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Preface

This volume contains the proceedings of the 23rd International Conference on
Logic Programming, ICLP 2007, held in the World Heritage City of Porto, Por-
tugal, September 8–13, 2007. The conference was colocated with seven pre and
post-conference workshops:

– The 8th Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-VIII)

– The 2nd International Workshop on Applications of Logic Programming to
the Web, Semantic Web and Semantic Web Services (ALPSWS 2007)

– Answer Set Programming: Advances in Theory and Implementation (ASP
2007)

– The 4th Workshop on Constraint Handling Rules (CHR 2007)
– The 7th International Colloquium on Implementation of Constraint and

Logic Programming Systems (CICLOPS 2007)
– Workshop on Constraint Based Methods for Bioinformatics (WCB 2007)
– The 17th Workshop on Logic-Based Methods in Programming Environments

(WLPE 2007)

Since the first conference held in Marseilles in 1982, ICLP has been the pre-
miere international conference for disseminating research results in logic pro-
gramming. The present edition of the conference received 74 submissions from
23 countries: Argentina (1), Australia (4), Belgium (6), Brazil (1), Canada
(2), Finland (2), France (4), Germany (3), Greece (1), Hungary (2), India (1),
Israel (1), Italy (13), The Netherlands (1), Poland (1), Portugal (10), Russia (2),
Singapore (2), South Korea (1), Spain (6), the United Arab Emirates (1), the
USA (7), and the UK (2). The Program Committee selected 22 technical papers
for presentation and inclusion in the proceedings. In addition, the program also
included 15 poster presentations.

As in the past, the ICLP Program Committee selected the best paper and the
best student paper. The Best Paper Award went to Sabrina Baselice, Piero Bon-
atti and Giovanni Criscuolo, for their paper “On Finitely Recursive Programs,”
while Matti Järvisalo and Emilia Oikarinen won the Best Student Paper Award
for their paper “Extended ASP Tableaux and Rule Redundancy in Normal Logic
Programs.”

The highlights of ICLP 2007 included invited talks by Gerhard Brewka titled
“Preferences, Contexts and Answer Sets” and by Chitta Baral, titled “Towards
Overcoming the Knowledge Acquisition Bottleneck in Answer Set Prolog Appli-
cations: Embracing Natural Language Inputs.” The program also featured four
invited tutorials: “Answer Set Programming for the Semantic Web” by Thomas
Eiter, “Coinductive Logic Programming and Its Applications” by Gopal Gupta,
“Multi-Paradigm Declarative Languages” by Michael Hanus, and “Logic Pro-
gramming for Knowledge Representation” by Miros�law Truszczyński.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



VI Preface

ICLP 2007 was organized by the Association for Logic Programming (ALP),
in collaboration with the Organizing Committees of the collocated workshops
and the Computer Science Department at the Faculty of Sciences of the Univer-
sity of Porto. It was sponsored by the Association for Logic Programming, the
Portuguese Association for Artificial Intelligence (APPIA), and the University
of Porto. We greatly appreciate their generous support.

Many people contributed to the success of the conference, to whom we hereby
extend our gratitude and thanks. The General Chair, Fernando Silva, worked
hard to coordinate the overall arrangements of the conference, from the confer-
ence site and sponsoring to budgeting and registration. PC members and several
other external referees provided timely and in-depth reviews of the submitted
papers, and worked hard to select the best papers and posters for the conference
program. The Workshop Chair, Agostino Dovier, and the Doctoral Consortium
Chairs, Enrico Pontelli and Inês Dutra, significantly contributed to the confer-
ence’s rich programme. Salvador Abreu, the Publicity Chair, worked hard to
spread all news regarding the conference, and Ricardo Rocha, the Local Chair,
Michel Ferreira and Pedro Ribeiro orchestrated the website and the myriads of
practical arrangements needed at the conference site. Bart Demoen, indefatiga-
ble after thirteen years of successfully running the Logic Programming Contest,
ran yet another challenging and interesting contest. It goes without saying that
the broad logic programming community contributed the most by submitting
excellent technical and application papers and posters. Last but not least, we
thank the developers of the EasyChair conference management system, which
made our job definitely easier.

September 2007 Verónica Dahl
Ilkka Niemelä

Program Committee Co-Chairs
ICLP 2007
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Towards Overcoming the Knowledge Acquisition

Bottleneck in Answer Set Prolog Applications:
Embracing Natural Language Inputs

Chitta Baral, Juraj Dzifcak, and Luis Tari

School of Computing and Informatics
Arizona State University
Tempe, AZ 85287-8809

Abstract. Answer set Prolog, or AnsProlog in short, is one of the lead-
ing knowledge representation (KR) languages with a large body of theo-
retical and building block results, several implementations and reasoning
and declarative problem solving applications. But it shares the problem
associated with knowledge acquisition with all other KR languages; most
knowledge is entered manually by people and that is a bottleneck. Recent
advances in natural language processing have led to some systems that
convert natural language sentences to a logical form. Although these sys-
tems are in their infancy, they suggest a direction to overcome the above
mentioned knowledge acquisition bottleneck. In this paper we discuss
some recent work by us on developing applications that process logical
forms of natural language text and use the processed result together with
AnsProlog rules to do reasoning and problem solving.

1 Introduction

Answer Set Prolog, or AnsProlog in short, is the logic programming language
whose semantics is defined using the answer set semantics [GL88, GL91]. A
knowledge base in this language consists of rules of the following form:

l0 ← l1, . . . , lm, not lm+1, . . . , not ln.

where li’s are literals. Given an AnsProlog knowledge base KB and a query Q,
we say KB entails Q, denoted by KB |= Q, if Q is true in all answer sets of
KB. A related term, Answer Set Programming (or ASP) often focuses only on
encoding a given problem as an AnsProlog program so that each of its answer sets
encodes a solution of that problem. For knowledge representation and reasoning
both query entailment and problem solving by finding answer sets are important.

Over the last 20 years a large body of work has been done on this language.
These include theoretical building block results, several implementations and
reasoning and declarative problem solving applications. While the book [Bar03]
is a compilation of many of these results, there have been a lot of further de-
velopments since this book was written. Some highlights include the use of SAT
in finding answer sets [LZ02, Lie05], the extension of AnsProlog to allow prob-
abilities [BGR04], the recent system CLASP [GKNS07] and some recent work

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 1–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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2 C. Baral, J. Dzifcak, and L. Tari

on applications involving natural language processing and question answering.
In this paper we focus on the last aspect.

While we seem to be getting closer to an adequate language for creating
knowledge bases, the obstacle of manual knowledge acquisition still haunts the
development of a large body of sizeable knowledge bases. (There are other issues
that have also hampered such development. They include lack of appropriate
tools for facilitating building of knowledge bases such as GUIs, debuggers and
the ability to easily reuse previously coded knowledge modules. Some research
addressing these issues have been taken up recently [BDT06, dVS07].) Project
Halo [FAW+04], an ambitious attempt to encode knowledge of a high school
chemistry book chapter realized the bottleneck of knowledge acquisition in its
phase one and has focused on it in its second phase.

Automatic knowledge acquisition through learning has focused mostly on
learning from observations. However, some recent developments in natural lan-
guage processing and natural language resource compilations has brought us
closer to the possibility of acquiring knowledge from natural language text.
Amongst them is the resource Wordnet [MBF+90], which is much more than
an on-line dictionary; and systems such as LCC [MHG+02, MPHS03] and C&C
[CCt] that can translate natural language text to a logical form. Although these
systems are in their infancy, they suggest a direction to overcome the above
mentioned knowledge acquisition bottleneck. In this paper we discuss some re-
cent work by us on developing applications that process logical forms of natural
language text and use the processed result together with AnsProlog rules to do
reasoning and problem solving. We will particularly focus on our attempt to
build a system that can solve puzzles described in a natural language. We will
also briefly mention our other attempts1, some reported or to be reported in de-
tail elsewhere, in reasoning about cardinality of dynamic sets, reasoning about
travel, question answering and textual entailment; all dealing with natural lan-
guage input.

2 Processing Natural Language Using C&C Tools and
Boxer

In this section we discuss in detail how we use the C&C tools and some postpro-
cessing to process natural language and obtain (some) knowledge in AnsProlog
syntax which together with additional rules allows us to do reasoning and prob-
lem solving.

We start with the C&C [CCt, BCS+04] tools that are used to translate natural
language text into a logic form.

2.1 C&C Tools

The C&C tools consists of a set of tools including a robust wide-coverage CCG
parser [CC07], several maximum entropy taggers(for example the POS tagger
1 Many of these works were done in collaboration with Michael Gelfond and Marcello

Balduccini of Texas Tech University and Richard Scherl of Monmouth University.
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Towards Overcoming the Knowledge Acquisition Bottleneck 3

and Named Entity Recognizer) and a semantic analysis tool Boxer [BCS+04].
Most of them can be used individually, but are designed to be used together. The
system is very robust and the tools have been used in various scenarios, such as
the RTE challenge [RTE], where the problem is to recognize textual entailment;
i.e., to decide if a given hypothesis is entailed by a given text or not. Many of the
tools use statistics and a set of trained models on which the statistical methods
are applied.

When using this system, the extraction of data from the English text is per-
formed as follows. First, the CCG parser [CCt], together with taggers and other
tools, is run on the data to obtain the first basic logic form of the data. Then
the Boxer [CCt] system is used on the parser output to obtain a first order logic
representation of the English text. This is performed sentence by sentence for
the whole text. The Boxer output is, as said, in first order logic and thus contains
variables as well as predicates and quantifiers. We then translate the Boxer first
order logic output to a set of AnsProlog facts.

We now look more closely at each of the steps presented above.

2.2 CCG Parser

The first important step is to obtain the CCG parser output. Note that when
doing this, many other tools are used in the process such as the tagger. Never-
theless, the parser is the most important part of this step. The CCG parser is a
statistical parser with the focus on wide-coverage and high efficiency, producing
a single parse of the text. It is based on the combinatorial categorial gram-
mar(CCG), which is based on the the classical categorial grammar [Woo93].
The CCG parser works on a sentence by sentence basis. That means it parses
and analyzes a single sentence and then moves to another and starts anew with-
out using any information obtained from the previous sentence. Thus by itself,
it is unable to perform and detect things like anaphoras. However, Boxer does
employ a form of anaphora resolution.

The lexical entries of CCG include semantic interpretation and syntactic cat-
egory. The category can not only be a basic category such as noun or verb phrase
and gender, but also a complex category that is obtained recursively from the
basic categories. For example transitive verbs can be given as (S\NP )/NP ,
where ‘S’ is a sentence and NP stands for noun phrase. The delimiters ‘\’ and
‘/’ represent the first and the second argument of the verb respectively.

Let us now look at 2 different examples which illustrate the output of the
parser.

Example 1. Consider the following sentences:
“The first puzzle category is person.”
The output of the CCG parser, together with all the taggers, is as follows:

sem(1,
bapp(’S[dcl]’,
fapp(’NP[nb]’,
leaf(1,1,’NP[nb]/N’),
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fapp(’N’,
leaf(1,2,’N/N’),
fapp(’N’,
leaf(1,3,’N/N’),
leaf(1,4,’N’)))),

fapp(’S[dcl]\NP’,
leaf(1,5,’(S[dcl]\NP)/(S[ng]\NP)’),
leaf(1,6,’S[ng]\NP’)))).

word(1, 1, ’The’, ’the’, ’DT’, ’I-NP’, ’O’, ’NP[nb]/N’).
word(1, 2, ’first’, ’first’, ’JJ’, ’I-NP’, ’O’, ’N/N’).
word(1, 3, ’puzzle’, ’puzzle’, ’NN’, ’I-NP’, ’O’, ’N/N’).
word(1, 4, ’category’, ’category’, ’NN’, ’I-NP’, ’O’, ’N’).
word(1, 5, ’is’, ’be’, ’VBZ’, ’I-VP’, ’O’, ’(S[dcl]\NP)/(S[ng]\NP)’).
word(1, 6, ’person.’, ’person.’, ’VBG’, ’I-VP’, ’O’, ’S[ng]\NP’).

The output consist of 2 parts, first one is a specific parse tree representing the
sentence structure which is used by Boxer for semantic interpretation, with leafs
representing the words of the sentence and the non-leaf nodes are the applied
combinatorial rules. Next we have one line for each word in the sentence. The
structure of the data is as follows. First we have the index of the translated
sentence, followed by the index corresponding to the position within the tree,
the used word, ‘base’ form of the word, followed by it’s types given by various
taggers and finally the category.

Now let us look at a bit more complex sentence.
“Jim Kirby and his partner, asked to name the first man on the moon, nom-

inated Luis Armstrong.”
The parser outputs the following:

sem(1,
bapp(’S[dcl]’,
bapp(’NP[nb]’,
lex(’N’,’NP’,
fapp(’N’,
leaf(1,1,’N/N’),
leaf(1,2,’N’))),

conj(’conj’,’NP[nb]’,’NP[nb]\NP[nb]’,
leaf(1,3,’conj’),
fapp(’NP[nb]’,
leaf(1,4,’NP[nb]/N’),
leaf(1,5,’N’)))),

fapp(’S[dcl]\NP’,
leaf(1,6,’(S[dcl]\NP)/(S[to]\NP)’),
fapp(’S[to]\NP’,
leaf(1,7,’(S[to]\NP)/(S[b]\NP)’),
fapp(’S[b]\NP’,
leaf(1,8,’(S[b]\NP)/NP’),
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bapp(’NP’,
fapp(’NP[nb]’,
leaf(1,9,’NP[nb]/N’),
fapp(’N’,
leaf(1,10,’N/N’),
leaf(1,11,’N’))),

fapp(’NP\NP’,
leaf(1,12,’(NP\NP)/NP’),
bapp(’NP’,
fapp(’NP[nb]’,
leaf(1,13,’NP[nb]/N’),
leaf(1,14,’N’)),
lex(’S[dcl]\NP’,’NP\NP’,
fapp(’S[dcl]\NP’,
leaf(1,15,’(S[dcl]\NP)/NP’),
lex(’N’,’NP’,
fapp(’N’,
leaf(1,16,’N/N’),
leaf(1,17,’N’))))))))))))).

word(1, 1, ’Jim’, ’Jim’, ’NNP’, ’I-NP’, ’I-PERSON’, ’N/N’).
word(1, 2, ’Kirby’, ’Kirby’, ’NNP’, ’I-NP’, ’I-PERSON’, ’N’).
word(1, 3, ’and’, ’and’, ’CC’, ’O’, ’O’, ’conj’).
word(1, 4, ’his’, ’his’, ’PRP$’, ’I-NP’, ’O’, ’NP[nb]/N’).
word(1, 5, ’partner,’, ’partner,’, ’NN’, ’I-NP’, ’O’, ’N’).
word(1, 6, ’asked’, ’ask’, ’VBD’, ’I-VP’, ’O’, ’(S[dcl]\NP)/(S[to]\NP)’).
word(1, 7, ’to’, ’to’, ’TO’, ’B-VP’, ’O’, ’(S[to]\NP)/(S[b]\NP)’).
word(1, 8, ’name’, ’name’, ’VB’, ’I-VP’, ’O’, ’(S[b]\NP)/NP’).
word(1, 9, ’the’, ’the’, ’DT’, ’I-NP’, ’O’, ’NP[nb]/N’).
word(1, 10, ’first’, ’first’, ’JJ’, ’I-NP’, ’O’, ’N/N’).
word(1, 11, ’man’, ’man’, ’NN’, ’I-NP’, ’O’, ’N’).
word(1, 12, ’on’, ’on’, ’IN’, ’I-PP’, ’O’, ’(NP\NP)/NP’).
word(1, 13, ’the’, ’the’, ’DT’, ’I-NP’, ’O’, ’NP[nb]/N’).
word(1, 14, ’moon,’, ’moon,’, ’NN’, ’I-NP’, ’O’, ’N’).
word(1, 15, ’nominated’, ’nominate’, ’VBD’, ’I-VP’, ’O’, ’(S[dcl]\NP)/NP’).
word(1, 16, ’Luis’, ’Luis’, ’NNP’, ’I-NP’, ’I-PERSON’, ’N/N’).
word(1, 17, ’Armstrong.’, ’Armstrong.’, ’NNP’, ’I-NP’, ’O’, ’N’).

In this case, we obtain a similar output, although more complex. The output
is formatted and contains the same information as in the case of the simple
sentence. Let us look at the structure of this sentence. Note that the tree is
divided into several big parts properly representing the sentence. Note that the
first part represents noun phrase ‘Jim Kirby and his partner’ and the verb phrase
‘asked to name the first man on the moon, nominated Luis Armstrong.’. Each
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of them is then further divided into specific parts. For example the noun phrase
is divided again into ‘Jim Kirby’, ‘and’ and ‘his partner’.Thus one can easily
observe the structure of the sentence just by looking at the given tree. Another
point to note is that the some categories contain additional information, which
is given in the square brackets. These are called features and provide additional
information about the category. For example ‘S[dcl]’ means that the sentence is
declarative.

The output is then ready to be used by the next step, Boxer.

2.3 Boxer

The next step is to use the Boxer tool on the CCG parser output to obtain
a logic form from it. As said before, Boxer performs semantic analysis of the
given text. The basic output of Boxer is the Discourse Representation Structures
(DRSs) and the box representations of Discourse Representation Theory (DRT).
However, in addition, one of the Boxer outputs can be a first order logic form
representing the semantics of the sentence. This is very useful as it can be then
be transformed into AnsProlog programs. Boxer does take care of some natural
language issues such as anaphora resolution, which is not covered by the parser.
Let us now take a closer look at the given example.

Example 2. Recall the example sentences presented before:
“The first puzzle category is person.”
“Jim Kirby and his partner, asked to name the first man on the moon, nom-

inated Luis Armstrong.”
The Boxer first order logic output(after running it on the output given by the

CCG parser) of the sentences is:

some(_G5981, some(_G6002, and(and(n_puzzle_1(_G5981),
and(a_first_1(_G6002), and(n_category_1(_G6002),
r_nn_1(_G5981, _G6002)))), some(_G6124,
and(v_person_1(_G6124), and(n_event_1(_G6124),
r_agent_1(_G6124, _G6002)))))))

and

some(_G3117, some(_G3287, some(_G3314, some(_G3252,
some(_G3345, some(_G3469, some(_G3499, some(_G3688,
some(_G3730, some(_G3647, some(_G3803, and(and(p_kirby_1(_G3117),
and(p_jim_1(_G3117), and(n_moon_1(_G3287),
and(p_armstrong_1(_G3314), and(p_luis_1(_G3314),
and(a_first_1(_G3252), and(n_man_1(_G3252),
and(v_nominate_1(_G3345), and(n_event_1(_G3345),
and(r_agent_1(_G3345, _G3287), and(r_patient_1(_G3345, _G3314),
and(r_on_1(_G3252, _G3287), and(a_male_1(_G3469),
and(n_partner_1(_G3499), and(r_of_1(_G3499, _G3469),
and(n_moon_1(_G3688), and(p_armstrong_1(_G3730),
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and(p_luis_1(_G3730), and(a_first_1(_G3647), and(n_man_1(_G3647),
and(v_nominate_1(_G3803), and(n_event_1(_G3803),
and(r_agent_1(_G3803, _G3688), and(r_patient_1(_G3803, _G3730),
r_on_1(_G3647, _G3688))))))))))))))))))))))))), some(_G3154,
some(_G3166, some(_G3536, some(_G3548, and(v_ask_1(_G3154),
and(n_proposition_1(_G3166), and(n_event_1(_G3154),
and(r_agent_1(_G3154, _G3117), and(r_theme_1(_G3154, _G3166),
and(some(_G3412, and(v_name_1(_G3412), and(n_event_1(_G3412),
and(r_agent_1(_G3412, _G3117), r_patient_1(_G3412, _G3252))))),
and(v_ask_1(_G3536), and(n_proposition_1(_G3548), and(n_event_1(_G3536),
and(r_agent_1(_G3536, _G3499), and(r_theme_1(_G3536, _G3548),
some(_G3960, and(v_name_1(_G3960), and(n_event_1(_G3960),
and(r_agent_1(_G3960, _G3499), r_patient_1(_G3960, _G3647)
)))))))))))))))))))))))))))))))

respectively. This can be better visualized as

exists X Y(
n_puzzle_1(X) &
a_first_1(Y) &
n_category_1(Y) &
r_nn_1(X, Y) &
exists Z(

v_person_1(Z) &
n_event_1(Z) &
r_agent_1(Z, Y)

)
)

and

exists X Y Z A B C D E F G H(
p_kirby_1(X) & p_jim_1(X) &
n_moon_1(Y) & p_armstrong_1(Z) &
p_luis_1(Z) & a_first_1(A) &
n_man_1(A) & v_nominate_1(B) &
n_event_1(B) &
r_agent_1(B, Y) &
r_patient_1(B, Z) &
r_on_1(A, Y) &
a_male_1(C) & n_partner_1(D) &
r_of_1(D, C) &
n_moon_1(E) & p_armstrong_1(F) &
p_luis_1(F) & a_first_1(G) &
n_man_1(G) & v_nominate_1(H) &
n_event_1(H)&
r_agent_1(H, E) &
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r_patient_1(H, F) &
r_on_1(G, E) &
exists I J K L(

v_ask_1(I) & n_proposition_1(J) &
n_event_1(I) &
r_agent_1(I, X) &
r_theme_1(I, J) &
exists M(

v_name_1(M) &
n_event_1(M) &
r_agent_1(M, X) &
r_patient_1(M, A)

) &
v_ask_1(K) & n_proposition_1(_G3548)
n_event_1(K) &
r_agent_1(K, D) &
r_theme_1(K, L) &
exists N(

v_name_1(N) &
n_event_1(N) &
r_agent_1(N, D) &
r_patient_1(N, G)

)
)

)

respectively.
Let us now look more closely at the given output. Let us first check the format.

The predicates are of the form x name number(var), where ‘x’ is the specifier,
‘name’ is the actual word, ‘number’ is the wordnet meaning and ‘var’ is the
variable assigned to it. The specifier gives the basic category of the word. Some
of them are as follows:

– ‘n’ : noun
– ‘p’ : person
– ‘o’ : organization
– ‘l’ : location
– ‘a’ : adjective
– ‘v’ : verb
– ‘r’ : relation

When looking at the output, one can easily observe that the relations specify
connections between the nouns. Boxer detects many types of relations including
but not limited to: agent, patient, in, at, as, of and with.

Also note that the links between the words are given using both relations
and variables, as the same variable can be used in place of multiple words (for
example, ‘X’ is used for both ‘Jim’ and ‘Kirby’ thus connecting them), indicating
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they are the same with respect to semantics. This information can then be used
to effectively extract information from the sentence.

Another important thing to notice when looking at this example is that it
seems like some parts of it are repeating itself, only with different variables.
An example of it is the second existential quantifier, ‘exists I J K L’, where ‘I’
and ‘J’ are used in the exact same way and connect the exact same words as
‘K’ and ‘L’. Also note that this ‘doubling’ was not in the parser output. The
problem here seems to be the current version of Boxer. As we will discuss later,
the translation is not perfect and particular words such as ‘his’ (which is present
in the sentence) cause trouble. However, one must add that the overall quality
of the obtained logic form is still good.

2.4 Obtaining the Answer Set Programs

Once we obtain the output form from Boxer, the next step is to translate the
output given as a first order logic form into a set of AnsProlog facts. This is
done in multiple steps, the main parts of the transformation are as follows.

Translating Boxer first order logic output to AnsProlog facts:

– Remove all quantifiers from the output
– Modify each predicate of the form x name number(var), where ‘x’ is the

specifier(‘n’ for noun, ‘v’ for verb, etc.), ‘name’ is the actual word, ‘number’
is the wordnet meaning and ‘var’ is the variable assigned to the word. Change
any such predicate into ‘x(name, number, var).’. Note that this change is re-
quired to be able to reason about specific words and meanings in AnsProlog.

– In case of negation, replace the statement of the form not(p1, p2, ..., pn),
where pi is a predicate for i = 1, 2, ..., n, with −p1., −p2., ...,−pn.. This is
done to preserve negation and to be able to use it in reasoning.

Example 3. Let us recall the 2 examples.

– The first puzzle category is person
– Jim Kirby and his partner, asked to name the first man on the moon, nom-

inated Luis Armstrong.

In this case, the given Boxer output will be translated to:

n(puzzle,1,g5981). a(first,1,g6002).
n(category,1,g6002).
r(nn,1,g5981, g6002).
v(person,1,g6124). n(event,1,g6124).
r(agent,1,g6124, g6002).

object(g5981).
object(g6002).
object(g6124).
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and respectively into:

p(kirby,1,g3117). p(jim,1,g3117).
n(moon,1,g3287).
p(armstrong,1,g3314). p(luis,1,g3314).
a(first,1,g3252). n(man,1,g3252).
v(nominate,1,g3345). n(event,1,g3345).
r(agent,1,g3345, g3287).
r(patient,1,g3345, g3314).
r(on,1,g3252, g3287).
a(male,1,g3469). n(partner,1,g3499).
r(of,1,g3499, g3469).
n(moon,1,g3688). p(armstrong,1,g3730).
p(luis,1,g3730). a(first,1,g3647).
n(man,1,g3647).

object(g3117).
object(g3287).
object(g3314).
object(g3252).
object(g3345).
object(g3287).
object(g3469).
object(g3499).
object(g3688).
object(g3730).
object(g3647).

Notice that by performing this transformation, we keep all the information
contained in the predicates and variables, but lose other information contained
in the first order logic form given by the CCG parser as well as Boxer. Although
this does not cause a problem with the applications that we are working on, in
future one may also need to use the other knowledge contained in the logic form.

The translation also includes some more specific parts with regards to answer set
solvers, such as Smodels [NS97] reserved words translation (for example Boxer
output ‘eq’ is translated into ‘equal’, since ‘eq’ is a reserved word in Smodels),
changing the case of some letters and adding domain predicates for each variable.

Once we obtain the AnsProlog facts from the text, we can combine them with
the rest of the knowledge base.

3 An Application: Solving Puzzles

We now present an application of the given method. We will use the specified
method to solve a set of puzzles obtained from [blp07]. These puzzles each happen
to have 4 domains, each containing 5 elements. To solve any of these puzzles, one
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needs to form tuples of 4 elements, where for each tuple it contains 1 element
from each domain, while all the tuples are mutually exclusive(e.g. any element
can only be in a single tuple). In addition, the conditions regarding the tuples
are given in natural language and a solution must satisfy all of these conditions.

Let us now take a look at a particular puzzle, puzzle number 37 from [blp07].

Example 4 (Quiz game). The domain of the puzzle contains information about a
person, his partner, the place they are from and question they have been asked.

– The persons are: Dick Eames, Helen Ingle, Jim Kirby, Joanna Long and Paul
Riggs.

– The partners are: Ben Cope, Laura Mayes, Nick O’Hara, Ray Shaw and Tina
Urquart

– The towns are: Blunderbury, Errordon, Messford, Slipwood and Wrongham.
– The questions are to name: Babylon wonder, First man on the moon, Mona

Lisa artist, Six-day war length and Trafalgar commander.

There is a total of 7 clues given as follows:

1. The two ladies from Blunderbury were asked which of the Seven Wonders of
the world was in Babylon and got it half right when they replied the hanging
baskets.

2. Helen Ingle and her team-mate were from Errordon.
3. Jim Kirby and his partner, asked to name the first man on the Moon, nom-

inated Louis Armstrong.
4. Laura Mayes, who was half of the team from Slipwood, and Tina Urquart

were partnered with persons sharing a first name initial.
5. Ray Shaw and his partner both knew really that the British commander at

Trafalgar wasn’t Nelson Eddy but their minds went blank just at the wrong
moment.

6. Ben Cope and Dick Eames, who isn’t from Wrongham, were not partners in
the game.

7. Paul Riggs and his partner Nick O’Hara were not the pair who, asked who
painted Mona Lisa, replied Leonardo Da... um...Caprio.

Naturally, the goal of the puzzle is to figure out each pair of people, where
they are from and what question they had been asked. In this case, the solution
is:

(Joanna Long, Tina Urquart, Blunderbury, Babylon wonder)
(Paul Riggs, Nick O’Hara, Wrongham, Six-day war length)
(Jim Kirby, Laura Mayes, Slipwood, First man on the moon)
(Helen Ingle, Ben Cope, Errordon, Mona Lisa artist)
(Dick Eames, Ray Shaw, Messford, Trafalgar commander)

From this one can easily observe that to solve the puzzles in general, one
can do the following. Extract the facts and clues from the text, enumerate all
the possibilities for the extracted data and use clues to derive rules to impose
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restrictions on the possible assignments. Thus in this case, one needs to extract
both the puzzles facts and their respective clues into answer set programming
facts and rules. Let us first look at the fact extraction.

However, looking back at the example one also notices that he needs to know
which names corresponds to men and woman and which have the same initial.
This additional knowledge is assumed to be included in the knowledge base.

3.1 Facts Extraction

The facts are extracted directly from specific input sentences. As said before,
all the puzzles happen to have 4 domains, each of which contains 5 elements.
The problem is that in many cases, some domain elements are not mentioned
in the clues at all. Furthermore, many domains include elements similar to the
other domain, for example first names, making it impossible to have a completely
automatic extraction. Thus, we use the following type of English sentences to
define the domains and their elements. (This is similar to the specification of
domains in the Constraint Lingo system [FMT04].) For the given puzzle we have
(assuming we take into account only first names and represent the questions by
single word, we can as they are all different) the following:

The first puzzle category is person.
The second puzzle category is partner.
The third puzzle category is town.
The fourth puzzle category is question.
The persons are Dick, Helen, Jim, Paul and Joanna.
The partners are Ben, Laura, Nick, Ray and Tina.
The towns are Blunderbury, Errordon, Messford, Slipwood and Wrongham.
The questions are wonder, moon, mona, war and Trafalgar.

The sentence always start with ‘The’, followed by one of the following: ‘first’,
‘second’, ‘third’, ‘fourth’. This specifies which of the 4 domains the element it
is in, for example ‘first’ means 1st domain, ‘second’ means 2nd etc. We use this
to properly connect each puzzle category to one and only one domain. Next
we have the specifier ‘puzzle category is’ followed by the respective category.
In the first case, it is ‘person’ but it can be any word. Then we have a next
sentence of the format ‘The category are’, where category can be any of the
above categories followed by the elements of that particular category. Note that
in the last case, we simplified the questions to one word. This was done in or-
der to improve the performance of the system, in particular the clue extraction
part. However, one might use the whole questions if necessary. These facts are
automatically extracted and there is a set of specific rules that perform this
extraction. Next a set of rules is used to enumerate all possible tuples of 4 ele-
ments. These rules are all contained in the knowledge base about puzzles. In this
particular case, we use 2 predicates h and at, where the first specifies the first
triple of a tuple, while the second predicate includes the first and last element of
the tuple. For example h(joanna, tina, blunderbury), at(joanna, wonder) rep-
resents a tuple (joanna, tina, blunderbury, wonder). This tuple represents the

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Towards Overcoming the Knowledge Acquisition Bottleneck 13

knowledge that Joanna and Tina were the pair from Blunderbury and were
asked the question to name the Babylon wonder. The reason for splitting the
tuples of 4 elements into smaller ones is to improve performance and also to
allow us to have a simpler set of clues extraction rules.

3.2 Clues Extraction

The more interesting part of the natural language processing of the puzzle sen-
tences is the clues extraction. Our initial approach is as follows. We have a set
of templates of rules which specify the conditions of the puzzle; i.e., they specify
which tuple assignments are correct. We then have an extraction system that
‘supplies’ these rules. We will illustrate the way it works on an example. Consider
the following rule template2:

sat(O1) :- h(X,Y,Z), at(X,T), c1x(X,O1), c1y(Y,O1), c1z(Z,O1),
c1t(T), cond(O1).

The head of the rule is the satisfaction predicate; a rule later on will then
require this to be true thus making sure the condition holds for all answer sets.
The ‘h’ and ‘at’ predicates are used to connect the domains of the puzzles.
The template then allows us to specify 4 variables, e.g. 4 domains, first one,
second one, third one and fourth one using predicates ‘c1x’, ‘c1y’, ‘c1z’ and ‘c1t’
respectively. Then the extraction system ‘feeds’ these predicates based on clues,
making this a real rule. The last predicate says it’s a positive rule and also
specifies the rule identifier ‘O1’ used later to ensure all the rules created from
templates are connected to the sentences they were extracted from, all of the
extracted rules are satisfied and that we get only correct answer sets.

For example if we have the clue of the form ‘Jim Kirby and his partner, asked
to name the first man on the moon, nominated Luis Armstrong.’, we can ob-
tain(assuming we have the proper domains) that the first domain element is Jim
and that the fourth is moon(again assuming simplified representations for ques-
tions). Then the extraction system would extract c1x(jim), c1y(Y ), assuming Y
is a variable representing the second domain, c1z(Z), again assuming Z repre-
sents the third domains, and c1t(moon). Then the above template rule would
be equivalent to:

sat(O1) :- h(jim,Y,Z), at(jim,moon), cond(O1).

Note that this is done for all the clues. Clearly, the effectiveness of this system
depends on the accurate extraction from the logic forms. Also, note that during
extraction, we always pick a unique identifier, given by the O1 variable. This
then ensures that the clue is only used for the cases we extracted.

The main idea when extracting clues is as follows. We try to connect each
clue to a sentence of a particular type. In general, one might assume a sentence
2 An alternative template where h is a binary predicate would work fine too. Also,

our use of four domains each with five elements can be easily generalized where the
numbers are not predetermined but are part of the puzzle.
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has a subject, an object and a verb. Now depending on the verb, and the con-
nection between subject and object, we will select which clue will be used for
the sentence. To do this, we look for relation(s) which connects the subject and
the object, and if they are present in the facts representing the sentence. For
example for the sentence ‘Jim Kirby and his partner, asked to name the first
man on the moon, nominated Luis Armstrong.’ and the given clue template, we
use the following set of extraction rules:

extract_template_1(X,Y,Z,T,O1) :- n(man,1,O6), r(on,1,O6,O7),
l(T,1,O7), p(X,1,O4), r(agent,1,O5,O4), v(nominate,1,O5),
v(ask,1,O1),v(name,1,O2), r(agent,1,O1,O3), r(agent,1,O2,O3).

c1x(X, O1) :- extract_template_1(X,Y,Z,T,O1).
c1y(Y, O1) :- extract_template_1(X,Y,Z,T,O1).
c1z(Z, O1) :- extract_template_1(X,Y,Z,T,O1).
c1t(T, O1) :- extract_template_1(X,Y,Z,T,O1).
cond(O1) :- extract_template_1(X,Y,Z,T,O1).

Here assume X, Y, Z, T are variables representing the four puzzle domains
respectively and Oi, where i is a positive integer, represents any variable given
by boxer. In this case, we use ‘O1’ as the identifier of the sentence. Note that
it does not matter which one of the sentence variables we use, since boxer uses
exclusive variables for each sentence. This kind of extraction is performed for all
the clues.

To ensure this condition is satisfied later, we have the following rule:

:- not sat(O1), cond(O1).

This rule guarantees all of the extracted conditions are satisfied.
So far we have discussed the extraction of facts and clues. Now let us look at

the enumeration part. This is done using the following simple set of rules:

nh(X,Y,Z) :- h(X,Y1,Z1), Z != Z1.
nh(X,Y,Z) :- h(X,Y1,Z1), Y != Y1.
nh(X,Y,Z) :- h(X1,Y1,Z), X != X1.
nh(X,Y,Z) :- h(X1,Y1,Z), Y != Y1.
nh(X,Y,Z) :- h(X1,Y,Z1), Z != Z1.
nh(X,Y,Z) :- h(X1,Y,Z1), X != X1.

h(X,Y,Z) :- d1(X), d2(Y),d3(Z), not nh(X,Y,Z).

n_at(X,T) :- at(X1,T), X != X1.
n_at(X,T) :- at(X,T1), T != T1.
at(X,T) :- d1(X), d4(T), not n_at(X,T).

These rules enumerate all the possible combinations. The predicates d1, d2, d3
and d4 represent the four respective domains of puzzle elements. The ‘h’ predi-
cate describes the first three domains; the ‘at’ predicate domains 1 and 4; and
domain 1 elements are used as the identifiers.
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Let us now provide an idea on how to use the system. With both facts ex-
traction and puzzle specification already present, the system works in a simple
way. The system takes English sentences for facts and the English sentences
representing the clues of a particular puzzle. It transforms the puzzle domain
information and clues into first order logic using CCG parser and Boxer, then
uses a script to make them answer set programming facts. Then the general
knowledge and extraction rules are added and the answer sets are computed.
The resulting answer sets represent the solutions to the puzzles.

Thus, combining the extracted facts, the interface which ‘feeds’ the rule tem-
plates, and the general module about puzzles that includes enumeration, rule
templates and some additional information (for example for the given puzzle we
need information about names first initial and men/woman names) we obtain
an AnsProlog program with the following answer set:

h(joanna,tina,blunderbury)
h(paul,nick,wrongham)
h(jim,laura,slipwood)
h(helen,ben,errordon)
h(dick,ray,messford)

at(paul,war)
at(joanna,wonder)
at(jim,moon)
at(helen,mona)
at(dick,trafalgar)

One can easily verify that it corresponds to the solution of the puzzle.
Let us now present some of the current limitations of the system. First, since

the system uses a set of external tools, it automatically inherits the issues that
come with them. At the moment, the most problematic part seems to be current
version of the C&C parser and Boxer. In case of the parser, it has problems
recognizing most types of quotes. Also, many words not found in its dictionary
are not dealt with properly. In case of Boxer, since it uses the output of the
parser, the same problems persist. Also, in case of some sentences, particularly
longer ones, they seem to be translated incorrectly by Boxer despite the fact that
the output of the parser seems correct. We hope at least some of these issues
will be fixed by the next release of C&C tools.

4 Other Applications

In this section we briefly discuss two other applications involving Answer Set
Prolog and natural language.

4.1 Reasoning About Travel

In this subsection, we use examples where there are AnsProlog rules encoding
background knowledge about travel and certain narrative about a person’s travel
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16 C. Baral, J. Dzifcak, and L. Tari

given in English and a question asked in English. Consider the following story
about John’s travel.

1. John took a flight from Paris to Baghdad in the morning of June 15.
2. John would take his laptop on the plane with him.
3. A few hours later the plane stopped in Rome, where John was arrested.
4. The police confiscate John’s possession.

By using a natural language understanding system for the above story, we
extracted the following facts.

– Facts extracted from sentence 1:

h(timepoint(morning),1). object(flight).
h(origin(flight,paris),1).
city(paris). o(take(john,flight),1). person(john).
h(dest(flight,baghdad),1). city(baghdad).
h(date(june,15),1).
day(15). month(june).

– Facts extracted from sentence 2:

o(take(john,laptop),2). person(john). object(laptop).
h(is_in(john,plane),2). vehicle(plane).
h(owned_by(laptop,john),2).

– Facts extracted from sentence 3:

o(stop_in(plane,rome),3). o(arrest_in(john,rome),4).
h(arrested_in(john,rome),5). h(timepoint(afternoon),3).
vehicle(plane). person(john). city(rome).

– Facts extracted from sentence 4:

o(confiscate_pos_of(police,john),5). person(john).
person(police).

The predicates h and o indicate holds and occurs for the above facts. For
instance, o(take(john, flight), 1) means that the action about John taking a
flight occurs at timepoint 1.

With the above story about John, let’s suppose we are interested in asking
the following questions: (1) Where is John on June 15 evening? (2) Who has the
laptop? The questions are automatically translated into the following AnsProlog
rules:

– AnsProlog rule for question 1:

answer_Q1(C) :- city(C), h(is_in(P,C),T), h(date(june,15),T),
h(timepoint(evening),T), P=john.
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– AnsProlog rule for question 2:

answer_Q2(P) :- person(P), h(owned_by(laptop,P),n).

In the AnsProlog rule for question 2, n is a constant that is assumed to be
the last time point of the travel story. To answer the first question, we need to
be able to reason that normally a person P is in city C2 if the destination of his
trip X is C2. There can be exceptions to this rule if for some reason, his trip
is aborted at a certain timepoint. One of the possible reasons for P ’s trip to be
aborted is that P is arrested in another city C1.

h(is_in(P,C2),n) :- person(P), city(C1;C2), object(X),
h(origin(X,C1),T), h(dest(X,C2),T),
not h(aborted(P,X),T1), T < T1.

h(aborted(P,X),T+1) :- person(P), city(C), object(X),
o(arrest_in(P,C),T),
h(dest(X,C1),T1), C != C1.

By using the above rules, the fact h(is in(john, baghdad), n) cannot be in-
ferred, as h(aborted(john, trip), 5) becomes true due to the extracted fact
o(arrest in(john, rome), 4). With the fact h(arrested in(john, rome), 5), we
can infer h(is in(john, rome, 5) using the following rule:

h(is_in(P,C),T) :- person(P), city(C), h(arrested_in(P,C),T).

Using the inertia axiom, the factsh(is in(john, rome), n) andh(date(june, 15), n)
are inferred. We assume that the last timepoint n corresponds to evening when the
previous to last timepointn−1 is afternoon andno timepoint is assigned for evening
by the following rule:

h(timepoint(evening),n) :- h(timepoint(afternoon),n-1),
not h(timepoint(evening),T).

With the facts h(is in(john, rome), n), h(date(june, 15), n) and
h(timepoint(evening), n), we are able to infer the final answer answer Q1(rome)
for the first question.

To answer the second question, the system needs to reason with the fact
that an ownership of an object OBJ is transferred from person P1 to P if P
confiscates P1’s possession. This is captured by the following two AnsProlog
rules:

h(owned_by(OBJ,P),T+1) :- person(P;P1), object(OBJ),
o(confiscate_pos_of(P,P1),T), h(owned_by(OBJ,P1),T).

-h(owned_by(OBJ,P1),T+1) :- person(P;P1), object(OBJ),
o(confiscate_pos_of(P,P1),T), h(owned_by(OBJ,P1),T).

With the above rules, the facts h(owned by(laptop, police), 6) and
−h(owned by(laptop, john), 6) are inferred so that we can infer the answer
answer Q2(police) for the second question.
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4.2 RTE Examples

RTE is an acronym for “Recognizing Textual Entailment.” In an RTE task, given
a hypothesis-text pair, h-t, the goal is to be able to answer “yes” if the system
verifies that h can be entailed from t. The module returns “no” if it realizes that
h cannot be entailed from t, while it returns “unknown” if a conclusion cannot be
reached. Natural language processing is used to extract AnsProlog facts AF (h)
and AF (t) corresponding both h and t. Query rules R(h) are generated from
AF (h) using a rule generator, and rules Th(h, t) relevant to h and t are used
for reasoning. To determine if h entails t, we use the answer set solver Smodels
[NS97] with respect to Th(h, t), R(h) and AF (t). We now illustrate this with
respect to two h-t pairs from RTE [DGM06, BHDD+06].

Example 5 (Yoko Ono Example).

– T : Yoko Ono unveiled a bronze statue of her late husband, John Lennon, to
complete the official renaming of England’s Liverpool Airport as Liverpool
John Lennon Airport.

– H : Yoko Ono is John Lennon’s widow.

After using NLP, the following facts AF (h), AF (t) are extracted from both
h, t:

AF (h) = {h(widow of(x3, x6), 1), name(x6, john), name(x3, yoko),
name(x6, lennon), name(x3, ono)}
AF (t) = {h(husband of(x1, x), 0), o(pass away(x1), 0)), name(x1, john),
name(x1, lennon), name(x, yoko), name(x, ono)}.

The rule generator of the RTE module takes AF (h) and translates it into the
following AnsProlog rules R(h):

answer(yes) :- h(widow_of(X3,X6),1),name(X6,john),
name(X3,yoko),name(X6,lennon),name(X3,ono).

answer(no) :- -h(widow_of(X3,X6),1),name(X6,john),
name(X3,yoko),name(X6,lennon),name(X3,ono).

answer(unknown) :- not answer(yes), not answer(no).

Using the following rule, Th(h, t), that encodes that X is a widow if her
husband X1 passed away together with the facts AF (t) and query rules R(h),
the system returns the fact answer(yes) to indicate that h entails t.

h(widow_of(X,X1),T+1) :- o(pass_away(X1),T),
h(husband_of(X1,X),T).

Now let us consider another RTE example.

Example 6 (Linnaean Society).

– T : Robinson became a fellow of the Linnaean Society at the age of 29 and a
successful gardening correspondent of The Times.

– H : Robinson was a member of the Linnaean Society.
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After natural language processing, the following facts AF (h), AF (t) are ex-
tracted from both h, t:

AF (h) = { name(x1, robinson), name(x5, linnaean), name(x5, society),
h(is(x1, member(x5)), 1) }
AF (t) = { name(x1, fellow), name(x1, robinson), name(x5, linnaean),
name(x5, society), o(become(x1, fellow(x5)), 0) }

The rule generator of the RTE module takes AF (h) and translates it into the
following AnsProlog rules R(h):

answer(yes) :- h(is(X1,member(X5)),1),name(X1,robinson),
name(X5,linnaean),name(X5,society).

answer(no) :- -h(is(X1,member(X5)),1),name(X1,robinson),
name(X5,linnaean),name(X5,society).

answer(unknown) :- not answer(yes), not answer(no).

The following static and dynamic causal rules, Th(h, t), are used to describe
person X1 is a member/fellow of society X2 if X1 becomes a member/fellow of
X2, while X1 is a member of X2 if X1 is a fellow of X2.

h(is(X1,member(X2)),T+1) :- o(become(X1,member(X2)),T).

h(is(X1,fellow(X2)),T+1) :- o(become(X1,fellow(X2)),T).

h(is(X1,member(X2)),T) :- h(is(X1,fellow(X2)),T).

-h(is(X1,fellow(X2)),T) :- -h(is(X1,member(X2)),T).

With the rules Th(h, t), the facts AF (t) and the query rules R(h), the system
then returns the fact answer(yes) to indicate that h indeed entails t.

5 Conclusions

In this paper we discussed initial steps taken towards automatically extracting
knowledge from natural language text and using them together with other hand
coded knowledge to do reasoning and problem solving. Research in this direction
has the potential to alleviate the knowledge acquisition bottleneck that one faces
when building knowledge bases.

We briefly discussed three examples: solving puzzles, answering questions
about travel and recognizing textual entailment. We reiterate that these are
only initial steps and a lot remains to be done. For example, although our for-
mulation could solve several puzzles, it needs to be further generalized to further
broaden the class of puzzles it can solve. In many puzzles there are relationship
between the elements of the domain and the clues use those relations. Some of
these issues are also mentioned in [FMT04]. Thus the formulation in this paper
needs to be further improved to solve a broader class of puzzles.
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In these initial works we have focused on obtaining facts from the natural
langauge processing part. However, the NLP systems that we use produce logic
forms and a next step would be to extract more general knowledge (such as
simple rules), in the AnsProlog syntax, from the logic forms and use them.

An interesting dimension of working on natural language based applications
is that we have come across interesting knowledge representation and reasoning
issues such as reasoning about intentions [BG05] and reasoning about the cardi-
nality of dynamic sets. An example of the later is to find out the cardinality of a
particular class based on English statements about elements joining and leaving
that class or a subclass. We were told that among the 28 questions that could not
be answered by any of the TREC QA systems in 2006, 6 of them involved such
reasoning about cardinality of sets. The lesson we learned from these attempts
is that reasoning with respect to natural language text and queries not only
involves using natural language processing but also sometimes requires devel-
oping interesting knowledge representation rules, such as rules to reason about
membership and cardinality of sets in presence of incomplete knowledge.
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Abstract. Answer set programming (ASP) is a declarative programming
paradigm based on logic programs under stable model semantics, respectively
its generalization to answer set semantics. Besides the availability of rather ef-
ficient answer set solvers, one of the major reasons for the success of ASP in
recent years was the shift from a theorem proving to a constraint programming
view: problems are represented such that stable models, respectively answer sets,
rather than theorems correspond to solutions.

It is obvious that preferences play an important role in everyday decision mak-
ing - and in many AI applications. For this reason a number of approaches com-
bining answer set programming with explicit representations of preferences have
been developed over the last years. The approaches can be roughly categorized
according to the preference representation (quantitative vs. qualitative) the type
of preferences they allow (static vs. dynamic) and the objects of prioritization
(rules vs. atoms/formulas).

We will focus on qualitative dynamic formula preferences, give an account of
existing approaches and show that by adding adequate optimization constructs
one obtains interesting solutions to problems in belief merging, consistency han-
dling, game theory and social choice.

Explicit representations of contexts also have quite a tradition in AI, going
back to foundational work of John McCarthy. A context, intuitively, is a particular
view of a state of affairs. Contexts can also be used as representations of beliefs
of multiple agents.

We show how multi-context systems based on bridge rules, as developed by
Fausto Giunchiglia and colleagues in Trento, can be extended to nonmonotonic
context systems. We first discuss multi-context logic programming systems, and
then generalize the ideas underlying these systems to a general framework for in-
tegrating arbitrary logics, monotonic or nonmonotonic. Techniques from answer
set programming are at the heart of the framework.

We finally give a brief outlook on how the two main topics of the talk, prefer-
ences and contexts, can be combined fruitfully.

Several of the presented results were obtained in cooperation with Thomas
Eiter, Ilkka Niemelä and Mirek Truszczyński.
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Abstract. The Semantic Web [1, 2, 3] aims at extending the current
Web by standards and technologies that help machines to understand
the information on the Web so that they can support richer discovery,
data integration, navigation, and automation of tasks. Its development
proceeds in layers, and the Ontology layer is the highest one that has
currently reached a sufficient maturity, in the form of the OWL Web
Ontology Language (OWL) [4, 5], which is based on Description Logics.
Current efforts are focused on realizing the Rules layer, which should
complement the Ontology layer and offer sophisticated representation
and reasoning capabilities. This raises, in particular, the issue of inter-
linking rules and ontologies. Excellent surveys that classify many pro-
posals for combining rules and ontologies are [6, 7]; general issues that
arise in this are discussed e.g. in [8,9,10]. Notably, the World Wide Web
Consortium (W3C) has installed The Rule Interchange Format (RIF)
Working Group on order to produce a core rule language plus extensions
which together allow rules to be translated between rule languages and
thus transferred between rule systems; a first working draft has been
released recently.

Answer Set Programming (ASP) [11, 12, 13, 14], also called A-Prolog
[15, 16, 17], is a well-known declarative programming paradigm which
has its roots in Logic Programming and Non-monotonic Reasoning [18].
Thanks to its many extensions [19], ASP is well-suited for modeling
and solving problems which involve common sense reasoning, and has
been fruitfully applied to a range of applications including data integra-
tion, configuration, diagnosis, text mining, reasoning about actions and
change, etc.; see [16,17,20].

Within the context of the Semantic Web, the usage of ASP and related
formalisms has been explored in different directions:

– On the one hand, they have been exploited as a tool to encode rea-
soning tasks in Description Logics, like [16,22,23,24,25,26,27].

� This tutorial is based on material and results which has been obtained in joint
work with Giovambattista Ianni (Università della Calabria), Thomas Krennwallner
(TU Wien), Thomas Lukasiewicz (Università di Roma “La Sapienza”), Axel Polleres
(DERI Galway), Roman Schindlauer (TU Wien), and Hans Tompits (TU Wien).

�� The work has been partially supported by the EC NoE REWERSE (IST 506779)
and the Austrian Science Fund (FWF) project P17212-N04.
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– On the other hand, they have been used as a basis for giving a
semantics to a combination of rules and ontologies. Here, increasing
levels of integration have been considered:

• loose couplings, where rule and ontology predicates are sepa-
rated, and the interaction is via a safe semantic interface like an
inference relation e.g. [28,29,30,31,32]

• tight couplings, where rule and ontology predicates are sepa-
rated, and the interaction is at the level of models, e.g. [33, 34,
35,36,37,38,39,10,40]; and

• full integration, where no distinction between rule and ontology
predicates is made, e.g., [41,42,43,44].

In this tutorial, we will first briefly review ASP and ontology for-
malisms. We then will recall some of the issues that come up with the in-
tegration of rules and ontologies. After that, we will consider approaches
to combine rules and ontologies under ASP, where particular attention
well be devoted to non-monotonic description logic programs [45] and its
derivatives [28, 46] as a representative of loose couplings. However, also
other approaches will be discussed. We further discuss the potential of
such combinations, some applications, and finally some open issues.
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ming. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS,
vol. 2736, pp. 584–588. Springer, Heidelberg (2003)

27. Heymans, S., Vermeir, D.: Integrating semantic web reasoning and answer set pro-
gramming. In: Proc. ASP- 2003, pp. 194–208 (2003)

28. Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Proc.
IJCAI-2005, Professional Book Center, pp. 90–96 (2005)

29. Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) EC-
SQARU 2005. LNCS (LNAI), vol. 3571, pp. 737–749. Springer, Heidelberg (2005)

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/
http://www.kr.tuwien.ac.at/projects/WASP/report.html


26 T. Eiter

30. Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the Semantic Web. In: Proc. RuleML-2006, pp. 89–96. IEEE Computer Society
Press, Los Alamitos (2006)

31. Wang, K., Antoniou, G., Topor, R.W., Sattar, A.: Merging and aligning ontologies
in dl-programs. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS,
vol. 3791, pp. 160–171. Springer, Heidelberg (2005)

32. Yang, F., Chen, X., Wang, Z.: p-dl-programs: Combining dl-programs with prefer-
ence for Semantic Web. Manuscript (2006)

33. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logics. In: Proc. WWW-2003, pp. 48–57.
ACM Press, New York (2003)

34. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web rule language combining OWL and RuleML, W3C Mem-
ber Submission. (2004), http://www.w3.org/Submission/SWRL/

35. Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog
and description logics. J. Intell. Inf. Syst. 10, 227–252 (1998)

36. Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN.
Artificial Intelligence 104, 165–209 (1998)

37. Rosati, R.: Towards expressive KR systems integrating datalog and description
logics: Preliminary report. In: Proc. DL- 1999, pp. 160–164 (1999)

38. Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. Web Sem. 3, 61–73 (2005)

39. Rosati, R.: DL+log : Tight integration of description logics and disjunctive datalog.
In: Proc. KR 2006, pp. 68–78. AAAI Press, Stanford (2006)

40. Yang, F., Chen, X.: DLclog: A hybrid system integrating rules and description
logics with circumscription. In: Proc. DL 07 (2007),
http://www.inf.unibz.it/krdb/events/dl-2007/

41. Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming
live together happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 501–514. Springer, Heidelberg (2006)

42. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A logic for hybrid rules. In:
Proc. RuleML 2006, IEEE Computer Society Press, Washington (2006),
http://2006.ruleml.org/online-proceedings/rule-integ.pdf

43. de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic
and hybrid rules. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007.
LNCS, vol. 4524, Springer, Heidelberg (2007)

44. Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Proc. IJCAI 2007, pp. 477–482. AAAI Press, Stanford (2007)

45. Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. In: Proc. KR 04, pp.
141–151 (2004)

46. Eiter, T., Ianni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive
queries in description logic programs. In: Proc. DL 07 (2007),
http://www.inf.unibz.it/krdb/events/dl-2007/

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://www.w3.org/Submission/SWRL/
http://www.inf.unibz.it/krdb/events/dl-2007/
http://2006.ruleml.org/online-proceedings/rule-integ.pdf
http://www.inf.unibz.it/krdb/events/dl-2007/


Coinductive Logic Programming and Its

Applications

Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya

Department of Computer Science,
University of Texas at Dallas,

Richardson, TX 75080

Abstract. Coinduction has recently been introduced as a powerful tech-
nique for reasoning about unfounded sets, unbounded structures, and
interactive computations. Where induction corresponds to least fixed
point semantics, coinduction corresponds to greatest fixed point seman-
tics. In this paper we discuss the introduction of coinduction into logic
programming. We discuss applications of coinductive logic programming
to verification and model checking, lazy evaluation, concurrent logic pro-
gramming and non-monotonic reasoning.

1 Introduction

Recently coinduction has been introduced as a technique for reasoning about
unfounded sets [10], behavioral properties of programs [4,7], and proving liveness
properties in model checking [13]. Coinduction also serves as the foundation for
lazy evaluation [8] and type inference [16] in functional programming as well as
for interactive computing [6,25].

Coinduction is the dual of induction. Induction corresponds to well-founded
structures that start from a basis which serve as the foundation for building
more complex structures. For example, natural numbers are inductively defined
via the base element zero and the successor function. Inductive definitions have
3 components: initiality, iteration and minimality [6]. Thus, the inductive def-
inition of list of numbers is as follows: (i) [ ] (empty list) is a list (initiality);
(ii) [H|T] is as a list if T is a list and H is some number (iteration); and, (iii)
nothing else is a list (minimality). Minimality implies that infinite-length lists
of numbers are not members of the inductively defined set of lists of numbers.
Inductive definitions correspond to least fixed point interpretations of recursive
definitions.

Coinduction eliminates the initiality condition and replaces the minimality
condition with maximality. Thus, the coinductive definition of a list of numbers
is: (i) [H|T] is as a list if T is a list and H is some number (iteration); and,
(ii) the set of lists is the maximal set of such lists. There is no base case in
coinductive definitions, and while this may appear circular, the definition is well
formed since coinduction corresponds to the greatest fixed point interpretation of
recursive definitions (recursive definitions for which gfp interpretation is intended
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are termed corecursive definitions). Thus, the set of lists under coinduction is
the set of all infinite lists of numbers (no finite lists are contained in this set).
Note, however, that if we have a recursive definition with a base case, then under
coinductive interpretation, the set defined will contain both finite and infinite-
sized elements, since in this case the gfp will also contain the lfp. In the context
of logic programming, in the presence of coinduction, proofs may be of infinite
length. A coinductive proof essentially is an infinite-length proof.

2 Coinduction and Logic Programming

Coinduction has been incorporated in logic programming in a systematic way
only recently [22,21], where an operational semantics—similar to SLD—is given
for computing the greatest fixed point of a logic program. This operational se-
mantics called co-SLD relies on a coinductive hypothesis rule and systematically
computes elements of the gfp of a program via backtracking. The semantics is
limited to only regular proofs, i.e., those cases where the infinite behavior is
obtained by infinite repetition of a finite number of finite behaviors.

Consider the list example above. The normal logic programming definition of
a stream (list) of numbers is given as program P1 below:

stream([]).
stream([H|T]) :- number(H), stream(T).

Under SLD resolution, the query ?- stream(X) will systematically produce all
finite streams one by one starting from the [] stream. Suppose now we remove
the base case and obtain the program P2:

stream([H|T]) :- number(H), stream(T).

In the program P2, the meaning of the query ?- stream(X) is semantically null
under standard logic programming. The problems are two-fold. The Herbrand
universe does not allow for infinite terms such as X and the least Herbrand model
does not allow for infinite proofs, such as the proof of stream(X) in program P2;
yet these concepts are commonplace in computer science, and a sound mathe-
matical foundation exists for them in the field of hyperset theory [4]. Coinductive
LP extends the traditional declarative and operational semantics of LP to al-
low reasoning over infinite and cyclic structures and properties [22,23,21]. In the
coinductive LP paradigm the declarative semantics of the predicate stream/1
above is given in terms of infinitary Herbrand (or co-Herbrand) universe, infini-
tary (or co-Herbrand) Herbrand base [12], and maximal models (computed using
greatest fixed-points).

Thus, under coinductive interpretation of P2, the query ?- stream(X) pro-
duces all infinite sized stream as answers, e.g., X = [1, 1, 1, ... ], X = [1,
2, 1, 2, ... ], etc., thus, P2 is not semantically null (but proofs may be of
infinite-length).

If we take a coinductive interpretation of program P1, then we get all finite
and infinite stream as answers to the query ?- stream(X). Coinductive logic
programming allows programmers to manipulate infinite structures. As a result,
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unification has to be necessarily extended and “occurs check” removed. Thus,
unification equations such as X = [1 | X] are allowed in coinductive logic pro-
gramming; in fact, such equations will be used to represent infinite (regular)
structures in a finite manner.

The operational semantics of coinductive logic programming is given in terms
of the coinductive hypothesis rule which states that during execution, if the
current resolvent R contains a call C′ that unifies with a call C encountered
earlier, then the call C′ succeeds; the new resolvent is R′θ where θ = mgu(C, C′)
and R′ is obtained by deleting C′ from R. With this extension, a clause
such as

p([1|T]) :- p(T)

and the query ?- p(Y) will produce an infinite answer Y = [1|Y].
Thus, given a call during execution of a logic program, where, earlier, the

candidate clauses were tried one by one via backtracking, under coinductive
logic programming the trying of candidate clauses is extended with yet more
alternatives: applying the coinductive hypothesis rule to check if the current
call will unify with any of the earlier calls. The coinductive hypothesis rule
will work for only those infinite proofs that are regular in nature, i.e., infinite
behavior is obtained by a finite number of finite behaviors interleaved infinite
number of times (such as a circular linked list). More general implementations
of coinduction are possible, but they are beyond the scope of this paper [21].

Even with regular proofs, there are many applications of coinductive logic
programming, some of which are discussed next. These include model checking,
concurrent logic programming, real-time systems, non-monotonic reasoning, etc.
We will not focus on the implementation of coinductive LP (implementation atop
YAP is available from the authors) except to note that to implement coinductive
LP, one needs to remember in a memo-table (memoize) all the calls made to
coinductive predicates.

Finally note that one has to be careful when using both inductive and coin-
ductive predicates together, since careless use can result in interleaving of least
fixed point and greatest fixed point computations. Such programs cannot be
given meaning easily. Consider the following program where the predicate p is
coinductive and q is inductive.

p :- q.
q :- p.

For computing the result of goal ?- q., we will use lfp semantics, which will
produce null, implying that q should fail. Given the goal ?- p. now, it should
also fail, since p calls q. However, if we use gfp semantics (and the coinductive
hypothesis computation rule), the goal p should succeed, which, in turn, implies
that q should succeed. Thus, naively mixing coinduction and induction leads to
contradictions. This contradiction is resolved by disallowing such cyclical nesting
of inductive and coinductive predicates, i.e., stratifying inductive and coinductive
predicates in a program. An inductive predicate in a given strata cannot call a
coinductive predicate in a higher strata and vice versa [23,21].
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3 Examples

Next, we illustrate coinductive Logic Programming via more examples.

Infinite Streams: The following example involves a combination of an induc-
tive predicate and a coinductive predicate. By default, predicates are inductive,
unless indicated otherwise. Consider the execution of the following program,
which defines a predicate that recognizes infinite streams of natural numbers.
Note that only the stream/1 predicate is coinductive, while the number/1 pred-
icate is inductive.

:- coinductive stream/1.
stream([ H | T ]) :- number(H), stream(T).
number(0).
number(s(N)) :- number(N).
| ?- stream([ 0, s(0), s(s(0)) | T ]).

The following is an execution trace, for the above query, of the memoization of
calls by the operational semantics. Note that calls of number/1 are not memo’ed
because number/1 is inductive.

MEMO: stream([ 0, s(0), s(s(0)) | T ])
MEMO: stream([ s(0), s(s(0)) | T ])
MEMO: stream([ s(s(0)) | T ])

The next goal call is stream(T), which unifies with the first memo’ed ancestor,
and therefore immediately succeeds. Hence the original query succeeds with the
infinite solution:

T = [ 0, s(0), s(s(0)) | T ]

The user could force a failure here, which would cause the goal to be unified
with the next two matching memo’ed ancestor producing T = [s(0),s(s(0))|T]
and T = [s(s(0))|T] respectively. If no remaining memo’ed elements exist, the
goal is memo’ed, and expanded using the coinductively defined clauses, and the
process repeats—generating additional results, and effectively enumerating the
set of (rational) infinite lists of natural numbers that begin with the prefix
[0,s(0),s(s(0))].

The goal stream(T) is true whenever T is some infinite list of natural numbers.
If number/1 was also coinductive, then stream(T) would be true whenever T is
a list containing either natural numbers or ω, i.e., infinity, which is represented
as an infinite application of successor s(s(s(...))). Such a term has a finite
representation as X = s(X).

Note that excluding the occurs check is necessary as such structures have a
greatest fixed-point interpretation and are in the co-Herbrand Universe. This is
in fact one of the benefits of coinductive LP. Unification without occurs check
is typically more efficient than unification with occurs check, and now it is even
possible to define non-trivial predicates on the infinite terms that result from
such unification, which are not definable in LP with rational trees. Traditional
logic programming’s least Herbrand model semantics requires SLD resolution to
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unify with occurs check (or lack soundness), which adversely affects performance
in the common case. Coinductive LP, on the other hand, has a declarative se-
mantics that allows unification without doing occurs check, and it also allows
for non-trivial predicates to be defined on infinite terms resulting from such
unification.
List Membership: This example illustrates that some predicates are naturally
defined inductively, while other predicates are naturally defined coinductively.
The member/2 predicate is an example of an inherently inductive predicate.

member(H, [ H | ]).
member(H, [ | T ]) :- member(H, T).

If this predicate was declared to be coinductive, then member( X, L) is true
whenever X is in L or whenever L is an infinite list, even if X is not in L! The
definition above, whether declared coinductive or not, states that the desired
element is the last element of some prefix of the list, as the following equivalent
reformulation of member/2, called membera/2 demonstrates, where drop/3 drops
a prefix ending in the desired element and returns the resulting suffix.

membera(X, L) :- drop(X, L, ).
drop(H, [ H | T ], T).
drop(H, [ | T ], T1) :- drop(H, T, T1).

When the predicate is inductive, this prefix must be finite, but when the predi-
cate is declared coinductive, the prefix may be infinite. Since an infinite list has
no last element, it is trivially true that the last element unifies with any other
term. This explains why the above definition, when declared to be coinductive,
is always true for infinite lists regardless of the presence of the desired element.

A mixture of inductive and coinductive predicates can be used to define a
variation of member/2, called comember/2, which is true if and only if the desired
element occurs an infinite number of times in the list. Hence it is false when the
element does not occur in the list or when the element only occurs a finite number
of times in the list. On the other hand, if comember/2 was declared inductive,
then it would always be false. Hence coinduction is a necessary extension.

:- coinductive comember/2.
comember(X, L) :- drop(X, L, L1), comember(X, L1).
?- X = [ 1, 2, 3 | X ], comember(2, X).

Answer: yes.
?- X = [ 1, 2, 3, 1, 2, 3 ], comember(2, X).

Answer: no.
?- X = [ 1, 2, 3 | X ], comember(Y, X).

Answer: Y = 1;
Y = 2;
Y = 3;

Note that drop/3 will have to be evaluated using OLDT tabling for it not to go
into an infinite loop for inputs such as X = [1,2,3|X] (if X is absent from the
list L, the lfp of drop(X,L) is null).
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List Append: Let us now consider the definition of standard append predicate.

append([], X, X).
append([H|T], Y, [H|Z]) :- append(T, Y, Z).

Not only can the above definition append two finite input lists, as well as split a
finite list into two lists in the reverse direction, it can also append infinite lists
under coinductive execution. It can even split an infinite list into two lists that
when appended, equal the original infinite list. For example:

| ?- Y = [4, 5, 6, | Y], append([1, 2, 3], Y, Z).
Answer: Z = [1, 2, 3 | Y], Y = [4, 5, 6, | Y]

More generally, the coinductive append has interesting algebraic properties.
When the first argument is infinite, it doesn’t matter what the value of the second
argument is, as the third argument is always equal to the first. However, when
the second argument is infinite, the value of the third argument still depends on
the value of the first. This is illustrated below:

| ?- X = [1, 2, 3, | X], Y = [3, 4 | Y], append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z], X = [1,2,3|X], Y = [3,4|Y]

The coinductive append can also be used to split infinite lists as in:
| ?- Z = [1, 2 | Z], append(X, Y, Z).

Answers: X = [], Y = [1, 2 | Z], Z = [1, 2 | Z];
X = [1], Y = [2 | Z], Z = [1, 2 | Z];
X = [1, 2], Y = Z, Z = [1, 2 | Z];
X = [1, 2 | X], Y = , Z = [1, 2 | Z];
X = [1, 2, 1], Y = [2 | Z], Z = [1, 2 | Z];
X = [1, 2, 1, 2], Y = Z, Z = [1, 2 | Z];
X = [1, 2, 1, 2 | X], Y = , Z = [1, 2 | Z];
......

Note that application of the coinductive hypothesis rule will produce solutions
in which X gets bound to an infinite list (fourth and seventh solutions above).

Sieve of Eratosthenes: Coinductive LP also allows for lazy evaluation to be el-
egantly incorporated into Prolog. Lazy evaluation allows for manipulation of, and
reasoning about, cyclic and infinite data structures and properties. Lazy evalua-
tion can be put to fruitful use, in situations where only a finite part of the infinite
term is of interest. In the presence of coinductive LP, if the infinite terms involved
are rational, then given the goal p(X), q(X) with coinductive predicates p/1 and
q/1, then p(X) can coinductively succeed and terminate, and then pass the result-
ing X to q(X). If X is bound to an infinite irrational term during the computation,
then p and q must be executed in a coroutined manner to produce answers. That
is, one of the goals must be declared the producer of X and the other the consumer
of X, and the consumer goal must not be allowed to bind X. Consider the (coinduc-
tive) lazy logic program for the sieve of Eratosthenes:

:- coinductive sieve/2, filter/3, comember/2.
primes(X) :- generate_infinite_list(I), sieve(I,L), comember(X,L).
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sieve([H|T], [H|R]) :- filter(H,T,F), sieve(F,R).
filter(H,[],[]).
filter(H,[K|T],[K|T1]) :- R is K mod H, R > 0, filter(H,T,T1).
filter(H,[K|T],T1) :- 0 is K mod H, filter(H,T,T1).

In the above program filter/3 removes all multiples of the first element
in the list, and then passes the filtered list recursively to sieve/2. If the call
generate infinite list(I) binds I to an inductive or rational list (e.g., X =
[2, ..., 20] or X = [2, .., 20 | X]), then filter can be completely pro-
cessed in each call to sieve/2. However, in contrast, if I is bound to an irrational
infinite list as in:

:- coinductive int/2.
int(X, [X|Y]) :- X1 is X+1, int(X1, Y).
generate_infinite_list(I) :- int(2,I).

then in primes/1 predicate, the calls generate infinite list/1, comember/2,
and sieve/2 should be co-routined, and likewise, in the sieve/2 predicate, the
calls filter/3 and the recursive call sieve/2 must be coroutined.

4 Application to Model Checking and Verification

Model checking is a popular technique used for verifying hardware and software
systems. It works by constructing a model of the system in terms of a finite state
Kripke structure and then determining if the model satisfies various properties
specified as temporal logic formulae. The verification is performed by means of
systematically searching the state space of the Kripke structure for a counter-
example that falsifies the given property. The vast majority of properties that
are to be verified can be classified into safety properties and liveness properties.
Intuitively, safety properties are those which assert that ‘nothing bad will hap-
pen’ while liveness properties are those that assert that ‘something good will
eventually happen.’

An important application of coinductive LP is in directly representing and
verifying properties of Kripke structures and ω-automata (automata that ac-
cept infinite strings). Just as automata that accept finite strings can be directly
programmed using standard LP, automata that accept infinite strings can be di-
rectly represented using coinductive LP (one merely has to drop the base case).

0 1 2 3-1

Figure B

s0 s1

s2s3

a

b

c

d
e

Figure A

Fig. 1. Example Automata
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Consider the automata (over finite strings) shown in Figure 1.A which is repre-
sented by the logic program below.
automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).
trans(s0, a, s1). trans(s1, b, s2).
trans(s2, c, s3). trans(s3, d, s0).
trans(s2, e, s0). final(s2).

A call to ?- automata(X, s0) in a standard LP system will generate all finite
strings accepted by this automata. Now suppose we want to turn this automata
into an ω-automata, i.e., it accepts infinite strings (an infinite string is accepted
if states designated as final state are traversed infinite number of times), then
the (coinductive) logic program that simulates this automata can be obtained
by simply dropping the base case (for the moment, we’ll ignore the requirement
that final-designated states occur infinitely often; this can be easily checked by
comember/2).

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).

Under coinductive semantics, posing the query | ?- automata(X, s0). will
yield the solutions:
X = [a, b, c, d | X];
X = [a, b, e | X];

This feature of coinductive LP can be leveraged to directly and elegantly verify
liveness properties in model checking, multi-valued model checking, for modeling
and verifying properties of timed ω-automata, checking for bisimilarity, etc.

4.1 Verifying Liveness Properties

It is well known that safety properties can be verified by reachability analysis,
i.e, if a counter-example to the property exists, it can be finitely determined
by enumerating all the reachable states of the Kripke structure. Verification of
safety properties amounts to computing least fixed-points and thus is elegantly
handled by standard LP systems extended with tabling [18]. Verification of live-
ness properties under such tabled LP systems is however problematic. This is
because counterexamples to liveness properties take the form of infinite traces,
which are semantically expressed as greatest fixed-points. Tabled LP systems
[18] work around this problem by transforming the temporal formula denoting
the property into a semantically equivalent least fixed-point formula, which can
then be executed as a tabled logic program. This transformation is quite complex
as it uses a sequence of nested negations.

In contrast, coinductive LP can be directly used to verify liveness properties.
Coinductive LP can directly compute counterexamples using greatest fixed-point
temporal formulae without requiring any transformation. Intuitively, a state is
not live if it can be reached via an infinite loop (cycle). Liveness counterexamples
can be found by (coinductively) enumerating all possible states that can be
reached via infinite loops and then by determining if any of these states con-
stitutes a valid counterexample. Consider the example of a modulo 4 counter,
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adapted from [20] (See Figure 1.B). For correct operation of the counter, we
must verify that along every path the state s−1 is not reached, i.e., there is at
least one infinite trace of the system along which s−1 never occurs. This property
is naturally specified as a greatest fixed-point formula and can be verified coin-
ductively. A simple coinductive logic program SP to solve the problem is shown
below. We compose the counter program with the negation of the property, i.e.,
N1 >= 0. Note that sm1 represents the state corresponding to -1.

:- coinductive s0/2, s1/2, s2/2, s3/2, sm1/2.
sm1(N,[sm1|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.
s0(N,[s0|T]) :- N1 is N+1 mod 4, s1(N1,T), N1>=0.
s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.
s2(N,[s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.
s3(N,[s3|T]) :- N1 is N+1 mod 4, s0(N1,T), N1>=0.

The counter is coded as a cyclic program that loops back to state s0 via
states s1, s2 and s3. State s−1 represents a state where the counter has the value
−1. The property P to be verified is whether the state s−1 is live. The query
:- sm1(-1,X), comember(sm1,X) where the comember predicate coinductively
checks that sm1 occurs in X infinitely often, will fail implying inclusion of the
property in the model, i.e., the absence of a counterexample to the property.
The benefit of our approach is that we do not have to transform the model into
a form amenable to safety checking. This transformation is expensive in general
and can reportedly increase the time and memory requirements by 6-folds [20].

This direct approach to verifying liveness properties also applies to multi-
valued model checking of the μ-calculus [13]. Multi-valued model checking is
used to model systems, whose specification has varying degrees of inconsistency
or incompleteness. Earlier effort [13] verified liveness properties by computing the
gfp which was found using negation based transformation described earlier. With
coinduction, the gfp can be computed directly as in standard model checking as
described above. We do not give details due to lack of space. Coinductive LP
can also be used to check for bisimilarity. Bisimilarity is reduced to coinductively
checking if two ω-automata accept the same set of rational infinite strings.

4.2 Verifying Properties of Timed Automata

Timed automata are simple extensions of ω-automata with stopwatches [1],
and are easily modeled as coinductive logic programs with CLP(R) [9]. Timed
automata can be modeled with coinductive logic programs together with con-
straints over reals for modeling clock constraints. The coinductive logic program
with CLP(R) constraints for modeling the classic train-gate-controller problem is
shown below. This program runs on our implementation of coinduction on YAP
[19] extended with CLP(R). The system can be queried to enumerate all the
infinite strings that will be accepted by the automata and that meet the time
constraints. Safety and liveness properties can be checked by negating those
properties, and checking that they fail for each string accepted by the automata
with the help of comember/2 predicate.
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The code for the timed automata represented in Fig 2 is given below. The
predicate driver/9, that composes the 3 automata, is coinductive, as it executes
forever.

s0 s1

s2s3

idle

approach

inexit

out

c:=0

c > 2c < 5

(i) train

s0 s1

s2s3

idle

lower

down

raise

up

d:=0

d < 1(d > 1) &
   (d < 2)

d:=0

idle(iii) gate

idle

approach

lower

exit

raise

e:=0

e=1

e:=0

e<1

s0 s1

s2s3

(ii) controller

Fig. 2. Train-Controller-Gate Timed Automata

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X,up,X,T1,T2,T2). gate(s0,lower,s1,T1,T2,T3) :-
train(s0,approach,s1,T1,T2,T3) :- {T3 = T1}.

{T3 = T1}. gate(s1,down,s2,T1,T2,T3) :-
train(s1,in,s2,T1,T2,T3) :- {T3 = T2,

{T1 - T2 > 2, T1 - T2 < 1}.
T3 = T2}. gate(s2,raise,s3,T1,T2,T3) :-

train(s2,out,s3,T1,T2,T2). {T3 = T1}.
train(s3,exit,s0,T1,T2,T3) :- gate(s3,up,s0,T1,T2,T3) :-

{T3 = T2, {T3 = T2, T1 - T2 > 1,
T1 - T2 < 5}. T1 - T2 < 2}.

train(X,lower,X,T1,T2,T2). gate(X,approach,X,T1,T2,T2).
train(X,down,X,T1,T2,T2). gate(X,in,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2). gate(X,out,X,T1,T2,T2).

gate(X,exit,X,T1,T2,T2).
contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3) :- {T3 = T2, T1 - T2 = 1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2) :- {T1-T2 < 1}.
contr(X,in,X,T1,T2,T2). contr(X,out,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2). contr(X,down,X,T1,T2,T2).

driver(S0,S1,S2,T,T0,T1,T2,[X|Rest],[(X,T)|R]) :-
train(S0,X,S00,T,T0,T00),
contr(S1,X,S10,T,T1,T10) ,
gate(S2,X,S20,T,T2,T20),
{TA > T},
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).
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Given the query:
| ?- driver(s0, s0, s0, T, Ta, Tb, Tc, X, R).

We obtain the following infinite lists as answers (A, B, C, .., etc. are the time
on the wall clock when the corresponding event occurs).

