[fi(x) = 0] = 1

and as any polynomial of degree L has at most L roots

0 ≤ Xi ≤ L

Let S = X1 + X2 + . . . + Xm, we have E[S] = m and by the Hoeffding bound
[12]

Pr[S − E[S] ≥ m] = Pr[S ≥ 2m] ≤ exp
(
− m2

m · L2

)
(7)

426 Y. Dodis and K. Pietrzak

which for m = k(L+2)L2

log(e) is less than 2−k(L+2). Taking the union bound over all
2k(L+1) polynomials of degree ≤ L, we get the probability that (7) is not satisfied
for at least one of them is at most 2−k(L+2) · 2k(L+1) = 2−k.

To conclude the proof we must still show that any P which satisfies (7) for
all polynomials of degree ≤ L also satisfies (6). εmac is the maximum over M ∈
GF (2k)L+1 (with the first element from P , but we will not use that) and M ′ ∈
GF (2k)L of

εmac ≥ Prs←GF (2k),p←P [fM (s) = f(p,M ′)(s)]

Which for f = f(0k,M ′) − fM and fi = f + pi we can write as

Prs←GF (2k),p←P [f(s) + p = 0] =
m∑

i=1

Pr[p = pi]z(fi)/2k ≤ 2/2k

In the last step we used that we chose our P such that
∑m

i=1 z(fi) ≤ 2m for all
f and Pr[p = pi] = 1/m. $%

6 Cascade Construction

In his section we consider the Merkle-Damg̊ard construction. Here a preprocess-
ing which simply appends a few random bits to the message gives a salted hash
function with good parameters.

For a function ξ : {0, 1}k × {0, 1}b → {0, 1}k we denote with MDξ : B∗
b → Bk

the cascade (aka. Merkle-Damg̊ard) construction based on ξ which on input
M = M1‖ . . . ‖Mm, each Mi ∈ Bb, outputs Xm which is recursively defined as
X0 = 0k, and Xi = ξ(Xi−1, Mi).

Definition 9 (MDR). For k, b, L ∈ N where b ≥ log(L) we denote with MDRL :
BL−1

b → Bk the salted hash function whose secret key part is a uniformly random
function ξ : {0, 1}k × {0, 1}b → {0, 1}k and the public salt is r ← {0, 1}�log(L)�.
The randomized hash value on input M ∈ B∗

b is computed as

MDRL(M) = MDξ(M‖〈r〉b)

Lemma 5. MDRL : BL−1
b → Bk is (εforge, εmac)-universal with

εmac =
2
2k

+ O(L3/22k) (8)

εforge =
L

2k
+ O(L3/22k) (9)

Proof. The proof follows almost directly form Propositions 1 and 2 from [8].
Proposition 2 from [8] states that for a random ξ and any M �= M ′ ∈ BL

b

Prξ[MDξ(M) = MDξ(M ′)] ≤ L/2k + O(L3/22k)

Improving the Security of MACs Via Randomized Message Preprocessing 427

which directly gives the bound (9) on εforge. Proposition 1 from [8] states that
if M and M ′ differ in the last b-bit block, then an even better bound

Prξ[MDξ(M) = MDξ(M ′)] ≤ 1/2k + O(L2/22k)

applies. To bound εmac we can use that MDR adds a random last block r ←
{0, 1}�log(L)� to the message, which then will be equivalent to the last block of
the other message with prob. at most φ ≤ 1/L and we get

εmac ≤ (1 − φ) · 1
2k

+ φ · L

2k
+ O(L3/22k) ≤ 2

2k
+ O(L3/22k). $%

7 A Generic Construction from ε-Δ Universal Hash
Functions

In this section we consider hash functions which are not only ε-universal, but
satisfy the stronger notion of ε-Δ universality.

Definition 10 (ε-Δ universal hash function [16]). A hash function H :
S × X → Y, where Y is an additive Abelian group, is ε-Δ universal if for all
x, y ∈ X ,x �= y and c ∈ Y

Pr[s ← S; hs(x) − hs(y) = c] ≤ ε

It is easy to see (and stated as Proposition 2 below) that adding a value chosen
uniformly at random to the output of a ε-Δ universal hash function gives a
(εforge, εmac)-universal hash function with εforge = ε and an optimal εmac =
1/|Y|.

The main result of this section is a theorem which states that for every ε-Δ
universal hash function, there always exists a randomized postprocessing, which
only uses a logarithmic number of random bits and makes the hash function
(εforge, εmac)-universal where εforge = ε and εmac is close to optimal. By post-
processing we mean that only the hash value of the message, but not the message
itself, must be randomized.

Let us remark that the polynomial construction from Section 5 is L/2k-Δ
universal if the constant coefficient (i.e. the first message block) is fixed, say
0k. With this observation Lemma 3 follows directly from Proposition 2, and
Lemma 4 (with somewhat worse parameters) follows from Theorem 2 we prove
below.

Definition 11 ((εforge, εmac)-Δ universal hash function). For an ε-Δ uni-
versal hash function H : S × X → Y and a set P ⊆ Y we say that HP is
(εforge, εmac)-Δ universal if for any p1, p2 ∈ P , x1, x2 ∈ X where (p1, x1) �=
(p2, x2)

εforge ≥ Pr[s ← S; hs(x1) + p1 = hs(x2) + p2]

and

εmac ≥ Pr[s ← S; p ← P ; hs(x1) + p1 = hs(x2) + p ∧ (p1, x1) �= (p, x2)]

428 Y. Dodis and K. Pietrzak

Proposition 2. If H : S × X → Y is ε-Δ universal, then HY is (ε, 1/|Y|)-Δ
universal.

Theorem 2. If H : S × X → Y is ε-Δ universal, then there exists a P ⊂ Y of
size m = |P| such that

m ≤ ln(|X |2 ·m) · |Y|2 · ε2 (10)

and HP is (ε, 2/|Y|)-Δ universal.

Proof. The proof is by the probabilistic method. We show that a random subset
P = {p1, . . . , pm} of Y of size m which satisfies (10) has the claimed property
with probability > 0 and thus exists.

For i, j : 1 ≤ i, j ≤ m and a, b ∈ X where (i, a) �= (j, b) let let Ci,j,a,b denote
the random variable (the probability is over the choice of P)

Ci,j,a,b = Pr[s ← S; h(a) + pi = h(b) + pj]

and for (i, a) = (j, b) we set Ci,j,a,b = 0. Clearly for (i, a) �= (j, b)

E[Ci,j,a,b] = 1/|Y|

Now consider the random variable

Ci,j,b =
∑

j∈X
Ci,j,a,b

We have E[Ci,a,b] ≤ m/|Y| and for a �= b we get by the Hoeffding bound (see
Appendix A) an upper bound for the probability that Ci,a,b is more that twice
its expected value (for a = b the bound is even slightly better)

Pr [Ci,a,b ≥ 2 · E[Ci,a,b]] < exp
(
−2 · (m/|Y|)2

m · ε2

)

≤ exp
(
− m

|Y|2 · ε2

)

≤ 1
|X |2 ·m

So there is a P such that Ci,a,b ≤ 2 ·E[Ci,a,b] ≤ 2 ·m/|Y| is satisfied for all i ∈ [m]
and a, b ∈ X . For this P we get

εmac = max
i∈[m],a,b∈X

Pr[j ← [m]; s ← S; hs(a) + pi = h(b) + pj) ∧ ((pi, a) �= (pj , b))]

= m−1 max
i∈[m],a,b∈X

∑

j∈[m]

Ci,j,a,b

= m−1 max
i∈[m],a,b∈X

Ci,a,b

≤ 2/|Y| $%

Improving the Security of MACs Via Randomized Message Preprocessing 429

To get an intuition what eq. (10) means, assume we start with a hash function
which maps L-bit strings to k-bit strings and which is Lc/2k-Δ universal for
some c > 0, so |X | = 2L and |Y| = 2k. Now (10) means

m ≤ (2 · L + log m) · L2c

log e

or assuming log(m) ≤ L

log(m) ≤ log 3 − log e + (2c + 1) log L < 2 + (2c + 1) log L (11)

The assumption log(m) ≤ L holds for all L ≥ 2 + (2c + 1) log L, thus for such L
also (11) is satisfied. So to sample from P we need O(1) + (2c + 1) log L random
bits.

8 Numerical Example

In this section we give a numerical example to illustrate how the classical upper
bound ε ·q2

mac +ε ·qforge for the forging probability from Proposition 1 compares
to the εmac · q2

mac + εforge · qforge upper bound (for salted hash then encrypt)
given in Theorem 1. We will use polynomial hashing poly and its salted version
polyP as considered in Section §5. We take a (standard) tag-length of k := 128
bits and the messages to be signed are of size 128MB (so each message has
L := 223 blocks of size 128 bits). Now consider an adversary which can request
qmac := 240 MACs and make up to qforge := 240 forgery attempts. For these
parameters, poly is ε-universal with ε = (L − 1)/2128 ≈ 2−105, and the bound
from Proposition 1 gives an upper bound on the forging probability for poly of

ε · q2
mac + ε · qforge ≈

280

2105
+

240

2105
≈ 2−25. (12)

For the salted version polyP , which as shown in Lemma 4 has εforge = L/2128 =
2−105 and εmac = 2−127, we get with Theorem 1 an upper bound of

εmac · q2
mac + εforge · qforge =

280

2127
+

240

2105
≈ 2−47. (13)

So, compared to the classical bound (12), the security guarantee is better by a
factor of ≈ 222 ≈ 4 · 106. Note that this gap is basically L/2, this will always
be the case for (the most interesting) range of parameters where εmac · q2

mac ,
εforge ·qforge . The length of the random salt used in this construction (with these
parameters) is 3 log(L) + log(k) = 3 · 23 + 7 = 76 bits.

For the cascade construction MD and its salted version MDR as considered
in Section §6 (with b = k = 128), we get the same bounds (12) and (13) re-
spectively,6 but the length of the random salt needed for this construction is
considerably shorter, log(L) = 23 bits compared to the 76 bits needed for polyP .
6 The reason is that the bounds on εforge, εmac for MDR as given in Lemma 5 are

identical to the bounds for polyP from Lemma 4 up to a O(L3/2k) term, which for
the parameters considered here will be irrelevant.

430 Y. Dodis and K. Pietrzak

9 Related Work and Open Problems

Following the initial papers of Carter and Wegman [7,26], foundations of univer-
sal hash function-based authentication were laid by [23,16,19,24].

The analysis of the folklore polynomial construction is well known (see [5] for
some history). The Merkle-Damg̊ard functions was analyzed as an ε-universal
hash function by [2,8], the latter proving a bound of ε ≈ L/2k for hashing an
Lb-block input using the compression function ξ : {0, 1}k × {0, 1}b → {0, 1}k

(modeled as a truly random function; here L < 2k/2).
It is also interesting to compare the “hash then encrypt” approach we study

here with a variant of this approach studied by [26,16], which actually led to the
introduction of ε-Δ universal hash functions. Here one replaces a block cipher
by a “fresh one-time pad”. In modern terminology, the MAC has a tag of the
form (r, hs(m) ⊕ ft(r)), where ft is a pseudorandom function with a new key
t, and r is a fresh “nonce” which is not supposed to repeat. In practice, this
means that r is either a counter, or a fresh random value. In the first case,
we get perfect security (aside from the insecurity of f).7 However, maintaining a
counter introduces state, and stateful MACs are extremely inconvenient in many
situations (see [21,15] for several good reasons). Correspondingly, to make a fair
comparison we should only consider the case when r is a fresh random salt (in
which case the MAC is indeed stateless, but r has to be part of the tag). To make
such a comparison, let us fix the output of the hash function hs to {0, 1}k, and
replace the PRF by a truly random function. Then, we get that the length of
the tag in the “XOR-scheme” is |r|+ k, while its exact security is ε+ O(q2/2|r|)
(where the last term comes from the birthday bound measuring collisions on r).
Thus, to get to the desired overall security of O(q2/2k), this randomized MAC
must use |r| = Ω(k) random bits and increase the tag length by this amount
as well. On the other hand, we demonstrated that our randomized MACs can
achieve the same level of security using only |p| = O(log L) bits of randomness,
which is asymptotically smaller than k. In other words, although using the one-
time pad has other advantages over using the block cipher,8 it is provably inferior
to our method for achieving O(q2/2k) security (via stateless MACs).

We also mention that message preprocessing has been used previously in other
contexts. For example, we already mentioned the work of Jaulmes et al. [15] on
RMAC. Semanko [21] investigated the security of iterated MACs (like the cas-
cade or CBC construction), which are randomized by prepending a random
string. Here finding collisions does not necessarily imply a new forgery, but
Semanko showed some non-obvious forgery attacks. In particular, even when
prepending up to k/2 random bits one can find a forgery after 2k/2 queries (and
not just a collision, which by the birthday bound is trivial). Let us stress that in

7 Bernstein [4] investigates how much security one loses when f is a permutation (like
AES).

8 E.g., it can go below the O(q2/2k) barrier, even when the hash function output is
fixed to k.

Improving the Security of MACs Via Randomized Message Preprocessing 431

our case, the length of random salt is small enough so that the above distinction
between collisions and forgeries does not play any significant role.

Bellare et al. [2] also used randomness to improve the security of the cascade
construction for a (stronger than ours) task of domain extension of a pseudoran-
dom function (in which case there is no need to add the encryption step at the
end). In particular, the message preprocessing used there is different from ours
(prepend instead of append), and the exact security is weaker as well. The same
paper also considers changing the cascade construction by appending a fixed
but random secret string t to each message (instead of choosing a fresh public
t per each message). However, this is done for a different purpose of achieving
“prefix-freeness” of messages.

Recently, Halevi and Krawczyk [9] also proposed to use randomized message
preprocessing in the design of signature schemes. Their goal is to lower the com-
putational assumptions on the hash function used in signature schemes. In par-
ticular, they show that randomized versions of some signature schemes based on
hash functions only require second-preimage resistance while the original scheme
needed (the stronger) collision resistance. This works continues and optimizes
the more general direction of replacing a fixed collision-resistant hash function in
the “hash then sign” paradigm by a universal one-way hash function [13] chosen
at random for each new message signed (and appended to the message before
signing). Notice, while the main goal of [9] is to reduce the needed computa-
tional assumption on the hash function (and not the length of the salt or the
actual exact security), our setting is information-theoretic with the primary goal
of improving the exact security while simultaneously minimizing the salt length.

Amortized Collision Probability. Another possibility to get better bounds
on the exact security of the “hash then encrypt” paradigm is to consider “amor-
tized” collision probability. For any q messages x1, . . . , xq and a ε-universal hash-
function, the probability that h(xi) = h(xj) for any i �= j is in O(εq2). This
O(εq2) bound is proven by applying the union bound to all

(
q
2

)
pairs of authen-

ticated messages, which introduces some slackness: even if there are some pairs
of messages with collision probability ε, it is not clear whether there exist q , 2
messages where each (or most) pairs collide with probability Ω(ε), and, more-
over, the collision probabilities for distinct pairs are sufficiently independent.9

Thus, it is possible that the actual collision probability is much less than O(εq2).
We know of one example where this has been proven to be the case, namely the
CBC-function (based on uniformly random permutations). This function is ε-
universal with ε = Θ(L1/ ln ln L) [3], but using the amortized approach described
above (assuming q ≥ L2 and L ≤ 2k/8) one can prove [18] an optimal O(q2/2k)
security bound, despite ε = ω(1/2k).

Of course, this raises the question if the other constructions we consider also
already achieve O(q2/2k) security (for a non-trivial range of parameters) without
randomization. As to the cascade construction, this is easily seen not to be

9 To see why those probabilities must be independent, consider an h where either all
or none of the messages collide, then the collision probability for all q messages is
only O(ε) and not O(εq2).

