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Preface

The summer school series Reasoning Web focuses on theoretical foundations,
current approaches, and practical solutions for reasoning in a Web of Semantics.
It has established itself as a meeting point for experts from research and industry,
and students undertaking their PhDs in related fields. This volume contains the
tutorial notes of the Reasoning Web summer school 2007, which was held in
Dresden, Germany, in September 2007. This summer school was the third school
of the Reasoning Web series, following the very successful predecessors held in
Malta and Lisbon.

The first part of the 2007 edition is devoted to “Fundamentals of Reasoning
and Reasoning Languages” and surveys concepts and methods for rule-based
query languages. Further, it gives a comprehensive introduction to description
logics and its usage.

Reactive rules and rule-based policy representation are covered in the second
part on “Rules and Policies.” A thorough discussion on the importance of rule
interchange in the Web and promising solution strategies is given together with
an overview on current W3C initiatives.

Finally, the third part is devoted to “Applications of Semantic Web Reason-
ing,” and demonstrates practical uses of Semantic Web reasoning. The academics
viewpoint is presented by a contribution on reasoning in Semantic Wikis. The
industry’s viewpoint is presented by contributions that discuss the importance
of semantic technologies for search solutions for enterprises, for creating an en-
terprise knowledge base with Semantic Wiki representations, and Semantic Web
Service discovery and selection in B2B scenarios.

We would like to thank all lecturers of the Reasoning Web summer school
2007 for giving interesting and inspiring tutorials. Further, we thank the local
organizers in Dresden for their efficient and great work, and Norbert Eisinger
from the Ludwig-Maximilians-Universität München and Jan Ma�luszyński from
the University of Linköping, they made our job as Program Committee members
very enjoyable and smooth.

September 2007 Grigoris Antoniou
Uwe Aßmann

Cristina Baroglio
Stefan Decker
Nicola Henze

Paula-Lavinia Pătrânjan
Robert Tolksdorf
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Cristina Baroglio, Università degli Studi di Torino, Italy
Stefan Decker, DERI and National University of Ireland, Galway, Ireland
Nicola Henze, Leibniz Universität Hannover, Germany (Chair)
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Abstract. This survey article introduces into the essential concepts and
methods underlying rule-based query languages. It covers four comple-
mentary areas: declarative semantics based on adaptations of mathemat-
ical logic, operational semantics, complexity and expressive power, and
optimisation of query evaluation.

The treatment of these areas is foundation-oriented, the foundations
having resulted from over four decades of research in the logic program-
ming and database communities on combinations of query languages and
rules. These results have later formed the basis for conceiving, improv-
ing, and implementing several Web and Semantic Web technologies, in
particular query languages such as XQuery or SPARQL for querying
relational, XML, and RDF data, and rule languages like the “Rule Inter-
change Framework (RIF)” currently being developed in a working group
of the W3C.

Coverage of the article is deliberately limited to declarative languages
in a classical setting: issues such as query answering in F-Logic or in
description logics, or the relationship of query answering to reactive rules
and events, are not addressed.

1 Introduction

The foundations of query languages mostly stem from logic and complexity the-
ory. The research on query languages has enriched these two fields with novel
issues, original approaches, and a respectable body of specific results. Thus, the
foundations of query languages are arguably more than applications of these
two fields. They can be seen as a research field in its own right with interesting
results and, possibly, even more interesting perspectives. In this field, basic and
applied research often are so tightly connected that distinguishing between the
two would be rather arbitrary. Furthermore, this field has been very lively since

G. Antoniou et al. (Eds.): Reasoning Web 2007, LNCS 4636, pp. 1–153, 2007.
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the late 1970s and is currently undergoing a renaissance, the Web motivating
query and rule languages with novel capabilities. This article aims at introducing
into this active field of research.

Query languages have emerged with database systems, greatly contributing to
their success, in the late 1970s. First approaches to query languages were inspired
by mathematical logic. As time went by, query languages offering syntactical con-
structs and concepts that depart from classical logic were being developed, but
still, query languages kept an undeniably logical flavour. The main strengths of
this flavour are: compound queries constructed using connectives such as “and”
and “or”; rules expressed as implications; declarative semantics of queries and
query programs reminiscent of Tarski’s model-theoretic truth definition; query
optimisation techniques modelled on equivalences of logical formulas; and query
evaluators based on methods and heuristics similar to, even though in some cases
simpler than, those of theorem provers.

With the advent of the Web in the early 1990s things have changed. Query
languages are undergoing a renaissance motivated by new objectives: Web query
languages have to access structured data that are subject to structural irreg-
ularities – so-called “semi-structured data” – to take into account rich textual
contents while retrieving data, to deliver structured answers that may require
very significant reorganisations of the data retrieved, and to perform more or
less sophisticated forms of automated reasoning while accessing or delivering
meta-data. All these issues have been investigated since the mid 1990s and still
are. Further issues of considerable relevance, which, up till now, have received
limited attention, include: query processing in a distributed and decentralised
environment, query languages for search engines, search as a query primitive,
and semantical data alignment.

The current query language renaissance both, takes distance from the logical
setting of query languages, and builds upon it. On the one hand, recent Web
query languages such as XPath and XQuery seem to be much less related to logic
than former relational query languages such as SQL and former object-oriented
query languages such as OQL. On the other hand, expressly logic-based Web
query languages such as the experimental language Xcerpt [28,141,30,29] have
been proposed, and Semantic Web query languages such as RQL, RDQL, and
SPARQL clearly have logical roots (see [14,73] for surveys on Web and Seman-
tic Web query languages). Furthermore, language optimisers and evaluators of
XPath and XQuery exploit techniques formerly developed, thus bringing these
languages back to the logical roots of query languages. At the beginning of this
ongoing query language renaissance, a principled and summarised presentation
of query language foundations surely makes sense.

1.1 What Are Query Languages? Tentative Definitions

A first definition of what query languages are considers what they are used
for: they can be defined as specialised programming languages for selecting and
retrieving data from “information systems”. These are (possibly very large) data
repositories such as file systems, databases, and (all or part of) the World Wide
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Web. Query languages are specialised inasmuch as they are simpler to use or
offer only limited programming functionalities that aim at easing the selection
and retrieval of data from information systems.

A second attempt at defining what query languages are is to consider their
programming paradigms, i.e., the brand of programming languages they belong
to: query languages are declarative languages, i.e., languages abstracting out
how (query) programs are to be evaluated. This makes query languages both
easier to use – an advantage for the human user – and easier to optimise – an
advantage for the computer. The declarativity of query languages is the reason
for their close relationship to logic: declarative languages are all in some way or
other based on logic.

A third approach to define what query languages are considers their major
representatives: SQL for relational databases, OQL for object-oriented data-
bases, XPath and XQuery for HTML and XML data, and RQL, RDQL, and
SPARQL for RDF data. Forthcoming are query languages for OWL ontologies.
Viewed from this angle, what have query languages in common? First, a sepa-
ration between query programs and accessed data, requiring to compile query
programs without any knowledge at all or with only limited knowledge of the
data the compiled query programs are to access. Second, a dedication to data
models, many, if not all, of which are strongly rooted in logic.

Query languages, as a research field, can also be defined by the issues being
investigated. Central issues in query languages research include:
– query paradigms (e.g., visual, relational, object-oriented, and navigational

query languages),
– declarative semantics,
– complexity and expressive power,
– procedural semantics,
– implementations of query evaluators,
– query optimisation (e.g., equivalence of queries).

Further query language issues include: integrity constraints (languages, expres-
sive power, complexity, evaluation, satisfiability, maintenance); incremental or
distributed evaluation of queries; evaluation of queries against data streams;
storage of large collections of queries (e.g., for publish-subscribe systems); ap-
proximate answers; query answering in presence of uncertain information; query
answering in presence of inconsistent information; querying special data (e.g.,
constraints, spatial data, graphic data); algorithms and data structures for effi-
cient data storage and retrieval.

1.2 Coverage of This Survey

This survey article on the foundations of query languages is focused on logic,
complexity and expressive power, and query optimisation. The reasons for such
an admittedly limited focus are manifold. First, this focus arguably provides
with a corner stone for most of the past and current research on query languages.
Second, this focus covers a rather large field that could hardly be enlarged in
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a survey and introductory article. Third, such a focus provides with a unity of
concerns and methods.

1.3 Structure of This Survey

This survey article is organised as follows. Section 1 is this introduction. Section 2
introduces a few general mathematical notions that are used in later sections.
Section 3 is devoted to syntax. It introduces the syntax of classical first-order
predicate logic,1 then of fragments of first-order predicate logic that characterise
classes of query languages. This section shows how the syntax of the various
practical query languages can be conveyed by the syntax of first-order predicate
logic. Section 4 introduces into classical first-order model theory, starting with
Tarski model theory, the notion of entailment, Herbrand interpretations, and
similar standard notions, explaining the relevance of these notions to query lan-
guages. After this main part, the section covers Herbrand model theory and finite
model theory, which have a number of interesting and rather surprising proper-
ties that are relevant to query languages. Section 5 then treats the adaptations
of classical model theory to query and rule languages, covering minimal model
semantics and fixpoint semantics and discussing approaches to the declarative
semantics of rule sets with negation. A subsection on RDF model theory rounds
out this section. Sections 6 and 7 introduce into the operational semantics of
query programs, considering positive rule sets and rule sets with non-monotonic
negation, respectively. These two sections present (terminating) algorithms for
the (efficient) evaluation of query programs of various types. Section 8 is devoted
to complexity and expressive power of query language fragments. Section 9 in-
troduces into query optimisation, successively considering query containment,
query rewriting, and query algebras.

The purpose of Sections 3 and 4 is to make the article self-contained. Therefore
these sections are entirely expository. They should make it possible for readers
with limited knowledge of mathematical logic – especially of classical first-order
predicate logic – to understand the foundations of query languages. For those
readers who already have some of that knowledge and mathematical practice,
the sections should help recall notions and state terminologies and notations.

2 Preliminaries

2.1 General Mathematical Notions

By a function we mean, unless otherwise stated, a total function.
We consider zero to be the smallest natural number. The set of natural num-

bers is � = {0, 1, 2, 3, . . .}.

Definition 1 (Enumerable). A set S is called enumerable, if there is a sur-
jection � → S. A set S is called computably enumerable (or recursively enumer-
able), if it is enumerable with a surjection that is computable by some algorithm.
1 Sometimes called simply “first-order logic”, a short form avoided in this article.
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Note that any finite set is enumerable and computably enumerable. The infinite
set of all syntactically correct C programs is computably enumerable and thus
enumerable. Its subset consisting of all syntactically correct C programs that do
not terminate for each input is enumerable, but not computably enumerable.

2.2 Logic vs. Logics

The development of logic started in antiquity and continued through mediae-
val times as an activity of philosophy aimed at analysing rational reasoning.
In the late 19th century parts of logic were mathematically formalised, and in
the early 20th century logic turned into a tool used in a (not fully successful)
attempt to overcome a foundational crisis of mathematics. The fact that logic is
not restricted to analysing reasoning in mathematics became somewhat eclipsed
during those decades of extensive mathematisation, but came to the fore again
when computer science discovered its close ties to logic. Today, logic provides
the foundations in many areas of computer science, such as knowledge represen-
tation, database theory, programming languages, and query languages.

Logic is concerned with statements, which are utterances that may be true or
false. The key features of logic are the use of formal languages for representing
statements (so as to avoid ambiguities inherent to natural languages) and the
quest for computable reasoning about those statements. “Logic” is the name of
the scientific discipline investigating such formal languages for statements, but
any of those languages is also called “a logic” – logic investigates logics.

3 Syntax: From First-Order Predicate Logic to Query
Language Fragments of First-Order Predicate Logic

This section introduces the syntax of first-order predicate logic, which is the most
prominent of logics (formal languages) and occupies a central position in logic
(the scientific discipline) for several reasons: it is the most widely used and most
thoroughly studied logic; it is the basis for the definition of most other logics;
its expressive power is adequate for many essential issues in mathematics and
computer science; its reasoning is computable in a sense to be made precise in
Section 4; it is the most expressive logic featuring this kind of computability [110].

Practical query and rule languages depart from first-order predicate logic in
many respects, but nonetheless they have their roots in and can conveniently be
described and investigated in first-order predicate logic.

Subsection 3.1 below contains the standard definitions of first-order predicate
logic syntax. The second subsection 3.2 discusses fragments (or sublanguages) of
first-order predicate logic that correspond to common query or rule languages.
The last subsection 3.3 discusses several modifications of the standard syntax
that are used in some areas of computer science.

3.1 Syntax of First-Order Predicate Logic

First-order predicate logic is not just a single formal language, because some of
its symbols may depend on the intended applications. The symbols common to
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all languages of first-order predicate logic are called logical symbols, the symbols
that have to be specified in order to determine a specific language are called the
signature (or vocabulary) of that language.

Definition 2 (Logical symbol). The logical symbols of first-order predicate
logic are:

symbol class symbols pronounced
punctuation symbols , ) (
connectives 0-ary ⊥ bottom, falsity symbol

� top, truth symbol
1-ary ¬ not, negation symbol
2-ary ∧ and, conjunction symbol

∨ or, disjunction symbol
⇒ implies, implication symbol

quantifiers ∀ for all, universal quantifier
∃ exists, existential quantifier

variables u v w x y z . . .
possibly subscripted

The set of variables is infinite and computably enumerable.

Definition 3 (Signature). A signature or vocabulary for first-order predicate
logic is a pair L =

(
{Funn

L}n∈�, {RelnL}n∈�
)

of two families of computably enu-
merable symbol sets, called n-ary function symbols of L and n-ary relation sym-
bols or predicate symbols of L. The 0-ary function symbols are called constants
of L. The 0-ary relation symbols are called propositional relation symbols of L.

Note that any of the symbol sets constituting a signature may be empty. More-
over, they need not be disjoint. If they are not, the signature is called overloaded .
Overloading is usually uncritical, moreover it can be undone by annotating each
signature symbol with its symbol class (Fun or Rel) and arity whenever required.

First-order predicate logic comes in two versions: equality may or may not
be built-in. The version with built-in equality defines a special 2-ary relation
symbol for equality, written = by some authors and written .= or differently by
authors who want to avoid confusion with the same symbol at the meta level. In
this article we assume first-order predicate logic without equality, unless built-in
equality is explicitly mentioned.

Definition 4 (L-term). Let L be a signature. We define inductively:
1. Each variable x is an L-term.
2. Each constant c of L is an L-term.
3. For each n ≥ 1, if f is an n-ary function symbol of L and

t1, . . . , tn are L-terms, then f(t1, . . . , tn) is an L-term.

Definition 5 (L-atom). Let L be a signature. For n ∈ �, if p is an n-ary
relation symbol of L and t1, . . . , tn are L-terms, then p(t1, . . . , tn) is an L-atom
or atomic L-formula. For n = 0 the atom may be written p() or p and is called
a propositional L-atom.
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Definition 6 (L-formula). Let L be a signature. We define inductively:
1. Each L-atom is an L-formula. (atoms)
2. ⊥ and � are L-formulas. (0-ary connectives)
3. If ϕ is an L-formula, then

¬ϕ is an L-formula. (1-ary connectives)
4. If ϕ and ψ are L-formulas, then

(ϕ ∧ ψ) and (ϕ ∨ ψ) and (ϕ ⇒ ψ) are L-formulas. (2-ary connectives)
5. If x is a variable and ϕ is an L-formula, then

∀xϕ and ∃xϕ are L-formulas. (quantifiers)

In most cases the signature L is clear from context, and we simply speak of
terms, atoms, and formulas without the prefix “L-”. If no signature is specified,
one usually assumes the conventions:

p, q, r, . . . are relation symbols with appropriate arities.
f, g, h, . . . are function symbols with appropriate arities �= 0.
a, b, c, . . . are constants, i.e., function symbols with arity 0.

The set of terms is a formal language for representing individuals about which
statements can be made. The set of formulas is the formal language for represent-
ing such statements. For example, constants a and b might represent numbers,
function symbol f an arithmetic operation, and relation symbol p an arithmetic
comparison relation. Then the term f(a, f(a, b)) would also represent a number,
whereas the atomic formula p(a, f(a, b)) would represent a statement about two
numbers.

Unique Parsing of Terms and Formulas. The definitions above, in particular
the fact that parentheses enclose formulas constructed with a binary connective,
ensure an unambiguous syntactical structure of any term or formula. For the
sake of readability this strict syntax definition can be relaxed by the convention
that ∧ takes precedence over ∨ and both of them take precedence over ⇒. Thus,
q(a) ∨ q(b) ∧ r(b) ⇒ p(a, f(a, b)) is a shorthand for the fully parenthesised form
((q(a) ∨ (q(b) ∧ r(b))) ⇒ p(a, f(a, b))). Likewise, one usually assumes that ∧
and ∨ associate to the left and ⇒ associates to the right. As a further means to
improve readability, some of the parentheses may be written as square brackets
or curly braces.

Definition 7 (Subformula). The subformulas of a formula ϕ are ϕ itself and
all subformulas of immediate subformulas of ϕ.
– Atomic formulas and ⊥ and � have no immediate subformulas.
– The only immediate subformula of ¬ψ is ψ.
– The immediate subformulas of (ψ1 ∧ ψ2) or (ψ1 ∨ ψ2) or (ψ1 ⇒ ψ2) are ψ1

and ψ2.
– The only immediate subformula of ∀xψ or ∃xψ is ψ.

Definition 8 (Scope). Let ϕ be a formula, Q a quantifier, and Qxψ a subfor-
mula of ϕ. Then Qx is called a quantifier for x. Its scope in ϕ is the subformula ψ
except subformulas of ψ that begin with a quantifier for the same variable x.

Each occurrence of x in the scope of Qx is bound in ϕ by Qx. Each occurrence
of x that is not in the scope of any quantifier for x is a free occurrence of x in ϕ.
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Example 9 (Bound/free variable). Let ϕ be
(
∀x[∃xp(x)∧q(x)]⇒[r(x)∨∀xs(x)]

)
.

The x in p(x) is bound in ϕ by ∃x. The x in q(x) is bound in ϕ by the first ∀x.
The x in r(x) is free in ϕ. The x in s(x) is bound in ϕ by the last ∀x.

Let ϕ′ be ∀x
(
[∃xp(x) ∧ q(x)] ⇒ [r(x) ∨∀xs(x)]

)
. Here both the x in p(x) and

the x in r(x) are bound in ϕ′ by the first ∀x.

Note that being bound or free is not a property of just a variable occurrence,
but of a variable occurrence relative to a formula. For instance, x is bound in
the formula ∀x p(x), but free in its subformula p(x).

Definition 10 (Rectified formula). A formula ϕ is rectified, if for each oc-
currence Qx of a quantifier for a variable x, there is neither any free occurrence
of x in ϕ nor any other occurrence of a quantifier for the same variable x.

Any formula can be rectified by consistently renaming its quantified variables.
The formula (∀x[∃xp(x)∧q(x)] ⇒ [r(x)∨ ∀xs(x)]) from the example above can be
rectified to (∀u[∃vp(v)∧ q(u)] ⇒ [r(x)∨ ∀ws(w)]). Note that rectification leaves
any free variables free and unrenamed. Another name for rectification, mainly
used in special cases with implicit quantification, is standardisation apart .

Definition 11 (Ground term or formula, closed formula). A ground
term is a term containing no variable. A ground formula is a formula contain-
ing no variable. A closed formula or sentence is a formula containing no free
variable.

For example, p(a) is a ground atom and therefore closed. The formula ∀x p(x) is
not ground, but closed. The atom p(x) is neither ground nor closed. In Example 9
above, the formula ϕ is not closed and the formula ϕ′ is closed.

Definition 12 (Propositional formula). A propositional formula is a for-
mula containing no quantifier and no relation symbol of arity > 0.

Propositional vs. Ground. Propositional formulas are composed of connectives
and 0-ary relation symbols only. Obviously, each propositional formula is ground.
The converse is not correct in the strict formal sense, but ground formulas can
be regarded as propositional in a broader sense:

If L is a signature for first-order predicate logic, the set of ground L-atoms is
computably enumerable. Let L′ be a new signature defining each ground L-atom
as a 0-ary relation “symbol” of L′. Now each ground L-formula can also be read
as a propositional L′-formula.

Note that this simple switch of viewpoints works only for ground formulas,
because it cannot capture the dependencies between quantifiers and variables.

Definition 13 (Polarity). Let ϕ be a formula. The polarities of occurrences
of its subformulas are positive or negative as follows:
– The polarity of ϕ in ϕ is positive.
– If ψ is ¬ψ1 or (ψ1 ⇒ ψ2) and occurs in ϕ,

the polarity of ψ1 in ϕ is the opposite of the polarity of ψ in ϕ.
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– In all other cases, if ψ is an occurrence in ϕ of a subformula with immediate
subformula ψ′, the polarity of ψ′ in ϕ is the same as the polarity of ψ in ϕ.

The polarity counts whether an occurrence of a subformula is within the scope
of an even or odd number of negations. The left-hand immediate subformula of
an implication counts as an implicitly negated subformula.

Definition 14 (Universal formula). A formula ϕ is universal, iff each oc-
currence of ∀ has positive and each occurrence of ∃ has negative polarity in ϕ.

For instance, ∀x ([¬∀y p(x, y)] ⇒ [¬∃z p(x, z)]) is a universal closed formula,
whereas ∀x ([¬∀y p(x, y)] ⇒ [¬∀z p(x, z)]) is not universal.

Definition 15 (Prenex form). A formula ϕ is in prenex form, iff it has the
form Q1x1 . . .Qnxn ψ where n ≥ 0 and the Qi are quantifiers and ψ contains no
quantifier. The quantifier-free subformula ψ is called the matrix of ϕ.

Obviously, a formula in prenex form is universal iff it does not contain ∃. Each
formula can be transformed into an equivalent formula in prenex form (equivalent
in the sense of |=| from Section 4).

Notation 16 (Term list notation). Let u = t1, . . . , tk be a list of terms, let
f and p be a k-ary function and relation symbol. Then f(u) is a short notation
for the term f(t1, . . . , tk) and p(u) for the atom p(t1, . . . , tk).

Let x = x1, . . . , xn be a list of variables and ϕ a formula. Then ∀xϕ is a
short notation for ∀x1 . . . ∀xn ϕ and ∃xϕ for ∃x1 . . .∃xn ϕ. In the case n = 0
both ∀xϕ and ∃xϕ stand for ϕ.

Definition 17 (Universal/existential closure). Let ϕ be a formula. Let x be
the list of all variables having a free occurrence in ϕ. The universal closure ∀∗ϕ
is defined as ∀xϕ and the existential closure ∃∗ϕ as ∃xϕ.

Technically, a quantifier-free formula such as ((p(x, y) ∧ p(y, z)) ⇒ p(x, z)) con-
tains free variables. It is fairly common to use quantifier-free notations as short-
hand for their universal closure, which is a closed universal formula in prenex
form, in this case ∀x∀y∀z((p(x, y) ∧ p(y, z)) ⇒ p(x, z)).

3.2 Query and Rule Language Fragments of First-Order Predicate
Logic

Notation 18 (Rule). A rule ψ ←ϕ is a notation for a not necessarily closed
formula (ϕ ⇒ ψ). The subformula ϕ is called the antecedent or body and ψ the
consequent or head of the rule. A rule ψ ←� may be written ψ ← with empty
antecedent. A rule ⊥←ϕ may be written ←ϕ with empty consequent.

Implicit Quantification. Typically, a rule is a shorthand notation for its univer-
sal closure. The set of free variables in a rule ψ ←ϕ can be partitioned into the
variables x that occur in ψ and the variables y that occur in ϕ but not in ψ.
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Then the universal closure ∀x∀y(ψ ←ϕ) is equivalent to ∀x(ψ ←∃yϕ) in the
sense of |=| (Section 4). Thus, the free variables occurring only in the rule an-
tecedent can be described as implicitly universally quantified in the entire rule
or implicitly existentially quantified in the rule antecedent. The two alternative
descriptions mean the same, but they can be confusing, especially for rules with
empty consequent.

Definition 19 (Literal, complement). If A is an atom, both A and ¬A are
literals. The literal A is positive, the literal ¬A is negative, and the two are a
pair of complementary literals. The complement of A, written A, is ¬A, the
complement of ¬A, written ¬A, is A.

Definition 20 (Clause). A clause is a disjunction of finitely many literals. A
clause is written A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln in rule notation, which stands
for the disjunction A1 ∨ . . . ∨ Ak ∨ L1 ∨ . . . ∨ Ln with atoms Ai and literals Lj,
k ≥ 0, n ≥ 0. A clause represents its universal closure.

Any formula of first-order predicate logic can be transformed into a finite set of
clauses with essentially the same meaning (see Section 4).

3.2.1 Logic Programming
Logic programming considers clauses with non-empty consequent as programs
and clauses with empty consequent as goals used for program invocation. The
operational and declarative semantics of logic programs depend on whether the
antecedent is a conjunction of atoms or of arbitrary literals and whether the
consequent is just a single atom or a disjunction of several atoms.

Definition 21 (Clause classification). Let k, n ∈ �, let A, Aj , Bi be atoms
and Li be literals. The following names are defined for special forms of clauses.

Name Form

H
or

n
cl

au
se definite clause A ← B1 ∧ . . . ∧ Bn k = 1, n ≥ 0

unit clause2 A ← k = 1, n = 0
definite goal ← B1 ∧ . . . ∧ Bn k = 0, n ≥ 0

empty clause3 ← k = 0, n = 0

normal clause A ← L1 ∧ . . . ∧ Ln k = 1, n ≥ 0
normal goal ← L1 ∧ . . . ∧ Ln k = 0, n ≥ 0
disjunctive clause A1 ∨ . . . ∨ Ak ← B1 ∧ . . . ∧ Bn k ≥ 0, n ≥ 0
general clause A1 ∨ . . . ∨ Ak ← L1 ∧ . . . ∧ Ln k ≥ 0, n ≥ 0

A finite set of definite clauses is called a definite program. Definite programs
invoked by definite queries represent a fragment of first-order predicate logic with
especially nice semantic properties. In the context of the programming language
2 Unit clauses are also called facts, which is meant in a purely syntactic sense although

the word suggests a semantic sense.
3 The empty clause is usually denoted � in the literature on automated deduction.
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Prolog this fragment is sometimes called “pure Prolog”. The generalisation to
normal clauses and normal queries allows to use negation in antecedents, which
may be handled as in Prolog by negation as failure. Programs with disjunctive
clauses are investigated in the field of disjunctive logic programming.

Definite programs do not have the full expressive power of first-order predi-
cate logic. For example, given relation symbols person , male, female , it is not
possible to express with definite clauses that each person is male or female. This
requires a disjunctive clause male(x)∨female(x) ← person(x) or a normal clause
male(x) ← person(x)∧¬female (x). The two are equivalent in the classical sense
of |=| (see Section 4), but their operational treatment might be different.

3.2.2 Datalog
Logic-based formalisations of query languages can be based on concepts of logic
programming, but with a number of specifics:

– Function symbols other than constants are excluded. Thus, the only terms
are variables and constants.

– Relation symbols are partitioned into those that may occur in the data to
be queried, called extensional, and those that may not, called intensional.

– Clauses are assumed to be range restricted, which essentially requires that
all variables in the consequent of a clause also occur in its antecedent.

Definition 22 (Database schemaand instance, extensional, intensional).
Let L =

(
{Funn

L}n∈�, {RelnL}n∈�
)

be a signature with Funn
L = ∅ for n > 0.

A database schema over L is a nonempty, finite subset D ⊆
⋃

n∈�RelnL . The
relation symbols in D and any atoms constructed with them are called exten-
sional. The other relation symbols and atoms are called intensional.

A database instance for D is a finite set of extensional ground atoms.

Definition 23 (Range restricted). A general clause is range restricted if
each variable occurring anywhere in it occurs in a positive literal of its antecedent.

Specialised to definite clauses, range restriction means that each variable occur-
ring in the consequent also occurs in the antecedent of the clause.

Definition 24 (Datalog). A datalog clause is a range restricted definite clause4

whose consequent is an intensional atom.
A datalog program is a finite set of datalog clauses.

In a database instance, the set of all extensional atoms sharing the same n-ary
relation symbol amounts to an extensional specification of an n-ary relation.
These relations are also referred to as the extensional database (EDB). In a
datalog program, the set of all datalog clauses whose consequent atoms share the
same n-ary relation symbol amounts to an intensional specification of an n-ary
relation. These relations are also referred to as the intensional database (IDB).

4 Some authors define datalog clauses without requiring that they are range restricted.
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The antecedent of a datalog clause may contain both extensional and intensional
atoms, thus accessing both kinds of relations.

Note that range restriction implies that datalog unit clauses are ground. Such
clauses are typically needed as base cases for recursive definitions.

The distinction between extensional and intensional is a pragmatic one. It
is useful in processing datalog programs written for querying: clauses whose
consequents contain only intensional atoms can be pre-processed, e.g., rewritten
or compiled, without knowledge of the database instance to be queried.

On the other hand the distinction is no point of principle. Any pair of a datalog
program and a database instance can be fused into an exclusively intensional
form by writing each extensional atom from the database instance as a datalog
unit clause and redeclaring all relation symbols as intensional. Conversely, any
such “fused” datalog program can be separated into an intensional and a (new)
extensional part: provided that a relation symbol r occurs in the consequents
of unit clauses only, each of these unit clauses r(c1, . . . , ck) ← is written as
an extensional atom r′(c1, . . . , ck) with an additional interfacing datalog clause
r(x1, . . . , xk) ← r′(x1, . . . , xk) for a new relation symbol r′. The new relation
symbols are then declared to be extensional.

Many variants of datalog have been defined by modifying the plain version
introduced here. Such restricted or extended versions of datalog are motivated by
their interesting expressive power and/or complexity or by their correspondence
to classes of queries defined by other formalisation approaches. See Section 8 for
more details and [46] for a survey. Here we list just some of these versions of
datalog.
– Monadic datalog is datalog where all intensional relation symbols are unary.
– Nonrecursive datalog is datalog without direct or indirect recursion.
– Linear datalog is datalog where each clause antecedent contains at most one

intensional atom (thus restricting the form of recursion).
– Disjunctive datalog is datalog with disjunctive instead of definite clauses.
– Datalog¬ is datalog with normal instead of definite clauses.
– Nonrecursive datalog¬ is datalog¬ without direct or indirect recursion.
– Disjunctive datalog¬ is datalog¬ with general instead of normal clauses.

3.2.3 Conjunctive Queries
The most trivial form of nonrecursive datalog is obtained by disallowing inten-
sional relation symbols in rule antecedents. If in addition the datalog program
is restricted to just one clause, the consequent of this clause contains the only
occurrence of an intensional relation symbol. By a wide-spread convention this
unique intensional relation symbol is called the answer relation symbol and the
rule is called a conjunctive query.

Definition 25 (Conjunctive query). A conjunctive query is a datalog rule
ans(u) ← r1(u1) ∧ . . . ∧ rn(un) where n ≥ 0, the ri are extensional and ans
is an intensional relation symbol, u, u1, . . . , un are lists of terms of appropriate
length, and the rule is range restricted, i.e., each variable in u also occurs in at
least one of u1, . . . , un.
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A boolean conjunctive query is a conjunctive query where u is the empty list,
i.e., the answer relation symbol ans is propositional.

The following examples of conjunctive queries assume that parent is a 2-ary
and male and female are 1-ary extensional relation symbols. The first two are
examples of boolean conjunctive queries.
ans() ← parent(mary , tom) is Mary a parent of Tom?
ans() ← parent(mary , y) does Mary have children?
ans(x) ← parent(x, tom) who are Tom’s parents?
ans(x) ← female(x)∧parent(x, y)∧parent(y, tom) who are Tom’s grandmothers?
ans(x, z) ← male(x) ∧ parent(x, y) ∧ parent(y, z) who are grandfathers and

their grandchildren?

The class of conjunctive queries enjoys interesting complexity properties (see
Section 8), but its expressive power is limited. Given only the extensional relation
symbols above, the following query types cannot be expressed as conjunctive
queries:

1. who are parents of Tom or Mary?
requires disjunction in rule antecedents or more than a single rule.

2. who are parents, but not of Tom?
requires negation in rule antecedents.

3. who are women all of whose children are sons?
requires universal quantification in rule antecedents. Note that variables oc-
curring only in the antecedent of a conjunctive query (such as y in the ex-
amples above) are interpreted as if existentially quantified in the antecedent.

4. who are ancestors of Tom?
requires recursion, i.e., intensional relation symbols in rule antecedents.

Conjunctive queries have been extended to make some of these query types
expressible and to allow comparisons with classes of relational algebra queries.

Basic conjunctive queries as defined above correspond to the SPC subclass
of relational algebra queries constructed with selection, projection, cartesian
product (or, alternatively, join).

Conjunctive queries extended with disjunction in rule antecedents correspond
to the SPCU subclass of relational algebra queries, which incorporates union.

Conjunctive queries extended with negation, disjunction, and quantification
in rule antecedents (but no recursion) are known as first-order queries and cor-
respond to the full class of relational algebra queries.

However, for an exact correspondence first-order queries have to be restricted
to domain independent queries. This is a semantic characterisation that excludes
queries for which the answers depend on information that may not be completely
available. For instance, the set of answers to ans(x) ← ¬parent(x, x) comprises
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all of humanity – or, depending on the domain of individuals under consideration,
all mammals or all vertebrates. This problem does not arise iff the query is
domain independent. Unfortunately, domain independence is undecidable.5 But
there are several syntactic, i.e., decidable, criteria that are sufficient for domain
independence. Range restricted general clauses (Definition 21), for example, are
domain independent.

Another subclass of first-order queries restricts rule antecedents to formulas
from the so-called guarded fragment of first-order predicate logic, where quanti-
fiers have to be “guarded” by atoms containing the quantified variables (see the
subsection on range restricted quantification on page 18). The guarded fragment
corresponds to the semijoin algebra, the variant of the full relational algebra ob-
tained by replacing the join operator by the semijoin operator [105]. See Section 9
for more details.

In summary, the various extensions to conjunctive queries cover all of the
query types above except the last one, which requires recursion. Some of the
extensions are obviously not datalog, but only from a syntactic point of view.
They can be expressed with nonrecursive datalog¬ provided that more than one
rule is allowed. In other words, the expressive power of datalog is strictly greater
than that of relational algebra, and the add-on is due to recursion.

3.2.4 Single-Rule Programs (sirups)
Datalog programs containing a single non-unit clause and possibly some unit
clauses have been introduced in order to study various “degrees” of recursion.
They are called single-rule programs , sirups for short.

Pure sirups are datalog programs consisting of a single rule and no unit-clause.
In particular, conjunctive queries are pure sirups. Single ground fact sirups are
datalog programs consisting of a single rule and at most one ground unit clause.
General sirups are datalog programs consisting of a single rule and some unit
clauses. For each of these classes its linear subclass is also of interest.

It turns out that even such strongly restricted classes of sirups have essentially
the same complexity and expressive power as general datalog programs [79].

3.3 Syntactic Variations of First-Order Predicate Logic Relevant to
Query Languages

Programming and modelling languages from various areas of computer science
often provide constructs that resemble terms or formulas of first-order predi-
cate logic. Such constructs sometimes deviate from their logical counterparts in
certain aspects, which in most cases are more a matter of convenience than of
fundamental principles. By considering such constructs as syntactic variants –
typically, more convenient ones – of logical terms or formulas, logic’s semantic
apparatus becomes applicable and can be used to define the meaning of such
constructs.
5 Basically, because if ϕ is not domain independent, then (ϕ∧ψ) is domain independent

iff ψ is unsatisfiable, an undecidable property.
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3.3.1 Variations from Object-Oriented and Knowledge
Representation Formalisms

Record-like Structures. Language constructs resembling records or structures of
imperative programming languages are meant for collecting all data about some
real object in a single syntactic unit:

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Regardless of its concrete syntax, such a construct can be seen as syntactic
sugar for the ground atom person(Mary ,Miller , 1984) or for the ground formula
person(c) ∧ firstName(c)=̇Mary ∧ lastName(c)=̇Miller ∧ bornIn(c)=̇1984.
The former translation is sufficient for simple structures, the latter, assuming
built-in equality, can represent more complex ones.

Cyclic Structures. Some object-oriented programming or modelling languages
allow self-references such as:

Employee
firstName: Mary
lastName: Miller
bornIn: 1984
superior: SELF

Here the keyword SELF refers to the very syntactic unit in which it occurs.
First-order predicate logic does not support “cyclic terms” or “cyclic formulas”,
thus there is no direct translation to logic.

Constructs like SELF represent implicit references, in contrast to explicit ref-
erences such as unique identifiers or keys. Implicit references have the purpose
to restrict the user’s possibilities for manipulating references, but they are im-
plemented using explicit references. Roughly speaking, implicit references are
explicit references with information hiding. Translating explicit references to
logic is straightforward, and it is just the information hiding aspect that has
no counterpart in logic. Logic – like the relational and other data models – can
represent information, but is not concerned with information hiding.

Object Identity. Another feature of object-oriented programming or modelling
languages is a so-called “object identity”, which allows to distinguish between
objects that are syntactically equal, such as two objects representing two people
whose personal data happens to coincide:

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Person
firstName: Mary
lastName: Miller
bornIn: 1984

Logic is referentially transparent, meaning that it does not distinguish be-
tween syntactically equal “copies”. Thus, there is no direct translation to logic
of objects with object identity.
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As in the case of cyclic structures, object identity is a concept for implicit ref-
erence, which is based on explicit references but hides some information. Again,
it is only the information hiding aspect that cannot be translated to logic.

Positions vs. Roles. The position of arguments in a term or atom such as
person(Mary ,Miller , 1984) is significant. Exchanging the first two arguments
would result in the representation of a different person.

Some languages allow to associate an identifier, a so-called role, with each
argument position. An argument is then written as a pair role −� term, such as
person(firstName −�Mary , lastName −�Miller , bornIn −�1984), alternatively
person(lastName −�Miller , firstName −�Mary , bornIn −�1984), which are con-
sidered to be the same. The record-like constructs above correspond most natu-
rally to such a notation using roles.

A syntax with roles has several advantages. It admits arbitrary orderings of
arguments and is therefore more flexible. It improves readability, especially with
high numbers of arguments. Moreover, it can handle “don’t care” arguments
more conveniently by simply omitting them rather than representing them by
wildcard variables. Such arguments are frequent in queries,

Nevertheless, it does not change the expressive power. The standard syn-
tax person(Mary ,Miller , 1984) can be seen as an abbreviated form of a role-
based notation person(1 −�Mary , 2 −�Miller , 3 −�1984) using positions as
roles. Conversely, the role identifiers can simply be numbered consecutively, thus
transforming the role-based notation into the notation using positions as roles,
of which the standard syntax is just an abbreviated form.

3.3.2 Variations from Relational Databases
Atoms vs. Tuples. In logic, an atom person(Mary ,Miller , 1984) formalises a
statement about two names and a number. Logic is concerned with statements
that may be true or false. Relational databases, on the other hand, are concerned
with relations or tables, which are sets of tuples. Under this perspective the point
of the example above is that the tuple of the two names and the number belongs
to the relation, formalised (Mary ,Miller , 1984) ∈ person . Obviously, the two
formalisations are directly interchangeable.

The different concerns of the two fields also result in different notions of
variables. In logic, variables are used as placeholders for the things about which
statements are made, as in person(Mary ,Miller , x). In relational databases, vari-
ables are used as placeholders for tuples, as in x ∈ person , with notations like
x3 or x.3 for accessing a single coordinate of a tuple x, here the third one.

Positions vs. Roles, continued. The alternative to base the notation on positions
or on roles also exists for the tuple notation. A standard tuple is a member of a
cartesian product of sets and therefore ordered. Another possibility is to regard
a tuple as an unordered collection of pairs role −�value. In the latter case the
notation for accessing a single coordinate of a tuple x is xbornIn or x.bornIn
using the role instead of the position.
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Combined, those alternatives result in four notational variants, which are
interchangeable:

Atom
positions person(Mary ,Miller , 1984)
roles person(firstName −�Mary , lastName −�Miller , bornIn −�1984)

Tuple
positions (Mary ,Miller , 1984) ∈ person
roles (firstName −�Mary , lastName −�Miller , bornIn −�1984) ∈ person

Relational Calculus. Relational calculus was the first logic-based formalisation
of query languages. Early versions of the relational calculus were called “tu-
ple calculus” and “domain calculus”. The difference was mainly which of the
notational variants above they used.

A relational calculus query has the form {u | ϕ} where u is a list of terms,
i.e., variables or constants, ϕ is a formula, and the variables in u are exactly the
free variables in ϕ.

Recall conjunctive queries (Definition 25) and their extensions. The relational
calculus query above can be seen as simply another notation for ans(u) ← ϕ.
The discussion about the correspondence to relational algebra depending on the
syntactic form of ϕ is therefore as in the subsection on conjunctive queries.

Relational Algebra. Relational algebra is not a logic-based approach and does
not really belong in this subsection, but it was the first formalisation of query
languages and usually the frame of reference for later ones.

Relational algebra considers relations in the mathematical sense and a small
number of operators with which relational expressions can be constructed. Typ-
ical operators are selection, projection, cartesian product, union, intersection,
set difference, division, join. Some of these operators can be defined in terms
of others. Various classes of relational algebra queries are characterised by the
subset of operators they may use.

3.3.3 Logical Variations
Range Restricted Quantification. Both natural language and mathematics tend
to exercise some control over the range of quantified variables.

Rather than saying “for everything there is something that is the first one’s
parent”, formalised as ∀x∃y parent(y, x), it would seem more natural to say
“for every person there is a person who is the first one’s parent”, formalised
as ∀x(person(x) ⇒ ∃y(person(y) ∧ parent(y, x))). Similar examples abound in
mathematics, where theorems rarely start with “for everything there is some-
thing such that . . . ”, but more typically with “for every polynomial P there is
an integer n such that . . . ”

The characteristic of formulas resulting from such statements is that each
quantifier for a variable is combined with an atom that restricts the range of the
quantified variable. This intuition can be formalised as follows.
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Definition 26 (Formula with range restricted quantification). Let L be
a signature. L-formulas with range restricted quantification, here abbreviated
RR-formulas, are defined inductively:
1. Each quantifier-free L-formula is an RR-formula.
2. Each L-formula constructed from a connective and an appropriate number

of RR-formulas is an RR-formula.
3. If ϕ is an RR-formula and A is an atom and x is a subset of the free variables

in A, then ∀x(A ⇒ ϕ) and ∃x(A∧ϕ) are RR-formulas. The atom A is called
the range for the variables in x.

The atom A combined with a quantifier is also called a guard. The guarded
fragment discussed earlier in connection with conjunctive queries is a further
restriction of this class of formulas, with the additional requirement that all
variables that are free in ϕ also occur in A. This enforces a kind of layering: all
variables that are free in a subformula occur in the atom guarding the innermost
quantifier in whose scope the subformula is.

[26] gives a generalisation of Definition 26 allowing for non-atomic ranges.

Many-Sorted First-Order Predicate Logic. In the field of programming languages
it is advantageous to associate types with expressions. The same idea for first-
order predicate logic is to associate sorts6 with terms.

This requires a new symbol class called sort symbols. A signature then specifies
for each relation symbol p not just an arity n, but an n-tuple of sort symbols
written (s1 × . . . × sn), and for each function symbol f not just an arity n, but
an (n+1)-tuple of sort symbols written (s1 × . . .× sn → sn+1), where s1, . . . , sn

are the argument sorts and sn+1 is the result sort of the symbol. Moreover, each
variable is associated with a sort symbol.

With these modifications it is straightforward to extend the definitions of
terms and atoms by the obvious compatibility requirements between argument
sorts and result sorts of subterms.

Example 27 (Many-sorted first-order predicate logic)
Sort symbols {person, company}
Signature
2-ary relation symbol married : person × person

employs : company × person
constant Tom : person Web5 .0 : company

Mary : person
1-ary function symbol founder : company → person

Formulas married(Tom ,Mary) ∧ employs(Web5 .0 ,Tom)
∃x:company employs(x, founder (Web5 .0 ))
∀x:company ∃y:person employs(x, y)

In this example, founder (Tom) is not a term because of the clash between the
subterm’s result sort person and the required argument sort company . Likewise,
married(Tom ,Web5 .0 ) is not a formula.
6 The word type would clash with historically established terminology.
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Classical first-order predicate logic is the special case of the many-sorted ver-
sion with exactly one sort symbol, which is not explicitly written.

Many-sorted first-order predicate logic can be translated into the classical
version. Each sort symbol s is translated into a unary relation symbol ŝ. Part
of the signature information from the example above translates as p̂erson(Tom)
and ∀x( ̂company(x) ⇒ p̂erson(founder (x)). The last of the formulas from the
example translates as ∀x( ̂company(x) ⇒ ∃y(p̂erson(y) ∧ employs(x, y))). Note
that the translation results in a formula with range restricted quantification, the
fragment discussed earlier.

Thus, introducing sorts does not affect the expressive power. But it allows
static sort checking and thus improves error detection. Moreover, a many-sorted
formalisation of a problem needs fewer and smaller formulas than the corre-
sponding classical formalisation.

The idea of introducing sorts can be extended to hierarchies or networks of
sorts without losing these advantages.

4 Declarative Semantics: Fundamentals of Classical
Model Theory

The classical semantics of first-order predicate logic, i.e., the attribution of mean-
ing to formulas of first-order predicate logic, follows an approach proposed by
Alfred Tarski in the 1930s. This approach has a salient characteristic: The inter-
pretation of a compound term and the truth value of a compound formula are
defined recursively over the structure of the term or formula, respectively. As
a consequence, to know the truth value in an interpretation I of a compound
formula ϕ, it suffices to know the values in I of the immediate constituents of ϕ.
This is clearly advantageous for computing, as it provides with a well-defined,
finite, and restricted computation scope. However, this approach to semantics
has a considerable drawback: its allowing for any kind of sets for interpreting
terms makes it apparently incomputable.

A theorem due to Jacques Herbrand shows that this drawback is overcome
if only universal formulas are considered: If such formulas are true in some
interpretation, whose domain may well not be computably enumerable, then
they are also true in a so-called Herbrand interpretation, whose domain is the
computably enumerable set of all variable-free terms of the given signature.
Furthermore, a technique known as Skolemization7 transforms every formula
into a universal formula while preserving satisfiability, i.e., the interpretability of
a formula as true in some interpretation. Herbrand’s theorem and Skolemization
make entailment, and thus query answering, semi-decidable and thus amenable
to computing.

The first and main subsection below introduces more precisely the notions,
techniques, and results mentioned above as well as the treatment of equality in

7 Named after Thoralf Skolem, one of its inventors. Moses Schönfinkel independently
proposed it as well.
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first-order predicate logic. The subsection is concluded by remarks on inadequa-
cies of classical semantics for query languages. The shorter subsections following
the main one show how some, if not all, of these inadequacies can be overcome.
Alas, these solutions bear new problems.

4.1 Classical Tarski Model Theory

In the following, a signature L for first-order predicate logic is assumed.

4.1.1 Interpretations, Models, and Entailment

Definition 28 (Variable assignment). Let D be a nonempty set. A variable
assignment in D is a function V mapping each variable to an element of D. We
denote the image of a variable x under an assignment V by xV .

Definition 29 (L-Interpretation). Let L be a signature. An L-interpretation
is a triple I = (D, I, V ) where
– D is a nonempty set called the domain or universe (of discourse) of I.

Notation: dom(I) := D.
– I is a function defined on the symbols of L mapping

• each n-ary function symbol f to an n-ary function f I : Dn → D.
For n = 0 this means f I ∈ D.

• each n-ary relation symbol p to an n-ary relation pI ⊆ Dn.
For n = 0 this means either pI = ∅ or pI = {()}.

Notation: fI := f I and pI := pI .
– V is a variable assignment in D.

Notation: xI := xV .

The domain is required to be nonempty because otherwise neither I nor V would
be definable. Moreover, an empty domain would cause anomalies in the truth
values of quantified formulas. As before, when the signature L is clear from
context, we drop the prefix “L-” and simply speak of interpretations.

Definition 30. The value of a term t in an interpretation I, denoted tI, is an
element of dom(I) and inductively defined:
1. If t is a variable or a constant, then tI is defined as above.
2. If t is a compound term f(t1, . . . , tn), then tI is defined as fI(tI1 , . . . , tIn)

Notation 31. Let V be a variable assignment in D, let V ′ be a partial function
mapping variables to elements of D, which may or may not be a total function.
Then V [V ′] is the variable assignment with

xV [V ′] =
{

xV ′
if xV ′

is defined
xV if xV ′

is undefined

Let I = (D, I, V ) be an interpretation. Then I[V ′] := (D, I, V [V ′]).
By {x1 �→d1, . . . , xk �→dk} we denote the partial function that maps xi to di and

is undefined on other variables. In combination with the notation above, we omit
the set braces and write V [x1 �→d1, . . . , xk �→dk] and I[x1 �→d1, . . . , xk �→dk].
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Definition 32 (Tarksi, model relationship). Let I be an interpretation and
ϕ a formula. The relationship I |= ϕ, pronounced “I is a model of ϕ” or “I sat-
isfies ϕ” or “ϕ is true in I”, and its negation I �|= ϕ, pronounced “I falsifies ϕ”
or “ϕ is false in I”, are defined inductively:

I |= p(t1, . . . , tn) iff (tI1 , . . . , tIn) ∈ pI (n-ary p, n ≥ 1)
I |= p iff () ∈ pI (0-ary p)
I �|= ⊥
I |= �
I |= ¬ψ iff I �|= ψ
I |= (ψ1 ∧ ψ2) iff I |= ψ1 and I |= ψ2

I |= (ψ1 ∨ ψ2) iff I |= ψ1 or I |= ψ2

I |= (ψ1 ⇒ ψ2) iff I �|= ψ1 or I |= ψ2

I |= ∀x ψ iff I[x �→ d] |= ψ for each d ∈ D
I |= ∃x ψ iff I[x �→ d] |= ψ for at least one d ∈ D

For a set S of formulas, I |= S iff I |= ϕ for each ϕ ∈ S.

Definition 33 (Semantic properties). A formula, or a set of formulas, is
valid or a tautology iff it is satisfied in each interpretation
satisfiable iff it is satisfied in at least one interpretation
falsifiable iff it is falsified in at least one interpretation
unsatisfiable or inconsistent iff it is falsified in each interpretation

Note that a formula or a set of formulas can be both satisfiable and falsifiable,
for instance, any propositional atom p is. The formulas (p∨¬p) and � are valid.
The formulas (p ∧ ¬p) and ⊥ are unsatisfiable.

Definition 34 (Entailment and logical equivalence). Let ϕ and ψ be for-
mulas or sets of formulas.

ϕ |= ψ, pronounced: “ϕ entails ψ” or “ψ is a (logical) consequence of ϕ”,
iff for each interpretation I: if I |= ϕ then I |= ψ.

ϕ |=| ψ, pronounced: “ϕ is (logically) equivalent to ψ”,
iff ϕ |= ψ and ψ |= ϕ.

The following result is immediate. It shows that the semantic properties and
entailment can be translated into each other. Being able to determine one of
validity, unsatisfiability, or entailment, is sufficient to determine all of them.

Theorem 35 (Translatability between semantic properties and entail-
ment). Let ϕ and ψ be formulas.

ϕ is valid iff ¬ϕ is unsatisfiable iff � |= ϕ.
ϕ is unsatisfiable iff ¬ϕ is valid iff ϕ |= ⊥.
ϕ |= ψ iff (ϕ ⇒ ψ) is valid iff (ϕ ∧ ¬ψ) is unsatisfiable.

Being able to determine validity or unsatisfiability is also sufficient to determine
logical equivalence, which is just mutual entailment. The definition of ϕ |=| ψ
means that ϕ and ψ have the same models. Either of them may be replaced by
the other without affecting any truth values. This is often exploited for trans-
formations in proofs or in optimising queries or rule sets.
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Proposition 36 (Model-preserving transformations). Let ϕ, ϕ′, ψ, ψ′, χ
be formulas. The following equivalences hold:
– ϕ |=| ϕ′ if ϕ′ is a rectified form of ϕ
– ϕ |=| ϕ′ if ψ |=| ψ′ and ϕ′ is obtained from ϕ by replacing an occurrence

of the subformula ψ by ψ′

– (ϕ ∨ ψ) |=| (ψ ∨ ϕ) (ϕ ∧ ψ) |=| (ψ ∧ ϕ)
– ((ϕ ∨ ψ) ∨ χ) |=| (ϕ ∨ (ψ ∨ χ)) ((ϕ ∧ ψ) ∧ χ) |=| ((ϕ ∧ (ψ ∧ χ))
– ((ϕ ∨ ψ) ∧ χ) |=| ((ϕ∧χ) ∨ (ψ∧χ)) ((ϕ ∧ ψ) ∨ χ) |=| ((ϕ∨χ) ∧ (ψ∨χ))
– (⊥ ∨ ϕ) |=| ϕ (� ∧ ϕ) |=| ϕ
– (ϕ ∨ ¬ϕ) |=| � (ϕ ∧ ¬ϕ) |=| ⊥
– (ϕ ∨ ϕ) |=| ϕ (ϕ ∧ ϕ) |=| ϕ
– (ϕ ∨ (ϕ ∧ ψ)) |=| ϕ (ϕ ∧ (ϕ ∨ ψ)) |=| ϕ

– ¬¬ϕ |=| ϕ
– ¬(ϕ ∨ ψ) |=| (¬ϕ ∧ ¬ψ) ¬(ϕ ∧ ψ) |=| (¬ϕ ∨ ¬ψ)
– (ϕ ⇒ ψ) |=| (¬ϕ ∨ ψ) ¬(ϕ ⇒ ψ) |=| (ϕ ∧ ¬ψ)
– ((ϕ∨ϕ′)⇒ψ) |=| ((ϕ⇒ψ)∧(ϕ′ ⇒ψ)) (ϕ⇒(ψ∧ψ′)) |=| ((ϕ⇒ψ)∧(ϕ⇒ψ′))
– (ϕ ⇒ ⊥) |=| ¬ϕ (� ⇒ ϕ) |=| ϕ

– in general ∀x∃yϕ �|=| ∃y∀xϕ
∀x∀yϕ |=| ∀y∀xϕ ∃x∃yϕ |=| ∃y∃xϕ

– ¬∀xϕ |=| ∃x¬ϕ ¬∃xϕ |=| ∀x¬ϕ
– ∀x(ϕ ∧ ψ) |=| (∀xϕ ∧ ∀xψ) ∃x(ϕ ∨ ψ) |=| (∃xϕ ∨ ∃xψ)

∃x(ϕ ∧ ψ) �|=| (∃xϕ ∧ ∃xψ) in general ∀x(ϕ ∨ ψ) �|=| (∀xϕ ∨ ∀xψ)
∃x(ϕ ∧ ψ) |=| (ϕ ∧ ∃xψ) if x is not free in ϕ ∀x(ϕ ∨ ψ) |=| (ϕ ∨ ∀xψ)

– ∀xϕ |=| ϕ if x is not free in ϕ ∃xϕ |=| ϕ

By exploiting these equivalences, one can take any formula and, without affecting
truth values, rectify it, translate ⇒ into the other connectives, move quantifiers
to the front and ¬ into subformulas.

Theorem 37. Every formula is equivalent to a formula in prenex form. More-
over, every formula is equivalent to a formula in prenex form whose matrix is a
conjunction of disjunctions of literals.

Every universal formula is equivalent to a conjunction of clauses and equiva-
lent to a finite set of clauses (each clause representing its universal closure).

The entailment relationship ϕ |= ψ formalises the concept of logical consequence.
From premises ϕ follows a conclusion ψ iff every model of the premises is a model
of the conclusion.

A major concern in logic used to be the development of calculi, also called proof
systems, which formalise the notion of deductive inference. A calculus defines
derivation rules, with which formulas can be derived from formulas by purely
syntactic operations. For example, a typical derivation rule might say “from ¬¬ϕ
derive ϕ”. The derivability relationship ϕ � ψ for a calculus holds iff there is a
finite sequence of applications of derivation rules of the calculus, which applied
to ϕ result in ψ.

Ideally, derivability should mirror entailment: a calculus is called sound iff
whenever ϕ � ψ then ϕ |= ψ and complete iff whenever ϕ |= ψ then ϕ � ψ.
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Theorem 38 (Gödel, completeness theorem). There exist calculi for first-
order predicate logic such that S � ϕ iff S |= ϕ for any set S of closed formulas
and any closed formula ϕ.

Thus, the semantic notion of entailment coincides with the syntactic notion
of derivability. This correspondence opens up the prospects to obtain logical
consequences by computation, but there are limits to these prospects.

Theorem 39 (Church-Turing, undecidability theorem). Derivability in
a correct and complete calculus is not decidable for signatures with at least one
non-propositional relation symbol and a relation or function symbol of arity ≥ 2.

A corollary of Gödel’s completeness theorem is the following famous result.

Theorem 40 (Gödel-Malcev, finiteness or compactness theorem). Let
S be an infinite set of closed formulas. If every finite subset of S is satisfiable,
then S is satisfiable.

The contrapositive of the finiteness/compactness theorem, combined with its
trivial converse, is often useful: a set S of closed formulas is unsatisfiable iff
some finite subset of S is unsatisfiable.

Corollary 41. For signatures with at least one non-propositional relation sym-
bol and a relation or function symbol of arity ≥ 2, entailment, unsatisfiability,
and validity are semi-decidable but not decidable, and non-entailment, satisfia-
bility, and falsifiability are not semi-decidable.

4.1.2 Theories

Definition 42 (Model class). Let L be a signature and S a set of L-formulas.
ModL(S) is the class of all L-interpretations I with I |= S, i.e., the class of all
L-models of S.

We simply write Mod(S) without “L” when we leave the signature L implicit.
Note that in general the class Mod(S) is not a set. For satisfiable S it is nonempty.
If it were a set, Mod(S) could be the domain of another model of S, which would
be a member of Mod(S) – a similarly ill-defined notion as “the set of all sets”.

Definition 43 (Theory). A theory is a set T of L-formulas that is closed
under entailment, i.e., for each L-formula ϕ, if T |= ϕ then ϕ ∈ T .

The theory of a class K of L-interpretations, denoted by Th(K), is the set of
all L-formulas ϕ with I |= ϕ for each I ∈ K, i.e., the set of formulas satisfied
by all interpretations in K.

The theory of a set S of L-formulas, denoted by Th(S), is Th(ModL(S)).

Proposition 44. Th(K) and Th(S) as defined above are indeed theories, i.e.,
closed under entailment. In particular, Th(S) = {ϕ | S |= ϕ}.

Thus, Th can also be regarded as a closure operator for the closure under en-
tailment of a set of formulas.
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Proposition 45. Th is a closure operator, i.e., for all sets S, S′ of formulas:
– S ⊆ Th(S) (Th is extensive)
– if S ⊆ S′ then Th(S) ⊆ Th(S′) (Th is monotonic)
– Th(Th(S)) = Th(S) (Th is idempotent)

Definition 46 (Axiomatisation). An axiomatisation of a theory T is a set S
of formulas with Th(S) |=| T .

A theory is finitely axiomatisable if it has an axiomatisation that is finite.

Finite axiomatisability is important in practice because proofs have finite length
and are built up from axioms. If there are finitely many axioms, then the set of
all possible proofs is computably enumerable.

Theorem 47. There are theories that are finitely axiomatisable and theories
that are not.

The theory of equivalence relations is finitely axiomatisable by the three formulas
for reflexivity, symmetry, and transitivity. The theory of the natural numbers
with addition, multiplication, and the less-than relation is, by Gödel’s famous
incompleteness theorem, not finitely axiomatisable.

Two trivial theories are finitely axiomatisable. Th(∅) is the set of all valid
L-formulas because ModL(∅) consists of all L-interpretations. If S = {⊥} or any
other unsatisfiable set of L-formulas, Th(S) is the set of all L-formulas because
ModL(S) is empty. In the literature this case is sometimes excluded by adding
the requirement of satisfiability to the definition of a theory.

4.1.3 Substitutions and Unification

Definition 48 (Substitution). A substitution is a function σ, written in post-
fix notation, that maps terms to terms and is
– homomorphous, i.e., f(t1, . . . , tn)σ = f(t1σ, . . . , tnσ) for compound terms

and cσ = c for constants.
– identical almost everywhere, i.e., {x | x is a variable and xσ �= x} is finite.

The domain of a substitution σ is the finite set of variables on which it is not
identical. Its codomain is the set of terms to which it maps its domain.

A substitution σ is represented by the finite set {x1 �→x1σ, . . . , xk �→xkσ}
where {x1, . . . , xk} is its domain and {x1σ, . . . , xkσ} is its codomain.

Mind the difference between Notation 31 and Definition 48: With variable assign-
ments, the notation {x1 �→d1, . . . , xk �→dk} represents a partial function, which
for variables other than x1, . . . , xk is undefined. With substitutions, the notation
{x1 �→ t1, . . . , xk �→ tk} represents a total function, which for variables other than
x1, . . . , xk is the identity.

For example, the substitution mapping x to a and y to f(y) and any other
variable to itself is represented by {x �→a, y �→ f(y)}. The shortened notation
{x/a, y/f(y)} will also be used in later sections of this survey.8

8 In the literature several notational conventions coexist, including the ones used here
and the reverse form {a/x, f(y)/y}. This can be confusing in cases like {u/v}.
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Substitutions can be combined by functional composition, t(στ) = (tσ)τ . The
identity substitution ε, which maps every term to itself, is the neutral element
for functional composition.

Definition 49 (Subsumption ordering). A term s subsumes a term t, de-
noted s ≤ t, iff there exists a substitution ϑ with sϑ = t. One also says that t is
an instance of s, or t is more specific than s, or s is more general than t.

A substitution σ subsumes a substitution τ , denoted σ ≤ τ , iff there exists a
substitution ϑ with σϑ = τ . One also says that τ is an instance of σ, or τ is
more specific than σ, or σ is more general than τ .

Two terms mutually subsume each other iff they are equal up to variable re-
naming. Mutual subsumption is an equivalence relation, on whose equivalence
classes ≤ is a well-founded partial ordering. Its minimum is the equivalence class
of all variables. Its maximal elements are the singleton classes of ground terms.
If there are function symbols with arity > 0, there are infinite strictly increasing
chains: x ≤ f(x) ≤ f(f(x)) ≤ f(f(f(x))) ≤ . . .

In the case of substitutions, the ordering is also well-founded. The equivalence
class of variable permutations, which includes the identity substitution ε, is the
minimum. There are no maximal elements: σ ≤ σ{x �→y} for any x, y not in the
domain of σ.

Definition 50 (Unification). Two terms s and t are unifiable, if there exists
a substitution σ with sσ = tσ. In this case σ is called a unifier of s and t.

A most general unifier or mgu is a minimal element w.r.t. the subsumption
ordering among the set of all unifiers of s and t. If σ is a most general unifier
of s and t, the term sσ is called a most general common instance of s and t.

Theorem 51 (Robinson [138], unification theorem). Any most general
unifier of two terms subsumes all their unifiers.

Thus, any two most general unifiers of two terms mutually subsume each other.
This implies that any two most general common instances of two terms are equal
up to variable renaming. Furthermore, among the unifiers of two terms there is
always an idempotent most general unifier σ, that is, σσ = σ. This is the case
iff none of the variables from its domain occurs in its codomain.

Definition 52 (Ground substitution, ground instance). A ground substi-
tution is a substitution whose codomain consists of ground terms only. A ground-
ing substitution for a term t is a ground substitution σ whose domain includes
all variables in t, such that tσ is ground. A ground instance of t is an instance
of t that is ground.

The application of a substitution σ to a set or tuple of terms, to a quantifier-
free formula or set of quantifier-free formulas, or to other mathematical objects
having terms as constituents, is defined by canonical extension. Thus, the notion
of an instance or a ground instance or a grounding substitution for such an object
is also defined canonically. For example, let ϕ be p(x) ∧ q(y, z) ⇒ r(x, f(y), z)
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and σ = {x �→f(v), y �→a}. Then ϕσ is p(f(v)) ∧ q(a, z) ⇒ r(f(v), f(a), z). One
grounding substitution for ϕ is {x �→a, y �→f(a), z �→a, v �→a}.

For formulas containing quantifiers, however, it is technically more intricate to
define the corresponding notions. We define only special cases involving ground
substitutions.

Definition 53 (Instance of a formula). Let ϕ be a formula and σ a ground
substitution. Then ϕσ is the formula obtained from ϕ by replacing each free
variable occurrence x in ϕ by xσ.

For example, let ϕ be the formula (∀x[∃xp(x) ∧ q(x)] ⇒ [r(x, y) ∨ ∀xs(x)]) and
σ = {x �→a}. Then ϕσ is (∀x[∃xp(x) ∧ q(x)] ⇒ [r(a, y) ∨ ∀xs(x)]). Note that
there may be three kinds of variable occurrences in ϕ. Those that are free and
in the domain of σ, such as x in r(x, y), become ground terms in ϕσ. Those
that are free and not in the domain of σ, such as y in r(x, y), remain free in ϕσ.
Those that are bound in ϕ, such as x in p(x), remain bound in ϕσ. Because
of the latter case it does not make sense to define grounding substitutions for
formulas with quantifiers.

Definition 54 (Ground instance of a formula). Let ϕ be a formula. Let ϕ′

be a rectified form of ϕ. Let ϕ′′ be obtained from ϕ′ by removing each occurrence
of a quantifier for a variable. A ground instance of ϕ is a ground instance of ϕ′′.

For example, let ϕ be (∀x[∃xp(x) ∧ q(x)] ⇒ [r(x, y) ∨ ∀xs(x)]). A rectified form
with quantifiers removed is ([p(v)∧q(u)] ⇒ [r(x, y)∨s(w)]). Assuming a signature
with constants a, b, c, d and unary function symbol f , two ground instances of ϕ
are ([p(a)∧q(a)] ⇒ [r(a, a)∨s(a)]) and ([p(a)∧q(f(b))] ⇒ [r(f(f(c)), c)∨s(d)]).

In general the set of ground instances of a non-ground term or formula is
infinite, but it is always computably enumerable.

Typically, one is only interested in ground instances of formulas in which
all variables are of the same kind: free or universally quantified or existentially
quantified.

4.1.4 Herbrand Interpretations
An interpretation according to Tarski’s model theory may use any nonempty
set as its domain. Herbrand interpretations are interpretations whose domain is
the so-called Herbrand universe, the set of all ground terms constructible with
the signature considered. This is a syntactic domain, and under the common
assumption that all symbol sets of the signature are computably enumerable, so
is the Herbrand universe. In an Herbrand interpretation quantification reduces
to ground instantiation.

A fundamental result is that Herbrand interpretations can imitate interpre-
tations with arbitrary domains provided that the formulas under consideration
are universal. A set of universal formulas has an arbitrary model iff it has an
Herbrand model. As a consequence, it is satisfiable iff the set of its ground in-
stances is, which is essentially a propositional problem. These results are the
key to algorithmic treatment of the semi-decidable semantic notions: validity,
unsatisfiability, entailment.
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Definition 55 (Herbrand universe and base). Let L be a signature for
first-order predicate logic. The Herbrand universe HUL is the set of all ground
L-terms. The Herbrand base HBL is the set of all ground L-atoms.

If L does not specify any constant, HUL is empty. From now on we assume that
L specifies at least one constant. As usual, we leave the signature L implicit
when it is clear from context, and write simply HU and HB without “L”.

Definition 56 (Herbrand interpretation). An interpretation I is an Her-
brand interpretation if dom(I) = HU and fI(t1, . . . , tn) = f(t1, . . . , tn) for each
n-ary function symbol f and all t1, . . . , tn ∈ HU .

Thus, the value of a ground term t in an Herbrand interpretation is the term t
itself. Furthermore, it turns out that the truth values of quantified formulas
depend on the truth values of their ground instances.

Theorem 57. Let I be an Herbrand interpretation and ϕ a formula that may
or may not contain a free occurrence of the variable x.

– I |= ∀xϕ iff I |= ϕ{x �→ t} for each t ∈ HU .
– I |= ∃xϕ iff I |= ϕ{x �→ t} for at least one t ∈ HU .

According to Definition 32, the right hand sides should be I[x �→ t] |= ϕ. The the-
orem states that the effect of modifying the interpretation’s variable assignment
can be achieved by applying the ground substitution {x �→ t} to ϕ. This result
crucially depends on the interpretation’s being an Herbrand interpretation. Here
are two counter-examples for non-Herbrand interpretations:

Example 58. Consider a signature containing a unary relation symbol p and a
constant a and no other symbols. Then the only member of HU is a. Let I be the
non-Herbrand interpretation with dom(I) = {1, 2} and aI = 1 and pI = {1}.
Then I |= p(a) and I[x �→1] |= p(x) and I[x �→2] �|= p(x).

– I �|= ∀x p(x), but I |= p(x){x �→ t} for each t ∈ HU = {a}.
– I |= ∃x¬p(x), but I �|= ¬p(x){x �→ t} for each t ∈ HU = {a}.

Example 59. Consider a signature containing a unary relation symbol p and
for each arity an infinite and enumerable set of function symbols of that arity.
Then the set HU is enumerable. Let I be a non-Herbrand interpretation with
dom(I) = �, the set of real numbers, with arbitrary definitions for the constants
and function symbols, and pI = {tI | t ∈ HU } ⊆ �.

Since HU is enumerable, there are r ∈ � with r /∈ pI , thus I[x �→ r] �|= p(x).

– I �|= ∀x p(x), but I |= p(x){x �→ t} for each t ∈ HU .
– I |= ∃x¬p(x), but I �|= ¬p(x){x �→ t} for each t ∈ HU .

In both examples the reason why the theorem does not hold is that the inter-
pretation uses a domain with more elements than there are ground terms. The
latter example shows that this is not only a phenomenon of finite signatures.
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Corollary 60. Let S be a set of universal closed formulas and Sground the set of
all ground instances of members of S. For each Herbrand interpretation I holds
I |= S iff I |= Sground .

Terms have a fixed value in all Herbrand interpretations. Only the interpreta-
tion of relation symbols is up to each particular Herbrand interpretation. This
information can conveniently be represented by a set of ground atoms.

Definition 61 (Herbrand interpretation represented by ground atoms).
Let V be some fixed variable assignment in HU . Let B ⊆ HB be a set of ground
atoms. Then HI (B) is the Herbrand interpretation with variable assignment V
and pHI (B) = {(t1, . . . , tn) | p(t1, . . . , tn) ∈ B} for each n-ary relation symbol p.

Thus, a set B of ground atoms represents the Herbrand interpretation HI (B)
that satisfies all ground atoms in B and falsifies all ground atoms not in B.
Except for the variable assignment, HI (B) is uniquely determined by B. The
notation introduced earlier, HI (B)[V ], can be used to specify a particular vari-
able assignment.

Definition 62 (Herbrand interpretation induced by an interpretation).
Let I be an arbitrary interpretation. The Herbrand interpretation induced by I,
denoted HI (I), is HI ({A ∈ HB | I |= A}).

Proposition 63. For each signature and up to the fixed variable assignment:
HI (I) = I iff I is an Herbrand interpretation.
There is a bijection between the set of all Herbrand interpretations and the

set of all subsets of HB.

Theorem 64 (Herbrand model induced by a model). Let ϕ be a universal
closed formula. Each model of ϕ induces an Herbrand model of ϕ, that is, for
each interpretation I, if I |= ϕ then HI (I) |= ϕ.

The converse holds for ground formulas, but not in general. Reconsider Exam-
ples 58 and 59 above. In both of them HI (I) |= ∀x p(x), but I �|= ∀x p(x). The
examples also show that the correct direction does not hold for non-universal
formulas. In both of them I |= ∃x¬p(x), but HI (I) �|= ∃x¬p(x).

At first glance the result may seem weak, but it establishes that if there is a
model, there is an Herbrand model. The converse is trivial. Taking into account
the finiteness/compactness theorem, we get:

Corollary 65 (“Herbrand Theorem”). Let S be a set of universal closed
formulas and let Sground be the set of all ground instances of members of S.
S is unsatisfiable iff S has no Herbrand model iff Sground has no Herbrand model
iff there is a finite subset of Sground that has no Herbrand model.

The latter is essentially a propositional problem, see the discussion on propo-
sitional vs. ground on page 8. In the literature, the name Herbrand theorem
usually refers to this reduction of semantic notions from the first-order level to
the propositional level.
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4.1.5 Skolemization
The results on Herbrand interpretations cover only universal formulas. Skolem-
ization is a technique to transform a non-universal formula ϕ into a universal
formula ϕsko . The transformation is not model-preserving, in general ϕ �|=| ϕsko .
But it preserves the existence of models, ϕ is satisfiable iff ϕsko is satisfiable.

Here is an example of the transformation:
ϕ is the L-formula ∀y∀z(married(y, z) ⇒ ∃x parent(y, x))
ϕsko is the Lsko-formula ∀y∀z(married(y, z) ⇒ parent(y, f(y)))

where L is a signature with 2-ary relation symbols married and parent , in which
the 1-ary function symbol f does not occur, and Lsko is L extended with f . Both
formulas are satisfiable and falsifiable.

Let I be an Lsko-interpretation with I |= ϕsko . Intuitively, for each y for which
parent(y, f(y)) is true in I, there exists at least one x for which parent(y, x) is
true in I, namely f(y). This intuition can be used to show formally that I |= ϕ.
Thus, ϕsko |= ϕ.

The converse does not hold. Let I be the Lsko-interpretation with a domain of
people for whom it is indeed the case that every married person has a child, and
with the “natural” interpretation of the relation symbols and fI the identity
function on the domain. Now I |= ϕ, but I �|= ϕsko because no-one from the
domain is their own parent. Thus, ϕ �|= ϕsko .

However, the fact that I |= ϕ, does not depend on the interpretation of f . We
construct another interpretation I ′ that differs from I just in that fI′

maps only
childless people to themselves but maps people with children to their firstborn.
Still I ′ |= ϕ, but also I ′ |= ϕsko . From a model of ϕ we have constructed another
model of ϕ, which is also a model of ϕsko .

The principles illustrated with this example apply in general.

Definition 66 (Skolemization step). Let ϕ be a rectified closed formula con-
taining an occurrence of a subformula Qxψ where Q is an existential quantifier
with positive or a universal quantifier with negative polarity in ϕ. Let the vari-
ables with free occurrences in ψ be {x, y1, . . . , yk}, k ≥ 0. Let f be a k-ary
function symbol that does not occur in ϕ.

Let ϕs be ϕ with the occurrence of Qxψ replaced by ψ{x �→ f(y1, . . . , yk)}.
Then the transformation from ϕ to ϕs is called a Skolemization step with Skolem
function symbol f and Skolem term f(y1, . . . , yk).

Proposition 67. If a Skolemization step transforms ϕ to ϕs, then ϕs |= ϕ,
and for each interpretation I with I |= ϕ there exists an interpretation I′ with
I ′ |= ϕ and I ′ |= ϕs. Moreover, I ′ coincides with I except possibly fI′ �= fI.

Corollary 68 (Skolemization). Let L be a signature for first-order predi-
cate logic and S a computably enumerable set of closed L-formulas. There is
an extension Lsko of L by new function symbols and a computably enumerable
set Ssko of universal closed L-formulas, such that S is unsatisfiable iff Ssko is
unsatisfiable.
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4.1.6 Equality
So far we have considered results for the version of first-order predicate logic
without equality. Let us now assume a signature L containing a special 2-ary
relation symbol =̇ for equality.

Definition 69 (Normal interpretation). An interpretation I is normal, iff
it interprets the relation symbol =̇ with the equality relation on its domain, i.e.,
iff =̇I is the relation {(d, d) | d ∈ dom(I)}. For formulas or sets of formulas
ϕ and ψ:

I |== ϕ iff I is normal and I |= ϕ.
ϕ |== ψ iff for each normal interpretation I: if I |== ϕ then I |== ψ.

The version of first-order predicate logic with built-in equality simply makes the
normality requirement part of the definition of an interpretation. Let us now
investigate the relationship between the two versions.

Definition 70 (Equality axioms). Given a signature L with 2-ary relation
symbol =̇, the set EQL of equality axioms for L consists of the formulas:

– ∀x x=̇x (reflexivity of =̇)
– ∀x∀y(x=̇y ⇒ y=̇x) (symmetry of =̇)
– ∀x∀y∀z((x=̇y ∧ y=̇z) ⇒ x=̇z) (transitivity of =̇)
– for each n-ary function symbol f , n > 0 (substitution axiom for f)

∀x1 . . . xn∀x′
1 . . . x′

n((x1=̇x′
1 ∧ . . . ∧ xn=̇x′

n) ⇒ f(x1, . . . , xn)=̇f(x′
1, . . . , x

′
n))

– for each n-ary relation symbol p, n > 0 (substitution axiom for p)
∀x1 . . . xn∀x′

1 . . . x′
n((x1=̇x′

1 ∧ . . . ∧ xn=̇x′
n ∧ p(x1, . . . , xn)) ⇒ p(x′

1, . . . , x
′
n))

Note that EQL may be infinite, depending on L. Actually, symmetry and tran-
sitivity of =̇ follow from reflexivity of =̇ and the substitution axiom for =̇ and
could be omitted.

Theorem 71 (Equality axioms)

– For each interpretation I, if I is normal then I |== EQL.
– For each interpretation I with I |= EQL there is a normal interpretation I=

such that for each formula ϕ: I |= ϕ iff I= |== ϕ.
– For each set S of formulas and formula ϕ: EQL ∪ S |= ϕ iff S |== ϕ.

Corollary 72 (Finiteness or compactness theorem with equality). Let
S be an infinite set of closed formulas with equality. If every finite subset of S
has a normal model, then S has a normal model.

The results of Theorem 71 indicate that the equality axioms seem to define
pretty much of the intended meaning of =̇. However, they do not define it fully,
nor does any other set of formulas.

Theorem 73 (Model extension theorem). For each interpretation I and
each set D′ ⊇ dom(I) there is an interpretation I ′ with dom(I ′) = D′ such that
for each formula ϕ: I |= ϕ iff I ′ |= ϕ.
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Proof. (sketch) Fix an arbitrary element d ∈ dom(I). The idea is to let all
“new” elements behave exactly like d. Define an auxiliary function π mapping
each “new” element to d and each “old” element to itself:

π : D′ → dom(I), π(d′) := d if d′ /∈ dom(I), π(d′) := d′ if d′ ∈ dom(I).
Define fI′

: D′ n → D′, fI′
(d1, . . . , dn) := fI(π(d1), . . . , π(dn) ) and

pI
′ ⊆ D′ n, pI

′
:= { (d1, . . . , dn) ∈ D′ n | (π(d1), . . . , π(dn) ) ∈ pI } for all

signature symbols and arities. ��

By this construction, if (d, d) ∈ =̇I then (d, d′) ∈ =̇I′
for each d′ ∈ D′ and

the fixed element d ∈ dom(I). Hence, any proper extension I′ of a normal
interpretation I does not interpret =̇ with the equality relation on D′.

Corollary 74. Every satisfiable set of formulas has non-normal models.

Every model of EQL interprets =̇ with a congruence relation on the domain. The
equality relation is the special case with singleton congruence classes. Because of
the model extension theorem, there is no way to prevent models with larger con-
gruence classes, unless equality is treated as built-in by making interpretations
normal by definition.

4.1.7 Model Cardinalities

Theorem 75. Lower bounds of model cardinalities can be expressed in first-
order predicate logic without equality.

Example: all models of the following satisfiable set of formulas have domains
with cardinality ≥ 3:

{ ∃x1( p1(x1) ∧ ¬p2(x1) ∧ ¬p3(x1)),
∃x2(¬p1(x2) ∧ p2(x2) ∧ ¬p3(x2)),
∃x3(¬p1(x3) ∧ ¬p2(x3) ∧ p3(x3)) }

Example: all models of the following satisfiable set of formulas have infinite
domains: { ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }.

Theorem 76. Upper bounds of model cardinalities cannot be expressed in first-
order predicate logic without equality.

Theorem 77. Each satisfiable set of formulas without equality has models with
infinite domain.

Corollary 78. Finiteness cannot be expressed in first-order predicate logic with-
out equality.

The above are immediate consequences of the model extension theorem 73. The
remaining results are about the version of first-order predicate logic with built-in
equality.

Theorem 79. Bounded finiteness can be expressed in first-order predicate logic
with equality. That is, for any given natural number k ≥ 1, the upper bound k of
model cardinalities can be expressed.
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Example: all normal models of the following satisfiable formula have domains
with cardinality ≤ 3: ∃x1∃x2∃x3∀y(y=̇x1 ∨ y=̇x2 ∨ y=̇x3).

Theorem 80. If a set of formulas with equality has arbitrarily large finite nor-
mal models, then it has an infinite normal model.

Proof. Let S be such that for each k ∈ � there is a normal model of S whose
domain has finite cardinality > k. For each n ∈ � let ϕn be the formula
∀x0 . . . xn∃y(¬(y=̇x0) ∧ . . . ∧ ¬(y=̇xn)) expressing “more than n + 1 elements”.
Then every finite subset of S ∪ {ϕn | n ∈ �} has a normal model. By the finite-
ness/compactness theorem with equality, S ∪ {ϕn | n ∈ �} has a normal model,
which obviously cannot be finite, but is also a normal model of S. ��

Corollary 81. A satisfiable set of formulas with equality has either only finite
normal models of a bounded cardinality, or infinite normal models.

Corollary 82. Unbounded finiteness cannot be expressed in first-order predicate
logic with equality.

Theorem 83 (Löwenheim-Skolem). Every satisfiable enumerable set of
closed formulas has a model with a finite or infinite enumerable domain.

Theorem 84 (Löwenheim-Skolem-Tarski). If a set of closed formulas has
a model of some infinite cardinality, it has a model of every infinite cardinality.

4.1.8 Inadequacy of Tarski Model Theory for Query Languages
The domain of an interpretation according to Tarski may be any nonempty set.
On the one hand, this has a tremendous advantage: first-order predicate logic
can be used to model statements about any arbitrary application domain. On
the other hand, it has effects that may be undesirable in the context of query
languages.

For query languages, it is desirable that the following can be expressed:

1. By default, different constants are differently interpreted. The unique name
assumption is such a frequent requirement in applications that a mechanism
making it available by default would come in handy.

Tarski model theory does not provide such a mechanism. Interpretations may
well interpret different constants identically, unless formulas explicitly prevent
that. An explicit formalisation is cumbersome, albeit possible.

2. Function symbols are to be interpreted as term constructors. In many ap-
plications it makes sense to group pieces of data that belong together. For in-
stance, a function symbol person might be used to construct a term such as
person(Mary ,Miller , 1984), which simply serves as a compound data structure.
In such cases it does not make sense to interpret the symbol person with arbi-
trary functions. It should be interpreted as just a term constructor.

This is not expressible in first-order predicate logic with Tarski model theory.
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3. No more should hold than what is explicitly specified. A closed world as-
sumption makes sense in query answering applications such as transportation
timetables, which are based on the tacit understanding that no other than the
explicitly listed connections are actually available.

Such a minimality restriction corresponds to an induction principle, which
does not necessarily hold in Tarski interpretations. In fact, it is well-known that
the induction principle cannot be expressed in first-order predicate logic with
Tarski model theory.

4. Disregard infinite models. Real-world query answering applications are often
finite by their nature and need to consider only interpretations with finite do-
mains. In this case, infinite domains are not only superfluous, but they bring
along phenomena that may be “strange” from the viewpoint of the application
and would not be found in finite domains.

Consider an application about the hierarchy in enterprises, where a boss’s
boss is also a boss, but nobody is their own boss. The obvious conclusion is
that there must be someone at the top of the hierarchy who does not have a
boss. However, this conclusion is not justified for interpretations with infinite
domains. The “strange” phenomenon that such a hierarchy may have no top at
all has to be taken into account because of interpretations with infinitely many
employees, although such interpretations are irrelevant for this application.

For a somewhat more contrived example, consider a group of married cou-
ples, where each husband has exactly one sister among the group and no wife
has more than one brother among the group. The obvious conclusion9 is that
every wife must have a brother, because otherwise there would be more brothers
than sisters in the group, contradicting the assumptions about the numbers of
siblings. However, this conclusion is not justified for interpretations with infinite
domains. If there are as many couples as there are natural numbers, each hus-
band number n can be the brother of wife number n + 1, leaving wife number 0
without a brother, while everyone else has exactly one sibling in the group. The
“strange” phenomenon that there may be a bijection between a set and a proper
subset can only occur in infinite domains, but for the example such domains are
irrelevant.

In order to avoid such “strange” phenomena, it would be necessary to restrict
interpretations to finite ones. However, finiteness is not expressible in first-order
predicate logic with Tarski model theory.

5. Definability of the transitive closure of a binary relation. The transitive closure
of a binary relation is relevant in many query answering applications. Consider
a traffic application, where a binary relation symbol r is used to represent direct
connections between junctions, e.g., direct flights between airports. Another bi-
nary relation symbol t is used to represent direct or indirect connections of any
finite length, i.e., with finitely many stopovers. Connections of infinite length do
not make sense in this application.

9 Excluding polygamy, same-sex marriage, etc.
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The mathematical concept for “all connections of any finite length” is called
the “transitive closure” of a binary relation. Thus, the intention is that t be
interpreted as the relation that is the transitive closure of the relation with
which r is being interpreted. An attempt to express this intention in first-order
predicate logic could be the following closed formula:

∀x∀z
(
t(x, z) ⇔

(
r(x, z) ∨ ∃y

[
t(x, y) ∧ t(y, z)

] ))
(�)

Here ϕ ⇔ ψ abbreviates (ϕ ⇒ ψ) ∧ (ψ ⇒ ϕ). The ⇐ direction makes sure that
in every model I of (�) the relation tI is transitive and includes the relation rI .
The ⇒ direction has the purpose to add an only-if part to the definition of tI .

Each interpretation interpreting t as the transitive closure of the interpretation
of r, is indeed a model of (�). However, the intended converse, that every model
of (�) interprets t as the transitive closure of the interpretation of r, does not
hold:

Proof. Let D = {1−2−n | n ∈ �} = {0, 1
2 , 3

4 , 7
8 , 15

16 , . . .}.
Let dom(I) = D, let rI = {(1−2−n, 1−2−(n+1)) | n ∈ �}, the “immediate

successor” relation on D, and let tI be the arithmetic <-relation on D. Then
tI is the transitive closure of rI and I is a model of (�).

Let dom(I ′) = D ∪ {1}, let rI
′
= rI , and let tI

′
be the arithmetic <-relation

on D∪{1}. Then tI
′
is not the transitive closure of rI

′
, it contains the additional

pairs (d, 1) for all d ∈ D, but there is no connection of finite length via the
“immediate successor” relation on D between any d ∈ D and 1. Yet, I′ is also a
model of (�). ��
This may appear like another instance of point 4. But there are also counter-
examples with finite domain:

Proof. Let D = {0, 1}, let dom(I) = D, let rI = {(0, 0), (1, 1)}, the equality
relation on D, and let tI = {(0, 0), (0, 1), (1, 1)}, the ≤-relation on D. The tran-
sitive closure of rI is rI itself. Thus, tI is not the transitive closure of rI . Yet,
I is a model of (�). ��
If an interpretation interprets t as intended, then it is a model of (�), but the con-
verse does not hold. Would some fine-tuning of (�) guarantee that the converse
holds, too? In fact, no set of formulas can guarantee that.

Proof. Assume there is a satisfiable set S of closed formulas such that for each
interpretation I, I |= S iff tI is the transitive closure of rI . That is, for each
(d0, d) ∈ tI there are finitely many “stopover” elements d1, . . . , dk with k ≥ 0,
and {(d0, d1), . . . , (dk, d)} ⊆ rI .

Let a and b be constants not occurring in S. For each n ∈ � let ϕn be the
closed formula as follows:

ϕ0 is t(a, b) ∧ ¬r(a, b)
ϕ1 is ϕ0 ∧ ¬∃x1(r(a, x1) ∧ r(x1, b))
ϕ2 is ϕ1 ∧ ¬∃x1∃x2(r(a, x1) ∧ r(x1, x2) ∧ r(x2, b))
ϕ3 is ϕ2 ∧ ¬∃x1∃x2∃x3(r(a, x1) ∧ r(x1, x2) ∧ r(x2, x3) ∧ r(x3, b))
...
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In the traffic scenario, each formula ϕn expresses that there is a connection
between (the interpretations of) a and b, but not with n or less stopovers.

For each n ∈ � the set S ∪ {ϕn} is satisfied by interpreting t as the tran-
sitive closure of r, and a and b as the endpoints of an r-chain with n + 1
“stopover” elements in between. Thus, every finite subset of S ∪ {ϕn | n ∈ �}
has a model. By the finiteness/compactness theorem, S ∪ {ϕn | n ∈ �} has
a model I, which is thus also a model of S. In this model, (aI , bI) ∈ tI ,
because I satisfies ϕ0, but there is no finite set of “stopover” elements with
{(aI , d1), (d1, d2), . . . , (dk, bI)} ⊆ rI , because I also satisfies ϕk.

Thus, S has a model I in which tI is not the transitive closure of rI , which
contradicts the assumption. ��

The transitive closure of a base relation is the smallest transitive relation that
includes the base relation. This inductive characterisation shows that the phe-
nomenon is in fact an instance of point 3. In first-order predicate logic with
Tarski model theory one can enforce that t is interpreted with a transitive rela-
tion that includes the transitive closure of the interpretation of r, but one cannot
prevent that t is interpreted with a larger transitive relation.

Another instance of the same phenomenon is that the connectedness of a finite
directed graph, i.e., the existence of a path of any possible finite length between
two nodes, cannot be expressed.

6. Restrictions to specific classes of domains or to specific classes of interpre-
tations. In general, applications are not concerned with all imaginable domains
and interpretations, but with limited classes of domains and interpretations.
Such restrictions have to be expressed by appropriate formulas – if such formu-
las exist.

As discussed earlier, the restriction to domains with a given cardinality cannot
be expressed in first-order predicate logic without equality. Nor can interpreta-
tions be restricted to normal ones. In these cases a way out is to use the version
of first-order predicate logic with built-in equality.

But the same kind of problems may arise with application-specific concepts
that cannot be expressed. For instance, an application about boards of trustees
might require that they consist of an odd number of members in order to avoid
inconclusive votes. In first-order predicate logic with or without built-in equality
one cannot express the restriction to domains with odd cardinality. In this case
there is no way out, a version with suitable built-ins is not available.

Several approaches aim at overcoming some of these problems 1 to 6. For ex-
ample, considering only Herbrand interpretations and Herbrand models instead
of general interpretations [88], addresses points 1 and 2. Considering only mini-
mal Herbrand models addresses point 3. Considering only finite interpretations
and models, the realm of finite model theory [61], addresses point 4. Unfortu-
nately, all such approaches raise new problems themselves. Such approaches and
problems are discussed below.
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4.2 Herbrand Model Theory

Most of the information in this subsection is based on a technical report by
Hinrichs and Genesereth [88]. Herbrand model theory restricts interpretations
to Herbrand interpretations (without equality, except if otherwise stated).