R = [(approach,A),(lower,B),(down,C),(in,D),(out,E),
(exit,F),(raise,G),(up,H)|R],

X = [approach,lower,down,in,out,exit,raise,up | X] ? ;

R= [(approach,A),(lower,B),(down,C),(in,D),(out,E),
(exit,F),(raise,G),(approach,H),(up,I)|R],

X = [approach,lower,down,in,out,exit,raise,approach,up|X] ? ;

no

A call to coinductively defined sublist/2 predicate (not shown here) can then
be used to check the safety property that the signal down occurs before in by
checking that the infinite list Y = [down, in | Y] is coinductively contained
in the infinite string X above. This ensure that the system satisfies the safety
property, namely, that the gate is down before the train is in the gate area. A
similar approach can be used to verify the liveness property, namely that the
gate will eventually go up [9], by finding the maximum difference between the
times the gate goes down and later comes up.

Note that from the answers above, one can see that another train can approach
before the gate goes up, however, this behavior is entirely consistent as the gate
will go up and will come down again, by the time the second train arrives in the
gate area (see Figure 2). We can find out the minimum time that must intervene
between two trains for the system to remain safe by finding he minimum value
the time that elapses between two approach signals given the above constraints
(answer is computed to be 7 units of time).

4.3 Verification of Nested Finite and Infinite Automata

We next illustrate application of coinductive logic programming to verification in
which infinite (coinductive) and finite (inductive) automata are nested. It is well
known that reachability-based inductive techniques are not suitable for verifying
liveness properties [17]. Further, it is also well known that, in general, verification
of liveness properties can be reduced to verification of termination under the
assumption of fairness [24] and that fairness properties can be specified in terms
of alternating fixed-point temporal logic formulas [11]. Earlier we showed that
co-inductive LP allows one to verify a class of liveness properties in the absence of
fairness constraints. Coinductive LP further permits us to verify a more general
class of all liveness properties that can only be verified in the presence of fairness
constraints.

Essentially, a coinductive LP based approach demonstrates that if a model
satisfies the fairness constraint then, it also satisfies the liveness property. This is
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achieved by composing a program PM , which encodes the model, with a program
PF , which encodes the fairness constraint and a program PNP, which encodes the
negation of the liveness property, to obtain a composite program Pμ. We then
compute the stratified alternating fixed-point of the logic program Pμ and check
for the presence of the initial state of the model in the stratified alternating
fixed-point. If the alternating fixed-point contains the initial state, then that
implies the presence of a valid counterexample that violates the given liveness
property. On the other hand, if the alternating fixed-point is empty, then that
implies that no counterexample can be constructed, which in turn implies that
the model satisfies the given liveness property.

We will now illustrate our approach using a very simple example (which can be
programmed on our coinductive LP implementation). Consider the model shown
in Figure 3, consisting of four states. The system starts off in state s0, enters
state s1, performs a finite amount of work in state s1 and then exits to state
s2, from where it transitions back to state s0, and repeats the entire loop again,
an infinite number of times. The system might encounter an error, causing a
transition to state s3; corrective action is taken, followed by a transition back to
s0 (this can also happen infinitely often). The system is modeled by the Prolog
code shown in Figure 3.

s0 s1

s2

enter

exitrepeat

work

s3

er
ro

r

re
pe

at

:- coninductive state/2.
state(s0,[s0,is1|T]):-enter, work, 
                      state(s1,T).
state(s1,[s1|T]):-exit, state(s2,T).
state(s2,[s2|T]):-repeat, state(s0,T).
state(s0,[s0|T]):-error, state(s3,T).
state(s3,[s3|T]):-repeat, state(s0,T). 
work :- work.
work.
enter.               repeat.
exit.                error.

Fig. 3. Nested Automata

This simple example illustrates the power of co-logic programming (co-LP,
for brevity, that contains both inductive and coinductive LP) when compared
to purely inductive or purely coinductive LP. Note that the computation rep-
resented by the state machine in the example consists of two stratified loops,
represented by recursive predicates. The outer loop (predicate state/2) is coin-
ductive and represents an infinite computation (hence it is declared as coin-
ductive as we are interested in its gfp). The inner loop (predicate work/0) is
inductive and represents a bounded computation (we are interested in its lfp).
The semantics therefore evaluates work/0 using SLD resolution and state/2
using co-SLD resolution.

The property that we would like to verify is that the computation in the
state s1 represented by work always terminates. In order to do so, we require
the fairness property: “if the transition enter occurs infinitely often, then the
transition exit also occurs infinitely often”. The stratified alternating fixed-
point semantics ensures that this fairness constraint holds by computing the
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minimal model of the inductive program represented by the predicate state/1
and then composing it with the coinductive program. The resulting program is
then composed with the property, “the state s2 is not present in any trace of
the infinite computation,” which is the negation of the given liveness property.
The negated property is represented by the predicate absent/2. Thus, given the
program above, the user will pose the query:

| ?- state(s0,X), absent(s2,X).

where absent/2 is a coinductive predicate that checks that the state s2 is not
present in the (infinite) list X infinitely often (it is the negated version of the
coinductive comember predicate described earlier). The co-LP system will re-
spond with a solution: X = [s0, s3 | X], a counterexample which states that
there is an infinite path not containing s2. One can see that this corresponds to
the (infinite) behavior of the system if error is encountered.

5 Applications to Non-monotonic Reasoning

We next consider application of coinductive LP to non-monotonic reasoning,
in particular its manifestation as answer set programming (ASP) [5,14]. ASP
has been proposed as an elegant way of introducing non-monotonic reasoning
into logic programming [3]. ASP has been steadily gaining popularity since its
inception due to its applications to planning, action-description, AI, etc.

We believe that if one were to add negation as failure to coinductive LP then
one would obtain something resembling answer set programming. To support
negation as failure in coinductive LP, we have to extend the coinductive hypoth-
esis rule: given the goal not(G), if we encounter not(G’) during the proof, and G
and G’ are unifiable, then not(G) succeeds. Since the coinductive hypothesis rule
provides a method for goal-directed execution of coinductive logic programs, it
can also be used for goal-directed execution of answer set programs. As discussed
earlier, coinduction is a technique for specifying unfounded set; likewise, answer
set programs are also recursive specifications (containing negation as failure) for
computing unfounded sets. Obviously, coinductive LP and ASP must be related.

All approaches to implementing ASP are based on bottom up execution of
finitely grounded programs. If a top-down execution scheme can be designed
for ASP, then ASP can be extended to include predicates over general terms.
We outline how this can be achieved using our top-down implementation of
coinduction. In fact, a top-down interpreter for ASP (restricted to propositions
at present) can be trivially realized on top of our implementation of coinductive
LP. Work is in progress to implement a top-down interpreter for ASP with
general predicates [15].

5.1 A Top-Down Algorithm for Computing Answer Sets

In top-down execution of answer set programs, given a (propositional) query
goal Q, we are interested in finding out all the answer sets that contain Q, one by
one, via backtracking. If Q is not in any answer set or if there are no answer sets
at all, then the query should fail. In the former case, the query not(Q) should
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succeed and should enumerate all answer sets which do not contain Q, one by
one, via backtracking.

The top down execution algorithm is quite simply realized with the help of
coinduction. The traditional Gelfond-Lifschitz (GL) method [3] starts with a
candidate answer set, computes a residual program via the GL-transformation,
and then finds the lfp of the residual program. The candidate answer set is
an answer set, if it equals the lfp of the residual program. Intuitively, in our
top down execution algorithm, the propositions in the candidate answer set are
regarded as hypotheses which are treated as facts during top-down coinductive
execution. A call is said to be a positive call if it is in the scope of even number
of negations, similarly, a call is said to be a negative call if it is in the scope of
odd number of negations.

The top down query processing algorithm works as follows: suppose the cur-
rent call (say, p) is a positive call, then it will be placed in a positive coinductive
hypothesis set (PCHS), a matching rule will be found and the Prolog-style ex-
pansion done. The new resolvent will be processed left to right, except that every
positive call will be continued to be placed in the positive hypothesis set, while a
negative call will be placed in the negative coinductive hypothesis set (NCHS). If
a positive call p is encountered again, then if p is in PCHS, the call immediately
succeeds; if it is in NCHS, then there is an inconsistency and backtracking takes
place. If a negative call (say, not(p)) is encountered for the first time, p will be
placed in the NCHS. If a negative proposition not(p) is encountered later, then
if p is in NCHS, not(p) succeeds; if p is in PCHS, then there is an inconsistency
and backtracking takes place. Once the execution is over with success, (part of)
the potential answer set can be found in the PCHS. The set NCHS contains
propositions that are not in the answer set.

Essentially, the algorithm explicitly keeps track of propositions that are in the
answer set (PCHS) and those that are not in the answer set (NCHS). Any time,
a situation is encountered in which a proposition is both in the answer set and
not in the answer set, an inconsistency is declared and backtracking ensues.

We still need one more step. ASP can specify the falsification of a goal via
constraints. For example, the constraint p :- q, not p. restricts q (and p) to
not be in the answer set (unless p happens to be in the answer via other rules).
For such rules of the form

p :- B.
if not(p) is reachable via goals in the body B, we need to explicitly ensure that the
potential answer set does not contain a proposition that is falsified by this rule.

Given an answer set program, a rule p :- B. is said to be non-constraint rule
(NC-rule) if p is reachable through calls in the body B through an even number
of negation as failure calls, otherwise it is said to be a constraint rule (C-rule).
Thus, given the ASP program:

p :- a, not q. .......(i)
q :- b, not r. .......(ii)
r :- c, not p. .......(iii)
q :- d, not p. .......(iv)
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rules (i), (ii) and (iii) are C-rules, while (i) and (iv) are NC-rules. A rule can be
both an NC-rule as well as a C-rule (such as rule (i)). NC-rules will be used to
compute the potential answers sets, while C-rules will only be used to reject or
accept potential answer sets. Rejection or acceptance of a potential answer set is
accomplished as follows: For each C-rule of the form ri :- B, where B directly
or indirectly leads to not(ri), we construct a new rule:

chk ri :- not(ri), B.

Next, we construct a new rule:
nmr check :- not(chk r1), not(chk r2), ..., not(chk ri), ...

Now, the top level query, ?-Q, is transformed into: ?- Q, nmr check. Q will
be executed using only the NC-rules to generate potential answer sets, which
will be subsequently either rejected or accepted by the call to nmr check. If
nmr check succeeds, the potential answer set is an answer set. If nmr check
fails, the potential answer set is rejected and backtracking occurs.

For simplicity of illustration, we assume that for each NC-rule, we construct
its negated version which will be expanded when a corresponding negative call
is encountered (in the implementation, however, this is done implicitly). Thus,
given an NC-rule for a proposition p of the form:

p :- B1.
p :- B2.
...
p :- Bi.
...

its negated version will be:
not p :- not(B1), not(B2), ..., not(Bi), ...

If a call to not(p) is encountered, then this negated not p rule will be used to
expand it.

Note, finally, that the answer sets reported may be partial, because an answer
set may be a union of multiple independent answer subsets, and the other subsets
may not be deducible from the query goal due to the nature of the rules. The
top-down algorithm for computing the (partial) answer set of an ASP program
can be summarized as follows.

1. Initialize PCHS and NCHS to empty (these are maintained as global variables
in our implementation of top-down ASP atop our coinductive YAP implemen-
tation). Declare every proposition in the ASP as a coinductive proposition.

2. Identify the set of C-rules and NC-rules in the program.
3. Assert chk ri rule for every C-rule with ri as head and build the nmr check

rule; append the call nmr check to the initial query.
4. For each NC-rule, construct its negated version.
5. For every positive call p: if p ∈ PCHS, then p succeeds coinductively and

the next call in the resolvent is executed, else if p ∈ NCHS, then there is an
inconsistency and backtracking ensues, else (p is not in PCHS or in NCHS)
add p to PCHS and expand p using NC-rules that have p in the head (create
a choice-point if there are multiple matching rules).
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6. For every negative call of the form not(p): if p ∈ NCHS, then not(p) suc-
ceeds coinductively and the next call in the resolvent is executed, else if p
∈ PCHS, then there is an inconsistency and backtracking ensues, else (p is
not in PCHS or in NCHS) add p to NCHS and expand not(p) using the
negated not p rule for p.

Next, let’s consider an example. Consider the following program:

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

After, step 1-4, we obtain the following program.

:- coinductive p/0, q/0, r/0.

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

chk_p :- not(p), not(q).
chk_q :- not(q), not(r).
chk_r :- not(r), not(p).

not_p :- q.
not_q :- r,p.
not_r :- p.

nmr_chk :- not(chk_p), not(chk_q), not(chk_r).

The ASP program above has {q,r} as the only answer set. Given the trans-
formed program, the query: ?- q will produce {q} as the answer set (with p
known to be not in the answer set). The query ?- r will produce the answer set
{q,r} (with p known to be not in the answer set). It is easy to see why the first
query ?- q will not deduce r to be in the answer set: there is nothing in the
NC-rules that relates q and r.

5.2 Correctness of the Top-Down Algorithm

We next outline a proof of correctness of the top-down method. First, note that
the above top down method corresponds to computing the greatest fix point of
the residual program rather than the least fix point. Second, we argue that the
Gelfond-Lifschitz method for checking if a given set is an answer set [5] should
compute the greatest fix point of the residual program instead of the least fixed
point. A little thought will reflect that circular reasoning entailed by rules such as

p :- p.

is present in ASP through rules of the form:
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p :- not(q).
q :- not(p).

If we extend the GL method, so that instead of computing the lfp, we compute
the gfp of the residual program, then the GL transformation can be modified to
remove positive goals as well. Given an answer set program, whose answer set is
guessed to be A, the modified GL transform then becomes as follows:

1. Remove all those rules whose body contains not(p), where p ∈ A.
2. Remove all those rules whose body contains p, where p �∈ A.
3. From body of each rule, remove all goals of the form not(p), where p �∈ A.
4. From body of each rule, remove all positive goals p such that p ∈ A.

After application of this transform, the residual program is a set of facts. If
this set of facts is the same as A, then A is an answer set. It is easy to see that
our top-down method mimics the modified GL-transformation (note, however,
that our top-down algorithm can be easily modified to work with the original
GL method which computes the lfp of the residual program: we merely have to
disallow making inference from positive coinductive loops of the form p :- p.).

In the top down algorithm, whenever a positive (resp. negative) predicate is
called, it is stored in the positive (resp. negative) coinductive hypothesis set. This
is equivalent to removing the positive (resp. negative) predicate from the body of
all the rules, since a second call to predicate will trivially succeed by the principle
of coinduction. Given a predicate p (resp. not(p)) where p is in the positive (resp.
negative) coinductive hypothesis set, if a call is made to not(p) (resp. p), then the
call fails. This amounts to ‘removing the rule’ in GL transform [2].

The top down method described above can also be extended for deducing
answers sets of programs containing first order predicates [15].

6 Conclusions

In this paper we gave an introduction to coinductiive logic programming. Prac-
tical applications of coinductive LP to verification and model checking and to
non-monotonic reasoning were also discussed. Coinductive reasoning can also
be included in first order theorem proving in a manner similar to coinductive
LP [15].
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Abstract. Declarative programming languages advocate a programming
style expressing the properties of problems and their solutions rather than
how to compute individual solutions. Depending on the underlying for-
malism to express such properties, one can distinguish different classes of
declarative languages, like functional, logic, or constraint programming
languages. This paper surveys approaches to combine these different
classes into a single programming language.

1 Introduction

Compared to traditional imperative languages, declarative programming lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. This is mainly due to the fact that, in con-
trast to imperative programming, one does not describe how to obtain a solution
to a problem by performing a sequence of steps but what are the properties of
the problem and the expected solutions. In order to define a concrete declarative
language, one has to fix a base formalism that has a clear mathematical founda-
tion as well as a reasonable execution model (since we consider a programming
language rather than a specification language). Depending on such formalisms,
the following important classes of declarative languages can be distinguished:

– Functional languages: They are based on the lambda calculus and term
rewriting. Programs consist of functions defined by equations that are used
from left to right to evaluate expressions.

– Logic languages: They are based on a subset of predicate logic to ensure an
effective execution model (linear resolution). Programs consist of predicates
defined by definite clauses. The execution model is goal solving based on the
resolution principle.

– Constraint languages: They are based on constraint structures with spe-
cific methods to solve constraints. Programs consist of specifications of con-
straints of the considered application domain based on a set of primitive
constraints and appropriate combinators. Constraint languages are often
embedded in other languages where logic programming is a natural can-
didate. In this case, constraint logic programming [61] can be considered as
a generalization of logic programming where unification on Herbrand terms
is considered as a specific built-in constraint solver.

� This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2 and the NSF under grant CCR-0218224.
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The different declarative programming paradigms offer a variety of programming
concepts to the programmer. For instance, functional programming emphasizes
generic programming using higher-order functions and polymorphic typing, and
efficient and (under particular conditions) optimal evaluation strategies using
demand-driven evaluation, which contributes to modularity in programming [59].
Logic programming supports the computation with partial information (logic
variables) and nondeterministic search for solutions, where constraint program-
ming adds efficient constraint solving capabilities for particular domains. Since
all these features have been shown to be useful in application programming
and declarative languages are based on common grounds, it is a natural idea to
combine these worlds of programming into a single multi-paradigm declarative
language. However, the interactions between the different features are complex
in detail so that the concrete design of a multi-paradigm declarative language
is non-trivial. This is demonstrated by many different proposals and a lot of
research work on the semantics, operational principles, and implementation of
multi-paradigm declarative languages since more than two decades. In the fol-
lowing, we survey some of these proposals.

One can find two basic approaches to amalgamate functional and logic lan-
guages: either extend a functional language with logic programming features or
extend a logic language with features for functional programming. Since func-
tions can be considered as specific relations, there is a straightforward way to
implement the second approach: extend a logic language with syntactic sugar to
allow functional notation (e.g., defining equations, nested functional expressions)
which is translated by some preprocessor into the logic kernel language. A recent
approach of this kind is [25] where functional notation is added to Ciao-Prolog.
The language Mercury [83] is based on a logic programming syntax with func-
tional and higher-order extensions. Since Mercury is designed towards a highly
efficient implementation, typical logic programming features are restricted. In
particular, predicates and functions must have distinct modes so that their ar-
guments are either ground or unbound at call time. This inhibits the application
of typical logic programming techniques, like computation with partially instan-
tiated structures, so that some programming techniques developed for functional
logic programming languages [11,43,44] can not be applied. This condition has
been relaxed in the language HAL [33] which adds constraint solving possibilities.
However, Mercury as well as HAL are based on a strict operational semantics
that does not support optimal evaluation as in functional programming. This
is also true for Oz [82]. The computation model of Oz extends the concurrent
constraint programming paradigm [78] with features for distributed program-
ming and stateful computations. It provides functional notation but restricts
their use compared to predicates, i.e., function calls are suspended if the argu-
ments are not instantiated in order to reduce them in a deterministic way. Thus,
nondeterministic computations must be explicitly represented as disjunctions so
that functions used to solve equations require different definitions than func-
tions to rewrite expressions. In some sense, these approaches do not exploit the
semantical information provided by the presence of functions.
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Extensions of functional languages with logic programming features try to
retain the efficient demand-driven computation strategy for purely functional
computations and add some additional mechanism for the extended features.
For instance, Escher [63] is a functional logic language with a Haskell-like syntax
[75] and a demand-driven reduction strategy. Similarly to Oz, function calls
are suspended if they are not instantiated enough for deterministic reduction,
i.e., nondeterminism must be expressed by explicit disjunctions. The operational
semantics is given by a set of reduction rules to evaluate functions in a demand-
driven manner and to simplify logical expressions. The languages Curry [41,58]
and TOY [66] try to overcome the restrictions on evaluating function calls so
that there is no need to implement similar concepts as a function and a predicate,
depending on their use. For this purpose, functions can be called, similarly to
predicates, with unknown arguments that are instantiated in order to apply a
rule. This mechanism, called narrowing, amalgamates the functional concept of
reduction with unification and nondeterministic search from logic programming.
Moreover, if unification on terms is generalized to constraint solving, features of
constraint programming are also covered. Based on the narrowing principle, one
can define declarative languages integrating the good features of the individual
paradigms, in particular, with a sound and complete operational semantics that
is optimal for a large class of programs [9].

In the following, we survey important concepts of such multi-paradigm declar-
ative languages. As a concrete example, we consider the language Curry that is
based on these principles and intended to provide a common platform for re-
search, teaching, and application of integrated functional logic languages.

Since this paper is a survey of limited size, not all of the numerous papers
in this area can be mentioned and relevant topics are only sketched. Interested
readers might look into the references for more details. In particular, there exist
other surveys on particular topics related to this paper. [38] is a survey on
the development and the implementation of various evaluation strategies for
functional logic languages that have been explored until a decade ago. [7] contains
a good survey on more recent evaluation strategies and classes of functional logic
programs. [77] is more specialized but reviews the efforts to integrate constraints
into functional logic languages.

The rest of this paper is structured as follows. The next main section intro-
duces and reviews the foundations of functional logic programming that are rele-
vant in current languages. Section 3 discusses practical aspects of multi-paradigm
languages. Section 4 contains references to applications of such languages. Fi-
nally, Section 5 contains our conclusions.

2 Foundations of Functional Logic Programming

2.1 Basic Concepts

In the following, we use functional programming as our starting point, i.e., we de-
velop functional logic languages by extending functional languages with features
for logic programming.
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A functional program is a set of functions defined by equations or rules. A
functional computation consists of replacing subexpressions by equal (w.r.t. the
function definitions) subexpressions until no more replacements (or reductions)
are possible and a value or normal form is obtained. For instance, consider the
function double defined by1

double x = x + x

The expression “double 1” is replaced by 1+1. The latter can be replaced by
2 if we interpret the operator “+” to be defined by an infinite set of equations,
e.g., 1+1 = 2, 1+2 = 3, etc (we will discuss the handling of such functions later).
In a similar way, one can evaluate nested expressions (where the subexpression
to be replaced is underlined):

double (1+2) → (1+2)+(1+2) → 3+(1+2) → 3+3 → 6

There is also another order of evaluation if we replace the arguments of operators
from right to left:

double (1+2) → (1+2)+(1+2) → (1+2)+3 → 3+3 → 6

In this case, both derivations lead to the same result. This indicates a funda-
mental property of declarative languages, also termed referential transparency:
the value of a computed result does not depend on the order or time of evalua-
tion due to the absence of side effects. This simplifies the reasoning about and
maintenance of declarative programs.

Obviously, these are not all possible evaluation orders since one can also eval-
uate the argument of double before applying its defining equation:

double (1+2) → double 3 → 3+3 → 6

In this case, we obtain the same result with less evaluation steps. This leads
to questions about appropriate evaluation strategies, where a strategy can be
considered as a function that determines, given an expression, the next subex-
pression to be replaced: which strategies are able to compute values for which
classes of programs? As we will see, there are important differences in case of re-
cursive programs. If there are several strategies, which strategies are better w.r.t.
the number of evaluation steps, implementation effort, etc? Many works in the
area of functional logic programming have been devoted to find appropriate eval-
uation strategies. A detailed account of the development of such strategies can
be found in [38]. In the following, we will survey only the strategies that are
relevant for current functional logic languages.

Although functional languages are based on the lambda calculus that is purely
based on function definitions and applications, modern functional languages of-
fer more features for convenient programming. In particular, they support the

1 For concrete examples in this paper, we use the syntax of Curry which is very similar
to the syntax of Haskell [75], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of a function f to an expression e is denoted by
juxtaposition (“f e”). Moreover, binary operators like “+” are written infix.
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definition of algebraic data types by enumerating their constructors. For in-
stance, the type of Boolean values consists of the constructors True and False
that are declared as follows:

data Bool = True | False

Functions on Booleans can be defined by pattern matching, i.e., by providing
several equations for different argument values:

not True = False
not False = True

The principle of replacing equals by equals is still valid provided that the actual
arguments have the required form, e.g.:

not (not False) → not True → False

More complex data structures can be obtained by recursive data types. For
instance, a list of elements, where the type of elements is arbitrary (denoted by
the type variable a), is either the empty list “[]” or the non-empty list “e:l”
consisting of a first element e and a list l:

data List a = [] | a : List a

The type “List a” is usually written as [a] and finite lists e1:e2:. . .:en:[]
are written as [e1,e2,. . .,en]. We can define operations on recursive types by
inductive definitions where pattern matching supports the convenient separa-
tion of the different cases. For instance, the concatenation operation “++” on
polymorphic lists can be defined as follows (the optional type declaration in the
first line specifies that “++” takes two lists as input and produces an output list,
where all list elements are of the same unspecified type):

(++) :: [a] -> [a] -> [a]
[] ++ ys = ys
(x:xs) ++ ys = x : xs++ys

Beyond its application for various programming tasks, the operation “++” is
also useful to specify the behavior of other functions on lists. For instance, the
behavior of a function last that yields the last element of a list can be specified as
follows: for all lists l and elements e, last l = e iff ∃xs : xs ++[e] = l.2 Based on
this specification, one can define a function and verify that this definition satisfies
the given specification (e.g., by inductive proofs as shown in [20]). This is one of
the situations where functional logic languages become handy. Similarly to logic
languages, functional logic languages provide search for solutions for existentially
quantified variables. In contrast to pure logic languages, they support equation
solving over nested functional expressions so that an equation like xs ++[e] =
[1,2,3] is solved by instantiating xs to the list [1,2] and e to the value 3. For
instance, in Curry one can define the operation last as follows:

last l | xs++[e]=:= l = e where xs,e free

2 The exact meaning of the equality symbol is omitted here since it will be discussed
later.
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Here, the symbol “=:=” is used for equational constraints in order to provide
a syntactic distinction from defining equations. Similarly, extra variables (i.e.,
variables not occurring in the left-hand side of the defining equation) are ex-
plicitly declared by “where...free” in order to provide some opportunities to
detect bugs caused by typos. A conditional equation of the form l | c = r is
applicable for reduction if its condition c has been solved. In contrast to purely
functional languages where conditions are only evaluated to a Boolean value,
functional logic languages support the solving of conditions by guessing values
for the unknowns in the condition. As we have seen in the previous example,
this reduces the programming effort by reusing existing functions and allows the
direct translation of specifications into executable program code. The important
question to be answered when designing a functional logic language is: How are
conditions solved and are there constructive methods to avoid a blind guessing
of values for unknowns? This is the purpose of narrowing strategies that are
discussed next.

2.2 Narrowing

Techniques for goal solving are well developed in the area of logic programming.
Since functional languages advocate the equational definition of functions, it is a
natural idea to integrate both paradigms by adding an equality predicate to logic
programs, leading to equational logic programming [73,74]. On the operational
side, the resolution principle of logic programming must be extended to deal
with replacements of subterms. Narrowing, originally introduced in automated
theorem proving [81], is a constructive method to deal with such replacements.
For this purpose, defining equations are interpreted as rewrite rules that are
only applied from left to right (as in functional programming). In contrast to
functional programming, the left-hand side of a defining equation is unified with
the subterm under evaluation. In order to provide more detailed definitions,
some basic notions of term rewriting [18,29] are briefly recalled. Although the
theoretical part uses notations from term rewriting, its mapping into the concrete
programming language syntax should be obvious.

Since we ignore polymorphic types in the theoretical part of this survey, we
consider a many-sorted signature Σ partitioned into a set C of constructors and a
set F of (defined) functions or operations. We write c/n ∈ C and f/n ∈ F for n-
ary constructor and operation symbols, respectively. Given a set of variables X ,
the set of terms and constructor terms are denoted by T (C ∪F , X ) and T (C, X ),
respectively. The set of variables occurring in a term t is denoted by Var(t). A
term t is ground if Var(t) = ∅. A term is linear if it does not contain multiple
occurrences of one variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor). A head normal form is a term that is
not operation-rooted, i.e., a variable or a constructor-rooted term.

A pattern is a term of the form f(d1, . . . , dn) where f/n ∈ F and d1, . . . , dn ∈
T (C, X ). A term rewriting system (TRS) is set of rewrite rules, where an (uncon-
ditional) rewrite rule is a pair l → r with a linear pattern l as the left-hand side
(lhs) and a term r as the right-hand side (rhs). Note that this definition reflects
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the specific properties of functional logic programs. Traditional term rewriting
systems [29] differ from this definition in the following points:

1. We have required that the left-hand sides must be linear patterns. Such
rewrite systems are also called constructor-based and exclude rules like

(xs ++ ys) ++ zs = xs ++ (ys ++zs) (assoc)
last (xs ++ [e]) = e (last)

Although this seems to be a restriction when one is interested in writing
equational specifications, it is not a restriction from a programming language
point of view, since functional as well as logic programming languages en-
forces the same requirement (although logic languages do not require linear-
ity of patterns, this can be easily obtained by introducing new variables and
adding equations for them in the condition; conditional rules are discussed
below). Often, non-constructor-based rules specify properties of functions
rather than providing a constructive definition (compare rule assoc above
that specifies the associativity of “++”), or they can be transformed into
constructor-based rules by moving non-constructor terms in left-hand side
arguments into the condition (e.g., rule last). Although there exist narrowing
strategies for non-constructor-based rewrite rules (see [38,74,81] for more de-
tails), they often put requirements on the rewrite system that are too strong
or difficult to check in universal programming languages, like termination
or confluence. An important insight from recent works on functional logic
programming is the restriction to constructor-based programs since this sup-
ports the development of efficient and practically useful evaluation strategies
(see below).

2. Traditional rewrite rules l → r require that Var(r) ⊆ Var(l). A TRS where
all rules satisfy this restriction is also called a TRS without extra variables.
Although this makes sense for rewrite-based languages, it limits the ex-
pressive power of functional logic languages (see the definition of last in
Section 2.1). Therefore, functional logic languages usually do not have this
variable requirement, although some theoretical results have only been
proved under this requirement.

In order to formally define computations w.r.t. a TRS, we need a few further
notions. A position p in a term t is represented by a sequence of natural num-
bers. Positions are used to identify particular subterms. Thus, t|p denotes the
subterm of t at position p, and t[s]p denotes the result of replacing the subterm
t|p by the term s (see [29] for details). A substitution is an idempotent mapping
σ : X → T (C ∪ F , X ) where the domain Dom(σ) = {x ∈ X | σ(x) �= x} is
finite. Substitutions are obviously extended to morphisms on terms. We denote
by {x1 �→ t1, . . . , xn �→ tn} the substitution σ with σ(xi) = ti (i = 1, . . . , n) and
σ(x) = x for all other variables x. A substitution σ is constructor (ground con-
structor) if σ(x) is a constructor (ground constructor) term for all x ∈ Dom(σ).

A rewrite step t →p,R t′ (in the following, p and R will often be omitted
in the notation of rewrite and narrowing steps) is defined if p is a position in
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t, R = l → r is a rewrite rule with fresh variables,3 and σ is a substitution
with t|p = σ(l) and t′ = t[σ(r)]p. The instantiated lhs σ(l) is also called a redex
(reducible expression). A term t is called in normal form if there is no term s

with t → s. ∗→ denotes the reflexive and transitive closure of a relation →.
Rewrite steps formalize functional computation steps with pattern matching

as introduced in Section 2.1. The goal of a sequence of rewrite steps is to compute
a normal form. A rewrite strategy determines for each rewrite step a rule and a
position for applying the next step. A normalizing strategy is one that terminates
a rewrite sequence in a normal form, if it exists. Note, however, that normal
forms are not necessarily the interesting results of functional computations, as
the following example shows.

Example 1. Consider the operation

idNil [] = []

that is the identity on the empty list but undefined for non-empty lists. Then,
a normal form like “idNil [1]” is usually considered as an error rather than a
result. Actually, Haskell reports an error for evaluating the term “idNil [1+2]”
rather than delivering the normal form “idNil [3]”. �

Therefore, the interesting results of functional computations are constructor
terms that will be also called values. Evaluation strategies used in functional
programming, such as lazy evaluation, are not normalizing, as the previous ex-
ample shows.

Functional logic languages are able to do more than pure rewriting since they
instantiate variables in a term (also called free or logic variables) so that a rewrite
step can be applied. The combination of variable instantiation and rewriting is
called narrowing. Formally, t �p,R,σ t′ is a narrowing step if p is a non-variable
position in t (i.e., t|p is not a variable) and σ(t) →p,R t′. Since the substitution
σ is intended to instantiate the variables in the term under evaluation, one often
restricts Dom(σ) ⊆ Var(t). We denote by t0 �∗σ tn a sequence of narrowing
steps t0 �σ1 . . . �σn tn with σ = σn ◦ · · · ◦ σ1 (where σ = {} in the case of
n = 0). Since in functional logic languages we are interested in computing values
(constructor terms) as well as answers (substitutions), we say that the narrowing
derivation t �∗σ c computes the value c with answer σ if c is a constructor term.

The above definition of narrowing is too general for a realistic implementation
since it allows arbitrary instantiations of variables in the term under evaluation.
Thus, all possible instantiations must be tried in order to compute all possible
values and answers. Obviously, this does not lead to a practical implementation.
Therefore, older narrowing strategies (see [38] for a detailed account) were in-
fluenced by the resolution principle and required that the substitution used in a
narrowing step must be a most general unifier of t|p and the left-hand side of the
applied rule. As shown in [9], this condition prevents the development of opti-
mal evaluation strategies. Therefore, most recent narrowing strategies relax this
3 In classical traditional term rewriting, fresh variables are not used when a rule is

applied. Since we consider also rules containing extra variables in right-hand sides,
it is important to replace them by fresh variables when the rule is applied.
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traditional requirement but provide another constructive method to compute a
small set of unifiers in narrowing steps, as we will see below. The next example
shows the non-optimality of narrowing with most general unifiers.

Example 2. Consider the following program containing a declaration of natural
numbers in Peano’s notation and two operations for addition and a “less than
or equal” test (the pattern “_” denotes an unnamed anonymous variable):

data Nat = O | S Nat

add O y = y
add (S x) y = S (add x y)

leq O _ = True (leq1)
leq (S _) O = False (leq2)
leq (S x) (S y) = leq x y (leq3)

Consider the initial term “leq v (add w O)” where v and w are free variables.
By applying rule leq1, v is instantiated to O and the result True is computed:

leq v (add w O) �{v�→O} True

Further answers can be obtained by instantiating v to (S...). This requires the
evaluation of the subterm (add w O) in order to allow the application of rule
leq2 or leq3. For instance, the following narrowing derivation computes the value
False with answer {v �→ S z, w �→ O}:

leq v (add w O) �{w�→O} leq v O �{v �→S z} False

However, we can also apply rule leq1 in the second step of the previous narrowing
derivation and obtain the following derivation:

leq v (add w O) �{w�→O} leq v O �{v �→O} True

Obviously, the last derivation is not optimal since it computes the same value
as the first derivation with a less general answer and needs one more step. This
derivation can be avoided by instantiating v to S z in the first narrowing step:

leq v (add w O) �{v�→S z, w �→O} leq (S z) O

Now, rule leq1 is no longer applicable, as intended. However, this first narrow-
ing step contains a substitution that is not a most general unifier between the
evaluated subterm (add w 0) and the left-hand side of some rule for add. �

Needed Narrowing. The first narrowing strategy that advocated the use of
non-most general unifiers and for which optimality results have been shown is
needed narrowing [9]. Furthermore, needed narrowing steps can be efficiently
computed. Therefore, it has become the basis of modern functional logic lan-
guages4.

Needed narrowing is based on the idea to perform only narrowing steps that
are in some sense necessary to compute a result (such strategies are also called
4 Concrete languages and implementations add various extensions in order to deal

with larger classes of programs that will be discussed later.
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lazy or demand-driven). For doing so, it analyzes the left-hand sides of the rewrite
rules of a function under evaluation (starting from an outermost function). If
there is an argument position where all left-hand sides are constructor-rooted,
the corresponding actual argument must be also rooted by one of the constructors
in order to apply a rewrite step. Thus, the actual argument is evaluated to head
normal form if it is operation-rooted and, if it is a variable, nondeterministically
instantiated with some constructor.

Example 3. Consider again the program of Example 2. Since the left-hand sides
of all rules for leq have a constructor-rooted first argument, needed narrowing
instantiates the variable v in “leq v (add w 0)” to either O or S z (where z is a
fresh variable). In the first case, only rule leq1 becomes applicable. In the second
case, only rules leq2 or leq3 become applicable. Since the latter rules have both
a constructor-rooted term as the second argument, the corresponding subterm
(add w 0) is recursively evaluated to a constructor-rooted term before applying
one of these rules. �

Since there are TRSs with rules that do not allow such a reasoning, needed nar-
rowing is defined on the subclass of inductively sequential TRSs. This class can
be characterized by definitional trees [4] that are also useful to formalize and im-
plement various narrowing strategies. Since only the left-hand sides of rules are
important for the applicability of needed narrowing, the following characteriza-
tion of definitional trees [5] considers patterns partially ordered by subsumption
(the subsumption ordering on terms is defined by t ≤ σ(t) for a term t and
substitution σ).

A definitional tree of an operation f is a non-empty set T of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T , called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f . Non-maximal ele-
ments are also called branches.

Root property: T has aminimumelement, called the root, of the form f(x1 , . . . , xn)
where x1, . . . , xn are pairwise distinct variables.

Parent property: If π ∈ T is a pattern different from the root, there exists a
unique π′ ∈ T , called the parent of π (and π is called a child of π′), such
that π′ < π and there is no other pattern π′′ ∈ T (C∪F , X ) with π′ < π′′ < π.

Induction property: All the children of a pattern π differ from each other only
at a common position, called the inductive position, which is the position of
a variable in π5.

An operation is called inductively sequential if it has a definitional tree and its
rules do not contain extra variables. A TRS is inductively sequential if all its
defined operations are inductively sequential. Intuitively, inductively sequential
functions are defined by structural induction on the argument types. Purely
5 There might be more than one potential inductive position when constructing a

definitional tree. In this case one can select any of them since the results about
needed narrowing do not depend on the selected definitional tree.
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leq O x2 = True leq (S x) x2
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Fig. 1. Definitional trees of the operations add and leq

functional programs and the vast majority of functions in functional logic pro-
grams are inductively sequential. Thus, needed narrowing is applicable to most
functions, although extensions are useful for particular functions (see below).

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each inner node is marked with a
pattern, the inductive position in branches is surrounded by a box, and the
leaves contain the corresponding rules. For instance, the definitional trees of the
operations add and leq, defined in Example 2, are illustrated in Figure 1.

The formal definition of needed narrowing is based on definitional trees and
can be found in [9]. A definitional tree can be computed at compile time (see
[7,41] for algorithms to construct definitional trees) and contains all information
for the efficient implementation of the decisions to be made at run time (compare
Example 3). Intuitively, a needed narrowing step is applied to an operation-
rooted term t by considering a definitional tree (with fresh variables) for the
operation at the root. The tree is recursively processed from the root until one
finds a maximal pattern that unifies with t. Thus, to compute a needed narrowing
step, one starts with the root pattern of the definitional tree and performs at
each level with pattern π the following case distinction:

– If π is a leaf, we apply the corresponding rule.
– If π is a branch and p its inductive position, we consider the corresponding

subterm t|p:
1. If t|p is rooted by a constructor c and there is a child π′ of π having c at

the inductive position, we proceed by examining π′. If there is no such
child, we fail, i.e., no needed narrowing step is applicable.

2. If t|p is a variable, we nondeterministically instantiate this variable by
the constructor term at the inductive position of a child π′ of π and
proceed with π′.

3. If t|p is operation-rooted, we recursively apply the computation of a
needed narrowing step to σ(t|p), where σ is the instantiation of the vari-
ables of t performed in the previous case distinctions.

As discussed above, the failure to compute a narrowing step in case (1) is not
a weakness but advantageous when we want to compute values. For instance,
consider the term t = idNil [1+2] where the operation idNil is as defined
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in Example 1. A normalizing strategy performs a step to compute the normal
form idNil [3] whereas needed narrowing immediately fails since there exists
no value as a result. Thus, the early failure of needed narrowing avoids wasting
resources.

As a consequence of the previous behavior, the properties of needed narrowing
are stated w.r.t. constructor terms as results. In particular, the equality symbol
“=:=” in goals is interpreted as the strict equality on terms, i.e., the equation
t1 =:= t2 is satisfied iff t1 and t2 are reducible to the same ground constructor
term. In contrast to the mathematical notion of equality as a congruence rela-
tion, strict equality is not reflexive. Similarly to the notion of result values, this
is intended in programming languages where an equation between functional ex-
pressions that do not have a value, like “idNil [1] =:= idNil [1]”, is usually
not considered as true. Furthermore, normal forms or values might not exist so
that reflexivity is not a feasible property of equational constraints (see [34] for
a more detailed discussion on this topic).

Strict equality can be defined as a binary function by the following set of (in-
ductively sequential) rewrite rules. The constant Success denotes a solved (equa-
tional) constraint and is used to represent the result of successful evaluations.

c =:= c = Success ∀c/0 ∈ C
c x1 . . . xn =:= c y1 . . . yn = x1=:=y1 &...& xn=:=yn ∀c/n ∈ C, n > 0
Success & Success = Success

Thus, it is sufficient to consider strict equality as any other function. Concrete
functional logic languages provide more efficient implementations of strict equal-
ity where variables can be bound to other variables instead of instantiating them
to ground terms (see also Section 3.3).

Now we can state the main properties of needed narrowing. A (correct) solu-
tion for an equation t1 =:= t2 is a constructor substitution σ (note that construc-
tor substitutions are desired in practice since a broader class of solutions would
contain unevaluated or undefined expressions) if σ(t1) =:=σ(t2)

∗→ Success.
Needed narrowing is sound and complete, i.e., all computed solutions are correct
and for each correct solution a possibly more general one is computed, and it
does not compute redundant solutions in different derivations:

Theorem 1 ([9]). Let R be an inductively sequential TRS and e an equation.

1. (Soundness) If e �∗σ Success is a needed narrowing derivation, then σ is a
solution for e.

2. (Completeness) For each solution σ of e, there exists a needed narrowing
derivation e �∗σ′ Success with σ′(x) ≤ σ(x) for all x ∈ Var(e).

3. (Minimality) If e �∗σ Success and e �∗σ′ Success are two distinct needed
narrowing derivations, then σ and σ′ are independent on Var(e), i.e., there
is some x ∈ Var(e) such that σ(x) and σ′(x) are not unifiable.

Furthermore, in successful derivations, needed narrowing computes only steps
that are necessary to obtain the result and, consequently, it computes the shortest
of all possible narrowing derivations if derivations on common subterms are
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shared (a standard implementation technique in non-strict functional languages)
[9, Corollary 1]. Needed narrowing is currently the only narrowing strategy with
such strong results. Therefore, it is an adequate basis for modern functional
logic languages, although concrete implementations support extensions that are
discussed next.

Weakly Needed Narrowing. Inductively sequential TRS are a proper sub-
class of (constructor-based) TRSs. Although the majority of function definitions
are inductively sequential, there are also functions where it is more convenient
to relax this requirement. An interesting superclass are weakly orthogonal TRSs.
These are rewrite systems where left-hand sides can overlap in a semantically
trivial way. Formally, a TRS without extra variables (recall that we consider only
left-linear constructor-based rules) is weakly orthogonal if σ(r1) = σ(r2) for all
(variants of) rules l1 → r1 and l2 → r2 and substitutions σ with σ(l1) = σ(l2).

Example 4. A typical example of a weakly orthogonal TRS is the parallel-or,
defined by the rules:

or True _ = True (or1)
or _ True = True (or2)
or False False = False (or3)

A term like “or s t” could be reduced to True whenever one of the arguments
s or t evaluates to True. However, it is not clear which of the arguments should
be evaluated first, since any of them could result in a nonterminating derivation.
or has no definitional tree and, thus, needed narrowing can not be applied. �

In rewriting, several normalizing strategies for weakly orthogonal TRSs have
been proposed, like parallel outermost [72] or weakly needed [80] rewriting that
are based on the idea to replace several redexes in parallel in one step. Since
strategies for functional logic languages already support nondeterministic evalu-
ations, one can exploit this feature to extend needed narrowing to a weakly needed
narrowing strategy. The basic idea is to generalize the notion of definitional trees
to include or-branches which conceptually represent a union of definitional trees
[4,8,64]. If such an or-branch is encountered during the evaluation of a narrowing
step, weakly needed narrowing performs a nondeterministic guess and proceeds
with the subtrees below the or-branches. Weakly needed narrowing is no longer
optimal in the sense of needed narrowing but sound and complete for weakly
orthogonal TRS in the sense of Theorem 1 [8].

Overlapping Inductively Sequential Systems. Inductively sequential and
weakly orthogonal TRSs are confluent, i.e., each term has at most one normal
form. This property is reasonable for functional languages since it ensures that
operations are well defined (partial) functions in the mathematical sense. Since
the operational mechanism of functional logic languages is more powerful due
to its built-in search mechanism, in this context it makes sense to consider also
operations defined by non-confluent TRSs. Such operations are also called non-
deterministic. The prototype of such a nondeterministic operation is a binary
operation “?” that returns one of its arguments:
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x ? y = x
x ? y = y

Thus, the expression “0 ? 1” has two possible results, namely 0 or 1.
Since functional logic languages already handle nondeterministic computa-

tions, they can deal with such nondeterministic operations. If operations are
interpreted as mappings from values into sets of values (actually, due to the
presence of recursive non-strict functions, algebraic structures with cones of par-
tially ordered sets are used instead of sets, see [36] for details), one can provide
model-theoretic and proof-theoretic semantics with the usual properties (mini-
mal term models, equivalence of model-theoretic and proof-theoretic solutions,
etc). Thus, functional logic programs with nondeterministic operations are still
in the design space of declarative languages. Moreover, nondeterministic oper-
ations have advantages w.r.t. demand-driven evaluation strategies so that they
became a standard feature of recent functional logic languages (whereas older
languages put confluence requirements on their programs). The following exam-
ple discusses this in more detail.

Example 5. Based on the binary operation “?” introduced above, one can define
an operation insert that nondeterministically inserts an element at an arbitrary
position in a list:

insert e [] = [e]
insert e (x:xs) = (e : x : xs) ? (x : insert e xs)

Exploiting this operation, one can define an operation perm that returns an
arbitrary permutation of a list:

perm [] = []
perm (x:xs) = insert x (perm xs)

One can already see an important property when one reasons about nondeter-
ministic operations: the computation of results is arbitrary, i.e., one result is
as good as any other. For instance, if one evaluates perm[1,2,3], any permu-
tation (e.g., [3,2,1] as well as [1,3,2]) is an acceptable result. If one puts
specific conditions on the results, the completeness of the underlying computa-
tional model (e.g., INS, see below) ensures that the appropriate results meeting
these conditions are selected.

For instance, one can use perm to define a sorting function psort based on a
“partial identity” function sorted that returns its input list if it is sorted:

sorted [] = []
sorted [x] = [x]
sorted (x1:x2:xs) | leq x1 x2 =:= True = x1 : sorted (x2:xs)

psort xs = sorted (perm xs)

Thus, psort xs returns only those permutations of xs that are sorted. The
advantage of this definition of psort in comparison to traditional “generate-and-
test” solutions becomes apparent when one considers the demand-driven evalu-
ation strategy (note that one can apply the weakly needed narrowing strategy
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to such kinds of programs since this strategy is based only on the left-hand
sides of the rules but does not exploit confluence). Since in an expression like
sorted(perm xs) the argument (perm xs) is only evaluated as demanded by
sorted, the permutations are not fully computed at once. If a permutation starts
with a non-ordered prefix, like S 0 : O : perm xs, the application of the third rule
of sorted fails and, thus, the computation of the remaining part of the permu-
tation (which can result in n! different permutations if n is the length of the list
xs) is discarded. The overall effect is a reduction in complexity in comparison
to the traditional generate-and-test solution. �

This example shows that nondeterministic operations allow the transformation
of “generate-and-test” solutions into “test-of-generate” solutions with a lower
complexity since the demand-driven narrowing strategy results in a demand-
driven construction of the search space (see [5,36] for further examples). Antoy
[5] shows that desirable properties of needed narrowing can be transferred to pro-
grams with nondeterministic functions if one considers overlapping inductively
sequential systems. These are TRSs with inductively sequential rules where each
rule can have multiple right-hand sides (basically, inductively sequential TRSs
with occurrences of “?” in the top-level of right-hand sides), possibly containing
extra variables. For instance, the rules defining insert form an overlapping in-
ductively sequential TRS if the second rule is interpreted as a single rule with
two right-hand sides (“e:x:xs” and “x : inserte xs”). The corresponding strat-
egy, called INS (inductively sequential narrowing strategy), is defined similarly
to needed narrowing but computes for each narrowing step a set of replacements.
INS is a conservative extension of needed narrowing and optimal modulo non-
deterministic choices of multiple right-hand sides, i.e., if there are no multiple
right-hand sides or there is an oracle for choosing the appropriate element from
multiple right-hand sides, INS has the same optimality properties as needed
narrowing (see [5] for more details).

A subtle aspect of nondeterministic operations is their treatment if they are
passed as arguments. For instance, consider the operation coin defined by

coin = 0 ? 1

and the expression “double coin” (where double is defined as in Section 2.1). If
the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated
to double, we obtain after one rewrite step the expression coin+coin which has
four possible rewrite derivations resulting in the values 0, 1, 1, and 2. The former
behavior is referred to as call-time choice semantics [60] since the choice for the
desired value of a nondeterministic operation is made at call time, whereas the
latter is referred to as need-time choice semantics. There are arguments for either
of these semantics depending on the programmer’s intention (see [7] for more
examples).

Although call-time choice suggests an eager or call-by-value strategy, it fits
well into the framework of demand-driven evaluation where arguments are shared
to avoid multiple evaluations of the same subterm. For instance, the actual
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subterm (e.g., coin) associated to argument x in the rule “double x = x+x”
is not duplicated in the right-hand side but a reference to it is passed so that,
if it is evaluated by one subcomputation, the same result will be taken in the
other subcomputation. This technique, called sharing, is essential to obtain effi-
cient (and optimal) evaluation strategies. If sharing is used, the call-time choice
semantics can be implemented without any further machinery. Furthermore, in
many situations call-time choice is the semantics with the “least astonishment”.
For instance, consider the reformulation of the operation psort in Example 5 to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:= xs = xs

Then, for the call psort xs, the call-time choice semantics delivers only sorted
permutations of xs, as expected, whereas the need-time choice semantics de-
livers all permutations of xs since the different occurrences of xs in the rule
of idOnSorted are not shared. Due to these reasons, current functional logic
languages usually adopt the call-time choice semantics.

Conditional Rules. The narrowing strategies presented so far are defined for
rewrite rules without conditions, although some of the concrete program ex-
amples indicate that conditional rules are convenient in practice. Formally, a
conditional rewrite rule has the form l → r ⇐ C where l and r are as in
the unconditional case and the condition C consists of finitely many equational
constraints of the form s =:= t. In order to apply weakly needed narrowing to
conditional rules, one can transform a conditional rule of the form

l → r ⇐ s1 =:= t1 . . . sn =:= tn

into an unconditional rule

l → cond(s1 =:= t1 & . . . & sn =:= tn, r)

where the “conditional” is defined by cond(Success, x) → x. Actually, Antoy
[6] has shown a systematic method to translate any conditional constructor-
based TRS into an overlapping inductively sequential TRS performing equivalent
computations.

2.3 Rewriting Logic

As discussed in the previous section on overlapping inductively sequential TRS,
sharing becomes important for the semantics of nondeterministic operations.
This has the immediate consequence that traditional equational reasoning is
no longer applicable. For instance, the expressions double coin and coin+coin
are not equal since the latter can reduce to 1 while this is impossible for the
former w.r.t. a call-time choice semantics. In order to provide a semantical ba-
sis for such general functional logic programs, González-Moreno et al. [36] have
proposed the rewriting logic CRWL (Constructor-based conditional ReWriting
Logic) as a logical (execution- and strategy-independent) foundation for declara-
tive programming with non-strict and nondeterministic operations and call-time
choice semantics. This logic has been also used to link a natural model theory
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as an extension of the traditional theory of logic programming and to establish
soundness and completeness of narrowing strategies for rather general classes of
TRSs [28].

To deal with non-strict functions, CRWL considers signatures Σ⊥ that are
extended by a special symbol ⊥ to represent undefined values. For instance,
T (C ∪ {⊥}, X ) denotes the set of partial constructor terms, e.g., 1:2:⊥ denotes
a list starting with elements 1 and 2 and an undefined rest. Such partial terms
are considered as finite approximations of possibly infinite values. CRWL defines
the deduction of two kinds of basic statements: approximation statements e → t
with the intended meaning “the partial constructor term t approximates the
value of e”, and joinability statements e1 =:= e2 with the intended meaning that
e1 and e2 have a common total approximation t ∈ T (C, X ) with e1 → t and
e2 → t, thus modeling strict equality with terms containing variables. To model
call-time choice semantics, rewrite rules are only applied to partial values. Hence,
the following notation for partial constructor instances of a set of (conditional)
rules R is useful:

[R]⊥ = {σ(l → r ⇐ C) | l → r ⇐ C ∈ R, σ : X → T (C ∪ {⊥}, X )}

Then CRWL is defined by the following set of inference rules (where the program
is represented by a TRS R):

(Bottom) e → ⊥ for any e ∈ T (C ∪ F ∪ {⊥}, X )

(Restricted reflexivity) x → x for any variable x ∈ X

(Decomposition)
e1 → t1 · · · en → tn

c(e1, . . . , en) → c(t1, . . . , tn)
for any c/n ∈ C, ti ∈ T (C ∪ {⊥}, X )

(Function reduction)
e1 → t1 · · · en → tn C r → t

f(e1, . . . , en) → t
for any f(t1, . . . , tn) → r ⇐ C ∈ [R]⊥ and t �= ⊥

(Joinability)
e1 → t e2 → t

e1 =:= e2
for any total term t ∈ T (C, X )

The first rule specifies that ⊥ approximates any expression. The condition t �= ⊥
in rule (Function reduction) avoids unnecessary applications of this rule since
this case is already covered by the first rule. The restriction to partial constructor
instances in this rule formalizes non-strict functions with a call-time choice se-
mantics. Functions might have non-strict arguments that are not evaluated since
the corresponding actual arguments can be derived to ⊥ by the first rule. If the
value of an argument is required to evaluate the right-hand side of a function’s
rule, it must be evaluated to a partial constructor term before it is passed to the
right-hand side (since [R]⊥ contains only partial constructor instances), which
corresponds to a call-time choice semantics. Note that this does not prohibit the
use of lazy implementations since this semantical behavior can be enforced by
sharing unevaluated expressions. Actually, [36] defines a lazy narrowing calculus
that reflects this behavior.
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CRWL can be used as the logical foundation of functional logic languages
with non-strict nondeterministic operations. It is a basis for the verification of
functional logic programs [27] and has been extended in various directions, e.g.,
higher-order operations [37], algebraic types [17], polymorphic types [35], failure
[68], constraints [67] etc. An account on CRWL and its applications can be found
in [77].

2.4 Residuation

Although narrowing extends soundness and completeness results of logic pro-
gramming to the general framework of functional logic programming, it is not
the only method that has been proposed to integrate functions into logic pro-
grams. An alternative technique, called residuation, is based on the idea to delay
or suspend function calls until they are ready for deterministic evaluation. The
residuation principle is used, for instance, in the languages Escher [63], Le Fun
[2], Life [1], NUE-Prolog [71], and Oz [82]. Since the residuation principle evalu-
ates function calls by deterministic reduction steps, nondeterministic search must
be encoded by predicates [1,2,71] or disjunctions [63,82]. Moreover, if some part
of a computation might suspend, one needs a primitive to execute computations
concurrently. For instance, the conjunction of constraints “&” needs to evaluate
both arguments to Success so that it is reasonable to do it concurrently, i.e., if
the evaluation of one argument suspends, the other one is evaluated.

Example 6. Consider Example 2 together with the operation

nat O = Success
nat (S x) = nat x

If the function add is evaluated by residuation, i.e., suspends if the first argu-
ment is a variable, the expression “add y O =:= S O & nat y” is evaluated as
follows:
add y O =:= S O & nat y →{y�→S x} add (S x) O =:= S O & nat x

→{} S (add x O) =:= S O & nat x
→{} add x O =:= O & nat x
→{x�→O} add O O =:= O & Success

→{} O =:= O & Success
→{} Success & Success
→{} Success

Thus, the solution {y �→ S O} is computed by switching between the residuating
function add and the constraint nat that instantiates its argument to natural
numbers. �

Narrowing and residuation are quite different approaches to integrate functional
and logic programming. Narrowing is sound and complete but requires the
nondeterministic evaluation of function calls if some arguments are unknown.
Residuation might not compute some result due to the potential suspension of
evaluation but avoids guessing on functions. From an operational point of view,
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there is no clear advantage of one of the strategies. One might have the impres-
sion that the deterministic evaluation of functions in the case of residuation is
more efficient, but there are examples where residuation has an infinite computa-
tion space whereas narrowing has a finite one (see [39] for more details). On the
other hand, residuation offers a concurrent evaluation principle with synchro-
nization on logic variables (sometimes also called declarative concurrency [84])
and a conceptually clean method to connect external functions to declarative
programs [21] (note that narrowing requires functions to be explicitly defined by
rewrite rules). Therefore, it is desirable to integrate both principles in a single
framework. This has been proposed in [41] where residuation is combined with
weakly needed narrowing by extending definitional trees with branches deco-
rated with a flexible/rigid tag. Operations with flexible tags are evaluated as
with narrowing whereas operations with rigid tags suspend if the arguments are
not sufficiently instantiated. The overall strategy is similar to weakly needed
narrowing with the exception that a rigid branch with a free variable in the
corresponding inductive position results in the suspension of the function under
evaluation. For instance, if the branch of add in Figure 1 has a rigid tag, then
add is evaluated as shown in Example 6.

3 Aspects of Multi-paradigm Languages

This section discusses some aspects of multi-paradigm languages that are rele-
vant for their use in application programming. As before, we use the language
Curry for concrete examples. Its syntax has been already introduced in an infor-
mal manner. Conceptually, a Curry program is a constructor-based TRS. Thus,
its declarative semantics is given by the rewriting logic CRWL, i.e., operations
and constructors are non-strict with a call-time choice semantics for nondeter-
ministic operations. The operational semantics is based on weakly needed nar-
rowing with sharing and residuation. Thus, for (flexible) inductively sequential
operations, which form the vast majority of operations in application programs,
the evaluation strategy is optimal w.r.t. the length of derivations and number of
computed solutions and always computes a value if it exists (in case of nondeter-
ministic choices only if the underlying implementation is fair w.r.t. such choices,
as [14,15,56]). Therefore, the programmer can concentrate on the declarative
meaning of programs and needs less attention to the consequences of the partic-
ular evaluation strategy (see [45] for a more detailed discussion).

3.1 External Operations

Operations that are externally defined, i.e., not implemented by explicit rules,
like basic arithmetic operators or I/O operations, can not be handled by
narrowing. Therefore, residuation is an appropriate model to connect external
operations in a conceptually clean way (see also [21]): their semantics can be
considered as defined by a possibly infinite set of rules (e.g., see the definition of
“+” in Section 2.1) whose behavior is implemented in some other programming
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language. Usually, external operations can not deal with unevaluated arguments
possibly containing logic variables. Thus, the arguments of external operations
are reduced to ground values before they are called. If some arguments are not
ground but contain logic variables, the call is suspended until the variables are
bound to ground values, which corresponds to residuation.

3.2 Higher-Order Operations

The use of higher-order operations, i.e., operations that take other operations
as arguments or yields them as results, is an important programming technique
in functional languages so that it should be also covered by multi-paradigm
declarative languages. Typical examples are the mapping of a function to all
elements of a list (map) or a generic accumulator for lists (foldr):

map :: (a->b) -> [a] -> [b]
map _ [] = []
map f (x:xs) = f x : map f xs

foldr :: (a->b->b) -> b -> [a] -> b
foldr _ z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

Logic languages often provide higher-order features through a transformation
into a first-order program [87] by defining a predicate apply that implements
the application of an arbitrary function of the program to an expression. This
technique is also known as “defunctionalization” [76] and enough to support the
higher-order features of current functional languages (e.g., lambda abstractions
can be replaced by new function definitions). An important difference to purely
functional languages shows up when the function to be applied is a logic variable.
In this case, one can instantiate this variable to all possible functions occurring
in the program [37]. Since this might result also in instantiations that are not
intended w.r.t. the given types, one can restrict these instantiations to well-typed
ones which requires to keep type information at run time [16,35]. Another option
is the instantiation of function variables to (well-typed) lambda terms in order
to cover programs that can reason about bindings and block structure [55]. Since
all these options might result in huge search spaces due to function instantiation
and their feasibility and usefulness for larger application programs is not clear,
one can also choose a more pragmatic solution: function application is rigid, i.e.,
it suspends if the functional argument is a logic variable.

3.3 Constraints

Functional logic languages are able to solve equational constraints. As shown
in Section 2.2, such constraints occur in conditions of conditional rules and are
intended to restrict the applicability of the rewrite rule, i.e., a replacement with a
conditional rule is only performed if the condition has been shown to be satisfied
(e.g., compare the definition of last in Section 2.1). Thus, constraints are solved
when conditional rules are applied.
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In general, a syntactic extension is not necessary to include constraints. For
instance, the language Curry has no specific constructs for constraints but con-
straints are simply expressions of type Success, i.e., the equational constraint
“=:=” is a function of type “a -> a -> Success”, and the concurrent conjunction
“&” on constraints that evaluates both arguments in a non-specified order (see
Section 2.4) is a function of type “Success-> Success-> Success”.

If constraints are ordinary expressions, they are first-class values that can be
passed in arguments or data structures. For instance, the following “constraint
combinator” takes a list of constraints as input and creates a new constraint
that is satisfied if all constraints in the input list are satisfied:

allValid :: [Success] -> Success
allValid [] = success
allValid (c:cs) = c & allValid cs

Here, success is not a constructor but denotes the trivial constraint that is
always satisfied. Exploiting higher-order functions, one can define it also by

allValid = foldr (&) success

Note that the constructor Success was introduced in Section 2.2 only to provide
a rewrite-based definition of strict equality. However, functional logic languages
like Curry, Escher, or TOY use a more efficient implementation of strict equality.
The main difference shows up when an equational constraint “x =:= y” between
two logic variables x and y is solved. Solving it with the rewrite rules shown in
Section 2.2, x and y are nondeterministically bound to ground constructor terms
which usually results in an infinite search space. This can be avoided by binding
one variable to the other, similar to logic programming.

One can easily integrate the features of constraint programming by adding
basic constraints that deal with other constraint domains, like real arithmetic,
Boolean, or finite domain constraints. Thus, typical applications of constraint
logic programming can be covered and combined with features of lazy higher-
order programming [10,19,30,31,67,70,77]. As an example demonstrating the
compactness obtained by combining constraint programming with higher-order
features, consider a solver for SuDoku puzzles6 with finite domain constraints.
If we represent the SuDoku matrix m as a list of lists of finite domain variables,
the “SuDoku constraints” can be easily specified by

allValid (map allDifferent m) &
allValid (map allDifferent (transpose m)) &
allValid (map allDifferent (squaresOfNine m))

where allDifferent is the usual constraint stating that all variables in its ar-
gument list must have different values, transpose is the standard matrix trans-
position, and squaresOfNine computes the list of 3 × 3 sub-matrices. Then, a

6 A SuDoku puzzle consists of a 9 × 9 matrix of digits between 1 and 9 so that each
row, each column, and each of the nine 3× 3 sub-matrices contain pairwise different
digits. The challenge is to find the missing digits if some digits are given.
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SuDoku puzzle can be solved with these constraints by adding the usual domain
and labeling constraints (see [49] for more details).

3.4 Function Patterns

We have discussed in Section 2.2 the fundamental requirement of functional
languages for constructor-based rewrite systems. This requirement is the key for
practically useful implementations and excludes rules like

last (xs ++ [e]) = e (last)

The non-constructor pattern (xs ++ [e]) in this rule can be eliminated by mov-
ing it into the condition part (see Section 2.1):

last l | xs++[e]=:= l = e where xs,e free (lastc)

However, the strict equality used in (lastc) has the disadvantage that all list
elements are completely evaluated. Hence, an expression like last [failed,3]
(where failed is an expression that has no value) leads to a failure. This disad-
vantage can be avoided by allowing function patterns, i.e., expressions containing
defined functions, in arguments of a rule’s left-hand side so that (last) becomes
a valid rule. In order to base this extension on the existing foundations of func-
tional logic programming as described so far, a function pattern is interpreted
as an abbreviation of the set of constructor terms that is the result of evaluating
(by narrowing) the function pattern. Thus, rule (last) abbreviates the following
(infinite) set of rules:

last [x] = x
last [x1,x] = x
last [x1,x2,x] = x
...

Hence, the expression last [failed,3] reduces to 3 w.r.t. these rules. In order
to provide a constructive implementation of this concept, [13] proposes a spe-
cific demand-driven unification procedure for function pattern unification that
can be implemented similarly to strict equality. Function patterns are a pow-
erful concept to express transformation problems in a high-level way. Concrete
programming examples and syntactic conditions for the well-definedness of rules
with function patterns can be found in [13].

3.5 Encapsulating Search

An essential difference between functional and logic computations is their de-
terminism behavior. Functional computations are deterministic. This enables a
reasonable treatment of I/O operations by the monadic approach where I/O ac-
tions are considered as transformations on the outside world [86]. The monadic
I/O approach is also taken in languages like Curry, Escher, or Mercury. How-
ever, logic computations might cause (don’t know) nondeterministic choices, i.e.,
a computation can be cloned and continued in two different directions. Since one
can not clone the entire outside world, nondeterministic choices during monadic
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I/O computations must be avoided. Since this might restrict the applicability
of logic programming techniques in larger applications, there is a clear need to
encapsulate nondeterministic search between I/O actions. For this purpose, one
can introduce a primitive search operator [57,79] that returns nondeterministic
choices as data so that typical search operators of Prolog, like findall, once,
or negation-as-failure, can be implemented using this primitive. Unfortunately,
the combination with demand-driven evaluation and sharing causes some com-
plications. For instance, in an expression like

let y = coin in findall(...y...)

it is not obvious whether the evaluation of coin (introduced outside but de-
manded inside the search operator) should be encapsulated or not. Furthermore,
the order of the solutions might depend on the evaluation time. These and more
peculiarities are discussed in [22] where another primitive search operator is
proposed:

getSearchTree :: a -> IO (SearchTree a)

Since getSearchTree is an I/O action, its result (in particular, the order of
solutions) depends on the current environment, e.g., time of evaluation. It takes
an expression and delivers a search tree representing the search space when
evaluating the input:

data SearchTree a = Or [SearchTree a] | Val a | Fail

Based on this primitive, one can define various concrete search strategies as tree
traversals. To avoid the complications w.r.t. shared variables, getSearchTree
implements a strong encapsulation view, i.e., conceptually, the argument of
getSearchTree is cloned before the evaluation starts in order to cut any sharing
with the environment. Furthermore, the structure of the search tree is computed
lazily so that an expression with infinitely many values does not cause the non-
termination of the search operator if one is interested in only one solution.

3.6 Implementation

The definition of needed narrowing and its extensions shares many similarities
with pattern matching in functional or unification in logic languages. Thus, it
is reasonable to use similar techniques to implement functional logic languages.
Due to the coverage of logic variables and nondeterministic search, one could try
to translate functional logic programs into Prolog programs in order to exploit
the implementation technology available for Prolog. Actually, there are various
approaches to compile functional logic languages with demand-driven evaluation
strategies into Prolog (e.g., [3,10,26,40,62,64]). Narrowing-based strategies can
be compiled into pure Prolog whereas residuation (as necessary for external op-
erations, see Section 3.1) demands for coroutining7. The compilation into Prolog
has many advantages. It is fairly simple to implement, one can use constraint

7 Note that external operations in Prolog do not use coroutining since they are imple-
mented in a non-declarative way.
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solvers available in many Prolog implementations in application programs, and
one can exploit the advances made in efficient implementations of Prolog.

Despite these advantages, the transformation into Prolog has the drawback
that one is fixed to Prolog’s backtracking strategy to implement nondeterministic
search. This hampers the implementation of encapsulated search or fair search
strategies. Therefore, there are various approaches to use other target languages
than Prolog. For instance, [15] presents techniques to compile functional logic
programs into Java programs that implement a fair search for solutions, and
[23] proposes a translation of Curry programs into Haskell programs that offers
the primitive search operator getSearchTree introduced in Section 3.5. Virtual
machines to compile functional logic programs are proposed in [14,56,69].

4 Applications

Since multi-paradigm declarative languages amalgamate the most important
declarative paradigms, their application areas cover the areas of languages be-
longing to the individual paradigms. Therefore, we discuss in this section only
applications that demonstrate the feasibility and advantages of multi-paradigm
declarative programming.

A summary of design patterns exploiting combined functional and logic fea-
tures for application programming can be found in [11]. These patterns are
unique to functional logic programming and can not be directly applied in other
paradigms. For instance, the constraint constructor pattern exploits the fact
that functional logic languages can deal with failure so that conditions about
the validity of data represented by general structures can be encoded directly
in the data structures rather than in application programs. This frees the appli-
cation programs from dealing with complex conditions on the constructed data.
Another pattern, called locally defined global identifier, has been used to provide
high-level interfaces to libraries dealing with complex data, like programming of
dynamic web pages or graphical user interfaces (GUIs, see below). This pattern
exploits the fact that functional logic data structures can contain logic variables
which are globally unique when they are introduced. This is helpful to create lo-
cal structures with globally unique identifiers and leads to improved abstractions
in application programs. Further design patterns and programming techniques
are discussed in [11,12].

The combination of functional and logic language features are exploited in [43]
for the high-level programming of GUIs. The hierarchical structure of a GUI (e.g.,
rows, columns, or matrices of primitive and combined widgets) is represented
as a data term. This term contains call-back functions as event handlers, i.e.,
the use of functions as first-class objects is natural in this application. Since
event handlers defined for one widget should usually influence the appearance
and contents of other widgets (e.g., if a slider is moved, values shown in other
widgets should change), GUIs have also a logical structure that is different from
its hierarchical structure. To specify this logical structure, logic variables in data
structures are handy, since a logic variable can specify relationships between
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Fig. 2. A simple counter GUI

different parts of a data term. As a concrete example, consider the simple counter
GUI shown in Figure 2. Using a library designed with these ideas, one can specify
this GUI by the following data term:

Col [Entry [WRef val, Text "0", Background "yellow"],
Row [Button (updateValue incrText val) [Text "Increment"],

Button (setValue val "0") [Text "Reset"],
Button exitGUI [Text "Stop"]]]

where val free

The hierarchical structure of the GUI (a column with two rows) is directly re-
flected in the tree structure of this term. The first argument of each Button is the
corresponding event handler. For instance, the invocation of exitGUI terminates
the GUI, and the invocation of setValue assigns a new value (second argument)
to the referenced widget (first argument). For this purpose, the logic variable val
is used. Since the attribute WRef of the Entry widget defines its origin and it is
used in various event handlers, it appropriately describes the logical structure of
the GUI, i.e., the dependencies between different widgets. Note that other (more
low level) GUI libraries or languages (e.g., Tcl/Tk) use strings or numbers as
widget references which is potentially more error prone.

Similar ideas are applied in [44] to provide a high-level programming interface
for web applications (dynamic web pages). There, HTML terms are represented
as data structures containing event handlers associated to submit buttons and
logic variables referring to user inputs in web pages that are passed to event han-
dlers. These high-level APIs have been used in various applications, e.g., to im-
plement web-based learning systems [52], constructing web-based interfaces for
arbitrary applications [49] (there, the effectiveness of the multi-paradigm declar-
ative programming style is demonstrated by a SuDoku solver with a web-based
interface where the complete program consists of 20 lines of code), graphical
programming environments [48,54], and documentation tools [46]. Furthermore,
there are proposals to use multi-paradigm languages for high-level distributed
programming [42,85], programming of embedded systems [50,51], object-oriented
programming [53,82], or declarative APIs to databases [32,47].

5 Conclusions

In this paper we surveyed the main ideas of multi-paradigm declarative lan-
guages, their foundations, and some practical aspects of such languages for ap-
plication programming. As a concrete example, we used the multi-paradigm
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declarative language Curry. Curry amalgamates functional, logic, constraint, and
concurrent programming features, it is based on strong foundations (e.g., sound-
ness and completeness and optimal evaluation on inductively sequential pro-
grams) and it has been also used to develop larger applications. For the latter,
Curry also offers useful features, like modules, strong typing, polymorphism, and
declarative I/O, that are not described in this paper since they are not specific
to multi-paradigm declarative programming (see [58] for such features).

We conclude with a summary of the advantages of combining different declar-
ative paradigms in a single language. Although functions can be considered as
predicates (thus, logic programming is sometimes considered as more general
than functional programming), functional notation should not be used only as
syntactic sugar: we have seen that the properties of functions (i.e., functional
dependencies between input and output arguments) can be exploited to con-
struct more efficient evaluation strategies without loosing generality. For in-
stance, needed narrowing ensures soundness and completeness in the sense of
logic programming and it is also optimal, whereas similar results are not available
for pure logic programs. As a consequence, functional logic languages combine
the flexibility of logic programming with the efficiency of functional program-
ming. This leads to a more declarative style of programming without loosing
efficiency. For instance, most functional logic languages do not have a Prolog-like
“cut” operator since functions can be interpreted as a declarative replacement
for it (see also [24,65]). Moreover, searching for solutions with a demand-driven
evaluation strategy results in a demand-driven search strategy that can consider-
ably reduce the search space. Finally, narrowing can be appropriately combined
with constraint solving and residuation. The latter provides for a declarative
integration of external operations and concurrent programming techniques.
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Abstract. This note provides background information and references
to the tutorial on recent research developments in logic programming
inspired by needs of knowledge representation.

1 Introduction

McCarthy and Hayes [46] wrote: “[...] intelligence has two parts, which we shall
call the epistemological and the heuristic. The epistemological part is the repre-
sentation of the world in such a form that the solution of problems follows from
the facts expressed in the representation. The heuristic part is the mechanism
that on the basis of the information solves the problem and decides what to
do.” The epistemological part is the concern of knowledge representation. The
heuristic part is typically addressed by search.

While not stated explicitly in McCarthy and Hayes’ definition, the knowledge
representation and the search are closely intertwined. Modeling features of the
language affect the design of search methods. Conversely, the availability of fast
search techniques for particular computational tasks, for instance, proof finding
or model computation, in the case of particular classes of theories, such as Horn
theories or propositional theories in CNF, influences the design of modeling lan-
guages. Effective computational knowledge representation systems require that
the two are integrated.

Logic programming has long been regarded as a prime candidate for a practi-
cal instantiation of computational knowledge representation. First, logic program
clauses align well with natural language constructs humans use to specify con-
straints [31,32]. Next, logic programs (Horn logic programs, to be precise) are
Turing complete [1]. Finally, there are well understood automated proof tech-
niques for reasoning with logic programs [50,32]. These considerations led to the
design of Prolog [6], still a dominant computational knowledge representation
language.

However, the presence of negation in the bodies of logic program rules, while
convenient from the modeling standpoint, posed a challenge. The semantics of
logic programs with negation was not clear and resolving that issue required
a major research effort. The completion semantics [5] was the first attempt to
address the problem. The answer-set semantics [27,28] provided a definitive so-
lution within the class of 2-valued semantics.

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 76–88, 2007.
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For some time after its introduction, the answer-set semantics was a source of
confusion. It was unclear how to use it in practice when modeling application do-
mains, and how to reconcile it with the traditional proof-theory approach to logic
programming. The answer-set programming paradigm [43,48] offered an alterna-
tive to proof-based logic programming and shifted the focus from proof-finding
to model-finding. Under the answer-set programming paradigm, a problem is
modeled as a logic program so that answer sets of the program expanded with
an encoding of a particular instance of the problem (not substitutions associated
with proofs) correspond to solutions to the problem for that instance.

With the understanding of the meaning of programs with negation came ad-
ditional evidence of the applicability of logic programs in knowledge representa-
tion. According to [26], the goal of knowledge representation is “to design and
study languages to capture knowledge about environments, their entities and
their behaviors.” Such languages must be able to handle modeling challenges
posed by the qualification and frame problems, defaults, conditionals and nor-
mative statements, (inductive) definitions, and by the need for the elaboration
tolerance. Research showed that answer-set programming, provides means that
adequately address these problems [4,25,26,3]. While answer-set programming
comes with the penalty of syntactic restrictions (no function symbols) and so,
the limited expressive power (the class NP-search for normal logic programs, and
ΣP

2 -search for disjunctive programs), it has major advantages. First, arguably
the task of modeling gets much simpler than in proof-based logic programming
— answer-set programs are truly declarative. Second, it becomes possible to
take advantage of fast search techniques developed in the area of propositional
satisfiability.

In this note I will discuss three recent research directions in logic program-
ming inspired by knowledge representation needs. First, knowledge bases must
be constructed in a modular fashion. This brings up the question of equivalence
of answer-set programs, as well as the need for methods to decompose programs
so that answer-sets of the program can be recovered from answer sets of its com-
ponents. Second, there has been a need for extending the syntax of answer-set
programs with means to model numeric constraints. Such constraints are ubiq-
uitous and, in particular, are common in knowledge representation applications.
Finally, there are logics other than logic programs with the answer-set semantics
that also give rise to knowledge representation systems based on the principle
that models of theories describe problem solutions. One of the most promising
such approaches, the ID-logic [8], combines first-order logic (which is used to
model constraints) with logic programs under the well-founded semantics [58], a
3-valued approximation to the answer-set semantics (which are used to represent
definitions).

Theoretical advances in answer-set programming would remain just that, if
they were not followed by practical applications. These applications require work-
ing and effective answer-set programming software. There has been much work
in that area. I will conclude this paper with brief comments on and references
to some of the state-of-the-art implementations.
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2 Modularity

A basic design principle in knowledge representation is the principle of modular-
ity. It stipulates that knowledge bases be composed of modules, each representing
a fragment of an application domain being modeled. The principle of modularity
gave rise to research problems that have generated much interest among logic
programming and answer-set programming researchers. Two of them that I will
discuss are:

1. To characterize cases when two knowledge base modules are equivalent for
substitution, and

2. To improve the efficiency of processing algorithms by taking advantage of
the modular structure of the knowledge base.