432 Y. Dodis and K. Pietrzak

the case, as there are q messages of length L where the collision probability is
Θ(Lq2/2k). As to the polynomial construction, we do not know the answer, but
conjecture that one cannot achieve the optimal security O(q2/2k) (as we do with
randomization).

References

1. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15. Springer,
Heidelberg (1996)

2. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: The
cascade construction and its concrete security. In: FOCS, pp. 514–523 (1996)

3. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, Springer, Heidelberg (2005)

4. Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authentica-
tors. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005)

5. Bernstein, D.J.: The Poly1305-AES Message-Authentication Code. In: Gilbert, H.,
Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 32–49. Springer, Heidelberg
(2005)

6. Integrity Primitives for Secure Information Systems, Final Report of RACE In-
tegrity Primitives Evaluation RIPE-RACE 1040. In: Bosselaers, A., Preneel, B.
(eds.) Integrity Primitives for Secure Information Systems. LNCS, vol. 1007,
Springer, Heidelberg (1995)

7. Carter, L., Wegman, M.: Universal classes of hash functions. Journal of Computer
and System Sciences (JCSS) 18, 143–154 (1979)

8. Dodis, Y., Gennaro, R., H̊astad, J., Krawczyk, H., Rabin, T.: Randomness Extrac-
tion and Key Derivation Using the CBC, Cascade and HMAC Modes. In: Franklin,
M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 494–510. Springer, Heidelberg (2004)

9. Halevi, S., Krawczyk, H.: Strengthening digital signatures via randomized hashing.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, Springer, Heidelberg (2006)

10. Hardy, G., Wright, E.: An Introduction to the Theory of Numbers. Oxford Uni-
versity Press, Oxford, UK (1980)

11. Hartman, T., Raz, R.: On the distribution of the number of roots of polynomials
and explicit weak designs. Random Struct. Algorithms 23(3), 235–263 (2003)

12. Hoeffding, W.: Probability inequalities for sums of bounded random variables. J.
Amer. Statist. Assoc. 58, 13–30 (1963)

13. Naor, M., Yung, M.: Universal one-way hash functions and their cryptographic
applications. In: STOC, pp. 33–43 (1989)

14. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. Wiley, Chichester (2000)
15. Jaulmes, É., Joux, A., Valette, F.: On the Security of Randomized CBC-MAC

Beyond the Birthday Paradox Limit: A New Construction. In: FSE, pp. 237–251
(2002)

16. Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.)
CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)

17. Petrank, E., Rackoff, C.: CBC MAC for real-time data sources. Journal of Cryp-
tology, 315–338 (2000)

18. Pietrzak, K.: A tight bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 168–179. Springer, Heidelberg
(2006)

Improving the Security of MACs Via Randomized Message Preprocessing 433

19. Rogaway, P.: Bucket Hashing and Its Application to Fast Message Authentication.
In: Coppersmith, D. (ed.) CRYPTO 1995. LNCS, vol. 963, pp. 29–42. Springer,
Heidelberg (1995)

20. Schwartz, J.T.: Fast probabilistic algorithms for verification of polynomial identi-
ties. J. ACM 27(4), 701–717 (1980)

21. Semanko, M.: L-collision Attacks against Randomized MACs. In: Bellare, M. (ed.)
CRYPTO 2000. LNCS, vol. 1880, pp. 216–228. Springer, Heidelberg (2000)

22. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-
bridge University Press, Cambridge (2005)

23. Stinson, D.R.: Universal Hashing and Authentication Codes. Designs, Codes and
Cryptography 4, 369–380 (1994)

24. Stinson, D.R.: On the connections between universal hashing, combinatorial de-
signs and error-correcting codes. Congressus Numerantium 114, 7–27 (1996)

25. Stinson, D.R.: Personal Communication (2005)
26. Wegman, M.N., Carter, L.: New hash functions and their use in authentication

and set equality. Journal of Computer and System Sciences (JCSS) 22(3), 265–279
(1981)

A Hoeffding Bound

Let X1, . . . , Xn be independent random variables. Further assume the Xi are
bounded, i.e. for each i = 1, . . . , n there are ai, bi such that

Pr[ai ≤ Xi ≤ bi] = 1

then for the sum S = X1 + . . .Xn we have for any t ≥ 0

Pr[S − E[S] ≥ nt] ≤ exp
(
− 2n2t2
∑n

i=1(bi − ai)2

)

We will only use the case where the Xi are identically distributed such that
0 ≤ Xi ≤ ε and are only interested in the probability that S ≥ 2E[S], so if γ is
an upper bound on E[S] we use

Pr[S ≥ 2 · E[S]] ≤ Pr[S − E[S] ≥ γ] ≤ exp
(
− 2 · γ

n · ε2

)
(14)

In our applications the Xi’s are not completely independent, but chosen at
random from some finite set without repetition. Fortunately the Hoeffding bound
also applies in this case as proven in section 6 of the original paper [12] (see also
Theorem 2.10 of [14]).

New Bounds for PMAC, TMAC, and XCBC

Kazuhiko Minematsu1,2 and Toshiyasu Matsushima2

1 NEC Corporation, 1753 Shimonumabe, Nakahara-Ku, Kawasaki, Japan
k-minematsu@ah.jp.nec.com

2 Waseda University, 3-4-1 Okubo Shinjuku-ku Tokyo, Japan

Abstract. We provide new security proofs for PMAC, TMAC, and
XCBC message authentication modes. The previous security bounds for
these modes were σ2/2n, where n is the block size in bits and σ is the
total number of queried message blocks. Our new bounds are �q2/2n for
PMAC and �q2/2n + �4q2/22n for TMAC and XCBC, where q is the
number of queries and � is the maximum message length in n-bit blocks.
This improves the previous results under most practical cases, e.g., when
no message is exceptionally long compared to other messages.

1 Introduction

Message authentication code (MAC) is a symmetric-keyed function used for en-
suring the authenticity of messages. Many studies have been done on MACs built
using blockciphers (i.e., MAC modes of operation) including the CBC-MAC and
its variants. The theoretical security of stateless (i.e., no counter or nonce is
used) MAC mode F [EK] using blockcipher EK can be measured using the max-
imum advantage of an adversary trying to distinguish F [EK] from the random
oracle, which provides an independent and uniform output for any distinct input,
using a chosen-plaintext attack (CPA). Typically, the key task in proving the
maximum advantage is to prove the maximum information-theoretic (IT) advan-
tage for the target MAC, where the adversary has infinite computational power
and the MAC is built using the uniform random permutation (URP), which is
the ideal functionality of a blockcipher. Improving the maximum IT-advantage
is important, because it will contribute to better understanding of the target
function and to expanding the scope of application.

Bellare, Pietrzak, and Rogaway [5] analyzed the IT-advantage for the CBC-
MAC and the encrypted CBC-MAC called EMAC [2]. Neglecting constants,
the previous EMAC bound using the n-bit URP was �2q2/2n [7] for any (q, �)-
CPA, which uses q chosen messages with lengths less than n� bits. Bellare et
al. investigated whether this could be improved, particularly with respect to �.
They proved the improved bound d(�)q2/2n + �4q2/22n, where d(�) is a function
that grows very slowly with � (see Sect. 4). A similar result was obtained for
CBC-MAC for prefix-free messages. Recently, Pietrzak [18] proved EMAC bound
q2/2n for a range of (q, �) (in fact, the result was q2/2n+�8q2/22n for any q ≥ �2).

Given these findings, it is quite natural to ask if similar improvements can
be obtained for modes other than EMAC, especially more sophisticated ones.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 434–451, 2007.
c© International Association for Cryptologic Research 2007

New Bounds for PMAC, TMAC, and XCBC 435

EMAC uses two blockcipher keys, and only messages with a length multiple of n
are supported. In this paper, we describe several MAC modes and provide new
security bounds for them. Our first target is PMAC, which was proposed by
Black and Rogaway [7] and Rogaway [19]. It is a one-key MAC; i.e., the MAC
function uses one blockcipher key, and messages of any lengths are supported,
and is fully parallelizable. The original security bound was σ2/2n [7,19], where
σ is the total number of queried message blocks, which immediately implies
�2q2/2n for any (q, �)-CPA, as σ ≤ �q holds. Here, we demonstrate a new bound
�q2/2n by taking an approach different from that of the previous proof.

We also provide new bounds for two successors of EMAC called TMAC [13]
and XCBC [7]. Like EMAC, they are based on CBC-MAC. However, they do
not use two blockcipher keys, and can efficiently handle messages of arbitrary
length. Our bounds are obtained by combining our PMAC proof technique and
the CBC-MAC collision analysis provided by Bellare et al.[5]. For TMAC and
XCBC, the previous bounds are σ2/2n shown by Iwata and Kurosawa [10], and
our bound is �q2/2n + �4q2/22n. We also investigated OMAC [11] (i.e., CMAC
[1]), which is an optimized version of TMAC and XCBC. Although some part of
TMAC proof can also be applied to OMAC, we could not obtain a new bound
at this moment. The analysis of OMAC is briefly described in Sect. 5.

We have to emphasize that our results are not always better than the previous
ones. Since all of our targets have σ2/2n bounds, ours are worse if message length
distribution is heavily biased to the left, e.g., one �-block message and (q − 1)
one-block messages. For other cases, ours are better. A detailed comparison is
given in Sect. 5.

2 Preliminaries

Notation. {0, 1} and {0, 1}n are denoted by Σ and Σn. The set of i-bit se-
quences for all i = 1, . . . , n is denoted by Σ≤n def=

⋃
i=1,...n Σi. (Σn)≤m is the set

of binary sequences with lengths that are a multiple of n and at most nm. Σ∗

is the set of all finite-length bit sequences. The bit length of x is denoted by |x|.
The n-bit uniform random permutation (URP), denoted by Pn, is a ran-

dom permutation with a uniform distribution over all permutations on Σn. The
random oracle (RO), which has n-bit output and is denoted by On, is a ran-
dom function that accepts any x ∈ Σ∗ and outputs independent and uniformly
random n-bit values for any distinct inputs. For any two colliding inputs, RO
outputs the same value.
Field with 2n

points. We consider the elements of field GF(2n) as n-bit
coefficient vectors of the polynomials in the field. We represent n-bit coeffi-
cient vectors by integers 0, 1, . . . , 2n − 1, e.g., 2 corresponds to coefficient vector
(00 . . . 010), which corresponds to x in the polynomial representation, and 3 de-
notes (00 . . . 011), which corresponds to x+1. For any x, y ∈ Σn, xy denotes the
field multiplication of two elements represented by x and y. For simplicity, we
assume n = 128 throughout the paper.

436 K. Minematsu and T. Matsushima

Security notions. We used the standard security notion for symmetric cryp-
tography [3,4,9].

Definition 1. Let F and G be two random (here, random means it is proba-
bilistic) functions. The oracle has implemented H, which is identical to one of
F or G. An adversary, A, guesses if H is F or G using a θ-chosen-plaintext
attack (θ-CPA), where θ is a list of parameters, such as the number of queries.
The maximum advantage in distinguishing F from G is defined as

AdvcpaF,G(θ) def= max
A:θ-CPA

∣∣Pr[AF = 1]− Pr[AG = 1]
∣∣,

where AF = 1 denotes that A’s guess is 1, which indicates one of F or G. The
probabilities are determined by the randomness of F or G and A.

The Goal of Our Analysis. In this paper, we consider only the information-
theoretic security, where the adversary has infinite computational power (thus θ
contains no computational restrictions), and the target is realized by the ideal
n-bit blockcipher, i.e., Pn. In many cases, including ours, once the information-
theoretic security is proved, the computational counterpart, where the adversary
is computationally restricted and a real blockcipher is used, is quite easy.

Our target modes are stateless and variable-input-length (VIL) functions
with n-bit output (VIL means that the domain is Σ∗). Therefore, for mode
F [EK], where EK is a blockcipher, we evaluate AdvvilqrfF [Pn] (θ)

def= AdvcpaF [Pn],On
(θ).

vilqrf denotes a VIL quasi-random function [15] that cannot be information-
theoretically distinguished from RO without a negligibly small success probabil-
ity. If AdvvilqrfF [Pn] (θ) is small, the maximum success probability of a MAC forgery
for all θ-CPAs against F [Pn] is also small (e.g., see Proposition 2.7 of [3]). In this
paper, θ contains one of two additional parameters in addition to the number of
queries, q: the total number of n-bit blocks for all q queries, σ, and the maximum
length of a query (in n-bit blocks), �. We focus on the θ = (q, �) case.

3 PMAC

3.1 Description and Previous Security Proof

PMAC has two versions; we focus on the later version [12,19]. We call it simply
“PMAC”. The main idea of PMAC is as follows.

Lemma 1. (Proposition 5 of [19]) Assume that the representation of GF(2n)
(n = 128) is based on the lexicographically first primitive polynomial (see [19] for
details). Let I = {1, .., 2n/2} and J = {0, 1, 2} be the set of integers used as indices
for distinct elements (“bases”) of GF(2n). Then, for any (α, β), (α′, β′) ∈ I× J,
2α3β �= 2α′

3β′
holds if (α, β) �= (α′, β′) holds1.

1 Actually, Proposition 5 of [19] proved this for a wider range of indices. The original
PMAC uses J = {2, 3, 4} instead of {0, 1, 2}, so our PMAC definition is slightly
different from the original. However, the security proofs are essentially the same.

New Bounds for PMAC, TMAC, and XCBC 437

Fig. 1. PMAC[Pn] (left) and the modified PMAC (MPMAC) (right)

Multiplication of a constant and a variable is generally much simpler than mul-
tiplication of variables. For example, multiplication with 2 (i.e., a doubling oper-
ation) requires a bit shift followed by a conditional xor. Therefore, computation
of 2α3β from 2α−13β or 2α3β−1 is significantly faster than one blockcipher invo-
cation. The idea of PMAC [19], called the “powering-up construction”, is to use
2α3β as a masking value for every blockcipher input, incrementing α or β.

For blockcipher EK , PMAC is defined as follows. We say “partition x ∈ Σ∗

into (x[1], . . . , x[m])” to set m = ‖x‖n
def= max{!|x|/n", 1} and x = (x[1], . . . , x[m])

with x[i] ∈ Σn for i = 1, . . . , m− 1 and x[m] ∈ Σ≤n. First, compute L = EK(0),
where 0 corresponds to the all-zero n-bit sequence, in the preprocessing. Then, for
input x ∈ Σ∗, partition it into (x[1], . . . , x[m]). The tag for x is Y = EK(Psum⊕
pad(x[m]) ⊕ 2m3I(x)), where Psum =

⊕m−1
α=1 EK(x[α] ⊕ 2αL) if m > 1, and if

m = 1, Psum = 0. Here, I(x) = 1 if |x| is a multiple of n and I(x) = 2 otherwise,
and pad(x[m]) = x[m] if |x[m]| = n and pad(x[m]) = x[m]‖10∗ otherwise, where
x[m]‖10∗ is a concatenation of x[m] and the (n− |x[m]|)-bit sequence (100 . . .0).

Rogaway [19] proved the security of PMAC, which is as follows.

Theorem 1. (Corollary 17 of [19]) Let PMAC[Pn] be the PMAC using Pn (see
the left of Fig. 1). We then have AdvvilqrfPMAC[Pn](q, σ) ≤ 5.5σ2/2n and

AdvvilqrfPMAC[Pn](q, �) ≤ 5.5�2q2/2n, where q, σ, and � are as defined in Sect. 2.

Corollary 17 of [19] only proved the first claim. The second follows from the first
and σ ≤ �q.

3.2 New Security Bound for PMAC

Our security bound of PMAC is the following. The proof will be provided later.

Theorem 2. Let PMAC[Pn] be the PMAC using Pn. We then have

AdvvilqrfPMAC[Pn](q, �) ≤
5�q2

2n − 2�
.

From this theorem, we have AdvvilqrfPMAC[Pn](q, �) ≤ 10�q2/2n if � ≤ 2n−2.