Definition 85. For formulas or sets of formulas ϕ and ψ:
ϕ is Herbrand valid iff it is satisfied in each Herbrand interpretation.
ϕ is Herbrand satisfiable iff it is satisfied in some Herbrand interpretation.
ϕ is Herbrand unsatisfiable iff it is falsified in each Herbrand interpretation.
I |=Hb ϕ iff I is an Herbrand interpretation and I |= ϕ.
ϕ |=Hb ψ iff for each Herbrand interpretation I: if I |=Hb ϕ then I |=Hb ψ.

4.2.1 Herbrand Model Theory vs. Tarski Model Theory
Obviously, each Herbrand satisfiable formula or set of formulas is Tarski sat-
isfiable. The converse does not hold. Assume a signature with a unary relation
symbol p and a constant a and no other symbol, such that the Herbrand universe
is HU = {a}. The set S = {p(a), ∃x¬p(x)} is Tarski satisfiable, but Herbrand
unsatisfiable. However, S is Herbrand satisfiable with respect to a larger signa-
ture containing an additional constant b. Thus, Herbrand satisfiability depends
on the signature, whereas Tarski satisfiability does not.

There are two conventions for establishing the signature of a set of formulas:
(1) explicitly by an a priori specification; (2) implicitly by gathering the sym-
bols from the formulas considered. Convention (1) is common in mathematical
logic and also underlies the definitions in this survey. Convention (2) is wide-
spread in computational logic. With Tarski model theory, either convention is
fine. With Herbrand model theory, convention (2) would not be reasonable: the
Herbrand satisfiable set {p(a), ¬p(b), ∃x¬p(x)} would have an Herbrand unsatis-
fiable subset {p(a), ∃x¬p(x)}. In contrast, convention (1) ensures that Herbrand
(un)satisfiability translates to subsets/supersets like Tarski (un)satisfiability.

With Tarski model theory, there is no strong correspondence between individ-
uals in the semantic domain and names, i.e., terms as syntactic representations
of semantic individuals. Semantic individuals need not have a name (see Exam-
ples 58 and 59), and different names may refer to the same semantic individual.
With Herbrand model theory, every semantic individual has a name. Moreover,
with normal Herbrand interpretations different ground terms represent different
individuals, thus incorporating the unique name assumption.

Some momentous results do not copy from Tarski to Herbrand model theory.

Theorem 86. The following results do not hold for Herbrand model theory:
The model extension theorem 73. The Löwenheim-Skolem-Tarski theorem 84.
The finiteness/compactness theorem 40.

Proof. The first two are rather immediate. For the last one assume a signature
with a unary relation symbol p, a unary function symbol f , a constant a, and no
other symbol. Then the Herbrand base is HB = {p(a), p(f(a)), p(f(f(a))), . . .}.
Although each finite subset of S = {∃x¬p(x)}∪HB is Herbrand satisfiable, S is
Herbrand unsatisfiable. ��
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Note that many of the properties of Tarski model theory that appear to be
undesirable for query and rule languages depend on one of the results that do
not hold for Herbrand model theory. Another property of Tarski model theory
is that some theories are not finitely axiomatisable (see Theorem 47). This is so
for Herbrand model theory as well.

Proposition 87. There are Herbrand interpretations I for which the theory
Th({I}) = {ϕ | I |=Hb ϕ} is not finitely axiomatisable.

Proof. Assume a signature L with at least one constant, one function symbol of
arity > 0, and one relation symbol of arity > 0. Then the Herbrand base HBL
is infinite, thus its powerset is not enumerable. There is a bijection between this
set and the set of all Herbrand interpretations for L (Proposition 63), which
is therefore not enumerable either. On the other hand, the set of L-formulas is
enumerable, hence the set of its finite subsets is enumerable. There are more
Herbrand interpretations than potential finite axiomatisations. ��
The price for the simplicity of Herbrand model theory is a loss of semi-decidability
of semantic properties. Let us start with an immediate consequence of the “Her-
brand Theorem” (Corollary 65).

Proposition 88. Let S be a set of universal closed formulas. Let ϕ be a closed
formula such that ¬ϕ is universal. Then S is Herbrand satisfiable iff S is Tarski
satisfiable and S |=Hb ϕ iff S |= ϕ.

Corollary 89. Herbrand unsatisfiability and Herbrand entailment are not de-
cidable, but they are semi-decidable for formulas meeting the conditions above.

Theorem 90 ([88]). For formulas that do not meet the conditions above, Her-
brand unsatisfiability and Herbrand entailment are not semi-decidable.

Herbrand Model Theory for Finite Herbrand Base. A rather natural
restriction for applications is to consider only signatures with a finite number
of relation symbols and of constants and without function symbols of arity ≥ 1,
as in datalog. This restriction ensures that the Herbrand universe HU and the
Herbrand base HB are finite, hence there are only finitely many Herbrand in-
terpretations.

The following results are immediate [88]. See also Theorem 57 and the dis-
cussion on propositional vs. ground on page 8.

Proposition 91. If the Herbrand base HB is finite

– Quantification can be transformed into conjunction and disjunction.
– The expressive power of the logic is the same as for propositional logic

with finitely many propositional relation symbols.
– Herbrand satisfiability and Herbrand entailment are decidable.
– Every theory is finitely axiomatisable.

Remark 92. Sets that are Tarski satisfiable with infinite domains only, such as
S = { ∀x¬(x < x), ∀x∀y∀z(x < y ∧ y < z ⇒ x < z), ∀x∃y x < y }, are
Herbrand unsatisfiable if the Herbrand universe HU is finite.
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4.3 Finite Model Theory

Model theory investigates how syntactic properties of formulas and structural
properties of their models relate to each other. Finiteness of the domain is cer-
tainly an interesting structural property of interpretations, but it does not have
a syntactic counterpart, because finiteness is not expressible in first-order predi-
cate logic (Corollaries 78 and 82). Because of that, finite models were for a long
time not a major concern in model theory.

Since the late 1970s, this has changed. Finite model theory gained interest in
computer science because of its connections to discrete mathematics, complexity
theory, database theory, and to computation in general. Finite interpretations
can be encoded as words, i.e., finite sequences of symbols, making computa-
tion applicable to model theory. Finite interpretations can describe terminating
computations. Databases can be formalised as finite interpretations, such that
queries correspond to formulas evaluated against finite interpretations. Com-
plexity classes can be represented as queries (in some logic) that are evaluated
against finite interpretations. Because of all these connections, many issues in
finite model theory are motivated by computer science.

The purpose of this subsection is to outline salient elementary aspects of
“entailment in the finite” and to list results in finite model theory that may be
useful for query languages or query evaluation and optimisation methods.

Definition 93. A finite interpretation is an interpretation with finite domain.
For formulas or sets of formulas ϕ and ψ:

ϕ is finitely valid iff it is satisfied in each finite interpretation.
ϕ is finitely satisfiable iff it is satisfied in some finite interpretation.
ϕ is finitely unsatisfiable iff it is falsified in each finite interpretation.
I |=fin ϕ iff I is a finite interpretation and I |= ϕ.
ϕ |=fin ψ iff for each finite interpretation I: if I |=fin ϕ then I |=fin ψ.

Finite interpretations are special Tarski interpretations, hence there are obvious
inclusions between corresponding notions: each valid formula is finitely valid,
each finitely satisfiable formula is satisfiable, etc. These inclusions are proper.

For example, { ∀x¬(x< x), ∀x∀y∀z(x< y ∧ y <z ⇒ x< z), ∀x∃y x< y }
is a satisfiable, but finitely unsatisfiable set of formulas, and the single formula
[∀x¬(x< x) ∧ ∀x∀y∀z(x<y ∧ y <z ⇒ x< z)] ⇒ ∃x∀y ¬(x< y) is finitely valid,
but not valid. Strict orderings in finite domains necessarily have maximal ele-
ments, but in infinite domains may not have maximal elements.

An example with equality is that any injection of a domain in itself is neces-
sarily surjective in finite domains, but may not be surjective in infinite domains.
The formula ∀x∀x′(f(x) =̇ f(x′) ⇒ x =̇x′) ∧ ¬∀y∃x y =̇ f(x) has normal models,
but no finite normal models.

The model relationship (Definition 32) is defined by a recursive algorithm for
evaluating a formula in an interpretation. There are several reasons why this
algorithm may not terminate for infinite interpretations, such as the quantifier
cases or potentially undecidable relations and incomputable functions over the
domain. None of these reasons applies to finite domains. Thus we have
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Theorem 94. The theory Th({I}) = {ϕ | I |=fin ϕ} is decidable for each finite
interpretation I.

Definition 95 (Isomorphic interpretations). Let L be a signature for first-
order predicate logic and let I and J be L-interpretations. An isomorphism of
I into J is a function π : dom(I) → dom(J ) such that

– π : dom(I) → dom(J ) is a bijection.
– π(cI) = cJ for each constant c of L.
– π(fI(d1, . . . , dn)) = fJ (π(d1), . . . , π(dn))

for each n-ary (n ≥ 1) function symbol f of L and all d1, . . . , dn ∈ dom(I).
– pI = pJ for each propositional relation symbol of L
– (d1, . . . , dn) ∈ pI iff (π(d1), . . . , π(dn)) ∈ pJ

for each n-ary (n ≥ 1) relation symbol p of L and all d1, . . . , dn ∈ dom(I).

I ∼= J , pronounced I and J are isomorphic, iff such an isomorphism exists.

Note that the variable assignments of isomorphic interpretations need not be
compatible.

Proposition 96. If I ∼= J , then for each closed formula ϕ: I |= ϕ iff J |= ϕ.
If π is an isomorphism of I into J and V is a variable assignment in dom(I),

then π ◦ V is a variable assignment in dom(J ) and for each formula ϕ:
I[V ] |= ϕ iff J [π ◦ V ] |= ϕ.

Definition 97. For k ∈ � let �k = {0, . . . , k} denote the initial segment of �
with cardinality k + 1. Let V0 be the variable assignment in �k for arbitrary k
with xV0 = 0 for each variable x.

Proposition 98. Each finite interpretation is isomorphic to an interpretation
with domain �k for some k ∈ �.

Proposition 99. For finite signatures there are for each k ∈ � only finitely
many interpretations with domain �k and variable assignment V0.

Proof. For each k ∈ � and each n ∈ � the set �n
k contains (k + 1)n tuples.

Thus there are 2((k+1)n) possible relations and (k + 1)((k+1)n) possible functions
of arity n, to which the finitely many signature symbols can be mapped by an
interpretation. ��

Corollary 100. For finite signatures, the problem whether a finite set of closed
formulas has a model with a given finite cardinality, is decidable.

This makes possible a simple semi-decision procedure for finite satisfiability:
iterating k from 1 upwards, check whether the given formulas have a model with
cardinality k.

Corollary 101. For finite signatures, finite satisfiability, finite falsifiability, and
finite non-entailment of finite sets of closed formulas are semi-decidable.
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Theorem 102 (Trakhtenbrot). For signatures with a non-propositional rela-
tion symbol and a relation or function symbol of arity ≥ 2, finite validity is not
semi-decidable.

Corollary 103. For finite signatures with a non-propositional relation symbol
and a relation or function symbol of arity ≥ 2, finite satisfiability, finite fal-
sifiability, and finite non-entailment of finite sets of closed formulas are semi-
decidable, but not decidable. Finite unsatisfiability, finite validity, and finite en-
tailment are not semi-decidable,

This is a remarkable reversal of results in the two model theories: (classical)
Tarksi unsatisfiability is semi-decidable and Tarski satisfiability is not, whereas
finite satisfiability is semi-decidable and finite unsatisfiability is not.

Corollary 104. There is no complete calculus for finite entailment.

Theorem 105. The finiteness/compactness theorem does not hold for finite
model theory.

Proof. For each n ∈ � let ϕn be a finitely satisfiable formula all of whose models
have domains with cardinality ≥ n+1. Such formulas exist, see the examples to
Theorem 75. Then each finite subset of S = {ϕn | n ∈ �} is finitely satisfiable,
but S is not finitely satisfiable. ��

Another difference to Tarski model theory is that finite interpretations can be
characterised up to isomorphism by formulas.

Theorem 106. For each finite interpretation I there exists a set SI of closed
formulas such that for each interpretation J : J ∼= I iff J |= SI.

If the signature is finite, there is a single closed formula rather than a set of
closed formulas with this property.

This does not extend to infinite interpretations, among other reasons, because
there are “not enough” formulas. An example for an interpretation that cannot
be characterised up to isomorphism is the standard model of arithmetic, whose
domain is the set of natural numbers. If any would-be axiomatisation is satisfied
by the standard model, it also has non-standard models that are not isomor-
phic to the standard model. In order to characterise the standard model up to
isomorphism, an axiomatisation would have to include the induction axiom (or
equivalent), which is not expressible in first-order predicate logic.

4.3.1 Finitely Controllable Formulas

Definition 107. A closed formula is finitely controllable, if it is either unsat-
isfiable or finitely satisfiable. A fragment of first-order predicate logic is finitely
controllable, if each closed formula belonging to that fragment is.

For finitely controllable formulas, satisfiability coincides with finite satisfiability.
Note that a satisfiable finitely controllable formula may well have infinite models,
but it is guaranteed to have also a finite model.
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Theorem 108. For finite signatures, satisfiability of a finitely controllable
closed formula is decidable.

Proof. By intertwining a semi-decision procedure for Tarski unsatisfiability with
a semi-decision procedure for finite satisfiability. ��
Because of this, finite controllability is one of the major techniques for proving
that satisfiability in some fragment of first-order predicate logic is decidable.
If one can show for that fragment that the existence of a model implies the
existence of a finite model, decidability follows from the theorem above.

Theorem 109. The fragments of first-order predicate logic consisting of closed
formulas in prenex form with a quantifier prefix of one of the following forms
are finitely controllable. The notation Q∗ means that there may be zero or more
consecutive occurrences of this quantifier.
– ∃∗∀∗ possibly with equality (Bernays-Schönfinkel prefix class)
– ∃∗∀∃∗ possibly with equality (Ackermann prefix class)
– ∃∗∀∀∃∗ without equality (Gödel prefix class)

As can be seen from their names, these decidable fragments were identified long
before computer science existed. A more recent fragment, which is highly relevant
to query languages, is the following.

Definition 110 (FO2). The fragment of first-order predicate logic with equality
whose formulas contain no variables other than x and y (free or bound) is called
two-variable first-order predicate logic or FO2.

Theorem 111. FO2 is finitely controllable.

As an illustration of the expressive power of this fragment, consider a directed
graph. It is possible to express in FO2 queries such as “does a given node a have
an ingoing edge?” or “is every node with property p reachable from a via at most
two edges?” More generally, FO2 can express queries for properties that can be
checked by a successive analysis of pairs of elements in the domain. It cannot
express queries for global properties that require a simultaneous analysis of larger
parts of the domain, such as “is there a cycle in the graph?” In particular,
transitivity of a binary relation cannot be expressed.

Many logics that are of interest to knowledge representation, for instance
several modal and description logics, can be seen as two-variable logics embedded
in suitable extensions of FO2. See [81] for an overview.

4.3.2 0-1 Laws
The following information is taken from an article by Ronald Fagin entitled
“Finite-Model Theory – a Personal Perspective”[66].

As a motivating example, let us assume a signature with 2-ary function sym-
bols + and × and the set of formulas axiomatising a field.10 Let ϕ be the con-
junction of these (finitely many) axioms. The negation ¬ϕ of this formula would
10 A field is an algebraic structure where both operations have an inverse. The set of

rational numbers � with addition and multiplication and the set of real numbers �
with addition and multiplication are examples of fields.
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seem to be very uninteresting, because, intuitively, if we consider arbitrary the-
ories, it is highly unlikely that the theory happens to be a field, which means
that ¬ϕ is “almost surely true” in such theories.

In order to make this intuition more precise, imagine that a finite interpre-
tation with cardinality n is randomly generated, such that the probability for a
ground atom to be true in this interpretation is 1

2 for each ground atom inde-
pendently of the truth values of other ground atoms. For formulas ϕ let Pn(ϕ)
denote the probability that such a randomly generated interpretation satisfies ϕ.

Definition 112. A formula ϕ is almost surely true iff lim
n→∞

Pn(ϕ) = 1, i.e.,
with increasing cardinality of interpretations the asymptotic probability for ϕ to
be true is 1.

Theorem 113 (0-1 law). For each closed formula ϕ, either ϕ or ¬ϕ is almost
surely true.

Quoting Fagin [66], who cites Vardi:

There are three possibilities for a closed formula: it can be surely true
(valid), it can be surely false (unsatisfiable), or it can be neither. The
third possibility (where a closed formula is neither valid nor unsatisfiable)
is the common case. When we consider asymptotic probabilities, there
are a priori three possibilities: it can be almost surely true (asymptotic
probability 1), it can be almost surely false (asymptotic probability 0),
or it can be neither (either because there is no limit, or because the limit
exists and is not 0 or 1). Again, we might expect the third possibility to
be the common case. The 0-1 law says that the third possibility is not
only not the common case, but it is, in fact, impossible!

This result may seem like an amusing oddity, but it is a significant tool for
proving that certain properties of finite interpretations cannot be expressed in
first-order predicate logic.

For instance if there were a closed formula ϕeven that is satisfied by a finite
interpretation iff the domain of this interpretation has even cardinality, then
Pn(ϕeven) would be 1 for even n and 0 for odd n, hence there would be no limit.
By the 0-1 law, this is impossible, therefore such a formula ϕeven does not exist.
Hence, evenness is not expressible in first-order predicate logic.

The same kind of argument based on the 0-1 law can be used to show for
many properties of finite interpretations that they are not expressible in first-
order predicate logic. Often, such properties involve some form of “counting”. It
is part of the folklore knowledge about first-order predicate logic that it “cannot
count”.

There are several theorems similar to the 0-1 law. A research issue in this area
is to determine (fragments of) other logics that admit the 0-1 law. For example,
see [104].
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5 Declarative Semantics: Adapting Classical Model
Theory to Rule Languages

The declarative semantics of definite programs can be defined in model-theoretic
terms using specific properties of syntactical classes of formulas that are more
general than definite clauses.

Definite clauses (Definition 21) are also called definite rules. Some authors
call them positive definite rules when they want to emphasise that they exclude
normal clauses, i.e., clauses with negative literals in their antecedent. In line with
this terminology, a definite program is also called a set of positive definite rules
or simply a positive rule set. This terminology will also be used below.

In this section, a signature L for first-order predicate logic is assumed. Unless
otherwise stated, semantic notions such as (un)satisfiability or logical equivalence
refer to unrestricted interpretations, i.e., interpretations with domains of any
kind, especially of any cardinality.

5.1 Minimal Model Semantics of Definite Rules

This subsection is inspired by [144].
As discussed in Subsection 3.2, a rule is a shorthand notation for its universal

closure. Thus, a positive definite rule is on the one hand a special universal for-
mula (defined in Subsection 3.1). On the other hand, it is also a special inductive
formula (defined below).

Both classes of formulas have interesting model-theoretic properties. If a set
of universal formulas is satisfiable, then it is Herbrand satisfiable, i.e., it has an
Herbrand model. If a set of inductive formulas is satisfiable, then the intersection
of its models is also a model, provided that the models intersected are compatible.
Moreover, each set of definite inductive formulas is satisfiable.

Together this means that each set of positive definite rules has a unique min-
imal Herbrand model, which is the intersection of all Herbrand models of the
set. This minimal model can be taken as “the meaning” of the set of positive
definite rules in a model-theoretic sense.

5.1.1 Compatibility and Intersection of Interpretations

Definition 114 (Compatible set of interpretations). A set {Ii | i ∈ I} of
interpretations with index set I is called compatible, iff

– I �= ∅.
– D =

⋂
{dom(Ii) | i ∈ I} �= ∅.

– all interpretations of a function symbol coincide on the common domain:
fIi(d1, . . . , dn) = fIj(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f ,
for all i, j ∈ I, and for all d1, . . . , dn ∈ D.

– a variable is identically interpreted in all interpretations:
xIi = xIj for each variable x and all i, j ∈ I.



44 F. Bry et al.

Definition 115 (Intersection of a compatible set of interpretations).
Let {Ii | i ∈ I} be a compatible set of interpretations. Then

⋂
{Ii | i ∈ I} is

defined as the interpretation I with

– dom(I) = D =
⋂

{dom(Ii) | i ∈ I}.
– a function symbol is interpreted as the intersection of its interpretations:

fI(d1, . . . , dn) = fIi(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f ,
for an arbitrary i ∈ I, and for all d1, . . . , dn ∈ D.

– a relation symbol is interpreted as the intersection of its interpretations:
pI =

⋂
i∈I pIi for each relation symbol p.

– a variable is interpreted like in all given interpretations:
xI = xIi for each variable x and an arbitrary i ∈ I.

5.1.2 Universal Formulas and Theories
Let us recall some notions and results from previous sections.

The polarity of a subformula within a formula (Definition 13) is positive, if
the subformula occurs within the scope of an even number of explicit or implicit
negations, and negative, if this number is odd. A formula is universal (Defini-
tion 14), if all its occurrences of ∀ have positive and of ∃ have negative polarity.
This is the case iff the formula is equivalent to a formula in prenex form con-
taining no existential quantifier (Theorem 37). A universal theory is a theory
axiomatised by a set of universal formulas.

The Herbrand universe HU is the set of ground terms, and the Herbrand
base HB is the set of ground atoms of the given signature (Definition 55). An
Herbrand interpretation interprets each ground term with itself (Definition 56).
There is a bijection between the set of all Herbrand interpretations and the set
of all subsets of HB (Proposition 63). Each subset B ⊆ HB of ground atoms
induces the Herbrand interpretation HI (B) that satisfies all ground atoms in B
and falsifies all ground atoms not in B.

If a set S of universal formulas has a model I, then the Herbrand interpreta-
tion HI (I) induced by I is also a model of S (Theorem 64). Thus, S is satisfiable
iff it has an Herbrand model.

Note that this is easily disproved for non-universal formulas. For example, if
the signature consists of a unary relation symbol p and a constant a and no other
symbols, then HB = {p(a)} and there are exactly two Herbrand interpretations:
HI (∅) and HI ({p(a)}). The formula p(a) ∧ ∃x¬p(x) is satisfiable, but neither of
the two Herbrand interpretations is a model of it. See also Examples 58 and 59
in Section 4.1.

For sets of universal formulas in general, and for sets of positive definite
rules in particular, satisfiability coincides with Herbrand satisfiability. This is
interesting for two reasons. First, the domain of Herbrand interpretations is
(computably) enumerable. Second, Herbrand interpretations are syntactically
defined. Being enumerable and syntactically defined, Herbrand interpretations
are amenable to computing.

Returning to the notions introduced above, the following result is obtained
by straightforward application of the definitions:
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Lemma 116. Let {Bi | i ∈ I} be a set of sets of ground atoms, i.e., Bi ⊆ HB
for each i ∈ I. If this set is nonempty, then
– {HI (Bi) | i ∈ I} is a compatible set of interpretations, i.e., its intersection

is defined.
–

⋂
{HI (Bi) | i ∈ I} = HI

( ⋂
{Bi | i ∈ I}

)
i.e., its intersection is the Her-

brand interpretation induced by the intersection of the sets of ground atoms.

Definition 117 (Set of inducers of Herbrand models of a set of for-
mulas). For a set S of formulas, the set of inducers of its Herbrand models is
ModHB (S) = {B ⊆ HB | HI (B) |= S}.

Note that although the class Mod(S) of all models of S is not in general a set
(Definition 42), the class ModHB (S) of all inducers of Herbrand models of S is
a set: a subset of the powerset of the Herbrand base HB .

Obviously, ModHB (S) = ∅ for unsatisfiable S. If S is satisfiable and non-
universal, ModHB (S) may or may not be empty. If S is satisfiable and universal,
ModHB (S) �= ∅ and the intersection of the set of its Herbrand models is defined.
We introduce a notation for the intersection that is always defined:

Notation 118. For a set S of formulas:

Mod∩(S) =
{⋂

ModHB (S) if ModHB (S) �= ∅
HB if ModHB (S) = ∅

Theorem 119. If S is universal, then Mod∩(S) = {A ∈ HB | S |= A}.

Proof. If S is unsatisfiable, both sides are equal to HB . If S is satisfiable:
“⊆”: Let A ∈ Mod∩(S), thus A ∈ B for each B ⊆ HB with HI (B) |= S. To be

shown: S |= A. Let I be an arbitrary model of S. By Theorem 64, HI (B′) |= S
where B′ = {A′ ∈ HB | I |= A′}. Hence by the first sentence, A ∈ B′, therefore
I |= A. Since I was arbitrary, we have shown S |= A.

“⊇”: Let A ∈ HB with S |= A, i.e., each model of S satisfies A. Then for
each B ⊆ HB with HI (B) |= S holds HI (B) |= A and therefore A ∈ B. Hence
A ∈ Mod∩(S). ��

The definition guarantees that HI (Mod∩(S)) is always an Herbrand interpreta-
tion. If S is universal and unsatisfiable, then HI (Mod∩(S)) satisfies all ground
atoms, but is obviously not a model of S. If S is universal and satisfiable, then
HI (Mod∩(S)) is the intersection of all Herbrand models of S. It is worth noting
that in this case HI (Mod∩(S)) is not necessarily a model of S. The reason is
that some formulas in S may be “indefinite”:

Example 120. Assume a signature consisting of a unary relation symbol p and
constants a and b and no other symbols. Let S = {p(a)∨p(b)}. Then ModHB (S) =
{ {p(a)}, {p(b)}, {p(a), p(b)} }. But HI (Mod∩(S)) = HI (∅) is not a model of S.

Non-closedness of Herbrand models under intersection is possible for sets of
general universal formulas, but, as we shall see, not for sets of positive definite
rules. Before coming to that, let us take a look at another property of sets of
universal formulas, which is one if their most significant characteristics.
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Definition 121 (Subinterpretation). An interpretation I1 is a subinterpre-
tation of an interpretation I2, denoted I1 ⊆ I2, if
– dom(I1) ⊆ dom(I2).
– the interpretations of a function symbol coincide on the common domain:

fI1(d1, . . . , dn) = fI2(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f
and all d1, . . . , dn ∈ dom(I1).

– the interpretations of a relation symbol coincide on the common domain:
pI1 = pI2 ∩ dom(I1)n for each n-ary (n ≥ 0) relation symbol p.

– a variable is identically interpreted in the interpretations:
xI1 = xI2 for each variable x.

If in addition dom(I1) �= dom(I2), then I1 is a proper subinterpretation of I2.

The subinterpretation relationship is a partial ordering on interpretations. Given
a set of compatible interpretations where all interpretations of a relation symbol
coincide on the common domain, its intersection is a subinterpretation of each
interpretation in the set.

Lemma 122. Let I1 and I2 be interpretations with I1 ⊆ I2. Let V be an arbi-
trary variable assignment in dom(I1). Let ϕ be a quantifier-free formula. Then
I1[V ] |= ϕ iff I2[V ] |= ϕ.

Proof. By structural induction on ϕ. ��

Theorem 123 (Subinterpretation property of universal formulas). Let
I1 and I2 be interpretations with I1 ⊆ I2. For each universal closed formula ϕ,
if I2 |= ϕ then I1 |= ϕ.

Proof. By considering a prenex form of ϕ and applying the previous lemma. ��

As an illustration, consider a signature with 2-ary function symbols + and × and
the equality relation symbol =̇. Let dom(I1) = �, the set of rational numbers,
and dom(I2) = �, the set of real numbers, and let + and × be interpreted
as addition and multiplication on the respective domain. Then I1 ⊆ I2. The
formula ∀x∀y (x+x)×y

.= x×(y+y) is true in I2 (the reals) and, being universal,
it is also true in I1 (the rationals). The non-universal formula ∀y∃x y

.= x×x×x
is true in I2 (the reals), but not true in I1 (the rationals).

An immediate consequence of the theorem is that if a set of closed formu-
las is universal, then all subinterpretations of its models are models. A famous
result by �Los and Tarski establishes the converse: If a set of closed formulas is
satisfied by all subinterpretations of its models, then it is equivalent to a set
of universal closed formulas. Thus, the subinterpretation property is a semantic
characterisation of the syntactic class of universal formulas.

5.1.3 Inductive Formulas and Theories

Definition 124 (Positive and negative formulas). A formula ϕ is called
positive (or negative, respectively) iff every atom occurring in ϕ has positive (or
negative, respectively) polarity in ϕ.
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Definition 125 (Inductive formula). A generalised definite rule is a formula
of the form ∀∗((A1 ∧ . . . ∧ An) ← ϕ) where ϕ is positive and the Ai are atoms
for 1 ≤ i ≤ n. It is also called a definite inductive formula.

A generalised definite goal is a formula of the form ∀∗ϕ where ϕ is negative.
It is also called an integrity constraint.

An inductive formula is either a generalised definite rule or a generalised
definite goal. A (definite) inductive theory is a theory axiomatised by a set of
(definite) inductive formulas.

Recall that ∀∗ denotes the universal closure. The point of a generalised definite
rule is that its only positive atoms are conjunctively connected and that all
variables occurring in this conjunction are universally quantified. A generalised
definite goal is logically equivalent to a formula ∀∗¬ϕ and thus to ∀∗(⊥ ← ϕ)
with positive ϕ, which shows the similarity to a generalised definite rule.

Each inductive formula is equivalent to a formula in prenex form whose matrix
is a conjunction of Horn clauses (Definition 21) and whose quantifier prefix
starts with universal quantifiers for all variables in the consequents followed by
arbitrary quantifiers for the remaining variables. For a generalised definite rule,
all Horn clauses in the matrix are definite clauses. For a generalised definite
goal, all Horn clauses in the matrix are definite goals. It would make sense to
call inductive formulas “generalised Horn clauses” (compare Definition 21).

Let us now introduce a partial ordering on interpretations that differs slightly
from the subinterpretation relationship:

Definition 126. I1 ≤ I2 for interpretations I1 and I2 if
– dom(I1) = dom(I2).
– the interpretations of a function symbol coincide on the common domain:

fI1(d1, . . . , dn) = fI2(d1, . . . , dn) for each n-ary (n ≥ 0) function symbol f
and all d1, . . . , dn ∈ dom(I1).

– the “smaller” interpretation of a relation symbol is a restriction of the other:
pI1 ⊆ pI2 for each n-ary (n ≥ 0) relation symbol p.

– a variable is identically interpreted in the interpretations:
xI1 = xI2 for each variable x

If in addition pI1 �= pI2 for at least one p, then I1 < I2.

In contrast to the subinterpretation relationship, here the domains of the in-
terpretations are the same. For subinterpretations this would imply that the
interpretations of a relation symbol coincide, here the “smaller” one may be a
restriction of the other. Given a set of compatible interpretations with the same
domain, its intersection is ≤ each interpretation in the set.

Lemma 127. Let I1 and I2 be interpretations with I1 ≤ I2. Let V be an arbi-
trary variable assignment in dom(I1).

If ϕ is a positive formula: if I1[V ] |= ϕ then I2[V ] |= ϕ
If ϕ is a negative formula: if I2[V ] |= ϕ then I1[V ] |= ϕ

Proof. By structural induction on the matrix of a prenex form of ϕ. ��
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An interesting property of sets of generalised definite rules is that they are
satisfiable. In particular, the ≤-largest Herbrand interpretation, which satisfies
all ground atoms, is always a model.

Theorem 128. For each set S of generalised definite rules, HI (HB) |= S.

Proof. Let S be a set of generalised definite rules, thus its members have the
form ∀∗[(A1 ∧ . . . ∧ An) ← ϕ] where ϕ is positive and the Ai are atoms.

Each member of S is logically equivalent to ∀x[(A1 ∧ . . .∧An) ← ∃yϕ] where
x are the variables occurring in A1 . . . An and y are the other free variables of ϕ.
It suffices to show that HI (HB) satisfies each instance [(A1 ∧ . . .∧An) ← ∃yϕ]σ
where σ is a ground substitution with domain x (Theorem 57). Each of these
instances is [(A1σ ∧ . . . ∧ Anσ) ← (∃yϕ)σ] where the Aiσ are ground atoms.

Since HI (HB) satisfies all ground atoms, it satisfies each of these instances
and thus each member of S. ��
The main result about inductive formulas is that their (compatible) models are
closed under intersection.

Theorem 129. Let S be a set of inductive formulas. If {Ii | i ∈ I} is a set of
compatible models of S with the same domain D, then I =

⋂
{Ii | i ∈ I} is also

a model of S.

Proof. Let V be an arbitrary variable assignment in D. By definition of the
partial ordering ≤ on interpretations, I[V ] ≤ Ii[V ] for each i ∈ I.

Let ∀∗((A1 ∧ . . .∧An) ← ϕ) with positive ϕ be a generalised definite rule in S.
If I[V ] �|= ϕ, then I[V ] |= ((A1 ∧ . . .∧An) ← ϕ). If I[V ] |= ϕ, then Ii[V ] |= ϕ for
each i ∈ I by Lemma 127. Therefore, since each Ii satisfies each member of S,
Ii[V ] |= Aj for each i ∈ I and 1 ≤ j ≤ n. By Definition 115, I[V ] |= Aj for each j
with 1 ≤ j ≤ n. Thus I[V ] |= (A1 ∧ . . .∧An) and I[V ] |= ((A1 ∧ . . .∧An) ← ϕ).
In both cases, since V is arbitrary, I satisfies the considered member of S.

Let ∀∗ϕ with negative ϕ be a generalised definite goal in S. Then Ii[V ] |= ϕ
for each i ∈ I, because each Ii satisfies each member of S. By Lemma 127,
I[V ] |= ϕ. Since V is arbitrary, I satisfies the considered member of S. ��
Corollary 130. If S is a set of inductive formulas and {Bi ⊆ HB | i ∈ I} is a
nonempty set with HI (Bi) |= S for each i ∈ I, then HI

( ⋂
{Bi | i ∈ I}

)
|= S.

5.1.4 Minimal Models

Definition 131 (Minimal model). A minimal model of a set of formulas is
a ≤-minimal member I of the set of all its models with domain dom(I).

The partial ordering ≤ on interpretations corresponds to the subset relation-
ship ⊆ on sets of n-tuples of the domain with which relation symbols are inter-
preted. A model is minimal, if there is no other model with the same domain
that interprets some relation symbol with a proper subset of n-tuples of the
domain. Note that the subset relationship refers to sets that are not syntactic.

For Herbrand interpretations the partial ordering ≤ on interpretations corre-
sponds to the subset relationship on their inducers, which are syntactic sets.
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Lemma 132. Let S be a set of formulas.

– An Herbrand model of S is minimal iff it is induced by a ⊆-minimal member
of ModHB (S).

– If HI (Mod∩(S)) is a model of S, it is a minimal Herbrand model of S and
it is the only minimal Herbrand model of S.

An Herbrand model HI (B) of S is minimal iff there is no proper subset B′ ⊂ B
such that HI (B′) is also a model of S. Reconsidering S = {p(a) ∨ p(b)} from
Example 120 above: both HI ({p(a)}) and HI ({p(b)}) are minimal Herbrand
models of S, and HI ( {p(a), p(b)} ) is a non-minimal Herbrand model of S.

Theorem 133. Let S be a set of inductive formulas. If either each member
of S is definite, or S is satisfiable and each member of S is universal, then
HI (Mod∩(S)) is the unique minimal Herbrand model of S.

Proof. ModHB (S) �= ∅ in the first case by Theorem 128, in the second case
by Theorem 64. By Corollary 130, HI (Mod∩(S)) is a model of S, and by the
previous lemma it is the unique minimal Herbrand model of S. ��

Noting that positive definite rules (i.e., definite clauses) are both universal and
definite inductive formulas, and taking into account Theorem 119, we obtain:

Corollary 134 (Minimal Herbrand Model of a Definite Program). Each
set S of positive definite rules (i.e., each definite program) has a unique minimal
Herbrand model. This model is the intersection of all Herbrand models of S. It
satisfies precisely those ground atoms that are logical consequences of S.

This unique minimal model of a set of positive definite rules can be regarded as
its natural “meaning”.

The notion of minimal model is also defined for non-Herbrand interpretations
and therefore also applies to more general classes of formulas than inductive
formulas. Typically, for such more general classes of formulas both the uniqueness
and the closedness under intersection of minimal models are lost.

Let us now consider a generalisation of inductive formulas for which the notion
of minimal models nevertheless retains a useful characterisation.

Definition 135 (Generalised rule). A generalised rule is a formula of the
form ∀∗(ψ ← ϕ) where ϕ is positive and ψ is positive and quantifier-free.

Among others, disjunctive clauses (Definition 21) are generalised rules. The gen-
eralised rule (p(a) ∨ p(b) ← �) is equivalent to the formula from Example 120,
which has two minimal Herbrand models.

Note that generalised rules, like generalised definite rules, are not necessarily
universal, because their antecedent may contain quantifiers of both kinds.

Definition 136 (Implicant of a positive quantifier-free formula). Let ψ
be a positive quantifier-free formula. The set primps(ψ) of pre-implicants of ψ
is defined as follows depending on the form of ψ:
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– primps(ψ) = { {ψ} } if ψ is an atom or � or ⊥.
– primps(¬ψ1) = primps(ψ1).
– primps(ψ1 ∧ ψ2) = { C1 ∪ C2 | C1 ∈ primps(ψ1), C2 ∈ primps(ψ2) }.
– primps(ψ1 ∨ ψ2) = primps(ψ1 ⇒ψ2) = primps(ψ1) ∪ primps(ψ2).

The set of implicants of ψ is obtained from primps(ψ) by removing all sets
containing ⊥ and by removing � from the remaining sets.

Note that each implicant of a positive quantifier-free formula is a finite set of
atoms and that the set of implicants is finite. Forming a conjunction of the
atoms in an implicant and a disjunction of all of these conjunctions, results in
a disjunctive normal form, which is equivalent to the original formula. If ψ is
a conjunction of atoms (like the consequent of a generalised definite rule), then
it has exactly one implicant, which consists of all of these atoms. If ψ is a dis-
junction of atoms, then each of its implicants is a singleton set consisting of one
of these atoms. Taking into account that the definition of implicants applies to
positive and quantifier-free formulas only, the following result is straightforward.

Lemma 137

1. If C is an implicant of ψ, then C |= ψ.
2. For any interpretation I, if I |= ψ then there exists an implicant C of ψ

with I |= C.

Definition 138 (Supported atom). Let I be an interpretation, V a variable
assignment in dom(I) and A = p(t1, . . . , tn) an atom, n ≥ 0.

– an atom B supports A in I[V ] iff
I[V ] |= B and B = p(s1, . . . , sn) and s

I[V ]
i = t

I[V ]
i for 1 ≤ i ≤ n.

– a set C of atoms supports A in I[V ] iff
I[V ] |= C and there is an atom in C that supports A in I[V ].

– a generalised rule ∀∗(ψ ← ϕ) supports A in I iff for each variable assign-
ment V with I[V ] |= ϕ there is an implicant C of ψ that supports A in I[V ].

The idea of an atom being supported is that some atom with the same relation
symbol and identically interpreted term list occurs in one of the parts of the
consequent of the generalised rule that have to be true when the antecedent is
true. It turns out that in minimal models only those atoms are true that have
to be true in this sense.

Theorem 139 (Minimal models satisfy only supported ground atoms).
Let S be a set of generalised rules. Let I be an interpretation with domain D.
If I is a minimal model of S, then: For each ground atom A with I |= A there
is a generalised rule in S that supports A in I.

Proof. Assume that I is a minimal model of S and there is a ground atom A
with I |= A, such that A is not supported in I by any generalised rule in S.

Let I ′ be identical to I except that I ′ �|= A (by removing just one tuple from
the relation pI for the relation symbol p of A). Then I ′ < I.
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Consider an arbitrary member ∀∗(ψ ← ϕ) of S. By assumption it does not
support A. Let V be an arbitrary variable assignment in D. We show that
I ′[V ] |= (ψ ← ϕ).

If I[V ] �|= ϕ, by Lemma 127 also I ′[V ] �|= ϕ, hence I ′[V ] |= (ψ ← ϕ).
If I[V ] |= ϕ, then I[V ] |= ψ because I is a model of S. Furthermore, by

assumption for each implicant C of ψ either I[V ] �|= C or A is not supported
in I[V ] by any atom in C.
– If for each implicant C of ψ holds I[V ] �|= C, then I[V ] �|= ψ by part (2) of

Lemma 137, making this case impossible by contradiction.
– If there exists an implicant C of ψ with I[V ] |= C, then by assumption

A is not supported in I[V ] by any atom in C. By construction I ′[V ] agrees
with I[V ] on all atoms except those supporting A in I[V ], thus I′[V ] |= C.
By Lemma 137 (1), I ′[V ] |= ψ. Hence I ′[V ] |= (ψ ← ϕ).

In all possible cases I ′ satisfies the generalised rule under consideration, thus
I ′ is a model of S, contradicting the minimality of I. ��

This result means that minimal models satisfy only such ground atoms as are
supported by appropriate atoms in the consequents of the generalised rules. But
the relationship between the supporting atom and the supported ground atom
is of a semantic nature. The only guaranteed syntactic relationship between the
two is that they share the same relation symbol.

Example 140. Consider a signature containing a unary relation symbol p and
constants a and b. Let S = { (p(b) ← �) }.

The interpretation I with dom(I) = {1} and aI = bI = 1 and pI = {(1)}
is a minimal model of S. (Note that the only smaller interpretation interprets p
with the empty relation and does not satisfy the rule.)

Moreover, I |= p(a). By the theorem, p(a) is supported in I by p(b), which
can be confirmed by applying the definition.

Definition 141. An interpretation I has the unique name property, if for each
term s, ground term t, and variable assignment V in dom(I) with sI[V ] = tI[V ]

there exists a substitution σ with sσ = t.

Obviously, Herbrand interpretations have the unique name property. For min-
imal interpretations with the unique name property the relationship between
the supporting atom and the supported ground atom specialises to the ground
instance relationship, which is syntactic and decidable.

The converse of Theorem 139 does not hold for sets with indefinite rules such
as { (p(a) ∨ p(b) ← �) }, because the definition of supported cannot distinguish
between implicants of rule consequent. Both atoms are supported in the Her-
brand model HI ({p(a), p(b)}) of this set, although the model is not minimal.

Regarding definite rules, there was for some time a tacit conviction that satis-
fying only supported ground atoms was a sufficient criterion for the minimality
of models. In the case of Herbrand interpretations the criterion would even be
syntactic. But in fact, the converse of Theorem 139 is refuted by rather trivial
counter-examples with definite rules.
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Example 142. Consider S = { (p ← p) } and its Herbrand model HI ({p}). The
only ground atom satisfied by HI ({p}) is p, which is supported in HI ({p}) by
the rule. But HI ({p}) is not minimal because HI (∅) is also a model of S.

5.2 Fixpoint Semantics of Positive Definite Rules

This subsection first summarises some general results on operators on an arbi-
trary set and fixpoints of such operators. The arbitrary set will afterwards be
specialised to the Herbrand base.

5.2.1 Operators

Definition 143 (Operator). Let X be a set. Let P(X) denote its powerset,
the set of subsets of X. An operator on X is a mapping Γ : P(X) → P(X).

Definition 144 (Monotonic operator). Let X be a set. An operator Γ on X
is monotonic, iff for all subset M ⊆ M ′ ⊆ X holds: Γ (M) ⊆ Γ (M ′).

Definition 145 (Continuous operator). Let X be a nonempty set.
A set Y ⊆ P(X) of subsets of X is directed, if every finite subset of Y has

an upper bound in Y , i.e., for each finite Yfin ⊆ Y , there is a set M ∈ Y such
that

⋃
Yfin ⊆ M .

An operator Γ on X is continuous, iff for each directed set Y ⊆ P(X) of
subsets of X holds: Γ (

⋃
Y ) =

⋃
{Γ (M) | M ∈ Y }.

Lemma 146. Each continuous operator on a nonempty set is monotonic.

Proof. Let Γ be a continuous operator on X �= ∅. Let M ⊆ M ′ ⊆ X . Since Γ is
continuous, Γ (M ′) = Γ (M ∪ M ′) = Γ (M) ∪ Γ (M ′), thus Γ (M) ⊆ Γ (M ′). ��

The converse of this lemma does not hold. Being continuous is a stronger prop-
erty of operators than being monotonic.

Note that the main purpose of the definition of continuous is to ensure that
the operator commutes with set union. But there is no need to require this for
all unions of sets, it suffices for unions of directed sets.

5.2.2 Fixpoints of Monotonic and Continuous Operators

Definition 147 (Fixpoint). Let Γ be an operator on a set X. A subset M ⊆ X
is a fixpoint of Γ iff Γ (M) = M .

Theorem 148 (Knaster-Tarski, existence of least and greatest fixpoint).
Let Γ be a monotonic operator on a nonempty set X. Then Γ has a least fix-
point lfp(Γ ) and a greatest fixpoint gfp(Γ ) with

lfp(Γ ) =
⋂

{M ⊆ X | Γ (M) = M} =
⋂

{M ⊆ X | Γ (M) ⊆ M}.
gfp(Γ ) =

⋃
{M ⊆ X | Γ (M) = M} =

⋃
{M ⊆ X | Γ (M) ⊆ M}.

Proof. For the least fixpoint let L =
⋂

{M ⊆ X | Γ (M) ⊆ M}.
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Consider an arbitrary M ⊆ X with Γ (M) ⊆ M . By definition of L we have
L ⊆ M . Since Γ is monotonic, Γ (L) ⊆ Γ (M). With the assumption Γ (M) ⊆ M
follows Γ (L) ⊆ M . Therefore (1) Γ (L) ⊆

⋂
{M ⊆ X | Γ (M) ⊆ M} = L.

For the opposite inclusion, from (1) and since Γ is monotonic it follows that
Γ (Γ (L)) ⊆ Γ (L). By definition of L therefore (2) L ⊆ Γ (L). From (1) and (2)
follows that L is a fixpoint of Γ .

Now let L′ =
⋂

{M ⊆ X | Γ (M) = M}. Then L′ ⊆ L. because L is a
fixpoint of Γ . The opposite inclusion L ⊆ L′ holds, since all sets involved in the
intersection defining L′, are also involved in the intersection defining L.

The proof for the greatest fixpoint is similar. ��
Definition 149 (Ordinal powers of a monotonic operator). Let Γ be a
monotonic operator on a nonempty set X. For each finite or transfinite ordinal
the upward and downward power of Γ is defined as
Γ ↑ 0 = ∅ (base case) Γ ↓ 0 = X
Γ ↑ α + 1 = Γ (Γ ↑ α) (successor case) Γ ↓ α + 1 = Γ (Γ ↓ α)
Γ ↑ λ =

⋃
{Γ ↑ β | β < λ} (limit case) Γ ↓ λ =

⋂
{Γ ↓ β | β < λ}

Lemma 150. Let Γ be a monotonic operator on a nonempty set X. For each
ordinal α holds:
1. Γ ↑ α ⊆ Γ ↑ α + 1
2. Γ ↑ α ⊆ lfp(Γ ).
3. If Γ ↑ α = Γ ↑ α + 1, then lfp(Γ ) = Γ ↑ α.

Proof. 1. and 2. are shown by transfinite induction on α and 3. as follows:
If Γ ↑ α = Γ ↑ α + 1, then Γ ↑ α = Γ (Γ ↑ α), i.e., Γ ↑ α is a fixpoint of Γ ,

therefore Γ ↑ α ⊆ lfp(Γ ) by 2., and lfp(Γ ) ⊆ Γ ↑ α by definition. ��
Theorem 151. Let Γ be a monotonic operator on a nonempty set X. There
exists an ordinal α such that Γ ↑ α = lfp(Γ ).

Proof. Otherwise, for all ordinals α by the previous lemma Γ ↑ α ⊆ Γ ↑ α + 1
and Γ ↑ α �= Γ ↑ α + 1. Thus Γ ↑ injectively maps the ordinals onto P(X), a
contradiction as there are “more” ordinals than any set can have elements. ��
Theorem 152 (Kleene). Let Γ be a continuous operator on a nonempty set X.
Then lfp(Γ ) = Γ ↑ ω. (ω is the first limit ordinal, the one corresponding to �)

Proof. By 1. from the previous lemma, it suffices to show that Γ ↑ ω+1 = Γ ↑ ω.
Γ ↑ ω + 1 = Γ (Γ ↑ ω) by definition, successor case

= Γ
( ⋃

{Γ ↑ n | n ∈ �}
)

by definition, limit case
=

⋃ {
Γ (Γ ↑ n) | n ∈ �

}
because Γ is continuous

=
⋃ {

Γ ↑ n + 1 | n ∈ �
}

by definition, successor case
= Γ ↑ ω by definition, base case ��

An analogous result for the greatest fixpoint does not hold: it may well be that
gfp(Γ ) �= Γ ↓ ω. Note that the decisive step in the proof depends on the oper-
ator being continuous. Being monotonic would not be sufficient. The theory of
well-founded semantics uses operators that are monotonic, but not necessarily
continuous, and therefore not covered by this theorem.
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5.2.3 Immediate Consequence Operator for a Set of Positive Definite
Rules

Generalised definite rules according to Definition 125 need not be universal,
because so far the results on this class of formulas did not depend on universality.
In this subsection, however, we consider only universal formulas.

Recall that an Herbrand interpretation satisfies a set of universal closed for-
mulas iff it satisfies the set of its ground instances (Corollary 60). Assuming a
signature with at least one constant, the Herbrand base HB is nonempty.

Let us now apply the results on operators to the case where X = HB and
a subset M is a set B ⊆ HB of ground atoms, which induces an Herbrand
interpretation. The following generalises a definition first given in [153].

Definition 153 (Immediate consequence operator). Let S be a set of uni-
versal generalised definite rules. Let B ⊆ HB be a set of ground atoms. The
immediate consequence operator TS for S is:
TS : P(HB) → P(HB)

B �→ {A ∈ HB | there is a ground instance ((A1 ∧ . . . ∧ An) ← ϕ)
of a member of S with HI (B) |= ϕ and A = Ai

for some i with 1 ≤ i ≤ n }

Lemma 154 (TS is continuous). Let S be a set of universal generalised defi-
nite rules. The immediate consequence operator TS is continuous.

Lemma 155 (TS is monotonic). Let S be a set of universal generalised def-
inite rules. The immediate consequence operator TS is monotonic, that is, if
B ⊆ B′ ⊆ HB then TS(B) ⊆ TS(B′).

Recall that for Herbrand interpretations HI (B) ≤ HI (B′) iff B ⊆ B′. Thus,
the immediate consequence operator TS is also monotonic with respect to ≤ on
Herbrand interpretations.

Theorem 156. Let S be a set of universal generalised definite rules. Let B ⊆ HB
be a set of ground atoms. Then HI (B) |= S iff TS(B) ⊆ B.

Proof. “only if:” Assume HI (B) |= S. Let A ∈ TS(B), i.e., A = Ai for some
ground instance ((A1 ∧ . . . ∧ An) ← ϕ) of a member of S with HI (B) |= ϕ. By
assumption HI (B) |= (A1 ∧ . . . ∧ An), hence HI (B) |= A, hence A ∈ B because
A is a ground atom.

“if:” Assume TS(B) ⊆ B. Let ((A1 ∧ . . . ∧ An) ← ϕ) be a ground instance
of a member of S. It suffices to show that HI (B) satisfies this ground instance.
If HI (B) �|= ϕ, it does. If HI (B) |= ϕ, then A1 ∈ TS(B), . . . , An ∈ TS(B) by
definition of TS . By assumption A1 ∈ B, . . . , An ∈ B. As these are ground atoms,
HI (B) |= A1, . . . ,HI (B) |= An. Thus HI (B) satisfies the ground instance. ��

5.2.4 Least Fixpoint of a Set of Positive Definite Rules

Corollary 157. Let S be a set of universal generalised definite rules. Then
lfp(TS) = TS ↑ ω = Mod∩(S) = {A ∈ HB | S |= A} and HI (lfp(TS)) is
the unique minimal Herbrand model of S.
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Proof. By Lemma 155, TS is a monotonic operator on HB , and by Theorem 152,
lfp(TS) = TS ↑ ω.

Note that ModHB (S) �= ∅ by Theorem 128. Now,
lfp(TS) =

⋂
{B ⊆ HB | TS(B) ⊆ B} by the Knaster-Tarski Theorem 148

=
⋂

{B ⊆ HB | HI (B) |= S} by Theorem 156
=

⋂
ModHB (S) by Definition 117

= Mod∩(S) by Definition 118
= {A ∈ HB | S |= A} by Theorem 119

By Theorem 133, HI (lfp(TS)) is the unique minimal Herbrand model of S. ��

The immediate consequence operator for a set of universal generalised definite
rules also has a greatest fixpoint (Knaster-Tarski Theorem 148). Using simi-
lar proof techniques as above one can show [111] that this greatest fixpoint
is gfp(TS) = TS ↓ ω + 1, but in general gfp(TS) �= TS ↓ ω. As an exam-
ple, let S = { ∀x

(
q ← p(x)

)
, ∀x

(
p(f(x)) ← p(x)

)
}. Then TS ↓ ω = {q} and

TS ↓ ω + 1 = ∅ = gfp(TS), which in this example is the only fixpoint.
A fixpoint requiring more than ω steps is not in general computably enu-

merable. The result on the least fixpoint means that lfp(TS) is computably
enumerable.

The “natural meaning” of a set S of universal generalised definite rules, the
unique minimal Herbrand model of S, has several equivalent characterisations. It
is the intersection of all Herbrand models of S and satisfies precisely the ground
atoms entailed by S. These characterisations allow a declarative understanding
of S: each of its rules represents a statement about the application at hand, and
a query asks whether something is a logical consequence of these statements, or,
equivalently, whether it is true in all their Herbrand models.

The corollary above allows in addition an operational understanding of S
based on forward chaining, even though forward chaining is not necessarily the
intended operational semantics (backward chaining is in many cases preferable,
see Section 6). The unique minimal Herbrand model of S is induced by the
smallest fixpoint of TS . This operator models one step in a forward chaining
process: applied to a set of ground atoms, it adds the atoms from the consequents
of those ground instances of rules whose antecedent is satisfied in the current set.
Being satisfied here means satisfied by the induced Herbrand interpretation, but
this can by checked algorithmically using unification. The iteration starts from
the empty set. Reaching a fixpoint means that the operator does not generate
any new atom. The result guarantees that this happens after finitely many steps
or at most as many steps as there are natural numbers.

By the corollary the declarative and this operational semantics coincide: a
ground atom is a logical consequence of S if and only if it can be derived by this
forward chaining process.

Another procedural semantics based on a backward chaining process called
SLD resolution (Subsection 6.4) is also equivalent to the ones above. Backward
chaining with SLD resolution succeeds on S with some ground atom as a query
if and only if the ground atom is a logical consequence of S.
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Authors of rules may thus freely switch between different understandings of
their rules, because all of these understandings amount to the same.

Notation 158 (Least fixpoint of a definite program). For a set S of uni-
versal generalised definite rules, the least fixpoint of S is lfp(S) = lfp(TS).

5.3 Declarative Semantics of Rules with Negation

The nice results above heavily depend on the rules being positive: their an-
tecedents have to be positive formulas. If the antecedents may contain atoms
with negative polarity, as in normal clauses and normal goals (Definition 21),
things turn out to be much more difficult. The starting point is to clarify what
negative antecedents of rules are supposed to mean.

When working with a set of positive definite rules, more generally, a set of
universal generalised definite rules, it is often intuitive to consider everything to
be false that does not follow from the set.

This is the common understanding of inductive definitions in mathematics
(the inductive definitions of terms and formulas in Section 3 are examples of
that). This understanding of inductive definitions is sometimes stressed by con-
cluding the definition, say, of a formula, with “nothing else is a formula”.

This is also the common understanding of many specifications one encounters
in real life. The time table of a railway company can be seen as a set of ground
atoms, each specifying a direct railway connection. The common understanding
of such a time table is that any direct connection not explicitly mentioned does
not exist. This understanding is naturally extended to connections with changes
as follows: if no connections with changes between two places and under certain
time constraints can be derived from a time table, then it may be concluded
that there are no such connections.

In databases, the common understanding is similar. If a database of students
does not list “Mary”, then it may be concluded that “Mary” is not a student.

The principle underlying this common understanding has been formalised
under the name of “closed world assumption” [137].

It might seem obvious to formalise the closed world assumption by adding
additional axioms to the set of formulas so as, so to speak, to complete – or
“close” – it. But this is undesirable for two reasons. First, it would blow up the
axiomatisation and as a consequence make deduction more time and space con-
suming. Second, it is in many, if not most, practical cases infeasible – how could
one list, or otherwise specify, non-existing train connections or non-students?
Note that, in contrast to such applications, mathematics, except in a few cases
like inductive definitions, does not rely on closed world assumptions of any kind.

One approach to handling negation was to find deduction methods that em-
ploy the closed world assumption without relying on additional, application-
dependent, axioms. This approach has two sides: one is to find convenient declar-
ative semantics, i.e., declarative semantics that are both easy to understand and
convenient to use in establishing properties; the other is to find efficient auto-
mated deduction methods that take the closed world assumption into account.
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Another, related approach was to find application independent rewritings of
a rule set, which, possibly together with additional application independent ax-
ioms, would correspond to the common understanding under the closed world
assumption of the original set. This led to the so-called “completion semantics”.

Both approaches have yielded unsatisfactory results and are therefore not
addressed in the following. Indeed, the intended semantics could not be expressed
with Tarski model theory, but required drastic changes to the notion of a model.

The “common understanding” or “intuitive meaning” of a set of rules with
negation is what people reading or writing the rules are likely to think they
mean. Good candidates for making this common sense notion more precise are
the minimal Herbrand models defined earlier. However, not all of them convey
the intuitive meaning under the closed world assumption.

Example 159. S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) } has the following
three minimal Herbrand models: HI ({s, r, q}), HI ({s, r, p}), and HI ({s, t}).
Intuitively, neither p nor t are “justified” by the rules in S1. Under the closed
world assumption only the first of the minimal models above should be seen as
conveying the intuitive meaning of S1.

The example illustrates that some minimal Herbrand models do not convey
the intuitive meaning of rules with negation, because classical model theory
treats negated atoms in rule antecedents like (positive) atoms in rule conse-
quents. Indeed, for minimal or non-minimal Herbrand or other models, the rule
(r ← s ∧ ¬t) is equivalent to (r ∨ t ← s) and to (t ← s ∧ ¬r), hence no interpre-
tation can distinguish these formulas.

Example 160. S2 = { (p ← ¬q), (q ← ¬p) } has the following two minimal
Herbrand models: HI ({p}), HI ({q}).

In this example both minimal Herbrand models of S2 well convey the intuitive
meaning of S2 under the closed world assumption. Intuitively, the example spec-
ifies that exactly one of p and q is true, but it does not specify which.

Example 161. S3 = { (p ← ¬p) } has only one minimal Herbrand model: HI ({p}).
In examples like these, intuition turns out to be somewhat indeterminate and
subject to personal preference.

People tending towards a “justification postulate” request dependable justifi-
cations for derived truths. The only rule of S3 does not in this sense “justify” p,
because it requires ¬p to hold as a condition for p to hold, thus its outcome
violates its own precondition. The “justification postulate” arrives at the con-
clusion that no model at all conveys the intuitive meaning of S3, that S3 should
be regarded as inconsistent.

Adherents of a “consistency postulate”, on the other hand, insist that every
syntactically correct set of normal clauses is consistent and must therefore have
a model. As there is only one candidate model of S3, this has to be it, like it
or not. Note that the “consistency postulate” is closer to classical model theory,
which, for minimal or non-minimal Herbrand or other models, treats the rule
in S3 like the formula p, to which it is logically equivalent.
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Example 162. S4 = { (p ← ¬p), (p ← �) } has only one minimal Herbrand
model: HI ({p}).

S4 extends S3 with a rule enforcing p. Its only minimal Herbrand model, in
which p is true, is perfectly intuitive under the closed world assumption – even
with the “justification postulate” that considers S3 to be inconsistent. The new
rule in S4 clearly “justifies” p. Since intuitively p follows from S4, the antecedent
of the rule (p ← ¬p) is not satisfied, i.e., the rule is satisfied.

As these examples suggest, only some of the minimal Herbrand models of a
set of rules with negation should be retained in order to specify the declarative
semantics of the set under the closed world assumption. In the literature the
retained minimal Herbrand models are often called canonical models or preferred
models. With the “justification postulate” the set of retained minimal Herbrand
models may be empty, with the “consistency postulate” it always contains at
least one model. Some of the formal approaches to the declarative semantics
support the “justification postulate” some the “consistency postulate”.

Once the notion of canonical models has been formalised, the notion of entail-
ment (Definition 34) and of a theory (Definition 43) can be adapted such that
they consider only canonical models. In contrast to the operator Th for closure
under classical entailment, which is monotonic (Proposition 45), the appropri-
ately adapted operator Thcanonical is not.

Example 163 (Non-monotonicity). S5 = { (q ← ¬p) } has two minimal Her-
brand models: HI ({p}) and HI ({q}). Only the latter conveys the intuitive mean-
ing under the closed world assumption and should be retained as (the only)
canonical model. Therefore, q ∈ Thcanonical (S5).

S′
5 = S5∪{ (p ← �) } has only one minimal Herbrand model: HI ({p}), which

also conveys the intuitive meaning under the closed world assumption and should
be retained as a canonical model. Therefore, q /∈ Thcanonical (S′

5).
Thus, S5 ⊆ S′

5, but Thcanonical(S5) �⊆ Thcanonical(S′
5).

Note that non-monotonicity is independent of the choice between the two “pos-
tulates”. However, any semantics not complying with the “consistency postu-
late” (i.e., all or most semantics complying with the “justification postulate”), is
non-monotonic in an even stronger sense. With such a semantics, consistency –
defined as usual as the existence of models – is not inherited by subsets: S4 above
is consistent, but S3 is not, although S3 ⊆ S4.

As the non-monotonicity of the operator is caused by the non-classical treat-
ment of negation, this kind of negation is also called non-monotonic negation.

5.3.1 Stratifiable Rule Sets
Some approaches to formalise the semantics of rules with negation make use of
a weak syntactic property of sets of rules that ensures stronger results. The idea
is to avoid cases like (p ← ¬p) and more generally recursion through negative
literals. For that purpose the set of rules is partitioned into “strata”, and negative
literals in the antecedents are required to belong to a lower “stratum”.
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Definition 164 (Stratification). Let S be a set of normal clauses (Defini-
tion 21). A stratification of S is a partition S0, . . . , Sk of S such that
– For each relation symbol p there is a stratum Si, such that all clauses of S

containing p in their consequent are members of Si.
In this case one says that the relation symbol p is defined in stratum Si.

– For each stratum Sj and for each positive literal A in the antecedents of
members of Sj, the relation symbol of A is defined in a stratum Si with i ≤ j.

– For each stratum Sj and for each negative literal ¬A in the antecedents of
members of Sj, the relation symbol of A is defined in a stratum Si with i < j.

A set of normal clauses is called stratifiable, if there exists a stratification of it.

Obviously, each definite program is stratifiable by making it its only stratum.
The set of normal clauses S = { (r ← �), (q ← r), (p ← q ∧ ¬r) } is stratifiable
in different ways: the stratum S0 contains the first clause and the stratum S1 the
last one, while the middle clause may belong to either of the strata. If the middle
clause is replaced by (q ← p∧r), the set remains stratifiable, but now there is only
one stratification, the middle clause belonging to S1. The set S = { (p ← ¬p) }
is not stratifiable. More generally, any set of normal clauses with a “cycle of
recursion through negation” [9] is not stratifiable.

By definition the stratum S0 always consists of definite clauses (positive defi-
nite rules). Hence the truth values of all atoms of stratum S0 can be determined
without negation being involved. After that the clauses of stratum S1 refer only
to such negative literals whose truth values have already been determined. And
so on. The principle simply is to work stratum by stratum, see Subsection 7.1.

All results about stratifiable rule sets depend only on the existence of some
stratification and are independent of the concrete specification of the strata.

Note that stratifiability evades any commitment as to the “justification” or
“consistency postulate”, because rule sets where the postulates make a differ-
ence are not stratifiable. Even though stratifiable sets of normal clauses seem to
be sufficient for many, if not all, practical programming examples, a semantics
is desirable that covers all syntactically correct programs. Indeed, one of the
purposes of a semantics of programs is to uncover the “meaning” of unintended,
syntactically correct programs. The next three subsections describe attempts to
define such semantics, which, alas, do not perfectly meet the objective.

5.3.2 Stable Model Semantics
The stable model semantics [77] is defined in terms of a criterion for retaining a
minimal Herbrand model of a set of normal clauses. This criterion is expressed
in terms of the following transformation named after the authors of [77].

Definition 165 (Gelfond-Lifschitz transformation). Let S be a (possibly
infinite) set of ground normal clauses, i.e., of formulas of the form

A ← L1 ∧ . . . ∧ Ln

where n ≥ 0 and A is a ground atom and the Li for 1 ≤ i ≤ n are ground literals.
Let B ⊆ HB. The Gelfond-Lifschitz transform GLB(S) of S with respect to B
is obtained from S as follows:
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1. remove each clause whose antecedent contains a literal ¬A with A ∈ B.
2. remove from the antecedents of the remaining clauses all negative literals.

The transformation corresponds to a partial evaluation of S in the interpreta-
tion HI (B). The clauses removed in the first step are true in HI (B) because
their antecedent is false in HI (B). The literals removed from the antecedents of
the remaining clauses in the second step, are also true in HI (B).

Note that the Gelfond-Lifschitz transform GLB(S) of a set S of ground nor-
mal clauses is a (possibly infinite) set of definite clauses, i.e., a set of universal
generalised definite rules. Therefore GLB(S) has a unique minimal Herbrand
model with all characterisations according to Corollary 157.

Definition 166 (Stable Model). Let S be a (possibly infinite) set of ground
normal clauses. An Herbrand interpretation HI (B) is a stable model of S, iff it
is the unique minimal Herbrand model of GLB(S).

A stable model of a set S of normal clauses is a stable model of the (possibly
infinite) set of ground instances of S.

For this notion to be well-defined, we have to ensure that the unique minimal
Herbrand model of GLB(S) is indeed also a model of S.

Lemma 167. Let S be a set of ground normal clauses and HI (B) an Herbrand
interpretation. HI (B) |= S iff HI (B) |= GLB(S).

Proof. Let S1 be the set of clauses obtained from S by applying the first step
of the transformation. Each clause in S \ S1 is satisfied by HI (B), because its
antecedent is falsified by HI (B). Thus, HI (B) |= S iff HI (B) |= S1.

Let S2 be the set of clauses obtained from S1 by applying the second step of
the transformation. For each clause C2 ∈ S2 there is a clause C1 ∈ S1 such that
C2 is obtained from C1 by removing the negative literals from its antecedent.
Since C1 ∈ S1, for any such negative literal ¬A in its antecedent, A /∈ B, i.e.,
HI (B) |= ¬A. Therefore, HI (B) |= C1 iff HI (B) |= C2. ��

Theorem 168. Let S be a set of normal clauses. Each stable model of S is a
minimal Herbrand model of S.

Proof. By definition of a stable model, it suffices to show the result for a set S
of ground normal clauses.

Let B′ ⊆ B ⊆ HB such that HI (B) is a stable model of S and HI (B′) is also
a model of S, i.e., HI (B′) |= S. If we establish that HI (B′) |= GLB(S), then
B′ = B because, by definition of a stable model, HI (B) is the unique minimal
Herbrand model of GLB(S).

Let C ∈ GLB(S). By definition of GLB(S) there exists a clause D ∈ S, such
that C is obtained from D by removing the negative literals from its antecedent.
If ¬A is such a literal, then A /∈ B, and, since B′ ⊆ B, also A /∈ B′. Therefore,
C ∈ GLB′(S), and by the previous lemma HI (B′) |= C. ��

It is easy to verify that the stable models of the examples above are as follows:
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Example 169
S1 = { (q ← r∧¬p), (r ← s∧¬t), (s ← �) } has one stable model: HI ({s, r, q}).
S2 = { (p ← ¬q), (q ← ¬p) } has two stable models: HI ({p}) and HI ({q}).
S3 = { (p ← ¬p) } has no stable model.
S4 = { (p ← ¬p), (p ← �) } has one stable model: HI ({p}).

Thus, the stable model semantics coincides with the intuitive understanding
based on the “justification postulate”. The unintuitive minimal models of the
examples turn out not to be stable, and the stability criterion retains only those
minimal models that are intuitive. A set may have several stable models or
exactly one or none. Each stratifiable set has exactly one stable model.

The remarks about non-monotonicity on page 58 apply also to stable models,
including non-inheritance of consistency by subsets. To give up such a fundamen-
tal principle can be seen as a serious drawback of the stable model semantics.

5.3.3 Well-Founded Semantics
The well-founded semantics [155] of a set of normal clauses is defined as the
least fixpoint of a monotonic operator that explicitly specifies derivations both
of positive and of negative ground literals. Recall that the immediate conse-
quence operator (Definition 153) for a set of definite clauses explicitly specifies
derivations only of positive ground literals.

In contrast to the stable model semantics, the well-founded semantics specifies
for each set of normal clauses a single model, a so-called well-founded model.

A well-founded model can be either total, in which case it makes each ground
atom true or false like a standard model, or partial, in which case it makes some
ground atoms neither true nor false, but undefined.

Recall that L denotes the complement of a literal L with A = ¬A and ¬A = A
for an atom A (Definition 19). HB denotes the Herbrand base, the set of all
ground atoms for the given signature.

Notation 170. For a set I of ground literals:
I = {L | L ∈ I } and pos(I) = I ∩ HB and neg(I) = I ∩ HB.
Thus, I = pos(I) ∪ neg(I).

Definition 171. A set I of ground literals is consistent, iff pos(I)∩neg(I) = ∅.
Otherwise, I is inconsistent.

Two sets I1 and I2 of ground literals are (in)consistent iff I1 ∪ I2 is.
A literal L and a set I of ground literals are (in)consistent iff {L} ∪ I is.

Definition 172 (Partial interpretation). A partial interpretation is a con-
sistent set of ground literals.

A partial interpretation I is called total, iff pos(I) ∪ neg(I) = HB, that is,
for each ground atom A either A ∈ I or ¬A ∈ I.

For a total interpretation I, the Herbrand interpretation induced by I is de-
fined as HI (I) = HI (pos(I)).

Definition 173 (Model relationship for partial interpretations). Let I
be a partial interpretation. Then � is satisfied in I and ⊥ is falsified in I.
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A ground literal L is
satisfied or true in I iff L ∈ I.
falsified or false in I iff L ∈ I.
undefined in I iff L /∈ I and L /∈ I.

A conjunction L1 ∧ . . . ∧ Ln of ground literals, n ≥ 0, is
satisfied or true in I iff each Li for 1 ≤ i ≤ n is satisfied in I.
falsified or false in I iff at least one Li for 1 ≤ i ≤ n is falsified in I.
undefined in I iff each Li for 1 ≤ i ≤ n is satisfied or undefined in I

and at least one of them is undefined in I.
A ground normal clause A ← ϕ is

satisfied or true in I iff A is satisfied in I or ϕ is falsified in I.
falsified or false in I iff A is falsified in I and ϕ is satisfied in I.
weakly falsified in I iff A is falsified in I and ϕ is satisfied or undefined in I.

A normal clause is
satisfied or true in I iff each of its ground instances is.
falsified or false in I iff at least one of its ground instances is.
weakly falsified in I iff at least one of its ground instances is.

A set of normal clauses is
satisfied or true in I iff each of its members is.
falsified or false in I iff at least one of its members is.
weakly falsified in I iff at least one of its members is.

For a total interpretation I the cases “undefined” and “weakly falsified” are
impossible, and obviously the notion of satisfied (or falsified, respectively) in I
in the sense above coincides with the notion of satisfied (or falsified, respectively)
in HI (I) in the classical sense.

Definition 174 (Total and partial model). Let S be a set of normal clauses.
A total interpretation I is a total model of S, iff S is satisfied in I.
A partial interpretation I is a partial model of S, iff there exists a total

model I ′ of S with I ⊆ I ′.

Note that if a ground normal clause is weakly falsified, but not falsified in a
partial interpretation I, then its consequent is falsified in I and some literals in
its antecedent are undefined in I. No extension of I with additional literals can
satisfy the consequent. The only way to satisfy the normal clause is to extend I
by the complement of one of the undefined antecedent literals, thus falsifying
the clause’s antecedent. Any extension of I that satisfies all of those antecedent
literals, falsifies the normal clause.

Lemma 175. Let S be a set of normal clauses and I a partial interpretation.
If no clause in S is weakly falsified in I, then I is a partial model of S.

Proof. Let no clause in S be weakly falsified in I. Let I ′ = I ∪ (HB \ neg(I)),
that is, I extended by all ground atoms consistent with I. Then I ′ is total.

Consider an arbitrary ground instance A ← ϕ of a member of S. Since it is
not weakly falsified in I, it is by definition not falsified in I either and therefore
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satisfied in I, i.e., A ∈ I or L ∈ I for some literal L in the antecedent ϕ.
This membership cannot be affected by adding literals to I that preserve its
consistency. Thus, A ∈ I ′ or L ∈ I ′, and A ← ϕ is satisfied also in I ′.

Hence I ′ is a total model of S and I is a partial model of S. ��

The basis for drawing negative conclusions and the notion most central to the
well-founded semantics is that of an unfounded set of ground atoms. Given a
partial interpretation I, i.e., a set of ground literals that are already known (or
assumed) to be true, a set U of ground atoms is unfounded, if the normal clauses
at hand give no reason to consider any member of U to be true. More precisely,
each atom A ∈ U occurs in the consequent only of such ground instances of
clauses that do not justify A. This can happen for two reasons: because the
antecedent of the ground instance is falsified in I or because the antecedent of
the ground instance contains an unfounded atom, i.e., a member of U .

Definition 176 (Unfounded set of ground atoms). Let S be a set of normal
clauses, I a partial interpretation, and U ⊆ HB a set of ground atoms.

U is an unfounded set with respect to S and I, if for each A ∈ U and for
each ground instance A ← L1 ∧ . . . ∧ Ln, n ≥ 1, of a member of S having A as
its consequent, at least one of the following holds:
1. Li ∈ I for some positive or negative Li with 1 ≤ i ≤ n. (Li is falsified in I)
2. Li ∈ U for some positive Li with 1 ≤ i ≤ n. (Li is unfounded)

A literal fulfilling one of these conditions is called a witness of unusability for
the ground instance of a clause.

U is a maximal unfounded set with respect to S and I, iff U is an unfounded
set with respect to S and I and no proper superset of U is.

Example 177. Let S = { (q ← p), (r ← s), (s ← r) } and I = {¬p,¬q}. The set
U = {q, r, s} is unfounded with respect to S and I. The atom q is unfounded by
condition 1, the atoms r and s by condition 2.

U is not maximal, because U ′ = {p, q, r, s} is also unfounded w.r.t. S and I.
Note that p is unfounded because there is no rule with consequent p. Further-
more, p would even be unfounded if it were satisfied in I.

Note that the empty set is unfounded with respect to every set of normal clauses
and every partial interpretation. Note also that the union of sets that are un-
founded with respect to the same S and I is also unfounded with respect to the
same S and I. As a consequence, the following lemma holds:

Lemma 178. Let S be a set of normal clauses and I a partial interpretation.
There exists a unique maximal unfounded set with respect to S and I, which is
the union of all unfounded sets with respect to S and I.

Starting from “knowing” I in the example above, the atoms r and s depend
on each other, but none of them has to be true for other reasons. Thus, if we
choose to consider them or one of them to be false, we will not be forced to undo
this decision. Making one of them false preserves the other’s being unfounded.
Generalising this observation, we get:
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Lemma 179. Let S be a set of normal clauses, I a partial interpretation, and
U ′ an unfounded set with respect to S and I, such that pos(I) ∩ U ′ = ∅.

For each U ⊆ U ′, its remainder U ′ \ U is unfounded w.r.t. S and I ∪ U .

Proof. The condition pos(I) ∩ U ′ = ∅ ensures that I ∪ U is consistent.
Any atom falsified in I remains falsified in I∪U , thus any witness of unusabil-

ity w.r.t. S and I by condition 1, is also a witness of unusability w.r.t. S and I∪U
by condition 1.

Any A ∈ U that is a witness in U ′ of unusability w.r.t. S and I by condition 2,
is not in U ′\U and can no longer satisfy condition 2. But A ∈ U ⊆ I ∪U . Hence,
A is a witness of unusability w.r.t. S and I ∪ U by condition 1. ��

In a sense the lemma allows to make unfounded atoms false without affecting
the unfoundedness of others. The next lemma is a kind of opposite direction, in a
sense it allows to make falsified atoms unfounded. Recall that I = pos(I)∪neg(I).

Lemma 180. Let S be a set of normal clauses and I a partial interpretation.
If no clause in S is weakly falsified in I, then neg(I) is unfounded with respect
to S and pos(I).

Proof. Let A ∈ neg(I) and A ← ϕ an arbitrary ground instance of a member
of S. Since A is falsified in I and A ← ϕ is not weakly falsified in I, some
literal L in ϕ is falsified in I. If L is positive, then L ∈ neg(I) and L is a witness
of unusability for A ← ϕ by condition 2. If L is negative, then L ∈ pos(I) and
L is a witness of unusability for A ← ϕ by condition 1. ��

Definition 181. Let PI = { I ⊆ HB ∪ HB | I is consistent }, and note that
P(HB) ⊆ PI. Let S be a set of normal clauses. We define three operators:
TS : PI → P(HB)

I �→ { A ∈ HB | there is a ground instance (A ← ϕ)
of a member of S such that ϕ is satisfied in I }

US : PI → P(HB)
I �→ the maximal subset of HB that is unfounded with respect to S and I

WS : PI → PI
I �→ TS(I) ∪ US(I)

If S is a set of definite clauses, that is, if all antecedents are positive, the op-
erator TS coincides with the immediate consequence operator TS from Defin-
ition 153. Whether or not S is definite, TS(I) is a set of ground atoms. The
operator US is well-defined by Lemma 178 and also produces a set of ground
atoms. Starting from “knowing” I, the ground atoms in TS(I) are those that
have to be true, whereas those in US(I) are unfounded. Note that the definition
of unfounded implies TS(I)∩US(I) = ∅. This ensures the consistency of WS(I),
which satisfies what has to be true and falsifies all unfounded ground atoms.

Example 182. Assume a signature with HB = {p, q, r, s, t}, and let I0 = ∅ and
S = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) }.
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TS(I0) = {s} TS(I1) = {s, r} TS(I2) = {s, r, q}
US(I0) = {p, t} US(I1) = {p, t} US(I2) = {p, t}
WS(I0) = {s,¬p,¬t} = I1 WS(I1) = {s, r,¬p,¬t} = I2 WS(I2) = {s, r, q,¬p,¬t}

TS(∅) is nonempty only if S contains a clause with antecedent � or empty.
Atoms such as p and t, which do not appear in any consequents, are always

unfounded. US(I) can never contain the consequent of a satisfied clause instance
whose antecedent is satisfied, too. This explains why US(I2) is maximal. For the
maximality of US(I1) note that for q to be unfounded either r would have to be
unfounded, which is impossible by r ∈ TS(I1), or one of the antecedent literals
r and ¬p would have to be falsified in I1, but r is undefined and ¬p is satisfied
in I1. The maximality of US(I0) can be confirmed by similar arguments.

Lemma 183. TS, US, and WS are monotonic.11

Proof. Immediate from the definition of the operators. ��

Theorem 184 (Existence of least fixpoint). Let S be a set of normal clauses.
The operator WS has a least fixpoint lfp(WS) with

lfp(WS) =
⋂

{I ∈ PI | WS(I) = I} =
⋂

{I ∈ PI | WS(I) ⊆ I}.
Moreover, lfp(WS) is a partial interpretation and a partial model of S.

Proof. The first part follows from the Knaster-Tarski Theorem 148. For the
second part, both consistency and that no clause in S is weakly falsified, are
shown by transfinite induction. Lemma 175 ensures the model property. ��

Definition 185 (Well-founded model). Let S be a set of normal clauses.
The well-founded model of S is its partial model lfp(WS).

The well-founded model may be total, in which case it specifies a truth value for
each ground atom, or partial, in which case it leaves some atoms undefined.

The examples considered earlier for the stable model semantics have the fol-
lowing well-founded models. Note that S1 is the set used for illustrating the
operators in the previous example. One more step will reproduce the fixpoint.

Example 186
S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) } has the well-founded model

{s, r, q,¬p,¬t}. It is total.
S2 = { (p ← ¬q), (q ← ¬p) } has the well-founded model ∅. It is partial and

leaves the truth values of p and of q undefined.
S3 = { (p ← ¬p) } has the well-founded model ∅. It is partial and leaves the

truth value of p undefined.
S4 = { (p ← ¬p), (p ← �) } has the well-founded model {p}. It is total.

Thus, the well-founded semantics coincides with the intuitive understanding
based on the “consistency postulate”. Each set of normal clauses has a unique

11 But not in general continuous!
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model, but this model does not necessarily commit to truth values for all atoms.
Each stratifiable set of normal clauses has a total well-founded model.

Note that the operators are monotonic, but not necessarily continuous, thus
the Kleene Theorem 152 ensuring that a fixpoint is reached with at most ω steps,
is not applicable. Indeed there are examples for which lfp(WS) �= WS ↑ ω.

Example 187. By definition WS ↑ 0 = ∅. Assume a signature containing no other
symbols than those occurring in the following set of normal clauses. Let S =
{ p(a) ←�, p(f(x)) ← p(x), q(y) ← p(y), s ← p(z) ∧ ¬q(z), r ← ¬s }

TS ↑ 1 = { p(a) }
US ↑ 1 = ∅
WS↑ 1 = { p(a) }
TS ↑ 2 = { p(a), p(f(a)) } ∪ { q(a) }
US ↑ 2 = ∅
WS↑ 2 = { p(a), p(f(a)) } ∪ { q(a) }
TS ↑ n +1 = { p(a), . . . , p(fn(a)) } ∪ { q(a), . . . , q(fn−1(a)) }
US ↑ n +1 = ∅
WS↑ n +1 = { p(a), . . . , p(fn(a)) } ∪ { q(a), . . . , q(fn−1(a)) }
TS ↑ ω = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
US ↑ ω = ∅
WS↑ ω = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
TS ↑ ω +1 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . }
US ↑ ω +1 = { s }
WS↑ ω +1 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ {¬s }
TS ↑ ω +2 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ { r }
US ↑ ω +2 = { s }
WS↑ ω +2 = { p(a), . . . , p(fn(a)), . . . } ∪ { q(a), . . . , q(fn(a)), . . . } ∪ {¬s, r }

It is debatable whether sets of normal clauses like that are likely to be needed
in practice. In [155] doubts are expressed that such cases are common. But this
position is questionable in view of the fact that the set S above is the (standard)
translation into normal clauses of the following set of generalised rules:

{ p(a) ←�, p(f(x)) ← p(x), q(y) ← p(y), r ← ∀z
(
p(z) ⇒ q(z)

)
}

Admittedly, range restricted universal quantification with ranges returning
infinitely many bindings for the quantified variables will, in general, hardly be
evaluable in finite time.

However, more advanced evaluation methods might well be devised that could
recognise, like in the example above, the necessary truth of a universally quanti-
fied formula. Furthermore, computable semantics are needed not only for those
programs considered acceptable, but also for those considered buggy – as long
as they are syntactically correct. From this point of view it is a serious drawback
of the well-founded semantics that it is not always computable.
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5.3.4 Stable and Well-Founded Semantics Compared
The well-founded semantics and the stable model semantics relate to each other
as follows. For space reasons, the proofs are not included in this survey (they
can be found in [155], for instance).

If a rule set is stratifiable (which holds in particular if it is definite), then
it has a unique minimal model, which is its only stable model and is also its
well-founded model and total.

If a rule set S has a total well-founded model, then this model is also the
single stable model of S. Conversely, if a rule set S has a single stable model,
then this model is also the well-founded model of S and it is total.

If a rule set S has a partial well-founded model I that is not total, i.e., in
which some ground atoms have the truth value undefined, then S has either no
stable model or more than one stable model.

In the latter case, a ground atom is true (or false, respectively) in all stable
models of S if and only if it is true (or false, respectively) in I.

In other words, if a rule set S has a partial (non-total) well-founded model I
and at least one stable model, then a ground atom A is undefined in I if and
only if it has different truth values in different stable models of S.

Furthermore, if a rule set has no stable model, then some ground atoms are
undefined in its well-founded model.

Roughly speaking, the stable model semantics and the well-founded semantics
tend to agree with each other and with the intuition, when there is a unique
minimal Herbrand model that conveys the intuitive meaning.

When there are several minimal Herbrand models that convey the intuitive
meaning, such as for S2 = { (p ← ¬q), (q ← ¬p) } with minimal models HI ({p})
and HI ({q}), then these tend to be exactly the stable models, and the well-
founded model tends to be partial, because it represents their “merge” (being
defined where they agree and undefined where they disagree).

When no minimal Herbrand model clearly conveys the intuitive meaning, such
as for S3 = { (p ← ¬p) } with minimal model HI ({p}), then there tends to exist
no stable model (corresponding to the “justification postulate”) whereas the
well-founded model exists (corresponding to the “consistency postulate”), but
tends to leave the truth values of all atoms undefined.

Thus, the well-founded semantics cannot differentiate between the two critical
cases, although they are quite different.

5.3.5 Inflationary Semantics
In this subsection, we restrict our attention to datalog¬ programs. Thus, in this
case, the Herbrand universe is always a finite universe denoted as dom and the
Herbrand base HB is finite, too. A datalog¬ program P is a finite set of normal
clauses. Recall from Definition 21 that a normal clause is a rule r of the form

A ← L1, . . . , Lm

where m ≥ 0 and A is an atom R0(x0). Each Li is an atom Ri(xi) or a negated
atom ¬Ri(xi). The arguments x0, . . . , xm are vectors of variables or constants
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(from dom). Every variable in x0, . . . , xm must occur in some unnegated atom
Li = Ri(xi), i.e., the clause must be range restricted (Definition 23).

We denote the head (consequent) of a rule r as H(r), and the body (an-
tecedent) of r as B(r). We further distinguish the positive and negative literals
in the body as follows:

B+(r) = {R(x) | ∃i Li = R(x)}, B−(r) = {R(x) | ∃i Li = ¬R(x)}

Let us now extend the definition of the immediate consequence operator

TP (I) : P(HB) → P(HB)

(cf. Definition 153) to rules containing negated atoms. Note that since HB is
finite, so is P(HB).

Definition 188 (Immediate consequence operator TP (I) for datalog¬).
Given a datalog¬ program P and an instance I over its schema sch(P ), a fact
R(t) is an immediate consequence for I and P (denoted as TP (I)), if either R is
an extensional predicate symbol of P and R(t) ∈ I, or there exists some ground
instance r of a rule in P such that

– H(r) = R(t),
– B+(r) ⊆ I, and
– B−(r) ∩ I = ∅.

The inflationary semantics [5,2] is inspired by inflationary fixpoint logic [86].
In place of the immediate consequence operator TP , it uses the inflationary
operator T̃P , which (for any datalog¬ program P ) is defined as follows:

T̃P (I) = I ∪ TP (I)

Definition 189 (Inflationary semantics of datalog¬). Given a datalog¬

program P and an instance I over the extensional predicate symbols of P , the
inflationary semantics of P w.r.t. I, denoted as Pinf (I), is the limit of the se-
quence {T̃i

P (I)}i≥0, where T̃0
P (I) = I and T̃i+1

P (I) = T̃P (T̃i
P (I)).

By the definition of T̃P , the following sequence of inclusions holds:

T̃0
P (I) ⊆ T̃1

P (I) ⊆ T̃2
P (I) ⊆ . . .

Furthermore, each set in this sequence is a subset of the finite set HB , such
that the sequence clearly reaches a fixpoint Pinf (I) after a finite number of steps.
However, HI (Pinf (I)) is a model of P containing I, but not necessarily a minimal
model containing I.

Example 190. Let P be the program: { (p ← s∧¬q), (q ← s∧¬p) }. Let I = {s}.
Then Pinf (I) = {s, p, q}. Although HI (Pinf (I)) is a model of P , it is not minimal.
The minimal models containing I are HI ({s, p}) and HI ({s, q}).
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The above example shows that given an instance I, the inflationary semantics
Pinf (I) of P w.r.t. I may not yield any of the minimal models that convey the
intuitive meaning of P . Moreover, Pinf (I) is not necessarily the least fixpoint
of T̃P containing I, either. In fact, the inflationary operator T̃P is not monotonic.
With the above example, let I1 be {s}, and I2 be {s, p}. Then T̃P (I1) = {s, p, q},
and T̃P (I2) = {s, p}.

Thus the existence of a least fixpoint cannot be guaranteed by the Knaster-
Tarski Theorem 148, but then it might be guaranteed by the finiteness of P(HB).
However, the problem is12 that there may be different minimal fixpoints. In the
example above, both {s, p} and {s, q} are fixpoints of T̃P containing {s}, but
none of their proper subsets is.

Let us now see how the inflationary semantics behaves with the examples used
earlier to illustrate and compare the other approaches.

Example 191. S1 = { (q ← r ∧ ¬p), (r ← s ∧ ¬t), (s ← �) }
T̃1

S1
(∅) = {s},

T̃2
S1

(∅) = {s, r},
T̃3

S1
(∅) = {s, r, q} = T̃4

S1
(∅).

Thus the inflationary fixpoint of S1 is {s, r, q}, which agrees with the stable
and the well-founded semantics and with the intuitive meaning.

Example 192. S2 = { (p ← ¬q), (q ← ¬p) }
T̃1

S2
(∅) = {p, q} = T̃2

S2
(∅).

Thus the inflationary fixpoint of S2 is {p, q}, which is not minimal and dis-
agrees with the stable and the well-founded semantics and with the intuitive
meaning. It represents the union of all minimal models.

Example 193. S3 = { (p ← ¬p) }
T̃1

S3
(∅) = {p} = T̃2

S3
(∅).

The inflationary fixpoint of S3 is {p}, which corresponds to the intuitive under-
standing based on the “consistency postulate”, but differs from both the stable
model semantics (there is no stable model) and the well-founded semantics (the
well-founded model leaves the truth value of p undefined).

Example 194. S4 = { (p ← ¬p), (p ← �) }
T̃1

S4
(∅) = {p} = T̃2

S4
(∅).

The inflationary fixpoint of S4 is {p}, which agrees with the stable and the
well-founded semantics and with the intuitive meaning.