Informally, two modules are equivalent for substitution if replacing one with
the other does not affect the meaning of the knowledge base. When optimizing
the knowledge base for conciseness, efficiency of processing, robustness to change,
or other appropriate measure of quality, one approach is to optimize each module
separately. For that approach to be safe, though, the optimized module should
be equivalent for substitution to the original one. Otherwise, optimization might
have unwanted side effects. In a related way, the concept of equivalence for
substitution has applications in knowledge-base query optimization. Thus, the
notion of equivalence for substitution is an important one.

When a knowledge base is represented by a logic program under the answer-
set semantics, one can formalize the concept of the equivalence for substitution,
or strong equivalence, the term more commonly used in answer-set programming,
as follows: two programs P and Q are strongly equivalent if for every program
R, the programs P ∪ R and Q ∪ R have the same answer sets. Indeed, if P and
Q have this property, one can replace P with Q or Q with P within any larger
program, and the answer sets (a formal description of the “meaning”) will not
change.

The concept of strong equivalence was introduced in [33]. That paper also pre-
sented a complete characterization of strong equivalence in terms of the equiva-
lence in the logic here-and-there [29]. We note in passing that while a necessary
condition, having the same answer sets is not sufficient for two programs to be
strongly equivalent. Thus, a most direct attempt at extending the concept of
equivalence from the classical logic to answer-set programming does not work.
[36,56] presented simple characterizations of strong equivalence that do not make
explicit references to the logic here-and-there. [55] cast the concept in terms of
the equivalence in the modal logic S4F. Several generalizations and variations of
the notion were proposed and studied in [15,17,19,16,34,23]. [54] extended the
problem of strong equivalence to an abstract algebraic setting of the approxima-
tion theory of operators on lattices [9].

Modularity can also be exploited in processing programs. It is well known
that the problem of the existence of an answer set of a logic program is NP-
complete for normal propositional logic programs [45] and ΣP

2 -complete for the
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disjunctive ones [18]. Modular structure of the program can have dramatic effect
on the complexity of this decision problem and the associated search task.

This has been known for quite some time in the case when the dependencies
among modules are acyclic. [2] proposed the class of stratified programs, in which
dependencies between modules are acyclic, and dependencies within modules
are subject to certain restrictions. Each stratified normal logic program has
exactly one answer set. Moreover, it can be computed efficiently. The results on
stratification have been generalized in the form of a splitting theorem, to the
case when the dependencies between modules are still acyclic but the structure
of each module is not restricted anymore [35]. When a program can be “split”,
a form of divide-and-conquer approach can significantly speed up the process of
computing answer sets. It is worth noting that, as strong equivalence, splitting
also has an algebraic description within the approximation theory [60,59].

Recently, researchers focused on the general case, when dependencies among
modules are not acyclic [21,30]. By controlling the way, in which modules inter-
act, [30] managed to characterize answer sets of the overall program in terms of
answer sets of individual modules and outlined several possible applications for
this general result.

3 Programs with Constraints

Numeric constraints are common. Modeling them in the basic language of first-
order logic is, however, a tedious task. It requires auxiliary atoms and leads
to large programs with no transparent meaning. The problem has been long
recognized in the area of database systems, where queries often concern numeric
properties of sets of records. To make the process of formulating such queries
easier, database query languages are equipped with syntax that provides explicit
means to express numeric constraints, referred to in the field of databases as
aggregates. The same holds true of constraint programming languages.

Applications of answer-set programming in knowledge representation brought
up the same problem and motivated extensions of the basic language of program
rules with syntax to model constraints directly [51,7,10,20,22,49,52]. These ap-
proaches agree on many classes of programs. However, they differ in intuitions,
as well as in some technical aspects. To gain a better understanding of exten-
sions of answer-set programming with constraints, and to offer a more princi-
pled approach to the semantics of such extensions, researchers proposed and
studied answer-set programming formalisms based on abstract constraint atoms
[42,44,41,53,38]. This approach lead to a theory of programs with constraints
based on the concept of a computation driven by a generalization of the one-step
provability operator [57]. In the case of programs with monotone and convex
constraints the parallels with the normal logic programming are very strong [41].
Recent work extended these parallels also to the case of arbitrary constraints [38].
We will now present, following closely [44] and [40], some of the basic aspects
of the theory of programs with abstract constraints concentrating on the case
when these constraints are monotone.
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We consider a language determined by a fixed countable set At of propositional
variables. An abstract constraint atom is a syntactic expression A = (C, X), where
X ⊆ At is a finite set of propositional variables, called the domain of A, and
C ⊆ P(At) is the set of satisfiers of A. We will write Adom for X and Asat for C.

A propositional interpretation M ⊆ At satisfies an abstract constraint atom
A, denoted M |= A, if M ∩ Adom ∈ Asat , that is, if the set of elements in the
domain of A that are true in M is a satisfier of A.

A constraint program is a set of constraint rules, that is, expressions of the form

A ← A1, . . . , Ak,not(Ak+1), . . . ,not(Am) (1)

where A, A1, . . . , Am are constraints and not denotes default negation. The
constraint A is the head and the set {A1, . . . , Ak,not(Ak+1), . . . ,not(Am)} is the
body of r. The concept of satisfiability described above extends in the standard
way to constraint rules and programs.

We denote by At(P ) the set of atoms in the domains of constraints in a
constraint program P . We denote by hset(P ), the headset of P , that is, the
union of the domains of the heads of all rules in P .

We will now list several basic definitions and properties of constraint programs
mirroring those of normal ones, and culminating with a generalization of the
concept of the answer-set.

M -applicable rules. Let M ⊆ At be an interpretation. A rule (1) is M -
applicable if M satisfies every literal in the body of r. We write P (M) for the
set of all M -applicable rules in P .

Supported models. An interpretation M is a supported model of a constraint
program P if M is a model of P and M ⊆ hset(P (M)).

Nondeterministic one-step provability. An interpretation M ′ ⊆ At is non-
deterministically one-step provable from an interpretation M ⊆ At by means of
a constraint program P , if M ′ ⊆ hset(P (M)) and for every head A of a rule in
P (M), M ′ |= A. Given a constraint program P , the nondeterministic one-step
provability operator T nd

P is an operator on P(At) such that for every M ⊆ At ,
T nd

P (M) consists of all sets that are nondeterministically one-step provable from
M by means of P .

Monotone constraints and monotone-constraint programs. A constraint
A is monotone if for every M, M ′ ⊆ At , M ⊆ M ′ and M |= A together imply
that M ′ |= A. A monotone-constraint program is a program built of monotone
constraints.

Horn constraint programs. A rule (1) is Horn if constraints A, A1, . . . , Ak

are monotone, and if k = m (no occurrences of default negation). A constraint
program is Horn if every constraint rule in the program is Horn.

Bottom-up computations for Horn programs. Let P be a Horn constraint
program. A P -computation is a sequence 〈Xk〉∞k=0 such that X0 = ∅ and for
every k,

Xk ⊆ Xk+1, and Xk+1 ∈ T nd
P (Xk).
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The result of a P -computation t = 〈Xk〉 is the set
⋃

k Xk. We denote it by Rt.
We note that if P is a Horn constraint program and t is a P -computation, Rt

is a supported model of P .

Derivable models. A set M of atoms is a derivable model of a Horn constraint
program P if there exists a P -computation t such that M = Rt. If a Horn
constraint program has a model, one can show that it has computations and,
consequently, derivable models. By our comment above, derivable models of a
Horn constraint program P are supported models and so, in particular, models
of P .

The reduct. Let P be a monotone-constraint program and M a subset of
At(P ). The reduct of P with respect to M , PM , is the Horn constraint program
obtained from P by: (1) removing from P all rules whose body contains a literal
not(B) such that M |= B; and (2) removing literals not(B) for the bodies of
the remaining rules.

Answer sets. Let P be a program. A set of atoms M is an answer set of P
if M is a derivable model of PM . Since PM is a Horn constraint program, the
definition is sound.

The definitions of the reduct and of answer sets follow and generalize the
corresponding definitions proposed for normal logic programs, as in the setting
of Horn constraint programs, derivable models play the role of a least model.

As in normal logic programming, answer sets of monotone-constraint pro-
grams are supported models and, consequently, models. As shown in [51], mono-
tone-constraint programs generalize programs with weight atoms [51]. Some
other results one can prove for monotone-constraint programs are extensions
of the characterizations of strong and uniform equivalence of programs, of the
concept of the program completion [5], and of loop formulas [37]. The latter two
concepts proved useful in designing a solver pbmodels [39] for computing answer
sets of programs with weight constraints in the syntax of smodels. Pbmodels
placed second in two events of the 1st Answer-Set Programming Contest [24].

We concentrated here on monotone-constraint programs. Programs built of
more general classes of constraints offer additional challenges. The class of convex
constraint atoms (A is convex if for every M , M ′ and M ′′ such that M ′ |= A,
M ′′ |= A and M ′ ⊆ M ⊆ M ′′, M |= A, as well) is most closely related to the class
of monotone constraints and the basic approach described above extends. For
arbitrary constraint atoms there is no simple generalization due to non-monotone
behavior of such constraints. [38] developed a principled approach to the problem
of the answer-set semantics for programs with arbitrary constraints. However,
the general approach of [38] resulted in three candidate semantics, none of which
has emerged as the definitive one for programs with arbitrary constraints.

4 Model Expansion and ID-Logic

Several fundamental knowledge representation and reasoning problems can be
stated formally as search problems, and solved by general search methods. In

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



82 M. Truszczyński

fact, this observation lies behind the answer-set programming paradigm. We
will now introduce a simple formalism for modeling search problems and show
how to integrate it with logic programming to produce an effective answer-set
programming formalism. This approach stems from the work on the formalism
called datalog with constraints [13,14] and research on the role of definitions in
knowledge representation [8]. It has been actively studied and developed further
in [11,47,12].

We start with basic terminology. A signature is a nonempty set σ of relation
symbols, each with a positive integer arity. Let U be a fixed infinite countable
set (the universe), and let σ be a signature. An instance of σ over U is a set I
of finite relations over U , such that there is a one-to-one correspondence r ↔ rI

between σ and I, and the corresponding relation symbols r and relations rI are
of the same arity.

We denote by Instσ the set of all instances of σ. If I ∈ Instσ, we define the
domain of I, dom(I), to be the set of all those elements of U that appear in
a tuple of a relation in I. Since all relations in I are finite, dom(I) is finite,
too. Let σ′ ⊆ σ be signatures. We say that K ∈ Instσ expands I ∈ Instσ′ if
dom(I) = dom(K) and for every r ∈ σ′, rI = rK . We write I = K|σ′ to denote
that K expands I.

The formalism of model expansion (the logic MX ) is based on the language
Lσ of the first-order logic, determined by a signature σ (thus, we assume here
no function symbols).

An instance I ∈ Instσ determines a first-order logic interpretation 〈dom(I), I〉
of Lσ. With some abuse of notation, for an instance I ∈ Instσ and a sentence
ϕ ∈ Lσ, we write I |= ϕ instead of 〈dom(I), I〉 |= ϕ.

Let σ′ ⊆ σ be signatures and let ϕ ∈ Lσ be a sentence. Given an instance I ∈
Instσ′ we call an instance K ∈ Instσ an I-model of ϕ if K expands I and K |= ϕ
(hence the term model expansion). The concept extends in a straightforward
way to sets of sentences. We will refer to finite sets of sentences interpreted by
I-models as MX-theories.

Given signatures σ′ ⊆ σ, we can regard an MX-theory T from Lσ as an
encoding of a search problem. This problem has Instσ as the set of its instances
and, for every instance I ∈ Instσ, I-models as solutions to the instance I.

One can show that the expressive power of MX-theories is the same as that
of (normal) logic programs [13]. In some cases, though, the task of modeling
the search problems as MX-theories is significantly more complicated than when
answer-set programs are used. Modeling definitions is often particularly cumber-
some. To address that issue, researchers proposed extensions of the formalism
MX with logic programs which, under the well-founded semantics [58], are well
suited to model definitions [8].

We will present one such extension, the ID-logic [8,12,47]. Let σ′ ⊆ σ be sig-
natures. A theory T modeling a search problem in the formalism of the ID-logic
consists of two parts. An MX-theory T ′ in Lσ forms one of the parts. A nor-
mal logic program T ′′, also in Lσ but with no relation symbol from σ′ in the
head of a rule, forms the other one. Let σdef be the set of relation symbols in
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the heads of the rules of the program T ′′. Intuitively, these are the symbols that
need to be defined and that are defined in the ID-logic theory T by its
component T ′′.

Given an instance I ∈ Instσ′ , an instance K ∈ Instσ is an I-model of T if K
is an I-model of T ′ and K|σdef is the total well-founded model of the program
T ′′ ∪ K|σ\σdef

1. Informally, to obtain an I-model of an ID-logic theory T , we
guess the extensions of all relation symbols in σ (keeping the extensions of the
relation symbols in σ′ as they are specified by I and not introducing any new
constants), and verify that the extensions of the relation symbols in σdef are
fully determined by the program T ′′ and the extensions of the relation symbols
not in σdef under the well-founded semantics.

The ID-logic (under the restriction of no function symbols in the language)
has the same expressive power as (non-disjunctive) answer-set programming [14].
However, arguably, its semantics is simpler, as it relies on two intuitive concepts:
constraints and definitions. Consequently, the ID-logic has a significant poten-
tial for knowledge representation applications. A practical demonstration of the
modeling capabilities of ID-logic can be found in [11].

5 Tools

While theoretical challenges make answer-set programming an exciting research
area, it is because of the existence of effective computational tools, effective
enough to handle several classes of “industrial-grade” problems, that it is steadily
gaining on importance. We will now briefly review some of these tools.

The general approach to processing answer-set programs consists of two steps:
(1) grounding, that is, instantiating and simplifying an input program with vari-
ables into a propositional program, and (2) solving, that is, computing answer
sets of the program resulting from step (1). The grounding step is designed so
that all answer sets of the original program can be recovered in step (2).

The lparse/smodels software (www.tcs.hut.fi/Software/smodels/)
constitutes the earliest attempt at making answer-set programming practical.
It remains widely used. Arguably, lparse is the most widely used grounder by
solver developers, and smodels remains one of the most competitive solvers.

The dlv system (www.dbai.tuwien.ac.at/proj/dlv/) was proposed
soon after lparse/smodels. The dlv offers an integrated grounder and solver pack-
age capable of computing answer-sets of disjunctive programs with aggregates.
With its front-ends for SQL, inheritance, planning, and abduction and diagnosis,
it emerges as the most flexible answer-set programming system at present. In this
context, it is important to note that dlv won the 1st Answer-Set Programming
Contest in the modeling/grounding/solving category [24].

Among software addressing only one of the stages in the computation of an-
swer sets, gringo (gringo.sourceforge.net/) is a recent newcomer in the
area of grounders. Noteworthy solvers are clasp (www.cs.uni-potsdam.de/
1 We abuse the notation here by viewing instances as sets of the corresponding ground

atoms in the language extending Lσ with the elements of U as constants.
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clasp/), pbmodels (www.cs.uky.edu/ai/pbmodels/), cmodels (www.cs.
utexas.edu/users/tag/cmodels.html), as well as gnt (www.tcs.hut.
fi/Software/gnt/). Each of these solvers performed very well in the 1st
Answer-Set Programming Contest [24], with clasp winning in two events. Other
notable solver is assat, which pioneered the idea of using loop formulas to reduce
answer-set computation to propositional satisfiability.

Finally, we mention software for answer-set programming systems based on
the ID-logic. The grounder psgrnd (www.cs.uky.edu/ai/aspps/) can pro-
cess ID-logic theories, in which the first-order component is in the clausal form
(possibly with weight atoms), and the logic program component is a Horn
program. The solver aspps (www.cs.uky.edu/ai/aspps/) is designed to
compute answer-sets of ground ID-logic theories satisfying these restrictions.
Recently more general tools have been developed, including MXG (www.cs.
sfu.ca/research/groups/mxp/mxg/), an integrated software package for
grounding and computing models of ID-logic theories, and GidL/MidL package
(www.cs.kuleuven.be/∼dtai/krr/software/idp.html) for grounding
(GidL) and model generation (MidL) of theories in the ID-logic.

6 Closing Comments

Answer-set programming, a variant of logic programming with the answer-set
semantics, and formalisms such as ID-logic, which combine first-order logic with
logic programming under the well-founded semantics, are well suited for knowl-
edge representation applications. After about a decade since they have been
proposed, they continue to generate theoretical research challenges. In the same
time, thanks to the development of computational software, their practical
importance is steadily growing.
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In: Dix, J., Fariñas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI),
vol. 1489, pp. 1–16. Springer, Heidelberg (1998)
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chitz, V., Niemelä, I. (eds.) Logic Programming and Nonmonotonic Reasoning.
LNCS(LNAI), vol. 2923, pp. 167–179. Springer, Heidelberg (2003)
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Abstract. Finitary programs are a class of logic programs admitting functions
symbols and hence infinite domains. In this paper we prove that a larger class of
programs, called finitely recursive programs, preserves most of the good prop-
erties of finitary programs under the stable model semantics, namely: (i) finitely
recursive programs enjoy a compactness property; (ii) inconsistency check and
skeptical reasoning are semidecidable; (iii) skeptical resolution is complete. Mo-
reover, we show how to check inconsistency and answer skeptical queries using
finite subsets of the ground program instantiation.

1 Introduction

Answer Set Programming (ASP) is one of the most interesting achievements in the
area of Logic Programming and Nonmonotonic Reasoning. It is a declarative problem
solving paradigm, mainly centered around some well-engineered implementations of
the stable model semantics of logic programs [8,9], such as SMODELS and DLV [14,5].

The most popular ASP languages are extensions of Datalog, that is, function-free,
possibly disjunctive logic programs with negation as failure. The lack of function sym-
bols has several drawbacks, related to expressiveness and encoding style [4]. In order to
overcome such limitations and reduce the memory requirements of current implemen-
tations, a class of logic programs called finitary programs has been introduced [4].

In finitary programs function symbols (hence infinite domains) and recursion are
allowed. However, recursion is restricted by requiring each ground atom to depend on
finitely many ground atoms; such programs are called finitely recursive. Moreover, only
finitely many ground atoms must occur in odd-cycles—that is, cycles of recursive calls
involving an odd number of negative subgoals—which means that there should be only
finitely many potential sources of inconsistencies. These two restrictions bring a num-
ber of nice semantic and computational properties [4]. In general function symbols
make the stable model semantics highly undecidable [13]. On the contrary, if the given
program is finitary, then consistency checking, ground credulous queries, and ground
skeptical queries are decidable. Nonground queries were proved to be r.e.-complete.
Moreover, a form of compactness holds: an inconsistent finitary program has always a
finite unstable kernel, i.e. a finite subset of the program’s ground instantiation with no
stable models. All of these properties are quite unusual for a nonmonotonic logic.

As function symbols are being integrated in state-of-the-art reasoners such as DLV,1

it is interesting to extend these good properties to larger program classes. This
goal requires a better understanding of the role of each restriction in the definition of
finitary programs. It has already been noted [4] that by dropping the first condition

1 A PRIN project on this topic, funded by the Italian government, has just started.

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 89–103, 2007.
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(i.e., if the program is not finitely recursive) one obtains a superclass of stratified pro-
grams, whose complexity is then far beyond computability. In the same paper, it is ar-
gued that the second restriction (on odd-cycles) is needed for the decidability of ground
queries. However, if a program is only finitely recursive (and infinitely many odd-cycles
are allowed), then the results of [4] do not characterize the exact complexity of reason-
ing and say nothing about compactness, nor about the completeness of the skeptical
resolution calculus [3].

In this paper we shall extend and refine those results, and prove that several impor-
tant properties of finitary programs carry over to all finitely recursive programs. We
shall prove that for all finitely recursive programs the compactness property still holds,
and that inconsistency check and skeptical reasoning are semidecidable. Moreover, we
will extend the completeness of skeptical resolution [3,4] to all finitely recursive pro-
grams. Our results will clarify the role that each of the two restrictions defining finitary
programs has in ensuring their properties.

In order to prove these results we use program splittings [11], but the focus is shifted
from splitting sequences (whose elements are sublanguages) to the corresponding se-
quences of subprograms. For this purpose we introduce the notion of module sequence.
It turns out that finitely recursive programs are exactly those programs whose module
sequences are made of finite elements. Moreover a finitely recursive program P has a
stable model iff each element Pi of the sequence has a stable model, a condition which
is not valid in general for normal programs.

The paper is organized as follows. The next section is devoted to preliminaries. In
Section 3, we give the definition of module sequences for a program and study their
properties. In Section 4, we study the theoretical properties and the expressiveness of
finitely recursive programs. Section 5 deals with the completeness of skeptical resolu-
tion, and Section 6 concludes the paper with a final discussion of our results.

2 Preliminaries

We assume the reader to be familiar with the classical theory of logic programming [12].
Normal logic programs are sets of rules A � L1� ���� Ln (n � 0), where A is a logical

atom and each Li (i � 1� ���� n) is a literal. If r is such a rule, then let head(r) � A and
body(r) � �L1� ���� Ln�. Moreover, let body�(r) (respectively body�(r)) be the set of all
atoms A s.t. A (respectively ���A) belongs to body(r).

The ground instantiation of a program P is denoted by Ground(P), and the set of
atoms occurring in Ground(P) is denoted by atom(P). Similarly, atom(r) denotes the
set of atoms occurring in a rule r.

A Herbrand model M of P is a stable model of P iff M � lm(PM), where lm(X) de-
notes the least model of a positive program X, and PM is the Gelfond-Lifschitz transfor-
mation of P, obtained from Ground(P) by (i) removing all rules r such that body�(r) �
M � �, and (ii) removing all negative literals from the body of the remaining rules [8,9].

The dependency graph of a normal program P is a labelled directed graph, denoted
by DG(P), whose vertices are the ground atoms of P’s language. Moreover, (i) there
exists an edge labelled ’+’ (called positive edge) from A to B iff for some rule r �

Ground(P), A � head(r) and B � body(r); (ii) there exists an edge labelled ’-’ (called
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negative edge) from A to B iff for some rule r � Ground(P), A � head(r) and ���B �

body(r).
The dependency graph of an atom A occurring in a normal program P is the subgraph

of DG(P) including A and all vertices reachable from A in DG(P).
An atom A depends positively (respectively negatively) on B if there is a directed

path from A to B in the dependency graph with an even (respectively odd) number of
negative edges. Moreover, each atom depends positively on itself. If A depends posi-
tively (respectively negatively) on B we write A �� B (respectively A �� B). A depends
on B (in symbols: A � B) if either A �� B or A �� B.

Definition 1. An odd-cycle is a cycle in the dependency graph with an odd number of
negative edges. A ground atom is odd-cyclic if it occurs in an odd-cycle.

Note that there exists an odd-cycle iff for some ground atom A, A �� A.

Definition 2 (Finitely recursive programs). A normal program P is finitely recursive
iff each ground atom A depends on finitely many ground atoms.

For example, most standard list manipulation programs (������� �		��
� ������ etc.)
are finitely recursive. The reader can find numerous examples of finitely recursive pro-
grams in [4]. Many interesting programs are finitely recursive but not finitary, due to
integrity constraints that apply to infinitely many individuals.

Example 1. Fig. 4 of [4] illustrates a finitary program for reasoning about actions,
defining—among others—two predicates ��
�(fluent� time) and 
�(action� time). The
simplest way to add a constraint that forbids any parallel execution of two incompatible
actions a1 and a2 is including a rule f � ��� f � 
�(a1� T )� 
�(a2� T ) in that program,
where f is a fresh propositional symbol (often such rules are equivalently expressed
as denials � 
�(a1� T )� 
�(a2� T )). This program is not finitary (because f depends on
infinitely many atoms since T has an infinite range of values) but it can be reformulated
as a finitely recursive program by replacing the above rule with

f (T ) � ��� f (T )� 
�(a1� T )� 
�(a2� T ) �

Note that the new program is finitely recursive but not finitary, because the new rule
introduces infinitely many odd cycles (one for each instance of f (T )). �	

If P is a finitely recursive program then, for each atom A occurring in Ground(P), the
dependency graph of A is a finite graph. Moreover, if A is an odd-cyclic atom then its
dependency graph contains all the odd-cycles in which A occurs. So, the set of atoms
on which A depends and the set of odd-cycles in which A occurs are finite.

The class of finitary programs is obtained by imposing a further constraint on the
dependency graph, that is, a finite upper bound on the number of odd-cyclic atoms.

Definition 3 (Finitary programs). We say that a normal program P is finitary if the
following conditions hold:

1. P is finitely recursive.
2. There are finitely many odd-cyclic atoms in the dependency graph of P.
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The stable models [8,9] of a normal program can be obtained by splitting a program
into two modules—of which one is self-contained, while the other module depends on
the former—and then combining the stable models of the two modules.

Definition 4 (Splitting set [2],[10]). A splitting set of a normal program P is any set U
of atoms such that, for any rule r � Ground(P), if head(r) � U then atom(r) 
 U. If U
is a splitting set for P, we also say that U splits P. The set of rules r � Ground(P) such
that atom(r) 
 U is called the bottom of P relative to the splitting set U and is denoted
by botU(P).

The top module should be partially evaluated w.r.t. the bottom.

Definition 5 (Partial evaluation [2],[10]). The partial evaluation of a normal program
P with splitting set U w.r.t. a set of ground atoms X is the program eU(Ground(P)� X)
defined as follows:

eU(Ground(P)� X) � � r� � there exists r � Ground(P) s�t� (body�(r) � U) 
 X
and (body�(r) � U) � X � �� and head(r�) � head(r)�
body�(r�) � body�(r) � U� body�(r�) � body�(r) � U � �

Then stable models can be computed in two stages.

Theorem 1 (Splitting theorem [10]). Let U be a splitting set for a logic program P.
An interpretation M is a stable model of P iff M � J  I, where

1. I is a stable model of botU(P), and
2. J is a stable model of eU(Ground(P) � botU(P)� I).

The splitting theorem has been extended to transfinite sequences in [11].

Definition 6. A (transfinite) sequence is a family whose index set is an initial segment
of ordinals, �� : � � ��. The ordinal � is the length of the sequence.

A sequence �U����� of sets is monotone if U� 
 U� whenever � � �, and continuous
if, for each limit ordinal � � �, U� �

�
��� U�.

Definition 7 (Lifschitz-Turner, [11]). A splitting sequence for a program P is a mo-
notone, continuous sequence �U����� of splitting sets for P s.t.

�
��� U� � atom(P).

In [11] Lifschitz and Turner generalized the splitting theorem to splitting sequences.
They proved that each stable model M of P equals the infinite union of a sequence of
models �M����� such that (i) M0 is a stable model of botU0 (P), (ii) for all successor
ordinals � � �, M� is a stable model of eU��1 (botU�

(P) � botU��1 (P)�
�

��� M�), and (iii)
for all limit ordinals � � �, M� � �. They proved also that each sequence of models
with these properties yields a stable model of P.

3 Module Sequences and a Normal Form for Splitting Sequences

In our study of the computational properties of finitely recursive programs, we shall
replace the notion of splitting sequence with suitable sequences of bottom programs
whose length is bounded by �.
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Definition 8 (GH, Module sequence). Let P be a normal program and let the set of its
ground heads be

GH � � p � p � head(r)� r � Ground(P) ��

The module sequence P1� P2� P3� ���� Pn� ��� induced by an enumeration p1� p2� p3� ����

pn� ��� of GH is defined as follows:

P1 � � r � Ground(P) � p1 depends on head(r) �

Pi�1 � Pi  � r � Ground(P) � pi�1 depends on head(r) � (i � 1)�

Of course, we are interested in those properties of module sequences which are indepen-
dent of the enumeration of GH. The following proposition follows easily from the def-
initions. We say that a ground subprogram P� 
 Ground(P) is downward closed, if for
each atom A occurring in P�, P� contains all the rules r � Ground(P) s.t. A � head(r).

Proposition 1. Let P be a normal program. For all module sequences P1� P2� ���, for P:

1.
�

i�1 Pi � Ground(P),
2. for each i � 1 and j � i, atom(Pi) is a splitting set of P j and Pi � botatom(Pi)(P j),
3. for each i � 1, atom(Pi) is a splitting set of P and Pi � botatom(Pi)(P),
4. for each i � 1, Pi is downward closed.

Therefore, we immediately see that each module sequence for P consists of the bottom
programs corresponding to a particular splitting sequence �atom(Pi)�i�� that depends
on the underlying enumeration of GH. Roughly speaking, such sequences constitute
a normal form for splitting sequences. If P is finitely recursive, then “normal form”
sequences can be required to satisfy an additional property:

Definition 9 (Smoothness). A transfinite sequence of sets �X����� is smooth iff X0 is
finite and for each non-limit ordinal � � 1 � �, the difference X��1 � X� is finite.

Note that when � � � (as in module sequences), smoothness implies that each X� in the
sequence is finite. Finitely recursive programs are completely characterized by smooth
module sequences:

Theorem 2. The following are equivalent:

1. P is finitely recursive;
2. P has a smooth module sequence (where each Pi is finite);
3. all module sequences for P are smooth.

Since smooth module sequences clearly correspond to smooth splitting sequences, the
above theorem implies that by working with module sequences we are implicitly re-
stricting our attention to smooth splitting sequences of length �. Then the characteriza-
tion of finitely recursive programs can be completed as follows, using standard splitting
sequences:

Corollary 1. For all programs P, the following are equivalent:

1. P is finitely recursive;
2. P has a smooth splitting sequence with length �.
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Next we illustrate how module sequences provide an incremental characterization of
the stable models of normal logic programs.

Remark 1. By Proposition 1 and the Splitting Theorem, if P is a normal program and
P1� P2� ���� Pn� ��� is a module sequence for P, then for all j � i � 1 and for all stable
models M j of P j, the set Mi � M j�atom(Pi) is a stable model of Pi. Similarly, for each
stable model M of P, the set Mi � M � atom(Pi) is a stable model of Pi.

Roughly speaking, the following theorem rephrases the splitting sequence theorem of
[11] in terms of module sequences. The original splitting sequence theorem applies to
sequences of disjoint program “slices”, while our theorem applies to monotonically in-
creasing program sequences. Since no direct proof of the splitting sequence theorem
was ever published (only the proof of a more general result for default logic was pub-
lished [15]), here we give a direct proof of our result.

Theorem 3 (Module sequence theorem). Let P be a normal program and P1� P2� ���

be a module sequence for P. Then M is a stable model of P iff there exists a sequence
M1� M2� ��� s.t. :

1. for each i � 1, Mi is a stable model of Pi,
2. for each i � 1, Mi � Mi�1 � atom(Pi),
3. M �

�
i�1 Mi.

Proof. Let M be a stable model of P. Since P1� P2� ��� is a module sequence for P then
for each i � 1, atom(Pi) is a splitting set of P and Pi � botatom(Pi)(P). So, we consider
the sequence M1 � M � atom(P1)� M2 � M � atom(P2)� ��� where, by the splitting
theorem [10], for each i � 1, Mi is a stable model of Pi, Mi�1 � atom(Pi) � Mi and, by
definition of M1� M2� ��� and by property 1 of proposition 1,

�
i Mi � M. Then for each

stable model M of P there exists a sequence of finite sets of ground atoms that satisfies
the properties 1, 2 and 3.

Now, without loss of generality, suppose P ground and suppose that there exists a
sequence M1� M2� ��� that satisfies the properties 1, 2 and 3. We have to prove that the
set M �

�
i�1 Mi is a stable model of P; equivalently,

�
i�1 Mi � lm(PM)�

First we show that
�

i�1 Mi 
 lm(PM)� Property 2 implies that for all i � 1, (M �

atom(Pi)) � Mi; consequently PM
i � PMi

i . Moreover, since Pi 
 P, we have PM
i 
 PM ,

and hence
PMi

i � PM
i 
 PM �

By the monotonicity of lm(�) [1,6], �i � 1�lm(PMi
i ) 
 lm(PM)� Moreover, Mi is a stable

model of Pi and then Mi � lm(PMi
i ), so

�i � 1�Mi 
 lm(PM)�

We are left to prove the opposite inclusion, that is lm(PM) 

�

i�1 Mi� Suppose
p � lm(PM). From PM

i � PMi
i and

�
i Pi � P it follows that

�
i PMi

i �

�
i PM

i � PM .
Moreover, by definition, for each i � 1, Pi is downward closed, then there must be a k
s.t. p � lm(PMk

k ). We conclude that p � Mk and then p �
�

i Mi. �	
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The module sequence theorem suggests a relationship between the consistency of a
program P and the consistency of each step in P’s module sequences.

Definition 10. A module sequence P1� P2� ��� for a normal program P is inconsistent if
there exists an i � � s.t. Pi has no stable model, consistent otherwise.

Proposition 2. If a normal program P has an inconsistent module sequence then P is
inconsistent.

Proof. Suppose that P has an inconsistent module sequence P1� P2� ��� . Then there ex-
ists a Pi that has no stable models. Hence, P has an inconsistent bottom set and then P
is inconsistent by the splitting theorem. �	

Next we show that the inconsistency of a module sequence S is invariant w.r.t. the
enumeration of GH inducing S .

Theorem 4. Let S � P1� P2� ��� be a module sequence for a normal program P. If S is
inconsistent then each module sequence for P is inconsistent.

Proof. Let S � P1� P2� ��� be an inconsistent module sequence for P induced by the
enumeration p1� p2� ��� of GH and let i be the least index s.t. Pi is inconsistent. Let
S �

� P�

1� P�

2� ��� be any module sequence for P induced by the enumeration p�1� p�2� ���
of GH. Since i is finite, there exists a finite k s.t. �p1� p2� ���� pi� 
 �p�1� p�2� ���� p�k�. So,
by construction, Pi 
 P�

k and then atom(Pi) 
 atom(P�

k). Moreover, by definition, Pi

is downward closed and then Pi � botatom(Pi)(P
�

k). Since Pi is inconsistent then P�

k is
inconsistent (by the splitting theorem) and then also S � is inconsistent. �	

In other words, for a given program P, either all module sequences are inconsistent, or
they are all consistent. In particular, if P is consistent, then every member Pi of any
module sequence for P must be consistent.

It may be tempting to assume that the converse holds, that is, if a module sequence
for P is consistent, then P is consistent, too. Unfortunately, this statement is not valid
in general, as the following example shows.

Example 5. Consider the following program P f (due to Fages [7]):

q(X) � q( f (X))�
q(X) � ���q( f (X))�
r(0)�

Note that P f is not finitely recursive because, for each grounding substitution 	, q(X)	
depends on the infinite set of ground atoms � q( f (X))	� q( f ( f (X)))	� ��� �.

The first two rules in P f are classically equivalent to

q(X) � [q( f (X)) � ���q( f (X))] �

Since the body is a tautology and the stable models of a program are also classical
models of the program, we have that a stable model of P f should satisfy all ground
instances of q(X). However, the Gelfond-Lifschitz transformation w.r.t. such a model
would contain only the first and the third program rules, and hence the least model of
the transformation would contain no instance of q(X). It follows that P f is inconsistent
(it has no stable models). Now consider the following extension P of P f :
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1. q(X) � q( f (X))� p(X)�
2. q(X) � ��� q( f (X))� p(X)�
3. r(0)�
4. p(X) � ��� p�(X)�
5. p�(X) � ��� p(X)�
6. c(X) � ��� c(X)� ��� p(X)�

To see that P is inconsistent, suppose M is a stable model of P. By rules 4 and 5, each
ground instance of p(X) can be either true or false. But each ground instance of c(X)
is odd-cyclic, therefore if p(X) is false then rule 6 produces an inconsistency. It follows
that all ground instances of p(X) must be true in M. In this case, however, rules 1, 2
and 3 are equivalent to program P f and prevent M from being a stable model, as ex-
plained above. So P is inconsistent.

Next, consider the enumeration e � �r(0)� q(0)� p(0)� p�(0)� c(0)� q( f (0))� p( f (0))�
p�( f (0))� c( f (0))� ���� of the set GH. This enumeration induces the following module
sequence for P.

P0 � �r(0)�
P1 � P0 

�
k��� q(X) � q( f (X))� p(X)�

q(X) � ���q( f (X))� p(X)�
p(X) � ��� p�(X)�
p�(X) � ��� p(X) � [X
 f k(0)]

Pi�1 � Pi  �c(X) � ��� c(X)� ��� p(X)� [X
 f i�1(0)] (i � 1)

Note that M0 � �r(0)� is a stable model of P0 and for each i � 1 and k � i � 2

Mk
i � � r(0)� p( f 0(0))� p( f 1(0))� p( f 2(0))� � � � � p( f k(0))�

p�( f k�1(0))� p�( f k�2(0))� � � � � p�( f k� j(0))� � � �
q( f 0(0))� q( f 1(0))� q( f 2(0))� � � � � q( f k(0))�

is a stable model of Pi. Therefore, each Pi is consistent although
�

i Pi � Ground(P)
is inconsistent. This happens because for each stable model M of P1 there exists a P j

( j � 1) such that M is not the bottom part of any stable model of P j. Intuitively, M has
been “eliminated” at step j. In this example P1 has infinitely many stable models, and it
turns out that no finite step eliminates all of them. Consequently, each Pi in the module
sequence is consistent, but the entire program is not.

4 Properties of Finitely Recursive Programs

The smoothness of finitely recursive programs overcomes the problem illustrated by the
above example. Since every module Pi is finite, no step in the sequence has infinitely
many stable models. Therefore if every Pi is consistent, the entire program P must be
consistent, too, and the following theorem holds:

Theorem 6. For all finitely recursive programs P:

1. if P is consistent then every module sequence for P is consistent;
2. if some module sequence for P is consistent, then P is consistent.
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Proof. We prove 1 by contraposition. Suppose that P has an inconsistent module se-
quence P1� P2� ��� . Then, there exists a Pi with no stable models. Therefore, P has an
inconsistent bottom set and hence P is inconsistent by the splitting theorem.

To prove point 2, consider a module sequence S for P. If S is consistent then each
Pi has a nonempty set of stable models. It suffices to prove that there exists a sequence
M1� M2� ��� of stable models of P1� P2� ���, respectively, that satisfies the properties of
Theorem 3, because this implies that M �

�
i Mi is a stable model of P.

We call a stable model Mi of Pi ”bad” if there exists a k � i s.t. no model Mk of Pk

extends Mi, ”good” otherwise. We say that Mk extends Mi if Mk � atom(Pi) � Mi (see
remark 1). We claim that each Pi must have at least a ”good” model.

To prove the claim, suppose that all models of Pi are ”bad”. Since Pi is a finite
program it has a finite number Mi1 � ���� Mir of models. By assumption, for each Mij

there is a program Pki j
none of whose models extends Mij . Let k � max�ki1 � ���� kir�;

then no model of Pk extends a model of Pi, and this is a contradiction because Pk, by
hypotheses, has at least a stable model Mk and by the splitting theorem Mk extends a
stable model of Pi. This proves the claim.

Now, let M1 be a ”good” stable model of P1; then there must exist a ”good” stable
model of P2 that extends M1, exactly for the same reasons, and so on. Therefore there
exists an infinite sequence M1� M2� ��� that satisfies both properties 1 and 2 of Theorem 3
and hence M �

�
i Mi is a stable model of P. �	

Note that if the enumeration of GH is effective, then for each i the corresponding sub-
program Pi can be effectively constructed. In this case �atom(Pi)�i�� is an effective
enumerable splitting sequence for P. This observation is the basis for the complexity
results proved in the rest of the paper.

4.1 Compactness

Here we prove that the compactness theorem for finitary programs actually holds for all
finitely recursive programs.

Definition 11 ([4]). An unstable kernel for a normal program P is a set K 
 Ground(P)
with the following properties:

1. K is downward closed, that is, for each atom A occurring in K’s rules, K contains
all the rules r � Ground(P) s.t. A � head(r).

2. K has no stable model.

Theorem 7 (Compactness). A finitely recursive program P has no stable model iff it
has a finite unstable kernel.

Proof. By Theorems 2 and 6, P has no stable model iff it has an inconsistent module
sequence. So, let P1� P2� ���� Pn� ��� be an inconsistent module sequence for P and let
i � 1 s.t. Pi is inconsistent. By proposition 1, Pi 
 Ground(P) and Pi is also downward
closed. So it is an unstable kernel for P. Moreover, by Theorem 2, Pi is finite. �	

The compactness theorem for finitary programs [4] can now be regarded as a corollary
of the above theorem.
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4.2 The Complexity of Reasoning with Finitely Recursive Programs

As we said before, by taking an effective enumeration of the set GH, one can effec-
tively compute each element of the corresponding module sequence. Let us call CON-
STRUCT (P� i) an effective procedure that, given the finitely recursive program P and the
index i, returns the ground program Pi, and let SM(Pi) be an algorithm that computes
the finite set of the finite stable models of Pi:

Theorem 8. Let P be a finitely recursive program. Deciding whether P is inconsistent
is at most semidecidable.

Proof. Given a module sequence P1� P2� ���� Pn� ��� for P, consider the algorithm CON-
SISTENT (P).

Algorithm CONSISTENT (P)

1: i � 0;
2: answer � TRUE;
3: repeat
4: i � i � 1;
5: Pi �CONSTRUCT (P� i);
6: if SM(Pi) � � then
7: answer � FALSE;
8: until �answer OR Pi � Ground(P)
9: return answer;

By Theorems 2 and 6, P is inconsistent iff there exists an i � 1 s.t. Pi is inconsistent
(note that we can always check the consistency of Pi because Pi is finite). Then, the
algorithm returns FALS E iff P is inconsistent.

Note that if Ground(P) is infinite then any module sequence for P is infinite and the
algorithm CONSISTENT (P) terminates iff P is not consistent. �	

Next we deal with skeptical inference. Recall that a closed formula F is a skeptical
consequence of P iff F is satisfied (according to classical semantics) by all the stable
models of P.

Theorem 9. Let P be a finitely recursive program and P1� P2� ��� be a module sequence
for P. A ground formula F is a skeptical consequence of P iff there exists a finite k � 1
s.t. F is a skeptical consequence of Pk and atom(F) 
 atom(Pk).

Proof. Let h be the least integer s.t. atom(F) 
 atom(Ph) (note that there always exists
such a h because atom(F) is finite). Suppose that there exists a k � h s.t. F is a skeptical
consequence of Pk. Since Pk is a bottom for P, then each stable model of P contains a
model of Pk and then satisfies F. So, F is a skeptical consequence of P. This proves the
“if” part.

Now suppose that, for each k � h, F is not a skeptical consequence of Pk. This
implies that each Pk is consistent (hence P is consistent) and, moreover, the set S of all
the stable models of Pk that falsify F is not empty.
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Note that S is finite because Pk is finite (as P is finitely recursive). So, if all the
models in S are ”bad” (cf. the proof of Theorem 6), then there exists a finite integer
j � k s.t. no model of P j contains any model of S . Consequently, F is a skeptical
consequence of P j—a contradiction.

Therefore at least one of these model must be good. Then there must be a model M
of P that contains this ”good” model of Pk, and hence F is not a skeptical consequence
of P. �	

The next theorem follows easily.

Theorem 10. Let P be a finitely recursive program. For all ground formulas F, the
problem of deciding whether F is a skeptical consequence of P is at most semidecidable.

For a complete characterization of the complexity of ground queries and inconsistency
checking, we are only left to prove that the above upper bounds are tight.

Theorem 11. Deciding whether a finitely recursive program P is inconsistent is r.e.-
complete.

Proof. By Theorem 8 we have that the inconsistency check over the class of finitely
recursive programs is at most semidecidable.

Now we shall prove that it is also r.e.-hard by reducing the problem of skeptical
inference of a quantified formula over a finitary program (that is an r.e.-complete prob-
lem [4, corollary 23]) to the problem of inconsistency check over a finitely recursive
program.

Let P be a finitary program and �F be a closed quantified formula. Let ((l11� l12 �

���)� (l21� l22 � ���) � ���) be the conjunctive normal form of �F. Then �F is a skeptical
consequence of P iff the program P  C is inconsistent, where

C �

�
������
������

p1(x1) � ��� l11� ��� l12� ���� ��� p1(x1)
p2(x2) � ��� l21� ��� l22� ���� ��� p2(x2)

���

�
������
������

�

p1, p2, ... are new atom symbols not occurring in P or F, and xi is the vector of all
variables occurring in (li1� li2 � ���). Note that P  C is a finitely recursive program.

The constraints in C add no model to P, but they only discard those models of P that
satisfy F� (for some substitution �). So, let SM(P) be the set of stable models of P. Then
each model in SM(P  C) satisfies ��F. SM(P  C) � � (that is P  C is inconsistent)
iff either SM(P) � � or all stable models of P satisfy �F. Then SM(P  C) � � iff �F
is a skeptical consequence of P. �	

Theorem 12. Deciding whether a finitely recursive program P skeptically entails a
ground formula F is r.e.-complete.

Proof. As proved in Theorem 10 deciding whether a finitely recursive program P skep-
tically entails a ground formula F is at most semidecidable.

Now we shall prove that it is also r.e.-hard by reducing the problem of inconsistency
check over a finitely recursive program to the problem of skeptical inference of a ground
formula over a finitely recursive program.
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Let P be a finitely recursive program and q be a new ground atom that doesn’t occur
in P. Then, P is inconsistent iff q is a skeptical consequence of P. Since q occurs in the
head of no rule of P, q cannot occur in a model of P. So, P skeptically entails q iff P
has no model. �	

Corollary 2. Deciding whether a finitely recursive program P doesn’t credulously en-
tail a ground formula F is co-r.e. complete.

5 Skeptical Resolution for Finitely Recursive Programs

In this section we extend the work in [3,4] by proving that skeptical resolution (a top-
down calculus which is known to be complete for Datalog and finitary programs under
the skeptical stable model semantics) is complete also for the class of finitely recursive
programs. Skeptical resolution has several interesting properties. For example, it does
not require the input program P to be instantiated before reasoning, and it can produce
nonground (i.e., universally quantified) answer substitutions.

Due to space limitations, we are not able to describe the five inference rules of skep-
tical resolution here—the reader is referred to [3]. We only recall that a crucial rule
called failure rule is expressed in terms of an abstract negation-as-failure mechanism
derived from the notion of support. Recall that a support for a ground atom A is a set
of negative literals obtained by unfolding the goal A w.r.t. the given program P until no
positive literal is left.

Definition 12 ([3]). Let A be a ground atom. A ground counter-support for A in a pro-
gram P is a set of atoms K with the following properties:

1. For each support S for A, there exists ��� B � S s.t. B � K.
2. For each B � K, there exists a support S for A s.t. ���B � S .

In other words, the first property says that K contradicts all possible ways of proving
A, while the second property is a sort of relevance property. Informally speaking, the
failure rule of skeptical resolution says that if all atoms in a counter-support are true,
then all attempts to prove A fail, and hence ���A can be concluded.

Of course, in general, counter-supports are not computable and may be infinite (while
skeptical derivations and their goals should be finite). In [3] the notion of counter-
support is generalized to non ground atoms in the following way:

Definition 13. A (generalized) counter-support for A is a pair �K� �� where K is a set
of atoms and � a substitution, s.t. for all grounding substitutions 	, K	 is a ground
counter-support for A�	.

The actual mechanism for computing counter-supports can be abstracted by means of
a suitable function CounterSupp, mapping each (possibly nonground) atom A onto a
set of finite generalized counter-supports for A. The underlying intuition is that func-
tion CounterSupp captures all the negative inferences that can actually be computed
by the chosen implementation. To achieve completeness for the nonground skeptical
resolution calculus, we need the negation-as-failure mechanism to be complete in the
following sense.
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Definition 14. The function CounterSupp is complete iff for each atom A, for all of its
ground instances A, and for all ground counter-supports K for A, there exist �K�� �� �

CounterSupp(A) and a substitution 	 s.t. A�	 � A and K�	 � K.

Skeptical resolution is based on goals with hypotheses (h-goals for short) which are
pairs (G � H) where H and G are finite sequences of literals. Roughly speaking, the
answer to a query (G � H) should be yes if G holds in all the stable models that satisfy
H. Hence (G � H) has the same meaning in answer set semantics as the formula (

	
G �

	
H). Finally, a skeptical goal (s-goal for short) is a finite sequence of h-goals, and

a skeptical derivation from P and CounterSupp with restart goal G0 is a (possibly
infinite) sequence of s-goals g0,g1,..., where each gi�1 is obtained from gi through one
of the five rewrite rules of the calculus, as explained in [3]. This calculus is sound
for all normal programs and counter-support calculation mechanisms, as stated in the
following theorem.

Theorem 13 (Soundness, [3]). Suppose that an s-goal (G � H) has a successful skep-
tical derivation from P and CounterSupp with restart goal G and answer substitution
�. Then, for all grounding substitution 	, all the stable models of P satisfy (

	
G� �

	
H�)	 (equivalently, �(

	
G� �

	
H�) is skeptically entailed by P).

However, skeptical resolution is not always complete. Completeness analysis is founded
on ground skeptical derivations, that require a ground version of CounterSupp.

Definition 15. For all ground atoms A, let CounterSuppg(A) be the least set s.t. if
�K� �� � CounterSupp(A�) and for some grounding 	, A � A��	, then �K	� �� �

CounterSuppg(A), where � is the empty substitution.

Theorem 14 (Finite Ground Completeness, [3]). If some ground implication
	

G �
	

H is skeptically entailed by a finite ground program P and CounterSupp is complete
w.r.t. P, then (G � H) has a successful skeptical derivation from P and CounterSuppg

with restart goal G. In particular, if G is skeptically entailed by P, then (G � �) has such
a derivation.

This basic theorem and the following standard lifting lemma allow to prove complete-
ness for all finitely recursive programs.

Lemma 1 (Lifting, [3]). Let CounterSupp be complete. For all skeptical derivations
� from Ground(P) and CounterSuppg with restart goal G0, there exists a substitution
	 and a skeptical derivation �� from P and CounterSupp with restart goal G�

0 and
answer substitution �, s.t. � � ���	 and G0 � G�

0�	.

Theorem 15 (Completeness for finitely recursive programs). Let P be a finitely re-
cursive program. Suppose CounterSupp is complete w.r.t. P and that for some ground-
ing substitution , (

	
G �

	
H) holds in all the stable models of P. Then (G � H)

has a successful skeptical derivation from P and CounterSupp with restart goal G and
some answer substitution � more general than .

Proof. By Theorems 2 and 9, there exists a smooth module sequence for P with finite
elements P1, P2, ..., and a finite k s.t. (

	
G �

	
H) holds in all the stable models of Pk.
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Since each Pi is downward closed, the ground supports of any given A � atom(Pk) w.r.t.
program Pk coincide with the ground supports of A w.r.t. the entire program P. Conse-
quently, also ground counter-supports and (generalized) counter-supports, respectively,
coincide in Pk and P. Therefore, CounterSupp is complete w.r.t. Pk, too. As a conse-
quence, since Pk is a ground, finite program, the ground completeness theorem can be
applied to conclude that (G � H) has a successful skeptical derivation from Pk and
CounterSuppg with restart goal G. The same derivation is also a derivation from P
(as Pk 
 Ground(P)) and CounterSuppg. Then, by the Lifting lemma, (G � H) has a
successful skeptical derivation from P and CounterSupp, with restart goal G and some
answer substitution �, s.t. (G � H) is an instance of (G � H)�. It follows that � is more
general than . �	

6 Conclusions

In this paper we have shown some important properties of the class of finitely recursive
programs, a very expressive fragment of logic programs under the stable model seman-
tics. Finitely recursive programs extend the class of finitary programs by dropping the
restrictions on odd-cycles. We extended to finitely recursive programs many of the nice
properties of finitary programs: (i) a compactness property (Theorem 7); (ii) the r.e.-
completeness of inconsistency checking and skeptical inference (Theorem 11); (iii) the
completeness of skeptical resolution (Theorem 15).

Unfortunately, some of the nice properties of finitary programs do not carry over
to finitely recursive programs: (i) ground queries are not decidable (Theorem 12 and
Corollary 2); (ii) nonground credulous queries are not semidecidable (as ground queries
are co-r.e.).

As a side benefit, our techniques introduced a normal form for splitting and mod-
ule sequences, where sequence length is limited to � and—if the program is finitely
recursive—the sequence is smooth (i.e., the “delta” between each non-limit element
and its predecessor is finite). Such properties constitute an alternative characterization
of finitely recursive programs. Moreover, if the module sequence of a finitely recur-
sive program is consistent, then the whole program is (this result extends the splitting
sequence theorem).
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Abstract. We consider the problem of obtaining a minimal logic program
strongly equivalent (under the stable models semantics) to a given arbi-
trary propositional theory. We propose a method consisting in the genera-
tion of the set of prime implicates of the original theory, starting from its set
of countermodels (in the logic of Here-and-There), in a similar vein to the
Quine-McCluskey method for minimisation of boolean functions. As a side
result, we also provide several results about fundamental rules (those that
are not tautologies and do not contain redundant literals) which are com-
bined to build the minimal programs. In particular, we characterise their
form, their corresponding sets of countermodels, as well as necessary and
sufficient conditions for entailment and equivalence among them.

Keywords: logic programming, answer set programming, minimisation
of boolean and multivalued functions.

1 Introduction

The nonmonotonic formalism of Equilibrium Logic [1], based on the nonclassical
logic of here-and-there (henceforth: HT), yields a logical characterisation for the
answer set semantics of logic programs [2]. By capturing concepts such as the
strong equivalence of programs and providing a means to generalise all previous
extensions of answer set semantics, HT and equilibrium logic provide a useful
foundation for Answer Set Programming (ASP) (see [3,4]). There has recently
been an increasing interest in ASP in the expressiveness of logic programs and
the analysis of program rules in a more logical setting. Properties of Equilibrium
Logic have allowed, for instance, the extension of the traditional definition of
answer set (now equivalent to the concept of equilibrium model) to the most
general syntax of arbitrary propositional [5] and first order [6] theories.

In the case of propositional theories (of crucial importance for current ASP
solvers), in [7] it was actually shown that any arbitrary theory in Equilibrium
Logic is strongly equivalent to (that is, can always be replaced by) a disjunc-
tive logic program possibly allowing default negation in the head. In this way,
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this type of rule constitutes a normal form for general ASP when dealing with
arbitrary theories. Aside from its interest as an expressiveness result, as [5] has
shown, the important concept of aggregate in ASP [8] can be captured by for-
mulas with nested implications, making such syntactic extensions of practical
value. In addition, the problem of generating a program from an arbitrary the-
ory, or merely from another logic program, immediately raises the question of
how good is this generation. A study of the complexity and efficiency of transla-
tion methods from arbitrary theories to logic programs was already carried out
in [9]. A different and perhaps more practically relevant topic has to do with the
quality or simplicity of the resulting program, rather than the effort required to
obtain it. In ASP various methods, including equilibrium logic, have been used
to analyse program simplification, both for ground programs [10,11,12,13] and
more recently for programs with variables [14,15].

In this paper we consider the problem of generating a minimal or simpler
logic program strongly equivalent to some initial propositional theory (what
includes, of course, the case of a logic program). We propose a method that
follows steps similar to the Quine-McCluskey algorithm [16,17], well-known from
the problem of minimising boolean functions. Our algorithm computes the set
of prime implicates of the original theory starting from its set of countermodels
in HT. In a second step, a minimal set of prime implicates is selected to cover
the whole set of countermodels. Obviously, these two steps mean a considerable
computational cost whose reward is the guarantee of syntactic minimality of the
obtained program, something not achieved before, to the best of our knowledge.

As we will discuss later in Section 7, the interest of such a minimisation
method lies in its two main potential application areas: (i) it may become a useful
tool for theoretical research, helping to find minimal logic program patterns
obtained from translations of other constructions; and (ii) what possibly has
a greater practical impact, it allows an offline minimisation of a ground logic
program, which can be perhaps later (re-)used in several different contexts. Apart
from the method itself, the paper also provides side results of additional interest
from the viewpoint of expressiveness. We identify the normal form of fundamental
rules, used to conform the minimal programs. In this way, these rules are non-
trivial in the sense that they are not tautological and do not contain redundant
literals. The paper characterises the set of countermodels of any fundamental
rule and provides necessary and sufficient conditions (see Section 6) for capturing
entailment and equivalence among them.

The paper is organised as follows. Section 2 recalls the Quine-McCluskey algo-
rithm for minimising boolean functions. Next, Section 3 contains a brief overview
of Equilibrium Logic, including some basic definitions about logic programs. Sec-
tion 4 presents the algorithm for obtaining prime implicates and the next section
contains a small example. Then, Section 6 presents an alternative definition of
minimal program (based on semantic entailment) and finally, Section 7 concludes
the paper. Proofs have been included in the Appendix of an extended version of
this document [18].
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2 Quine-McCluskey Algorithm

The Quine-McCluskey algorithm [16,17] allows obtaining a minimal normal form
equivalent to any classical propositional theory Γ . The algorithm is dual in the
sense that it can be equally used to obtain a minimal DNF from the set of models
of Γ or to obtain a minimal CNF from its set of countermodels. Although the
former is the most popular version, we will actually focus on the latter for the
sake of comparison. After all, as shown in [7], logic programs constitute a CNF
for HT. The Quine-McCluskey algorithm computes the prime implicates of a
theory Γ starting from its countermodels. To get a minimal CNF, a second
algorithm (typically, Petrick’s method [19]) must be used afterwards to select
a minimal subset of prime implicates that suffice to cover all countermodels of
Γ . In what follows, we skip many definitions from classical propositional logic
assuming the reader’s familiarity.

Let At be a set of atoms (called the propositional signature). We represent
a classical propositional interpretation as a set of atoms I ⊆ At selecting those
assigned truth value 1 (true). As usual, a literal is an atom p (positive literal)
or its negation ¬p (negative literal). A clause is a disjunction of literals and a
formula in CNF is a conjunction of clauses. The empty disjunction and conjunc-
tion respectively correspond to ⊥ and �. We will use letters C, D, . . . to denote
clauses. Satisfaction of formulas is defined in the usual way. A clause is said to
be fundamental if it contains no repeated atom occurrences. Non-fundamental
clauses are irrelevant: any repeated literal can be just removed, and any clause
containing p ∨ ¬p too, since it is a tautology. We say that a clause C subsumes
a clause D, written C ⊆ D, iff all literals of C occur in D.

Proposition 1. Let C, D be fundamental clauses. Then, C ⊆ D iff |= C → D.

Proposition 2. An interpretation I is a countermodel of a fundamental clause
C iff p �∈ I for all positive literals p occurring in C and p ∈ I for all negative
literals ¬p occurring in C.

Proposition 2 provides a compact way to represent a fundamental clause C (and
its set of countermodels). We can just define a labelling, let us write it

−→
C , that

for each atom p ∈ At contains a pair:

– (p, 1) ∈ −→
C when ¬p occurs in C (meaning p true in all countermodels),

– (p, 0) ∈ −→
C when p occurs as positive literal in C (meaning p false in all

countermodels) or
– (p, -) ∈ −→

C if p does not occur in C (meaning that the value of p is indifferent).

Note that it is also possible to retrieve the fundamental clause C corresponding
to an arbitrary labelling

−→
C , so the relation is one-to-one. Typically, we further

omit the atom names (assuming alphabetical ordering) and we just write
−→
C as

a vector of labels. As an example, given the ordered signature {p, q, r, s} and
the clause C = ¬p ∨ q ∨ ¬s, we would have

−→
C = {(p, 1), (q, 0), (r, -), (s, 1)} or
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simply
−→
C = 10-1. When all atoms in the signature occur in a fundamental

clause, the latter is said to be developed. Proposition 2 implies that a developed
clause C has a single countermodel – note that in this case

−→
C does not contain

indifference symbols. By abuse of notation, we identify a countermodel I with
its corresponding developed clause {(p, 1) | p ∈ I} ∪ {(p, 0) | p ∈ At \ I}.

An implicate C of a theory Γ is any fundamental clause satisfying Γ |= C.
Clearly, countermodels of C are countermodels of Γ too. As any CNF formula
Π equivalent to Γ will consist of implicates of Γ , the task of finding Π can be
seen as a search of a set of implicates whose countermodels suffice to comprise
the whole set of countermodels of Γ . However, if we want Π to be as simple
as possible, we will be interested in implicates with minimal size. An implicate
of Γ is said to be prime iff it is not subsumed by another implicate of Γ . The
Quine-McCluskey algorithm computes all implicates of Γ by collecting their
labelling vectors in successive sets Si. In fact, at each step, Si collects all the
vectors with i indifference labels, starting with i = 0 indifferences (i.e. with
S0 equal to the set of countermodels of Γ ). To compute the next set Si+1 the
algorithm groups pairs of implicate vectors

−→
C ,

−→
D in Si that just differ in one

atom p, say, for instance (p, 1) ∈ −→
C and (p, 0) ∈ −→

D . Then, it inserts a new vector−→
E =

(−→
C \ {(p, 1)}

)
∪ {(p, -)} in Si+1 and marks both

−→
C and

−→
D as non-prime

(it is easy to see that clauses C, D are both subsumed by the new implicate
E). When no new vector is formed, the algorithm finishes, returning the set of
non-marked (i.e., prime) implicates.

Example 1. The table in Figure 2 schematically shows the result of applying the
algorithm for a signature At = {p, q, r, s} and starting from a set of countermod-
els shown in column S0. Numbers between parentheses represent the counter-
models of a given implicate (using the decimal representation of their vector of
labels). The horizontal lines separate the implicates in each Si by their number
of 1’s. Finally, ‘*’ marks mean that the implicate has been subsumed by another
one. The prime (i.e., non-marked) implicates are therefore: -100 (¬q∨r∨s), 10--
(¬p ∨ q), 1--0 (¬p ∨ s) and 1-1- (¬p ∨ ¬r).

3 Equilibrium Logic

We begin defining the (monotonic) logic of here-and-there (HT). A formula is
defined in the usual way as a well-formed combination of the operators ⊥, ∧, ∨, →
with atoms in a propositional signature At. We define ¬ϕ

def= ϕ → ⊥ and � def=
¬⊥. As usual, by theory we mean a set of formulas.

An HT-interpretation is a pair 〈H, T 〉 of sets of atoms with H ⊆ T . When
H = T the HT-interpretation is said to be total. We recursively define when
〈H, T 〉 satisfies a formula ϕ, written 〈H, T 〉 |= ϕ as follows:

– 〈H, T 〉 �|= ⊥
– 〈H, T 〉 |= p if p ∈ H , for any atom p ∈ At
– 〈H, T 〉 |= ϕ ∧ ψ if 〈H, T 〉 |= ϕ and 〈H, T 〉 |= ψ
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S0 S1 S2

∗ 0100 (4)
∗ 1000 (8)

∗ 1001 (9)
∗ 1010 (10)
∗ 1100 (12)

∗ 1011 (11)
∗ 1110 (14)

∗ 1111 (15)

-100 (4, 12)
∗ 100- (8, 9)
∗ 10-0 (8, 10)
∗ 1-00 (8, 12)

∗ 10-1 (9, 11)
∗ 101- (10, 11)
∗ 1-10 (10, 14)
∗ 11-0 (12, 14)

∗ 1-11 (11, 15)
∗ 111- (14, 15)

10-- (8, 9, 10, 11)
1--0 (8, 10, 12, 14)

1-1- (10, 11, 14, 15)

Fig. 1. Example of computation of Quine McCluskey algorithm

– 〈H, T 〉 |= ϕ ∨ ψ if 〈H, T 〉 |= ϕ or 〈H, T 〉 |= ψ
– 〈H, T 〉 |= ϕ → ψ if both (i) 〈H, T 〉 �|= ϕ or 〈H, T 〉 |= ψ; and (ii) T |= ϕ → ψ

(in classical logic).

An HT-interpretation is a model of a theory Γ if it satisfies all formulas in Γ .
As usual, we say that a theory Γ entails a formula ϕ, written Γ |= ϕ, when any
model of Γ is a model of ϕ. A formula true in all models is said to be valid or
a tautology. An equilibrium model of a theory Γ is any total model 〈T, T 〉 of Γ
such that no 〈H, T 〉 with H ⊂ T is model of Γ . Equilibrium Logic is the logic
induced by equilibrium models.

An alternative definition of HT can be given in terms of a three-valued se-
mantics (Gödel’s three-valued logic). Under this viewpoint, an HT-interpretation
M = 〈H, T 〉 can be seen as a three-valued mapping M : At → {0, 1, 2} where,
for any atom p, M(p) = 2 if p ∈ H (p is true), M(p) = 0 if p ∈ At \ T (p is
false) and M(p) = 1 if p ∈ T \ H (p is undefined). The valuation of formulas is
defined so that the valuation of conjunction (resp. disjunction) is the minimum
(resp. maximum) value, M(⊥) = 0 and M(ϕ → ψ) = 2 if M(ϕ) ≤ M(ψ) or
M(ϕ → ψ) = M(ψ) otherwise. Finally, models of a theory Γ are captured by
those HT-interpretations M such that M(ϕ) = 2 for all ϕ ∈ Γ .

Lemma 1. In HT, the following formulas are valid:

α ∧ ϕ ∧ ¬ϕ → β (1)
α ∧ ϕ → β ∨ ϕ (2)

(α ∧ ϕ → β ∨ ¬ϕ) ↔ (α ∧ ϕ → β) (3)
(α ∧ ¬ϕ → β ∨ ϕ) ↔ (α ∧ ¬ϕ → β) (4)

(α → β) → (α ∧ γ → β) (5)
(α → β) → (α → β ∨ γ) (6)

The following property of HT will have important consequences for adapting
the Quine-McCluskey method to this logic:
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Property 1. For any theory Γ , 〈H, T 〉 |= Γ implies 〈T, T 〉 |= Γ .

We can rephrase the property in terms of countermodels: if 〈T, T 〉 is a counter-
model of Γ then any 〈H, T 〉 will also be a countermodel. As a result, contrarily
to what happened in classical logic (or in �Lukasiewicz three-valued logic, for
instance), we cannot use an arbitrary set S of HT-interpretations to represent
the countermodels of some theory. Let us define the total-closure (t-closure) of
a set of interpretations S as:

St def= S ∪ { 〈H, T 〉 | 〈T, T 〉 ∈ S, H ⊆ T }

We say that S is t-closed if St = S.

Property 2 (Theorem 2 in [7]). Each t-closed set S of interpretations is the set
of countermodels of a logic program.

This fact was used in [7] to compute the number of possible HT-theories (modulo
semantic equivalence) for a finite number n of atoms by counting the possible
t-closed sets of interpretations. The resulting amount happens to be considerably
smaller than 23n

, which corresponds, for instance, to the number of possible
theories we can form in �Lukasiewicz logic.

3.1 Logic Programs

A logic program is a conjunction of clauses (also called rules) of the form:

a1 ∧ · · · ∧ an ∧ ¬b1 ∧ · · · ∧ ¬bm → c1 ∨ · · · ∨ ch ∨ ¬d1 ∨ · · · ∨ ¬dk (7)

with n, m, h, k ≥ 0 and all subindexed letters representing atoms. As before,
empty disjunctions stand for ⊥ while empty conjunctions stand for �. The empty
rule would therefore correspond to � → ⊥ or simply ⊥. We will use letters r,
r′, . . . to denote rules. We will sometimes abbreviate a rule r like (7) using the
expression:

B+
r ∧ ¬B−r → Hd+

r ∨ ¬Hd−r
where B+

r (resp. B−r ) denotes the sets of atoms occurring positively (resp. neg-
atively) in the antecedent or body of r, while Hd+

r (resp. Hd−r ) denotes the sets
of atoms occurring positively (resp. negatively) in the consequent or head of r.

For sets of rules of form (7), equilibrium models and answer sets coincide, [3].
Two rules r, r′ are said to be strongly equivalent, in symbols r ≡s r′, if for any
set Π of rules, Π ∪ {r} and Π ∪ {r′} have the same equilibrium models; strong
equivalence for sets of rules is defined analogously. Rules (and sets of rules)
are strongly equivalent iff they are logically equivalent in HT, i.e. they have
the same HT-models, [3]. Hence, strongly equivalent rules can be interchanged
without loss in any context, and deduction in HT provides a key instrument for
replacing rules by equivalent, simpler ones.

As happened with non-fundamental clauses in classical logic, some rules may
contain irrelevant or redundant information. To avoid this, we define:
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Definition 1 (fundamental rule). A rule r is said to be fundamental when
all pairwise intersections of sets Hd+

r , Hd−r , B+
r , B−r are empty, with the possible

exception of Hd+
r ∩ Hd−r .

Lemma 2. For any rule r:
i) If one of the intersections B+

r ∩B−r , B+
r ∩Hd+

r and B−r ∩Hd−r is not empty,
then r is a tautology.

ii) Otherwise, r is strongly equivalent to the fundamental rule:

r′ : B+
r ∧ ¬B−r → (Hd+

r \ B−r ) ∨ ¬(Hd−r \ B+
r ).

The proof follows from (1)-(4). Lemma 2 plus the main result in [7] implies

Theorem 1. Fundamental rules constitute a normal form for the logic of HT.

4 Generation of Prime Implicates

As can be imagined, our goal of obtaining minimal programs will depend in a
crucial way on how we define the relation simpler than between two programs, or
more specifically, between two rules. To this aim, we can either rely on a syntactic
or on a semantic definition. For classical logic, Proposition 1 shows that both
choices are interchangeable: we can either use the inclusion of literals among
fundamental clauses C ⊆ D (a syntactic criterion) or just use entailment C |= D
instead. In the case of HT, however, we will see later that this correspondence is
not preserved in a direct way. For this reason, we maintain two different concepts
of smaller rule in HT: entailment, written r |= r′ with its usual meaning; and
subsumption, written r ⊆ r′ and defined below.

Definition 2 (subsumption). A rule r subsumes another rule r′, written r ⊆
r′, when Hd+

r ⊆ Hd+
r′ , Hd−r ⊆ Hd−r′ , B+

r ⊆ B+
r′ and B−r ⊆ B−r′ .

Rule subsumption r ⊆ r′ captures the idea that r results from removing some
literals in r′. It follows that the empty rule ⊥ subsumes all rules. As usual,
we handle the strict versions of subsumption, written r ⊂ r′ and meaning both
r ⊆ r′ and r �= r′, and of entailment, written r |< r′ and meaning that r |= r′ but
r′ �|= r. From (5),(6) we conclude that subsumption is stronger than entailment:

Theorem 2. For any pair of rules r, r′, if r ⊆ r′ then r |= r′.

However, in contrast to Proposition 1 for classical logic, in HT the converse
direction does not hold. As a counterexample:

Example 2. Given rules r : p → q and r′ : p∧¬q → ⊥ we have r |= r′ but r �⊆ r′.

In the rest of this section we will focus on syntactic subsumption, providing later
(Section 6) a variation that uses semantic entailment instead.

Definition 3 (Syntactically simpler program). We say that program Π is
syntactically simpler than program Π ′, written Π � Π ′, if there exists some
Γ ⊆ Π ′ such that Π results from replacing each rule r′ ∈ Γ by some r, r ⊆ r′.
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In other words, we might remove some rules from Π ′ and, from the remaining
rules, we might remove some literals at any position. Note that Π ⊆ Π ′ im-
plies Π � Π ′ but the converse implication does not hold, and that, of course,
syntactically simpler does not generally entail any kind of semantic relation.

Theorem 3. Let Π be a �-minimal logic program among those strongly equiv-
alent to some theory Γ . Then Π consists of fundamental rules.

Definition 4 (implicate/prime implicate). A fundamental rule r is an im-
plicate of a theory Γ iff Γ |= r. Moreover, r is said to be prime iff it is not
strictly subsumed by another implicate of Γ .

To sum up, we face again the same setting as in classical logic: to find a �-
minimal program Π equivalent to some theory Γ means to obtain a set of prime
implicates that cover all countermodels of Γ . Therefore, it is crucial that we
are able to characterise the countermodels of fundamental rules, as we did with
Proposition 2 in the classical case. Given a fundamental rule r, we define the set
of HT-interpretations CMs(r) def=

{
〈H, T 〉

∣
∣ B+

r ⊆ H, B−r ∩ T = ∅, Hd+
r ∩ H = ∅, Hd−r ⊆ T

}

Theorem 4. Given a fundamental rule r and an HT-interpretation M : M �|= r
iff M ∈ CMs(r)t.

Theorem 4 and the fact that CMs(r) is never empty leads to:

Observation 1. Fundamental rules always have countermodels.

Given two fundamental rules r, r′ we say that r covers r′ when CMs(r′) ⊆
CMs(r). Notice that this definition of covering is stronger than entailment: if
CMs(r′) ⊆ CMs(r) then the same still holds for CMs(r′)t ⊆ CMs(r)t and
from Theorem 4 we conclude r |= r′. On the other hand, it is very easy to see
that covering is a weaker condition than subsumption:

Proposition 3. If r ⊆ r′ then CMs(r′) ⊆ CMs(r).

As with classical clauses, the countermodels in CMs(r) can also be compactly
described by a mapping of the set of atoms into a set of labels (which contains
more elements now). To do so, note first that the definition of CMs(r) can
be directly rephrased in terms of three-valued interpretations as follows: M ∈
CMs(r) iff the following conditions hold for any atom p: (i) p ∈ B+

r ⇒ M(p) = 2;
(ii) p ∈ B−r ⇒ M(p) = 0; (iii) p ∈ Hd+

r ⇒ M(p) �= 2; and (iv) p ∈ Hd−r ⇒
M(p) �= 0. As r is a fundamental rule, the last two conditions are not mutually
exclusive. Thus, when p ∈ Hd+

r ∩ Hd−r we would just have M(p) = 1.

Definition 5 (Rule labelling). Given a fundamental rule r, we define its la-
belling −→r as a set containing, for each atom p ∈ At, a pair:

(p, 2) if p ∈ B+
r

(p, 0) if p ∈ B−r
(p, 1) if p ∈ Hd+

r ∩ Hd−r

(p, 2̄) if p ∈ Hd+
r \ Hd−r

(p, 0̄) if p ∈ Hd−r \ Hd+
r

(p, -) if p does not occur in r
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Note that (p, 2̄) stands for M(p) �= 2 whereas (p, 0̄) stands for M(p) �= 0. We will
sometimes write −→r (p) = v when (p, v) ∈ −→r and we also use the abbreviation
−→r |�=p to stand for {(q, v) ∈ −→r | q �= p}. As an example of labelling, given
the signature At = {a, b, c, d, e, p, q}, the fundamental clause r : a ∧ b ∧ ¬d →
e ∨ p ∨ ¬p ∨ ¬q would correspond to −→r = 22-02̄10̄. In fact, there actually exists
a one-to-one correspondence between a fundamental rule and its labelling, i.e.,
we can get back the rule r from −→r . Thus, the set of countermodels CMs(r), or
its corresponding labelling −→r , can be used to univocally represent the original
rule r. It is important to remember, however, that CMs(r) is not the set of
countermodels of r – by Theorem 4, the latter actually corresponds to CMs(r)t.

A single countermodel M = 〈H, T 〉 can also be seen as a labelling that assigns
a label in {0, 1, 2} to each atom in the signature. Using the above definitions,
the rule1 rM corresponding to M would be: B+

rM
= H , B−rM

= At \ T and
Hd+

rM
= Hd−rM

= T \ H . It is easy to see that rules derived from countermodels
are �-maximal – in fact, there is no way to construct any fundamental rule
strictly subsumed by rM . These implicates will constitute the starting set S0
of the algorithm, which will generate new implicates that always subsume at
least one of those previously obtained. The proposed algorithm (Generation of
Prime Implicates, GPI) is shown in Table (a) of Figure 4. The algorithm applies
three basic matching steps to implicates whose labels just differ in one atom p.
Note that the possible matches would be much more than three, but only three
cases i), ii) and iii) yield any effect. To understand the purpose behind these
three operations, consider the form of the corresponding involved fundamental
rules. Using the correspondence between labelling and rule we obtain Table (b)
in Figure 4.

Proposition 4. Let α, β and p be arbitrary propositional formulas. For the three
cases i), ii), iii) in Table (b) Figure 4, the equivalence r′′ ↔ r∧r′ is an HT-valid
formula.

Table (b) in Figure 4 also explains the way in which the algorithm assigns the
non-prime marks. For instance, in cases i) and ii) only r is subsumed by the new
generated rule r′′ and so, GPI leaves r′ without being marked in the current step
i + 1. However, in case iii) the obtained rule r′′ subsumes not only r and r′ but
also α ∧ ¬p → β and α ∧ p → β which were left previously unmarked, and must
therefore be marked now too.

To prove termination and correctness of the algorithm, we will provide a
pair of useful definitions. Given a label v ∈ {0, 1, 2, 2̄, 0̄, -} we define its weight,
w(v), as a value in {0, 1, 2} specified as follows: w(0) = w(1) = w(2) = 0,
w(2̄) = w(0̄) = 1 and w(-) = 2. Intuitively, w(v) points out the number of
matches like i), ii) and iii) in the algorithm required to obtain label v. The
weight of a fundamental rule r, w(r), is defined as the sum of the weights w(v)
of all labels in −→r , that is, w(r) def= Σp∈At w(−→r (p)). To put an example, given
−→r = 22-02̄10̄, w(r) = 0 + 0 + 2 + 0 + 1 + 0 + 1 = 4. Clearly, there exists a
1 In fact, constructing a rule per each countermodel was one of the techniques used

in [7] to show that any arbitrary theory is equivalent to a set of rules.
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S0 := {−→rM | M �|= Γ};
i := 0;
while Si �= ∅ do

Si+1 := ∅;
for each −→r , −→r ′ ∈ Si such that −→r �= −→r ′ and −→r |�=p = −→r ′|�=p for some p do

case i): (p, 1) ∈ −→r and (p, 0) ∈ −→r ′ then
Add −→r ′′ : −→r |�=p ∪ { (p, 2̄) } to Si+1;
Mark −→r as non-prime;

case ii): (p, 1) ∈ −→r and (p, 2) ∈ −→r ′ then
Add −→r ′′ : −→r |�=p ∪ { (p, 0̄) } to Si+1;
Mark −→r as non-prime;

case iii): (p, 2̄) ∈ −→r and (p, 0̄) ∈ −→r ′ then
Add −→r ′′ : −→r |�=p ∪ { (p, -) } to Si+1;
Mark −→r , −→r ′, −→r |�=p ∪ {(p, 0)} and −→r |�=p ∪ {(p, 2)} as non-prime;

end case
end for each
i := i + 1;

end while
(a) Pseudocode.

case i) case ii) case iii)

r : α → β ∨ p ∨ ¬p
r′ : α ∧ ¬p → β
r′′ : α → β ∨ p

r : α → β ∨ p ∨ ¬p
r′ : α ∧ p → β
r′′ : α → β ∨ ¬p

r : α → β ∨ p
r′ : α → β ∨ ¬p
r′′ : α → β

(b) Rule form of generated implicates.