438 K. Minematsu and T. Matsushima

Notation for Proof. Since we use Maurer’s methodology2 (e.g., see [15]) to
make our proofs intuitive and simple, we briefly describe his notation. For com-
pleteness, part of his results that we used for our proof is cited in Appendix A.
Consider event ai defined for i input/output pairs, and possibly some internal
variables, of random function F . Let ai be the negation of ai. We assume ai

is monotone; i.e., ai never occurs if ai−1 occurs. For instance, ai is monotone
if it indicates that all i outputs are distinct. An infinite sequence of monotone
events, A = a0a1 . . . , is called a monotone event sequence (MES) [15]. Here,
a0 denotes some tautological event. Note that A ∧ B = (a0 ∧ b0)(a1 ∧ b1) . . .
is an MES if A = a0a1 . . . and B = b0b1 . . . are both MESs. For any se-
quence of variables, X1, X2, . . . , let X i denote (X1, . . . , Xi). We use dist(X i)
(or, equivalently, dist(X(i)), where X(i) is set {Xj}j=1,...,i) to denote an event
where X1, X2, . . . , Xi are distinct.

Let MESsA and B be defined for two random functions, F and G, respectively.
Let Xi and Yi be the i-th input and output. Let PF be the probability space
defined by F . For example, PF

Yi|XiY i−1(yi, xi) means Pr[Yi = yi|X i = xi, Y i−1 =
yi−1], where Yj = F (Xj) for j ≥ 1.

Definition 2. Let θ contain q. For MES A defined for F , νθ(F, aq) denotes
the maximum probability of aq for any θ-CPA that interacts with F . Similarly,
μθ(F, aq) denotes the maximum probability of aq for any non-adaptive θ-CPA.
For θ = (q, �), they are abbreviated to ν�(F, aq) and μ�(F, aq). If θ = q, the
subscript is omitted, e.g., we write ν(F, aq).

Here, μθ(F, aq) can be rewritten as maxxq PF
aq|Xq(xq), where the maximum is

taken for all (non-adaptively chosen) xq satisfying θ (e.g., if θ = (q, �), |xi| ≤ n�
for all i ≤ q), hereafter abbreviated to maxXq PF

aq|Xq .

Analysis of PHASH. Proving Theorem 2 requires an analysis of the message-
hashing part of PMAC[Pn], which we call PHASH. For x = (x[1], . . . , x[m]) ∈
(Σn)m, it is defined as:

PHASH(x) def=
⊕

i=1,...,m

Pn(x[i] ⊕ 2iL), where L = Pn(0) .

Lemma 2. For any x = (x[1], . . . , x[m]) ∈ (Σn)m and x′ = (x′
[1], . . . , x

′
[m′]) ∈

(Σn)m′
, x �= x′, and for any f : Σn → Σn, we have

Pr[PHASH(x) ⊕ PHASH(x′) = f(L)] ≤ m + m′

2n
+

1
2n − (m + m′)

, and (1)

Pr[PHASH(x) = f(L)] ≤ m

2n
+

1
2n −m

, where L = Pn(0) . (2)

2 It is known that some information-theoretic results obtained by Maurer’s methodol-
ogy can not be converted into computational ones (for instance, see [16,17]). However,
we do not encounter such difficulties in this paper.

New Bounds for PMAC, TMAC, and XCBC 439

Proof. We only prove Eq. (1) as Eq. (2) can be similarly proved. Fix x and x′. Let
Ui = x[i]⊕2iL for i = 1, . . . , m, and Ui = x′

[i−m]⊕2i−mL for i = m+1, . . . , m+m′.

Then, PHASH(x) ⊕ PHASH(x′) equals Sum def= Pn(U1) ⊕ . . . ⊕ Pn(Um+m′). Let
U = {U1, . . . , Um+m′} \Ucoll, where Ucoll is the set of all trivial collisions, e.g.,
U1 and U1+m when x[1] = x′

[1]. Note that U can not be the empty set as x �=
x′. For simplicity, we assume no trivial collision (thus U = {U1, . . . , Um+m′}),
however the following analysis works even if some trivial collisions exist. For
index subset {i1, . . . , ik} ⊆ {1, . . . , q}, Usub = {Uij}j=1,...,k is an equivalent set
if Ui1 = Ui2 = · · · = Uik

and Ui1 �= Uh for all h �∈ {i1, . . . , ik}. Here, the sum
of all equivalent sets is a decomposition of U. Whether Usub is an equivalent
set or not depends on the value of L. If k is odd (even), we say Usub is an odd
(even) equivalent set. Let oddk be the event such that there are k odd equivalent
sets having non-zero values (the value of an equivalent set is the value of its
members). We have

Pr[Sum = f(L)|oddk]
≤ max

c satisfies oddk

Pr[Pn(u1(c)) ⊕ . . . ⊕ Pn(um+m′(c)) = f(c)|oddk, L = c], (3)

where ui(c) is x[i] ⊕ 2ic for i = 1, . . . , m and x′
[i−m] ⊕ 2i−mc for i = m +

1, . . . , m+m′. In Eq. (3), note that Pn(ui(c)) is canceled out if ui(c) is in an even
equivalent set. Therefore, given L = c and oddk for some k > 0, Pn(u1(c))⊕ . . .⊕
Pn(um+m′(c)) is either the sum of k URP outputs for k non-zero distinct inputs
or the sum of c and k URP outputs for k non-zero distinct inputs (note that
oddk does not exclude an odd equivalent set with value 0). Then, the property
of Pn shows that, for any non-zero distinct k inputs, z1, . . . , zk,

Pr[Pn(z1)⊕ Pn(z2)⊕ . . . ⊕ Pn(zk) = f(c)|Pn(0) = c]

=
∑

c1,...,ck,dist({c1,...,ck,c}),c1⊕...⊕ck=f(c)

Pr[Pn(z1) = c1, . . . , Pn(zk) = ck|Pn(0) = c]

=
|{(c1, . . . , ck) : dist({c1, . . . , ck, c}), c1 ⊕ . . . ⊕ ck = f(c)}|

(2n − 1) · · · · · (2n − k)
≤ 1

2n − k
(4)

holds, where the inequality holds since ck is uniquely determined (or does not
exist) if c1, . . . , ck−1 are fixed. From Eqs. (3) and (4), we obtain

Pr[Sum = f(L)|oddk] ≤ 1
2n − k

for any 0 < k ≤ m + m′ and for any f. (5)

Next, we analyze Pr[odd0]. We have

Pr[odd0] = Pr[odd0, U1 �∈ {U2, . . . , Um+m′}]
+ Pr[odd0, U1 = Uj for some j = 2, . . . , m + m′]

≤ Pr[U1 = 0] +
∑

j=2,...,m+m′

Pr[U1 = Uj] ≤ (m + m′)
1
2n

, (6)

440 K. Minematsu and T. Matsushima

where the first inequality holds since if U1 is unique (i.e., U1 is in an odd equiv-
alent set) and odd0 holds, U1 must be 0. The second holds since both U1 and
U1 ⊕ Uj for any j �= 1 are permutations of L from Lemma 1. From Eqs. (5) and
(6), we obtain

Pr[Sum = f(L)] =
∑

k=0,...,m+m′

Pr[Sum = f(L)|oddk] · Pr[oddk]

≤ Pr[odd0] +
m+m′−1∑

k=1

Pr[oddk]
2n − k

+
1 −
∑m+m′−1

k=0 Pr[oddk]
2n − (m + m′)

≤ Pr[odd0] +
1

2n − (m + m′)
≤ m + m′

2n
+

1
2n − (m + m′)

.

This concludes the proof of Lemma 2.

Proof of Theorem 2. First, we introduce the tweakable[14] n-bit URP, P̃n. It
has tweak space T = I × J′, where I = {1, . . . , 2n/2} and J′ = {1, 2}. It consists
of |T | independent n-bit URPs; P̃n(t, x) is the output of an n-bit URP indexed
by t ∈ T and having input x ∈ Σn. Using P̃n and Pn, independent of P̃n, we
define the modified PMAC (MPMAC) as follows. First, compute L = Pn(0).
For input x ∈ Σ∗ = (x[1], . . . , x[m]), compute Psum using PHASH (i.e., Psum =
PHASH(x̂), where x̂ = (x[1], . . . , x[m−1]), if m > 1, and Psum = 0 otherwise).
The tag is Y = P̃n((m, I(x)), Psum ⊕ pad(x[m])). Here, (m, I(x)) is the tweak.
Note that a tweak is a function of x.
Proof Idea. Since the advantage is the absolute difference between two prob-
abilities, we can use a triangle inequality, AdvcpaPMAC[Pn],On

(θ) is not larger than
AdvcpaPMAC[Pn],H(θ) + AdvcpaH,On

(θ) for any VIL function H , and for any θ. Here, H

is an intermediate function. Theorem 1 was derived using “PMAC with an ideal
tweakable blockcipher”, which invokes an independent URP for each message
block in the message-hashing part as well as in the finalization, as the interme-
diate function. Here, our proof uses MPMAC as the intermediate function.

We start by proving the advantage between PMAC[Pn] and MPMAC, which
requires defining some random variables. Let Xi ∈ Σ∗ be the i-th query of the
adversary. If m = ‖Xi‖n, we write Xi = (Xi[1], . . . , Xi[m]). Note that Xi is a ran-
dom variable, and its distribution is determined by the adversary and the target
MAC. Fixed queries (and other random variables) are written in lower case,
e.g., xi = (xi[1], . . . , xi[m]). For PMAC[Pn], let M(q) (C(q)) be the set of inputs
(outputs) to Pn generated in the PHASH for all q queries. We do not include
the result of preprocessing, i.e., L = Pn(0), in M(q) and C(q). We also define
Yi ∈ Σn as the i-th tag, and Y(q) def= {Yi}i=1,...,q. If m = ‖Xi‖n > 1, we define Vi

as the XOR of the i-th PHASH output and pad(Xi[m]). If m = 1, Vi = pad(Xi).
Moreover, Si

def= Vi ⊕ 2m3I(Xi[m])L, and S(q) def= {Si}i=1,...,q. Thus, in PMAC[Pn],
Yi = Pn(Si). These variables are similarly defined for MPMAC except Yi; in
MPMAC, Yi is P̃n((m, I(Xi[m])), Vi) when the i-th query has m blocks. Also, Si

is defined as a dummy variable in MPMAC. See Fig. 1 for reference.

New Bounds for PMAC, TMAC, and XCBC 441

Lemma 3. Let event aq
def= [M(q) ∩ S(q) = ∅] ∧ [dist(S(q))] ∧ [0 �∈ M(q) ∪ S(q)].

Moreover, bq
def= [dist(Y(q))], dq

def= [C(q) ∩Y(q) = ∅], and eq
def= [L �∈ Y(q)], where

L = Pn(0). We then have

AdvcpaPMAC[Pn],MPMAC(q, �) ≤ ν�(MPMAC, aq ∧ bq ∧ dq ∧ eq)

≤ ν�(MPMAC, aq ∧ bq) + ν�(MPMAC, dq ∧ eq)

≤ 1
2n − 2�

(
(4�− 2.5)q2 + 1.5q

)
. (7)

Proof. (of Lemma 3) The first and second inequalities are derived from Maurer’s
methodology. See Appendix B for the proof. In the following, we prove the third.
Analysis for ν�(MPMAC, aq ∧ bq). We use the following lemma. The proof is
in Appendix C.

Lemma 4

ν�(MPMAC, aq ∧ bq) = μ�(MPMAC, aq ∧ bq) = max
Xq

PMPMAC
aq |Xq + max

Xq
PMPMAC

bq|aqXq ,

where the maximums are taken for all Xq = xq with |xi| ≤ n� for all i.

Note that maxXq PMPMAC
aq|Xq denotes maxxq PMPMAC

aq|Xq (xq). Let Mi denote the
input set to Pn that occur in the i-th PHASH call, except the all-zero input used
to obtain L. Note that M(q) = M1 ∪ · · · ∪Mq. For i = 1, . . . , q, we have

χ1
def= dist(S(q)), χ2,i

def= [Si �∈ M(q)], χ3,i
def= [Si �= 0], and χ4,i

def= [0 �∈ Mi].

Note that aq ≡ χ1 ∧ χ2 ∧ χ3 ∧ χ4 where χi
def= χi,1 ∧ · · · ∧ χi,q for i = 2, 3, 4.

Using the union bound and its variant, we have

max
Xq

PMPMAC
aq|Xq ≤ max

Xq
PMPMAC

χ1|Xq

+
∑

i=1,...,q

(
max
Xq

PMPMAC
χ2,i|χ4,i,Xq +max

Xq
PMPMAC

χ3,i|χ4,i,Xq +max
Xq

PMPMAC
χ4,i|Xq

)
. (8)

Now we analyze each term in Eq. (8). For this analysis, for some i �= j, we fix the
i-th and j-th queries to xi = (xi[1], . . . , xi[m]) and xj = (xj[1], . . . , xj[m′]) with
xi �= xj . We start with the first term. Collision Si = Sj is equivalent to

Vi ⊕ Vj ⊕ 2m3I(xi)L ⊕ 2m′
3I(xj)L = 0. (9)

To prove the maximum probability of Eq. (9), we need to use a case analysis.
Case 1: m = m′ = 1. In this case, Vi ⊕ Vj = pad(xi)⊕ pad(xj). If I(xi) �= I(xj),
the L.H.S. of Eq. (9) is a permutation of L from Lemma 1. Thus, the probability
of Eq. (9) is 1/2n. If I(xi) = I(xj), the probability is zero as pad(xi) �= pad(xj).
Case 2: m > 1, m′ = 1. In this case, the probability of Eq. (9) is obviously at
most (m − 1)/2n + 1/(2n − (m − 1)) ≤ (� − 1)/2n + 1/(2n − (� − 1)) from the
second claim of Lemma 2.
Case 3: m = m′ > 1. If the first m − 1 blocks of xi and xj are the same, the
probability is at most 1/2n, which is the same as in Case 1. Otherwise, Eq. (9)

442 K. Minematsu and T. Matsushima

occurs with a probability of at most (2�− 2)/2n + 1/(2n − (2�− 2)) from the
first claim of Lemma 2.
Case 4: m > 1, m′ > 1, m �= m′. The bound of Case 3 also holds true.