These examples may give the impression that the inflationary semantics just
handles the critical cases differently from the other approaches, but agrees with
them in uncritical cases. However, this is not so.

Example 195. S5 = { (r ← ¬q), (q ← ¬p) } has two minimal models HI ({q})
and HI ({p, r}), of which only the first conveys the intuitive meaning under the
12 Another problem is that even if a least fixpoint exists, Lemma 150 is not applicable.

If �Tn
P (I) = �Tn+1

P (I), this might not be the least fixpoint.
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closed world assumption. This model coincides with the only stable model and
with the well-founded model, which is total. Note that the set is stratifiable.

The inflationary fixpoint of S5 is T̃1
S5

(∅) = {q, r}, which is neither intuitive
nor related to the minimal models in any systematic way.

The inflationary semantics gives up a fundamental principle, which the other
approaches do keep: that models are preserved when adding logical consequences,
that is, if a formula ϕ is true in all “canonical” models of S, then each “canonical”
model of S is also a model of S ∪ {ϕ}. In the previous example, q is true in the
only inflationary model HI ({q, r}) of S5, but HI ({q, r}) is not an inflationary
model of S5 ∪ {q}.

This may be the deeper reason why in spite of its attractive complexity prop-
erties (Section 8) the inflationary semantics is not very much being used in
practice.13

5.4 RDF Model Theory

5.4.1 Introduction to RDF
“The Resource Description Framework (RDF ) is a language for representing
information about ‘resources’ on the world wide web” [114].

Resources. How is the concept of “resource” to be understood? While RDF data
representing information about resources is supposed to be accessible on the
Web, the resources themselves do not necessarily have to be accessible. Thus, a
“resource” is not necessarily a Web site or service. A resource is any (tangible
or intangible) entity one represents information about.

Each resource is assumed to be uniquely identified by a uniform resource
identifier (URI), and everything identified by a URI is a resource.14 A URI only
plays the role of a unique identifier comparable to a bar code. In contrast to a
uniform resource locator (URL), a URI identifying a resource is not assumed to
point to a Web page representing this resource – even though in practice this is
often the case.

Triples and graphs. RDF data is represented in the form of triples consisting
of a subject, a predicate and an object with the predicate representing a binary
relation between the subject and the object. Instead of triples, one might just
as well express RDF data in the form of atoms where the predicate is written as
a binary relation symbol with the subject and the object as arguments.

Definition 196 (RDF syntax)

– There are two classes of RDF symbols:

13 But it does integrate imperative constructs into logic, and there are indications that
it may be useful for querying relational databases, see Section 14.5 in [2].

14 Note the circularity of this definition.
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• An RDF Vocabulary V = U ∪ L consists of two disjoint subsets:
a set U of so-called URI references and a set L of so-called literals.
Both URI references and literals are also called names.

• B is a set disjoint from V containing so-called blank nodes or b-nodes.
– From these symbols the following complex structures may be formed:

• An RDF triple or RDF statement in V and with blank nodes in B is an
expression of the form (s, p, o) where
s ∈ U ∪ B is called the subject of the triple,
p ∈ U is called the predicate or property of the triple,
o ∈ U ∪ B ∪ L is called the object of the triple.
An RDF triple is ground if it contains no blank node.

• An RDF graph in V and with blank nodes in B is a finite or infinite or
empty subset of (U ∪ B) × U × (U ∪ B ∪ L), i.e., a set of RDF triples.
An RDF graph is ground if the triples it contains are all ground.

In the context of RDF (and throughout this subsection) the word literal is not
used as in logic (see Definition 19), but as in programming languages, where
literal means a textual representation of a value.

In order to make the intention of the RDF notions easier to grasp, let us draw
some rough analogies to first-order predicate logic.

An RDF vocabulary V = U ∪ L is analogous to a signature (Definition 3)
and the blank nodes in B are analogous to variables, which belong to the logical
symbols (Definition 2). The literals in L are analogous to constants, but with
the intention that they should not be arbitrarily interpreted, but as strings or
numbers or similar values. The URI references in U are also analogous to con-
stants, but, being permitted in predicate position, also to relation symbols. In
the terminology of Section 3, the signature is overloaded.

A triple is analogous to an atomic formula, but there are restrictions how
it may be constructed: URI references from U may occur in all three positions,
literals from L may only occur in object position, blank nodes from B may occur
in subject or object position, but not in predicate position.

An RDF graph is analogous to a formula or set of formulas. A finite RDF
graph corresponds to the existential closure of the conjunction of its triples. An
infinite RDF graph corresponds to the appropriate generalisation, which does
not have a direct counterpart in first-order predicate logic.

A slightly different analogy explains the terminology “RDF graph”. Given a
set of triples, the set of members of U ∪ L ∪ B occurring in subject or object
position can be regarded as “nodes”, and each triple (s, p, o) can be regarded
as a directed edge from s to o that is labelled with p. Thus an RDF graph
corresponds to a graph in the mathematical sense.

Moreover, the URI references occurring in subject or object position of triples
can also be regarded as pointers to the actual data representing the resource,
which can be used in efficient implementations for a fast data access. This view
illustrates the advantage of distinguishing between identifiers and resources in
RDF (compare also Section 9.2.4) in spite of the slightly more involved formal-
ism. The same distinction is made in object-oriented databases, and as pointed
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out in [23], storing RDF data as graphs in object-oriented databases may be
preferable over storing them as relational tuples, as far as data retrieval and
query answering are concerned.

5.4.2 Formal Semantics of RDF
The formal semantics of RDF [87] is specified similarly to that of first-order
predicate logic by a Tarski style model theory. The concepts of interpretation
and model serve to define a notion of logical consequence, or entailment, of an
RDF graph.

However, there is not a single notion of an RDF interpretation, but several
ones, each imposing additional constraints to the previous one:

– Simple RDF Interpretations
– RDF Interpretations
– RDFS Interpretations

Simple RDF interpretation is the basic notion: RDF interpretations and RDFS
interpretations are simple RDF interpretations satisfying further conditions.

RDF interpretations give special meaning to predefined URI references such as
rdf:type, rdf:Property and rdf:XMLLiteral: the URI reference rdf:type expresses
a notion of instance relationship between the instance of a type and the type class
itself (named in analogy to object-oriented type systems), rdf:Property expresses
the type class of all predicates and rdf:XMLLiteral expresses the type class of all
XML literals.15

RDFS interpretations are RDF interpretations that give special meaning to
some additional URI references related to domain and range of properties or to
subclass relationship (which, remarkably, may be cyclic).

Simple RDF Interpretations. It is convenient to distinguish between “untyped”
(or “plain”) and “typed literals”. The former are syntactic representations of val-
ues that cannot be represented by other literals, such as the boolean value true;
such literals are to be interpreted as “themselves”, i.e., they are element of the
domain. The latter are syntactic representations of values that may also be repre-
sented by other literals, such as the floating point number 0.11, which according
to XML Schema, the reference for RDF scalar datatypes, can be represented by
the literals ".11"^^xsd:float and "0.110"^^xsd:float, among others.16

Definition 197 (Simple RDF interpretation of an RDF vocabulary). A
simple RDF interpretation I = (IR, IP , IEXT , IS , IL,LV ) of an RDF Vocabu-
lary V = U ∪ LT ∪ LU where U is a set of URIs, LT a set of typed literals, and
LU a set of untyped literals (with LT ∩ LU = ∅), is defined as follows:

– IR is a set of resources, called the domain of I

15 Following a widespread practice, rdf is the namespace prefix for the XML namespace
of RDF and used here for conciseness instead of the actual namespace URI.

16 Following a widespread practice, xsd stands for the namespace of XML Schema.
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– IP is a set, called the set of properties17 of I
– IEXT : IP → P(IR × IR) is a total function
– IS : U → IR ∪ IP is a total function
– IL : LT → IR is a total function
– LV ⊆ IR, called the set of literal values of I. Recall, that the untyped literals

are interpreted as “themselves”, i.e., LU ⊆ LV .

The main difference between the above definition and the corresponding part of
the definition of an interpretation for first-order predicate logic are as follows:

– In simple RDF interpretations, a predicate symbol in U is not directly as-
sociated with a binary relation, but with an arbitrary domain element that
refers, by means of IEXT to the actual binary relation. Note that no condi-
tions are put on how such a “relation representative” may occur in relations.
Thus, in a simple RDF interpretation, a domain element d may well occur in
the relation it “represents”. As a consequence, this additional level of “rela-
tion representatives” is no stringent deviation from Tarski model theory for
first-order predicate logic.
Furthermore, this tie between the “relation representative” and the actual
relation in a simple RDF interpretation is used in none of the other concepts
of RDF semantics – RDF semantics keeps an account of all overloaded sym-
bols, but does not make use of this book-keeping. Indeed, following [50], the
classical model theory for RDF introduced below does not maintain this tie
between “relation representative” and actual relation.

– Simple RDF interpretations of RDF vocabularies do not interpret blank
nodes, since they are not part of an RDF vocabulary. Only the extension of
simple RDF interpretations to RDF graphs (Definition 199) needs to consider
blank nodes, and does so in the spirit of Tarski model theory for first-order
predicate logic in the case of existentially quantified variables.

Thus, simple RDF interpretations of RDF vocabularies are, in spite of “styl-
istic” peculiarities, very much in line with Tarski model theory for first-order
predicate logic.18

Simple RDF Interpretations of Ground RDF Graphs. The notion of simple RDF
interpretation of RDF vocabularies introduced above is extended to RDF graphs
such that a ground RDF graph is interpreted as the conjunction of its (ground)
RDF triples, which are interpreted like ground atoms. Note, however, that this
intuitive view may lead to infinite formulas (not considered in first-order predi-
cate logic) as an RDF graph may contain infinitely many triples.
17 The denomination “set of property representatives” would be more accurate.
18 In the document introducing RDF Model theory, the notions “interpretation” and

“denotation” do not seem to be clearly distinguished. Whereas the table of contents
and the definitions suggest that denotations are defined on graphs and interpreta-
tions on vocabularies only, in later sections the parlance changes to “denotations of
names” and to interpretations that assign truth values to graphs. In this tutorial,
only the name “interpretation” is used both for vocabularies and for RDF graphs.
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As a minor detail, RDF makes it possible to specify the language of an untyped
literal lit using the widespread ISO 639 and IETF 1766 standardised language
codes: lit@en means that lit is in English, lit@de means that lit is in German,
etc.

Definition 198 (Simple RDF interpretations of ground RDF graphs).
Let I = (IR, IP , IEXT , IS , IL,LV ) be a simple RDF interpretation of an RDF
vocabulary V = U ∪LT ∪LU with set of URIs U , set of typed literals LT and set
of untyped literals LU , where LT ∩ LU = ∅.

I is extended to ground RDF graphs as follows:

– I(lit) = lit (untyped literal in V )
– I(lit@lang) = (lit, lang) (untyped literal with language in V )
– I(lit^^type) = IL(lit) ( typed literal in V )
– I(uri) = IS (uri) (URI in V )
– I((s, p, o)) = true ( ground RDF triple)

iff s, p, o ∈ V , I(p) ∈ IP, (I(s), I(o)) ∈ IEXT (I(p))
– I(G) = true ( ground RDF graph)

iff I((s, p, o)) = true for all triples (s, p, o) in G.

Note that the empty graph is true in all simple RDF interpretations.
Note furthermore that a ground RDF graph G is false in a simple RDF in-

terpretation of a vocabulary V as soon as the subject, predicate or object of a
triple in G does not belong to the vocabulary V . This is a slight (though entirely
benign) deviation from the model theory of first-order predicate logic, which
does not assign truth values to formulas composed of symbols from another
vocabulary, or signature, than that of the interpretation considered.

Extended Simple RDF Interpretations of RDF Graphs. Simple RDF interpreta-
tion only apply to ground RDF graphs. This notion is extended to RDF graphs
containing blank nodes such that an RDF graph is interpreted as the existen-
tial closure (the blank nodes representing variables) of the conjunction of its
triples. As pointed out above, this intuition may lead to infinite formulas with,
in presence of blank nodes, possibly even infinitely many variables, a case not
considered in first-order predicate logic. The technique of the extension is to add
to an interpretation I a mapping A that corresponds to a variable assignment.

Definition 199 (Extended simple RDF interpretation). Let V be an RDF
vocabulary and B a set of blank nodes with V ∩ B = ∅. Furthermore, let I =
(IR, IP , IEXT , IS , IL,LV ) be a simple RDF interpretation of V .

A blank node assignment for B in I is a total function A : B → IR mapping
each blank node to a member of the domain of I.

For any blank node assignment A the extended simple RDF interpretation
[I + A] is defined as follows:

– [I + A](bnode) = A(bnode) (bnode)
– [I + A](lit) = I(lit) (untyped literal in V )
– [I + A](lit@lang) = I(lit@lang) (untyped literal with language in V )
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– [I + A](lit^^type) = I(lit^^type) ( typed literal in V )
– [I + A](uri) = I(uri) (URI in V )
– [I + A]((s, p, o)) = true ( ground or non-ground RDF triple)

iff s, o ∈ V ∪ B, p ∈ V , I(p) ∈ IP and ([I + A](s), [I + A](o)) ∈ IEXT (I(p))
– [I + A](G) = true ( ground or non-ground RDF graph)

iff [I + A]((s, p, o)) = true for all triples (s, p, o) in G

The simple RDF interpretation I satisfies a ground or non-groundRDFgraph G,
iff there exists a blank node assignment A with [I + A](G) = true.

Definition 200 (Simple RDF entailment). Let G1 and G2 be two arbitrary
RDF graphs. The simple RDF entailment relation |=simply is defined as follows:
G1 |=simply G2, read G1 simply entails G2, if and only if all simple RDF inter-
pretations satisfying G1 also satisfy G2.

A Classical Model Theory for Simple RDF Entailment. The RDF model theory
has been criticised for its non-standardness and several problems have been
identified in the context of layering more expressive ontology or rule languages on
top of RDF. In this section, we propose a model theory which is closer to classical
logics to characterise simple RDF entailment.19 This characterisation shows that
simple RDF entailment on finite RDF graphs is the same as entailment for first-
order predicate logical formulas that
– are existential20,
– are conjunctive21,
– contain only binary relation symbols, and
– contain no function symbols of arity ≥ 1

For infinite RDF graphs it is an obvious generalisation of entailment for first-
order predicate logic.

First, classical RDF interpretations and models are introduced, and the en-
tailment relation |=classical is defined based on the notion of classical RDF mod-
els. Furthermore a one-to-one mapping between classical RDF interpretations
and extended simple RDF interpretations is established. Finally we show that
for two arbitrary RDF graphs G1 and G2 holds G1 |=simply G2 if and only if
G1 |=classical G2.

Definition 201 (Classical RDF interpretation). Let V = U ∪ B ∪ L be
an RDF Vocabulary where U is a set of URI references, B a set of blank node
identifiers and Li a set of literals. We call elements in U also in analogy to first-
order predicate logic constant symbols and distinguish the set of predicate symbols
UP ⊂ U . Note, that here a predicate symbol is necessarily also a constant symbol
(in contrast to standard first-order predicate logic, cf. Section 3.1, where predicate
and constant symbols are allowed but not required to overlap). A classical RDF
interpretation I = (D, M c, Mp, M l, A) consists of
19 Note that this theory does not characterise the other forms of RDF entailment such

as non-simple RDF entailment or RDFS entailment.
20 I.e. a formula the negation of which is universal.
21 I.e. the matrix of their prenex normal form is a conjunction of atoms.
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– a domain of discourse D ⊂ LU where LU ⊂ L is the set of untyped literals
in L,

– a total function M c from URI references (constant symbols) in U to elements
of the domain D,

– a total function Mp from predicate symbols in UP to elements in P(D × D)
– a total function M l from literals in L to elements of the domain D, plain

literals are mapped to themselves,
– and a blank node assignment function A from B to U ∪ L.

The main deviation from standard first-order predicate logic interpretations are
the specific treatment of literals and that predicate symbols are required to be
a subset of the constant symbols. The latter is required for equivalence with
the notion of extended simple RDF interpretation from [87] as explained in the
previous section and could otherwise be dropped.

Definition 202 (Classical RDF model). Let G be an RDF graph and I =
(D, M c, Mp, M l, A) a classical RDF interpretation of the vocabulary V = U ∪
B ∪ L where U is a set of URIs, B is a set of blank node identifiers, and L is a
set of literals. I is a model of G, if for every triple (s, p, o) ∈ G, s is in U ∪B, p
is in U , o is in U ∪B ∪L, and the tuple (M c(s), M c(o)) is in the relation Mp(p)
interpreting the predicate symbol p.

We define the classical RDF entailment relation |=classical in the expected way:
A graph G1 entails a graph G2 if and only if every classical model of G1 is also
a classical model of G2.

Definition 203 (Classical interpretation corresponding to an extended
simple RDF interpretation). Let V = U ∪B∪LT ∪LU be an RDF vocabulary
where U is a set of URI references, B a set of blank node identifiers, LT a set of
typed, and LU a set of untyped literals. Let I = [(IR, IP , IEXT , IS , IL,LV ) + A]
be an extended simple RDF interpretation of V . The corresponding classical in-
terpretation class(I) = (D, M c, Mp, M l, A′) of the same vocabulary V is defined
as follows:

– D := IR
– M c(c) := IS(c) for all c ∈ U
– Mp(p) := IEXT (IS(p)) for all p ∈ P such that IEXT (IS (p)) is defined.
– M l(l) := IL(l) for all typed literals in LT

– A′ := A

Lemma 204. Let G be an RDF graph, and I an extended simple RDF inter-
pretation of the vocabulary V . Let class(I) be the corresponding classical inter-
pretation of the vocabulary V . If I |=simply G then class(I) |=classical G.

Proof. Let I = [(IR, IP , IEXT , IS , IL,LV ) + A] and class(I) = (D, M c, Mp,
M l, A). Let V = U ∪B ∪LT ∪LU where U is the set of URIs, B the set of blank
node identifiers, LT the set of typed literals, and LU the set of untyped literals
of V . It suffices to show that for any triple (s, p, o) in G the following conditions
hold:
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– s ∈ U ∪B: (s, p, o) is in G, I is a model of G, hence s ∈ U ∪B: by definition
– p ∈ U : by definition
– o ∈ U ∪ B ∪ L: by definition
– (M c(s), M c(o)) ∈ Mp(p): (s, p, o) is in G, I is a model of G, therefore the

tuple (IS (s), IS (o)) is in IEXT (IS(p)), hence (M(s), M(o)) ∈ Mp(p). ��

In the following definition dom(f) denotes the domain of a function f .

Definition 205 (Extended simple RDF interpretation corresponding
to a classical RDF interpretation). Let V = U ∪ B ∪ LT ∪ LU be an
RDF vocabulary where U is a set of URI references, B a set of blank node
identifiers, LT a set of typed literals, and LU a set of untyped literals. Let
Ic = (D, M c, Mp, M l, A) be a classical RDF interpretation over V . The ex-
tended simple RDF interpretation RDF (Ic) = [(IR, IP , IEXT , IS , IL,LV )+A′]
corresponding to Ic is defined as follows:

– IR := D
– IP := {M c(p) | p ∈ dom(Mp) and p ∈ dom(M c) }
– IEXT : IP → (IR × IR), IEXT (M c(p)) := Mp(p) for all p in U such that

both M c and Mp are defined on p.
– IS : U → IR ∪ IP, IS(u) := M c(u) for all c in U .
– IL := M l

– LV is the set of untyped literals LU

– A′(x) := A(x) for all x ∈ B

Lemma 206. Let G be an RDF graph, Ic a classical interpretation of the vocab-
ulary V , and RDF (Ic) its corresponding RDF interpretation. If Ic |=classical G
then RDF (Ic) is a simple RDF model of G.

Proof. We have to show that RDF (Ic) |=simply G. Hence RDF (Ic) |=simply t
must be true for every triple t in G. Let t := (s, p, o) be a triple in G. Then
Ic |=classical t is true by assumption. Therefore s is in C ∪ B, p is in U and
o is in U ∪ B ∪ L. Moreover (M c(s), M c(o)) ∈ Mp(p). Hence (IS (s), IS (o)) ∈
IEXT (IS (p)), and thus RDF (Ic) |=simply G. ��

Lemma 207. Let Is be an extended simple RDF interpretation and Ic a classical
RDF interpretation of the same vocabulary. Then RDF (class(Is)) = Is and
class(RDF (Ic)) = Ic.

Proof. This lemma is a direct consequence of the Definitions 203 and 205. ��

From Lemmata 204, 206 and 207 we can immediately conclude the following
corollary:

Corollary 208 (Equivalence of classical RDF entailment and simple
RDF entailment). Let G1 and G2 be two RDF graphs. G1 |=simply G2 if and
only if G1 |=classical G2.

In [50], a more involved reformulation of RDF interpretation and entailment is
presented that also extends to RDFS interpretations and entailment. However, for
consistency with the rest of this article, we have chosen the above presentation.
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6 Operational Semantics: Positive Rule Sets

6.1 Semi-naive Evaluation of Datalog Programs

The fixpoint semantics of a positive logic program P directly yields an oper-
ational semantics based on canonical forward chaining of the immediate con-
sequence operator TP introduced in Section 5 (Definition 153) until the least
fixpoint is reached.

Let us quickly recapitulate the definition of the fixpoint of a datalog pro-
gram P given the example program in Listing 6 1.

Listing 6 1. An example program for fixpoint calculation

feeds_milk (betty).
lays_eggs (betty).
has_spines (betty).

monotreme (X) ← lays_eggs (X), feeds_milk (X).
echidna(X) ← monotreme (X), has_spines (X).

The intensional predicate symbols of a datalog program P are all those predi-
cate symbols that appear within the head of a rule, as opposed to the extensional
predicate symbols which appear only in the bodies of rules of a program. With
this definition feeds_milk, lays_eggs and has_spines are extensional predicate
symbols, whereas monotreme and echidna are intensional predicate symbols. The
set of all extensional and intensional predicate symbols of a datalog program
P (denoted ext(P ) and int(P ) respectively) is called the schema of P . An in-
stance over a schema of a logic program is a set of sets of tuples s1, . . . , sk, where
each set of tuples si, 1 ≤ i ≤ k is associated with a predicate symbol p in the
schema and si is the extension of p. The set of base facts of the program 6 1
corresponds to an instance over the extensional predicate symbols, where the set
{betty} is the set associated with each of the symbols feeds_milk, lays_eggs and
has_spines.

Based on these definitions the semantics of a logic program P is defined as a
mapping from extensions over ext(P ) to extensions over int(P ). There are several
possibilities to define this function. The fixpoint semantics uses the immediate
consequence operator TP for this aim.

Given a datalog program P and an instance I over its schema sch(P ), an
atom A is an immediate consequence of P and I if it is either already contained
in I or if there is a rule A ← cond1, . . . , condn in P where condi ∈ I ∀1 ≤ i ≤ n.
The immediate consequence operator TP (I) maps an instance over the schema
sch(P ) to the set of immediate consequences of P and I.

A fixpoint over the operator TP is defined as an instance I such that TP (I) =
I. It turns out that any fixpoint for a datalog program is a model of the (conjunc-
tion of clauses of the) program. Furthermore, the model-theoretic semantics P (I)
of a logic program P on an input instance I, which is defined as the minimum
model of P that also contains I, is the minimum fixpoint of TP .
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As mentioned above, this fixpoint semantics for datalog programs, which may
be extended to non-datalog rules[69], gives directly rise to a constructive algo-
rithm to compute the minimum model of a program.

Consider again Listing 6 1. The set of immediate consequences of this pro-
gram with the initial instance22 I0 = {{}f m, {}l e, {}h s, {}mon, {}ech} is I1 :=
TP (I0) = {{betty}f m, {betty}l e, {betty}h s, {}mon, {}ech}. The second appli-
cation of the fixpoint operator yields I2 := T2

P (I0) = {{betty}f m, {betty}l e,
{betty}h s, {betty}mon, {}ech}.

I3 is defined analogously and the extension of echidna is set to {betty}. Finally
the application of TP to I3 does not yield any additional facts such that the
condition I3 = I4 is fulfilled, and the fixpoint is reached.

The above procedure can be implemented with the pseudo-algorithm in List-
ing 6 2, which is called naive evaluation of datalog programs, because for the
computation of Ii all elements of Ii−1 are recomputed. As suggested by its name,
the function ground_facts returns all the ground facts of the program which is
to be evaluated. The function instantiations takes as a first argument a rule
R, which may contain variables, and as a second argument the set of facts Ii−1

which have been derived in the previous iteration. It finds all instantiations of
the rule R which can be satisfied with the elements of Ii−1.

Listing 6 2. Naive evaluation of a datalog program P

I0 := ∅
I1 := ground_facts (P )
i := 1
while Ii �= Ii−1 do

i := i + 1
Ii := Ii−1

while (R = Rules.next ())
Insts := instantiations (R, Ii−1)
while (inst = Insts.next ())

Ii := Ii ∪ head(inst)
return Ii

The central idea underlying the so-called semi-naive evaluation of datalog
programs is that all facts that can be newly derived in iteration i must use one
of the facts that were newly derived in iteration i − 1 – otherwise they have
already been derived earlier. To be more precise, the rule instantiations that
justify the derivation of a new fact in iteration i must have a literal in their rule
body which was derived in iteration i − 1. In order to realize this idea one must
keep track of the set of newly derived facts in each iteration. This method is
also called incremental forward chaining and is specified by Listing 6 3. In line
2 the increment Ink is initialized with all facts of the datalog program. In line

22 the predicate symbols in subscript position indicate that the first set is the extension
of feeds_milk, the second one the one of lays_eggs, and so on.
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4 the set Insts of instantiations of rules that make use of at least one atom of
the increment Ink is computed at the aid of the function instantiations. The
function instantiations does not yield ground rules that are justified by the set
KnownFacts only, such that the call instantiations({ p(a), q(a) }, { }) for a
program consisting of the rule r(x) ←p(X), q(X) would not yield the instan-
tiation i1 := r(a) ←p(a), q(a). In contrast, i1 would be returned by the call
instantiations({ p(a) }, { q(a) }) with respect to the same program.

Once these fresh rule instantiations have been determined, the distinction
between facts in the increment and older facts is no longer necessary, and the
two sets are unified (line 5). The new increment of each iteration is given by the
heads of the rule instantiations in Insts.

Listing 6 3. Semi-naive evaluation of a datalog program P

1 KnownFacts := ∅
2 Ink := { Fact | (Fact ← true) ∈ P }
3 while (Ink �= ∅)
4 Insts := instantiations (KnownFacts , Ink)
5 KnownFacts := KnownFacts ∪ Ink
6 Ink := heads(Insts)
7 return KnownFacts

Although the semi-naive evaluation of datalog programs avoids a lot of re-
dundant computations that the naive evaluation performs, there are still several
ways of optimizing it.

– In the case that besides a program P also a query q is given, it becomes
apparent that a lot of computations, which are completely unrelated to q,
are carried out. This is a general problem of forward chaining algorithms
when compared to backward chaining. However, it is possible to write logic
programs that, also when executed in a forward-chaining manner, are in a
certain sense goal-directed. In fact it is possible to transform any datalog pro-
gram P and query q into a logic program P ′ such that the forward chaining
evaluation of P ′ only performs computations that are necessary for the eval-
uation of q. In Section 6.2 these so-called magic templates transformations
are presented.

– A second source of inefficiency is that in each iteration i, it is tested from
scratch whether the body of a rule is satisfied. It is often the case that a
rule body completely satisfied in iteration i was almost completely satisfied
in iteration i − 1, but the information about which facts contributed to the
satisfaction of rule premises in iteration i−1 must be recomputed in iteration
i. It is therefore helpful to store complete and partial instantiations of rules
during the entire evaluation of the program.

– Storing partial instantiations of rule bodies gives rise to another optimization
if the rules of the program share some of their premises. In this case, the
partial rule instantiations are shared among the rules. Both this and the
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previous optimization are realized by the Rete algorithm, which is introduced
in Section 6.3.

6.2 The Magic Templates Transformation Algorithm

The magic templates algorithm [51] is a method of introducing a goal directed
search into a forward chaining program, thereby benefiting both from the ter-
mination of forward chaining programs and from the efficiency of goal directed
search. It is important to emphasize that the evaluation of the transformed pro-
gram is performed in the ordinary forward chaining way or can be combined
with the semi-naive algorithm as described above.

The magic templates rewriting transforms a program P and a query q in two
steps: a transformation of the program into an adorned version, and a rewriting
of the adorned program into a set of rules that can be efficiently evaluated with
a bottom up strategy.

6.2.1 Adornment of Datalog Programs
In the first step, the program is rewritten into an adorned version according to
a sideways information passing strategy, often abbreviated sip.

A sideways information passing strategy determines how variable bindings
gained from the unification of a rule head with a goal or sub-goal are passed
to the body of the rule, and how they are passed from a set of literals in the
body to another literal. The ordinary evaluation of a Prolog program implements
a special sideways information passing strategy, in which variable bindings are
passed from the rule head and all previously occurring literals in the body to
the body literal in question. There are, however, many other sips which may
be more convenient in the evaluation of a datalog or Prolog program. In this
survey, only the standard Prolog sip is considered, and the interested reader is
referred to [18] for a more elaborate discussion of sideways information passing
strategies.

The construction of an adorned program is exemplified by the transforma-
tion of the transitive closure program in Listing 6 4 together with the query
t(a,Answer) into its adorned version in Listing 6 5. In order to better distin-
guish the different occurrences of the predicate t in the second rule, they are
labeled t-1, t-2 and t-3, but they still denote the same predicate.

Listing 6 4. Transitive closure computation

t(X,Y) ← r(X, Y).
t-3(X,Z) ← t-1(X, Y), t-2(Y, Z).

r(a, b).
r(b, c).
r(c, d).

When evaluated in a backward chaining manner, the query Q :=t(a,Answer)

is first unified with the head of the first rule, generating the binding X=a which
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is passed to the rule body. This sideways information passing can be briefly
expressed by t ↪→X r. The queryQ is also unified with the head of the second
rule, generating once more the binding X=a, which would be used to evaluate
the literal t-1(X,Y) by a Prolog interpreter. In the remaining evaluation of the
second rule, the binding for Y computed by the evaluation of t-1(X,Y) is passed
over to the predicate t-2. This can be briefly expressed by the sips t-3 ↪→X

t-1 and t-1 ↪→Y t-2.
From this information passing strategy an adorned version of Listing 6 4 can be

derived. Note that all occurrences of the predicate t (and its numbered versions)
are evaluated with the first argument bound and the second argument free when Q
is to be answered. In the magic templates transformation it is important to differ-
entiate between different call-patterns for a predicate. This is where adornments
for predicates come into play. An adornment a for a predicate p of arity n is a
word consisting of n characters which are either ‘b’ (for bound) or ‘f’ (for free).
Since the first argument of t is always bound in the program and the second argu-
ment is always free, the only adornment for t is bf . Since the evaluation of literals
of extensional predicates amounts to simply looking up the appropriate values,
adornments are only introduced for intensional predicate symbols.

It is interesting to note that the choice of the information passing strategy
strongly influences the resulting adorned program. In the case that one chooses
to evaluate the literal t-2 before t-1, both arguments of t-2 would be unbound
yielding the sub-query t-2ff , and thus an additional adorned version of the
second rule would have to be introduced for this sub-query. This additional
adorned rule would read t-3ff(X,Z) ← t-1fb(X, Y), t-2ff(Y, Z).. For the
sake of simplicity, the following discussion refers to the shorter version depicted
in Listing 6 5 only.

Listing 6 5. The adorned version of the program in Listing 6 4

tbf (X,Y) ← r(X, Y).
t-3bf (X,Z) ← t-1bf (X, Y), t-2bf (Y, Z).

r(a, b).
r(b, c).
r(c, d).

6.2.2 Goal-Directed Rewriting of the Adorned Program
Given an adorned datalog program P ad and a query q, the general idea of the
magic templates rewriting is to transform P ad into a program P ad

m in a way such
that all sub-goals relevant for answering q can be computed from additional rules
in P ad

m . Slightly alternated versions of the original rules in P ad are included in
P ad

m , the bodies of which ensure that the rule is only fulfilled if the head of the
rule belongs to the set of relevant sub-goals.

Hence the magic template transformation generates two kinds of rules: The
first set of rules controls the evaluation of the program by computing all relevant
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sub-goals from the query, and the second set of rules is an adapted version of
the original program with additional premises in the bodies of the rules, which
ensure that the rules are only evaluated if the result of the evaluation contributes
to the answer of q.

The functioning of the magic templates transformation and the evaluation of
the transformed program is again exemplified by the transitive closure compu-
tation in Listings 6 4 and 6 5.

1. In a first step, a predicate magic pa of arity nb(pa) is created for each adorned
predicate pa that occurs in the adorned program, where nb(pa) denotes the
number of bound arguments in pa – in other words the number of ‘b’s in the
adornment a. Thus for the running example, the predicate magic tbf with
arity one is introduced. The intuition behind magic predicates is that their
extensions during bottom-up evaluation of the program, often referred to
as magic sets, contain all those sub-goals that need to be computed for pa.
In the transitive closure example, the only initial instance of magic tbf is
magic tbf(a), which is directly derived from the query t(a,Answer). This
initial magic term is added as a seed23 to the transformed program in Listing
6 6.

2. In a second step, rules for computing sub-goals are introduced reflecting the
sideways information passing within the rules. Let r be a rule of the adorned
program P ad, let ha be the head of r, and l1 . . . lk the literals in the body
of r. If there is a query that unifies with the head of the rule, if queries for
l1 . . . li (i < k) have been issued and if they have been successful, the next
step in a backward chaining evaluation of P ad would be to pursue the sub-
goal li+1. Thus a control rule li+1 ← magic ha, l1 . . . li is included in P ad

m .
For the running example the rule magic tbf(Y) ← magic tbf(X), t(X,Y)
is added.

3. In a third step, the original rules of P ad are adapted by adding some extra
conditions to their bodies in order to evaluate them only if appropriate sub-
goals have already been generated by the set of control rules. Let r be a rule
in P ad with head ha and with literals l1, . . . , ln. r shall only be evaluated
if there is a sub-goal magic ha for the head, and if there are sub-goals for
each of the derived predicates of the body. For the adorned version of the
transitive closure program (Listing 6 5) both the first and the second rule
must be rewritten. Since there is no derived predicate in the first rule, the
only literal which must be added to the rule body is magic tbf (X), yielding
the transformed rule tbf(X,Y) ← magic tbf (X), r(X,Y). With the second
rule having two derived predicates in the rule body, one might expect that
three additional magic literals would have to be introduced in the rule body.
But since t-1 and t-3 have the same adornment and the same variables for
their bound arguments, they share the same magic predicate.

23 It is called the seed, because all other magic terms are directly or indirectly derived
from it.
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The evaluation of the magic transitive closure program is presented in Listing
6 7 for the goal t(a,Answer). Note that in contrast to the naive and semi-naive
bottom-up algorithms, only those facts are derived, which are potentially useful
for answering the query. In particular, the facts r(1, 2), r(2, 3), and r(3, 1) are
never used. Moreover the sub-goal r(d,X) corresponding to the magic predicate
magic tbf(d) is never considered.

Listing 6 6. The magic templates transformation of the program in Listing 6 5 for
the query t(a,X)

1 magic_tbf (Y) ← magic_tbf (X), t(X,Y).
2 tbf (X,Y) ← magic_tbf (X), r(X,Y).
3 t-3bf (X,Z) ← magic_tbf (X),t-1bf (X,Y),magic_tbf (Y ), t-2bf (Y,Z).
4 magic_tbf (a). // the seed
5
6 r(a, b). r(b, c). r(c, d).
7 r(1, 2). r(2, 3). r(3, 1).

Listing 6 7. Evaluation of program 6 6

t(a,b) // derived by the seed and rule 2
magic_tbf (b) // derived by the seed , t(a,b) and rule 1
t(b,c) // derived by magic_tbf (b), and rule 2
magic_tbf (c) // derived by magic_tbf (b), t(b,c) and rule 1
t(c,d) // derived by magic_tbf (c) and rule 2
t(a,c) // derived by rule 3
t(a,d) // derived by rule 3
t(b,d) // derived by rule 3

6.3 The Rete Algorithm

The Rete algorithm [72,56] was originally conceived by Charles L. Forgy in 1974
as an optimized algorithm for inference engines of rule based expert systems.
Since then several optimizations of Rete have been proposed, and it has been
implemented in various popular expert systems such as Drools, Soar, Clips,
JRules and OPS5.

The Rete algorithm is used to process rules with a conjunction of conditions
in the body and one or more actions in the head, that are to be carried out
when the rule fires. These rules are stored in a so-called production memory.
The other type of memory that is used by the Rete algorithm is the working
memory, which holds all the facts that make up the current configuration the
rule system is in. A possible action induced by a rule may be the addition of a
new fact to the working memory, which may itself be an instance of a condition
of a rule, therefore triggering further actions to be carried out in the system.
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Fig. 1. A Rete Network for Animal Classification

Avoiding redundant derivations of facts and instances of rule precedents, the
Rete algorithm processes production rules in a so-called Rete network consisting
of alpha-nodes, beta-nodes, join-nodes and production-nodes.

Figure 1 illustrates the way a Rete network is built and operates. It serves
as an animal classification system relying on characteristics such as has wings,
has spikes, is poisonous, etc. The example rules exhibit overlapping rule bodies
(several atomic conditions such as X lays eggs are shared among the rules).

For each atomic condition in the body of a rule, the Rete network features
one alpha-node containing all the elements of the working memory that make
this atomic condition true. Alpha-nodes are distinguished by shaded rectangles
with round corners in Figure 1. Although the same atomic condition may occur
multiple times distributed over different production rules, only one single alpha
node is created in the Rete network to represent it. Therefore the condition
X lays eggs, which is present in the conditions of all rules except for p2, is
represented by a single alpha-node in Figure 1.
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While alpha-nodes represent single atomic conditions of rule bodies, beta-
nodes stand for conjunctions of such conditions, and hold sets of tuples of working
memory elements that satisfy them. Beta-nodes are depicted as ovals with white
background in Figure 1.

In contrast to alpha and beta nodes, join nodes do not hold tuples of or single
working memory elements, but serve computation purposes only. For each rule
in the rule system, there is one production node (depicted as rectangles with
grey background in Figure 1) holding all the tuples of working memory elements
that satisfy all the atomic conditions in its body.

Alpha- and beta-nodes are a distinguishing feature of Rete in that they re-
member the state of the rule system in a fine grained manner. With beta-nodes
storing instantiations of (partial) rule bodies, there is no need of reevaluating
the bodies of all rules within the network in the case that the working memory
is changed.

Besides storing derived facts and instantiations of (partial) rule premises,
the Rete network also allows information sharing to a large extent. There are
two ways that information is shared among rules in the network. The first way
concerns the alpha-nodes and has already been mentioned above. If an atomic
condition (such as X feeds milk) appears within more than one rule, this alpha
node is shared among both rules. Needless to say, this is also the case if both
conditions are variants (equivalent modulo variable renaming) of each other. The
second way that information is shared within the Rete network is by sharing
partial rule instantiations between different rules. In Figure 1, the conjunction
of atomic conditions (X lays eggs), (X feeds milk) is common to the rules p3,
p4 and p5. In a Rete network, instantiations of these partial rule bodies are
computed only once and saved within a beta node which is connected (possibly
via other beta nodes) to the production nodes of the affected rules.

6.4 Basic Backward Chaining: SLD-Resolution

Resolution proofs are refutation proofs, i.e. they show the unsatisfiability of a
set of formulas. As it holds that the set of formulas P ∪ {¬ϕ} is unsatisfiable
iff P |= ϕ, resolution may be used to determine entailment (compare Theo-
rem 35). Observe that a goal ← a1, . . . , an is a syntactical variant of the first
order sentence ∀x1 . . . xm(⊥ ← a1 ∧ . . . ∧ an) where x1, . . . , xm are all variables
occurring in a1, . . . an. This is equivalent to ¬∃x1 . . . xm(a1 ∧ . . .∧ an). If we use
SLD-resolution24 to show that a logic program P and a goal ← a1, . . . , an are
unsatisfiable we can conclude that P |= ∃x1 . . . xm(a1 ∧ . . . ∧ an).

Definition 209 (SLD Resolvent). Let C be the clause b ← b1, . . . , bk, G a
goal of the form ← a1, . . . , am, . . . , an, and let θ be the mgu of am and b. We
assume that G and C have no variables in common (otherwise we rename the
variables of C). Then G′ is an SLD resolvent of G and C using θ if G′ is the
goal ← (a1, . . . am−1, b1, . . . bk, am+1, . . . an)θ.

24 SLD is an acronym for Selected Literal Definite Clause.
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Definition 210 (SLD Derivation). A SLD derivation of P ∪ {G} consists of
a sequence G0, G1, . . . of goals where G = G0, a sequence C1, C2, . . . of variants
of program clauses of P and a sequence θ1, θ2, . . . of mgu’s such that Gi+1 is
a resolvent from Gi and Ci+1 using θi+1. An SLD-refutation is a finite SLD-
derivation which has the empty goal as its last goal.

Definition 211 (SLD Tree). An SLD tree T w.r.t. a program P and a goal
G is a labeled tree where every node of T is a goal and the root of T is G and if
G is a node in T then G has a child G′ connected to G by an edge labeled (C, θ)
iff G′ is an SLD-resolvent of G and C using θ.

Let P be a definite program and G a definite goal. A computed answer θ for
P ∪ {G} is the substitution obtained by restricting the composition of θ1, . . . θn

to the variables occurring in G, where θ1, . . . θn is the sequence of mgu’s used in
an SLD-refutation of P ∪ {G}.

Observe that in each resolution step the selected literal am and the clause
C are chosen non-deterministically. We call a function that maps to each goal
one of its atoms a computation rule. The following proposition shows that the
result of the refutation is independent of the literal selected in each step of the
refutation.

Proposition 212 (Independence of the Computation Rule). [111] Let P
be a definite Program and G be a definite goal. Suppose there is an SLD-refutation
of P∪{G} with computed answer θ. Then, for any computation rule R, there exists
an SLD-refutation of P ∪ {G} using the atom selected by R as selected atom in
each step with computed answer θ′ such that Gθ is a variant of Gθ′.

The independence of the computation rule allows us to restrict the search space:
As a refutation corresponds to a branch of in an SLD-tree, to find all computed
answers we need to search all branches of the SLD-tree. The independence of the
computation rule allows us to restrict our search to branches constructed using
some (arbitrary) computation rule.

Example 213. Consider the logic program 6 8 with query q = ← t(1,2):

Listing 6 8. Transitive Closure

t(x,y) ← e(x,y).
t(x,y) ← t(x,z), e(z,y).
e(1,2) ← .
e(2,1) ← .
e(2,3) ← .
← t(1,2) .

An SLD-tree for program 6 8 and q is shown in the following figure. We label
the edges of an SLD tree with the number of a rule instead of a rule. We denote by
(n’) the rule number n where each variable x occurring in rule n is replaced by x′.
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Fig. 2. An SLD tree for program 6 8

If we want to compare the operational semantics of a program P to its declara-
tive semantics we need a declarative notion of an answer of program P . A correct
answer for a program P and goal G is a substitution θ such that P |= Gθ. Using
this notion we can define the soundness and completeness of logic programming.

Proposition 214 (Soundness andCompletenessofLogicProgramming).
[111] Let P be a program and let Q be a query. Then it holds that

– every computed answer of P and G is a correct answer and
– for every correct answer σ of P and G there exists a computed answer θ such

that θ is more general that σ.

Observe that to find a computed answers of a program P and goal G opera-
tionally one has to visit the leaf of a finite branch in the SLD-tree w.r.t. P and
G. The order in which we visit these nodes is not determined by the definition
of an SLD-refutation. We call such an order a search strategy. An SLD-procedure
is a deterministic algorithm which is an SLD-resolution constrained by a com-
putation rule and a search strategy.

As SLD-trees are infinite in general, the completeness of an SLD-procedure
depends on the search strategy. To be complete, an SLD-procedure must visit
every leaf of a finite branch of an SLD-tree within a finite number of steps.
A search strategy with this property is called fair. Obviously not every search
strategy is fair. For example the depth first search strategy used by Prolog is
not fair. An example of a fair search strategy is breath first search.

6.5 Backward Chaining with Memorization: OLDT-Resolution

As stated in the previous section not every search strategy is complete. This is
due to the fact that an SLD-tree is infinite in general. As we only consider finite
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programs, an SLD-tree may only be infinite if it has an infinite branch. As a
branch in an SLD-tree corresponds to an SLD-derivation we denote a branch as
[G1, G2, . . .] where G1, G2 . . . are the goals of the corresponding derivation.

A branch B = [G1, G2, . . .] in an SLD-tree may be infinite if there is a sub-
sequence [Gi1 , Gi2 , . . .] (ij < ik if j < k) of B such that

– for all j, k ∈ � Gij and Gik
contain an equal (up to renaming of variables)

atom or
– for all j ∈ � Gij contains an atom which is a real instance of an atom in

Gij+1 .

Non-termination due to the first condition is addressed by a evaluation tech-
nique called tabling or memorization. The idea of tabling is the idea of dy-
namic programming: store intermediate results to be able to look these results
up instead of having to recompute them. In addition to the better termination
properties, performance is improved with this approach.

The OLDT algorithm [150] is an extension of the SLD-resolution with a left to
right computation rule. Like SLD-resolution, it is defined as a non-deterministic
algorithm.

A subset of the predicate symbols occurring in a program are classified as
table predicates. A goal is called a table goal if its leftmost atom has a table
predicate. Solutions to table goals are the intermediate results that are stored.
Table goals are classified as either solution goals or look-up goals. The intuition
is that a solution goal ‘produces’ solutions while a look-up goal looks up the
solutions produced by an appropriate solution goal.

An OLDT-structure (T, TS , TL) consists of an SLD-tree T and two tables, the
solution table TS and the look-up table TL. The solution table TS is a set of
pairs (a, TS(a)) where a is an atom and TS(a) is a list of instances of a called
the solutions of a. The look-up table TL is a set of pairs (a, TL(a)) where a is an
atom and p is a pointer pointing to an element of TS(a′) where a is an instance
of a′. TL contains one pair (a, TL(a)) for an atom a occurring as a leftmost atom
of a goal in T .

The extension of an OLDT structure (T, TS , TL) consists of three steps:

1. a resolution step,
2. a classification step, and
3. a table update step.

In the resolution step a new goal is added to the OLDT-tree, in the classification
step this new goal is classified as either non-tabled goal or solution goal or look-
up goal and in the table update step the solution table and the update table are
updated. While step one is equal for non-tabled and solution goals, step two and
three are equal for tabled nodes while there is nothing to do in these steps for
non-tabled nodes.

Let (T, TS, TL) be an OLDT structure and G =← a1, . . . , an a goal in T . If
G is a non-tabled goal or a solution goal then in the resolution step a new goal
G′ is added to T which is connected to G with an edge labeled (C, θ) where G′
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is the SLD-resolvent of G and C using θ. If G is a look-up node then in the
resolution step the new node G′ is added to T with an edge labeled (a ←, θ)
where a is the atom in the solution table that the pointer TL(a1) points to and
the substitution θ is the mgu of a and a1. Finally the pointer TL(a1) is set to
point to the next element of the list it points to.

In the classification step the new goal G′ is classified as a non-table goal if
its leftmost atom is not a table predicate and a table goal otherwise. If G′ is a
table goal then G′ is classified as a look-up node if there is a pair (a, TS(a)) in
the solution table and a is more general than the leftmost atom a′ of G′. In this
case a new pair (a′, p) is added to the look-up table and p points to the first
element of TS(a). If G′ is not classified as a look-up node then it is classified as
a solution node and a new pair (a′, []) is added to the solution table.

In the table update step new solutions are added to the solution table. Recall
that the problem we want to tackle here is the recurrent evaluation of equal (up
to renaming of variables) atoms in goals. Therefore the ‘solutions’ we want to
store in the solution table are answers to an atom in a goal.

In SLD-resolution the term answer is defined only for goals. This notion can
be extended to atoms in goals in the following way. OLDT-resolution uses a left
to right computation rule. If the derivation of a goal G =← a1, . . . , an is finite,
then there is a finite number n of resolution steps such that the nth resolvent
Gn on G is ← a2, . . . , an. We call the sequence [G1, . . . , Gn] a unit sub-refutation
of a1 and the restriction of θ1 . . . θn to the variables occurring in a1 is called an
answer for a1.

Now if the goal G produced in the resolution step is the last goal of a unit
sub-refutation of a with answer θ then the update step consists in adding θ to
the list TS(a).

Example 215. Reconsider the program from Example 213

Listing 6 9. Transitive Closure

t(x,y) ← e(x,y) .
t(x,y) ← t(x,z), e(z,y) .
e(1,2) ← .
e(2,1) ← .
e(2,3) ← .
← t(1,2) .

After a sequence of OLDT-resolutions of solution goals or non-tabled goals
the OLDT-tree in Figure 3 is constructed. To indicate which nodes are solution
nodes and which are look-up nodes we prefix solution nodes with ‘S:’ and look-up
nodes with ‘L:’.

As the left branch is a unit sub-refutation of t(1, a) with solution {a/2} the entry
t(1, 2) is added to the solution table. As t(1, a) is more general than the leftmost
atom of the goal t(1, z′), e(z′, a) this goal is classified as a look-up node. Instead
of using resolution to compute answers for the first atom of this goal we use the
solutions stored in the solution table. The final OLDT-tree is depicted in 4:
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Fig. 3. An intermediary OLDT tree for program 6 9

Fig. 4. The final OLDT tree for program 6 9

Observe that the program of example 215 does not terminate with SLD-resolution
while it does terminate with OLDT-resolution. The following example shows that
OLDT-resolution is not complete in general.

Example 216. Consider the program 6 10 and query q = ← p(x)

Listing 6 10. Program for which OLDT resolution is incomplete

p(x) ← q(x), r .
q(s(x)) ← q(x) .
q(a) ← .
r ← .
← p(x) .
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Fig. 5. An intermediary OLDT tree for program 6 10

After a sequence of OLDT-resolution steps the OLDT-tree in Figure 5 is con-
structed

In the next step the solution q(a) can be used to generate the solution q(s(a))
(see Figure 6).

It is easy to see that if reduction steps are only applied to the node L:← q(x′), r
then no solutions for p(x) will be produced in finite time. Therefore OLDT is
not complete in general.

This problem was addressed by the authors of OLDT. They specified a search
strategy called multistage depth-first strategy for which they showed that OLDT
becomes complete if this search strategy is used. The idea of this search strategy
is to order the nodes in the OLDT-tree and to apply OLDT-resolution-steps to
the nodes in this order. If the node that is the biggest node with respect to
that ordering is reduced then a stage is complete and a new stage starts where
reduction is applied to the smallest node again. Therefore it is not possible to
apply OLDT-steps twice in a row if there are other nodes in the tree which are
resolvable.

In the above example it would therefore not be possible to repeatedly apply
reductions to the node L:← q(x′), r without reducing the node ← r which yields
a solution for p(x).

6.6 The Backward Fixpoint Procedure

The last sections have shown bottom up and top down methods for answer-
ing queries on Horn logic programs. While the naive and semi-naive bottom
up methods suffer from an undirected search for answering queries, the top
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Fig. 6. An intermediary OLDT tree for program 6 10

down methods such as SLD resolution (Section 6.4) may often not terminate
although the answer can be computed in finite time by a bottom up procedure.
Non-termination of top down procedures is addressed by tabling (storing the en-
countered sub-queries and their solutions) in OLDT resolution (Section 6.5) and
other advanced top down methods such as QSQ or SLDAL-Resolution[158], the
ET ∗ and ETinterp[54,67] algorithms and the RQA/FQI[122] strategy. The prob-
lem of undirected search in forward chaining methods is solved by rewriting the
rules such that special atoms representing encountered sub-goals are represented
by custom-built atoms and by requiring an appropriate sub-goal to be generated
before a rule of the original program is fired. Two representatives of this second
approach are the Alexander[97] and the Magic Set methods (Section 6.2).

In [27] a sound and complete query answering method for recursive databases
based on meta-interpretation called Backward Fixpoint Procedure, is presented,
and it is shown that the Alexander and Magic Set methods can be interpreted
as specializations of the Backward Fixpoint Procedure (BFP) and that also
the efficient top down methods based on SLD resolution implement the BFP.
Studying the BFP reveals the commonalities and differences between top down
and bottom up processing of recursive Horn logic programs and is thus used to
top of this chapter.

The backward fixpoint procedure is specified by the meta interpreter in List-
ing 6 11, which is intended to be evaluated by a bottom up rule engine. Facts are
only generated in a bottom up evaluation of the interpreter if a query has been is-
sued for that fact or if an appropriate sub-query has been generated by the meta-
interpreter itself (Line 1). Sub-queries for rule bodies are generated if a sub-query
for the corresponding rule head already exists (Line 2). Sub-queries for conjuncts
are generated from sub-queries of conjunctions they appear in (Line 3 and 4). The
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predicate evaluate consults the already generated facts, and may take a single
atom or a conjunction as its argument, returning true if all of the conjuncts have
already been generated. It must be emphasized that using a bottom up rule engine
for evaluating the BFP meta-interpreter for an object rule program is equivalent to
evaluating this object program top down, thereby not generating any facts which
are irrelevant for answering the query. For the correctness of the meta-interpreter
approach for fixpoint computation and for an example for the evaluation of an
object program with the BFP meta-interpreter see [27].

Listing 6 11. The backward fixpoint procedure meta interpreter

1 fact(Q) ← queryb(Q) ∧ rule(Q ← B) ∧ evaluate (B)
2 queryb(B) ← queryb(Q) ∧ rule(Q ← B)
3 queryb(Q1) ← queryb(Q1 ∧ Q2)
4 queryb(Q2) ← queryb(Q1 ∧ Q2) ∧ evaluate (Q1)

A direct implementation of the meta-interpreter may lead to redundant com-
putations of facts. To see this consider the application of the meta-interpreter to
the object program p ←q, r and the query p. The relevant instantiated rules of
the meta-interpreter contain the ground queries evaluate(q,r) and evaluate(q),
thereby accessing the fact q twice. Getting rid of these redundant computations is
elegantly achieved by specifying a bottom up evaluation of a binary version of the
predicate evaluate as shown in Listing 6 12. The first argument of evaluate con-
tains the conjuncts which have already been proved, while the second argument
contains the rest of the conjunction. Therefore a fact evaluate(∅, Q) represents
a conjunction which has not yet been evaluated at all, while evaluate(Q, ∅) rep-
resents a completely evaluated conjunction. With this new definition of evaluate
the atoms evaluate(B) and evaluate(Q1) in Listing 6 11 must be replaced by
evaluate(B, ∅) and evaluate(Q1, ∅), respectively. With this extension, the BFP
meta-interpreter of Listing 6 11 becomes redundant. A non-redundant version is
obtained by only considering rules (1, 5 to 11) of Listings 6 11, 6 12 and 6 13.
For the proofs for the redundancy of the rules (1 to 9) on the one hand and for
the equivalence of the interpreters made up of rules (1 to 4) and (1, 5 to 11) on
the other hand see [27].

Listing 6 12. Implementation of the predicate evaluate

5 evaluate (∅, B) ← queryb(Q) ∧ rule(Q ← B)
6 evaluate (B1, B2) ← evaluate (∅, B1 ∧ B2) ∧ fact(B1)
7 evaluate (B1 ∧ B2, B3) ← evaluate (B1, B2 ∧ B3) ∧ B1 �= ∅ ∧ fact(B2)
8 evaluate (B, ∅) ← fact(B)
9 evaluate (B1 ∧ B2, ∅) ← evaluate (B1, B2) ∧ B1 �= ∅, fact(B2)

Listing 6 13. Replacement rules for the rules 2 to 4 in Listing 6 11

10 queryb(B2) ← evaluate (B1, B2) ∧ B2 �= (C1 ∧ C2)
11 queryb(B2) ← evaluate (B1, B2 ∧ B3)
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The implementation of the backward fixpoint procedure gives rise to two chal-
lenges exemplified by the sub-goal queryb(r(x,a)), which may be generated
during the evaluation of a program by the BFP meta-interpreter. The sub-goal
is both nested and non-ground. The main problem with non-ground terms gen-
erated by the application of the BFP meta-interpreter to an object program is
that for deciding whether a newly derived fact is a logical duplicate of an already
derived fact it is not sufficient to perform string matching, but full unification
is needed. With specialization[74], a common partial evaluation technique used
in logic programming, one can get rid of these problems.

Specialization is applied to the BFP meta-interpreter with respect to the
rules of the object program. For each rule of the meta-interpreter that includes
a premise referring to a rule of the object program, one specialized version is
created for each rule of the object program. The first rule of the BFP meta-
interpreter (Listing 6 11) specialized with respect to the rule p(x) ← q(x) ∧r(x)
results in the following partially evaluated rule:

fact (p(x)) ← queryb(p(x)) ∧ evaluate (q(x) ∧ r(x))

Similarly, the specialization of the second rule of the meta-interpreter with
respect to the same object rule yields the partially evaluated rule queryb(q(x)

∧r(x)) ←queryb(p(x)).
Another specialization which can be applied to the BFP meta-interpreter is

the specialization of the queryb predicate with respect to the predicates of the
object program, transforming a fact queryb(p(a)) into the fact queryb-p(a) and
eliminating some of the nested terms generated during the evaluation. With this
transformation the first rule of the BFP is further simplified to:

fact (p(x)) ← queryb-p(x) ∧ evaluate (q(x) ∧ r(x))

Getting rid of non-ground terms can also be achieved by specialization re-
sulting in an adorned version of the program. Adornment of logic programs is
described in the context of the magic set transformation in Section 6.2. [27] also
discusses the faithfulness of representations of sub-queries as facts. Adornments
of sub-queries are not completely faithful in the sense that the adornment of the
distinct queries p(X,Y) and p(X,X) results in the same adorned predicate pff . As
described in Section 6.2, multiple adorned versions for one rule of the original
program may be generated.

In [27] it is shown that the above specializations of the meta-interpreter made
up of the rules (1, 5 to 11) with respect to an object program P and the omittance
of the meta-predicates evaluate and fact yields exactly the supplementary magic
set transformation and the Alexander method applied to P . Therefore both of
these methods implement the BFP.

Not only can bottom up processing methods be specialized from the BFP, but
it can also be used to specify top down procedures such as ET ∗, ETinterp, QSQ,
etc. The difference between SLD resolution and the BFP is explained in [27] in
terms of the employed data structures. SLD resolution uses a hierarchical data
structure which relates sub-queries and proved facts to the queries they belong
to. On the other hand, the BFP employs relations – i.e. a flat data structure – for
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memorizing answers to queries, and therefore allows to share computed answers
between queries that are logically equivalent. SLD resolution and the hierarchical
resolution tree can be simulated by the BFP by introducing identifiers for queries,
thus allowing to relate facts and sub-queries with queries to the answers of which
they contribute. See [27] for details. This simulation prevents sharing of answers
between queries and thus makes the evaluation less efficient. One conclusion that
can be drawn from the BFP is that it does not make sense to hierarchically struc-
ture queries according to their generation. In contrast it makes sense to rely on
a static rewriting such as the Alexander or Magic Set rewriting and process the
resulting rules with a semi-naive bottom-up rule engine.

7 Operational Semantics: Rule Sets with Non-monotonic
Negation

In the previous chapter evaluation methods for logic programs without negation
are examined. This chapter considers a more general form of logic programs,
namely ones that use negation. The rules considered in this chapter are all of
the form

A ← L1, . . . , Ln

where the Li, 1 ≤, i ≤ n are literals, and A is an atom. Thus negative literals
are allowed in the bodies of rules, but not in their heads. It is important to note
that augmenting logic programming with negation increases expressivity and is
necessary for deriving certain information from a database.

In Section 5 two important semantics for logic programming with negation
have been described: The stable model semantics (See Section 5.3.2) and the well-
founded model semantics (Section 5.3.3). However, this declarative semantics
does not provide an easy to implement algorithm neither for computing the
entailments of a logic program with negation nor for answering queries with
respect to such programs. In fact the greatest unfounded sets in the definition
of the well-founded semantics and the stable models in the stable models theory
must be guessed.

In this section constructive algorithms for computing the so-called iterative
fixpoint semantics, the stable model semantics and the well-founded model se-
mantics are described and applied to example programs to better illustrate their
functioning.

The kind of negation which is generally used in logic programming is called
negation as failure and can be described as follows: A negated literal ¬A is true,
if its positive counterpart A cannot be derived from the program. A possible
application of negation as failure is given in Listing 7 14. Since male(eduard) is
given and married(eduard) cannot be derived, bachelor(eduard) is logical con-
sequence of the program, while bachelor(john) is not. Negation as failure is
also known under the term non-monotonic negation, because the addition of
new facts to a program may cause some of its entailments to be no longer true:
The addition of married(eduard) to the program in Listing 7 14 invalidates the
conclusion bachelor(eduard).
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Listing 7 14. An Illustration for the Use of Negation as Failure

married(john ).
male(john ).
male(eduard).
bachelor(X) ← male (X), not married(X)

The adoption of negation as failure brings about several interesting, not to
say intricate questions. Consider the program in Listing 7 15. If the literal q is
assumed to be false, then the literal p must be true according to the second rule.
This, however, causes the literal q to be true. On the other hand there is no
possibility of deriving the literal q. Hence the semantics of Program 7 15 is not
clear. Therefore syntactical restrictions on logic programs have been proposed, to
ensure that all programs satisfying these restrictions have an intuitive declarative
semantics.

Listing 7 15. A program with Recursion through negation

q ← p.
p ← not q.

7.1 Computation of the Iterative Fixpoint Semantics for Stratified
Logic Programs with Negation as Failure

One possibility of limiting the use of negation is by stratification (see Defini-
tion 164 in Subsection 5.3.1).

It is easy to see that for some programs no stratification can be found. Since
in Program 7 15 q depends on p by the first rule and p depends on q by the
second rule, they would have to be defined in the same stratum. Since q depends
negatively on p, this case is precluded by the third premise above. A program for
which no stratification can be found is called non-stratifiable, programs for which
a stratification exists are called stratifiable. The iterative fixpoint semantics does
not provide a semantics for non-stratifiable programs.

[9] defines the semantics for stratified logic programs as an iterated fixpoint
semantics based on the immediate consequence operator TP (Definition 153) as
follows. Let S1, . . . , Sn be a stratification for the program P . Recall that Ti

P (I)
denotes the i-fold application of the immediate consequence operator to the
database instance I. Then the semantics of the program P is the set Mn where
M0 is defined as the initial instance over the extensional predicate symbols of
P , and the Mi are defined as follows:

M1 := Tω
S1

(M0), M2 := Tω
S2

(M1), . . . , Mn := Tω
Sn

(Mn−1)

This procedure shall be illustrated at the example program in Listing 7 16. The
intensional predicate symbols has_hobbies, has_child, married, and bachelor can
be separated into the strata S1 := {has_hobbies}, S2 := {has_child, married},
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S3 := {bachelor}. The initial instance M0 ={{john}human, {john}plays the piano,
{john}male} is directly derived from the facts of the program. Since has_hobbies

is the only element of S1, only the first rule is relevant for the computation of
M1 := M0 ∪ {{john}has hobbies}. The second and the third rule are relevant for
the computation of M2, which is the same instance as M1. Finally, the fourth rule
allows to add the fact bachelor(john) yielding the final instance M3 := M2 ∪
{{john}bachelor}.

Listing 7 16. A stratifiable program with negation as failure

human(john ).
male(john ).
plays_the_piano (john ).

has_hobbies (X) ← plays_the_piano (X).
has_child (X) ← human(X), not has_hobbies (X).
married(X) ← human(X), has_child (X).
bachelor(X) ← male (X), not married(X).

7.2 Magic Set Transformation for Stratified Logic Programs

While the computation of the iterative fixpoint of a stratified logic program
allows to answer an arbitrary query on the program, it is inefficient in the
sense that no goal-directed search is performed. One method for introducing
goal-directedness into logical query answering, that is also relatively easy to im-
plement, is the magic set rewriting as introduced in Section 6.2. The task of
transferring the magic set approach to logic programs with negation has there-
fore received considerable attention [41], [98], [16], [139], [15].

The main problem emerging when applying the magic set method to pro-
grams with negative literals in rule bodies is that the resulting program may not
be stratified. There are two approaches to dealing with this situation. The first
one is to use a preprocessing stage for the original program in order to obtain
a stratified program under the magic set transformation and is pursued by [41].
The second one is to accept the unstratified outcome of the magic set trans-
formation and to compute some other semantics which deals with unstratified
programs. This second approach is employed by [19], which proposes to compute
the well-founded model by Kerisit’s weak consequence operator at the aid of a
new concept called soft stratification.

Because of its simplicity and straightforwardness, only the first approach is
presented in this article.

In [41] three causes for the unstratification of a magic-set transformed program
are identified:

– both an atom a and its negation not a occur within the body of the same
rule of the program to be transformed.
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– a negative literal occurs multiple times within the body of a rule of the
original program

– a negative literal occurs within a recursive rule

With b occurring both positively and negatively in the body of the first rule,
Listing 7 17 is an example for the first cause of unstratification. The predicate
symbol c is an extensional one, and therefore no magic rules are created for it,
a and b are intensional ones. When the magic set transformation from the last
chapter is naively applied to the program and the query a(1), which means that
negated literals are transformed in the very same way as positive ones, the magic
set transformed program in Listing 7 18 is not stratified, because it contains a
negative dependency cycle among its predicates: magic_bb negatively depends on
bb, which again depends on magic_bb.

Listing 7 17. A program leading to unstratification under the naive magic set trans-
formation

a(x) ← not b(x), c(x,y), b(y).
b(x) ← c(x,y), b(y).

Listing 7 18. The unstratified outcome of the magic set transformation applied to
Program 7 17

magic_ab(1).
magic_bb(x) ← magic_ab(x).
magic_bb(y) ← magic_ab(x), not bb(x), c(x,y).
a(x) ← magic_ab(x), not bb(x), c(x,y), bb(y).
magic_bb(y) ← magic_bb(x), c(x,y).
b(x) ← magic_bb(x), c(x,y), b(y).

[41] proposes to differentiate the contexts in which a negative literal is evalu-
ated by numbering the occurrences of the literal in the rule body before the magic
set transformation is applied. The numbered version of Listing 7 17 is displayed
in Listing 7 19 where the two occurrences of b have been numbered. Additionally,
for each newly introduced numbered predicate symbol pi its defining rules are
copies from the definition of the unnumbered symbol p, with all occurrences of
p replaced by pi. In this way, the semantics of the program remains unchanged,
but the program becomes stratified under the magic set transformation, as can
be verified in Listing 7 20.

Listing 7 19. Program 7 17 with differentiated contexts for the literal b

a(x) ← not b_1(x), c(x,y), b_2(y).
b_1(x) ← c(x,y), b_1(y).
b_2(x) ← c(x,y), b_2(y).
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Listing 7 20. The stratified outcome of the magic set transformation applied to pro-
gram 7 19

magic_ab(1).
magic_b_1 b(x) ← magic_ab(x).
magic_b_2 b(y) ← magic_ab(x), not b_1b(x), c(x,y).
ab(x) ← magic_ab(x), not b_1b(x), c(x,y), b_2b(y).
magic_b_1 b(y) ← magic_b_1 b(x), c(x,y).
b_1(x) ← magic_b_1 b(x), c(x,y), b_1(y).
magic_b_2 b(y) ← magic_b_2 b(x), c(x,y).
b_2(x) ← magic_b_2 b(x), c(x,y), b_2(y).

Also for the second and third source of unstratification, elimination procedures
can be specified that operate on the adorned rule set, but are carried out prior
to the magic set transformation. For more details and a proof, that the resulting
programs are indeed stratified see [41].

7.3 Computation of the Stable Model Semantics

While the iterative fixpoint semantics provides an intuitive and canonical se-
mantics for a subset of logic programs with negation as failure, several attempts
have been made to assign a semantics to programs which are not stratifiable.
One of these attempts is the stable model semantics (see Section 5.3.2).

An example for a program which is not stratifiable but is valid under the
stable model semantics is given in Listing 7 21.

Listing 7 21. A non-stratifiable program with a stable model semantics

married(john , mary ).
male(X) ← married(X,Y), not male(Y).

The stable model semantics for a program P is computed as follows: In a first
step all rules containing variables are replaced by their ground instances. In a
second step the program is transformed with respect to a given model M into
a program GLM (P ) by deleting all those rules which contain a negative literal
not(L) in their body where L is contained in M , and by deleting all those negative
literals not(L) from the rules for which L is not contained in M . Clearly, the
semantics of the program P remains unchanged by both of these transformations
with respect to the particular model M . Since this transformation has first been
proposed by Gelfond and Lifschitz in [77], it is also known under the name
Gelfond-Lifschitz-Transformation (See also Definition 165).

An Herbrand interpretation M is a stable set of P if and only if it is the unique
minimal Herbrand model of the resulting negation-free program GLM (P ). See
Definition 166 and Lemma 167. The stable model semantics for a program P
(written SΠ(P )) is defined as the stable set of P , and remains undefined if there
is none or more than one of them.
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The Gelfond-Lifschitz-Transformation of Listing 7 21 with respect to the set
M := {married(john, mary), male(John)} results in the Program in Listing 7 22.
Rule instances and negative literals of rule instances have been crossed out ac-
cording to the rules mentioned above. Since the unique minimal Herbrand model
of the resulting Program is also M = {married(john, mary), male(John)}, M is
a stable set of the original program in 7 21. Since there are no other stable sets
of the program, M is its stable model.

Listing 7 22. Listing 7 21 transformed with respect to the set {married(john, mary),
male(John)}

married(john , mary ).
male(john) ← married(john , mary), not male(mary).
male(mary) ← married(mary, john), not male(john).
male(mary) ← married(mary , mary), not male(mary).
male(john) ← married(john, john), not male(john).

An efficient implementation of the stable model semantics (and also the well-
founded model semantics) for range-restricted and function-free normal logic
programs is investigated in [123] and its performance is compared to that of
SLG resolution in [40].

7.4 A More Efficient Implementation of the Stable Model Semantics

The approach of [123] recursively constructs all possible stable models by adding
one after another positive and negative literals from the set of negative an-
tecedents (Definition 217) to an intermediate candidate full set B (see Definition
219). The algorithm (see Listing 7 23) makes use of backtracking to retract el-
ements from B and to find all stable models of a program. In addition to the
program P itself and the intermediate candidate set B, the algorithm takes a
third argument which is a formula φ that is tested for validity whenever a stable
model is found. The algorithm returns true if there is a stable model of φ and
false otherwise. Moreover it can be adapted to find all stable models of a program
or to determine whether a given formula is satisfied in all stable models.

Definition 217 (Negative Antecedents). Given a logic program P , the set
of its negative antecedents NAnt(P ) is defined as all those atoms a such that
not(a) appears within the body of a rule of P .

Definition 218 (Deductive closure). The deductive closure Dcl(P, L) of a
program P with respect to a set of literals L is the smallest set of atoms containing
the negative literals L− of L, which is closed under the following set of rules:

R(P, L) := { c ← a1, . . . , an | c ← a1, . . . , an, not(b1), . . . , not(bm) ∈ P, (1)
{not(b1), . . . , not(bm) ⊆ L−}}

Definition 219 (Full Sets (from [123])). A set Λ of not-atoms (negated
atoms) is called P -full iff for all φ ∈ NAnt(P ), not(φ) ∈ Λ iff φ /∈ Dcl(P, Λ).
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Example 220. Consider the logic program P := {q ← not(r).q ← not(p).r ←
q.} The negative antecedents of the program are NAnt(P ) = {r, p}. Λ1 :=
{not(r), not(p)} is not a full set with respect to P because not(r) is in Λ1,
but r is in the deductive closure Dcl(P, Λ1). The only full set with respect to P
is Λ2 := {not(p)}: not(p) ∈ Λ2 and p /∈ Dcl(P, Λ2) holds for p and not(r) /∈ Λ2

and r ∈ Dcl(P, Λ2) holds for the other element r of NAnt(P ).

Theorem 221 (Relationship between full sets and stable models
([123])). Let P be a ground program and Λ a set of not-atoms (negated atoms).
(i) If Λ is a full set with respect to P then Dcl(P, Λ) is a stable model of P .
(ii) If Δ is a stable model of P then Λ = not(NAnt(P ) − Δ) is a full set with
respect to P such that Dcl(P, Λ) = Δ.

According to theorem 221 it is sufficient to search for full sets instead of for
stable models, because stable models can be constructed from these full sets.
This approach is pursued by the algorithm in Listing 7 23.

Definition 222 (L covers A). Given a set of ground literals L and a set of
ground atoms A, L is said to cover A, iff for every atom a in A either a ∈ L or
not(a) ∈ L holds.

Listing 7 23. Efficient computation of the stable model semantics for a logic program

function stable_model (P,B,φ)
let B’ = expand(P,B) in

if conflict (P,B′) then false
else

if (B′ covers NAnt(P )) then test(Dcl(P,B′),φ)
else

take some χ ∈ NAnt(P ) not covered by B′

if stable_model (P, B′ ∪ {not(χ)}, φ) then true
else stable_model (P, B′ ∪ {χ}, φ)

The algorithm is not fully specified, but relies on the two functions expand

and conflict, which undergo further optimization. The idea behind the function
expand is to derive as much further information as possible about the common
part B of the stable models that are to be constructed without losing any model.
One could also employ the identity function as an implementation for expand,
but by burdening the entire construction of the full sets on the backtracking
search of the function stable_model, this approach would be rather inefficient. A
good choice for the expand function is to return the least fixpoint of the Fitting
operator FP (B):

Definition 223 (Fitting operator FP ). Let B be a set of ground literals, and
P a ground logic program. The set FP (B) is defined as the smallest set including
B that fulfills the following two conditions:
(i) for a rule h ← a1, . . . , an, not(b1), . . . , not(bm) with ai ∈ B, 1 ≤ i ≤ n and
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not(bj),∈ B, 1 ≤ j ≤ m, h is in FP (B).
(ii) if for an atom a such that for all of its defining rules, a positive premise p
is in its body and not(p) is in B, or a negative literal not(p) is in its body with
p in B, then a is in FP (B).

The function conflict returns true whenever (i) B covers NAnt(P ), and (ii) if
there is an atom a in the set B such that a /∈ Dcl(P, B) or a literal not(a) ∈ B
such that a ∈ Dcl(P, B). In this way, conflict prunes the search for full sets
(and therefore the search for stable models) by detecting states in which no
stable model can be constructed as early as possible. For further optimiza-
tions regarding the computation of the stable model semantics with the function
stable_model the reader is referred to [123].

7.5 Computation of the Well-Founded Model Semantics

Another approach to defining a semantics for logic programs that are neither
stratifiable nor locally stratifiable is the well-founded model approach [152] (see
Section 5.3.3).

Recall that in this context the term interpretation refers to a set of positive or
negative literals {p1, . . . , pk, not(n1), . . . , not(ni)} and that the notation S, with
S = {s1, . . . , sn} being a set of atoms, refers to the set {¬s1, . . . ,¬sn} in which
each of the atoms is negated.

An unfounded set (see Section 5.3.3) of a logic program P with respect to an
interpretation I is a set of (positive) atoms U , such that for each instantiated
rule in P which has head h ∈ U , at least one of the following two conditions
applies.

– the body of the rule is not fulfilled, because it contains either a negative
literal not(a) with a∈ I or a positive literal a with not(a)∈ I.

– the body of the rule contains another (positive) atom a ∈ U of the unfounded
set.

The greatest unfounded set turns out to be the union of all unfounded sets
of a program. Note that the definition above does not immediately provide an
algorithm for finding the greatest unfounded set. In this subsection, however,
a straight-forward algorithm is derived from the definition and in the following
subsection, a more involved algorithm for computing the well-founded semantics
is introduced.

The computation of the well founded semantics is an iterative process mapping
interpretations to interpretations and involving the computation of immediate
consequences and greatest unfounded sets. The initial interpretation is the empty
set, which reflects the intuition that at the beginning of the program examina-
tion, nothing is known about the entailments of the program. The iteration uses
the following three kinds of mappings:

– the immediate consequence mapping TP (I) of the program with respect to
an interpretation I
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– the greatest unfounded set mapping UP (I), which finds the greatest un-
founded set of a program with respect to an interpretation I

– WP (I) := TP (I) ∪ UP (I) which maps an interpretation to the union of all
of its immediate consequences and the set of negated atoms of the greatest
unfounded set.

The well-founded semantics (see Section 5.3.3) of a logic program is then
defined as the least fixpoint of the operator WP (I). The computation of well
founded sets and of the well founded semantics is best illustrated by an exam-
ple (see Listing 7 24). The set of immediate consequences TP (∅) of the empty
interpretation of the program 7 24 is obviously the set {c(2)}. The greatest un-
founded set UP (∅) of the program with respect to the empty interpretation is
the set {d(1), f(2), e(2), f(1)}. f(1) is in UP (∅), because there are no rules with
head f(1), and therefore the conditions above are trivially fulfilled.

Note that the fact a(1) is not an unfounded fact with respect to the inter-
pretation ∅, although one is tempted to think so when reading the program as
a logic program with negation as failure semantics.

The three atoms {d(1), f(2), e(2)} form an unfounded set, because the deriva-
tion of any of them would require one of the others to be already derived. There
is no possibility to derive any of them first. Hence, according to the well-founded
semantics, they are considered false, leading to I1 := WP (∅) = TP (∅)∪UP (∅) =
{c(2)} ∪ {d(1), f(2), e(2), f(1)} = {c(2),¬d(1),¬f(2),¬e(2),¬f(1)}.

In the second iteration a(1) is an immediate consequence of the program, but
still neither one of the atoms a(2) and b(2) can be added to the interpretation
(also their negated literals cannot be added). After this second iteration the fix-
point {c(2),¬d(1),¬f(2),¬e(2),¬f(1), a(1)} is reached without having assigned
a truth value to the atoms a(2) and b(2).

Listing 7 24. Example program for the well-founded semantics

b(2) ← ¬ a(2).
a(2) ← ¬ b(2).

d(1) ← f(2), ¬ f(1).
e(2) ← d(1).
f(2) ← e(2).

a(1) ← c(2), ¬ d(1).
c(2).

The computation of this partial well-founded model involves guessing the
unfounded sets of a program P . If P is finite, all subsets of the atoms occurring
in P can be tried as candidates for the unfounded sets. In practice those atoms
that have already been shown to be true or false do not need to be reconsidered,
and due to the fact that the union of two unfounded sets is an unfounded set
itself, the greatest unfounded set can be computed in a bottom up manner,
which decreases the average case complexity of the problem. Still, in the worst
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case O(2a) sets have to be tried for each application of the operator UP , with
a being the number of atoms in the program. In [154] a deterministic algorithm
for computing the well-founded semantics of a program is described.

7.6 Computing the Well-Founded Semantics by the Alternating
Fixpoint Procedure

The central idea of the alternating fixpoint procedure[154] is to iteratively build
up a set of negative conclusions Ã of a logic program, from which the posi-
tive conclusions can be derived at the end of the process in a straightforward
way. Each iteration is a two-phase process transforming an underestimate of the
negative conclusions Ĩ into a temporary overestimate S̃P (Ĩ) and back to an un-
derestimate AP (Ĩ) := S̃P (S̃P (Ĩ)). Once this two-phase process does not yield
further negative conclusions, a fixpoint is reached. The set of negative conclu-
sions of the program is then defined as the least fixpoint Ã := Aω

P (∅) of the
monotonic transformation AP .

In each of the two phases of each iteration the fixpoint SP (Ĩ) := Tω
P ′(∅) of

an adapted version of the immediate consequence operator corresponding to the
ground instantiation of the program PH plus the set Ĩ of facts that are already
known to be false, is computed.

In the first phase the complement S̃P (Ĩ) := (H − SP (Ĩ)) of this set of deriv-
able facts constitutes an overestimate of the set of negative derivable facts, and
in the second phase the complement S̃P (S̃P (Ĩ)) is an underestimate.

Let’s now turn to the adapted immediate consequence operator. As in the
previous sections, the algorithm does not operate on the program P itself, but
on its Herbrand instantiation PH . Based on the Herbrand instantiation PH and
a set of negative literals Ĩ a derived program P ′ := PH ∪ Ĩ and a slightly altered
version of the immediate consequence operator TP ′ of P ′ are defined.

A fact f is in the set TP ′(I) of immediate consequences of the program P ′

if all literals li in the body of a rule with head f are fulfilled. The difference
to the previous definition of the immediate consequence operator is that the
bodies of the rules are not required to be positive formulas, but may contain
negative literals as well. A negative literal in the rule body is only fulfilled, if it
is explicitly contained in the program P ′ (stemming from the set Ĩ which is one
component of P ′). A positive literal in the body of P ′ is fulfilled if it is in the
interpretation I.

For the proof of the equivalence of the partial models computed by the well-
founded model semantics and the alternating fixpoint algorithm the reader is
referred to [154].

The computation of the well-founded semantics of the program in Listing 7 24
with the alternating fixpoint procedure is achieved without guessing well-founded
sets by the following steps.

– SP (∅) = {c(2)}. The fact a(1) cannot be derived because negation is not
treated as negation as failure, but only if the negated literal is in Ĩ. Similarly,
neither one of the facts b(2) and a(2) are in SP (∅).
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– S̃P (∅) = (H − SP (∅)) = {a(2), b(2), f(2), f(1), d(1), e(2), f(2), c(2), a(1)}-
{c(2)} = {¬a(2),¬b(2),¬f(2),¬f(1),¬d(1),¬e(2),¬f(2),¬a(1)} is the first
overestimate of the derivable negative facts.

– SP (S̃P (∅)) = {c(2), a(1), b(2), a(2)} and thus AP (∅) = S̃P (S̃P (∅)) = {¬f(2),
¬f(1), ¬d(1),¬e(2)} is the second underestimate of the derivable negative
literals (the first one was the emptyset).

– S̃P (ÃP (∅)) = {¬a(2),¬b(2),¬f(2),¬f(1),¬d(1),¬e(2)}
– AP (AP (∅)) = {¬f(2),¬f(1),¬d(1),¬e(2)} = AP (∅) means that the fix-

point has been reached and Ã = AP (∅) is the set of of negative literals
derivable from the program.

– The well founded partial model of the program is given by Ã ∪ SP (Ã) =
{¬f(2),¬f(1),¬d(1),¬e(2), c(2), a(1)}, which is the same result as in the
previous section.

For finite Herbrand universes the partial well-founded model is computable
in O(h) with h being the size of the Herbrand Universe [154].

7.7 Other Methods for Query Answering for Logic Programs with
Negation

While this chapter gives a first idea on methods for answering queries on strati-
fied and general logic programs with negation, many approaches have not been
mentioned. The previous sections have shown different ways of implementing the
stable model semantics and the well-founded model semantics for general logic
programs mainly in a forward chaining manner (except for the magic set trans-
formation, which is a method of introducing goal-directed search into forward
chaining).

The best known backward chaining method for evaluating logic programs
with negation is an extension of SLD resolution with negation as failure, and is
called SLDNF [33][10][145][58]. SLDNF is sound with respect to the completion
semantics [42] of a logic program and complete for Horn logic programs [93].

Przymusinski introduced SLS resolution[135] as a backward chaining opera-
tional semantics for general logic programs under the perfect model semantics
[132]. SLS resolution was extended by Ross to global SLS-resolution[140], which
is a procedural implementation of the well-founded model semantics.

8 Complexity and Expressive Power of Logic
Programming Formalisms

8.1 Complexity Classes and Reductions

In this section we recall what is meant by the complexity of logic programming.
Moreover, we provide definitions of the standard complexity classes encountered
in this survey and provide other related definitions. For a detailed exposition of
the complexity notions, the reader is referred to e.g., [94,126].
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8.1.1 Decision Problems
In this section, we only deal with decision problems , i.e., problems where the
answer is “yes” or “no”. Formally, a decision problem is a language L over some
alphabet Σ. An instance of such a decision problem is given as a word x ∈ Σ∗.
The question to be answered is whether x ∈ L holds. Accordingly, the answer is
“yes” or “no”, respectively. The resources (i.e., either time or space) required in
the worst case to find the correct answer for any instance x of a problem L is
referred to as the complexity of the problem L.

8.1.2 Complexity of Logic Programming
There are three main kinds of decision problems (and, thus, three main kinds of
complexity) connected to plain datalog and its various extensions [156]:

– The data complexity is the complexity of the following decision problem:
Let P be some fixed datalog program.

Instance. An input database Din and a ground atom A.
Question. Does Din ∪ P |= A hold?

– The program complexity (also called expression complexity) is the com-
plexity of the following decision problem: Let Din be some fixed input data-
base.

Instance. A datalog program P and a ground atom A.
Question. Does Din ∪ P |= A hold?

– The combined complexity is the complexity of the following decision prob-
lem:

Instance. A datalog program P , an input database Din , and a ground atom
A.
Question. Does Din ∪ P |= A hold?

Note that for all versions of datalog considered in this paper, the combined
complexity is equivalent to the program complexity with respect to polynomial-
time reductions. This is due to the fact that with respect to the derivation of
ground atoms, each pair 〈Din , P 〉 can be easily reduced to the pair 〈D∅, P

∗〉,
where D∅ is the empty database instance associated with a universe of two
constants c1 and c2, and P ∗ is obtained from P∪Din by straightforward encoding
of the universe UDin using n-tuples over {c1, c2}, where n = !|UDin |". For this
reason, we mostly disregard the combined complexity in the material concerning
datalog.

As for logic programming in general, a generalization of the combined com-
plexity may be regarded as the main complexity measure. Below, when we speak
about the complexity of a fragment of logic programming, we mean the com-
plexity of the following decision problem:
Instance. A datalog program P and a ground atom A.
Question. Does P |= A hold?
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8.1.3 Complexity Classes
Normally, the time complexity of a problem is expressed in terms of the steps
needed by a Turing machine which decides this problem. Likewise, the space
complexity corresponds to the number of cells visited by a Turing machine.
However, the complexity classes we are interested in here can be defined by
any “reasonable” machine model, e.g. random access machines, which are more
closely related to real-world computers.

We shall encounter the following complexity classes in this survey.

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ EXPTIME ⊆ NEXPTIME

These are the classes of problems which can be solved in logarithmic space (L),
non-deterministic logarithmic space (NL), polynomial time (P), non-deterministic
polynomial time (NP), polynomial space (PSPACE), exponential time (EXPTIME),
and non-deterministic exponential time (NEXPTIME).

Any complexity class C has its complementary class denoted by co-C, which
is defined as follows. For every language L ⊆ Σ∗, let L denote its complement ,
i.e. the set Σ∗ \ L. Then co-C is {L | L ∈ C}.

Another interesting kind of complexity classes are the classes of the polyno-
mial hierarchy. Formally, they are defined in terms of oracle Turing machines.
Intuitively, an oracle is a subroutine for solving some sub-problem where we do
not count the cost of the computation. Let C be a set of languages. For a lan-
guage L, we say that L ∈ PC (or L ∈ NPC) if and only if there is some language
A ∈ C such that L can be decided in polynomial-time (resp. in non-deterministic
polynomial-time) by an algorithm using an oracle for A. The polynomial hierar-
chy consists of classes Δp

i , Σp
i , and Πp

i defined as follows:

Δp
0 = Σp

0 = Πp
0 = P

Δp
i+1 = PΣp

i

Σp
i+1 = NPΣp

i

Πp
i+1 = co-Σp

i+1

for all i ≥ 0. The class PH is defined as

PH =
⋃

i≥0

Σp
i .

8.1.4 Reductions
Let L1 and L2 be decision problems (i.e., languages over some alphabet Σ).
Moreover, let R : Σ∗ → Σ∗ be a function which can be computed in logarithmic
space and which has the following property: for every x ∈ Σ∗, x ∈ L1 if and
only if R(x) ∈ L2. Then R is called a logarithmic-space reduction from L1 to L2

and we say that L1 is reducible to L2.
Let C be a set of languages. A language L is called C-hard if any language L′

in C is reducible to L. If L is C-hard and L ∈ C then L is called complete for C
or simply C-complete.
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Besides the above notion of a reduction, complexity theory also considers
other kinds of reductions, like polynomial-time reductions or Turing reductions
(which are more liberal kinds of reductions). In this paper, unless otherwise
stated, a reduction means a logarithmic-space reduction. However, we note that
in several cases, results that we shall review have been stated for polynomial-
time reductions, but the proofs establish that they hold under logarithmic-space
reductions as well.

8.1.5 Turing Machines
As was already mentioned above, the complexity classes considered here are usu-
ally defined in terms of Turing machines. On the other hand, as soon as one has
several complete problems for some complexity class C, further C-hardness re-
sults are usually obtained by reducing one of the already known C-hard problems
to the new problem under investigation. In other words, Turing machines are no
longer needed explicitly. However, in the context of logic programming, a great
portion of the hardness results recalled below have very intuitive proofs “from
first principles” (i.e., via reductions from the computations of Turing machines
rather than via reductions from other problems). We therefore briefly recall the
definition of deterministic and non-deterministic Turing machines.

A deterministic Turing machine (DTM) is defined as a quadruple (S, Σ, δ, s0)
with the following meaning: S is a finite set of states , Σ is a finite alphabet of
symbols, δ is a transition function, and s0 ∈ S is the initial state. The alphabet
Σ contains a special symbol � called the blank . The transition function δ is a
map

δ : S × Σ → (S ∪ {yes, no}) × Σ × {-1, 0, +1},

where yes, and no denote two additional states not occurring in S, and -1, 0,
+1 denote motion directions. It is assumed here, without loss of generality, that
the machine is well-behaved and never moves off the tape, i.e., d �= -1 whenever
the cursor is on the leftmost cell; this can be easily ensured by proper design of
δ (or by a special symbol which marks the left end of the tape).

Let T be a DTM (Σ, S, δ, s0). The tape of T is divided into cells containing
symbols of Σ. There is a cursor that may move along the tape. At the start, T
is in the initial state s0, and the cursor points to the leftmost cell of the tape.
An input string I is written on the tape as follows: the first |I| cells c0, . . . , c|I|−1

of the tape, where |I| denotes the length of I, contains the symbols of I, and all
other cells contain �.

The machine takes successive steps of computation according to δ. Namely,
assume that T is in a state s ∈ S and the cursor points to the symbol σ ∈ Σ on
the tape. Let

δ(s, σ) = (s′, σ′, d).

Then T changes its current state to s′, overwrites σ′ on σ, and moves the cursor
according to d. Namely, if d = -1 or d = +1, then the cursor moves to the
previous cell or the next one, respectively; if d = 0, then the cursor remains in
the same position.
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When any of the states yes or no is reached, T halts. We say that T accepts
the input I if T halts in yes. Similarly, we say that T rejects the input in the
case of halting in no.