Fig. 2. Algorithm for generation of prime-implicates (GPI)

maximum value for a rule weight which corresponds to assigning label ‘-’ to all
atoms, i.e., 2 · |At|.

Lemma 3. Let IMPi(Γ ) denote the set of implicates of Γ of weight i. Then,
in the algorithm GPI, Si = IMPi(Γ ).

Theorem 5. Algorithm GPI stops after a finite number of steps i = n and⋃
i=0...n Si is the set of implicates of Γ .

Theorem 6. Let Γ be some arbitrary theory. The set of unmarked rules obtained
by GPI is the set of prime implicates of Γ .

5 Examples

To illustrate algorithm GPI, we begin considering its application to translate the
theory Γ = {(¬p → q) → p} into a strongly equivalent minimal logic program.
The set of countermodels is represented by the labels at the first column of the
table below, assuming alphabetical ordering for atoms in {p, q}. For instance,
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labelling 10 stands for M(p) = 1 and M(q) = 0, that is, M = 〈∅, {p}〉 whereas
02 stands for M ′(p) = 0 and M ′(q) = 2, i.e., M ′ = 〈{q}, {q}〉. The remaining
columns show all matches that take place when forming each remaining Si. The
marks ‘*’ show those implicates that result marked at each match.

S0 S1 S2

10
02
12
01
11

10, ∗11 �−→ 12̄
02, ∗12 �−→ 2̄2
02, ∗01 �−→ 00̄
12, ∗11 �−→ 10̄
01, ∗11 �−→ 2̄1

∗12̄, ∗10̄ �−→ 1- (mark ∗ 10, ∗12 too)
2̄2, ∗2̄1 �−→ 2̄0̄
00̄, ∗10̄ �−→ 2̄0̄

Notice that implicate 01 in S0 is not marked until we form -1 in S2. Observe
as well that implicate 0̄2̄ is obtained in two different ways at that same step.
Since no match can be formed at S2 the algorithm stops at that point. If we
carefully observe the previous table, the final unmarked labellings −→r (i.e., prime
implicates r) are shown below:

−→r r CMs(r) CMs(r)t

02 ¬p ∧ q → ⊥ 02 02, 01
2̄2 q → p 02, 12 02, 12, 01
00̄ ¬p → ¬q 02, 01 02, 01
1- p ∨ ¬p 10, 11, 12 10, 11, 12
2̄0̄ p ∨ ¬q 11, 12, 01, 02 11, 12, 01, 02

Finally, to obtain a minimal program we must select now a minimal set of
implicates that covers all the countermodels of Γ . To this aim, any method from
minimisation of boolean functions (like for instance, Petrick’s method [19]) is
still applicable here, as we just have a “coverage” problem and do not depend
any more on the underlying logic. Without entering into details, the application
of Petrick’s method, for instance, would proceed to the construction of a chart:

01 2̄1 00̄ 1- 2̄0̄
10 ×
02 × × × ×
12 × × ×
01 × × × ×
11 × ×

Implicate 1- will be essential, as it is the only one covering countermodel 10.
If we remove it plus the countermodels it covers we obtain the smaller chart:

02 2̄2 00̄ 2̄0̄
02 × × × ×
01 × × × ×

that just points out that any of the remaining implicates can be used to form a
minimal program equivalent to Γ . So, we get the final four �-minimal programs:
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Π1 = {p ∨ ¬p, ¬p ∧ ¬q → ⊥}
Π2 = {p ∨ ¬p, q → p}

Π3 = {p ∨ ¬p, ¬p → ¬q}
Π4 = {p ∨ ¬p, ¬q ∨ p}

This example can be used to compare to transformations in [9] (for reducing
arbitrary theories to logic programs) that applied on Γ yield program Π2 plus
the additional rule {p∨¬p∨¬q} trivially subsumed by p∨¬p in Π2. Nevertheless,
not all examples are so trivial. For instance, the theory {(¬p → q) → (¬p → r)}
from Example 1 in [9] yielded in that case a translation consisting of the six rules
{(q ∧¬p → ⊥), (q → ¬r), (¬p → ¬p), (¬p∨¬r), (¬p → ¬p∨¬q), (¬p∨¬q ∨¬r)}
that can be trivially reduced (after removing tautologies and subsumed rules)
to {(q ∧ ¬p → ⊥), (q → ¬r), (¬p ∨ ¬r)} but which is not a minimal program. In
fact, the GPI algorithm obtains (among others) the strongly equivalent minimal
program {(q ∧ ¬p → ⊥), (¬p ∨ ¬r)}. Note that another important advantage is
that the GPI method obtains all the possible minimal programs when several
choices exist.

As an example of the use of GPI on logic programs, consider the case where we
must combine two pieces of program from different knowledge sources. If we take,
for instance Π = {(¬r ∧ q → p), (¬p → r ∨ s)} and Π ′ = {(r → p), (¬r → q)},
these two programs are minimal when analysed independently, whereas none of
the rules in Π ∪ Π ′ is subsumed by another in that set. After applying GPI to
Π ∪Π ′ however, we obtain that the unique minimal strongly equivalent program
is just {(¬r → p), (r → p), (¬r → q)}.

6 Entailment

Looking at the first example in the previous section, and particularly at the
first implicates chart, it may be surprising to find that, although all of them are
prime, some implicates entail others. The reason for this was explained before:
contrarily to the classical case, (our definition of) syntactically simpler does not
mean entailment in HT. Note, for instance, how all implicates excepting 1- are
entailed by 2̄0̄. We claim, however, that our criterion is still reasonable, as there
is no clear reason why ¬p∨q should be syntactically simpler than p∧¬q → ⊥ or
p → q. On the other hand, it seems that most imaginable criteria for syntactic
simplicity should be probably stronger than our � relation. In this section we
consider an alternative semantic definition of prime implicate that relies on the
concept of entailment.

Definition 6 (s-prime implicate). An implicate r of a theory Γ is said to
be semantically prime ( s-prime for short) if there is no implicate r′ of Γ such
that r′ |< r.

The only s-prime implicates in the example would be now 1- and 2̄0̄. The in-
tuition behind this variant is that, rather than focusing on syntactic simplicity,
we are interested now in collecting a minimal set of rules that are as strong as
possible, but considering rule by rule (remember that the program as a whole
has to be strongly equivalent to the original theory). Since subsumption implies
entailment, finding the s-prime implicates could be done as a postprocessing to
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the GPI algorithm seen before (we would just remove some prime implicates that
are not s-prime). Another, more efficient alternative would be a suitable modifi-
cation of the algorithm to disregard entailed implicates from the very beginning.
For space reasons, we do not enter into the details of this modification. What is
perhaps more important is that in any of these two alternatives for computing
s-prime implicates we can use the following simple syntactic characterisations of
entailment and equivalence of rules.

Theorem 7. For every rule r, and every fundamental rule r′, r |= r′ iff the
following conditions hold:

1. B−r ⊆ B−r′

2. Hd−r ⊆ Hd−r′ ∪ B+
r′

3. B+
r ⊆ B+

r′ ∪ Hd−r′

4. Hd+
r ⊆ Hd+

r′ ∪ B−r′

5. Either B+
r ∩ Hd−r′ = ∅ or Hd+

r ∩ Hd+
r′ = ∅.

For instance, it is easy to see that rules r and r′ in Example 2 satisfy the
above conditions. Theorem 7 leads to a characterisation of equivalence between
fundamental rules.

Corollary 1. If r and r′ are fundamental rules, then: r ≡s r′ iff the following
conditions hold:

1. B−r = B−r′

2. Hd+
r = Hd+

r′

3. Hd−r ∪ B+
r = Hd−r′ ∪ B+

r′

4. If Hd+
r = Hd+

r′ �= ∅, then B+
r = B+

r′ and Hd−r = Hd−r′

So we can actually classify fundamental rules into two categories: if their positive
head is not empty Hd+

r �= ∅, then there is no other equivalent fundamental rule.
On the other hand, if Hd+

r = ∅, then r can be called a constraint, since it is
strongly equivalent to B+

r ∧ Hd−r ∧ ¬B−r → ⊥ but also to any rule that results
from removing atoms from the constraint’s positive body B+

r ∪ Hd−r and adding
them negated in the head (this is called shifting in [20]). For instance:

p ∧ q ∧ ¬r → ⊥ ≡s q ∧ ¬r → ¬p ≡s p ∧ ¬r → ¬q ≡s ¬r → ¬p ∨ ¬q

7 Discussion and Related Work

We provided a method for generating a minimal logic program strongly equiv-
alent to some arbitrary propositional theory in equilibrium logic. We actually
considered two alternatives: a syntactic one, exclusively treating programs with
a smaller syntax in the sense of rule and literal occurrences; and a semantic one,
in the sense of programs that make use of rules that are as deductively strong
as possible.

Some results in the paper were known before or were previously given for
more restrictive cases. For instance, Lemma 2 (in presence of Observation 1)
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provides a necessary and sufficient condition for tautological rules. This becomes
a confirmation using HT logic of Theorem 4.4 in [21]. On the other hand, our
Theorem 7 is a generalisation of Theorem 6 in [13] for programs with negation
in the head. Finally, the shifting operation we derived from Corollary 1 was
introduced before in [20] (see Corollary 4.8 there) – in fact, we have been further
able to show that it preserves strong equivalence.

As commented in the introduction, we outline two main potential applications
for our method: as a help for theoretical research and as a tool for simplifying
ground logic programs. In the first case, the method may become a valuable
support when exploring a particular group or pattern of expressions. Consider
for instance the translation into logic programs of other constructions (say ag-
gregates, classes of complex expressions in arbitrary theories, high level action
languages, etc) or even think about an hypothetical learning algorithm that must
explore a family of rules to cover input examples. In all these cases, we may be
reasonably interested in finding the smallest strongly equivalent representation
of the set of rules handled. To put an example, the translation of a nested im-
plication (p → q) → r into the logic program {(q → r), (¬p → r), (p ∨ ¬q ∨ r)}
found in [7] and of crucial importance in that paper, can be now shown, using
our algorithm, to be the most compact (strongly equivalent) possible one.

Regarding the application of our method as a tool for simplifying ground logic
programs, we may use the basic methodology proposed in [22] to clarify the sit-
uation. Three basic types of simplifications are identified, depending on whether
the result is: (i) smaller in size (less atoms or rules, rules with less literals, etc);
(ii) belonging to a simpler class (Horn clauses, normal programs, disjunctive pro-
grams, etc); and (iii) more efficient for a particular algorithm or solver. Apart
from this classification, they also distinguish between online (i.e., embedded in
the algorithm for computing answer sets) and offline simplifications. Our orien-
tation in this paper has been completely focused on (offline) simplifications of
type (i). This has a practical interest when we deal with program modules to
be (re-)used in several different contexts, or for instance, with rules describing a
transition in a planning scenario, as this piece of program is then replicated many
times depending on the plan length. Adapting the algorithm to simplifications of
type (ii) is left for future work: we can force the generation of a particular class
of programs (for instance, by just disregarding implicates not belonging to that
class), or use the method to show that this generation is not possible. Another
topic for future study is the analysis of complexity.
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Abstract. We provide a general and modular framework for describing infer-
ences in Answer Set Programming (ASP) that aims at an easy incorporation of
additional language constructs. To this end, we generalize previous work charac-
terizing computations in ASP by means of tableau methods. We start with a very
basic core fragment in which rule heads and bodies consist of atomic literals. We
then gradually extend this setting by focusing on the concept of an aggregate, un-
derstood as an operation on a collection of entities. We exemplify our framework
by applying it to conjunctions in rule bodies, cardinality constraints as used in
smodels, and finally to disjunctions in rule heads.

1 Introduction

Answer Set Programming (ASP; [1]) has become an appealing tool for declarative prob-
lem solving. Unlike the related area of satisfiability checking (SAT; [2]), it however
lacked a formal framework for describing inferences conducted by ASP solvers, such
as the resolution proof theory in SAT [3]. This deficiency has led to a great heterogeneity
in the description of ASP algorithms and has impeded their formal comparability. We
addressed this problem in [4] by introducing a family of tableau calculi [5] for ASP. The
idea is to view answer set computations as derivations in an inference system: A branch
in a tableau corresponds to a successful or unsuccessful computation of an answer set;
an entire tableau represents a traversal of the search space. This approach provided a
uniform proof-theoretic framework for analyzing and comparing different operations,
strategies, or even algorithms of ASP solvers. Among others, we related the approaches
of existing ASP solvers to appropriate tableau calculi, in the sense that computations of
solvers are described by tableaux in corresponding calculi.

In this work, our primary goal is to generalize this approach towards a flexible and
modular framework that is easily amenable to new language constructs. We begin with
characterizing inferences in a basic core fragment in which rule heads and bodies con-
sist of atomic literals. We then gradually extend this setting by focusing on aggregates.
An aggregate is understood as an operation on a collection of entities. To obtain a basic
understanding of how to describe inferences on aggregates, we view conjunctions in
rule bodies as simple Boolean aggregates. We then extend the framework to cardinality
constraints, as used in smodels [6], and to disjunctions in rule heads.

After establishing the formal background, we introduce in Section 3 our generic
tableau framework. In Section 4, 5, and 6, we gradually extend this framework with
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conjunctions, cardinality constraints, and disjunctions, respectively. Section 7 is dedi-
cated to the proof complexity associated with these constructs. Finally, we discuss our
approach in Section 8.

2 Background

We are interested in an extensible proof-theoretic framework dealing with logic pro-
grams incorporating composite language constructs, like aggregates. To this end, we
need a semantic account of answer sets being, on the one hand, flexible and general
enough to accommodate a variety of composite language constructs, and, on the other
hand, conservative enough to correspond to standard answer set semantics on well-
established language fragments. Among several proposals [6,7,8,9,10], we have chosen
Paolo Ferraris’ approach [10] that deals with propositional theories and gives meaning
to complex constructs by mapping them into propositional formulas.

We start by recalling Ferraris’ answer set semantics [10]. A propositional theory is
a finite set of propositional formulas, constructed of atoms from an alphabet P and the
connectives ⊥, ∧, ∨, and →. Any other connective is considered as an abbreviation, in
particular, ¬φ stands for (φ → ⊥). An interpretation X , represented by the set of atoms
true in X , is a model of a propositional theory Φ if X |= φ for all φ ∈ Φ. The reduct,
ΦX , of Φ wrt X is a propositional theory, (recursively) defined as follows:

ΦX =
{
φX | φ ∈ Φ

}

φX =

⎧
⎨

⎩

⊥ if X �|= φ
φ if φ ∈ X
φX

1 ◦ φX
2 if X |= φ and φ = φ1 ◦ φ2 for ◦ ∈ {∧, ∨, →}

Intuitively, all (maximal) subformulas of Φ that are false in X are replaced by ⊥ in ΦX ,
all other subformulas of Φ stay unchanged. It is clear that any model of ΦX is also
a model of Φ, since ΦX contains ⊥ if X �|= φ for some φ ∈ Φ. Also note that all
occurrences of negation, that is, subformulas of the form (φ → ⊥), are replaced by
constants in ΦX , since either φ or (φ → ⊥) is false in X . An interpretation X is an
answer set of a propositional theory Φ if X is a minimal model of ΦX .

We next consider logic programs. Given an alphabet P , a logic program is a finite
set of rules of the form α ← β where α and β are literals, understood here as expres-
sions over P possibly preceded by the negation as failure operator not . In the following
sections, we gradually refine heads α and bodies β for obtaining particular classes of
logic programs. The semantics of logic programs is given by the answer sets of cor-
responding propositional theories, obtained via particular translations to be provided
in the following sections. However, the proof-theoretic characterizations below apply
directly to logic programs, without translating them into propositional theories.

We describe calculi for the construction of answer sets from logic programs. Such
constructions are associated with an (initial) assignment and a binary tree called a
tableau [5]. An assignment A is a partial mapping from the expressions in a program
into {T , F }, indicating whether a member of the domain of A, denoted by dom(A),
is true or false, respectively. The domain of A, dom(A), varies throughout this paper
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depending on the considered language fragment. We define AT = {v ∈ dom(A) |
A(v) = T } and AF = {v ∈ dom(A) | A(v) = F }. We also denote A by a set of
signed expressions: {T v | v ∈ AT } ∪ {F v | v ∈ AF }. Furthering this notation, we
call an assignment that leaves all expressions undefined empty and denote it by ∅.

The nodes of tableaux are (mainly) signed expressions, that is, expressions preceded
by either T or F , indicating an assumed truth value. A tableau for a logic program Π
and an initial assignment A is a binary tree such that the root node of the tree consists
of the rules in Π and all members of A. The other nodes in the tree are entries of the
form T v or F v, where v ∈ dom(A), generated by extending a tableau using tableau
rules (given in the following sections) in the standard way [5]: Given a tableau rule
and a branch in the tableau containing the prerequisites of the rule, the tableau can be
extended by adding new entries to the end of the branch as specified by the rule. If the
rule is the cut rule (cf. (g) in Figure 1), then entries T v and F v are added as the left and
the right children to the end of the branch. For the other rules, the consequents are added
to the end of the branch. For convenience, the representation of tableau rules makes use
of two conjugation functions, t and f . For a literal l, define:

tl =
{

T l if l ∈ dom(A)
F v if l = not v for v ∈ dom(A) f l =

{
F l if l ∈ dom(A)
T v if l = not v for v ∈ dom(A)

Some rule applications are subject to provisos. For instance, (v ∈ Γ ) guides the appli-
cation of the cut rule by restricting cut objects to members of Γ (cf. Figure 1).

A tableau calculus T is a set of tableau rules. An entry T v (or F v) can be deduced
in a branch if T v (or F v) can be generated from nodes in the branch by applying rules
of T . Note that any branch corresponds to a pair (Π, A) consisting of a program Π and
an assignment A; we draw on this relationship for identifying branches in the sequel.
A branch in a tableau is contradictory if it contains both entries T v and F v for some
v ∈ dom(A). A branch is complete if it is contradictory or if it is closed under all rules
in T , except for the cut rule, and either T v ∈ A or F v ∈ A for each v ∈ dom(A). A
tableau is complete if all its branches are complete. A complete tableau for a program Π
and the empty assignment ∅ such that all branches are contradictory is a refutation
for Π ; provided that T is a complete calculus, it means that Π has no answer set.

3 Generic Tableau Rules

We begin with a simple class of unary programs where rules α ← β are restricted to
atomic literals, that is, α and β are either equal to p or not p for some atom p ∈ P . The
semantics of a unary program Π is given by the answer sets of a propositional theory,
τ [Π ], (recursively) defined as follows:

τ [Π ] = {τ [β] → τ [α] | (α ← β) ∈ Π} (1)

τ [π] =
{

¬τ [v] if π = not v
π if π ∈ P (2)

For illustration, consider Π1 = {a ← not b; not a ← c; b ← c; c ← b}, whose
corresponding propositional theory is τ [Π1] = {¬b → a; c → ¬a; c → b; b → c}. The
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sets X1 = {a} and X2 = {b, c} are models of τ [Π1], their reducts are (τ [Π1])X1 =
{¬⊥ → a; ⊥ → ⊥} and (τ [Π1])X2 = {⊥ → ⊥; c → ¬⊥; c → b; b → c}. Clearly, X1
is the unique minimal model of (τ [Π1])X1 , thus, X1 is an answer set of Π1. The unique
minimal model of (τ [Π1])X2 is ∅, that is, X2 is not an answer set of Π1.

Unlike the semantics, our tableau framework directly deals with logic programs.
The global design, however, follows the two semantic requirements for answer sets:
modelhood wrt a program and (non-circular) support wrt the reduct. To begin with, we
define for a program Π , two sets S, S′ ⊆ atom(Π), viz. the set of atoms occurring
in Π , and an assignment A:

supA(Π, S, S′) = {(α ← β) ∈ Π | fβ �∈ A, ←−supA(α, S), −→supA(β, S′)} (3)

The purpose of supA(Π, S, S′) is to determine all rules in Π that can, wrt A, provide
a support for the atoms in S external wrt S′. Of particular interest are the cases where
supA(Π, S, S′) is empty or a singleton {α ← β}. In the first case, the atoms in S
cannot be supported and are prone to be false, while the second case tells us that α ← β
is the unique support for S external wrt S′ so that β must be true to (non-circularly)
support S.

Looking at the definition of supA(Π, S, S′) in (3), we note that a rule α ← β such
that fβ ∈ A cannot provide any support wrt A. Otherwise, we check via ←−supA(α, S)
that α can support S and via −→supA(β, S′) that β does not (positively) rely on S′. For the
simple case of unary programs, these concepts are defined as follows:

←−supA(p, S) if p ∈ S (4)
−→supA(p, S′) if p ∈ (P \ S′) (5)

−→supA(not v, S′) for every expression v (6)

The universal validity of (6) is because only positive dependencies are taken into ac-
count. Also note that a rule α ← β such that α = not v cannot support any set S of
atoms. (We further illustrate the above concepts after Theorem 1.)

The tableau rules constituting our basic calculus are given in Figure 1. Rules I ↑
and I ↓ provide basic rule-based inferences such as modus ponens and modus tollens.
Tableau rules N ↑ and N ↓ amount to negation and support for atoms stemming from
Clark’s completion [11]. Note that the derivability of an atom p and thus the appli-
cability of tableau rules N ↑ and N ↓, respectively, is determined by supA(Π, {p}, ∅).
In the general case, rule N ↓ makes use of two further constructs, minA(α, S) and
maxA(β, S′), that are used to determine entries that must necessarily be added to A
in order to support some atom in S via rule α ← β without positively relying on S′.
However, these concepts play no role in the setting of unary programs:

minA(p, S) = ∅ for p ∈ P (7)

maxA(p, S′) = ∅ for p ∈ P (8)

maxA(not v, S′) = ∅ for every expression v (9)

Tableau rules U ↑ and U ↓ take care of unfounded sets [12], either by identifying atoms
that cannot be non-circularly supported (U ↑) or by preventing true atoms to become
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α ← β
tβ

tα

α ← β
fα

fβ

(a) Implication (I ↑) (b) Contraposition (I ↓)

Π,A
(p ∈ atom(Π), supA(Π, {p}, ∅) = ∅)F p

(c) Negation (N ↑)

Π, A
(p ∈ (AT ∩ atom(Π)), supA(Π, {p}, ∅) = {α ← β})tβ,minA(α, {p}),maxA(β, ∅)

(d) Support (N ↓)

Π, A
(S ⊆ atom(Π), p ∈ S, supA(Π,S, S) = ∅)F p

(e) Unfounded Set (U ↑)

Π,A
(S ⊆ atom(Π), (AT ∩ S) 	= ∅, supA(Π,S, S) = {α ← β})tβ,minA(α, S),maxA(β, S)

(f) Well-founded Set (U ↓)

(v ∈ Γ )T v | F v

(g) Cut (C[Γ ])

Fig. 1. Generic tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting (g)

unfounded (U ↓). The applicability of U ↑ and U ↓ is determined by supA(Π, S, S) for
a set S of atoms; hence, these rules subsume N ↑ and N ↓ relying on supA(Π, {p}, ∅).
We nonetheless include N ↑ and N ↓ since their applicability is easy to determine, and
so they have counterparts in virtually all ASP solvers. Finally, the cut rule C[Γ ] in (g)
constitutes the only rule introducing multiple branches. It allows for case analysis on
the expressions in Γ , if the deterministic tableau rules do not yield a complete branch.

Note that the definition of supA(Π, S, S′) in (3) is common to both support-driven
(viz. N ↑ and N ↓) and unfoundedness-driven (viz. U ↑ and U ↓) inferences. As we
demonstrate in the following sections, an additional language construct is then in-
corporated into the basic tableau calculus by supplying tableau rules for handling its
truth value and by extending the definition of ←−supA(α, S) and −→supA(β, S′) (along with
minA(α, S) and maxA(β, S′)) to impose an appropriate notion of support.

For a unary program Π , we fix the domain of assignments A as well as the cut objects
used by C[Γ ] to dom(A) = Γ = atom(Π). This allows us to characterize the answer
sets of unary programs by tableaux.

Theorem 1. Let Π be a unary program and ∅ the empty assignment.
Then, the following hold for the tableau calculus consisting of tableau rules (a-g):

1. Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.
2. If Π has an answer set X , then every complete tableau for Π and ∅ has a unique

non-contradictory branch (Π, A) such that X = AT ∩ atom(Π).
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3. If a tableau for Π and ∅ has a non-contradictory complete branch (Π, A), then
AT ∩ atom(Π) is an answer set of Π .

For illustration, consider the program Π2 = {a ← not b; b ← not a; c ← not a}.
Cutting on c results in branches with T c and F c, respectively. The first one can be
extended by tnot a = F a via N ↓. Indeed, sup{T c}(Π2, {c}, ∅) = {c ← not a} tells
us that c ← not a is the only rule that allows for supporting c, which necessitates a to be
false. To be more precise, we have fnot a = Ta �∈ {T c}, and both ←−sup{T c}(c, {c}) and
−→sup{T c}(not a, ∅) are satisfied; the proviso of N ↓ is thus established with respect to rule
c ← not a, so we deduce tnot a = Fa. The two remaining sets, min{T c}(c, {c}) =
max{T c}(not a, ∅) = ∅, are superfluous in the simple language fragment of unary
programs. Having deduced F a, we can either apply I ↑ or I ↓ to conclude T b and so to
obtain a complete branch. The second branch with F c can be extended by fnot a = Ta
via I ↓. From this, we deduce F b, either by N ↑ or N ↓, obtaining a second complete
branch. The two complete branches tell us that {b, c} and {a} are the answer sets of Π2.

Further, consider the program Π3 = {a ← b; b ← a; b ← c; c ← not d; d ← not c}
along with the following two complete branches:

Π3
T d (C[atom(Π)])
F c (N ↑, N ↓, U ↑, U ↓)
Fa (U ↑)
F b (I ↓, N ↑, U ↑)

Π3
Ta (C[atom(Π)])
T b (I ↑, N ↓, U ↓)
T c (U ↓)
Fd (N ↑, N ↓, U ↑, U ↓)

We have chosen these branches for illustrating the application of the unfounded set rule
(U ↑) and the well-founded set rule (U ↓), respectively. (Along the branches, we indi-
cate all possible inferences leading to the same result.) We first inspect the deduction
of F a by U ↑ in the left branch. Taking set {a, b} (and its element a) makes us check
whether sup{T d,Fc}(Π3, {a, b}, {a, b}) is empty. To this end, we have to inspect all
rules that allow for deriving an atom in {a, b} (as stipulated via ←−sup{T d,F c}(α, {a, b})).
Given fc = F c, we only need to consider a ← b and b ← a. Neither rule satisfies
−→sup{T d,F c}(β, {a, b}), which leaves us with sup{T d,F c}(Π3, {a, b}, {a, b}) = ∅. The
well-founded set inference of T c in the right branch requires a set of atoms, some of
whose elements is true, such that only one rule can non-circularly support the set. Tak-
ing {a, b}, we can verify that sup{T a,T b}(Π3, {a, b}, {a, b}) = {b ← c}. The mem-
bership of b ← c is justified by the fact that fc = F c �∈ {Ta, T b}, and that both
←−sup{T a,T b}(b, {a, b}) and −→sup{T a,T b}(c, {a, b}) hold. Furthermore, neither a ← b nor
b ← a is included in sup{T a,T b}(Π3, {a, b}, {a, b}) because −→sup{T a,T b}(b, {a, b}) and
−→sup{T a,T b}(a, {a, b}) do not hold. Hence, only tc = T c can justify Ta and T b.

4 Conjunctive Bodies

Having settled our basic framework, we now allow rule bodies to contain conjunctions.
While rule bodies themselves are often regarded as conjunctions, we here take a slightly
different perspective in viewing conjunctions as (simple) Boolean aggregates, which
like atoms can be preceded by not . This gives us some first insights into the treatment
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tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(h) True Conjunction (TC↑) (i) Falsify Conjunction (TC↓)

f li
F {l1, . . . , li, . . . , ln}

T {l1, . . . , ln}
tl1, . . . , tln

(j) False Conjunction (FC↑) (k) Justify Conjunction (FC↓)

Fig. 2. Tableau rules for conjunctions

of more sophisticated aggregates like cardinality constraints to be dealt with in the next
section.

A conjunction over an alphabet P is an expression of the form {l1, . . . , ln} where li
is an atomic literal for 1 ≤ i ≤ n. We denote by conj (P) the set of all conjunctions
that can be constructed from atoms in P . A rule α ← β such that α is an atomic
literal and β is an atomic literal or a (possibly negated) conjunction of atomic literals
is a conjunctive rule. A logic program is a conjunctive program if every rule in it is
conjunctive. For defining the semantics of conjunctive programs, we add the following
case to translation τ [π] in (2):

τ [π] =
∧

l∈πτ [l] if π ∈ conj (P)

For accommodating conjunctions within the generic tableau rules in Figure 1, we
extend the previous concepts in (4-9) in a straightforward way:

−→supA({l1, . . . , ln}, S′) if −→supA(l, S′) for every l ∈ {l1, . . . , ln}
maxA({l1, . . . , ln}, S′) =

⋃
l∈{l1,...,ln}maxA(l, S′)

Note that maxA({l1, . . . , ln}, S′) is still empty since maxA(l, S′) = ∅ for every atomic
literal l ∈ {l1, . . . , ln}. It thus has no effect yet, but this changes in the next section.

For a conjunctive program Π , we fix the domain dom(A) of assignments A and
the cut objects Γ of C[Γ ] to dom(A) = Γ = atom(Π) ∪ conj (Π), where conj (Π)
is the set of conjunctions occurring in Π . The additional tableau rules for handling
conjunctions are shown in Figure 2. Their purpose is to ensure that T {l1, . . . , ln} ∈ A
iff (AT ∩P) |= (τ [l1]∧ · · · ∧ τ [ln]). By augmenting the basic calculus with the tableau
rules in Figure 2, Theorem 1 extends to conjunctive programs.

Theorem 2. Let Π be a conjunctive program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-k).

5 Cardinality Constraints

We define a cardinality constraint over an alphabet P as an expression of the form
j{l1, . . . , ln}k where li is an atomic literal for 1 ≤ i ≤ n and j, k are integers such that
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0 ≤ j ≤ k ≤ n. We denote by card(P) the set of all cardinality constraints that can
be constructed from atoms in P . For v ∈ (P ∪ card(P)), we say that v and not v are
cardinality literals. A rule α ← β such that α is a cardinality literal and β is a cardinality
literal or a (possibly negated) conjunction of cardinality literals is a cardinality rule. A
logic program is a cardinality program if it consists of cardinality rules.

Several syntactic classes of programs with cardinality constraints (and other aggre-
gates) can be found in the literature [6, 7, 8, 9, 10]. Furthermore, the semantics differ
on aggregates in the heads of rules; which semantics is the right one depends on the
intention and cannot be answered a priori. On the one hand, we here adopt the approach
of [6, 7, 8] and interpret cardinality constraints in heads as “choice constructs,” that is,
derived atoms within a cardinality constraint are not minimized. On the other hand, the
syntactic class of programs (or formulas, respectively) considered in [10] is presum-
ably the most general one. It allows for arbitrary aggregates over arbitrary formulas,
so that cardinality constraints and rules as defined here form a syntactic fragment. The
other approaches [6, 7, 8, 9], however, do not cover our notion of a cardinality rule.
As before, we thus embed cardinality programs into the framework of [10] to fix their
semantics.

The fact that true atoms are not minimized within cardinality constraints in heads
of rules necessitates an extended translation of cardinality programs into propositional
theories, since the semantics of the latter per default relies on the minimization of true
atoms.1 We now replace the definition of τ [Π ] in (1) with the following one:

τ [Π ] = {τ [β] → τ [α] | (α ← β) ∈ Π, α �∈ card(P)} ∪ (10)

{τ [β] →
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)
| (α ← β) ∈ Π, α ∈ card(P)}

where atom(j{l1, . . . , ln}k) = {l1, . . . , ln}∩P for (j{l1, . . . , ln}k) ∈ card(P). Note
that conjuncts

∧
p∈atom(α)(p ∨ ¬p) are tautological and thus neutral as regards the

(classical) models of τ [Π ]. Given an interpretation X , they rather justify the truth of all
p ∈ atom(α) ∩ X in (τ [Π ])X where ¬p is replaced by ⊥. We further add another case
to translation τ [π] in (2), which amounts to the aggregate translation given in [10]:

τ [π] =
(∨

C⊆{l1,...,ln},|C|=jτ [C]
)

∧ ¬
(∨

C⊆{l1,...,ln},|C|=k+1τ [C]
)

if (π = j{l1, . . . , ln}k) ∈ card(P)

Notably, the upper bound k is translated into a negative subformula, and only the sub-
formula for the lower bound j still appears potentially in the reduct wrt a set of atoms.
Also note that τ [j{l1, . . . , ln}k] is of exponential size. Even if auxiliary atoms are used
to obtain a polynomial translation, like the one described in [6], compilation approaches
incur a significant blow-up in space. Our proof-theoretic characterizations, provided in
the following, apply directly to cardinality constraints and thus avoid any such blow-up.

Figure 3 shows the tableau rules for cardinality constraints. For a cardinality pro-
gram Π , we fix the domain dom(A) of assignments A and the cut objects Γ of C[Γ ] to

1 Interpreting aggregates in rule heads as “choice constructs” avoids an increase of complexity
by one level in the polynomial hierarchy. If derived atoms were to be minimized, it would be
straightforward to embed disjunctive programs (see next section) into cardinality programs.
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tl1, . . . , tlj , f lk+1, . . . , f ln
T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k

(l) True Bounds (TLU ↑)

F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlj−1, f lk+1, . . . , f ln

f lj , . . . , f lk

F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k
tl1, . . . , tlj , f lk+2, . . . , f ln

tlj+1, . . . , tlk+1

(m) Falsify Lower Bound (TL↓) (n) Falsify Upper Bound (TU ↓)

f lj , . . . , f ln
F j{l1, . . . , lj , . . . , ln}k

tl1, . . . , tlk+1

F j{l1, . . . , lk+1, . . . , ln}k

(o) False Lower Bound (FL↑) (p) False Upper Bound (FU ↑)

T j{l1, . . . , lj , lj+1 . . . , ln}k
f lj+1, . . . , f ln

tl1, . . . , tlj

T j{l1, . . . , lk, lk+1 . . . , ln}k
tl1, . . . , tlk

f lk+1, . . . , f ln
(q) Justify Lower Bound (FL↓) (r) Justify Upper Bound (FU ↓)

Fig. 3. Tableau rules for cardinality constraints

dom(A) = Γ = atom(Π)∪conj (Π)∪card(Π), where card(Π) is the set of cardinal-
ity constraints occurring in Π . For a cardinality constraint j{l1, . . . , ln}k, the tableau
rules in Figure 3 ensure that T (j{l1, . . . , ln}k) ∈ A iff (AT ∩P) |= τ [j{l1, . . . , ln}k].

For illustration, consider the cardinality constraint

γ = 2{a, b, c, not d, not e}3 ,

having n = 5 literals, lower bound j = 2, and upper bound k = 3. For an assignment A,
tableau rule TLU ↑ allows for deducing T γ if at least j = 2 literals l of γ are true (i.e.,
tl ∈ A) and at least n − k = 2 literals l of γ are false (i.e., f l ∈ A). This holds, for in-
stance, for assignment A1 = {Ta, F b, T d, F e}; hence, T γ can be deduced via TLU ↑.
Indeed, the lower and upper bound of γ are satisfied in every non-contradictory branch
that extends A1, no matter whether T c or F c is additionally included. Rules TL↓ and
TU ↓ are the contrapositives of TLU ↑, ensuring that either the lower or the upper bound
of γ is violated if Fγ belongs to an assignment. For instance, F c and T e can be deduced
via TL↓ wrt assignment A2 = {Fγ, Ta, F b, T d}. Observe that the upper bound k = 3
cannot be violated in non-contradictory extensions of A2 since n−k = 2 literals of γ are
already false wrt A2, as it contains F b and T d. Conversely, TU ↓ allows for deducing
T c and F e wrt {Fγ, Ta, F b, Fd} in order to violate the upper bound of γ; the lower
bound of γ cannot be violated because of T a and Fd. The remaining four tableau rules
in Figure 3 either allow for deducing F γ, if its lower bound (FL↑) or its upper bound
(FU ↑) is violated, or make sure that the lower bound (FL↓) and the upper bound (FU ↓)
are satisfied, if T γ belongs to an assignment. For γ as above, F γ can be deduced via
FL↑ wrt assignment {F b, F c, T d, T e} or via FU ↑ wrt assignment {T b, T c, Fd, F e}.
Conversely, FL↓ allows for deducing Ta and F e wrt {T γ, F b, F c, T d}, and FU ↓ al-
lows for deducing Fa and T e wrt {Tγ, T b, T c, Fd}.
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To integrate cardinality constraints into the generic setting of the tableau rules in
Figure 1, we also have to extend the concepts in (4-9):

←−supA(j{l1, . . . , ln}k, S) if {l1, . . . , ln} ∩ S �= ∅ and

|{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| < k
−→supA(j{l1, . . . , ln}k, S′) if |{l ∈ ({l1, . . . , ln} \ S′) | f l �∈ A}| ≥ j

minA(j{l1, . . . , ln}k, S) =

⎧
⎨

⎩

{f l | l ∈ ({l1, . . . , ln} \ S), tl �∈ A}
if |{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| = k − 1

∅ if |{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A}| �= k − 1

maxA(j{l1, . . . , ln}k, S′) =

⎧
⎨

⎩

{tl | l ∈ ({l1, . . . , ln} \ S′), f l �∈ A}
if |{l ∈ ({l1, . . . , ln} \ S′) | f l �∈ A}| = j

∅ if |{l ∈ ({l1, . . . , ln} \ S′) | f l �∈ A}| �= j

Recall that ←−supA(α, S) is used to determine whether a rule with head α can provide sup-
port for the atoms in S. If α = j{l1, . . . , ln}k, then some atom of S must be contained
in {l1, . . . , ln}. Furthermore, if ({l1, . . . , ln} \ S) already contains k (or more) literals
that are true wrt A, then the addition of T p to A for p ∈ ({l1, . . . , ln}∩S) would violate
the upper bound k, so that the corresponding rule α ← β cannot support S. This also
explains the false literals in minA(j{l1, . . . , ln}k, S) that can be deduced if k − 1 liter-
als of ({l1, . . . , ln} \ S) are already true wrt A. If one more literal in ({l1, . . . , ln} \ S)
were made true, S would lose its last (external) support α ← β, though containing
some atom that is true wrt A (cf. N ↓ and U ↓ in Figure 1). In addition, −→supA(β, S′) is
used to verify whether a support via β is external wrt S′. If, for a rule α ← β, either
β = j{l1, . . . , ln}k or β is a conjunction such that j{l1, . . . , ln}k ∈ β, then there must
be enough non-false literals in ({l1, . . . , ln}\S′) to achieve the lower bound j. Further-
more, if the number of such literals is exactly j, then all of them must be true for pro-
viding a support that is external wrt S′. This is expressed by maxA(j{l1, . . . , ln}k, S′).

For illustration, consider the following cardinality program Π4:2

Π4 =

⎧
⎨

⎩

r1 : 0{c, d, e}3 ←
r2 : 1{a, b}2 ← c, d r4 : 1{b, d}2 ← 1{a, c}2
r3 : 0{a, d}1 ← 1{b, not e}2 r5 : 1{a, d}2 ← b

⎫
⎬

⎭

Let assignment A contain Ta, F c, and F {c, d}, and note that tableau rule U ↓ (or N ↓)
does not apply to set {a} since supA(Π4, {a}, {a}) = {r3, r5}. Let us however con-
sider set {a, b}. Given that {c, d, e} ∩ {a, b} = ∅ and F {c, d} ∈ A, we have r1 �∈
supA(Π4, {a, b}, {a, b}) and r2 �∈ supA(Π4, {a, b}, {a, b}). Considering r5, we have
b ∈ {a, b} and thus −→supA(b, {a, b}) does not hold. For r4, we have {a, c}\{a, b} = {c}
and fc = F c ∈ A, so that there are no non-false literals in {a, c} \ {a, b}. That
is, the lower bound 1 of 1{a, c}2 cannot be achieved independently from {a, b}, and
thus −→supA(1{a, c}2, {a, b}) does not hold. We have now established that only r3 is po-
tentially contained in supA(Π4, {a, b}, {a, b}). Since (not e) ∈ {b, not e} is a non-
false literal not belonging to {a, b}, −→supA(1{b, not e}2, {a, b}) holds. Furthermore,
←−supA(0{a, d}1, {a, b}) holds because td = T d does not belong to A. We thus have

2 In the sequel, we skip set notation for conjunctive bodies within rules, like {c, d} in rule r2.
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tli
T {l1; . . . ; li; . . . ; ln}

F {l1; . . . ; ln}
f l1, . . . , f ln

(s) True Disjunction (TD↑) (t) Falsify Disjunction (TD↓)

f l1, . . . , f ln
F {l1; . . . ; ln}

T {l1; . . . ; li−1; li; li+1; . . . ; ln}
f l1, . . . , f li−1, f li+1, . . . , f ln

tli
(u) False Disjunction (FD↑) (v) Justify Disjunction (FD↓)

Fig. 4. Tableau rules for disjunctions

supA(Π4, {a, b}, {a, b})={r3}.AsliteralsdeducibleviaU ↓,weobtainT (1{b, not e}2),
maxA(1{b, not e}2, {a, b}) = {tnot e = F e}, and minA(0{a, d}1, {a, b}) = {fd =
Fd}. Finally, note that, if T d had been contained in A, we would have obtained
supA(Π4, {a, b}, {a, b}) = ∅, so that deducing Fa via U ↑ would have led to a con-
tradiction. Indeed, {a, b} is the only answer set of Π4 compatible with Ta and F c.

The tableau calculus for cardinality programs is obtained by adding the rules in
Figure 3 to those in Figure 1 and 2. Then, Theorem 1 extends to cardinality programs.

Theorem 3. Let Π be a cardinality program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-r).

6 Disjunctive Heads

A disjunction over an alphabet P is an expression of the form {l1; . . . ; ln} where li is
an atomic literal for 1 ≤ i ≤ n. We denote by disj (P) the set of all disjunctions that
can be constructed from atoms in P . For v ∈ (P ∪ card(P) ∪ disj (P)), v and not v
are disjunctive literals. A rule α ← β such that α is a disjunctive literal and β is a car-
dinality literal or a (possibly negated) conjunction of cardinality literals is a disjunctive
rule. A logic program is a disjunctive program if it consists of disjunctive rules.

In contrast to cardinality constraints serving as “choice constructs,” the common se-
mantics for disjunctions relies on the minimization of derived atoms. Hence, we adhere
to the definition of τ [Π ] in (10) and just add another case to τ [π] in (2):

τ [π] =
∨

l∈πτ [l] if π ∈ disj (P)

We further extend the concepts in (4-9) to disjunctive heads:

←−supA({l1; . . . ; ln}, S) if {l1, . . . , ln} ∩ S �= ∅ and

{l ∈ ({l1, . . . , ln} \ S) | tl ∈ A} = ∅
minA({l1; . . . ; ln}, S) = {f l | l ∈ ({l1, . . . , ln} \ S)}

For a disjunctive program Π , we fix the domain dom(A) of assignments A and the cut
objects Γ of C[Γ ] to dom(A) = Γ = atom(Π)∪conj (Π)∪card(Π)∪disj (Π), where
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disj (Π) is the set of disjunctions occurring in Π . The additional tableau rules for han-
dling disjunctions are shown in Figure 4. Their purpose is to ensure that T {l1; . . . ; ln}∈
A iff (AT ∩ P) |= (τ [l1] ∨ · · · ∨ τ [ln]). The tableau calculus for disjunctive programs
is obtained by adding the rules in Figure 4 to those in Figure 1, 2, and 3. In this way,
Theorem 1 extends to disjunctive programs.

Theorem 4. Let Π be a disjunctive program and ∅ the empty assignment.
Then, statements 1. to 3. given in Theorem 1 hold for the tableau calculus consisting

of tableau rules (a-v).

7 Proof Complexity

For comparing different tableau calculi, we use the concept of proof complexity [3, 13,
14]. Intuitively, proof complexity is concerned with lower bounds on the run-times of
proof-finding algorithms independent from heuristic influences. We thus compare the
sizes of minimal refutations for unsatisfiable logic programs, that is, programs without
answer sets. The size of a tableau is determined in the standard way as the number of
nodes it contains. A tableau calculus T is not polynomially simulated by another tableau
calculus T ′ if there is an infinite (witnessing) family {Πn} of unsatisfiable programs
such that minimal refutations of T ′ for Π are asymptotically exponential in the size of
minimal refutations of T for Π . A tableau calculus T is exponentially stronger than a
tableau calculus T ′ if T polynomially simulates T ′, but not vice versa.

We have shown in [4] that the cut rule has a major influence on proof complex-
ity. For normal logic programs Π , both C[atom(Π)] and C[conj (Π)] yield sound and
complete tableau calculi. However, the calculus obtained with C[atom(Π)∪ conj (Π)]
is exponentially stronger than both of them [4]. It is thus an interesting question whether
cutting on other composite constructs, namely, cardinality constraints and disjunctions,
leads to stronger calculi. In this context, let us stress that cutting on atoms is sufficient
for obtaining complete calculi even in the presence of language extensions, provided
that the truth values of all composite constructs can be deduced from atomic literals via
(deterministic) tableau rules. For cardinality constraints and disjunctions, this is possi-
ble using the tableau rules in Figure 3 and 4. In general, the assumption that knowing the
atoms’ truth values is enough to evaluate all constructs in a program seems reasonable.

We first consider cardinality programs Π . Let Tc = {(a-f), (h-r), C[atom(Π) ∪
conj (Π) ∪ card(Π)]} and Tc = {(a-f), (h-r), C[atom(Π) ∪ conj (Π)]}. Both calculi
contain all deterministic tableau rules dealing with cardinality programs; the difference
is that cutting on cardinality constraints is allowed with Tc, but not with Tc. Since every
refutation of Tc is as well a refutation of Tc, it is clear that Tc polynomially simulates Tc.

As the following result shows, the converse does not hold.

Theorem 5. Tableau calculus Tc is exponentially stronger than Tc.

This result is witnessed by the following unsatisfiable cardinality programs:

Πn
c =

{
x ← 1{a1, b1}2, . . . , 1{an, bn}2, not x
ai ← not bi bi ← not ai

∣
∣
∣
∣ i = 1..n

}
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Roughly, a branch containing F (1{ai, bi}2) for 1 ≤ i ≤ n yields an immediate con-
tradiction because Fai and F bi can be deduced via TL↓, violating the last two rules
in Πn

c . The unrestricted cut rule of Tc permits cutting on 1{ai, bi}2 for 1 ≤ i ≤ n, and
the resulting minimal refutation has linear size in n. In contrast to this, Tc must cut on
atoms ai or bi, spanning a complete binary tree whose size is exponential in n.

The practical consequence of Theorem 5 is that ASP solvers dealing with cardinality
constraints can gain significant speed-ups by branching on them. Notably, the compi-
lation of cardinality constraints into so-called “basic constraint rules” [6], as done by
lparse [15], introduces auxiliary atoms abbreviating cardinality constraints. In this way,
smodels can (implicitly) branch on cardinality constraints although its choices are re-
stricted to atoms. In contrast to this compilation approach introducing abbreviations,
we here however consider cardinality constraints as self-contained structural entities.

Regarding disjunctive programs, we mention that verifying the non-applicability of
tableau rules U ↑ and U ↓, dealing with unfounded sets, is coNP-hard [16].3 Thus,
tableaux for disjunctive programs are generally not polynomially verifiable, unless
P=NP. Different from cardinality constraints occurring in bodies of rules, the syntax
of disjunctive programs usually restricts disjunctions to occur in heads of rules; this is
done here as well. If this restriction were dropped, program Πn

c could be rewritten using
disjunctions {ai; bi} rather than 1{ai, bi}2 for 1 ≤ i ≤ n. This would yield the same
exponential separation between cut rules with and without disjunctions as encountered
on cardinality constraints. With disjunctions {l1; . . . ; ln} restricted to heads of rules,
the crux is that the information gained in the branch of T {l1; . . . ; ln} is rather weak.
We thus conjecture that, with disjunctions restricted to heads, the possibility to branch
on them does not yield exponential improvements, though it is certainly convenient to
apply the cut rule to disjunctions as well. The effect of allowing or disallowing cutting
on disjunctions in heads of rules however remains a subject to future investigation.

Finally, when looking at the inferences of existing ASP solvers, an asymmetry can
be observed in unfounded set handling [4]. While (non-SAT-based) ASP solvers make
inferences that can be described by tableau rule U ↑, no solver implements U ↓. This
brings our attention to the question whether omitted inferences deteriorate proof com-
plexity. (Of course, the available inferences must still be strong enough to guarantee
soundness.) In what follows, we denote by R↑ and R↓ the forward and backward vari-
ant, respectively, of any of the (deterministic) tableau rules in Figure 1 to 4. Given a
tableau calculus T , we say that T ′ ⊆ T is an approximation of T if (T \ T ′) ⊆ {R↓ |
R↑ ∈ T ′}. (We assume that TLU ↑ ∈ T ′ if {TL↓, TU ↓} ∩ (T \ T ′) �= ∅ given
that TLU ↑ has two backward counterparts, viz. TL↓ and TU ↓.) That is, if T contains
both R↑ and R↓, then an approximation T ′ of T might drop R↓. Of course, R↓ can
also be kept, so that T is an (the greatest) approximation of itself. It is clear that every
approximation T ′ of T is polynomially simulated by T .

Assuming an unrestricted cut rule, the next result shows that the converse also holds.

Theorem 6. Let T be a tableau calculus and T ′ an approximation of T .
If C[atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π)] ∈ T ′, then T is polynomially

simulated by T ′.
3 For cardinality programs, verifying the absence of unfounded sets is tractable. Suitably ad-

justed, the operations described in [8] could be used to accomplish this task.
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In fact, an inference conducted by R↓ can alternatively be obtained by cutting on the
consequent of R↓. Then, one of the two branches becomes contradictory by apply-
ing R↑. However, recall that proof complexity assumes an optimal heuristics determin-
ing the “right” objects to cut on, which is inaccessible in practice. Hence, it is reasonable
to also deduce the consequents of R↓ within an ASP solver whenever it is feasible.

8 Discussion

In contrast to propositional logic, where the proof-theoretic foundations of SAT solvers
are well-understood [2, 3, 13], little work has so far been done on proof theory for ASP
and its solving approaches. The imbalance becomes even more apparent in view of the
comprehensive semantic characterizations that nowadays exist for ASP. For instance,
the approach in [10] specifies answer sets for propositional theories, going beyond the
syntax of logic programs; it also provides a general semantics for aggregates. Though
the latter are a key issue in ASP, where knowledge representation is a major objec-
tive, the support of such composite constructs in ASP solvers is rather ad hoc. This
can, for instance, be seen with lparse compiling away negative weights within weight
constraints, sometimes leading to counterintuitive results [10], and with dlv [17] not
supporting aggregates in the heads of rules. While we have in [4] restricted our atten-
tion to normal logic programs, whose role in ASP is comparable to CNF in SAT, in
this work, we have primarily aimed at language extensions and their integration into
a common proof-theoretic framework. On the examples of cardinality constraints and
disjunctive heads, we have seen that tableaux are well-suited for augmenting the core
language and basic inference mechanisms with additional constructs.

Several lessons can be learned from the illustrative integration of cardinality con-
straints and disjunctive heads. Independently of the construct under consideration, in-
ference rules follow two major objectives: first, making sure that solutions correspond
to models of programs, and second, verifying that all true atoms are non-circularly
supported. Different notions of support are possible. For instance, atoms derived via
composite constructs in heads of rules might be subject to minimization, as with dis-
junctions, or not, as with cardinality constraints allowing for “choices.” Such issues need
to be settled in order to specify the required inference patterns. This also concerns com-
putational complexity; for instance, it increases by one level in the polynomial hierarchy
with disjunctive heads or negative weights within weight constraints. Furthermore, the
proof complexity of an approach critically depends on the cut rule determining the ob-
jects available for case analysis. Composite constructs often constitute structures that
are valuable in this respect, as it has been shown for conjunctions and cardinality con-
straints. We conclude that complex language constructs deserve particular attention in
the context of ASP solving. For solvers using learning, like clasp [18], it is important
not only that inferences are performed but also that their reasons are properly identi-
fied. The declarative nature of tableau rules provides a basis to describe such reasons.
Importantly, the extensibility of the framework also allows for combining the processes
of designing novel language constructs and of fixing their proof-theoretic meaning.

Acknowledgments. We are grateful to Robert Mercer, Richard Tichy, and the anony-
mous referees for many helpful suggestions.
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5. D’Agostino, M., Gabbay, D., Hähnle, R., Posegga, J. (eds.): Handbook of Tableau Methods.
Kluwer Academic Publishers, Dordrecht (1999)
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Extended ASP Tableaux and
Rule Redundancy in Normal Logic Programs
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Abstract. We introduce an extended tableau calculus for answer set program-
ming (ASP). The proof system is based on the ASP tableaux defined in [Geb-
ser&Schaub, ICLP 2006], with an added extension rule. We investigate the power
of Extended ASP Tableaux both theoretically and empirically. We study the rela-
tionship of Extended ASP Tableaux with the Extended Resolution proof system
defined by Tseitin for clause sets, and separate Extended ASP Tableaux from
ASP Tableaux by giving a polynomial length proof of a family of normal logic
programs {Πn} for which ASP Tableaux has exponential length minimal proofs
with respect to n. Additionally, Extended ASP Tableaux imply interesting insight
into the effect of program simplification on the length of proofs in ASP. Closely
related to Extended ASP Tableaux, we empirically investigate the effect of redun-
dant rules on the efficiency of ASP solving.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm which has
proven successful for a variety of knowledge representation and reasoning tasks. The
success has been brought forth by efficient solver implementations bringing the theo-
retical underpinnings into practice. However, there has been an evident lack of theoret-
ical studies into the reasons for the efficiency of current ASP solvers (e.g. [1,2,3,4]).
Solver implementations and their inference techniques can be seen as determinisations
of the underlying rule-based proof systems. Due to this strong interplay between theory
and practice, the study of the relative efficiency of these proof systems reveals impor-
tant new viewpoints and explanations for the successes and failures of particular solver
techniques. While such proof complexity [5] studies are frequent in the closely related
field of propositional satisfiability (SAT), where typical solvers have been shown to be
based on refinements of the well-known Resolution proof system [6], this has not been
the case for ASP. Especially, the inference techniques applied in current state-of-the-art
ASP solvers have been characterised by a family of tableau-style ASP proof systems
for normal logic programs only very recently [7], with some related preliminary proof
complexity theoretic investigations [8]. The close relation of ASP and SAT and the re-
spective theoretical underpinning of practical solver techniques has also received little
attention up until recently [9,10], although the fields could gain much by further studies
on these connections.

This paper continues in part bridging the gap between ASP and SAT. Influenced
by Tseitin’s Extended Resolution proof system [11] for clausal formulas, we introduce

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 134–148, 2007.
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Extended ASP Tableaux, an extended tableau calculus based on the proof system in [7].
The motivations for Extended ASP Tableaux are many-fold. Theoretically, Extended
Resolution has proven to be among the most powerful known proof systems, equivalent
to, e.g., extended Frege systems; no exponential lower bounds for the lengths of proofs
are known for Extended Resolution. We study the power of Extended ASP Tableaux,
showing a tight correspondence with Extended Resolution.

The contributions of this paper are not only of theoretical nature. Extended ASP
Tableaux is in fact based on adding structure into programs by introducing additional
redundant rules. On the practical level, structure of problem instances has an important
role in both ASP and SAT solving. Typically, it is widely believed that redundancy
can and should be removed for practical efficiency. However, the power of Extended
ASP Tableaux reveals that this is not generally the case, and such redundancy removing
simplification mechanism can drastically hinder efficiency. In addition, we contribute
by studying the effect of redundancy on the efficiency of a variety of ASP solvers.
The results show that the role of redundancy in programs is not as simple as typically
believed, and controlled addition of redundancy may in fact prove to be relevant in
further strengthening the robustness of current solver techniques.

The paper is organised as follows. After preliminaries on ASP and SAT (Sect. 2),
the relationship of Resolution and ASP Tableaux proof systems and concepts related
to the complexity of proofs are discussed (Sect. 3). By introducing the Extended ASP
Tableaux proof system (Sect. 4), proof complexity and simplification are then studied
w.r.t. Extended ASP Tableaux (Sect. 5). Experimental results related to Extended ASP
Tableaux and redundant rules in normal logic programs are presented in Sect. 6.

2 Preliminaries

As preliminaries we review basic concepts related to answer set programming (ASP) in
the context of normal logic programs, propositional satisfiability (SAT), and translations
between ASP and SAT.

2.1 Normal Logic Programs and Stable Models

We consider normal logic programs (NLPs) in the propositional case. The symbol “∼”
denotes default negation. A default literal is an atom, a, or its default negation, ∼a. We
define shorthands L+ = {a | a ∈ L} and L− = {a | ∼a ∈ L} for a set of default
literals L, and ∼A = {∼a | a ∈ A} for a set of atoms A. A program Π over the set of
propositional atoms atoms(Π) consists of a finite set of rules r of the form

h ← a1, . . . , an, ∼b1, . . . , ∼bm, (1)

where h ∈ atoms(Π) ∪ {⊥} and ai, bj ∈ atoms(Π). A rule consists of a head,
head(r) = h, and a body, body(r) = {a1, . . . , an, ∼b1, . . . , ∼bm}. This allows the
shorthand head(r) ← body(r)+ ∪ ∼body(r)− for (1). A rule r is a fact if |body(r)| =
0. We define head(Π) =

⋃
r∈Π{head(r)} and body(Π) =

⋃
r∈Π{body(r)}. The set

of default literals of a program Π is dlits(Π) = {a, ∼a | a ∈ atoms(Π)}.
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In ASP, we are interested in stable models [12] (or answer sets) of a program Π . An
interpretation M ⊆ atoms(Π) defines which atoms of Π are true (a ∈ M ) and which
are false (a �∈ M ). An interpretation M ⊆ atoms(Π) is a (classical) model of Π if
and only if body(r)+ ⊆ M and body(r)− ∩ M = ∅ imply head(r) ∈ M for each rule
r ∈ Π . A model M is a stable model of a program Π if and only if there is no model
M ′ ⊂ M for ΠM , where

ΠM = {head(r) ← body(r)+ | r ∈ Π and M ∩ body(r)− = ∅}

is called the Gelfond-Lifschitz reduct of Π with respect to M . We say that a program
Π is satisfiable if it has a stable model, and unsatisfiable otherwise.

Given a, b ∈ atoms(Π), we say that b depends directly on a, denoted a ≤1 b,
if and only if there is a rule r ∈ Π such that b = head(r) and a ∈ body(r)+.
The positive dependency graph of Π , denoted by Dep+(Π), is a directed graph with
atoms(Π) and {〈b, a〉 | a ≤1 b} as the sets of vertices and edges, respectively. A
NLP is tight if and only if its positive dependency graph is acyclic. We denote by
loop(Π) the set of all loops in Dep+(Π). Furthermore, the external bodies of a set
of atoms A in Π is eb(A) = {body(r) | r ∈ Π, head(r) ∈ A, body(r)+ ∩ A = ∅}. A
set U ⊆ atoms(Π) is unfounded if eb(U) = ∅. We denote the greatest unfounded set,
i.e., the union of all unfounded sets, of Π by gus(Π).

2.2 Propositional Satisfiability

Let X be a set of Boolean variables. Associated with every variable x ∈ X there are
two literals, the positive literal, denoted by x, and the negative literal, denoted by x̄. A
clause is a disjunction of distinct literals. We adopt the standard convention of viewing
a clause as a finite set of literals and a CNF formula as a finite set of clauses. The sets of
variables and literals appearing in a set of clauses C are denoted by vars(C) and lits(C).

A truth assignment τ associates a truth value τ(x) ∈ {false, true} with each vari-
able x ∈ X . A truth assignment satisfies a set of clauses if it satisfies every clause in
it. A clause is satisfied if it contains at least one satisfied literal, where a literal x (re-
spectively, x̄) is satisfied if τ(x) = true (respectively, τ(x) = false). A clause set is
satisfiable if there is a truth assignment that satisfies it, and unsatisfiable otherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to normal logic programs
so that the stable models of the encoding represent the satisfying truth assignments of
the original clause set [13] faithfully, i.e., there is a bijective correspondence between
the satisfying truth assignments and stable models of the translation. Given a clause set
C, this translation nlp(C) introduces a new atom c for each clause C ∈ C, and atoms ax

and âx for each variable x ∈ vars(C). The resulting NLP is then

nlp(C) :=
⋃

x∈vars(C)
{{ax ← ∼âx} ∪ {âx ← ∼ax}} ∪

⋃

C∈C
{⊥ ← ∼c} ∪ (2)

⋃

C∈C
{{c ← ax | x ∈ lits(C)} ∪ {c ← âx | x̄ ∈ lits(C)}}. (3)
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The rules (2) encode the facts that (i) each variable is assigned an unambiguous truth
value and that (ii) each clause in C must be satisfied, while (3) encodes that each clause
is satisfied if at least one of its literals is satisfied.

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modular1 and faith-
ful translation from normal logic programs to propositional logic [13]. Moreover, any
faithful translation is potentially of exponential size when additional variables are not
allowed[14] 2. However, if a program Π satisfies the syntactic tightness condition, the
answer sets of Π can be characterised faithfully by the classical models of a linear-size
propositional formula called Clark’s completion [19,20] of Π , defined using a Boolean
variable xa for each a ∈ atoms(Π) as

C(Π) =
∧

h∈atoms(Π)

(

xh ⇔
∨

B∈body(h)

(
∧

b∈B+

xb ∧
∧

b∈B−

x̄b

))

, (4)

where body(h) = {body(r) | head(r) = h}. For simplicity, we have the special cases
that (i) if xh is ⊥ then the equivalence becomes the negation of the right hand side, and
(ii) if h ∈ facts(Π) then the equivalence reduces to the clause {xh}.

As in this paper, often one needs to consider the clausal representation of Boolean
formulas. For a linear-size clausal translation of C(Π), introduce additionally a new
Boolean variable xB for each B ∈ body(Π) \ {∅}. Using these new variables, we
arrive at the clausal completion

comp(Π) :=
⋃

B∈body(Π)\{∅}

{

xB ≡
∧

b∈B+

xb ∧
∧

b∈B−

x̄b

}

∪
⋃

B∈body(⊥)

{x̄B} (5)

∪
⋃

h∈head(Π)\{⊥}
h �∈facts(Π)

{

xh ≡
∨

B∈body(h)

xB

}

∪
⋃

h∈facts(Π)

{xh} (6)

∪
⋃

a∈atoms(Π)\head(Π)

{x̄a}, (7)

where the shorthands x ≡
∧

xi∈X xi and x ≡
∨

xi∈X xi stand for the sets of clauses
{x̄1, . . . x̄n, x} ∪

⋃
xi∈X{xi, x̄} and {x1, . . . xn, x̄} ∪

⋃
xi∈X{x̄i, x}, respectively. For

an example of a logic program’s clausal completion, see Fig. 1(left).

1 Intuitively, for a modular translation, adding an atom to a program leads to a local change not
involving the translation of the rest of the program [13].

2 However, polynomial size propositional encodings using extra variables are known,
e.g. [15,16]. Also, ASP as Propositional Satisfiability approaches for solving normal logic pro-
grams have been developed, e.g., ASSAT [17] (based on incrementally adding loop formulas)
and ASP-SAT [18] (based on generating a classical model and testing its minimality).
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3 Proof Systems for ASP and SAT

In this section we review concepts related to proof complexity (see, e.g., [5]) in the
context of this paper, and discuss the relationship of Resolution and ASP Tableaux [7].

3.1 Propositional Proof Systems and Complexity

Formally, a (propositional) proof system is a polynomial-time computable predicate S
such that a propositional expression E is unsatisfiable if and only if there is a proof p
for which S(E, p). A proof system is thus a polynomial-time procedure for checking
the correctness of proofs in a certain format. While proof checking is efficient, finding
short proofs may be difficult, or, generally, impossible since short proofs may not exist
for a too weak proof system. As a measure of hardness of proving unsatisfiability of an
expression E in a proof system S, the (proof) complexity of E in S is the length of the
shortest proof of E in S. For a family {En} of unsatisfiable expressions over increasing
number of variables, the (asymptotic) complexity of {En} is measured with respect to
the sizes of En.

For two proof systems S,S′, we say that S′ (polynomially) simulates S if for all
families {En} it holds that CS′(En) ≤ p(CS(En)) for all En, where p is a polynomial,
and CS and CS′ are the complexities in S and S′, respectively. If S simulates S′ and
vice versa, then S and S′ are polynomially equivalent. If there is a family {En} for
which S′ does not polynomially simulate S, we say that {En} separates S from S′,
and S is stronger than S′.

3.2 Resolution

The well-known Resolution proof system (RES) for clause sets is based on the resolu-
tion rule. Let C, D be clauses, and x a Boolean variable. The resolution rule states that
we can directly derive C ∪ D from {x} ∪ C and {x̄} ∪ D by resolving on x.

A RES derivation of a clause C from a clause set C is a sequence of clauses π =
(C1, C2, . . . , Cn), where Cn = C and each Ci, where 1 ≤ i < n, is either (i) a clause
in C (an initial clause), or (ii) derived with the resolution rule from two clauses Cj , Ck

where j, k < i (a derived clause). The length of π is n, the number of clauses occurring
in it. Any derivation of the empty clause ∅ from C is a RES proof of C.

Any RES proof π = (C1, C2, . . . , Cn) can be presented as a directed acyclic graph,
in which the leafs are initial clauses, inner nodes are derived clauses, and the root is the
empty clause. There are edges from Ci and Cj to Ck iff Ck has been directly derived
from Ci and Cj using the resolution rule. Many Resolution refinements, in which the
structure of the graph representation is restricted, have been proposed and studied. Of
particular interest here is Tree-like Resolution (T-RES), in which it is required that
proofs are represented by trees. This implies that a derived clause, if subsequently used
multiple times in the proof, must be derived anew each time from initial clauses.

T-RES is a proper RES refinement, i.e., RES is stronger than T-RES [21]. On the
other hand, it is well known that the DPLL method [22], the basis of most state-of-
the-art SAT solvers, is polynomially equivalent to T-RES. However, conflict-learning
DPLL is stronger than T-RES, and polynomially equivalent to RES under a slight
generalisation [6].
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3.3 ASP Tableaux

Although ASP solvers for normal logic programs have been available for many years,
the deduction rules applied in such solvers have only recently been formally defined as
a proof system, which we will here refer to as ASP Tableaux [7] (ASP-T).

An ASP tableau for a NLP Π is a binary tree of the following structure. The root
of the tableau consists of the rules Π and the entry F⊥ for capturing that ⊥ is always
false. The non-root nodes of the tableau are single entries of the form Ta or Fa, where
a ∈ atoms(Π) ∪ body(Π). As typical for tableau methods, entries are generated by
extending a branch (a path from the root to a leaf node) by applying one of the rules in
Fig.2; if the prerequisites of a rule hold in a branch, the branch can be extended with the
entries specified by the rule. For convenience, we have the shorthand tl (f l) for literals,
defined as Tl if l is positive (negative), and Fl if l is negative (positive).

A branch is closed under the deduction rules (b)-(i) if the branch cannot be extended
using the rules. A branch is contradictory if there are entries Ta,Fa for some a. A
branch is complete if it is contradictory or if there is the entry Ta or Fa for each
a ∈ atoms(Π)∪body(Π) and the branch is closed under the deduction rules. A tableau
is complete if all its branches are complete. A complete tableau from Π in which all
branches are contradictory is an ASP-T proof of the unsatisfiability of Π . The length of
an ASP-T proof is the number of entries in it. In Fig. 1 an ASP-T proof is presented for
the program Π given on the left of the proof, with the rule applied for deducing each
entry given in parenthesis.

Π = {a ← ∼a, b. b ← c. c ← ∼b}
comp(Π) = {{x̄{∼a,b}, x̄a}, {x̄{∼a,b}, xb},

{x{∼a,b}, xa, x̄b}, {x̄{c}, xc},

{x{c}, x̄c}, {x̄{∼b}, x̄b},

{x{∼b}, xb}, {x̄a, x{∼a,b}},

{xa, x̄{∼a,b}}, {x̄b, x{c}},

{xb, x̄{c}}, {x̄c, x{∼b}}, {xc, x̄{∼b}}}

Ta Fa

F{∼a, b}
Fb
T{∼b}
Tc
T{c}
Tb

×

(e)
(c)
(b)
(d)
(b)
(d)

T{∼a, b} (i§)
Fa (g)

×

c ← ∼b
F⊥

a ← ∼a, b
b ← c

Fig. 1. A logic program Π , its clausal completion comp(Π), and an ASP-T proof for Π

Any branch B describes a partial assignment A on atoms(Π) in a natural way, i.e.,
if there is an entry Ta (Fa, respectively) in B for a ∈ atoms(Π), then (a, true) ∈ A
((a, false) ∈ A, respectively). ASP-T is a sound and complete proof system for nor-
mal logic programs [7], i.e., there is a complete non-contradictory ASP tableau from
Π if and only if Π is satisfiable. Thus the assignment A described by a complete non-
contradictory branch gives a stable model M = {a ∈ atoms(Π) | (a, true) ∈ A}. As
argumented in [7], current ASP solver implementations are tightly related to ASP-T,
with the intuition that the cut rule is determinised with decision heuristics, while the
deduction rules describe the propagation mechanism in ASP solvers. For instance,
the noMore++ system [2] is a determinisation of the rules (a)-(g),(h§),(h†),(i§), while
smodels [1] applies the same rules with the cut rule restricted to atoms(Π).
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Tφ Fφ (�)

(a) Cut

h← l1, . . . , ln
tl1, . . . , tln

T{l1, . . . , ln}
(b) Forward True Body

F{l1, . . . , li, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li
(c) Backward False Body

h← l1, . . . , ln
T{l1, . . . , ln}

Th
(d) Forward True Atom

h← l1, . . . , ln
Fh

F{l1, . . . , ln}
(e) Backward False Atom

h← l1, . . . , li, . . . , ln
f li

F{l1, . . . , li, . . . , ln}
(f) Forward False Body

T{l1, . . . , li, . . . , ln}
tli

(g) Backward True Body

FB1, . . . , FBm

Fh
(�)

(h)

Th
FB1, . . . , FBi−1, FBi+1, . . . , FBm

TBi
(�)

(i)

(�): φ ∈ atoms(Π) ∪ body(Π)
(�): § (Forward False Atom) or † (Well-Founded Negation) or ‡ (Forward Loop)
(�): § (Backward True Atom) or † (Well-Founded Justification) or ‡ (Backward Loop)
(§): body(h) = {B1, . . . , Bm}
(†): {B1, . . . , Bm} ⊆ body(Π) and h ∈ gus({r ∈ Π | body(r) �∈ {B1, . . . Bm}})
(‡): h ∈ L, L ∈ loop(Π), eb(L) = {B1, . . . , Bm}

Fig. 2. Rules in ASP Tableaux

Interestingly, ASP-T and T-RES are polynomially equivalent under the translations
comp and nlp. Although the similarity of DPLL’s unit propagation and propagation in
ASP solvers is discussed in [9,10], here we want to stress the direct connection between
ASP-T and T-RES.

Theorem 1. Considering tight programs, T-RES under the translation comp can poly-
nomially simulate ASP-T.

The intuitive idea of the proof of Theorem 1 is the following. Consider again the tight
NLP Π and the ASP-T proof T in Fig. 1. The completion comp(Π) is also shown
in Fig. 1. We transform T into a binary cut tree T ′ where every entry generated by a
deduction rule in T is replaced by an application of the cut rule on the corresponding
entry. See Fig. 3 (left) for the cut tree corresponding to the ASP-T proof in Fig. 1. Now
there is a T-RES proof of comp(Π) such that for any prefix p of an arbitrary branch B
in T ′ there is a clause C ∈ π contradictory to the partial assignment in p, i.e., there is
the entry Fa (Ta) in p for each corresponding positive literal xa (negative literal x̄a)
in C. Furthermore, each such C has a Tree-like Resolution derivation from comp(Π)
of polynomial length w.r.t. the postfix of B starting directly after p. When reaching the
root of T ′, we must have derived ∅ since it is contradictory with the empty assignment.
The T-RES proof resulting from the cut tree in Fig. 3 (left) is shown in Fig. 3 (right).

The reverse direction, as stated by Theorem 2, follows from a similar argument.

Theorem 2. Considering clause sets, ASP-T under the translation nlp can polynomi-
ally simulate T-RES.
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Ta Fa

T{∼b}

F{∼a, b}

Tb

F{∼b}

Fb

FcTc

F{c}T{c}

T{∼a, b}

F{∼a, b} T{∼a, b}

{xa}

{xb} {x{∼a,b}, xa, x̄b}

{xb, x̄{∼b}}

{x̄c, xb}

{x̄c, x{c}}

{xb, x{∼b}}

{xc, x̄{∼b}}

{x̄{c}, xb}

{x̄{∼a,b}, xa}

∅

{x̄a}

{x̄{∼a,b}, x̄a} {x{∼a,b}, xa}{x{∼a,b}, x̄a}

Fig. 3. Left: cut tree based on the ASP-T proof in Fig. 1. Right: resulting T-RES proof

4 Extended ASP Tableaux

We will now introduce an extension rule to ASP-T, which results in Extended ASP
Tableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is that one
can define names for conjunctions of default literals, i.e., given two l1, l2 ∈ dlits(Π),
the (elementary) extension rule allows adding the rule p ← l1, l2 to Π , where p �∈
atoms(Π) ∪ {⊥}. It is essential that p is a new atom for preserving satisfiability.

When convenient, we will apply a generalisation of the elementary extension. By
allowing one to introduce multiple bodies for p, the general extension rule3 is

Π := Π ∪
⋃

i

{p ← li,1, . . . , li,ki | lj,k ∈ dlits(Π), p �∈ atoms(Π) ∪ {⊥}}.

An E-ASP-T proof of program Π is an ASP-T proof T of Π ∪ E, where E is a set of
extending rules generated with the extension rule. The length of an E-ASP-T proof is
the length of T plus the number of rules in E.

Since head(r) �∈ atoms(Π) ∪ {⊥} for all extending rules r ∈ E, the extension rule
does not affect the existence of stable models, i.e., for each stable model M of Π , there
is a unique N ⊆ atoms(E) \ atoms(Π) such that M ∪ N is a stable model of Π ∪ E.
Thus E-ASP-T is a sound and complete proof system.

5 Proof Complexity

In this section we study proof complexity theoretic issues related to E-ASP-T from
several viewpoints: we (i) consider the relationship between E-ASP-T and Tseitin’s
Extended Resolution, (ii) give an explicit separation of E-ASP-T from ASP-T, and (iii)
relate the extension rule to the effect of program simplification on proof lengths.

3 Notice equivalent constructs can be introduced with the elementary rule. For example, using
additional new atoms, bodies with more than two literals can be decomposed with balanced
parentheses.
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5.1 Relationship with Extended Resolution

E-ASP-T is motivated by Extended Resolution (E-RES), a proof system by Tseitin [11].
E-RES consists of the resolution rule and an extension rule which allows one to intro-
duce equivalences of the form x ≡ l1 ∧ l2, where x is a new variable and l1, l2 literals
in the clause set. In other words, given a clause set C, one application of the exten-
sion rule adds the clauses {x̄, l1}, {x̄, l2}, and {x, l̄1, l̄2} to C. E-RES is known to be
more powerful than RES; in fact, E-RES is polynomially equivalent with, e.g., extended
Frege systems, and no superpolynomial proof complexity lower bounds are known for
E-RES. We will now relate E-ASP-T with E-RES, and show that they are polynomially
equivalent under the translations comp and nlp.

Theorem 3. E-RES and E-ASP-T are polynomially equivalent proof systems in the
sense that

(i) considering tight normal logic programs, E-RES under the translation comp poly-
nomially simulates E-ASP-T, and

(ii) considering clause sets, E-ASP-T under the translation nlp polynomially simulates
E-RES.

Proof. (i): Let T be an E-ASP-T proof for a tight NLP Π , i.e., T is an ASP-T proof
of Π ∪ E, where E is the extension of Π . We use the shorthand xl for the variable
corresponding to default literal l in comp(Π), i.e., xl = xa (xl = x̄a) if l = a (l = ∼a)
for a ∈ atoms(Π). By Theorem 1 there is a polynomial T-RES proof for comp(Π ∪
E). Since head(E) ∩ (atoms(Π) ∪ {⊥}) = ∅, the clauses introduced for head(E) in
comp(Π ∪ E) can be seen as extensions in E-RES, i.e., for each h ← l1, l2 ∈ E there
are the clauses xh ≡ xl1 ∧ xl2 in comp(Π ∪ E). Thus there is an extension E′ for
comp(Π) such that the T-RES proof of comp(Π ∪ E) is an E-RES proof of comp(Π).

(ii): Let π = (C1, . . . , Cn = ∅) be an E-RES proof of a set of clauses C. Let E be the
set of clauses generated with the extension rule in π. We introduce shorthands for atoms
corresponding to literals, i.e., al = ax (al = ∼ax) if l = x (l = x̄) for x ∈ atoms(C).
We add the following rules to nlp(C) with the ASP extension rule: ax ← al1 , al2 for
each extension x ≡ l1 ∧ l2; c ← al for each l ∈ C in π such that C �∈ C; and p1 ← c1
and pi ← ci, pi−1 for each Ci ∈ π and 2 ≤ i < n.