Thus, we have

max
Xq

PMPMAC
χ1|Xq ≤

∑

i<j

max
Xq

PMPMAC
[Si=Sj]|Xq ≤

(
q

2

)(
2�− 2

2n
+

1
2n − (2�− 2)

)
. (10)

For the second term, observe that χ2,i is the logical sum of events such that
Si = 2hL⊕xi′[h] for some i′ including i, and 1 ≤ h ≤ �−1. As xi has m blocks, this
is equivalent to Vi = xi′ [h]⊕2m3I(xi)L⊕2hL. From Lemma 1, we have 2m3I(xi) �=
2h. Thus, it is enough to evaluate the maximum of Pr[Vi = u1L ⊕ u2|χ4,i] for
all u1 ∈ Σn \ {0}, u2 ∈ Σn. We fix u1 �= 0 and u2, and let f(z) = u1z ⊕ u2

and u3
def= (u2 ⊕ pad(xi[m]))/u1, where / denotes field division. We assume that

m > 1 and L = u3 satisfies χ4,i with xi. Note that Pr[Vi = f(L)|χ4,i] equals:

∑

c

Pr[Vi = f(L)|L = c] Pr[L = c|χ4,i] + Pr[Vi = 0|L = u3] Pr[L = u3|χ4,i],

≤ max
c

Pr[Vi = f(c)|L = c] + Pr[L = u3|χ4,i], (11)

= max
c

Pr[Sum(c) = f(c) ⊕ pad(xi[m])|L = c] + Pr[L = u3|χ4,i], (12)

where the sum and maximums are taken for all c �= u3 that satisfies χ4,i, and
Sum(c) = Pn(xi[1] ⊕2c)⊕ . . .⊕Pn(xi[m−1] ⊕2m−1c). If every element in {(xi[1]⊕
2c), . . . , (xi[m−1] ⊕ 2m−1c)} is in an even equivalent set, Sum(c) is 0 while f(c)⊕
pad(xi[m]) �= 0 from c �= u3. If there exists any element which is in an odd
equivalent set, Sum(c) is the sum of k URP outputs for distinct inputs, for some
1 ≤ k ≤ m − 1. These inputs are not 0 as c satisfies χ4,i. Therefore, the first
term of the R.H.S. of Eq. (12) is at most 1/(2n − (�− 1)) from Eq. (4). Also, the
second term of the R.H.S. of Eq. (12) is at most 1/(2n − (� − 1)). From these
observations, maxu1 �=0,u2 Pr[Vi = u1L ⊕ u2|χ4,i] is at most 2/(2n − (� − 1)) if
m > 1 and L = u3 satisfies χ4,i. For other cases (i.e., when m = 1 or m > 1 and
L = u3 does not satisfy χ4,i), this bound also holds true. Therefore,

max
Xq

PMPMAC
χ2,i|χ4,i,Xq ≤ (�− 1)q · max

u1 �=0,u2
Pr[Vi = u1L ⊕ u2|χ4,i] =

2(�− 1)q
2n − (� − 1)

(13)

holds for any 1 ≤ i ≤ q, where the inequality holds since M(q) contains at most
(�− 1)q distinct elements. For the third and fourth terms of Eq. (8), we have

max
Xq

PMPMAC
χ3,i|χ4,i,Xq ≤

2
2n − (�− 1)

, and max
Xq

PMPMAC
χ4,i|Xq ≤ (�− 1)

2n
, (14)

where the first inequality follows from the same analysis as for the second term,
and the second inequality holds since χ4,i occurs if L takes one of (at most) �−1

New Bounds for PMAC, TMAC, and XCBC 443

values defined by xi. Combining Eqs. (10),(13), and (14), we get

max
Xq

PMPMAC
aq |Xq ≤

(
q

2

)(
2�− 2

2n
+

1
2n − (2�− 2)

)
+

2(�− 1)q2 + 2q

2n − (�− 1)
+

(�− 1)q
2n

≤ 1
2n − (2�− 2)

((3� − 2.5)q2 + 1.5q). (15)

Note that aq implies Vi �= Vj if i-th and j-th tweaks are the same, for all
1 ≤ i < j ≤ q. Therefore, if aq is given, the collision probability between Yi and
Yj is at most 1/2n for all fixed q queries. Thus we have

max
Xq

PMPMAC
bq|aqXq ≤

∑

i<j

max
Xq

PMPMAC
[Yi=Yj]|aqXq ≤

(
q

2

)
1
2n

. (16)

Analysis for ν�(MPMAC, dq ∧ eq). We consider a tweakable function, G, hav-
ing n-bit input and output and tweak space T = I×J, where I = {1, .., 2n/2} and
J = {0, 1, 2}. For any input x ∈ Σn and tweak t = (t[1], t[2]) ∈ T , it is defined as
G(t, x) def= Pn(x) if t[2] = 0, otherwise G(t, x) def= P̃n((t[1], t[2]), x), where Pn and
P̃n are independent. If we allow an adversary against G to make (�− 1)q queries
for Pn and q queries for P̃n (the order of query is arbitrary), he can simulate
any (q, �)-CPA against MPMAC. Here, we assume that L = Pn(0) is publicly
available, so that �q queries are enough to simulate an attack. Moreover, if a G-
based simulation generates distinct �q outputs of G, this implies the occurrence
of dq in MPMAC3. From these observations, ν�(MPMAC, dq) is at most

ν
��q(G, dist(Y(�q))) = μ

��q(G, dist(Y(�q))) ≤ (�− 1)q2

2n
+
(

q

2

)
1
2n

,

where Y(�q) is the set of �q outputs, and �̃q means that the adversary can make
(� − 1)q queries for Pn and q queries for P̃n, and the equality follows from an
analysis similar to the one used for the proof of Lemma 4. The last inequality is
trivial. Similarly, we can prove ν�(MPMAC, eq) ≤ q/2n using G. Thus we have

ν�(MPMAC, dq ∧ eq) ≤
(�− 1)q2

2n
+
(

q

2

)
1
2n

+
q

2n
(17)

using Lemma 9. Combining Eqs. (15),(16), and (17) and Lemma 4, Lemma 3 is
proved.

Proving Theorem 2. Deriving an upper bound of AdvvilqrfMPMAC(q, �) is easy since
MPMAC can be seen as an instance of the Carter-Wegman MAC [20](CW-
MAC). Since the following lemma is almost the same as previous CW-MAC
lemmas (e.g., Lemma 4 of [5]), we omit the proof here.
3 We assume that the adversary never makes colliding queries and a pair of queries

such as ((t[1], t[2]), x) and ((t′
[1], t

′
[2]), x

′) with t[2] = t′
[2] = 0, x = x′, and t[1] �= t′

[1].
These queries are obviously useless for simulation.

444 K. Minematsu and T. Matsushima

Lemma 5. AdvvilqrfMPMAC(q, �) ≤
(
q
2

)
dp(�− 1) +

(
q
2

)
/2n, where dp(m) denotes

maxx,x′∈(Σn)≤m,x �=x′,u∈Σn Pr[PHASH(x) ⊕ PHASH(x′) = u].

Finally, combining Lemmas 2, 3, and 5, we obtain

AdvvilqrfPMAC[Pn](q, �) ≤ AdvcpaPMAC[Pn],MPMAC(q, �) + AdvvilqrfMPMAC(q, �), and (18)

≤ (4�− 2.5)q2 + 1.5q

2n − 2�
+
(

q

2

)(
2�− 2

2n
+

1
2n − (2�− 2)

+
1
2n

)

≤ (5�− 2.5)q2 + (1.5− �)q
2n − 2�

≤ 5�q2

2n − 2�
, (19)

where the last inequality holds since q, � ≥ 1. This concludes the proof of
Theorem 2.

4 TMAC and XCBC

4.1 New Security Bounds for TMAC and XCBC

Since CBC-MAC provides no security if two messages with the same prefix are
processed, a number of modifications have been proposed to make CBC-MAC
secure for any message. EMAC, an early attempt, uses two blockcipher keys;
TMAC [13] and XCBC [7] were later proposed as better solutions: they use
one blockcipher key and some additional keys, and thus avoid two blockcipher
key schedulings. TMAC and XCBC are defined as follows. Let CBC be the
CBC-MAC function using Pn; that is, for input x = (x[1], . . . , x[m]) ∈ (Σn)m,
CBC(x) = Cm, where Ci = Pn(x[i] ⊕ Ci−1) and C0 = 0. Let TMAC[Pn] denote
the TMAC using Pn. For input x ∈ Σ∗, TMAC[Pn] works as follows. First, we
partition x into x = (x[1], . . . , x[m]), where m = ‖x‖n. If m > 1, the tag for x

is Y = Pn(CBC(x̂) ⊕ pad(x[m]) ⊕ 2I(x)−1L), where x̂ = (x[1], . . . , x[m−1]) and
L is independent and uniform over Σn. If m = 1, Y is Pn(pad(x) ⊕ 2I(x)−1L).
Note that the Pn used in CBC and the one used in the finalization are iden-
tical. Therefore, in practice, TMAC has one blockcipher key and an additional
n-bit key L. XCBC is similar to TMAC, but uses two n-bit keys, L1 and L2,
as masking values instead of L and 2L. The previous bound of TMAC[Pn] is
(3�2 + 1)q2/2n [13] against (q, �)-CPA, and 3σ2/2n against (q, σ)-CPA [10]. Al-
most the same results are obtained for XCBC [10,13]. However, using our proof
approach in Sect. 3 and Bellare et al.’s analysis of the CBC function [5], we
obtain the following.

Theorem 3. Let TMAC[Pn] be the TMAC using Pn. We then have

AdvvilqrfTMAC[Pn](q, �) ≤
4�q2

2n
+

64�4q2

22n
.

The proof of Theorem 3 is in the next section. The bound of Theorem 3 is also
applicable to XCBC. The proof for XCBC is the same as the proof of Theorem 3,
thus we omit it here.

New Bounds for PMAC, TMAC, and XCBC 445

4.2 Proof of Theorem 3

Since the proof structure is the same as that of Theorem 2, we give only a sketch
of the proof. We define a modified TMAC, denoted by MTMAC, that uses
an independent tweakable URP for its finalization. In MTMAC, we partition
message x into (x[1], . . . , x[m]), where m = ‖x‖n, and when m > 1, the tag
is Y = P̃n(I(x), CBC(x̂) ⊕ pad(x[m])), where I(x) ∈ {1, 2} is a tweak. When
m = 1, Y = P̃n(I(x), pad(x)). For both TMAC[Pn] and MTMAC, let Xi ∈ Σ∗

be the i-th query and M(q) (C(q)) be the set of inputs (outputs) to Pn generated
in the CBC function for all q queries. We also define Yi as the i-th tag, and
Y(q) def= {Yi}i=1,...,q. When ‖Xi‖n = m > 1, we define Vi as the XOR of the
i-th CBC output and pad(Xi[m]) , and when m = 1, Vi = pad(Xi). Moreover,
Si

def= Vi ⊕ 2I(Xi)−1L, and S(q) def= {Si}i=1,...,q. In MTMAC, Si is a dummy
variable. Note that Yi = Pn(Si) in TMAC[Pn] and that Yi = P̃n(I(Xi), Vi) in
MTMAC, where m = ‖Xi‖n. We define aq

def= dist(S(q)) ∧ [M(q) ∩ S(q) = ∅] and
bq

def= dist(Y(q)), dq
def= [C(q) ∩Y(q) = ∅]. We then obtain

AdvcpaTMAC[Pn],MTMAC(q, �) ≤ ν�(MTMAC, aq ∧ bq) + ν�(MTMAC, dq) (20)

for any (q, �) using an argument similar to that used for Lemma 3. Note that aq

does not contain [0 �∈ M(q) ∪ S(q)], as we do not have to care about 0 being an
input to Pn. Since Lemma 4 does not depend on the structure of message-hashing
part, it also applies to MTMAC and we have

ν�(MTMAC, aq ∧ bq) = μ�(MTMAC, aq ∧ bq) ≤ max
Xq

PMTMAC
aq|Xq + max

Xq
PMTMAC

bq |aqXq .

(21)
To obtain bounds of last two terms of Eq. (21), we need the following lemma4.

It generalizes a lemma of Bellare et al.[5].

Lemma 6.

max
x∈(Σn)m,x′∈(Σn)m′ ,x �=x′,u∈Σn

Pr[CBC(x) ⊕ CBC(x′) = u] ≤ 2d(m∗)
2n

+
64(m∗)4

22n
,

max
x∈(Σn)m,u∈Σn

Pr[CBC(x) = u] ≤ 2d(m + 1)
2n

+
64(m + 1)4

22n
,

where d(m) is the maximum number of positive integers that divide h, for all
h ≤ m, and m∗ = max{m, m′} + 1.

Proof. (of Lemma 6) For any z ∈ Σn, CBC(x) ⊕ CBC(x′) = u is equivalent to
Pn(CBC(x) ⊕ z) = Pn(CBC(x′) ⊕ z ⊕ u), which is equivalent to CBC(x‖z) =
CBC(x′‖(z ⊕ u)). From Lemma 5 of [5], we see that the collision probability of
4 Pietrzak [18] proved that the collision probability of CBC among q messages could

be smaller than the union bound applied to Lemma 6 for some (q, �). Since our
analysis is based on the union bound, we do not know if the result of [18] can be
combined into our proof to obtain other proofs.

446 K. Minematsu and T. Matsushima

CBC(x‖z) and CBC(x′‖(z ⊕ u)) is at most 2d(m∗)/2n + 64(m∗)4/22n for any
z (note that x‖z �= x′‖(z ⊕ u) holds for any z and u as we assumed x �= x′).
Therefore, the first claim is proved. The second can be similarly proved.

We analyze maxXq PMTMAC
aq|Xq . If the i-th and j-th queries are fixed to xi and xj

with xi �= xj , collision Si = Sj is equivalent to Vi ⊕ 2I(xi)L = Vj ⊕ 2I(xj)L.
If I(xi) �= I(xj), the collision occurs with probability 1/2n since L is indepen-
dent of Vi and Vj and 2I(xi)L ⊕ 2I(xj)L is a permutation of L from Lemma 1.
If I(xi) = I(xj), Si = Sj implies Vi = Vj , which has a probability of at most
2d(�)/2n +64�4/22n from Lemma 6 and a case analysis similar to the one used to
derive Eq. (10). Therefore, the probability of dist(S(q)) is at most

(
q
2

)
(2d(�)/2n +

64�4/22n). Note that any collision event consisting of [M(q) ∩ S(q) = ∅] has prob-
ability 1/2n since L is independent of all members of M(q). From these observa-
tions, we have

max
Xq

PMTMAC
aq|Xq ≤ max

Xq
PMTMAC

dist(S(q))|Xq
+ max

Xq
PMTMAC

[M(q)∩S(q)=∅]|Xq

≤
(

q

2

)(
2d(�)
2n

+
64�4

22n

)
+

(�− 1)q2

2n
. (22)

The analyses of maxXq PMTMAC
bq |aqXq

and ν�(MTMAC, dq) are the same as those used
for the proof of Lemma 3. We obtain

max
Xq

PMTMAC
bq|aqXq ≤

(
q

2

)
1
2n

, and ν�(MTMAC, dq) ≤
(� − 1)q2

2n
+
(

q

2

)
1
2n

. (23)

As with MPMAC, MTMAC is an instance of CW-MAC. Thus, we have

AdvvilqrfMTMAC(q, �) ≤
(

q

2

)(
2d(�)
2n

+
64�4

22n
+

1
2n

)
. (24)

Combining the bound of AdvcpaTMAC[Pn],MTMAC(q, �), which can be derived from

Eqs. (20),(21),(22), and (23), and the bound of AdvvilqrfMTMAC(q, �) by Eq. (24),
AdvvilqrfTMAC[Pn](q, �) is at most ((2d(�) + 2�)q2)/2n + 64�4q2/22n. Since d(�) ≤ �,
this concludes the proof of Theorem 3.

5 Conclusion and Future Work

In this paper, we have provided new security bounds for PMAC, TMAC, and
XCBC. Our result demonstrates that the security degradation with respect to
the maximum length of a message is linear for PMAC and almost linear (unless
message is impractically long) for TMAC and XCBC, while previous analyses of
these modes proved quadratic security degradation.
A Comparison of Bounds. As we mentioned, our new bounds improve the old
ones under most (but not all) cases. Here, we give a detailed comparison between

New Bounds for PMAC, TMAC, and XCBC 447

new and old bounds. For simplicity, we ignore the constants. Thus, the new
PMAC bound is �q2/2n, the new TMAC (and XCBC) bound is �q2/2n+�4q2/22n,
and the old bounds are σ2/2n for all. For PMAC, the new bound is better if and
only if

√
�q < σ, i.e., the mean message block length (σ/q) is larger than

√
�.

Similarly, for TMAC and XCBC, the new bound is better if and only if the mean
message block length is larger than

√
�(1 + c), where c = �3/2n, which can be

small in practice. Thus, the criterion for choosing a bound is the distance between
the mean block length and the square root of the maximum block length.