A non-deterministic Turing machine (NDTM) is defined as a quadruple (S, Σ,
Δ, s0), where S, Σ, s0 are the same as before. Possible operations of the machine
are described by Δ, which is no longer a function. Instead, Δ is a relation:

Δ ⊆ (S × Σ) × (S ∪ {yes, no}) × Σ × {-1, 0, +1}.

A tuple whose first two members are s and σ respectively, specifies the action
of the NDTM when its current state is s and the symbol pointed at by its
cursor is σ. If the number of such tuples is greater than one, the NDTM non-
deterministically chooses any of them and operates accordingly.

Unlike the case of a DTM, the definition of acceptance and rejection by a
NDTM is asymmetric. We say that an NDTM accepts an input if there is at
least one sequence of choices leading to the state yes. An NDTM rejects an
input if no sequence of choices can lead to yes.

8.2 Propositional Logic Programming

We start our complexity analysis of logic programming with the simplest case,
i.e., propositional logic programming.

Theorem 224. (implicit in [95,156,89]) Propositional logic programming is
P-complete.

Proof. Membership. Let a program P be given. Recall from Section 6.1 that the
semantics of P can be defined as the least fixpoint of the immediate consequence
operator TP ) and that this least fixpoint lfp(TP ) can be computed in polynomial
time even if the “naive” evaluation algorithm from Listing 6 2 is applied. Indeed,
the number of iterations (i.e. applications of TP ) is bounded by the number of
rules plus one. Moreover, each iteration step is clearly feasible in polynomial
time.
Hardness. Let A be an arbitrary language in P. Thus A is decidable by a deter-
ministic Turing machine (DTM) T in at most q(|I|) steps for some polynomial
q, for any input I. We show that the computation of the Turing machine T on
any input I can be simulated by a propositional logic program as follows: Let
N = q(|I|). W.l.o.g., we assume that the computation of T on input I takes
exactly N steps.

The transition function δ of a DTM with a single tape can be represented by
a table whose rows are tuples t = 〈s, σ, s′, σ′, d〉. Such a tuple t expresses the
following if-then-rule:

if at some time instant τ the DTM is in state s, the cursor points to cell
number π, and this cell contains symbol σ
then at instant τ +1 the DTM is in state s′, cell number π contains symbol
σ′, and the cursor points to cell number π + d.
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It is possible to describe the complete evolution of a DTM T on input string
I from its initial configuration at time instant 0 to the configuration at instant
N by a propositional logic program L(T, I, N). To achieve this, we define the
following classes of propositional atoms:

symbolα[τ, π] for 0 ≤ τ ≤ N , 0 ≤ π ≤ N and α ∈ Σ. Intuitive meaning: at
instant τ of the computation, cell number π contains symbol α.

cursor[τ, π] for 0 ≤ τ ≤ N and 0 ≤ π ≤ N . Intuitive meaning: at instant τ , the
cursor points to cell number π.

states[τ ] for 0 ≤ τ ≤ N and s ∈ S. Intuitive meaning: at instant τ , the DTM
T is in state s.

accept Intuitive meaning: T has reached state yes.

Let us denote by Ik the k-th symbol of the string I = I0 · · · I|I|−1. The initial
configuration of T on input I is reflected by the following initialization facts in
L(T, I, N):

symbolσ[0, π] ← for 0 ≤ π < |I|, where Iπ = σ
symbol�[0, π] ← for |I| ≤ π ≤ N
cursor[0, 0] ←

states0 [0] ←

Each entry 〈s, σ, s′, σ′, d〉 of the transition table δ is translated into the follow-
ing propositional Horn clauses, which we call the transition rules . We thus need
the following clauses for each value of τ and π such that 0 ≤ τ < N , 0 ≤ π < N ,
and 0 ≤ π + d.

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]
cursor[τ + 1, π + d] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

states′ [τ + 1] ← states[τ ], symbolσ[τ, π], cursor[τ, π]

These clauses almost perfectly describe what is happening during a state
transition from an instant τ to an instant τ + 1. However, it should not be
forgotten that those tape cells which are not changed during the transition keep
their old values at instant τ +1. This must be reflected by what we term inertia
rules. These rules are asserted for each time instant τ and tape cell numbers
π, π′, where 0 ≤ τ < N , 0 ≤ π < π′ ≤ N , and have the following form:

symbolσ[τ + 1, π] ← symbolσ[τ, π], cursor[τ, π′]
symbolσ[τ + 1, π′] ← symbolσ[τ, π′], cursor[τ, π]

Finally, a group of clauses termed accept rules derives the propositional atom
accept, whenever an accepting configuration is reached.

accept ← stateyes[τ ] for 0 ≤ τ ≤ N .
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Denote by L the logic program L(T, I, N). Note that T0
L = ∅ and that T1

L

contains the initial configuration of T at time instant 0. By construction, the
least fixpoint lfp(TL) of L is reached at TN+2

L , and the ground atoms added to
Tτ

L , 2 ≤ τ ≤ N + 1, i.e., those in Tτ
L \ Tτ−1

L , describe the configuration of T on
the input I at the time instant τ − 1. The least fixpoint lfp(TL) contains accept
if and only if an accepting configuration has been reached by T in at most N
computation steps. Hence, L(T, I, N)) |= accept if and only if T has reached an
accepting state within q(N) steps with N = |I|.

The translation from I to L(T, I, N) with N = q(|I|) is very simple and is
clearly feasible in logarithmic space, since all rules of L(T, I, N)) can be gener-
ated independently of each other and each has size logarithmic in |I|; note that
the numbers τ and π have O(log |I|) bits, while all other syntactic constituents
of a rule have constant size. We have thus shown that every language A in P
is logspace reducible to propositional logic programming. Hence, propositional
logic programming is P-hard. �

Note that the the polynomial-time upper bound can be even sharpened to a
linear time upper bound, as was shown in [57,120]. As far as the lower bound is
concerned, the above proof could be greatly simplified by using reductions from
other P-complete problems like, e.g., from the monotone circuit value problem
(see [126]). However, the proof from first principles provides a basic framework
from which further results will be derived by slight adaptations in the sequel.

An interesting kind of syntactical restrictions on programs is obtained by re-
stricting the number of atoms in the body. Let LP(k) denote logic programming
where each clause has at most k atoms in the body. Then, by results in [156,90],
one easily obtains that LP(1) is NL-complete. Indeed, the correspondence be-
tween the well-known NL-complete reachability problem of directed graphs and
LP(1) is immediate. On the other hand, observe that the DTM encoding in the
proof of Theorem 224 can be easily modified to programs in LP(2). Hence, LP(k)
for any k ≥ 2 is P-complete.

8.3 Conjunctive Queries

For the complexity analysis of conjunctive queries (CQs), we restrict ourselves
to boolean conjunctive queries (cf. Definition 25), i.e. the queries under consid-
eration are of the form

Q : ans() ← r1(u1) ∧ . . . ∧ rn(un)

where n ≥ 0; r1, . . . , rn are (not necessarily distinct) extensional relation symbols
and ans() is a 0-ary intensional relation symbol; moreover, u1, . . . ,un are lists
of terms of appropriate length.25

Query Q evaluates to true if there exists a substitution θ such that ri(ui)θ ∈
Din for all i ∈ {1, . . . , n}; otherwise, the query evaluates to false .
25 Note that without this restriction to boolean CQs, the head literal of a conjunctive

query would have the form ans(u), where u is a list of terms. However, as far as
the complexity of query evaluation is concerned, this difference is inessential.
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Theorem 225. The program complexity of conjunctive queries is NP-complete
[37].

This problem appears as Problem SR31 in Garey and Johnson’s book [76].

Proof. Membership. We guess an assignment for each variable of the query and
check whether all the resulting ground atoms in the query body exist in Din .
This check is obviously feasible in polynomial time.
Hardness. We reduce the NP-complete 3-SAT problem to our problem. For this
purpose, we consider the following input database (over a ternary relation symbol
c and a binary relation symbol v) as fixed:

Din = { c(1, 1, 1), c(1, 1, 0), c(1, 0, 1), c(1, 0, 0),
c(0, 1, 1), c(0, 1, 0), c(0, 0, 1), v(1, 0), v(0, 1) }

Now let an instance of the 3-SAT problem be given through the 3-CNF formula

Φ =
n∧

i=1

li,1 ∨ li,2 ∨ li,3

over propositional atoms x1, . . . , xk. Then we define a conjunctive query Q as
follows:

ans() ← c(l∗1,1, l
∗
1,2, l

∗
1,3), . . . , c(l

∗
1,1, l

∗
1,2, l

∗
1,3), v(x1, x̄i), . . . , v(xk, x̄k)

where l∗ = x if l = x, and l∗ = x̄ if l = ¬x. By slight abuse of notation, we thus
use xi to denote either a propositional atom (in Φ) or a first-order variable (in
Q).

It is straightforward to verify that the 3-CNF formula Φ is satisfiable if and
only if Din ∪ Q |= ans() holds. �

8.4 First-Order Queries

Recall from Definition 6 that we are mainly considering first-order queries with-
out equality here. Hence, atoms are of the form r(u) for some relational symbol
r from the signature L and a list of terms u whose length corresponds to the
arity of r. Compound formulae are constructed from simpler ones by means of
quantification (with ∀ and ∃) and the conjuncts ∧,∨,¬. Note however that the
following complexity result also holds if we consider first-order predicate logic
with equality.

Theorem 226. (implicit in [90,156]) First-order queries are program-complete
for PSPACE. Their data complexity is in the class AC0, which contains the lan-
guages recognized by unbounded fan-in circuits of polynomial size and constant
depth [94].

Proof. We only prove the PSPACE-completeness. Actually, we show that the
combined complexity is PSPACE-complete. However, by the considerations in
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Section 8.1, the PSPACE-completeness of the program-complexity follows imme-
diately.
Membership. Let ϕ be a first-order sentence and Din be an input database with
domain elements dom. Let n = |Din | + |dom| and m = |ϕ|. There are maximal
m alternations of ∀ and ∃ (because the number of variables in ϕ is less than m),
thus the evaluation has maximal m nested loops. In each loop we need to store

1. the position of the currently processed variable, and
2. for each variable with the assigned value in dom, its position in dom.

The space for these operations is then O(m), hence in PSPACE.
Hardness. The PSPACE-hardness can be shown by a reduction from the QBF
problem. Assume that φ is the quantified Boolean formula

Qx1 . . . Qxnα(x1, . . . , xn)

where Q is either ∀ or ∃ and α is a quantifier-free Boolean formula.
We first define the signature L = {istrue, isequal, or, and, not} The predicates

and, or, not are used to define the operators of Boolean algebra. The predicate
istrue is unary and defines the truth value true, whereas the predicate isequal is
binary and defines the equality of two values.

For each sub-formula β of α, we define a quantifier-free, first-order formula
Tβ(z1, . . . , zn, x) with the following intended meaning: if the variables xi have
the truth value zi, then the formula β(x1, . . . , xn) evaluates to the truth value
x. Note that Tβ(z1, . . . , zn, x) can be defined inductively w.r.t. the structure of
α as follows:

Case β =

xi (with 1 ≤ i ≤ n) : Tβ(z̄, x) ≡ isequal(x, zi)
¬β′ : Tβ(z̄, x) ≡ ∃t1Tβ′(z̄, t1) ∧ not(x, t1)

β1 ∧ β2 : Tβ(z̄, x) ≡ ∃t1, t2 Tβ1(z̄, t1) ∧ Tβ2(z̄, t2) ∧ and(t1, t2, x)
β1 ∨ β2 : Tβ(z̄, x) ≡ ∃t1, t2 Tβ1(z̄, t1) ∧ Tβ2(z̄, t2) ∧ or(t1, t2, x)

Finally, we define the input database as Din = {istrue(1), isequal(0, 0), isequal(1,
1), or(1, 1, 1), or(1, 0, 1), or(0, 1, 1), or(0, 0, 0), and(1, 1, 1), and(1, 0, 0), and(0, 1, 0),
and(0, 0, 0), not(1, 0), not(0, 1)}, and the first-order query ϕ is defined as follows:

ϕ ≡ ∃x Qz1 . . . Qzn istrue(x) ∧ Tα(z̄, x)

It is then straightforward to show that the formula φ is satisfiable if and only if
the evaluation of ϕ returns true. �

8.5 Unification

Unification is used extensively in several areas of computer science, including
theorem proving, database systems, natural language processing, logic program-
ming, computer algebra, and program verification. We briefly introduce the basic
notions here. Additional material can be found in [13] or [52].
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Recall from Definition 50 that two atoms or terms s and t are called unifiable
if there exists a substitution σ with sσ = tσ. Such a substitution σ is called a
unifier of s and t. A unifier σ of s and t is called most general if any other unifier
σ′ of s and t is an instance of σ, i.e., there exists a substitution η with σ′ = ση.

The unification problem is the following decision problem: given terms s
and t, are they unifiable?

Robinson described an algorithm that solves this problem and, if the answer
is positive, computes a most general unifier of given two terms (see [138]). His
algorithm had exponential time and space complexity mainly because of the rep-
resentation of terms by strings of symbols. However, by using more sophisticated
data structures (like directed acyclic graphs), unification was later shown to be
feasible in polynomial time. In fact, even linear time suffices (see [116,130]).

Theorem 227. ([59,162,60]) The unification problem is P-complete.

Note that in the above definition of unification, a unifier σ of s and t makes
the terms sσ and tσ syntactically equal. More generally, one may look for so-
called E-unifiers which make the terms sσ and tσ equal modulo some equational
theory.

Equational theories are usually presented by finite sets E of identities of the
form l = r, which are referred to as equational axioms. The equational theory
Th(E) presented by E is the smallest congruence relation over terms (for a
given signature L) containing E and closed under substitutions, i.e., Th(E) is
the smallest congruence containing all pairs lρ = rρ, where l = r is in E and
ρ is a substitution. We write s =E t to denote that the pair (s, t) of terms is
a member of Th(E). In this survey, we only consider the equationl axioms (for
some function symbol f) depicted in Figure 7.

Associativity A(f) f(f(x, y), z) = f(x, f(y, z))

Commutativity C(f) f(x, y) = f(y, x)

Idempotence I(f) f(x, x) = x

Existence of Unit U(f) f(x, 1) = x, f(1, x) = x

Fig. 7. Equational Axioms

An E-unifier of s and t is a substitution ρ such that sρ =E tρ holds. Whenever
such an E-unifier exists, we say that the terms s and t are E-unifiable. For
every equational theory E, the E-unification problem is the following decision
problem: given terms s and t, are they E-unifiable, i.e., is there a substitution ρ,
such that sρ =E tρ?

By examining the signature L over which the terms of unification problems in
the theory Th(E) have been built, we distinguish between three different kinds
of E-unification. Let sig(E) be the set of all function and constant symbols oc-
curring in the equational axioms of E. If L = sig(E) holds, then we speak about
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elementary E-unification. If the signature L contains in addition free constant
symbols, but no free function symbols, then we speak about E-unification with
constants. Finally, if the signature L contains free function symbols of arbitrary
arities, then we speak about general E-unification. Figure 8 summarizes the com-
plexity results for some equational unification decision problems. The entry ←−
means that upper bounds carry over to the simpler case.

theory complexity

elementary with constants general

∅ ←− ←− linear [116,130]

A ←− NP-hard [20] and
in NEXPTIME [131]

NP-hard

C
NP-complete
(folkore, see e.g. [76,13])

NP-complete

AC NP-complete NP-complete NP-complete [96]

ACI ←− in P NP-complete [96]

ACIU ←− in P NP-complete [121]

Fig. 8. Complexity Results for Equational Unification Decision Problems

8.6 Positive Definite Rule Sets

Let us now turn to datalog. We first consider the data complexity.

Theorem 228. (implicit in [156,89]) Datalog is data complete for P.

Proof. (Sketch) Grounding P on an input database D yields polynomially many
clauses in the size of D; hence, the complexity of propositional logic programming
is an upper bound for the data complexity.

The P-hardness can be shown by writing a simple datalog meta-interpreter
for propositional LP(k), where k is a constant.

Represent rules A0 ← A1, . . . , Ai, where 0 ≤ i ≤ k, by tuples 〈A0, . . . , Ai〉
in an (i + 1)-ary relation Ri on the propositional atoms. Then, a program P in
LP(k) which is stored this way in a database D(P ) can be evaluated by a fixed
datalog program PMI(k) which contains for each relation Ri, 0 ≤ i ≤ k, a rule

T (X0) ← T (X1), . . . , T (Xi), Ri(X0, . . . , Xi).

T (x) intuitively means that atom x is true. Then, P |= A just if PMI ∪P (D) |=
T (A). P-hardness of the data complexity of datalog is then immediate from
Theorem 224. �

The program complexity is exponentially higher.
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Theorem 229. (implicit in [156,89]) Datalog is program complete for
EXPTIME.

Proof. Membership. Grounding P on D leads to a propositional program P ′

whose size is exponential in the size of the fixed input database D. Hence, by
Theorem 224, the program complexity is in EXPTIME.

Hardness. In order to prove EXPTIME-hardness, we show that if a DTM T halts
in less than N = 2nk

steps on a given input I where |I| = n, then T can be
simulated by a datalog program over a fixed input database D. In fact, we use
D∅, i.e., the empty database with the universe U = {0, 1}.

We employ the scheme of the DTM encoding into logic programming from
Theorem 224, but use the predicates symbolσ(X, Y ), cursor(X, Y ) and states(X)
instead of the propositional letters symbolσ[X, Y ], cursor[X, Y ] and states[X ]
respectively. The time points τ and tape positions π from 0 to 2m − 1, m = nk,
are represented by m-ary tuples over U , on which the functions τ + 1 and π + d
are realized by means of the successor Succm from a linear order ≤m on Um.

For an inductive definition, suppose Succi(X,Y), Firsti(X), and Lasti(X) tell
the successor, the first, and the last element from a linear order ≤i on U i, where
X and Y have arity i. Then, use rules

Succi+1(Z,X, Z,Y) ← Succi(X,Y)
Succi+1(Z,X, Z ′,Y) ← Succ1(Z, Z ′),Lasti(X),Firsti(Y)

Firsti+1(Z,X) ← First1(Z),Firsti(X)
Lasti+1(Z,X) ← Last1(z),Lasti(X)

Here Succ1(X, Y ), First1(X), and Last1(X) on U1 = U must be provided. For
our reduction, we use the usual ordering 0 ≤1 1 and provide those relations by
the ground facts Succ1(0, 1), First1(0), and Last1(1).

The initialization facts symbolσ[0, π] are readily translated into the datalog
rules

symbolσ(X, t) ← Firstm(X),

where t represents the position π, and similarly the facts cursor[0, 0] and states0 [0].
The remaining initialization facts symbol�[0, π], where |I| ≤ π ≤ N , are translated
to the rule

symbol�(X,Y) ← Firstm(X), ≤m(t,Y)

where t represents the number |I|; the order ≤m is easily defined from Succm

by two clauses
≤m(X,X) ←
≤m(X,Y) ← Succm(X,Z), ≤m (Z,Y)

The transition and inertia rules are easily translated into datalog rules. For
realizing τ +1 and π +d, use in the body atoms Succm(X,X′). For example, the
clause

symbolσ′ [τ + 1, π] ← states[τ ], symbolσ[τ, π], cursor[τ, π]
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is translated into

symbolσ′(X′,Y) ← states(X), symbolσ(X,Y), cursor(X,Y),Succm(X,X′).

The translation of the accept rules is straightforward.
For the resulting datalog program P ′, it holds that P ′ ∪ D∅ |= accept if and

only if T accepts input I in at most N steps. It is easy to see that P ′ can be
constructed from T and I in logarithmic space. Hence, datalog has EXPTIME-
hard program complexity. �

Note that, instead of using a generic reduction, the hardness part of this theorem
can also be obtained by applying complexity upgrading techniques [127,17].

8.7 Stratified Definite Rule Sets (stratified Datalog)

Recall from Definition 21 that a normal clause is a rule of the form

A ← L1, . . . , Lm (m ≥ 0)

where A is an atom and each Li is a literal. A normal logic program is a finite set
of normal clauses. As was explained in Section 7, if a normal logic program P is
stratified , then the clauses of P can be partitioned into disjoint sets S1, . . . , Sn

s.t. the semantics of P is computed by successively computing fixpoints of the
immediate consequence operators TS1 , . . . , TSn . More precisely, let I0 be the
initial instance over the extensional predicate symbols of P and let Ii (with
1 ≤ i ≤ n) be defined as follows:

I1 := Tω
S1

(I0), I2 := Tω
S2

(I1), . . . , In := Tω
Sn

(In−1)

Then the semantics of program P is given through the set In.
Note that in the propositional case, In is clearly polynomially computable.

Hence, stratified negation does not increase the complexity. Analogously to The-
orems 224, 228, and 229, we thus have:

Theorem 230. (implicit in [9]) Stratified propositional logic programming with
negation is P-complete. Stratified datalog with negation is data complete for P
and program complete for EXPTIME.

Note that nonrecursive logic programs with negation are trivially stratified since,
in this case, the dependency graph is acyclic and the clauses can be simply parti-
tioned into strata according to a topological sort of the head predicates. Actually,
any nonrecursive datalog program with negation can be easily rewritten to an
equivalent first-order query and vice versa (cf. Theorem 243). Hence, analogously
to Theorem 226, we have the following complexity results.

Theorem 231. (implicit in [90,156]) Nonrecursive propositional logic program-
ming with negation is P-complete. Nonrecursive datalog with negation is program
complete for PSPACE. Its data complexity is in the class AC0, which contains the
languages recognized by unbounded fan-in circuits of polynomial size and constant
depth [94].
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8.8 Well-Founded and Inflationary Semantics

In Section 7.6, an alternating fixpoint procedure for computing the well-founded
semantics was presented. This computation aims at iteratively building up a set
of negative conclusions Ã of a logic program. It starts with an underestimate of
the negative conclusions Ĩ = ∅ from which an overestimate S̃P (Ĩ) is computed
which is in turn used to move back to an underestimate AP (Ĩ) := S̃P (S̃P (Ĩ)),
etc. The iteration of this monotonic transformation AP leads to a least fixpoint
Ã := lfp(AP ). The well-founded semantics of the program P is given through
the set Ã∪ S̃P (Ã). Clearly, for a propositional logic program, this fixpoint com-
putation can be done in polynomial time. Together with Theorem 224, we thus
get.

Theorem 232. (implicit in [154,155]) Propositional logic programming with
negation under well-founded semantics is P-complete. Datalog with negation un-
der well-founded semantics is data complete for P and program complete for
EXPTIME.

As was mentioned in Section 5.3.5, the inflationary semantics is defined via
the inflationary operator T̃P , which is defined as T̃P (I) = I ∪ TP I (I) (cf. De-
finition 189). Clearly, the limit T̃ω

P (I) is computable in polynomial time for a
propositional program P . Therefore, by the above results, we have

Theorem 233. ([5]; implicit in [86]) Propositional logic programming with
negation under inflationary semantics is P-complete. Datalog with negation un-
der inflationary semantics is data complete for P and program complete for
EXPTIME.

8.9 Stable Model Semantics

An interpretation I of a normal logic program P is a stable model of P [77] if I is
the (unique) minimal Herbrand model of P I . As was mentioned in Section 5.3.2,
a program P may have zero, one, or multiple stable models.

Note that every stratified program P has a unique stable model, and its strat-
ified and stable semantics coincide. Unstratified rules increase the complexity as
the following theorem illustrates.

Theorem 234. ([115], [22]) Given a propositional normal logic program P , de-
ciding whether P has a stable model is NP-complete.

Proof. Membership. Clearly, P I is polynomial time computable from P and I.
Hence, a stable model M of P can be guessed and checked in polynomial time.
Hardness. Modify the DTM encoding in the proof of Theorem 224 for a non-
deterministic Turing machine T as follows.

1. For each state s and symbol σ, introduce atoms Bs,σ,1[τ ],. . . , Bs,σ,k[τ ] for
all 1 ≤ τ < N and for all transitions 〈s, σ, si, σ

′
i, di〉, where 1 ≤ i ≤ k.
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2. Add Bs,σ,i[τ ] in the bodies of the transition rules for 〈s, σ, si, σ
′
i, di〉.

3. Add the rule

Bs,σ,i[τ ] ← ¬Bs,σ,1[τ ], . . . ,¬Bs,σ,i−1[τ ],¬Bs,σ,i+1[τ ], . . . ,¬Bs,σ,k[τ ].

Intuitively, these rules non-deterministically select precisely one of the pos-
sible transitions for s and σ at time instant τ , whose transition rules are
enabled via Bs,σ,i[τ ].

4. Finally, add a rule
accept ← ¬accept.

It ensures that accept is true in every stable model.

It is immediate from the construction that the stable models M of the resulting
program correspond to the accepting runs of T . �

Notice that, as shown in [115], the hardness part of this result holds even if
all rules in P have exactly one literal in the body and, moreover, this literal is
negative. As an easy consequence of Theorem 234, we obtain

Theorem 235. ([115]; [142] and [102]) Propositional logic programming with
negation under stable model semantics is co-NP-complete. Datalog with negation
under stable model semantics is data complete for co-NP and program complete
for co-NEXPTIME.

The co-NEXPTIME result for program complexity, which is not stated in [142],
follows from an analogous result for datalog under fixpoint models in [102] and
a simple, elegant transformation of this semantics to the stable model semantics
[142].

8.10 Disjunctive Rule Sets

A disjunctive logic program is a set of clauses

A1 ∨ · · · ∨ Ak ← L1, . . . , Lm with (k ≥ 1, m ≥ 0),

where each Ai is an atom and each Lj is a literal, see [112,119]. The semantics of
negation-free disjunctive logic programs is based on minimal Herbrand models.
As was pointed out in Section 5.1.4, in general, disjunctive logic programs do
not have a unique minimal Herbrand model.

Denote by MM(P ) the set of all minimal Herbrand models of P . The Gener-
alized Closed World Assumption (GCWA) [118] for negation-free P amounts to
the meaning MGCWA(P ) = {L | MM(P ) |= L}.

Theorem 236. ([62,64]) Let P be a propositional negation-free disjunctive
logic program and A be a propositional atom. Deciding whether P |=GCWA A
is co-NP-complete.
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Proof. (Sketch) It is not hard to argue that for an atom A, we have P |=GCWA A
if and only if P |=PC A, where |=PC is the classical logical consequence relation.
In addition, any set of clauses can be clearly represented by a suitable dis-
junctive logic program. Hence, the co-NP-hardness follows from the well-known
NP-completeness of SAT. �

Stable negation naturally extends to disjunctive logic programs, by adopting
that I is a (disjunctive) stable model of a disjunctive logic program P if and
only if I ∈ MM(P I) [133,78]. The disjunctive stable model semantics subsumes
the disjunctive stratified semantics [132]. For well-founded semantics, no such
natural extension is known; the semantics in [24,134] are the most appealing
attempts in this direction.

Clearly, P I is easily computed, and P I = P if P is negation-free. Thus,

Theorem 237. ([63,64,65]) Propositional disjunctive logic programming under
stable model semantics is Πp

2 complete. Disjunctive datalog under stable model
semantics is data complete for Πp

2 and program complete for co-NEXPTIMENP.

8.11 Rule Sets with Function Symbols

If we allow function symbols, then logic programs become undecidable.

Theorem 238. ([8,151]) Logic programming is r.e.-complete.26

Proof. (Sketch) On the one hand, the undecidability can be proved by a simple
encoding of (the halting problem of) Turing machines similar to the encoding in
the proof of Theorem 229 (use terms fn(c), n ≥ 0, for representing cell positions
and time instants). This reduction from the halting problem also establishes the
r.e.-hardness. On the other hand, the least fixpoint lfp(TP ) of any logic program
P is clearly a recursively enumerable set. This shows the r.e.-membership and,
thus, in total, the r.e.-completeness of logic programming. �

A natural decidable fragment of logic programming with functions are nonre-
cursive programs. Their complexity is characterized by the following theorem.

Theorem 239. ([47]) Nonrecursive logic programming is NEXPTIME-complete.

Proof. (Sketch) The NEXPTIME-membership is established by applying SLD-
resolution with constraints. The size of the derivation turns out to be exponen-
tial. The NEXPTIME-hardness is proved by reduction from the tiling problem
for the square 2n × 2n. �

26 In the context of recursion theory, reducibility of a language (or problem) L1 to L2

is understood in terms of a Turing reduction, i.e., L1 can be decided by a DTM
with oracle L2, rather than logarithmic-space reduction.



122 F. Bry et al.

8.12 Expressive Power

The expressive power of query languages such as datalog is a topic common
to database theory [2] and finite model theory [61] that has attracted much
attention by both communities. By the expressive power of a (formal) query
language, we understand the set of all queries expressible in that language.

In general, a query q defines a mapping Mq that assigns to each suitable input
database Din (over a fixed input schema) a result database Dout = Mq(Din)
(over a fixed output schema); more logically speaking, a query defines global
relations [85]. For reasons of representation independence, a query should, in
addition, be generic, i.e., invariant under isomorphisms. This means that if τ is
a permutation of the domain Dom(D), then M(τ(Din )) = τ(Dout ). Thus, when
we speak about queries, we always mean generic queries.

Formally, the expressive power of a query language Q is the set of mappings
Mq for all queries q expressible in the language Q by some query expression
(program) E; this syntactic expression is commonly identified with the semantic
query it defines, and simply (in abuse of definition) called a query.

There are two important research tasks in this context. The first is comparing
two query languages Q1 and Q2 in their expressive power. One may prove, for
instance, that Q1 � Q2, which means that the set of all queries expressible in
Q1 is a proper subset of the queries expressible in Q2, and hence, Q2 is strictly
more expressive than Q1. Or one may show that two query languages Q1 and
Q2 have the same expressive power, denoted by Q1 = Q2, and so on.

The second research task, more related to complexity theory, is determining
the absolute expressive power of a query language. This is mostly achieved by
proving that a given query language Q is able to express exactly all queries
whose evaluation complexity is in a complexity class C. In this case, we say that
Q captures C and write simply Q = C. The evaluation complexity of a query is
the complexity of checking whether a given atom belongs to the query result,
or, in the case of Boolean queries, whether the query evaluates to true [156,85].

Note that there is a substantial difference between showing that the query
evaluation problem for a certain query language Q is C-complete and showing
that Q captures C. If the evaluation problem for Q is C-complete, then at least
one C-hard query is expressible in Q. If Q captures C, then Q expresses all
queries evaluable in C (including, of course, all C-hard queries).

To prove that a query language Q captures a machine-based complexity class
C, one usually shows that each C-machine with (encodings of) finite structures
as inputs that computes a generic query can be represented by an expression
in language Q. There is, however, a slight mismatch between ordinary machines
and logical queries. A Turing machine works on a string encoding of the input
database D. Such an encoding provides an implicit linear order on D, in partic-
ular, on all elements of the universe UD. The Turing machine can take profit of
this order and use this order in its computations (as long as genericity is obeyed).
On the other hand, in logic or database theory, the universe UD is a pure set and
thus unordered. For “powerful” query languages of inherent non-deterministic
nature at the level of NP this is not a problem, since an ordering on UD can be
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non-deterministically guessed. However, for many query languages, in particu-
lar, for those corresponding to complexity classes below NP, generating a linear
order is not feasible. Therefore, one often assumes that a linear ordering of the
universe elements is predefined, i.e., given explicitly in the input database. More
specifically, by ordered databases or ordered finite structures , we mean databases
whose schemas contain special relation symbols Succ, First, and Last, that are
always interpreted such that Succ(x, y) is a successor relation of some linear or-
der and First(x) determines the first element and Last(x) the last element in
this order. The importance of predefined linear orderings becomes evident in the
next two theorems.

Before coming to the theorems, we must highlight another small mismatch
between the Turing machine and the datalog setting. A Turing machine can
consider each input bit independently of its value. On the other hand, a plain
datalog program is not able to detect that some atom is not a part of the in-
put database. This is due to the representational peculiarity that only positive
information is present in a database, and that the negative information is under-
stood via the closed world assumption. To compensate this deficiency, we will
slightly augment the syntax of datalog. Throughout this section, we will assume
that input predicates may appear negated in datalog rule bodies; the resulting lan-
guage is datalog+. This extremely limited form of negation is much weaker than
stratified negation, and could be easily circumvented by adopting a different
representation for databases.

The difference between unordered and ordered databases becomes apparent
in the next two theorems:

Theorem 240. (cf. [36]) datalog+
� P.

Proof. (Hint.) Show that there exists no datalog+ program P that can tell
whether the universe U of the input database has an even number of
elements. �

Theorem 241. ([125,80]; implicit in [156,89,106]) On ordered databases,
datalog+ captures P.

Proof. (Sketch) By Theorem 230, query answering for a fixed datalog+ program
is in P. It thus remains to show that each polynomial-time DTM T on finite
input databases D can be simulated by a datalog+ program. This is shown by a
simulation similar to the ones in the proofs of Theorems 224 and 229. �

Next, we compare the expressive power of nonrecursive datalog and, in par-
ticular, nonrecursive range-restricted datalog with well-known database query
languages. Recall that in datalog with negation, the rules are of the form:

q : S(x0) ← L1, . . . , Lm.

where m ≥ 0 and S is an intensional predicate symbol. Each Li is an atom Ri(xi)
or a negated atom ¬Ri(xi). x0, . . . , xm are vectors of variables or constants (from
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dom). Moreover, this rule is range-restricted if every variable in x0, . . . , xm

occurs in some unnegated atom Li = Ri(xi) in the body.
A datalog program is called range-restricted if all its rules are range-restricted.

Nonrecursive range-restricted datalog is referred to as nr-datalog¬. An
nr-datalog¬ query is a query defined by some nr-datalog¬ program with a spec-
ified target relation.

Note that equality may be incorporated into nr-datalog¬ by permitting literals
of the form s = t and s �= t for terms s and t. However, as the following
proposition shows, any nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality.

Proposition 242. Any nr-datalog¬ program with equality can be simulated by
an nr-datalog¬ program not using equality.

Proof. Assume that an nr-datalog¬ contains literals of the form s = t and s �= t.
It suffices to describe the construction for a single nr-datalog¬ rule.

We consider the unnegated equalities s = t first. We can easily get rid of
equalities where one of the terms (say s) is a variable and the other one is a
constant. In this case, we simply replace all occurrences of the variable s by
the constant t. It remains to consider the case of equalities s = t where both s
and t are variables. In this case, we can partition all the variables occurring in
equations into l disjoint sets C1, . . . , Cl, such that for each Ci = {xi1, xi2 . . . , xik}
where (1 ≤ i ≤ l), the equalities xi1 = xi2 = . . . = xik can be derived from the
body of the rule. Without loss of generality, we choose xi1 from each partition
Ci and whenever a variable x ∈ Ci occurs in the rule, we replace it with xi1.
We apply this transformation also to all literals of the form s �= t: if s ∈ Ci or
t ∈ Ci, we replace it with xi1 too.

After this transformation, we obtain a rule with equality literals only in
negated form s �= t as follows:

S(u) ← L1, . . . , Ln, D1, . . . , Dm.

where every Di, (1 ≤ i ≤ m) is an inequality si �= ti. Now let G1, . . . , Gm be m
new relation symbols. Then we add the following rules:

G1(u1) ← L1, . . . , Ln, s1 = t1
G2(u2) ← L1, . . . , Ln, s2 = t2
. . .
Gm(um) ← L1, . . . , Ln, sm = tm

Where ui(1≤i≤m) = var(L1) ∪ . . . ∪ var(Ln). With the above method of elim-
inating the equality literals, we can easily obtain m new rules with rule heads
G′

1, . . . , G
′
m in which no equality literal occurs. Finally we rewrite the original

rule as follows:
S(u) ← L1, . . . , Ln,¬G′

1, . . . ,¬G′
m.

Now all equality literals (either unnegated or negated) have indeed been removed
from our nr-datalog¬ program. �
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Theorem 243. (cf. [2]) Nonrecursive range-restricted datalog with negation =
relational algebra = domain-independent relational calculus. Nonrecursive data-
log with negation = first-order logic (without function symbols).

Proof. We prove here only the first equivalence: Nonrecursive range-restricted
datalog (nr-datalog¬) and relational algebra have the equivalent expressive power.
Proofs of the other equivalence results can be found in Chapter 5 of [2].
“⇒”: We have to show that, given any range-restricted nr-datalog¬ program,
there is an equivalent relational algebra expression. By Proposition 242, we may
restrict ourselves w.l.o.g. to nr-datalog¬ programs not using equality. It suffices
to show how the construction of an equivalent relational algebra expression works
for a single nr-datalog¬ rule. Since relational algebra is closed under composi-
tion, the simulation of the program with a relational algebra expression is then
straightforward.

Consider an nr-datalog¬ rule of the following form:

S(u) ← P1(u1), . . . , Pn(un),¬N1(v1), . . . ,¬Nm(vm).

where the Pi’s are unnegated atoms and the ¬Nj ’s are negated ones. We need
first to construct a new relation A as A = P1 �� . . . �� Pn. Now the relational
algebra expression for S is as follows:

S = πu(P1 �� . . . �� Pn �� (πv1A − N1) �� . . . �� (πvmA − Nm))
Note that if the same relation symbol (for example S) occurs in more than one

rule head (for example r1, . . . , rl), then we have to rename the algebra expressions
for r1, . . . , rl as S1, . . . , Sl and thus S can be written as S = S1 ∪ . . . ∪ Sl.

Due to the ordering of the rules in the program, we can start with the rules
with the smallest ordering number and simulate the rules one by one until all
the rules containing the target relation are processed.
“⇐”: It remains to show that, given a relational algebra expression, we can con-
struct an equivalent range-restricted nr-datalog¬ program. We consider here only
the six primitive operators: selection, projection, Cartesian product, rename, set
union, and set difference. One algebra fragment, the so-called SPJR algebra,
consists of the first 4 operators, namely selection, projection, Cartesian product,
and rename.

In [2] (page 61) the simulation of SPJR algebra by conjunctive queries is
given. Since conjunctive queries are a fragment of nr-datalog¬, we only need to
consider the remaining 2 operators: set union and set difference. The simulation
is trivial: for set union we construct two rules with the same rule head. The set
difference operation R − S corresponds to ans(x) ← R(x),¬S(x). �
The expressive power of relational algebra is equivalent to that of a fragment
of the database query language SQL (essentially, SQL without grouping and
aggregate functions). The expressive power of SQL is discussed in [108,55,107].

On ordered databases, Theorem 241 together with the Theorems 230, 232,
and 233 implies

Theorem 244. On ordered databases, the following query languages capture P:
stratified datalog, datalog under well-founded semantics, and datalog under in-
flationary semantics.
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Syntactical restrictions allow us to capture classes within P. Let datalog+(1) be
the fragment of datalog+ where each rule has at most one non-database predicate
in the body, and let datalog+(1, d) be the fragment of datalog+(1) where each
predicate occurs in at most one rule head.

Theorem 245. ([80,157]) On ordered databases, datalog+(1) captures NL and
the fragment datalog+(1, d) captures L.

Due to the inherent non-determinism, the stable model semantics is much more
expressive.

Theorem 246. ([142]) Datalog under stable model semantics captures co-NP.

Note that for this result an order on the input database is not needed. Infor-
mally, in each stable model such an ordering can be guessed and checked by the
program.

Finally, we briefly address the expressive power of disjunctive logic programs.

Theorem 247. ([64,65]) Disjunctive datalog under stable model semantics cap-
tures Πp

2 .

9 Optimization

This section concludes the thread on evaluation and operational semantics be-
ginning with Section 6. Where Sections 6 and 7 focus on the evaluation of entire
query programs containing many rules and the interaction or chaining of such
rules, this section’s focus is on the evaluation of individual queries (cf. Section 3
for the definition of conjunctive and first-order queries). Where appropriate,
though, we also remind of related results on query programs.

We focus on two aspects of query evaluation only, viz., query rewriting and
containment and (logical) query algebras. A more complete picture of challenges
and techniques for efficient query evaluation can be found, e.g., in [75], Chapters
15–16, or in [82].

Conjunctive or first-order queries are useful tools for the declarative specifi-
cation of one’s query intent. Figuring out the details of how such queries are
evaluated is left to the query engine. For actual evaluation, however, a query
engine needs to determine a detailed specification on how to evaluate a given
query. Such a specification is commonly called a query plan. Query plans are
typically expressed in an algebra, i.e., a set of operators on the domain of dis-
course. Query algebras thus serve to demonstrate how to specify and optimize
evaluation plans for queries and are the focus of the first part of this section
(Section 9.1).

Both on the level of the declarative query and on the level of a query plan for
that query, we might want to find semantically equivalent queries that are better
suited for execution. Furthermore, given a set of queries (e.g., resulting from the
bodies of several rules) we might want to avoid doing the same or similar work
for different queries several times. Rather we would like to compare these queries
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to find common sub-queries that can be evaluated once and then shared for the
execution of multiple other queries. Such problems are considered in the second
part (Section 9.3) of this section on query rewriting and containment.

9.1 An Algebraic Perspective on Queries

The relational algebra, introduced in [43,44] and refined in [37], has long been
the formal foundation for relational database systems. Though practical systems
often deviate notably (see Section 9.2.2), it has proved to be an invaluable tool
for understanding formal properties of query languages (primarily, complete-
ness, complexity, and semantics), for query planning and optimization, and for
implementing query engines.

In the following, we give a brief definition of (a variant of) the relation algebra
and its relation to rule-based query languages. For a more detailed discussion of
the relational algebra see, e.g., [75]. An outlook on extensions of the relational
algebra covering two aspects (duplicates and order) of query languages mostly
ignored in the rest of this article follows. We conclude this section with some
remarks on algebras for complex values, where the limitation to constants as
attribute values is relaxed.

Let L be a signature (cf. Section 3, Definition 3), D a database schema over
L (cf. Section 3, and I a database instance for D. In the following, we use
the relational view of logic as described in Section 3.3. In particular, we use
the unnamed or ordered perspective of relations: Attributes in a relation are
identified by position (or index) not by name. For a tuple t = (x1, . . . , xn) we
use t[i] to denote the value of the i-th attribute in t, i.e., xi. We assume a finite
domain and, where convenient, the presence of a domain relation enumerating
the elements of the domain.

Definition 248 (Selection). Let P be an n-ary relation from I and C be a
conditional expression i = c with i ≤ n and c a constant from L or i = j with
i, j ≤ n.

The relational selection σC(P ) returns the set of tuples from P that fulfill C,
viz. σi=c(P ) = {t ∈ P : t[i] = c} and σi=j(P ) = {t ∈ P : t[i] = t[j]}.

As discussed in Section 3.3, relations can be seen as tables with each tuple
forming a row and each attribute forming a column. Selection can than be seen
as a “vertical” restriction of such a table, where some rows (i.e., tuples) are
omitted. From a perspective of first-order queries, selection corresponds to body
atoms containing some constants c if C is i = c and to multiple occurrences of
the same variable if C is i = j.

In practice, C is often extended to allow further conditional expression over
elements of the domain, e.g., on ordered sorts comparisons such as i ≤ c are
possible.

Definition 249 (Projection). Let P be an n-ary relation from I and i1, . . . , im
≤ n with k < l =⇒ ik < il.



128 F. Bry et al.

The relational projection πi1,...,im(P ) = {(t1, . . . , tm) : ∃ti ∈ D : t[i1] = t1 ∧
. . . ∧ t[im] = tm} returns the m-ary relation made up of tuples from P dropping
all but the i1, . . . , im-th attributes.

Projection can be seen as “horizontal” restriction of a relation (imagined as a
table). In contrast to the selection, relational projection however may incur ad-
ditional cost beyond the linear “slicing” off of a few columns: Dropping columns
may lead to duplicates that are not allowed in a (pure) relation.

The first-order correspondent of relational projection is the body-only occur-
rence of variables.

Definition 250 (Cartesian product). Let P be an n-ary, Q an m-ary rela-
tion from I.

The Cartesian (or cross) product P × Q = {(t1, . . . , tn, tn+1, . . . , tn+m) :
(t1, . . . , tn) ∈ P ∧ (tn+1, . . . , tn+m) ∈ Q} returns the (n + m)-ary relation of
all tuples consisting of concatenations of first tuples from P and second tuples
from Q.

Cartesian product can be seen as table multiplication as the name indicates and
corresponds to the conjunction of atoms (with no shared variables) in first-order
queries.

The relational algebra is completed by standard set operations on relations:

Definition 251 (Relational union, intersection, and difference). Let P
and Q be n-ary relations.

The relational union P ∪ Q = {t ∈ Dn : t ∈ P ∨ t ∈ Q}, intersection P ∩ Q =
{t ∈ Dn : t ∈ P ∧ t ∈ Q}, and difference P − Q = {t ∈ Dn : t ∈ P ∧ t �∈ Q are
specialisations of standard set operations to sets of relations.

Notice that all three operations require that P and Q have the same arity. As
usual either union or intersection can be defined in terms of the other two (at
least under the assumption of a domain relation enumerating all elements of the
domain).

Two more operators are commonly used in relational algebra expressions
though they can be defined by means of the previous ones: relational join and
division.

Definition 252 (Join). Let P be an n-ary, Q be an m-ary relation from I, f :
{1, . . . , n} → {1, . . . , m} a partial, injective function, and k = |f−1({1, . . . , m}|
the number of pairs in f .

The relational join P ��f Q = {(t1, . . . , tn+m−k) : (t1, . . . , tn) ∈ P ∧ ∃t ∈
Q : ∀n < i ≤ n + m − k : t[i − n] = ti ∧ ∀(i, j) ∈ f : ti = t[j]} returns the
(n + m − k)-ary relation of all tuples from P combined with those tuples from
Q where the i-th attribute value in P is equal to the f(i)-th in Q (omitting the
f(i)-th attribute from the result).

Often f is small and we write directly P ��i→j,... Q instead of giving f separately.
Relational join corresponds to multiple occurrences of a variable in a conjunctive
query.
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A join over k attributes can be rewritten to k selections on a Cartesian prod-
uct: Let f : {(i1, j1), . . . , (ik, jk)} and P be an n-ary relation.

P ��f Q = σik=jk+n(σik−1=jk−1+n(. . . σi1=j1+n(P × Q) . . .)

Definition 253 (Division). Let P be an n-ary, Q be an m-ary relation from
I with m < n.

The relational division (or quotient)

P ÷ Q = {(t1, . . . , tn−m) : ∀(tn−m+1, . . . , tn) ∈ Q : (t1, . . . , tn) ∈ P}

returns the n−m-ary relation of all tuples t such that any combination of t with
a tuples from Q forms a tuple from P

The division is the relational algebra’s counterpart to universal quantification in
bodies of first-order queries.

Division can be rewritten to an expression using only projection, difference,
and Cartesian product:

P ÷ Q = πA1,...,An(P ) − πA1,...,An((πA1,...,An(P ) × Q) − P )

In early formulations of the relational algebra including Codd’s original pro-
posal, additional operators such as the permutation are provided:

Definition 254 ([44,37] Permutation). Let P be an n-ary relation from I
and f : {1, . . . , n} → {1, . . . , n} a bijection.

The permutation

Permf (P ) = {(t1, . . . , tn) : ∃t ∈ P : t[f(1)] = t1, . . . , t[f(n)] = tn}

returns an n-ary relation containing all permutations of tuples of P .

However, permutation is usually not considered as part of the relational algebra
due to its undesirable complexity (the size of Permf (P ) may be exponentially
higher than the size of P , viz. in O(|P | × nn)) and as it can be expressed as
π2,...,n+1(σn=n+1(. . . π2,...,n+1(σ2=n+1(π2,...,n+1(σ1=n+1(P ×π1(P )))×π2(P )))×
. . . πn(P ))). Notice, however, that the equivalence is of another quality than the
equivalences for join and division: It depends on the schema of P and its size is
linear in the arity of P (compensating for the lower complexity of π, σ, and ×
compared to Perm).

Another common extension of the relational algebra is the semi-join operator.

Definition 255 (Semi-join). Let P be an n-ary, Q an m-ary relation from I,
f : {1, . . . , n}→{1, . . . , m} a partial, injective function, and k= |f−1({1, . . . , m}|
the number of pairs in f .

The relational semi-join P �f Q = {(t1, . . . , tn) : (t1, . . . , tn) ∈ P ∧ ∃t ∈ Q :
∀(i, j) ∈ f : ti = t[j]} returns the n-ary relation of all tuples from P for which a
tuple from Q exists such that the i-th attribute value in P is equal to the f(i)-th
in Q.
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Intuitively, the semi-join corresponds to a filter on P that only retains tuples
from P with join partners from Q. In contrast to the Cartesian product and the
normal join its result is thus always linear in P and no trace of Q occurs in the
result.

Let P be an n-ary relation, i1, . . . , ik be the attributes from Q occurring in
f , then P �f Q = π1,...,n(P ��f Q) = P ��f πi1,...,ik

(Q). Thus the semi-join
can be expressed using only projection and join or only projection, selection,
and Cartesian product (as join can be expressed using selection and Cartesian
product only).

However, a rewriting of semi-joins is often not desirable. To the contrary [21]
proposes to use semi-joins to reduce query processing in some cases (tree queries)
even to polynomial time complexity. Recent work [105] shows that the semi-join
algebra, i.e., relational algebra with the join and Cartesian product replaced by
the semi-join is equivalent to the guarded fragment of first-order logic.

The semi-join operator is an example for an operator that though actually
weaker than the existing operators in the relational algebra might actually be
exploited to obtain equivalent, but faster formulations for a restricted class of
queries.

A similar observation can be made for the usual handling of universal quan-
tification as division (with or without subsequent rewriting) as well as existential
quantification as projection may result in poor performance as intermediary re-
sults are unnecessary large. This has lead to the development of several (more
efficient, but also more involved) direct implementations of division as well as of
alternatives such as the semi- and complement-join:

Definition 256 (Complement-Join). (cf. [26]) Let P be an n-ary, Q be an
m-ary relation from I, f : {1, . . . , n} → {1, . . . , m} a partial, injective function,
and k = |f−1({1, . . . , m}| the number of pairs in f .

The relational semi-join P�fQ = {(t1, . . . , tn) : (t1, . . . , tn) ∈ P ∧ �t ∈ Q :
∀(i, j) ∈ f : ti = t[j]} returns the n-ary relation of all tuples from P for which
no tuple from Q exists such that the i-th attribute value in P is equal to the
f(i)-th in Q.

Obviously, P�fQ = P − π1,...,n(P ��f Q) and thus P�fQ = P − P �f Q.
For details on the use of the complement- and semi-join for realizing quantifi-

cation, see [26].

9.1.1 Translating First-Order Queries
Chandra and Merlin [37] show that

Theorem 257. ([37]) For each relational expression there is an equivalent first
order query, and vice versa.

There is one caveat: This result only holds if, as Chandra and Merlin assume,
the domain is finite or the queries are domain independent. In the following,
the former is assumed (an exhaustive discussion of domain independence can be
found, e.g., in [2]). Assuming a finite domain allows “domain closure” for queries
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such as ans(x) ← ¬q(x, y). Such a query is transformed into the expression
π1(D2 −Q) with D domain of the query and Q the relation corresponding to the
predicate symbol q.

Proof (Sketch). The equivalence proof from [37] is a fairly straightforward struc-
tural induction over relational expressions and first-order queries respectively.
Instead of a full proof, we give a number of illustrative translation:

1. ans(x) ← q(x, y) ∧ r(y, z) is equivalent to π1(Q ��2→1 R) as well as to
π1(σ2=3(Q × R)) as well as to π1(Q ��2→1 π1(R)).

2. ans(x) ← ¬q(x, y) is equivalent to π1(D2 − Q) as well as to D − π1(Q).
3. ans(x, y) ← (p(x, y) ∧ ¬q(y)) ∨ (p(x, y) ∧ ∀z : s(x, y, z) is equivalent to

π1,2((P − (D × Q)) ∪ (P ��1→1,2→2 π1,2(S ÷ D))).

Theorem 258. (cf. [37]) Conjunctive queries and relational expressions formed
only from selection, projection, Cartesian product, intersection, and join have the
same expressiveness. This extends trivially to expressions formed only from se-
lection, projection, and Cartesian product, as join can be rewritten as above and,
for n-ary relations P and Q, P ∩ Q = π1,...,n(σ1=n+1(σ2=n+2(. . . σn=n+n(P ×
Q) . . .))).

For illustration, see equivalence (1) in the proof of Theorem 257.

9.1.2 Query Rewriting
It is important to notice in the above examples of equivalent relational algebra
expressions for a given first-order query, that there are always several reasonable
expressions for the same query. Consider, e.g., again the query ans(x, y) ←
p(x, y) ∧ (¬q(y, z) ∨ ¬r(y, w)). This query is equivalent to, e.g.,

– π1,2(P ��2→1 ((D2 − Q) ∪ (D2 − R)))
– π1,2(P ��2→1 (π1(D2 − (Q ∩ R))))
– π1,2(P ��2→1 (D − π1(Q ∩ R)))

Of these three equivalent queries only the application of de Morgan’s law carries
over to the first-order queries. Many other equivalences have no correspondence
in first-order queries. In this respect, first-order queries are more declarative and
more succinct representations of the query intent than relational expressions.
However, that relational expressions allow such fine differences has shown to be
of great value for query optimization, i.e., determining which of the equivalent
formulations of a query should be used for evaluation: The relational algebra
allows the separation of this planning phase from the actual evaluation. A query
planner or optimizer can decide, based, e.g., on general equivalences as discussed
here and on estimated costs of different relational expressions which variant to
use.

Equivalence Laws. Equivalence laws between relational algebra expressions com-
prise common laws for set operators ∪,∩, and −. In particular, ∪ and ∩ are as-
sociative and commutative, de Morgan’s law and distribute laws for intersection
and union apply.
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More interesting are equivalence laws for the additional operators such as ��,
×, σ, and π:

Cartesian Product and Join. The Cartesian product × is commutative and as-
sociative just as ∪ and ∩. For the relational �� a proper adjustment of the
join condition is required27. If the join expression is flipped, �� is commutative,
i.e., P ��1=2 Q ≡ Q ��2=1 P . For associativity, the join condition needs to be
adapted, e.g., P ��1=3 (R ��1=2 S) ≡ (P ×R) ��1=1,3=2 S (assuming all relations
are binary) since both join conditions involve attributes from S.

Selection. Selection is generally a good candidate for optimization, pushing se-
lections (a fast but possibly fairly selective operation) inside of an expression
thus limiting the size of intermediary results. Also selection can generally be
propagated “down” into an expression: Selection distributes over ×, �� and the
set operators. For − and ∩ it suffices to propagate the selection to the first
relation, e.g., σC(P − Q) = σC(P ) − σC(Q) = σC(P ) − σC(Q). For Cartesian
product and Join it suffices to propagate the selection to those sub-expressions
that contain the attributes referenced in C. Let P be an n-ary relation. Then

σi=c(P × Q) =

{
σi=c(P ) × Q if i ≤ n

P × σi=c(Q) if i > n

Projection. In contrast to selection, we can only propagate selection “down”
in an expression to the point where the attributes dropped by the projection
are last referenced in the expression. Conversely, an expression might benefit
from introducing additional projections to get rid of attributes not used in the
remainder of an expression as early as possible, viz. immediately after the in-
nermost expression referencing them. Moreover, since as a result of a projection
some tuples may become duplicates and thus be dropped in the set semantics
considered so far, projection can in general not be distributed over any of the
set operators. It can be propagated over join and Cartesian product: Let P be
an n-ary, Q an m-ary relation and i1, . . . , ik ≤ n, ik+1, . . . , ik+l > n then

πi1,...,ik+l
(P × Q) = πi1,...,ik

(P ) × πik+1,...,ik+l
(Q).

9.2 “Real” Queries

“Real” relational databases and queries deviate in a few, but important points
from both the relational algebra, first-order queries, and datalog. Some of these
are highlighted in the remainder of this section.

We start by moving from relations as sets to relations as bags (then called
multi-relations). Bag semantics is in practice often faster as it allows to ignore

27 Note, that this when using the named perspective of the relational algebra (where
attributes are identified by name rather than position) no adjustment is necessary
and �� is trivially associative.
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duplicates except when specifically noted rather than an implicit and costly
elimination of duplicates at each relational operator (though, of course, only
projection and union can actually create new duplicates).

9.2.1 From Sets to Bags
The need for multi-relations is evident when considering aggregation queries like
“what is the sum of the values of some column”. In a set relational algebra the
projection to the aggregation column collapses all same value tuples and thus
makes this query impossible to express. The same argument can be made for any
query that returns just a projection of the columns of queried relations, as the
number of duplicates may be significant to the user (e.g., in “what are the titles
of all first and second level sections”). Also, many practical systems support
multi-relations to save the cost of duplicate handling. Indeed, neither QUEL
[148] nor SQL [11], the now dominating “relational” query language, are (set)
relational query languages, but rather possess features that are not expressible
in (set) relational algebra, viz. aggregation, grouping, and duplicate elimination.
The semantic of these expressions assumes that the underlying data structure is
a bag (or even a sequence) rather than a set.

Therefore, in practical query languages duplicate handling must be addressed.
Based on the control over duplicate creation and elimination, one can distinguish
relational query languages into weak and strong duplicate controlling languages.
QUEL [148] and SQL [11] provide little control over duplicates (essentially just
the DISTINCT operator and GROUP-BY clauses) and thus fall into the first class.
The only means is an explicit duplicate elimination. Similarly, Prolog’s oper-
ational semantics [160] also contains operations for explicit duplicate handling
(e.g., bagof vs. setof).

In contrast, DAPLEX [146] is based on “iteration semantics” and gives pre-
cise control over the creation and elimination of duplicates. An example of a
DAPLEX query is shown in the following listing:

FOR EACH Student
SUCH THAT FOR SOME Course(Student)

Name(Dept(Course)) = "EE" AND
Rank(Instructor (Course)) = "ASSISTANT PROFESSOR "

PRINT Name(Student)

A first formal treatment of this “iteration semantics” for relational databases
is found in [49], where a generalization of the relational algebra to multi-relations
is proposed. This extension is not trivial and raises a number of challenges for
optimizations: joins are no longer idempotent, the position of projections and
selections is less flexible, as πR(R × S) �= R and σP (R) $ σQ(R) �= σP∨Q(R)
due to duplicates in the first expression28. Though this algebra provides a useful

28 Assuming π and σ to be the multi-set generalizations of their relational counterparts.
� is understood here as additive union, i.e., t occurs n times in R ∪ S, if t occurs
i times in R and j times in S and n = i + j. [84] considers additionally maximal
union (i.e., where n = max(i, j)), which does not exhibit this particular anomaly.
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theoretical foundation, it does little to address the concerns regarding efficient
processing of “iteration semantics” expressions.

[84] shows that (nested) relational algebra on multi-relations (i.e., relations as
bags) is strictly more expressive than on relations as sets. Unsurprisingly, the core
difference lies in the “counting power” of the bag algebra. More precisely, the bag
algebra no longer exhibits a 0−1 law (i.e., the property that queries are either on
almost all input instances true or on almost all input instances false). E.g., the
query that tests whether, given two relations, the cardinality of R is bigger than
the cardinality of S can be expressed as (π1(R × R) − π1(R × S)) �= 0 where π
is a bag algebra projection without duplicate elimination and − is difference on
multi-sets, where the multiplicity of a tuple t in the result is the multiplicity of
t in the first argument minus the multiplicity in the second argument. Observe,
that π1(R ×R) and π1(R ×S) contain the same tuples but if R > S, π1(R × R)
contains those tuples with greater multiplicity than π1(R × S) and vice verse if
R < S. This query observes no 0 − 1 law: For each instance on which it is true
we can construct an instance on which it is true. Unsurprisingly, it can not be
expressed in set relational algebra.

Similarly, [109] proposes a query language called BQL over bags whose expres-
siveness amounts to that of a relational language with aggregates. This approach
provides a formal treatment of aggregations and grouping as found, e.g., in SQL
(GROUP-BY clause and aggregation operators such as AVG, COUNT, and SUM). BQL
is “seen as a rational reconstruction of SQL” that is fully amenable to formal
treatment. [109] also considers extensions of BQL with power operators, struc-
tural recursion, or loops and shows that the latter two extensions are equivalent.

[100] proposes a different view of multi-relations as incomplete information:
though conceptually “a relation represents a set of entities”, one tuple per entity,
and thus does not contain duplicates, the concept of a multi-relation allows a
formal treatment of partial information about entities. A multi-relation is a
projection of a complete relation, i.e., it consists of a subset of columns within
some relation (without duplicates). Thus it may contain duplicates in contrast to
the relation. [100] considers multi-relations only as output of queries not as first
class data items in the database. Semantically, they can not exist independently
of the base relation. No (base or derived) relation should contain duplicates.

Moving from sets to bags (or multi-sets) in the relational algebra, obviously
affects query containment and optimization. Most notably many of the algebraic
laws mentioned in the previous section do no longer apply. For more details, see
[38] and, more recently, [91].

9.2.2 From Bags to Sequences
Basic relational algebra (and first order logic) are fundamentally order agnostic.
This is a desirable property as it allows understanding and implementation of
operators without considering a specific order of the result. However, it limits the
expressiveness of the algebra: We can not (conveniently) express a query asking
for the “five students with the highest marks” nor a query asking for every second
student nor a query testing if a certain set is even (e.g., the participants in a
chess competition).
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Moreover, queries involving order occur in many practical applications, in
particular where reporting (presentation) and analysis is concerned. Reporting
is certainly the most common use for order (return the results in some order,
return only top k results, etc.). This has lead to the addition of order as an “add
on” to the usual query evaluation frameworks, e.g., in SQL where the ORDER BY
clause may not be used as part of a view definition but only at the outer-most
(or reporting) level of a query.

Finally, the physical algebra (i.e., the actual algorithms used for evaluating
a query) of most relational database systems (including all major commercial
systems) is based on the concept of iterators (or streams or pipelines): A phys-
ical query plan is a hierarchy of operators, each iterating over the output of its
dependent operators and creating its own result on demand. Conceptually, such
operators support (aside of open and close for initialization and destruction)
only one operation, viz. next, which returns the next element in the operator’s
result. Note, that such a design intrinsically supports order. However, if used
for the evaluation of pure relational expressions, the order in which an operator
produces its results is up to the implementation of that operator and we can
choose to implement the same logical operator with physical operators that pro-
duce results in different orders. This flexibility (in choosing an efficient operator
implementation regardless of the result order) is lost, if the logical operators
already require a specific order. Nevertheless, exploiting the ability of physical
operators to manage order to provide that concept also to the query author
is tempting. For more details on physical operators and order see the seminal
survey [82].

These considerations have, more recently, revived interest in a proper treat-
ment of order in an algebra driven by two main areas: analytical queries (OLAP-
style) and queries against (intrinsically ordered) XML data and their realization
in relational databases.

List-based Relational Algebra. Focused on the first aspect, [147] proposes a list-
based recasting of the relational algebra.

First, we redefine a relation to be a finite sequence of tuples over a given
relation schema (consisting as usual in a finite set of attributes and associated
domains). A relation may, in particular, contain duplicates (if key attributes are
present, the values of the key attributes of every two tuples must be distinct as
usual).

Under this definition, selection and projection remain essentially unchanged
except that they are now order and duplicate preserving. Only projection may
introduce new duplicates, if the same tuple results from more than one input
tuple.

Union is, obviously, affected considerably by ordered relations. [147] proposes
standard list append as union, appending the tuples of the second relation in
order after the tuples of the first relation.

Similar, Cartesian product A × B is defined as the result of appending for
each tuple of A (in order) the product with each tuple of B (again in order).
Thus the result contains first the combination of the first tuple of A with each
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tuple of B (preserving B’s order), followed by the combination of the second
tuple of A with each tuple of B, etc. Join is defined as usual as combination of
selection and product. Note that this definition is immediately consistent with
a nested loop implementation. However, other join and product operators (such
as sort-merge or hash join) produce tuples in different orders and are no longer
correct physical realisations of the logical join or product.

Difference A \ B becomes order-preserving, multi-set difference, i.e., for each
distinct tuple t ∈ A with m occurrences in A and n occurrences in B, the last m−
n occurrences of t in A are preserved. We could also choose to preserve the first
m − n occurrences, however, preserving the last occurrences leads immediately
to an implementation where the tuples of A must be visited only once.

As in the case of bags or multi-sets, we introduce two additional operations
duplicate elimination and grouping. Duplicate elimination retains, as difference,
the last occurrence. Aggregation is treated analogously to projection. For de-
tails on duplicate elimination and grouping see [75] on multi-sets and [147] on
sequences.

In additional to these adapted standard or multi-set operators, we need two
additional operators to properly support order: sorting and top k.

Definition 259 (Sort). Let P be an ordered n-ary relation and <S some order
relation on Dn. Let <P denote the (total) order of tuples in P .

The <s-sorted relation sortS(P ) = [t1, . . . , tn] such that for all ti : ∀tj : i <
j =⇒ ti <s tj ∨ ¬(ti <s tj) ∧ ti <p tj returns the tuples in P ordered by <s. If
<s is not a total order, the order of P is preserved on any “gaps” in <s.

In practical cases, S might, e.g., consist of a list of attributes and order specifi-
cations of the form “ASCENDING” or “DESCENDING” as in the case of SQL’s ORDER
BY.

Definition 260 (Top k). Let P = [t1, . . . tn] be an ordered n-ary relation and
k ∈ � some positive integer.

The top-k relation topk(P ) = [s1, . . . , sl] with l = min(k, n) such that si ∈
topk(P ) =⇒ P = [t1, . . . , ti−1, si, ti+1, . . . tn] returns the k first entries of P (or
all entries of P if P has less than k entries).

The top k operation is available, e.g., in Microsoft’s SQL Server (TOP N clause),
in IBM’s DB2 (FETCH FIRST N ROWS ONLY), and in Oracle DBMS (using a
selection on the pseudo-column ROWNUM).

With this sequence algebra, we can now express all SQL constructs including
ORDER BY, GROUP BY, and DISTINCT which were not expressible in the standard
relational set algebra. To also cover null values some additional modifications
(mostly to selection) are needed, see, e.g., [159]. For more details on translating
SQL into relational algebra (and/or relational calculus) see [34].

However, this comes at the price of considerably more involved equivalences
(cf. [147]). Many of the associativity and commutativity laws for the relational
(set) algebra no longer hold in the bag or set case. Therefore, practical opti-
mizers often go to considerable length to find order-agnostic parts of queries
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even if some ordering is required, e.g., at the end result. For those parts, we
can then use standard relational algebra optimization. This desire is reflected in
the limitations of the ORDER BY clause in SQL and, to give just one more recent
example, the introduction of unordered contexts in XQuery, where the usual
strictly ordered semantics of XQuery is (temporarily) “disabled”. Handling or-
der only where necessary, is an important aim of XML and XQuery optimization
and algebras, see, e.g., [128] for details.

9.2.3 From Constants to Complex Values
So far, we have considered the values contained in an attribute of a relation as
atomic or simple, i.e., without further structure. Examples of such values are, of
course, numbers, strings, truth values, and enumerated values.

In many applications, we are, however, concerned also with values of another
nature: structured or hierarchical values such as sets, lists, or trees. Though such
data may be decomposed and stored in first-normal form, such an approach may
not be desirable if the values are very irregular, often considered as a single
“value”, or their shape is dictated by application or other external requirements
[113].

Research on complex values has been a focus of the database community in
the first half of the 1990s, see, e.g., [84,25,103,32,1]. They have seen renewed
interest in the context of XML and other semi-structured data and its querying
and storing (both natively and in relational databases). They serve, e.g., as an
expressive foundation for a large fragment of XQuery [101].

Complex values: Tuples and Sets. There are several variant definitions in the lit-
erature for complex values. In this section, we follow mostly [1] as its notions are
conveniently simple and yet expressive enough to discuss important variations.

First, we need to define a complex value:

Definition 261 (Complex value). Let D1, . . . ,Dn be domains for atomic val-
ues. Then

– each a ∈ Di for i ≤ n is a (atomic) value of type Di.
– each [v1, . . . , vn] is a (tuple) value of type [T1, . . . , Tn] if v1, . . . , vn are values

of types T1, . . . , Tn, respectively, and n ∈ �.
– each finite S ∈ P(values(T )) is a (set) value of type {T } if T is a type and

values(T ) is the set of all values of T .

A complex value is either an atomic, a tuple, or a set value.

Note that the definition allows only finite values (both tuples and sets are re-
quired to be finite and there are no cycles. Furthermore, values do not carry
identity (as in the case of object- or object-relational databases), i.e., there are
no two distinct values with the same structure.

Example 262. Examples of complex values (for simplicity using strings and in-
tegers as only domains):
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– “Caesar”, 17, “Flamen Dialis”, 44 are all atomic values of type string or
integer, respectively.

– [“Caesar”, 44], [44], [], [“Caesar”, [17, “Flamen Dialis”]] are all tuple types.
– {[ “Caesar”, 44], [44], {[]}, {}} is a set type.

Obviously there are infinitely more complex values (actually, even if the domains
for atomic values are empty that is the case).

Often, for complex values a named perspective on tuples is often preferred. It has
the additional advantage of highlighting the close relationship to XML and other
semi-structured data models. In a named perspective, we would, e.g., obtain
[ Name: “Caesar”, Office: [ AtAge: 17, Title: “Flamen Dialis”]]. However, for
consistency with the rest of this article we use the unnamed perspective in the
following.

A well-known variant of this definition of complex values is the nested re-
lations model, see, e.g., [92]. The idea is to allow entire relations to occur as
values of attributes of other relations. In the terms of our above definition this
means that sets and tuples constructors must alternate in any complex value:
A set may contain only tuples (but not sets) and a tuple may contain only sets
or atomic values (but not tuples). However, this limitation does not affect the
expressiveness of the data model and is not considered further.

An algebra for complex values. For an algebra, the main difference if we consider
not only atomic but also complex values are operators that allow the construction
and destruction of set and tuple values as well as there restructuring.

The first addition to the algebra may be surprising: It is essentially a higher-
order function to apply some restructuring operation to all elements of a set:

Definition 263 (Map (Replace)). Let R be a set type and f a restructuring
function. Then map〈f〉(R) = {f(r) : r ∈ R} is the set of elements of R restruc-
tured according to f , i.e., the application of f to all elements of R. This can be
considered a higher-order function familiar from functional programming.

Restructuring functions are, e.g., projections, set and tuples construction, and
their compositions. For details see [1] and Example 264.

Note that, in particular, map〈f〉 itself is a restructuring function allowing,
which allows for restructuring of nested elements. However, restructuring is lim-
ited to a depth fixed in the query (no recursive tree transformations).

In some ways, map〈〉 can be considered a generalization of relational project,
which restructures each tuple in a relation by retaining only some of its at-
tributes.

In a similar generalization of the relational select, select on complex values
allows arbitrary boolean functions as predicates including comparators =, ∈,
and ⊂.

The basic set operations (∪, ∩, and, \) are defined as usual. Both arguments
must be sets of the same type. The cross product is changed to an n-ary operation
on set types ×(R1, . . . , Rn) = {[t1, . . . , tn] : t1 ∈ R1, . . . , tn ∈ Rn} such that the
result tuples obtain each component from one of the parameter sets.
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Note, that in particular binary cross product no longer combines the compo-
nents of the tuples of the two parameter sets (relations) but rather creates simply
a set of binary tuples containing as components the unchanged elements of the
original sets. To obtain classical product, a compound expression is needed: Let
R, S be two binary relations, then map〈[1.1, 1.2, 2.1, 2.2]〉(×(R, S)) computes the
classical product of R and S: First the compute a set of binary tuples with the
first component a tuple from R and the second a tuple from S (×(R, S), then we
transform that result using the restructuring function [1.1, 1.2, 2.1, 2.2], a short-
hand for the function that creates from each binary tuple in the parameter set
a new tuple with the first components first attribute (1.1) followed by the first
components second attribute (1.2) etc.

Finally, we add a “flattening” or “set collapse” operation collapse that takes
a set of sets as argument and returns the union of all members in that set.

Example 264. Let S of type {[Int, {Int}]}, i.e., S is a nested relation with the
second attribute containing sets of integers as values.

– Select from S tuples where the first component is a member of the second
component: σ〈1 ∈ 2〉(S).

– Select pairs sets of (set) values in S where the first is a subset of the second:
map〈[1.2, 2.2]〉(σ〈1.2 ⊆ 2.2〉(×(S, S))) which is equivalent to the expression
σ〈1 ⊆ 2〉(×(map〈[1.2]〉(S), map〈[1.2]〉(S))) where the restructuring (in this
case a projection) is pushed to the leaves of the expression.

– The Join of R and S on the first attribute again is expressed as a com-
pound expression σ〈1 = 3〉(map〈[1.1, 1.2, 2.1, 2.2]〉(×(R, S))) in analogy to
the standard equivalence R ��C S = σC(R × S).

– Unnesting (as introduced in [92]) creates from a relation like S a set of
flat tuples containing combinations of the first attribute of the original tu-
ples and one of the elements of the second attribute. It can be expressed
as collapse(map〈×({1}, 2)〉(S)): First the restructuring function ×({1}, 2) is
applied to all elements of S creating sets of tuples with the first attribute
from the values of the first attribute of S and the second attribute from the
members of the set values of the second attribute of S. Then all these sets
are collapsed into a single one.

– To add the value of the first attribute of S to the second, we can use
map〈{1} ∪ 2〉(S).

Note, that all queries are also functions, either boolean or restructuring func-
tions and can thus be used as parameters for map〈〉 or σ〈〉, respectively.

[1] also establishes a calculus that is, for safe queries, equivalent to the above
algebra. In particular, it is shown that queries in this algebra are domain-
independent in the sense of Section 3.2.3).

A possible extension to the above algebra to allow in particular the expression
of recursive queries such as the transitive closure of a relation directly in the
algebra, is the powerset operator: Given a set as parameter, powerset returns the
set of all subsets of R.
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The idea of expressing transitive closure in the above algebra is to first con-
struct the powerset of a relation and then eliminate all sets that do not (1)
contain the original relation and (2) are not transitively closed. For details on
the complex expression for computing transitive closure, see [1].

The price of the powerset operator is further examined in [149]. They show
that any algorithm in the above algebra for expressing transitive closure using
powerset (which is the required for expressing transitive closure, cf. [129]) needs
exponential space. In fact, they even prove that result for deterministic transitive
closure, i.e., transitive closure of a graph with out-degree ≤ 1. This contrasts
with PSPACE algorithms for transitive closure using, e.g., relational algebra and
a fixpoint operator such as WHILE. It is an open problem, whether there are
queries expressible with powerset that are not expressible without

[25] shows that the above algebra (and equivalent or similar proposed query
languages such as the nested relational algebra [92]) without powerset operator
can be elegantly formalized as monad algebra, studied in the context of category
theory and programming languages, and based, unsurprisingly, on structural
recursion on sets.

Combining complex values with bags (as discussed for flat relational algebra
in Section 9.2.1) is discussed in [83]. As expected, the nested bag algebra is more
expressive than the nested set algebra (as introduced above), however, with
increasing nesting depth the expressiveness difference becomes fairly subtle.

Combining complex values with sequences (as discussed for flat relational al-
gebra in Section 9.2.2) leads sequences of complex values very similar to the data
model of the W3C XQuery language. [101] shows that a core of that language can
indeed be formalized in notions similar to monad algebra (which, as mentioned
above, is equivalent to the algebra discussed in this section without powerset op-
erator) and gives complexity of various sublanguages of (non-recursive) XQuery.

The rest of this section considers adding complex values to relational algebra.
How about adding them to, e.g., non-recursive datalog? [48] shows that non-
recursive datalog (or Prolog) with trees and lists is equivalent to first-order logic
over lists and trees and that, in the non-recursive case, this addition is benign
w.r.t. data complexity (it remains in AC0).

9.2.4 From Values to Objects
Managing structured or semi-structured data involves the determination of what
defines the identity of a data item (be it a node in a tree, graph, or network, an
object, a relational tuple, a term, or an XML element). Identity of data items is
relevant for a variety of concepts in data management, most notably for joining,
grouping and aggregation, as well as for the representation of cyclic structures.

“What constitutes the identity of a data item or entity?” is a question that has
been answered, both in philosophy and in mathematics and computer science,
essentially in two ways: based on the extension (or structure and value) of the
entity or separate from it (and then represented through a surrogate).

Extensional Identity. Extensional identity defines identity based on the exten-
sion (or structure and value) of an entity. Variants of extensional identity are
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Leibniz’s law29 of the identity of indiscernibles, i.e., the principle that if two en-
tities have the same properties and thus are indiscernible they must be one and
the same. Another example of this view of identity is the axiom of extensionality
in Zermelo-Fraenkel or von Neumann-Bernays-Gödel set theory stating that a
set is uniquely defined by its members.

Extensional identity has a number of desirable properties, most notably the
compositional nature of identity, i.e., the identity of an entity is defined based on
the identity of its components. However, it is insufficient to reason about identity
of entities in the face of changes, as first pointed out by Heracleitus around 500
BC: You cannot step twice into the same river; for fresh waters are flowing in
upon you. (Fragment 12).

He postulates that the composition or extension of an object defines its iden-
tity and that the composition of any object changes in time. Thus, nothing
retains its identity for any time at all, there are no persistent objects.

This problem has been addressed both in philosophy and in mathematics and
computer science by separating the extension of an object from its identity.

Surrogate Identity. Surrogate identity defines the identity of an entity inde-
pendent from its value as an external surrogate. In computer science surrogate
identity is more often referred to as object identity. The use of identity separate
from value has three implications (cf. [12] and [99])

– In a model with surrogate identity, naturally two notions of object equiva-
lence exist: two entities can be identical (they are the same entity) or they
can be equal (they have the same value).

– If identity is separate from value, identity is no longer necessarily composi-
tional and it is possible that two distinct entities share the same (meaning
identical, not just same value) properties or sub-entities.

– Updates or changes on the value of an entity are possible without changing
its identity, thus allowing the tracking of changes over time.

In [12] value, structure, and location independence are identified as essential
attributes of surrogate identity in data management. An identifier or identity
surrogate is value and structure independent if the identity is not affected by
changes of the value or internal structure of an entity. It is location independent
if the identity is not affected by movement of objects among physical locations
or address spaces.

Object identity in object-oriented data bases following the ODMG data model
fulfill all three requirements. Identity management through primary keys as in
relational databases violates value independence (leading to Codd’s extension
to the relation model [45] with separate surrogates for identity). Since object-
oriented programming languages are usually not concerned with persistent data,
their object identifiers often violate the location independence leading to anom-
alies if objects are moved (e.g., in Java’s RMI approach).

29 So named and extensively studied by Willard V. Quine.
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Surrogate or object identity poses, among others, two challenges for query and
programming languages based on a data model supporting this form of identity:
First, where for extensional identity a single form of equality (viz. the value and
structure of an entity) suffices, object identity induces at least two, often three
flavors of equality (and thus three different joins): Two entities may be equal
w.r.t. identity (i.e., their identity surrogates are equivalent) or value. If entities
are complex, i.e., can be composed from other objects, one can further distin-
guish between “shallow” and “deep” value equality: Two entities are “shallow”
equivalent if their value is equal and their components are the same objects (i.e.,
equal w.r.t. identity) and “deep” equivalent if their value is equal and the values
of their components are equal. Evidently, “shallow” value-based equality can be
defined on top of identity-based and “deep” value-based equality.

The same distinction also occurs when constructing new entities based on
entities selected in a query: A selected entity may be linked as a component of a
constructed entity (object sharing) or a “deep” or “shallow” copy may be used
as component.

Summarizing, surrogate or object identity is the richer notation than exten-
sional identity addressing in particular object sharing and updates, but con-
versely also requires a slightly more complex set of operators in query language
and processor.

The need for surrogate identity in contrast to extensional identity as in early
proposals for relational databases has been argued for [45], as early as 1979 by
Codd himself. He acknowledges the need for unique and permanent identifiers for
database entities and argues that user-defined, user-controlled primary keys as
in the original relational model are not sufficient. Rather permanent surrogates
are suggested to avoid anomalies resulting from user-defined primary keys with
external semantics that is subject to change.

In [99] an extensive review of the implications of object identity in data man-
agement is presented. The need for object identity arises if it is desired to
“distinguish objects from one another regardless of their content, location, or
addressability” [99]. This desire might stem from the need for dynamic objects,
i.e., objects whose properties change over time without loosing their identity, or
versioning as well as from object sharing.

[99] argues that identity should neither be based on address (-ability) as in
imperative programming languages (variables) nor on data values (in the form
of identifier keys) as in relational databases, but rather a separate concept main-
tained and guaranteed by the database management system.

Following [99], programming and query languages can be classified in two
dimensions by their support for object identity: the first dimension represents
to what degree the identity is managed by the system vs. the user, the second
dimension represents to what degree identity is preserved over time and changes.

Problems of user defined identity keys as used in relational databases lie
in the fact that they cannot be allowed to change, although they are user-
defined descriptive data. This is especially a problem if the identifier carries some
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external semantics, such as social security numbers, ISBNs, etc. The second prob-
lem is that identifiers can not provide identity for some subsets of attributes.

The value of object identities (oids) as query language primitives is investi-
gated in [3]. It is shown that oids are useful for

– object sharing and cycles in data,
– set operations,
– expressing any computable database query.

The data model proposed in [3] generalizes the relational data model, most
complex-object data models, and the logical data model [103]. At the core of
this data model stands a mapping from oids to so-called o-values, i.e., either
constants or complex values containing constants or further oids. Repeated ap-
plications of the oid-mapping yield pure values that are regular infinite trees.
Thus trees with oids can be considered finite representations of infinite struc-
tures.

The oid-mapping function is partial, i.e., there may be oids with no mapping
for representing incomplete information.

It is shown that “a primitive for oid invention must be in the language . . . if
unbounded structures are to be constructed” [3]. Unbounded structures include
arbitrary sets, bags, and graph structures.

Lorel [4] represents a semi-structured query language that supports both ex-
tensional and object identity. Objects may be shared, but not all “data items”
(e.g., paths and sets) are objects, and thus not all have identity. In Lorel construc-
tion defaults to object sharing and grouping defaults to duplicate elimination
based on oids.

9.3 Optimal Views: Equivalence and Containment

9.3.1 Beyond Relational Containment
For Web queries against semi-structured data early research on query contain-
ment and optimization has focused on regular path expressions [6], short RPEs.
More recently, XPath has been in the focus of research with its central role in
upcoming Web query standards becoming apparent.

(Regular) path queries (or expressions, short RPEs) are regular expressions
over the label alphabet of some tree or graph. They select all nodes in a tree or
graph that are reachable from the root via a path (with nodes) whose labels form
a word in the language given by the regular (path) expression. Path (inclusion)
constraints (e.g., p1 ⊂ p2 or p1 ≡ p2 indicating that the nodes selected by p1

are a subset, resp. identical to the nodes selected by p2) can be exploited to
rewrite regular path expressions. [6] shows that equivalence of RPEs under path
inclusion constraints is, in fact, decidable in expspace. [71] extends this result
to conjunctive queries with regular expressions (a subset of StruQL) and shows
that it is still decidable and in expspace.

[68] gives a practical algorithm for rewriting RPEs containing wildcards and
a closure axis like XPath’s descendant. They employ, as we do in this work,
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graph schemata and automata for processing such schemata. However, as the
queries they consider are only regular path expressions, they can also use an au-
tomaton for (each of) the regular path expressions to be rewritten. The product
of the query with the schema automaton is computed and the resulting product
automaton is “pruned” to obtain a (query) automaton equivalent to the original
one under the given graph schema. In effect, this allows the rewriting of regular
path expressions such as *.a.*.b.c. If the schema specifies that there is at most
one a and at most one b on the path from the root to a c, this can be specialized
to (not(a))*.a.((not(b))*.b.c, an expression that prunes some search paths in
the data graph earlier than the original one.

[31] shows that a restriction to a deterministic semi-structured data model
where the labels of all children of a node are distinct, for paths without closure
axes (i.e., with only child axis), to decidable containment and minimization, but
remains undecidable for general regular expressions.

XPath containment and minimization differs from containment and minimiza-
tion of RPEs in that basic XPath expressions are simpler than RPEs, (no (a.b)*)
but full XPath contains additional constructs such as node identity join that eas-
ily make containment and minimization undecidable. Other additions of XPath
such as reverse axes have been shown [124] to be reducible to a core XPath
involving only forward axes and can thus be safely ignored in the following.
Therefore, various subsets have been considered, for a more complete survey of
the state-of-the-art in XPath query containment in ab- or presence of schema
constraints see [143].

The essential results are positive results if only tree pattern queries (under-
stood as XPath queries with only child and descendant axis and no wildcard
labels) are considered (e.g., [7] presenting an O(N4), with n the number of
nodes in the query, algorithm for minimizing in the absence of integrity con-
straints; [136] proposed an O(n2) algorithm for the same problem and an O(n4)
algorithm in the presence of required-child, required-descendant, and subtype
integrity constraint). In the latter paper, an O(n2) algorithm is given for the
case that only required-child and required-descendant constraints are allowed.
Miklau and Suciu [117] show that the problem becomes co-np complete if the
tree patterns may also contain wildcards. [35] shows how to obtain wildcard free
XPath expressions but needs to introduce new language constructs (“layer” axes)
for restricted rather than arbitrary-length path traversals in the document tree
(thus not contradicting the results from [117]). [143] refines this result showing
that adding disjunction does not affect this complexity.

If arbitrary regular path expressions are allowed (for vertical navigation),
query minimization becomes PSPACE-hard, as subsumption of regular expres-
sions r1 and r2 is equivalent to testing whether L(r1) ⊆ L(r2) which is known
to be PSPACE-hard.

Whereas early work on minimization under DTDs, e.g., [161] focused on simple
structural constraints (basically only child and parent constraints) and weak sub-
sets of XPath for optimizing XML queries, Deutsch and Tannen [53] show that
the problem of XPath containment in the presence of DTDs and simple integrity
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constraints (such as key or foreign key constraints from XML Schema) is undecid-
able in general and that this result holds for a large class of integrity constraints.
If only DTDs are considered [143] shows that containment of XPath with only
horizontal axes but including wildcards, union, filters, and descendant axes is
exptime-complete. [143] further shows that even for XPath with only child axis
and filters containment in presence of DTDs is already conp-complete. Adding
node-set inequality to the mix makes the containment problem immediately un-
decidable, using XPath expressions with variables even PSPACE-complete (in
the absence of DTDs)

[70] discusses also the minimization of XPath queries with only child and de-
scendant axes (as well as filters and wildcards), focusing in particular on the
effect of the wildcard operator. It proposes a polynomial algorithm for comput-
ing minimal XPath queries of limited branched XPath expressions, i.e., XPath
expressions where filters (XPath predicates []) occur only in one of the branches
under each XPath step.

Recently, attention has turned to optimization of full XQuery as well: In [39],
where a heuristic optimization technique for XQuery is proposed: Based on the
PAT algebra, a number of normalizations, simplification, reordering, and access
path equivalences are specified and a deterministic algorithm developed. Though
the algorithm does not necessarily return an optimal query plan it is expected
and experimentally verified to return a reasonably good one.
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Abstract. This tutorial covers the very basics of Description Logics
(DLs): first, we present the primary DL ALC, namely its syntax, seman-
tics, and reasoning problems, making use of a running example. Next, we
discuss a few important extensions and explain DL’s relationship with
first order logic, with modal logic, with OWL, and with rule-based for-
malisms, and give a brief sketch of tableau-based reasoning algorithms
for DLs.

1 Introduction

Description logics (DLs) [7,10,20] are a family of logic-based knowledge repre-
sentation formalisms designed to represent and reason about the knowledge of
an application domain in a structured and well-understood way. They are de-
scendants of semantic networks and frames, and are equipped with a formal,
Tarski-style semantics. Recently, they have attracted increased attention since
they form the logical basis of the Web Ontology Language OWL [43]: OWL
comes in three OWL flavours, and two of these flavours, namely OWL Lite,
OWL DL, as well as OWL 1.1 [33], are based on DLs.

In computer science, an ontology is an explicit, formal specification of a shared
conceptualisation [34,17], where “a conceptualisation” means an abstract model
of some aspect of the world. In this abstract model, relevant concepts of the
aspect in question are defined, including a description of the vital properties of
their instances. For example, if we are concerned with transportation means,
relevant concepts are “bicycle” and “power unit”, and the description of bicy-
cles contains a statement such as “a bicycle is powered by a human through
pedalling”. In the last decade, ontologies became rather popular not only due
to their role in the Semantic Web [14], but also due to their usage in enterprise
knowledge management systems [74], medical terminology systems [72,61,71],
and biology [76,15].

An ontology is an artefact and thus has to be built by (possibly a group of)
domain experts—and it will evolve over time in any application that changes over
time. Moreover, it is advisable to integrate existing ontologies if a larger aspect of
the world is to be covered—instead of building a new one from scratch. Finally,
if an ontology is deployed, knowledge is shared using the concepts defined in this
ontology, e.g., concrete objects are described using the vocabulary fixed in an
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ontology and this fixed vocabulary is used to provide more transparent access to
data. Each of these tasks is rather complex: e.g. building involves a huge amount
of creativity, integration requires knowledge in a large aspect. Moreover, all four
ontology engineering tasks might involve co-operation, which increases the risk
of misunderstanding, redundancy, etc. Thus if an ontology is to be engineered or
used by more than one user, the use of an unambiguous language such as OWL
makes it possible to agree upon a specification and thus decreases the risk of
misunderstandings.

The increasing importance of ontologies and their processing in computers has
led to the development of ontology editors such as OntoEdit, Protégé , OilEd,
and SWOOP [73,60,38,13]. Due to the above mentioned complexity of ontology
engineering tasks, it is highly desirable that these editors support the user in
the design, evolution, integration, and deployment of ontologies through corre-
sponding, intelligent system services. This automatic processing of ontologies
has further implications on the ontology language. In addition to the reduction
of misunderstandings, an unambiguous language enables the precise definition
of the behaviour of system services, i.e., we can define what a system service is
supposed to do on a given input. This enables the investigation of the soundness,
completeness, and termination of the algorithms underlying the system services.

Moreover, if an ontology language is based on a logic, this yields further
possibilities: we can base system services on logical reasoning problems, and
thus we can profit from the huge amount of work in computer science and logic-
based knowledge representation. There exists a large variety of decidability and
complexity results for DLs (see Chapter 3 of [7]) and related logics (see [67,23]).
We can also use a variety of results in model theory to learn more about the
expressive power [5] of an ontology language [16,75].

For the design of an ontology language, knowing about the decidability and
computational complexity of the reasoning problems that underly system ser-
vices is important. It gives insight into the sources of complexity, and thus might
allow to devise certain fragments of the ontology language for which the corre-
sponding algorithms show more desirable properties or better performance.