An E-ASP-T proof for nlp(C) is generated as follows. From i = 1 to n − 1 apply
the cut rule on pi in the branch with Tpj for all j < i. We notice that each branch with
Fpi and Tpj for all j < i closes without further application of the cut. We can deduce
Fci from Fpi. Now either (i) Ci ∈ C, (ii) Ci is a derived clause, or (iii) Ci ∈ E. For
instance, if Ci = {x̄, l1} from the extension x ≡ l1 ∧ l2, then from ci ← ∼ax and
ci ← al1 we deduce Tax and Fal1 . The branch closes as T{al1 , al2} and Tal1 are
deduced from ax ← al1 , al2 . Other cases are similar.

Now, consider the branch with Tpi for all i = 1 . . . n − 1. The empty clause Cn is
obtained by resolving Cj = {x} and Ck = {x̄}, j, k < n. Thus we can deduce Tcj

and Tck from pj ← cj , pj−1 and pk ← ck, pk−1, respectively, and furthermore, Tax

and Fax from cj ← l and ck ← l̄ (l = x or l = x̄), closing the branch. The obtained
contradictory ASP tableau is of linear length w.r.t. π. ��
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5.2 Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux

As an example, we now consider a family of normal logic programs {Πn} which sep-
arates E-ASP-T from ASP-T, i.e., we give an explicit polynomial length proof of Πn

for which ASP-T has exponential length minimal proofs with respect to n. We will
consider this family also in the experiments of this paper.

The program family {PHPn+1
n } in question is the following typical encoding of the

pigeon-hole principle as a normal logic program:

PHPn+1
n :=

⋃

1≤i≤n+1

{⊥ ← ∼pi,1, . . . , ∼pi,n} ∪
⋃

1≤i<j≤n+1
1≤k≤n

{⊥ ← pi,k, pj,k} (8)

∪
⋃

1≤i≤n+1
1≤j≤n

{{pi,j ← ∼p′i,j} ∪ {p′i,j ← ∼pi,j}} (9)

In the above, pi,j has the interpretation that pigeon i sits in hole j. The rules in (8)
require that (i) each pigeon must sit in some hole and that (ii) no two pigeons can sit in
the same hole. The rules in (9) enforce that for each pigeon and each hole, the pigeon
either sits in the hole or does not sit in the hole. Each PHPn+1

n is unsatisfiable since
there is no bijective mapping from an (n + 1)-element set to an n-element set.

Theorem 4. The complexity of {PHPn+1
n } with respect to n is polynomial in E-ASP-T

and exponential in ASP-T

Proof. (i): Following Cook’s extension [23] for achieving a polynomial-length E-RES
proof of a clausal encoding of the pigeonhole principle4, we define the polynomial size
program extension

EXTl :=
⋃

1≤i≤l
1≤j≤l−1

{{el
i,j ← el+1

i,j } ∪ {el
i,j ← el+1

i,l , el+1
l+1,j}} (10)

for 1 ≤ l ≤ n, where each en+1
i,j is interpreted as pi,j .

Although not explicitly given by Cook, the extension given in [23] does not seem
to yield a polynomial length tree-like proof of the clausal representation, so Theorem 3
does not directly imply a polynomial length ASP-T proof for PHPn+1

n ∪
⋃

1≤l≤n EXTl.
However, given the polynomial length E-RES proof5 π = (C1, C2, . . . , Cn = ∅) of
the clausal representation, we can follow the general strategy given in the proof of
Theorem 3 for defining an additional extension E(π) which allows a polynomial length
ASP-T proof for the resulting program

EPHPn+1
n := PHPn+1

n ∪
⋃

1≤l≤n

EXTl ∪ E(π).

(ii): comp(PHPn+1
n ) consists of the clausal encoding of the pigeon-hole principle

and additional clauses (tautologies) for rules of the form a ← ∼a′, a′ ← ∼a. Assume

4 The particular encoding is
⋃

1≤i≤n+1{
∨n

j=1 xi,j} ∪
⋃

1≤i<i′≤n+1,1≤j≤n{¬xi,j ∨ ¬xi′,j}.
5 The intuitive idea is that the extension allows for reducing PHPn+1

n to PHPn
n−1 with a poly-

nomial number of Resolution steps. Due to space constraints we do not give π explicitly here.
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now that there is a polynomial ASP-T proof for PHPn+1
n . By Theorem 1 there is a

polynomial T-RES of comp(PHPn+1
n ). It is easy to see that the additional tautologies

in comp(PHPn+1
n ) do not help in the resolution proof. Thus there is a polynomial

length T-RES proof for the clausal pigeonhole encoding. However, this contradicts the
fact that the complexity of the clausal pigeonhole principle is exponential w.r.t. n for
(Tree-like) Resolution [24]. ��
In fact, Theorem 4 is also witnessed by non-tight programs. Consider the family
{PHPn+1

n ∪ {pi,j ← pi,j | 1 ≤ i ≤ n + 1, 1 ≤ j ≤ n}}, which is non-tight with
the additional self-loops {pi,j ← pi,j}, but preserves (un)satisfiability of PHPm

n for
all n, m. Since the self-loops do not contribute to the proofs of PHPn+1

n , ASP-T still
has exponential length minimal proofs for these programs, while the E-ASP-T proof
presented in the proof of Theorem 4 is still valid.

5.3 Program Simplification and Complexity

We will now give an interesting corollary of Theorem 4, addressing the effect of pro-
gram simplification on the length of proofs.

Tightly related to the development of efficient solver implementations for resolv-
ing ASP programs arising from practical applications is the development of techniques
for simplifying programs. Efficient program simplification through local transformation
rules becomes especially important as practically relevant programs are often produced
automatically, because often a high number of redundant constraints is produced in the
process. While various satisfiability-preserving local transformation rules for simplify-
ing logic programs have been introduced (see, e.g., [25]), the effect of applying such
transformations on the lengths of proofs has not received attention.

Taking a first step into this direction, we now show that even simple transformation
rules may have a drastic negative effect on proof complexity. Consider the local trans-
formation rule red(Π) := Π \ {r ∈ Π | head(r) �∈ body(Π)}. The rules removed
by red are redundant with respect to satisfiability of the program in the sense that red
preserves visible equivalence [16]. The visible equivalence relation takes the interfaces
of programs into account: atoms(Π) is partitioned into v(Π) and h(Π) determining
the visible and the hidden atoms in Π , respectively. Programs Π1 and Π2 are visibly
equivalent, denoted by Π1 ≡v Π2, if and only if v(Π1) = v(Π2) and there is a bijective
correspondence between the stable models of Π1 and Π2 mapping each a ∈ v(Π1) onto
itself. Defining v(Π) = v(red(Π)) = atoms(red(Π)), one can see that red(Π) ≡v Π .

A polynomial time, satisfiability-preserving simplification algorithm red∗(Π) is ob-
tained by closing program Π under red. However, notice that, in the worst case when we
define v(EPHPn+1

n ) = v(PHPn+1
n ) = atoms(PHPn+1

n ), we have red∗(EPHPn+1
n ) =

PHPn+1
n . Thus, by Theorem 4, red∗ transforms a program family having polynomial

complexity in ASP Tableaux into one with exponential complexity with respect to n.

6 Experiments

We evaluate empirically how well current state-of-the-art ASP solvers can make use
of the additional structure introduced to programs using the extension rule. We run
the solvers smodels [1] (version 2.32, a widely used lookahead solver), clasp [4] (rc4,
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with many techniques—including conflict learning—adopted from DPLL-based SAT
solvers), and cmodels [18] (version 3.66, a SAT-based ASP solver running the conflict-
learning SAT solver zChaff version 2004.11.15 as the back-end). The experiments are
run on standard PCs with 2-GHz AMD 3200+ processors under Linux.

First, we investigate whether ASP solvers are able to benefit from the extension in
EPHPn+1

n . We compare the number of decisions and running times of each of the
solvers on PHPn+1

n , CPHPn+1
n := PHPn+1

n ∪
⋃

1≤l≤n EXTl, and EPHPn+1
n . By

Theorem 4 the solvers should in theory be able to exhibit polynomially scaling number
of decisions for EPHPn+1

n . In fact with conflict-learning this might also be possible
for CPHPn+1

n due to the tight correspondence with conflict-learning SAT solvers and
Resolution. The results for n = 10 . . .12 are shown in Table 1. While the number
of decisions for the conflict-learning clasp and cmodels is somewhat reduced by the
extensions, the solvers do not seem to be able to reproduce the polynomial size proofs,
and we do not observe a dramatic change in the running times. With a timeout of 2
hours, smodels gives no answer for n = 12 on PHPn+1

n or CPHPn+1
n . However, for

EPHPn+1
n smodels returns without any branching, which should be due to the fact that

smodels’s complete lookahead notices that by branching on the critical extension atoms
(as in part (ii) of the proof of Theorem 4) the false branch closes immediately. With
this in mind, an interesting further study out of the scope of this paper would be the
possibilities of integrating conflict learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of redun-
dant rules on the behaviour of ASP solvers. For this we apply the following procedure
ADDRANDOMREDUNDANCY(Π, n, p):

1. For i = 1 to 	 p
100n
:

1a. Randomly select l1, l2 ∈ dlits(Π) such that l1 �= l2.
1b. Π := Π ∪ {ri ← l1, l2}, where ri �∈ atoms(Π)

2. Return Π

Given a program Π , the procedure iteratively adds rules of the form ri ← l1, l2 to Π ,
where l1, l2 are random default literals currently in the program and ri is a new atom.
The number of introduced rules is p% of the integer n.

In Fig. 4, the median, minimum, and maximum number of decisions and running
times for the solvers on ADDRANDOMREDUNDANCY(PHPn+1

n , n, p) are shown for
p = 50, 100 . . . , 450 over 15 trials at each data point. The mean number of decisions
(left) and running times (right) on the original PHPn+1

n are presented by the horizontal

Table 1. Results on PHPn+1
n , CPHPn+1

n , and EPHPn+1
n with timeout (-) of 2 hours

Time (s) Decisions
Solver n PHPn+1

n CPHPn+1
n EPHPn+1

n PHPn+1
n CPHPn+1

n EPHPn+1
n

smodels 10 32.28 120.24 9.28 158878 141177 0
smodels 11 471.54 1828.40 23.07 1885949 1619703 0
smodels 12 - - 52.20 - - 0

clasp 10 8.60 7.78 19.26 197982 114840 38842
clasp 11 72.78 62.74 97.23 1072358 574874 116534
clasp 12 900.33 1046.86 881.90 7787578 4964309 646278

cmodels 10 1.91 2.23 27.42 9455 9916 20615
cmodels 11 7.99 10.28 70.39 23058 26283 38648
cmodels 12 48.36 56.70 270.63 87864 98994 97745
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(a) clasp decisions (left), time in seconds (right)
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(b) cmodels decisions (left), time in seconds (right)
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(c) smodels decisions (left), time in seconds (right)
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(d) smodels without lookahead: decisions (left), time in seconds (right)

Fig. 4. Effects of adding randomly generated redundant rules to PHPn+1
n

lines. Notice that the number of added atoms and rules is linear to n, which is negligible
to the number of atoms (in the order of n2) and rules (n3) in PHPn+1

n . For similar
running times, the number of holes n is 10 for clasp and smodels and 11 for cmodels.
The results are very interesting: each of the solvers seems to react individually to the
added redundancy. For cmodels (b), only a few added redundant rules are enough to
worsen its behaviour. For smodels (c), the number of decisions decreases linearly with
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the number of added rules. However, the running times grow fast at the same time,
most probably due to smodels’s lookahead. We also ran the experiment for smodels (d)
without using lookahead. This had a visible effect on the number of decisions, showing
a benefit from the added rules compared to smodels on PHPn+1

n .
The most interesting effect is seen for clasp; clasp benefits from the added rules w.r.t.

the number of decision, while the running times stay similar on the average, contrarily
to the other solvers. In addition to this robustness against redundancy, we believe that
this shows promise for further exploiting redundancy added in a controlled way dur-
ing search; the added rules give new possibilities to branch on definitions which were
not available in the original program. However, for benefiting from redundancy with
running times in mind, optimised lightweight propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transforma-
tion presented in [8], which enables smodels to branch on the bodies of rules, having
an exponential effect on the proof complexity of a particular program family, can be
equivalently obtained by applying the ASP extension rule. This may in part explain the
effect on adding redundancy on the number of decision made by smodels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for normal logic
programs under the stable model semantics. We study the strength of the calculus, show-
ing a tight correspondence with Extended Resolution, which is among the most power-
ful known propositional proof systems. This sheds further light on the relation of ASP
and propositional satisfiability solving and their underlying proof systems, something
which we believe is for the benefit of both of the communities.

Furthermore, this work shows the intricate nature of the interplay of structure and
the hardness of solving ASP instances. We anticipate that controlled use of the exten-
sion rule is possible and will yield performance gains by considering in more detail
the structural properties of programs in particular problem domains. One could also
consider implementing branching on any possible formula inside a solver. However,
this would require novel heuristics, since choosing the formula to branch on from the
exponentially many alternatives is nontrivial and is not applied in current solvers. We
find this an interesting future direction of research. Another important research direc-
tion set forth by this study is a more in-depth investigation into the effect of program
simplification on the hardness of solving ASP instances.
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13. Niemelä, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241–273 (1999)

14. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261–268 (2006)

15. Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12(1-2), 53–87 (1994)

16. Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35–86 (2006)

17. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1–2), 115–137 (2004)

18. Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345–377 (2006)

19. Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311–325. Mor-
gan Kaufmann Publishers, San Francisco (1987)

20. Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Meth-
ods of Logic in Computer Science 1, 51–60 (1994)

21. Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and
general resolution. Combinatorica 24(4), 585–603 (2004)

22. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394–397 (1962)

23. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28–32 (1976)

24. Haken, A.: The intractability of resolution. TCS 39(2-3), 297–308 (1985)
25. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and

strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) Logic Programming and Nonmono-
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Abstract. The problem of managing and querying inconsistent
databases has been deeply investigated in the last few years. As, in the
general case, the problem of consistent query answering is hard, most
of the techniques so far proposed have an exponential complexity. More-
over, polynomial techniques have been proposed only for restricted forms
of constraints (e.g. functional dependencies) and queries.

In this paper we present a technique which allows us to compute
“approximated” consistent answers in polynomial time, for general con-
straints and queries. The paper presents a three-valued semantics for
constraint satisfaction, called deterministic, and considers three valued
databases. Thus, a repaired database is a database where atoms may
be either true or undefined (whereas missing atoms are false) that satis-
fies constraints under the deterministic three valued semantics. We show
that in querying possibly inconsistent databases the answer is safe (true
and false atoms in the answers are, respectively, true and false under
the classical two-valued semantics) and the answers can be computed in
polynomial time. We also show that deterministic answers can be com-
puted by rewriting constraints into logic programs.

1 Introduction

Integrity constraints represent an important source of information about the
real world. They are usually used to define constraints on data (functional de-
pendencies, inclusion dependencies, etc.). Since the satisfaction of integrity con-
straints cannot be, generally, guaranteed, in the evaluation of queries, we must
compute answers which are consistent with the integrity constraints. The pres-
ence of inconsistencies might arise, for instance, when the database is obtained
from the integration of different information sources. The integration of knowl-
edge from multiple sources is an important aspect in several areas such as data
warehousing, database integration, automated reasoning systems, active reactive
databases and others.

In the presence of inconsistencies, an important problem investigated in recent
years consists in characterizing and retrieving the consistent information from
the database. It is well known that the presence of inconsistent data can be re-
solved by “repairing” the database, i.e. by providing a computational mechanism
that ensures consistent “scenarios” of the information (repairs) are obtained in

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 149–164, 2007.
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an inconsistent environment. However, there are many different ways of repair-
ing a database, even if we limit ourselves to the minimal ones. So it is natural
to leave the database inconsistent, so that no piece of information is lost, and to
identify pieces of data which are consistent in answering queries, i.e. to consider
the information present in every repaired database. This leads to the notion of
consistent query answer (CQA): an element of query result in every repaired
database.

Example 1. Consider the database schema Teaches(Course, Prof) with the in-
tegrity constraint Course → Prof and the following (inconsistent) database DB.

Course Prof
c1 p1
c2 p2
c2 q2
c3 p3
c3 q3

DB

Course Prof
c1 p1
c2 p2
c3 p3

DB1

Course Prof
c1 p1
c2 p2
c3 q3

DB2

Course Prof
c1 p1
c2 q2
c3 p3

DB3

Course Prof
c1 p1
c2 q2
c3 q3

DB4

There are four possible repaired databases: DB1, DB2, DB3, DB4 obtained
by deleting minimal sets of tuples which make the repaired database consistent.
Moreover, while we are not able to answer the query Teaches(c2, X), asking for
the professor teaching course c2, we are able to answer the query Teaches(c1, X)
asking for the professor teaching course c1. �

Therefore, it is very important, in the presence of inconsistent data, to compute
the set of consistent answers, but also to know which facts are unknown and if
there are possible repairs for the database.

The problem of managing and querying inconsistent databases has been
deeply investigated in the last years. As, in the general case, the problem of
consistent query answering is hard, most of the techniques so far proposed have
an exponential complexity. Moreover, polynomial techniques have been proposed
only for restricted forms of constraints (e.g. functional dependencies) and queries.

In this paper we present a technique which allows us to compute “approx-
imated” consistent answers in polynomial time, for general constraints and
queries. The paper presents a three-valued semantics for constraint satisfac-
tion, called deterministic, and considers three valued databases. Thus, a repaired
database is a database where atoms may be either true or undefined (whereas
missing atoms are false) that satisfies constraints under the deterministic (three-
valued) semantics. We show that in querying inconsistent databases the answer
is sound (true and false atoms in the answers are also true and false, respectively,
under the classical two-valued semantics) and can be computed in polynomial
time. We also show that deterministic answers can be computed by rewriting
constraints into logic programs.
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Related Work

Recently there have been several proposals considering the problem of managing
inconsistent databases. The problem has been deeply investigated mainly in the
areas of databases and artificial intelligence [3,22].

Arenas et al. [3] proposed a method to compute consistent query answers
based on query rewriting. This technique is simple, but it has a very limited ap-
plicability (first-order queries without disjunction or quantification, and binary
universal integrity constraints). Recently, that approach has been generalized by
Fuxman and Miller [13] to allow restricted existential quantification in queries
in the context of primary key FDs.

Several works have considered the use of logic programs to capture repairs
as answer sets of logic programs with negation and disjunction [4,15,16]. These
approaches are quite general, being able to handle arbitrary universal constraints
and first-order queries. However, the problem of deciding whether an atom is a
member of all answer sets of such a logic program is Πp

2 -complete and for the
class of programs derived from the rewriting of constraints is in Πp

2 and coNP-
hard.

The use of preferences and priorities, as well as the definition of constructs
to define unfeasible repairs and answers, have been also proposed [16,17,12].
However, the use of preferences, in most of the approaches proposed, further
increases the computational complexity. A technique for the computation of
repairs based on updating both tuples and attribute-values has been proposed
by Wijsen [23], whereas special classes of constraints have been studied in [6].

Three-valued interpretation of database theories have been proposed as well
and technique for query answering under LCWA (local CWA) computing a
three-valued interpretation that approximates all two-valued interpretation of
a database theory has been presented in [11].

For recent surveys on repairing and querying inconsistent databases we refer
to the recent papers of Bertossi [5] and Chomicki [10].

1.1 Contributions

The novelty of our approach consists in i) the definition of a formal declarative
three-valued semantics, called deterministic, for constraint satisfaction under
three-valued databases, ii) the definition of (three-valued) repairs under such a
semantics, iii) the definition of deterministic consistent query answers for (strati-
fied) Datalog queries over databases with integrity constraints. More specifically:

– We consider databases whose atoms may be either true or undefined (missing
tuples are assumed to be false). The reason for considering three-valued
databases is that in the computation of repairs under deterministic (three-
valued) semantics, some of the atoms may not be assumed to be true or false
and they are assumed to be undefined.

– As databases may be three-valued, we propose a different semantics for
the satisfaction of integrity constraints which for standard (two-valued)
databases coincides with the classical semantics.
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– We propose three-valued repairs consisting of substitutions which make the
truth value of database atoms true, false or undefined . We show that the
set of three-valued repairs defines a lower semi-lattice whose top elements
are standard (two-valued) repairs and whose bottom element defines the
deterministic repair.

– CQA can be computed by considering the deterministic repaired database
(i.e. the database repaired by means of the deterministic repair). We show
that CQA is sound (true and false atoms in the answers are, respectively,
true and false under the classical two-valued semantics), but not complete.

– Finally, we show that deterministic repairs and answers can be computed
in polynomial time and that the deterministic answers can be obtained by
rewriting constraints and queries into a logic program and computing the
fixpoint of this program.

2 Preliminaries

We assume familiarity with relational database theory, logic programs and de-
ductive databases [1,14].

Predicate symbols are partitioned into two distinct sets: base predicates and
derived predicates. Base predicates correspond to database relations defined over
a given domain and they do not appear in the head of any rule; derived predicates
are defined by means of rules. Given a database DB and a program P , PDB
denotes the program derived from the union of P with the facts in DB, i.e.
PDB = P ∪ DB. In the following a tuple t of a relation r will also be denoted as
a fact r(t). Given a set of ground atoms DB and a predicate symbol p, DB[p]
denotes the set of p-tuples in DB. The semantics of PDB is given by the set of
its stable models by considering their intersection (certain semantics or cautious
reasoning). A (Datalog) query Q is a pair (g, P) where g is a predicate symbol,
called the query goal, and P is a (Datalog) program. The answer to a Datalog
query Q = (g, P) over a database DB (under the certain semantics) is given
by DB′[g] where DB′ =

⋂
M∈SM(PDB) M . A (relational) query can be expressed

by means of ‘safe’ non recursive Datalog, even though alternative equivalent
languages could be used [1].

3 Databases and Integrity Constraints

Databases contain, other than data, intentional knowledge expressed by means
of integrity constraints. Database schemata contain the knowledge of the struc-
ture of data, i.e. they make constraints on the form the data must have. The
relationships among data are usually defined by constraints such as functional
dependencies, inclusion dependencies and others. Integrity constraints, which ex-
press information that is not directly derivable from the database, are introduced
to prevent the insertion or deletion of data which could produce incorrect states.
They are used to restrict the state a database can take and provide information
on the relationships among data.
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3.1 Integrity Constraints

Generally, a database DB has an associated schema 〈DS, IC〉 defining the inten-
tional properties of DB: DS denotes the structure of the relations, while IC is a
set of integrity constraints expressing semantic information over data.

Definition 1. An integrity constraint (or embedded dependency) is a formula of
the first order predicate calculus of the form:

(∀X) [ Φ(X) ⊃ (∃Z)Γ (W ) ]

where X, W and Z are sets of variables, Φ and Γ are two conjunctions of literals
such that X and W are sets of variables appearing in Φ and Γ respectively,
Z = W − X is the set of variables existentially quantified. �

In the definition above, Φ is called the body and Γ the head of the integrity
constraint. In the rest of the paper we consider general constraints of the form1

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

(∃Zj)bj(Xj , Zj) ]

where ϕ(X0) denotes a conjunction of built-in atoms, X =
⋃m

j=1 Xj, Xi ⊆ X
for i ∈ [0 . . n]. The body of a constraint ic is denoted by Body(ic) whereas its
head is denoted by Head(ic).

The reason for considering constraints of the above form is that we want to
consider range restricted constraints, i.e. constraints whose variables take values
from finite domains only.

Often we shall write our constraints in a different format by moving literals
from the head to the body and vice-versa. For instance, by rewriting the above
constraint as denial (i.e. with empty head) we obtain:

(∀ X)[
m∧

j=1

bj(Xj),
n∧

j=m+1

(� ∃Zj)bj(Xj , Zj), ϕ(X0) ⊃ ].

3.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first
recalled and, then, a computational mechanism is presented that ensures that
repairs and consistent answers for inconsistent databases are selected.

An update atom ±a(X) is in the form +a(X) (inserting atom) or −a(X)
(deleting atom). Intuitively a ground atom +a(t) states that a(t) will be inserted
into the database whereas a ground atom −a(t) states that a(t) will be deleted
from the database. Given a set U of ground update atoms we define the sets
U+ = {a(t) | + a(t) ∈ U}, U− = {a(t) | − a(t) ∈ U}. We say that U is consistent
if it does not contain two update atoms +a(t) and −a(t) (i.e. if U+ ∩ U− = ∅).
Given a database DB and a consistent set of update atoms U , we denote as
U(DB) the updated database DB ∪ U+ − U−.
1 The meaning of the symbols ‘∧’ and ‘,’ is the same.
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Definition 2. Given a database DB and a set of integrity constraints IC, a re-
pair for 〈DB, IC〉 is a consistent set of update atoms R such that 1) R(DB) |= IC
and 2) there is no consistent set of update atoms U ⊂R such that U(DB) |= IC. �

For any database DB and set of integrity constraints IC, the set of all possible
repairs for 〈DB, IC〉 is denoted as R(DB, IC). Thus, repaired databases are
consistent databases, derived from the source database by means of a minimal
set of update operations.

Observe that for constraints containing unrestricted variables the set of pos-
sible repairs could be infinite. Thus, in the rest of paper we only consider uni-
versally quantified (or full) integrity constraints of the form:

(∀ X)[
m∧

j=1

bj(Xj), ϕ(X0) ⊃
n∨

j=m+1

bj(Xj) ]

where X =
⋃m

j=1 Xj and Xi ⊆ X for i ∈ [0 ..n].
In the following we assume that the constants appearing in constraints also

appear in the database and that for a given database DB its domain is UDB (the
Herbrand universe of DB).

Given a set of universally quantified constraints IC on a database DB and
an integrity constraint r ∈ IC, a ground instantiation of r with respect to DB
can be obtained by replacing variables with constants of UDB and eliminating
the quantifiers ∀. The set of ground instances of r is denoted by ground(r),
whereas ground(IC) =

⋃
r∈IC ground(r) denotes the set of ground instances of

constraints in IC. Clearly, for any set of universally quantified constraints IC,
the cardinality of ground(IC) is polynomial in the size of the database.

Definition 3. Given a database DB and a set of integrity constraints IC, an
atom A is true (resp. false) with respect to 〈DB, IC〉 if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined. �

Thus, true atoms appear in all repaired databases, whereas undefined atoms
appear in a non empty proper subset of repaired databases.

Definition 4. Given a database DB, a set IC of integrity constraints over DB
and a query Q = (g, P), the consistent answer of the query Q on 〈DB, IC〉,
denoted as Q(DB, IC), gives three sets, denoted as Q(DB, IC)+, Q(DB, IC)−

and Q(DB, IC)u. These contain, respectively, the sets of g-tuples which are
true (i.e. belonging to

⋂
R∈R(DB,IC) Q(R(DB))), false (i.e. not belonging to

⋃
R∈R(DB,IC) Q(R(DB))) and undefined (i.e. set of tuples which are neither true

nor false). �

In [16] it has been shown that given a database DB, a set of integrity constraints
IC and a query Q = (g, P), then 1) checking if there exists a (two-valued) repair
for DB such that the answer of Q is not empty is in ΣP

2 and NP-hard, 2) checking
whether the consistent answer of Q is not empty is in ΠP

2 and coNP-hard. In
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the same work it has been shown that also when considering special constraints
such as functional dependencies the problem of checking, for a given ground
tuple t, whether i) t ∈ Q(DB, IC)+ is coNP-complete, ii) t ∈ Q(DB, IC)− is
coNP-complete, iii) t ∈ Q(DB, IC)u is NP-complete. The problem becomes
polynomial only when we consider functional dependencies and queries of the
form (g, ∅).

4 Deterministic Three-Valued Semantics

The problem with the approaches previously proposed is that, in the general
case, computing consistent answers is too expensive and in the presence of large
databases unpracticable. Thus, in this section we propose an alternative solution
which allows us to compute “approximated” answers in polynomial time.

The approach we propose is based on a three-valued interpretation for in-
tegrity constraints, i.e. on the assumption that atoms belonging to a database
may be either true or false or undefined .

We assume that a three-valued database consists of two sets: the set of true
atoms and the set of undefined atoms (atoms which are not included in the
database are false). In the following we term three-valued databases simply
databases. Given a database DB, we denote by DB+ and DBu, respectively,
the set of true and undefined tuples in DB, whereas DB− = BDB − DB+ − DBu

denotes the set of false tuples. A database DB is said to be two-valued if DBu = ∅.

Definition 5. Given a positive Datalog program P and a database DB, the
evaluation of P on DB, denoted P(DB), gives a minimum model consisting of
two sets M+ and Mu defined as follows:

– M+ = T∞PDB
(∅),

– Mu = W∞
PDB

(∅),

where TPDB is the classical immediate consequence operator defined as
TPDB(I+) = {a| a ← b1, . . . , bm ∈ (ground(P) ∪ DB+) ∧ b1, . . . , bm ∈ I+}

whereas
WPDB(Iu) = {a| a ← b1, . . . , bm ∈ (ground(P) ∪ DB+ ∪ DBu)

∧ b1, . . . , bm ∈ (M+ ∪ Iu)} − M+ ��

It is worth noting that the operator WPDB is monotonic and that its fixpoint can
be computed in a finite number of steps (polynomial in the size of DB). The two
sets M+ = T∞PDB

(∅) and Mu = W∞
PDB

(∅), containing true and undefined atoms
which are derived by applying P to DB, will also be denoted by P(DB)+ and
P(DB)u, respectively.

For stratified P it is sufficient to partition it into a sequence of subprograms
[P1, . . . , Pn] so that negated literals appearing in a subprogram Pi are defined in
strata below P1, . . . , Pi−1 or are database literals. The computation of the stable
model is performed by evaluating one subprogram at a time and by considering
the stable model of the program DB ∪ P1 ∪ · · · ∪ P i−1 as the input database for
the program P i. As negation is applied only to database atoms (or atoms derived
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by means of strata below), for the evaluation of rules with negated literals it is
sufficient to refine the definition of TPDB and WPDB by checking that negated
body literals are true with respect to the current database.

Given a (stratified) Datalog query Q = (g, P) and a database DB, the answer
of Q over DB, denoted by Q(DB), gives three sets denoted as Q(DB)+, Q(DB)u

and Q(DB)−. These sets contain, respectively, the g-tuples which are derived as
true, undefined and false by applying P over DB, i.e. Q(DB)+ = P(DB)+[g],
Q(DB)u = P(DB)u[g] and Q(DB)− = (BPDB − Q(DB)+ − Q(DB)u)[g].

4.1 Deterministic Semantics

The two-valued semantics states that a constraint is satisfied if the head truth
value is greater than or equal to the truth value of the body; clearly, a constraint
with empty head is satisfied if the body is false, whereas a constraint with empty
body is satisfied if the head is true.

Standard constraints satisfaction, stating that a database DB satisfies a con-
straint ic if valueDB(Head(ic)) ≥ valueDB(Body(ic)), cannot be applied imme-
diately to three-valued database. Indeed, the property stating that under the
two-valued semantics literals appearing in constraints can be moved from the
head to the body and vice versa, without modifying the truth value of con-
straints, does not hold under the three-valued semantics.

Example 2. Consider for instance the database DB consisting of DB+ = {a} and
DBu = {b, c}. This database satisfies the constraint ic = a∧b ⊃ c, but does not
satisfy the constraint ic′ = b∧not c ⊃ not a which is derived from ic by moving
a to the head and c to the body. In fact, DB |= ic as valueDB(Body(ic)) =
valueDB(Head(ic)) = undefined, while DB �|= ic′ as valueDB(Body(ic′)) =
undefined and valueDB(Head(ic′)) = false. �

Therefore, we introduce a different definition for the satisfaction of constraints
under three-valued semantics which we call deterministic semantics. For the sake
of clarity, in the following we assume that constraints are written under the form
of denial (i.e. with empty head).

As for the two valued semantics, constraints whose body is false or whose
head is true are satisfied. Therefore, a literal appearing in a (denial) constraint
must be false if all other literals are true. For instance, a constraint of the form
l ⊃ states that the literal l must be false .

Given a set IC of ground constraints, we define the set TIC = T ∞IC (∅) where

TIC(T ) = {not l | ∃ic = l∧ l1 ∧· · ·∧ ln ∧ϕ ⊃∈ IC s.t. l1, . . . , ln ∈ T ∧ ϕ is true}

Intuitively, TIC defines the set of literals which must be true in order to
satisfy IC. Observe that the set TIC is different from the fixpoint computed by
the operator TPDB as it contains atoms which can be either true or false. Clearly,
if the derived set TIC contains both l and not l, then the set of constraints IC
cannot be satisfied, but for satisfiable sets of constraints, complementary literals
cannot be derived. As the literals in TIC must be true, the set IC of constraints
can be “simplified” as follows:
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1. each atom l s.t. either l or not l is in TIC can be replaced with the corre-
sponding truth value

2. built-in literals can be replaced with their truth value so that the resulting
set contains only database literals,

3. each constraint in IC which contains the truth value false in the body is
satisfied and can be deleted, whereas the truth value true can be deleted
from the body conjunctions.

The derived reduced set of constraints will be denoted by Red(IC).

Example 3. Consider the set IC = { a ⊃, not a ∧ not b ⊃, b ∧ c ∧ d ⊃ } of
(ground) integrity constraints. The set TIC is equal to {not a, b}. The reduced
set of constraints contains only the constraint c ∧ d ⊃ (the first two constraints
are deleted as a and not b are false). �

Given a set IC of ground constraints, observe that all reduced constraints in
Red(IC) contain at least two literals and no built-in literal.

Definition 6. Let IC be a set of ground constraints of the form

l1 ∧ · · · ∧ ln ∧ ϕ ⊃ (1)

where n > 1, each li (i = 1..n) is either a positive literal bi(xi) or a negative
literal not bi(xi) and ϕ is a conjunction of built-in atoms. Given a constraint ic
in IC, we define

Ext(ic) = {
∧

lj∈S

lj , ϕ ⊇
∨

lj∈{l1,···,ln}−S

not lj | S ⊂ {l1, ..., ln} ∧ |S| > 0}

as the set of constraints which are derived from ic by moving database body
literals to the head so that both the head and the body are not empty. Moreover,
Ext(IC) = ∪ic∈ICExt(ic). �

The following definition states when a set of constraints is satisfiable under
deterministic semantics.

Definition 7. Let DB be a database and IC be a set of constraints. Then, DB
satisfies IC under deterministic semantics (denoted as DB |=DSIC) if

– DB |= Tground(IC) (i.e. Tground(IC) ⊆ DB+ ∪ not DB−), and
– DB |= Ext(Red(ground(IC))) �

Since under the three-valued semantics a (ground) constraint ic in
Red(ground(IC)) can change its truth value by moving literals from the body
to the head and vice versa (see Example 2), in the above definition we say that
a database DB satisfies ic under deterministic semantics if DB satisfies (under
classical three-valued semantics) all constraints which can be derived from ic by
moving any set of literals to the head (provided that both the head and the body
of the derived constraints are not empty).
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Example 4. Consider the following set IC of ground integrity constraints:

not a ⊃ a ∧ c ∧ not d ⊃
a ∧ b ⊃ b ∧ e ∧ not f ⊃

not g ∧ h ⊃

Thus TIC = {a, not b}, Red(IC) is as follows

c ∧ not d ⊃
not g ∧ h ⊃

whereas Ext(Red(IC)) is as follows

c ⊃ d not g ⊃ not h
not d ⊃ not c h ⊃ g

The database DB consisting of DB+ = {a} and DBu = {g, h} satisfies IC under
deterministic semantics as DB |= TIC and DB |= Ext(Red(IC)). �

Proposition 1. Let DB be a database and IC be a set of ground integrity con-
straints. Then, DB |= Ext(Red(IC)) iff for each constraint ic = l1 ∧· · ·∧ ln ⊃ in
Red(IC) either (i) some literal li is false w.r.t. DB or (ii) all literals l1, · · · , ln
are undefined w.r.t. DB. �

Example 5. Consider the set IC = {a ∧ b ⊃, b ∧ not c ⊃} of ground integrity
constraints. Then, Ext(IC) = {a ⊃ not b, b ⊃ not a, b ⊃ c, not c ⊃ not b}.
These constraints are satisfied iff either i) b is false , or ii) a is false and c is true,
or iii) all atoms a, b and c are undefined . �

Observe that the cardinality of Ext(ic) is exponential in the number of database
literals appearing in ic. We now show that it is sufficient to consider a number
of derived constraints equal to the number of database literals appearing in ic.

Definition 8. Let IC be a set of ground constraints and ic be a constraint in
IC, i.e. ic is of the form (1) with n > 0. We define by

ext(ic) = {l1 ∧ · · · ∧ li-1 ∧ li+1 ∧ · · · ∧ ln ∧ ϕ ⊃ not li | i ∈ [1..n] }

the set of constraints which are derived from ic by moving exactly one (database)
body literal to the head. Moreover, ext(IC) = ∪ic∈IC ext(ic). �

Proposition 2. Given a database DB and a set IC of ground integrity con-
straints, then DB |= Ext(Red(IC)) iff DB |= ext(Red(IC)). �

Therefore, in the definition of deterministic semantics (Definition 7), instead
of considering the set Ext(Red(ground(IC))), whose size is exponential in the
number of database literals appearing in the body of constraints, we can con-
sider ext(Red(ground(IC))), whose size is linear in the number of ground con-
straints and the number of literals appearing in the body of constraints. Con-
sequently, we have that DB |=DS IC if i) DB |= Tground(IC), and ii) DB |=
ext(Red(ground(IC))).
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4.2 Repairing Databases

A substitution S for a database DB is a triplet 〈S+, Su, S−〉 such that

1. S+ ∪ Su ∪ S− ⊆ BDB,
2. S+ ∩ Su = ∅, S+ ∩ S− = ∅ and S− ∩ Su = ∅,
3. S+ ⊆ DBu ∪ DB−, Su ⊆ DB+ ∪ DB− and S− ⊆ DB+ ∪ DBu.

Given a database DB and a substitution S for DB, the application of S to DB,
denoted by S(DB), gives the following sets: i) S(DB)+ = (DB+ −Su −S−)∪S+

and ii) S(DB)u = (DBu − S+ − S−) ∪ Su. Observe that the set S(DB)− =
BDB − S(DB)+ − S(DB)u is also equal to (DB− − S+ − Su) ∪ S−.

Definition 9. Given a database DB and a set IC of constraints, a repair for
〈DB, IC〉 under the deterministic (three-valued) semantics is a substitution R
for DB s.t. (i) R(DB) |=DS IC and (ii) there is no substitution S s.t. S �= R,
S(DB) |=DSIC and S+ ⊆ R+, Su ⊆ Ru, S− ⊆ R−. �

Repaired databases are consistent databases derived from the source database
by applying repairs over it. Given a database DB and a set IC of integrity con-
straints, the set of all possible repairs for 〈DB, IC〉, under deterministic (three-
valued) semantics, is denoted as RDS(DB, IC). Moreover, DBR(DB, IC) denotes
the set of all possible repaired databases for 〈DB, IC〉, i.e. DBR(DB, IC) =
{R(DB)| R ∈ RDS(DB, IC)}.

For the computation of answers to queries of the form 〈g, ∅〉2 we will use the
standard definition stating that for a given database DB and a set IC of integrity
constraints over DB, an atom A is true (resp. false) with respect to 〈DB, IC〉 if
A is true (resp. false) w.r.t. all repaired databases in DBR(DB, IC). The atoms
which are neither true nor false are undefined.

Lemma 1. Let DB be a database and IC a set of integrity constraints over
DB. If there exist two repairs Ri and Rj for 〈DB, IC〉 and an atom a such that
a ∈ R+

i and a �∈ R+
j (resp. a ∈ R−i and a �∈ R−j ), then there is a repair Rk such

that a ∈ Ru
k . �

Given two triplet R = 〈R+, Ru, R−〉 and S = 〈S+, Su, S−〉 containing true,
undefined and false ground atoms, we say that R � S if R+ ⊆ S+ and R− ⊆ S−.
The relation � can be used to define a partial order on databases, repairs and
query answers.

Theorem 1. Given a database DB and a set IC of integrity constraints over
DB, then 〈RDS(DB, IC), � 〉 is a lower semi-lattice whose top elements are
two-valued. �

The repair defining the bottom element of the semi-lattice 〈RDS(DB, IC), � 〉
is called deterministic and is denoted as Rdet. The database Rdet(DB) obtained
by applying Rdet to DB is called the deterministic repaired database.
2 The case of general queries 〈g,P〉 will be discussed in the next subsection.
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Corollary 1. Given a database DB and a set IC of integrity constraints over
DB, then 〈DBR(DB, IC) � 〉 is a lower semi-lattice whose top elements are
two-valued and whose bottom element is Rdet(DB). �

Theorem 2. Given a database DB and a set of integrity constraints IC over
DB, an atom A is true (resp. false, undefined) with respect to 〈DB, IC〉 if A is
true (resp. false, undefined) w.r.t. the deterministic repaired database. �

4.3 Query Answers

Given a database DB, a set IC of integrity constraints and a (stratified) Datalog
query Q = (g, P). The consistent answer of Q on 〈DB, IC〉, under deterministic
(three-valued) semantics, denoted as QDS(DB, IC), consists of the three sets:

QDS(DB, IC)+ =
⋂

R∈RDS(DB,IC)
Q(R(DB))+

QDS(DB, IC)u =
⋃

R∈RDS(DB,IC)
Q(R(DB))u

QDS(DB, IC)− = BPDB − QDS(DB, IC)+ − QDS(DB, IC)u

Theorem 3. Let DB be a database, IC be a set of integrity constraints, Q =
(g, P) be a (stratified) Datalog query and Rdet be the deterministic repair for
〈DB, IC〉. Then, QDS(DB, IC) = Q(Rdet(DB)) �

Theorem 4 (Soundness). Let DB be a two-valued database, IC be a set of
integrity constraints over DB and Q = (g, P) be a (stratified) Datalog query.
Then, QDS(DB, IC) � Q(DB, IC). �

Corollary 2. Let DB be a database, IC be a set of integrity constraints and
Q = (g, P) be a (stratified) Datalog query. Then, QDS(DB, IC) can be computed
in polynomial time. �

5 Rewriting into Logic Programs

Given a database DB, a set IC of integrity constraints and a query Q = 〈g, P〉,
in this section we present how the constraints and the query can be rewrit-
ten into a Datalog program Rew(ground(IC)) ∪ Rew(P) so that from the
stable model of Rew(ground(IC)) ∪ DB (if such a model exists) it is pos-
sible to derive the deterministic repair, whereas from the stable model of
Rew(P) ∪ Rew(ground(IC)) ∪ DB, by selecting the g-tuples, it is possible to
compute the deterministic answer.

Given a ground literal a(t) (resp. not a(t)) we denote by Up(a(t))
(resp. Up(not a(t))) the atom a+(t) (resp. a−(t)); moreover Und(a(t)) and
Und(not a(t)) denote the atom au(t). It is worth noting that, when consid-
ering atoms of the form a(t), a+(t), a−(t) and au(t), the symbols a, a+, a− and
au are assumed to be different predicate symbols.
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Definition 10. Let IC be a set of ground constraints and let ic be a (ground)
constraint in ext(IC), i.e. ic is of the form:

m∧

j=1

bj(xj),
n∧

j=m+1

not bj(xj), ϕ(x0) ⊃ l(xl)

where l(xl) is a literal. We define rew1(ic) as the following Datalog rule:

Up(l(xl)) ←
m∧

j=1

Up(bj(xj)),
n∧

j=m+1

Up(not bj(xj)), ϕ(x0)

whereas Rew1(IC) is equal to

{ rew1(ic) | ic∈ ext(IC) }∪ {← Up(L), Up(not L) | L is a literal appearing in IC}

Moreover rew2(ic) denotes the following set of Datalog rules

Und(l(xl)) ←
m∧

j=1

b′j(xj),
n∧

j=m+1

b′′j (xj), not l(xl), not Up(l(xl)), not Up(not l(xl)), ϕ(x0)

b′j(xj) ← (bj(xj) ∧ not b−j (xj)) ∨ b+
j (xj) ∨ bu

j (xj) j = 1..m

b′′j (xj) ← (not bj(xj) ∧ not b+
j (xj)) ∨ b−j (xj) ∨ bu

j (xj) j = m + 1..n

Finally, we define the set Rew2(IC) =
⋃

ic∈ext(IC) rew2(ic) and Rew(IC) =
Rew1(IC) ∪ Rew2(IC). �

It is worth noting that in the above definition Rew1(IC) is a positive
Datalog program which computes TIC (namely TIC = {l(xl)| Up(l(xl)) ∈
MM(Rew1(IC))}).

Example 6. Consider the following set IC of (ground) integrity constraints

a ⊃
not a ∧ b ⊃
not b ∧ c ∧ not d ⊃

The set of constraints ext(IC) is as follows

⊃ not a not b ∧ c ⊃ d
not a ⊃ not b c ∧ not d ⊃ b
b ⊃ a not b ∧ not d ⊃ not c

The program Rew1(IC) is

a− ← ← a+, a−

b− ← a− ← b+, b−

a+ ← b+ ← c+, c−

d+ ← b−, c+ ← d+, d−

b+ ← c+, d− ← e+, e−

c− ← b−, d−
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whereas Rew2(IC) is

au ← a, not a+, not a−

bu ← a′′, b, not b+, not b−

au ← b′, not a, not a+, not a−

du ← b′′, c′, not d, not d+, not d−

bu ← c′, d′′, not b, not b+, not b−

cu ← b′′, d′′, c, not c+, not c−

a′′ ← (not a ∧ not a+) ∨ a− ∨ au

b′ ← (b ∧ not b−) ∨ b+ ∨ bu

b′′ ← (not b ∧ not b+) ∨ b− ∨ bu

c′ ← (c ∧ not c−) ∨ c+ ∨ cu

d′′ ← (not d ∧ not d+) ∨ d− ∨ du

Let DB be a two-valued database, IC be a set of integrity constraints on DB
and M the unique stable model (if it exists) for Rew(ground(IC)) ∪ DB. Then,
S(M) = 〈{a(t)|a+(t) ∈ M}, {a(t)|au(t) ∈ M}{a(t)|a−(t) ∈ M}〉 denotes the
substitution derived from M .

Theorem 5. Let DB be a two-valued database, IC be a set of integrity con-
straints on DB and M = SM(Rew(ground(IC)) ∪ DB). Then,

– if M does not exist, then ground(IC) is not satisfiable,
– else S(M) is the deterministic repair for 〈DB, IC〉. �

Example 7. Consider the database DB which consists of DB+ = {a, b, c} and
the set IC of integrity constraints of Example 6. Then, S(SM(Rew(IC)∪DB)) =
〈{}, {c, d}, {a, b}〉 which is the deterministic repair for 〈DB, IC〉. �

Theorem 6. Let DB be a two-valued database and IC be a set of integrity con-
straints on DB. The deterministic repair for 〈DB, IC〉 can be computed in poly-
nomial time in the size of DB. �

Let us now present how queries have to be rewritten to compute (three-valued)
answers.

Definition 11. Let P be a (stratified) Datalog program and r be a rule in P ,
i.e. r is of the form

A ←
h∧

i=1

Bi,

m∧

j=h+1

not Bj ,

n∧

k=m+1

Lk, Φ

where A is an atom of the form p(X), Bi (i = 1..m) is an atom of the form pi(Xi)
where pi is a base predicate symbol, Lk (k = m+1..n) is either a positive literal
pk(Xk) or a negative literal not pk(Xk) such that pk is a derived predicate symbol
and Φ is a conjunction of built-in atoms. We denote by rewT (r) the following
set of rules:

A ←
h∧

i=1

BT
i ,

m∧

j=h+1

BF
j ,

n∧

k=m+1

Lk, Φ

AT ← A
BT

i ← (Bi ∧ not B−i ∧ not Bu
i ) ∨ B+

i i = 1..h
BF

j ← (not Bj ∧ not B+
j ∧ not Bu

j ) ∨ B−j j = h + 1..m
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where Bi (resp. B+
i , B−i , Bu

i , BT
i , BF

j ), for i = 1..m, is an atom of the
form pi(Xi) (resp. p+

i (Xi), p−i (Xi), pu
i (Xi), pT

i (Xi), pF
i (Xi) ). RewT (P) =⋃

r∈P rewT (r). Moreover, we denote by rewU (r) the following set of rules:

Aund ← Bu
l ,

h∧

i=1∧i�=l

(BT
i ∨ Bu

i ),
m∧

j=h+1

(BF
j ∨ Bu

j ),
n∧

k=m+1

(Lk ∨ Lund
k ), Φ l = 1..h

Aund ← Bu
l ,

h∧

i=1

(BT
i ∨Bu

i ),
m∧

j=h+1∧j �=l

(BF
j ∨Bu

j ),
n∧

k=m+1

(Lk∨Lund
k ), Φ l=h+1..m

Aund ← Lund
l ,

h∧

i=1

(BT
i ∨Bu

i ),
m∧

j=h+1

(BF
j ∨Bu

j ),
n∧

k=m+1∧k �=l

(Lk∨Lund
k ), Φ l=m+1..n

AU ← Aund, not AT

Observe that in the above rules, Lk is a positive literal Ak or a negative literal
not Ak and in both cases Lund

k = Aund
k . Moreover, RewU (P) =

⋃
r∈P rewU (r)

and Rew(P) = RewT (P) ∪ RewU (P) ∪ {BU ← Bu| B is a database atom }. �

Let DB be a two-valued database, IC be a set of integrity constraints on DB, P
be a (stratified) Datalog program and M the unique stable model (if it exists) for
Rew(P)∪Rew(ground(IC))∪DB. We define the sets T (M) = {p(t)| pT (t) ∈ M}
and U(M) = {p(t)| pU (t) ∈ M}, respectively, the set of true and undefined atoms
in M . F (M) = BPDB − T (M) − T (F ) denotes the set of atoms which are false
in M .

Theorem 7. Let Q = (g, P) be a (stratified) Datalog query, DB be a two-valued
database, IC be a set of integrity constraints over DB and M = SM(Rew(P) ∪
Rew(ground(IC)) ∪ DB). Then,

– if M does not exist, then ground(IC) is not satisfiable,
– else QDS(DB, IC) = 〈T (M)[g], U(M)[g], F (M)[g]〉. �

Clearly, as we have already stressed, only the sets of true and undefined atoms
are effectively computed.
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Abstract. We propose a novel technique that maps decision problems in
WS1S (weak monadic second-order logic with n successors) to the prob-
lem of query evaluation of Complex-value Datalog queries. We then show
how the use of advanced implementation techniques for Logic Programs,
in particular the use of tabling in the XSB system, yields a considerable
improvement in performance over more traditional approaches. We also
explore various optimizations of the proposed technique based on vari-
ants of tabling and goal reordering. Although our primary focus is on
WS1S, it is straightforward to adapt our approach for other logics with
existing automata-theoretic decision procedures, for example WS2S.

1 Introduction

Monadic second-order logics provide means to specify regular properties of sys-
tems in a succinct way. In addition, these logics are decidable by the virtue of
the connection to automata theory. However, only recently tools based on these
ideas—in particular the MONA system [17]—have been developed and shown
to be efficient enough for practical applications [15].

However, for reasoning in large theories consisting of relatively simple con-
straints, such as theories capturing UML class diagrams or database schemata,
the MONA system runs into a serious state-space explosion problem—the size
of the automaton capturing the (language of) models for a given formula quickly
exceeds the space available in most computers. Surprisingly, the problem can be
traced to the automata product operation that is used to translate conjunction
in the original formulæ rather than to the projection/determinization operations
needed to handle quantifier alternations.

This paper introduces a technique that combats this problem. However, unlike
most other approaches that usually attempt to use various compact representa-
tion techniques for automata, e.g., based on BDDs [5] or on state space factoring
using a guided automaton [17], our approach is based on techniques developed
for program evaluation in deductive databases, in particular on the Magic Set
transformation [2] and SLG resolution, a top-down resolution-based approach
augmented with memoing [9,10]. We also study the impact of using other opti-
mization techniques developed for Logic Programs, such as goal reordering.

The main contribution of the paper is establishing the connection between
the automata-based decision procedures for WS1S (and, analogously, for WS2S)

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 165–179, 2007.
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and query evaluation in Complex-value Datalog (Datalogcv). Indeed, the com-
plexity of query evaluation in Datalogcv matches the complexity of the WS1S
decision procedure and thus it seems like an appropriate tool for this task. Our
approach is based on representing automata using nested relations and on defin-
ing the necessary automata-theoretic operations using Datalogcv programs. This
reduces to posing a closed Datalogcv goal over a Datalogcv program represent-
ing implicitly the final automaton. This observation combined with powerful
program execution techniques developed for deductive databases, such as the
Magic Set rewriting and SLG resolution, limit the explored state space to ele-
ments needed to show non-emptiness of the automaton and, in turn, satisfiability
of the corresponding formula.

In addition to showing the connection between the automata-based decision
procedures and query evaluation in Datalogcv, we have also conducted experi-
ments with the XSB [27] system that demonstrate the benefits of the proposed
method over more standard approaches.

The remainder of the paper is organized as follows. In Section 2 we formally
introduce monadic second-order logic and the connection to finite automata. We
also define Datalogcv programs, state their computational properties, and briefly
discuss techniques used for program evaluation. Section 3 shows how Datalogcv

programs can be used to implicitly represent a finite automaton and to imple-
ment automata-theoretic operations on such a representation. In this paper we
only present results for the WS1S logic. However, the results extend immedi-
ately to WS2S. Experimental results for the proposed methods are presented in
Section 4. Related work is discussed in Section 5. Finally, conclusions and future
research directions are given in Section 6.

2 Background and Definitions

In this section we provide definitions needed for the technical development in
the rest of the paper.

2.1 Weak Second-Order Logic (WS1S)

First, we define the syntax and semantics of the weak second-order logic of one
successor and comment on techniques used to show its decidability.

Definition 1. The formulas of second-order logics are defined as follows.

– the expressions s(x, y), x ⊆ y for x, y second-order variables are atomic
formulas, and

– given formulas ϕ and φ and a variable x, the expressions ϕ ∧ φ, ¬ϕ, and
∃x : ϕ are also formulas.

Additional common syntactic features can be defined by the following. Variables
for individuals (first-order variables) can be simulated using second-order vari-
ables bound to singleton sets; a property expressible in WS1S. Thus we allow
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Fig. 1. Automata representing the formulae x ⊆ y and ¬(x ⊆ y)

x ∈ y for x ⊆ y whenever we know that x is a singleton. We also use the standard
abbreviations ϕ∨ψ for ¬(¬ϕ∧¬ψ), ϕ → ψ for ¬ϕ∨ψ, and ∀x : ϕ for ¬∃x : ¬ϕ.

The semantics of WS1S is defined w.r.t. the set of natural numbers (successors
of 0); second-order variables are interpreted as finite sets of natural numbers.
The interpretation of the atomic formula s(x, y) is fixed to relating singleton sets
{n + 1} and {n}, n ∈ N.1 Truth and satisfiability of formulas is defined with
the help of valuations mapping variables to finite sets of natural numbers in a
standard way.

Connection to Finite Automata. The crux of the connection lies in an
observation that, for every WS1S formula, there is an automaton that accepts
exactly the (string representations of) models of a given formula [28]. Since
each variable of WS1S is interpreted by a finite set of natural numbers, such
an interpretation can be captured by a finite string. Satisfying interpretations of
formulas (with k free variables) can be represented as sets of strings over {0, 1}k.
The i-th component corresponds to the interpretation of the i-th variable and is
called a track. It turns out that sets of the above strings form regular languages
and thus can be recognized using an automaton. Satisfiability then reduces to
checking for non-emptiness of the language accepted by such an automaton.

Definition 2. A finite automaton is a 5-tuple A = (N, X, S, T, F ), where N
is the set of states (nodes), X is the alphabet, S is the initial (starting) state,
T ⊆ N × N × X is the transition relation, and F is the set of final states.

Given a WS1S formula ϕ, the automaton Aϕ can be effectively constructed
starting from automata for atomic formulæ using automata-theoretic operations.

Proposition 1. Let ϕ be a WS1S formula. Then there is an automaton Aϕ

such that ϕ is satisfiable if and only if L(Aϕ) 	= ∅, where L(A) is the language
accepted by A.

Example 1. The automaton Aϕ for the formula ϕ = x ⊆ y is shown in the left
part of Figure 1, the complement automaton A¬ϕ that represents ¬ϕ = ¬(x ⊆ y)
is shown in the right part of Figure 1. The labels on the edges are elements of
1 The atomic formula s(x, y) is often written as x = s(y) in literature, emphasizing

its nature as a successor function.
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the alphabet of the automaton and capture the valuations of variables allowed
for a particular transition. The tracks in the strings accepted by the automata
represent the valuation for the variables x (first track), and y (second track).

Similarly, the automaton Aϕ∧φ is the product automaton of Aϕ and Aφ and
accepts L(Aϕ) ∩ L(Aφ), the satisfying interpretations of ϕ ∧ φ. The automaton
A∃x:ϕ, the projection automaton of Aϕ, accepts satisfying interpretations of ∃x :
ϕ. Intuitively, the automaton A∃x:ϕ acts as the automaton Aϕ for ϕ except that
it is allowed to guess the bits on the track of the variable x. We give the actual
algorithms for the inductive construction of Aϕ in the following section (in a
Datalogcv syntax). While checking for emptiness can be done in time polynomial
in the size of an automaton, the size of Aϕ is non-elementary in the size of
ϕ (more precisely, in the depth of quantifier alternation of ϕ). This bound is
tight for WS1S decision problem yielding an overall non-elementary decision
procedure.

2.2 Datalog for Complex Values

In the remainder of this section we define a query language that serves as the
target of our approach to WS1S decision procedure.

Complex Data Model. The complex-value data model is an extension of the
standard relational model that allows tuples and finite sets to serve as values
in the place of atomic values [1]. Each value is assigned a finite type generated
by the type grammar “τ := ι | [τ1, . . . , τk] | {τ}”, where ι stands for the type
of uninterpreted atomic constants, [τ1, . . . , τk] for a k-tuple consisting of values
belonging to the types τ1, . . . , τk, respectively, and {τ} for a finite set of values
of type τ . Relations are interpreted as sets of values of a given type2. The model
is equipped with several built-in relations, e.g., the equality = (extended to all
types), the subset relation ⊆ (defined for set types), the tuple constructor (that
relates tuples of values to the individual values), the singleton set constructor
(relating values of a type to singleton sets of the appropriate set type), etc.

Complex-value Queries. The extended data model induces extensions to re-
lational query languages and leads to the definition of complex-value relational
calculus (calccv) and a deductive language for complex values, Datalogcv—the
language of Horn clauses built from literals whose arguments range over complex-
valued variables and constants [2,26]. Datalogcv programs and queries are defined
as follows:

Definition 3. A Datalogcv atom is a predicate symbol with variables or complex-
value constants as arguments.

A Datalogcv database (program) is a finite collection of Horn clauses of the
form h ← g1, . . . , gk, where h (called head) is an atom with an optional grouping
specification and g1, . . . , gk (called goals) are literals (atoms or their negations).

2 We use relations of arity higher than one as a shorthand for sets—unary relations—of
tuples of the same arity.
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The grouping is syntactically indicated by enclosing the grouped argument
in the 〈·〉 constructor; the values then range over the set type of the original
argument.

We require that in every occurrence of an atom the corresponding arguments
have the same finite type and that the clauses are stratified with respect to
negation.

A Datalogcv query is a clause of the form ← g1, . . . , gk.
Evaluation of a Datalogcv query (with respect to a Datalogcv database P )

determines whether P |= g1, . . . , gk.

Datalogcv is equivalent to the complex-value calculus in expressive power [1].
However, the ability to express transitive closure without resorting to the pow-
erset construction aids our goal of using Datalogcv to represent finite automata
and to test for emptiness.

Proposition 2. The complexity of Datalogcv query evaluation is non-elementary.

Note that the complexity matches that of the decision procedures for WS1S and
thus mapping of WS1S formulas to Datalogcv queries can be done efficiently.

To simplify the notation in the following we allow terms constructed of con-
stants, variables, and finite number of applications of tuple and set constructors
to appear as arguments of atoms. For example p({x}, y) ← q([x, y]) is a short-
hand for p(z, y) ← q(w), w = [x, y], z = {x}, where w = [x, y] is an instance of a
tuple constructor and z = {x} of a set constructor built-in relations as discussed
in our overview of the complex-value data model.

Evaluation of Datalogcv Programs. The basic technique for evaluation of
Datalogcv programs is commonly based on a fixed-point construction of the
minimal Herbrand model (for Datalogcv programs with stratified negation the
model is constructed w.r.t. the stratification) and then testing whether a ground
(instance of the) query is contained in the model. The type restrictions guar-
antee that the fixpoint iteration terminates after finitely many steps. While the
naive fixed-point computation can be implemented directly, efficient query eval-
uation engines use more involved techniques such as the semi-naive evaluation,
goal/join ordering, etc. In addition, whenever the query is known as part of the
input, techniques that allow constructing only the relevant parts of the minimal
Herbrand model have been developed. Among these the most prominent are
the magic set rewriting (followed by subsequent fixed-point evaluation) and the
top-down resolution with memoing—the SLG resolution.

Magic Sets. The main idea behind this approach is to restrict the values derived
by a fixpoint computation to those that can potentially aid answering a given
query. This is achieved by program transformation based on adding magic pred-
icates to clauses that limit the breadth of the fixpoint computation at each step.
These predicates are seeded by the values in the query (as those are the only
ones the user desires to derive); more values are added to the interpretations of
the magic predicates by means of additional clauses that relax the limit depend-
ing on what additional subqueries for a particular predicate need to be asked
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to answer the original query. This process then becomes a part of the fixpoint
evaluation itself.

SLG Resolution. In contrast, the SLG resolution is based on the more common
SLD resolution used in PROLOG systems. The difference is in memoing what
subgoals have been already resolved against and what answer substitutions were
obtained, if any. Thus, whenever a more specific goal is to be selected, the memo-
ing information is inspected to prevent repetitive computation. This mechanism
also prevents infinite resolution paths in evaluation of Datalogcv queries. There
are efficient scheduling strategies implemented for tabled logic programs:

– Batched Scheduling: provides space and time reduction over the naive strat-
egy which is called single stack scheduling.

– Local Scheduling: provides speedups for programs that require answer sub-
sumption.

Surprisingly, it can be shown that both of the techniques essentially simulate
each other and that the magic predicates match the memoing data structures
(modulo open terms). For detailed description of the above techniques see [3,20]
and [27], respectively.

3 Automata and Datalog for Complex Values

In this section we present the main contribution of our approach: Given a WS1S
formula ϕ we create a Datalogcv program Pϕ such that an answer to a reacha-
bility/transitive closure goal w.r.t. this program proves satisfiability of ϕ.

However, we do not attempt to map the formula ϕ itself to Datalogcv. Rather,
we represent the construction of Aϕ—the finite automaton that captures models
of ϕ—as a Datalogcv program Pϕ. This enables the use of the efficient evaluation
techniques discussed in Section 2.2.

3.1 Representation of Automata

First, we fix the representation for automata that capture models of WS1S
formulæ. Given a WS1S formula ϕ with free variables x1, . . . , xk we define a
Datalogcv program Pϕ that defines the following predicates:

1. Nodeϕ(n) representing the nodes of Aϕ,
2. Startϕ(n) representing the starting state,
3. Finalϕ(n) representing the set of final states, and
4. Transϕ(nf1, nt1, x) representing the transition relation.

where x = {x1, x2, . . . , xk} ∈ Xϕ is the set of free variables of ϕ; concatenation
of their binary valuations represents a letter of Aϕ’s alphabet.

Example 2. The following program Pϕ represents the automaton Aϕ shown in
the left part of Figure 1:
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Nodeϕ(n0) ←
Nodeϕ(n1) ←
Startϕ(n0) ←
Finalϕ(n0) ←

Transϕ(n0, n0, 0, 0) ←
Transϕ(n0, n0, 0, 1) ←
Transϕ(n0, n0, 1, 1) ←
Transϕ(n0, n1, 1, 0) ←

Transϕ(n1, n1, 0, 0) ←
Transϕ(n1, n1, 1, 0) ←
Transϕ(n1, n1, 0, 1) ←
Transϕ(n1, n1, 1, 1) ←

Note that while for atomic formulas, the values representing nodes are atomic,
for automata corresponding to complex formulæ these values become complex.

3.2 Automata-Theoretic Operations

We define the appropriate automata-theoretic operations: negation, conjunction,
projection, and determinization used in decision procedures for the logics under
consideration as programs in Datalogcv as follows.

Definition 4. The program P¬α consists of the following clauses added to the
program Pα:

1. Node¬α(n) ← Nodeα(n)
2. Start¬α(n) ← Startα(n)
3. Final¬α(n) ← Nodeα(n), ¬Finalα(n)
4. Trans¬α(nf1, nt1, x) ← Transα(nf1, nt1, x)

The following lemma is immediate:

Lemma 1. If Pα represents Aα then P¬α represents A¬α.

The conjunction automaton which represents the conjunction of the two formulæ
that original automata represent is defined as follows.

Definition 5. The program Pα1∧α2 consists of the union of programs Pα1 and
Pα2 and the following clauses

1. Nodeα1∧α2([n1, n2]) ← Nodeα1(n1), Nodeα2(n2)
2. Startα1∧α2([n1, n2]) ← Startα1(n1), Startα2(n2)
3. Finalα1∧α2([n1, n2]) ← Finalα1(n1), Finalα2(n2)
4. Transα1∧α2([nf1, nf2], [nt1, nt2], x, y, z) ←

Transα1(nf1, nt1, x, y), Transα2(nf2, nt2, y, z)

The sets of variables x, y represent the free variables of the formula Aα1 and y, z
of the formula Aα2 .

Again, immediately from the definition we have:

Lemma 2. Let Pα1 represent Aα1 and Pα2 represent Aα2 . Then Pα1∧α2 repre-
sents Aα1∧α2 .

The projection automaton which represents the existential quantification of a
given formula is defined as follows.

Definition 6. The program Pu
∃x:α is defined as the union of Pα with the clauses

1. Nodeu
∃x:α(n) ← Nodeα(n)

2. Startu∃x:α(n) ← Startα(n)
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3. Finalu∃x:α(n) ← Finalα(n)
Finalu∃x:α(n0) ← Transα(n0, n1, x, o), Finalu∃x:α(n1)

4. Transu
∃x:α(nf1, nt1, y) ← Transα(nf1, nt1, x, y)

The sets of variables y and x represent the free variables of the formula α, and
o = {0, 0, . . . , 0} where |o| = |y|.

Lemma 3. If Pα represents Aα then Pu
∃x:α represents Au

∃x:α which is nondeter-
ministic automaton for the formula ∃x : α.

The automaton obtained by the projection operation is nondeterministic. The
following Datalogcv program produces the representation of a deterministic au-
tomaton which accepts the same language as the nondeterministic one.

Definition 7. The program P∃x:α consists of the program Pu
∃x:α and the follow-

ing clauses

1. Node∃x:α(N) ← Start∃x:α(N)
Node∃x:α(N) ← Node∃x:α(N1), Trans∃x:α(N1, N, x)

2. Start∃x:α({n}) ← Startu∃x:α(n)
3. Final∃x:α(N) ← Node∃x:α(N), Finalu∃x:α(n), n ∈ N
4. Trans∃x:α(N1, 〈n〉, x) ← Node∃x:α(N1), Next∃x:α(N1, n, x)

Next∃x:α(N1, n2, x) ← n1 ∈ N1, Transu∃x:α(n1, n2, x)

Lemma 4. If Pu
∃x:α represents Au

∃x:α then P∃x:α represents a deterministic au-
tomaton A∃x:α.

Last, the test for emptiness of an automaton has to be defined: To find out
whether the language accepted by Aα is non-empty and thus whether α is sat-
isfiable, a reachability (transitive closure) query is used.

Definition 8. The following program TCα computes the transitive closure of
the transition function of Aα.

1. TransClosα(n, n) ←
2. TransClosα(nf1, nt1) ← Transα(nf1, nt2, x), TransClosα(nt2, nt1)

Note that the use of magic sets and/or SLG resolution automatically transforms
the transitive closure query into a reachability query.

Theorem 1. Let ϕ be a WS1S (WS2S) formula. Then ϕ is satisfiable if and
only if Pϕ, TCϕ |= Startϕ(x), Finalϕ(y), TransClosϕ(x, y).

Example 3. Suppose that we have a formula ∃y : y ⊆ x, let Aφ be the automaton
for the subformula φ = y ⊆ x, we can use the following logic program to construct
the automaton A∃y:φ:

Nodeu
∃y:φ(n) ← Nodeφ(n)

Startu∃y:φ(n) ← Startφ(n)
Finalu∃y:φ(n) ← Finalφ(n)
Finalu∃y:φ(n0) ← Transφ(n0, n1, 0, y), Finalu∃y:φ(n1)
Transu∃y:φ(n1, n2, x) ← Transφ(n1, n2, x, y)
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This part computes the nondeterministic automaton (Au
∃y:φ) representing the

formula (see Definition 6).

Node∃y:φ(N) ← Start∃y:φ(N)
Node∃y:φ(N) ← Node∃y:φ(N1), Trans∃y:φ(N1, N, x)
Start∃y:φ({n}) ← Startu∃y:φ(n)
Final∃y:φ(N) ← Node∃y:φ(N), Finalu∃y:φ(n), n ∈ N
Trans∃y:φ(N1, 〈n〉, x) ← Node∃y:φ(N1), Next∃y:φ(N1, n, x)
Next∃y:φ(N1, n2, x) ← n1 ∈ N1, Transu

∃y:φ(n1, n2, x)
TransClos∃y:φ(n, n) ←
TransClos∃y:φ(n1, n2) ← Trans∃y:φ(n1, n3, x), TransClos∃y:φ(n3, n2)

This part computes the deterministic automaton (A∃y:φ) representing the for-
mula (see Definition 7), and the transitive closure of its transition function (see
Definition 8). Note that determinization is not needed unless there is a negation
operation after this step. The satisfiability query is:

← Start∃y:φ(n), Final∃y:φ(m), TransClos∃y:φ(n, m).

The use of SLG resolution to evaluate the transitive closure goal allows us to
construct only the relevant parts of the automaton in a goal-driven way:

Example 4. For the formula φ = ¬(x ∈ v) ∨ ¬(∃w : (y ∈ w) ∧ (z ∈ w)) the
bottom-up evaluation creates 240 transitions, and 16 transitive closure tuples
for the starting node while the top-down evaluation with memoing technique
creates only 1 transition, and 1 tuple in the transitive closure for the starting
node as shown in Figure 2.

4 Experimental Evaluation

We compare the performance of the technique proposed in this paper and imple-
mented using the XSB system3 with the MONA system [15,17], one of the most
advanced tools for reasoning in weak second-order logics (WS1S and WS2S).

The performance results for a set of formulas are given in Figures 3 and 4.
We present a sample set of size 10 from the set of formulas we used in the
experiments where #i represents a particular formula. The response times are
measured in seconds; N/A means “Not Answered” in 120 seconds. The formulas
are similar to the ones in T98 satisfiability test suite except we varied their sizes,
the number of existential quantifiers, and free variables.

The results show that XSB outperforms MONA for the formulas with many
free variables since it performs large numbers of conjunction operations very
efficiently with the use of top-down query evaluation and pruning techniques.
This can be easily traced to the effects of goal-driven evaluation of Pϕ which
become more pronounced for large theories consisting of relatively simple for-
mulæ, such as those corresponding to constraints used in database schemata
3 We simulate the set values in Datalogcv by lists in XSB.
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? − Startφ(n), Finalφ(m), TransClosφ(n, m).
(0) Call : Startφ(n)?

· · ·
· · ·

(0) Exit : Startφ([1, {[1, 1]}])?
(8) Call : Finalφ(m)?

· · ·
· · ·

(8) Exit : Finalφ([1, {[1, 1]}])?
(18) Call : TransClosφ([1, {[1, 1]}], [1, {[1, 1]}])?
(19) Call : Transφ([1, {[1, 1]}], [1, {[1, 1]}], x, y, z, v)?

· · ·
· · ·

(19) Exit : Transφ([1, {[1, 1]}], [1, {[1, 1]}], 0, 0, 0, 0)?
(18) Exit : TransClosφ([1, {[1, 1]}], [1, {[1, 1]}])?

n = [1, {[1, 1]}]
m = [1, {[1, 1]}]

Fig. 2. Top-down evaluation of the program in Example 4

or UML diagrams. The experiments also compared different scheduling strate-
gies of XSB namely the batched(XSB B) and the local(XSB L) ones. Batched
scheduling performs better than local since our programs do not require answer
subsumption. Experiments also show that tabling more predicates in addition
to the auto-tabled ones (results in columns XSB B(T) and XSB L(T)) increases
space requirements but enhances the performance substantially. The additional
predicates we tabled are the Trans predicates in the programs that represent
the determinization step. Since this step is critical in automaton construction,
tabling the Trans predicate in addition to the Node predicate gives better results
(see formulas 5, 9, 10).

On the other hand, MONA usually performs better on formulas that have
less free variables and more quantifiers as it performs the projection operation
faster than XSB. We believe that this is a practical problem caused by the
implementation XSB uses for the evaluation of programs with nested relations
and can be avoided using a more sophisticated implementation of Datalogcv.
In addition to this MONA uses a compact representation of automata based
on BDDs [15,17,18] to enhance its performance, whereas XSB uses tries as the
basis for tables combined with unification factoring [23,12]. The size of the trie
structures is, in general, larger than the size of a corresponding BDD. However
it is easier to insert tuples to a trie than into a BDD.

In the preliminary experiments [30] we conducted we also used CORAL, a
deductive system that supports Datalogcv and Magic sets. Our results showed
that CORAL also performs better than MONA for the same formulas as XSB,
however XSB is faster than CORAL in all cases.
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#1 #2 #3 #4 #5 #6 #7 #8 #9 #10

MONA 2.66 4.95 N/A N/A 0.42 0.01 0.01 0.05 0.09 0.39
XSB B 0.01 0.01 0.11 0.01 35.72 1.74 N/A 0.01 6.02 94.64

XSB B(T) 0.01 0.01 0.01 0.01 15.88 0.18 N/A 0.01 0.29 10.96
XSB L 0.01 0.01 1.68 0.01 41.33 N/A N/A 12.59 8.52 N/A

XSB L(T) 0.01 0.01 1.73 0.01 15.03 N/A N/A 6.63 0.73 N/A

Fig. 3. Performance (secs) w.r.t. increasing number of quantifiers

#7 #6 #8 #10 #5 #9 #1 #2 #3 #4

MONA 0.01 0.01 0.05 0.39 0.42 0.09 2.66 4.95 N/A N/A
XSB B N/A 1.74 0.01 94.64 35.72 6.02 0.01 0.01 0.11 0.01

XSB B(T) N/A 0.18 0.01 10.96 15.88 0.29 0.01 0.01 0.01 0.01
XSB L N/A N/A 12.59 N/A 41.33 8.52 0.01 0.01 1.68 0.01

XSB L(T) N/A N/A 6.63 N/A 15.03 0.73 0.01 0.01 1.73 0.01

Fig. 4. Performance (secs) w.r.t. increasing number of variables

4.1 Heuristics for (Large) Conjunctions of Formulas

Representing theories that capture database schemas and/or UML diagrams of-
ten leads to large conjunctions of relatively simple formulas. Hence we develop
heuristics that improve on the naive translation of a formula ϕ to a Datalogcv

program Pϕ presented in Section 3. Many of these heuristics are based on adapt-
ing existing optimization techniques for logic programs.

First, given a formula ϕ = ϕ1 ∧ϕ2 ∧ . . .∧ϕn we have to decide which way the
conjunctions should be associated (parenthesized). Figure 5 shows how perfor-
mance depends on parenthesizing of a 4-way conjunction. In the experiment we
test all permutations of two sets of 4 formulas w.r.t. all possible parenthesiza-
tions. The table reports the best and average times over all permutations for a
given parenthesization. The results show that left associative parenthesizing is
generally preferable.

To take advantage of the structure of the input conjunction, we propose an-
other heuristics that produces a more appropriate goal ordering. We use a struc-
ture called a formula graph: the nodes of the graph Gϕ are the conjuncts of
ϕ and the edges connect formulas that share variables (the edge labels list the
shared variables).

Example 5. Consider a formula ϕ = ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4 where:

ϕ1 = ∃x10 : (((∃Y30 : ((x10 ∈ Y30) ∧ (x4 ∈ Y30))) ∧ (∃Y40 : (x10 ∈ Y40)))
∧¬(∃Y20 : ((x10 ∈ Y10) ∧ (x3 ∈ Y20))))

ϕ2 = ¬((∃x1 : ((x1 ∈ Y5) ∧ (x2 ∈ Y5))) ∧ ((x3 ∈ Y5) ∧ (x4 ∈ Y5)))
ϕ3 = ¬(x9 ∈ Y5)
ϕ4 = (x9 ∈ Y5)
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Formula Parenthesizing Best Time Average Time # Not Answered

1 ϕi ∧ (ϕj ∧ (ϕk ∧ ϕl)) 0.56 23.23 5
((ϕi ∧ ϕj) ∧ (ϕk ∧ ϕl)) 0.77 7.00 4
((ϕi ∧ ϕj) ∧ ϕk) ∧ ϕl 0.62 5.67 0
(ϕi ∧ (ϕj ∧ ϕk)) ∧ ϕl 0.61 8.60 1
ϕi ∧ ((ϕj ∧ ϕk) ∧ ϕl) 0.59 10.26 6

2 ϕi ∧ (ϕj ∧ (ϕk ∧ ϕl)) 0.72 14.56 12
((ϕi ∧ ϕj) ∧ (ϕk ∧ ϕl)) 1.26 25.43 8
((ϕi ∧ ϕj) ∧ ϕk) ∧ ϕl 0.94 24.18 2
(ϕi ∧ (ϕj ∧ ϕk)) ∧ ϕl 1.65 27.00 5
ϕi ∧ ((ϕj ∧ ϕk) ∧ ϕl) 0.74 18.96 11

Fig. 5. Performance (secs) Results w.r.t. Associativity

The formula graph for ϕ is as follows:

ϕ3

x9,Y5ϕ1
x3,x4 ϕ2

Y5
����������

Y5 ����������

ϕ4

For this heuristic we also need to estimate size of the automaton Aϕ. We use
only very simple estimation rules for the automata operations:

– |A¬ϕ| = |Aϕ|
– |Aϕ1∧ϕ2 | = |Aϕ1 | × |Aϕ2 |
– |A∃x:ϕ| = 2|Aϕ|

The goal ordering heuristics for a formula ϕ = ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn constructs a
left-associative permutation as follows: it starts from the conjunct that has the
largest estimated automaton and then finds its neighbor with the largest automa-
ton (alternatively selecting another conjunct if there are no conjuncts left that
satisfy this criteria). This step is repeated until all the conjuncts are processed.
Intuitively in the case where a conjunction is applied on a large automaton and
a small automaton, when top-down evaluation is used, for every final state we
find in the first automaton we check all the final states of the second one and
see if they form a final state in the conjunction automaton. Since we iterate on
a small sized automaton in this case, ordering the formulas starting from the
large ones is heuristically better. The experimental results shown in Figure 6
support this optimization. In the table heuristic time is the response time of the
program for the rewriting generated by the proposed heuristics, best time is the
fastest response time among all the programs generated for the formula, and
similarly worst time is the slowest response time. The experiments show that in
many cases the heuristic achieves a performance close to the performance of the
program for the best possible ordering.
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# of Conjuncts Formula Heuristic Time Best Time Worst Time

3 1 68.17 67.97 N/A
2 68.45 68.45 N/A
3 7.60 7.60 N/A
4 94.46 1.04 N/A
5 N/A 5.14 N/A
6 0.42 0.42 3.18

4 1 1.06 0.56 N/A
2 3.81 0.72 N/A
3 0.66 0.64 N/A

5 1 12.61 0.94 N/A
2 15.94 0.92 N/A
3 2.6 0.50 N/A

Fig. 6. Performance (secs) results on ordering

5 Related Work

The connection between logic and automata was first considered by Büchi [6]
and Elgot [13]. They have shown that monadic second-order logic over finite
words and finite automata have the same expressive power, and we can trans-
form formulas of this logic to finite automata and vice versa. Later, Büchi [7],
McNaughton [19], and Rabin [22] proved that monadic second-order logic over
infinite words (and trees) and finite automata also have the same expressive
power. The practical use of this connection was investigated for temporal logics
and fixed-point logics which led to the theory of model checking [4,32]. Another
automata-theoretic construction was for μ-calculus [16,31] and could be used,
in turn, for reasoning in expressive description logics. An extensive survey on
automata and logic can be found in [28].