As a concrete example, let n = 128, q = 240, and � = 216. Then the new
PMAC bound is 2−32 (the new TMAC and XCBC bounds are almost 2−32),
while the old bound ranges from 2−48 to 2−16. The old bound is better if 99.9%
of the messages are one-block, as σ2/2n ≤ (1 · 0.999q + � · 0.001q)2/2n < 2−35.
In this case, the mean block length is smaller than 26, which is smaller than√

� = 28. In contrast, if 1% of the messages are �-block, the new bound is better
since σ2/2n ≥ (� · 0.01q + 1 · 0.99q)2/2n > 2−30 and the mean block length is at
least 29. Generally, the new bounds are better when only a tiny fraction of the
message length distribution is concentrated on the right.
On The Security of OMAC. OMAC [11], i.e., CMAC [1], is similar to TMAC,
but uses a different finalization. In OMAC using Pn, denoted by OMAC[Pn], L is
Pn(0), and, instead of using 2I(x)−1L, it uses 2I(x)L as the masking value. Thus
OMAC has only one blockcipher key. The known security bound of OMAC[Pn] is
(5�2+1)q2/2n[11] against (q, �)-CPA, and 4σ2/2n against (q, σ)-CPA [10]. Unfor-
tunately, we have not yet succeeded in showing new bounds. In a manner similar
to that for TMAC, we define a modified5 OMAC (MOMAC), using Pn and P̃n,
and define sets of variables, (M(q), C(q), S(q), and Y(q)), for both OMAC[Pn]
and MOMAC. By defining events aq

def= dist(S(q))∧ [M(q) ∩S(q) = ∅]∧ [0 �∈ S(q)],
bq

def= dist(Y(q)), dq
def= [C(q) ∩Y(q) = ∅], and eq

def= [L �∈ Y(q)], we can prove that
AdvcpaOMAC[Pn],MOMAC(q, �) is at most ν�(MOMAC, aq ∧ bq ∧ dq ∧ eq). However, to
obtain a bound of ν�(MOMAC, aq ∧ bq), we need the maximum probability of
[CBC(x)⊕CBC(x′) = u1L⊕u2] for u1 = (2⊕22), which corresponds to the sum
of two distinct masking values, and for all u2, i.e., we need a generalization of
Lemma 6. We think that this is an interesting open problem.

Acknowledgments

We would like to thank Tetsu Iwata and the anonymous referees for very useful
comments and suggestions.

References

1. Recommendation for Block Cipher Modes of Operation: The CMAC
Mode for Authentication. NIST Special Publication 800-38B, available from
http://csrc.nist.gov/CryptoToolkit/modes/

5 The “modified OMAC” was also described in [11]; however, our definition is different.

http://csrc.nist.gov/CryptoToolkit/modes/

448 K. Minematsu and T. Matsushima

2. den Boer, B., Boly, J.P., Bosselaers, A., Brandt, J., Chaum, D., Damg̊ard, I.,
Dichtl, M., Fumy, W., van der Ham, M., Jansen, C.J.A., Landrock, P., Preneel, B.,
Roelofsen, G., de Rooij, P., Vandewalle, J.: RIPE Integrity Primitives, final report
of RACE Integrity Primitives Evaluation (1995)

3. Bellare, M., Kilian, J., Rogaway, P.: The Security of the Cipher Block Chaining
Message Authentication Code. Journal of Computer and System Science 61(3)
(2000)

4. Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of
Symmetric Encryptiont. In: FOCS ’97. Proceedings of the 38th Annual Symposium
on Foundations of Computer Science, pp. 394–403 (1997)

5. Bellare, M., Pietrzak, K., Rogaway, P.: Improved Security Analyses for CBC MACs.
In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 527–541. Springer, Hei-
delberg (2005)

6. Bernstein, D.J.: Stronger Security Bounds for Wegman-Carter-Shoup Authentica-
tors. In: Cramer, R.J.F. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 164–180.
Springer, Heidelberg (2005)

7. Black, J., Rogaway, P.: CBC MACs for Arbitrary-Length Messages: The Three-Key
Constructions. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 197–215.
Springer, Heidelberg (2000)

8. Carter, L., Wegman, M.: Universal Classes of Hash Functions. Journal of Computer
and System Science 18, 143–154 (1979)

9. Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness.
In: Algorithms and Combinatorics, vol. 17, Springer, Heidelberg (1998)

10. Iwata, T., Kurosawa, K.: Stronger Security Bounds for OMAC, TMAC, and XCBC.
In: Johansson, T., Maitra, S. (eds.) INDOCRYPT 2003. LNCS, vol. 2904, pp. 402–
415. Springer, Heidelberg (2003)

11. Iwata, T., Kurosawa, K.: OMAC: One-Key CBC MAC. In: Johansson, T. (ed.)
FSE 2003. LNCS, vol. 2887, pp. 129–153. Springer, Heidelberg (2003)

12. Krovetz, T., Rogaway, P.: The OCB Authenticated-Encryption Algorithm. Internet
Draft (2005)

13. Kurosawa, K., Iwata, T.: TMAC: Two-Key CBC MAC. In: Joye, M. (ed.) CT-RSA
2003. LNCS, vol. 2612, pp. 33–49. Springer, Heidelberg (2003)

14. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable Block Ciphers. In: Yung, M. (ed.)
CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002)

15. Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EU-
ROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)

16. Maurer, U., Pietrzak, K.: Composition of Random Systems: When Two Weak Make
One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer,
Heidelberg (2004)

17. Pietrzak, K.: Composition Does Not Imply Adaptive Security. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 55–65. Springer, Heidelberg (2005)

18. Pietrzak, K.: A Tight Bound for EMAC. In: Bugliesi, M., Preneel, B., Sassone, V.,
Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 168–179. Springer, Heidelberg
(2006)

19. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refine-
ments to Modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004.
LNCS, vol. 3329, pp. 16–31. Springer, Heidelberg (2004), (September 24, 2006)
http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

20. Wegman, M., Carter, L.: New Hash Functions and Their Use in Authentication
and Set Equality. Journal of Computer and System Sciences 22, 265–279 (1981)

http://www.cs.ucdavis.edu/~rogaway/papers/offsets.pdf

New Bounds for PMAC, TMAC, and XCBC 449

A Lemmas from Maurer’s Methodology

We describe some lemmas developed by Maurer (e.g., [15]) that we used. We
assume that F and G are two random functions with the same input/output size;
we define MESs A = a0a1 . . . and B = b0b1 . . . for F and G. The i-th input and
output are denoted by Xi and Yi for F (or G), respectively. Equality of (possibly
conditional) probability distributions means equality as functions, i.e., equality
holds for all possible arguments. For example, we write PF

Y i|Xiai
= PG

Y i|Xibi

to mean PF
Y i|Xiai

(yi, xi) = PG
Y i|Xibi

(yi, xi) for all (xi, yi), where PF
ai|Xi(xi) and

PG
bi|Xi(xi) are positive. Inequalities, such as PF

Y i|Xiai
≤ PG

Y i|Xibi
, are similarly

defined.

Lemma 7. (A corollary from Theorem 1 (i), Lemma 1 (iv), and Lemma 4 (ii) of
[15]) Let F be the function of F or G (i.e., F[F] is a function that internally in-
vokes F , possibly several times, to process its inputs). Here, F can be probabilistic,
and, if so, F is independent of F or G. Suppose that PF

Yi|XiY i−1ai
= PG

Yi|XiY i−1bi

and PF
ai|XiY i−1ai−1

≤ PG
bi|XiY i−1bi−1

holds for i ≥ 1. We then have

AdvcpaF,G(q) ≤ ν(F, aq), and Advcpa
F[F],F[G](q) ≤ ν(F[F], a∗

q).

Here, MES A∗ = a∗
0a

∗
1 . . . is defined such that a∗

i denotes A-event is satisfied
for time period i. For example, if F[F] always invokes F k times for any input,
then a∗

i ≡ aki.

Lemma 8. (Theorem 2 of [15]) If PF
ai|XiY i−1ai−1

= PF
ai|Xiai−1

holds for i ≥ 1,
the maximum probabilities of aq for all adaptive and non-adaptive attacks are
the same, i.e., ν(F, aq) = μ(F, aq).

Lemma 9. (Lemma 6 (iii) of [15]) If MESs A = a0a1 . . . and B = b0b1 . . . are
defined for F , we have ν(F, aq ∧ bq) ≤ ν(F, aq) + ν(F, bq).

These lemmas are easily extended even if the adversary’s parameter θ contains
� (or σ) in addition to q.

B Proof of the First and Second Inequalities of Lemma 3

We define two tweakable functions having n-bit input/output and tweak space
T = {1, .., 2n/2} × {0, 1, 2}. For any input x ∈ Σn and tweak t = (t[1], t[2]) ∈ T ,

XE(t, x) def= Pn(x ⊕ 2t[1]3t[2]L), where L = Pn(0), and

X̃E(t, x) def=

{
Pn(x ⊕ 2t[1]3t[2]L), if t[2] = 0, where L = Pn(0);
P̃n((t[1], t[2]), x), otherwise.

In the definition of X̃E, Pn and P̃n are assumed to be independent. It is obvious
that PMAC[Pn] and MPMAC can be realized by using XE and X̃E in a black-box

450 K. Minematsu and T. Matsushima

manner. We consider a game in which an adversary tries to distinguish XE from
X̃E using q queries. Note that a query is in T ×Σn. Let (Ti, Xi) ∈ T ×Σn be the
i-th query, and Yi ∈ Σn be the i-th output. In addition, let Si be Xi⊕2Ti[1]3Ti[2]L,
where Ti = (Ti[1], Ti[2]). For X̃E, Si is defined as a dummy variable when Ti[2] �= 0.
We define the following two events:

a∗
i

def=[Sj �= Sk for all (j, k) ∈ ξ(i)] ∧ [Sj �= 0 for all j = 1, . . . , i].

b∗i
def=[Yj �= Yk for all (j, k) ∈ ξ(i)] ∧ [Yj �= L for all j = 1, . . . , i],

where ψ(i) def= {j : 1 ≤ j ≤ i, Tj[2] ∈ {1, 2}}, and

ξ(i) def= {(j, k) ∈ {1, . . . , i}2 : j �= k, at least one of j or k is in ψ(i)}.

Note that ψ(i) and ξ(i) depend on {Tj[2]}j=1,...,i. Clearly, A∗ = a∗
0a

∗
1 . . . and

B∗ = b∗0b
∗
1 . . . are MESs and they are equivalent in XE (but not in X̃E). Also,

note that A∗ and B∗ defined for XE (X̃E) are compatible with MESs defined
for PMAC[Pn] (MPMAC). For example, if one uses XE to simulate an attack
against PMAC[Pn] and observes a∗

i in time period i, ai′ is occurring for the i′-th
query to PMAC[Pn], for some i′ ≤ i. We then have

PXE
Yi|XiT iY i−1a∗

i
=
∑

PXE
Yi|LXiT iY i−1 · PXE

L|XiT iY i−1a∗
i
, (25)

where the summation is taken for all L ∈ Γ (xi, ti, yi−1), which is the set of L = c
such that the rightmost term is non-zero. The equality of Eq. (25) holds since Si

is completely determined if X i and L are fixed.
We focus on the rightmost two terms of Eq. (25) for some fixed X i = xi,

T i = ti, Y i−1 = yi−1 satisfying b∗i−1, and L = c ∈ Γ (xi, ti, yi−1) (thus Si = si is
also fixed). It is clear that PXE

L|XiT iY i−1a∗
i
(c, xi, ti, yi−1) is the uniform distribution

over Γ (xi, ti, yi−1). The conditional probability PXE
Yi|LXiT iY i−1(yi, c, x

i, ti, yi−1)
is 1 if yi = yj , and i �∈ ψ(i) and ∃j �∈ ψ(i) such that si = sj . If i ∈ ψ(i) or
i �∈ ψ(i) but si �= sj for j ≤ i− 1, Yi is uniform over Σn \ {y1, . . . , yi−1, c}.

Similarly, for X̃E, we have

P
�XE

Yi|XiT iY i−1a∗
i b∗

i
=
∑

P
�XE

Yi|LXiT iY i−1b∗
i
· P �XE

L|XiT iY i−1a∗
i b∗

i−1
, (26)

where the summation is taken for all L ∈ Γ (xi, ti, yi−1). Then, a simple case
analysis shows that

PXE
Yi|XiT iY i−1a∗

i
= P

�XE
Yi|XiT iY i−1a∗

i b∗
i
. (27)

Moreover, we have

PXE
a∗

i |XiT iY i−1a∗
i−1

=
∑

PXE
a∗

i |LXiT iY i−1a∗
i−1

· PXE
L|XiT iY i−1a∗

i−1
, and (28)

P
�XE

a∗
i b∗

i |XiT iY i−1a∗
i−1b∗

i−1
=
∑

P
�XE

a∗
i b∗

i |LXiT iY i−1a∗
i−1b∗

i−1
· P �XE

L|XiT iY i−1a∗
i−1b∗

i−1
, (29)

New Bounds for PMAC, TMAC, and XCBC 451

where the summations are taken for all L ∈ Γ ′(xi−1, ti−1, yi−1), which is the set
of L = c such that the last term of Eq. (28) (or Eq. (29)) is non-zero. It is easy to
find that the last terms of Eqs. (28) and (29) are the same conditional distribu-
tions. However, we have P

�XE
a∗

i b∗
i |LXiT iY i−1a∗

i−1b∗
i−1

≤ PXE
a∗

i |LXiT iY i−1a∗
i−1

since both

sides are 0 if L �∈ Γ (xi, ti, yi−1), and otherwise the R.H.S. is 1. Thus we have

P
�XE

a∗
i b∗

i |XiT iY i−1a∗
i−1b∗

i−1
≤ PXE

a∗
i |XiT iY i−1a∗

i−1
. (30)

From Eqs. (27) and (30) and the second claim of Lemma 7, the first inequality
of Lemma 3 is proved. The second follows from the first and Lemma 9.

C Proof of Lemma 4

Note that M(i) (C(i)) denotes the set of Pn inputs (outputs) generated in PHASH
up to the i-th query. Let Z(i) be the set of random variables (L,C(i)). If Z(i)

and X i are fixed, M(i), V i, and Si are uniquely determined. We have

PMPMAC
aibi|XiY i−1ai−1bi−1

=
∑

Z(i)

PMPMAC
bi|Z(i)XiY i−1aibi−1

·PMPMAC
ai|Z(i)XiY i−1ai−1bi−1

· PMPMAC
Z(i)|XiY i−1ai−1bi−1

, (31)

where the summations are taken for all Z(i) = z(i) such that (z(i), xi) satisfies
ai−1. Note that ai implies that, if the j-th and j′-th tweaks (recall that the
i-th tweak is a function of Xi) are the same, Vj �= Vj′ holds for all j, j′ ≤ i,
j �= j′. From this, PMPMAC

bi|Z(i)XiY i−1aibi−1
(z(i), xi, yi−1) does not depend on yi−1,

and it is (2n − (i − 1))/(2n − π(xi)), where π(xi) is the number of indices
j ∈ {1, . . . , i − 1} such that the j-th and i-th tweaks are the same. Moreover,
PMPMAC

ai|Z(i)XiY i−1ai−1bi−1
(z(i), xi, yi−1) does not depend on yi−1 as it is 1 if (z(i), xi)

satisfies ai, and otherwise 0. Finally, it is easy to see that PMPMAC
Z(i)|XiY i−1ai−1bi−1

equals PMPMAC
Z(i)|Xiai−1

(here, bi−1 implies Vj �= Vj′ whenever j-th and j′-th tweaks
are the same, however, this is already implied by ai−1). Thus, PMPMAC

aibi|XiY i−1ai−1bi−1

does not depend on yi−1, and, for any xi and ŷi−1 satisfying bi−1, we have

PMPMAC
aibi|Xiai−1bi−1

(xi)=
∑

PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, yi−1)·PMPMAC
Y i−1|Xiai−1bi−1

(yi−1, xi),

=PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, ŷi−1)
∑

PMPMAC
Y i−1|Xiai−1bi−1

(yi−1, xi),

=PMPMAC
aibi|XiY i−1ai−1bi−1

(xi, ŷi−1), (32)

where the summations are taken for all yi−1 satisfying bi−1. From this and
Lemma 8, we prove the first claim of Lemma 4. The second follows from the
first and the union bound.