Recently, the ontology editors Protégé OWL and SWOOP [38,51] have been
developed which provide system services based on logical reasoning problems to
support the user in the above mentioned ontology engineering tasks. For exam-
ple, in the design phase, the computation of the taxonomy1 taking into account
the description of the concepts defined so far might help to detect modelling flaws
in an early design phase: missing or unintended specialisation links are signs of
incomplete or erroneous concept descriptions. In all tasks, singling out synony-
mous concepts helps reducing redundancy and thus misunderstandings. Finally,
checking the consistency of concept description also helps detecting modelling
flaws.

However, since ontology engineering is still a rather new field, various other
such services will need to be devised to provide optimal support. For exam-
ple, one would like to see an explanation for unintended specialisation links or

1 The specialisation hierarchy of the concepts defined so far.
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inconsistencies and be supported in debugging such flaws; one would like to
extract, from an ontology, the “sub-ontology” that “covers” a given term or con-
cept; one would like to ask the editor to propose a new concept description as
(the most specific) generalisation of a given set of instances; one would like to find
a concept description that follows a certain “pattern” of a concept; or one would
like to see a user-friendly approximation of a concept description, for instance in
a frame-based notation. These services are provided by so-called non-standard
inference services such as the least common subsumer and most specific concept,
matching of concepts, or computing the approximation of a concept expressed
in a more expressive logic in a less expressive logic [52,22,53,6,11,18].

2 A Basic DL and Its Extensions

In this section, we introduce and explain the basic notions of Description Logics
including syntax, semantics, and reasoning services. We will explain how the
latter are used in applications, and describe the relationship between DLs and
other logics.

We define the syntax and semantics of the basic DL ALC [69] with general
TBoxes and ABoxes, and explain them using our running example. We will also
define different forms of TBoxes including acyclic ones.

Definition 1. Let C be a set of concept names and R be a set of role names
disjoint from C. The set of ALC concepts over C and R is inductively defined
as follows:

– every concept name is an ALC concept description,
– � and ⊥ are ALC concept descriptions,
– if C and D are ALC concept descriptions and r is a role name, then the

following are also ALC concept descriptions:
• C � D (conjunction),
• C � D (disjunction),
• ¬C (negation),
• ∃r.C, (existential restriction), and
• ∀r.C (value restriction).

As usual, we use parenthesis to clarify the structure of concepts.

Definition 1 fixes the syntax of ALC concepts, that is, it allows us to distinguish
between expressions that are “well-formed”, i.e., ALC concept descriptions, and
those that are not. For example A�∃r.∀s.(E�¬F ) is an ALC concept description,
whereas ∀s.s is not since s cannot be both a concept and a role name.

Next, we will introduce some DL parlance and abbreviations. If a concept
description is a concept name, �, or ⊥, we also call it atomic, and if it is con-
structed using at least one of the above operators, we call it complex. Also, we
often use “ALC concept” as an abbreviation of “ALC concept description” and,
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if it is clear from the context that we talk about ALC concepts, we may even
drop the ALC and use “concepts” for “ALC concepts”.
Remark: Please note that a concept description is, basically, a string, and it is not
to be confused with the general “concept” in the sense of an abstract or general idea
from philosophy. When we use DLs in applications, we may use a concept name or
construct a concept description to describe a relevant “concept”, yet the latter is far
more intricate than the former.
Also, when clear from the context, C and R are not mentioned explicitly. In the
following, we will use upper case letters A, B, etc. for concept names, upper case
letters C, D, etc. for possibly complex concepts, and lower case letters r, s, etc.
for role names.

Next, we define the semantics of ALC by means of an interpretation and then
provide an example.

Definition 2. An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI ,
called the interpretation domain, and a mapping ·I that maps every

– concept name A ∈ C to a set AI ⊆ ΔI , and every
– role name r ∈ R to a binary relation rI ⊆ ΔI × ΔI .

The mapping ·I is extended to complex concepts as follows:

�I := ΔI ,
⊥I := ∅,

(C � D)I := CI ∩ DI ,
(C � D)I := CI ∪ DI ,

(¬C)I := ΔI \ CI ,
(∃r.C)I := {d ∈ ΔI | there is an e ∈ ΔI with 〈d, e〉 ∈ rI and e ∈ CI},
(∀r.C)I := {d ∈ ΔI | for all e ∈ ΔI , if 〈d, e〉 ∈ rI , then e ∈ CI}.

We call

– CI the extension of C in I,
– a ∈ ΔI an instance of C in I if a ∈ CI , and
– b ∈ ΔI an r-filler of a in I if 〈a, b〉 ∈ rI .

Again, if I is clear from the concept, we omit “in I”. Please note that AI

denotes the result of applying the mapping ·I to the concept name A; this might
be considered to be an unusual way of writing mappings, yet it is quite helpful
and ink-saving. In the past, DL researchers have used different notations such
as I(A) or [[A]]I , but the one used here is the one that “stuck”.

Let us consider the following example interpretation I:

ΔI = {m, c6, c7, et},
EmployeeI = {m},
CompanyI = {c6, c7, et},

PersonI = {m, et},
IncorporationI = {c7}

worksFor = {〈m, c6〉, 〈m, c7〉, 〈et, et〉}
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worksFor

c7
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worksFor
Person
Employee

m
c6

Incorporation

Company

Company
et Person

Company

Fig. 1. A graphical representation of the example interpretation I

We can easily modify I to obtain other interpretations I1, I2, etc., by adding or
removing elements and changing the interpretation of concept and role names.
An interpretation is often conveniently drawn as a directed, labelled graph with
a node for each element of the interpretation domain and labelled as follows:
a node is labelled with all concept names the corresponding element of the
interpretation domain is an instance of, and we find an edge from one node to
another labelled with r if the element corresponding to the latter node is an r-
filler of the element corresponding to the former node. As an example, Figure 1
shows a graphical representation of I.

Let us take a closer look at I. By definition, all elements are instances of
�, and no element is an instance of ⊥. The elements m and et are instances of
Person, and et is a worksFor-filler of itself. For Boolean concepts, m is an instance
of Person � Employee, and c6 is an instance of Company � ¬Person because c6 is
not an instance of Person. For existential restrictions, m and et are instances of
∃worksFor.Company, but only m is an instance of ∃worksFor.¬Person. For value
restrictions, all elements are instances of ∀worksFor.Company: for m and et, this
is clear, and for c6 and c7, this is due to the fact that they do not have any
worksFor-fillers, and hence all their worksFor-fillers satisfy whatever condition we
may have. In general, if an element has no r-filler, then it is an instance of ∀r.C
for any concept C. In contrast, m is not an instance of ∀worksFor.(Company �
Incorporation) because m has c6 as its worksFor-filler who is not an instance of
Company� Incorporation since it is not an instance of Incorporation. At this stage,
we invite the reader to consider some more interpretations and concepts and
determine which element is an instance of which concept.

So far, we have defined syntax and semantics of the concept language ALC.
Next, we define knowledge bases and their semantics, starting with terminological
knowledge bases, so-called TBoxes.

Definition 3. For C and D possibly complex ALC concepts, an expression of
the form C % D is called an ALC general concept inclusion and abbreviated
GCI. A finite set of GCIs is called an ALC TBox.

An interpretation I satisfies a GCI C % D if CI ⊆ DI . An interpretation
that satisfies each GCI in a TBox T is called a model of T .
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Again, if it is clear that we are talking about ALC concepts and TBoxes, we
omit “ALC” and use simply TBox or GCI. For example, the interpretation I
given in Figure 1 satisfies each of the GCIs in

T1 := {Employee % Person,
Incorporation % ¬Person,

Employee % ∃worksFor.Company,
∃worksFor.Company % Person}

and thus I is a model of T1. To verify this, for each GCI C % D, we determine CI

and DI and then check whether CI is indeed a subset of DI . For the first GCI,
we observe that EmployeeI = {m} ⊆ {m, et} = PersonI . Similarly, for the second
one, we have IncorporationI = {c7} ⊆ {c6, c7} = (¬Person)I . For the third one,
m is the only instance of Employee and also an instance of ∃worksFor.Company,
hence it is also satisfied by I. Finally (∃worksFor .Company)I = {m, et} and both
m and et are instances of Person.

In contrast, I does not satisfy the GCI

∃worksFor.Company % Employee (1)

because et worksFor some Company, but is not a Employee.
In general, a TBox T allows us to distinguish between those interpretations

that are and those that aren’t models of T . This means that we should aim
at devising a TBox all of whose models indeed fit our intuition. For example,
Equation 1 should be in our TBox if we think that only Employees can work for
Companys. In general, the more GCIs our TBox contains, the fewer models we
have.

Next, in Figure 2, we define a TBox T that indeed partially captures our
intuition of working. The first GCI states that no Company can be a Person and
also implies that no Person can be a Company. The fourth GCI states that every
Employee is a Person who worksFor a Company and, vice versa, the fifth GCI
states that any Person who worksFor a Company is an Employee. The sixth GCI
ensures that only Persons can work for something.

Next, we define the assertional part of a knowledge base, the so-called ABox,
and knowledge bases.

T := {Company 	 ¬Person,
PrivateComp 	 Company,
Incorporation 	 Company,

Employee 	 Person 
 ∃worksFor .Company,
Person 
 ∃worksFor .Company 	 Employee,

∃worksFor .� 	 Person,
Entrepreneur 	 Person 
 ∃owns .Company,

Person 
 ∃owns .Company 	 Entrepreneur,
∃owns.� 	 Person }

Fig. 2. An example TBox
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A := {Mary :Person, 〈Mary, comp1〉 : worksFor ,
comp1 :Company, 〈Hugo, comp2〉 : worksFor ,
comp2 :Company 
 Incorporation, 〈Betty, comp2〉 : owns,
Hugo :Person, 〈Mary, comp2〉 : owns,
Betty :Person 
 Employee }

Fig. 3. An example ABox

Definition 4. Let I be a set of individual names disjoint from R and C. For
a, b ∈ I individual names, C a possibly complex ALC concept, and r ∈ R a role
name, an expression of the form

– a: C is called an ALC concept assertion, and
– 〈a, b〉: r is called an ALC role assertion.

A finite set of ALC concept and role assertions is called an ALC ABox.
An interpretation function ·I , additionally, is required to map every individual

name a ∈ I to an element aI ∈ ΔI . An interpretation I satisfies

– a concept assertion a: C if aI ∈ CI , and
– a role assertion 〈a, b〉: r if 〈aI , bI〉 ∈ rI .

An interpretation that satisfies each concept assertion and each role assertion in
an ABox A is called a model of A .

Again, if it is clear that we are talking about ALC concepts and ABoxes, we omit
“ALC” and use simply ABox, concept assertion, etc.. Moreover, we use C ≡ D
as an abbreviation for the two GCIs C % D and D % C.

In Figure 3, we present an example ABox with concept and role assertions,
and the following interpretation I is a model of this ABox:

ΔI = {h, m, c6, c4}
MaryI = m, BettyI = HugoI = h, comp1I = c6, comp2 = c4

PersonI = {h, m, c6, c4}
EmployeeI = {h, m}
CompanyI = {c6, c4}

IncorporationI = {c4}
EntrepreneurI = ∅

worksForI = {〈m, c6〉, 〈h, c4〉}
ownsI = {〈h, c4〉, 〈m, c4〉}

Please observe that the individual names Hugo and Betty are interpreted as the
same element, h and that, for example, Employee has more instances than strictly
required by A.

Finally, we take the natural step and combine TBoxes and ABoxes in knowl-
edge bases.
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Definition 5. An ALC knowledge base K = (T ,A) consists of an ALC TBox
T and an ALC ABox A. An interpretation that is both a model of A and of T
is called a model of K.

Hence for an interpretation to be a model of K, it has to satisfy all assertions in
K’s ABox and all GCIs in K’s TBox. As an example, consider K consisting of
the TBox T from Figure 2 and the ABox A from Figure 3. Please note that the
interpretation I given above is not a model of K: I is a model of A, but not of
T since I does not satisfy two GCIs in T :

1. m and h are Persons owning a Company, c4, but they are not instances of
Entrepreneur in I, thereby violating the last-but-one GCI in T .

2. c6 and c4 are both instances of Person and of Company, thereby violating
the first GCI inT .

We can easily obtain a model I′ of K from I as follows: I ′ is identical to I,
apart from the interpretation of Entrepreneur and of Person, which are defined as
follows: PersonI

′
= EntrepreneurI

′
= {h, m}. We leave it to the reader to verify

that I ′ is indeed a model of T and A.
An important difference to databases and other formalisms can be illustrated

by the following example. Consider the TBox from Figure 2 and an ABox that
only contains the assertion Mary: Employee. In contrast to what one would think
with a database in mind, this knowledge base is perfectly “ok”, i.e., we can say
that Mary stands for an instance of Employee, thereby implying that she must
work for a Company—without mentioning such a company. That is, a knowledge
base may contain partial knowledge: Mary stands for an element that is worksFor-
related to some instance of Company, but we do not know to which. Similarly,
consider a knowledge base K containing the following statements:

1. the following GCIs for an Inc-Entrepreneur:

Inc-Entrepreneur % Entrepreneur � ∀owns.Incorporation,

2. the assertions 〈John, C4〉: owns and C4: Incorporation, and
3. the assertions 〈Mary, C3〉: owns and Mary: Inc-Entrepreneur.

Now, who of John and Mary are Inc-Entrepreneurs? K’s ABox states that John
represents something that has one owns-filler, and this is an Incorporation, hence
one could think that John is an Inc-Entrepreneur. By definition of the semantics
of ABoxes, though, there are models I of K in which JohnI has other owns-
fillers than the one given explicitly, and some of them may not be instances of
Incorporation. That is, our ABox contains some information about one owns-filler
of an element called John, but this element might have other owns-fillers about
which we do not know (or did not say) anything. Thus John cannot be said to
be a Inc-Entrepreneur. In the general AI literature, this principal is referred to
as the open world assumption, and we will come back to that later. In contrast,
we have said in K that Mary is an Inc-Entrepreneur, and thus in every model I
of K, it must be the case that C3I is an instance of Incorporation—despite the
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fact that this is not stated explicitly in the ABox. Hence, Mary is indeed an
Inc-Entrepreneur, and we can infer that C3 is an Incorporation; we will be more
precise on this “inference” in Section 3.

2.1 Restricted TBoxes and Concept Definitions

In general, a TBox may contain two kinds of information: general “background
knowledge” and concept definitions. So far, our TBox contains, however, only
general concept inclusion axioms. In our example in Figure 2, we have used the
fourth and the fifth GCIs two define the meaning of Employee. In general, if we
want to make sure C and D always have the same instances, then we need to
introduce two GCIs C % D and D % C. Hence we have introduced C ≡ D as an
abbreviation for C % D and D % C, and we call an expression of the form A ≡ C
with A a concept name a concept definition of the concept A. Now consider the
concept definition

Happy ≡ Person � ∀likes.Happy. (2)
First, observe that this concept definition is cyclic: the definition of Happy in-
volves the concept Happy. Next, we consider an interpretation I with

{〈p, m〉, 〈m, p〉} = likesI and {p, m} = PersonI ,

and ask ourselves whether p is an instance of Happy in I. Since Happy is a defined
concept, we could expect that we can determine this by simply considering the
interpretation of other concepts and roles. This is, however, not the case: we can
choose either HappyI = {p, m} or HappyI = ∅, and both choices would make I
a model of the concept definition 2.

To give TBoxes more “definitorial power”, we need to restrict them so as to
avoid cyclic references as in the example above.

Definition 6. An ALC concept definition is an expression of the form A ≡ C
or A % C for A a concept name and C a possibly complex ALC concept. We call
A ≡ C an exact concept definition and A % C a primitive concept definition.

Let T be a finite set of concept definitions. We say that A directly uses B if
there is a concept definition A ≡ C ∈ T such that B occurs in C. We use uses
for the transitive closure of “directly uses”.

We call a finite set T of concept definitions an acyclic TBox if
– there is no concept name in T that uses itself and
– if no concept name occurs more than once on the left hand side of a concept

definition in T .

If T is an acyclic TBox with A ≡ C ∈ T , we say that A is defined in T and
that C is the definition of A in T .

By definition, in an acyclic TBox, we cannot have a situation such as follows:

A1 ≡ . . . A2 . . .
A2 ≡ . . . A3 . . .

...
...

An ≡ . . . A1 . . .
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T1 := {Company 	 ¬Person,
∃worksFor .� 	 Person,

∃owns .� 	 Person }
T2 := {Incorporation 	 Company,

PrivateComp 	 Company,
Employee ≡ Person 
 ∃worksFor .Company,

Entrepreneur ≡ Person 
 ∃owns.Company }

Fig. 4. A combined TBox where Employee and Entrepreneur are defined

Since acyclic TBoxes are a syntactic restriction of TBoxes, we do not need to
define their semantics since it follows directly from those for (general) TBoxes.

If one wants to make use both of GCIs to represent background knowledge
and of concept definitions, then we can combine them. That is, we can simply
consider a TBox to consist of two parts, say a set of GCIs T1 and a set of concept
definitions T2. In order to preserve the above mentioned “definitorial power” of
T2 one only has to make sure that concepts defined in T2 do not occur in T1. As
an example, consider Figure 4.

Please note that this “splitting” of a TBox in a definitorial part and a back-
ground part has no consequences on the definition of its semantics—it merely
allows us to talk about those concepts defined in a TBox.

3 Basic Reasoning Problems and Services

So far, we have defined the components of a DL knowledge base and what it
means for an interpretation to be a model of such a knowledge base. Next, we
define the reasoning problems commonly considered in DLs, and discuss their
relationships. We start by defining the basic reasoning problems in DLs upon
which the basic system services of a DL reasoner are built, and then provide a
number of examples.

Definition 7. Let K = (T ,A) be an ALC knowledge base, C, D possibly com-
plex ALC concepts, and a an individual name. We say that

1. C is satisfiable w.r.t. T if there exists a model I of T and some d ∈ ΔI

with d ∈ CI ,
2. C is subsumed by D w.r.t. T , written C %T D, if CI ⊆ DI for each model

I of T ,
3. C and D are equivalent w.r.t. T , written C ≡T D, if CI = DI for each

model I of T ,
4. K is consistent if there exists a model of K, and
5. a is an instance of C w.r.t. K if aI ∈ CI for each model I of K.

Please note that satisfiability and subsumption are defined w.r.t. a TBox,
whereas consistency and instance are defined w.r.t. a TBox and an ABox. More-
over, we already use the notion of “being an instance of a concept” for elements
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of an interpretation domain—here, we have defined this notion for individual
names. This might be slightly confusing, but is quite natural: an individual
name a can be interpreted in many different ways, and aI1 can have quite dif-
ferent properties from aI2 . A knowledge base can, however, enforce that aI is
an instance of some concept in every model I of its models, which is why we
define the notion of an instance for individual names as well. All our reasoning
problems are defined w.r.t. some knowledge base. We can always assume that
these are empty: in this case, “all models of K (or T )” becomes simply “all
interpretations”.

We give a few example inferences and invite the reader to explain them to
make sure that they understand the notions defined in Definition 7:

– A � ¬A is unsatisfiable,
– ⊥ and A � ¬A are equivalent (w.r.t. the empty TBox),
– ∃r.A � ∀r.¬A is unsatisfiable,
– Company � ∃worksFor.Company is not satisfiable w.r.t. the TBox T from

Figure 2,
– A � B is subsumed by A (w.r.t. the empty TBox),
– ∃r.A � ∀r.B is subsumed by ∃r.B
– Incorporation %T ¬Person w.r.t. TBox T from Figure 2,
– ∃worksFor.Company %T ¬Company w.r.t. TBox T from Figure 2,
– the knowledge base consisting of the TBox T from Figure 2 and the ABox

A from Figure 3 is consistent,
– the knowledge base (T ,A2) with A2 defined as follows is not consistent:

A2 = {ET: Company, 〈ET, Foo〉: worksFor},

and removing any of the two assertions from A2 results in an ABox that is
consistent with T , and

– Mary and Hugo are instances of Employee w.r.t. T from Figure 2 and A from
Figure 3.

Next, we would like to point out that it is possible for a knowledge base (T ,A)
to be consistent and, at the time, for a concept C to be unsatisfiable w.r.t. T :
clearly, ⊥ is unsatisfiable w.r.t. every TBox since, by Definition 2, ⊥I = ∅ for
every interpretation I. Even if C is defined in T (see Definition 6), it is possible
that C is unsatisfiable w.r.t. T while T is consistent; consider, for example, the
TBox T = {A ≡ B � ¬B} which has infinitely many models, none of which has
an instance of A.

To help the reader understanding the reasoning problems defined, we mention
three important properties of the subsumption relationship which follow directly
from Definition 7.

Lemma 1. Let C, D, and E be concepts, a an individual name, and (T ,A) a
knowledge base.

1. C %T C.
2. If C %T D and D %T E, then C %T E.
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3. If a is an instance of C w.r.t. (T ,A) and C %T D, then a is an instance of
D w.r.t. (T ,A).

Please note that Lemma 1.(1) and (2) says that the subsumption relationship is
reflexive and transitive.

Next, we formalise some of the implicit relationships between DL reasoning
problems that we have used intuitively in our considerations above, and which
should be proved as an exercise by the reader.

Theorem 1. Let K = (T ,A) be an ALC knowledge base, C, D possibly complex
ALC concepts, and a an individual name. Then

1. C and D are equivalent w.r.t. T iff C %T D and D %T C.
2. C is subsumed by D w.r.t. T iff C � ¬D is not satisfiable w.r.t. T .
3. C is satisfiable w.r.t. T iff C is not subsumed by ⊥.
4. C is satisfiable w.r.t. T iff (T , {a: C}) is consistent.
5. a is an instance of C w.r.t. K iff (T ,A ∪ {a:¬C}) is not consistent.

As a consequence of this theorem, we can restrict our attention to knowledge
base consistency since all other reasoning problems can be reduced to it: to decide
these other reasoning problems, we can simply use an algorithm for consistency.

In general, when designing or changing a knowledge base, it is helpful to see
the effects of the statements so far. We will use the reasoning problems defined
so far to formalise some of these effects and formulate them in terms of reasoning
services. The following is a list of the most basic DL reasoning services: given
a knowledge base (T ,A), concepts C and D, and an individual name a, check
whether

– C is satisfiable w.r.t. T ,
– C is subsumed by D w.r.t. T,
– C and D are equivalent w.r.t. T,
– (T ,A) is consistent,
– a is an instance of C w.r.t. (T ,A).

Please note that these basic reasoning services correspond one-to-one to the basic
reasoning problems from Definition 7. As a consequence, we know exactly what
each of these reasoning services should do, even though we might not know how
such a service could be implemented—this will be discussed in Section 6. To put
it differently, the behaviour of a service has been described independently from
a specific implementation, and thus we can expect that, for example, every sat-
isfiability checker for ALC gives the same answer when asked whether a certain
concept is satisfiable w.r.t. a certain TBox—regardless of how this satisfiability
checker works.

Clearly, we might be able to compute these services “by hand”, yet this is
unfeasible for larger knowledge bases, and it has turned out to be quite useful
to have implementations of these services. In the past, numerous DLs have been
investigated w.r.t. their decidability and complexity, i.e., whether or which of
the reasoning problems are decidable and, if they are, how complex they are in
terms of computation time and space.
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Using these basic reasoning services, we can specify slightly more sophisticated
reasoning services as follows:

– classification of a TBox: given a TBox T , compute the subsumption hierar-
chy of all concept names occurring in T w.r.t. T . That is, for each pair A, B
of concept names occurring in T , check whether A is subsumed by B w.r.t.
T and whether B is subsumed by A w.r.t. T .

– checking the satisfiability of concepts in T : given a TBox T , for each concept
name A in T , test whether A is satisfiable w.r.t. T . If it is not, then this is
a clear indication of a modelling error.

– instance retrieval : given a concept C and a knowledge base K, return all
those individual names a such that a is an instance of C w.r.t. K. That is,
for each individual name a occurring in K, check whether it is an instance
of C w.r.t. K, and return the set of those individual names that are.

– realisation of an individual name: given an individual a and a knowledge
base K, check, for each concept name A occurring in T , whether a is an
instance of A w.r.t. K, and then return all those A that are.

The result of the classification is usually presented in form of the subsumption
hierarchy, that is, a graph whose nodes are labelled with concept names from
T and where we find an edge from a node labelled A to a node labelled B if
A is subsumed by B w.r.t. T . We may want to choose a slightly more succinct
representation: from Lemma 1, we know that the subsumption relationship %T
is a pre-order, i.e., a reflexive and transitive relation. It is common practice to
consider the induced strict partial order �T , i.e., an irreflexive and transitive
(and therefor anti-symmetric) relation, by identifying all concepts participating
in a cycle C %T ... %T C—or collapsing them all into a single node in our
graphical representation. In addition, we might want to show only “direct edges”,
that is, we might not want to draw an edge from a node labelled C to a node
labelled E in case there is a node labelled D such that C %T D %T E: this is
commonly known as the Hasse diagram of a partial order. We cordially invite the
reader to compute the the subsumption hierarchy for the TBox from Figure 2.

3.1 Applications of Reasoning Services

Here, we sketch how DL reasoning services can be used in an application. Assume
we want to design a DL knowledge base about companies, employees, entrepre-
neurs, etc. First, we would need to fix some set of interesting terms and decide
which of them are concept names and which are role names. Then we could ex-
plicate some background knowledge, for example that Companys and Persons are
disjoint and that only a Person ever worksFor somebody, see T1 in Figure 4. Next,
we could define some relevant concepts, for example Incorporation, Employee, and
Entrepreneur in T2 in Figure 4. Then it might be useful to see the subsumption
hierarchy of our TBox. In our example, we can easily compute this hierarchy by
hand.

Now assume that somebody adds the following concept definition to T2:

Inc-Employee ≡ ∃worksFor.Incorporation.
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For T ′ this extended TBox, it is a bit more tricky to see that, in addition to
the subsumptions above, we also have Inc-Employee %T ′ Person. Yet, this still
fits our intuition and we can continue extending our knowledge base. Assume we
extend T ′ with the following statement that expresses that a LazyEntrepreneur
does not own any Companys:

LazyEntrepreneur % ∀owns.¬Company.

Let T ′′ be the result of this extension. It might be a bit more tricky to see but—
in contrast to what our concept names suggest—a LazyEntrepreneur is not an
Entrepreneur, i.e., LazyEntrepreneur �%T ′′ Entrepreneur. If we want to fix this, we
could now try to modify this GCI, for example, by turning it into the following
concept definition:

LazyEntrepreneur ≡ Entrepreneur � ∀owns.¬Company.

This modification would, unfortunately, make LazyEntrepreneur unsatisfiable
w.r.t. the resulting TBox since an Entrepreneur necessarily owns some Company.

Now assume we add to T ′ some knowledge about individuals, for example, we
add our ABox from Figure 3. Then it would be quite helpful to learn that Mary
and Hugo are instances of Employee and that Hugo is an instances of Inc-Employee
w.r.t. T ′. Even though this knowledge is not explicitly stated in our knowledge
base, it follows from it, and thus should be made available to the user. For
example, if one would ask to see all Employees, then Betty, Mary, and Hugo
should be returned.

Currently, the design of ontology editors that help users to build, maintain,
and use a DL knowledge base is a rather active research area, partially due to
the fact that the Web Ontology Language OWL is based on DLs; we will discuss
this relationship and tools in more detail in Section 7.1.

4 Important Extensions of the Basic DL ALC

We introduce important extensions of the basic DL ALC: inverse roles, number
restrictions, and some more operators on roles.

Consider our running example and assume that we want to add to our TBox
from Figure 2 the following GCIs to express that Idlers are Employees, and that
Companys do not employ Idlers:

Idler % Employee,
Company % ∀employs.¬Idler.

Let us call the resulting TBox T ′. Intuitively, Idler should be unsatisfiable w.r.t.
T ′: due to the first GCI above, an instance p of Idler would also need to be an
instance of Employee, and hence the fourth GCI from T implies that p has a
worksFor-filler, say c, that is an instance of Company. Now, if p worksFor c, then
c employs p, and thus the second statement above implies that p is an instance of
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¬Idler, contradicting our assumption. Now this argumentation contains a serious
flaw: due to the definition of the semantics, worksFor and employs are interpreted
as some arbitrary binary relations, and thus it is not the case that, if p worksFor
c, then c employs p. Indeed, Idler is satisfiable w.r.t. T ′: any model I of T in
which IdlerI ⊆ EmployeeI holds and employsI = ∅ is a model of T ′.

In order to relate roles such as worksFor and employs in the obvious way, DLs
have been extended with inverse roles. The fact that a certain DL allows for
inverse roles is usually indicated by the letter I in its name; see the Appendix
of [7] for an explanation of DL naming schemes.

Definition 8. For R a role name, R− is an inverse role. The set of ALCI
concepts over C and R is inductively defined as follows:

– every concept name is an ALCI concept,
– if C and D are ALCI concepts and r is a role name, then the following are

also ALCI concepts:
• C � D, C � D, ¬C,
• ∃r.C and ∃r−.C, and
• ∀r.C and ∀r−.C.

In addition, an interpretation I also maps inverse roles to binary relations as
follows:

(r−)I = {〈y, x〉 | 〈x, y〉 ∈ rI}.

As a consequence, we now have indeed that 〈x, y〉 ∈ rI if and only if 〈y, x〉 ∈
(r−)I , and we can thus rephrase our new constraints using worksFor− instead of
employs:

Idler % Employee,
Company % ∀worksFor−.¬Idler.

We use T ′′ for the extension of the TBox T from Figure 2 with the above two
GCIs. Please verify that Idler is indeed unsatisfiable w.r.t. T ′′.

In any system based on a DL with inverse roles, it would clearly be beneficial
to allow the user to introduce “names” for inverse roles, such as “employs” for
worksFor−, “child-of” for has-child−, or “part-of” for has-part−. Indeed, as we
will see in Section 7.1, OWL provides means to make such statements.

The above line of reasoning has been repeated numerous times in DL related
research:

– we want to express something, e.g., that company does not employ idlers;
– this seems to be not possible in a satisfactory way: in contrast to our intu-

ition, Idler was satisfiable w.r.t. T ′;
– we extend our DL with a new constructor, e.g., inverse roles.

Please note that the latter involves extending the syntax (i.e., allowing roles r−

in the place of role names r) and the semantics (i.e., fixing (r−)I).
Next, assume we want to restrict the number of companies owned by entre-

preneurs to, say, at least 3 and at most 7: so far, we have only said that each
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entrepreneur owns at least one company in the eighth GCI in Figure 2. Again,
we can try hard, e.g., using the following GCI:

Entrepreneur % ∃owns.(Company � A) �
∃owns.(Company � ¬A � B) �
∃owns.(Company � ¬A � ¬B).

This will ensure that any instance of Entrepreneur owns at least three Companys
due to the usage of the mutually contradictory concepts A, ¬A � B, and ¬A �
¬B. It can be shown, however, that we cannot use a similar trick to ensure
that an Entrepreneur owns at most seven Companys. As a consequence, number
restrictions were introduced in DLs:

Definition 9. For n a non-negative number, r a role name and C a (possibly
complex) concept description, a number restriction is a concept description of
the form (� n r.C) or (� n r.C). The DLs ALCQ and ALCQI are obtained
from ALC and ALCI, respectively, by allowing number restrictions as additional
concept forming constructors.

For an interpretation I, its mapping ·I is extended as follows, where #M is
used to denote the cardinality of a set M :

(� n r.C) := {d ∈ ΔI | #{e | 〈d, e〉 ∈ rI and e ∈ CI} ≤ n}
(� n r.C) := {d ∈ ΔI | #{e | 〈d, e〉 ∈ rI and e ∈ CI} ≥ n}

We cordially invite the reader to check, for example, which elements of the exam-
ple interpretation I given in Figure 1 are instances of (� 2 worksFor.Company)
or (� 2 worksFor.Company).

It might seem odd that the presence of number restrictions in a DL is indicated
by a Q in their name: this is due to the fact that these number restrictions
are qualified , i.e., they allow to restrict the number of r-fillers that are in the
extension of a concept C. In contrast, unqualified number restrictions are of the
form (� n r.�) and (� n r.�), and thus only allow to restrict the number of
r-fillers—regardless of what concept they are an instance of. Traditionally, the
presence of unqualified number restrictions in a DL is indicated by an N in their
name, and the letter Q stands for qualifying number restrictions. For a more
detailed description of the naming conventions of DLs, see the appendix of [7].

Next, assume that we want to make use of two roles sibling and partOf between
companies, e.g., in a GCI as follows:

T = {Company � ∃sibling .Company % ∃partOf .Conglomerate}

Now, after a bit of thinking, we should expect to have the following entailments
w.r.t. T :

Dodgy � Company � ∃sibling .Company %T ∃sibling .∃sibling .Dodgy
Conglomerate � ∃partOf −.∃partOf −.Dodgy %T ∃partOf −.Dodgy

The first one should hold because an element d’s sibling-filler e should have d as
a sibling-filler, i.e., the extension of the sibling should be symmetric. Similarly,
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the extension of the role partOf (and thereby of partOf −) should be transitive.
However, these two statements are not entailed by T . We could add the above
statements as GCIs to our TBox T , but still this would not imply, e.g., that

Fair � Company � ∃sibling .Company %T ∃sibling .∃sibling .Fair,

i.e., we would need to add similar GCIs for all relevant concepts in addition to
the one for Dodgy. This would obviously “clutter” our TBox T and still not yield
the desired result since we might not be able to foresee which possibly complex
concept descriptions might be relevant for a user of T .

To overcome these problems, DLs have been extended with various role inclu-
sions [48,40]: means to express that

– a role is transitive, e.g., to capture hasAncestor and partOf ,
– one role is a sub-role of another role, e.g., worksFor is a sub-role of involvedWith

and hasBranch is a sub-role partOf −,
– a role is symmetric, which can be done using a combination of inverse and

sub-roles: to say, e.g., that sibling is symmetric is equivalent to saying that
sibling− is a sub-role of sibling ,

– one role transfers through another one, e.g., the owner of something also
owns that thing’s parts: this can be achieved using so-called complex role
inclusions [40] such as owns ◦ partOf − % owns or hasParent ◦ hasBrother %
hasUncle,

– and other statements such as reflexivity and irreflexivity.

For more details on these extensions, please consult [48,40].
The final extension we mention here concerns nominals : so far, individual

names are restricted to occur in ABox assertions, and thus we make statements
“about” individuals, but we cannot use individuals to describe concepts. For
example, we can say that the BillG owns a Company, but we cannot define the
concept of those people working in a company owned by BillG. To overcome this,
nominals have been introduced in DLs [66]: roughly speaking, a nominal is an
individual name that is used as a concept. For example, if BillG is an individual
name, we can say that

BillGWorker ≡ Employee � ∃worksFor.(Company � ∃owns−.{BillG}).

Now this definition is inconsistent with the following ABox

A = {Mary : BillGWorker � ∀worksFor.GreatCompany
Mike : BillGWorker � ∀worksFor.¬GreatCompany
BillG : (� 1 owns.Company)

}

because BillG owns at most 1 Company, and thus the two BillGWorkers have to
work in the same Company, which is not possible since this company cannot be
both an instance of GreatCompany and its negation.

As we have seen above, the extension of ALC with inverse roles and number
restrictions is called ALCQI, and the extension of ALCQI with transitive roles
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and sub-roles2 is called SHIQ [48]. The extension of SHIQ with nominals
is called SHOIQ [46] and forms the logicical basis of OWL DL—apart from
concrete datatypes, which are a restricted form of concrete domains, a topic for
which we refer the reader to [8,55]. The extension of SHOIQ with complex role
inclusions mentioned above is called SROIQ [40] and forms the logicical basis
of OWL 1.1, see [33]. We will come back to the relationship between DLs and
OWL in Section 7.1.

5 DLs and Other Logics

This section explains the close relationship between DLs and other logics, namely
first order logic and modal logic. Due to space limitations, we cannot introduce
these logics, and we write this section for readers familiar with one or both of
these logics. Also, we concentrate on the basic DL ALC and some extensions;
for a more detailed analysis, see Chapter 4 of [7].

5.1 DLs as Decidable Fragments of First Order logic

Most DLs can be seen as decidable fragments of first-order predicate logic, al-
though some provide operators such as transitive closure of roles or fixpoints
that make them decidable fragments of second-order logic [16]. Viewing role
names as binary relations and concept names as unary relations, we define two
translation functions, πx and πy, that inductively map ALC-concepts into first
order formulae with one free variable, x or y:

πx(A) := A(x), πy(A) := A(y),
πx(C � D) := πx(C) ∧ πx(D), πy(C � D) := πy(C) ∧ πy(D),
πx(C � D) := πx(C) ∨ πx(D), πy(C � D) := πy(C) ∨ πy(D),

πx(∃r.C) := ∃y.r(x, y) ∧ πy(C), πy(∃r.C) := ∃x.r(y, x) ∧ πx(C),
πx(∀r.C) := ∀y.r(x, y) ⇒ πy(C), πy(∀r.C) := ∀x.r(y, x) ⇒ πx(C).

To translate a TBox, we observe that a GCI C % D enforces each instance of C to
be an instance of D, i.e., a GCI corresponds to a universally quantified implication
and a TBox corresponds to the conjunction of its GCIs. To translate an ABox, we
observe that it makes assertions about elements “known by name”, i.e., constants.
So, we translate a TBox T and an ABox A as follows, where ψ[x/a] is the formula
obtained from ψ by replacing all free occurrences of x with a:

π(T ) =
∧

CD∈T
∀x.(πx(C) ⇒ πx(D))

π(A) =
∧

a:C∈A
πx(C)[x/a] ∧

∧

(a,b):r∈A
r(a, b).

2 Sub-role statements are traditionally made in a role hierarchy, which leads to the H
in the DL’s name.
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This translation preserves the semantics: we can easily view DL interpretations
as first order interpretations and, vice versa, first order interpretations as DL
interpretations.

Theorem 2. Let (T ,A) be an ALC-knowledge base, C, D possibly complex
ALC-concepts, and a an individual name. Then

1. (T ,A) is satisfiable iff π(T ) ∧ π(A) is satisfiable,
2. C %T D iff π(T ) ⇒ ∀x.(πx(C) ⇒ πx(D)}) is valid, and
3. a is an instance of C w.r.t. (T ,A) iff (π(T ) ∧ π(A)) ⇒ πx(C)[x/a] is valid.

This translation not only provides an alternative way of defining the semantics
of ALC, but also tells us that all reasoning problems for ALC knowledge bases
are decidable: the translation of a knowledge base uses only variables x and
y, and thus yields a formula in the two variable fragment of first order logic,
for which satisfiability is known to be decidable in non-deterministic exponen-
tial time [32]. Similarly, the translation of a knowledge base uses quantification
only in rather restricted way, and therefore yields a formula in the guarded frag-
ment [1], for which satisfiability is known to be decidable in deterministic ex-
ponential time [30]. As we can see, the exploration of the relationship between
DLs and first order logics even gives us upper complexity bounds “for free”.

The translation of more expressive DLs may be straightforward, or more dif-
ficult, depending on the additional constructs: inverse roles can be captured
easily in both the guarded and the two variable fragment by simply swapping
the variable places; e.g., πx(∃R−.C) = ∃y.R(y, x) ∧ πy(C). Number restrictions
can be captured using (in)equality or so-called counting quantifiers. It is known
that the two-variable fragment with counting quantifiers is still decidable in
non-deterministic exponential time [59]. Transitive roles, however, cannot be
expressed with two variables only, and the three variable fragment is known
to be undecidable. The guarded fragment, when restricted carefully to the so-
called action guarded fragment [29], can still capture a variety of features such
as number restrictions, inverse roles, and fixpoints, while remaining decidable in
deterministic exponential time.

5.2 DLs as Cousins of Modal Logic

Description Logics are closely related to Modal Logics, yet they have been devel-
oped independently. This close relationship was discovered only rather late [67],
and has been exploited quite successfully to transfer complexity and decidabil-
ity results as well as reasoning techniques [68,24,49,2]. It is not hard to see that
ALC-concepts can be viewed as syntactical variants of formula of multi modal
K(m): Kripke structures can easily be viewed as DL interpretations and, vice
versa, DL interpretations as Kripke structures; we can then view concept names
as propositional variables, and role names as modal parameters, and realize this
correspondence through the mapping π as follows:

π(A) := A, for concepts names A
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π(C � D) := π(C) ∧ π(D),
π(C � D) := π(C) ∨ π(D),

π(¬C) := ¬π(C),
π(∀r.C) := [r]π(C),
π(∃r.C) := 〈r〉π(C).

Now, the translation of DL knowledge bases is slightly more tricky: a TBox
T is satisfied only in those structures where, for each C % D, ¬π(C) ∨ π(D)
holds globally, i.e., in each world of our Kripke structure (or equivalently, in each
element of our interpretation domain). We can express this using the universal
modality, that is, a special modal parameter U that is interpreted as the total
accessbility relation in all Kripke structures.

Theorem 3. Let T be an ALC-TBox and E, F possibly complex ALC-concepts.
Then

1. F is satisfiable iff π(F ) is satisfiable,
2. F is satisfiable w.r.t. T iff π(F ) ∧

∧
CD∈T [U ](π(C) ⇒ π(D)) is satisfiable,

3. E %T F iff
∧

CD∈T [U ](π(C) ⇒ π(D)) ⇒ (π(E) ⇒ π(F )) is valid.

Like TBoxes, ABoxes do not have a direct correspondence in modal logic, but
they can be seen as a special case of a modal logic constructor, namely nominals
[3], which is where the DL nominals got their name from. In contrast to nominals
in DLs, in modal logics, nominals tend to come with additional operators, e.g.,
the @ operator.

6 Tableau-Based Reasoning Algorithms

For several expressive DLs, there exist efficient implementations of the reasoning
services described in Section 3 [39,36,70,50,56], most of which are tableau-based.
For an extensive survey of tableau algorithms for description logics, see, e.g.,
[10]. In the following, we will give an intuitive description of description logic
tableau algorithms, and we invite the reader to generate some illustrations of our
explanations while reading them, similar to the illustration given in Figure 1.
In general, these algorithms work on trees whose nodes stand for elements of
an interpretation domain, and the input is assumed to be in negation normal
form.3 Nodes are labelled with sets of concepts, namely those they are assumed
to be an instance of. Edges between nodes are labelled with role names or sets
of role names, namely those that hold between the corresponding elements.

Intuitively, to decide the satisfiability of a concept C, a tableau algorithm
starts with an instance x0 of C, i.e., a tree consisting of a root node x0 only
3 A concept is in negation normal form if negation occurs in front of concept names

only. It is not hard to see that each concept can be transformed into an equivalent
one in negation normal form by pushing negation inwards, using de Morgan’s rules
and the duality between existential and universal restrictions.
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with C as its node label (written L(x0) = {C}). Then the algorithm breaks
down concepts in node labels syntactically, thus inferring new constraints on the
model of C to be built, and possibly generating new elements, i.e., new nodes. In
general, a tableau algorithm employs a set of completion rules, and often it uses
one such completion rules per syntactic construct. For example, the completion
rules for �, ∃, and ∀ roughly work as follows:

(�) if it finds a conjuntion D � E ∈ L(y), it adds both D and E to L(y);
(∃) if it finds ∃r.F ∈ L(y), it generates a new r-successor node of y, say z, and

sets L(z) = {F};
(∀) if a node y has some r-successor z and it finds ∀r.G ∈ L(y), then it adds G

to L(z).

In the presence of a TBox T , we can employ a rule that adds, for each GCI
Ci % Di ∈ T , and for each node y, the (negation normal form of the) concept
(¬Ci �Di) to L(y). Now, for logics with disjunctions, various tableau algorithms
non-deterministically choose whether to add D or E to L(y) for (D�E) ∈ L(y).
The answer behaviour is as follows: if this “completion” can be carried out
exhaustively without encountering a node with both a concept and its negation
in its label—a so-called clash—then the algorithm answers that the input concept
was satisfiable, and unsatisfiable, otherwise.

Since we are talking about decision procedures, termination is an important
issue. Even though tableau algorithms for some DLs terminate “automatically”,
this is not the case for more expressive ones. For example, consider the algorithm
sketched above on the input concept A and TBox {A % ∃r.A}: it would create
an infinite r-chain of nodes with labels {A, ∃r.A}. To guarantee termination, the
tableau algorithm needs to be stopped explicitly. Intuitively, the processing of an
element z is stopped if all “relevant” concepts in the label of z are also present in
the label of an “older” element z′. In this case, z′ is said to block z. The definition
of “relevant” has to be chosen carefully since it is crucial for the correctness of
the algorithm [9,47,48] and for the efficiency of the implementation [44,37].

Correctness of DL tableau algorithms are often proved as follows: first, ter-
mination is proved by showing that the algorithm builds a (tree) structure of
bounded size in a monotonic manner. Soundness is proved by constructing a
model (or an abstraction of a model) of the input concept (and TBox) in case
that the algorithm stops without having generated a clash. If a blocking situation
has occurred, this often yields either a finite, cyclic model or an “unravelled”
infinite tree model (or an abstraction thereof). Completeness can be proved by
using a model of the input concept and TBox to steer the application of the
non-deterministic rules and proving that no clash occurs using this control.

In the tableau sketched above and in various other tableau algorithms,
disjunction is treated non-deterministically. When implementing tableau al-
gorithms or designing an optimal tableau algorithm for a logic that is com-
plete for a deterministic complexity class, this non-determinism has to be
circumvented. A natural solution is back-tracking and its various optimisations
such as dependency-directed back-jumping. For DLs, a variety of optimisations
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have been developed that concern all aspects of the algorithm, including pre-
processing, early clash-detection, partial mode re-use, etc., see [39,48,35,36,44]
for descriptions of these optimisations.

7 DLs, OWL, and Rules

In this section, we very briefly review the relationship between DLs and OWL
and DLs and rules. We do not present any details, but merely point the reader
to the relevant literature.

7.1 DLs and OWL

The Semantic Web Ontology Language OWL4 comes in three increasingly expres-
sive flavours, namly OWL Lite, OWL DL, and OWL Full. The first two flavours
are based on DLs: OWL Lite is based on the DL SHIN (D), which is the extension
of ALC with inverse roles, unqualified number restrictions, transitive roles, role hi-
erarchies, and datatypes, and OWL Lite is based on the DL SHOIQ(D), which
is the further extension with qualified number restrictions and nominals [43].

In Table 1, we present some OWL constructors and their DL counterparts.

Table 1. OWL constructors

Constructor DL Syntax Example
intersectionOf C1 
 . . . 
 Cn Human 
 Male
unionOf C1 � . . . � Cn Doctor � Lawyer
complementOf ¬C ¬Male
oneOf {x1 . . . xn} {john, mary}
allValuesFrom ∀P.C ∀hasChild.Doctor
someValuesFrom ∃r.C ∃hasChild.Lawyer
hasValue ∃r.{x} ∃citizenOf.{USA}
minCardinality �nr �2hasChild
maxCardinality �nr �1hasChild
inverseOf r− hasChild−

An important feature of OWL is that, besides “abstract” classes, i.e., those
that correspond to DL concepts, one can also use XML Schema datatypes (e.g.,
string, decimal and float) in someValuesFrom,allValuesFrom, and hasValue re-
strictions. E.g., the class Adult could be asserted to be equivalent to Person �
∃age.over17, where over17 is an XML Schema datatype based on decimal, but with
the added restriction that values must be at least 18. This is a rather restricted form
of what is known in DLs as concrete domains [8]. In addition to XML Schema,
OWL makes use of RDF,5 the W3C base for the Semantic Web, to state some
basic facts. Using these building blocks, the class Adult could be written as:
4 http://www.w3.org/2004/OWL/
5 See http://www.w3.org/RDF/

http://www.w3.org/2004/OWL/
http://www.w3.org/RDF/
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<xsd:simpleType name="over17">
<xsd:restriction base="xsd:positiveInteger">
<xsd:minInclusive value="18"/>
</xsd:restriction>

</xsd:simpleType>

<owl:Class rdf:ID="Adult">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="#Person"/>
<owl:Restriction>

<owl:onProperty rdf:resource="#age"/>
<owl:someValuesFrom rdf:resource="#over17"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Table 2. OWL axioms

Axiom DL Syntax Example
subClassOf C1 	 C2 Human 	 Animal 
 Biped
equivalentClass C1 ≡ C2 Man ≡ Human 
 Male
subPropertyOf P1 	 P2 hasDaughter 	 hasChild
equivalentProperty P1 ≡ P2 cost ≡ price
disjointWith C1 	 ¬C2 Male 	 ¬Female
sameAs {x1} ≡ {x2} {President Bush} ≡ {G W Bush}
differentFrom {x1} 	 ¬{x2} {john} 	 ¬{peter}
TransitiveProperty P ∈ R+ hasAncestor+ ∈ R+

FunctionalProperty � 	 �1P � 	 �1hasMother
InverseFunctionalProperty � 	 �1P − � 	 �1isMotherOf−

SymmetricProperty P ≡ P − isSiblingOf ≡ isSiblingOf−

The OWL counterpart of a DL knowledge base is called an ontology and con-
sists of a set of axioms. A DL knowledge base further distinguishes between a
TBox to contain “class-level” statements and an ABox to contain “individual-
level” statements, but an OWL ontology does not make this distinction. In Ta-
ble 2, we give some OWL axioms together with their DL counterparts.

7.2 DLs and Rules

As we have seen, most DLs are decidable fragments of first-order logic, as are
decidable rule-based formalisms such as function-free Horn rules. The reason for
why these families of logics are decidable are, however, quite different. Like modal
logics, most DLs enjoy some form of tree model property [31,75], that is, every
satisfiable concept or knowledge base has a model whose relational structure is
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tree shaped.6 This is not to say that it does not have other, non-tree shaped
models, yet it tells us that we can concentrate on tree-shaped ones in algorithms
to decide satisfiability. In contrast, function-free Horn rules are decidable because
they lack existential quantification (and thus full negation) and therefore can be
said to have a (very) small model property: a satisfiable set of such rules has
a model whose elements all occur explicitly (i.e., as individual names) in the
rule set. The relational structure of models, however, cannot be restricted. In
contrast to the open world assumption of DLs mentioned in Section 2, many
rule-based formalisms employ the so-called closed world assumption, i.e., if a
statement α does not follow from a given knowledge base, then we assume that
its negation notα is true—which is closely related to “negation as failure”. Please
note that the use of negation as failure in rule bodies leads to a non-monotonic
logic: e.g., consider the rule notα ∧ β → γ which, together with the (only)
fact β, implies γ. Now, if we add α to our fact base, we can no longer infer
γ. Hence learning more (facts) might lead to fewer deductions, which is why
this kind of logic is called non-monotonic. In the AI literature, various forms
of non-monotonic formalisms have been investigated, including circumscription,
negation as failure, and defaults; see, e.g., [65] for an overview.

There are various reasons for combining DLs with rules, some of which indeed
require such a combinations, other that can be (partially) adressed within DLs:

– we want to add a form of non-monotonicity to DLs, e.g., in the form we find
in logic programs with negation as failure [28]: this has been discussed, e.g.,
in [12,25],

– we want to express epistemic queries over our DL knowledge base: this allows
for a form of closed-world reasoning over a knowledge base that is weaker
than the one in the item above and has been adressed, e.g., in [19],

– we want to increase DLs’ expressive power to be stronger when it comes to
role operators: this has motivated the design of the DLs RIQ and SROIQ
[45,40] and influence the design of OWL 1.1 [33], yet these DLs still impose
certain syntactic restrictions so as to to remain decidable,

– we want to express integrity constraints [62], i.e., constrain the form of as-
sertions in our ABox: this has been discussed, e.g., in [25,19,41].

In the last decade, various combinations of DLs with rules have been proposed
[54,26,63,58,64,27,42]. To retain decidability, such a combination has to be re-
stricted [54,58], yet there are various options for these restrictions. First decid-
able (and undecidable) combinations are described in [54,26] and, recently, these
approaches have been generalised to more powerful settings in so-called (weakly)
DL-safe rules [58,57]. In this combination, concepts and roles are allowed to oc-
cur in both rule bodies and heads as unary, respectively binary predicates in
atoms, but each variable of a rule is required to occur in some body literal whose
predicate is neither a concept nor a role. Roughly speaking, this condition makes

6 In fact, in the presence of ABoxes, we rather have “forest shaped” than “tree
shaped”, and in the presence of transitive roles, we rather have “with a tree skele-
ton”.
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rules applicable only to known individuals, i.e., those that are mentioned explic-
itly in the knowledge base. This preserves satisfiability even for more expres-
sive, non-monotonic rule formalisms such as hybrid MKNF knowledge bases [57].
Another approach is the one followed in the DL-programs approach [27]: there,
non-monotonic logic programs (that are read with answer set or well-founded se-
mantics) can contain queries to a DL knowledge base in rule bodies. Even though
information can “flow” from rules to the DL knowledge base and back, this infor-
mation flow is limited in scope, basically because the semantics of this combination
is defined in such a way that the rule set and the DL knowledge do not “operate”
on the same interpretation domain.

8 Last Words

We have tried to give a brief overview of some notions in DLs and thus had
to leave out numerous interesting aspects such as other historical and philo-
sophical aspects, other reasoning techniques, non-standard inference problems,
other applications of DLs, other extensions and restrictions of DLs, results and
techniques concerning the computational complexity, etc. There is a rather large
amount of literature available, and we only want to mention a few that we find
helpful as a starting point:

– the Description Logic web page at http://dl.kr.org/ with interesting
links, e.g., to the DL workshop series and their proceedings, most of which
are available on-line;

– the DL Handbook [7];
– some articles that provide an overview over a larger aspect: [21] describes

how DLs can be applied to reason about database conceptual models, [55]
provides an overview of concrete domains in DLs, [10] provides an overview
of tableau algorithms in DLs, [4] provides an overview of temporal extension
to DLs.
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36. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
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Abstract. Reactive rules are used for programming rule-based, reactive
systems, which have the ability to detect events and respond to them au-
tomatically in a timely manner. Such systems are needed on the Web for
bridging the gap between the existing, passive Web, where data sources
can only be accessed to obtain information, and the dynamic Web, where
data sources are enriched with reactive behavior. This paper presents two
possible approaches to programming rule-based, reactive systems. They
are based on different kinds of reactive rules, namely Event-Condition-
Action rules and production rules. Concrete reactive languages of both
kinds are used to exemplify these programming paradigms. Finally the
similarities and differences between these two paradigms are studied.

1 Introduction

Reactivity on the Web, the ability to detect events and respond to them automat-
ically in a timely manner, is needed for bridging the gap between the existing,
passive Web, where data sources can only be accessed to obtain information,
and the dynamic Web, where data sources are enriched with reactive behavior.
Reactivity is a broad notion that spans Web applications such as e-commerce
platforms that react to user input (e.g., putting an item into the shopping bas-
ket), Web Services that react to notifications or service requests (e.g., SOAP
messages), and distributed Web information systems that react to updates in
other systems elsewhere on the Web (e.g., update propagation among biological
Web databases).

The issue of enriching (relational or object-oriented) database systems with
reactive features has been largely discussed in the literature and software so-
lutions (called active database systems) have been employed for some years by
now. Differences between (generally centralized) active databases and the Web,
where a central clock, a central management are missing and new data formats
(such as XML and RDF) are used, give reasons for developing new approaches.
Moreover, approaches that cope with existing and upcoming Semantic Web tech-
nologies (by gradually evolving together with these technologies) are more likely

G. Antoniou et al. (Eds.): Reasoning Web 2007, LNCS 4636, pp. 183–239, 2007.
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to leverage the Semantic Web endeavor. Along this line, of crucial importance
for the Web is the usability of (Semantic) Web technologies that should be ap-
proachable also by users with little programming experience.

The rule-based approach to realizing reactivity on the Web is discussed in this
lecture as an example of an easy to use (Semantic) Web technology. Compared
with general purpose programming languages and frameworks, rule-based pro-
gramming brings in declarativity, fine-grain modularity, and higher abstraction.
Moreover, modern rule-based frameworks add natural-language-like syntax and
support for the life cycle of rules. All these features make it easier to write, under-
stand, and maintain rule-based applications, including for non-technical users.

The Event-Condition-Action (ECA) rules and production rules fall into the
category of reactive rules, which are used for programming rule-based, reactive
systems. In addition to the inherent benefits of rule-based programming men-
tioned above, the interest of reactive rules and rule-based technology for the
Web is underlined by the current activity within W3C working groups on these
subjects.1

Due to the emphasis they put on events, ECA rules have traditionally been
used in reactive systems such as telecommunication network management. As
such, they are well-suited for the reactive, event-based aspect of (distributed)
Web applications. Production rules originate from non-monotonous expert sys-
tems, where they were used to encode the behavior of a system based on domain-
specific knowledge. This makes them relevant to address the stateful, expertise-
based aspect of (higher-end) Web applications.

ECA rules have the structure ON Event IF Condition DO Action and specify
to execute the Action automatically when the Event happens, provided the
Condition holds. Production rules are of the form WHEN Condition DO Action
and specify to execute the Action if an update to the (local) data base makes
the Condition true. This shows that the similarities in the structure of these two
kinds of rules come with similarities, but also some differences, in the semantics
of the two rule paradigms.

Since most Web applications have both an event-based and an expertise-
based aspect, and because the two paradigms are semantically close to each
other, Web applications can choose one paradigm or the other, depending on
where they put the emphasis. They can also leverage the advantages of both, by
choosing to implement a part of their logic using ECA rules, and another part
using production rules.

This paper provides an introduction to programming Web systems with reac-
tive rules, by discussing concrete reactive languages of both kinds, thus trying to
reveal differences and similarities between the two paradigms. To illustrate the
two approaches to realizing reactive behavior, the ECA rules language XChange
and the ILOG Rule Language (IRL) have been chosen. XChange is an ongoing
research project at the University of Munich and part of the work in the Network

1 The W3C Rule Interchange Format Working Group is chartered to develop a format
for rules that should enable rules to be translated between different rule systems,
http://www.w3.org/2005/rules/wg.html

http://www.w3.org/2005/rules/wg.html
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of Excellence REWERSE2 (Reasoning on the Web with Rules and Semantics),
which is a research project mainly funded by the European Commission. IRL is
a production rule language marketed by ILOG3 as part of their production rules
system ILOG JRules.

2 Reactive Behavior on the Web: Application Examples

The Web has traditionally been perceived as a distributed repository of hy-
permedia documents and data sources with clients (in general browsers) that
retrieve documents and data, and servers that store them. Although reflecting a
widespread use of the Web, this perception is not accurate.

With the emergence of Web applications, Web Services, and Web 2.0, the Web
has become much more dynamic. Such Web nodes (applications, sites, services,
agents, etc.) constantly react to events bringing new information or making exist-
ing information outdated and change the content of data sources. Programming
such reactive behavior entails (1) detecting situations that require a reaction
and (2) responding with an appropriate state-changing action [BE06b].

We present in this section several application example of such reactive behav-
ior on the Web.

2.1 Distributed Information Portal

Many data sources on the Web are evolving in the sense that they change their
content over time in reaction to events bringing new information or making exist-
ing information outdated. Often, such changes must be mirrored in data on other
Web nodes – updates need to be propagated. For Web applications, such as dis-
tributed information portals, where data is distributed over the Web and part of
it is replicated, update propagation is a prerequisite for keeping data consistent.

As a concrete application example, consider the setting of several distributed
Web sites of a fictitious scientific community of historians called the Eighteenth
Century Studies Society (ECSS). ECSS is subdivided into participating univer-
sities, thematic working groups, and project management. Universities, working
groups, and project management have each their own Web site, which is main-
tained and administered locally. The different Web sites are autonomous, but
cooperate to evolve together and mirror relevant changes from other Web sites.

The ECSS Web sites maintain (XML or RDF) data about members, publica-
tions, meetings, library books, and newsletters. Data is often shared, for example
a member’s personal data is present at his home university, at the management
node, and in the working groups he participates in. Such shared data needs to be
kept consistent among different nodes. This can be realized by communicating
changes as events between the different nodes using reactive rules. Events that
occur in this community include changes in the personal data of members, keep-
ing track of the inventory of the community-owned library, or simply announcing
2 http://rewerse.net
3 http://ilog.com

http://rewerse.net
http://ilog.com
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information from email newsletters to interested working groups. These events
require reactions such as updates, deletion, alteration, or propagation of data,
which can also be implemented using reactive rules.

Full member management of the ECSS community, a community-owned and
distributed virtual library (e.g., lending books, monitions, reservations), meeting
organization (e.g., scheduling panel moderators), and newsletter distribution are
desirable features of such a Web-based information portal. And all these can be
elegantly implemented by means of reactive rules.

2.2 E-Shopping Web Site

Shopping Cart Example. This example shows how a simple reactive rule set
calculates the shopping discount of a customer. The business rules describing
the discount allocation policy are listed hereafter:

1. If the total amount of the customer’s shopping is higher than 100, then
perform a discount of 10%.

2. If it is the first shopping of the customer, then perform a discount of 5%.
3. If the client has a gold status and buys more than 5 discounted items, then

perform an additional discount of 2%.
4. Rule 1 and 2 must not be applied for the same customer, the first rule has

the priority against the second. The third rule is applied only if rule 1 or
rule 2 have been applied.

Those policies might be taken into account by a reactive rule service (Web
service, procedural application, etc.). This service receives the customer and his
shopping cart information as input. The discount calculation is then processed
following the previous rules and returns the discount value to the service caller.

Credit Analysis Example. This second example shows how a simple reactive
ruleset defines a loan acceptance service. It determines whether a loan is ac-
cepted, depending on the client’s history and the loan request duration. A client’s
score is calculated according to the following business policy. If the client’s score
is high enough, the loan is accepted and its rate is calculated.

1. If the loan duration is lower than five years then set the loan rate to 4.0%
and add 5 to the score, else set it to 6.0%.

2. If the client has filed a bankruptcy, subtract 5 to the score.
3. If the client’s salary is between 20000 and 40000, add 10 to the score.
4. If the client’s salary is greater than 40000, add 15 to the score.
5. If the score is upper than 15, then the loan is accepted.

Those policies are usually implemented by a rule service (Web service, appli-
cation). This service receives the loan request as input information, applies the
rule on them in order to check the acceptance, and finally returns to the caller
the loan characteristics.
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3 Event-Condition-Action Rules

3.1 General Ideas

Many Web-based systems need to have the capability to update data found at
(local or remote) Web resources, to exchange information about events (such as
executed updates), and to detect and react not only to simple events but also
to situations represented by a temporal combinations of events. The issue of
updating data plays an important role, for example, in e-commerce applications
receiving and processing buying or reservation orders. The issues of notifying,
detecting, and reacting upon events of interest begin to play an increasingly
important role within business strategy on the Web and event-driven applications
are being more widely deployed.

Different approaches can be followed for implementing Web applications hav-
ing the capabilities touched on above. Section 1 has discussed the advantages of a
rule-based approach for realizing reactive applications compared to general pur-
pose programming languages and frameworks. Event-Condition-Action rules are
high-level, elegant means to implement reactive Web applications whose archi-
tecture imply more than one Web components/nodes and their communication
is based on exchanging events.

For communicating events on the Web two strategies are possible: the push
strategy, i.e. a Web node informs (possibly) interested Web nodes about events,
and the pull strategy, i.e. interested Web nodes query periodically (poll) per-
sistent data found at other Web nodes in order to determine changes. Both
strategies are useful. A push strategy has several advantages over a strategy of
periodical polling: it allows faster reaction, avoids unnecessary network traffic,
and saves local resources.

3.2 ECA-Language Design Issues

Rules. In the introduction, it has already been mentioned that ECA rules have
the general form ON Event IF Condition DO Action. Before going into depth
on events, conditions, and actions, we examine the notion of an ECA rule as a
whole.

Rule Execution Semantics. The general idea for interpreting a single ECA rule
is to execute the Action automatically when the Event happens, provided the
Condition holds. However, things become more complex when we consider not
just a single rule but a set of rules (also called a rule base).

Consider the following example of two (informally specified) rules:

ON item out of stock
DO set item’s status to ‘‘not available’’

ON item out of stock
IF item is in stock at one of the shop’s suppliers
DO reorder item and set status to ‘‘reordered’’
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These two rules are in a conflict when we try to execute both in response to an
out of stock event for an item that is in stock at one of its suppliers. A language’s
rule execution semantics, determine what happens in such a situation. Possible
rule execution semantics include (see also [Pat98,WC96]):

– Selecting one single rule (or rather rule instance) from the so-called con-
flict set, the set of executable rules, for execution. This requires a selection
principle in the language such as numeric priorities which are assigned to
rules, a priority relation between rules, the textual order of rules in their
definition, or the temporal order in which rules have been added to the rule
base. (The last two are also often used as a “tie-breaker” when two rules
have the same priority.) Some languages are simply non-deterministic, i.e.,
select a rule randomly or by an unspecified principle. The principle by which
rules are chosen is often called the conflict resolution strategy.

– Executing all rules (or rule instances) from the conflict set sequentially in
some order, which is determined similar to the selection above. When during
the execution another event is generated by a rule, one can either suspend the
execution of the other rules in the current conflict set to (recursively) execute
any rules triggered by that event or first execute the complete conflict set
and then (iteratively) turn to any rules triggered by any events generated in
the meantime.

– Simply rejecting the execution of any rule (instance), possibly reporting an
exception.

Usually, it is possible to avoid such conflicts by writing the rules differently. In
the above example, the first rule could be modified to include a condition “item
is not in stock at supplier.” Unfortunately, when rule sets grow larger, this can
lead to quite lengthy conjunctions of conditions. If, in the above example, we
also want to consider the case that an item is in stock at a different branch, we
might have to add the negation of this condition to all other rules.

This short discussion has only scratched the surface of execution semantics for
ECA rules. While they have been studied quite extensively in the area of Active
Database Management Systems [Pat98,WC96], i.e., in the context of typically
closed and centralized systems, rule execution semantics have not been explored
very much for the Web as an open and distributed system.

Flow on Information in a Rule. ECA Rules exhibit a flow of information between
their three parts. In the earlier example, the “out of stock” event part has to
provide some identifier for the item. The condition part of the second rule makes
use of this identifier in determining whether there is a supplier for the item,
possibly providing the supplier’s name to the action part.

A common way to provide for such a flow of information in an ECA language
is to use variables, which are bound and exchanged between the different parts.
This requires that the “sub-languages” in which the different parts are writ-
ten share the same notion of a variable binding or at least that there is some
conversion mechanism if different notions are used.
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Variants of ECA Rules. In some cases, especially when reasonably complex deci-
sions are involved, the same piece of knowledge must be distributed over several
rules. We’ve already seen an example of this with the two rules processing out of
stock events. To support a better modeling of such cases, some languages offer ex-
tended forms of ECA rules such as so-called ECAA rules [KEP00]. ECAA rules
have the form ON Event IF Condition DO Action ELSE Alternative-Action,
specifying to execute Alternative-Action when the Event happens but the Con-
dition does not hold. The example rules can be thus merged into one:

ON item out of stock
IF item is in stock at one of the shop’s suppliers
DO reorder item and set status to ‘‘reordered’’
ELSE set item’s status to ‘‘not available’’

Note that any ECAA rule can generally be rewritten as two ECA rules, one
with the original condition and one with the negated condition. A further variant
are ECnAn rules, which specify a number of condition-action pairs; typically only
the first action whose condition holds is executed.

Rule Base Modifications. Some ECA rule-based systems allow to modify the rule
base at run-time without restarting the system. The modifications are adding
rules, by either registering a completely new rule or enabling a previously de-
activated rule, removing rules, by either unregistering or disabling an existing
rule, as well as replacing a rule. Often it is necessary to apply a number of
modifications in an atomic fashion, i.e., all changes come into effect at the same
time.

Events. Event drive the execution of ECA rule programs, which makes the
event part an important determinant for expressivity and ease-of-use of an ECA
language or system.

The Notion of an Event. It is hard to give a clear definition of what is an
event. Often, an event is defined as an observable and relevant state change in a
system; however with this definition, what is observable depends on the boundary
and abstraction level of the system (which is particularly hard to grasp in an
open system such as the Web), and what is relevant depends on the considered
application. For processing purposes, an event is usually given a representation
as an object or a message, and for the purpose of ECA languages this gives a
practical definition of what is an event.

Examples of events one might want to react to include:

– Updates of local or remote data.
– Messages (or notifications) coming from some external source such as a hu-

man user (e.g., by filling out a Web form), another program (e.g., a request
or reply from a Web service), or sensors (e.g., RFIDs).

– System events such as reports of the system status (e.g., CPU load) or of
exceptions and errors (e.g., broken network connections, hardware failures).
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– Timer events such as an alarm at a particular date and time or a periodic
alarm (e.g., every day at 7am). A particular form of timer events are dynamic
events (a term coined in [Ron97]), where the time is specified not directly in
the event part of a rule, but given by some entry in a database.

– Composite events, that is a combinations of events occurring over time. In
contrast to so-called atomic or primitive events, which include the previous
examples, composite events are usually not represented by a single object or
message in the stream of events. Rather, they are just a collection of atomic
events that satisfy some pre-defined pattern. The pattern is often called a
composite event query, and accordingly composite events can be seen as
answers to such composite event queries. Composite events will be discussed
in more detail later.

Events, or rather their representations, usually contain information detailing
the circumstances of the event such as:

– Who has generated the event (generator, sender)?
– When has the event happened (occurrence time, sending time) and when

was it detected (detection time, receiving time)? Note that these times are
often not the same due to delays in transmission and often given according
to different clocks that are not (and cannot be) perfectly synchronized.

– Which kind of event has happened (event type, class)? Event types are ul-
timately application-dependent and of varying abstraction levels; examples
could be an insertion of an element into an XML document (quite low-level
in the data layer) or a customer putting an item into the shopping cart
(higher-level in the application layer). Event-driven systems often employ a
type system for events (e.g., a class hierarchy), but the example of XChange
shows that this is not a necessity. (Note though that XChange does not
preclude typing event messages with XML schema or a similar mechanism.)

– What data has been affected by the event (event data)? In the above example
of an insertion, the event could include information about where the insertion
has taken place (document URI, position in the document) and what (XML
fragment) has been inserted. In the example of putting an item into the
shopping cart, the event could include information about that item (product
name, quantity) and the customer (name or another identifier).

– Why has the event happened, i.e., which previous events are responsible for
making the current event happen (causality information)?

The Event Part of a Rule. The event part of an ECA rule has a two-fold purpose:
it determines when to react, i.e., specifies a class (or set) of events that trigger the
rule, and extracts data from the event (usually in the form of variable bindings)
that can then be used in the condition and action part. Accordingly, the event
part of a rule is in essence a query against (the stream of) incoming events. In
contrast to answers to traditional database queries, however, answers to event
queries are associated with an occurrence time, mirroring the temporal nature
of events.
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Composite Events and Composite Event Queries. Often, a situation that re-
quires a reaction cannot be detected from a single atomic event. Such situations
are called composite events (as opposed to single atomic events), and they are
especially important on the Web: in a carefully developed application, atomic
events might suffice as designers have the freedom to choose events according to
their goal. On the Web, however, many different applications are integrated and
have to cooperate. Situations which have not been considered in an application’s
design must then be inferred from several atomic events.

There are at least the following four complementary dimensions that need to
be considered for an event query language:

– Data extraction: As mentioned above, event carry data that is relevant to
whether and how to react. The data must be provided (typically as bindings
for variables) to the condition and action part of an ECA rule.

– Event composition: To support composite events, event queries must support
composition constructs such as the conjunction, disjunction, and negation
of events (or more precisely of event queries).

– Temporal conditions: Time plays an important role in many reactive Web
applications. Event queries must be able to express temporal conditions such
as “events A and B happen within 1 hour and A happens before B.”

– Event accumulation: Event queries must be able to accumulate events of
the same type to aggregate data or detect repetitions. For example, a stock
market application might require notification if “the average over the last 5
reported stock prices raises by 5%,” or a service level agreement might require
a reaction when “3 server outages have been reported within 1 hour.”

The most prevalent style for event query languages uses composition operators
such as conjunction and sequence to combine primitive event queries into com-
posite event queries. We will see an example of this in Section 3.3 on XChange.
This approach is not without problems, though: for the sequence operator alone,
four different interpretations are conceivable as suggested in [ZS01]. We will
therefore also look at an alternative approach called XChangeEQ in Section 3.3.

Conditions. The condition part of an ECA rule expresses usually a query to
persistent data sources. As with event queries, condition queries have the two-
fold purpose of determining whether the rule fires (i.e., the action is executed)
and extracting data in the form of variable bindings that is then used in the
reaction. Querying XML, RDF, and other Web data is well-studied and a multi-
tude of query languages have been devised [BBFS05]. Criteria to be considered
for the Web query language used to express the condition part include:

– What is the query language’s notion of answers (variable bindings, newly
constructed data)?

– How are answers delivered, can they be used to “parameterize” further
queries or the action? Can, for example, a variable bound in an event query
be a parameter in a condition query, i.e., the value delivered by the event
query be accessed and used in the condition query?
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– What evaluation methods for queries are possible (backward chaining, for-
ward chaining)?

– Which data models are supported (XML, RDF, OWL)? Is it possible to
access data in different data models within one query?

– How does the query language deal with object identity?
– Which reasoning or deductive capabilities does the query language provide

(views, deductive rules, etc.)?

The choice of a query language has significant influence on the design of a
reactive language and should thus be made carefully. While the primary purpose
of the query language is to query persistent data (in the condition part), event
messages often come in the same formats as persistent data. Accordingly, the
query language is often also be used to query data in atomic events in the event
part of ECA rules.

Actions. While the event and condition part of an ECA rule only detect that a
system has (entered) a certain state without affecting it, the action part intends
to modify the current state and yield a new state. Typical actions are:

– Updating persistent data on the Web. For example, the event that a customer
puts an item into her shopping basket requires recomputing the total price.

– Raising new events to communicate with other agents on the Web (Web sites,
Web services, etc.). Usually the new event message is sent as a notification
in an asynchronous manner and execution of the current rule or other rules
proceeds immediately without waiting for an answer. For example, upon a
checkout event, a new event containing a list with the bought items and the
customer’s address is sent to the warehouse to initiate delivery.

– Procedure calls to some host environment or a Web service. In contrast to
raising new events, a procedure call is usually synchronous and the rule has
to wait for the call to complete before execution is continued.

– Modifications to the rule base. This includes the possibility to enable and
disable rules4 or to register (add) new rules and unregister (delete) existing
rules. Such modifications of the rule base are not without problems, however,
as self-modifying programs are generally conceived to be hard to analyze and
understand.

Updates. Updates modify the contents of Web resources by inserting, deleting,
or replacing data items. Depending on the data format of the Web resources
such data items are XML fragments, RDF triples, or OWL facts.

Updates can be specified conveniently in some update language. There is a
strong connection between update languages and query languages, and most
existing update languages are based on a query language. The query language

4 Note, however, that alternatively to a specific enable/disable action, this can also be
modeled by adding a condition on some object (a boolean value or similar), which
signals whether the rule is “enabled” or “disabled,” to rules and modifying this object
through and update
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can be used to locate items or positions in the resource where an update should
be performed as well as to construct new data that will be inserted or used to
replace old data.

Combinations of Actions. Being able to execute only one primitive action such
as a single update or raising one new event is usually far too limiting. Actions
that have to be taken can be quite complex and require several primitive actions
to be performed. The most common way to put together several primitive actions
into a compound action is to perform them in a sequence. However other ways
to form compound actions such as a specification of alternatives (if one action
can fail) or a conditional execution are useful, too.

Usually we expect a compound action to be executed in a transactional man-
ner, i.e., either the whole compound action takes effect or it has no effect at
all. In a distributed setting such as the Web this requires that all participants
involved in a compound action agree on a commit protocol such as the two-phase
commit (2PC; see, e.g., [CDK01]).

Solutions to realize compound actions based on specifying a compensating
action for each action have not been investigated deeply in the framework of ECA
rules on the Web. Such issues have been investigated for databases, e.g., Sagas
[GMS87] (and a myriad of follow-up work on advanced transaction models),
as well as in Web Services, e.g., with the notion of a “Business Activity” in
WS-Transaction [C+04]. However it should be noted that the primary aim of
these proposals is increasing parallelism for long running transactions. They still
require two-phase commits (in particular at the end of the transaction) to give
transactional guarantees in a distributed setting.

3.3 XChange as an Example of ECA Rules Language

This section presents XChange, a high-level, ECA rules-based language for re-
alizing reactivity on the Web. We first introduce the paradigms upon which the
language XChange relies and then present and exemplify the core constructs of
the language.

Paradigms. Clear paradigms that a programming language follows provide a
better language understanding and ease programming. Hence, explicitly stated
paradigms are essential for Web languages, since these languages should be easy
to understand and use also by practitioners with little programming experience.

Event vs. Event Query. As discussed in Section 3.2, one can conceive every
kind of changes on the Web as events. For processing them, XChange repre-
sents each event as one XML document. Event queries are queries against the
XML data representing events. Event query specifications differ considerably
from event representations, e.g. event queries may contain variables for event
data items. Most proposals dealing with reactivity do not significantly differen-
tiate between event and event query. Overloading the notion of event precludes
a clear language semantics and thus, makes the implementation of the language
and its usage much more difficult. Event queries in XChange serve a double
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purpose: detecting events of interest and temporal combinations of them, and
selecting data items from events’ representation.
Volatile vs. Persistent Data. The development of the XChange language – its
design and its implementation – reflects the view over the Web data that differ-
entiates between volatile data (event data communicated on the Web between
XChange programs) and persistent data (data of Web resources such as XML or
HTML documents). Volatile data cannot be updated but persistent data can.
To inform about, correct, complete, or invalidate former volatile data, new mes-
sages containing information about events that have occurred are communicated
between Web nodes.
Pattern-Based Approach. XChange is a pattern-based language: Event queries
describe patterns for events requiring a reaction. Web queries describe patterns
for persistent Web data. Action specifications build also upon pattern specifi-
cations, as we will see later. Patterns are templates that closely resemble the
structure of the data to be queried, constructed, or modified, thus being very
intuitive and also straight forward to visualize [BBB+04].
Strategy for Event Communication. Possible communication strategies (i.e. pull
and push) have been touched on in Section 3.1. The pull strategy is supported
by languages for Web queries (e.g. XQuery [B+05] or Xcerpt [SB04]). XChange
uses the push strategy for communicating events.
Processing of Events. Event queries are evaluated locally at each Web node. Each
such Web node has its own local event manager for processing incoming events
and evaluating event queries against the incoming event stream (volatile data).
For efficiency reasons, an incremental evaluation is used for detecting composite
events.

Bounded Event Lifespan. Event queries are such that no data on any event has
to be kept forever in memory, i.e. the event lifespan should be bounded. Hence,
design enforces that volatile data remains volatile. If for some applications it is
necessary to make part of volatile data persistent, then the applications should
turn events into persistent Web data by explicitly saving events.

Rules. An XChange program is located at one Web node and consists of one
or more ECA rules of the form Event query – Web query – Action. Events are
communicated between XChange programs by ECA rules that raise and send
them as event messages. Every incoming event (i.e., event message) is queried
using the event query (introduced by keyword ON). If an answer is found and the
Web query (introduced by keyword FROM) has also an answer, then the specified
action (introduced by keyword DO) is executed.

Rule parts communicate through variable substitutions. Substitutions ob-
tained by evaluating the event query can be used in the Web query and the
action part, those obtained by evaluating the Web query can be used in the
action part.

The following example rule shows the structure and the information passing
mechanism of an XChange ECA rule. Concrete examples of event queries, Web
queries, and actions are given in the next sections.
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ON <new discounts for books of type T applied by supplier S>
FROM <stock of books of type T low>
DO <send new order of books of type T to S >

The next sections introduce the Web query, event query, and action part of an
XChange ECA rule. We start with the Web queries since XChange event queries
and updates build upon and extend the Web queries.

Web Queries. XChange embeds the Web query language Xcerpt [BS02a,Sch04]
for expressing the Web query part of ECA rules and for specifying deductive
rules in XChange programs. Using Xcerpt one can query and reason with tree-
or graph-structured data such as XML or RDF documents. A deductive rule has
the following form in Xcerpt5:

CONSTRUCT construct-term
FROM query-term
END

Such deductive rules allow for constructing views over (possibly heteroge-
neous) Web resources that can be further queried in the Web query part of
XChange ECA rules.

Xcerpt is a pattern-based language: it uses query patterns, called query terms,
for querying Web data and construction patterns, called construct terms, for
re-assembling data selected by queries into new data items. For conciseness,
Xcerpt represents data, query terms, and construct terms in a term-like syntax;
the same approach is also taken in XChange. For example, for representing XML
documents as terms, element names become term labels and child elements are
represented as subterms surrounded by curly braces or square brackets (in case
of ordered child elements).

Both partial (i.e. incomplete) or total (i.e. complete) query patterns can be
specified. A query term t using a partial specification denoted by double brackets
or braces) for its subterms matches with all such terms that (1) contain matching
subterms for all subterms of t and that (2) might contain further subterms
without corresponding subterms in t. In contrast, a query term t using a total
specification (denoted by single square brackets [ ] or curly braces { }) does
not match with terms that contain additional subterms without corresponding
subterms in t.

Query terms contain variables for selecting subterms of data items that are
bound to variables. In Xcerpt and XChange, variables are placeholders for data,
very much like logic programming variables are. Variables are preceded by the
keyword var. Variable restrictions can be also specified, by using the construct

5 XChange integrates the Web query language Xcerpt – XChange constructs are based
on and extend Xcerpt constructs and the prototypical implementation of XChange
uses a prototypical implementation of Xcerpt. The keyword FROM has been used in-
stead of IF for introducing the condition part of XChange ECA rules for achieving
language uniformity without changing Xcerpt’s language design and implementation.
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-> (read as), which restricts the bindings of the variables to those terms that are
matched by the restriction pattern (given on the right hand side of ->). The fol-
lowing Xcerpt query term queries the list of suppliers at http://suppliers.com
to determine the names and URIs of companies supplying books. This informa-
tion is used e.g. when some books are out of stock and need to be reordered.

in { resource {"http://suppliers.com/list.xml", XML},
desc supplier {{
items {{ desc type { "Book" } }},
contact {{
name { var N },
URI { var U }

}}
}}

}

Xcerpt query terms may be augmented by additional constructs like sub-
term negation (keyword without), optional subterm specification (keyword
optional), and descendant (keyword desc) [SB04]. Query terms are “matched”
with data or construct terms by a non-standard unification method called simu-
lation unification dealing with partial and unordered query specifications. More
detailed discussions on simulation unification can be found in [BS02b, Sch04].
In the above given example, the variable substitutions N �→ "Springer" and U
�→ "www.springer.de" could be obtained as result of simulation unifying the
query term with the given XML document.

Event Queries. Event messages denote XChange event representations and
communicate events between (same or different) Web nodes. An XChange event
message is an XML document with a root element labelled event and the five
parameters (represented as child elements as they may contain complex con-
tent): raising-time (i.e. the time of the event manager of the Web node rais-
ing the event), reception-time (i.e. the time at which a node receives the
event), sender (i.e. the URI of the Web node where the event has been raised),
recipient (i.e. the URI of the Web node where the event has been received),
and id (i.e. a unique identifier given at the recipient Web node).

Each XChange-aware Web node monitors such incoming event messages to
check if they match an event query of one of its XChange ECA rules. Differences
between volatile and persistent data make Web query languages not sufficient
as candidates for querying event data: Many situations need for their detection
not just one event to occur, but more than one event to occur. The temporal
order of these (component) events and the specified temporal restrictions on
their occurrence time need also to be taken into account in detecting situations.
Mirroring these practical requirements, XChange offers not only atomic event
queries but also composite event queries.

Atomic Event Queries. Atomic event queries detect occurrences of single, atomic
events. They are query patterns for the XML representation of events and may be

http://suppliers.com
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accompanied by an absolute time restriction, which are used to restrict the events
that are considered relevant for an event query to those that have occurred in a
specified (finite) time interval. Such a time interval may be given by fixed start
and end time points (keyword in) or just by an end time point (keyword before),
in which case the interval starts with the time point of event query definition.

The following XChange atomic event query detects announcements of dis-
counts applied by a supplier. The information about the supplier (sender URI)
and the discount for a type of items are to be bound to the variables S, D, and
T, respectively.

xchange:event {{
xchange:sender { var S },
discount {{
items {{
type { var T },
discount { var D }

}}
}}

}}

Composite Event Queries using Composition Operators. The need for detecting
not only atomic events but also composite events has been motivated in Sec-
tion 3.2. XChange offers composite event queries for specifying and detecting
composite events of interest.

A composite event query consists of (1) a connection of (atomic or composite)
event queries with event composition operators and (2) an optional temporal
range limiting the time interval in which events are relevant to the composite
event query. Composition operators are denoted with keywords such as and (both
events have to happen), andthen (the events have to happen in sequence), or
(either event can happen), without (non-occurrence of the event in a given time
frame). Limiting temporal ranges can be specified with keywords such as before
(all events have to happen before a certain time point), in (all events have to
happen in an absolute time interval), within (all events have to happen within
a given length of time). For a more in-depth discussion of XChange composite
event queries see [Eck05,P0̆5,BEP06a].

Composite events (detected using composite event queries) do not have time
stamps, as atomic events do. Instead, a composite event inherits from its compo-
nents a start time (i.e. the reception time of the first received constituent event
that is part of the composite event) and an end time (i.e. the reception time of
the last received constituent event that is part of the composite event). That is,
in XChange composite events have a duration (a length of time).

The following composite event query evaluates successfully if no acknowl-
edgment for the order s-rw2007-0023 is received between the 1st and 15th of
October 2007:

without {
xchange:event {{
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acknowledgement {{
order {{ id { "s-rw2007-0023" } }}

}}
}}

} during [ 2007-10-01T10:00:00 .. 2007-10-15T14:00:00 ]

Composite Event Queries using XChangeEQ. Querying composite events based
on composition operators (as presented above) has been well-investigated in
active databases systems and works well with small queries. However, queries
involving a larger number of events can sometimes become difficult to express
and to understand.

Consider and example where we want for events a, b, c and d to happen
and have the constraints that a happens before b, a also happens before c,
and c before d. Note that the query cannot be expressed as and{ andthen[a,
b], andthen[a, c], andthen[c, d]}, since this query would allow different
instances of a and c events to be used. A correct way to express the query would
be: andthen[a, and{b, andthen[c, d]}]. If we now only add an additional
constraint that b happens before d, the new query bears only little resemblance to
the old: andthen[a, and{b, c}, d]. In fact, even though we added a constraint
in our specification, the query has one operator less.

Composition operators mix the event querying dimensions explained in Sec-
tion 3.2 (in the case of andthen event composition and temporal relationships
are mixed). It can be argued that this leads to the exemplified difficulties in
expressing and understanding queries and also to a certain incompleteness in
the expressivity of such event query languages.

An alternative to using composition operators in XChange is investigated
with the high-level event query language XChangeEQ. In XChangeEQ, the four
orthogonal event querying dimensions are treated separately. The above example
can be expressed as: and{event i: a, event j: b, event k: c, event l:
d} where {i before j, i before k, k before l, j before l} . (Keep in
mind that a, b, c, d are generally multi-line atomic event queries, so that the
increase in length compared to the composition-based approach is insignificant
and outweighed by better readability.)

XChangeEQ also adds support for deductive rules on events, relative temporal
event (e.g., “five days longer than event i, ” written extend[i, 5 days]), and
enforces a clear separation between time specifications that are used as events
(and waited for) or only as restrictions (conditions in the where-part). The fol-
lowing example rule detects an overdue event when an order that has been
received before October 15 has not been acknowledged within 5 days.

DETECT
overdue { var I }

ON
and {
event i: order {{ id { var I } }},
event j: extend[i, 5 days],
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while j: not acknowledgment{{ id{ var I } }}
} where { i before datetime("2007-10-15:14:00") }

END

More detail on XChangeEQ can be found in [BE06a,BE07].

Actions. XChange rules support the following primitive actions: executing sim-
ple updates to persistent Web data (such as the insertion of an XML element)
and raising new events (i.e., sending a new event message to a remote Web
node or oneself). To specify more complex actions, compound actions can be
constructed as from the primitive actions.

Updating Web Data. An XChange update term is a (possibly incomplete) pattern
for the data to be updated, augmented with the desired update operations (i.e.,
an update term is an Xcerpt query term enriched with update specifications).
An update term may contain different types of update operations: An insertion
operation specifies an Xcerpt construct term that is to be inserted, a deletion
operation specifies an Xcerpt query term for deleting all data terms matching it,
and a replace operation specifies an Xcerpt query term to determine data terms
to be modified and an Xcerpt construct term as their new value. The following
XChange update term updates the offer.xml document upon arrival of new
books:

in { resource {"http://myshop.de/offer.xml", XML},
offer {{
books {{
items {{

type { var T },
insert new-arrival { var B }

}}
}}

}}
}

Raising New Events. Events to be raised are specified as (complete) patterns
for the event messages, called event terms. An event term is simply an Xcerpt
construct term restricted to having a root labelled event and at least one sub-
term recipient specifying the URI of the recipient. The following XChange
event term is used to order 50 Reasoning Web 2007 books at Springer:

xchange:event {
xchange:recipient {"http://www.springer.de"},
order {
id { "s-rw2007-0023" },
book { "Reasoning Web -- Third International Summer School

2007, Tutorial Lectures" },
count { "50" }
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},
delivery-info {
company { ... }, address{ ... }

}
}

Specifying Compound Actions. The primitive actions described by update terms
and event terms can become powerful by combining them. XChange hence al-
lows specifying complex actions as combinations of (primitive and compound)
actions. Actions can be combined with disjunctions and conjunctions. Disjunc-
tions specify alternatives, only one of the specified actions is to be performed
successfully. (Note that actions such as updates can be unsuccessful, i.e., fail.)
Conjunctions in turn specify that all actions need to be performed. The com-
binations are indicated by the keywords or and and, followed by a list of the
actions enclosed in braces or brackets. The list of the actions can be ordered
(indicated by square brackets, []) or unordered (indicated by curly braces, {}).
If the actions are ordered, their execution order is specified to be relevant. If
the actions are unordered, their execution order is specified as irrelevant, thus
giving more freedom for parallelization.

Declarative and Operational Semantics. XChange combines an event lan-
guage, a query language, and an update language into ECA-rules. Accordingly,
the declarative and operational semantics are given separately for each rule part.
The semantics of an XChange ECA-rule follows immediately from the seman-
tics of its parts; the “glue” between the parts is given by the substitutions
for the variables. The semantics of event queries is the most interesting aspect
of XChange semantics and is discussed in [Eck05, P0̆5, BEP06b]. Semantics of
XChangeEQ are provided as a model theory and fixpoint theory and discussed
in [BE07]. The underlying ideas for the semantics of Web queries and updates can
be found in [BEP06b] and their detailed description is given in [Sch04] and [P0̆5],
respectively.