The logic-automaton connection has been used for implementing decision pro-
cedures for various logics. It is argued that the success of these procedures re-
lies on efficient operations on a compact representation of automata based on
BDDs [17,18].

We have used deductive techniques to represent and query nested-relational
representation of finite automata. The systems used to test our implementation
are CORAL [24,25,26] (in the preliminary experiments [30]), which provides the
set-oriented data manipulation characteristics of relational systems, and XSB [27]
(here sets have to be explicitly simulated). In terms of evaluation strategy, XSB
uses top-down evaluation with memoing, whereas CORAL uses magic sets. The
resolution technique XSB supports performs basic operations such as unification
very efficiently also providing alternative scheduling strategies [14]. There are nu-
merous other deductive systems which support logic-programming languages with
sets and tuples, e.g., LDL [11,21]. There is also a BDD-based deductive database
system called bddbddb [33] implemented to be used in program verification which
translates Datalog programs into efficient BDD implementations. Hence, the tech-
niques presented in this paper are complementary to BDDs.
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Considerable work has been done on query optimization in relational and
deductive database systems [20]. Query optimization in relational systems in-
cludes choosing join orders and cost models [8,29]. We use the ideas of SLG
resolution [9,10], and magic sets rewriting [3] as deductive database optimiza-
tion methods, and we are planning to use cost-based optimization methods to
improve our query evaluation.

6 Conclusions and Future Work

In this paper, we presented a translation technique that maps satisfiability ques-
tions for formulas in WS1S to query answering in Datalogcv. We have also demon-
strated how evaluation techniques used for answering queries on these programs
can provide efficient decision procedures for second-order logics. In addition we
also study the impact of goal reordering and various other query optimization
techniques on the performance of the decision procedure and propose heuristics
for this purpose.

Future extensions of the proposed approach include extending the translation
to other types of automata on infinite objects, e.g., to Rabin [22] and Alternating
Automata [31], and on improving the upper complexity bounds by restricting the
form of Datalogcv programs generated by the translation (when used for decision
problems in, e.g., EXPTIME). In all these cases, the goal is to match the optimal
theoretical bounds while avoiding the worst-case behavior (inherent in most
automata-based techniques) in as many situations as possible. We also consider
the integration of the technique proposed in this paper with more standard
techniques such as BDDs.
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Abstract. Logic Programming languages and combinational circuit
synthesis tools share a common “combinatorial search over logic formu-
lae” background. This paper attempts to reconnect the two fields with
a fresh look at Prolog encodings for the combinatorial objects involved
in circuit synthesis. While benefiting from Prolog’s fast unification algo-
rithm and built-in backtracking mechanism, efficiency of our search algo-
rithm is ensured by using parallel bitstring operations together with logic
variable equality propagation, as a mapping mechanism from primary in-
puts to the leaves of candidate Leaf-DAGs implementing a combinational
circuit specification. After an exhaustive expressiveness comparison of
various minimal libraries, a surprising first-runner, Strict Boolean In-
equality “<” together with constant function “1” also turns out to have
small transistor-count implementations, competitive to NAND-only or
NOR-only libraries. As a practical outcome, a more realistic circuit syn-
thesizer is implemented that combines rewriting-based simplification of
(<, 1) circuits with exhaustive Leaf-DAG circuit search.

Keywords: logic programming and circuit design, combinatorial object
generation, exact combinational circuit synthesis, universal boolean logic
libraries, symbolic rewriting, minimal transistor-count circuit synthesis.

1 Introduction

Various logic programming applications and circuit synthesis tools share algo-
rithmic techniques ranging from search over combinatorial objects and constraint
solving to symbolic rewriting and code transformations.

The significant semantic distance between the two fields, coming partly from
the application focus and partly from the hardware/software design gap has
been also widened by the use of lower level procedural languages for implement-
ing circuit design tools - arguably for providing better performance fine tuning
opportunities.

While intrigued by the semantic and terminological gap between the two fields,
our interest in the use of logic programming for circuit design has been encour-
aged because of the following facts:
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– the simplicity and elegance of combinatorial generation algorithms in the
context of Prolog’s backtracking, unification and logic grammar mechanisms

– the structural similarity between Prolog terms and the Leaf-DAGs typically
used as a data structure for synthesized circuits

– elegant implementations of circuit design tools in high level functional lan-
guages [10]

– the presence of new flexible constraint solving Prolog extensions like CHR
[6] that could express layout, routing and technology mapping aspects of the
circuit design process needed, besides circuit synthesis, for realistic design
tools.

The paper summarizes our efforts on solving some realistic combinational cir-
cuit synthesis problems with logic programming tools. It is organized as follows.
Section 2 describes the generation of combinatorial objects needed for exact
circuit synthesis in Prolog, section 3 shows uniform bitstring representations for
functions and primary inputs that check function equivalence without backtrack-
ing. Section 4 compares various universal boolean function libraries in terms of
total cost of minimal representations of the set of 16 2-argument operators as an
indicator of expressiveness for minimal cost synthesis purposes. As result of this
comparison, section 5 focuses on a surprisingly interesting library consisting of
Strict Boolean Inequality and constant function 1 with subsection 5.1 showing
universality of (<, 1) and subsection 5.2 presenting our library specific rewriting
algorithm, usable as minimization heuristics when exact synthesis becomes in-
tractable. Section 6 describes low transistor-count implementations of the <-gate
and compares transistor counts for (<, 1) with equivalent NAND-based circuits.
Sections 7 and 8 discuss related and future work and section 9 concludes the pa-
per. The Prolog code for the exact synthetizer and various libraries is available
at http://logic.csci.unt.edu/tarau/research/2007/csyn.zip.

2 Combinatorial Objects and Combinational Circuit
Synthesis

Our exact synthesis algorithm uses Prolog’s depth-first backtracking to find
minimal circuits representing boolean functions, based on a given library of
primitives, through composition of combinatorial generation steps and efficient
checking against an output pattern specified as a truth table.

The general structure of the algorithm is as follows:
Through the paper, Leaf-DAGs will be used to represent the synthetized cir-

cuits. The general structure of the algorithm is as follows:

1. First, the algorithm runs a library specific rewriting module (see 5.2 for a
library specific rewriting module) on the input formula (in symbolic, CNF or
DNF form). This (or a conservative higher estimate) provides an upper limit
(in terms of a cost function, for instance the number of gates) on the size
of the synthesized expression. It also provides a (heuristically) minimized
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formula, in therms of the library, that can be returned as output if exact
synthesis times out.

2. Next, if the formula qualifies for exact synthesis, we enumerate candidate
trees in increasing cost order, to ensure that minimal trees are generated
first. This involves the following steps:
(a) First, we implement a mapping from the set primary inputs to the set

of their occurrences in a tree. This involves generating functions from N
variables to M occurrences. We achieve this without term construction,
through logical variable bindings, efficiently undone on backtracking by
Prolog’s trailing mechanism.

(b) Next, N-node binary trees of increasing sizes are generated. The combina-
tion of the expression trees and the mapping of logic variables (represent-
ing primary inputs) to their (possibly multiple) occurrences, generates
Leaf-DAGs.

3. Finally, we evaluate candidate Leaf-DAGs for equivalence with the output
specification.

We will describe the details of the algorithm and the key steps of their Prolog
implementation in the following subsections.

2.1 Boolean Expression Trees

Size-constrained expression trees are combinatorial objects providing the skele-
tons for the Leaf-DAGs generated by our algorithm, as shown in predicate
enumerate_tree_candidates/5. The constraints are expressed as input pa-
rameters UniqueVarAndConstCount and LeafCount. The generator produces
an expression tree ETree and computes its truth table OutSpec encoded as a
bitstring-integer. Size-constraints, ensuring termination of the recursive predi-
cate generate_expression_tree/7, are encoded as a finite list of nodes, using
DCG notation. Termination is ensured by having each recursive step consume
exactly one node. A finite list of leaf variables provides leaves to the generated
tree in the first clause of predicate generate_expression_tree/7.

enumerate_tree_candidates(UniqueVarAndConstCount,LeafCount,
Leaves,ETree,OutputSpec):-

N is LeafCount-1,
length(Nodes,N),
generate_expression_tree(UniqueVarAndConstCount,ETree,OutputSpec,

Leaves,[],Nodes,[]).

generate_expression_tree(_,V,V,[V|Leaves],Leaves)-->[].
generate_expression_tree(NbOfBits,ETree,OutputSpec,Vs1,VsN)-->[_],
generate_expression_tree(NbOfBits,L,O1,Vs1,Vs2),
generate_expression_tree(NbOfBits,R,O2,Vs2,VsN),
{combine_expression_values(NbOfBits,L,R,O1,O2,ETree,OutputSpec)}.

The predicate combine_expression_values/7, shown below for the (∗, ⊕, 1)
library, produces tree nodes like L*R and L^R, while computing their bitstring-
integer encoded truth table O from the left and right branch values O1 and O2.
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combine_expression_values(_,L,R,O1,O2, L*R,O):-bitand(O1,O2,O).
combine_expression_values(_,L,R,O1,O2, L^R,O):-bitxor(O1,O2,O).

The generated trees have binary operators as internal nodes and variables as
leaves. They are counted by Catalan numbers [15]), with 4N as a (rough) upper
bound for N leave trees.

2.2 Implementing Finite Functions as Logical Variable Bindings

We express finite functions as bindings of a list of logic variables (the range of
the function) to values in the domain of the function.

functions_from([],_).
functions_from([V|Vs],Us):-member(V,Us),functions_from(Vs,Us).

Example: A call like

?- functions_from([A,B,C],[0,1])

enumerates the 8 functions as variable bindings like:

{A->0,B->0,C->0}
{A->0,B->0,C->1}
...
{A->1,B->1,C->1}

Assuming the first set has M elements and the second has N elements, a total of
NM backtracking steps are involved in the enumeration, one for each function
between the two sets. As a result, a finite function can be seen simply as a set of
variable occurrences. This provides fast combinatorial enumeration of function
objects, for which backtracking only involves trailing of variable addresses and
no term construction.

2.3 Leaf-DAG Circuit Representations for Combinational Logic

Definition 1. A Leaf-DAG is a directed acyclic graph where only vertices (called
leaves) that have no outgoing edges can have multiple incoming edges.

Leaf-DAGs can be seen as trees with possibly merged leaves. Note that Leaf-
DAGs are naturally represented as Prolog terms with multiple occurrences of
some variables - like X and Y in f(X, g(X, Y, Z), Y ).

Our Leaf-DAG generator combines the size-constrained tree generator from
subsection 2.1 and the functions-as-bindings generator from subsection 2.2, as
follows:

generate_leaf_dag(UniqueVarAndConstCount,LeafCount,
UniqueVarsAndConsts,ETree,OutputSpec):-

length(Leaves,LeafCount),
functions_from(Leaves,UniqueVarsAndConsts),
enumerate_tree_candidates(UniqueVarAndConstCount,LeafCount,

Leaves,ETree,OutputSpec).
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Proposition 1. Let catalan(M) denote the M-th Catalan number. The total
backtracking steps for generating all Leaf DAGs with N primary inputs and M
binary operation nodes is catalan(M) ∗ NM+1.

Proof. It follows from the fact that Catalan numbers count the trees and NM+1

counts the functions corresponding to mapping the primary inputs to their
leaves, because a binary tree with M internal nodes, each corresponding to an
operation, has M + 1 leaves.

Note that if constant functions like 0 or 1 are part of the library, they are simply
added to the list of primary inputs.

The predicate synthesize_leaf_dag/4 describes a (simplified version) of our
Leaf-DAG generator. Note that if the OutputSpec truth table is given as a con-
stant value, unification ensures that only LeafDAGs matching the specification
are generated. With OutputSpec used as a free variable, the predicate can be
used in combination with Prolog’s dynamic database as part of a dynamic pro-
gramming algorithm that tables and reuses subcircuits to avoid recomputation.

synthesize_leaf_dag(MaxGates,UniqueBitstringIntVars,
UniqueVarAndConstCount,PIs:LeafDag=OutputSpec):-

constant_functions(UniqueVarAndConstCount,ICs,OCs),
once(append(ICs,UniqueBitstringIntVars,UniqueVarsAndConsts)),
for(NbOfGates,1,MaxGates),

generate_leaf_dag(UniqueVarAndConstCount,NbOfGates,
UniqueVarsAndConsts,ETree,OutputSpec),

decode_leaf_dag(ETree,UniqueVarsAndConsts,LeafDag,DecodedVs),
once(append(OCs,PIs,DecodedVs)).

Proposition 2. The predicate synthesize_leaf_dag/4 generates Leaf-DAGs
in increasing size order.

Proof. It follows from the fact that each call to generate_leaf_dag/5 enumer-
ates on backtracking all Leaf-DAGs of size NbOfGates and the predicate for/3
provides increasing NbOfGates bounds.

Assuming zero cost for constant functions and a fixed transistor cost for each op-
erator, it follows that the synthesizer produces circuits based on single-operator
libraries in increasing cost order. For more complex cost models adaptations to
the tree generator can be implemented easily.

3 Fast Boolean Evaluation with Bitstring Truth Table
Encodings

We use an adaptation of the clever bitstring-integer encoding described in the
Boolean Evaluation section of [7] of n variables as truth tables. Let xk be a
variable for 0 ≤ k < n. Then xk = (22n − 1)/(22n−k−1

+ 1), where the number
of distinct variables in a boolean expression gives n, the number of bits for the
encoding. The mapping from variables, denoted as integers, to their truth table
equivalents, is provided by the following Prolog code:
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% Maps variable K in 0..Mask-1 to truth table
% Xk packed as a bitstring-integer.
var_to_bitstring_int(NbOfBits,K,Xk):-
all_ones_mask(NbOfBits,Mask),
NK is NbOfBits-(K+1),
D is (1<<(1<<NK))+1,
Xk is Mask//D.

% Mask is a bitstring-integer ending with NbOfBits of the form
% 11...1. It also provides an encoding of constant function 1.
all_ones_mask(NbOfBits,Mask):-Mask is (1<<(1<<NbOfBits))-1.

Variables representing such bitstring-truth tables can be combined with the usual
bitwise integer operators to obtain new bitstring truth tables encoding all pos-
sible value combinations of their arguments, like in:

bitand(X1,X2,X3):-X3 is ’/\’(X1,X2).
bitor(X1,X2,X3):-X3 is ’\/’(X1,X2).
bitxor(X1,X2,X3):-X3 is ’#’(X1,X2).
bitless(X1,X2,X3):-X3 is ’#’(X1,’\/’(X1,X2)).
bitgt(X1,X2,X3):-X3 is ’#’(X1,’/\’(X1,X2)).
bitnot(NbOfBits,X1,X3):-all_ones_mask(NbOfBits,M),X3 is ’#’(X1,M).
biteq(NbOfBits,X,Y,Z):-all_ones_mask(NbOfBits,M),Z is ’#’(M,’#’(X,Y)).
bitimpl(NbOfBits,X1,X2,X3):-bitnot(NbOfBits,X1,NX1),bitor(NX1,X2,X3).
bitnand(NbOfBits,X1,X2,X3):-bitand(X1,X2,NX3),bitnot(NbOfBits,NX3,X3).
bitnor(NbOfBits,X1,X2,X3):-bitor(X1,X2,NX3),bitnot(NbOfBits,NX3,X3).

The length of the bitstring-truth tables is sufficient for most perfect synthe-
sis problems involving exhaustive search, as most problems become intractable
above the 64 bits corresponding to 6 variables (see Proposition 1). However,
using arbitrary length integer packages, available for most Prologs, allows ex-
tending the mechanism further. In practice, a timeout mechanism can be used
to decide if falling back to a heuristic synthesis method is needed.

4 A Comparison of Universal Boolean Function Libraries

Definition 2. A set of boolean functions F is universal if any boolean function
can be written as a composition of functions in F .

A well known universal set is (conjunction, negation) i.e. (∗, ∼) - this follows
immediately from the rewriting of a truth table in terms of conjunction, dis-
junction and negation followed by elimination of disjunctions using De Morgan’s
laws. Universality of a library is usually proven by expressing conjunction and
negation with its operations.

The table in Fig. 1 compares a few libraries used in synthesis with respect
to the total gates needed to express all the 16 2-argument boolean operations
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Library total for 16 operators non-redundant

nand 46 yes
nor 46 yes

nand, 1 33 no
nor, 0 33 no

∗, nand 32 no
<, nor 31 no
⇒, 0 28 yes
<,1 28 yes

∗, <, 1 26 no
∗, ⊕, 1 25 yes

<,nand, 1 25 no
<, nor, 1 24 no
∗, =, 0 23 yes
⇒, =, 0 21 no
<, =, 1 21 no

Fig. 1. Relative Expressiveness of Libraries

(themselves included). The last column marks if the library is non-redundant
(or minimal), i.e. if none of its functions can be expressed in terms of the
others.

The comparison gives a hint on the relative expressiveness of libraries.
By including operations like “⊕” and “=”, that are known to require a rel-

atively high number of other gates (or a high transistor count) to express, one
can minimize the number of operators (and circuit size) required. Using only
gates known to have low transistor-count implementations like nand and nor,
the expressiveness drops significantly (46 required).

Surprisingly, (⇒, 0) and its dual (<, 1) do significantly better than nand and
nor: they can express all 16 operators with only 28 gates. As section 6 will show,
(<, 1) turns out to have very interesting low transistor implementations. Given
also that it has not been used in any work on synthesis that we are aware of, we
will explore this library in depth in section 5.

Interestingly enough, the libraries (∗, =, 0) and (⇒, =, 0) that provide, ar-
guably, some the most human readable expressions when expressing other op-
erators, have relatively small gate counts (23 and 21). For instance the first
one expresses A ⇒ B as A = A ∗ B and A ⊕ B as (A = B) = 0, the second
one expresses (A + B) as (0 = A) => B, and both express (A ⊕ B ⊕ C) as
(A = (B = C)).

Note also, that besides spotting out the minimal universal library (<, 0), the
comparison also identifies (<, nor, 1) as a highly expressive library, with potential
for practical design uses, given that < and nor have both low transistor-count
implementations.

Finally, one of the overall “winners” of the comparison is (<, =, 1). It expresses
the 16 operators with only 21 gates and it is a superset of the (<, 1) library. This
also suggests exploring in more detail the potential of < for synthesis.
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5 Using Strict Boolean Inequality for Combinational
Circuit Synthesis

While Strict Boolean Inequality1 A < B together with 1 is a universal boolean
function pair, it has been neglected by logicians as well as circuit designers, to
the point where there are surprisingly few references to it in the literature in
both fields. Interestingly enough, its dual, (⇒, 0)2 – is a well known universal
function pair that has been extensively studied as an axiomatic basis for both
classical and intuitionistic propositional logic.

One can only speculate about the reasons for this neglect. The lack of algebraic
grouping properties like commutativity and associativity comes to mind. Or, that
its intuitive meaning would be harder to map to common reasoning patterns.

In any case, none of these are critical for the synthesis problem, which, stated
generically, is about finding minimal representations of finite functions3 in terms
of a universal subset of them, given as a library.

As an indication of the usefulness of (<, 1) for synthesis, let’s note that A⊕B
(known to be part of notoriously hard to synthesize boolean functions) is in fact
(A < B) + (B < A) and therefore A < B can provide half of A ⊕ B. Note that
it also provides a form of conjunction (with first argument inverted), given its
equivalence to ∼ A ∗ B. It follows from this equivalence, that < also works as
an inference rule: from its truth, one can determine uniquely the truth values
of both of its arguments, i.e. the first should be false and the second true. As
a side note, the reader might notice that this is similar, but in a way stronger
than the mechanism through which Modus Ponens works. In the case of Modus
Ponens, if one looks at its premises as a formula, then A∗ (A ⇒ B) is equivalent
to A ∗ B implying the truth of B in addition to the (already assumed) truth of
A. The key difference, that makes Modus Ponens more intuitive is, of course,
that it provides an inference mechanism that conserves and extends truth, while
using A < B as an inference mechanism would force one to deal with both true
and false consequences.

5.1 Strict Boolean Inequality as a Universal Boolean Operator

Definition 3. Strict Boolean Inequality is defined by the following truth table:

A B A < B
0 0 0
0 1 1
1 0 0
1 1 0

1 (Equivalent to (∼ A) ∗ B as well as ∼ (A ⇐ B)). Called Converse Nonimplication
as well as ”NOT A BUT B” by Knuth [7]. Also called NIF standing for NOT (A IF
B) and Half-XOR.

2 Logical Implication with Falsehood (also denoted ⊥).
3 All finite functions can be expressed as boolean functions, by using binary encodings

of their arguments and values.
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Proposition 3. Strict Boolean Inequality A < B together with constant func-
tion 1 is a universal boolean function.

Proof. Given that conjunction and negation form a universal boolean function
pair, the proposition follows from the fact that conjunction A ∗ B has the same
truth table as (A < 1) < B and that negation ∼ A has the same truth table as
(A < 1).

5.2 The Symbolic Rewriting Algorithm

Our symbolic rewriting recurses over a given formula, and after each rewriting
step, it proceeds with simplifications using propositional tautologies. We will
illustrate the algorithm with the table in Fig. 2 showing how various expressions
are transformed after the recursive rewriting of their arguments. For a given
argument A we denote ‘A the result of recursive application of the algorithm to
A. The algorithm preserves constants and primary input variables unchanged.
We also assume that simplification occurs implicitly after each transformation
step.

From To

0 0
1 1

A < B ‘A < ‘B
∼ A ‘A < 1

A ⇐ B (‘A < ‘B) < 1
A ∗ B (‘A < 1) < ‘B

nor(A, B) ‘A < (‘B < 1)
A + B ‘(A ⇐ (∼ B))
A ⇒ B (‘B < ‘A) < 1
A ⊕ B (‘A < ‘B) + (‘B < ‘A)
A = B ‘(nor((A < B), (B < A)) < 1)

ite(C,T, F ) ‘((C ⇒ T ) ∗ (∼ C ⇒ F ))

Fig. 2. (<, 1)-Rewriting Rules

The algorithm reduces most simple tautologies to 1 and most simple contra-
dictions to 0. As a result, it also may reduce the number of variables on which
the expression actually depends.

Optimizing for Minimal Transistor Count. Given that constant function 1 is
0-cost and that function < has a 4-transistor cost (see section 6), the synthesis
algorithm can assume that the cost is given by the number of < gates.

Delay-Constrained Minimal Circuit Synthesis. Given the uniform gate structure
of the circuits, we can ensure that delays are within acceptable margins by simply
constraining the maximum length of the longest path from the primary inputs
to the primary outputs.
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5.3 Minimal (<, 1)-Representations for Key Boolean Functions

Figure 3 shows minimal representations for 0, negation, some 2-input boolean
functions and the 3-argument IF-THEN-ELSE, as produced by our synthesizer.
Interestingly enough, the minimal formulae obtained by exhaustive search are
identical (as in the case of most simple formulae) with those obtained using our
rewriting algorithm.

Function “ < ”Representation

0 1 < 1
∼ A A < 1

A ∗ B (A < 1) < B
A + B (A < (B < 1)) < 1
A ⇒ B (B < A) < 1
A ⇐ B (A < B) < 1
A ⊕ B ((A < B) < ((B < A) < 1)) < 1
A = B (A < B) < ((B < A) < 1)

A NAND B ((A < 1) < B) < 1
A NOR B A < (B < 1)

IF A THEN B ELSE C (A < (C < 1)) < ((B < A) < 1)

Fig. 3. (<, 1)-Representations of some functions

5.4 Synthesis from CNF and DNF Forms

As Disjunctive Normal Forms (DNF, also called sum-of-products) and Conjunc-
tive Normal Forms (CNF , also called product-of-sums) are the result of repeated
conjunctions and disjunctions, we first focus on optimal (<, 1)-representation of
these.

Proposition 4. A sequence of disjunctions of N variables has a minimal (<, 1)-
representation with 2 occurrences of constant 1 and exactly one occurrence of
each input variable, provided by the formula:

A1 + A2 + . . . + AN = (A1 < (A2 < . . . (AN < 1) . . .)) < 1

Proposition 5. A sequence of conjunctions of N variables has a minimal (<
, 1)-representation with N − 1 occurrences of constant 1 and exactly one occur-
rence of each input variable, provided by the formula:

A1∗A2∗. . . AN−1∗AN = ((A1 < 1) < ((A2 < 1) < . . . ((AN−1 < 1) < AN ) . . .)

Proof. By induction on the number of input variables, N.

Synthesis from CNF and DNF formulae (that can be obtained directly from truth
table descriptions of circuits) proceeds by applying the encodings provided by
the previous propositions recursively, followed by (and interleaved with) simpli-
fication steps.
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6 Transistor Implementations for (<, 1)-Circuits

Clearly as A < B is equivalent to nor(A, ∼ B), an obvious 6-transistor im-
plementation is obtained when input B drives a 2-transistor inverter while its
output and input A drive a 4-transistor NOR gate. This logic circuit is shown
in Fig. 4. The output node, A < B, has a direct path to the power nodes VDD
and VSS through the source connections of the transistors connected to it. As a
result, the output is called “buffered” and the logic circuit type is “powered”.

Fig. 4. Powered 6-Transistor A < B

To reduce transistor count, a pass transistor logic (PTL) circuit for A < B
can be implemented using 4 transistors. In this circuit, the output node, A < B,
in Fig. 5 has a direct path to the power net VSS while input B provides the
VDD power. Therefore, the logic circuit type is “semi-powered” and the output
level for VDD is called “unbuffered”.

Fig. 5. Semi-Powered 4-Trans. A < B
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The constant function 1 can be implemented by direct routing to the VDD
power grid. Similary, the constant function 0 can be implemented by direct
routing to the VSS power grid.

In conclusion, assuming a design using PTL-logic, the transistor count for
an implementation of the < function is 4, while constant functions 1 and 0 are
essentially free, with transistor count 0.

Transistor Count Comparisons for (<, 1) and NAND

To have a glimpse at the competitiveness of (<, 1) as a universal pair, in com-
parison with a minimal NAND-based circuit, we have compared costs obtained
as transistor counts of the resulting circuits.

While the comparison only involves Leaf-DAG representations and ignores
the fact that stronger sharing could be present in the case of multiple outputs or
the case arbitrary DAGs are used, it shows, at a small scale, that practical uses
of the (<, 1) for exact synthesis are likely to be competitive. Note also that in
practice commutativity of NAND brings more sharing opportunities if general
DAGs are used and that both A < 1 and nand(A, A) can be replaced with
2-transistor inverters.

Function <-cost NAND-cost

A = B 4*4=16 5*4=20
A ⊕ B 5*4=20 5*4=20
A ∗ B 2*4= 8 3*4=12 (8 if sharing)

(A ∗ B) ⇒ C 4*4=16 4*4=16
A ∗ B ∗ C 4*4=16 6*4=24
A + B + C 4*4=16 7*4=28
if-then-else 5*4=20 4*4=16

(A ⇒ B) ∗ (B ⇒ C)) 4*4=16 5*4=20
nand(A, B) 3*4=12 1*4=4

A < B 1*4 5*4=20 (16 if sharing)
2x2 half-adder 20+8=28 20+12=32

Fig. 6. Transistor Costs

7 Related Work

Mentions of Prolog for circuit simulation go back as early as [3]. Peter Reintjes
in [12] mentions CMOS circuit design and Prolog as two Elegant Technologies
with potential for interaction. Knuth in [7], section 7.1.2 mentions A < B as
forming one of the 5 (out of 16) boolean function used as part of a boolean chain
(sequence of connected 2-argument boolean functions) needed for synthesis by
exhaustive enumeration. Interestingly, the other 4 are: >, ∗, +, ⊕. Note that >
is the symmetric of <, and that with its exception, ∗, +, ⊕ have been heavily
used in various synthesis algorithms. This supports our intuition that < and
>’s potential for synthesis is worth further exploration. Knuth also computes
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minimal representations of all 5-argument functions using a clever reduction
to equivalence classes and proves that the cost for representing almost every
boolean function of N-arguments in terms of boolean chains exceeds 2N/N .

Rewriting/simplification has been used in various forms in recent work on
multi-level synthesis [8,9] using non-SOP encodings ranging from And-Inverter
Gates (AIGs) and XOR-AND nets to graph-based representations in the tra-
dition of [1]. Interestingly, new synthesis targets, ranging from AIGs to cyclic
combinational circuits [13], turned out to be competitive with more traditional
minimization based synthesis techniques. Synthesis of reversible circuits with
possible uses in low-power adiabatic computing and quantum computing [14]
have emerged. Despite its super-exponential complexity, exact circuit synthesis
efforts have been reported successful for increasingly large circuits [5,7]. While
[12] describes the basics of CMOS technology, we refer the reader interested in
full background information for our transistor models to [11].

8 Future Work

While we have provided unusually low cost transistor models for < gates, the
validation of their use in various context requires more extensive SPICE simu-
lations as well precise area, delay and power estimates.

The relative simplicity of A < B suggests its use in novel analog or non-
silicon designs provided that one can measure that signal A is in a given sense
weaker than B. Its relative expressiveness challenges, to some extent, the widely
believed statement [4,2] that symmetric functions are genuinly more interesting
for circuit synthesis. Future work is needed to substantiate our belief that this is
not necessarily the case, based on the intuition that asymmetric operators cover
a larger combinatorial space than their associative/commutative siblings.

The dual of the (<, 1) library, (⇒, 0) has the same expressive power as
(<, 1). It would be interesting to see if one can find similar low-transistor count
implementations as the ones shown in this paper for (<, 1). Given that (⇒, 0)
has been used as a foundation of various implicative formalizations of classic and
intuitionistic logics, stronger rewriting mechanisms might be available for it than
the ones we described in subsection 5.2 for (<, 1), resulting in better heuristics
for handling circuits for which exact synthesis is intractable.

On the general synthesis algorithm side, it would be interesting to add tabling
of subcircuits (through the use of a system like XSB or by writing a special
purpose circuit store) to avoid recomputation. Adapting intelligent backtracking
mechanisms like those used in modern SAT-solvers should also be considered to
improve performance.

Given our focus – to point out the usefulness of a relatively simple and unex-
plored primitive < as a universal boolean function with small transistor count
implementation – we have not invested an implementation effort comparable
to high quality synthesis tools like [16]. An interesting development would be
adapting a tool like abc [16] to specifically use < as a primitive.
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9 Conclusion

We have described a general logic programming based exact circuit synthesis
algorithm and shown how Prolog language features like logic variables and back-
tracking can be used to provide efficient, a concise and elegant implementations.
The synthesis algorithm has been used to identify the universal boolean func-
tion pair (<, 1) as a primitive for circuit synthesis, after noticing the possibility
of a 4-transistor PTL-implementation. We have also shown that, surprisingly,
despite being non-commutative and non-associative, Strict Boolean Inequality
“<” allows very low transistor-count implementations of typical small circuits.
We have also provided a rewriting-based simplification algortithm in terms of
(<, 1) that handles symbolic boolean expressions as well as CNF or DNF forms.
This rewriting algorithm is usable for heuristic circuit synthesis when formula
complexity makes exact synthesis intractable. We hope that these results will
provide practical opportunities for the use of logic programming languages and
their constraint handling extensions as components of circuit design automation
software.
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Abstract. Coupled deductive database systems join together logic pro-
gramming systems and relational database management systems, in or-
der to combine the best of both worlds. The current state-of-the-art
of these interfaces is restricted to access extensional data in databases
in Datalog form, disallowing access to compound terms. However, recent
years have seen the evolution of relational database management systems
in order to enable them to store and manage more complex information.
Of this complex data, one of the most interesting and fast growing is
that of spatial data. In this paper we describe the application of the MY-
DDAS deductive database system to the handling of spatial data, and
the needed extensions, namely the ability to handle vectorial geometric
attributes from database relations, the definition of spatial operators,
and a visualization framework, in order to obtain a spatial deductive
database system, that can be used as a geographic information system.
We argue that such a system can improve the state-of-the-art of spa-
tial data handling in all of its aspects, namely in spatial data modeling,
spatial querying and spatial data mining. We describe, in particular, the
application of such a logic-powered geographic information system to two
real-world problems.

1 Introduction

Logic programming and relational databases have common foundations based
on first-order logic. Despite these common foundations, logic programming (LP)
systems and relational database management systems (RDBMS) have very dif-
ferent objectives. While the former focus on efficient implementation of core
programming constructs, with emphasis on control and unification, the later fo-
cus on efficient implementation of data manipulation, with emphasis on indexing
structures and massive storage. Examples of this state-of-the-art include the un-
developed support for persistence in most LP systems [1], and the undeveloped
support for recursion in most RDBMS.

A current trend for augmenting LP systems with the ability of efficiently man-
aging large amounts of data, is to couple such systems with RDBMS, developing
coupled deductive database systems, such as XSB [2] and MYDDAS [3], instead
of integrated deductive database systems, such as the Aditi system [4]. As the
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frontier between data and code in LP languages, such as Prolog, is thin, coupled
deductive databases systems extend not only the ability of logic systems to deal
with large amounts of data, but also the ability of executing larger programs,
using RDBMS as abstract machines for the execution of logic code. A good
example is the trend of relational inductive logic programming [5], where effi-
cient and scalable results have been reported using coupled deductive database
systems for the coverage computation of Prolog clauses [6].

Although there is no apparent reason for not using RDBMS for managing
the internal database of Prolog systems, most coupled systems allow only the
storage of datalog facts (callable terms) within the database system, instead of
that of generic terms. Database relations are associated to predicate names and
relational tuples are seen as Prolog facts. In these coupled systems the interface
between the LP and the database systems is normally done by translating the
query written in logic to the language understood by the RDBMS, SQL. A
fundamental work on the translation of Prolog to SQL is the compiler written by
Draxler [7]. The current state-of-the-art of these interfaces is restricted to access
extensional data in databases in Datalog form, disallowing access to compound
terms. However, recent years have seen the evolution of RDBMS in order to
enable them to store and manage more complex information, leading to the
development of what is referred as object-relational database systems. Of this
complex data, one of the most interesting and fast growing is that of spatial data.
In this paper we describe the application of the deductive database framework
to the problem of spatial data handling, in all of its aspects, namely in spatial
data modeling, spatial query languages and spatial data-mining. We describe the
work developed in the context of the MYDDAS deductive database system and
its use with two real-world applications. In MYDDAS, Datalog is enriched with
spatial terms, that can be imported from vectorial maps stored in databases.
The term Spatial Datalog as been used in the area of Constraint Databases [8],
where the relational calculus has been extended with polynomial inequalities,
providing an elegant and powerful model of spatial databases [9]. Datalog has
been introduced in this context in order to query topological connectivity [10].
In this paper we describe a different use of Datalog for spatial databases, based
on spatial terms rather than on polynomial inequalities, that will be allowed to
occur in Datalog queries.

This paper describes the application of a deductive database system, cou-
pling YapTab [11] and MySQL extended with geometry types, as a Geographic
Information System (GIS). In particular, we describe the application of such a
logic-powered GIS to two real-world problems: study of traffic behavior in the
city of Porto [12]; and monitoring of biodiversity change. The paper is orga-
nized as follows: the next section briefly introduces the area of spatial databases
and spatial objects; Section 3 describes the Spatial-Yap system, focusing on its
three components of spatial terms support, visualization and spatial predicates;
Section 4 presents the two real-world problems where we are currently apply-
ing Spatial-Yap; and Section 5 presents some conclusions and outlines future
work.
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2 Spatial Databases

Over the past years, the use of spatial data has increased in many areas of com-
puter science. Spatial databases have been an active area of research for the last
two decades, with a very wide range of areas of application, from Global Position
Systems (GPS) to medical applications, where the human body is represented
using the same spatial objects used to represent geographic data. Spatial data
made clear that RDBMS needed to be updated to include spatially referenced
data and, for the last few years, RDBMS are being extended to support spatial
data, as well as to provide manipulation functions for that data.

The Open Geospatial Consortium (OGC), which is a non-profit, international,
voluntary consensus standards organization that is leading the development
of standards for geospatial and location based services, has proposed a stan-
dard to extend SQL-92 in “OpenGis Simple Features Specification for SQL”
(OGC99) [13]. The purpose of this specification is to define a standard SQL
schema that supports storage, retrieval, query and update of simple geospatial
feature collections.

Spatial types, or geometry types as they are presented in OGC99 standard,
are defined in an object oriented scheme described in Figure 1. There are three
simple types, Point, Linestring and Polygon, and the Geometry Collection type.
The latter expands to subclasses that specialize the member elements types. Each
type has a set of well defined attributes and restrictions, that can be consulted
in the OGC99 document. We list examples of the attributes and restrictions for
the following simple types:

Point is a 0-dimensional geometry type that represents a single location in the
coordinate system and has two coordinates (x, y);

Linestring is one-dimensional geometry type stored as a sequence of points
with linear interpolation;

Polygon is a two-dimensional spatial object that defines a planar surface. It is
defined by one exterior ring and zero or more interior rings, defining holes
in the polygon.

Spatial database systems should integrate the representation and manipula-
tion of geometric information with traditional data at the logical level, while
providing an efficient support at the physical level to store and process this in-
formation. This is usually achieved through an integrated approach, which is
based on RDBMS extensibility. Examples of such spatial database systems are
the Oracle Spatial [14] and PostGIS [15].

3 A Spatial Deductive Database System

Spatial Yap results from a sophisticated interface between several components.
The two main components are the Yap Prolog system and MySQL RDBMS,
which are coupled through the MYDDAS interface [3] (Mysql/Yap Deductive
DAtabase System). This interface is responsible for coupling these two systems,
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Fig. 1. Geometry-types (abstract types in gray)

as illustrated in Figure 2. MYDDAS transparently translates logic queries into
SQL statements, implements the conversion into Yap terms of MySQL attributes
and explores the YapTab tabling engine for solving recursive queries involving
database goals. The level of sophistication of this interface is very high, with the
fetching of relational tuples being implemented directly in WAM choice-points,
supporting pruning operators [16].

To build the spatial deductive database systemwe extended theMYDDAS inter-
face to support MySQL Geometry Types. Geometry objects are stored in MySQL
relations as binary sequences, following a structure similar to the Well-Known Bi-
nary (WKB) format, which is well documented in the OGC99 specifications.

Two more components are fundamental to build Spatial Yap: a spatial opera-
tors library and a visualization component. We will next describe the extensions
of MYDDAS to support spatial terms, the visualization component and the spa-
tial predicates component.

3.1 Spatial Terms

We have extended the MYDDAS interface to support spatial terms, which are
stored in MySQL relations as binary sequences. They can be retrieved using
OGC standard asBinary operator, but as MySQL stores spatial types using
as base the WKB adding extra information, we retrieve spatial types directly
ignoring that extra information.

Spatial terms were defined similarly to the Well Known Text of OGC, and
conform to the grammar in Figure 3. A valid spatial term has to conform to the
additional restrictions documented in OGC99 Specifications, such as:

– A Linestring has at least two Points ;
– A Polygon is defined by linear rings, being a linear ring a simple and closed

Linestring. A Polygon has one exterior ring, and zero or more interior rings.
The exterior ring is always the first in the list;

– The multi-types have one or more elements of the same type;
– An empty GeometryCollection represents the empty set.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Spatial-Yap: A Logic-Based Geographic Information System 199

Prolog to

Compiler
SQL3

SQL query

C Interface

Yap C

Interface

MySQL

MYDDAS Interface

SQL query

MySQL result set

Geos
Library

Yap Prolog

Spatial
Operators

Spatial Terms

C Interface

Query result

YapTAB

Logic queries to Database

Tabled answers

for recursive queries
Tabled goals

Logic goal

to be translated

SQL expression

Spatial
Predicates

Visualization

logic queriesSolutions to

Predicates

OpenGL

Postscript

Allegro

Simple Graphics
Interface

Objects
Geometry

Relational
Database

Database

MySQL

Fig. 2. Spatial Yap Blueprint

SpatialTerm = Point
| LineString
| Polygon
| MultiPoint
| MultiLineString
| MultiPolygon
| GeometryCollection ;

Point = "point" PointTerm ;

LineString = "linestring(" PointTermList ")" ;

Polygon = "polygon(" PointTermListList ")" ;

MultiPoint = "multipoint(" PointTermList ")" ;

MultiLinestring = "multilinestring(" PointTermListList ")" ;

MultiPolygon = "multipolygon(" PointTermListListList ")" ;

GeometryCollection = "geometrycollection(" SpatialTermList ")" ;

PointTerm = "(" Number "," Number ")" ;

Fig. 3. EBNF of Spatial Terms

In Spatial-Yap spatial terms can be created by querying the database tables
and its geometry attributes, or created textually by the programmer, or result
from the application of spatial predicates. Spatial-Yap can also store persistently
the spatial terms in MySQL database relations.

3.2 Visualization of Spatial Data with Simple Graphics

When dealing with spatial data it is essential to be able to graphically represent
such data. Representing a map as a set of Prolog terms is visually unacceptable,
from the point of view of a GIS user. Even more important is the representation
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of a spatial operation, such as the intersection of two polygons, in a graphical
way. User-driven spatial analysis and the representation of spatial queries result
sets require a visualization component to be added to any spatial database sys-
tem. There are some Prolog systems providing native Graphical User Interfaces
(GUI), such as SWI-Prolog with the XPCE [17], and systems providing coupling
interfaces to external GUIs libraries such as TCL/TK. Our needs were slightly
different as we do not need to have a complete GUI, but simply a basic drawing
system conforming to the OGC99 spatial types. This led to the development of
a graphical interface, Simple Graphics (SG), in the context of Spatial-Yap.

SG receives spatial terms and draws them in an interactive window where
the user can zoom, pan and take screenshots. Alternatively, the visualization
primitives can create the image and export it to a Postscript file. The core sys-
tem uses a stack of geometric objects to cope with Prolog backtracking. How-
ever, the drawing sees this stack as a first-in-first-out structure, so that a later
object is drawn after a previous one. For example, to build a window show-
ing the Europe countries based on a MySQL relation europe with the follow-
ing schema: name varchar(30), pop bigint, currency varchar(30), geom
geometry; we write the following code:

:- use_module(library(myddas)).
:- use_module(library(simplegraphics)).

:- db_open(mysql,’localhost’/’geodb’,’user’,’passwd’).
:- db_import(europe,europe).

draw_base_map :-
findall(C,europe(_Name,_Pop,_Currency,G),Countries),
sg_color(150,150,150), sg_outline_color(50,50,50),
sg_create(geometrycollection(Countries)).

:- sg_initialize([system(opengl), size(800,500),
background(200,200,200)]),

draw_base_map, sg_recenter.

Sometimes we need to remove objects previously drawn. This is done through
backtracking: the first call pushes the geometry object into the stack; the second
call pops the object from the stack, failing. Using our previous example and
assuming we add the following predicate:

country(Name) :-
europe(Name,_Pop,_Currency,Geom),
sg_color(100,100,100),
sg_create(Geom).

the goal ’?- country(X).’ can backtrack on the alternative solutions for X
while highlighting its geometric object on the opened SG window, as shown in
Figure 4.

Table 1 summarizes some of the available SG predicates. SG is built in a very
modular way to allow several export formats. For now it supports OpenGL [18]
and Allegro [19] as interactive alternatives, and Postscript as image creation
alternative. In the future we will expand the non interactive alternatives to
create other image formats natively.
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?- country(X).
X = ’Portugal’ ?

Fig. 4. Europe Map

Table 1. Simple Graphics Interface

Type Predicate

SG module
handling

sg initialize(+Options)
sg shutdown
sg recenter
sg export(ps,+File)

Drawing Spatial
Terms

sg create(+SpatialTerm)
sg color(+Red,+Green,+Blue)
sg color(+Color)
sg outline color(+Red,+Green,+Blue)
sg outline color(+Color)

Yap and SG
interaction

sg pause(+N)
sg yield
sg repeat

3.3 Spatial Predicates

The third key component of Spatial-Yap is the spatial operators module, which
we name ogc, as it follows the OGC standard, providing a number of spatial pred-
icates for the manipulation of spatial data. Table 2 summarizes these predicates.
They are divided in three main groups:

– Predicates for testing spatial properties. Including spatial relations between
spatial terms;

– Predicates that support spatial analysis. These are predicates that construct
new spatial terms based on operations on the input terms, it also includes
metric predicates;

– Predicates on specific spatial terms. These are specific to each type.
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Table 2. Spatial Predicates

Type Predicate

Predicates for
testing spatial
properties

ogc is empty(+Geom)
ogc is simple(+Geom)
ogc equals(+Geom1,+Geom2)
ogc disjoint(+Geom1,+Geom2)
ogc touches(+Geom1,+Geom2)
ogc within(+Geom1,+Geom2)
ogc overlaps(+Geom1,+Geom2)
ogc crosses(+Geom1,+Geom2)
ogc intersects(+Geom1,+Geom2)
ogc contains(+Geom1,+Geom2)
ogc relate(+Geom1,+Geom2,?PatternMatrix)

Predicates that
support spatial
analysis

ogc envelope(+Geom,?GeomEnvelope)
ogc boundary(+Geom,?GeomBoundary)
ogc buffer(+Geom,+Distance,?GeomBuffer)
ogc convex hull(+Geom,?GeomConvexHull)
ogc intersection(+Geom1,+Geom2,?GeomIntersection)
ogc union(+Geom1,+Geom,?GeomUnion)
ogc difference(+Geom1,+Geom,?GeomDifference)
ogc symmetric difference(+Geom1,+Geom2,?GeomSymDiff)
ogc distance(+Geom1,+Geom2,?Distance)

Specific type
predicates

Linestring
Multilinestring

ogc length(+Geom,?Length)
ogc is closed(+Geom)
ogc is ring(+Geom)

Polygon
Multipolygon

ogc area(+Geom,?Area)
ogc centroid(+Geom,?GeomPoint)
ogc point on surface(+Geom,?GeomPoint)

These predicates are accessible to Prolog via the C API using the GEOS [20]
library, which is also used by the RDBMS PostgreSQL [21] in the PostGIS [15]
module (spatial database extension for PostgreSQL).

As an example of the use of the three components of Spatial Yap, suppose we
have a MySQL table storing the Europe map, as in the previous example (see
Figure 4) and that we want to find the centroid of the multipolygon formed
by the polygons defining the boundaries of the countries of Europe, and see if
it belongs to any of the countries in Europe. We would extend the code of the
previous example with the code shown in Figure 5. Note the use of the spatial
predicates ogc within/2 and ogc centroid/2. Note also the generation of the
image as a Postscript file, through predicate sg export/2 (all the Postscript
images in this paper representing maps have been generated with Spatial-Yap).

The spatial predicates provided by the ogc module supply the infrastructure
of another key component of a spatial database system, which is its data-mining
module. In the context of LP, data-mining can be done using induction, based
on the paradigm of Inductive Logic Programming (ILP). Data-mining using
ILP offers the substantial advantage of being descriptive, as compared to other
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Code to generate this image

...

find_country(Point,Country,Polygon) :-
europe(Name,_,_,Polygon),
ogc_within(Point,Polygon), !.

find_country(Point,none,Point).

find_europe_centroid(Point,Country,Polygon) :-
findall(P,europe(_,_,_,polygon(P)),Countries),
ogc_centroid(multipolygon(Countries),Point),
find_country(Point,Country,Polygon).

gen_ps(PS) :-
sg_initialize([system(nowindow),

background(200,200,200),
size(800,600)]),

draw_base_map, sg_recenter,
find_europe_centroid(Point,_,CountryPolygon),
sg_color(100,100,100), sg_create(CountryPolygon),
sg_color(black), sg_create(Point),
sg_export(ps,PS),
sg_shutdown.

Fig. 5. Europe countries centroid

machine learning techniques, deriving a logic theory which explains a number
of observations. Spatial-Yap coupled with an ILP system, such as APRIL [22],
can use the spatial predicates of the ogc module to build theories which ex-
plain observations based on large geographic data-sets stored in MySQL spatial
databases. A classic example of spatial data-mining and the theories an ILP
system should derive, is provided by [23]:

“In 1855 when the Asiatic cholera was sweeping through London, an epidemi-
ologist marked all locations on a map where the disease had struck and discovered
that the locations formed a cluster whose centroid turned out to be a water pump.
When the authorities turned off the pump, the cholera began to subside.”
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An ILP system, with a geographic background knowledge which includes the
locations of where the disease had struck and the locations of water pumps,
together with the ogc module spatial predicates, such as ogc centroid/2, would
be able to induct the same spatial correlation.

4 Real-World Applications

In this section we describe two undergoing projects where we are applying
Spatial-Yap.

4.1 Study of Traffic Behavior in the City of Porto

The aim of this project is to study traffic behavior in the city of Porto. We
are interested in understanding factors affecting traffic, not only time and day
related, but also including intrinsic geographic entities, such as the presence of a
school in a street segment and its influence in traffic congestion time-slots. More
ambitious goals include the automatic derivation of a road signalization layer,
including traffic lights and stop signs locations, based on mobility patterns.

We are using a large spatial database storing the streets of the city of Porto,
granted by the Porto City Council. This map covers an area of 62 square kilo-
meters, with 1941 streets summing up to 965 kilometers of extension. We have
been collecting GPS logs in Porto to create a data warehouse with the mobility
information. We use Spatial-Yap to manipulate all the data. For instance, we can
query the area covered by the GPS logs of a given user and create the respective
image, such as in Figure 6.

Routing algorithms and displaying of computed routes are also implemented
using Spatial-Yap and its tabling engine. We also use LP to map GPS coordinates
to street segments. GPS devices in urban-like environments can report positions

Fig. 6. User Coverage
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which show an error of more than 30 meters in relation to the actual position.
This causes uncertainty as to which road segment the log is actually traversing.
This is represented as choice-points which are pruned by a Prolog cut, as soon
as the topological layer allows discarding those alternatives.

4.2 Monitoring of Biodiversity Change

Another interesting project where we are using Spatial-Yap aims at the global
monitoring of biodiversity change [24]. Governments have set the ambitious tar-
get of reducing biodiversity loss by the year 2010, and scientists now face the chal-
lenge of accessing the progress made towards this target. The European Corine
Land Cover (CLC) project (http://terrestrial.eionet.eu.int/CLC2000)
provides data for two different years (1990 and 2000), using 44 land-cover classes.
This data is obtained from satellite images and the vectorization in the poly-
gons of each of the 44 land-cover classes is done automatically, based on color
recognition. Unfortunately, the land-cover classes of CLC are not the most

Fig. 7. Alto Minho Map

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.

http://terrestrial.eionet.eu.int/CLC2000


206 D. Vaz, M. Ferreira, and R. Lopes

appropriate to monitor biodiversity. For instance, currently CLC has only three
classes for forest (broad-leaved, coniferous and mixed); therefore, an observed
increase in broadleaved forest area could be due to an increase in plantation
area of an exotic species, such as Eucalyptus globulus, or an increase in native
broad-leaved forest, two phenomena with different implications for biodiversity.
The group of biologists with whom we are working has detailed regional maps
from the area of Alto Minho, in Portugal, also covered by CLC. These regional
maps are done based on expensive and slow on-site mapping techniques and
on-site identification of forest species, allowing a much higher detail on the list
of classes. Our project is trying to use these detailed regional maps to derive a
set of spatial logic rules that allow the detailed characterization of CLC data for
biodiversity monitoring. We are using Spatial-Yap and the APRIL ILP system
over data-sets created based on the intersection of the regional maps and CLC
maps. The inducted rules can then be used to improve the categorization of new
CLC data, allowing its use for biodiversity monitoring.

The regional map of Alto Minho we are using with Spatial-Yap has a total of
43028 polygons, stored in a MySQL relation of 62MBytes. We used Spatial-Yap
to generate the Postscript image for this map, shown in Figure 7.

5 Conclusions and Future Work

In this paper we have described the use of Spatial-Yap as a logic-based geographic
information system, describing what we believe to be a very useful application
of the deductive database framework. We believe that logical databases have
their features and capabilities enhanced when the data they deal with increases
in complexity. It is clear that SQL, the lingua franca of database systems, is
inadequate for handling complex and structured data, such as geometric data.
Representing such data as logic terms and embedding spatial querying and spa-
tial data manipulation within LP systems makes spatial data modeling and
handling simple and natural. Furthermore, it allows spatial data-mining to be
done through descriptive machine learning techniques, such as inductive logic
programming.

This paper presented Spatial-Yap with emphasis on its features, on how spa-
tial data is handled by a logic system and how it is visualized. We omitted
implementation details and performance discussion. Clearly Spatial-Yap is be-
ing used with spatial databases of several MBytes, but, in the future, efficiency
will become an issue, and indexing of spatial terms will, in particular, have to
be addressed.

A lot of work remains to be done in order for Spatial-Yap to be widely used
as a geographic information system. A web interface such as ka-map [25] and
support for basic map objects, such as graphic scales, will have to be added. But
Spatial-Yap presents over other geographic information systems the advantage
of its high-level, declarative and logic-based modeling of data, based on spatial
terms, which makes the system very attractive for users of very different areas
of knowledge, such as the biologists with whom we are working, physicians, for
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medical spatial data and many other users from many other areas where efficient
modeling, querying and mining of spatial data is becoming crucial.
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Abstract. This paper investigates the relationship between the Logical
Algorithms language (LA) of Ganzinger and McAllester and Constraint
Handling Rules (CHR). We present a translation scheme from LA to
CHRrp: CHR with rule priorities and show that the meta-complexity the-
orem for LA can be applied to a subset of CHRrp via inverse translation.
This result is compared with previous work. Inspired by the high-level
implementation proposal of Ganzinger and McAllester, we demonstrate
how LA programs can be compiled into CHR rules that interact with a
scheduler written in CHR. This forms the first actual implementation of
LA. Our implementation achieves the complexity required for the meta-
complexity theorem to hold and can execute a subset of CHRrp with
strong complexity bounds.

1 Introduction

Constraint Handling Rules (CHR) [5] is a high-level rule based language, orig-
inally designed for the implementation of constraint solvers, but also more and
more used as a general purpose programming language. Recently, it was shown
that all algorithms can be implemented in CHR while preserving both time and
space complexity [16]. We assume familiarity with CHR (see [5,13]).

In “Logical Algorithms” (LA) [9] (and based on previous work in [8,12]),
Ganzinger and McAllester present a bottom-up logic programming language for
the purpose of facilitating the derivation of complexity results of algorithms
described by logical inference rules. This language resembles CHR in many ways
and has often been referred to in the discussion of complexity results of CHR
programs [1,6,15,17]. The aim of this paper is to investigate the relationship
between both languages. More precisely, we look at how the meta-complexity
theorem for LA can be applied to (a subset of) CHR, and how CHR can be used
to implement LA.

First, we present a translation from LA to CHRrp: CHR with rule priorities
[10]. LA derivations of the original program correspond to CHRrp derivations in
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the translation and vice versa. We show how to translate a subclass of CHRrp

to LA. This allows the meta-complexity theorem for LA to be applied to these
CHRrp programs as well. Because the LA meta-complexity theorem is based on
an optimized implementation, it gives more accurate results than the implemen-
tation independent meta-complexity theorem of [7,6] while being more general
than the ad-hoc complexity derivations in [15,17].

Our current prototype implementation of CHRrp does not achieve the com-
plexity required for the meta-complexity theorem to hold. Therefore, we propose
an implementation of LA in (regular) CHR, which consists of the compilation of
LA programs to CHR rules, combined with a scheduler written in CHR. By using
a CHR implementation with advanced indexing support, such as the K.U.Leuven
CHR system [14], our implementation achieves the required complexity. It is the
first actual implementation of LA1 and also a first implementation of a subset
of CHRrp with strong complexity bounds.

The rest of this paper is organized as follows. In Section 2, the syntax and se-
mantics of the Logical Algorithms language and CHRrp are reviewed. In Section 3
a translation of LA programs to CHRrp programs is presented and in Section 4,
the opposite is done for a subset of CHRrp. The implementation of Logical Algo-
rithms in refined operational semantics based CHR is given in Section 5. Section 6
shows that it has the required complexity. We conclude in Section 7.

2 Logical Algorithms and CHRrp

In this section, we give an overview of the syntax and semantics of the Logical
Algorithms language and CHRrp.

2.1 Logical Algorithms

A Logical Algorithms program P = {r1, . . . , rn} is a set of rules. In [9], a graph-
ical notation is used to represent rules. We use a textual representation that is
closer to the syntax of CHR. A Logical Algorithms rule is an expression

r @ p : A1, . . . , An ⇒ C

where r is the rule name, the atoms Ai (for 1 ≤ i ≤ n) are the antecedents and
C is the conclusion, which is a conjunction of atoms whose variables appear in
the antecedents. Rule r has priority p where p is an arithmetic expression whose
variables (if any) occur in the first antecedent A1. If p contains variables, then
r is called a dynamic priority rule. Otherwise, it is called a static priority rule.

The arguments of an atom are either Herbrand terms or (integer) arithmetic
expressions. There are two types of atoms: comparisons and user-defined atoms.
A comparison has the form x < y, x ≤ y, x = y or x �= y with x and y arithmetic
expressions or, in case of (=)/2 and (�=)/2, Herbrand terms. Comparisons are

1 To the best of our knowledge and confirmed in personal communication with “Log-
ical Algorithms” author David McAllester.
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only allowed in the antecedents of a rule and all variables in a comparison must
appear in earlier antecedents. A user-defined atom can be positive or negative. A
negative user-defined atom has the form del(A) where A is a positive user-defined
atom. A ground user-defined atom is called an assertion.
Example 1. An example rule (from Dijkstra’s shortest path algorithm as pre-
sented in [9]) with name d2 and priority 1 is

d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).

The antecedent D2 < D1 is a comparison, the atoms dist(V,D1) and dist(V,D2)
are positive user-defined antecedents. The negative ground atom del(dist(a,5))
is an example of a negative assertion.
A Logical Algorithms state σ consists of a set of (positive and negative) asser-
tions. Let D be the usual interpretation for the comparisons. Given a program
P , the following transition converts one state into the next:

1. Apply σ
LA�P σ ∪ θ(C) if there exists a (renamed apart) rule r in P of

priority p of the form

r @ p : A1, . . . , An ⇒ C

and a ground substitution θ such that for every antecedent Ai,
– D |= θ(Ai) if Ai is a comparison
– θ(Ai) ∈ σ and del(θ(Ai)) /∈ σ if Ai is a positive user-defined atom
– θ(Ai) ∈ σ if Ai is a negative user-defined atom

Furthermore, θ(C) � σ and no rule of priority p′ and substitution θ′

exists with θ′(p′) < θ(p) for which the above conditions hold.

A state is called final if no more transitions apply to it. A non-final state has
priority p if the next firing rule instance has priority p. The condition θ(C) � σ
ensures that no rule instance fires more than once and prevents trivial non-
termination. Although the priorities restrict the possible derivations, the choice
of which rule instance to fire from those with equal priority is non-deterministic.

A prefix instance of rule r @ p : A1, . . . , An ⇒ C is a tuple 〈θ(r), i〉 with
θ a ground substitution and 1 ≤ i ≤ n. Its antecedents are θ(A1), . . . , θ(Ai).
The time complexity for running Logical Algorithms programs is given in [9] as
O(|σ0|+Ps +(Pd +Ad) · log N) where σ0 is the initial state and |σ0| is its size. Ps

is the number of strong prefix firings of static priority rules and Pd is the number
of strong prefix firings of dynamic priority rules. A strong prefix firing is a prefix
instance for which all antecedents hold in a state with priority lower or equal to
the prefix’ rule priority. Ad is the number of assertions that may participate in
a dynamic priority rule instance. Finally, N is the number of distinct priorities.

2.2 CHRrp: CHR with Rule Priorities

CHRrp is CHR extended with user-definable rule priorities. It is introduced in
[10] as a solution to the lack of high-level execution control in CHR. In CHRrp,
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every rule is annotated with a rule priority that may depend on the arguments of
the constraints in the rule heads, and a rule instance is only allowed to fire if no
higher priority rule instance can. The operational semantics of CHRrp, denoted
by ωp, is described as a state transition system.

As in ωt, the theoretical operational semantics for CHR [2], we represent a
state σ as a tuple 〈G, S, B, T 〉n, where G is the goal, a multiset of constraints; S
is a set of identified CHR constraints, B is a conjunction of built-in constraints,
T is the propagation history and n the next free identifier. The propagation
history has a similar function as the θ(C) � σ condition in the LA semantics,
but is less restrictive. The transitions of the ωp semantics are shown below2.

1. Solve 〈{c} 	 G, S, B, T 〉n

ωp

�P 〈G, S, c ∧ B, T 〉n where c is a built-in con-
straint.

2. Introduce 〈{c} 	 G, S, B, T 〉n

ωp

�P 〈G, {c#n} ∪ S, B, T 〉n+1 where c is a
CHR constraint.

3. Apply 〈∅, H1 ∪ H2 ∪ S, B, T 〉n

ωp

�P 〈θ(C), θ(H1 ∪ S), θ(B), T ′〉n where
there exists a (renamed apart) rule in P of priority p of the form

r @ H ′1\H ′2 ⇐⇒ g | C pragma priority(p)

and a matching substitution θ such that chr(H1) = θ(H ′1), chr(H2) =
θ(H ′2), D |= B → ∃̄B(θ ∧ g) and t = id(H1) ++ id(H2) ++ [r] /∈
T . Furthermore, no rule of priority p′ and substitution θ′ exists with
θ′(p′) < θ(p) for which the above conditions hold. T ′ = T ∪ {t}.

The following theorem on the correspondence between the ωp semantics of
CHRrp and the ωt semantics of CHR, is proven in [10].

Theorem 1. Every derivation D under ωp is also a derivation under ωt. If a
state σ is a final state under ωp, then it is also a final state under ωt.

CHRrp differs from LA in the following ways. A Logical Algorithms state is a
set of ground assertions. The CHR constraint store is a multi-set and may also
contain non-ground constraints. In LA, built-in constraints are ask constraints
and only include comparisons. CHRrp supports any kind of built-in constraints.
A removed CHR constraint may be reasserted and can then participate again in
rule firings whereas a removed LA assertion cannot be asserted again. Finally,
a LA rule may contain negated heads. In contrast, CHRrp requires all heads to
be positive3.

In the refined operational semantics of CHR [2], the textual order of the pro-
gram rules determines which rule is tried next for the current active constraint.
However, only rule instances in which the active constraint takes part are consid-
ered, and so a higher priority fireable rule instance in which the active constraint

2 We apply matching substitutions directly to the goal, CHR store and built-in store.
If the rule bodies contain no built-in constraints, the built-in store remains empty.

3 See [18] for an extension of CHR that allows negated heads.
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does not participate, will not fire. The textual rule order also does not support
dynamic rule priorities.

3 Translating Logical Algorithms to CHRrp

In this section, we show how Logical Algorithms can be translated into CHRrp

programs. CHR states of the translated program can be mapped on LA states
of the original. With respect to this mapping, both programs have the same
derivations.

3.1 The Translation Schema

The translation of a LA program P is denoted by T (P ) = TS/D(P ) ∪ TR(P ).
The contents of TS/D(P ) and TR(P ) are given below.

Set and Deletion Semantics. We use an internal representation for asser-
tions as CHR constraints consisting of the assertion itself and an extra argu-
ment, called the mode indicator, denoting whether it is positively asserted (“p”),
negatively asserted (“n”) or both (“b”). For every user-defined predicate a/n oc-
curring in P , TS/D(P ) contains the following rules:

ar(X̄, M) \ a(X̄) ⇐⇒ M �= n | true pragma priority(1)
ar(X̄, n), a(X̄) ⇐⇒ ar(X̄, b) pragma priority(1)

a(X̄) ⇐⇒ ar(X̄, p) pragma priority(2)

ar(X̄, M) \ del(a(X̄)) ⇐⇒ M �= p | true pragma priority(1)
ar(X̄, p), del(a(X̄)) ⇐⇒ ar(X̄, b) pragma priority(1)

del(a(X̄)) ⇐⇒ ar(X̄, n) pragma priority(2)

If a representation already exists, one of the priority 1 rules updates this repre-
sentation. Otherwise, one of the priority 2 rules generates a new representation.
At lower priorities, it is guaranteed that every assertion, whether asserted posi-
tively, negatively or both, is represented by exactly one constraint in the store4.

Rules. Given a LA rule r ∈ P of the form

r @ p : A1, . . . , An ⇒ C

We first split up the antecedents into user-defined antecedents and comparison
antecedents by using the split function defined below.

split([A|T ]) =

{
〈[A|Au], Ac〉 if A is a user-defined atom
〈Au, [A|Ac]〉 if A is a comparison

where split(T ) = 〈Au, Ac〉
split([]) =〈[], []〉

4 Under the ωt semantics, this non-monotonic semantics cannot be ensured.
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In the Logical Algorithms language, a given assertion may participate multiple
times in the same rule instance, whereas in CHR all constraints in a single rule
instance must be different. To overcome this semantic difference, a single LA
rule is translated as a set of CHR rules such that every CHR rule covers a case
of syntactically equal head constraints. Let 〈Au, Ac〉 = split([A1, . . . , An]) with
Au = [Au

1 , . . . , Au
m] and Ac = [Ac

1, . . . , A
c
l ]. Let P be the set of all partitions of

{1, . . . , m}.5 For a given partition ρ ∈ P , the following function returns the most
general unifier that unifies all antecedents {Ai | i ∈ S} for every S ∈ ρ.

partition to mgu(ρ, [Au
1 , . . . , Au

m]) = ◦
S∈ρ

mgu({Au
i | i ∈ S})

Let PU = {〈ρ, θ〉 | ρ ∈ P ∧ θ = partition to mgu(ρ, Au) ∧ D |= ∃̄∅θ(Ac)}.
PU contains all partitions for which partition to mgu is defined and for which
the comparison antecedents Ac are still satisfiable after applying the unifier. The
next step is to filter out antecedents so that every set in the partition has only one
representative. This is done by computing filter(Au, 〈ρ, θ〉) for each 〈ρ, θ〉 ∈ PU
where the filter function is as follows:

filter([Au
i |T ], 〈ρ, θ〉) =

{
[θ(Au

i )|filter(T, 〈ρ, θ〉)] if ∃S ∈ ρ : i = min(S)
filter(T, 〈ρ, θ〉) otherwise

filter([], ) =[]

Finally, we add mode indicators to all remaining user-defined antecedents:

modes([Au′
|T ]) =

{
〈[ar(X̄, p)|Am], N〉 if Au′

= a(X̄)
〈[ar(X̄, N ′)|Am], [N ′ �= p|N ]〉 if Au′

= del(a(X̄))

where 〈Am, N〉 = modes(T )
modes([]) =〈[], []〉

For every 〈ρ, θ〉 ∈ PU , the CHR translation TR(P ) contains a rule

rρ @ H =⇒ g1, g2 | C′ pragma priority(p + 2)

where 〈H, g1〉 = modes(filter(Au, 〈ρ, θ〉)), g2 = θ(Ac) and C′ = θ(C).

Example 2. A LA implementation of Dijkstra’s shortest path algorithm is

d1 @ 1 : source(V) => dist(V,0).
d2 @ 1 : dist(V,D1), dist(V,D2), D2 < D1 => del(dist(V,D1)).
d3 @ D+2 : dist(V,D), e(V,C,U) => dist(U,D+C).

Its translation is

5 P contains Bm elements in the worst case with Bm the mth Bell number.
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er(V,C,U,M) \ e(V,C,U) <=> M \= n | true pragma priority(1).
er(V,C,U,n) , e(V,C,U) <=> er(V,C,U,b) pragma priority(1).

e(V,C,U) <=> er(V,C,U,p) pragma priority(2).

er(V,C,U,M) \ del(e(V,C,U)) <=> M \= p | true pragma priority(1).
er(V,C,U,p) , del(e(V,C,U)) <=> er(V,C,U,b) pragma priority(1).

del(e(V,C,U)) <=> er(V,C,U,n) pragma priority(2).

... % (similar rules for source/1 and dist/2)

d11 @ sourcer(V,p) ==> dist(V,0) pragma priority(3).
d21/2 @ distr(V,D1,p), distr(V,D2,p) ==>

D2 < D1 | del(dist(V,D1)) pragma priority(3).
d31/2 @ distr(V,D,p), er(V,C,U,p) ==> dist(U,D+C) pragma priority(D+4).

Example 3. A rule from the union-find implementation of [9] is the following:

uf4 @ 1 : union(X,Y), find(X,Z), find(Y,Z) => del(union(X,Y)).

Because antecedents find(X,Z) and find(Y,Z) are unifiable, this leads to the
following two CHR rules:

uf41/2/3 @ unionr(X,Y,p), findr(X,Z,p), findr(Y,Z,p) ==>
del(union(X,Y)) pragma priority(3).

uf41/23 @ unionr(X,X,p), findr(X,Z,p) ==>
del(union(X,X)) pragma priority(3).

3.2 The Correspondence Between LA and CHRrp Derivations

In this section, we show that every derivation of the original program under
the Logical Algorithms semantics, corresponds to a derivation of the translation
under the ωp semantics of CHRrp. In order to do so, we introduce a mapping
between (reachable) CHR execution states and LA states:

chr to la(σ) = {a(X̄) | a(X̄) ∈ A ∨ (ar(X̄, M) ∈ A ∧ M �= n)}
∪ {del(a(X̄)) | del(a(X̄)) ∈ A ∨ (ar(X̄, M) ∈ A ∧ M �= p)}

where σ = 〈G, S, B, T 〉n and A = G ∪ chr(S). The mapping function takes into
account the constraints that are still in the goal or for which the set and deletion
semantics rules have not fired yet.
Theorem 2. For every reachable CHRrp state σ, if σ

ωp

�T (P ) σ′ then either

chr to la(σ) = chr to la(σ′) or chr to la(σ)
LA�P chr to la(σ′).

Theorem 3. For every Logical Algorithms state σi and reachable CHRrp state

σ′i with chr to la(σ′i) = σi, there exists a finite CHRrp derivation σ′i
ωp

�∗T (P ) σ′i∗

with chr to la(σ′i∗) = σi such that if σi
LA�P σj then σ′i∗

ωp�T (P ) σ′j with
chr to la(σ′j) = σj and if σi is a final state then σ′i∗ is also a final state.
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Given a Logical Algorithms state σ, we can use 〈σ, ∅, true, ∅〉1 as initial state for
the CHRrp derivation. If we extend the LA and CHRrp transitions with appro-
priate labels, a LA program P and its translation T (P ) are weakly bisimilar6.
Theorem 3 is illustrated in the figure below.

σi

〈σi, ∅, true, ∅〉1
ωp

�∗T (P ) σ′i
ωp

�∗T (P ) σ′i∗

σi
LA�P σj

σ′i∗
ωp

�T (P ) σ′j

σi

LA

��P

σ′i∗

ωp

��T (P )

4 Translating CHRrp Programs into Logical Algorithms

In the previous section, we have shown that Logical Algorithms can be translated
into equivalent CHRrp programs. In this section, we show how a particular subset
of CHRrp can be translated into equivalent Logical Algorithms programs. This
allows us to apply the meta-complexity theorem for Logical Algorithms to these
CHRrp programs. The following three properties are required:

1. In all reachable states σ = 〈G, S, B, T 〉n: vars(S) = ∅.
2. All built-in constraints are comparisons; there are no built-in tell constraints.
3. A rule’s priority depends on the arguments of at most one of its heads.

Here a state σ is reachable if there exists a derivation 〈G, ∅, true, ∅〉1
ωp�∗P σ.

Because the order of heads in a CHRrp rule is not important, we can assume
without loss of generality that the priority depends on the left-most head only7.
Given a program P satisfying these properties, a CHRrp rule r ∈ P of the form

r @ A1, . . . , Am\Am+1, . . . , An ⇐⇒ g | C1, . . . , Cl pragma priority(p)

is translated as

r @ p : Aid
1 , . . . , Aid

n , alldiff(Id1, . . . , Idn), g, next id(Idnext) ⇒
del(Aid

m+1), . . . , del(Aid
n ), del(next id(Idnext)),

Cid
1 , . . . , Cid

l , next id(Idnext + l)

where Aid
i = a(X̄,Idi) if Ai = a(X̄), Cid

i = a(X̄,Idnext + i − 1) if Ci = a(X̄)
and alldiff (S) = {(x �= y) | x, y ∈ S ∧ x �= y}. The initial database consists
of the goal (where each constraint is extended with a unique identifier) and a
next_id(Idnext) assertion (with Idnext the next free identifier).

6 A LA transition σ
LA�P σ′ is labeled σ′ \σ, a CHRrp transition σ

ωp

�T (P ) σ′ is labeled
chr to la(σ′)\chr to la(σ) if this set is not empty, and τ (internal action) otherwise.

7 We make abstraction of the syntactical limitations of simpagation rules.
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Example 4. The following CHRrp program implements a merge sort algorithm.
Its input consists of a series of n (a power of 2) number/1 constraints. Its output
is a sorted list of the numbers in the input, represented as arrow/2 constraints,
where arrow(X,Y ) indicates that X is right before Y .

ms1 @ arrow(X,A) \ arrow(X,B) <=> A < B | arrow(A,B) pragma priority(1).
ms2 @ merge(N,A), merge(N,B) <=> A < B |

merge(2*N+1,A), arrow(A,B) pragma priority(2).
ms3 @ number(X) <=> merge(0,X) pragma priority(3).

Its Logical Algorithms translation is

ms1 @ 1 : arrow(X,A,Id1), arrow(X,B,Id2), A < B, next_id(NId) =>
del(arrow(X,B,Id2)), arrow(A,B,NId),
del(next_id(NId)), next_id(NId+1).

ms2 @ 2 : merge(N,A,Id1), merge(N,B,Id2), A < B, next_id(NId) =>
del(merge(N,A,Id1)), del(merge(N,B,Id2)),
merge(2*N+1,A,NId), arrow(A,B,NId+1),
del(next_id(NId)), next_id(NId+2).

ms3 @ 3 : number(X,Id), next_id(NId) => del(number(X,Id)),
merge(0,X,NId), del(next_id(NId)), next_id(NId+1).

Note that since the guard prevents the head constraints from being equal, the
all different constraint on the constraint identifiers is not needed.

For this LA program, we can derive that given n initial number/2 assertions,
there are O(n log n) strong prefix firings and so using the meta-complexity the-
orem, we derive that the total runtime is O(n log n). In contrast, when applying
the meta-complexity theorem for CHR of [6], we find a runtime upperbound of
O(n3 log n). The LA theorem clearly gives considerably more accurate results.

5 The Implementation of LA in CHR Under ωr

In this section, we present an implementation for LA in CHR under the refined
operational semantics [2]. This implementation consists of the compilation of LA
programs to CHR rules, combined with a scheduler module that is responsible for
the execution control. It is based on the high-level implementation proposal of [9].
By using a CHR compiler with advanced indexing support, our implementation
achieves the complexity required for the meta-complexity theorem of LA to hold.
We make use of Prolog as host language, but the implementation can easily be
adapted to work with other host languages.

5.1 Overview

The implementation is based on a form of eager matching, similar to the RETE
algorithm [3]. Partial matches (called prefix instances in [9]) are stored and
extended by new assertions. Full matches (rule instances) are inserted in a global
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priority queue and the highest priority rule instance is fired. Only the highest
priority partial matches are extended. This is enforced by storing partial matches
in priority queues as well. Every partial match knows its priority as it is a rule
instance prefix, and thus contains the leftmost head.

Every new assertion is scheduled to be combined with the highest priority
partial match with which it has not been combined yet. After combining, it is
rescheduled to be combined with the next partial match. This is done by using
a data structure consisting of a series of prefix blocks : priority queues containing
partial matches, alternated with a series of prefix extensions : the assertions with
which the prefixes need to be combined. This is illustrated in the figure below.
The highest priority elements in the data structure are scheduled for combination
on the global priority queue. In the figure, these are the combination of prefix P2
with extension A1 and that of prefix P1 with extension A2. Full matches (rule
instances) are scheduled on the global priority queue directly.

P P P6 P2 3 8

P4 7P

1A

A2

Prefix Blocks Prefix Extensions5P1 P

If a prefix and its extension share arguments, there is one data structure for each
combination of these arguments, so that only feasible prefix/extension combi-
nations are scheduled. For example, in the shortest path algorithm shown in
the examples so far, there is a prefix/extension data structure for each different
node, both for rule d2 and rule d3.