Perfect Block Ciphers with Small Blocks�

Louis Granboulan1 and Thomas Pornin2

1 École Normale Supérieure; EADS
louis.granboulan@eads.net

2 Cryptolog International, Paris, France
thomas.pornin@cryptolog.com

Abstract. Existing symmetric encryption algorithms target messages
consisting of elementary binary blocks of at least 64 bits. Some applica-
tions need a block cipher which operates over smaller and possibly non-
binary blocks, which can be viewed as a pseudo-random permutation of
n elements. We present an algorithm for selecting such a random permu-
tation of n elements and evaluating efficiently the permutation and its
inverse over arbitrary inputs. We use an underlying deterministic RNG
(random number generator). Each evaluation of the permutation uses
O(log n) space and O((log n)3) RNG invocations. The selection process
is “perfect”: the permutation is uniformly selected among the n! possi-
bilities.

1 Introduction

Block ciphers such as AES[1] or DES[2] typically operate on large input data
blocks, each consisting of 64 or more bits (128 or 256 bits are now preferred).
Using smaller blocks leads to important security issues when encrypting large
messages or using the block cipher for a MAC over such a large message. How-
ever, some applications need smaller blocks, and possibly non-binary blocks (i.e.,
a block space size which is not a power of two).

An example of such an application is the generation of unique unpredictable
decimal numbers, destined to be typed in by users. Such numbers must be short;
this precludes the use of a simple PRNG, which would imply collisions with a
non-negligeable probability. A solution is to use a block cipher operating over the
set of decimal numbers of the required length: simply encrypt successive values
of a counter.

Building a secure block cipher is known to be a tricky task. Small blocks and
non-binary alphabets are even more challenging in several ways:

– There are theoretical results on the construction of secure block ciphers, e.g.
[3]; more recent examples include [4] and [5]. These constructions implicitely
rely on huge block sizes to hide some biases which our security model (which
we detail in section 5) cannot tolerate.

� This work has been supported in part by the French government through X-Crypt,
in part by the European Commission through ECRYPT.

A. Biryukov (Ed.): FSE 2007, LNCS 4593, pp. 452–465, 2007.
c© International Association for Cryptologic Research 2007

Perfect Block Ciphers with Small Blocks 453

– Usual security analysis techniques try to model the attacker as having access
to an encryption or decryption oracle, with some limitations on the number
of queries. With a small block size, the complete code book is too small for
this model to be adequate.

– Some classes of attacks (differential and linear cryptanalysis) are much more
difficult to express on non-binary alphabets. For instance, several distinct
ring structures can be applied on the set of decimal digits. Moreover, there
is no field of size 10, only rings with some non-invertible elements, which
makes things even more complex[6].

For these reasons, there have been only few attempts at designing such block
ciphers, e.g. [7] which proposes to build ciphers of arbitrary domains by iterating
a larger block cipher or by Feistel-like structures.

In this paper, we investigate another entirely different way of generating per-
mutations, based of the following Shuffle algorithm. Let’s consider a very small
space of input data, for instance the two-digit decimal numbers. The input space
has size 100, and there are 100! possible permutations. Each of them may be rep-
resented as an array of 100 numbers from 0 to 99, with no two array elements
being equal: if the array element of index x contains y, then the permutation
maps x to y (we number array elements from 0). If an appropriate source of ran-
domness is available, then the following algorithm uniformly selects a random
permutation of 100 elements:

Shuffle:

1. fill the array with element w containing the number w
2. i ← 0
3. select a random number j between i and 99 (inclusive)
4. if i �= j, swap array elements of index i and j
5. increment i
6. if i < 99, return to step 3
7. the array contents represent the permutation

This algorithm was first published by Fisher and Yates[8], then published
again by Durstenfeld[9], and popularized by Knuth[10], to the point that this
algorithm is usually known as the “Knuth shuffle”. If the random number selec-
tion at step 3 is uniform, then it can be shown that all possible permutations
have an equal probability of being generated. Thus, for very small blocks, we
have a practical candidate for a block cipher: use the key in a cryptographically
secure seeded PRNG, then generate the complete permutation using the Knuth
shuffle, and apply it. A simple linear pass can be used to compute the inverse
permutation, which is used for decryption. The uniform selection of the random
number at step 3 is a bit tricky if the PRNG outputs bits. Here is an algorithm
which outputs uniformly random numbers between 0 and d − 1 using a PRNG
which outputs bits:

454 L. Granboulan and T. Pornin

RandomNumber:

1. chose an integer r such that 2r ≥ d
2. obtain r random bits and interpret them as a number x such that

0 ≤ x < 2r

3. compute t = &x
d '

4. if d + td > 2r, return to step 2
5. output x − td

Depending on r, the probability that the loop occurs can be made arbitrarily
low, to the point of being impossible to achieve in practice. A practical imple-
mentation may decide to use r = 256 and ignore the possibility that the test in
step 4 is verified. Ultimately, this would imply a slight selection bias which is
sufficiently small to be neglected.

The permutation generated by Shuffle can be viewed as a block cipher,
where the key is the PRNG output (or, equivalently, the seed used in the PRNG).
Since a truly random generator implies a truly random permutation, any suc-
cessful attack on that selection system would be a successful distinguisher on
the PRNG. Cryptographically speaking, the “block” cipher thus obtained is as
perfect as the PRNG used. Unfortunately, this procedure has a cost O(n) (for
a permutation over a set of size n), both in CPU and in space, which makes it
impractical for values of n beyond, for instance, 104. Generating a full permu-
tation means computing each of the n output values; but we do not need the
full permutation. Our goal is to evaluate the block cipher (i.e. the permutation)
over one given input block. Hence, what we need here is a deterministic proce-
dure which, from the output of a PRNG, may generate a permutation φ over n
elements such that:

– assuming a perfect random source instead of the PRNG, all possible permu-
tations of n elements have an equal chance of being selected for φ;

– for any given x, φ(x) can be computed with an average computational cost
much lower than O(n).

The purpose of this article is to describe such a procedure. It computes φ(x)
for any x in the input data set in time O((log n)3), and may also compute
φ−1(y) for any y in the output data set in time O((log n)3). The notion of time
we use here is the number of requests to the PRNG; we assume a seekable PRNG
output1. Our algorithms are described as recursive for simplicity, but they may
easily be transformed into tail recursions; the real space requirements are for
a fixed number of integer values lower than n, hence implying a O(log n) space
complexity. We describe our notations more formally in the next section; then we
proceed with the algorithm description. Finally, we specify our security model.

1 Note that the overall number of requests to the PRNG that are needed to define the
whole permutation is O(n(log n)3) which is bigger than log(n!).

Perfect Block Ciphers with Small Blocks 455

2 Notations

We consider the problem of selecting a random permutation φ which operates
over a set of n elements. n is an integer greater than 1; the targeted values of n
are between 103 and 1020, although our construction may be used with smaller
and greater blocks as well.

We need a deterministic PRNG, which constitutes the key for our cipher. We
model the PRNG as a function:

R : Nr −→ {0, 1}
(n1, n2, . . . nr) −→ R(n1, n2, . . . nr)

The PRNG is assumed to be an unbiased random oracle, in that the output
for a given set of input integers cannot be computationally predicted from the
knowledge of the output of R for all other input value sets. From such a PRNG
R with r input parameters, one can easily build a PRNG R′ with r + 1 input
parameters, by definining:
R′(n1, . . . nr, nr+1) = R(n1, . . . nr−1, (nr + nr+1 + 1)(nr + nr+1 + 2)/2− nr − 1)

In practice, we will need a keyed PRNG with three input parameters, for
which we will provide workable bounds.

Our PRNG must be seekable, which means that computing the output of
R for some given input parameters must be efficient, regardless of which other
parameter values were previously input into R. Unfortunately, this characteristic
precludes the use of some of the “provably secure” PRNG such as BBS[11] or
QUAD[12]: these PRNG output bits sequentially, and are not seekable.

We will use “log” for the base-2 logarithm, such that log 2x = x for all x.
The algorithm description uses binomial terms; in order to simplify the equa-

tions, we use extended binomial coefficients, which are defined thus:
(

n

p

)
=

n!
p!(n− p)!

if 0 ≤ p ≤ n, and 0 otherwise.

3 Random Permutation Selection

In this section, we describe our algorithm for computing φ(x) on input x, as well
as the inverse algorithm which computes φ−1(y) from y. The first algorithm is
an extension of a random permutation selection algorithm described in [13] in
the context of a massively parallel architecture; we add the ability to compute
only φ(x) and not the whole description of φ, as well as an algorithm for φ−1.

Our two main algorithms are called Permutator and InvPermutator;
they compute, respectively, φ and φ−1 on a given input. Permutator imple-
ments φ by using a binary tree of “splits”, where each split segregates the inputs
into two groups. The Splitter algorithm implements the split; it itself uses
a binary tree of repartitions that Repartitor computes. Repartitor is the
algorithm which uses the PRNG output. InvPermutator uses InvSplitter,
which itself relies on Repartitor. We describe all those algorithms in the fol-
lowing sections.

456 L. Granboulan and T. Pornin

3.1 Repartitor

The Repartitor has the following inputs:

– integers n and p such that 0 ≤ p ≤ n and n �= 0;
– a PRNG index i.

We define a = &n/2'.
Using only O(log n) PRNG requests R(i, . . .), all with the value i as first

index, Repartitor outputs an integer value u following this distribution:

P (u = k) =

(
a
k

)(
n−a
p−k

)

(
n
p

)

This distribution is known as the hypergeometric distribution. It can easily be
shown that values u which have a non-zero probability of being returned must
be such that:

0 ≤ u ≤ a
(a + p)− n ≤ u ≤ p

Note that in the degenerate cases where p = 0 or p = n, then only one return
value is possible (u = 0 or u = a, respectively), allowing for a fast return.

When p > a, one may implement Repartitor by using:

Repartitor(n, p, i) = a−Repartitor(n, n− p, i)

which means that one may always assume that p ≤ a when implementing Repar-

titor.

Repartitor models the following experiment: from a set of n elements, split
into two subsets of size a and n − a, p distinct elements are randomly selected.
Repartitor computes and returns how many of those p elements come from the
first subset (of size a). Implementing Repartitor efficiently, with a sufficiently
unbiased output is tricky; we give a slow but precise algorithm in section 4.

3.2 Splitter

The Splitter algorithm has the following inputs:

– integers n and p such that 0 ≤ p ≤ n and n �= 0;
– an input index x (0 ≤ x < n);
– a PRNG index i.

Using only requests to Repartitor(∗, ∗, j) for indexes j such that i ≤ j <
i + n− 1, Splitter returns an integer y = Splitter(n, p, x) such that:

0 ≤ Splitter(n, p, x) < n
x1 �= x2 ⇒ Splitter(n, p, x1) �= Splitter(n, p, x2)

#{x|Splitter(n, p, x) < p} = p
Splitter(n, p, x1) < Splitter(n, p, x2) ≤ p ⇒ x1 < x2

p ≤ Splitter(n, p, x1) < Splitter(n, p, x2) ⇒ x1 < x2

Perfect Block Ciphers with Small Blocks 457

These equations mean that Splitter extracts p elements from the set of
integer values from 0 to n−1; these p elements are given the output indexes 0 to
p− 1, but their order is preserved. The n− p unextracted elements are given the
indexes p to n− 1, and their order is also preserved. There are

(
n
p

)
such “splits”

and we require that Splitter selects one of those with uniform probability.
Splitter is implemented with a “distribution tree”. This is a binary tree

whose leaves are the n elements; each leaf is thus “extracted” (part of the p
elements) or “not extracted” (part of the n − p other elements). Each node in
the tree records how many elements among those descending from this node are
“extracted”. Hence, the root is the ancestor for all n elements, and records the
value p. The tree is built from the root: each node manages k elements, and
gets f “extractions” to distribute evenly among those k elements; it breaks the
k elements into two halves and distributes the f extractions between the two
halves (using Repartitor to follow the right probability distribution); the same
process is invoked recursively on both halves. Computing the whole tree costs
O(n) calls to Repartitor, but knowing the status (extracted or not) of a given
input element x, and computing its final index, can be done by exploring only
the tree path from the root to the leaf corresponding to x. If the tree is balanced
this costs O(log n) calls to Repartitor, hence O((log n)2) PRNG invocations.

Here is an implementation of Splitter:

Splitter:

input: n, p, x and i
output: y

1. if n = 1, then return x
2. compute a ← &n/2'
3. compute u ← Repartitor(n, p, i)
4. if x ≥ a, go to step 7
5. compute t ← Splitter(a, u, x, i + 1)
6. if t < u, return t, else return p + (t− u)
7. compute t ← Splitter(n − a, p− u, x− a, i + a)
8. if t < p− u, return t + u, else return a + t

Since a is computed such that the tree is well balanced, then the maximum
recursion depth is !log n". It is easily shown that Splitter uses the PRNG only
for indexes j such that i ≤ j ≤ i + n − 2: this is true for n = 1 (no PRNG
invocation at all), and is extended by recursion (the first recursive Splitter

invocation may use only indexes from i+1 to i+a−1, and the second invocation
may use only indexes from i + a to i + n− 2). Moreover, for a given x value, the
same PRNG index is never used twice.

The hypergeometric distribution implemented by Repartitor ensures that
Splitter selects uniformly the split among the possible splits of n elements into
sets of length p and n − p.

458 L. Granboulan and T. Pornin

3.3 InvSplitter

The InvSplitter implements a reversal of Splitter: InvSplitter(n, p, y, i)
computes x such that Splitter(n, p, x, i) = y. Since Splitter implements a
permutation of n elements, a unique solution always exists for all y from 0 to
n− 1.

InvSplitter first checks whether the targeted y is part of the p extracted
elements, or not. Then it invokes Repartitor to know how the elements, at that
tree level, are split between the left and right parts, and it follows the correct
node, depending on whether y was extracted, and at which rank. When the leaf
x is reached, then x is the value looked for. Here is the InvSplitter algorithm:

InvSplitter:

input: n, p, y and i
output: x

1. if n = 1, then return y
2. compute a ← &n/2'
3. if y ≥ p, then go to step 5
4. if y < u, return InvSplitter(a, u, y, i + 1);

otherwise, return a + InvSplitter(n − a, p− u, y − u, i + a)
5. if y < a + p− u, return InvSplitter(a, u, y − (p− u), i + 1);

otherwise, return a + InvSplitter(n − a, p− u, y − a, i + a)

Note that if y < p (respectively y ≥ p) then all nested invocations of InvS-

plitter will also have y < p (respectively y ≥ p): this is because “y < p” is
equivalent to “y is from the set of p extracted elements”. InvSplitter has cost
O((log n)2) (!log n" calls to Repartitor).

3.4 Permutator

The Permutator algorithm selects φ and computes φ(x). φ is defined as a
binary tree of splits, as defined by Splitter: each tree node splits its input into
two halves, and uses Splitter to decide in which half each input element goes.
It then invokes itself recursively on the half where the actual input x has gone.

The inputs are n (the input space size), x (the actual input element, between 0
and n−1) and i (the base index for PRNG access). For the complete permutation,
these parameters are, respectively, n (the total input space size), x and 0.

Permutator:

input: n, x and i
output: φ(x)
1. if n = 1, then return x
2. compute a ← &n/2'
3. compute t ← Splitter(n, a, x, i)
4. if t < a, return Permutator(a, t, i + n− 1)
5. otherwise, return a + Permutator(n− a, t − a, i + n− 1 + γ(a))

Perfect Block Ciphers with Small Blocks 459

In this description, γ is a function which computes how many PRNG input
indexes are used by Permutator: Permutator may use indexes from i to
i + γ(n)− 1 (inclusive). γ must be such that:

γ(1) ≥ 0
γ(n) ≥ n− 1 + γ(a) + γ(n− a) for n > 1 and a = &n/2'

The “optimal” γ (where these inequalities are equalities) is achieved with the
following formula for n > 1:

γ(n) = nf(n) − 2f(n) + 1

where:
f(n) = 1 + &log(n− 1)'

(f(n) is the bit length of the binary representation of n− 1.)
The depth of the binary tree of splits that Permutator implements is !log n",

because a is computed to be as close as possible to n/2. The number of in-
vocations of Repartitor is O((log n)2), hence the cost of O((log n)3) PRNG
invocations.