Current Status. XChange is an ongoing research project. The design, the
core language constructs, and the semantics of XChange are completed. For
revealing the strengths and limits of the language, a couple of use cases have been
developed: Travel organization as an application of Web-based reactive travel
planning and support and e-Book store as a simple Semantic Web scenario are
presented in [P0̆5]. XChange has also been used for determining the suitability
of the ECA rules approach for business process modeling and in paticular for
implementing the EU-Rent case study [Rom06,BEPR06].

A proof-of-concept implementation6 exists, which follows a modular approach
that mirrors the operational semantics. The XChange prototype has been imple-
mented in Haskell, a functional programming language; chosing Haskell has been
strongly motivated by an existing Xcerpt prototype implementation, which has
been extended for implementing XChange. The XChange prototype has been
6 XChange Prototype, http://reactiveweb.org/xchange/prototype.html

http://reactiveweb.org/xchange/prototype.html
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employed for implementing the application scenario Distribuited Information
Portal described in Section 2; the developed demonstration of XChange is pre-
sented in [Gra06,BEGP06]. Issues of efficiency of the implementation, esp. for
event detection and update execution, have not been a priority in developing the
prototype and are subject to future work.

There are a couple of further research issues that deserve attention within
the XChange project, such as the automatic generation of XChange rules (e.g.
based on the dependencies between Web resources’ data) or the development of
a visual counterpart of the textual language (along this line, the visual rendering
of Xcerpt programs – visXcerpt [BBSW03] – is to be extended).

3.4 Implementation of ECA Systems

Implementation and architecture of ECA rules systems have been studied exten-
sively in the area of Active Database Management Systems (see [WC96] for an
overview). Unlike the Web, which is open, distributed, and decentralized, active
databases are rather closed and centralized systems. It is therefore not clear how
well their architectures would transfer to a Web context and there has not been
much research on this issue. We therefore concentrate in this section mainly on
the algorithms used in implementations of the event, condition, and action part,
respectively, rather than overall architectural issues.

Event Part – Atomic Events. The evaluation of atomic event queries has
two main issues, mainly with regard to efficiency: the detection of updates in
documents and databases (mainly XML, but also other Web data formats) that
satisfy given (update) event queries and the evaluation of a potentially large
number of event queries against events that are received from other Web nodes
as messages.

Detection of relevant updates has been studied extensively in relational data-
bases [WC96, HCH+99], often under the term “trigger processing.” The only
work we are aware of where this issue has been studied from an XML perspective
is Active XQuery [BBCC02], which will be described in Section 3.5.

The other issue is that when an event message (an XML document) is
received, a potentially large number of atomic event queries (e.g., XPath ex-
pressions or Xcerpt/XChange query terms) have to be evaluated against this
message. From an optimization perspective, this is the inverse of the classical
database query optimization: instead of evaluating a single query against a rel-
atively large amount of data, we have to evaluate a large amount of queries
against relatively small data. Therefore, atomic event query evaluation requires
multi-query optimization where queries (rather than data) are indexed and sim-
ilarities between queries exploited. A number of approaches for multi-query op-
timization of XPath expressions have been devised, which are based on finite
state machines [DAF+03,GMOS03]. However, the issue has been treated only in
isolation and not as part of a full ECA rule engine.
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Event Part – Composite Events. For the evaluation of composite event
queries, a data-driven approach is best-suited. Since it can work incremen-
tally, it is preferable for efficiency reasons: work done in one evaluation step
of an event query should not be redone in future evaluation steps. For exam-
ple, the composite event query “events A and B happen” requires to check
every incoming event if it is A or B and thus multiple evaluation steps. When
event A is detected, we want to remember this for later when B is detected
to signal the composite event. In contrast, a non-incremental, query-driven
(backward-chaining-like) evaluation would have to check the entire history of
events for an A when a B is detected. Popular data-driven approaches used
in the past include finite automata [GJS92, SSSM05,BC06] and event trees (or
graphs) [CKAK94,MS97,ME01,AE04,AC05,BEP06a].

In the finite automata approach, states signify the “progress” made in de-
tecting a composite event and state transitions are caused by incoming atomic
events. This simple intuition is complicated though by the need to backtrack
or reset the automata after the first event has been detected in order to detect
further events. Further, when data is correlated between events, automata have
to be extended to accommodate this, too.

The event tree approach is similar to the Rete algorithm, which will be de-
scribed in detail in Section 4.4 in the context of production rules. The basic idea
is to represent an event query as an operator tree where leaf nodes correspond to
atomic event queries and inner nodes to composition operators such as conjunc-
tion or sequence. New events (or event data) flow bottom up in this tree and
inner nodes have a storage to memorize previously detected events. When an
inner node detects a composite event from the new and the memorized events,
it “forwards” this composite event to its parent node. When event queries share
subexpressions, this can be exploited by using a directed acyclic graph instead of
a tree. So far, this is also the basic idea of Rete; however, certain operators such
the sequence allow to disable evaluation of subtrees depending on the stored
events: for example, to evaluate the sequence of events E1 followed by E2, the
subtree for E2 must only be evaluated after an E1 instance has been detected.

Another approach discussed in the literature are (special types of) Petri nets
[GD93]. However this can be seen as a variant of the event tree approach, since
for each possible operator a separate Petri net is given and for a given event
query the Petri nets for all its operators are then connected in essentially the
same manner as the inner nodes in the event tree.

Condition Part – Query Evaluation. For the evaluation of Web queries in
the condition part, ECA rules systems usually rely on existing query evalua-
tion engines. Accordingly, query processing takes only place whenever a rule is
triggered by an event. This means that even though the condition part of an
ECA rule can be considered a standing query (whose result could be precom-
puted whenever the underlying data changes), it is not treated this way but only
posed as a spontaneous query whenever necessary. This kind of evaluation of a
(single) Web query is a well-researched issue, see, e.g., [BEE+07].
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We will see in Section 4.4 that evaluating the condition part only when an
event triggers an ECA rule is in contrast to the continual evaluation of the
condition part in production rule systems.7 An advantage of treating conditions
as spontaneous queries is that no restrictions are being posed on the accessed
data sources, they can be any resources anywhere on the Web and event queries
that “crawl” from Web resource to Web resource are conceivable. In contrast,
precomputing query answers would usually be restricted to a local and closed
set of resources.

Action Part – Update Execution. For specifying the updates in the Action
part of ECA rules, a update language is employed. Due to the absence of a
standard update language for XML or RDF data, each ECA rule language uses
its own update language and the supported updates are usually implemented in
an ad-hoc fashion.

At least for the path-based update languages for XML, good chances exist to
change this situation as the W3C works towards standardizing a update exten-
sion to XQuery. The W3C XQuery Update Facility8 Working Draft, released in
July 2006, presents the syntax and semantics of such an XQuery extension. The
draft defines update primitives such as insertion or deletion of a node, modifica-
tion of a node while preserving its identity, or creation of a updated node with a
new identity. Variants of these primitives are also proposed, e.g. insert after or
insert as last. The notion of pending update list is defined as an unordered col-
lection of update primitives, which is the base for update execution. Guidelines
for constructing the pending update list are also given.

The issue of snapshot semantics is currently discussed in the W3C XML Query
Working Group for processing the specified updates. The following snapshot
semantics is used for the UpdateX [SHS04] language, an XQuery-based update
language for XML: A first processing step determines the scope of the updates
(i.e. for a FLWUpdate expression, the variables declared in the FOR and LET
XQuery clauses are bound) and evaluate (not apply) each update primitive; the
list of update primitives is thus formed. A checking step follows, where different
kinds of constraints (e.g. given by a DTD) are performed. If their execution
would not give invalid results, the updates in the constructed list are applied
sequentially. Following these steps, the UpdateX has been implemented within
the Galax9 project.

An interesting implementation approach is followed in the Active XQuery
language [BBCC02], which uses the update extensions to XQuery proposed
in [TIHW01]. The main notions of SQL [KK00] triggers are used here but the
execution model of SQL-3 is revised so as to cope with the hierarchical nature of
XML data. Active XQuery update specifications may involve insertion or dele-
tion of (whole) fragments of XML documents. These statements are called bulk

7 It would of course be conceivable to use the condition query evaluation techniques of
production rules for the evaluation of conditions of ECA rules. However we are not
aware of any systems doing this.

8 XQuery Update Facility, http://www.w3.org/TR/xqupdate/
9 Galax, http://www.cise.ufl.edu/research/mobility/

http://www.w3.org/TR/xqupdate/
http://www.cise.ufl.edu/research/mobility/
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update statements in this work. Problems may occur when executing such bulk
updates directly: Consider the example of inserting a whole subtree S into an
XML tree T . An ECA rule whose Event part waits for insertions of portions of
S into T to fire would not detect the insertion without a mechanism supporting
this. Thus, bulk update statements in Active XQuery are transformed (i.e. ex-
panded) into equivalent collections of simple update operations. An algorithm
for update expansion is outlined in [BBCC02]. The output of the algorithm is a
list of simple update operations together with evaluation directives, which guide
the language processor in firing all triggered ECA rules.

Alternative techniques for implementing the update operations are presented
in [TIHW01] for the case when XML data is stored in a relational database (i.e.
XML update statements are translated into SQL statements). This is the only
work on updates for the Web that reports on implementation performance. Using
three sets of test data (i.e. synthesized data with fixed structure, synthesized data
with random structure, and real life data from the DBLP [dbl] bibliography
database) experimental results were done in order to compare the techniques
proposed for the core update operations (here, insert and delete).

3.5 An Overview of Existing ECA Languages and Systems

There are not great many ECA languages developed so far or under development
at moment and most of them are results of research efforts done in the academia
in the last couple of years.

The General Semantic Web ECA Framework [BFMS06a,MSvL06,BFMS06b]
is a research endeavor that proposes a general framework10 for reactive behavior
on the Semantic Web. The generality here is given by the heterogeneity of the
ECA rule components, which can be specified by using different event, condition,
and action languages. Just the information flow between the rule components in
form of variable substitutions constrains the languages of choice. The language
used in writing an ECA component is given by means of the ECA-ML markup
language for ECA rules offered by the framework; e.g. the URI of the languages
is given as an attribute:

<eca:rule xmlns:eca="http://.../eca/2006/eca-ml">
...

</eca:rule>

ECA rule components are processed at Web nodes where a processor for the
given language exists. For determining whom to forward the processing task, a
Language and Service Registry is queried. A reference implementation for de-
termining an appropriate Web processing node together with an event detection
module based on a SNOOP-like event specifications have been completed. An
action component given by a process algebra, the Calculus of Communicating
Systems (CCS) [Mil83], has been proposed and its implementation is underway.

10 General Semantic Web ECA Framework,
http://www.dbis.informatik.uni-goettingen.de/eca/

http://www.dbis.informatik.uni-goettingen.de/eca/
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Also, an ontology of behavior is under development with the aim of using it as
basis for reasoning and for easing the editing of ECA rules. As basis for it, the
OWL-DL ontology11 of the Resourceful Reactive Rules12 (r3) project is consid-
ered. The goal of the r3 project is to develop a prototypical implementation of a
Semantic Web reactive rule engine based on the ideas of the General Semantic
Web ECA Framework.

Prova13 is a combination of Java with Prolog-style rules. It employs ECA rules
as means for distributed and agent programming. ECA rules react to incoming
messages or pro-actively poll for state changes. By using Prova, composite events
can be detected and different kinds of actions can be executed. Complex work-
flows can be specified in the action part as all BPEL constructs are directly
available in the language. Prova has been used in a number of academic projects
and also as basis for a commercial product for information integration.

The ruleCore14 system provides an engine for executing ECA rules and also
a couple of GUI tools such as the ruleCore Monitor, which gives run-time status
information on the engine. The ruleCore engine detects situations specified by
means of composite events. One can detect for example sequences, conjunctions,
disjunctions, and negation of events. The engine supports also the detection of
events that happen within a given time interval. Several event sources and of
different kinds can be connected to the ruleCore engine, which processes events
represented as XML documents. The action part of ECA rules can contain a
number of action items, which specify that scripts are to be executed or events
are to be generated. ruleCore has been developed by Analog Software. It can be
used in research projects and can also be licensed for commercial use.

The Reaction RuleML15 effort of the RuleML Initiative16 aims at a general
language that should enable inter-operation between industrial products and
academic research results following different approaches to reactivity. The work
on the ECA Logic Programming language (ECA-LP) and the ECA Rule Markup
language (ECA-RuleML) as its XML serialization syntax has started during
2006. These languages are general enough to support ECA rules and their variant
ECAP rules, but also production rules. They allow the specification of composite
events to be detected and of different kinds of actions (notifications, updates and
sequences of updates, etc.) to be executed.

An ECA rule language for XML data is proposed in [BPW02] and adapted
for RDF data as the RDF Triggering Language (RDF-TL) [PPW03]. These
languages have the capability to react only to single events and do not provide
constructs for querying for complex combinations of events. As actions, simple
insertions or deletions to XML or RDF data and sequences thereof are supported.
At moment of writing these two research projects are not developed further.

11 r3 Ontology, http://rewerse.net/I5/r3/DOC/2005/index.html
12 Resourceful Reactive Rules,http://rewerse.net/I5/r3/
13 Prova, http://www.prova.ws
14 ruleCore, http://www.rulecore.com/index.html
15 Reaction RuleML, http://ibis.in.tum.de/research/ReactionRuleML/
16 RuleML Initiative, http://www.ruleml.org

http://rewerse.net/I5/r3/DOC/2005/index.html
http://rewerse.net/I5/r3/
http://www.prova.ws
http://www.rulecore.com/index.html
http://ibis.in.tum.de/research/ReactionRuleML/
http://www.ruleml.org
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ECA rules are discussed in the context of XSL [xsl01] and Lorel [AQM+97]
as means to realize active document management systems, i.e. XML repositories
with reactive capabilities [BCP00]. An ECA rule consists here of an event part
and a condition-action part, which mixes the condition and the action specifica-
tions. Events considered here are just simple modifications of XML documents
and there is no support for composite events. Conditions are (XSL or Lorel)
queries to XML documents, and actions consist of constructing new documents
and/or modifying existing documents in the document base, and then placing
them into folders, publishing them on the Web, or sending them by e-mail.

Active XQuery [BBCC02] extends the Web query language XQuery by ECA
rules, which are adapted from SQL-3 and thus called triggers in this work. The
event part of such a trigger specifies an affected XML fragment by means of an
XPath expression and the update operation (insert, delete, replace, or rename)
on this fragment. The condition part is given by an XQuery WHERE clause.
The actions available are the previously mentioned, simple update operations
and external operations such as sending of messages.

Before and after triggers can be specified in Active XQuery: Before triggers
consider the condition and action parts before the given event actually occurs.
For after triggers the occurrence of the event is a prerequisite of evaluating
the condition and action parts. The trigger components communicate through
transition variables – two system-defined variables referring to the old and new
nodes and additional variables defined by means of an XQuery LET clause. One
can also associate priorities to Active XQuery triggers and specify a triggering
granularity for the triggers – statement-level triggers fire once for each set of
nodes affected by the change and node-level triggers fire for each node in such a
set.

A research work supporting a path-based specification and the detection of
composite events for XML documents [BKK04] has been also proposed. How
this approach does (or even would) scale to the Web is unclear; for example,
one cannot relate (primitive or composite) events that have occurred in XML
documents distributed on the Web, as the communication of event data is not
supported. It does not represent a full reactive language for the Web, but it
could be extended and integrated into a reactive language.

4 Production Rules

4.1 General Ideas

What Is a Production Rule?. A production rule is a piece of knowledge organized
along an WHEN condition DO action structure. The intent of a rule is to evolve
the state of the system by executing the action. To guide this evolution, the
action will only be applied from a state where the condition is true. The state that
results from the execution of the action of a production rule can be incompatible
with the state in which the rule was applied. This is common in production rule
programs, and can be seen as a noticeable difference with other, monotonic rule
programming paradigms such as logic rules.
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Production Rules Based Software Applications. Production rules are used in
software applications to encode their logic, or parts of it. As a result, an industrial
application may rely on thousands of rules, each rule representing a piece of the
knowledge of the company policy. Since industrial applications have a rich life
cycle, spanning over several years and involving dozens of persons with various
roles, production rule systems have to provide the support for managing this
huge amount of information in the long term. This is the purpose of a Business
Rule Management System such as ILOG JRules, as illustrated in Section 4.3.

Production Rules Based Web Applications. Business (production) rules is not the
only paradigm on which real-world applications rely. Examples of other paradigms
are a multi-tier architecture, and the Web. Web applications will typically use
production rules to encode their policy-intensive aspects, that is, the part of their
logic that requires the complex handling of the system state, based on the busi-
ness knowledge of the company. The use of production rules will thus ease the
implementation of Web applications with several agents playing different roles.

Production Rules Versus Integrity Rules. Integrity rules are introduced in a rela-
tional data base to enforce its correctness and its consistency. In order to main-
tain referential integrity between primary and foreign keys as data is inserted
or deleted from the database, certain insert and delete rules must be defined.
Like production rules, integrity rules have a condition part determining in which
context they are executed. In fact, integrity rules might be implemented by a
production rules system adapted to RDBMS environment. However, specialized
integrity system are likely to be more efficient to process huge amount of data
characterizing actual databases. On the other hand, the purpose of PR systems is
not limited to DB referential integrity and could be applied on various domains.

4.2 Description of a Production Rules System

The Working Memory and the Underlying Data Model. As programs
handle data, a programming language defines (more or less implicitly) a data
model. Being in essence reactive, rule-based programming languages must en-
sure, either in the definition of the data model or through specific constructs of
the rule language itself, that a rule-based program is able to react to changes in
the data. While ECA rule languages introduce the concept of event in the data
model and the rule language to this end, production rule languages introduce
the concept of working memory in the data model, and an update statement in
the rule language.

The working memory is the finite set of data items (facts, objects... names
vary) against which the rules are executed. Data items are explicitly added
to, and removed from, this set by the program through dedicated statements
(usually assert and retract). Since changes in data are explicitly notified to the
rule engine through the update statement, the data can follow basically any
data model. Some production rule languages, such as OPS5, include a custom
data metamodel in their definitions. Most modern production rule languages are
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designed to operate on foreign data models, such as those of other programming
languages (e.g. Java or .NET’s CLR) or XML dialects. Their data model then
heavily relies on the introspection mechanisms provided by the foreign data
models, such as reflection in programming languages, or the XML schemata.

Relation with RDF Concepts. In the same manner than a production rule lan-
guage can be adapted to an XML dialect or to a programmation language model,
it can process RDF models and data. However, some specificities of RDF induce
new constraints on the rule language and on the rule engine. For example, RDF
resources are type-mutable, and new type labels may be added to a resource
during the execution of the rules. Moreover, the model itself could change at
runtime through the addition of new properties or types. Another example can
be found in RDF with subproperties, or in OWL with transitive, commutative, or
inverse relations. To support these additional modeling features, the rule engine
must elaborate its handling of the type system, and extend its pattern matching
function to take the specific capabilities of properties into account. Depending
on the production rule system considered, all or only part of these features will
be supported, by additional constructs in the rule language and abilities of the
rule engine. This will represent an element of choice for the users, depending on
their actual need of RDF specific features.

Structure and Semantics of a Production Rule. As mentioned before, the
overall structure of a production rule is WHEN condition DO action. The con-
dition part expresses in which situation the rule should be elected for execution;
the action part describes what should be performed as part of executing the rule.

The condition part of a rule contains patterns describing the data that will
trigger the rule. When evaluating a rule condition, the production rule engine
will search the working memory for data that match all the patterns of the rule
condition. The nature of the constraints expressed by these patterns depends
on the data model; typical examples are constraints on the class of objects,
constraints on the value of attributes of objects, or constraints on elements of an
XML document. Constraints that involve a single data item from the working
memory are called discrimination tests ; constraints that involve several data
items from the working memory are called join tests. The data items involved in
the condition part can be bound to variable names, for reference in the action
part.

Each collection of data items from the working memory that match all the
patterns of a rule condition gives birth to a rule instance. Executing a rule
instance consists in interpreting the statements in the rule action on these data
items. The statements that can be found in the action part of a production rule
usually are those that can be found in any procedural language: assignments,
conditionals, loops.

If the production rule language relies on a foreign data model borrowed from
a programming language, it may naturally also borrow its statements: for in-
stance a production rule language using the Java object model is likely to
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express the action parts of its rules in Java, or a Java-like scripting language. If
the production rule language matches XML documents, specific statements have
to be introduced to express the action parts of rules. Here again, programming
or scripting languages can be reused, provided that a mapping is established
between the XML data model and the underlying data model of the language
used. In all cases, specific statements must be added to handle the working
memory: assert, retract, and update. Note that production rule languages that
use a custom data model can save the update statement if their interpretation
of assignment integrates the notification to the rule engine.17

rule highValuePurchaseByYoungCustomer {
when {

c: Customer(age < 21);
s: ShoppingCart(owner == c; value > 1000.0);

} then {
s.manualCheck = true;
update s;

}
}

Fig. 1. Example of a production rule (using the IRL language)

The example in Fig. 1 demonstrates the basic elements of a production rule,
here formulated in the ILOG Rule Language (IRL), which is detailed in Sec-
tion 4.3. In this example, the rule matches two objects in its condition part: an
instance of the Customer class and an instance of the ShoppingCart class. The
condition of the rule will be satisfied iff: the value of the age attribute of the
customer is less than 21, the value of the value attribute of the shopping cart is
greater than 1,000 (these are discrimination tests), and the value of the owner
attribute of the shopping cart is a reference to the customer (this is a join test).
Note that Customer and ShoppingCart can be classes of any language such as
Java or C#; they can as well be element types from an XML schema.

For each pair of a customer and a shopping cart from the working memory that
match all the discrimination and join tests, an instance of the rule is created. In
any such instance, the c and s variables are bound to the customer and shopping
cart of the instance. When the action part is executed for one rule instance, the
manualCheck attribute of the shopping cart is set to true, and the rule engine is
notified that the shopping cart has been modified, with an update statement.

It must be noted that, although the condition part of the rule is still satisfied
by the customer and shopping cart after the rule is executed, the rule will not
be executed again. This fundamental principle of production rules, called the
refraction principle, states that once a rule instance has been executed, the

17 This is true also with foreign programming languages that provide a mechanism for
extending the access to their data model with notifications, such as the daemons in
some dialects of Lisp.
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condition of the rule must become false on the data items of the instance
before the rule can be considered again for execution on these data items. The
implementation of this principle is discussed in Section 4.4. As one can imagine,
this principle is key in avoiding trivial loops.

Two additional constructs of interest can be used in the condition part of a
production rule, namely not and collect . These construct leverage the finiteness
of the working memory to allow the rule author to express conditions on either
the absence of objects matching a given pattern, or the collection of all objects
matching a pattern. Rule tooManyCarts of Fig. 2 detects a situation where a
customer is the owner of two shopping carts or more, while rule noCart detects
when a customer has no associated cart in working memory.

rule tooManyCarts {
when {

c: Customer();
carts: collect ShoppingCart(owner == c) where (size() > 1);

} then {
out.println("Customer " + c.name + " has too many (" +

carts.size() + ") carts.");
}

}

rule noCart {
when {

c: Customer();
not ShoppingCart(owner == c);

} then {
out.println("Customer " + c.name + " has no cart.");

}
}

Fig. 2. Example of the collect and not constructs

Stateless and Stateful Semantics of a Production Rule Engine. We
have described above the semantics of the basic operations on a rule, namely:
evaluating the condition part of a rule against a working memory, creating a
rule instance on a matching tuple of data items, and executing a rule instance.
Similarly the assert, retract, and update respectively add or remove an item
to/from the working memory, and notify the rule engine that a data item has
changed in the working memory. Defining how these operations on rules and on
the working memory interact, defines the semantics of the rule engine, and thus
of the execution of a rule program. And there are several possible combinations.
We present here the two most useful ones, which are related to a stateless and
a stateful usage of a rule engine.

The stateful case corresponds to applications that correlate data items, or that
infer information from the existing data items. A typical example is network or
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plant supervision, where data from various sources is correlated to synthesize
a global picture. In these applications, and in contrast with the stateless case
described below, the action of one rule may heavily influence the eligibility of
other rules, by modifying the values of attributes involved in the condition parts.
As a consequence, the rule engine must carefully take update notifications into
account in order to ensure that the truth value of the rule conditions, and thus
the list of eligible rules, is known at any time. How to efficiently implement
this is the cornerstone of the many variants of the Rete algorithm, described in
Section 4.4.

The principle of the rule execution algorithm in the stateful case is to maintain
at all times which rules are eligible for execution, based on the state of the
working memory. The set of these candidate rule instances is called the conflict
set. As described in Fig. 3, the rule engine picks a rule instance from this set
and executes its actions. This may affect the working memory, either by adding
data items to it, or by removing items from it, or by updating items that are
in working memory. In reaction to this the rule engine updates the conflict set,
that is, it creates rule instances for the rules whose condition parts become true,
and removes the rule instances whose condition parts become false. The engine
operates in this way until the conflict set is empty.

Algorithm StatefulPREngine

1. compute conflict set CS from working memory WM
2. while CS is not empty do
3. pick a rule instance (r, t) from CS
4. execute the actions of r on the tuple t of data items
5. update CS from the updated WM
6. end

Fig. 3. Production rule execution algorithm in a stateful context

The stateless case corresponds to what is called filtering applications, where
the rules are used to scan a flow of objects on a one-by-one, or tuple-by-tuple,
basis. Examples include data validation, call dispatching, or even some simple
form of scoring. In these applications, all the rules typically have the same sig-
nature, that is, they match the same number of objects of the same classes.
More important, the attributes involved in the patterns of the condition parts
of the rules are never modified by the action parts of the rules. This property
of the rules entails that the eligibility of the rules on a given tuple of data items
will not vary during the execution of the rules. In other words, given a tuple
of data items, the engine can evaluate each rule condition in turn, and imme-
diately execute the rule actions if the condition is satisfied. This will yield the
same results as the conflict set approach, where all the rule conditions would
first be evaluated on the tuple, and then instances of the matching rules would
be executed. Furthermore in the stateless case working memory updates can be
ignored, or at least delayed until the processing of all the rules on the tuple. This
approach is followed by the Sequential algorithm exposed in Section 4.4. Under
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the conditions stated above on the rules, the stateless semantics can be viewed
as an optimization of the stateful one.

The rule execution algorithm in the stateless case, described in Fig. 4, thus
relies on an inner loop working on a given tuple of data items, where the rule
engine evaluates the condition part of each rule against the tuple, and if satisfied
executes the action part of the rule. In an outer loop the tuples of data items
are formed, and fed to the inner loop. How these tuples are formed may vary:
they may come from the content of the working memory, in which case the rule
engine will have to take care in the outer loop of the assert, retract, and update
operations; or they may be handled outside of the rule program, in particular
in the rather common case where the rule actions do not add nor remove data
items to/from the working memory.

Algorithm StatelessPREngine

1. for each tuple t of data items do
2. for each rule r do
3. if t satisfies the condition part of r then
4. execute the actions of r on t
5. end
6. end

Fig. 4. Production rule execution algorithm in a stateless context

4.3 ILOG JRules as an Example of a Production Rules System

ILOG JRules18 is a complete Business Rules Management System (BRMS),
that is, a collection of development tools and runtime libraries that help both
IT and business people in writing business rules, maintaining them over time
and across the enterprise, and deploying them for execution. This section details
the concepts leading to the introduction of business rules, and then presents
the tools and languages in ILOG JRules that provide support in addressing the
challenges arising in the life cycle of a business rules application.

Business Policies and Business Rules. Business policies gather the knowl-
edge of a company, an organization, etc. describing how operations are to be
conducted. They are a priori not meant to be processed by a computer, but
rather by humans (or business people). As such, they are typically worded in
natural language, and stored on paper.

When automation of business policies is considered, a more software-centric
embodiment is introduced as business rules, and an unambiguous and executable
form of rules is looked for, for instance production rules. Yet, the desire to preserve
the interesting property of business policies to be usable by non-technical people
has led to the design of Business Rule Management Systems, where domain ex-
perts can author rules in a business-friendly format, which is then automatically
translated into a format suitable for execution, namely a programming language.
18 ILOG, http://www.ilog.com/

http://www.ilog.com/
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Fig. 5. The life cycle of a production rules based software application
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The Life Cycle of a Business Rules Application. The development and the
maintenance of a real production system is a complex activity involving several
actors throughout the life cycle of the application, and of the rules themselves. The
life cycle of the rules can be summarized as follows, and as illustrated in Fig. 5.

The first protagonist is usually an Architect who analyzes the application
and builds the data model on which the rules will be expressed. This model will
typically derive from the application’s underlying data model, such as a Java
object model or a collection of XML schemas. The rules themselves are then
authored based on a description of the company policy, for instance a paper
documentation. The authoring is either performed by a Policy Manager, or the
rules are drafted by a Business Analyst and validated by a Policy Manager. Once
the rules are ready they are deployed by an Administrator to the production
machine where they will be executed. The authoring-validation-deployment cycle
can be repeated as the policies change. Rules may eventually be retired and
archived away from the system.

As illustrated in Fig. 5, this rich life cycle has to be supported by a collection
of tools. These tools are designed to be used by the various actors in the life
cycle, that is, both technical and business people. This also leads to the design
of various levels of rule languages, all with a sound semantics, but some more
adapted to being handled by non-technical rule authors such as Policy Managers,
while others are more suited for execution by a rule engine.

Tools for Business Rules Management. The ILOG JRules Business Rules
Management System provides a collection of components to support the complex
life cycle of a business rules application. Each of these components is targetted
toward some specific actors in the cycle.

ILOG Rule Studio is made of a set of plugins to the Eclipse development
platform. It is meant to be used by the Architect and the Business Analyst to
build the data model on which the rules will be expressed and to define the
overall architecture of the rule application. It also allows them to author rules,
as well as to create templates for the Policy Manager to fill.

ILOG Rule Team Server is a Web application with a Web-based interface.
It serves as a workspace where non-technical users such as Policy Managers
can work collaboratively to author, edit, validate, organize, and search for the
business rules. This is key in evolved applications that can contain thousands
of rules and may involve dozens of participants. The projects and the elements
they contain are stored in a rule repository, that is, a database connected to
ILOG Rule Team Server. Authentification and privilege procedures ensure that
actors have rights to perform modification or deployment on the rule repository.

ILOG Rule Execution Server is targetted at System Administrators that need
to push rule sets to J2EE applications. It allows them to monitor the deployment
of rules and to define versions of rule sets.

ILOG Rule Scenario Manager is a component accessible both from ILOG
Rule Execution Server and ILOG Rule Team Server, and designed to help users
test their rules against real data.
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From Business Policies to Executable Rules. If for example a company has
the policy “When a customer under 21 buys for more than $ 1,000 the transaction
must be manually checked”, this policy could be expressed by the business rule
in Fig. 6. This rule would typically be authored using ILOG Rule Team Server.
In order to be executed, it would first be translated into the IRL rule given in
Fig. 1, then pushed to an application embedding a rule engine.

definitions
set c to a customer;
set s to a shopping cart;

if all of the following conditions are true:
- the age of c is less than 21
- the value of s is greater than 1,000
- c is the owner of s

then
make it true that s must be manually checked;

Fig. 6. Example of a business rule (using the BAL language)

Business Rule Languages. ILOG JRules defines several formats for business
rules: the Business Action Language (BAL), the Decision Tables, and the Deci-
sion Trees. The Business Action Language, illustrated in Fig. 6, provides a great
level of expresiveness, while allowing non-technical users to author rules with a
minimal learning curve.

Decision tables and trees provide a concise view of a set of business rules as
a spreadsheet or tree. Spreadsheets and trees help the rule author navigate and
manage large sets of business rules. Decision tables are rules composed of rows
and columns and are used to lay out in tabular form all possible situations which
a business decision may encounter, and to specify which action to take in each
of these situations. Decision tables allow the user to view and manage large sets
of business rules with homogeneous conditions. Decision trees provide the same
functionality, but are composed of branches that have decision nodes as their
inner nodes, and action nodes as their leaves. Decision trees allow the user to
manage a large set of rules with some conditions in common but not all.

ILOG JRules even provides a framework for defining new, specialized business
rule languages; this Business Rule Language Definition Framework (BRLDF) will
be used by software engineers to taylor a dedicated rule language for business
experts to author rules in a specific domain or application.

Ruleflow. ILOG JRules introduces an additional concept, which is only remotely
connected to production rules, but which acknowledges the fact that any program
of a reasonable size has both declarative and procedural aspects. This concept
is named ruleflow, and is used to describe the flow of execution of a program. A
ruleflow can be edited using a graphical editor, and is eventually translated into
an IRL representation. A ruleflow is composed of tasks, which can be of three
kinds:
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– A rule task is made of a selection from the set of all rules. It also has a
number of parameters, among which the choice of the stateless or stateful
semantics (see Section 4.2). When a rule task is executed, the corresponding
algorithm is activated on the rules composing the task.

– A function task executes a function, that is, in essence a series of actions as
could be found in the action part of a rule.

– A flow task orchestrates a collection of other task (rule, function, and flow
tasks) using standard statements such as sequence, conditionals, loops, fork-
join, etc.

In addition to the tasks, a ruleflow contains global variables (known as “ruleset
variables”) that can be used to vehiculate data between rules and tasks, and
marks one of the tasks (usually a flow task) as the main task. Organizing rules
into a ruleflow allows the user to handle larger rule-based programs, and to
better master their operational semantics. As a result, executing a ILOG JRules
program amounts to populating the working memory and then launching the
main task of the ruleflow.

Executable Rules. ILOG JRules defines one language for executable rules, named
ILOG Rule Language (IRL). All kinds of business rules are eventually translated
in IRL for execution. However rules can be directly authored in IRL using ILOG
Rule Studio (but not using ILOG Rule Team Server, which is aimed at non-
technical users). They are then referred to as technical rules. As illustrated by
the examples in Fig. 1 and 2, the ILOG Rule Language ressembles classical
programming languages. It allows to use more advanced constructs, such as
loops in the action part of the rules.

Integration in an Application. The rules encode usually only part of the
logic of an application. And beyond the logic there is also the logistics, that
is, the user interface, the connection to other software such as databases, etc.
The interaction and co-operation of various parts of an application, including
the part that is implemented using rules, has to be addressed by any rule-based
system.

ILOG JRules is a system written in Java, and as such is designed to be
interfaced with Java applications, or as a consequence with any programming
language that a Java program can be interfaced with. As far as Java is concerned,
the main two cases are standard J2SE applications, and J2EE-based systems. In
both cases, the principle is that the application embedding the rule engine is the
master of the control flow. It is responsible for providing the rules and ruleflow to
the engine, of populating the working memory, and of triggerring the execution of
the rules. The engine then performs the rule execution and returns the control to
the application. Since the working memory has been populated with references
(as opposed to copies) to the Java objects of the host application, the execution of
the rules directly implements the application logic on the actual objects handled
by the application.
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In the J2SE case, this co-operation scheme between the application and the
rule engine is implemented using simple Java calls to an Application Program-
ming Interface (API) defined in the ILOG JRules documentation.

J2EE Deployment. For the integration of rules into a J2EE-based applica-
tion, the ILOG Rule Execution Server (RES) provides, for the main application
servers, ready-to-use J2EE rule execution services that implements this behav-
ior. In addition, the Web-based console of the RES allows system administrators
to manage rule-based applications by deploying new versions of rule sets to rule
execution services, by enabling or disabling them, and through basic monitoring
and statistical analysis tools.

The console provides remote management and monitoring through the JMX
technology. The model persists all changes made to a ruleset. The version log
maintained by ILOG JRules records the details of the different versions of the
ruleset including information on the user who modified data, time of modifica-
tion, and any comments that have been made.

Generating Web Services From Rules. An additional feature of ILOG JRules is
the ability for the user to generate a Web Service implementation from a rule
set. Deploying production rule sets as Web Services allows users to define and
change the behavior of Web servers during their execution. As Web Services are
commonly used over the Web to process information in a stateless or a stateful
context, this deployment helps bringing production rules into Web applications.

The deployment itself consists in generating a specific Web Service operation
for the rule set. The signature of the operation is based upon the signature of
the rule set, described in ILOG JRules with formal variables called ruleset para-
meters. As Web Services operates only on XML data, the types in the signature
should be compliant with the XML-XSD type system. A binding between XML
types and and their related object types (Java, C++, C# ) may help to adapt
the rules to XML information. The execution of the operation is composed of
the following steps: providing the input parameter values to the engine, execut-
ing the rules, and returning the output parameter values to the Web Service
caller as XML documents. In order to cope with scalability in terms of number
of operation calls, ILOG JRules provides the way for pools of rule engines to be
managed inside the application server embedding the Web Service.

Processing Web Data With ILOG JRules. ILOG JRules provides two way to
process Web data inside rules by the mean of two automatic bindings: the XML
Binding and the Web Service Binding.

Most Web data is defined through XML documents, modeled by XML Sche-
mata. The XML Binding feature transforms a schema into a runtime object
model, in such a way that an XML document can be deserialized into a memory
object. ILOG JRules enables to execute production rules against such memory
objects. Hence, most of XML documents coming from the Web can be processed.

The Web Service Binding feature enables a programmer to invoke external
Web Service operations from a production rule as if they were usual Java meth-
ods. The WSDL model of the Web Service is first translated into an object model.
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The port types and their operations are mapped onto classes and methods. As
soon as this mapping is achieved, ILOG JRules is able to send or retrieve data
automatically represented as objects, to or from the Web Services. This feature
is important as Web Services are identified as a usual source of information and
processing over the Web.

Validating and Testing Rules. The ILOG Rule Studio and ILOG Rule Team
Server components provide a number of rule validation services based on static
analysis techniques. In addition, the ILOG Rule Scenario Manager (RSM) com-
ponent is an execution test tool to dynamically verify deployable rules. The RSM
console is intended for policy managers to manage the rule testing environment,
to run rulesets on predefined sets of input data, or to monitor sets of performance
tests. Using the RSM console, the users define and manage scenarios, organize
them into scenario suites, and set up simulations that compare scenario suites.

Each scenario specifies deployed rulesets to execute and input data to execute
the rules on. A set of tests can be applied to track the performance of the
execution of the rules. Testing against a baseline report allows for non-regression
testing of the rules as they evolve. In scenario suites and simulations, the user
can specify key performance indicators to follow the performance evolution of
scenarios over modifications to the rules.

4.4 Implementation of a Production Rule Engine

Overview of the Rete Algorithm. Forward-chaining inference algorithms,
including Rete ( [For82]), use a match-select-execute cycle. During the match
stage, the engine creates rule instances by evaluating the rule conditions against
the data in the working memory. The select stage consists in choosing one of the
above-created rule instances. In the execute stage, the actions of the selected rule
instance are executed, which may modify the working memory and trigger a new
match stage. This cycle follows the stateful semantics described in Section 4.2
by Fig. 3.

A characteristics of the Rete algorithm is to perform the match stage each time
the working memory is modified. As a result, the set of potentially executable
rule instances is always up-to-date relative to the working memory. A naive
implementation of this stage may be time-consuming, due to the huge number
of combinations between the data items to be considered. To address this risk,
Rete compiles the rule conditions into a network so as to minimize the number
of patterns that need to be evaluated. The two underlying mechanisms are the
sharing of patterns that are common to sereval rules, and the incrementality of
change propagation.

Rete also defines a selection strategy for choosing a rule instance in the conflict
set that results from the evaluation of the rule conditions. The conflict set is
implemented as an agenda of rule instances which are sorted according to this
strategy. The engine cycle ends only when the agenda is empty.
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The Rete Network Structure and Behavior. The Rete network is a com-
pact representation of all the patterns expressed in the conditions of the rules.
It is a directed acyclic graph structured in four layers, namely:

– The discrimination tree, where the nodes represent the discrimination tests
found in the rule conditions;

– The alpha nodes, which form the data item tuples from the individual items;
– The join network, in which the nodes represent the join tests found in the

rule conditions; and
– The rule nodes, which form the rule instances.

The input of the graph is the working memory; the output is the agenda. Each
node in the network is equiped with a local memory, in which are stored all the
data items or tuples that satisfy the pattern associated with the node, as well
as the ones associated with the ancestor nodes in the network.

The network reacts to three kinds of events coming from the working memory:
insertion of a data item into the working memory, modification of a data item in
the working memory, and removal of a data item from the working memory. The
events are propagated throughout the network by tokens; the first two kinds of
events use positive tokens, while the last kind uses negative tokens. The tokens
also carry the data item concerned by the event.

When a node in the Rete network receives a positive token for a data item,
the rule engine evaluates on the data item the pattern represented by the node.
If the data item satisfies the pattern, and19 the data item is not already present
in the local memory of the node, it is stored and the positive token is forwarded
down the network. If the data item was already stored in the node memory and
does not satisfy the pattern (any longer), it is removed from the local memory
of the node and a negative token is sent to the children nodes.

When a node receives a negative token for a data item, and19 the data item
is present in the local memory of the node, it removes the data item from its
local memory and propagates down the negative token.

The layers of a Rete network are depicted in Fig. 7 and detailed below.

The Discrimination Tree. The discrimination tree in the Rete network performs
the evaluation of the discrimination tests of the rule conditions.20 The first level
of nodes in the discrimination tree operates a classification of the objects. Below
these classification of nodes are discrimination nodes, which test the patterns
expressed on the properties of the data items.

Like all nodes in the Rete network, the nodes in the discrimination tree main-
tain a local memory of data items satisfying the pattern that they test, and
19 This implements the refraction principle which, as mentioned on page 209, states

that when a rule is executed on a tuple of data items, its condition part must become
false on this very tuple, and then of course true again, for the rule to be eligible for
execution on the tuple.

20 Let us remind (from the discussion on page 208) that discrimination tests are pat-
terns that express a constraint involving a single data item from the working memory,
while patterns involving several data items are called join tests.
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Fig. 7. An example of a Rete network

propagate positive and negative tokens according to the principles mentioned
above.

The Alpha Nodes. The alpha nodes gather the tokens that successfully passed
the discrimination tests, and prepare them as tuples for the join network. There
is thus no pattern evaluation performed by alpha nodes. The local memory of
each node stores one or several tokens (or equivalently the data items carried by
the tokens), which are represented by round-cornered rectangles in Fig. 7. There
are three alpha nodes in the figure: one alpha node contains two items of class B,
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while the other two alpha nodes contain only one data item each: one of class A
and one of class C, respectively.

The Join Network. This layer is in charge of performing the Cartesian product
between the alpha nodes by applying join tests. It is composed of two alternating
kinds of nodes: join nodes and beta nodes.

The role of a join node is to evaluate a join test on a tuple of data items.
To this end, a join node makes the cross-product of two different tuple memory
nodes (alpha or beta nodes). Note that the standard Rete involves binary join
nodes with a left upper branch linked to an alpha node, and a right upper branch
linked to either an alpha or a beta node. On the resulting tuples, the rule engine
evaluates the join test represented by the join node. Each satisfying tuple is
stored in the local memory and propagated to the descendant beta nodes.

The role of a beta node is to memorize all tuples satisfying a join predicate.
Special variants of the beta nodes are also used to implement the not and collect
constructs. The output of a beta node is either a subsequent join node, or a rule
node which will form a rule instance on the tuple of data items, and insert it
into the agenda.

The Rete Agenda. The agenda stores rule instances that are entitled to be
fired. A rule instance is the association between a rule and a tuple of data items
that passes through the whole Rete network, and thus satisfies all the patterns
in the condition of the rule. Rule instances placed in the agenda are said to be
eligible.

Unless the agenda is empty, in which case the execution cycle of the engine
is stopped, it often happens that there are several eligible rules. Consequently,
the rule engine has to have some way of deciding which particular rule in the
agenda should be fired. A conflict resolution strategy is then applied. In the
agenda, rule instances are ordered according to several criteria that determine
which rule should be fired first. Additional execution control can be offered for
the implementation of more complex features.

– Priority: The first criterion that is taken into account to decide at which
position a rule instance should be placed in the agenda is the rule priority, a
numerical quantity associated with the rule. The rule priority may depend
on values of properties of the data items matched by the rule: the priority is
then actually dependent on the rule instance, and is said to be dynamic.

– Recency: If two rule instances have the same priority, the rule that matches
the most recent object (that is, the most recently inserted or modified object)
will be fired first. This principle is often named LIFO, as the last rule instance
in agenda is executed the first, given the same priority.

– Specificity: This criterion states that the most specialized rules must be
executed before more general rules. How it is implemented varies with the
rule engine.

Priority, recency, and specificity are used to resolve conflicts when several rule
instances are candidate for firing at the same time. If, after using this conflict
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resolution method, several rule instances remain candidates, then the engine
should use internal metarules to ensure that the same sequence of rule firing will
always be followed, given the same conditions.

The Sequential Algorithm. The previous sections explained Rete as a pow-
erful and complex algorithm, able to perform efficiently incremental inference
chaining. However, the inference chaining feature is costly in time and memory.
An important part of industrial production rules applications only operate a
simple matching on inputs without any modification nor inference chaining on
the working memory. These filtering applications are the target of the stateless
semantics of a production rule engine (see Section 4.2), which is implemented
by the Sequential algorithm.

In the Sequential algorithm, tuples of data items are submitted to rules. The
structure of the tuples (in terms of object classes) is computed from the structure
of the rule conditions which, as explained in Section 4.2, all match the same
number of objects of the same classes. The data items in the tuples are fetched
from the working memory.

The conditions of the rules are then evaluated on each tuple, in an order fol-
lowing the rule priorities.21 The satisfied rules are immediately executed. There
is no agenda that collects the rule instances before executing them.

This simplification of the engine cycle permits to enhance the sharing of tests
between rules. The evaluation is very similar to a decision tree applied on a
single tuple. The algorithm is quicker than Rete on filtering problems.

LEAPS Algorithm. As mentioned above, Rete-like algorithms materialize the
whole set of tuples satisfying a rule set. The computation occurring during the
matching part of the engine cycle results in synchronizing the internal engine state
of the Rete network and the real object state of the working memory. Nevertheless,
the Rete propagation by saturation is memory and time consuming. In fact, on
some rule sets the incremental inference may lead to huge modifications of the
Rete network. Some matching evaluations done at one time are never used later.

The main contribution of LEAPS is to introduce a lazy evaluation of the
satisfying tuples. They are calculated only when needed.

Instead of being memorized in local memories of the network nodes, the tuples
are stored in containers that are iterated by means of complex cursors. Every
data item addition to, or removal from, a container is assigned a timestamp. The
iteration on containers performed by cursors is based on the timestamps. The
system maintains an internal stack of insertion/retraction events ordered by their
timestamps. During a rule execution cycle, the top level of the stack is selected
and used to constitute a seed of tuples for a rule. If the seeded tuple satisfies
the rule, then it is executed. Otherwise, the next rule is examined against the
current top element of the stack. After a rule is fired, the next top element takes
place. When the stack is empty, the execution stops.

An important distinction between LEAPS and Rete concerns the conflict set
determination. While Rete proceeds by saturation and determines the conflict
21 As a consequence, the Sequential algorithm does not support dynamic priorities.
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set completely at each modification of the working memory, LEAPS only selects
the first rule instance to be executed, without constituting the complete conflict
set. This lazy evaluation explains deeply the difference in performance of the
two algorithms.

4.5 Production Rule Samples

Shopping Cart Example. This section proposed a simple implementation
of the shopping cart sample (described in Section 2.2). The discount policies
specifying how to calculate the discount of a customer are listed hereafter:

1. if the total amount of the customer’s shopping is higher than 100, then
perform a discount of 10

2. if it is the first shopping of the customer, then perform a discount of 5
3. if the client has a gold status and buys more than 5 discounted items, then

perform an additional discount of 2
4. the rule 1 and 2 could not be applied for the same customer, the first rule

having the priority against the second. The third rule is applied only if rule
1 or rule 2 have been applied.

We propose to show some elements of implementation of such policies based
upon ILOG JRules language.

Firstly, the object model must be defined and might be composed of the
following classes:

– the Customer class defines the customer’s characteristics (status, first shop-
ping...),

– the ShoppingCart class memorizes the current shopping of a customer as a
list of items and their global amount.

– the Item class represents an article order and its price.
– the Discount contains the final discount of the shopping.

Secondly, we propose a production rule implementation of the policies us-
ing the previous object model. Observe that the discounting policies should be
evaluated in a specific order. This order will be ensured by the priority of the
rules. In ILOG JRules, a rule priority is an integer expression: the greater the
more important. Note that there is not always an isomorphic mapping between
the policies and their production rule implementation. For example, the fourth
policy has no production rule implementation, but is shared among the others.

The first step is to determine if the first policy is satisfied, Fig. 8. The HIGH
priority ensures that the rule be the first to be evaluated.

At this point, Fig. 9, the second rule is activated if there is no discount, that
is to say if the first rule has not been executed.

Finally, Fig. 10, the third rule is potentially applied. It requires that a discount
instance exists in the working memory, infering that one of the previous rule has
been executed. The LOW priority ensures that this rule be executed at last.

At the ruleset level, a Customer and a ShoppingCart instances must be in-
serted in the working memory to activate the discount rules. Those instances
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rule giveGlobalAmountDiscount {

priority = HIGH;

when {

cart: ShoppingCart ( getTotalAmount()>100 );

not Discount ();

}

then {

insert Discount ( ) {

value = .1;

}

}

}

Fig. 8. giveGlobalAmountDiscount rule

might be seen as the inputs of a rule service that executes the shopping cart
ruleset and performs the discounting policies. The result of the service execu-
tion is the output discount instance, if exists. We have then identified a service,
computeDiscount relying on the following signature:

computeDiscount : Customer × ShoppingCart → Discount
As soon as the input and output parameters of the ruleset are identified, ILOG

JRules helps to generate a Web service embedding the ruleset execution. This
Web service is then declared and managed by an application server. By this way,
production rulesets are easily deployed in Web environments.

Credit Analysis Example. Here is a simple implementation based on ILOG
JRules of the credit analysis sample (described in Section 2.2). A loan acceptance
is determined depending on the client’s history and his demand. The acceptance
process follows the listed policies:

1. if the loan duration is lower than five years then set the loan rate to 4.0%
and add 5 to the score, else set it to 6.0%,

2. if the client has filed a bankrupcy, substract 5 to the score,
3. if the client’s salary is between 20000 and 40000, add 10 to the score,
4. if the client’s salary is greater than 40000, add 15 to the score,
5. if the score is upper than 15, then the loan is accepted.
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rule giveFirstShoppingDiscount {

priority = MEDIUM;

when {

Customer ( isFirstShopping() );

cart: ShoppingCart ( );

not Discount ();

}

then {

insert Discount ( ); {

discount = .05;

}

}

}

Fig. 9. giveFirstShoppingDiscount rule

Firstly, the object model, used later by the production rules, must be defined:

1. the Borrower class provides the client’s characteristics (salary, bankrupcy),
2. the Loan class is composed of the loan parameters (duration, rate, client’s

score).

An instance of a borrower and a loan instance, the inputs of the service, must be
inserted in the working memory before the rules are executed. Those insertions
might be performed by other production rules not presented in this section. The
result of the execution, the output, is provided by the loan instance (acceptance,
rate, score).

The first rule, Fig. 11, corresponding to the first policy, declares two rule
bodies: a then and an else body. The last evaluate condition determines which
body is executed when the upper conditions are satisfied.

The second rule, Fig. 12, calculates the bankrupcy score, if necessary.
The third rule, Fig. 13, calculates the score depending on the borrower’s salary.

Observe that this rule implements both the third and the fourth policy.
The fourth rule, Fig. 14, determines if the loan is accepted. The execution

order of the previous rules does not impact the final result. However, this last
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rule giveGoldDiscount {

priority = LOW;

when {

Customer ( isGold() );

cart: ShoppingCart ( );

collect Item ( isDiscounted() ) where ( size()>=5 ) in cart.getItems();

discount: Discount();

}

then {

modify discount {

value += .02;

}

}

}

Fig. 10. giveFiveOverFiveItemsGoldDiscount rule

rule must be executed after the others as soon as the score computation is
completed. It is ensured by its LOWER priority.

The loan acceptance service might be deployed as a Web service operation
presenting the following informal signature:

computeLoanAcceptance : Borrower × Loan → Loan

4.6 Overview of Existing Production Rules Languages and Systems

OPS5. The OPS (Official Production System) language family has been de-
signed in the 70th by Charles Forgy. OPS5 was the first production rule language
to be used in an expert system.

OPS5 uses a forward-chaining inference engine; programs execute by scan-
ning “working memory elements”. OPS5 stores data in working memory, and
if-then rules in production memory. If the data in working memory matches the
conditions of a rule in production memory, the rule actions take place.

The engine architecture, based on the Rete algorithm, is especially efficient
to scale up to large problems involving hundreds or thousands of rules.
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rule computeLoanRate {

when {

loan: Loan ( );

evaluate ( loan.duration < 5 );

}

then {

modify loan {

score += 5;

rate = .04;

}

}

else {

modify loan {

rate = .06;

}

}

}

Fig. 11. computeLoanRate rule

The OPS5 rule named rule1 shown in Fig. 15 is composed of three conditions
and one action. The last two conditions match locations that are not connected
to any place of the same name. The action part inserts a new place instance in
the working memory.

JBoss Rules. Previously named Drools, JBoss Rules22 is a Java open source
business engine (Apache Software Foundation open source license). It has im-
plementations for the Rete and for the LEAPS pattern matching algorithms.
The conflict resolution of the agenda is based on the priority and the LIFO
principles. The rule structure takes benefit of the underlying Java object model.
Fig. 16 gives an example of a JBoss Rules rule.

22 JBoss rule, http://www.jboss.com/products/rules

http://www.jboss.com/products/rules


228 B. Berstel et al.

rule computeBankrupcyScore {

when {

Borrower ( hasBankrupcy() );

loan: Loan ( );

}

then {

modify loan {

score -= 5;

}

}

}

Fig. 12. computeBankrupcyScore rule

In addition the JBoss rules environment provides a way to declare rules as
a decision table spreadsheet (Excel). A dedicated compiler analyses the spread-
sheet and translates it into rules.

Blaze Advisor. Blaze Advisor, developped by FairIsaac23, includes a visual
development environment for writing, editing, and testing business rule services
that are executed using a sophisticated rule server.

The rule repository enables developers to work in a coordinated manner as
teams and leverage each others work by sharing and reusing rules, rule sets, rule
flows and object models. It can be stored as an XML file, database or LDAP
directory.

It offers a simple English-like Structured Rule Language (SRL) for writing
rules.

At the same time sophisticated ruleset metaphors (decision tables, decision
trees and scorecards) provide a way for nonprogrammers to author rules as well.

PegaRules. PegaRules, developed by PegaSystems24, introduces different types
of rules: declarative rules (computing values or enforcing constraints), Deci-
sion Tree rules, Integration Rules (interfacing different system and application),
transformation rules (data) and process rules (Managing the receiving, assign-
ment, routing, and tracking of work).

23 FairIsaac, http://www.fairisaac.com
24 PegaSystems, http://www.pegasystems.com/

http://www.fairisaac.com
http://www.pegasystems.com/
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rule computeSalaryScore {

when {

borrower: Borrower ( s: getSalary(); s>20000);

loan: Loan ( );

evaluate ( s<40000);

}

then {

modify loan {

score += 10;

}

else {

modify loan {

score += 15;

}

}

}

Fig. 13. computeSalaryScore rule

It provides convenient HTML rule forms to build, manage and configure rules.
An execution environment provides both forward chaining (procedural logic)

and backward chaining (goal-based logic) to determine known and unknown
dependent facts.

Jess. Jess25, a rule engine for the Java platform, is a superset of CLIPS program-
ming language, developed by Ernest Friedman-Hill of Sandia National Labs. It
was first written in late 1995.

It provides backward and forward chaining on facts executed by a Rete algo-
rithm.

A last type of rules with no body, the defquery construct, are used to search
the fact knowledge base under direct program control. This query returns the
list of all fact tuples of the working memory matching the rule condition.

25 Jess, http://www.jessrules.com/

http://www.jessrules.com/
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rule computeLoanAcceptance {

priority = LOWER;

when {

loan: Loan ( );

}

then {

modify loan {

acceptance = (score>15);

}

}

Fig. 14. computeLoanAcceptance rule

(p orderItemWhenOutOfStock
(item ^id <itemId>)
- (stock ^itemId <itemId>)
(supplierStock ^supplierId <supplierId> ^itemId <itemId>)
-->
(make order ^itemId <itemId> ^supplierId <supplierId>)

)

Fig. 15. Example of an OPS5 rule

rule "order item when out of stock"
when

item: Item ( )
not Stock ( this.item == item );
supplier: Supplier ( hasItemInStock ( item ) );

then
assert( new Order(item,supplier) );

end

Fig. 16. Example of a JBoss Rules rule

rule discount is
if shoppingCart.items.count is between 2 and 4
then

shoppingCart.discount = 10;

Fig. 17. Example of a Blaze advisor rule
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(defrule orderItemWhenOutOfStock
(item ?itemId)
(not (stock ?itemId) )
(supplierStock ?supplierId ?itemId)
=>
(assert ( order ?itemId ?supplierId ) )

)

Fig. 18. Example of a Jess rule

5 ECA and Production Rules: Similarities and
Differences

The introduction of this paper highlighted that ECA rules and production rules
address two complementary but different parts of software applications. ECA
rules naturally apply in distributed applications, while production rules natu-
rally apply in logically rich applications. As a result, beyond a minimal level of
complexity both approaches are beneficial to Web applications.

This different positioning of ECA and production rules can probably be per-
ceived in Sections 3.2 and 4.2, in that the ECA rules are naturally presented to
address the distributed nature of Web applications, whereas the presentation of
production rules naturally tends to focus on the management of the state system
for one node in a distributed Web application.

This section addresses the similarities and differences between the ECA rules
and production rules approaches. The positioning of both approaches is studied
on the support they provide for distribution, for managing the state of the sys-
tem, for managing the control flow of the program, for detecting and handling
events, and with respect to the current market.

5.1 Distributed Applications

In a distributed system, the architecture requires a dedicated description that is
not addressed by rules. Because of the absence of features dedicated to distrib-
uted applications in production rules, implementing distributed algorithms using
only production rules requires to resort to classical distributed algorithms. On
the other hand, the fact that ECA rules are well adapted for distributed applica-
tions comes with an associated price: ECA rules have to tackle the challenges of
all distributed applications, in particular they are sensitive to the performance
of the communication network and protocol they rely on.

5.2 Managing State

Three levels of a state can be distinguished in a rule-based Web application:

1. The state defined by the objects (and events) matched by a rule. This “rule-
local state” has a life time spanning from the beginning of the evaluation of
the rule conditions, to the end of the execution of the rule actions.
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2. The state of the rule engine. This state will be thought of as local to the rule
engine when the engine is seen as one of the node in the Web application;
it will be thought of as global to the rule engine from the viewpoint of the
individual rules managed by the engine. This “engine state” is where ECA
and production rule systems differ.

3. The state of the whole Web application. As in all distributed applications,
the definition of such a global state is a problem in itself, and neither ECA
nor production rules do reify this state in their implementations.

The engine state includes the rule-local states of all the rules being currently
under evaluation or execution. In production rule systems, it will additionally in-
clude the working memory, and optionally global registers.26 The working mem-
ory and the optional global registers provide the capability of exchanging data
between rules, thus augmenting the expression power.

ECA rules usually do not have an engine-level state that is specific and inter-
nal to the current process instance. ECA rules have to explicitly maintain this
state in events and databases. Consider the example of handling a book order: a
process instance is created each time a book order from a customer is received.
Such an incoming order could contain information such as the customer’s ad-
dress. This information is not needed immediately, but only late in the process
for sending rejection back or acknowledging and delivering the requested books.
The customer’s data has to be either saved in a database or passed along through
all rules as part of event data.

This difference with respect to state management between the ECA and pro-
duction rule approaches is quite characteristic and has reflections in a number
of other differences detailed below.

5.3 Control Flow of Rule Programs

Event-Driven vs. State-Driven Execution. Probably the most salient dif-
ference between ECA and production rules is what drives their execution. ECA
rules are executed due to an explicit event. In contrast, production rules are
executed due to some condition on the state becoming true; while this is usually
caused by some event, the event is implicit and not available in the production
rule.

To give an example, a production rule might have a condition expressing
that a customer is of legal age (18 years or older). When the condition becomes
true, it can in general not distinguish whether the customer has had a birthday
or whether there has been a manual correction in the data. For an ECA rule
this would be different and distinguishable events (and its reaction can include
sending a birthday card in the former case).

This also illustrates a more subtle difference between production rules and
ECA rules. It might seem at first that the production rule WHEN age ≥ 18 DO
notify customer service and the ECA rule ON change of age IF age ≥ 18 DO

26 Such global registers are known as “ruleset variables” in ILOG JRules.
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notify customer service specify the same behavior. In fact however, they do not:
the production rule will send only one notification when the customer becomes
18; the ECA rule will send a notification on every birthday once the customer
is over 18.27 Encoding the behavior of the production rule with ECA rules is
not necessarily simple. (A possible solution is to encode as part of the data an
assertion whether the customer service has already been notified or not, and to
query this in the condition part.)

To summarize, ECA rules often allow a more fine-grained control of behavior
because they are driven by events not states, but this more fine-grained control
comes at a price requiring more complicated programs than production rules in
some cases (in particular the cases where the state is more relevant than events).

The Current State of the Computation. The declarative aspect of rules
is an advantage for implementing algorithms that rely on case-based reasoning.
However it can rapidly occur that some algorithms, or parts of them, introduce
a sequential aspect, for which the declarativity is of little help. In these cases
the programmer will need to define and maintain a “current state of the com-
putation”, which will indicate the parts of the rules that should be considered
for implementing each step of the algorithm. There are several ways for a rule
language to support this requirement.

Global Objects. The control of the flow of execution can be achieved by adding to
each rule a condition on a context object denoting the current state of the com-
putation. However such an object would be a global object (from the viewpoint
of the rules): production rule systems provide at least the working memory for
storing this global object. However it can be argued that such an implementation
is rather an applicative one, as opposed to a support from the language.

This solution is even harder to consider in ECA rule systems due to the lack
of an “engine-global state”. As a result, there is no clear notion in ECA rule-
based specifications of which events are expected next. ECA rules are triggered
by every incoming event matching the event query, regardless of whether this
event is expected or not. This might entail unexpected behavior, especially if
events are generated “out-of-order” by faulty or malicious behavior of systems.

Activation and Deactivation of Rules. Both ECA and production rule systems
may provide constructs in the rule languages to activate rules, that is, to make
them potential candidates for execution, or to deactivate them, that is, to instruct
the engine no longer to consider them for potential execution. This (de)activation
of rules being provided by language constructs, they can be invoked by the rule
actions and thus will occur at runtime.

Dynamic enabling and disabling of rules provides a solution on a meta-level
for controlling the flow of execution. However this method of implementing the
control flow is clearly fragile in terms of understanding the program behavior,
and as such will cause maintainance issues as soon as the number of rules exceeds
a few dozens.
27 In both cases, the behavior might be changed by applying different rule execution

semantics, though.
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XChange doesn’t provide constructs for dynamically (de)activate rules from
rule programs. ILOG JRules used to provide an API that could be invoked from
rule programs, for that purpose. It has been replaced by the introduction “of
rule-flows”, described hereafter.

Error and Exception Handling. The ability to specify exceptional condi-
tions and their consequences, including recovery measures, are as important for
realizing complex applications as the ability to define “normal behavior.” An ex-
ceptional situation in the online shop example used throughout this paper could,
for example, occur if the credit card of a customer has expired. Possible means
for recovery include asking the customer for updated information or canceling
the whole order request.

Since exceptions can be conveniently expressed as (special) events, ECA rules
are a convenient mechanism for handling exceptions. They allow to treat excep-
tions like any other event. This approach has quite successfully been employed
for exception handling e.g. in [BCCT05].

Production rules typically rely on the sub-language used for the rule actions.
For instance, ILOG JRules includes a try-catch construct. However, in practice
handling an exception requires knowledge about the context in which it occurred,
and often involves taking some action to modify the flow of execution. In other
words, the notion of a engine-global state may prove missing.

5.4 Detection of Events and of Composite Events

Many ECA rule languages have a strong support for temporal notions through
their composite event querying facilities. Application examples where there is
a strong need for this include dealing with sensor data (e.g., compute sliding
averages), monitoring applications (e.g., correlation of different alarm signals
within some time frame), work-flow applications (e.g., waiting for a number of
parallel events to finish), and applications involving “time-outs” (e.g., detection
of overdue orders).

In their original form, production rules do not allow references to time and
events as are necessary in these applications examples. However, efforts have
been made to extend production rules in this direction. In particular, ILOG
JRules has been augmented with event management capabilities, that is, the
recognition of chronicles [Gha96,DM07].

A chronicle is a pattern describing a sequence of events, with time constraints
on these events. It is thus expressive enough to support the detection of compos-
ite events. In addition, the integration of chronicle recognition with production
rules allows to relate the payload of events with state information maintained
by regular facts. However, integrating chronicle recognition to the Rete algo-
rithm [Ber02] requires to precisely define the semantics of the pattern matching
engine in presence of both timed events and regular facts.

5.5 Maturity of Existing Implementations

As already mentioned in Section 3.5, most of the existing ECA rule languages for
the Web are outcomes of research projects. Their implementations are usually
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just proof-of-concept ones, where efficiency was not considered a priority. How-
ever, stable implementations are offered for the Prova language and the ruleCore
engine. The Prova language has an open source implementation as Prova 2.0 Beta
3 at moment. Prova has been succesfully employed in the development of the
Xcalia28 product Xcalia Core for Services 4.3.029 for efficiently computing global
execution plans in a distributed environment.

Contrary to the current status of ECA rules-based systems, the production
rules approach has been succesfully employed for developing (commercial and
open source) software products. OPS5, JBoss Rules, Blaze Advisor, PegaRules,
and Jess have been given as examples of such systems in Section 3.5. The interest
in production rules has been influenced by (but has not arisen out of) the need
of reactive systems in the new setting – the Web. It might be the case that the
Web will accelerate the development of stable implementations also for ECA
rules sytems.

6 Conclusion

This paper has discussed the use of different kinds of reactive rules for program-
ming Web-based systems with reactive capabilities. Its main intent is to provide
a good foundation towards deciding on the type of reactive rules (systems) to
be used for implementing the desired Web application.

Enriching IT systems, such as database management systems not connected to
the Web, with reactive features is not a new research and development concern.
Reactive rules, as means to realize such systems, have been well-studied in the
literature and also have successfully been used in commercial software products.
Through the application examples given in this paper, we have motivated the
need for employing reactive systems on the Web. We have also stressed the need
for adapting existing reactive rules-based approaches to the Web’s peculiarities.

The two kinds of reactive rules – Event-Condition-Action rules and produc-
tion rules – have been discussed in detail and concrete languages of both kinds
have been used to exemplify the concepts and their suitability for programming
Web applications. By choosing an ECA rules-based language coming from the
academia – XChange – and a software product offered by ILOG – ILOG JRules
– for illustrating reactive rules systems, we have offered insights in the work done
in the academia and industry, which may play a role for those readers which are
at the beginning of their careers.

Though not an easy task, we have tried to reveal similarities and differences
between the two kinds of reactive rule sytems, so as to guide programmers in
choosing the suitable rule system for their Web applications. ECA rules are well-
suited for applications where the focus is on the distributed nature of Web and
there is a need to refer to events and/or detect composite events. Production
rules are well-suited for logically rich applications where the focus is rather on
the management of the state system for each Web node than on the distribution
28 Xcalia, http://www.xcalia.com/
29 Xcalia Core for Services 4.3.0, http://www.xcalia.com/products/core.jsp

http://www.xcalia.com/
http://www.xcalia.com/products/core.jsp
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aspects. These views reflect the current status of research and development on
reactive rules systems and, thus, some of the stated differences might progres-
sively become obsolete in the near or farther future.
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Abstract. The Semantic Web aims at enabling sophisticated and au-
tonomic machine to machine interactions without human intervention,
by providing machines not only with data but also with its meaning (se-
mantics). In this setting, traditional security mechanisms are not suitable
anymore. For example, identity-based access control assumes that par-
ties are known in advance. Then, a machine first determines the identity
of the requester in order to either grant or deny access, depending on its
associated information (e.g., by looking up its set of permissions). In the
Semantic Web, any two strangers can interact with each other automati-
cally and therefore this assumption does not hold. Hence, a semantically
enriched process is required in order to regulate an automatic access to
sensitive information. Policy-based access control provides sophisticated
means in order to support protecting sensitive resources and information
disclosure.

However, the term policy is often overloaded. A general definition
might be “a statement that defines the behaviour of a system”. How-
ever, such a general definition encompasses different notions, including
security policies, trust management policies, business rules and quality
of service specifications, just to name a few. Researchers have mainly
focussed on one or more of such notions separately but not on a compre-
hensive view. Policies are pervasive in web applications and play crucial
roles in enhancing security, privacy, and service usability as well. Inter-
operability and self-describing semantics become key requirements and
here is where Semantic Web comes into play. There has been extensive
research on policies, also in the Semantic Web community, but there
still exist some issues that prevent policy frameworks from being widely
adopted by users and real world applications.

This document aims at providing an overall view of the state of the art
(requirements for a policy framework, some existing policy frameworks/
languages, policy negotiation, context awareness, etc.) as well as open re-
search issues in the area (policy understanding in a broad sense, integra-
tion of trust management, increase in system cooperation, user awareness,
etc.) required to develop a successful Semantic Policy Framework.
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1 Introduction

Information provided in the current Web is mainly human oriented. For example,
HTML pages are human understandable but a computer is not able to under-
stand the content and extract the right concepts represented there, that is, the
meaning of the data. The Semantic Web [1] is a distributed environment in which
information is self-describable by means of well-defined semantics, that is, ma-
chine understandable, thus providing interoperability (e.g., in e-commerce) and
automation (e.g., in search). In such an environment, entities which have not had
any previous interaction may now be able to automatically interact with each
other. For example, imagine an agent planning a trip for a user. It needs to search
for and book a plane and a hotel taking into account the user’s schedule. When
the user’s agent contacts a hotel’s website, the latter needs to inform the former
that it requires a credit card in order to confirm a reservation. However, the user
may probably want to restrict the conditions under which her agent automati-
cally discloses her personal infomation. Due to such exchange of conditions and
personal information, as well as its automation, security and privacy become yet
more relevant and traditional approaches are not suitable anymore. On the one
hand, unilateral access control is now replaced by bilateral protection (e.g., not
only the website states the conditions to be satisfied in order to reserve a room
but also the user agent may communicate conditions under which a credit card
can be disclosed). On the other hand, identity-based access control cannot be
applied anymore since users are not known in advance. Instead, entities’ prop-
erties (e.g., user’s credit card or whether a user is a student) play a central role.
Both these properties and conditions stating the requirements to be fulfilled
by the other party, must be described in a machine-understandable language
with well-defined semantics allowing other entities to process them. Systems se-
mantically annotated with policies enhance their authorisation process allowing,
among others, to regulate information disclosure (privacy policies), to control
access to resources (security policies), and to estimate trust based on parties’
properties (trust management policies) [2].

Distributed access control has addressed some of these issues though not com-
pletely solved them yet. Examples like KeyNote [3] or PolicyMaker [4] provide a
separation between enforcement and decision mechanisms by means of policies.
However, policies are bound to public keys (identities) and are not expressive
enough to deal with Semantic Web scenarios. RBAC (Role-Based Access Con-
trol) also does not meet Semantic Web requirements since it is difficult to assign
roles to users which are not known in advance. Regarding to user’s privacy pro-
tection, Platform for Privacy Preferences (P3P) provides a standard vocabulary
to describe Web server policies. However, it is not expressive enough (it is a
schema, not a language, and only describes purpose for the gathered data) and
it does not allow for enforcement mechanisms. On the other hand, there is a wide
offer of policy languages that have been developed to date [5,6,7,8], addressing
the general requirements for a Semantic Web policy language: expressiveness,
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simplicity, enforceability, scalability, and analyzability [9]. These policies can
be exchanged between entities on the Semantic Web and therefore they are
described using languages with well-founded semantics.

The policy languages listed above differ in expressivity, kind of reasoning re-
quired, features and implementations provided, etc. For the sake of simplicity,
they are divided according to their protocol for policy exchange between par-
ties, depending on the sensitivity of policies. On the one hand, assuming that
all policies are public and accessible (typical situation in many multi-agent sys-
tems), the process of evaluating whether two policies from two different entities
are compatible or not consists in gathering the relevant policies (and possibly
relevant credentials) from the involved entities and checking whether they match
(e.g., [10]). On the other hand, if policies may be private (typical situation for
business rules [11]), it implies that not all policies are known in advance but they
may be disclosed at a later stage. Therefore, a negotiation protocol in which se-
curity and trust is iteratively established is required [12].

However, specifying policies is as difficult as writing imperative code, getting
a policy right is as hard as getting a piece of software correct, and maintaining a
large number of them is even harder. Fortunately, ontologies and policy reason-
ing may help users and administrators on specification, conflict detection and
resolution of such policies [5,13].

As it can be seen, there has been extensive research in the area, including the
Semantic Web community, but several aspects still exist that prevent policy frame-
works from widespread adoption and real world application. This manuscript in-
corporates and merges the ideas of previosly published papers [14,2,15] and aims
at providing an overall view of the state of the art (requirements for a policy frame-
work, some existing policy frameworks/languages, policy negotiation, context
awareness, etc.) as well as open research issues in the area (policy understanding
in a broad sense, integration of trust management, increase in system cooperation,
user awareness, etc.) required to develop a successful Semantic Policy Framework.
Section 2 describes how policies are exchanged and how they interact among par-
ties on the Semantic Web, with a brief description of the main Semantic Web pol-
icy languages and how ontologies may be used in policy specification, conflict de-
tection and validation. Some examples of application scenarios are presented in
Section 3, where policy based security and privacy are used. Section 4 discusses
important requirements and open research issues in this context, focusing on poli-
cies in general and their integration into trust management frameworks, as well
as on approaches to increase system cooperation, usability and user-awareness of
policy issues. This manuscript finally concludes with a last section (Section 5) in
which the most important isssues presented are summarized.

2 Policy Based Interaction and Evaluation

Policies allow for security and privacy descriptions in a machine understandable
way. More specifically, service or information providers may use security policies
to control access to resources by describing the conditions a requester must fulfil



Rule-Based Policy Representation and Reasoning for the Semantic Web 243

(e.g., a requester to resource A must belong to institution B and prove it by
means of a credential). At the same time, service or information consumers may
regulate the information they are willing to disclose by protecting it with privacy
policies (e.g., an entity is willing to disclose its employee card credential only to
the web server of its employer). Given two sets of policies, an engine may check
whether they are compatible, that is, whether they match. The complexity of
this process varies depending on the sensitivity of policies (and the expressivity
of the policies). If all policies are public at both sides (typical situation in many
multi-agent systems), provider and requester, the requester may initially already
provide the relevant policies together with the request and the evaluation process
can be performed in a one-step evaluation by the provider policy engine (or an
external trusted matchmaker) and return a final decision. Otherwise, if policies
may be private, as it is, for example, typically the case for sensitive business
rules, this process may consist of several steps negotiation in which new policies
and credentials are disclosed at each step, therefore advancing after each itera-
tion towards a common agreement. In this section we give an overview of both
types of languages. The main features of these languages are shown in Table 1.
Additionally, we use the running policy “only employees of institution XYZ may
retrieve a file” to illustrate an example of each language.

2.1 One-Step Policy Evaluation

Assuming that policies are publicly disclosable, there is no reason why a requester
should not disclose its relevant applicable policies together with its request.
This way, the provider’s policy engine (or a trusted external matchmaker in
case the provider does not have one) has all the information needed to make
an authorisation decision. The KAOS and REI frameworks, specially designed
using Semantic Web features and constructs, fall within this category of policy
languages, those which do not allow policies themselves to be protected.

Table 1. Comparison of KAOS, REI, PeerTrust and Protune1

Policy
Language

Authorization
Protocol

Reasoning
Paradigm

Conflict
Detection Meta-policies Loop

Detection
KAOS One-step

DL
Static detection
& resolution

REI One-step DL + vari-
ables

Dinamyc detec-
tion & resolu-
tion

Used for
conflict reso-
lution

PeerTrust Negotiation
LP + on-
tologies

Distributed
Tabling

Protune Negotiation LP + on-
tologies

Used for
driving deci-
sions
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KAOS Policy and Domain Services. KAOS Services [5,16] provide a frame-
work for specification, management, conflict resolution and enforcement of policies
allowing for distributed policy interaction and support for dynamic policy changes.
It uses OWL [17] ontologies (defining e.g. actors, groups and actions) to describe
the policies and the application context, and provides administration tools (KAOS
Administration Tool - KPAT) to help administrators to write down their policies
and hide the complexity of using OWL directly. A policy in KAOS may be a pos-
itive (respectively negative) authorisation, i.e., constraints that permit (respec-
tively forbid) the execution of an action, or a positive (respectively negative) oblig-
ation, i.e., constraints that require an action to be executed (respectively waive the
actor from having to execute it). A policy is then represented as an instance of the
appropriatepolicy type, associating values to its properties, and giving restrictions
on such properties (Figure 1 sketches part of a KAOS policy).

<owl:Class rdf:ID="RetrieveFileAction">
    <owl:intersectionOf>
        <owl:Class rdf:about="#AccessAction"/>
            <owl:Class>
                <owl:Restriction>
                    <owl:onProperty rdf:resource="#performedBy"/>
                    <owl:someValuesFrom>
                        <owl:Class>
                            <owl:oneOf rdf:parseType="Collection">
                                <owl:Thing rdf:about="#EmployeeInstitutionXYZ"/>
                            </owl:oneOf>
                        </owl:Class>
                    </owl:someValuesFrom>
                </owl:Restriction>
            </owl:Class>
        </owl:Restriction>
    </owl:intersectionOf>
</owl:Class>

<policy:PosAuthorizationPolicy rdf:ID="PolicyRetrieveFileAction">
    <policy:controls rdf:resource="#RetrieveFileAction"/>
    <policy:hasPriority>1</policy:hasPriority>
</policy:PosAuthorizationPolicy>

Fig. 1. Example of KAOS policies

KAOS benefits from the OWL representation and description logic based
subsumption mechanisms [18]. Thus, it allows to, for example, obtain all known
subclasses or instances of a class within a given range (used during policy specifica-
tion to help users choosing only valid classes or instances) or detect policy conflicts
(by checking disjointness of subclasses of the action class controlled by policies).
KAOS is able to detect three types of conflicts, based on the types of policies that
are allowed in the framework: positive vs. negative authorisation (a policy allows
access and but another denies it), positive vs. negative obligation (a policy obliges
to execute an action while another dispensates from such obligation) and positive

1 DL refers to Description Logic while LP stands for Logic Programming.
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obligation vs. negative authorisation (a policy obliges to execute an action but an-
other denies authorisation for such execution). KAOS resolves such conflics (also
called harmonisation) based on assigning preferences to policies and resolving in
favour of the policies with higher priority (Section 2.3 will later extend on this).

Finally, KAOS assumes a default authorisation mechanism in case no policy
applies to a request. It can be either “permit all actions not explicitly forbidden”
or “forbid all actions not explicitly authorised”.

REI. REI 2.0 [19,10] expresses policies according to what entities can or can-
not do and what they should or should not do. They define an independent
ontology which includes the concepts for permissions, obligations, actions, etc.
Additionally, as in KAOS, they allow the import of domain dependent ontologies
(including domain dependent classes and properties). REI 2.0 is represented in
OWL-Lite and includes logic-like variables in order to specify a range of relations.

REI policies (see Figure 2 for an example) are described in terms of deon-
tic concepts: permissions, prohibitions, obligations and dispensations, equiva-
lently to the positive/negative authorisations and positive/negative obligations
of KAOS. In addition, REI provides a specification of speech acts for the dy-
namic exchange of rights and obligations between entities: delegation (of a right),
revocation (of a previously delegated right), request (for action execution or del-
egation) and cancel (of a previous request).

<policy:Policy rdf:ID=”RetrieveFilePolicy”>
    <policy:grants rdf:resource=”#Perm_Employee_XYZ”>
</policy:Policy>

<policy:Granting rdf:ID=#Perm_Employee_XYZ”>
    <policy:to rdf:resource=”#PersonVar”>
    <policy:deontic rdf:resource=”Perm_Retrieve_File”>
</policy:Granting>

<deontic:Permission rdf:ID=”Perm_Retrieve_File”>
    <deontic:actor rdf:resource=”#PersonVar”>
    <deontic:action rdf:resource=”&action;RetrieveFile”>
    <deontic:constraint rdf:resource=”#IsEmployeeXYZ”>
</deontic:Permission>

<constraint:SimpleConstraint rdf:ID=”IsEmployeeXYZ”>
    <constraint:subject rdf:resource=”#PersonVar”>
    <constraint:predicate rdf:resource=”&emp;affiliation”>
    <constraint:object rdf:resource=”&emp;XYZ”>
</constraint:SimpleConstraint>

Fig. 2. Example of REI policies

As in the KAOS framework, REI policies may conflict with each other (right vs.
prohibition or obligation vs. dispensation). REI provides mechanisms for conflict
detection and constructs to resolve them, namely, overriding policies (similar to
the prioritisation in KAOS) and definition at the meta-level of the global modality
(positive or negative) that holds (see Section 2.3 for more details).
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2.2 Policy-Driven Negotiations

In the approaches presented previously, policies are assumed to be publicly dis-
closable. This is true for many scenarios but there exist other scenarios where
it may not hold. For example, imagine a hospital revealing to everyone that in
order to receive Alice’s medical report, the requester needs an authorisation from
Alice’s psychiatrist. Another example, imagine Tom wants to share his holiday
pictures on-line only with his friends. If he states publicly that policy and Jes-
sica is denied access, she may get angry because of Tom not considering her as a
friend. Moreover, policy protection becomes even more important when policies
protects sensitive business rules.

These scenarios require the possibility to protect policies (policies protecting
policies) and the process of finding a match between requester and provider be-
comes more complex, since not all relevant policies may be available at the time.
Therefore, this process may consist of a several steps negotiation, by disclosing
new policies and credentials at each step, and therefore advancing after each it-
eration towards a common agreement [12]. For example, suppose Alice requests
access to a resource at e-shop. Alice is told that she must provide her credit card
to be granted access. However, Alice does not want to disclose her credit card just
to anyone and she communicates to e-shop that before it gets her credit card, it
should provide its Better Business Bureau certification. Once e-shop discloses it,
Alice’s policy is fulfilled and she provides the credit card, thus fulfilling e-shop’s
policy and receiving access to the requested resource (see Figure 3).

Fig. 3. Policy-driven negotiation between Alice and e-shop

Below, the two most recent languages for policy-driven negotiation are pre-
sented. They are also specially designed for the Semantic Web. However, we refer
the interested reader to other languages for policy based negotiations [20,21,22],
which may be applied to the Semantic Web.
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PeerTrust. PeerTrust [7] builds upon previous work on policy-based access
control and release for the Web and implements automated trust negotiation for
such a dynamic environment.

PeerTrust’s language is based on first order Horn rules (definite Horn clauses),
i.e., rules of the form “lit0 ← lit1, . . . , litn” where each liti is a positive literal
Pj(t1, . . . , tn), Pj is a predicate symbol, and the ti are the arguments of this
predicate. Each ti is a term, i.e., a function symbol and its arguments, which are
themselves terms. The head of a rule is lit0, and its body is the set of liti. The
body of a rule can be empty.

Definite Horn clauses can be easily extended to include negation as failure,
restricted versions of classical negation, and additional constraint handling ca-
pabilities such as those used in constraint logic programming. Although all of
these features can be useful in trust negotiation, here are only described other
more unusual required language extensions. Additionally, PeerTrust allows the
import of RDF based meta-data therefore allowing the use of ontologies within
policy descriptions.

retrieveFile(fileXYZ) $ Requester ←
    employed(Requester) @ institutionXYZ.

Fig. 4. Example of PeerTrust policies

References to Other Peers. PeerTrust’s ability to reason about statements
made by other peers is central to trust negotiation. To express delegation of eval-
uation to another peer, each literal liti is extended with an additional Authority
argument, that is

liti @ Authority

where Authority specifies the peer who is responsible for evaluating liti or has
the authority to evaluate liti. The Authority argument can be a nested term
containing a sequence of authorities, which are then evaluated starting at the
outermost layer.

A specific peer may need a way of referring to the peer who asked a particular
query. This is accomplished by including a Requester argument in literals, so
that now literals are of the form

liti @ Issuer $ Requester

The Requester argument can also be nested, in which case it expresses a chain of
requesters,with themost recent requester in the outermost layer of the nested term.

Using the Issuer and Requester arguments, it is possible to delegate evaluation
of literals to other parties and also express interactions and the corresponding
negotiation process between parties (see Figure 4 for an example).
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Signed Rules. Each peer defines a policy for each of its resources, in the form
of a set of definite Horn clause rules. These and any other rules that the peer
defines on its own are its local rules. A peer may also have copies of rules defined
by other peers, and it may use these rules to generate proofs, which can be sent
to other entities in order to give evidence of the result of a negotiation.

A signed rule has an additional argument that says who signed the rule. The
cryptographic signature itself is not included in the policy, because signatures
are very large and are not needed by this part of the negotiation software. The
signature is used to verify that the issuer really did issue the rule. It is assumed
that when a peer receives a signed rule from another peer, the signature is verified
before the rule is passed to the DLP evaluation engine. Similarly, when one peer
sends a signed rule to another peer, the actual signed rule must be sent, and
not just the logic programmatic representation of the signed rule. More complex
signed rules often represent delegations of authority.

Loop Detection Mechanisms. In declarative policy specification, loops may
easily occur and should not be considered as errors. For example, declarative
policies may state at the same time that “anyone with write permissions can
read a file” and “anyone with read permissions can write a file”. If not han-
dled accordingly, such loops may end up in non-terminating evaluation [23]. In
practice, policies, including for instance business rules, are complex and large in
number (and typically not under control of a single person) which increases the
risk of loops and non-termination during dynamic policy evaluation. A distrib-
uted tabling algorithm can handle safely mutual recursive dependencies (loops)
in distributed environments. Due to the security context, other aspects like pri-
vate and public policies and proof generation must be taken into account [23].

Protune. The PRovisional TrUst NEgotiation framework Protune [8] aims at
combining distributed trust management policies with provisional-style business
rules and access-control related actions. Protune’s rule language extends two
previous languages: PAPL [20], which until 2002 was one of the most complete
policy languages for trust negotiation, and PeerTrust [7], which supports distrib-
uted credentials and a more flexible policy protection mechanism. In addition,
the framework features a powerful declarative meta-language for driving some
critical negotiation decisions, and integrity constraints for monitoring negotia-
tions and credential disclosure.

Protune provides a framework with:

– A trust management language supporting general provisional-style2 actions
(possibly user-defined).

– An extendible declarative meta-language for driving decisions about request
formulation, information disclosure, and distributed credential collection.

– A parameterised negotiation procedure, that gives a semantics to the meta-
language and provably satisfies some desirable properties for all possible
meta-policies.

2 Authorizations involving actions and side effects are sometimes called provisional.
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  access(‘fileXYZ’) ←
      credential(employee, C),
      C.type:employee_id,
      C.affiliation :‘XYZ’.

  access(_).type:decision.
  access(_).sensitivity :public.

Fig. 5. Example of Protune policies

– Integrity constraints for negotiation monitoring and disclosure control.
– General, ontology-based techniques for importing and exporting meta-policies

and for smoothly integrating language extensions.
– Advanced policy explanations in order to answer why, why-not, how-to, and

what-if queries [24]

The Protune rule language is based on normal logic program rules “A ←
L1, . . . , Ln” where A is a standard logical atom (called the head of the rule) and
L1, . . . , Ln (the body of the rule) are literals, that is, Li equals either Bi or ¬Bi,
for some logical atom Bi.

A policy is a set of rules (see Figure 5 for an example), such that negation is
applied neither to provisional predicates (defined below), nor to any predicate
occurring in a rule head. This restriction ensures that policies are monotonic
on credentials and actions, that is, as more credentials are released and more
actions executed, the set of permissions does not decrease.

The vocabulary of predicates occurring in the rules is partitioned into the
following categories: Decision Predicates (currently supporting “allow()” which
is queried by the negotiation for access control decisions and “sign()” which
is used to issue statements signed by the principal owning the policy, Abbrevi-
ation Predicates (as described in [20]), Constraint Predicates (which comprise
the usual equality and disequality predicates) and State Predicates (which per-
form decisions according to the state). State Predicates are further subdivided
in State Query Predicates (which read the state without modifying it) and Pro-
visional Predicates (which may be made true by means of associated actions
that may modify the current state like e.g. credential(), declaration(), logged(X,
logfile name)).

Furthermore, meta-policies consist of rules similar to object-level rules. They
allow to inspect terms, check groundness, call an object-level goal G against the
current state (using a predicate holds(G)), etc. In addition, a set of reserved at-
tributes associated to predicates, literals and rules (e.g., whether a policy is public
or sensitive) is used to drive the negotiator’s decisions. For example, if p is a pred-
icate, then p.sensitivity : private means that the extension of the predicate is
private and should not be disclosed. An assertion p.type : provisional declares
p to be a provisional predicate; then p can be attached to the corresponding action
α by asserting p.action :α. If the action is to be executed locally, then we assert
p.actor : self, otherwise assert p.actor : peer.
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2.3 Policy Specification, Conflict Detection and Resolution

Previous sections described how the Semantic Web may benefit from the protec-
tion of resources with policies specifying security and privacy constraints. How-
ever, specifying policies may be as difficult as writing imperative code, getting
a policy right is as hard as getting a piece of software correct, and maintain-
ing a large number of them is only harder. Fortunately, the Semantic Web can
help administrators with policy specification, and detection and resolution of
conflicts.

Policy Specification. Tools like the KAOS Policy Administration Tool (K-
PAT) [5] and the PeerTrust Policy Editor provide an easy to use application to
help policy writers. This is important because the policies will be enforced auto-
matically and therefore errors in their specification or implementation will allow
outsiders to gain inappropriate access to resources, possibly inflicting huge and
costly damages. In general, the use of ontologies on policy specification reduces
the burden on administrators, helps them with their maintenance and decreases
the number of errors. For example, ontology-based structuring and abstraction
help maintain complex software, and so do they with complex sets of policies.
In the context of the Semantic Web, ontologies provide a formal specification
of concepts and their interrelationships, and play an essential role in complex
web service environments, semantics-based search engines and digital libraries.
Nejdl et al. [13] suggest using two strategies to compose and override policies,
building upon the notions of mandatory and default policies, and formalising the
constraints corresponding to these kinds of policies using F-Logic. A prototype
implementation as a Protégé plug-in shows that the proposed policy specification
mechanism is implementable and effective.