5.2 The Compilation of LA Programs to CHR Rules

We present the compilation of Logical Algorithms to CHR rules by example.
As example program, we use Dijkstra’s shortest path algorithm. A compiled LA
program consists of rules for

– Maintaining a representation for the assertions
– Removing the representation of invalidated prefix instances, prefix extensions

and rule instances
– Generating and scheduling new such representations after a new assertion
– Extending prefix instances and firing rule instances

These rules are now described in more detail.

Representation of the Assertions. For every positive user-defined atom
A = a(X̄) such that A is asserted or del(A) is asserted, there exists a unique
constraint representation ar(X̄, M) where M is

– an uninstantiated Prolog variable if A is asserted and del(A) is not
– the atom “n” if del(A) is asserted and A is not
– the atom “b” if both A and del(A) are asserted
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In contrast with the representation used in Section 3.1, we use a Prolog variable
as mode indicator for (strictly) positive assertions. Further on we show how this
simplifies the task of removing invalidated prefix instances, prefix extensions and
rule instances after a negative assertion.

Handling New Assertions. For every new assertion, a constraint representa-
tion is created and merged with the existing representation if such exists. For a
new positive or negative dist/2 assertion, this looks as follows:

dist(V,D) <=> distr(V,D,_).
del(dist(V,D)) <=> distr(V,D,n).

distr(V,D,M) \ distr(V,D,n) <=> var(M) | M = b.
distr(V,D,_) \ distr(V,D,_) <=> true.

Here, var/1 succeeds if its argument is an uninstantiated variable. The first
two rules create a new representation. The third and fourth rule merge this
representation with the existing representation if such exists. We rely on the
refined operational semantics which states that rules are tried in textual order
and occurrences are tried from right to left (so that the fourth rule always
removes the most recently created representation).

Clean-up. Prefix instances, prefix extensions and rule instances are all repre-
sented as constraints, α − β constraints for short using RETE terminology. The
α − β constraints contain all arguments of their constituent antecedents that
appear in the remaining antecedents or in the conclusion. They also contain the
mode indicators of the representations of their positive constituent antecedents.
Every α − β constraint has a unique identifier argument.

If A is a positive assertion, then a negative assertion del(A) causes the mode
indicator for A to be instantiated to the atom “b”. This triggers all α − β
constraints in which A occurs as a positive antecedent, which are then removed
by rules like the following.

d1_ri(_,b,Id) <=> remove_ri(Id).
d2_pi_1(_,_,b,Id) <=> remove_pi(Id).
d2_pe_1(_,b,Id) <=> remove_pe(Id).

Here, d1_ri/3 represents a rule instance of rule d1, d2_pi_1/4 represents the
first prefix instance of rule d2 and d2_pe_1/3 represents its prefix extension.
Similar clauses for rule d3 exist. The calls to remove_ri/1, remove_pi/1 and
remove_pe/1 remove respectively the rule instance, prefix instance and prefix
extension from the scheduling data structures.

Scheduling. New assertions are scheduled as rule instance (for source/1 in
rule d1), as prefix instance (for dist/2 as first antecedent in rules d2 and d3) or
as prefix extension (for dist/2 as second antecedent in rule d2 and e/3 as sec-
ond antecedent in rule d3). For prefixes instances and extensions, the matching
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prefix/extension data structure is found by matching on a key consisting of the
rule name, prefix number and arguments shared between prefix and extension.

sourcer(V,M) ==> var(M) | d1_ri(V,M,Id1), schedule_ri(1,Id1).
distr(V,D,M) ==> var(M) | d2_pi_1(V,D,M,Id1), schedule_pi(d2_1(V),1,Id1),

d2_pe_1(D,M,Id2), schedule_pe(d2_1(V),Id2),
d3_pi_1(V,D,M,Id3), schedule_pi(d3_1(V),D+2,Id3).

er(V,C,U,M) ==> var(M) | d3_pe_1(C,U,M,Id1), schedule_pe(d3_1(V),Id1).

We use fresh variables as identifiers for the generated α − β constraints. Pred-
icate schedule_ri/2 schedules a rule instance with given priority and identi-
fier, schedule_pi/3 schedules a prefix instance with given matching key (for
finding the correct prefix/extension data structure), priority and identifier, and
schedule_pe/2 schedules a prefix extension with given key and identifier.

Matching and Firing. A rule instance is fired by asserting a fire/1 constraint
which contains the identifier argument of its α − β constraint representation. A
prefix instance is combined with a prefix extension by the assertion of a cmb/2
constraint which contains the identifiers of their α − β constraints.

d1_ri(V,_,I), fire(I) <=> dist(V,0).
d2_pi_1(V,D1,_,I1), d2_pe_1(D2,_,I2) \ cmb(I1,I2) <=> D2 < D1 | del(dist(V,D1)).
d3_pi_1(V,D,_,I1), d3_pe_1(C,U,_,I2) \ cmb(I1,I2) <=> dist(U,D+C).

If the combination of a prefix instance with a prefix extension is another prefix
instance, a new α − β constraint representation is made which is then scheduled
for combination. Otherwise, the body of the combination rule corresponds to the
conclusion of the rule that it implements.

5.3 Priority Queues

A priority queue or heap is a data structure that contains a set of prioritized
items and supports the following operations: inserting and removing an item,
finding a highest priority item and merging with another queue. The implemen-
tation proposal in [9] suggests the use of two types of priority queues, one for
the fixed priorities, where each of the supported operations takes constant time,
and a Fibonacci heap for the dynamic priorities.

Fibonacci heaps [4] are a type of priority queue that offer O(1) amortized
time insertion, heap merging and finding a highest priority item, and O(log n)
amortized time item removal with n the number of items in the queue. It is
suggested in [9] that by using only one node per priority, using linked lists to
represent the items that share this priority, the item removal cost can be reduced
to O(log N) with N the number of distinct priorities. This increases the cost of
heap merging from O(1) for a single merge operation to a total cost of O(n log N)
for merging heaps when there are n items in total and N distinct priorities.
Fortunately, this increased complexity does not influence the total complexity
given by the meta-complexity theorem for Logical Algorithms.
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The CHR implementation of the Fibonacci heaps is based on the description
in [17] and extended to allow multiple heaps that can be merged and to use only
one node for each distinct priority per heap.

5.4 The Scheduler

The scheduler implements the predicates schedule_ri/2, schedule_pi/3 and
schedule_pe/2. It maintains the prefix/extension data structures and makes
use of the priority queue implementations for this purpose. The scheduler ini-
tiates the firing of rule instances (by asserting a fire/1 constraint) and the
combination of a prefix and extension (by asserting a cmb/2 constraint).

6 A Complexity Result

In Section 2.1, we have given the time complexity of Logical Algorithms. Theo-
rem 4 shows that our implementation has the required complexity to make this
result valid. Empirical evidence has confirmed this.

Theorem 4. The time complexity of LA programs executed using our imple-
mentation is O(|S0| + Ps + (Pd + Ad) · log N) with S0, Ps, Pd, Ad and N as
defined in Section 2.1.

Proof (Sketch). The proof for the high-level implementation description in [9]
can be used if the following holds:

– Inserting an element in a priority queue takes O(1) time. Deleting an element
from one takes O(1) time for elements with a static priority and O(log N)
(amortized) time for elements with a dynamic priority. Merging two priority
queues takes O(1) (amortized) time.

– Finding the first prefix block of a prefix/extension data structure for a given
key consisting of a rule name, prefix number and the arguments shared be-
tween prefix and extension, takes constant time. The same holds for creating
such a data structure should it not exist, and for adding a new prefix block
at the end of such a structure.

– Finding a prefix instance, prefix extension or rule instance given its identifier
takes constant time.

By using the advanced indexing supplied by the CHR compiler, our imple-
mentation satisfies these requirements, except that merging takes more than
O(1) time. The heaps that are merged (when deleting a prefix extension) con-
tain together up to Pd items8. As a result, the total cost of heap merging is
O(Pd · log N).

For merging local priority queues, both for static and dynamic priorities,
we need an optimal implementation of the union find algorithm. This supports

8 Although a prefix instance can “move” from one heap to another, each move oper-
ation corresponds to a (larger) prefix or rule instance.
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quasi-constant lookup via, and unification of priority queue identifiers. Such an
optimal implementation exists for CHR [15]. ��

Although the cost of heap merging when using only one node for each distinct
priority, appears to be larger than assumed in [9], the meta-complexity theorem
remains valid. While the complexity requirements are very stringent, our high-
level implementation in CHR is able to satisfy them.

7 Conclusions

In this paper, we have investigated the relationship between the Logical Algo-
rithms language and Constraint Handling Rules. We have presented an elegant
translation from LA to CHRrp: CHR with rule priorities. The original program
and its translation are essentially weakly bisimilar. A translation scheme is given
that allows a subclass of CHRrp to be translated into Logical Algorithms. This
allows direct application of the meta-complexity theorem for Logical Algorithms
to (the translation of) these CHRrp programs, which gives more accurate results
than the meta-complexity theorem for CHR given in [6].

By compiling LA rules into CHR rules and using a scheduler (also written in
CHR) to control the execution, we are able to execute LA programs in any CHR
implementation based on the refined operational semantics of CHR. We also
achieve the required complexity by using the K.U.Leuven CHR system which
uses optimized indexing structures. This result illustrates the strength of CHR
for implementing complex systems in a concise way with optimal complexity.
Moreover, when combining the CHRrp to Logical Algorithms translation with
the Logical Algorithms implementation in CHR, we have a first optimized im-
plementation for a subset of CHRrp.

Related Work. In [7,6], Frühwirth presents a meta-complexity theorem for
CHR programs containing only simplification rules. It uses level mappings to find
an upperbound on the number of rule firings and makes a (highly pessimistic)
worst case estimate of the time spent on trying rules in each derivation step. The
approach is more or less independent of the actual CHR implementation used
and so it often largely overestimates the actual time complexity. Tight complex-
ity results have been derived for particular programs using ad hoc techniques
in [15,17].

Future Work. The Logical Algorithms approach applied to CHRrp (Section 4),
could be extended to a larger subclass of CHRrp by allowing non-ground con-
straints and built-in (tell) constraints. This will require a more complex sched-
uler and it remains unclear what the effects will be for the complexity the-
orem. The derivation length of a program is bounded by monotone informa-
tion growth in Logical Algorithms and by using level mapping in the work of
Frühwirth. We plan to investigate the advantages and disadvantages of both
approaches.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



The Correspondence Between the Logical Algorithms Language and CHR 223

References

1. Christiansen, H.: A constraint-based bottom-up counterpart to definite clause
grammars. In: Recent Advances in Natural Language Processing III, Selected Pa-
pers. Current Issues in Linguistic Theory vol. 260 (2004)
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Abstract. Constraint Handling Rules (CHR) are a powerful rule based
language for specifying constraint solvers. Critical for any rule based
language is the notion of confluence, and for terminating CHR programs
there is a decidable test for confluence. But many CHR programs that
are in practice confluent fail this confluence test. The problem is that
the states that illustrate non-confluence are not observable from the ini-
tial goals of interest. In this paper we introduce the notion of observable
confluence, a more general notion of confluence which takes into account
whether states are observable. We devise a test for observable confluence
which allows us to verify observable confluence for a range of CHR pro-
grams dealing with agents, type systems, and the union-find algorithm.

1 Introduction

Constraint Handling Rules [3] (CHR) are a powerful rule based language for
specifying constraint solvers. Constraint handling rules operate on a global multi-
set (conjunction) of constraints. A constraint handling rule defines a rewriting
from one multi-set of constraints to another.

A critical issue for any rule based language is the notion of confluence. A CHR
program is confluent if all possible rewriting sequences from a given input lead
to the same result. Thus confluent programs have a “deterministic behaviour”
with respect to the input goals, i.e. given some input goal, we can uniquely
determine the output. For terminating CHR programs there is a decidable test
for confluence [1]. Unfortunately there are many (terminating) programs which
are confluent in practice, but fail to pass the test.

In this paper, we make the following contributions:

– We introduce the notion of observable confluence which generalises the no-
tion of confluence by only considering rewriting steps which are observable
with respect to some invariant (Section 3.3).

– We give a generalised confluence test where we only need to consider join-
ability of critical pairs satisfying the invariant (Section 4).

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 224–239, 2007.
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– We show that the generalised confluence test enables us to verify observable
confluence of CHR used for the specification of agents, the union-find algo-
rithm, and type systems (Section 5). All of these classes of CHR programs
are non-confluent under the standard notion.

To the best of our knowledge, we are the first to study observable confluence in
the context of a rule-based language. In the workshop papers [2,5], we reported
some preliminary results. The present work represents a significantly revised and
extended version of [2].

We continue in Section 2 where we consider a number of motivating examples.
Section 3 provides background material on CHR.

2 Motivating Examples

The following examples fail the standard confluence test, but we can show that
they are observable confluent with respect to some appropriate invariant.

2.1 Blocks World

In our first example, we consider a set of CHRs used for agent-oriented program-
ming [5]. The following CHR program fragment describes the behaviour of an
agent in a blocks world:1

g1 @ get(X), empty <=> hold(X).
g2 @ get(X), hold(Y) <=> hold(X), clear(Y).

The constraint hold(X) denotes that the agent holds some element X, whereas
empty denotes that the agent holds nothing. The constraint clear(Y) simply
represents the fact that Y is not held. The constraint get(X) represents an action,
to get some element X. The atoms preceding the ‘@’ symbols are the rule names,
thus the rules are named g1 and g2 respectively. Both rules are simplification
rules, rewriting constraints matching the left-hand-side to the constraints in
the right-hand-side. The first rule rewrites the constraints get(X) ∧ empty to
hold(X). The second rule rewrites get(X) ∧ hold(Y) to hold(X) ∧ clear(Y).

It is clear that the rules are non-confluent. Consider the critical state get(X)
∧ hold(Y) ∧ empty formed by combining the heads of rules g1 and g2. This
critical state can be rewritten to either hold(Y) ∧ hold(X) by applying rule
g1, or to hold(X) ∧ clear(Y) ∧ empty by applying rule g2. These two derived
states are a critical pair between the two rules. The confluence test for CHR [1]
states that a terminating program is confluent iff all critical pairs are joinable, i.e.
can be rewritten to the same result. Since no rewriting steps can join hold(Y)
∧ hold(X) and hold(X) ∧ clear(Y) ∧ empty, the blocks world program is
non-confluent.
1 CHR follows a Prolog like notation, where identifiers starting with a lower case letter

indicate predicates and function symbols, and identifiers starting with upper case
letters indicate variables.
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Let us consider the non-confluent state get(X) ∧ hold(Y) ∧ empty more
closely: it represents the agent holding nothing (empty) whilst simultaneously
holding an object Y (hold(Y)). Clearly, such a state is nonsense, so we would
like to exclude it from consideration. To do this we need a weaker notion of con-
fluence, i.e. confluence with respect to valid states. We refer to this as observable
confluence.

Specifically, we can informally define valid states as follows:

“Either the agent holds some element X or holds nothing.”
“There is at most one get( ) operation at one time.”

The conjunction of these conditions is an invariant in the blocks world program.
In this paper, we show that all non-confluent states violate this invariant, thus
blocks world program is observable confluent.

A similar form of observable confluence under some invariant arises in our
next example.

2.2 Union Find

Consider the following program which is part2 of the simple union-find code
from [9,8].

union @ union(X,Y) <=> find(X,A), find(Y,B), link(A,B).
findNode @ X ∼> PX \ find(X,R) <=> find(PX, R).
findRoot @ root(X) \ find(X,R) <=> R = X.
linkEq @ link(X,X) <=> true.
link @ link(X,Y), root(X), root(Y) <=> Y ∼> X, root(X).

Both findNode and findRoot are simpagation rules, which are similar to
simplification rules, except constraints on the LHS of the ‘\’ symbol are not
rewritten. This program defines an environment where the root(X) and X ∼>
Y constraints define trees, and union(X,Y) links trees so that they have the same
root.

The union-find program is non-confluent, since there are eight non-joinable
critical pairs. The authors of [8] classify the critical pairs as either avoidable (as
in they should not arise in practice) and unavoidable (as inherent non-confluence
in the union-find algorithm). For example, the critical state between the linkEq
and link is link(X,X) ∧ root(X) ∧ root(X), with two root(X) constraints.3

The critical pair is root(X) ∧ root(X) and X ∼> X ∧ root(X), which is non-
joinable. However, in [8] it is argued that this critical pair is avoidable, since the
presence of two root(X) in the state violates the definition of a tree (i.e. X can
only be the root of one tree). This kind of reasoning can be understood in terms
of invariants and observable confluence.

As was the case with the blocks world example, we define an invariant that
describes valid states. Firstly, we informally define validT rees, as follows:
2 We have removed the make rule to simplify the invariant.
3 CHR uses a multi-set semantics, thus here we consider X ∧X to be distinct from X.
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“For all X there is at most one root(X) or X ∼> Y, and there are no
cycles X ∼> Y1, ..., Yn ∼> X”

We are also interested in the confluence of a single union(X,Y) operation exe-
cuted in isolation on valid trees. Some combinations of operations are not valid,
thus we define validOps as follows:

“There is at most one union( , ) or link( , ), and if there is a union( , )
there is no find( , ).”

This condition helps enforce confluence: since the order in which these operations
are executed can affect the final result. For example, executing a find before
or after a union may produce different results, since the union may update the
trees.

To ensure observable confluence, there is one final case to consider: a con-
current link and find operation. In this case, we can not simply make these
operations mutually exclusive, since link and find do interact in the body of
the union rule. However, the second argument to a find constraint must al-
ways be associated to the corresponding link constraint. Therefore, we define
validF ind as follows:

“If there is a find(X,Y) then there is a link(Y, ) or link( ,Y) but no
link(Y,Y), and Y does not appear in any other constraint.”

Define U = validT rees ∧ validOps ∧ validF ind, then we verify that U is
preserved by rule application, and thus is an invariant. Furthermore, none of the
non-joinable critical pairs, or any states extended from these critical pairs, satisfy
U .4 Therefore the union-find program P is observable confluent with respect to
U . Or in other words, P is U-confluent.

This shows that the union operation, executed in isolation on valid trees, is
confluent, even though the program itself is not confluent.

2.3 Type Class Functional Dependencies

The invariants we have seen so far reject (critical) states by observing the con-
straints in the store. But in CHR, sometimes a state cannot be observable be-
cause of the kind of rules that have, or have not, fired so far. This is due to
CHR propagation rules which only add new constraints but do not delete exist-
ing constraints. To avoid trivial non-termination, the CHR semantics maintains
a propagation history to avoid re-application of the same rule on the same set
of constraints. The short story is that certain states can never be observable
because of their propagation histories. Our next example illustrates this point.

We consider CHRs which arise from the translation of type class constraints
in Haskell [7] involving functional dependencies [4]. We directly give the CHRs
and omit the type class program.
4 In the original paper [8], one of the critical pairs, namely link + findRoot, was “un-

avoidable” under the author’s conditions. However, we have sufficiently strengthened
the conditions to make the “unavoidable” critical pair avoidable.
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r1 @ f(int,bool,float) <=> true.
r2 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r3 @ f(int,B,C) ==> B = bool.

The first rule is a simplification rule. The second and third rule are propaga-
tion rules. Propagation rules do not delete the constraints matching the head,
thus they only add constraints. For example, the second rule adds the constraint
B1 = B2 whenever we see f(A,B1,C) ∧ f(A,B2,D) in the store. To avoid triv-
ial non-termination, propagation rules maintain a history of applications, and
avoid applying the same propagation rule more than once on the same set of
constraints.

When testing for confluence, we examine critical states, which are minimal
states where two different rule firings are possible. In order to be truly minimal,
the propagation history is assumed to be as strong as possible, i.e. where no
propagation rule can fire, except possibly the two rules used to generate the
critical state itself.

Rules r1, r2 give rise to the critical state f(int,bool,float)∧f(int,B2,D)
from which we can derive two different states as shown by the following rewriting
steps f(int,bool,float) ∧ f(int,B2,D) �r1 f(int,B2,D) and

f(int,bool,float) ∧ f(int,B2,D)
�r2 f(int,bool,float) ∧ f(int,bool,D) ∧ B2 = bool
�r1 f(int,bool,D) ∧ B2 = bool

Note that we cannot apply the rule r3 to the state f(int,B2,D) because the
propagation history in the critical state disallows this. As the critical state has
led to two different non-joinable states, the above CHR program is non-confluent.

But in practice the critical state f(int,bool,float) ∧ f(int,B2,D) where
the propagation history prevents rule r3 from firing on the second constraint
cannot arise. The initial state always begins with an empty (weakest) propaga-
tion history. Hence, rule r3 must have fired already on the second constraint. If
this were the case, then the constraint B2 = bool should appear in the critical
state, but B2 = bool does not occur. Therefore, the critical state is not reachable
from any initial goal. Further details are given in Section 5.1, where we show
that this program is in fact observable confluent with respect to the reachability
invariant.

Next, we review background material on CHR before introducing the notion
of observable confluence and the observable confluence test.

3 Preliminaries

A CHR simpagation rule is of the form (r @ H ′1 \ H ′2 ⇐⇒ g | C) where
we propagate H ′1 and simplify H ′2 by C if the guard g is satisfied. We call r
a propagation rule if H ′2 is empty and a simplification rule if H ′1 empty. As
seen in Section 2, (r @ H ′2 ⇐⇒ g | C) is shorthand for the simplification
rule (r @ ∅ \ H ′2 ⇐⇒ g | C), and (r @ H ′1 =⇒ g | C) is shorthand for the
propagation rule (r @ H ′1 \ ∅ ⇐⇒ g | C).
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In CHR there are two distinct types of constraints: user constraints and built-
in constraints. Built-in constraints are provided by an external solver, whereas
user constraints are defined by the rules. Only user constraints may appear in
the rule head (H ′1 and H ′2), and only built-in constraints in the guard g. The
body C may contain both kinds of constraints.

Formally, CHR is a reduction system 〈�, Σ〉 where � is the CHR rewrite
relation and Σ is the set of all CHR states.

Definition 1 (CHR State). A state is a tuple of the form

〈G, S, B, T , V〉

where goal G is a multi-set of constraints (both user and built-in), user store S
is a multi-set of user constraints, built-in store B is a conjunction of built-in
constraints, token store T is a set of tokens, and variables of interest V is the
set of variables present in the initial goal. Throughout this paper we use symbol
‘σ’ to represent a state, and Σ to represent the set of all states. 	

The built-in constraint store B contains any built-in constraint that has been
passed to the built-in solver. Since we will usually have no information about
the internal representation of B, we treat it as a conjunction of constraints. We
assume D denotes the theory for the built-in constraints B.

The token store5 T is a set of tokens of the from (r@C), where r is a rule name,
and C is a sequence of user constraints. A CHR propagation rule r may only be
applied to C if the token (r@C) exists in the token store. This is necessary to
prevent trivial non-termination for propagation rules. Whenever a new constraint
is added to the user store, the token set of that constraint is added to the token
store.

Definition 2 (Token Set). Let P be a CHR program, C be a set of user con-
straints, and S a user-store, then define

T(C,S)={r@H ′ | (r@H =⇒g | B) ∈ P, H ′ ⊆ C  S, C ⊆ H ′, H ′ unifies with H}

to be the token set of C with respect to S. 	

In the above, we write  for multi-set union. Later, we will also use multi-set
intersection �.

We define vars(o) as the free variables in some object o: e.g. term, formula,
constraint. We define an initial state as follows.

Definition 3 (Initial State). Given a multi-set of constraints G (i.e. the goal)
the initial state with respect to G is 〈G, ∅, true, ∅, vars(G)〉. 	

The operational semantics of CHR6 is based on the following three transitions
which map states to states:
5 The token store is also known as the propagation history.
6 There are many different versions of the operational semantics of CHR. In this paper

we use a version that is close to the original operational semantics described in [1].
This version is the most suitable for the study of confluence.
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Definition 4 (Operational Semantics)
1. Solve 〈{c}  G, S, B, T , V〉 � 〈G, S, c ∧ B, T , V〉
where c is a built-in constraint.
2. Introduce 〈{c}  G, S, B, T , V〉 � 〈G, {c}  S, B, T({c},S)  T , V〉
where c is a user constraint.
3. Apply 〈G, H1  H2  S, B, T  T , V〉 � 〈C  G, H1  S, θ ∧ B, T , V〉
where there exists a (renamed apart) rule (r @ H ′1 \ H ′2 ⇐⇒ g | C) in P , and
T = {(r@H1, H2)} if H ′2 = ∅, otherwise T = ∅. The matching substitution θ is
such that ⎧

⎨

⎩

H1 = θ(H ′1)
H2 = θ(H ′2)
D |= B → ∃ā(θ ∧ g)

where ā = vars(g) − vars(H ′1, H
′
2) and D denotes the built-in theory. 	


A derivation is a sequence of states connected by transitions. We use notation
σ0 �∗ σ1 to represent a derivation from σ0 to σ1.

3.1 Confluence

Confluence depends on the notion of equivalence between CHR states. The equiv-
alence relation for CHR states is known as variance:

Definition 5 (Variance). Two states

σ1 = 〈G1, S1, B1, T1, V〉 and σ2 = 〈G2, S2, B2, T2, V〉

are variants (written σ1 ≈ σ2) if there exists a unifier ρ of S1 and S2, G1 and
G2, (T1 � T(S1,∅)) and (T2 � T(S2,∅)) such that

1. D |= ∃̄V1B1 → ∃̄V1ρ ∧ B2

2. D |= ∃̄V2B2 → ∃̄V2ρ ∧ B1

where V1 = V∪vars(G1)∪vars(S1)∪vars(T1) and V2 = V∪vars(G2)∪vars(S2)∪
vars(T2). Otherwise the two states are variants if D |= ¬∃̄∅B1 and D |= ¬∃̄∅B2
(i.e. both states are false). 	


Confluence relies on whether two states can derive the same state. This property
is known as joinability.

Definition 6 (Joinable). Two states σ1 and σ2 are joinable if there exists
states σ′1 and σ′2 such that σ1 �∗ σ′1 and σ2 �∗ σ′2 and σ′1 ≈ σ′2. We use the
notation (σ1 ↓ σ2) to indicate that σ1 and σ2 are joinable. 	


Finally, we can define confluence as follows:

Definition 7 (Confluence). A CHR program P is confluent if the following
holds for all states σ0, σ1 and σ2: If σ0 �∗ σ1 and σ0 �∗ σ2 then σ1 and σ2
are joinable. 	
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3.2 Confluence Test

In [1] it was shown that confluence is decidable for terminating CHR programs.
The confluence test for CHR depends on calculating all critical pairs between
rules in the program. First we define the notion of a critical ancestor state.

Definition 8 (Critical Ancestor States). Given two (renamed apart) rule
instances: (r1 @ H1\H2 ⇐⇒ g1 | B1) and (r2 @ H3\H4 ⇐⇒ g2 | B2), then the
set of all critical ancestor states (or simply ancestor states) ΣCP between r1 and
r2 is:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

〈∅, H
�

r1  H
�

r2  H∩r1,
H∩r1 = H∩r2 ∧ g1 ∧ g2, TCP , VCP〉

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Hr1 = H1  H2
Hr2 = H3  H4

Hr1 = H∩r1  H
�

r1

Hr2 = H∩r2  H
�

r2
VCP =

vars(H1 ∧ H2 ∧ H3 ∧ H4 ∧ g1 ∧ g2)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

where, given e1 = (r1@H1, H2) and e2 = (r2@H3, H4), then TCP = {ei | i ∈
{1, 2}, riis a propagation rule}.

Basically, a critical ancestor state is a minimal state applicable to both rules.
The sets H∩r1 and H∩r2 represent some potential overlap between the two rules.
If the rules heads Hr1 and Hr2 do not overlap, then H∩r1 = H∩r2 = ∅ gives the
only non-false ancestor state.

We define a critical pair in terms of an ancestor state.

Definition 9 (Critical Pair). Given the rules r1, r2 and the set ΣCP from
Definition 8, for σCP ∈ ΣCP where

σCP = 〈∅, H
�

r1  H
�

r2  H∩r1, H
∩
r1 = H∩r2 ∧ g1 ∧ g2, TCP , VCP〉

then the critical pair (σA, σB) for σCP is

(〈B1, (H
�

r1  H
�

r2  H∩r1) − H2, H
∩
r1 = H∩r2 ∧ g1 ∧ g2, TA, VCP〉,

〈B2, (H
�

r1  H
�

r2  H∩r1) − H4, H
∩
r1 = H∩r2 ∧ g1 ∧ g2, TB, VCP〉)

where TA = TCP − {e1} and TB = TCP − {e2} and where e1 and e2 are defined
as in Definition 8. 	

Informally, Definition 9 simply states that (σA, σB) is the result of respectively
firing r1 and r2 on σCP , whilst being careful to specify exactly how the rules
were applied (e.g. how the constraints were matched against the rule head).

For the rest of the paper, we use σCP to denote the ancestor state of a critical
pair CP.

Confluence can be proven by showing that all critical pairs are joinable.

Theorem 1 (Confluence Test). [1] Given a terminating CHR program P , if
all critical pairs between all rules in P are joinable, then P is confluent.

This is known as the confluence test for terminating CHR programs.
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3.3 I-Confluence

In this section we formally define I-confluence (i.e. observable confluence)7 with
respect to an invariant I.

Definition 10 (Invariant). An invariant I(σ) is a property such that for all
σ0 and σ1, we have that if σ0 � σ1 (or σ0 ≈ σ1) and I(σ0) then I(σ1). 	


Example 1 (Blocks World Invariant). First we define exists(σ, M), which de-
cides if the multi-set of user constraints M exists in σ:

exists(〈G,S, B, T , V〉, M) ⇔
∃S′ ⊆ user(G)  S ∧ D |= builtin(G) ∧ B → ∃vars(M)(M = S′)

where user(G) and builtin(G) returns all user/built-in constraints in G
respectively.

The invariant for the blocks world example from Section 2.1 is formally rep-
resented as B(σ) where

B(σ) ⇔¬exists(σ, {empty, empty}) ∧ ¬exists(σ, {empty, holds( )})∧
¬exists(σ, {holds( ), holds( )}) ∧ ¬exists(σ, {get( ), get( )})

The first three conditions state that the agent either holds something or holds
nothing. The outcome is determined by the order in which get operations are
executed. Therefore, we impose the fourth condition which guarantees that we
only consider isolated get operations. It is straightforward to verify that the
Blocks-world program maintains B as an invariant. 	


Given an invariant I, we define confluence with respect to I as follows:

Definition 11 (Observable Confluence). A CHR program P is I-confluent
with respect to invariant I if the following holds for all states σ0, σ1 and σ2
where I(σ0) holds: If σ0 �∗ σ1 and σ0 �∗ σ2 then σ1 and σ2 are joinable. 	

Alternatively, a CHR program P is I-confluent with respect to invariant I iff the
reduction system R = 〈{σ ∈ Σ|I(σ)}, �〉 is confluent. Likewise, P is I-local-
confluent iff R is local-confluent and P is I-terminating iff R is terminating.

Observable confluence is a weaker form of confluence,8 thus the standard
confluence test (see Theorem 1) is too strong. We desire a more general test for
observable confluence.

4 Observable Confluence

4.1 Extensions

To help reduce the level of verbosity, we introduce the notion of a state extension.

7 The terminology “I-confluence” and “observable confluence” are largely interchange-
able. The latter is useful when referring to a specific invariant I.

8 Observable confluence is only strictly weaker if I �= true.
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Definition 12 (Extension). A state σ = 〈G, S, B, T , V〉 can be extended by
another state σe = 〈Ge, Se, Be, Te, Ve〉 as follows

σ ⊕ σe = 〈G  Ge, S  Se, B ∧ Be, T  Te, Ve〉

We say that σe is an extension of σ. 	


An extension σe adds some “extra” information to an existing state σ. Notice
that the variables of interest V in the original state σ are simply replaced by
variables of interest Ve from state σe. We also assume that ≈ (see Definition 5)
is the equivalence relation for extensions.

Example 2. The following equations are of the form σ ⊕ σe = σ′ where σ and σ′

are states, and σe is an extension.

〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, {q(X)}, true, ∅, ∅〉 = 〈∅, {p(X), q(X)}, true, ∅, ∅〉
〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, ∅, X = 0, ∅, ∅〉 = 〈∅, {p(X)}, X = 0, ∅, ∅〉

〈∅, {p(X)}, true, ∅, ∅〉 ⊕ 〈∅, ∅, true, ∅, {X}〉 = 〈∅, {p(X)}, true, ∅, {X}〉

The first adds a user constraint q(X) to the user store, the second adds a built-in
constraint X = 0 to the built-in store, and the third replaces the variables of
interest with the set {X}. 	


One crucial property of extensions is that they do not affect the applicability of
the CHR rewrite relation �.

Lemma 1. For all states σ and σ1 such that σ �∗ σ1, and for all extensions
σe have that σ ⊕ σe �∗ σ1 ⊕ σe.

The notions of variance and joinability depend on the variables of interest V .
Therefore we must refine the definition of extension to ensure joinability is
preserved.

Definition 13 (Valid Extension). A valid extension σe = 〈Ge, Se, Be, Te, Ve〉
of a state σ = 〈G, S, B, T , V〉 is an extension such that

v ∈ vars(G, S, B, T ) ∧ v �∈ V ⇒ v �∈ vars(Ge, Se, Be, Te, Ve)

Example 3. Consider the state σ = 〈∅, {leq(X, Y )}, X = Y, ∅, {X}〉. Then σe =
〈{leq(X, Z)}, ∅, true, ∅, {X}〉 is a valid extension of σ. However, the extension
σ′e = 〈{leq(Y, Z)}, ∅, true, ∅, {X}〉 is invalid since local variable Y is mentioned
in the extension. 	


For valid extensions, joinability is preserved.

Lemma 2. For all states σ = 〈G, S, B, T , V〉, σ1, and σ2 such that

σ �∗ σ1 and σ �∗ σ2

If σ1 ↓ σ2, then for all valid extensions σe we have that σ1 ⊕ σe ↓ σ2 ⊕ σe.
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4.2 I-Confluence

If all variables in a state σ = 〈G, S, B, T , V〉 are in V , i.e. vars(G, S, B, T ) ⊆ V ,
then all extensions are valid for σ. The ancestor state of a critical pair has
this property, thus proving I-confluence is equivalent to showing that for all
critical pairs (σA, σB) with ancestor state σCP , and all extensions σe such that
I(σCP ⊕σe) holds, then (σA ⊕σe, σB ⊕σe) are joinable. The problem is that the
set of all extensions is infinite, so we need some way of reducing the number of
extensions that we must test.

Our strategy is to define a partial order9 �σ over valid extensions that satisfy
the invariant with respect to some state σ.

Definition 14 (Partial Order). Given a state σ = 〈G, S, B, T , V〉, and valid
extensions σe1 and σe2 of σ, then we define σe1 �σ σe2 to hold if

1. there exists a valid extension σe3 of (σ⊕σe1) such that (σ⊕σe1)⊕σe3 ≈ σ⊕σe2

2. V − Ve1 ⊆ V − Ve2 holds. 	


We find that if σe1 �σ σe2, σ � σ1, and σ � σ2, then (σ1 ⊕ σe1 ↓ σ2 ⊕ σe1)
implies (σ1 ⊕ σe2 ↓ σ2 ⊕ σe2). The means that the �σ order respects joinability,
and thus reduces the number of states that must be tested in order to prove
confluence.

We define the following for notational convenience.

Definition 15. Let Σe(σ) be the set of all valid extensions of some state σ,
and let ΣIe (σ) = {σe|σe ∈ Σe(σ) ∧ I(σ ⊕ σe)} be the set of all valid extensions
satisfying the invariant I. Finally, let MI

e (σ) be the ≺σ-minimal elements of
ΣIe (σ). 	


We define the following property, which we show to be equivalent to I-local-
confluence.

Definition 16. A program P is minimal extension joinable if for all critical
pairs CP = (σ1, σ2) with ancestor state σCP , and for all σe ∈ MI

e (σCP ), we have
that (σ1 ⊕ σe, σ2 ⊕ σe) is joinable.

Lemma 3. Given that ≺σCP is well-founded for all critical pairs CP, then: P is
I-local-confluent iff P is minimal extension joinable.

For terminating programs, we invoke Newman’s Lemma [6] to show that I-local-
confluence implies I-confluence.

Theorem 2. For all I-terminating programs P , given that ≺σCP is well-founded
for all critical pairs CP, then: P is I-confluent iff P is minimal extension
joinable.

9 Although we believe that relation �σ is a partial order, we omit a formal discussion
since none of our theoretical results require it to be.
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4.3 I-Confluence Test

The standard confluence test for terminating CHR programs relies on showing
that all critical pairs are joinable. Based on Theorem 2, we can define a similar
test for the more general notion of I-confluence. Instead of testing critical pairs,
we test critical pairs CP extended by the MI

e (σCP) extension set.
For Theorem 2 to be used in practice, there are two issues that must be

resolved: (1) the order ≺σCP must be well-founded, and (2) for each critical pair
CP, the set of extensions MI

e (σCP ) must be computable.

Well-foundedness. Ordering ≺σCP is essentially a product order over the fields
in the CHR state. Thus for the G, S, T fields of a state, ≺σCP is the well-founded
subset ordering with the minimal element G = S = T = ∅. The set of variables
of interest V is ordered differently. In this case, extensions are ordered based
on the difference between V and some given reference set V0. Again, this is (a
variant of) subset ordering with the minimal element V = V0.

Where well-foundedness may be broken is the built-in store B. Indeed, for
some constraint domains, the set of extensions is not well-founded.

Example 4. Consider the constraint domain D of (in)equalities over the integers.
Consider the following sequence of extensions: σi

e = 〈∅, ∅, X < i, ∅, {X}〉. Since
for all j, k such that k > j we have that D |= X < j ↔ (X < k ∧ X < j) we
have that σj

e ≺σ σk
e holds. Since the sequence is infinite, the relation ≺σ is not

well-founded. 	

There are also important examples of constraint domains that do preserve
well-foundedness:

Proposition 1. The order ≺σ is well-founded for all σ if D is equations over
the Herbrand domain.

Proposition 2. The order ≺σ is well-founded for all σ if D is a finite domain.

We can use Proposition 2 to find a practical solution to Example 4. Instead of
considering all possible integers, we can restrict ourselves to some finite range
of integers (e.g. those representable on a 32-bit CPU). The example is now well
founded, with the minimal element 〈∅, ∅, X < 232, ∅, {X}〉.

Computability. Depending on the invariant I, the set MI
e (σCP ) may be either

undecidable or be infinite. Even if MI
e (σCP ) is decidable and finite, an algorithm

to compute it is dependent on the nature of I. The computation of MI
e (σCP ) is

therefore instance-dependent.
Despite this, in Section 5 we look at several instances for I and compute the

MI
e (σCP ) for each critical pair.

5 Examples

We use Theorem 2 to verify observable confluence under the invariants we have
seen earlier in Section 2. In addition, we verify ground confluence.
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5.1 Reachable Confluence

A naive definition of confluence states that: a program P is confluent if for all
input I, there is only one possible O such that I �∗ O. However, in [2] it was
shown that there exist non-confluent CHR programs that satisfy this alternative
definition. In this section, we reformulate the main theorem from [2] in terms of
our observable confluence results.

The key issue is the difference between reachable and unreachable states. A
reachable state is one that can be derived from some initial state (i.e. from some
initial goal).

Definition 17 (Reachability). We define the property that a state is reach-
able R(σ) as follows:

– For all initial states σi = 〈G, ∅, true, ∅, vars(G)〉 R(σi) holds; and
– If σ1 � σ2 (or σ1 ≈ σ2) and R(σ1) holds, then R(σ2) holds. 	


By definition, R(σ) is an invariant.
The naive definition of confluence is more precisely defined as R-confluence,

i.e. confluence with respect to the reachability invariant. In some systems, e.g.
in term rewriting, all states (terms) are potential initial states, and thus R-
confluence and confluence are equivalent. However, as was show in Section 2.3,
the same is not true for CHR. Our main counter-example is the following class
of CHR programs, which arise from the study of multi-parameter typeclasses
with functional dependencies [10].

Definition 18 (FD-CHR). A CHR program P is said to be in the FD-CHR
class of programs if it is of the form

r1 @ p(X1, ..., Xd, Xd+1, ..., Xr, ...), p(X1, ..., Xd, Yd+1, ..., Yr, ...) ==>
Xd+1 = Yd+1, ..., Xr = Yr.

r2 @ p(f1, ..., fn) <=> B.
r3 @ p(f1, ..., fd, Y1, ..., Yr, ...) ==> Y1 = fd+1, ..., Yr = fr.

where B is an arbitrary conjunction of built-in and user constraints, and fi are
arbitrary terms such that vars(fd+1, ..., fr) ⊆ vars(f1, ..., fd) We also require
P to be terminating. Here the indices 1..d represent the domain and indices
(d + 1)..r represent the range of the functional dependency. Also note that r is
allowed to be less than n. 	


In [2] it was shown that the FD-CHR class of programs are R-confluent, however
many instances of Definition 18 are not confluent.

Example 5 (FD-CHR). Consider the following instance of Definition 18:10

r1 @ f(A,B1,C), f(A,B2,D) ==> B1 = B2.
r2 @ f(int,bool,float) <=> true.
r3 @ f(int,B,C) ==> B = bool.

10 An informal version of this example was seen in Section 2.3.
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Consider the critical pair (σ1, σ2) between rules r1 and r2:

σCP = 〈∅, {f(int, bool, f loat), f(int, B2, D)}, true, {t}, {B2, D}〉
σ1 = 〈{bool = B2}, {f(int, bool, f loat), f(int, B2, D)}, true, ∅, {B2, D}〉
σ2 = 〈∅, {f(int, B2, D)}, true, {t}, {B2, D}〉

where t is the token (r1@f(int, bool, f loat), f(int, B2, D)). The final states de-
rived from σ1 and σ2 are:

σ1 �∗ 〈∅, {f(int, bool, D)}, B2 = bool, ∅, {B2, D}〉
σ2 �∗ 〈∅, {f(int, B2, D)}, true, {t}, {B2, D}〉

These states are not variants. In the final state for σ1, the variable B2 is con-
strained to bool, but this is not the case for the final state for σ2. Thus the
critical pair is not joinable, and the program is not confluent. 	


State σCP is not reachable, since the lack of a token (r3@f(int, B2, D)) suggests
rule r3 has already fired on constraint f(int, B2, D). If that rule did fire, then
we would expect the built-in store to entail B2 = bool, which is not the case.

Thus, we consider the minimal set of extensions that make σCP reachable.
This set is:

MR
e (σCP ) ={〈∅, ∅, true, {(r3@f(int, B2, D))}, V〉, 〈{B2 = bool}, ∅, true, ∅, V〉,

〈∅, ∅, B2 = bool, ∅, V〉}

It is easy to verify that for all σe ∈ MR
e (σCP) we have that σ1 ⊕σe ↓ σ2 ⊕σe. We

can verify similar results for all other critical pairs in P , and thus, by Theorem 2,
program P is R-confluent.

We can generalise this basic approach, and restate the main theorem from [2].

Corollary 1. All programs P ∈FD-CHR are R-confluent.

The alternative proof for Corollary 1 in [2] relied on showing that all programs
P ∈FD-CHR were related to a class of confluent programs, and that the relation
was sufficient to show R-confluence. In this paper, the proof relies on Theorem 2,
and thus is a far more direct proof of R-confluence.

5.2 Simple Confluence

It is common for programmers to implement non-confluent CHR programs that
are well behaved for some certain input. For example, the union-find program [8]
(also see Section 2.2) is non-confluent, however it is well behaved provided the
initial goal satisfies some certain conditions.

Let I be an invariant that simply excludes non-joinable critical pairs from
consideration, then P is always I-confluent. We define this as simple confluence.
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Corollary 2 (Simple Confluence). Given an invariant I and an I-terminat-
ing program P such that ≺σ is well-founded for all σ, then P is I-confluent if
for all critical pairs CP = (σ1, σ2), either:

1. I(σCP ) holds, and σ1 ↓ σ2; or
2. For all extensions σe we have that I(σCP ⊕ σe) does not hold.

Via the above corollary and the blocks world invariant B from Example 1,
we can straightforwardly verify B-confluence of the blocks world program from
Section 2.1. Similarly, we can verify observable confluence of the union-find al-
gorithm in Section 2.2.

5.3 Ground Confluence

A state σ is ground, i.e. G(σ) holds, if all variables vars(σ) are constrained to
be one value by the built-in store B of σ. Groundness is an invariant for range
restricted11 CHR programs. Typically, the critical pair between two rules is not
ground, however we can invoke Theorem 2 to show G-confluence.

Corollary 3 (Ground Confluence). Given a G-terminating, range restricted
program P such that ≺σ is well-founded for all σ, then P is G-confluent if for all
critical pairs CP = (σ1, σ2) we have that (σ1 ⊕ σe) ↓ (σ2 ⊕ σe) for all extensions
σe ∈ M(σCP ) where:

M(σCP) = {〈∅, ∅, X0 = d0 ∧ ... ∧ Xn = dm, ∅, VCP〉 |
{X0, ..., Xn} = vars(σCP ), di ∈ D}

If D is an finite set, then M(σCP) can be computed.

Example 6. Consider the following CHR program over the Boolean domain.

p(X,Y) <=> not(X,Y). xor(0,0,Z) <=> Z = 0.
p(X,Y) <=> xor(1,X,Y). xor(0,1,Z) <=> Z = 1.
not(0,Y) <=> Y = 1. xor(1,0,Z) <=> Z = 1.
not(1,Y) <=> Y = 0. xor(1,1,Z) <=> Z = 0.

The critical state σCP = 〈∅, {p(X, Y )}, true, ∅, {X, Y }〉 between the first two
rules is non-joinable, hence the program is non-confluent. Clearly G(σCP ) does
not hold, thus we evaluate M(σCP):

M(σCP) = {〈∅, ∅, X = 0 ∧ Y = 0, ∅, {X, Y }〉, 〈∅, ∅, X = 0 ∧ Y = 1, ∅, {X, Y }〉,
〈∅, ∅, X = 1 ∧ Y = 0, ∅, {X, Y }〉, 〈∅, ∅, X = 1 ∧ Y = 1, ∅, {X, Y }〉}

For each of these extensions, the critical pair is joinable, and thus P is
G-confluent. 	

11 A CHR program is range restricted if vars(H1\H2 ⇐⇒ G|B) = vars(H1 ∧ H2) for

all rules.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Observable Confluence for Constraint Handling Rules 239

6 Conclusion

We have shown that many non-confluent CHR programs are in fact observably
confluent in practice, and have presented a method for proving the observable
confluence of programs with respect to invariants. Furthermore, we have spe-
cialised our results for some common cases, such as simple confluence and ground
confluence.

To the best of our knowledge, we are the first to study observable confluence
in the context of a rule-based language. However, the notion of observable con-
fluence could easily be extended to other areas, such as term rewriting, which is
something we intend to investigate in the future.
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Abstract. In this paper we show it is possible to embed graph trans-
formation systems (GTS) soundly and completely in constraint handling
rules (CHR). We suggest an encoding for the graph production rules and
we investigate its soundness and completeness by ensuring equivalence
of rule applicability and results. We furthermore compare the notion of
confluence in both systems and show how to adjust a standard CHR
confluence check to work for an embedded GTS.

1 Introduction

Constraint handling rules (CHR) [1] allow for rapid prototyping of constraint-
based algorithms. Besides constraint reasoning, CHR have been used for various
tasks including theorem proving, parsing, and multi-set rewriting. In this work
we show that CHR also provide the means for concise implementations of graph
transformations.

Graph transformation systems are used to describe complex structures and
systems in a concise, readable, and easily understandable way. They have ap-
plications ranging from implementations of programming languages over model
transformations to graph based models of computation [2,3,4]. The principal
idea of a graph transformation is to apply a production rule to a graph. A part
of the so-called host graph has to be matched to the rule and is then modified
accordingly.

While there are several specialized tools available for performing graph trans-
formations, it is usually cumbersome to combine them with general-purpose
programming languages. Following the tradition of using CHR for rapid proto-
typing, we investigate the necessities for implementing a graph transformation
system with CHR. We show that CHR are indeed a suitable choice for proto-
typing graph transformations, as every rule of a graph transformation system
can be directly and intuitively translated into a corresponding CHR rule already
yielding an executable graph transformation system. No effort has to be invested
into creating an underlying transformation engine, as the CHR implementation
in combination with an advantageous encoding of the rules is sufficient.

In order to arrive at an intuitive and concise encoding of graph production
rules with CHR, we make restrictions to the graph transformation systems. These
restrictions consist in requiring injective matchings and inclusions in the graph
production rules. However, these are common restrictions often found in practical
applications of graph transformation systems [4,5].

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 240–254, 2007.
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From a theoretical point of view we investigate the soundness and complete-
ness of our proposed encoding by ensuring equivalence of applicability and re-
sults. Thus we ensure that such a CHR rule is applicable if and only if the
corresponding graph production rule is applicable. We further show that apply-
ing a constraint handling rule in this context results in a state encoding the
graph obtained by applying the corresponding graph production rule in a graph
transformation system and vice versa.

Finally, we compare the notion of confluence in both systems. We particularly
concentrate on the investigation of critical pairs which is the basis of confluence
checking. A slightly changed definition of CHR confluence is presented that al-
lows the application of existing confluence checkers to a graph transformation
system embedded in CHR.

This work is divided into six sections: We begin with the introduction of
the necessary notions of graph transformation systems and CHR in Section 2.
Section 3 then presents our proposed encoding of a GTS in CHR, the properties
of which we analyze in Section 4. Section 5 compares the notion of confluence in
both systems before we conclude in Section 6.

2 Preliminaries

In this section we introduce the required formalisms for graph transformation
systems and constraint handling rules.

2.1 Graph Transformation System (GTS)

The following definitions for graphs and graph transformation systems have been
adapted from [2].

Definition 1 (type graph, typed graph). A graph G = (V, E, src, tgt) con-
sists of a set V of nodes, a set E of edges and two morphisms src, tgt : E → V
specifying source and target of an edge, respectively. A type graph TG is a graph
with unique labels for all nodes and edges.

For the purpose of simplicity, we avoid an additional label morphism in favor
of identifying variable names with their labels. For multiple graphs we refer to
the node set V of a graph G as VG and analogously for edge sets and the src, tgt
morphisms. We further define the degree of a node as deg : V → N, v �→ #{e ∈
E | src(e) = v} + #{e ∈ E | tgt(e) = v}.

A typed graph G is a tuple (V, E, src, tgt, type, TG) where (V, E, src, tgt) is a
graph, TG a type graph, and type a morphism with type = (typeV , typeE) and
typeV : V → TGV , typeE : E → TGE. The type morphism is a graph morphism,
therefore it has to satisfy the following condition: ∀e ∈ E : typeV (src(e)) =
srcTG(typeE(e)) ∧ typeV (tgt(e)) = tgtTG(typeE(e)).

Example 1. Figure 1 shows an example for a type graph and a corresponding
typed graph. The type graph is used to define two types of nodes: processes and
resources. Furthermore it allows use edges going from processes to resources.
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The typed graph is one possible instance of a graph modelling processes and
resources being used by those processes. The type morphism is represented by
the dotted lines, showing how the nodes are typed as processes or resources,
respectively.

type graph

use

typed graph

type morphism

Process Resource

Fig. 1. Type graph and typed graph

Definition 2 (GTS, rule). A Graph Transformation System (GTS) is a tuple
consisting of a type graph and a set of graph production rules. A graph production
rule – also simply called rule if the context is clear – is a tuple p = (L l← K

r→
R) of graphs with inclusion morphisms l : K → L and r : K → R.

We distinguish two kinds of typed graphs: rule graphs and host graphs. Rule
graphs are the graphs L, K, R of a graph production rule p and host graphs
are graphs to which the graph production rules can be applied. We furthermore
make use of graph transformations based on the double-pushout approach as
defined in [2]. Most notably, we require a so-called match morphism m : L → G
to apply a rule p to a typed host graph G. The transformation yielding the typed
graph H is written as G

p,m
=⇒ H . For our work, we restrict the possible match

morphisms to injective morphisms which is a common restriction [4,5].
A graph production rule p can only be applied to a host graph G if the

gluing condition [2] is satisfied, which in our case of injective match morphisms
is simplified such that p can be applied as long as there are no dangling edges.
Section 3.1 explains the notion of dangling edges and how they are handled in
our encoding.

As an example, we provide an implementation for recognizing cyclic lists,
which is presented in [4].

Example 2. The GTS for recognizing cyclic lists consists of two rules depicted
in Figure 2. The rule unlink shortens a list consisting of three linearly connected
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1 2 1 2 1 2

L

L
1 1 1

unlink:

twoloop:

K R

K R

Fig. 2. Graph transformation system for recognizing cyclic lists

nodes by removing the intermediate node. For a cyclic list, this rule can be
applied up to the point where only two nodes are left. In that case, the rule
twoloop transforms those two nodes into the graph consisting of a single node
with a loop. See [4] for a more thorough discussion of this example.

Note that we use a shorthand notation in Figure 2 which only shows the
morphisms l and r implicitly by the labels of the nodes which are mapped onto
each other. Nodes and edges which are removed or added in the graphs L or R
are not labelled, as there is no node or edge in K which is mapped to them.

2.2 Constraint Handling Rules (CHR)

This section presents the syntax and operational semantics of Constraint Han-
dling Rules [1,6]. Constraints are first-order predicates which we separate into
built-in constraints and user-defined constraints. Built-in constraints are pro-
vided by the constraint solver while user-defined constraints are defined by a
CHR program. For our purpose we only need a subset of CHR, namely simpli-
fication rules. Simplification rules are of the form

Rulename @ H1, . . . , Hi ⇔ G1, . . . , Gj | B1, . . . , Bk

where Rulename is a unique identifier of a rule, the head H = H1, . . . , Hi is a
non-empty conjunction of user-defined constraints, the guard G = G1, . . . , Gj is a
conjunction of built-in constraints and the body B = B1, . . . , Bk is a conjunction
of built-in and user-defined constraints.

The operational semantics of a simplification rule is based on an underlying
constraint theory CT for the built-in constraints and a state, which is a pair
〈G, C〉 where G is a goal, i.e. a conjunction of user-defined and built-in con-
straints, and C is a (built-in) constraint [6]. A simplification rule of the form
H ⇔ G | B is applicable to a state 〈E ∧ G, C〉 if CT |= ∀(C → ∃x(H .= E ∧ G))
where x are the variables in H . We define the following state transition for the
application: 〈E ∧ G, C〉 �→ 〈B ∧ G, (H .= E) ∧ C ∧ G〉.

For the remainder of this work, we can further restrict these rules, as there is
no need for the guard constraints, such that a CHR simplification rule is simply
of the form

Rulename @ H ⇔ B.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



244 F. Raiser

3 Representation of Graphs in CHR

In order to embed a GTS in CHR, we have to encode the available graph produc-
tion rules as simplification rules and provide a conjunction of goal constraints
corresponding to the host graph. To this end we provide a bijective correspon-
dence between graphs and their representation through CHR constraints given
by the following constructions.

At first we have to find out what constraints will be needed for encoding the
rules and host graph. At this point we require the GTS to be typed, as we can
directly defer the necessary constraints from the corresponding type graph as
explained in Definition 3. Note that this is a very weak restriction though, as
every untyped graph can be typed over the trivial type graph consisting of a
single node with a loop.

Definition 3 (type graph encoding). For a type graph TG we define the
following constraints to encode graphs typed over TG:

– Introduce a constraint degree /2.
– ∀v ∈ VTG introduce a constraint v/1.
– ∀e ∈ ETG introduce a constraint e/3.

We assume all nodes and edges of the type graph TG to be uniquely labelled
such that the introduced constraints have unique names as well. The degree /2
constraint is a special constraint we require to be able to check for dangling
edges as is explained in Section 3.1.

Definition 4 (typed graph encoding). A typed graph G based on a type
graph TG is encoded with constraints as follows:

– ∀v ∈ VG with type(v) = t add the constraint t(T ) with T being a new variable.
– ∀e ∈ EG with type(e) = t, src(e) = v1, tgt(e) = v2, type(v1) = t′, type(v2) =

t′′ and previously created constraints t′(T 1), t′′(T 2) add another constraint
t(E, T 1, T 2) with E being a new variable.

– If G is a typed host graph the node degrees are known and thus ∀v ∈ VG with
deg(v) = k, type(v) = t which add t(T ) we also add degree(T, k).

A typed rule graph G encoded like this is denoted as encode(G).

Example 3 (cont). For our example of the GTS for recognizing cyclic lists we
assume the trivial type graph consisting only of a node and a loop. There-
fore every node in the typed graph has the same type, just like every edge has
the same type. Based on this type graph we need the following constraints:
degree /2, node/1, edge/3.

A host graph which contains a simple cyclic list consisting of exactly two
nodes is encoded as follows:
node(N1) ∧ node(N2) ∧ edge(E1, N1, N2) ∧ edge(E2, N2, N1) ∧ degree(N1, 2) ∧
degree(N2, 2).
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We can now encode a complete graph production rule based on these definitions.
There are several possible ways to do this in CHR. However, we restrict ourselves
to a single simplification rule here, as it is a very intuitive encoding which is
useful in the upcoming proofs. The remaining results of this paper can also be
transferred to different CHR representations like a simpagation rule approach.

Definition 5 (GTS rule in CHR). A graph production rule p = (L l← K
r→

R) from a GTS is translated into a CHR simplification rule of the form p @ H ⇔
B with H, B being conjunctions of constraints as follows:

– H = encode(L) ∧ D1
– B = encode(R) ∧ D2
– D1 and D2 being conjunctions of degree constraints as follows:

• ∀v ∈ L \ K with deg(v) = k, type(v) = t, and t(T ) ∈ encode(L) we have
degree(T, k) ∈ D1.

• ∀v ∈ K let n = #{e ∈ EL | src(e) = v ∨ tgt(e) = v}, m = #{e ∈
ER | src(e) = v ∨ tgt(e) = v}, type(v) = t, t(T ) ∈ encode(K) then
degree(T, D) ∈ D1 with D being an unused variable. Further add the
constraint degree(T, D+m−n) ∈ D2.

• ∀v ∈ R \ K with deg(v) = k, type(v) = t, and t(T ) ∈ encode(R) let
degree(T, k) ∈ D2.

We further require the encoding of K found in encode(L) and encode(R) to
share the same variables for the same nodes and edges as this implicitly models
the inclusion morphisms analogously to the way we use node labels in Figure 2.

A rule encoded like this is denoted as code(p).

Example 4 (cont). As an example, consider the second rule from our example
GTS, which reduces two cyclic nodes to a single node with a loop. Its encoding
as a CHR simplification rule is given below:

twoloop @ node(N1), node(N2),
edge(E1, N1, N2), edge(E2, N2, N1),
degree(N2, 2), degree(N1, D1)
⇔
node(N1), edge(E, N1, N1),
degree(N1, D1+2−2).

3.1 On Dangling Edges

A graph production rule can only be applied to a host graph when it is guaran-
teed that the result is consistent. While in the most general case of graph trans-
formations there also exists an identification problem [2], our injective matchings
allow for only one kind of inconsistency: When a node gets deleted by a rule, the
corresponding node in the host graph may have edges adjacent to it which are
not explicitly given in the rule. In such a case, the remaining edge would be left
dangling as it is no longer adjacent to two nodes. Therefore this situation has to
be avoided and before a rule is applied to a host graph, we first have to ensure
that there are no dangling edges according to the following definition:
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Definition 6 (dangling edge). A dangling edge is an edge e ∈ EG \ m(EL)
such that there is a node v ∈ VL \ VK with m(v) = src(e) ∨ m(v) = tgt(e).

The degree /2 constraints introduced earlier are our means of detecting dangling
edges: Let e ∈ EG be a dangling edge which is adjacent to vG ∈ VG, such that for
v ∈ VL \ VK : m(v) = vG. Due to Definition 5, the corresponding rule includes
a degree(T, k) constraint for the node v with k = deg(v). This means that there
are k edges adjacent to the node v in the rule graph. When matching this rule
graph injectively to the host graph G we need to identify each of these edges
with an edge in EG adjacent to m(v) = vG. By the definition of a dangling edge,
the edge e is not among those k edges as e ∈ EG \ m(EL). Therefore, we have
deg(vG) > k. As G is a host graph and thus the degrees of nodes are known,
there is a corresponding degree(T ′, l) constraint with l > k for the node vG.
Here it can be seen clearly that a match between degree(T ′, l) and degree(T, k)
is impossible due to l > k and therefore the rule will not be applied as the
dangling edge condition is violated.

Note that this check is only relevant to nodes which get removed by the
graph production rule. If a node is in VK , a dangling edge is not possible and
thus for those nodes the rule contains degree(T, D) constraints which can always
be matched due to D being a variable.

Example 5 (cont). Consider the twoloop rule given in Example 4 along with the
following encoded host graph:

node(A)∧node(B)∧node(C)∧edge(E1, A, B)∧edge(E2, B, A)∧edge(E3, B, C)∧
degree(A, 2) ∧ degree(B, 3) ∧ degree(C, 1)

Applying the twoloop rule to this graph to remove the node B would leave the
edge E3 going from B to C dangling. However, this is avoided as the encoding
of the twoloop rule contains the following constraint in its head: degree(N2, 2).
Only a node with a degree of exactly 2 can thus be removed by this rule, which
rules out that the node B in the above host graph is removed. Nevertheless, the
rule can be applied with N2

.= A as the node A has the necessary degree of 2.

3.2 Runtime Performance

After embedding graph transformations in CHR we are interested in the runtime
performance needed to execute these transformations. In general the perfomance
of a CHR program is determined by the time needed to find an applicable rule
and the time needed to apply that rule.

As we have a one-to-one correspondence of CHR rules and graph transfor-
mation rules we know that executing D graph transformation steps is equal
to applying D CHR rules in the corresponding CHR program. Given a host
graph G = (V, E, src, tgt) its encoding in CHR corresponding to Definition 4
uses 2|V | + |E| constraints. In general the search for an applicable rule needs to
consider all possible combinations of these constraints for all constraints appear-
ing in the head of a rule. Using the upper bound from [7] we get the runtime
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complexity as O(D ·
∑

i

cni
max · (OHi +OGi)+(OCi +OBi)) where the sum iterates

over all rules of the program, cmax is the maximal number of constraints present
at any time during the computation, ni is the number of head constraints in rule
i, OHi is the time needed to unify the chosen goal constraints with the head con-
straints, OGi is the time needed to verify the guard of the rule, OCi is the time
needed for adding the constraints on the right-hand side of the rule, and OBi is
the time needed to remove the constraints on the left-hand side of the rule.

Note that in our embedding, CHR rules corresponding to graph transforma-
tion rules require no guards and thus OGi = 0∀i. Furthermore the time needed
to add and remove constraints can be considered constant. For a worst-case
analysis we can furthermore replace ni with the n = nj of the rule j with
the maximal number of head constraints. This yields a runtime complexity of
O(D ·

∑

i

cn
max ·OHi). The time required for unification with the head constraints

can also be approximated by the rule with the largest number of head constraints.
With m being the number of rules in the program we then get the complexity
O(D · m · cn

max · OHn).
Better bounds can be deferred by taking a closer look at the embedded GTS.

For example if all rules have the property of not extending the graph’s size,
i.e. rules remove more edges and nodes than adding them, then the number
of constraints is bounded by the number c0 of initial constraints which encode
the original host graph. Therefore the bound for such a GTS is O(D · m · cn

0 ·
OHn). Also note that actual CHR implementations use sophisticated methods
to determine constraints for rule applications and thus the actual runtime may
be considerably less.

Example 6. Consider the example GTS for recognizing cyclic lists from Figure 2.
As it contains two rules which both remove a node and reduce the number of
edges by one it is clear that the number of goal constraints monotonly decreases
during execution. Therefore cmax = c0 = 2|V | + |E|, i.e. the maximal number of
constraints in a computation is bounded by the original host graph’s encoding.
Furthermore the number of rule applications is restricted by the number of
nodes in the host graph, such that D = |V |. And as the two CHR rules are
known we get m = 2 and n = max

i
ni = max{8, 6} = 8. Therefore runtime

complexity is bounded by: O(|V | · m · (c0)8 · OH1). As c0 = 2|V | + |E| can be
approximated by |V |2 we get O(2|V | · (|V |2)8 ·OH1) = O(|V |17 ·OH1). Note that
this is a crude approximation and in practical settings runtime is much better
depending on the chosen CHR implementation. Depending on the introduction
order of the constraints, the GTS for recognizing cyclic lists can even execute
with linear complexity.

4 Soundness and Completeness

After introducing our encoding for a GTS in CHR, we now investigate the prop-
erties of this encoding. First of all, we show that the CHR rules created for
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a graph production rule are applicable if and only if the corresponding graph
production rule is applicable. For a GTS one of the applicable rules is chosen
nondeterministically. We get this exact behavior when using the standard se-
mantics of CHR.

Lemma 1 (CHR applicability). If code(p) is applicable, so is the correspond-
ing graph production rule p = (L l← K

r→ R) .

Proof. If the CHR rule is applicable, then there exist matching constraints for H
in the goal store. As no functions are used for the constraints in the goal store
the matching only requires substitutions of the form [T/c] or [T/T ′] for variables
T, T ′ and constant c.

This CHR matching implies a match morphism m for the graph production
rule: Every node v ∈ VL (resp. edge e ∈ EL) is represented as a constraint in
H and there is a matching constraint C′ which corresponds to a node v′ ∈ VG

(resp. edge e′ ∈ EG) such that we can define m(v) = v′ (resp. m(e) = e′). Due to
the multi-set semantics of CHR, different nodes in VG are encoded by different
constraints and no single constraint can be matched to multiple head constraints.
This property of CHR guarantees that m is injective.

It remains to be shown that there are no dangling edges. Let us therefore
assume that there is a dangling edge, i.e. there exists an edge e ∈ EG \ m(EL)
with src(e) = m(v) ∨ tgt(e) = m(v) for a v ∈ L \ K.

As v ∈ L \ K, a constraint degree(T, k) is present in H according to Def. 5.
Due to the CHR rule being applicable, this requires a matching constraint in the
goal store. Therefore the node m(v) has degree k as well. Due to m being an
injective graph morphism, however, every edge adjacent to v is mapped to an
edge adjacent to m(v). Therefore the dangling edge e cannot exist. ��

Lemma 2 (graph rule applicability). If p = (L l← K
r→ R) is applicable, so

is code(p).

Proof. Let m be the injective match morphism for the application of the graph
production rule. Then ∀v ∈ VL with type(v) = t there is a constraint t(T ) in H.
As m is a graph morphism, we have that type(m(v)) = t and thus a constraint
t(T ′) exists in the goal store corresponding to the node m(v). The CHR rule is
therefore applicable through a match with [T/T ′].

∀e ∈ EL with src(e) = vs, tgt(e) = vt, type(e) = te, type(vs) = ts, type(vt) =
tt we have the following CHR rules in the conjunction H: ts(T1), tt(T2), and
te(E, T1, T2). Due to m being a graph morphism, there exist corresponding con-
straints ts(T ′1), tt(T ′2) for the nodes v1 = m(vs), v2 = m(vt) in the goal. There
further exists an edge e′ with src(e′) = m(vs), tgt(e′) = m(vt), type(e′) = te
which is represented by a constraint te(E′, T ′1, T ′2). As discussed above, we al-
ready have [T1/T ′1][T2/T ′2], so we can extend this to [T1/T ′1][T2/T ′2][E/E′] for a
CHR match.

It remains to be shown that there is a match for the degree /2 constraints
occurring in H:
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Case 1: a constraint of the form degree(T, D) with [T/T ′] is always matchable, as
the degree constraint corresponding to the node represented by T ′ is guaranteed
to be available in the goal store.

Case 2: degree(T, k) with [T/T ′]: Analogous to case 1, there exists a constraint
degree(T ′, l) in the goal store. k > l is a contradiction to m being an injective
graph morphism. k < l implies an edge e′ �∈ m(EL). However constraints of the
form degree(T, k) are added only for nodes which are removed by the production
rule and thus this is a dangling edge which contradicts the initial applicability
of the graph production rule. Therefore k = l, which allows a CHR matching
through [T/T ′]. ��

Theorem 1 (applicability). A graph production rule p = (L l← K
r→ R) is ap-

plicable to a typed host graph G if and only if code(p) is applicable to encode(G).

Proof. This is immediate from the combination of Lemma 1 and Lemma 2. ��

Theorem 2 (soundness and completeness). Given a typed host graph G

and encode(G), a graph production rule p = (L l← K
r→ R) represented by

code(p) = H ⇔ B, and a match m : L → G the following transitions are
equivalent:

– G
p,m
=⇒ G̃

– 〈encode(G), true〉 �→ 〈encode(G̃), true〉 by applying code(p).

Proof. “⇒”: According to the proof of Lemma 2, the match m implies a match
for applying code(p). We now show that the construction of G

p,m⇒ G̃ is analogous
to the application of the CHR rule code(p):

First the nodes and edges in m(L) get deleted from G, but nodes and edges in
m(l(K)) = m(K) (l is an inclusion) are kept. For the CHR rule application, all
constraints in the goal matched in H are removed. As H contains constraints
encoding all nodes and edges of L we successfully remove nodes and edges in
m(L). Next we add nodes and edges in R \ r(K). For the CHR rule application,
the constraints in B are added. This adds constraints encoding all nodes and
edges of R taking into account the substitutions made for matching H. As r is
an inclusion, all nodes and edges in K are also encoded in encode(R) and are
added to the result. We therefore keep the constraints encoding m(K) despite
temporarily removing them. We showed, that all nodes and edges present in G̃
are also contained in the modified goal store after the CHR rule application.

It remains to be shown that also the degree /2 constraints remain consistent
such that the CHR rule application indeed results in encode(G̃) being added to
the goal store.

We note that for nodes v ∈ L \ K – i.e. nodes which are removed by the rule
application – we only have a degree constraint in H which also gets removed.
Let now n, m as given in Def. 5 for a v ∈ K. There is a corresponding constraint
degree(T, D) in H. For the node v the application of the graph production rule
replaces n edges by m edges. Edges which are adjacent to m(v), but are not in
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m(L) remain unchanged. Therefore, the graph production rule changes the degree
of m(v) by m−n. The constraint degree(T, D+m−n) in B directly encodes this
change, thus giving us a consistent degree encoding for nodes v ∈ K. Finally
for nodes in v ∈ R \ K which are newly added by the graph production rule
we explicitly add a degree constraint to B with the correct degree according to
Def. 5.

“⇐”: According to the proof of Lemma 1, the CHR match involved in the
application of code(p) implies a match morphism m. We can therefore argue
analogously to the above by decomposing the effects of the CHR rule application
into constraints which are removed and added. By combining this with the match
morphism m, we can similarly show that the correct nodes and edges are removed
and added when applied to the graph transformations and that the degree con-
straints remain consistent. ��

5 Confluence

Both graph transformation systems and constraint handling rules provide the
notion of a confluence property. This property guarantees that any derivation
made for an initial state results in the same final state no matter which applica-
ble rules are applied. This section introduces the necessary definitions used for
GTS and CHR confluence before comparing the two notions. It is shown how
confluence checking in CHR can be adjusted to check the confluence property of
a GTS encoded in CHR.

5.1 Preliminaries

Definition 7 (GTS confluence). A GTS is called confluent if, for all typed
graph transformations G

∗⇒ H1 and G
∗⇒ H2, there is a typed graph X together

with typed graph transformations H1
∗⇒ X and H2

∗⇒ X. Local confluence means
that this property holds for all pairs of direct typed graph transformations G ⇒
H1 and G ⇒ H2. [2]

A general result for rewriting systems is that it is sufficient to consider local
confluence for terminating graph transformation systems. To verify local conflu-
ence we particularly need to study critical pairs and their joinability, according
to this definition based on [2]:

Definition 8 (critical GTS pair). A pair P1
r1,m1⇐= K

r2,m2=⇒ P2 of direct typed
graph transformations is called a critical GTS pair if it is parallel dependent,
and minimal in the sense that the pair (m1, m2) of matches m1 : L1 → K and
m2 : L2 → K is jointly surjective.

A pair P1
r1,m1⇐= K

r2,m2=⇒ P2 of direct typed graph transformations is called
parallel independent if m1(L1) ∩ m2(L2) ⊆ m1(K1) ∩ m2(K2), otherwise it is
called parallel dependent.

A critical GTS pair P1
r1,m1⇐= K

r2,m2=⇒ P2 is called joinable if there exists a typed
graph K ′ together with typed graph transformations P1

∗=⇒ K ′ and P2
∗=⇒ K ′.
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A similar notion of confluence has been developed for CHR [6]:

Definition 9 (CHR confluence). A CHR program is called confluent if for
all states S, S1, and S2: If S �→∗ S1 and S �→∗ S2, then S1 and S2 are joinable.
Two states S1 and S2 are called joinable if there exist states T1 and T2 such that
S1 �→∗ T1 and S2 �→∗ T2 and T1 and T2 are variants.

Analogous to a GTS, the confluence property for terminating CHR programs is
determined by local confluence which can be checked through critical pairs:

Definition 10 (critical CHR pair). Let R1 be a simplification rule and R2
be a (not necessarily different) rule whose variables have been renamed apart.
Let Hi ∧ Ai be the head and Gi be the guard of rule Ri(i = 1, 2), then a critical
ancestor state of R1 and R2 is

〈H1 ∧ A1 ∧ H2, (A1
.= A2) ∧ G1 ∧ G2〉,

provided A1 and A2 are non-empty conjunctions and CT |= ∃((A1
.= A2) ∧G1 ∧

G2).
Let S be a critical ancestor state of R1 and R2. If S �→ S1 using rule R1 and

S �→ S2 using rule R2, then the tuple (S1, S2) is a critical CHR pair of R1 and
R2. A critical CHR pair (S1, S2) is joinable if S1 and S2 are joinable.

5.2 Critical Pair Properties

After defining the different notions of confluence we now further investigate the
difference between critical GTS pairs and critical CHR pairs for CHR programs
encoding a GTS.

Lemma 3. If P1
p1,m1⇐= G

p2,m2=⇒ P2 is a critical GTS pair, then there exists
a conjunction of built-in constraints C such that 〈encode(G), �〉 is a critical
ancestor state for the critical CHR pair (〈encode(P1), C〉, 〈encode(P2), C〉).

Proof. Theorem 1 guarantees that code(P1) and code(P2) are applicable to the
critical ancestor state.

As m1, m2 are jointly surjective we know that all constraints in encode(G) are
required for applying code(P1) and code(P2), i.e. there are no redundant con-
straints. We further know that there exist one or more constraints in encode(G)
which are required for both rule applications, as otherwise m1(L1) ∩ m2(L2) = ∅
which is a contradiction to the critical GTS pair being parallel dependent. Let A
be the conjunction consisting of all these constraints which are required for both
rule applications.

As code(P1) and code(P2) are applicable, there are corresponding constraints
A1 and A2 in the heads of those rules which are matched to A in a rule ap-
plication. Let the heads of these rules be separated into H1 ∧ A1 and H2 ∧ A2.
The match morphisms imply the existence of constraints H ′1, H

′
2 in encode(G)

for all constraints in H1 and H2, respectively. These constraints have to be dif-
ferent from A for the rules to be applicable and they are disjoint because of
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the maximality of A. Due to the minimality of G, there are no further con-
straints in encode(G), therefore encode(G) = H ′1 ∧ A ∧ H ′2. 〈encode(G), �〉 is
therefore a critical ancestor state. As code(P1) and code(P2) are both applica-
ble to it, there is the corresponding critical pair: (〈encode(P1), A

.= A1 ∧ A
.=

A2〉, 〈encode(P2), A
.= A1 ∧ A

.= A2〉) ��

Corollary 1. If the CHR program for a terminating GTS is confluent, then all
critical GTS pairs are joinable.

Proof. As every critical GTS pair has a corresponding critical CHR pair and all
critical CHR pairs are joinable, we know by the completeness property that the
critical GTS pairs are also joinable. ��

Due to Corollary 1, existing confluence checkers for CHR can be used to inves-
tigate confluence of a GTS encoded in CHR. Confluence of the CHR program
is a sufficient condition for confluence of the corresponding GTS however, as
can be seen in the example below, there are cases in which the CHR program
may not be confluent although the corresponding GTS is confluent. Similarly, if
we try to transfer the confluence property of a GTS to the corresponding CHR
program, we cannot succeed as in general there are too many critical CHR pairs
which could cause the CHR program to be non-confluent. To improve upon this
situation, we therefore introduce a weaker kind of confluence:

Definition 11 (weak confluence, valid state). A CHR program is called
weak confluent if for all valid states S and states S1 and S2: If S �→∗ S1 and
S �→∗ S2, then S1 and S2 are joinable.

A state S = 〈G′, C〉 is called valid if there exists a graph G such that G′ =
encode(G).

Note that especially states which encode the same node of a graph with multiple
node constraints or provide multiple degree constraints for the same node are
invalid states. Example 7 includes a selection of such invalid states.

Using Definition 11 we can now investigate confluence for a CHR program
corresponding to a confluent GTS:

Lemma 4. If all critical GTS pairs are joinable, the corresponding CHR pro-
gram is weak confluent.

Proof. Let S = 〈encode(G), C〉 be a valid critical ancestor state. If the critical
CHR pair resulting from S corresponds to a critical GTS pair, it is also joinable
due to Theorem 2.