3.5 InvPermutator

The InvPermutator algorithm must select the same φ than Permutator with
the same PRNG, and then compute φ−1(y) for a given value y. InvPermutator

explores the same binary tree of splits than Permutator, but upwards, from
the leaves to the root, instead of downwards. At each level, Permutator uses
Splitter to know where its current input value goes. For InvPermutator, we
want to know from where a given output comes; we thus use InvSplitter.

InvPermutator:

input: n, y and i
output: φ−1(y)
1. if n = 1, then return y
2. compute a ← &n/2'
3. if y < a, compute t ← InvPermutator(a, y, i + n − 1); otherwise,

compute t ← a + InvPermutator(n − a, y − a, i + n− 1 + γ(a))
4. return InvSplitter(n, a, t, i)

InvPermutator first goes recursively to the relevant leaf, and then works
upwards, back to the root, where φ−1(y) will be known.

4 Sampling Following the Hypergeometric Distribution

The hypergeometric distribution models the selection of p distinct elements among
n, and returns how many of these p elements are taken from the first a = &n/2'
elements. For small values of p, this exact procedure can be simulated. When p

460 L. Granboulan and T. Pornin

increases, this becomes impractical, and we need a more efficient samplingmethod.
As outlined in section 3.1, we may assume that p ≤ a.

4.1 Acceptance-Rejection Method Aka. Rejection Sampling

This classical method, due to von Neumann, generates sampling values from
an arbitrary probability distribution function f(k) by using an instrumental
distribution g(k), under the only restriction that f(k) < Mg(k) where M > 1 is
an appropriate bound on f(k)/g(k).

The algorithm runs as follows: k is sampled following the distribution g. Then
f(k) is computed and a random integer y ∈ [0, 1] is generated. If y ≤ f(k)

Mg(k) ,
then k is output, else nothing is output and a new k must be sampled.

If g can be perfectly sampled, and if f(k)
Mg(k) and y can be computed with

arbitrary precision, the output of the algorithm follows exactly the distribution
f . In practice, since one only needs to decide whether y ≤ f(k)

Mg(k) or not, the
average precision needed is only a few bits.

We want to select according to the hypergeometric distribution HGn,α,p where
α = &n/2'/n, which we bound with the binomial distribution Bα,p, itself being
bounded by the Cauchy-Lorentz distribution CLμ,ν where μ = αp and ν =
2α(1 − α)p:

HGn,α,p(k) =

(
αn
k

)(
(1−α)n

p−k

)

(
n
p

)

Bα,p(k) =
(

p

k

)
αk(1 − α)p − k

CLμ,ν(x) =
1
π

(√
ν

(x − μ)2 + ν

)

HG and B are discrete, whereas CL is continuous.

4.2 Upper-Bounding Distributions

Theorem 1. If α ≤ 1/2, then:

HGn,α,p(k)
Bα,p(k)

<
2(1−2α)n

(2α)p

√
1 +

p

n− p
.

Theorem 2. If k ∈ N and α = 1/2, then:

Bα,p(k)
CLαp,2α(1−α)p(k)

≤
√

π.

Proofs for these theorems are provided in appendix A and B, respectively.

Perfect Block Ciphers with Small Blocks 461

The values of interest to us are α = &n/2'/n for large n and sufficiently large
p. For these values, and for any x, there exists a constant c such that:

Bα,p(&x + 1/2')
CLαp,2α(1−α)p(x)

≤ c
√

π.

We decide that if p ≤ 10 or n ≤ 10, then we will use another method for
Repartitor, namely performing p random selections. Under those conditions,
c = 1.2 is an appropriate constant.

4.3 Cauchy-Lorentz Distribution by Inverse Method

If u ∈ [0, 1[is selected uniformly (and u �= 1/2), then the value μ +
√

ν tan(πu)
follows the CLμ,ν distribution. If x =

√
ν tan(πu) then we need, for Reparti-

tor, the integer closest to x + μ, and we have CLμ,ν =
√

ν
π(x2+ν) .

4.4 Description of Repartitor

The full Repartitor handles the situation where p > a, and where p ≤ 10 (if
n ≤ 10 then p ≤ 10):

Repartitor:

input: n, p and i
output: k

1. a ← &n/2'
2. if p > a then return a −Repartitor(n, n− p, i)
3. if p > 10 then return RepartitorReject(n, p, i)
4. n1 ← a, n2 ← n− a
5. if p = 0, then return a − n1

6. select randomly r between 0 and n1 + n2 − 1 (inclusive)
7. if r < n1, then n1 ← n1 − 1, else n2 ← n2 − 1
8. p ← p− 1
9. go to step 5

The random selection of r is done using an algorithm similar to Random-

Number, working with the stream of random bits output by R(i, j, 0) for values
of j beginning with 0. The average number of invocations of R for this process
will be less than p log n; it is extremely improbable that more than 10 times this
value is actually needed.

RepartitorReject implements the general selection with the rejection
method. We have shown that, for the parameters used with Repartitor:

HGn,α,p(&x + 1/2')
CLαp,2α(1−α)p(x)

< 1.2
√

π
2(1−2α)n

(2α)p

√
1 +

p

n− p

For positive integers i and j, we define the value ui,j: ui,j =
∑

k≥0 R(i, j, k)2−k−1

(the conceptually infinite stream R(i, j, ∗) defines the binary digits of ui,j).

462 L. Granboulan and T. Pornin

RepartitorReject:

input: n, p and i
output: k

1. define a = &n/2', μ = ap/n and ν = 2(a/n)(1− a/n)p
2. define M = 1.2

√
ν
π

2(1−2α)n

(2α)p

√
1 + p

n−p

3. l ← 0
4. l ← l + 1
5. x ←

√
ν tan(πui,2l−1)

6. k ← &x + μ + 1/2'
7. if k < 0 or k > p, then go to step 4
8. H ←

(
a
k

)(
n−a
p−k

)
/
(
n
p

)

9. if ui,2l ≤ (x2 + ν)H/M , then return k
10. go to step 4

The value of k needs to be determined exactly, which means that x will have to
be computed with enough precision. Required precision increases linearly with
the derivative of tan over the range of accepted values. Here, the maximum
tangent value is on the order of

√
μ, with a derivative of μ, whose size is that of

n. Therefore, we need about 2 log n random bits (from ui,2l−1) to compute k.
The other computations need be precise enough only for the final test against

ui,2l to be meaningful; precision must be raised only if the test is not clear cut,
which happens with a probability on the order of 2−r if r bits of precision are
used. On the average, only O(1) random bits are used for ui,2l.

5 Security Model

We use the following security model: the attacker is given access to a black box
implementing Permutator for an internal secret key, with a message space of
size n. The attacker may perform up to n−2 encryption or decryption (adaptive)
queries. The attacker must then predict the output of Permutator for the
encryption of an hitherto unseen input. His probability of success is at most 0.5
if the black box implements a truly random permutation.

Using the terminology of [3], our attacker is an (n − 2)-limited adaptive dis-
tinguisher in the model of super-pseudorandomness (the oracle accepts both
encrypt and decrypt queries). However, this terminology is here quite stretched.
As an illustration, the Luby-Rackoff construction offers no security against our
attacker: since a Feistel network can only implement an even permutation, know-
ing the outputs for n− 2 inputs implies only a single possible permutation, and
our attacker has a probability 1 of success.

We consider that we achieve a security level of r bits if the attacker cannot
succeed with probability greater than 0.5 + 2−r, except by demonstrating that
the PRNG output is not truly random. With the Repartitor implementation
described in section 4, we achieve an “infinite” level of security, i.e. Permutator

Perfect Block Ciphers with Small Blocks 463

is as robust as the PRNG used: any successful attack is mechanically a proof
that the PRNG is not a truly random source, i.e. a distinguisher attack on the
PRNG.

However, Permutator may tolerate a slightly biased Repartitor. Per-

mutator is, basically, an acyclic graph of Repartitor invocations, containing
about n log n nodes. For a given permutation φ, there is a single set of output
values for these nodes which yields the φ permutation. Each Repartitor should
follow the hypergeometric distribution Hm,p(u) to ensure uniform permutations
selection (Hm,p(u) is the probability that the unbiased Repartitor outputs u
on inputs m and p). We now consider a biased Repartitor with the distribution
H ′

m,p such that:
∑

H′
m,p(u)=0 Hm,p(u) ≤ ε

H ′
m,p(u) �= 0 ⇒

∣
∣
∣Hm,p(u)
H′

m,p(u) − 1
∣
∣
∣ ≤ ε

for a value ε � 1/n. Then, for a given permutation φ:

– either one of the H ′
m,p(u) is 0 for φ, which means that φ cannot be selected;

this happens with probability at most εn log n;
– or φ is selected with probability P =

∏
H ′

m,p(u), which is close to the theo-
retical unbiased probability: |P/n!− 1| ≤ εn logn.

To achieve a security level of r bits, it is sufficient that these two probabilities
be lower than 2−r, i.e. log ε ≤ −(r + log n + log log n). Practically, for 128 bits
of security and n = 232, ε is 2−165. Any implementation of Repartitor which
achieves that level of unbiasness will fulfill our security requirements.

6 Conclusion

We have presented a new algorithm for constructing a pseudo-random permuta-
tion over a space of size n from a seekable PRNG. The PRNG must take three
numerical indexes as parameters, the first never exceeding γ(n) ≈ n log n, while
the other two parameters remain below 100 logn with an overwhelming probabil-
ity. This is a “perfect” block cipher, up to the computational indistinguishability
of the PRNG.

We implemented Permutator in C, using the MPFR[14] library for arbitrary
precision computations. Values of n up to 232−1 are supported. The underlying
PRNG uses the AES[1], by encrypting the concatenation of the three PRNG
indexes to produce 128 bits of random. Performance is quite inadequate: for
n = 109, a 2 GHz PC requires about 0.48 seconds to compute the image of a
single value by Permutator. Profiling shows that more than 98% of the time
is spent in the floating-point computations.

We believe that a much simpler implementation of Repartitor can be de-
signed, for much improved performance. As outlined in section 5, a slightly biased
Repartitor can be tolerated, which opens the way to all kinds of approxima-
tions.

464 L. Granboulan and T. Pornin

References

1. Advanced Encryption Standard, National Institute of Standards and Technology
(NIST), FIPS 197 (2001)

2. Data Encryption Standard, National Institute of Standards and Technology
(NIST), FIPS 46(3) (1999)

3. How to construct pseudo-random permutations from pseudo-random functions. In:
Luby, M., Rackoff, C.(eds.) Lecture Notes in Computer Science, Proceedings of
Crypto’85 (1985)

4. Baignères, T., Finiasz, M.: Dial C for Cipher. Proceedings of SAC 2006, LNCS,
vol. 4356, Springer, Heidelberg (to appear, 2007)

5. Baignères, T., Finiasz, M.: KFC - the Krazy Feistel Cipher. In: Lai, X., Chen,
K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 380–395. Springer, Heidelberg
(2006)

6. Pseudo random Permutation Families over Abelian Groups. In: Robshaw, M. (ed.)
FSE 2006. LNCS, vol. 4047, pp. 15–17. Springer, Heidelberg (2006)

7. Ciphers with Arbitrary Finite Domains. In: Preneel, B. (ed.) CT-RSA 2002. LNCS,
vol. 2271, pp. 114–130. Springer, Heidelberg (2002)

8. Statistical Tables, Fisher, R.A., Yates, F. London, example 12 (1938)

9. CACM. Durstenfeld, R.: 7, p.420 (1964)

10. The Art of Computer Programming, Knuth, D.: vol. 2, 3rd edn. p. 145 (1997)

11. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudorandom number
generator. SIAM Journal on Computing 15, 364–383 (1986)

12. Berbain, C., Gilbert, H., Patarin, J.: QUAD: A Practical Stream Cipher with
Provable Security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004,
pp. 109–128. Springer, Heidelberg (2006)

13. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Fast Generation of Ran-
dom Permutations via Networks Simulation. In: Dı́az, J. (ed.) ESA 1996. LNCS,
vol. 1136, pp. 246–260. Springer, Heidelberg (1996)

14. The MPFR Library, http://www.mpfr.org/

A Proof of Theorem 1

We now prove theorem 1. Let’s compute this:

HGn,α,p(k)
Bα,p(k)

=

(
n−p

αn−k

)

(
n

αn

)
1

αk(1 − α)p−k
.

If α ≤ 1/2, then α ≤ 1−α, therefore 1
αk(1−α)p−k reaches its maximum for k = p.

Hence 1
αk(1−α)p−k ≤ α−p.

Define m = αn and β = n − 2m = (1 − 2α)n. We have three possibilities:

– p ≥ β and p− β is even;
– p ≥ β and p− β is odd;
– p < β.

http://www.mpfr.org/

Perfect Block Ciphers with Small Blocks 465

If p = 2q +β, the maximum of
(

n−p
αn−k

)
=
(
2m−2q
m−k

)
is achieved for k = q; hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m−2q
m−q

)

(
2m
m

) =
2−2q

αp

F (m − q)
√

m

F (m)
√

m− q
<

2β

(2α)p

√
1 +

p

n − p
.

If p = 2q + β + 1, the maximum of
(

n−p
αn−k

)
=
(
2m−2q−1

m−k

)
is achieved for k = q

or k = q + 1 (same value); hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m−2q−1

m−q

)

(
2m
m

) =
2−2q−1

αp

F (m − q)
√

m

F (m)
√

m− q
<

2β

(2α)p

√
1 +

p

n − p
.

If p < β, the maximum of
(

n−p
αn−k

)
=
(
2m+β−p

m−k

)
is achieved for k = 0; hence:

HGn,α,p(k)
Bα,p(k)

≤ α−p

(
2m+(β−p)

m

)

(
2m
m

) = α−p2β−p

β−p∏

i=1

1 + i/(2m)
1 + i/m

<
2β

(2α)p
.

B Proof of Theorem 2

We need the following lemma:

Lemma 1. The function F (k) =
(
2k
k

)
2−2k

√
k is strictly increasing, with limit

π−1/2 = 0.56418 . . .

Proof. The limit of F (k) when k →∞ is easily deduced from Stirling’s formula:

F (k) =
(2k)!
(k!)2

2−2k
√

k ≈ (2k)2ke−2k
√

4πk
√

k

k2ke−2k2πk22k
=

1√
π

.

To prove that F is strictly increasing, it suffices to remark that:

F (k + 1)2

F (k)2
= 1 +

1
4k(1 + k)

> 1.

We may now see that:

B1/2,p(k)
CLp/2,p/2(k)

= πF (p/2)

(
p
k

)
(

p
p/2

)

((
k

p/2
− 1
)2

+ 1

)

which reaches its maximum for k = p/2. This maximum is πF (p/2) <
√

π.