Conflict Detection and Resolution. Semantic Web policy languages also al-
low for advanced algorithms for conflict detection and its resolution. For example,
in Section 2.1 it was briefly described how conflicts may arise between policies,
either at specification time or runtime. A typical example of a conflict is when
several policies apply to a request and one allows access while another denies it
(positive vs. negative authorisation). Description Logic based languages may use
subsumption reasoning to detect conflicts by checking if two policies are instances
of conflicting types and whether the action classes, that the policies control, are
not disjoint. Both KAOS and REI handle such conflicts (like right vs. prohibi-
tion or obligation vs. dispensation) within their frameworks and both provide
constructs for specifying priorities between policies, hence the most important
ones override the less important ones. In addition, REI provides a construct
for specifying a general modality priority: positive (rights override prohibitions
and obligations override dispensations) or negative (prohibitions override rights
and dispensations override obligations). KAOS also provides a conflict resolution
technique called “policy harmonisation’. If a conflict is detected the policy with
lower priority is modified by refining it with the minimum degree necessary to
remove the conflict. This process may generate zero, one or several policies as
a refinement of the previous one (see [5] for more information). This process is
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performed statically at policy specification time ensuring that no conflicts arise
at runtime.

3 Applying Policies on the Semantic Web

The benefits of using semantic policy languages in distributed environments
with automated machine-machine interaction have been described extensible in
previous sections. This section aims at providing some examples of its use in the
context of the Web, (Semantic) Web Services and the (Semantic) Grid. In all
cases, different solutions have been described addressing different scenarios from
the point of view of one-step authorization or policy-driven negotiations.

3.1 Policies on the Web

The current Web infrastructure does not allow the enforcement of user policies
while accessing web resources. Web server authentication is typically based on
authentication mechanisms in which users must authenticate themselves (either
by means of certificates or typing a user name and password). Semantic Web
policies overcome such limitations of the Web.

Kagal et al. [6] describe how the REI language can be applied in order to
control access to web resources. Web pages are marked up with policies specifying
which credentials are required to access such pages. A policy engine (bound to
the web server) decides whether the request matches the credentials requested.
In case it does not, the web server could show which credentials are missing.
Furthermore, Kolari et al. [25] presents an extension to the Platform for Privacy
Preferences (P3P) using the REI language. The authors propose enhancements
using REI policies to increase the expressiveness and to allow for existing privacy
enforcement mechanisms.

PeerTrust can be used to provide advanced policy-driven negotiations on the
Web in order to control access to resources [7,26]. A user receives a signed (by
a trusted authority) applet after requesting access to a resource. Such an applet
includes reasoning capabilities and is loaded in the Web browser. The applet
automatically imports the policies specified by the user and starts a negotiation.
If the negotiation succeeds, the applet simply retrieve the resource requested or,
if necessary, redirects the user to the appropriate repository.

3.2 Semantic Web Services

Semantic Web Services aim at the automation of discovery, selection and compo-
sition of Web Services. Denker et al. [27] and Kagal et al. [10] suggest extending
OWL-S with security policies, written in REI, like e.g. whether a service requires
or is capable of providing secure communication channels. An agent may then
submit a request to the registry together with its privacy policies. The match-
maker at the registry will filter out non-compatible service descriptions and select
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only those whose security requirements of the service match the privacy policies
of the requester.

Differently, Olmedilla et al. [28] propose the use of the PeerTrust language to
decide if trust can be established between a requester and a service provider dur-
ing runtime selection of web services. Modelling elements are added to the Web
Service Modeling Ontology (WSMO) in order to include security information in
the description of Semantic Web Services. In addition, the authors discuss dif-
ferent registry architectures and their implications for the matchmaking process.

3.3 Semantic Grid

Grid environments provide the middleware needed for access distributed com-
puting and data resources. Distinctly administrated domains form virtual organ-
isations and share resources for data retrieval, job execution, monitoring, and
data storage. Such an environment provides users with seamless access to all
resources they are authorised to access. In current Grid infrastructures, in or-
der to be granted access at each domain, user’s jobs have to secure and provide
appropriate digital credentials for authentication and authorisation. However,
while authentication along with single sign-on can be provided based on client
delegation of X.509 proxy certificates to the job being submitted, the autho-
risation mechanisms are still mainly identity-based. Due to the large number
of potential users and different certification authorities, this leads to scalability
problems calling for a complementary solution to the access control mechanisms
specified in the current Grid Security Infrastructure (GSI) [29].

Uszok et al. [30] presents an integration of the KAOS framework into Globus
Tookit 3. Its authors suggest offering a KAOS grid service and providing an
interface so grid clients and services may register and check whether a specific
action is authorised or not. The KAOS grid service uses the KAOS policy services
described in Section 2.1 and relies on the Globus local enforcement mechanisms.

Alternatively, Constandache et al. [31] describe an integration of policy driven
negotiations for the GSI, using semantic policies and enhancing it providing au-
tomatic credential fetching and disclosure. Policy-based dynamic negotiations
allow more flexible authorisation in complex Grid environments, and relieve both
users and administrators from up front negotiations and registrations. Constan-
dache et al. [31] introduces an extension to the GSI and Globus Toolkit 4.0 in
which policy-based negotiation mechanisms offer the basis for overcoming these
limitations. This extension includes property-based authorisation mechanisms,
automatic gathering of required certificates, bidirectional and iterative trust
negotiation and policy based authorisation, ingredients that provide advanced
self-explanatory access control to grid resources.

4 Requirements and Open Research Issues for a Semantic
Web Policy Framework

Policies are pervasive in web applications. They play crucial roles in enhancing
security, privacy and usability of distributed services, and indeed may determine
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the success (or failure) of a web service. However, users will not be able to
benefit from these protection mechanisms unless they understand and are able
to personalize policies applied in such contexts. For web services this includes
policies for access control, privacy and business rules, among others.

This section summarizes research performed over the past years on semantic
policies and especially aim to analyse those aspects that did not receive so much
attention so far. We will focus our discussion on the following strategic goals and
lines of research:

– Rules-based policy representation: Rule-based languages are commonly re-
garded as the best approach to formalizing policies due to its flexibility,
formal semantics and closeness to the way people think.

– Adoption of a broad notion of policy, encompassing not only access control
policies, but also privacy policies, business rules, quality of service, and oth-
ers. We believe that all these different kinds of policies should eventually be
integrated into a single framework.

– Strong and lightweight evidence: Policies make decisions based on properties
of the peers interacting with the system. These properties may be strongly
certified by cryptographic techniques, or may be reliable to some interme-
diate degree with lightweight evidence gathering and validation. A flexible
policy framework should try to merge these two forms of evidence to meet
the efficiency and usability requirements of web applications.

– These desiderata imply that trust negotiation, reputation models, business
rules, and action specification languages have to be integrated into a single
framework at least to some extent. It is crucial to find the right tradeoff
between generality and efficiency. So far, no framework has tried to merge
all aspects into a coherent system.

– Automated trust negotiation is one of the main ingredients that can be used
to make heterogeneous peers effectively interoperate. This approach relies
on and actively contributes to advances in the area of trust management.

– Lightweight knowledge representation and reasoning does not only refer to
computational complexity; it should also reduce the effort to specialize gen-
eral frameworks to specific application domains; and the corresponding tools
should be easy to learn and use for common users, with no particular training
in computers or logic. We regard these properties as crucial for the success
of a semantic web framework.

– The last issue cannot be tackled simply by adopting a rule language. Solu-
tions like controlled natural language syntax for policy rules, to be translated
by a parser into the internal logical format, will definitively ease the adoption
of any policy language.

– Cooperative policy enforcement : A secure cooperative system should (almost)
never say no. Web applications need to help new users in obtaining the
services that the application provides, so potential customers should not be
discouraged. Whenever prerequisites for accessing a service are not met, web
applications should explain what is missing and help the user in obtaining
the required permissions.
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– As part of cooperative enforcement, advanced explanation mechanisms are
necessary to help users in understanding policy decisions and obtaining the
permission to access a desired service.

In the remainder of this section we describe the current state of the art on
these issues, expand on them and point out several interesting research direc-
tions related to them: the need for an flexible and easy policy representation,
the different types of policies which must be considered in order to address real
world scenarios, the need for strong and lightweight evidence on the informa-
tion that policies require, the importance of trust management as part of a
policy framework, describing in detail negotiations and provisional actions and
how cooperative systems which explain their decisions to users as well as policy
specification in natural language increase user awareness and understanding.

4.1 Rule-Based Policy Representation

Rule-based languages are commonly regarded as the best approach to formalizing
security policies. In fact, most of the systems we use every day adopt policies
formulated as rules. Roughly speaking, the access control lists applied by routers
are actually rules of the form: “if a packet of protocol X goes from hosts Y to hosts
Z then [don’t] let it pass”. Some systems, like Java, adopt procedural approaches.
Access control is enforced by pieces of code scattered around the virtual machine
and the application code; still, the designers of Java security felt the need for a
method called implies, reminiscent of rules, that causes certain authorizations
to entail other authorizations [32].

The main advantages of rule-based policy languages can be summarized as
follows:

– People (including users with no specific training in computers or logic) spon-
taneously tend to formulate security policies as rules.

– Rules have precise and relatively simple formal semantics, be it operational
(rewrite semantics), denotational (fixpoint-based), or declarative (model the-
oretic). Formal semantics is an excellent help in implementing and verifying
access control mechanisms, as well as validating policies.

– Rule languages can be flexible enough to model in a unified framework the
many different policies introduced along the years as ad-hoc mechanisms.
Different policies can be harmonized and integrated into a single coherent
specification.

In particular, logic programming languages are particularly attractive as policy
specification languages. They enjoy the above properties and have efficient in-
ference mechanisms (linear or quadratic time). This property is important as
in most systems policies have to manage a large number of users, files, and
operations—hence a large number of possible authorizations. And for those ap-
plications where linear time is too slow, there exist well-established compilation
techniques (materialization, partial evaluation) that may reduce reasoning to
pure retrieval at run time.
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Another fundamental property of logic programs is that their inference is
nonmonotonic, due to negation-as-failure. Logic programs can make default de-
cisions in the absence of complete specifications. Default decisions arise naturally
in real-world security policies. For example, open policies prescribe that autho-
rizations by default are granted, whereas closed policies prescribe that they
should be denied unless stated otherwise. Other nonmonotonic inferences, such
as authorization inheritance and overriding, are commonly supported by policy
languages.

For all of these reasons, rule languages based on nonmonotonic logics eventu-
ally became the most frequent choice in the literature. A popular choice consists
of normal logic programs, i.e. sets of rules like

A ← B1, . . . , Bm, not C1, . . . , not Cn

interpreted with the stable model semantics [33]. In general, each program may
have one stable model, many stable models, or none at all. There are opposite
points of view on this feature.

Some authors regard multiple models as an opportunity to write nondeter-
ministic specifications where each model is an acceptable policy and the system
makes an automatic choice between the available alternatives [34]. For instance,
the models of a policy may correspond to all possible ways of assigning permis-
sions that preserve a Chinese Wall policy [35]. However, the set of alternative
models may grow exponentially, and the problem of finding one of them is NP-
complete. There are exceptions with polynomial complexity [36,37], though.

Some authors believe that security managers would not trust the system’s au-
tomatic choice and adopt restrictions such as stratifiability [38] to guarantee that
the canonical model be unique. The system rejects non-stratified specifications,
highlighting nonstratified rules to help the security administrator in reformu-
lating the specifications. As a further advantage, stratifiability-like restrictions
yield PTIME semantics.

4.2 A Broad Notion of Policy

Policies are pervasive in all web-related contexts. Access control policies are
needed to protect any system open to the internet. Privacy policies are needed
to assist users while they are browsing the web and interacting with web services.
Business rules specify which conditions apply to each customer of a web service.
Other policies specify constraints related to Quality of Service (QoS). In E-
government applications, visas and other documents are released according to
specific eligibility policies. This list is not exhaustive and is limited only by the
class of applications that can be deployed in the world wide web.

Most of these policies make their decisions based on similar pieces of infor-
mation [39] – essentially, properties of the peers involved in the transaction. For
example, age, nationality, customer profile, identity, and reputation may all be
considered both in access control decisions, and in determining which discounts
are applicable (as well as other eligibility criteria). It is appealing to integrate
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these kinds of policies into a coherent framework, so that (i) a common in-
frastructure can be used to support interoperability and decision making, and
(ii) the policies themselves can be harmonized and synchronized.

In the general view depicted above, policies may also establish that some events
must be logged (audit policies), that user profiles must be updated, and that when
a transaction fails, the user should be told how to obtain missing permissions. In
other words, policies may specify actions whose execution may be interleaved with
the decision process. Such policies are called provisional policies. In this context,
policies act both as decision support systems and as declarative behavior specifica-
tions. An effective user-friendly approach to policy specification could give com-
mon users (with no training in computer science or logic) better control on the
behavior of their own system (see the discussion in Section 4.5).

Of course, the extent to which this goal can be achieved depends on the policy’s
ability to interoperate with legacy software and data – or more generally, with the
rest of the system. Then a policy specification language should support suitable
primitives for interacting with external packages and data in a flexible way.

The main challenges raised by these issues are then the following:

– Harmonizing security and privacy policies with business rules, provisional
policies, and other kinds of policy is difficult because their standard for-
malizations are based on different derivation strategies, and even different
reasoning mechanisms (cf. Section 4.4). Deduction, abduction, and event-
condition-action rule semantics need to be integrated into a coherent frame-
work, trying to minimize subtleties and technical intricacies (otherwise the
framework would not be accessible to common users).

– Interactions between a rule-based theory and “external” software and data
have been extensively investigated in the framework of logic-based mediation
and logic-based agent programming [40,41]. However, there are novel issues re-
lated to implementing high-level policy rules with low-level mechanisms such
as firewalls, web server and DBMS security mechanisms, and operating sys-
tem features, that are often faster and more difficult to bypass than rule inter-
preters [42]. A convincing realization of this approach might boost the appli-
cation of the rich and flexible languages developed by the security community.

4.3 Strong and Lightweight Evidence

Currently two major approaches for managing trust exist: policy-based and
reputation-based trust management. The two approaches have been developed
within the context of different environments and target different requirements.
On the one hand, policy-based trust relies on “strong security” mechanisms such
as signed certificates and trusted certification authorities (CAs) in order to reg-
ulate access of users to services. Moreover, access decisions are usually based
on mechanisms with well defined semantics (e.g., logic programming) providing
strong verification and analysis support. The result of such a policy-based trust
management approach usually consists of a binary decision according to which
the requester is trusted or not, and thus the service (or resource) is allowed
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or denied. On the other hand, reputation-based trust relies on a “soft computa-
tional” approach to the problem of trust. In this case, trust is typically computed
from local experiences together with the feedback given by other entities in the
network. For instance, eBay buyers and sellers rate each other after each trans-
action. The ratings pertaining to a certain seller (or buyer) are aggregated by
eBay’s reputation system into a number reflecting seller (or buyer) trustwor-
thiness as judged by the eBay community. The reputation-based approach has
been favored for environments such as Peer-to-Peer or Semantic Web, where the
existence of certifying authorities can not always be assumed but where a large
pool of individual user ratings is often available.

Another approach – very common in today’s applications – is based on forcing
users to commit to contracts or copyrights by having users click an “accept”
button on a pop-up window. This is perhaps the lightest approach to trust, that
can be generalized by having users utter declarations (on their e-mail address,
on their preferences, etc.) e.g. by filling an HTML form.

Real life scenarios often require to make decisions based on a combination of
these approaches. Transaction policies must handle expenses of all magnitudes,
from micropayments (e.g. a few cents for a song downloaded to your iPod)
to credit card payments of a thousand euros (e.g. for a plane ticket) or even
more. The cost of the traded goods or services contributes to determine the risk
associated to the transaction and hence the trust measure required.

Strong evidence is generally harder to gather and verify than lightweight ev-
idence. Sometimes, a “soft” reputation measure or a declaration in the sense
outlined above is all one can obtain in a given scenario. We believe that the
success of a trust management framework will be determined by the ability of
balancing trust levels and risk levels for each particular task supported by the
application, adding the following to the list of interesting research directions:

– Howshoulddifferent formsof trustbe integrated?Somehints onmodelling con-
text aware trust, recommendation and risk with rules is given in [26] and a first
proposal for a full integration in a policy framework can be found in [43]. How-
ever, new reputation models are being introduced, and there is a large number
of open research issues in the reputation area (e.g., vulnerability to coalitions).
Today, it is not clear which of the current approaches will be successful and
how the open problems will be solved. Any proposal should therefore aim at
maximal modularity in the integration of numerical and logical trust.

– Howmanydifferent formsof evidence canbe conceived? Inprinciple, properties
of (and statements about) an individual can be extracted from any – possibly
unstructured –web resource. Supporting such a variety of information in policy
decisions is a typical semantic web issue – and an intriguing one. However, such
general policies arenot evenvaguely as close tobecome real as thepolicies based
on more “traditional” forms of evidence (see the discussion in the next section).

4.4 Trust Management

During the past few years, some of the most innovative ideas on security poli-
cies arose in the area of automated trust negotiation [44,8,45,7,46,47,48,49,50].
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That branch of research considers peers that are able to automatically negotiate
credentials according to their own declarative, rule-based policies. Rules specify
for each resource or credential request which properties should be satisfied by
the subjects and objects involved. At each negotiation step, the next credential
request is formulated essentially by reasoning with the policy, e.g. by inferring
implications or computing abductions.

Since about five years frameworks exist where credential requests are formu-
lated by exchanging sets of rules [8,45]. Requests are formulated intensionally
in order to express compactly and simultaneously all the possible ways in which
a resource can be accessed — shortening negotiations and improving privacy
protection because peers can choose the best option from the point of view of
sensitivity. It is not appealing to request “an ID and a credit card” by enumer-
ating all possible pairs of ID credentials and credit card credentials; it is much
better to define what IDs and credit cards are and send the definition itself.
Another peer may use it to check whether some subset of its own credentials
fulfills the request. This boils down to gathering the relevant concept definitions
in the policy (so-called abbreviation rules) and sending them to the other peer
that reasons with those rules locally.

In [8,45] peers communicate by sharing their ontologies. Interestingly, typical
policies require peers to have a common a priori understanding only of the pred-
icate representing credentials and arithmetic predicates, as any other predicate
can be understood by sharing its definition. The only nontrivial knowledge to be
shared is the X.509 standard credential format. In this framework, interoperabil-
ity based on ontology sharing is already at reach! This is one of the aspects that
make policies and automated trust negotiation a most attractive application for
semantic web ideas.

Another interesting proposal of [45] is the notion of declaration, that has al-
ready been discussed in Section 4.3. This was the first step towards a more flex-
ible and lightweight approach to policy enforcement, aiming at a better tradeoff
between protection efforts and risks. According to [51], this framework was one of
the most complete trust negotiation systems. The major limitation was the lack
of distributed negotiations and credential discovery, which are now supported as
specified in [8].

Negotiations. In response to a resource request, a web server may ask for cre-
dentials proving that the client can access the resource. However, the credentials
themselves can be sensitive resources. So the two peers are in a completely sym-
metrical situation: the client, in turn, asks the server for credentials (e.g. proving
that it participates in the Better Business Bureau program) before sending off
the required credentials. Each peer decides how to react to incoming requests
according to a local policy, which is typically a set of rules written in some logic
programming dialect. As we pointed out, requests are formulated by selecting
some rules from the policies. This basic schema has been refined along the years
taking several factors into account [44,8,45,7,46,47,48,49,50].

First, policy rules may possibly inspect a local state (such as a legacy database)
that typically is not accessible by other peers. In that case, in order to make
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rules intelligible to the recepient, they are partially evaluated with respect to
the current state.

Second, policies themselves are sensitive resources, therefore not all relevant
rules are shown immediately to the peer. They are first filtered according to
policy release rules; the same schema may be applied to policy release rules
themselves for an arbitrary but finite number of levels. As a consequence, some
negotiations that might succeed, in fact fail just because the peers do not tell
each other what they want. The study of methodologies and properties that
guarantee negotiation success is an interesting open research issue.

Moreover, credentials are not necessarily on the peer’s host. It may be nec-
essary to locate them on the network [52]. As part of the automated support
to cooperative enforcement, peers may give each other hints on where a creden-
tial can be found [53]. There are further complications related to actions (cf.
Section 4.4). In order to tune the negotiation strategy to handle these aspects
optimally, we can rely on a metapolicy language [8] that specifies which predi-
cates are sensitive, which are associated to actions, which peer is responsible for
each action, and where credentials can be searched for, guiding negotiation in a
declarative fashion and making it more cooperative and interoperable. Moreover,
the metapolicy language can be used to instantiate the framework in different
application domains and link predicates to the ontologies where they are defined.

Provisional Policies. Policies may state that certain requests or decisions have
to be logged, or that the system itself should search for certain credentials. In
other words, policy languages should be able to specify actions. Event-condition-
action (ECA) rules constitute one possible approach. Another approach consists
in labelling some predicates as provisional, and associating them to actions that
(if successful) make the predicate true [8]. We may also specify that an action
should be executed by some other peer; this results in a request.

A cooperative peer tries to execute actions under its responsibility when-
ever this helps in making negotiations succeed. For example, provisional predi-
cates may be used to encode business rules. The next rule3 enables discounts on
low selling articles in a specific session:

allow(Srv) ← . . . , session(ID),
in(X , sql:query(′select ∗ from low selling′)),
enabled(discount(X ), ID) .

Intuitively, if enabled(discount(X ), ID) is not yet true but the other con-
ditions are verified, then the negotiator may execute the action associated to
enabled and the rule becomes applicable (if enabled(discount(X ), ID) is al-
ready true, no action is executed). The (application dependent) action can be
defined and associated to enabled through the metapolicy language. With the
metalanguage one can also specify when an action is to be executed.

Some actions would be more naturally expressed as ECA rules. However, it is
not obvious how the natural bottom-up evaluation schema of ECA rules should
3 Formulated in Protune’s language.
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be integrated with the top-down evaluation adopted by the current core policy
language. The latter fits more naturally the abductive nature of negotiation
steps. So integration of ECA rules is still an interesting open research issue.

Stateful vs. Stateless Negotiations. Negotiations as described above are in
general stateful, because (i) they may refer to a local state – including legacy
software and data – and (ii) the sequence of requests and counter requests may
become more efficient if credentials and declarations are not submitted again
and again, but kept in a local negotiation state. However, negotiations are not
necessarily stateful because

– the server may refuse to answer counter-requests, or – alternatively – the
credentials and declarations disclosed during the transaction may be included
in every message and need not be cached locally;

– the policy does not necessarily refer to external packages.

Stateless protocols are just special cases of the frameworks introduced so far.
Whether a stateless protocol is really more efficient depends on the application.
Moreover, efficiency at all costs might imply less cooperative systems.

Are stateful protocols related to scalability issues? We do not think so. The
web started as a stateless protocol, but soon a number of techniques were imple-
mented to simulate stateful protocols and transactions in quite a few real world
applications and systems, capable of answering a huge number of requests per
time unit. We observe that if the support for stateful negotiations had been cast
into http, probably many of the intrinsic vulnerabilities of simulated solutions
(like cookies) might have been avoided.

New Issues. Existing approaches to trust management and trust negotiation
already tackle the need for flexible, knowledge-based interoperability, and take
into account the main idiosyncrasies of the web – because automated trust ne-
gotiation frameworks have been designed with exactly that scenario in mind.
Today, to make a real contribution (even in the context of a policy-aware web),
we should further perform research on the open issues of trust management,
including at least the following topics:

– Negotiation success: how can we guarantee that negotiations succeed despite
all the difficulties that may interfere: rules not disclosed because of lack of
trust; credentials not found because their repository is unknown. What kind
of properties of the policy protection policy and of the hints (see Section 4.4)
guarantee a successful termination when the policy “theoretically” permits
access to a resource?

– Optimal negotiations: which strategies optimize information disclosure dur-
ing negotiation? Can reasonable preconditions prevent unnecessary informa-
tion disclosure?

– In the presence of multiple ways of fulfilling a request, how should the client
choose a response? We need both a language for expressing preferences,
and efficient algorithms for solving the corresponding optimization problem.
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While this negotiation step is more or less explicitly assumed by most ap-
proaches on trust negotiation, there is no concrete proposal so far.

Additionally, integration of abductive semantics and ECA semantics is an
open issue, as we have pointed out in a previous section.

4.5 Cooperative Policy Enforcement

Cooperative enforcement involves both machine-to-machine and human-machine
aspects. The former is handled by negotiation mechanisms: published policies,
provisional actions, hints, and other metalevel information (see Section 4.4) can
be interpreted by the client to identify what information is needed to access a
resource, and how to obtain that information.

Let us discuss the human-machine interaction aspect in more detail: One of
the most important causes of the enormous number of computer security viola-
tions on the Internet is the users’ lack of technical expertise. Users are typically
not aware of the security policies applied by their system, neither of course about
how those policies can be changed and how they might be improved by tailoring
them to specific needs. As a consequence, most users ignore their computer’s vul-
nerabilities and the corresponding countermeasures, so the system’s protection
facilities cannot be effectively exploited.

It is well known that the default, generic policies that come with system
installations – often biased toward functionality rather than protection – are
significantly less secure than a policy specialized to a specific context, but very
few users know how to tune or replace the default policy. Moreover, users fre-
quently do not understand what the policy really checks, and hence are unaware
of the risks involved in many common operations.

Similar problems affect privacy protection. In trust negotiation, credential
release policies are meant to achieve a satisfactory tradeoff between privacy and
functionality – many interesting services cannot be obtained without releasing
some information about the user. However, we cannot expect such techniques
to be effective unless users are able to understand and possibly personalize the
privacy policy enforced by their system.

A better understanding of a web service’s policy makes it also easier for a
first-time user to interact with the service. If denied access results simply in a
“no” answer, the user has no clue on how he or she can possibly acquire the
permission to get the desired service (e.g., by completing a registration proce-
dure, by supplying more credentials or by filling in some form). This is why we
advocate cooperative policy enforcement, where negative responses are enriched
with suggestions and other explanations whenever such information does not
violate confidentiality (sometimes, part of the policy itself is sensitive).

For these reasons, greater user awareness and control on policies is one of
our main objectives, making policies easier to understand and formulate to the
common user in the following ways:

– Adopt a rule-based policy specification language, because these languages are
flexible and at the same time structurally similar to the way in which policies
are expressed by nontechnical users.
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– Make the policy specification language more friendly by e.g. developing a
controlled natural language front-end to translate natural language text into
executable rules (see next section).

– Develop advanced explanation mechanisms [24,54,55] to help the user under-
stand what policies prescribe and control.

Inference Web (IW) [54,55] is a toolkit that aims at providing useful expla-
nations for the behavior of (Semantic-) Web based systems. In particular, [54]
propose support for knowledge provenance information using metadata (e.g.,
Dublin Core information) about the distributed information systems involved in
a particular reasoning task. [54] also deals with the issue of representing het-
erogeneous reasoning approaches, domain description languages and proof rep-
resentations; the latter issue is addressed by using PML, the OWL-based Proof
Markup Language [56].

Specifically applied to policies, [24] contains a requirements analysis for ex-
planations in the context of automated trust negotiation and defines explanation
mechanisms for why, why-not, how-to, and what-if queries. Several novel aspects
are described:

– Adoption of a tabled explanation structure as opposed to more traditional
approaches based on single derivations or proof trees. The tabled approach
makes it possible to describe infinite failures, which is essential for why not
queries.

– Explanations show simultaneously different possible proof attempts and al-
low users to see both local and global proof details at the same time. This
combination of local and global (intra-proof and inter-proof) information
facilitates navigation across the explanation structures.

– Introduction of suitable heuristics for focussing explanations by removing
irrelevant parts of the proof attempts. A second level of explanations can
recover missing details, if desired.

– Heuristics are generic, i.e. domain independent, they require no manual con-
figuration.

– The combination of tabling techniques and heuristics yields a novel method
for explaining failure.

Explanation mechanisms should be lightweight and scalable in the sense that
(i) they do not require any major effort when the general framework is instanti-
ated in a specific application domain, and (ii) most of the computational effort
can be delegated to the clients. Queries are answered using the same policy
specifications used for negotiation. Query answering is conceived for the follow-
ing categories of users:

– Users who try to understand how to obtain access permissions;
– Users who monitor and verify their own privacy policy;
– Policy managers who verify and monitor their policies.

Currently, advanced queries comprise why/why not, how-to, and what-if queries.
Why/why not queries can be used by security managers to understand why some
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specific request has been accepted or rejected, which may be useful for debugging
purposes. Why-not queries may help a user to understand what needs to be done
in order to obtain the required permissions, a process that in general may include
a combination of automated and manual actions. Such features are absolutely
essential to enforce security requirements without discouraging users that try to
connect to a web service for the first time. How-to queries have a similar role,
and differ from why-not queries mainly because the former do not assume a
previous query as a context, while the latter do.

What-if queries are hypothetical queries that allow to predict the behavior
of a policy before credentials are actually searched for and before a request is
actually submitted. What-if queries are good both for validation purposes and
for helping users in obtaining permissions.

Among the technical challenges related to explanations, we mention:

– Find the right tradeoff between explanation quality and the effort for in-
stantiating the framework in new application domains. Second generation
explanation systems [57,58,59] prescribe a sequence of expensive steps, in-
cluding the creation of an independent domain knowledge base expressly
for communicating with the user. This would be a serious obstacle to the
applicability of the framework.

Natural Language Policies. Policies should be written by and understandable
to users, to let them control behavior of their system. Otherwise the risk that
users keep on adopting generic hence ineffective built-in policies, and remain
unaware of which controls are actually made by the system is extremely high –
and this significantly reduces the benefits of a flexible policy framework.

Most users have no specific training in programming nor in formal logics.
Fortunately, they spontaneously tend to formulate policies as rules; still, logical
languages may be intimidating. For this reason, the design of front ends based
on graphical formalisms as well as natural language interfaces are crucial to the
adoption of formal policy languages. We want policy rules to be formulated like:
“Academic users can download the files in folder historical data whenever their
creation date precedes 1942”.

Clearly, the inherent ambiguity of natural language is incompatible with the
precision needed by security and privacy specifications. Solutions to that can be
the adoption of a controlled fragment of English (e.g., the Attempto system4)
where a few simple rules determine a unique meaning for each sentence. This
approach can be complemented with a suitable interface that clarifies what the
machine understands.

5 Conclusions

Policies are really knowledge bases: a single body of declarative rules used in
many possible ways, for negotiations, query answering, and other forms of sys-
tem behavior control. As far as trust negotiation is concerned, we further argue
4 http://www.ifi.unizh.ch/attempto/

http://www.ifi.unizh.ch/attempto/
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that transparent interoperation based on ontology sharing can become “every-
day technology” in a short time, and trust negotiation especially will become a
success story for semantic web ideas and techniques.

In addition to stateless negotiation [60], we need stateful negotiation as well
[45]. Even the Web, which started as a stateless protocol, now implements a
number of techniques to simulate stateful protocols and transactions, especially
in applications for accessing data other than web pages.

Cooperative policy enforcement and trust management gives common users
better understanding and control on the policies that govern their systems and
the services they interact with. The closer we get to this objective, the higher
the impact of our techniques and ideas will be.

Policies will have to handle decisions under a wide range of risk levels, perfor-
mance requirements, and traffic patterns. It is good to know that the rule-based
techniques that different research communities are currently converging to are
powerful enough to effectively address such a wide spectrum of scenarios. This
is the level of flexibility needed by the Semantic Web.

About This Manuscript. This manuscript provides an introduction to policy
representation and reasoning for the Semantic Web. It describes the benefits of
using policies and presents four of the most relevant policy languages. These four
languages are classified according to whether policies are assumed to be public
or else may be protected. The former consists of a single evaluation step where
a policy engine or a matchmaker decides whether two policies are compatible or
not. Examples of this kind of evaluation are the KAOS and REI frameworks. If
policies may be protected (by e.g. other policies), the process is not anymore a
one-step evaluation. In this case, policies guide a negotiation in which policies
are disclosed iteratively increasing the level of security at each step towards a
final agreement. Examples of these kind of frameworks are PeerTrust and Pro-
tune. Furthermore, Semantic Web techniques can be used to ease and enhance
the process of policy specification and validation. Conflicts between policies can
be found and even resolved automatically (either by meta-policies or by harmon-
isation algorithms).

In order to demonstrate the benefits and feasibility of Semantic Web policies,
several application scenarios are briefly described, namely the (Semantic) Web,
(Semantic) Web Services and the (Semantic) Grid. Finally a list of open research
issues that prevent existing policy languages from being widely adopted are
introduced. This list is intended to help new researchers in the area to focus on
those crucial problems which are still unsolved.
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1 Introduction

Rule interchange on the Web has become an increasingly important issue during
the last couple of years in both industry and academia. Offering a flexible, adap-
tive approach towards applications development on a high level of abstraction,
declarative rules languages have already been developed by different communi-
ties and deployed in various application domains. Companies manage and specify
their business logic in the form of rules [The00]. Rules are also being used for
modeling security policies in cooperative systems [Bon05], and they are gaining
popularity as a means of reasoning about Web data [BS04, EIP+06, Ros06].

To exploit the full potential of rule-based approaches, the business rules and
the Semantic Web communities have started to develop solutions for reusing and
integrating knowledge specified in different rule languages. The Rule Markup
Initiative1, which started in 2000, focused its efforts on defining a shared Rule
Markup Language (RuleML) that tries to encompass different types of rules.
The European Network of Excellence REWERSE [BS04] (Reasoning on the
Web with Rules and Semantics) proposes R2ML [WGL06], the REWERSE I1
Rule Markup Language, which offers a solution for interchanging rules between
heterogeneous systems combining RuleML, SWRL, and OCL. Moreover, three
member submissions for Web rule languages, namely the Semantic Web Rule
Language (SWRL) [HPSB+04], the Web Rules Language (WRL) [ABdB+05],
and SWSL Rules [BBB+] (a rule language proposed by the Semantic Web Ser-
vices Language Committee2) were submitted independently to the World Wide
Web Consortium (W3C) as starting points for standardization in the rules area.

Finally, at the end of 2005, W3C launched the Rule Interchange Format Work-
ing Group (RIF WG) which has been chartered to standardize a common format
for rule interchange on the Web.

In this article, we start with a general discussion of problems related to rule
interchange on the Web and outline the role of rules in realizing the Semantic
Web vision. Then, we present the results of the W3C RIF WG achieved so far
and outline future work to be done. In particular, we will discuss the first two
public working drafts released by the Working Group—the Use Cases and Re-
quirements [GHMe] document and the technical design of a core rule interchange
format, the RIF Core [BK07].

1.1 Running Example: A Simple Movie Scenario

To illustrate the main ideas, we use an example where several movie databases
interoperate through the Web.

Example 1. The fictitious International Movie Datastore (IMD) publishes its
database through its Web site http://imd.example.org/. This database is
shown in Figure 1(a). Likewise, John Doe Sr., who owns a DVD Rental Store,
MoviShop, makes his movie rental services available on the Web. His site is
supported by a similar database shown in Figure 1(b).
1 Rule Markup Initiative, http://www.ruleml.org
2 http://www.daml.org/services/swsl/

http://imd.example.org/
http://www.ruleml.org
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Movie Title Year MinAge
m1 Plan 9 from Outer Space 1959 16
m2 Matrix Revolutions 2003 18
m3 Bride of the Monster 1955 16
m4 Ed Wood 1994 12

.

.

.

Person Name Birthyear
p1 Edward D. Wood Jr. 1924
p2 Johnny Depp 1963
p3 Tim Burton 1958
p4 Andy Wachowski 1967
p5 Martin Landau 1931
p6 Larry Wachowski 1965

.

.

.

PersonID ActedIn Role
p2 m4 Edward D. Wood Jr.
p5 m4 Bela Lugosi

.

.

.

PersonID Directed
p3 m4
p1 m1
p1 m3

.

.

.

. . .

(a) IMD’s database, accessible via: http://imd.example.org/

DVD# Movie
dvd1 m1
dvd2 m1

.

.

.

Customer# DVD# RentalDate ReturnDate
c1 dvd2 2007-09-01 2007-09-01
c2 dvd5 2007-01-01

.

.

.

Customer# Name Age
c1 Joanna Doe 31
c2 Johnny Dough 12
c3 John Doe Jr. 16

.

.

.

((b) MoviShop’s database

Fig. 1. IMD, a fictitious movie database, and MoviShop, a fictitious DVD rental store

By employing Web formats such as XML, RDF, and OWL, John can share
data over the Web. John also uses Semantic Web technologies for implement-
ing some of the services MoviShop is offering. For instance, MoviShop provides
customers with information about the newest movies by importing data from
http://imd.example.org/. It also publishes the information about available
movies and links to other Web sources that provide reviews and recommenda-
tions (such as IMD). MoviShop also supports online ordering of movies, which
can later be picked up in a branch office of MoviShop.

Recently John has become fascinated by the new business opportunities, which
could arise if MoviShop could import and exchange not only data but also busi-
ness rules. He is thus very excited about W3C’s ongoing efforts towards a com-
mon rules interchange format.

1.2 Rules and Rule Types

Creating a format for rule interchange on the Web, which could help John con-
duct his business, is not a trivial task. First, there are different ideas about what
types of rules are of interest: one might get different views depending on whether
you talk to a production rule vendor, a database vendor, or a Semantic Web re-
searcher. This is because the term “rule” is an umbrella for a number of related,
but still quite different concepts.

A simple example of a rule is a CSS selector, i.e. a statement that defines how
browsers should render elements on an HTML page, such as the list of available

http://imd.example.org/
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movies in John’s MoviShop. At the business level, John might be interested to
enforce constraint rules such as “credit cards accepted by MoviShop are VISA
and MasterCard.” Moreover, rules can define implicit data, e.g. “Customers who
have rented more than 100 movies are priority customers.”

Integrity constraints on the structure of the data in databases, such as “each
movie has a single production year,” or “each MoviShop customer has a unique
identification number,” provide another example of rules.

Statements specifying parts of an application’s dynamic behavior such as ’if
an item is perishable and it is delivered more than 10 days after the scheduled
delivery date then the item will be rejected’ or ’if a customer is blacklisted then
deny the customer’s request to booking a movie’ are also rules. The second rule is
a good example for rules that could be interchanged between systems deployed
by MoviShop and similar online shops.

The above examples show that rules may specify constraints, (implicit) con-
struction of new data, data transformations, updates on data or, more general,
event-driven actions. Rules are also used for reasoning with Web and Semantic
Web data. From a high-level view, rules are statements that express static or
dynamic relationships among different data items, the logic of applications, and
more generally of business processes within enterprises.

Rules may differ significantly not only in their purpose (e.g., transforming
data), but also in their form. Consider, for example, the following rules:

(R1) IF movie ?M was produced before 1930
THEN ?M is a black and white movie

(R2) ON request from customer ?C to book a movie
IF customer ?C is blacklisted
DO deny ?C’s request

Rule R1 has two components: The IF part searches for movies produced before
1930 and binds the variable M to such movies. The THEN part of the rule uses
the retrieved information to construct new data—a view over the movie data.
Rule R2 has a different structure: The ON part waits for a request for booking
a movie to come in, i.e. an event. The IF part of rule R2 is similar to the IF
part of rule R1—it checks a condition about the customer requesting a movie.
The DO part specifies the action to be executed on a request from a blacklisted
customer.

Different kinds of rules present different requirements to the implementor.
R2 needs a richer language and a more complex execution semantics than R1,
since its ON part requires support for detecting incoming events and its DO part
needs support for executing actions. However, both types of rules share the need
to support conditions in the IF part. This commonality among different types
of rules suggest a way of approaching the development of a rule interchange
format by starting with common parts (such as the IF part) and extending this
support to various features of different types of rules. To better understand the
similarities among different types of rules, we divide them into three categories:
deduction rules, normative rules, and reactive rules (see [TW01, BM05]).
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Deduction Rules are statements of how to derive knowledge from other knowl-
edge by using logical inference. Deduction rules are also called derivation rules
in the business rules community, constructive rules by logicians, and views in
the database community.

One could say that deduction rules describe static dependencies among en-
tities which might be used to infer additional implicit knowledge from what is
explicitly stated in a knowledge base or database. Deductive rules are often spec-
ified as implications of the form head ← body: The head gives a specification of
the data to be constructed/inferred and the body queries the underlying data-
base(s). Both rule parts may and usually share variables. Variables get bound
to data items in the body and these bindings are then used in the head to in-
fer new data. In the previous example, rule R1 is a deductive rule. Its body is
introduced by the keyword IF and the head by THEN. The head and the body
share the variable M, which is a placeholder for a movie object.

The actual syntax and the nature of the parts in a rule depend on the cho-
sen rule language. Some languages divide the body into a query part, which
selects data from one or more databases, and a condition part, which acts as
a filter for the results obtained by evaluating the query part. Consider the rule
R1, which constructs a view of black and white movies from a movie database
at http://imd.example.org/movies.xml. The body of the rule searches for
movies in a database and then filters out the movies produced before 1930. As a
concrete example of a rule language, let us consider rule R1 expressed in Xcerpt3,
an XML rule language based on deductive rules:

CONSTRUCT
black-and-white { all var Title }

FROM
in { resource { "http://imd.example.org/movies.xml", XML},

moviedb {{
movie {{

title { var Title },
year { var Year }

}}
}}

} WHERE var Year < 1930
END

Rule components specify patterns for the data to be constructed or queried.
The rule head, introduced by CONSTRUCT, gathers all substitutions for the vari-
able Title. The rule body, introduced by FROM gives an incomplete pattern for the
movies.xml data and retrieves the movie titles and years as substitutions for the
variables Title and Year. The WHERE part specifies the desired filter condition.

The given Xcerpt rule exemplifies a deductive rule with selection and filtering
of data in the body and grouping of data items in the head. Data is retrieved from
a single data source—an XML document—but more than one data source can be
3 Xcerpt, http://xcerpt.org

http://imd.example.org/movies.xml
http://xcerpt.org
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queried within one deductive rule. The data source may be explicitly given, as in
this case, or given implicitly (e.g. upon loading a ruleset). Depending on the rule
language used to specify and evaluate deductive rules, other features may also be
supported. Join queries over multiple data sources, which correlate pieces of data
found in the data sources, may also be specified in a deductive rule’s body. Other
features, such as aggregation of data (e.g. by means of aggregate functions like
count, which counts the substitutions for a given variable), or external function
calls may or may not be allowed to be used in rules.

Other examples of rule languages based on deductive rules are SQL views,
Datalog, Prolog, and most other logical rules languages.

Normative Rules are rules that pose constraints on the data or on the logic of
an application. Such rules ensure that changes made to a database do not cause
inconsistencies and that the business logic of a company is obeyed. Normative
rules are also called structural rules in the business rules community and integrity
constraints in databases.

Normative rules describe disallowed inconsistencies rather than inferring new
knowledge. A simple constraint is that each customer must have a unique iden-
tification number. Two different identification numbers for the same person are
an indication of corrupted data. Similar examples arise in E-R models in the
form of key declarations and cardinality restrictions. XML’s DTDs also provide
rudimentary capabilities to express such key constraints in the form of ID and
IDREF attributes, and XML Schema provides rich support for key and foreign
key constraints.

In some cases, deductive rules can be used to implement normative rules4.
In other cases, reactive rules (discussed next) can be used to implement certain
types of normative rules. The decision largely depends on the application and
on the available support for different rule types. For example, in [FFLS99] con-
straints are used to describe the structure of Web sites and deductive rules are
used as a specification and implementation mechanism. Deductive rules are also
used to specify assertion-style constraints in databases. In addition, database
implementors often use triggers—a form of reactive rules—as a technique for
implementing integrity constraints.

Reactive Rules offer means to describe reactive behavior and implement reactive
systems, i.e. to automatically execute specified actions when events of interest
occur and/or certain conditions become true. Reactive rules are also called ac-
tive rules and dynamic rules. Unlike deduction rules, reactive rules talk about
state changes. Events represent changes in the state of the world and rules spec-
ify further changes that must occur in reaction to the events (hence the name
reactive rules). Reactive rules usually have the form of Event-Condition-Action
(ECA) rules or production rules.

ECA rules are rules of the form ON Event IF Condition DO Action. This
means that the Action should be executed if the Event occurs, provided that

4 More details on the proposed classification of rules can be found at http://
www.w3.org/2005/rules/wg/wiki/Classification of Rules

http://www.w3.org/2005/rules/wg/wiki/Classification_of_Rules
http://www.w3.org/2005/rules/wg/wiki/Classification_of_Rules
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the Condition also holds. The Event part serves a twofold purpose: detecting
events of interest and selecting data items from their representations (by binding
variables as discussed above). Different kinds of events may be supported, rang-
ing from low-level, data-driven events, such as the deletion of a subtree of an
XML tree, to high-level more abstract events, such as the delay of a flight. De-
pending on the rule language, only single occurrences of events (atomic events)
may be allowed to be specified and detected, or temporal combinations of events
(composite events) may be permitted. The events mentioned previously are all
atomic. The following is an example of a composite event: “customer ?C requests
booking a movie AND no response from ?C on bringing back movie M1.”

The Condition part queries the state of the world—e.g. XML and RDF data
in Web applications or a legacy database—and may be expressed in a query
language such as XPath5, Xcerpt6, or SPARQL7. Like the Event part, the
Condition also selects data items that can be further used in executing the
Action. Different kinds of actions may be supported by reactive systems: up-
dates to data (e.g., insertion of a subtree into an XML tree), changes to the rule
set itself (e.g., removal of a rule), new events to be triggered, or procedure calls
(e.g., calling an external function which sends an email message). Actions can
also be combined to ease the programming of complex applications.

The following example gives a possible implementation of the rule R2 pre-
viously mentioned in this section. We use XChange8 here, a language which is
based on ECA rules:

ON
xchange:event {{
xchange:sender { var S },
order {{
customer { var C }

}}
}}

FROM
in { resource { "http://MoviShop.org/blacklisted.xml", XML },
desc var C

}
DO
xchange:event {
xchange:recipient { var S },
message { "Your request can not be processed,

since you are blacklisted" }
}

END

5 XPath, http://www.w3.org/TR/xpath
6 Xcerpt, http://xcerpt.org
7 http://www.w3.org/TR/rdf-sparql-query/
8 XChange, http://reactiveweb.org/xchange/intro.html

http://www.w3.org/TR/xpath
http://xcerpt.org
http://reactiveweb.org/xchange/intro.html


276 H. Boley et al.

XChange [BBEP05, BEP06b, P0̆5] integrates the query language Xcerpt for
specifying the condition part (introduced by FROM) of reactive rules. XChange
assumes that each reactive Web node has reactive rules in place and that the
communication of Web nodes is realized through event messages—messages car-
rying information on the events that have occurred. XChange reactive rules react
upon such event messages, which are labelled xchange:event. The ON part of the
example reactive rule gives a pattern for incoming event messages that represent
booking requests. The FROM part is an Xcerpt query; the descendant construct
in the example is used for searching at a variable depth in blacklisted.xml for
the customer requesting the order. The DO part sends an event message to the
customer announcing the reasons for denying the request.

Examples of other ECA rule languages and systems are the General Semantic
Web ECA Framework,9 [BFMS06, MSvL06] Prova,10, ruleCore11, and Active
XQuery [BBCC02]. Another ECA rule language for XML data is proposed in
[BPW02] and adapted for RDF data as the RDF Triggering Language (RDF-
TL) [PPW03]. Reaction RuleML12 was recently launched as part of the RuleML
Initiative.13 Its aim is the development of a markup language for the family of
reactive rules.

Triggers are a form of ECA rules employed in database management systems:
The E part specifies the database update operation to react to, the C part
specifies the condition that needs to hold for executing the database update
operations specified in the A part. Triggers combined with relational or object-
oriented database systems give rise to so-called active database systems. Most
of the active database systems support triggers where all three rule parts – E,
C, and A – are explicitly specified; proposals also exist where the E or the C
part is either missing or implicit. Examples of active database systems include
Starburst [Wid96], Postgres [PS96], and the systems based on SQL:1999 [Mel02].

It is worthwhile to also mention other, less popular, variations of ECA rules.
Event-Condition-Action-Alternative (ECAA) rules extend the ECA rules by
specifying the action to be executed when the given condition doesn’t hold. Note
that an ECAA rule can be rewritten into two ECA rules, where the condition
part of one rule is the negation of the other. An ECnAn+1 rule is a generaliza-
tion of an ECAA rule. Yet another form of ECA rules are the Event-Condition-
Action-Postcondition (ECAP) rules, which extend ECA rules by specifying a
(post)condition that needs to hold after the action has been executed. These
kinds of restrictions make sense, for instance, when considering action execution
frameworks supporting transactions.

Production rules are rules of the form IF Condition DO Action. They say
that the Action part must be executed whenever a change to the underlying

9 General Semantic Web ECA Framework,
http://www.dbis.informatik.uni-goettingen.de/eca/

10 Prova, http://www.prova.ws
11 ruleCore, www.rulecore.com
12 Reaction RuleML, http://ibis.in.tum.de/research/ReactionRuleML/
13 RuleML Initiative, http://www.ruleml.org

http://www.dbis.informatik.uni-goettingen.de/eca/
http://www.prova.ws
www.rulecore.com
http://ibis.in.tum.de/research/ReactionRuleML/
http://www.ruleml.org
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database makes Condition true. The Condition queries the working memory,
which contains the data on which the rules operate. Selected data is then used to
execute the actions specified in the Action part. An action usually contains oper-
ations on the working memory (e.g., assert a new data item) but also statements
à la procedural programming (e.g., assignment, loop).

As an example, consider a different incarnation of the reactive rule R2 –
this time using ILOG’s commercial production rules system JRules.14 Other
production rules systems include OPS5,15 JBoss Rules,16 and Jess.17

rule denyBlacklistedCustomers {
when {
c: Customer (blacklisted == yes);
m: MoviesCart (owner == c; value > 0);

} then {
out.println ("Customer "+c.name+" is blacklisted!");
retract m;

}
}

The condition part of the rule (introduced by when) gives a pattern for in-
stances of classes Customer and MoviesCart. It matches Customer instances
whose attribute blacklisted is set to yes and whose MoviesCart’s attribute
value is greater than zero (meaning that the customer wants to order at least
one movie). The two classes used in the example rule may be Java or C classes
or element types from an XML Schema. The action part (introduced by then)
announces the reason of denying the request and updates the working memory
removing the MoviesCart object for the respective Customer instance (by the
statement retract m).

ECA and production rules are discussed in [BBB+07], where an in-depth pre-
sentation of both approaches to reactive behavior is given. The work also tries to
reveal similarities and differences between the two approaches to programming
reactive applications on the Web. The structure and semantics of the two kinds
of rules indicate that the ECA rule approach is well suited for distributed ap-
plications which rely on event-based communication between components, while
the production rule approach is more appropriate for coding the logic of stateful
applications.

A considerable number of rule languages that can be employed for program-
ming Semantic Web applications have been proposed, which we will discuss in
more detail in Section 2. An overview of current rule languages and systems
that were considered of interest by the participants of the W3C RIF WG can be
found at http://www.w3.org/2005/rules/wg/wiki/List of Rule Systems. In
14 ILOG JRules, http://www.ilog.com/products/jrules/
15 Official Production System 5, http://www.cs.gordon.edu/local/courses/cs323/

/OPS5/ops5.html
16 JBoss Rules, http://www.jboss.com/products/rules
17 Jess, http://www.jessrules.com/

http://www.w3.org/2005/rules/wg/wiki/List_of_Rule_Systems
http://www.ilog.com/products/jrules/
http://www.cs.gordon.edu/local/courses/cs323/OPS5/ops5.html
http://www.cs.gordon.edu/local/courses/cs323/OPS5/ops5.html
http://www.jboss.com/products/rules
http://www.jessrules.com/
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this section we presented a classification of rules that can be a basis for discover-
ing commonalities between rule languages. However, as the examples have shown,
they also reveal considerable differences with respect to syntax, supported fea-
tures, and semantics. Thus, to determine whether language constructs have the
same effect in different rule languages, an analysis based on the language seman-
tics is needed. A standard interchange format should be geared for exchanging
rules with different structure, constructs, and semantics.

1.3 W3C RIF WG Charter

The charter of the W3C RIF WG18 gives guidelines and requirements for the rule
interchange format to be developed within the Working Group. This document
and the particular interests of the participants of the W3C RIF WG will influence
the ultimate shape RIF is going to take.

The W3C RIF WG is chartered to develop an exchange format for rules that
should enable rules to be translated between different rule languages and, thus,
to be used in different rule systems. This is to be achieved through two phases
corresponding to the development of an extensible core interchange format and
a set of extensions (called standard dialects). Each of these work phases is char-
tered for up to two years.

Phase I focuses essentially on Horn rules for a core rule interchange format.
The RIF Core development should build a stable backbone and allow extensions
in the second phase. For Phase II, the charter just gives starting points for
possible extensions. For example, the core format might be extended in the
direction of first-order rules, (possibly non-monotonic) logic programming rules,
and particularly ECA and production rules, neither of which to be fully covered
in the core.

The charter also emphasizes compatibility with Web and Semantic Web tech-
nologies such as XML, RDF, SPARQL, and OWL. It states that the primary
normative syntax of a general rule interchange format must be based on XML.
Moreover, it states that RIF must support interoperability with RDF data and
be compatible with OWL and SPARQL.

1.4 Outline

The subsequent sections are structured as follows. In Section 2 we describe in more
detail the role of rules and rule interchange in the Semantic Web architecture.

Then we turn to a discussion of the early working draft documents published
by the RIF WG. The use cases for rule interchange described in the Second W3C
Public Working Draft of Use Cases and Requirements are discussed in Section 3.
The requirements for RIF that follow from these initial use cases are discussed
in Section 4. The first public Working Draft on RIF Core Design [BK07] will
be discussed in Section 5, where we present the current syntax and semantics of
the RIF Core using an example.

18 http://www.w3.org/2005/rules/wg/charter.html

http://www.w3.org/2005/rules/wg/charter.html
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Fig. 2. The role of rules in the Semantic-Web layer cake

A comprehensive classification system, called RIF Rule Arrangement Frame-
work (RIFRAF), is currently under development and is being populated with
existing rule languages and systems. The status of this study and impact on
possible extensions to RIF Core are also briefly discussed in Section 5.

2 Rules in the Semantic Web Architecture: Where Do
Rules Belong?

Recent versions of the often cited “Semantic Web Layer Cake” [BL05] position
rules as a central component (see Figure 2).

We have already pointed out in the introduction that rule interchange, and
thus RIF, will not be restricted to Semantic Web applications. It is expected,
for example, that rules will affect Web Services standards, such as SA-WSDL,19

which merge the Semantic Web and Web services worlds by allowing semantic
annotations within WSDL documents. However, since the role of rules within
the Web services layer is yet to be clearly defined by the standards bodies, we
will focus on the “core” semantic Web architecture and discuss the applications
of rules to the existing Semantic Web standards: XML, RDF, RDFS, OWL, and
SPARQL. Note that the presented version of the Semantic Web architecture
stack in Figure 2 leaves out layers such as “Proof,” “Security,” “Encryption,” and
“Trust.” Rules are certainly going to play an important role within these layers
as well, but here we will focus on the layers that already have recommendations
endorsed by W3C.

2.1 URIs and Unicode

The Semantic Web is based on the idea of Uniform Resource Identifiers (URIs)
as unique identifiers for documents that live on the Web, but also for real-world or
abstract objects. Following this paradigm, RIF will support and require the use of
URIs for objects, relations, and other components of rules. The main difference
between URIs and URLs is that, for instance, http://imd.example.org#m1
might be a URI that identifies a movie stored at IMD, but it does not necessarily

19 http://www.w3.org/2002/ws/sawsdl/

http://imd.example.org#m1
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need to identify any document on the Web. URIs may also have syntactic forms
that are not URLs. In the near future, Semantic Web languages will be expected
to use the rich Unicode character set in order to provide support for non-Latin
letters in a uniform way. In order to be able to identify objects using non-Latin
character sets, the IRI (International Resource Identifier) specification has been
recently adopted by W3C. An IRI is just like a URI, but it might include, for
example, Kanji or Hebrew characters. It has been decided that RIF will use IRIs
to denote globally accessible objects.

2.2 XML and Namespaces

The eXtensible Markup Language (XML) has been chosen as the standard ex-
change syntax for data and messages on the Web and, consequently, will likely
also be the basis for the exchange of rules on the Web.

Example 2 (Running example continued). In order to support movie enthusiasts
and other people like John, our video store owner, IMD makes its movie data
available in an XML document, as shown in Figure 3.

<?xml version="1.0" encoding="UTF-8"?>
<moviedb xmlns="http://imd.example.org/ns/">

<movie ID="m1">
<title>Plan 9 from Outer Space</title>
<directedBy IDref="p1"/>
...
<year>1959</year>
<age>16</age>

</movie>

...

<person ID="p1">
<name>Edward D. Wood Jr.</name>
<dateOfBirth>1924-10-10</dateOfBirth>

</person>

...

</moviedb>

Fig. 3. IMD’s XML dump, available at http://imd.example.org/movies.xml

In XML, URIs also serve to denote unique identifiers. For example, identifiers
in http://imd.example.org/movies.xml, such as http://imd.example.org/
movies.xml#m1, can be used to denote objects described in the document. More-
over, URIs serve to denote “scopes” of element or attribute names within XML
documents using XML’s namespace mechanism. For instance, the XML docu-
ment in Figure 3 has the default namespace http://imd.example.org/ns/. An
element named name in the figure refers to “the name element associated with
the URI http://imd.example.org/ns/,” which is used to specify the name of a
person. Namespaces are used to disambiguate references to element or attribute

http://imd.example.org/movies.xml
http://imd.example.org/movies.xml#m1
http://imd.example.org/movies.xml#m1
http://imd.example.org/ns/
http://imd.example.org/ns/
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names that appear in the same document, but have different meaning and are
typically defined externally. For instance, the name element that describes a per-
son could have a different structure from the name element that is used for
companies. The latter may be defined in an external document using some other
namespace.

Sometimes, notably in RDF, however, the term “namespace” is used to refer
to prefixes of full URLs. For instance, <imd:age> is treated as an abbreviation
of the URI http://imd.example.org/ns/age, if imd is defined as a “macro” for
http://imd.example.org/ns/. Reusing the term “namespace” in this situation
is unfortunate and causes confusion. A more appropriate term, compact URI (or
curi), has recently been adopted for the abbreviation schemes like <imd:age>
above. RIF will support compact URIs as well.

Semantic Web languages are required to support an XML exchange syntax
and so will RIF. Since XML is verbose and is hard for humans to write and
understand, it is used mostly for machine-to-machine exchange. Semantic Web
languages, such as RDF or OWL, also support more human-friendly abstract
syntaxes, and RIF will provide such a human-oriented syntax as well.

XML comes with several accompanying standards: for querying XML doc-
uments (XPath and XQuery); for transforming XML documents to XML and
other formats (XSLT); for specifying document structure (XML Schema); and so
on. Although XPath, XQuery, and XSLT are the most common query and trans-
formation tools for XML, many XML rule languages based on logic program-
ming have been developed. These include eLog [BFG+01], Xcerpt [Sch04] and
XChange [BEP06a], and Prolog systems with extensive XML support like Ciao
Prolog [CH01] or SWI Prolog [WHvdM06]. Examples of Xcerpt and XChange
were given in the introduction and similar examples can be worked out for the
other languages on the above list. These examples and overlapping expresive fea-
tures of these rule languages suggest that at least some rules could be exchanged
among dissimilar systems. However, it is not yet clear how far this can be taken
and to what extent (query, transformation, or validation) rules on top of XML
can be interchanged in general.

2.3 RDF and RDFS

The Resource Description Framework (RDF) is the basic data model for the
Semantic Web. It is built upon one of the simplest structures for representing
data—a directed labeled graph. An RDF graph is typically described by a set
of triples of the form 〈Subject Predicate Object〉, also called statements, which
represent the edges of the graph. In the RDF terminology, predicates are called
properties and are identified by URIs. Subjects and Objects can be either URIs
denoting real or abstract resources, datatype literals (e.g., 1.2, ”abc”), or XML
literals (i.e. well-formed XML snippets).20 Besides a normative RDF/XML syn-
tax, several more readable syntaxes for RDF have been devised, we use here the
more terse Turtle [Bec06] syntax.
20 Strictly speaking, RDF does not allow literals in subject positions, but languages

like SPARQL lift this restriction.

http://imd.example.org/ns/age
http://imd.example.org/ns/
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Example 3 (Running example continued). IMD also exports its movie data in
RDF, see Figure 4 (a) and additionally provides some structural information on
its data as an RDFS hierarchy Figure 4(b).

@prefix imd: <http://imd.example.org/ns/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix bio: <http://purl.org/vocab/bio/0.1/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>

<imd:m1> <imd:title> "Plan 9 from Outer Space".
<imd:m1> <imd:directedBy> <imd:p1> .
<imd:m1> <imd:year> "1959" .
...

<imd:m29> <imd:year> "1929" .

...

<imd:p1> <foaf:name> "Edward D. Wood Jr.";
<bio:event> _:p1Birth.

_:p1Birth a <bio:Birth>;
<bio:date> "1924-10-10".
<bio:place> "Poughkeepsie, NY, USA".

...

@prefix imd: <http://imd.example.org/ns/>
@prefix foaf: <http://xmlns.com/foaf/0.1/>
@prefix bio: <http://purl.org/vocab/bio/0.1/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>
@prefix rdfs: <http://www.w3 ...rdf-schema#>

...

<imd:directedBy> <rdfs:domain> <imd:Movie>.
<imd:directedBy> <rdfs:range> <imd:Director>.
<imd:Director> <rdfs:subclassOf> <foaf:person>.

...

(a) Movie data in RDF (b) Structural metadata in RDF Schema (RDFS)

Fig. 4. IMD’s data in RDF(S)

John imports this metadata to process it for MoviShop, finding it more flexi-
ble and easier to combine with his own data than a fixed XML scheme. John’s
customers are often interested in additional information about movies, such as,
whether old movies are color or black-and-white—information that is not ex-
plicitly provided by the exported IMD’s metadata. In order to avoid labeling
every movie explicitly as color or black-and-white, John wants his system to au-
tomatically infer that all movies produced before 1930 are black and white, and
that the movies produced after, say, 1950 are likely to be color movies. Then he
would have to label explicitly only the movies produced in-between.

(R1) Every movie at http://movishop.example.org/ produced
before 1930 is black and white.

(R1’) Every movie at http://movishop.example.org/ produced
after 1950 is color unless stated otherwise.

He finds out that there are several rule languages which he could use and again
to process such rules, but not really any format which allows him to publish this
rule.

Rule Languages for RDF. Several rule engines can process rules of the form (R1)
and some also rules of the form (R1’).21

21 Rule (R1’) is using so-called “default reasoning” and its treatment requires non-first-
order logic. It can be handled by systems such as FLORA-2 and dlvhex, which are
briefly described here.
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TRIPLE22 allows to access RDF data and manipulate it by Horn rules defined
in F-Logic [KLW95] syntax. The engine is based on XSB23.

JENA24 has its own rule language and execution engine, which allows forward
(RETE-style [For82]) and backward chaining (tabled SLG resolution[SW94])
evaluation of rules on top of RDF.

cwm25 is a simple forward chaining reasoner, which uses Notation3 (N3), a rule
language that extends RDF’s widely used turtle syntax [Bec06]. The semantics
of N3 is not, however, defined formally, so the results of rule evaluation are
implementation-dependent.

FLORA-226 is a very powerful rule-based system, which is capable of repre-
senting and efficiently executing logic programming style rules. It is based on F-
logic, but in addition has support for higher-order modeling via HiLog [CKW93a]
and for declarative state changes via Transaction Logic [BK98, BK94]. It uses
XSB as its rule evaluation engine.

Finally, dlvhex27 is a flexible framework for developing extensions to the declar-
ative Logic Programming Engine DLV,28 which supports RDF import and pro-
vides rules on top of RDF. DLV’s [LPF+06] rules language is disjunctive Dat-
alog [EGM97], i.e., it is based on logic programming with disjunctions in rule
heads, negation as failure in rule bodies, and several other extensions—all based
on the so-called answer set semantics (see [Bar03]).

As can be seen by this short list of the available engines, they cover a plethora
of different languages and semantics. However, they all also support a common
sublanguage, i.e., function-free Horn rules. Most of these systems would for in-
stance allow to express and process rule (R1) from the above example, which
can be written as a Horn rule as follows:

∀D, M, Y. (triple(D, rdf : type,moviShop : Dvd) ∧ triple(D, moviShop : shows, M) ∧
triple(M,rdf : type, imd : Movie) ∧ triple(M, imd : year, Y ) ∧ Y < 1930
→ triple(M,rdf : type,moviShop : BWMovie))

A common sublanguage that underlies most of the rule systems is the basic
idea behind RIF Core, the core dialect of RIF. However, not all languages support
all types of rules. For instance, even within the category of languages that are
based on deduction rules not all the languages support rule (R1’). To support
exchange between languages that are more expressive than the core, RIF will
provide dialects that extend the RIF Core dialect. For instance, rule (R1’) could
be supported by a logic programming dialect of RIF.

RDF Schema. RDF itself was not designed to express schema information –
this job was given to a separate specification known as RDF Schema (RDFS).
22 http://triple.semanticweb.org/
23 http://xsb.sourceforge.net/
24 http://jena.sourceforge.net/
25 http://www.w3.org/2000/10/swap/doc/cwm
26 http://flora.sourceforge.net
27 http://con.fusion.at/dlvhex/
28 http://www.dlvsystem.com/

http://triple.semanticweb.org/
http://xsb.sourceforge.net/
http://jena.sourceforge.net/
http://www.w3.org/2000/10/swap/doc/cwm
http://flora.sourceforge.net
http://con.fusion.at/dlvhex/
http://www.dlvsystem.com/


284 H. Boley et al.

RDFS is a very simple ontology language for specifying taxonomies of resources
and properties, as well as domain and range restrictions for properties, such as
the ones shown in Figure 4(b). Our IMD site uses RDFS to express some of
the axioms about the movie domain. For instance, an axiom might say that each
subject of a triple with the <imd:directedBy> property is a member of the class
<imd:Movie>.

These structural axioms can themselves be interpreted as rules. In fact the
above-mentioned RDF engines often approximate RDF and RDFS semantics
with Datalog rules [tH05, EIP+06].

For instance, the RDFS entailment rule (rdfs3) from [Hay04], which states

If an RDF graph contains triples (P rdfs:range C) and (S P O) then
the triple O rdf:type C is entailed.

can be written as a Horn rule as follows:

∀S, P, O, C.triple(P, rdf : range, C) ∧ triple(S, P, O) → triple(O, rdf : type, C)

The following examples show how this rule is represented in TRIPLE’s F-
Logic style, JENA’s rule syntax, N3, FLORA-2, and dlvhex.

TRIPLE:
rdf:= ’http://www.w3.org/1999/02/22-rdf-syntax-ns#’.
rdfs:= ’http://www.w3.org/2000/01/rdf-schema#’.
type := rdf:type.
range := rdfs:range.

FORALL O,C O[type->C] <- EXISTS S,P (S[P->O] AND P[range->C]).

JENA:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>.

[rdfs3: (?s ?p ?o) (?p rdfs:range ?c) -> (?o rdf:type ?c)]

N3:
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

{ <#p> rdfs:range <#c>. <#s> <#p> <#o> . }
log:implies { <#o> rdf:type <#c> }.

FLORA-2:
:- iriprefix rdf = ’http://www.w3.org/2000/01/rdf-schema#’.

?O[rdf#type->?C] :- ?S[?P->?O], ?P[rdf#range->?C]).
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dlvhex:
#namespace("rdf","http://www.w3.org/1999/02/22-rdf-syntax-ns#")
#namespace("rdfs","http://www.w3.org/2000/01/rdf-schema#")

triple(O,rdf:type,C) :- triple(P,rdfs:range,C), triple(S,P,O).
triple(S,P,O) :-

&rdf["http://UrlWithRdfData.example.org/data.rdf"](S,P,O)

As we can see, all these languages have syntactic differences, but they express
the RDFS axiom in our example in similar ways. A common exchange format
like RIF would enable interchange of such rules between the various systems.

RDF enhanced with rules may be useful in several other contexts: for defin-
ing mappings between RDF vocabularies, for specifying implicit metadata, for
integrating information from different sources, and so on.

2.4 OWL

RDFS is good only for very simple ontologies and a more expressive language
based on Description Logic was recommended by W3C. The Web Ontology Lan-
guage [DSB+04] (OWL) adds several features to the simple class hierarchies
of RDFS. First, it provides an algebra for constructing complex classes out of
simpler ones. Second, it extends what one can do with properties by allowing
transitive, symmetric, functional, and inverse properties. It also supports restric-
tions on property values and cardinality.

Still, OWL proved to be insufficient for many applications on the Semantic
Web and the need to add rules became evident early on. Unfortunately, OWL
is not easily combinable with most rule-based formalisms. For one thing, OWL
allows disjunctive and existential information, while most rule systems do not.
For another, OWL is entirely based on first-order logic, while many rule-based
formalisms support so-called default reasoning, which is not first-order.

To illustrate, the following statement is easily within OWL’s competence:

Every movie has at least one director.

Using the abstract syntax [PSHH04] of OWL, one can write it as follows:

Class( imd:movie partial
restriction (imd:directedBy minCardinality 1) )

But representing the same as a logical rule

∀M. ( triple(M, rdf : type, imd : movie) → ∃D.triple(M, imddirectedBy, D) )

requires existential quantification in the rule head, which places such a rule
squarely outside of most rule systems.29

29 Existentials in rule heads are beyond Horn rules, though in many cases, rule systems
can approximate such existential information using Skolem functions.
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Even a simple extension of OWL by Horn rules, such as SWRL [HPSB+04],
raises several non-trivial semantic issues and the language quickly looses its
most attractive asset – decidability. Moreover, as already mentioned, many rule
systems support so-called default negation as opposed to classical negation. Rule
(R1’) in Example 3 uses precisely this kind of negation. Such a rule cannot be
represented in OWL or its rule-based extension SWRL and yet this kind of
statements are commonplace.

Default negation goes beyond RIF Core, but it is expected to be supported
by at least one of the future dialects of RIF, which will be developed as part of
Phase II work. We refer the reader to [dBEPT06, EIP+06, Ros06] for further
details on the issues concerning the integration of OWL and rules.

2.5 SPARQL

SPARQL [Pe06] is a forthcoming RDF query language standard, which is still
under development by the W3C Data Access Working Group (DAWG).30 Other
RDF query languages with interesting features were proposed as well [FLB+06].

SPARQL is interesting in connection with rules and RIF for several reasons:

1. The RIF Working Group promises in its charter to “ensure that the rule
language is compatible with the use of SPARQL as a language for querying
of RDF datasets.” This could be achieved by allowing SPARQL queries in
rule bodies.

2. SPARQL’s CONSTRUCT queries can be viewed as deductive rules, which
create new RDF triples from RDF datasets [Pol07, SS07].

3. SPARQL queries can be represented as Datalog rules [Pol07].

SPARQL allows querying RDF datasets via simple and complex graph pat-
terns. A graph pattern is a graph some of whose nodes and arcs are labeled with
variables instead of resources. Besides graph patterns, SPARQL has several in-
teresting features, such as optional graph patterns, filtering values, and unions
of patterns.

Example 4 (Running example continued). Although John could choose any num-
ber of systems for his shop, he was concerned with being locked into one of
the systems without a possibility to switch. So, he decided to try his luck
with SPARQL, as this language is expected to get W3C’s stamp of approval
soon. Suppose that the RDF dataset from Figure 4(a) is accessible via URI
http://imd.example.org/movies.rdf and that RDF data about the movies in
John’s MoviShop is accessible through http://movishop.example.org/
store.rdf. Then he could ask a query about all movies produced before 1930
as follows:

@prefix imd: <http://imd.example.org/ns/>
@prefix moviShop: <http://movishop.example.org/ns/>
@prefix rdf: <http://www.w3 ...rdf-syntax-ns#>

30 http://www.w3.org/2001/sw/DataAccess/

http://imd.example.org/movies.rdf
http://movishop.example.org/store.rdf
http://movishop.example.org/store.rdf
http://www.w3.org/2001/sw/DataAccess/
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SELECT ?M
FROM <http://imd.example.org/movies.rdf>
FROM <http://movishop.example.org/store.rdf>
WHERE { ?D rdf:type moviShop:Dvd . ?D movShop:shows ?M .

?M rdf:type imd:Movie . ?M imd:year ?Y .
FILTER (?Y < 1930) }

Since this was easy, John feels glad that RIF WG has decided to ensure SPARQL
compatibility.

Then suddenly John stumbled upon a brilliant idea: to express the above
query as a rule using SPARQL’s CONSTRUCT statement:

CONSTRUCT { ?M rdf:type moviShop:BWMovie }
FROM <http://imd.example.org/movies.rdf>
FROM <http://movishop.example.org/store.rdf>
WHERE { ?D rdf:type moviShop:Dvd . ?D movShop:shows ?M .

?M rdf:type imd:Movie . ?M imd:year ?Y .
FILTER (?Y < 1930) }

However, an insider told John that the Data Access Working Group, which is
in charge of SPARQL, is not planning to position SPARQL as a rule language
and the semantics of the rules expressed using the CONSTRUCT statement is
not fully defined. The insider also suggested that John look into the ways of
translating complex SPARQL queries into Datalog rules and process them with
one of the earlier mentioned rule engines [Pol07].

We thus see that rules play (or can play) an important role in several layers
of the Semantic Web architecture. In turn, the Semantic Web architecture has
influenced the design of RIF inspiring such design decisions as the use of IRIs,
the compact URI scheme, XML, and the use of XML data types. The Semantic
Web imposed a number of other requirements on RIF, which will be discussed
further in Sections 4 and 5. However, in order to get a better idea of practical
scenarios which defined these requirements, we will first discuss some of the use
cases for rule interchange, which served as input to RIF design.

3 W3C Use Cases on Rule Interchange

Close to fifty use cases31 for rule interchange on the Web have been submitted
by the W3C RIF WG participants. These use cases depict a wide variety of
scenarios where rules are useful or even indispensable. Scenarios range from life
sciences, to e-commerce to business rules and Semantic Web rules. Other sce-
narios involve fuzzy reasoning, automated trust establishment, rule-based service
level agreement, etc.

The W3C RIF WG collected use cases for both phases of its chartered work,
but the Use Cases document does not group them according to the work phases.

31 http://www.w3.org/2005/rules/wg/wiki/Use Cases

http://www.w3.org/2005/rules/wg/wiki/Use_Cases


288 H. Boley et al.

Such a classification would be difficult in many cases, since different implemen-
tations of the same use case might be possible. Some of these implementations
might require Phase II features but some might be realizable completely within
Phase I.

Each use case presents requirements to be acknowledged by the rule inter-
change format to be developed by the working group. Some of these requirements
are stated explicitly, others are implied.

The submitted use cases were analyzed and classified into eight categories.32

Seven use cases were chosen and edited for publication as the First W3C Public
Working Draft of Use Cases and Requirements,33 which was released in March
2006.

The first draft did not include the requirements to RIF – these were included
in the second draft along with two new use cases. In this paper we present four
of the use cases from the second draft. The requirements to rule interchange are
discussed in Section 4.

3.1 Negotiating eBusiness Contracts Across Rule Platforms

The first two use cases motivate the need for a rule interchange format towards
facilitating automated, Web-based negotiations where rules are to be exchanged
between involved parties. The first use case presented in this section shows the
importance of such interchange for the reuse of electronic business documents
(such as order requests and business policies) that are made available online.

Jane and Jack negotiate an electronic business contract on the supply of items
by Jane’s company. The negotiation process involves exchange of contract-related
data and rules. Since the two companies may use different technologies, Jane and
Jack agree upon the data model and use RIF for interchanging rules. The data is
transmitted as XML documents using an agreed-upon format, together with the
rules to run simulations, and the results of these simulations are also represented
as XML data.

A purchase order from Jack’s company contains XML documents describing
information on the desired goods, packaging, and delivery location and date.
The associated rules describe delivery and payment policies. An example of such
a rule is

If an item is perishable and it is
delivered more than 10 days after the scheduled
delivery date then the item will be rejected.

Jane’s company wants a relaxation of the delivery policy proposed by Jack.
Thus, Jane proposes for acceptance and sends to Jack the following rule express-
ing the result of the negotiation carried out so far:
32 Use case categories, http://www.w3.org/2005/rules/wg/wiki/General Use Case

Categories
33 First W3C Public Working Draft of Use Cases and Requirements

http://www.w3.org/2005/rules/wg/ucr/draft-20060323.html

http://www.w3.org/2005/rules/wg/wiki/General_Use_Case_Categories
http://www.w3.org/2005/rules/wg/wiki/General_Use_Case_Categories
http://www.w3.org/2005/rules/wg/ucr/draft-20060323.html
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If an item is perishable and
it is delivered more than 7 days after the scheduled
delivery date but less than 14 days after the scheduled
delivery date then a discount of 18.7 percent will be
applied to this delivery.

Jack’s company defines future requests for items in form of an appropriate
XML schema document and a set of rules. This information is then published
on their Web site, so as to give supply companies the possibility to respond elec-
tronically by sending XML cost sheets. Just like shown in the example scenario
above, companies send rules expressed using RIF and Jack’s company analyzes
them for negotiation of electronic contracts.

Reactive rule-based systems (discussed already in Section 1) offer elegant
means for implementing rules such as those exemplified in this use case. Rule-
based negotiation frameworks or languages such as Protune34 could be used for
implementing this use case.

3.2 Negotiating eCommerce Transactions Through Disclosure of
Buyer and Seller Policies and Preferences

This use case shows that a higher degree of interoperability can be gained by
employing a rule interchange format within the process of establishing trust be-
tween the parties offering and those requesting a service in eCommerce scenarios.
Automated trust establishment is possible when policies for every credential and
every service can be codified. So as to minimize user intervention, the policies
should be checked automatically whenever possible. The notion of policies is a
quite general one referring to access control policies, privacy policies, business
rules, etc. (see e.g. [BO05] for a more in-depth discussion of trust negotiation).
Policies and credentials are themselves subject to access control. Thus, rule inter-
change is necessarily done during negotiation and disclosure of rules (in general)
depends on the current level of trust that negotiating systems have achieved.

The interchange of rules is exemplified here with the negotiation between an
online shop (eShop) and a customer (Alice) who wants to buy a device at eShop,
a scenario that very similarly could apply to our running MoviShop example.
Both Alice and eShop employ systems (agents) for establishing trust through
negotiation with the goal of successful completion of the desired transaction.
The negotiation is based on policies which describe which partners are trusted
for what purposes, the credentials each system has, and which it will disclose if
a certain level of trust is achieved.

Upon Alice’s request to buy the desired device, eShop’s agent sends parts
of its policy back to Alice’s agent. The two agents involved in the negotiation
interchange a set of rules implementing the policies. Such an example rule is:

A buyer must provide credit card information together with
delivery information (address, postal code, city, country).

34 Protune, http://www.l3s.de/∼olmedilla/pub/2005/2005 policy protune.pdf

http://www.l3s.de/~olmedilla/pub/2005/2005_policy_protune.pdf
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Alice’s agent evaluates its own policies and the received ones for determining
whether eShop’s information request is consistent with her own policies. The
agent uses policy rules such as:

Disclose Alice’s credit card information only to
online shops belonging to the Better Business Bureau.

By disclosing the above given rule, Alice’s agent asks eShop’s agent to provide
credentials stating that it belongs to the Better Business Bureau, Alice’s most
trusted source of information on online shops. Since eShop has such a creden-
tial and its policy states to release it to any potential customer, eShop’s agent
passes the credential to Alice’s agent. Before disclosing credit card and delivery
information to eShop, Alice’s agent checks whether release of this information
would not break Alice’s denial constraints. These constraints are given by the
following two rules:

Never disclose two different credit cards to the same
online shop.

For anonymity reasons, never provide both birth
date and postal code.

For this purchase, the birth date is not an issue and only information on one
credit card is requested. Thus, Alice’s constraints are respected. Alice’s negotia-
tion system therefore provides her credit card and delivery information to eShop.
eShop checks that Alice is not in its client black list, then confirms the purchase
transaction, generates an email notification to Alice that contains information
about the purchase, and notifies eShops’s delivery department.

3.3 Access to Business Rules of Supply Chain Partners

This use case shows that the existence of a rule interchange format would ease the
integration of different business processes by offering business process designers
a unified view over the used business rules while still allowing each involved
company to work with their own technology of choice.

The focus of the use case is on the integration of supply chain business
processes of multiple partners across company boundaries. Similar scenarios
can be encountered also within a single company that is organized into semi-
independent business units. Each business unit might use different strategies
(i.e., the logic behind the decisions taken in a process) and technologies.

Such situations as addressed by this use case occur usually when companies
merge and their business processes need to be integrated. Business processes are
”structured, measured sets of activities designed to produce a specific output for
a particular customer or market” [Dav93]. A business process can span activities
of a single company or of multiple companies. Often the strategies followed by an
organization are specified by means of business rules [The00, Hal05]. In contrast
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to procedural code, business rules are easier to comprehend and use for business
process designers, since they are declarative and high-level specifications.

For integrating supply chain business processes where multiple organizations
are involved, part of the business processes’ logic needs to be exposed (for deter-
mining the best strategy for integrating the processes) and, furthermore, business
rules defined by different (partner) organizations need to be executed. There are
two possible solutions for using such business rules and the decision of imple-
menting one of them depends also on ownership constraints: Different rule sets
could be merged into a single set of business rules, which can be then processed
in a uniform manner on one side. The other possibility consists in accessing the
other parties’ rule sets only by invoking remote engines and (locally) processing
their results only.

Consider an inspection of a damaged vehicle and the corresponding insurance
adjustment process as examples of two processes that need to be integrated. Since
the inspection of the vehicle is usually performed by independent inspectors, the
inspection process can not be directly integrated into the adjustment process.
The following business rules defines a decision point within the processes:

If inspector believes vehicle-is-repairable
then process-as-repair
otherwise process-as-total-loss.

The choice of sub-processes to be performed after the inspector’s work depends
on the decision taken using the above rule. In terms of business process modeling,
the example given is an instance of the exclusive choice pattern [vdAtHKB03];
the insurance adjustment process branches into two alternative paths and ex-
actly one of them can be chosen. Systems supporting Event-Condition-Action-
Alternative Action (ECAA) offer an elegant solution for implementing such rules.
As already noted in Section 1, for obtaining the same effect with a system sup-
porting reactive rules of the Event-Condition-Action form, two ECA rules can
be used where the condition of one rule is the negated condition of the other.

3.4 Managing Inter-organizational Business Policies and Practices

This use case demonstrates the need for supporting annotation of rules in a
rule interchange format, where rules or rulesets are labeled with tags carrying
meta-information.

The use case addresses the need for interchanging rules that may not be
directly executed by machines, i.e. rules that need input in form of a decision or
confirmation from a person. The setting is somewhat similar to the use case of
Section 3.3 – multiple organizations and/or multiple units of a single organization
– but the focus here is on the management of their business policies and practices.
Another similarity consists in the fact that policies and practices are specified
as business rules.

The scenario is based on the EU-Rent case study [EU-05], a specification
of business requirements for a car rental company, promoted by the European
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Business Rules Conference [Eur05] and the Business Rules Group [Bus05]. EU-
Rent operates in different EU countries. Thus, the company needs to comply
with existing EU regulations and each of its branches needs to comply also with
the regulations of the country it operates in.

CarWise and AutoLaw are consultancy companies that offer different services
like, for instance, clarifying regulations on managing fleets of vehicles by negoti-
ating with EU regulators and UK regulators, respectively. The outcome of such
a service are interpreted regulations and rules that can be directly used by rule
systems. CarWise and AutoLaw advise EU-Rent of rules that are to be used at
European and UK level, respectively.

EU-Rent has a set of rules in place that implement the companies’ policies and
the EU regulations. Part of these rules are distributed to all EU-Rent branches.
Thus, for example EU-Rent UK needs to integrate the received rules with the
existing ones at the UK level. The rule set might change at the company level
(case in which rules need to be propagated to the branches), but also at national
(branches) level due to new national regulations. Changes of the rule set could
be updates (modifications) or deletions (removal) of existing rules, or insertions
of new rules into the rule set.

A concrete example rule that the EU-Rent corporate HQ could add is the
following:

Each electronic compliance document must have its
required electronic signatures 48 hours before its
filing deadline.

Such kinds of (business) rules can be implemented by means of reactive rules.
The event part of the reactive rule specifies the event 48 hours before the filing
deadline. The condition part queries for the existence of the electronic signatures.
The action part reports an out-of-compliance situation.

All three different types of rules discussed in Section 1 are usually encountered
in specifications of use cases for managing business policies and practices. The
following example gives three (business) rules of the EU-Rent case study: the
rule R1 is a deductive rule, R2 a normative rule, and R3 a reactive rule.

(R1) A customer who spends more than 1000 EUR per year
is a Gold customer.

(R2) A customer can rent at most one car at a time.
(R3) A rental reservation must not be accepted if the

customer is blacklisted.

Section 1 has also presented two possible implementations of rule R3 us-
ing reactive rules. More generally, the article [BEPR06] analyzes the realization
of business processes by means of ECA rules. With a focus on control flow, a
concrete EU-Rent business process scenario is implemented using the reactive
rule-based language XChange. This work has led to the introduction of a pro-
cedure notion in XChange which is absent in most other rule languages. The
work has also shown that constructs for structuring rule sets are desirable in
rule-based languages.
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3.5 Other Use Cases

Apart from the four use cases, which we described in detail, let us briefly recap
the other use cases specified in the RIF WG’s use cases document. The complete
use case descriptions, as published by the Working Group, can be found at
http://www.w3.org/TR/2006/WD-rif-ucr-20060710/.

Collaborative Policy Development for Dynamic Spectrum Access. This
use case shows that by using a rule interchange format and deploying third-party
systems, the flexibility in matching the goals of end-users of a service or device
with the ones of providers and regulators of such services and devices can be
increased.

The use case concentrates on examples from the dynamic spectrum access
for wireless communication devices. It is assumed that the policies of a region
and the protocols for dynamically accessing available spectrums are defined by
rules. The goal is to have reconfigurable devices that can operate legally in
various regulatory and service environments. One of the technical preconditions
of making this possible relies on the format in which the rules are expressed and
the ability of devices to understand and use these rules.

To be able to use the advantages of a rule interchange format in this setting, a
third-party group should be formed, which is responsible for translating regional
policies and protocols into the interchange format.

Ruleset Integration for Medical Decision Support. This use case mo-
tivates the need for merging rule sets written in different rule languages. This
allows for inferring data that could not be obtained without the merge. This is
an important task of expert systems based on reasoning with rules. Complex
decision making systems use different data bases, ontologies, and rules written
in different rule languages.

The use case gives examples from the medical domain, where different data
sources come into play, such as pharmaceutical, patient data bases, and medical
ontologies.

Interchanging Rule Extensions to OWL. The use case gives a concrete mo-
tivation for a rule interchange format that is compatible with OWL (as required
also by the W3C RIF WG charter). This is the shortest use case in the Second
W3C Public Working Draft of Use Case and Requirements, yet a considerable
number of application domains such as medicine, biology, and e-Science, which
partly adopted OWL already, could benefit from the combination of rules with
ontologies. The domain of labeling brain cortex structures in MRI (Magnetic
Resonance Imaging) images is chosen here for illustration purposes. A deductive
rule is exemplified by use of which implicit knowledge, i.e. dependencies between
ontology properties, is inferred which cannot be expressed directly in OWL itself.

Vocabulary Mapping for Data Integration. Different application domains
such as health care, travel planning, and IT management often need solutions

http://www.w3.org/TR/2006/WD-rif-ucr-20060710/
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to the problems raised by integrating information from multiple data sources
with different data representation models. The idea of this use case relies on the
reusability of rules that implement mappings between such data models.

The use case gives examples from IT systems management. The concrete ex-
ample uses three different data sources, which are taken as basis for analyzing
the flexibility of a division’s business processes with respect to changes of their
IT management contracts. In many cases, the simple solution of mapping the
information of the three data sources to a single data format such as RDF does
not offer satisfactory results. One of the problems lies in the different granu-
larities of the contained data, which might be either too detailed or too coarse
grained. Thus, deductive rules – possibly involving aggregation of fine-grained
data – are used for defining simple and usable views over the data sources. The
implemented deductive rules are then published so as to be reused across the
company, where similar views are needed.

BPEL Orchestration of Web Services. The use case exemplifies a commer-
cial credit approval Web service implemented as a BPEL orchestration of two
Web services, a credit history service and a rule-based decision service. A rule
interchange format would allow the re-use of rules for evaluating credit histories.
Moreover, rule editing and customization tools from different RIF compatible
vendors would ease the rule specification task.

Three rule sets for credit evaluation are used, which are executed sequentially.
The first two sets of rules calculate threshold values and a credit score, while
the third set of rules compares these values and makes the decision to approve
or deny the credit. The outcome of the decision system is in form of an XML
document informing about the decision and the reason(s) for it. The need for
querying and constructing XML data comes here into play, since for replying
to the customer, the answer needs to be constructed based on the XML data
received from the Web Service.

Publishing Rules for Interlinked Metadata. The use case stresses the im-
portance of specifying implicit knowledge in form of rules and publishing them
for re-use, so as to allow interlinking (meta-)data and rules from different Web
sources. Semantic Web technologies such as RDF allow publishing metadata ex-
pressing the semantics of data in machine-readable form. Often, such (explicit)
knowledge is supplemented by rules capturing implicit knowledge. Thus, a more
concise representation of data is obtained, maintenance of meta-data is simpli-
fied, and storage requirements are reduced.

The role of a rule interchange format is exemplified by means of the movie
database scenario presented in Section 1.1 that we have already used throughout
this paper. The example rule R1 given in Section 1.2, which constructs a view
of black and white movies, captures such implicit knowledge that can be further
used. However, also more complex rules implicitly linking and cross-referencing
between several online sources or involving (scoped) negation are covered, e.g.



Rule Interchange on the Web 295

(R3)
IF movie M is listed at http://AlternativeMDB.example.org

but not listed at http://imd.example.org
THEN M is an independent movie

4 W3C Requirements on a Rule Interchange Format

As already mentioned in Section 3, each use case imposes certain requirements
that should be taken into account when developing RIF. Consider again our
running example shortly described in Section 1.1. John Doe’s MoviShop uses
data on movies, customers, etc., expressed in XML, RDF, RDFS, and OWL.
Thus, to exchange rules over this data, RIF should offer support for XML, RDF,
and OWL. More details on what support means in such a context are given by
the corresponding requirements on data representation models discussed in this
section. If RIF (core or some dialect of it) meets the requirements posed by Mo-
viShop’s rules and the rule language R used for implementing them, John needs
a translator from R to RIF for interchanging (part of) its rules. For developing
such translators, one of the general requirements for RIF concerns the precise
syntax and semantics, which are to become starting points for correct translator
implementations.