Author Index

Acıiçmez, Onur 399
Akishita, Toru 181
Andersen, Flemming 399

Berbain, Côme 254
Bernstein, Daniel J. 290
Biham, Eli 153, 211
Billet, Olivier 19

Carlet, Claude 382
Chen, Jiun-Ming 290
Chen, Owen Chia-Hsin 290
Contini, Scott 19

Daemen, Joan 1
Dichtl, Markus 137
Dodis, Yevgeniy 414
Dunkelman, Orr 153, 211

Englund, H̊akan 274

Fischer, Simon 366

Gilbert, Henri 254
Granboulan, Louis 452

Hell, Martin 274
Hong, Seokhie 225

Imai, Hideki 349
Iwata, Tetsu 181

Johansson, Thomas 274
Joux, Antoine 58

Kara, Orhun 167
Kawazoe, Mitsuru 349
Keller, Nathan 153, 211
Khoo, Khoongming 242, 382
Kim, Jongsung 225
Knudsen, Lars R. 39
Kunihiro, Noboru 329

Leander, Gregor 196
Leurent, Gaëtan 309
Lim, Chu-Wee 242, 382
Loe, Chuan-Wen 382

Manap, Cevat 167
Matsushima, Toshiyasu 434
Matusiewicz, Krystian 19
Meier, Willi 366
Minematsu, Kazuhiko 434
Moriai, Shiho 181

Naya-Plasencia, Maŕıa 73
Neve, Michael 399

Ohta, Kazuo 329

Paar, Christof 196
Perret, Ludovic 349
Peyrin, Thomas 19, 119
Pieprzyk, Josef 19
Pietrzak, Krzysztof 414
Pornin, Thomas 452
Poschmann, Axel 196
Preneel, Bart 87, 225

Rechberger, Christian 39
Reinhard, Jean-René 58
Ristenpart, Thomas 101
Rogaway, Phillip 101

Sasaki, Yu 329
Schramm, Kai 196
Seurin, Yannick 119
Shibutani, Kyoji 181
Shirai, Taizo 181
Sugita, Makoto 349

Thomsen, Søren S. 39
Tiri, Kris 399

Van Assche, Gilles 1

Wang, Lei 329
Wu, Hongjun 87

Yang, Bo-Yin 290

	Title Page
	Preface
	FSE 2007
	Table of Contents
	Producing Collisions for Panama, Instantaneously
	Introduction
	Description of \panama
	Structure of the Attack
	Collision in the Buffer
	Collision in the State
	Difference Propagation Through γ
	Specifying the Trail
	Symmetric Patterns

	Techniques for Equation Transfer
	Immediate Satisfaction in W
	Bridge from W to T
	Side Bridge
	Dependency Removal
	The Conditions Due to Differential (dT, dU
	Solving the Equations by Correction

	TheChosenTrail
	Equation Transfer in the Chosen Trail
	Subcollisions I and V
	Subcollision II
	Subcollision III
	Subcollision IV

	Example of Collision and Workload
	References

	Cryptanalysis of FORK-256
	Introduction
	Description of FORK-256
	Preliminary Observations on FORK-256
	Micro-collisions in Q_L and Q_R
	Necessary and Sufficient Condition for Micro-collisions

	A First Attempt with a Simple Differential Path
	Near-Collision at the Seventh Round
	Choosing the Difference
	Near-Collisions for FORK-256’s Compression Function

	Finding High-Level Differential Paths in FORK-256
	More General Variant of Path Finding

	Collisions for the Full Compression Function
	Finding Collisions with Low Memory Requirements
	Finding Collisions Faster with Precomputed Tables

	Compression Function’s Collisions Turned into Hash Ones
	References

	The Grindahl Hash Functions
	Introduction
	The Grindahl Design
	General Strategy
	Invertibility
	Design Approach for the Permutation
	Birthday Attacks
	Design Parameters for the Permutation
	Design Parameters for the Output Transformation

	Proposals for Hash Functions
	Grindahl-256
	Grindahl-512
	Padding Rule
	Security Analysis

	Designing Secure Compression Functions
	Implementation
	Software Performance
	On Hardware Implementations
	On Hashing Small Messages
	Memory Requirements

	Conclusion
	References

	Overtaking VEST
	Introduction
	Description of VEST
	Counter
	Linear Counter Diffusor
	Accumulator
	Output Combiner
	Key Setup Mode
	IV Setup Mode

	Basic Weaknesses of VEST Components
	Differential Characteristics of the Registers
	Collision in the Counter Diffusor

	Partial Keyed State Recovery
	Attack with Long IVs
	Attack with Short IVs

	KeyRecovery
	Backtracking the Key Setup Second Phase
	Meet-in-the-Middle Attack
	Key Recovery Through Related-Key Attack
	Security Discussion

	Existential Forgeries for VEST Hash MAC Mode
	Conclusion
	References

	Cryptanalysis of Achterbahn-128/80
	Introduction
	Main Specifications of Achterbahn-128/80
	Main Specifications of Achterbahn-128
	Main Specifications of Achterbahn-80
	The Key-Loading Algorithm

	Attack Against Achterbahn Version 2 in 2 in $\boldsymbol{2^{53}}$
	Principle of Hell and Johansson Attack
	Complexity
	Example with Achterbahn Version 2
	Improvement of the Attack Against Achterbahn Version 2

	Distinguishing Attacks Against Achterbahn-128/80
	Distinguishing Attack Against Achterbahn-80
	Distinguishing Attack Against Achterbahn-128
	Attack with a New Keystream Limitation

	Recovering the Key
	References

	Differential-Linear AttacksAgainst the Stream Cipher Phelix*
	Introduction
	The Stream Cipher Phelix
	The Differential Propagation of Addition
	A Basic Key Recovery Attack on Phelix
	The Bias in the Differential Distribution of the Keystream
	Recovering the Key

	Improving the Attack on Phelix
	Recovering $Z^{(i)$
	Recovering $X_{i+1,0}$

	An Approach to Strengthen Helix and Phelix
	Conclusion
	References

	How to Enrich the Message Space of a Cipher
	Introduction
	Preliminaries
	TheXLSConstruction
	The Mixing Function
	The Bit Flips
	SecurityofXLS
	Supporting Tweaks
	XLS with Ordinary PRPs
	References

	Security Analysis of Constructions Combining FIL Random Oracles
	Introduction
	Definitions and Notations
	Security Analysis for Preimage Resistance
	Security Analysis for Collision Resistance
	Application to Previously Proposed Schemes
	Concluding Remarks
	References

	Bad and Good Ways of Post-processing Biased Physical Random Numbers
	Introduction
	An Ineffective Post-processing Method for Biased Random Numbers
	The E-Transform
	True and Claimed Properties of the E-Transform
	What Is Really Going on in the E-Transform
	Attacking the Post-processed Output of the E-Transform
	Attacking Unknown Quasigroups and Leaders

	Two Classes of Random Number Post-processing Functions
	Improved Random Number Post-processing Functions with a Fixed Number of Input Bits
	The Concrete Problem Considered
	A Solution for Low Area Hardware Implementation
	Analysis of H
	Improving
	An Even Better Solution
	What About Going Further?
	The Entropy of S
	On the Implementation of S

	Conclusion and Further Research Topics
	References

	Improved Slide Attacks
	Introduction
	Related-Key Attacks and Slide Attacks
	Related-Key Attacks
	Slide Attacks

	Our New Technique
	Studying the Cycle Structure
	Using the Cycles in the Slide Attack

	Several Attacks on Reduced Round GOST
	A Short Description of GOST
	Description of the Attack
	Analysis of the Attack
	Other Results on GOST

	Summary and Conclusions
	References

	A New Class of Weak Keys for Blowfish
	Introduction
	Our Contributions and Organization of the Paper
	Notation

	High Level Descriptions of Blowfish
	New Models for Description

	Reflection Properties of Blowfish
	Two Reflection Attacks
	First Attack
	Second Attack

	Improvement of Vaudenay’s Cryptanalysis on a Subset of Keys
	Discussion of Attacks
	References

	The 128-Bit Blockcipher CLEFIA (Extended Abstract)
	Introduction
	Notations
	Specification
	Definition of $\textit{GFN}_{d,r}$
	Data Processing Part
	Key Scheduling Part
	F-Functions
	Constant Values

	Design Rationale
	Evaluations
	Security
	Performance

	Conclusion
	References

	New Lightweight DES Variants
	Introduction
	Design Considerations for Lightweight Block Ciphers
	DESL and DESXL: Design Ideas and Security Consideration
	Design Criteria of DESL
	Improved Resistance Against Differential Cryptanalysis and Davis Murphy Attack
	Improved Resistance Against Linear Cryptanalysis
	4R Iterative Linear Approximation
	5R Iterative Linear Approximation
	nR Iterative Linear Approximation
	Resistance Against Algebraic Attacks
	Improved S-Box

	Lightweight Implementation of DESL
	Results and Conclusion
	References

	A New Attack on 6-Round IDEA
	Introduction
	Description of IDEA and the Notations Used in the Paper
	A New Attack on 5.5-Round IDEA
	The First Component — A Linear Equation Involving the LSBs of the Intermediate Encryption Values
	The Second Component — A Square-Like Structure
	The Third Component — Exploiting the Weak Key Schedule
	Analysis and Improvement of the Basic Attack

	The 6-Round Attack
	An Improved 5-Round Attack
	A 5-Round Attack Using Only 16 Known Plaintexts

	Summary and Conclusions
	References

	Related-Key Rectangle Attacks on Reduced AES-192 and AES-256*
	Introduction
	Description of AES
	The Related-Key Rectangle Attack
	Related-Key Rectangle Attack on 10-Round AES-192
	8-Round Related-Key Rectangle Distinguisher
	Key Recovery Attack on 10-Round AES-192 with 256 Related Keys
	Reducing the Number of Related Keys from 256 to 64

	Related-Key Rectangle Attacks on 8-Round AES-192 and 9-Round AES-256
	Comments on the 9-Round AES-192 Attack Presentedat Eurocrypt 2005
	Conclusion
	References

	An Analysis of XSL Applied to BES
	Introduction
	The XSL Attack on BES
	A Summary of the XSL Attack
	A Summary of the BES Cipher

	An Analysis of This Attack
	Analysing the Extended S-Box Equations
	Adding the Extended Linear Equations
	Further Analysis

	Conclusion
	References

	On the Security of IV Dependent Stream Ciphers*
	Introduction
	Outline of Our Results
	Security Model
	Basic Security Notions
	Security Requirements for an IV-Dependent Stream Ciphers

	Security of the Generic Construction
	A Simple Composition Theorem

	A Tree Based Stream Cipher Construction
	The Tree Based Construction
	Resulting Stream Cipher Construction
	Efficiency Considerations

	Application to the quad Stream Cipher
	Conclusion
	References

	Two General Attacks on Pomaranch-Like Keystream Generators
	Introduction
	Description of Pomaranch
	Pomaranch Version 1
	Pomaranch Version 2
	Pomaranch Version 3

	Previous Attacks on the Pomaranch Stream Ciphers
	Distinguishing Attacks on Pomaranch-Like Ciphers
	Period of Registers
	Filter Function
	Linear Approximations of Jump Registers
	Attacking Different Versions of Pomaranch
	Attack Complexities for the Existing Versions of the Pomaranch Family

	Square Root IV Attack
	Attack Complexities on Pomaranch

	Conclusions
	References

	Analysis of \qq
	Introduction
	Questions
	Conclusions
	Previous Work
	Future Work

	The \qq Family of Stream Ciphers
	Definition of \qq
	Parameter Restrictions
	Example: \qq(256, 20, 20)
	Nonces

	How to Solve Multivariate Systems
	History of Lazard-Faug`ere Solvers:$\mathbf{F_4}$, $\mathbf{F_5}$, XL, XL2, FXL
	Algorithm XL (eXtended Linearization) at Degree D
	XL2, F4 and F5
	Practicalities: XL with Wiedemann, and Ramifications

	Broken Parameters for \qq
	Overview: Using Algebraic Attacks Against \qq
	Example: Breaking \qq(256, 20, 20)
	Asymptotics for Attacking \qq(q,n, n) Directly (q large)
	Asymptotics for Attacking \qq(2, n, n) Directly
	Which Field Is Best?
	The State of System-Solving Cryptanalysis

	Unprovable Parameters for \qq
	Overview: Attacking the Underlying Hard Problem
	Example: \qq(256, 20, 20)
	Example: \qq(16, 40, 40)
	Examples: \qq(2, 160, 160), (2, 256, 256), (2, 350, 350)

	Proven and Unproven Parameters for \qq
	References

	Message Freedom in MD4 and MD5 Collisions:Application to APOP
	Introduction
	Background and Notation
	APOP
	MD4 and MD5
	Wang’s Attack Against MD4 and MD5

	A New Approach to Collision Finding
	Previous Works
	Our Method
	Choosing a Part of the Message
	MD4 Message Freedom
	MD5 Message Freedom

	Applications
	The APOP Attack in Practice

	References

	New Message Difference for MD4
	Introduction
	Preliminaries
	Specification of MD4 [5]
	Related Work 1: Collision Attack by Wang et al. and ItsImprovement by Previous Works
	Related Work 2: Differential Path Search by Schl¨affer and Oswald [6]

	New Local Collision
	Importance of Selecting δM
	Problem of Wang et al.’s Local Collision and Constructing New Local Collision
	Construction of New Local Collision
	New Message Difference

	Differential Path Search Algorithm
	Definition of Good DPC
	Overview of Problems of Previous Work [6] and Our Improvement
	Details of Our New Proposed Algorithm for the First Round

	Attack Implementation
	Message Modification
	Attack Procedure and Complexity Estimation
	Comparison with Previous Attacks

	Conclusion
	References

	Algebraic Cryptanalysis of 58-Round SHA-1
	Introduction
	Preliminaries
	Description of SHA-1
	Definition and Notation

	An Improved Message Modification Technique
	How to Calculate Sufficient Conditions on the a_i ?
	Gaussian Elimination and Controlled Relations
	Conventional/Advanced Message Modification Techniques
	An Algebraic Description of the Improved Message Modification

	Analysis of the 58-Round SHA-1 Using the Improved Message Modification
	A Concluding Note
	References

	Algebraic Immunity of S-Boxes and Augmented Functions
	Introduction
	Algebraic Properties of S-Boxes
	Implicit Equations
	Conditional Equations
	Algorithmic Methods

	Algebraic Attacks Based on the Augmented Function
	Generic Scenarios for Filter Generators
	Equations Induced by Annihilators
	Sampling
	Basic Scenario
	Refined Basic Scenario
	Substitution of Equations

	First Application: Some Specific Filter Generators
	Existence of Equations
	Probabilistic Equations
	Discussion of Attacks

	Second Application: Trivium
	Sampling
	Potential Attacks

	Conclusions
	References

	Generalized Correlation Analysis of Vectorial Boolean Functions
	Introduction
	Generalized Correlation Analysis of Vector Output Stream Ciphers
	Efficient Computation of the Generalized Nonlinearity
	Reduction in Complexity
	Experimental Results

	Upper Bound on Generalized Nonlinearity
	Spectral Characterization and Generalized Correlation Immunity
	Equivalence of Generalized Correlation Immunity and Usual Correlation Immunity

	Generalized Nonlinearity of Secondary Constructions
	References

	An Analytical Model for Time-Driven Cache Attacks
	Introduction
	Time-Driven Cache Attacks
	Last Round Correlation Attack

	AnalyticalModel
	Experimental Results
	References

	Improving the Security of MACs Via Randomized Message Preprocessing
	Introduction
	Notation and Basic Definitions
	Salted Hashing and MACs
	A Generic Construction
	poly: Hashing by Polynomial Evaluation
	Cascade Construction
	A Generic Construction from -ϵ-Δ Universal HashFunctions
	Numerical Example
	Related Work and Open Problems
	References

	New Bounds for PMAC, TMAC, and XCBC
	Introduction
	Preliminaries
	PMAC
	Description and Previous Security Proof
	New Security Bound for PMAC

	TMACandXCBC
	New Security Bounds for TMAC and XCBC
	Proof of Theorem 3

	Conclusion and Future Work
	References

	Perfect Block Ciphers with Small Blocks*
	Introduction
	Notations
	Random Permutation Selection
	Repartitor
	Splitter
	InvSplitter
	Permutator
	InvPermutator

	Sampling Following the Hypergeometric Distribution
	Acceptance-Rejection Method Aka. Rejection Sampling
	Upper-Bounding Distributions
	Cauchy-Lorentz Distribution by Inverse Method
	Description of Repartitor

	Security Model
	Conclusion
	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