This section shortly discusses the requirements on RIF, which have been ap-
proved by the W3C RIF WG and published in the Second Public Working Draft
of ’RIF Use Cases and Requirements’. The process of gathering and deciding
upon requirements on RIF has taken into account three sources of requirements:
Firstly, we have considered the (explicit and implicit) requirements posed by the
RIF use cases in the above mentioned document; we have determined a set of
requirements that are posed by each of these use cases—we call them general
requirements. Secondly, each WG participant have had the possibility to pro-
pose requirements that she or he considered relevant for RIF. The third source
of requirements is the so-called RIF Rulesystems Arrangement Framework35

(RIFRAF), a framework that classifies rule systems based on a set of discrimi-
nators. RIFRAF is to be used also as basis for determining desired RIF dialects.
The outcome of the work on RIF requirements is presented next by dividing the
requirements into general, Phase I, and Pase II requirements. The focus is more
on the general and Phase I requirements, since the Phase II requirements are
ongoing work at moment of writing.

4.1 General Requirements

The following requirements on RIF have a general character in the sense that
they express high-level conditions that RIF and the translators from and to RIF
need to meet.

35 RIFRAF, http://www.w3.org/2005/rules/wg/wiki/Rulesystem Arrangement
Framework

http://www.w3.org/2005/rules/wg/wiki/Rulesystem_Arrangement_Framework
http://www.w3.org/2005/rules/wg/wiki/Rulesystem_Arrangement_Framework
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– Implementability: RIF must be implementable using well understood tech-
niques, and should not require new research in e.g. algorithms or semantics
in order to implement translators.

– Semantic precision: RIF core must have a clear and precise syntax and se-
mantics. Each standard RIF dialect must have a clear and precise syntax
and semantics that extends RIF core.

– Extensible Format: It must be possible to create new dialects of RIF and
extend existing ones upwardly compatible.

– Translators: For every standard RIF dialect it must be possible to implement
translators between rule languages covered by that dialect and RIF without
changing the rule language.

– Standard components: RIF implementations must be able to use standard
support technologies such as XML parsers and other parser generators, and
should not require special purpose implementations when reuse is possible.

4.2 Phase I Requirements

The list of requirements given next refers to the RIF developed within Phase I.
It consists of requirements on the core interchange format.

– Compliance model: RIF must define a compliance model that will identify
required/optional features.

– Default behavior: RIF must specify at the appropriate level of detail the
default behavior that is expected from a RIF compliant application that
does not have the capability to process all or part of the rules described in
a RIF document, or it must provide a way to specify such default behavior.

– Different semantics: RIF must cover rule languages having different seman-
tics.

– Embedded comments: RIF must be able to pass comments.
– Embedded metadata: RIF must support metadata such as author and rule

name.
– Limited number of dialects: RIF must have a standard core and a limited

number of standard dialects based upon that core.
– OWL data: RIF must cover OWL knowledge bases as data where compatible

with Phase I semantics.
– RDF data: RIF must cover RDF triples as data where compatible with Phase

I semantics.
– Rule language coverage: RIF must cover the set of languages identified in

the Rulesystem Arrangement Framework (RIFRAF). This requirement acts
as an umbrella for a set of requirements, which are expected as outcome of
the work on RIFRAF.

– Dialect Identification: RIF must have a standard way to specify the dialect
of the interchanged rule set in a RIF document. As the rule interchange
format developed within the W3C RIF WG—RIF—will come in form of a
core (RIF Core) and a set of dialects extending the core interchange format,
a mechanism is needed for specifying which RIF dialect is used for a set
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of rules to be interchanged. This plays a role for example in the case that
incompatible RIF dialects exist.

– XML syntax: RIF must have an XML syntax as its primary normative syn-
tax.

– XML types: RIF must support an appropriate set of scalar datatypes and
associated operations as defined in XML Schema part 2 and associated spec-
ifications. This requirement is also stated in the W3C RIF WG charter.

– Merge Rule Sets: RIF should support the ability to merge rule sets. The big
interest in a standardized interchange format for rules is also determined
by the possibility of merging rule sets written in different rule languages
through RIF. This requirement is also explicitly stated e.g. in the use case
’Ruleset Integration for Medical Decision Support’.

– Identify Rule Sets: RIF will support the identification of rule sets.

4.3 Phase II Requirements

The Second Public Working Draft of ’RIF Use Cases and Requirements’ con-
tains one single requirement for the second phase of RIF development, namely
that RIF must be able to accept XML elements as data. The list of Phase II re-
quirements will of course be extended in the near future. At moment of writing,
the WG started the work on gathering other requirements for the RIF dialects
to be developed within Phase II. Under discussion are requirements such as
the full coverage of RDF and OWL, or the support for external calls (e.g. to
a SPARQL query processor). For an elegant implementation of rule R2 of our
running example, which is employed for denying requests from blacklisted Mo-
viShop customers, a RIF dialect is needed where e.g. action specifications are
allowed in the rules head. In other words, a RIF dialect for reactive rules or just
a form of them (such as production or ECA rules) is desirable. Whether or not
the RIF WG will develop such a RIF dialect depends largely on the interest of
its participants, their willingness to work towards a ’reactive’ dialect, and its
acceptance by the WG as a whole.

5 The Rule Interchange Format: Current Core and
Possible Extensions

This section discusses the current work of the W3C RIF WG on the RIF Core
and means for determining the RIF standard dialects that will extend this core
interchange format.

In the first phase, the working group agreed on defining a deliberately in-
expressive core language which covers features available in most common rule
languages and devise a first proposal for a common exchange syntax for this
language.

Going back to our classification of rules from the introduction, where we
divided rule languages into deductive, normative, and reactive rules, let us briefly
recap the common ingredients which are necessary to model these rules.
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All the rules we mentioned were in some sense checking a condition on a (static
or dynamic) knowledge base. In our examples from the introduction, we called
this the IF part for deduction rules and production rules; queries and normative
rules can, as a whole be viewed as checking a condition. This common feature of
RIF rules is acknowledged in that RIF Core will provide a simple logic language
to specify such conditions.

The RIF Condition Language (which at present is a working title for a sim-
ple language fragment to express these common conditions) is the fundamental
layer shared by Logic Programming rules (based on the Horn subset of first-order
logic), production (Condition-Action) rules, Event-Condition-Action rules, nor-
mative rules (integrity constraints), and queries.

This RIF Condition Language will thus provide means to exchange basic
conditions, consisting of simple conjunctions and disjunctions of atomic formulas
with existential variables, as well as a distinguished equality predicate. Starting
from the requirement to support sorted constants and variables, this core dialect
is developed as a general multisorted logic, whose sorts can be “webized”, i.e.
referenced by IRIs and aligned with relevant XML standards for typing, such
as XML Schema datatypes, as well as, later on, OWL and RDFS classes. Other
constructs of this language (constants, functions, predicates, etc.) can also be
identified by IRIs.

As an example of an extension layer on top of the RIF Condition Language,
the first working draft of RIF Core introduces the RIF Horn Rule Language
as chartered for RIF Phase 1. Because of the underlying ”Condition Logic with
Equality and Sorts” we obtain a ”Multi-Sorted Horn Logic with Equality”. It will
turn out that, given the former, only a small extra effort is required to obtain the
latter: the main part of a Horn rule is its body, and this is exactly a condition
in our sense and already sufficient for expressing simple rules. The Horn rule
layer will allow simple inference of atomic formulae, given that the respective
condition holds, thus it covers deductive rules and assert-only production rules.
The definition of dynamic aspects, namely event and non-assert action parts, is
currently under discussion.

Next steps will include extensions such as built-ins and negation, which are
useful features not only for the Horn Rule dialect, but also for a potential Pro-
duction Rule dialect of RIF. Moreover, it is planned to define adequate (RDF)
metadata for RIF rules and rulesets, to specify how RDF data can be processed
by RIF rules, and to embed RIF rules into RDF statements.

Now let us have a closer look at the condition language as it is defined in the
first working draft.

5.1 The RIF Core Condition Language – Syntax

The basis of the language in Phase 1 is formed by conjunctive conditions that
can appear in the bodies of Horn-like rules with equality. Disjunctions of these
conditions are also allowed because such generalized rules are known to reduce
to the pure Horn case.
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Fig. 5. The RIF Core condition meta-model

The first working draft of the RIF Core document [BK07] develops a syn-
tax and semantics for such RIF conditions, which also supports a basic set
of primitive data types (such as xsd:long, xsd:string, xsd:decimal, xsd:time,
xsd:dateTime, taken from the respective XML Schema datatypes [BM04]).

In order to support a general approach, as well as possible future higher-order
dialects based on HiLog [CKW93b] and Common Logic [ed06], the RIF Core
language does not separate symbols used to denote constants from symbols used
as names for functions or predicates. Instead, all these symbols are drawn from
the same universal domain. When desired, separation between the different kinds
of symbols is introduced through the mechanism of sorts, which will also be used
for “typing” arguments as mentioned before. In logic, the mechanism of sorts is
used to classify symbols into separate subdomains. One can decide that certain
sorts are disjoint (for example, decimal and dateTime) and others are not (for
example, integer could be a subsort of the sort decimal). Control of what sorts
can be used for predicate (or concept) names, for function symbols, and so on,
shall, by the general mechanism introduced in RIF Core, be upon agreement
between the rule exchanging parties, or the ones defining a specific RIF dialect.

Figure 5 shows a snapshot of the current RIF condition meta-model.
Based on this metamodel, two syntaxes are currently proposed for simple

conditions. A preliminary XML syntax, as well as a more readable syntax which
is similar in style to what in OWL is called the Abstract Syntax [PSHH04]. This
latter syntax, which resembles other standard syntaxes for (variants of) first-
order logic, is based on the following EBNF, used in examples of the first RIF
Core working draft:

CONDITION ::= CONJUNCTION | DISJUNCTION | EXISTENTIAL | ATOMIC
CONJUNCTION ::= ’And’ ’(’ CONDITION* ’)’
DISJUNCTION ::= ’Or’ ’(’ CONDITION* ’)’
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EXISTENTIAL ::= ’Exists’ Var+ ’(’ CONDITION ’)’
ATOMIC ::= Uniterm | Equal
Uniterm ::= Const ’(’ TERM* ’)’
Equal ::= TERM ’=’ TERM
TERM ::= Const | Var | Uniterm
Const ::= CONSTNAME | ’"’CONSTNAME’"’’^^’SORTNAME
Var ::= ’?’VARNAME | ’?’VARNAME’^^’SORTNAME

The terminal and non-terminal symbols in this EBNF should be largely self-
explanatory and we refer the reader to [BK07] for details. Note that the pro-
ductions for constants (Const) and variables (Var) include optionally sorted
versions. Most knowledge representation, programming and rule languages al-
low/require “typing” of constants and also of variables: take for example typed
literals in RDF, or variables in common programming languages, which is ac-
counted for by the Multisorted RIF Logic, to be discussed in more detail below.
At this point we do not commit to any particular vocabulary for the names of
constants, variables, or sorts.

Example 5 (Running example (cont’d)). For instance, in John’s rule for classify-
ing old movies as black-and-white, the condition part written in first-order logic
looks as follows:

∃D, Y. MoviShopDvd(D) ∧ shows(D, M) ∧
IMDMovie(M) ∧ IMDY ear(M,Y ) ∧ before(Y, 1930)

In RIF’s EBNF syntax, he could write this straightforwardly:

Exists ?D ?Y (
And ( "moviShop:Dvd"( ?D ) "imd:shows"( ?D ?M )

"imd:Movie"( ?M ) "imd:Year"( ?M ?Y )
"op:date-less-than"( ?Y "1930-01-01T00:00:00Z"^^dateTime ) ) )

Note that the names of the predicates are IRIs and thus are “webized.” In the
future, builtin predicates, like "op:date-less-than" will be also standardized
around XPath and XQuery functions [MMe07].

Note that in the above condition there is one free (i.e. non-quantified) variable.
Free variables arise because we are dealing with formulas that might occur in a
rule IF part. When this happens, the free variables in a condition formula shall
also occur in the rule THEN part. We will see that such variables are quantified
universally outside the rule, and the scope of such quantification is the entire
rule.

An XML syntax for this condition language is currently under discussion, where
element names will be close to the metamodel/EBNF. Let us turn now to the
model theory behind RIF’s Condition Language.

5.2 The RIF Core Condition Language – Semantics

The first step in defining a model-theoretic semantics for a logic-based language
is to define the notion of a semantic structure, also known as an interpretation.
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RIF takes here, in order to be general and extensible, an approach common to
systems that not only cover classical first-order logic, but also uncertainty or
inconsistency (which are clearly important in the open Web environment), i.e.,
multi-valued logics. Here, truth values are not only f (“false”) and t (“true”),
but a set of truth values TV , which has a total or partial order, called the truth
order (denoted with <t). For instance, in classical logic this order is simply
false <t true, whereas logics dealing with uncertainty or inconsistency often
are four-valued logics, e.g. with a partial order f <t u <t t and f <t i <t t,
where u and i denote “unknown” and “inconsistent”, respectively.36

Moreover, since RIF on the syntactic level does not distinguish between con-
stants, functions, and predicates, a semantic structure, I, is defined as a tuple
of mappings 〈IC , IV , IF , IR〉, which determines the truth value of every formula,
as explained below. Here, IC , IV , IF , and IR denote the interpretation of the
domain elements as, respectively, constants, variables, functions, and relations.

Definition 1 (Interpretation). Let D be a non-empty set of elements called
the domain of I, Const the set of constants, predicate names, and function sym-
bols, and Var the set of variables.

An interpretation I = 〈IC , IV , IF , IR〉 consists of four mappings:

– IC : Const → D
– IV : Var → D37

– IF : from Const to functions from D∗ → D, where D∗ is a set of all tuples
of any length over the domain D

– IR : from Const to truth-valued mappings D∗ → TV

Using these mappings, we can define a more general mapping, I, as follows:

– I(k) = IC(k) if k ∈ Const
– I(?v) = IV (?v) if ?v ∈ Var
– I(f(t1...tn)) = IF (f)(I(t1), ... . . . , I(tn))

Finally, the mapping ITruth : φ → TV for conditions φ is defined inductively:

– Atomic formulas: ITruth(r(t1...tn)) = IR(r)(I(t1), ..., I(tn))
– Equality: ITruth(t1 = t2) = t iff I(t1) = I(t2); ITruth(t1 = t2) = f otherwise.
– Conjunction: ITruth( And ( c1 . . . cn ) ) = mint(ITruth(c1), . . . ,

ITruth(cn)), where mint is minimum with respect to the truth order.
– Disjunction: ITruth( Or ( c1 . . . cn ) )=maxt(ITruth(c1), . . . , ITruth(cn)),

where maxt is maximum with respect to the truth order.
– Quantification: ITruth( Exists ?v1 . . . ?vn (c)) = maxt(I ′Truth(c))

where maxt is taken over all interpretations I ′ =< IC , I ′V , IF , IR >, which
agree with I everywhere except possibly in the interpretation I ′V of the vari-
ables ?v1, . . . ..., ?vn.

36 Such logics can also be given another partial order <k, called the knowledge order:
u <k t <k i and u <k f <k i. See, e.g., [Fit02] for details.

37 This is also often called variable assignment elsewhere in the literature.
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Multisorted RIF Logic As mentioned earlier and also seen in the EBNF,
one may attach sorts from a set of primitive sorts (defined for a RIF dialect)
to constants and variables. The list of supported primitive sorts in RIF Core
(which probably will be extended later on) is: long, string, decimal, time,
and dateTime. Signatures for function and relation symbols specify their arity
and argument (and value) sorts. The current syntax to declare function sorts is:

’:- signature’ ’"’NAME’"’ s1 ’*’ ...’*’ sn ’→’ s ’,’
r1 ’*’ . . . ’*’ rk ’→’ r ’,’ . . .

Relation (or predicate) sorts are declared similarly:

’:- signature’ ’"’NAME’"’ s1 ’*’ ...’*’ sn ’,’
r1 ’*’ . . . ’*’ rk ’,’ . . .

For instance, the sorts of the XPath/XQuery relation op:date-less-than used
above could be defined by this signature:

:- signature "op:date-less-than" dateTime * dateTime

Interpretations of multi-sorted RIF dialects extend Definition 1 by new func-
tions to assign primitive sorts and function sorts assign a set of allowed primitive
sorts to the symbols of Const. The details of multi-sorted interpretations are
currently being worked out, but they seem to be an important feature, as many
languages (including RDF, Prolog, HiLog and F-Logic, Common Logic) support
signature declarations and/or typed literals and variables.

5.3 RIF Core Horn Rules

As a first simple core format for a complete but minimal rules interchange lan-
guage, the RIF WG defined a RIF Core Rule Language by extending the RIF
Core Condition Language, where conditions become rule bodies. RIF Phase 1
covers only the expressivity of Horn Rules, i.e. rules with one positive derived
atomic formula in the head (or THEN part).38. This simple rules dialect extends
the EBNF syntax for Core Conditions by the following productions:

Ruleset ::= RULE*
RULE ::= ’Forall’ Var* CLAUSE
CLAUSE ::= Implies | ATOMIC
Implies ::= ATOMIC ’:-’ CONDITION

The symbol :- denotes the implication connective used in rules. The statement
ATOMIC :- CONDITION should be informally read as if CONDITION is true then
ATOMIC is also true. We deliberately avoid using the connective ← here because
in some RIF dialects, such as Logic Programming dialects and Production Rules
dialects, the implication :- will have different meaning from the meaning of the
first-order implication ←.
38 Note, that the minor extensions such as allowing existentials and disjunctions in the

body via RIF Core conditions do not increase the expressive power of the language
above Horn.
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The upcoming envisioned RIF dialects will extend this core rule language by
generalizing the positive RIF conditions in the bodies, and probably they will
also allow more expressive rule heads.

RIF Core Horn Rules – Semantics. In Section 5.2 above we already defined
the notion of semantic structures and the truth value of a RIF condition in such
a semantic structure (interpretation).

While semantic structures can be multivalued, rules are typically two-valued
even in logics that support inconsistency and uncertainty: a rule is either satisfied
in an Interpretation I (true) or not (false). We can define satisfaction of a rule
’head :- body’ in Interpretation I, denoted by I |= head :- body simply as
follows:

I |= head :- body iff ITruth(head) ≥t ITruth(body)

Note that, since in RIF Core we consider Horn clauses, where free variables
are assumed to be universally quantified over the whole rule, strictly speaking,
we need to refine this to: I |= clause iff I ′ |= clause for every I’ that agrees with
I everywhere except possibly on some variables free in clause. In this case, we
also say that I is a model of the clause. I is a model of a rule set R iff it is a
model of every rule in R.

The notion of a model is only the basic ingredient in the definition of a seman-
tics of a rule set. In general, the semantics of a rule set R is the set of its intended
models (see e.g. [Sho87]). There are different theories of what the intended sets
of models are supposed to look like depending on the features of the particular
rule sets.

For Horn rules, which we use in this section, the intended set of models of R is
commonly agreed upon: it is the set of all models of R. However, in (future) rule
dialects which allow constructs such as nonmonotonic negation (aka negation-
as-failure) in rule bodies, only some of the models of a rule set are viewed as
intended. This issue will be addressed in the appropriate dialects of RIF. The
two most common theories of intended models are based on the so called well-
founded models [GRS88] and stable models [GL88].

Future extensions of the presented RIF Core will need to enable the provider
of a rule set to be interchanged to declare explicitly what notion of intended
models are assumed in this rule set.

Example 6 (Running example (cont’d)). Finally, John Doe can publish and ex-
change his rule

(R1)
IF movie M was produced before 1930
THEN M is a black and white movie

which declares his definition of black and white movies using RIF Core:

"moviShop:BWMovie" ( ?M ) :-
Exists ?D ?Y (

And ( "moviShop:Dvd"( ?D ) "imd:shows"( ?D ?M )
"imd:Movie"( ?M ) "imd:Year"( ?M ?Y )
"op:date-less-than"( ?Y "1930-01-01T00:00:00Z"^^dateTime ) ) )
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Not too bad, but John waits what’s next and when he will be able to exchange
more complex rules such as

(R2)
IF movie M is listed at http://altmd.example.org but not

listed at http://imd.example.org
THEN M is an independent movie

(R3)
ON request from customer C to book a movie
IF customer C is blacklisted
DO deny C’s request

and he is eagerly waiting for a complete RIF which will enable him to do so.
The current core does not yet provide this feature, but is carefully designed to
enable plugging in of different forms of negation or various models of events and
actions in RIF dialects to be defined in the future.

5.4 What’s Next?

The core rules fragment we have seen so far will provide the basis for further
dialects to cover richer features and express rules and rulesets beyond simple
Horn. The current efforts towards a very general model theory, catering for
multi-sorted and multi-valued logic extensions do not seem necessary for simple
Horn rules, but will enable upward compatible extensions of this common basis.

Currently, the underlying metamodel, introduced at the beginning of this sec-
tion, is also being extended towards a base ontology for describing the available
features of existing rule languages and systems. The working group has analyzed
this feature space and collected a list of discriminators (distinguishing features)
in the so called RIF Rules Arrangement Framework39 (RIFRAF). Aligning the
RIF Core Metamodel with RIFRAF in a common ontology will help RIF users
to classify their rule sets and features with respect to the upcoming family of
possibly diverging RIF dialects. We point out here again, that it is not the goal
of RIF to provide a one-for-all rule language which can cover all of these fea-
tures. Distinct features of different rule systems are often simply incompatible.
Rather, the concept of RIF dialects will enable the exchange of rules within
common fragments or variable feature sets between various parties in a modular
fashion.

6 Conclusion

This paper has presented a snapshot of the current working drafts of the W3C
RIF Working Group, which is working on the development of an interchange for-
mat for rules. The need for such a format has been motivated by the use cases
of the Second Public Working Draft of the RIF WG, which we have described
briefly. We illustrated the main ideas behind rule interchange using an exam-
ple of a DVD rental store. The example illustrates that in order to adequately
39 http://www.w3.org/2005/rules/wg/wiki/Rulesystem Arrangement Framework

http://www.w3.org/2005/rules/wg/wiki/Rulesystem_Arrangement_Framework
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represent the services provided by MoviShop we need different types of rules: de-
ductive, normative, and reactive. MoviShop’s rules work with the data obtained
from different data sources. These data may be expressed using XML, RDF,
and/or OWL. The types of rules and the data (and metadata) representation
models needed for the task pose a number of requirements to the interchange
format for MoviShop’s rules. These requirements drive the development of a core
interchange format for rules—the RIF Core—and its extensions—RIF dialects.

As of this writing, the RIF WG has released the First Public Working Draft
of RIF Core. It includes the RIF Condition Language and its extension to the
RIF Horn Rule Language. The RIF Condition Language is expected to be used
for expressing the part of rules that is common to deductive, normative, and
reactive rules, namely the IF part, as shown via examples. The RIF Horn Rule
Language is intended to allow exchanging Horn-style deductive rules. This core
language is clearly not sufficient for interchanging many kinds of rules, but it
offers the basis for future extensions most of which will be developed as RIF
dialects.
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[P0̆5] Pătrânjan, P.-L.: The Language XChange: A Declarative Approach to
Reactivity on the Web. Dissertation/Ph.D. thesis, Institute of Com-
puter Science, LMU, Munich, 2005. PhD Thesis, Institute for Infor-
matics, University of Munich (2005)

[Ros06] Rosati, R.: Integrating Ontologies and Rules: Semantic and Computa-
tional Issues. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sat-
tler, U. (eds.) Reasoning Web. LNCS, vol. 4126, pp. 128–151. Springer,
Heidelberg (2006)

[Sch04] Schaffert, S.: Xcerpt: A Rule-Based Query and Transformation Lan-
guage for the Web. PhD thesis, University of Munich (October 2004)

[Sho87] Shoham, Y.: Nonmonotonic logics: Meaning and utility. In: Proceed-
ings of the 10th International Joint Conference on Artificial Intelligence
(IJCAI-87), pp. 388–393. Morgan Kaufmann, San Francisco (1987)

[SS07] Schenk, S., Staab, S.: Networked rdf graphs. Technical Report Arbeits-
berichte des Fachbereichs Informatik 3/2007, Institut für Informatik,
Universität Koblenz-Landau (2007)

[SW94] Swift, T., Warren, D.S.: Efficiently implementing slg resolution (Janu-
ary 1994)

[tH05] ter Horst, H.J.: Completeness, decidability and complexity of entail-
ment for rdf schema and a semantic extension involving the owl vo-
cabulary. Journal of Web Semantics 3(2) (2005)

[The00] The Business Rules Group. Defining business rules – what are they
really? (2000) Available at www.businessrulesgroup.org

[TW01] Taveter, K., Wagner, G.: Agent-oriented enterprise modeling based on
business rules. In: ER, pp. 527–540 (2001)

[vdAtHKB03] van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Bar-
ros, A.P.: Workflow patterns. Distributed and Parallel Databases 14(1)
(2003)

[WGL06] Wagner, G., Giurca, A., Lukichev, S.: A Usable Interchange Format
for Rich Syntax Rules Integrating OCL, RuleML and SWRL. In: Hit-
zler, P., Wache, H., Eiter, T. (eds.) RoW2006 Reasoning on the Web
Workshop at WWW2006 (2006)

[WHvdM06] Wielemaker, J., Huang, Z., van der Meij, L.: Swi-prolog and the
web. manuascript (2006), http://hcs.science.uva.nl/projects/
SWI-Prolog/articles/TPLP-plweb.pdf

[Wid96] Widom, J.: The starburst active database rule system. Knowledge and
Data Engineering 8(4), 583–595 (1996)

www.businessrulesgroup.org
http://hcs.science.uva.nl/projects/SWI-Prolog/articles/TPLP-plweb.pdf
http://hcs.science.uva.nl/projects/SWI-Prolog/articles/TPLP-plweb.pdf


Reasoning in Semantic Wikis

Markus Krötzsch1, Sebastian Schaffert2, and Denny Vrandečić1
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Abstract. Semantic wikis combine the collaborative environment of a classical
wiki with features of semantic technologies. Semantic data is used to structure
information in the wiki, to improve information access by intelligent search and
navigation, and to enable knowledge exchange across applications. Though se-
mantic wikis hardly support complex semantic knowledge and inferencing, we
argue that this is not due to a lack of practical use cases. We discuss various tasks
for which advanced reasoning is desirable, and identify open challenges for the
development of inferencing tools and formalisms. Our goal is to outline concrete
options for overcoming current problems, since we believe that many problems
in semantic wikis are prototypical for other Semantic Web applications as well.
Throughout the paper, we refer to our semantic wiki implementations IkeWiki and
Semantic MediaWiki for practical illustration.

1 Introduction

Semantic wikis enrich wiki systems for collaborative content management with seman-
tic technologies. Annotations added to wiki pages are stored in a knowledge base, and
possibly connected with background ontologies. Based on these annotations, seman-
tic wikis provide enhanced navigation, search, and retrieval, and often also contextual
adaptation of the presentation of the content. Collaborative authored semantic content
is exported to the Semantic Web in standard formats, such as RDF [1] and OWL [2].

Semantic wikis have been successfully applied in real-world scenarios, and various
implementations exist – see [3] for an overview of current research. Prominent systems
like Semantic MediaWiki [4,5], IkeWiki [6,7], and SemperWiki [8] managed to dis-
seminate semantic technologies among a broad audience, and many of the emerging
semantic wikis resemble “small Semantic Webs.” Indeed, wikis are characterised by
their dynamic, open nature with many different contributors who independently create
different “pieces of knowledge” that need to be integrated.

In spite of their success, semantic wikis often use very simple semantic structures
and hardly employ complex inferencing procedures. We argue that this is not at all
due to a lack of practical applications of advanced reasoning: though a little semantics
might go a long way, we believe that many worthwhile goals won’t be reached without
additional expressivity. There are, of course, complications when moving from shallow
semantic data to more complex ontologies, and we will discuss requirements, existing
challenges, and open problems. Motivated by concrete use cases for inferencing within
semantic wikis, we outline viable ways for improving reasoning support in wikis. Based
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on our experience with developing IkeWiki and Semantic MediaWiki, we provide many
examples for simple inferencing within these systems, and give an outlook on upcoming
enhancements related to reasoning.

The goal of this article is on the one hand to introduce into semantic wikis as an
interesting testbed for evaluating Semantic Web technologies, including reasoning, and
on the other hand to illustrate in practical application scenarios – based on semantic
wikis – where reasoning can lead to interesting applications and where reasoning still
faces challenges that need to be addressed.

After giving a short outline of semantic wikis in Section 2, we briefly describe our
two semantic wiki systems, Semantic MediaWiki and IkeWiki, with a particular fo-
cus on the way knowledge is represented. We then show general uses of reasoning for
enhancing browsing, querying, editing, and validating in Section 4. In Section 5, we
outline three different concrete application scenarios for reasoning in semantic wikis
and from that derive selected challenges that we consider as relevant for future rea-
soning systems. In Section 7, we conclude by sketching next steps towards improving
reasoning support in our wiki systems.

2 Semantic Wikis

The term “semantic wiki” encompasses a broad range of applications that are using
machine-readable data with a well-defined semantics to augment the functionality of
a wiki-based content management system. To clarify this rather unsharp definition, we
now present some ways of classifying semantic wikis and present typical implementa-
tions and usage scenarios. Possibly the most important characteristic of each semantic
wiki is its approach towards collecting semantic data. Classical wikis are primarily
designed for collecting textual information, and the collaborative creation of this con-
tent is supported in many ways, e.g. through simple user interfaces, extensive version-
ing support, or discussion pages. Semantic wikis need to find ways of also obtaining
machine-readable data, without sacrificing the core strengths of classical wikis. Three
main sources for semantic data are usually considered:

Manually provided content. Virtually all current semantic wikis enable users to di-
rectly enter and modify semantic data via the wiki’s editing interface or an extension
thereof. Implementations range from providing text-forms for RDF data, over the use
of a simplified wiki-markup within existing texts, to the use of additional interactive
user interfaces that support annotation. Basically all classical wikis provide simple an-
notation support in the form of tagging or categorisation. Semantic wikis extend these
capabilities.

Automatically collected metadata. Many wikis already collect large amounts of meta-
data that is required for normal operation. This includes details about authors, version
histories, licensing, and hyperlinks. This data can be converted into machine-readable
formats that enable interchange and reuse, as was done, e.g., with Wikipedia’s metadata
in the Wikipedia3 project1. Another source of metadata is information associated with
multimedia files, used e.g. in IkeWiki to gather information on uploaded images.

1 http://labs.systemone.at/wikipedia3

http://labs.systemone.at/wikipedia3
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External background knowledge. Semantic wikis are not always the only source for
semantic data, and can be used in conjunction with other semantic data sets. In this case,
the wiki should be able to import and reuse ontologies or RDF datasets, in order to take
this background-knowledge into account for editing and presentation. A prototypical
implementation of such functionality was described in [9].

Semantic wikis often use more than one of those sources, but some way of manually
providing semantic content appears to be a core feature of all current implementations.
Independent of its source, the use of the available semantic data can be very different.
Though the boundaries are not strict, the following two approaches are prominent:

“Wikis for semantic data.” Wikis that sufficiently support the editing of ontological
information can be used as collaborative ontology editors. The system in this case can
help domain experts and ontologists to cooperate in one system, while the text-content
of each wiki page is used to create a human-readable specification in parallel to the
formal ontology. Even if the wiki does not provide means of editing complex schema
information, it can still be used to develop and document ontological vocabularies in a
similar way. The use of wikis for such tasks facilitates the dynamic, evolutionary devel-
opment of ontologies, and supports the gradual lifting of informal textual descriptions to
formal conceptualisations. In the project Dynamont2, IkeWiki is used for this purpose.

“Semantic data for wikis.” Wikis are already used successfully in many applications
where the primary task is to collect textual content. In those cases, semantic data is used
to support the current usage of the wiki, e.g. by simplifying the retrieval of information
through semantic search functions. Semantic data in this case either is used to make
some of the wiki’s contents machine-processable, or to simplify wiki maintenance by
exploiting metadata. A major goal is to retain the known working principles of the wiki,
and thus to not introduce too many new interfaces or functions. Examples of this use are
given by many sites running Semantic MediaWiki, such as ontoworld.org [4]. Another
typical scenario for wiki usage is internal knowledge management in working groups.

3 Knowledge Representation in Wikis

In this section, we briefly introduce two popular semantic wiki systems, IkeWiki and
Semantic MediaWiki, which will also be our main objects of examples in later sections.
Here, we are mainly interrested in the forms of semantic knowledge that each of those
applications supports, and on the approaches for representing this data within the wiki.
Advanced uses of this data will be discussed in later sections.

3.1 Semantic MediaWiki

Semantic MediaWiki (SMW) [4] is an extension of the popular wiki software Media-
Wiki3 that is used by Wikipedia and many other sites. SMW is typically used as a
modular enhancement to existing MediaWiki installations, and thus aims at a seamless

2 http://dynamont.factlink.net
3 http://www.mediawiki.org

http://dynamont.factlink.net
http://www.mediawiki.org
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integration of semantic features into the existing user interfaces. The internal knowl-
edge model of SMW is closely related to OWL DL, although just a small fragment of
the expressive means of this language is actually available within the wiki.

The necessary collection of semantic data in SMW is achieved by letting users add
annotations to the wiki-text of articles via a special markup. Every article corresponds
to exactly one ontological element (including classes and properties), and every annota-
tion in an article makes statements about this single element. This locality is helpful for
maintenance: if knowledge is reused in many places, users must still be able to under-
stand where the information originally came from. Furthermore, all annotations refer
to the (abstract) concept represented by a page, not to the HTML document. Formally,
this is implemented by providing strictly separate URIs for the article and its topic.

Most of the annotations that occur in SMW correspond to simple ABox statements in
OWL DL, i.e. they describe certain individuals by asserting relations between them, an-
notating them with data values, or classifying them. The schematic information (TBox)
representable in SMW is intentionally shallow. The wiki is not intended as a general
purpose ontology editor, since distributed ontology engineering and large-scale reason-
ing still faces various open challenges, some of which we will consider below.

Categories are a simple form of annotation that allows users to classify pages. Cate-
gories are already available in MediaWiki, and SMW merely endows them with a
formal interpretation as OWL classes. To state that the article ESWC2006 belongs
to the category Conference, one just writes [[Category:Conference]]
within the article ESWC2006.

Relations describe relationships between two articles by assigning annotations to ex-
isting links. For example, there is a relationprogram chair betweenESWC2006
and York Sure. To express this, users just edit the page ESWC2006 to change
the normal link [[York Sure]] into [[program chair::York Sure]].

Attributes allow users to specify relationships of articles to things that are not articles.
For example, one can state that ESWC2006 started at June 11 2006 by writing
[[start date:=June 11 2006]]. In most cases, a relation to a new page
June 11 2006 would not be desired. Also, the system should understand the
meaning of the given date, and recognise equivalent values such as 2006-06-11.

Annotations are usually not shown at the place where they are inserted. Category
links appear only at the bottom of a page, relations are displayed like normal links, and
attributes just show the given value. A factbox at the bottom of each page enables users
to view all extracted annotations, but the main text remains undisturbed.

It is obvious that the processing of Attributes requires some further information about
the Type of the annotations. Integer numbers, strings, and dates all require different
handling, and one needs to state that an attribute has a certain type. As explained above,
every ontological element is represented as an article, and the same is true for categories,
relations, and attributes. This also has the advantage that a user documentation can be
written for each element of the vocabulary, which is crucial to enable consistent use of
annotations.

The types that are available for attributes also have dedicated articles. In order to as-
sign a type in the above example, we just need to state a relationship between
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Attribute:start date and Type:Date. This relation is called has type (in
the English version of SMW) and has a special built-in meaning.4 SMW has a number
of similar special properties that are used to specify certain technical aspects of the
system, but most users can reuse existing annotations and do not have to worry about
underlying definitions.

When using SMW as a wiki, users rarely are confronted with complete URIs. In-
stead, SMW generates unique URIs from the titles of the respective articles when-
ever this is necessary, especially for exporting semantic data as OWL/RDF. URIs of
entities within the wiki thus are typically “local” to the given wiki, and are gener-
ated dynamically as the wiki is extended. It is also possible for users to assign given
existing URIs to concepts that occur in the wiki, e.g. to associate a wiki’s category
Category:Person with the URI of the concept foaf:Person provided by the
FOAF vocabulary. Such reuse of existing URIs is constraint to vocabularies that have
been explicitly imported by the wiki’s administrators, such that no abuse of existing
URIs is possible (e.g. foaf:Person should never be used as the URI of a binary
property).

Besides such explicit annotations, SMW does not consider any other sources of se-
mantic data. Prototypes for using expressive ontologies within SMW have been studied
[9], but the usual approach is to export semantic content from the wiki, and to fur-
ther process it within some other semantic system that can also incorporate additional
ontologies.

3.2 IkeWiki

IkeWiki is a complete reimplementation of a semantic wiki as a Java web application.
The name IkeWiki is derived from the Hawaiian words ike – meaning “knowledge” – and
wiki – meaning “quick". Although now also considered in different settings, IkeWiki
has originally been developed as a prototype tool to support knowledge workers in
collaboratively formalising knowledge. IkeWiki’s design principles are an easy to use,
interactive interface, compatibility with Semantic Web standards, immediate exploita-
tion of semantic annotations, support for different levels of formal expressiveness (from
RDF to OWL), and reasoning support.

IkeWiki uses the Java-based Semantic Web framework Jena as a backend and there-
fore offers support not only for plain RDF but also for the representation of different
kinds of ontologies (RDFS and OWL). Different reasoning mechanisms can be em-
ployed; the default installation uses OWL-RDFS reasoning (essentially subclass and
type inference), but we have also successfully integrated the Pellet reasoner with full
OWL-DL support. We are also experimenting with a rule-based reasoning engine that
would allow users to add user-defined rules to the knowledge base. One of the goals of
IkeWiki is to support the formalisation of knowledge all the way from informal texts to
formal ontologies.

In contrast to Semantic MediaWiki, IkeWiki relies on background ontologies that are
pre-loaded in the knowledge base. As a consequence, it is not possible to annotate a link
with a predicate that is not defined as an OWL ObjectProperty in the knowledge base.
Likewise, IkeWiki only offers AnnotationProperties and DatatypeProperties as textual

4 Also, it is treated as an owl:AnnotationProperty in order to stay in OWL DL.
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metadata fields. This can be seen as a “restrictive” approach as compared to Semantic
MediaWikis “open” approach.

Every page in IkeWiki corresponds to a resource in the knowledge base and is asso-
ciated with a type (concept). A new page in general has the page rdfs:Resource,
which can be further refined by the user. IkeWiki’s reasoning component automatically
infers all types of a page that follow by subclass relationships or relations to other
pages. As this can be somewhat confusing to users, IkeWiki by default only offers link
annotations that are compatible with the currently associated page types.

Unlike Semantic MediaWiki, IkeWiki stores all semantic metadata separately from
the page content. When rendering a page, a so called rendering pipeline assembles
content from the article database and metadata from the knowledge base to create an
“enriched article” that contains the relevant semantic annotations. This approach has the
advantage to make the maintenance of the knowledge base easier, but on the other hand
does not allow versioning of the metadata and the locality of metadata is abandoned.

The IkeWiki interface makes heavy use of AJAX5 technologies to provide an interac-
tive interface. Page content is entered using a WYSIWYG editor. Semantic annotations
are created in a separate “annotations editor”; the rationale behind this decision is that
IkeWiki was designed as a collaborative tool that allows users with different levels of
experience to work on the data in a defined workflow, and that editing content and
metadata are separate processes in such settings.

The annotations editor allows to add types to a page and the links it contains via
a guided, dialogue-based interface (see Figure 2 on page 319). When a user clicks on
the +-symbol behind a link or behind the page types, he is presented with a list of all
applicable properties or classes from which he can choose what he thinks appropriate.
Reasoning is used to restrict this list to only the relevant ontology concepts. IkeWikis
interface therefore prohibits to add link or page types that are not applicable, but sup-
ports the user by showing those types that are applicable. This conflicts to some extent
with the “wiki philosophy” but results in a more homogeneous knowledge base with no
inconsistencies with respect to the ontologies.

In addition to normal page annotations, IkeWiki’s annotation editor also supports
to modify or extend the loaded ontologies themselves. Specific support is given for
adding sub-/superclasses, range/domain of properties, inverse relations, etc. There is
currently no support for advanced OWL concepts like cardinality constraints and other
restrictions.

3.3 Maintaining Ontologies in Wikis

Since advanced reasoning features are typically based on information that is more
complex than simple RDF data, semantic wikis need to provide means for editing
ontological axioms or logical rules as well. This is not a trivial task, since wikis and
ontological knowledge bases are structured in different ways. In this section, we dis-
cuss how ontological information can still be maintained in wikis, and which kinds of
such information are most suggestive for seamless integration in current usage.

5 AJAX = Asynchronous JavaScript and XML, a technology that allows Web-applications to
look and feel like desktop applications.
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Semantic assertions in wikis typically refer to the contents of the wiki, which usually
are represented by wiki pages or parts thereof. Simple assertions can thus be made at
the place in the wiki to which they refer: assertions truly are annotations to the text of
the wiki. If more complex axioms are taken into account, it becomes apparent that the
structural models of ontologies and wikis do not match so nicely any more:

– Wikis are based on the notion of articles which might be further separated into
sections.

– Ontologies are based on the notion of axioms or rules.

So how should ontological axioms be distributed among articles? Wiki articles of-
ten play the role of the underlying vocabulary used in ontological axioms, but each
axiom might refer to many different articles. Different approaches towards solving this
problem exist:

– Decoupling pages and axioms. Instead of treating axioms as annotations of wiki
pages, it is also possible to consider them as independent content in their own right.
Some semantic wikis therefore provide two input forms for each page: one for page
text and one for axioms. While this allows users to freely organise axioms within
the wiki, it has the disadvantage that there is no direct way of finding the page
within which a particular axiom was given.

– Strict coupling of pages and axioms. If the possible kinds of ontological axioms
are known, and if their structure is sufficiently simple, then it makes sense to cou-
ple them with one of the affected pages. For example, MediaWiki allows users to
state subsumption relationships between categories.6 Although two categories are
involved in each subsumption, the axiom must be stated on the page of the sub-
sumed category. Similar solutions can be found for many typical types of axioms.
For complex axioms that could be expressed in syntactically different ways, how-
ever, the assignment of pages could still be ambiguous.

– Loose coupling of pages and axioms. Another solution is to couple a particular
axiom to all pages that it affects. Thus, one axiom might be displayed on many
pages, while being separated from the wiki text, and each page displays all axioms
that are directly relevant for it. This solution is attractive for keeping an overview
of all axioms, but it significantly affects the architecture of the wiki. Axioms do
no longer belong to articles, and editing, versioning, and discussion of particular
axioms needs additional mechanisms. For simplicity, axioms should be editable by
editing the article in which they appear – but then concurrently editing two different
articles might yield editing conflicts.

Each of the above solutions has its advantages and disadvantages, and a major future
design task for semantic wikis will be to develop combined solutions that further push
the expressivity of semantic wikis without sacrificing simplicity and usability.

4 Using Reasoning in Wikis

Reasoning is the process of deriving conclusions from formal symbolic knowledge,
as constituted by the semantic content of a semantic wiki. In the case of a semantic

6 Which, in some of their uses, can be viewed as ontological classes.
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wiki, the premises are the underlying knowledge base together with the actual page
content. Reasoning can be applied in semantic wikis for various different effects and
benefits. The “conclusions” of reasoning can be of many different kinds, e.g. deriving
of additional relations, but also the adaptation of the presentation based on information
in the knowledge base. In the following, we describe four areas where reasoning could
provide actual benefit to wiki users. Note that all four areas have been investigated
separately in other contexts; however, semantic wikis provide a useful testbed to show
the possible benefits of all areas in a single application.

4.1 Browsing and Displaying the Wiki Contents

Knowledge that is made explicit within the wiki enables the system to provide addi-
tional ways to browse, explore, and display the wiki’s content. This is relevant not only
as a support for finding information within the wiki, but also as a basic way for inspect-
ing its semantic contents. In contrast to advanced search functions that are discussed in
the following section, browsing generally relies on information that is local to the data
that is currently displayed.

Displaying semantic data. A typical way of browsing data is to simply display, for
every page in the wiki, the pages and concepts that it directly relates to. Often, this
is done in textual form to inform users about the semantic contents of a page with-
out requiring them to view the page source. For instance, Semantic MediaWiki inserts
a Factbox below every article, showing related articles and attribute values, and dis-
playing links to those elements, as well as to specific search functions and the article’s
RDF export. It also provides a browsing feature that displays incoming and outgoing
relationships as well as filtering by relations and attributes.

Domain specific visualisations. Besides generic browsing functions, there are cases in
which semantic information can be used to generate customised displays for specific
types of data. For example, IkeWiki displays symbols for indicating licensing informa-
tion, and provides special display for EXIF metadata that is extracted from image files.
Semantic MediaWiki supports conversions between units of measurement which in turn
are specified by semantic annotations within the wiki. In each of those examples, it is
necessary that the wiki is aware of certain domain specific annotations that are treated in
a special way. Existing vocabularies are suggestive as a basis for such special features,
and it might be necessary to incorporate further ontological background knowledge to
properly support those knowledge models within the wiki.

Graphical visualisation. Besides textual displays of a resource’s semantic context,
graphical visualisations can be helpful for exploring a wiki’s content. IkeWiki, for ex-
ample, can render a graph that shows all resources within a certain relational distance
to the current one. The main advantage of graphical displays is their ability to convey
more information directly without lengthy textual descriptions. Colours, shapes, and
spacial grouping can carry relevant information. The main problem, on the other hand,
is that automatically generated layouts of graphs are easily confusing if many resources
are involved: visualisations often do not scale to larger amounts of data.
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Filtering and selection. The above ways of displaying data are challenged when the
amount of semantic content is large. For example, the article “Germany” in English
Wikipedia has more than 30,000 incoming links, many of which could represent certain
semantic relations. Filtering, grouping, and ordering of results is needed to usefully dis-
play such information. While ordering often requires extralogical information, filtering
and grouping correspond to semantic retrieval and classification. Criteria for those op-
erations might be provided by the given usage context, user preferences (i.e. semantic
statements about the user), or by explicit queries (e.g. as in faceted browsers).

Some of the above visualisation methods could be realised with little or no reason-
ing effort. But as soon as semantic wikis incorporate semantic knowledge that is not
restricted to the most simple facts, even the immediate relationships of some resource
need to be computed first. The reason is that browsing should usually visualise the se-
mantic model of the wiki, not just statements given explicitly by editors.

4.2 Querying the Knowledge

Besides the individual display of wiki pages, semantic wikis provide mechanisms to
directly query their knowledge base. The query language used in IkeWiki is SPARQL.
Semantic MediaWiki provides its own simple query language whose syntax is based
on MediaWiki’s mark-up language for editing. Semantically, this built-in language is
easily seen to correspond to concepts of the description logic EL++ [10], with addition
of (Horn) disjunction that does not add to the complexity [11].7 Therefore, IkeWiki’s
native query language is more powerful but also computationally more complex than
that of Semantic MediaWiki. Both wikis export their data in standard formats, so that
existing tools can be used to query the data in further languages.

Besides the technical aspect of the employed query language, the use of queries in
wikis strongly depends on the provided user interfaces. Both Semantic MediaWiki and
IkeWiki enable editors to embed query results into wiki pages. The obvious advan-
tage is that users that are not familiar with the query language can still view results
of predefined queries. In Semantic MediaWiki, the query language is extended to allow
advanced formatting of embedded results, e.g. for displaying times and dates within dy-
namic Timeline views (cf. Figure 1). In addition to embedded queries, it is also possible
to directly evaluate queries and to browse the results.

Strong reasoning allows the query engine to answer more complex queries. But when
designing the wiki query interface it must not be forgotten that we are still working on
a wiki: queries should be easy to write, save, and share (like inline queries in Semantic
MediaWiki), and answers should be traceable to the content of the wiki, which might
require advanced explanation features to assist users in finding the source of a particular
result.

4.3 Editing Support

Reasoning can not only be used to enhance the content presentation, but also to sup-
port editing the (textual and semantic) content. Typically, semantic annotation can be

7 The query language extends EL++ by allowing concrete domains that are non-convex, but
this does not increase expressivity in our case due to the absence of existential assertions on
concrete roles.
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Fig. 1. Semantic MediaWiki can display the same query in different formats, such as the tabular
view and timeline view shown above

Fig. 2. Annotations in IkeWiki are suggested based on the types associated with the two pages
and the domain/range definitions of relations (in this case wiskis:contributor)

supported by exploiting ontological information: if a resource was classified to belong
to a certain class, properties whose domain is a subclass of this class might be suggested
for annotation. This is currently done in IkeWiki to simplify annotation by providing
a list of suitable properties, see Figure 2. An AJAX-based interface allows to dynam-
ically load and specialise such suggestions. Suggesting adequate annotations based on
statistical and linguistic analysis will be subject to future research. Upcoming versions
of Semantic MediaWiki will feature special annotations that can be used for marking
deprecated properties. Explicatory messages will be displayed on any page on which
deprecated properties are used, thus supporting convergence towards a unified knowl-
edge model.

Reasoning can also be used to avoid inconsistent content in advance, by suggest-
ing appropriate values for statements that are constrained by the existing knowledge
base. In IkeWiki, templates that contain SPARQL queries can be used to dynamically
compute suggested values. For example, we successfully used this technique to create a
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Fig. 3. Conference wiki of the “Social Skills durch Social Software” conference. Reasoning is
used to automatically fill templates for talk, session, and track pages.

conference wiki based on IkeWiki for the “Social Skills durch Social Software” con-
ference in Salzburg, 2006. The conference wiki contained pages for every talk with
information about the speaker, the abstract of the talk, etc. (see Figure 3). Most of this
information was filled from the knowledge base. Furthermore, the talk pages where
associated with “sessions” having start and end time, and the sessions with “tracks”
having a room. The wiki used this information to automatically fill in time, session,
and track information in the talk pages. More complex suggestion mechanisms based
on more expressive knowledge bases can easily be envisaged, as can reasoning-based
methods of conflict resolution in case of contradictory knowledge.

4.4 Validating Formalised Knowledge

Background ontologies can constrain the statements within the wiki, and a reasoner
can check if the knowledge does indeed adhere to these constraints. For example, it
is possible to add axioms that state that each person may only have one father and
one mother. A reasoner can then check if the knowledge is valid with regards to the
background ontology.

Note that in order to do these tests, the system must enable average users to intu-
itively state the constraints they want to say. To this end, it is also useful if the chosen
ontology language provides features such as (optional) constraint semantics [12], lo-
cal closed world assumption [13,14], and default assumptions on uniqueness of names.
Further possibilities to create unit tests, and the subtle semantic difficulties that can
arise, are described in [15]. Most of the approaches can be applied in the setting of a
semantic wiki.

Besides these logical constraints, the semantic wiki can use further resources from
its ecosystem for more sophisticated checks. Often, it is possible to verify the content
against the information in the knowledge base at the time it is entered. For instance, in
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case of the conference wiki described in the previous section, the system could auto-
matically verify whether the participants associated with an event are available during
this slot. Similar consistency verification can also be used for verifying the structure of
the human readable content. For example, meeting minutes of a project meeting might
be required to always conform to a certain schema.

5 Scenarios for Reasoning in Semantic Wikis

We illustrate our use cases with a number of concrete scenarios where reasoning in
semantic wikis is necessary and beneficial. Because semantic wiki engines currently
do not implement all of the conceived reasoning functions, some of the tasks in these
scenarios are currently not supported. To highlight these problems, we describe one
implemented scenario, one possible but not implemented scenario, and one currently
impossible scenario for reasoning in semantic wikis. One of the goals of this article is
to help the readers realise what advancements are needed in reasoning in order to be
able to address these issues.

5.1 Implemented: The Biology Taxonomy Scenario

In the Wikipedia, there is a huge collection of biological articles, ranging from kingdoms
over families, genres, to species. In the current, non-semantic Wikipedia, this collection
and the relationships (e.g. between a species and its genre) are maintained manually,
which leads to redundancies and inconsistencies. In a (currently hypothetic) Semantic
Wikipedia, reasoning can be used to address these issues.

Automatic inference of implicit taxonomy relations. Biology articles in Wikipedia
display a “taxonomy box” in the top right corner of the page, listing the relationships
between a species, its genre, its family, etc. An example of such a taxonomy box is
given on the right.

In today’s Wikipedia, all this information is entered man-
ually, for each biology article. Semantic wikis can improve
the situation in various ways:

– using a biology taxonomy as background ontology, a
single relation from an article (e.g. a species) to the arti-
cle describing its super-concept (e.g. a genre) would suf-
fice to automatically infer all other relations (e.g. from
the species to the family, order, class, kingdom),

– using appropriate inline queries, most of the taxonomy
box can be computed, even without a sufficiently ax-
iomatised background ontology,

– from the knowledge that the article describes a bio-
logical concept, semantic wikis can automatically infer
that it a taxonomy box with relations to super-concepts
should be displayed.

These applications exploit the methods described in the use cases browsing and dis-
playing, and querying in Section 4.
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Annotation support: offering only relevant relations as link types. In larger se-
mantic wikis, there are often many different relations in the background model, most
of which are irrelevant for a article. The wiki can use available information about a
relations range and domain to suggest suitable annotations. In the biology taxonomy,
for example, there might be a relation has Genre with domain Species and range
Genre, and a relation has Family with domain Species ∪ Genre and range
Family. For annotating a link from the page of the species Bilberry to the page of the
genre Vaccinium, the IkeWiki’s AJAX-based annotation editor (cf. Figure 2) can thus
suggest the relation has Species. This is an example of the editing support use case
of reasoning.

Query support: structured queries over the knowledge base. Reasoning based on
the the biology taxonomy also allows to ask more complicated queries. For example,
a user might ask for all species in the family Ericaceae, skipping the various genuses
like Vaccinium. Such a query is not possible in a non-semantic wiki, and requires more
extensive maintenance in a semantic wiki without reasoning support.

Challenges and Issues. The “biology taxonomy” scenario has been implemented suc-
cessfully as a demonstrator in IkeWiki and will be shown in the tutorial.8 Wikipedia’s
content, including all biological data, has also been imported into an installation of Se-
mantic MediaWiki, augmented with automatically generated annotations. Nonetheless,
there are a number of problems that we encountered:

– Rule-based reasoning. As IkeWiki and SMW rely on RDFS (or OWL DL) rea-
soning, there is no simple solution for axiomatising relations to biological super
concepts, and IkeWiki currently implements the reasoning task in Java. Rule-based
reasoning would be one solution for this problem. Axioms in many ontology lan-
guages can conveniently be represented as rules, but support for genuine rule lan-
guages is more problematic. If only restricted forms of rules are allowed, a suitable
presentation to the user must be found to assist editing.

– Representation of layout information. There is currently no obvious way to infer a
visual representation (such as “if the article is a biological concept, display a tax-
onomy box”). In IkeWiki, this functionality has been implemented in XSLT, but
a proper integration into the knowledge base would be preferable. An existing ap-
proach for specifying layout in RDF is Fresnel9, but from our experience expressing
layout information in this format is rather hard and limited to RDF data (whereas
the displaying of the taxonomy box affects the rendering of the page content).

5.2 Possible: Semantic Wikipedia

Augmenting a large-scale wiki such as English Wikipedia with semantic technologies
would already be possible, but some challenges need to be addressed to make this exten-
sion successful. In contrast to the previous scenario, Wikipedia has a very broad scope,

8 Online demo available at http://ikewiki.wastl.net:8080/
9 http://www.w3.org/2005/04/fresnel-info/

http://ikewiki.wastl.net:8080/
http://www.w3.org/2005/04/fresnel-info/
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Fig. 4. A simple example query on a semantically enhanced copy of Wikipedia, showing football
players with their association

and no existing vocabulary or ontology is available to cover the whole domain. More-
over, Wikipedia is particularly large, both in terms of users and in terms of content. The
possible uses of semantics in this scenario are also intractable, and we only give a few
typical examples below.

Query answering. Being a general purpose encyclopaedia, Wikipedia gives rise to a
number of interesting queries. Currently, those can only be answered by reading articles
and manually building pages with the results of this research. This happens in practice,
and has lead to the generation of many “list pages” such as the list of the largest cities
in Spain. Of course, such list must be manually updated whenever some information
changes, and inconsistencies are very likely. With semantic wikis, querying could be
done dynamically by users through the wiki’s query interfaces, or query results could
be embedded into articles via inline queries to replace the current manually maintained
lists (as shown in Fig. 4).

Quality control. Semantic data also provides a high-level view on article contents,
enabling the automatic search for possibly wrong or incomplete information in large
amounts of articles. This can be done by using domain-specific checks that are exe-
cuted on parts of the semantic data. Such quality control also must involve the semantic
annotations themselves: are relations used consistently? Which annotations are used too
infrequently to be useful? Are there cases where multiple relations are used to model the
same situation? Such tasks can be performed directly by the wiki, such that all editors
can easily help to correct possible problems.

Analysing differences between wikis in different languages. Wikipedia is available
in numerous languages, but each language differs in size and content. Comparing them
is hardly possible, and usually only done by linking similar articles in different lan-
guages. Using semantic wikis, the content of different languages becomes machine-
accessible and thereby comparable. Using known mappings between articles in different
languages, the whole vocabulary of two wikis can be mapped. For instance, one could
compare the population number of Paris as given in the French and Arab Wikipedia,
without speaking either language. This can help to spot errors, as well as to understand
cultural differences between the different language communities.
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Challenges and Issues. The “Semantic Wikipedia” is not a reality yet, but semantically
enhanced mirrors of Wikipedia are currently used for testing purposes. We think that
the following challenges must be further addressed to enable this project:

– Performance. Computation times and memory usage are important for any large-
scale web site, but these issues are especially problematic when offering reasoning-
based services, such as semantic query answering, to a large audience. Semantic
MediaWiki has always been considering performance as a critical success factor,
but further improvements are needed to scale up to one of the of largest web sites
on earth.

– Usability. It is desirable that semantic features are available to all users, even if they
are not willing to learn the wiki’s query language. This is partly realised by inline
queries, but improved visual interfaces for constructing queries are an important
next step. Similarly, annotation must be as easy as possible, and further simplifica-
tion mechanisms might be needed. IkeWiki’s current annotation support is a first
step into this direction.

– Interchange of data. In order to compare data from different wikis, or to reuse
such data within external applications, wikis need to export their semantic content
in standardised formats. This is currently done for the simple data semantic wikis
collect, but can become problematic when extending the ontological expressivity of
each wiki. Indeed, especially rule languages currently hardly support information
exchange via the Web (e.g. since they do not support URIs or standard datatypes).

– Closed and open world. The wiki itself can be perceived as a closed world for
many applications of reasoning. Users are often interested in finding out which in-
formation was not asserted in the wiki, instead of what information was explicitly
asserted to be false. For example, one might look for instances of (some subcate-
gory of) the category Marine mammal that do not belong to the order Carnivora,
to find vegetarian sea mammals. In Wikipedia, no species is explicitly classified as
not belonging to a given order, but still most users would expect a closed-world
behaviour in this case.
On the other hand, any wiki is necessarily open and dynamic, and many kinds
of conclusions should not be drawn from the absence of certain statements. For
instance, from the fact that some person is not classified as female, one should
certainly not conclude that this person is a man. In general, the data within the wiki
should always be considered incomplete. A possible solution for dealing with this
situation is to explicitly assume (certain) queries to have a closed-world semantics,
even if this is not assumed for the knowledge base in general. Local closed world
approaches provide a foundation for this [13,14].

5.3 Vision: Project Management Scenario

The “semantic wiki for project management” scenario is a vision of how semantic
wikis with reasoning support might support complex social and collaborative tasks like
project management. This vision requires significant development work and in some
cases involves also reasoning problems that are yet to be solved.
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Fig. 5. Example of a Gantt diagram (source: Wikipedia); a semantic wiki for project management
could provide such a diagram as a view on the data in the knowledge base for visualisation and
interactive editing of project workplans

In recent years, wikis have increasingly be used as tools for project management.
Major reasons for this are that wikis are easy to set up and use, allow everyone to edit,
strongly connect knowledge via hyperlinks, and – most importantly – do not impose
a rigid workflow by means of technical restrictions (instead, workflows are usually
followed by social convention). Wikis thus provide the flexibility that is needed par-
ticularly in collaborative software development, where people and organisations with
different cultures and backgrounds work together.

Unfortunately, existing wiki software is not particularly well suited for such tasks.
On the one hand, current wiki systems are not really able to work with non-textual
content such as spreadsheets, diagrams, or video material. On the other hand, they do
not provide support for the semantically rich content that participates in processes like
project management and software engineering.

A sufficiently developed semantic wiki system could support project management in
a number of ways. Some of them are exemplarily given below.

Visualisation and editing of project data. Project management involves a lot of data
about resources, dates, progress, meeting minutes, persons, etc. A lot of different visu-
alisations have been developed to support these tasks, e.g. Gantt and Pert diagrams (see
Figure 5), project progress reports, etc. Most of these visualisations are views on the
same data. In a semantic wiki, such data could be represented formally in the knowl-
edge base. The semantic wiki could then offer the user different visualisations of the
data based on reasoning about the context. For instance, a page describing the workplan
or project progress could automatically include a Gantt diagram, or a page describing a
meeting could automatically show the project calendar and a list of persons that should
attend the meeting. Both tasks involve querying and reasoning for retrieving the relevant
knowledge from the knowledge base.

Likewise, interactive visualisations could allow to modify the project resources. A
Gantt diagram about the project workplan could offer ways to e.g. add resources to
a task, move task start and end via drag and drop, etc. Besides user interface issues,
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this kind of editing also involves reasoning. In this case, reasoning is in a sense “two
way” (similar to view updates in relational databases), because on the one hand rea-
soning serves to transform the data in a suitable visualisation and on the other hand it
transforms the visualisation back into the data.

Planning support. Project management also involves a lot of planning. A common
planning task in project management is appointment scheduling. For example, a project
manager might want to find a possible meeting date for all persons involved in a certain
component of a software project when creating the description of the meeting in the
project wiki. Obviously, this task requires different kinds of rather complex reasoning,
like temporal reasoning for finding out appropriate dates and rule-based reasoning for
determining whom to invite to the meeting. It would also be desirable for the system
to fail gracefully in case a meeting date where all involved persons are free cannot be
determined: in such cases the system should suggest a “good enough” solution.

Similarly, planning support in a semantic wiki can be useful in other project man-
agement areas, like resource planning (which requires constraint checking) or issue
tracking.

Workflow support. A third area where reasoning in a semantic wiki for project man-
agement is important is workflow support. In a semantic wiki, project workflow models
could be represented by some kind of ontology (not necessarily OWL DL, specific
process modelling languages might be more appropriate). Reasoning would be used to
guide the user along this workflow. For example, when taking meeting minutes, the sys-
tem could automatically offer to enter action items into an action item list and provide
a suitable editor for this task. For an action item, the semantic wiki could then offer to
move along a defined workflow, e.g. from the state “open” to the state “closed”. In the
case of bug tracking, specific support for such workflows is already given by the system
trac.10 However, this support is specific to the case of bug tracking and does not follow
an explicitly represented model.

Challenges and Issues. In order to realise a semantic wiki for project management,
there are many challenges that need to be addressed in the area of reasoning. In the
following, we mention a few of the most important ones (the challenges mentioned in
the other scenarios are mostly relevant here as well):

– Temporal reasoning. Many tasks in project management require to reason over tem-
poral data (e.g. appointment scheduling or task editing). However, current knowl-
edge representation formats and reasoning languages do not offer much support in
this area.

– Constraint verification. To ensure consistency of the data, a reasoning system needs
to support the verification of constraints. Constraint verification, although not “gen-
erative”, can also be considered a reasoning task, and has been studied much in the
context of relational databases.

– Active and reactive rules. Many functionalities cannot be sufficiently covered by
deductive systems. A system that closely interacts with users needs to support active

10 http://trac.edgewall.org

http://trac.edgewall.org
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or reactive behaviour. Active rules (or “Event Condition Action” rules) are a way to
address this issue. In the context of the (Semantic) Web, such rules have e.g. been
studied in the language XChange [16].

6 Related Work

Besides IkeWiki and SMW, a number of other semantic wiki implementations have
been created, most of which remain research prototypes [17,18,19,20]. To the best
of our knowledge, the most notable (and stable) system currently is MaknaWiki [21],
which is similar to SMW and IkeWiki with respect to the supported kinds of easy-to-use
inline wiki annotations, and various search and export functions. In contrast to SMW,
IkeWiki and MaknaWiki introduce the concept of ontologies and (to some extent) URIs
into the wiki, which emphasises use-cases of collaborative ontology editing that are
not the main focus of SMW. MaknaWiki is tailored for closed-domain settings where
a suitable schema for annotation can be anticipated. It supports the usage of expressive
ontologies and integrates according inferencing features, but allows only administrators
to change the ontological schema.

Besides text-centred semantic wikis, a number of collaborative database systems
have appeared recently. Examples of such systems include OntoWiki [22], Open
Record11, Metaweb12, and OmegaWiki13, most of which are still preliminary or only
very recent. Such systems typically use form-based editing, and are used to maintain
data records instead of texts. OntoWiki draws from concepts of semantic technologies
and provides a built-in faceted (RDF) browser. The other systems have their background
in relational databases.

7 Perspectives and Conclusion

In this article, we discussed how reasoning can improve the use of semantic wikis in the
areas of browsing, querying, editing, and validation, and which requirements and future
challenges arise from these use-cases. We also highlighted first simple applications of
reasoning within the semantic wiki systems IkeWiki and Semantic MediaWiki, which
we currently develop, and described scenarios for further, more complex applications.
Based on the above analysis, we plan to further improve reasoning support in a number
of ways.

IkeWiki will be extended by a rule-based reasoning engine that allows to define more
complex “views” on the RDF data in the knowledge base. Current experiments with
connecting to SWI Prolog have been promising, but this system is not yet stable enough
for inclusion in the main distribution. Second, we plan to extend IkeWiki by support for
project management tasks, such as appointment scheduling and document management.
To this end, we are currently investigating customised editing based on knowledge about
the content of a wiki page as described in the third scenario.

11 http://www.openrecord.org
12 http://www.metaweb.com/
13 The former WikiData, http://www.omegawiki.org

http://www.openrecord.org
http://www.metaweb.com/
http://www.omegawiki.org
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Semantic MediaWiki aims at providing a platform that can scale to the size of
Wikipedia, and thus powerful reasoning is strongly constrained by performance require-
ments. The current stand-alone storage model based on MySQL will soon be augmented
with optional bindings for (presumably faster) RDF stores. Bindings for reasoners as
in [9] are also considered, but are hindered by the restricted query languages of many
reasoners.14 The main goal for extending expressivity are role hierarchies and role com-
position, as well as efficient DL constraints in the style of [12]. We do not intend to sig-
nificantly increase the expressivity of the query language, since while sub-polynomial
in complexity, queries are already very challenging in real-world scenarios.

We believe that experiences gathered in semantic wikis are highly relevant to many
other applications of expressive semantics, since they provide typical situations for a
number of problems that still need to be overcome by the Semantic Web community.
As semantic wikis have many characteristics of “small semantic webs”, many of these
issues are equally relevant for the Semantic Web as a whole.
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Abstract. In the literature semantically enabled knowledge technologies are 
described as a new kind of web ([1], XI). In the science domain many ideas and 
interesting tool prototypes exist. In companies, however, there is less estimation 
for the effort and ways for using semantic web technologies. Special application 
scenarios for business purposes and experiences in real-life projects are 
necessary ([1], 303). This paper focuses on the need for semantic technologies 
from a business perspective and explains ideas of a scientific partner. 
Furthermore, the collaborative research project SoftWiki is introduced. 

Keywords: Semantic Web, Wiki systems, Knowledge Engineering. 

Currently, Wikis are used in T-Systems Multimedia Solutions for knowledge 
management, project management and requirements engineering. Limitations of 
current search technologies within Wiki systems are known in literature and named 
by different authors (e. g. [2], 141ff.) as followed: 

• Query construction 
• Lack of semantics 
• Lack of context 
• Presentation of results 
• Managing heterogeneity 

By using semantic representations or annotations the way of information 
representation can be improved ([1], 3ff). Finding useful pieces of knowledge within 
heterogeneous data with little human involvement (known as knowledge discovery) is 
the key for successful knowledge management ([3], 10). 

Within the BmBF-project SoftWiki, which is jointly conducted with the Universities 
of Leipzig, Essen-Duisburg and other companies, T-Systems Multimedia Solutions 
gains experiences by using semantic web technologies and develops strategies for their 
applications within different projects. The aim of the cooperative research project 
SoftWiki is to support the collaboration of all stakeholders in software development 
processes particularly with regard to software requirements. User groups, which tend to 
be very large and spatially distributed, shall be enabled to collect software 
requirements, to enrich them semantically and to classify and aggregate them. 
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The following project (from T-Systems’ area of business) is a good example: An 
electronic shop software had to be developed for a large multi-national cooperation, 
where Requirements Engineering with a large and distributed user group plays a 
significant role. There is a special Requirements Engineering related task in the early 
phase of the extraction of requirements, which is still insufficiently supported by 
current tools. Involving a total of 63 stakeholders into the project caused a large 
amount of effort concerning coordination and documentation, which could not be 
handled properly by current tools. 

The SoftWiki solution will be based on Semantic Web standards for terminological 
knowledge representation (such as RDF, RDF-Schema and OWL) and will be 
implemented with the help of generic means of semantic collaboration. This 
implementation will use next generation Web user interfaces (in the spirit of Social 
Software and the Web 2.0) fostering completely new means of Requirements 
Engineering with very large user groups. 

Social Requirements Engineering has been identified as a special scenario of agile 
and distributed Knowledge Engineering. For this reason, the SoftWiki tool contains 
the following functionalities: 

• a knowledge base visualized on the web as an information map, with 
different views on instance data 

• intuitive wiki-like authoring of semantic content 
• social collaboration 
• semantic enhanced search strategies 
• traceability of changes 
• optional comments and discussions for every single part of the requirements 

engineering knowledge base 
• Rating and Measurement of the popularity of content  
• reward of the user activity 

These techniques are used to accomplish the overall goal of lowering the entry barrier 
for collaboration based on semantic technologies. The SoftWiki tool is based on the 
generic knowledge engineering tool OntoWiki ([4]) as shown in the following figure: 
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The following base functionality is provided by OntoWiki: (1) to browse the 
contents of a knowledge base (KB) according to its class tree, (2) to search the KB for 
a keyword, (3) to select a different knowledge base, (4) to view a list of instances 
belonging to the selected KB and class, and to filter or to adopt the current view of the 
instances according to detected properties (and values). 

 

In addition to the presentation of all information attached to a certain instance in a 
textual representation, different views, e.g. the map or the calendar view (as shown 
above) allow to visualize the KB content in various ways. 

 

A semantic search engine enables the user to filter the results of an ordinary 
keyword search according to appropriate classes and properties. For example, a search 
for “York” can be restricted to the classes “Person” or “Address” (as shown above). 

Based on this generic knowledge engineering functionality, the SoftWiki tool is 
able to create, enrich and manage requirements adhering to the requirements ontology 
[5], which was developed within the SoftWiki project and which is depicted in the 
figure below. 

Main advantages of the SoftWiki tool compared to traditional Requirements 
Engineering tools are: (a) the web based accessibility resulting in ease of use (no 
software has to be deployed and people can be invited to collaborate by sharing a 
simple Web link), (b) the schema flexibility (the requirements ontology can be easily 
enhanced and extended in application and domain specific ways), (c) the increased 
interlinking possibilities (relevant information which is accessible on the Web or 
Intranet can be easily referenced and is just one click away). 
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The implementation of the tool within production processes of T-Systems is still in 
progress. Hence, comprehensive evaluation results are still missing. The ultimate goal 
is to employ Requirements Engineering knowledge bases created by using the 
SoftWiki tool as crystallization points for enterprise wide information integration. 
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Abstract. Today customers want to use powerful search engines for their huge 
and increasing content repositories. Full-text-only products with simple result 
lists are not enough to satisfy this community. Different content sources require 
different analyzing and indexing strategies and a content-specific result set 
presentation. There is a lot of research in the field of using semantic web tech-
nologies for information retrieval. A wide range of useful standard vocabularies 
and powerful frameworks have been developed that can be used to gather, 
transform and store metadata. However, in practise we see a gap between the 
state of art of information retrieval and customer needs with a defined prise-
performance relation. It is a challenge to index a large file server with heteroge-
neous content annotated with metadata from different vocabularies, to provide 
an ontology-based navigation, to produce semantic annotated search results, to 
use faceted browsers as powerful filtering mechanism and do that with an out-
of-the-box solution, which is stable, has a good performance and provides a 
simple way to configure it. With this viewpoint we present in this paper the  
usage of RDF-based semantic descriptions in an enterprise search solution de-
veloped at interface:projects.This paper covers lessons learned from developing 
a metadata-focused information retrieval system called inter:gator1. Especially 
we discuss the challenges and possible solutions in an enterprise (-wide) search 
scenario, and show the place where semantic descriptions matter in such a  
solution. 

1   What Is Enterprise Search? 

First of all, enterprise search means federated search in different content sources. In 
our context, content is unstructured text from documents, where a document can be a 
text document, an email or a database record. On the other side we can interpret a 
JPEG-picture combined with IPTC-metadata as a semi-structured document. 

Enterprise search can be a stand-alone IT-solution or is embedded in a content 
management system. In practice enterprise content management is more a vision as an 
IT-solution. So an enterprise search solution has to integrate several content reposito-
ries. The research field of Semantic Desktop works on the other end of the software 
stack – user interaction with content on the level of application clients, desktop and 
                                                           
1 http://www.intergator.de/ 
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search tools. But Semantic Desktop depends on a semantic backend. At this point all 
aspects come together: powerful enterprise search needs semantic context information 
from a metadata repository and Semantic Desktop, so for our work there are no differ-
ences between enterprise search and Semantic Desktop. 

 

Fig. 1. inter:gator desktop client 

2   Challenges for Search Solutions 

The main challenge for indexing and search time is the amount of data. If we have 
10.000 pages on a web server, we can do all analysis necessary for a rich search solu-
tion. But if we want to index a file server with >1.000.000 documents it is very strong 
to do more with it as full-text indexing (e.g. in such usage scenarios it is not reason-
able to perform detailed linguistic and text structure analysis). Here are limitations for 
semantic notation of metadata also (see below). 

Second challenge is the quality of data and text extraction tools. This is the ground of 
a universal search solution. No semantic analysis makes sense if the text and metadata 
extraction part is not a stable piece of software. It must run 7x24 hours without crashes 
and memory leaks (horrible content of many PDF-documents is one example for that). 

Often different content sources require handling of different authentication sche-
mas. Then security access for search results is the next challenge (think about differ-
ent user management of databases and fileservers). 
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Last but not least – complexity of the processing infrastructure and semantic 
framework which consist of crawlers, modeling tools, analyzers, visualization com-
ponents and semantic integration parts). Additionally there are limitations for linguis-
tic components in mixed-language scenarios like dealing with IT-content. 

3   Full-Text Search vs. Metadata Search 

For huge content repositories (also the internet) you can only do full-text search until 
we will have Web 3.0 (the Semantic Web). The question is: which functionality is 
possible for an enterprise search solution with few million documents? Semantic-
driven search technologies need lots of metadata. Metadata is the key for context-
aware searching and the visualization of search results according the semantic aspects 
of the result set (see fig. 1). 

What users helps is a combined full-text and metadata search with powerful se-
mantic-aware (metadata-aware) filtering and proposal functions. 

4   Document Processing 

After extracting the text documents are processed in a processing queue controlled by 
a workflow. Several processors are responsible for analyzing full-text and document 
properties to generate additional metadata like keywords, key phrases and to extract 
named entities (person names, companies, geographic items etc.). This can be done 
with dictionary and/or rule-based classification mechanisms. A widely used frame-
work for this is GATE2. 

5   Metadata Repository and Information Model 

The base of semantic search is a semantic description of the metadata set. On top of 
this description we can use additional information models expressed in RDF(S) or 
OWL. But in our experience it is necessary to separate property descriptions from the 
property store. In our case the Jena3 RDF-Store was the main bottle-neck to scale in-
dexing and query performance. Possible solutions are a database-only (not RDF-
based) property store or to store all properties in the full-text index also (as we do 
now with lucene4). 

In the past, most of the knowledge management products use topic maps for  
semantic descriptions and visualize it as a semantic network. Now more and more  
solutions use a RDF(S) or OWL-based model, because of deep influences form the 
Semantic Web research. A lot of Java-based open source software (see footnotes) was 
developed based on the RDF technology. 

OWL descriptions will be used by several components of an information retrieval 
system: system configuration, indexing engine and the search client graphical user  

                                                           
2 http://gate.ac.uk/ 
3 http://jena.sourceforge.net/ 
4 http://lucene.apache.org/ 
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interface (GUI). An important mission of an information model is to deliver a con-
trolled vocabulary as dictionaries with expert terms or taxonomies or more complex 
domain ontologies. 

6   Clustering and Classification 

A main topic of this summer school is reasoning, so it is not necessary to talk about 
the benefit of model-based search query optimization by semantic reasoning, but there 
are other fields to use an information model also. 

Clustering and classification are important techniques to make content accessible 
for users. Most of the established procedures have nothing to do with semantic de-
scriptions. They are all about mathematical algorithms. But classification along On-
tologies (or taxonomies) is an interesting aspect with many practical impacts. 

7   Visualization and User Interaction 

To present the search results better than a simple flat list is very important for satis-
fied search engine usage. The result set size and the number of different document 
properties determines the amount of data to be transferred from the search index to 
the client visualization components. 

An innovative user interface is only usable if it has good performance und usabil-
ity. In the most cases usability can be translated with “simple design”. Very useful 
GUI elements for navigation and filtering are for example hierarchical facetted 
browsers. 

For systematical investigations it is better to provide metadata catalogs as naviga-
tion elements and to present the user statistical views for significant associations be-
tween certain metadata. Analyzing user search terms and result sets allows to generate 
proposals for better search terms regarding the user input. 

The search terms put in by the user are very important to discover the investigation 
context and to deliver proposals for result set grouping and search refinement. If we 
know the search context, it is possible to direct the user in his search process. But in 
an enterprise search solution out-of-the-box we have no hint about the search context. 
For this we would need a semantic description of the world. From the Semantic Web 
we know the effort of this. 
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Abstract. There are various B2B scenarios where many candidate services with 
the same or similar capability (provided by the same or even different service 
providers) can be used for enterprise application integration. Hence, a requester 
driving a B2B integration scenario can choose among several candidate services 
offering a capability satisfying its requests. However, the optimal choice of the 
service to be invoked often depends on the parameters of the request at run-time 
and preferences of the requester. This article describes an approach for a 
dynamic (at run-time) web service selection based on semantic interpretation of 
offered service capabilities and the parameters specifying the run-time request. 
The proposed solution takes into account special conditions on service usage 
either contractually agreed between requester and provider or specified by the 
requester without the knowledge of the provider. In general, those conditions 
restrict the interpretation of the original service capabilities as offered by a 
service provider (and discovered by the service requester) and influence the 
choice of a service. The approach is illustrated on an example from the shipper-
carrier domain. 

1   Introduction 

The advent of Service-oriented Architecture (SOA) and Web Services (WS) opened 
new possibilities for smooth Enterprise Application Integration (EAI) in intra- and 
inter-enterprise scenarios in a loosely-coupled manner. In principle, Web Services 
enabled enterprise applications can be used by anyone, from anywhere, at any time, 
and on any type of platform. The lack of formally represented semantic meaning in 
the WS technology stack causes the tasks of discovering, selecting, composing, and 
binding Web Services being considered as manual steps performed by a human. The 
recent advent of the Semantic Web and Semantic Web Services (SWS) promises new 
standardized means to formally capture the representation of the semantic meaning of 
data and interfaces. This enables the machines to automatically reason and to draw 
conclusions about the “intended meaning”. The so-called Semantic Web Services 
promise a higher degree on automation concerning discovery, invocation, 
composition, and monitoring of Web Services.  

The most general notion of the web service usage process consists of the following 
three phases: web service discovery, web service selection, and web service 
invocation. Thereby, the differentiation between the abstract and concrete service is 
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important. An abstract service is distinguished from a concrete service in that the 
former abstracts from the concrete service parameters which determine the latter. 
Thus, an abstract service describes a class of service parameter configurations that is 
associated with the web service capability. A concrete service describes a concrete 
service parameter configuration as it is delivered by the invocation of a web service. 
Hence, the web service capability description does not contain complete information 
about every possible concrete service that can be delivered by invoking the web 
service. Since the ultimate goal of a potential requester is to find and select a concrete 
service that optimally serves its needs. The selection and invocation steps inevitably 
overlap. Also the possible negotiation of service parameters between requester and 
provider leads to the inevitable invocations of the web service interface. Besides the 
obvious overlap of the conceptually seen different phases, successful service 
discovery does not necessarily lead to successful delivery of a service, since in the set 
of potential service candidates there might be no one that is finally able to define a 
concrete service on which both the requester and provider agree. 

An abstract goal corresponding to abstract service can be used as a search 
criterion for Web Service discovery. Web Service discovery is based on comparing 
(in terms of relevance) the semantic description of an abstract goal (requested 
abstract service) against those of provided abstract services (web service capability 
descriptions). Web Service discovery is performed by matching the goal against 
available web service capabilities. 

Service Selection starts from an already identified set of potential web service 
candidates which have been identified to be relevant for a discovery goal in the 
service discovery phase. It possibly involves negotiation of service parameters, and 
thus, invocation of the candidate Web Service. In general, figuring out which service 
to finally choose is beyond the information contained in the semantic descriptions of 
the discovery goal and web service capability descriptions. In this phase, the 
generalization to abstract services is given up and a concrete service with a concrete 
parameter configuration has to be defined, as it will be delivered later on. 

2   Discovery and Selection in B2B Integration Scenarios 

There are B2B integration scenarios that can be characterized by frequently occurring 
requests for a standardized service over a certain period of time. However, the number 
of requests (the total transaction value) usually justifies the efforts to negotiate about 
requester-specific conditions for service usage for a requester as well as for provider. 
The requester-specific conditions can be seen as constraints on the web service 
capability and must be consistently applied on the requester as well as provider side. 
These constraints cannot be part of the published web service capability since they are 
requester-specific, i.e., in general, for each requester different. Furthermore, there are 
also scenarios where the requester sets constraints on the service capability usage 
according to its own preferences. Hence, service requester does not negotiate with the 
provider on requester-specific conditions, i.e., it accepts the general terms of the 
provider. This type of constraints defines business rules of the requester.  

The web service usage process for those kinds of scenarios can be characterized by 
a negotiation phase that results in a “service contract” or “service agreement” 
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restricting the usage of the “static part” of the web service capability and potentially 
influencing its “dynamic part”. “Static part” means here the declaratively described 
and published parameters of a WS capability. “Dynamic part” comprises the 
parameters of the WS capability that can only be accessed through the invocation of the 
WS interface. The contract can be used for an automatic pre-selection of suitable WS 
during subsequent concrete service requests. The pre-selection criteria apply to concrete 
service requests as long as the respective contract remains unchanged. A web service 
capability can be described as a set of service instances that can be potentially delivered 
by invoking the web service. A contract between a requester and provider can be seen as 
a subset of this set. A concrete request during the invocation of the web service can then 

be seen as an instance 
of the contract, the 
capability or some 
more general set. 

The result of the 
discovery phase based 
on the abstract goal 
describing the set of 
all potentially intended 
concrete requests is a 
list of web services 
that can completely or 
partially serve this 
goal. The web service 

capabilities may overlap. Subsequently, the result of the negotiation phase is a set of 
contracts that are subsets of the respective service capabilities at the one hand and 
subsets of the abstract goal at the other. Similarly to WS capabilities, the contracts 
may also overlap and eventually do not cover the abstract goal completely. Therefore, 
at runtime, WS selection is required if a concrete request is within the scope of 
overlapping contracts. It may also happen that some concrete requests can not be 
served at all, especially, if in the negotiation phase the abstract goal has not been 
completely covered by the set of available contracts. The introduced concepts are 
illustrated in the above figure. In principle, service selection can be implemented 
within the business logic of the requester’s application, e.g., through some rule-based 
technology or even hard coded. In the following we introduce an elegant and compact 
solution that is completely configurable in declarative way. The introduced approach 
relies on Description Logics (DL) [1] and semantic techniques derived from the 
approach for semantic web service discovery introduced in [2]. 

In order to apply semantic discovery techniques introduced in [2] to the discovery 
and selection problem described above a domain-specific ontology is required. Based 
on that ontology an abstract service capability has to be build. The abstract service 
capability is provider-independent and covers all possible WS capabilities within the 
domain of discourse. For integration with some Semantic WS framework the abstract 
service capability must extend the WS description part, e.g., in OWL-S it’s the 
“Service Profile”. WS capabilities of the service providers and the abstract request of 
a service requester can be modeled as sub-concepts of the abstract WS capability.  
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The abstract request and WS capabilities are then used in the discovery phase in order 
to identify potential providers to negotiate with. 

In the case of successful 
negotiations, the contract 
between a requester and 
service provider has to be 
modeled as a sub-concept of 
the WS capability. The 
concrete request is then 
described either as an instance 
or as a most specific sub-
concept of the abstract WS 
capability according to the 
used ontology (see figure on 
the left for illustration). This 
means, a concrete request can 
be served by a Web Service if 
the subsumption test between 
the concrete request and the 

contract associated with a WS capability is successful. If several contracts match the 
concrete request a second selection step is required in order to choose between the 
remaining Web Services. This step usually requires invocation of the Web Services in 
order to get information necessary for the final selection according to the goals of the 
requester. The concrete selection goals are in general domain- and requester-specific 
making a generic solution complicated or even impossible. 

3   Carrier Shipper Example 

The application of the methodology described above is demonstrated now on a use 
case from the carrier/shipper domain. In this scenario, a shipper discovers potential 
carriers using an abstract shipment request and negotiates with them at the 
configuration time of the shipping system. The selection of a carrier for a concrete 
shipment request is performed (automatically) at run time.  

Carriers, think for instance on some well known parcel carrier like UPS, offer a 
capability to ship some goods from one location to another (abstract shipment 
capability). To keep the example simple, we assume in the following that each carrier 
serves defined geographic locations (regions, countries, cities, zip code ranges, etc.) 
and accepts distinct types of items to be shipped (e.g., parcels, documents, containers, 
etc.), i.e., it provides a carrier-specific shipment service capability. We presume the 
existence of domain-specific (geographic locations and logistics) ontologies 
describing concepts and relationships used in the following examples. A shipper 
negotiates with a carrier on some shipper-specific conditions and may also have some 
internal preferences, i.e., in the case of successful negotiations a contract is 
established. Having the contract a shipper is prepared for automatic carrier selection 
at run time depending on the characteristics of the concrete shipment, internal 
preferences, and special conditions negotiated with carriers. Some information, e.g., 
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the price for a concrete shipment or the duration of the delivery, can only be accessed 
by invoking a web service of a carrier. 
Therefore, possible final selection goals could 
look like “take the cheapest” or “take the 
fastest”. 

Now, a formally described “Abstract 
WS Capability” for the shipment 
domain has to be created. We call it 
“Shipment” and define as: “Ship one or 
more items of type ShippingItem from 
exactly one location of type Location to 
exactly one another location of type 

Location.” (The formal description in (DL) is provided in the box on the left side).  
A carrier expresses the capabilities of its shipment services by inheriting and 

refining the ranges on the properties of the concept “Shipment”. (Two examples in 
DL are provided in the box on the left side.) Similar to carriers, a shipper can express 
its shipping needs, i.e., its “Abstract Request” also by inheriting and refining the 

ranges on the properties of the 
concept “Shipment”.  

If, for instance, the shipper has to 
ship any items of types “Parcel”, 

“Document” and “Container” from Germany to any locations in “Europe”, 
“NorthAmerica” and “AsiaPacific” then its abstract request can be defined in DL as 
illustrated in the box above. Since Abstract Request of a Shipper X has an intersection 

with the WS capabilities of the carriers A 
and B, the shipper can negotiate with the 
both carriers about the conditions on the 
usage of their shipping services. 

The result of successful negotiations 
could then look like the contracts on the 
left. The contract with carrier A means: 

“Ship any items of type “Parcel” from “Germany” to any location in (“USA” or 
“Canada”). Accordingly, the contract with carrier B means: “Ship any items of type 
“Document” from “Germany” to any location in the region “AsiaPacific””.  

Now, let’s assume that the 
following concrete shipment 
requests occur at run time (see the box on the left). In order to figure out all the carrier 
web services capable to perform a concrete shipment request, a subsumption test 
between each of the available contracts and the concrete shipment request has to be 
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executed. The results of the subsumption tests between the two sample requests and 
the contracts with the carriers A and B are depicted in the box. 

Obviously, according to the available contracts RequestA can be performed by 
carrier A but not by carrier B. Quite in contrary, the RequestB can be performed by 
carrier B but not by carrier A.  

Since in the provided examples the contracts do not overlap, i.e., the intersection 
test (ContractA.ShipperX ⊓ ContractB.ShipperX) is not satisfiable wrt. KB, there are 
no concrete shipment requests that can be potentially served by both carriers. 
However, this is of course possible, e.g., if the ContractA.ShipperX would be re-
negotiated to ship not only  parcels but also documents then a new concrete shipment 
RequestC: “Ship a Document  from Frankfurt to NewYork” will be subsumed by both 
contracts. In the case of multiple carrier selection, the selected services must be 
ranked according to some selection goal. This usually requires the invocation of the 
carrier web service in order to retrieve information required for the final decision. The 
introduced solution has been implemented as a WSDL Web Service mediating 
between a shipper application and carrier web services. The prototype implementation 
enables the configuration of new carriers or update of the existing carriers in a 
completely declarative way. 

While the most of the work in the area of Semantic Web Services focuses on the 
technical interoperability, i.e., the interoperability of the interfaces (inputs, outputs, 
ordering of the exchanged messages, etc.) the proposed approach focuses on the 
business compatibility, i.e., how to ensure the consistency of business requirements in 
B2B integration context under the assumption that systems are technically connected 
in an interoperable way. 
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Auer, Sören 330

Berstel, Bruno 183
Boley, Harold 269
Bonatti, Piero A. 240
Bonnard, Philippe 183
Brand, Gunnar 334
Bry, François 1, 183

Crenze, Uwe 334

Eckert, Michael 183
Eisinger, Norbert 1
Eiter, Thomas 1

Friesen, Andreas 338
Furche, Tim 1

Gottlob, Georg 1

Hermsdorf, Kristian 334

Jungmann, Berit 330

Kifer, Michael 269
Kluge, Sebastian 334
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