Let S be a valid critical ancestor state for which the resulting critical CHR pair
does not correspond to a critical GTS pair. By definition of the critical ancestor
state, we know that two rules code(r1) and code(r2) are applicable and by Theo-
rem 1 r1 and r2 are applicable to G, giving us the corresponding non-critical GTS
pair P1

r1,m1⇐= G
r2,m2=⇒ P2. As S does not contain redundant constraints we know

that m1 and m2 are jointly surjective. Thus this GTS pair has to be parallel inde-
pendent as this is the only way for it to not be a critical GTS pair. If it is parallel

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Graph Transformation Systems in CHR 253

independent however, we know that there exists P such that P1
r2,m′

2=⇒ P
r1,m′

1⇐= P2
and due to the previous soundness result this implies joinability for the critical
CHR pair. ��

Example 7. Consider a graph production rule for removing a loop from a node
and its corresponding constraint handling rule:

R@ node(N), edge(E, N, N), degree(N, D) ⇔ node(N), degree(N, D − 2)

For investigating confluence one must overlap this rule with itself which yields
the following seven critical CHR ancestor states:

1. 〈node(N) ∧ edge(E, N, N) ∧ degree(N, D), �〉
2. 〈node(N) ∧ edge(E, N, N) ∧ degree(N, D) ∧ degree(N, D′), �〉
3. 〈node(N) ∧ edge(E, N, N) ∧ edge(E′, N, N) ∧ degree(N, D), �〉
4. 〈node(N) ∧ node(N ′) ∧ edge(E, N, N) ∧ degree(N, D), �〉
5. 〈node(N)∧edge(E, N, N)∧edge(E′, N, N)∧degree(N, D)∧degree(N, D′), �〉
6. 〈node(N) ∧ node(N ′) ∧ edge(E, N, N) ∧ degree(N, D) ∧ degree(N, D′), �〉
7. 〈node(N) ∧ node(N ′) ∧ edge(E, N, N) ∧ edge(E′, N, N) ∧ degree(N, D), �〉

States 2 and 4–7 are invalid states as they have multiple encodings of the same
node or multiple degree encodings of a node. State 1 is the encoding of the
corresponding critical pair for the graph production rule and state 3 is not critical
because the corresponding pair of graph transformations is parallel independent:

S3 = 〈node(N) ∧ edge(E, N, N) ∧ edge(E′, N, N) ∧ degree(N, D), �〉
S3

R⇒ S1
3 = 〈node(N) ∧ edge(E′, N, N) ∧ degree(N, D − 2), �〉

S1
3

R⇒ S′3 = 〈node(N) ∧ degree(N, D − 4), �〉
S3

R⇒ S2
3 = 〈node(N) ∧ edge(E, N, N) ∧ degree(N, D − 2), �〉

S2
3

R⇒ S′3

Theorem 3. All critical GTS pairs are joinable if and only if the corresponding
CHR program is weak confluent.

Proof. The first direction follows directly from Lemma 4. By Lemma 3 we know
that all critical GTS pairs have corresponding critical CHR pairs with valid crit-
ical ancestor states. However, if the CHR program is weak confluent all such
critical CHR pairs are joinable and thus by Theorem 2 the critical GTS pairs
are joinable as well. ��

6 Conclusion

We have shown that constraint handling rules (CHR) provide an elegant way for
embedding graph transformation systems (GTS). The resulting rules are very
concise and directly related to the corresponding graph production rules. There
is no need for further implementations besides these production rules which
makes CHR a natural choice for prototyping a GTS. We have also shown that
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a CHR implementation of a GTS shares many important properties with the
formal GTS. Particularly the notion of confluence is similar and allows for stan-
dard CHR confluence checkers to be reused for embedded graph transformation
systems with only slight adjustments.

To achieve this elegant solution, we restricted the GTS match morphisms to
injective ones like [4] and [5] did. In the case of the standard nondeterministic
semantics for CHR, all possible injective matches can be chosen. However, most
CHR implementations make it difficult for a user to interactively modify or
choose a match morphism, as it is chosen implicitly by the refined semantics of
the implementation.

Apart from having a viable alternative for GTS implementations, there is
room for further research. This work only considers typed graphs, but could be
extended to support typed attributed graphs as well. It is also worthwhile to
investigate further similarities between GTS and CHR by transferring existing
results from one model to the other. For example, [2] provides criteria for layered
graph transformation systems under which termination can be guaranteed and
which might be applicable to CHR as well.
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duction. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062,
pp. 30–44. Springer, Heidelberg (2004)

5. Habel, A., Plump, D.: Relabelling in graph transformation. In: Corradini, A., Ehrig,
H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, Springer,
Heidelberg (2002)
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Abstract. Action description languages, such as A and B [6], are expressive in-
struments introduced for formalizing planning domains and problems. The paper
starts by proposing a methodology to encode an action language (with conditional
effects and static causal laws), a slight variation of B, using Constraint Logic Pro-
gramming over Finite Domains. The approach is then generalized to lift the use of
constraints to the level of the action language itself. A prototype implementation
has been developed, and the preliminary results are presented and discussed.

1 Introduction

The construction of intelligent agents that can be effective in real-world environments
has been a goal of researchers from the very first days of Artificial Intelligence. It has
long been recognized that such an agent must be able to acquire, represent, and reason
with knowledge. As such, a reasoning component has been an inseparable part of most
agent architectures in the literature.

Although the underlying representations and implementations may vary between
agents, the reasoning component of an agent is often responsible for making decisions
that are critical to its existence. Logic programming languages offer many attributes that
make them suitable as knowledge representation languages. Their declarative nature al-
lows the modular development of provably correct reasoning modules [2]. Recursive
definitions can be easily expressed and reasoned upon. Control knowledge and heuris-
tic information can be declaratively introduced in the reasoning process. Furthermore,
many logic programming languages offer a natural support for nonmonotonic reason-
ing, which is considered essential for commonsense reasoning. These features, along
with the presence of efficient solvers [1, 11, 15, 7], make logic programming an attrac-
tive paradigm for knowledge representation and reasoning.

In the context of knowledge representation and reasoning, a very important
application of logic programming has been in the domain of reasoning about actions
and change and planning [2]. Planning problems have been effectively encoded us-
ing Answer Set Programming (ASP) [2]—where distinct answer sets represent dif-
ferent trajectories leading to the desired goal. Other logic programming paradigms,
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e.g., Constraint Logic Programming over Finite Domains (CLP(FD)), have been used
less frequently to handle problems in reasoning about actions (e.g., [14, 17]). Com-
parably more emphasis has been placed in encoding planning problems as (non-logic
programming) constraint satisfaction problems [10].

Recent proposals on representing and reasoning about actions and change have relied
on the use of concise and high-level languages, commonly referred to as action descrip-
tion languages, e.g., the languages A and B [6]. Action languages allow one to write
propositions that describe the effects of actions on states, and to create queries to infer
properties of the underlying transition system. An action description is a specification
of a planning problem using the action language.

The goal of this work is to explore the relevance of constraint solving and con-
straint logic programming [11, 1] in dealing with action languages and planning. The
push towards this exploratory study came from a recent investigation [4, 5] aimed
at comparing the practicality and efficiency of answer set programming versus con-
straint logic programming in solving various combinatorial and optimization problems.
The study indicated that CLP offers a valid alternative, especially in terms of effi-
ciency, to ASP when dealing with planning problems; furthermore, CLP offers the flex-
ibility of programmer-developed search strategies and the ability to handle numerical
constraints.

The first step, in this paper, is to demonstrate a scheme that directly processes an
action description specification, in a language similar to B, producing a CLP(FD) pro-
gram that can be used to compute solutions to the planning problem. Our encoding has
some similarities to the one presented in [10], although we rely on CLP instead of CSP,
and our action language supports static causal laws and non-determinism—while the
work of Lopez and Bacchus is restricted to STRIPS-like specifications.

While the first step relies on using constraints to compute solutions to a planning
problem, the second step brings the expressive power of constraints to the level of the
action language, by allowing multi-valued fluents and constraint-producing actions. The
extended action language (named BFD

MV ) can be as easily supported by the CLP(FD)
framework, and it allows a declarative encoding of problems involving actions with
resources, delayed effects, and maintenance goals. These ideas have been developed in
a prototype, and some preliminary experiments are reported.

We believe that the use of CLP(FD) can greatly facilitate the transition of declarative
extensions of action languages to concrete and effective implementations, overcoming
some inherent limitations (e.g., efficiency and limited handling of numbers) of other
logic-based systems (e.g., ASP).

2 An Action Language

“Action languages are formal models of parts of the natural language that are used
for talking about the effect of actions” [6]. Action languages are used to define action
descriptions that embed knowledge to formalize planning problems. In this section, we
use a variant of the language B, based on the syntax used in [16]. With a slight abuse of
notation, we simply refer to this language as B.
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2.1 Syntax of B

An action signature consists of a set F of fluent names, a set A of action names, and a
set V of values for fluents in F . In this section, we consider Boolean fluents, hence V =
{0, 1}.1 A fluent literal is either a fluent f or its negationneg(f). Fluents and actions are
concretely represented by ground atomic formulae p(t1, . . . , tn) from a logic language
L. For simplicity, we assume that the set of admissible terms is finite.

The language B allows us to specify an action description D, which relates actions,
states, and fluents using predicates of the following forms:

◦ executable(a, [list-of-conditions]) asserts that the given conditions
have to be satisfied in the current state in order for the action a to be executable;

◦ causes(a, l, [list-of-conditions]) encodes a dynamic causal law, de-
scribing the effect (the fluent literal l) of the execution of action a in a state satis-
fying the given conditions;

◦ caused([list-of-conditions], l) describes a static causal law—i.e., the
fact that the fluent literal l is true in a state satisfying the given preconditions;

(where [list-of-conditions] denotes a list of fluent literals). An action descrip-
tion is a set of executability conditions, static, and dynamic laws. A specific planning
problem contains an action description D along with a description of the initial state
and the desired goal (O):

◦ initially(l) asserts that the fluent literal l is true in the initial state,

◦ goal(f) asserts that the goal requires the fluent literal f to be true in the final state.

Fig. 4 reports an encoding of the three barrels problem using this language.

2.2 Semantics of B

If f ∈ F is a fluent, and S is a set of fluent literals, we say that S |= f iff f ∈ S
and S |= neg(f) iff neg(f) ∈ S. Lists of literals [�1, . . . , �n] denote conjunctions
of literals. We denote with ¬S the set {f : neg(f) ∈ S} ∪ {neg(f) : f ∈ S}.
A set of fluent literals is consistent if there are no fluents f s.t. S |= f and S |=
neg(f). If S ∪ ¬S ⊇ F then S is complete. A set S of literals is closed under a set
of static laws SL = {caused(C1, �1), . . . , caused(Cn, �n)}, if for all i ∈ {1, . . . , n}
it holds that S |= Ci ⇒ S |= �i. The set CloSL(S) is defined as the smallest set of
literals containing S and closed under SL. CloSL(S) is uniquely determined and not
necessarily consistent.

The semantics of an action language on the action signature 〈V , F , A〉 is given in
terms of a transition system 〈S, v, R〉 [6], consisting of a set S of states, a total inter-
pretation function v : F×S −→ V (in this section V = {0, 1}), and a transition relation
R ⊆ S × A × S. Given a transition system 〈S, v, R〉 and a state s ∈ S, let:

Lit(s) = {f ∈ F : v(f, s) = 1} ∪ {neg(f) : f ∈ F , v(f, s) = 0}.

1 Consequently, we often say that a fluent is true (resp., false) if its value is 1 (resp., 0).
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Observe that Lit(s) is consistent and complete. Given a set of dynamic laws DL =
{causes(a, �1, C1), . . . , causes(a, �n, Cn)} for the action a ∈ A and a state s ∈ S,
we define the effect of a in s as follows: E(a, s) = {�i : 1 � i � n, Lit(s) |= Ci}.

Let D be an action description defined on the action signature 〈V , F , A〉, composed
of dynamic laws DL, executability conditions EL, and static causal laws SL. The tran-
sition system 〈S, v, R〉 described by D is a transition system such that:

• If s ∈ S, then Lit(s) is closed under SL;
• R is the set of all triples 〈s, a, s′〉 such that

Lit(s′) = CloSL(E(a, s) ∪ (Lit(s) ∩ Lit(s′))) (1)

and Lit(s) |= C for at least one condition executable(a, C) in EL.

Let 〈D, O〉 be a planning problem instance, where Δ = {� | initially(�) ∈ O}
is a complete set of fluent literals. A trajectory is a sequence s0a1s1a2 . . . ansn s.t.
〈si, ai+1, si+1〉 ∈ R (0 ≤ i < n). Given the corresponding transition system 〈S, v, R〉,
a sequence of actions a1, . . . , an is a solution (a plan) to the planning problem 〈D, O〉
if there is a trajectory s0a1s1 . . . ansn in 〈S, v, R〉 s.t. Lit(s0) = Δ and Lit(sn) |= �
for each goal(�) ∈ O. The plan is sequential and the desired length is given.

3 Modeling B and Planning Problems in CLP(FD)

Let us describe how action theories are mapped to finite domain constraints. We will
focus on how constraints can be used to model the possible transitions from each indi-
vidual state of the transition system. If sv and su are the starting and ending states of a
transition, we assert constraints that relate the truth value of fluents in sv and su.

A Boolean variable is introduced to describe the truth value of each fluent in a state.
The value of a fluent f in sv (resp., su) is represented by the variable IVv

f (resp., EVu
f ).

These variables can be used to build expressions IVv
l (EVu

l ) that represent the truth value
of each fluent literal l. In particular, if l is a fluent f, then IVv

l = IVv
f ; if l is the literal

neg(f), then IVv
l = 1 − IVv

f . Similar equations can be set for EVl. In a similar spirit,
given a conjunction of literals α ≡ [l1, . . . , ln] we will denote with IVv

α the expression
IVv

l1
∧ · · · ∧ IVv

ln
; an analogous definition is given for EVu

α. We will also introduce, for
each action ai, a Boolean variable Av

i , representing whether the action is executed or
not in the transition from sv to su under consideration.

Given a specific fluent f , we develop constraints that determine when EVu
f is true

and false. Let us consider the dynamic causal laws that have f as a consequence:

causes(at1 , f, α1) · · · causes(atm , f, αm)
Analogously, we consider the static causal laws that assert neg(f):

causes(af1 , neg(f), β1) · · · causes(afn , neg(f), βn)
Let us also consider the static causal laws related to f

caused(γ1, f) · · · caused(γh, f)
caused(ψ1, neg(f)) · · · caused(ψ�, neg(f))
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EVu
f ↔ Posfiredv,u

f ∨ (¬Negfiredv,u
f ∧ IVv

f ) (2)

¬Posfiredv,u
f ∨ ¬Negfiredv,u

f (3)

Posfiredv,u
f ↔ DynPv

f ∨ StatPu
f (4)

Negfiredv,u
f ↔ DynNv

f ∨ StatNu
f (5)

DynPv
f ↔

∨m
i=1(IV

v
αi

∧ Av
ti

) (6)

StatPu
f ↔

∨h
i=1 EV

u
γi

(7)

DynNv
f ↔

∨n
i=1(IV

v
βi

∧ Av
fi

) (8)

StatNu
f ↔

∨�
i=1 EV

u
ψi

(9)

Fig. 1. The constraint Cv,u
f for the generic fluent f

Finally, for each action ai we will have its executability conditions:
executable(ai, δ

i
1) . . . executable(ai, δ

i
p)

Figure 1 describes the Boolean constraints that can be used in encoding the relations
that determine the truth value of the fluent f . We will denote with Cv,u

f the conjunction
of such constraints. Given an action specification over the set of fluents F , the system
of constraints Cv,v+1

F includes:

• the constraint Cv,v+1
f for each f ∈ F and for each 0 ≤ v < N where N is the

chosen length of the plan;
• for each f ∈ F and 0 ≤ v ≤ N , the constraints IVv

f = EVv
f

• for each 0 ≤ v < N , the constraint
∑

aj∈A A
v
j = 1

• for each 0 ≤ v < N and for each action ai ∈ A, the constraints Av
i →

∨p
j=1 IV

v
δi

j

This modeling has been translated into a concrete implementation using SICStus Pro-
log. In this translation constrained CLP variables directly reflect the Boolean variables
modeling fluent and action’s occurrences. Consequently, causal laws and executability
conditions are directly translated into CLP constraints. The complete code and proofs
can be found at www.dimi.uniud.it/dovier/CLPASP. Let us proceed with a sketch
of the correctness proof of the constraint-based encoding w.r.t. the semantics.

F ∪ ¬F
S S′

E

Fig. 2. Sets of fluents involved in a state transition

Let S = Lit(sv) (resp., S′ = Lit(sv+1)) be the set of fluent literals that holds in
sv (resp., sv+1). We denote by E = E(a, s), and by Clo = CloSL. Fig. 2 depicts the
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equation S′ = Clo(E ∪ (S ∩ S′)). From any specific, known, S (resp., S′), we can
obtain a consistent assignment σS (resp., σS′ ) of truth values for all the variables IVv

f

(resp., EVv+1
f ) of sv (resp., sv+1). Conversely, each truth assignment σS (resp., σS′ ) for

all variables IVv
f (resp., EVv+1

f ) corresponds to a consistent set of fluents S (resp., S′).
Let σa be the assignment of truth values for such variables such that σa(Av

i ) = 1 if
and only if ai occurs in the state transition from sv to sv+1. Note that the domains of
σS , σS′ , and σa are disjoint, so we can safely denote by σS ◦ σS′ ◦ σa the composition
of the three assignments. Clearly, E ⊆ S′.

Theorem 1 states the completeness of the constraint-based modeling of the planning
problem. For any given action description D, if a triple 〈s, a, s′〉 belongs to the transition
system described by D, then the assignment σ = σS ◦ σS′ ◦ σa satisfies Cv,v+1

F .

Theorem 1 (Completeness). If S′ = CloSL(E(ai, sv) ∪ (S ∩ S′)) then σS ◦ σS′ ◦ σa

is a solution of the constraint Cv,v+1
F .

Let us observe that the converse of the above theorem does not necessarily hold. The
problem arises from the fact that the implicit minimality in the closure operation is not
reflected in the computation of solutions to the constraint. Consider the action descrip-
tion where F = {f, g, h} and A = {a}, with predicates:

executable(a,[]). causes(a,f,[]). caused([g],h). caused([h],g).

Setting S = {neg(f), neg(g), neg(h)} and S′ = {f, g, h} determines a solution of
the constraint Cv,v+1

F with the execution of action a, but CloSL(E∪(S∩S′)) = {f} ⊂
S′. However, the following holds:

Theorem 2 (Weak Soundness). Let σS ◦ σS′ ◦ σa identify a solution of the constraint
Cv,v+1
F . Then CloSL(E(ai, sv) ∪ (S ∩ S′)) ⊆ S′.

Let us consider the set of static causal laws SL. SL identifies a definite propositional
program P as follows. For each positive fluent literal p, let ϕ(p) be the (fresh) pred-
icate symbol p, and for each negative fluent literal neg(p) let ϕ(neg(p)) be the
(fresh) predicate symbol p̃. The program P is the set of clauses of the form ϕ(p) ←
ϕ(l1), . . . , ϕ(lm), for each static causal law caused([l1,...,lm],p). Notice that p
and p̃ are independent predicate symbols in P . From P one can extract the dependency
graph G(P ) in the usual way, and the following result can be stated.

Theorem 3 (Correctness). Let σS , σS′ , σa be a solution of the constraint Cv,v+1
F . If

the dependency graph of P is acyclic, then CloSL(E(ai, sv) ∪ (S ∩ S′)) = S′.

If the program P meets the conditions of the previous theorem, then the following holds.

Theorem 4. There is a trajectory 〈s0, a1, s1, a2, . . . , an, sn〉 in the transition system if
and only if there is a solution for the constraints C0,1

F ∧ C1,2
F ∧ · · · ∧ Cn−1,n

F .

4 The Action Language BFD
MV

Constraints represent a very declarative notation to express relationships between un-
knowns; as such, the ability to use them directly in the action theory would greatly
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enhance the declarative and expressive power of the action language, facilitating the
encoding of complex action domains, such as those involving multivalued fluents.

Example 1 (Control Knowledge). Domain-specific control knowledge can be formal-
ized as constraints that we expect to be satisfied by all the trajectories. For example, we
may know that if a certain action occurs at a given time step (e.g., ingest poison)
then at the next time step we will always perform the same action (e.g., call doctor).
This could be encoded as occ(ingest poison)⇒occ(call doctor)1 where
occ(a) is a fluent describing the occurrence of the action a and f1 indicates that the
fluent f should hold at the next time step. The operator ⇒ is an implication constraint.

Example 2 (Delayed Effect). Letusassumethat theactiona(e.g.,req reimbursement)
has a delayed effect (e.g., bank account increased by $50 after 30 time units). This
could be expressed as a dynamic causal law:

causes(request reimbursement,incr(bank,50)30,[])

where incr is a constraint introduced to deal with additive computations.

Example 3 (Maintenance Goals). It is not uncommon to encounter planning problems
where along with the type of goals described earlier (known as achievement goals),
there are also maintenance goals, representing properties that must persist throughout
the trajectory. Constraints are a natural way of encoding maintenance properties, and
can be introduced along with simple temporal operators. E.g., if the fluent fuel repre-
sents the amount of fuel available, then the maintenance goal which guarantees that we
will not be left stranded could be encoded as: always(fuel > 0).

Furthermore, the encoding of an action theory using multivalued fluents leads to more
compact and more efficient representations, facilitating constraint propagation during
planning (with pruning of the search space) and better exposing non-determinism (that
could be exploited, for example, by a parallel planner).

4.1 Syntax of BF D
MV

Let us introduce the syntax of BFD
MV . As for B, the action signature consists of a set F

of fluent names, a set A of action names, and a set V of values for fluents in F .
In the definition of an action description, an assertion (domain declaration) of the

kind fluent(f, v1, v2) or fluent(f, {v1, . . . , vk}) declares that f is a fluent and that
its set of values V is the interval [v1, v2] or the set {v1, . . . , vk}.2 An annotated fluent
(AF) is an expression fa, where f is a fluent and a ∈ N

−.3 Intuitively speaking, an
annotated fluent fa denotes the value the fluent f had in the past, −a steps ago. Such
fluents can be used in fluent expressions (FE), which are defined inductively as follows:

FE ::= n | AF | abs(FE) | FE1 ⊕ FE2 | rei(FC)

where n ∈ Z, ⊕ ∈ {+, −, ∗, /, mod}. rei(FC) is the reification of fluent constraint FC.

2 Note that we could generalize the notion of domain to more complex and non-numeric sets.
3 With N

− we denote the set {0, −1, −2, −3, . . . }. We will often denote f0 simply by f .
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Fluent expressions can be used to build fluent constraints (FC), i.e., formulae of the
form FE1 op FE2, where FE1 and FE2 are fluent expressions and op ∈ {eq, neq, geq,
leq, lt, gt}. The language BFD

MV allows one to specify an action description, which
relates actions, states, and fluents using predicates of the following forms:

◦ axioms of the form executable(a, C) asserting that the fluent constraint C has to
be entailed by the current state in order for the action a to be executable.

◦ axioms of the form causes(a, C, C1) encode dynamic causal laws. The action
a can be executed if the constraint C1 is entailed by the current state; the state
produced by the execution of the action is required to entail the constraint C.

◦ axioms of the form caused(C1, C2) describe static causal laws. If the fluent con-
straint C1 is satisfied in a state, then the constraint C2 must also hold in such state.

An action description is a set of executability conditions, static and dynamic laws.
Observe that traditional action languages like B are special cases of BFD

MV . For ex-
ample, the dynamic causal law of B:

causes(a, f, [f1,...,fk, neg(g1),..., neg(gh)])

can be encoded as
causes(a, f0 eq 1,[f0

1 eq 1,...,f0
k eq 1, g0

1 eq 0, ..., g0
h eq 0])

A specific instance of a planning problem is a pair 〈D, O〉, where D is an action the-
ory, and O contains any number of axioms of the form initially(C) and goal(C),
where C is a fluent constraint.

4.2 Semantics of BF D
MV

Each fluent f is assigned uniquely to a domain dom(f) in the following way:

◦ If fluent(f, v1, v2) ∈ D then dom(f) = {v1, v1 + 1, . . . , v2}.
◦ If fluent(f, Set) ∈ D, then dom(f) = Set.

A function ν : F → Z ∪ {⊥} is a state if ν(f) ∈ dom(f) for all f ∈ F . For a number
n ≥ 1, we define a state sequence ν̄ as a tuple 〈ν0, . . . , νn〉 where each νi is a state.

Let us consider a state sequence ν̄, a step 0 ≤ i < |ν̄|, a fluent expression ϕ, and let
us define the concept of value of ϕ in ν̄ at step i (denoted by ν̄(ϕ, i)):

• ν̄(x, i) = x if x is a number
• ν̄(fa, i) = νi−|a|(f) if |a| ≤ i, ⊥ otherwise
• ν̄(abs(ϕ), i) = abs(ν̄(ϕ, i))
• ν̄(ϕ1 ⊕ ϕ2, i) = ν̄(ϕ1, i) ⊕ ν̄(ϕ2, i)

We treat the interpretation of the various ⊕ operations and relations as strict w.r.t. ⊥.
Given a fluent constraint ϕ1opϕ2, a state sequence ν̄ and a time 0 ≤ i < |ν̄|, the notion
of satisfaction ν̄ |=i ϕ1 op ϕ2 is defined as ν̄ |=i ϕ1 op ϕ2 ⇔ ν̄(ϕ1, i) op ν̄(ϕ2, i).

If ν̄(ϕ1, i) or ν̄(ϕ2, i) is ⊥, then ν̄ �|=i ϕ1 op ϕ2. |=i can be generalized to the case
of propositional combinations of fluent constraints. In particular, ν̄(rei(C), i) = 1 if
ν̄ |=i C, else ν̄(rei(C), i) = 0. The operations ∩ and ∪ on states are defined next:

ν1 ∪ ν2(f) =

⎧
⎨

⎩

ν1(f) if ν1(f) = ν2(f)
ν1(f) if ν2(f) = ⊥
ν2(f) if ν1(f) = ⊥

ν1 ∩ ν2(f) =
{

ν1(f) if ν1(f) = ν2(f)
⊥ otherwise
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Let ν̄ be a state sequence; we say that ν̄ is consistent if, for each 0 ≤ i < |ν̄|, and for
each static causal law caused(C1, C2) we have that: ν̄ |=i C1 ⇒ ν̄ |=i C2.

Let a be an action and ν̄ be a state sequence. The action a is executable in ν̄ at step
i (0 ≤ i < |ν̄| − 1) if there is an axiom executable(a, C) such that ν̄ |=i C.

Let us denote with Dyn(a) the set of dynamic causal law axioms for action a. The
effects of executing a at step i in the state sequence ν̄, denoted by Eff (a, ν̄, i), is

Eff (a, ν̄, i) =
∧

{C | causes(a, C, C1) ∈ Dyn(a), ν̄ |=i C1}

Furthermore, given a constraint C, a state sequence ν̄, and a step i, the reduct
Red(C, ν̄, i) is defined as the constraint

Red(C, ν̄, i) = C ∧
∧

{f−j = νi−j(f) | f ∈ F , 1 ≤ j ≤ i}

Let us denote with Stat the set of static causal law axioms. We can define Clo(ν̄, i) as

Clo(ν̄, i) =
∧

{C2 | caused(C1, C2) ∈ Stat, ν̄ |=i C1}

A state sequence ν̄ is a valid trajectory if the following conditions hold:

• for each axiom of the form initial(C) in the action theory we have that ν̄ |=0 C
• for each axiom of the form goal(C) we have that ν̄ |=|ν̄|−1 C
• for each 0 ≤ i < |ν̄| − 1 there is an action ai such that

◦ action ai is executable in ν̄ at step i

◦ we have that νi+1 = σ∪ (νi ∩νi+1) (*) where σ is a solution of the constraint

Red(Eff (ai, ν̄, i), ν̄, i + 1) ∧ Clo(ν̄, i + 1)

Let us conclude with some comments on the relationship between the semantics of B
and of BFD

MV . First of all, the lack of backward references in B allows us to analyze each
B transition independently. Conversely, in BFD

MV we need to keep track of the complete
trajectory—represented by a sequence of states.

In B, the effect of a static or dynamic causal law is to set the truth value of a flu-
ent. Hence, the sets E and Clo can be deterministically determined (even if they can
be inconsistent) and the equation (1) takes care of these two sets and of the inertia. In
BFD

MV , instead, less determined effects can be set. For instance, causes(a, f gt 1, [ ]), if
dom(f) = {0, 1, 2, 3}, admits two possible values for f in the next state. One could ex-
tend the semantics of Sect. 2, by working on sets of sets for E or Clo. Instead, we have
chosen to encode the nondeterminism within the solutions of the introduced constraints.
Equation (1) is therefore replaced by equation (*) above.

The concrete implementation of BFD
MV in SICStus Prolog is directly based on this

semantics. We omit the detailed description, which is a fairly mechanical extension of
the implementation of B (in this case the main difference w.r.t. what done in Sect. 3, is
that the set of the admitted values for multivalued fluents determines the domain of the
CLP constrained variables), and relative proof of correctness due to lack of space.
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4.3 Some Concrete Extensions

The language BFD
MV described above has been implemented using SICStus Prolog, as

a fairly direct generalization of the encoding described for the Boolean case. In addi-
tion, we have introduced in the implementation some additional syntactic extensions,
to facilitate the encoding of recurring problem features.

It is possible to add information about the cost of each action, fluent, and about the
global cost of a plan. This can be done by writing rules of the form:

◦ action cost(action,VAL) (if no information is given, the default cost is 1).
◦ state cost(FE) (if no information is given, the default cost is 1) is the cost of a

state, where FE is a fluent expression built on current fluents.
◦ plan cost(plan op n) where n is a number, adds the information about the

global cost admitted for the sequence of actions.
◦ goal cost(goal op NUM) adds a constraint about the global cost admitted for the

sequence of states.
◦ minimize action to constrain the search to a plan with minimal global action cost.
◦ minimize state which forces the search of a plan with minimal goal state cost.

The implementation of these cost-based constraints relies on the optimization features
offered by SICStus’ labeling predicate: the labeling phase is guided by imposing an
objective function to be optimized.

The language allows the definition of absolute temporal constraints, i.e., constraints
that refer to specific time instances in the trajectory. We define a timed fluent as a pair
FLUENT @ TIME. Timed fluents are used to build timed fluent expressions (TE) and
timed primitive constraints (TC). E.g., contains(5) @ 2 leq contains(5) @ 4

states that, at time 2, barrel 5 contains at most the same amount of water as at time 4.
contains(12) @ 2 eq 3 states that, at time 3, barrel 12 contains 3 liters of water.
These constructs can be used in the following expressions:

◦ cross constraint(TC) imposes the timed constraint TC to hold.
◦ holds(FC,StateNumber) It is a simplification of the above constraint. states that

the primitive fluent constraint FC holds at the desired State Number (0 is the num-
ber of the initial state). It is therefore a generalization of the initially primitive.
It allows to drive the plan search with some point information.

◦ always(FC) states that the fluent constraints FC holds in all the states. Current
fluents must be used in order to avoid negative references.

The semantics can be easily extended by conjoining these new constraints to the
formulae of the previous subsection.

4.4 An Extended BF D
MV Language: Looking Into the Future

We propose to extend BFD
MV to allow constraints that reason about future steps of the

trajectory (along lines similar to [3]).

Syntax: Let us generalize the syntax presented earlier as follows: an annotated fluent
is of the form fa, where f ∈ Z. Constructing fluent formulae and fluent constraints
now implies the ability of looking into the future steps of computation. In addition,
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we introduce another fluent constraint, that will help us encoding interesting problems:
incr(fa, n) where fa is an annotated fluent and n is a number. The incr constraint
provides a simplified view of additive fluents [9].

Semantics: The definition of the semantics becomes a process of “validating” a se-
quence of states to verify their fitness to serve as a trajectory. Given a fluent for-
mula/constraint ϕ and a time step i, we define the concept Absolute(ϕ, i) as follows:

◦ if ϕ ≡ n then Absolute(ϕ, i) = n
◦ if ϕ ≡ fa then Absolute(ϕ, i) = f i+a

◦ if ϕ ≡ ϕ1 ⊕ ϕ2 then Absolute(ϕ, i) = Absolute(ϕ1, i) ⊕ Absolute(ϕ2, i)
◦ if ϕ ≡ abs(ϕ1) then Absolute(ϕ, i) = abs(Absolute(ϕ1, i))
◦ if ϕ ≡ rei(ϕ1) then Absolute(ϕ, i) = rei(Absolute(ϕ1, i))
◦ if ϕ ≡ ϕ1 op ϕ2 then Absolute(ϕ, i) = Absolute(ϕ1, i) op Absolute(ϕ2, i)
◦ if ϕ ≡ incr(ϕ1, n) then Absolute(ϕ, i) = incr(Absolute(ϕ1, i), n)

For a sequence of states ν̄ = 〈ν0, . . . , νn〉 and actions ā = 〈a0, . . . , an−1〉, let us define

Global(ā, ν̄) =
n−1∧

i=0

Absolute(Eff (ai, ν̄, i), i + 1)

The sequence of states ν̄ is a trajectory if

• for each axiom of the form initial(C) in the action theory we have that ν̄ |=0 C
• for each axiom of the form goal(C) in the action theory we have that ν̄ |=|ν̄|−1 C
• there is a sequence of actions ā = 〈a0, a1, . . . , an−1〉 with the following properties:

for each 0 ≤ i < n we have that ai is executable at step i of ν̄ and νi+1 =
σ∪(νi ∩νi+1), where σ is a solution of Red(Global(ā, ν̄), ν̄, i+1)∧Clo(ν̄, i+1).

In particular, if Incr(C, i) = {n | incr(f i, n) ∈ C} are all the incr constraints for an
annotated fluent f i, then θ is a solution of it w.r.t. a sequence of states ν̄ if νi(f) =
νi−1(f) +

∑
n∈Incr(C,i) n.

5 Experimental Analysis

The prototype, implemented on an AMD Opteron 2.2GHz Linux machine, has been
validated on a number of benchmarks. Extensive testing has been performed on the
CLP encoding of B, and additional results can be found at www.dimi.uniud.it/
dovier/CLPASP. Here we concentrate on two representative examples.

5.1 Three-Barrel Problem

We experimented with different encodings of the three-barrel problem. There are three
barrels of capacity N (even number), N/2 + 1, and N/2 − 1, respectively. At the
beginning the largest barrel is full of wine, the other two are empty. We wish to reach
a state in which the two larger barrels contain the same amount of wine. The only
permissible action is to pour wine from one barrel to another, until the latter is full
or the former is empty. Figure 4 shows the encodings of the problem (for N = 12)
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Table 1. Experimental results with various instances of the three-barrels problem (For CLP(FD)
and BF D

MV we reported the time required for the constrain and the labelling phases)

Barrels’ Len. Ans. B BF D
MV

capacities lparse Smodels Cmodels CLP(FD) unconstrained
plan cost

constrained plan cost
(in parentheses)

8-5-3 6 N 8.95 0.10 0.85 0.16+0.36 0.02+0.11 (70) 0.01+0.10
8-5-3 7 Y 8.94 0.28 1.34 0.19+0.47 0.02+0.13 (70) 0.03+0.13
8-5-3 8 Y 9.16 0.39 2.07 0.18+2.66 0.03+0.85 (70) 0.01+0.79
8-5-3 9 Y 9.22 0.39 8.11 0.22+1.05 0.02+0.28 (70) 0.05+0.28

12-7-5 10 N 35.63 18.31 325.28 0.45+26.86 0.05+7.79 (90) 0.03+6.78
12-7-5 11 Y 35.70 45.91 781.28 0.52+28.87 0.05+9.46 (90) 0.04+5.03
12-7-5 12 Y 35.58 81.12 4692.08 0.58+203.34 0.06+57.42 (100) 0.04+35.31
12-7-5 13 Y 35.67 18.87 1581.49 0.66+66.52 0.06+25.65 (100) 0.03+23.26
16-9-7 14 N 114.16 2018.65 – 1.28+2560.90 0.07+564.68 (170) 0.07+518.78
16-9-7 15 Y 113.53 2493.61 – 1.29+2833.97 0.07+688.84 (170) 0.07+520.14
16-9-7 16 Y 115.36 6801.36 – 1.37+17765.62 0.06+4282.86 (170) 0.04+1904.17
16-9-7 17 Y 114.04 2294.15 – 1.55+6289.06 0.06+1571.78 (200) 0.06+1389.27

in B (where, it is also required that the smallest barrel is empty at the end) and BFD
MV .

Table 1 provides the execution times (in seconds) for different values of N and different
plan lengths. The B encoding has been processed by our CLP(FD) implementation and
by two ASP solvers (Smodels and Cmodels)—the encoding of a B action description in
ASP is natural (see [5]). The BFD

MV descriptions have been solved using SICStus Prolog.

5.2 2-Dimensional Protein Folding Problem

The problem we have encoded is a simplification of the protein structure folding prob-
lem. The input is a chain a1a2 · · ·an with ai ∈ {0, 1}, initially placed in a vertical
position, as in Fig. 3-left. We will refer to each ai as an amino acid. The permissible
actions are the counterclockwise/clockwise pivot moves. Once one point i of the chain
is selected, the points a1, a2, . . . , ai will remain fixed, while the points ai+1, . . . , an

will perform a rigid counterclockwise/clockwise rotation. Each conformation must be
a self-avoiding-walk, i.e., no two amino acids are in the same position. Moreover, the
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Instance Length Answer BF D
MV

17-2 4 N 0.08+0.00
17-2 5 Y 0.10+0.00
113-4 4 N 0.46+13.18
113-4 5 Y 0.64+25.58

1(001)2-2 4 N 0.08+0.05
1(001)2-2 5 Y 0.11+0.01
1(001)3-4 8 N 0.49+8882.13
1(001)3-4 9 Y 0.58+862.84

Fig. 3. On the left: Initial configuration, a plan, and final configuration with 4 contacts between
1-amino acids. On the right: some results for different sequences, energy levels, and plan lengths.
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(1) barrel(5). barrel(7). barrel(12).
(2) liter(0). liter(1). liter(2). ... liter(11). liter(12).
(3) fluent(cont(B,L)):- barrel(B),liter(L),L =< B.
(4) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).
(5) causes(fill(X,Y),cont(X,0),[cont(X,LX),cont(Y,LY)]):-
(6) action(fill(X,Y)), fluent(cont(X,LX)),
(7) fluent(cont(Y,LY)), Y-LY >= LX.
(8) causes(fill(X,Y),cont(Y,LYnew),[cont(X,LX),cont(Y,LY)]):-
(9) action(fill(X,Y)), fluent(cont(X,LX)),
(10) fluent(cont(Y,LY)), Y-LY >= LX, LYnew is LX + LY.
(11) causes(fill(X,Y),cont(X,LXnew),[cont(X,LX),cont(Y,LY)]):-
(12) action(fill(X,Y)), fluent(cont(X,LX)),
(13) fluent(cont(Y,LY)), LX >= Y-LY, LXnew is LX-Y+LY.
(14) causes(fill(X,Y),cont(Y,Y),[cont(X,LX),cont(Y,LY)]):-
(15) action(fill(X,Y)), fluent(cont(X,LX)),
(16) fluent(cont(Y,LY)), LX >= Y-LY.
(17) executable(fill(X,Y),[cont(X,LX),cont(Y,LY)]) :-
(18) action(fill(X,Y)), fluent(cont(X,LX)),
(19) fluent(cont(Y,LY)), LX > 0, LY < Y.
(20) caused([ cont(X,LX) ], neg(cont(X,LY)) ) :-
(21) fluent(cont(X,LX)), fluent(cont(X,LY)),
(22) botte(X),liter(LX),liter(LY),neq(LX,LY).
(23) initially(cont(12,12)). initially(cont(7,0)). initially(cont(5,0)).
(24) goal(cont(12,6)). goal(cont(7,6)). goal(cont(5,0)).

(1) barrel(5). barrel(7). barrel(12).
(2) fluent(cont(B),0,B):- barrel(B).
(3) action(fill(X,Y)):- barrel(X),barrel(Y), neq(X,Y).
(4) causes(fill(X,Y), cont(X) eq 0, [Y-cont(Y) geq cont(X)]):-
(5) action(fill(X,Y)).
(6) causes(fill(X,Y), cont(Y) eq cont(Y)ˆ(-1) + cont(X)ˆ(-1),
(7) [Y-cont(Y) geq cont(X) ]):- action(fill(X,Y)).
(8) causes(fill(X,Y), cont(Y) eq Y, [Y-cont(Y) lt cont(X)]):-
(9) action(fill(X,Y)).
(10) causes(fill(X,Y), cont(X) eq cont(X)ˆ(-1)-Y+cont(Y)ˆ(-1),
(11) [Y-cont(Y) lt cont(X)]):- action(fill(X,Y)).
(12) executable(fill(X,Y), [cont(X) gt 0, cont(Y) lt Y]):-
(13) action(fill(X,Y)).
(14) caused([], cont(12) eq 12-cont(5)-cont(7)).
(15) initially(cont(12) eq 12).
(16) goal(cont(12) eq cont(7)).

Fig. 4. B description (above) and BF D
MV description (below) of the 12-7-5 barrels problem

chain cannot be broken—i.e., two consecutive amino acids are always at points at dis-
tance 1 (i.e., in contact). The goal is to perform a sequence of pivot moves leading to
a configuration where at least k non-consecutive amino acids of value 1 are in contact.
Fig. 3 shows a possible plan to reach a configuration with 4 contacts. The figure also
reports some execution times. Fig. 5 reports the BFD

MV action description encoding this
problem. Since the goal is based on the notion of cost of a given state, for which reified
constraints are used extensively, a direct encoding in B does not appear viable.

Let us consider the resolution of the problem starting from the input chain
1001001001. If N = 10, asking for a plan of 8 moves and for a solution with cost ≥ 4,
our planner finds the plan shown in Fig. 3-center in 862.84s. Notice that, by adding the
pair of constraints holds(x(3) eq 11,1) and holds(y(3) eq 11,1) the time is
reduced to 61.05s, and with the constraint holds(x(4) eq 11,2). holds(y(4)eq

10,2). the plan is found in only 5.11s. In this case, multivalued fluents and the ability
to introduce domain knowledge allows BFD

MV to effectively converge to a solution.
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(1) length(10).
(2) amino(A) :- length(N), interval(A,1,N).
(3) direction(clock). direction(antick).
(4) fluent(x(A),1,M) :- length(N), M is 2*N, amino(A).
(5) fluent(y(A),1,M) :- length(N), M is 2*N, amino(A).
(6) fluent(type(A),0,1) :- amino(A).
(7) fluent(saw,0,1).
(8) action(pivot(A,D)):- length(N), amino(A), 1<A,A<N, direction(D).
(9) executable(pivot(A,D),[]) :- action(pivot(A,D)).
(10) causes(pivot(A,clock),x(B) eq x(A)ˆ(-1) +y(B)ˆ(-1)-y(A)ˆ(-1),[]):-
(11) action(pivot(A,clock)),amino(B),B > A.
(12) causes(pivot(A,clock),y(B) eq y(A)ˆ(-1)+x(A)ˆ(-1)-x(B)ˆ(-1),[]):-
(13) action(pivot(A,clock)),amino(B),B > A.
(14) causes(pivot(A,antick),x(B) eq x(A)ˆ(-1)-y(B)ˆ(-1)+y(A)ˆ(-1),[]):-
(15) action(pivot(A,antick)),amino(B),B > A.
(16) causes(pivot(A,antick),y(B) eq y(A)ˆ(-1)-x(A)ˆ(-1)+x(B)ˆ(-1),[]):-
(17) action(pivot(A,antick)),amino(B),B > A.
(18) caused([x(A) eq x(B), y(A) eq y(B)],saw eq 0) :-
(19) amino(A),amino(B),A<B.
(20) initially(saw eq 1).
(21) initially(x(A) eq N) :- length(N), amino(A).
(22) initially(y(A) eq Y) :- length(N), amino(A),Y is N+A-1.
(23) initially(type(X) eq 1) :- amino(X), X mod 3 =:= 1.
(24) initially(type(X) eq 0) :- amino(X), X mod 3 =\= 1.
(25) goal(saw gt 0).
(26) state cost( FE ) :- length(N), auxc(1,4,N,FE).
(27) auxc(I,J,N,0) :- I > N - 3,!.
(28) auxc(I,J,N,FE) :- J > N,!,I1 is I+1,J1 is I1+3,auxc(I1,J1,N,FE).
(29) auxc(I,J,N,FE1+type(I)*type(J)*
(30) rei(abs(x(I)-x(J))+abs(y(I)-y(J)) eq 1)):-
(31) J1 is J + 2, auxc(I,J1,N,FE1).
(32) always(x(1) eq 10). always(y(1) eq 10).
(33) always(x(2) eq 10). always(y(2) eq 11).
(34) goal cost(goal geq 4).

Fig. 5. BF D
MV Encoding of the HP-protein folding problem with pivot moves on input of the form

1001001001. . . starting from a vertical straight line

5.3 Other Examples

We report results from two other planning problems. The first (3x3-puzzle) is an en-
coding of the 8-tile puzzle problem, where the goal is to find a sequence of moves to
re-order the 8 tiles, starting from a random initial position. In the Community-M prob-
lem, there are M persons, identified by the numbers 1, 2, . . . , M . At each time step,

Table 2. Excerpt of experimental results with different instances of various problems (For
CLP(FD) and BF D

MV we reported the time required for the constrain and the labelling phases)

Instance Length Answer B BF D
MV

lparse Smodels Cmodels CLP(FD) unconstrained
plan cost

3x3-puzzle 10 N 45.18 0.83 1.96 0.68+9.23 0.32+11.95
3x3-puzzle 11 Y 45.59 1.85 2.35 0.70+24.10 0.34+27.34

Community-5inst1 6 N 208.39 96.71 3.55 2.70+73.91 0.02+34.86
Community-5inst1 7 Y 205.48 10.57 2.45 3.17+0.18 0.04+0.03
Community-5inst2 6 N 204.40 54.20 3.15 2.67+61.68 0.03+19.40
Community-5inst2 7 Y 208.48 3.69 1.07 3.17+0.17 0.04+0.02
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one of the persons, say j, provided (s)he owns more than j dollars, gives j dollars to
someone else. The goal consists of reaching a state in which there are no two persons
i and j such that the difference between what is owned by i and j is greater than 1.
Table 2 lists some results for M = 5 and for two variants of the problem: The person i
initially owns i + 1 dollars (inst1 ) or 2 ∗ i dollars (inst2 ).

6 Conclusions and Future Work

The objective of this paper was to initiate an investigation of using constraint logic
programming techniques in handling action description languages and planning prob-
lems. In particular, we presented an implementation of the language B using CLP(FD),
and reported on its performance. We also presented the action language BFD

MV , which
allows the use of multivalued fluents and the use of constraints as conditions and con-
sequences of actions. We illustrated the application of BFD

MV to two planning problems.
Both languages have been implemented using SICStus Prolog.

The encoding in CLP(FD) allow us to think of extensions in several directions, such
as encoding of qualitative and quantitative preferences (a preliminary study has been
presented in [12]), introduction of global action constraints for improving efficiency
(e.g., alldifferent among states), and use of constraints to represent incomplete states—
e.g., to determine most general conditions for the existence of a plan and to conduct
conformant planning [13]. We also believe that significant improvements in efficiency
could be achieved by delegating parts of the constraint solving process to a dedicated
solver (e.g., encoded using a constraint platform such as GECODE).

Acknowledgments. This work is partially supported by MIUR projects PRIN05-015491
and FIRB03-RBNE03B8KK, and by NSF grants 0220590, 0454066, and 0420407. The
authors wish to thank Tran Cao Son for the useful discussions and suggestions.
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Abstract. We present a framework for the declarative diagnosis of non-
deterministic timed concurrent constraint programs. We present a deno-
tational semantics based on a (continuous) immediate consequence oper-
ator, TD, which models the process behaviour associated with a program
D given in terms of sequences of constraints. Then, we show that, given
the intended specification of D, it is possible to check the correctness
of D by a single step of TD. In order to develop an effective debugging
method, we approximate the denotational semantics of D. We formal-
ize this method by abstract interpretation techniques, and we derive a
finitely terminating abstract diagnosis method, which can be used stati-
cally. We define an abstract domain which allows us to approximate the
infinite sequences by a finite ‘cut’. As a further development we show
how to use a specific linear temporal logic for deriving automatically
the debugging sequences. Our debugging framework does not require the
user to either provide error symptoms in advance or answer questions
concerning program correctness. Our method is compositional, that may
allow to master the complexity of the debugging methodology.

Keywords: timed concurrent constraint programs, (modular) declara-
tive debugging, denotational semantics, specification logic.

1 Introduction

The main motivation for this work is to provide a methodology for develop-
ing effective (modular) debugging tools for timed concurrent constraint (tcc)
languages.

Finding program bugs is a long-standing problem in software construction.
However, current debugging tools for tcc do not enforce program correctness
adequately as they do not provide means to find bugs in the source code w.r.t.
the intended program semantics. We are not aware of the existence of sophis-
ticated debuggers for this class of languages. It would be certainly possible to
define some trace debuggers based on suitable extended box models which help
display the execution. However, due to the complexity of the semantics of tcc

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 271–285, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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programs, the information obtained by tracing the execution would be diffi-
cult to understand. Several debuggers based on tracing have been defined for
different declarative programming languages. For instance [11] in the context
of integrated languages. To improve understandability, a graphic debugger for
the multi–paradigm concurrent language Curry is provided within the graphical
environment CIDER [12] which visualizes the evaluation of expressions and is
based on tracing. TeaBag [3] is both a tracer and a runtime debugger provided
as an accessory of a Curry virtual machine which handles non–deterministic
programs. For Mercury, a visual debugging environment is ViMer [5], which
borrows techniques from standard tracers, such as the use of spypoints. In [14],
the functional logic programming language NUE-Prolog has a more declarative,
algorithmic debugger which uses the declarative semantics of the program and
works in the style proposed by Shapiro [19]. Thus, an oracle (typically the user)
has to provide the debugger with error symptoms, and has to correctly answer
oracle questions driven by proof trees aimed at locating the actual source of er-
rors. Unfortunately, when debugging real code, the questions are often textually
large and may be difficult to answer.

Abstract diagnosis [8] is a declarative debugging framework which extends
the methodology in [10,19], based on using the immediate consequence operator
to identify bugs in logic programs, to diagnosis w.r.t. computed answers. An
important advantage of this framework is to be goal independent and not to
require the determination of symptoms in advance. In [2], the declarative diag-
nosis methodology of [8] was generalized to the debugging of functional logic
programs, and in [1] it was generalized to functional programs.

In this paper we aim at defining a framework for the abstract diagnosis of
tcc programs. The idea for abstract debugging follows the methodology in [1],
but we have to deal with the extra complexity derived from having constraints,
concurrency, and time issues. Moreover, our framework introduces several nov-
elties, since we delevop a compositional semantics and we show how to derive
automatically the debugging symptoms from a specification given in terms of a
linear temporal logic. We proceed as follows.

First, we associate a (continuous) denotational semantics to our programs.
This leads us to a fixpoint characterization of the semantics of tcc programs.
Then we show that, given the intended specification I of a program D, we can
check the correctness of D by a single step of this operator. The specification I
may be partial or complete, and can be expressed in several ways: for instance,
by (another) tcc program, by an assertion language [6] or by sets of constraint
sequences (in the case when it is finite). The diagnosis is based on the detection of
incorrect rules and uncovered constraint sequences, which both have a bottom-up
definition (in terms of one application of the continuous operator to the abstract
specification). It is worth noting that no fixpoint computation is required, since
the (concrete) semantics does not need to be computed.

In order to provide a practical methodology, we also present an effective debug-
ging methodology which is based on abstract interpretation. Following an idea
inspired in [4,8], and developed in [1] we use over and under specifications I+
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and I− to correctly over- (resp. under-) approximate the intended specification
I of the semantics. We then use these two sets respectively for approximating
the input and the output of the operator associated by the denotational seman-
tics to a given program, and by a simple static test we can determine whether
some of the program rules are wrong. The method is sound in the sense that
each error which is found by using I+, I− is really a bug w.r.t. I.

The rest of the paper is organized as follows. Section 2 recalls the syntax of the
ntcc calculus, a non-deterministic extension of tccmodel. Section 3 and 4 are de-
voted to present a denotational semantics for ntcc programs. We also formulate
an operational semantics and show the correspondence with the least fixpoint se-
mantics. Section 5 provides an abstract semantics which correctly approximates
the fixpoint semantics of D. In Section 6 we introduce the general notions of incor-
rectness and insufficiency symptoms. We give an example of a possible abstract
domain, by considering a ‘cut’ to finite depth of the constraint sequences and show
how it can be used to detect errors in some benchmark programs. We also show
how to derive automatically the elements (sequences) of the domain for debugging
from a specification in linear temporal logic. Section 7 concludes.

2 The Language and the Semantic Framework

In this section we describe the ntcc calculus [15], a non-deterministic temporal
extension of the concurrent constraint (cc) model [18].

2.1 Constraint Systems

cc languages are parametrized by a constraint system. A constraint system pro-
vides a signature from which syntactically denotable objects called constraints
can be constructed, and an entailment relation |= specifying interdependencies
between such constraints.

Definition 1. (Constraint System). A constraint system is a pair (Σ, Δ)
where Σ is a signature specifying constants, functions and predicate symbols,
and Δ is a consistent first-order theory over Σ.

Given a constraint system (Σ, Δ), let L be the underlying first-order language
(Σ, V , S), where V is a countable set of variables and S is the set of logical sym-
bols including ∧, ∨, ⇒, ∃, ∀, true and false which denote logical conjunction,
disjunction, implication, existential and universal quantification, and the always
true and false predicates, respectively. Constraints, denoted by c, d, . . . are first-
order formulae over L. We say that c entails d in Δ, written c |= d, if the formula
c ⇒ d holds in all models of Δ. As usual, we shall require |= to be decidable.

We say that c is equivalent to d, written c ≈ d, iff c |= d and d |= c. Henceforth,
C is the set of constraints modulo ≈ in (Σ, Δ).

2.2 Process Syntax

In ntcc time is conceptually divided into discrete intervals (or time-units).
Intuitively, in a particular time interval, a cc process P receives a stimulus
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(i.e. a constraint) from the environment, it executes with this stimulus as the
initial store, and when it reaches its resting point, it responds to the environment
with the resulting store. The resting point also determines a residual process Q,
which is then executed in the next time interval.

Definition 2 (Syntax). Processes P , Q, . . . ∈ Proc are built from constraints
c ∈ C and variables x ∈ V in the underlying constraint system (Σ, Δ) as follows:

P, Q, . . . ::= skip | tell(c) |
∑

j∈J

when cj do Pj | P ‖ Q

| (local x) inP | nextP | � P | p(x)

Process skip does nothing. Process tell(c) adds the constraint c to the current
store, thus making c available to other processes in the current time interval.
Process

∑

j∈J

when cj do Pj where J is a finite set of indexes, represents a process

that non-deterministically choose a process Pj s.t cj is entailed by the current
store. The chosen alternative, if any, precludes the others. If no choice is possible
in the current time unit, all the alternatives are precluded from execution. We
shall use

∑

j∈J

Pj when the guards are true (“blind-choice”) and we omit
∑

j∈J

when J is a singleton. Process P ‖ Q represents the parallel composition of P
and Q. Process (local x) inP behaves like P , except that all the information
on x produced by P can only be seen by P and the information on x produced
by other processes cannot be seen by P .

The only move of nextP is a unit-delay for the activation of P . We use
nextn(P ) as an abbreviation for next(next(. . . (next P ) . . . )), where next
is repeated n times. � P represents an arbitrary long but finite delay for the
activation of P. It can be viewed as P + next P + next 2P....

Recursion in ntcc is defined by means of processes definitions of the form

p(x1, .., xn) def= A

p(y1, ..., yn) is an invocation and intuitively the body of the process definition
(i.e. A) is executed replacing the formal parameter x by the actual parameters
y. When |x| = 0, we shall omit the parenthesis.

To avoid non-terminating sequences of internal reductions (i.e non-terminating
computation within a time interval), recursive calls must be guarded in the
context of next (see [15] for further details). In what follows D shall denote a
set of processes definitions.

3 Operational Semantics

Operationally, the information in the current time unit is represented as a con-
straint c ∈ C, so-called store. Following standard lines [18], we extend the syntax
with a construct (local x, d) inP which represents the evolution of a process of
the form (local x) inQ, where d is the local information (or private store) pro-
duced during this evolution. Initially d is “empty”, so we regard (local x) inP
as (local x, true) inP .
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The operational semantics will be given in terms of the reduction relations−→,
=⇒⊆ Proc × C × Proc × C defined in Table 1. The internal transition 〈P, c〉 −→
〈Q, d〉 should be read as “P with store c reduces, in one internal step, to Q with

store d”. The observable transition P
(c,d)

====⇒ Q should be read as “P on input
c from the environment, reduces in one time unit to Q and outputs d to the
environment”. Process Q is the process to be executed in the next time unit.
Such a reduction is obtained from a sequence of internal reductions starting in
P with initial store c and terminating in a process Q′ with store d. Crudely
speaking, Q is obtained by removing from Q′ what was meant to be executed
only during the current time interval. In ntcc the store d is not automatically
transferred to the next time unit. If needed, information in d can be transfered
to next time unit by process P .

Let us describe some of the rules for the internal transitions. Rule TELL
says that constraint c is added to the current store d. SUM chooses non-
deterministically a process Pj for execution if its guard (cj) can be entailed
from the store. In PARr and PARl, if a process P can evolve, this evolution can
take place in the presence of some other process Q running in parallel. Rule LOC
is the standard rule for locality (or hiding) (see [18,9]). CALL shows how a pro-
cess definition is replaced by its body according to the set of process definition
in D. Finally, STAR executes P in some time-unit in the future.

Let us now describe the rule for the observable transitions. Rule OBS says
that an observable transition from P labeled by (c, d) is obtained by performing
a terminating sequence of internal transitions from 〈P, c〉 to 〈Q, d〉, for some Q.
The process to be executed in the next time interval, F (Q) (“future” of Q), is
obtained as follows:

Definition 3. (Future Function). Let F : Proc ⇀ Proc be defined by

F (P ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

skip if P = skip
skip if P = when c do Q
F (P1) ‖ F (P2) if P = P1 ‖ P2
(local x) inF (Q) if P = (local x, c) inQ
Q if P = nextQ

In this paper we are interested in the so called quiescent input sequences of
a process. Intuitively, those are sequences of constraints on input of which P
can run without adding any information, wherefore what we observe is that
the input and the output coincide. The set of quiescent sequences of a process
P is thus equivalent to the observation of all sequences that P can possibly
output under the influence of arbitrary environment. We shall refer to the set of
quiescent sequences of P as the strongest postcondition of P written sp(P ), w.r.t
the set of sequences of constraints denoted by C∗. In what follows, let s, s1,etc
range over elements in C∗ and s(i) be the i-th element in s. We note that, as in
Dijkstra’s strongest postcondition approach, proving whether P satisfies a given
(temporal) property A, in the presence of any environment, reduces to proving
whether sp(P ) is included in the set of sequences satisfying A [15].
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Table 1. Rules for the internal reduction −→ and the observable reduction =⇒

TELL 〈tell(c), d〉 −→ 〈skip, d ∧ c〉
SUM

d |= cj j ∈ J
〈∑

j∈J when cj do Pj , d
〉

−→ 〈Pj , d〉

PARr
〈P, c〉 −→ 〈P ′, d〉

〈P ‖ Q, c〉 −→ 〈P ′ ‖ Q,d〉
PARl

〈Q, c〉 −→ 〈Q′, d〉
〈P ‖ Q, c〉 −→ 〈P ‖ Q′, d〉

CALL
p(x) : −A ∈ D

〈p(x), d〉 −→ 〈A, d〉 STAR
n ≥ 0

〈� P, d〉 −→ 〈next nP, d〉

LOC
〈P, c ∧ (∃xd)〉 −→ 〈P ′, c′ ∧ (∃xd)〉

〈(local x, c) inP, d ∧ ∃xc〉 −→ 〈(local (x, c′)) inP ′, d ∧ ∃xc′〉

OBS
〈P, c〉 −→∗ 〈Q,d〉 �−→ R ≡ F (Q)

P
(c,d)

====⇒ R

Definition 4 (Observables). The behavioral observations that can be made of
a process are given by the strongest postcondition (or quiescent) behavior of P

sp(P ) = {s | P
(s,s)

====⇒
∗

for some s ∈ C∗}.

where P
(s,s)

====⇒
∗
≡ P

(s(1),s(1))
====⇒ P ′

(s(2),s(2))
====⇒ . . .

4 Denotational Semantics

In this section we give a denotational characterization of the strongest postcon-
dition observables of ntcc following ideas developed in [15] and [17].

The denotational semantics is defined as a function [[·]] which associates to each
process a set of finite sequences of constraints, namely [[·]] : (Proc → P(C∗)) →
(ProcHeads → P(C∗)), where ProcHeads denotes the set of process names with
their formal parameters. The definition of this function is given in Table 2. We
use ∃xs to represent the sequence obtained by applying ∃x to each constraint in
s. We call the functions in the domain ProcHeads → P(C∗) as Interpretations.
We consider the following order on (infinite) sequences s ≤ s′ iff ∀i.s′(i) |= s(i).
For what concern finite sequences we can order them similarly. Let s and s′ be
finite sequences, then if s has length less or equal to s′ then s ≤ s′ iff ∀i =
1, 2, . . . length(s).s′(i) |= s(i).

Intuitively, [[P ]] is meant to capture the quiescent sequences of a process P .
For instance, all sequence whose first element is stronger than c is quiescent
for tell(c) (D1). Process nextP has not influence on the first element of a
sequence, thus d.s is quiescent for it if s is quiescent for P (D5). The semantics
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for a procedure call p(x) is directly given by the interpretation I provided (D6).
A sequence is quiescent for � P if there is a suffix of it which is quiescent for P
(D7). The other rules can be explained analogously.

Table 2. Denotational semantics of ntcc

D1 [[tell(c)]]I = {d.s | d |= c, s ∈ C∗}
D2 [[

∑
j∈J when cj do Pj ]]J =

⋃
j∈J{d.s | d |= cj , d.s ∈ [[Pj ]]J}

∪⋂
j∈J{d.s | d �|= cj , d.s ∈ C∗}

D3 [[P ‖ Q]]I = [[P ]]I ∩ [[Q]]I
D4 [[local x in P ]]I = {s | there exists s′ ∈ [[P ]]I s.t. ∃xs = ∃xs′}
D5 [[next P ]]I = C1 ∪ {d.s | d ∈ C, s ∈ [[P ]]I}
D6 [[p(x)]]I = I(p(x))
D7 [[� P ]]I = {s.s′ | s ∈ C∗ and s′ ∈ [[P ]]I}

Formally the semantics is defined as the least fixed-point of the corresponding
operator TD ∈ (ProcHeads → P(C∗)) → (ProcHeads → P(C∗))

TD(I)(p(x)) = [[∃y(A ‖ dxy)]]I if p(y) : −A ∈ D

where dxy is the diagonal element used to represent parameter passing (see [18]
for details). The following example illustrates the TD operator.

Example 1. Consider a control system that must exhibit the control signal stop
when some component malfunctions (i.e. the environment introduces as stimulus
the constraint failure). The following (incorrect) program intends to implement
such a system:

control = when failure do next action || next control
action = tell(stop)

Starting from the bottom interpretation I⊥ assigning to every process the empty
set (i.e I⊥(control) = I⊥(action) = ∅), TD is computed as follows:

TD(I⊥)(control) = [[when failure do next action || next control]]I⊥

= {d1.d2.s|d1 |= failure ⇒ d1.d2.s ∈ [[next action]]I⊥}
∩{C1 ∪ {d1.s|s ∈ [[control]]I⊥}}

= {d1.d2.s|d1 |= failure ⇒ d1.d2.s ∈ {C1 ∪ ∅}} ∩ C1 = C1

TD(I⊥)(action) = [[tell(stop)]]I⊥ = {d1.s|d1 |= stop}
Let now I1 = TD(I⊥):

TD(I1)(control) = {d1.d2.s|d1 |= failure ⇒ d1.d2.s ∈ [[next action]]I1}∩(
C1 ∪ {d.s|s ∈ [[control]]I1}

)

={d1.d2.s|d1 |=failure⇒d1.d2.s∈
(
C1 ∪ {d1.d2.s|d2 |= stop}

)
}

∩
(
C1 ∪ C2

)
= {d1.d2|d1 |= failure ⇒ d2 |= stop}
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Table 3. Abstract denotational semantics for ntcc

D1 [[tell(c)]]τI = τ ({d.β | d |= c, β ∈ C∗})
D2 [[

∑
j∈J when cj do Pj ]]

τ
J =

⋃
i∈J τ ({d.β | d |= ci, d.β ∈ [[Pi]]

τ
I })

∪⋂
i∈J τ ({d.β | d �|= ci, d.β ∈ C∗})

D3 [[P ‖ Q]]τI = [[P ]]τI ∩ [[Q]]τI
D4 [[local x in P ]]τI = {β | there exists β′ ∈ [[P ]]τI s.t. ∃xβ = ∃xβ′}
D5 [[next P ]]I = τ (C) ∪ τ ({d.β | d ∈ C, β ∈ [[P ]]I})
D6 [[p(x)]]τI = τ (I(p(x)))
D7 [[� P ]]τI = τ ({β.β′ | β ∈ C∗, β′ ∈ [[P ]]τI })

5 Abstract Semantics

In this section, starting from the fixpoint semantics in Section 4, we develop an
abstract semantics which approximates the observable behavior of the program
and is adequate for modular data-flow analysis.

We will focus our attention now on a special class of abstract interpretations
which are obtained from what we call a sequence abstraction τ : (C∗, ≤) →
(AS, �). We require that (AS, �) is noetherian and that τ is surjective and
monotone.

We start by choosing as abstract domain A := P(AS), ordered by an extension
to sets X �S Y iff ∀x ∈ X∃y ∈ Y : (x � y). We will call elements of A abstract
sequences. The concrete domain E is P(C∗), ordered by set inclusion.

Then we can lift τ to a Galois Insertion of A into E by defining

α(E)(p) := {τ(s) | s ∈ E(p)}
γ(A)(p) := {s | τ(s) ∈ A(p)}

for some ProcHead p. Then, we can lift in the standard way to abstract Interpre-
tations the approximation induced by the above abstraction. The Interpretation
f : ProcHeads → P(C∗) can be approximated by fα : ProcHeads → α(P(C∗)).

The only requirement we put on τ is that α(Sem (D)) is finite, where Sem (D)
is the (concrete) semantics of D.

Now we can derive the optimal abstract version of TD as T α
D := α ◦ TD ◦ γ.

By applying the previous definition of α and γ this turns out to be equivalent
to the following definition.

Definition 5. Let τ be a sequence abstraction, X ∈ A be an abstract Interpre-
tation. Then,

T α
D(X)(p(x)) = τ([[∃y(A ‖ dxy)]]X) if p(y) : −A ∈ D

where the abstract denotational semantics is defined in Table 3.
Abstract interpretation theory assures that T α

D ↑ ω is the best correct approx-
imation of Sem (D). Correct means α(Sem (D)) � T α

D ↑ ω and best means that
it is the minimum w.r.t. � of all correct approximations.

Now we can define the abstract semantics as the least fixpoint of this (con-
tinuous) operator.
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Definition 6. The abstract least fixpoint semantics of a program D is defined
as Fα(D) = T α

D ↑ ω.

By our finiteness assumption on τ we are guaranteed to reach the fixpoint in a
finite number of steps, that is, there exists h ∈ N s.t. T α

D ↑ ω = T α
D ↑ h.

5.1 A Case Study: The Domain Sequence(k)

Now we show how to approximate a set of computed sequences by means of a
sequence(k) cut [20], i.e., by using a sequence abstraction which approximates se-
quences having a length bigger than k. Sequences are approximated by replacing
each constraint at length bigger than k with the constraint false.

First of all we define the sequence abstraction s/k (for k ≥ 0) as the sequence(k)
cut of the concrete sequence s. We mean by that s/k = s′, where s′(i) = s(i) for
i ≤ k−1 and s′(k) = false. We denote by S/k the set of sequences cut at length
k. The abstract domain A is thus P(S/k) ordered by the extension of ordering ≤
to sets, i.e. X ≤S Y iff ∀x ∈ X ∃y ∈ Y : (x ≤ y) The resulting abstraction α is
κ(E)(p) := {s/k | s ∈ I(p)}. By abuse, we will denote by the same notation ≤S

its standard extension to interpretations. A sequence s = c1, . . . , cn is complete
if cn �= false.

We provide a simple and effective mechanism to compute the abstract fixpoint
semantics.

Definition 7. The effective abstract least fixpoint semantics of a program D, is
defined as Fκ(D) = T κ

D ↑ ω.

Proposition 1 (Correctness). Let D be a program and k > 0.

1. Fκ(D) ≤S κ(F (D)) ≤S F (D).
2. Let Y be Fixκ D, and let Z be Fix D.

For all s ∈ Fκ(D)(Y )(p(x)) that are complete, s ∈ F (D)(Z)(p(x)).

6 Abstract Diagnosis of ntcc Programs

In this section, we recall the framework developed in [1]. We modify it in order
to be able to handle the specific features of ntcc. Then we show that the main
correctness and completeness results can be extended to ntcc. We also develop a
completely new methodology based on the linear temporal logic (LTL) associated
to the calculus [15]. The basic idea is that given a specification in the logic we can
generate automatically the sequences which we use for debugging the program.
Let us recall the syntax and semantics of this logic (see [15] for further details).

Formulae in the ntcc LTL are given by the following grammar:

A, B, ... : c | A
·⇒ A | ·¬A |

·
∃xA | ◦ A | �A | �A

c is a constraint. ·⇒,
·¬ and

·
∃x represent the linear-temporal logic implication,

negation and existential quantification, respectively. These symbols should not
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be confused with their counterpart in the constraint system (i.e ⇒ , ¬ and ∃).
Symbols ◦ , � and � denote the temporal operators next, always and eventually.

The interpretation structures of formulae in this logic are infinite sequences
of constraints. We say that β ∈ C∗ is a model of (or that it satisfies) A, notation
β |= A, if 〈β, 1〉 |= A where:

〈β, i〉 |= c iff β(i) |= c

〈β, i〉 |= ·¬A iff 〈β, i〉 |=\ A

〈β, i〉 |= A1
·⇒ A2 iff 〈β, i〉 |= A1 implies〈β, i〉 |= A2

〈β, i〉 |= ◦A iff 〈β, i + 1〉 |= A
〈β, i〉 |= �A iff ∀j≥i〈β, j〉 |= A
〈β, i〉 |= �A iff ∃j≥i s.t.〈β, j〉 |= A

〈β, i〉 |=
·
∃xA iff exists β′ s.t. ∃xβ = ∃xβ′

The LTL is then used to specify (temporal) properties of programs:

Definition 8. We say that P satisfies some property A written P � A, iff
sp(P ) ⊆ [[A]] where [[A]] is the collection of all models of A, i.e., [[A]] = {β |= A}.

Program properties which can be of interest are Galois Insertions between the
concrete domain (the set of interpretations ordered pointwise) and the abstract
domain chosen to model the property. The following Definition extends to ab-
stract diagnosis the definitions given in [19,10,13] for declarative diagnosis. In
the following, Iα is the specification of the intended behavior of a program.

Definition 9. [1] Let D be a program and α be a property.

1. D is partially correct w.r.t. Iα if Iα � α(Sem (D)).
2. D is complete w.r.t. Iα if α(Sem (D)) � Iα.
3. D is totally correct w.r.t. Iα, if it is partially correct and complete.

Note that the above definition is given in terms of the abstraction of the concrete
semantics α(Sem (D)) and not in terms of the (possibly less precise) abstract
semantics Semα(D). This means that Iα is the abstraction of the intended con-
crete semantics of D. In other words, the specifier can only reason in terms of
the properties of the expected concrete semantics without being concerned with
(approximate) abstract computations.

The diagnosis determines the “basic” symptoms and, in the case of incor-
rectness, the relevant rule in the program. This is modeled by the definitions of
abstractly incorrect rule and abstract uncovered equation.

Definition 10. Let r be a procedure definition. Then r is abstractly incorrect
if ∃p(x) : −A ∈ D.T α

{r}(Iα)(p(x)) �� Iα.

Informally, r is abstractly incorrect if it derives a wrong abstract element from
the intended semantics.

Definition 11. Let D be a program. D has abstract uncovered elements if
∃p(x) : −A ∈ D.Iα �� T α

D(Iα)(p(x)).
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Informally, a sequence s is uncovered if there are no rules deriving it from the in-
tended semantics. It is worth noting that checking the conditions of Definitions 10
and 11 requires one application of T α

D to Iα, while the standard detection based
on symptoms [19] would require the construction of α(Sem (D)) and therefore a
fixpoint computation.

Now, we want to recall the properties of the diagnosis method. The proofs of
the following theorems in this section are extensions of those in [1].

Theorem 1. [1] If there are no abstractly incorrect rules in D, then D is par-
tially correct w.r.t. Iα.

Theorem 2. [1] Let D be partially correct w.r.t. Iα. If D has abstract uncovered
elements then D is not complete.

Abstract incorrect rules are in general just a hint about a possible source of
errors. If an abstract incorrect rule is detected, one would still have to check
on the abstraction of the concrete semantics if there is indeed a bug. This is
obviously unfeasible in an automatic way. However we will see that, by adding
to the scheme an under-approximation of the intended specification, something
worthwhile can still be done.

Real errors can be expressed as incorrect rules according to the following
definition.

Definition 12. Let r be a process definition. Then r is incorrect if there exists
a sequence s such that s ∈ T{r}(I ) and s �∈ I .

Definition 13. Let D be a program. Then D has an uncovered element if there
exists a sequence s such that s ∈ I and s �∈ TD(I ).

The check of Definition 12 (as claimed above) is not effective. This task can
be (partially) accomplished by an automatic tool by choosing a suitable under-
approximation Ic of the specification I , γ(Ic) ⊆ I (hence α(I ) � Ic), and
checking the behavior of an abstractly incorrect rule against it.

Definition 14. Let r be a process definition. Then r is provably incorrect using
α if ∃p(x) : −A ∈ D.T α

{r}(α(Ic))(p(x)) �� Iα.

Definition 15. Let D be a program. Then D has provably uncovered elements
using α if ∃p(x) : −A ∈ D.α(Ic) �� T α

D(Iα)(p(x)).

The name “provably incorrect using α” is justified by the following theorem.

Theorem 3. [1] Let r be a program rule (process) and Ic such that (γα)(Ic) =
Ic. Then if r is provably incorrect using α it is also incorrect.

By choosing a suitable under-approximation we can refine the check for wrong
rules. For all abstractly incorrect rules we check if they are provably incorrect
using α. If it so then we report an error, otherwise we can just issue a warning.

As we will see in the following, this property holds (for example) for our case
study. By Proposition 1 the condition (γα)(Ic) = Ic is trivially satisfied by any
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subset of the ‘finite’ sequences in the over-approximation. We can also consider a
finite subset of the sequences in which we do the following change: if a sequence
is such that all its elements starting from the length k are equal to false, we
replace such elements by true.

Theorem 4. [1] Let D be a program. If D has a provably uncovered element
using α, then D is not complete.

Abstract uncovered elements are provably uncovered using α. However, Theo-
rem 4 allows us to catch other incompleteness bugs that cannot be detected by
using Theorem 2 since there are provably uncovered elements using α which are
not abstractly uncovered.

The diagnosis w.r.t. approximate properties is always effective, because the
abstract specification is finite. As one can expect, the results may be weaker than
those that can be achieved on concrete domains just because of approximation:

– every incorrectness error is identified by an abstractly incorrect rule. However
an abstractly incorrect rule does not always correspond to a bug. Anyway,

– every abstractly incorrect rule which is provably incorrect using α corre-
sponds to an error.

– provably uncovered equations always correspond to incompleteness bugs.
– there exists no sufficient condition for completeness.

6.1 Our Case Study

An efficient debugger can be based on the notion of over-approximation and
under-approximation for the intended fixpoint semantics that we have intro-
duced. The basic idea is to consider two sets to verify partial correctness and
determine program bugs: Iα which over-approximates the intended semantics I
(that is, I ⊆ γ(Iα)) and Ic which under-approximates I (that is, γ(Ic) ⊆ I ).

Let us now derive an efficient debugger by choosing suitable instances of our
general framework. Let α be the sequence(k) abstraction κ of the program that
we have defined in previous section. Thus we choose Iκ = Fκ(I ) as an over-
approximation of the values of a program. We can consider any of the sets defined
in the works of [4,7] as an under-approximation of I . In concrete, we take the
finite abstract sequences of Iκ as Ic but replacing the constraint false by true
after the position κ. This provides a simple albeit useful debugging scheme which
is satisfactory in practice.

Another possibility is to generate the sequences for the under and the over-
approximation from the sequences that are models for a LTL formula specifying
the intended behavior of the program. Let us illustrate the method by using the
guiding example.

Example 2. Let first consider what the intended behaviour of the system pro-
posed in Example 1 should be. We require that as soon as the constraint failure
can be entailed from the store, the system must exhibit the constraint stop. This
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specification can be provided by means of another (correct) program or by a for-
mula in the LTL. Let us explore both cases.

Let control′ and action′ be the intended system:

control′ = when failure do action || next control′

action′ = tell(stop)

and A be the LTL formula:

A = �(failure ⇒ stop)

Sequences generated by A and by the processes control′ and action′ coincides
and can be used to compute the intended behavior I, the corresponding over-
approximation Iα = Iκ and the under-approximation Ic as was defined previ-
ously. The intended behaviour I is then:

I(control′) = {s′.d.s′′|d |= failure ⇒ d.s′′ ∈ [[action′]]I} for any s′ and s′′

I(action′) = {d.s|d |= stop}

According to Definition 14, let us compute T α
{control}(α(Ic))(control):

T α
{control}(α(Ic))(control) = τ({d1...dk.true∗|d1 |= failure ⇒ d2 |= stop

and ∀i>1di |= failure ⇒ di |= stop})

Given s1 = failure.stop.true∗ ∈ T α
{control}(α(Ic))(control) and s2 = failure ∧

stop.true∗ ∈ Iα, notice that s1 �≤ s2 suggesting that control is provably incor-
rect. The error is due to it delays one time unit the call to the process action.

Example 3. In this example we debug a program capturing the behaviour of a
RCX-based robot that can go right or left. The movement of the robot is defined
by the following rules: 1) If the robot goes right in the current time unit, it must
turn left in the next one. 2) After two consecutive time units moving to the left,
next decision must be turn right. The program proposed is depicted below:

GoR = tell(a0 = r)||next tell(a1 = r)
GoL = tell(a0 = l)||next tell(a1 = l)
Update = when a1 = l do next tell(a2 = l)+

when a1 = r do next tell(a2 = r)
Zigzag = when a2 �= r do GoR + when a2 �= l do GoL||

Update||nextZigzag

GoR and GoL represent the decision of turning right or left respectively.
Update keeps track of the second-to-last action and ZigZag controls the be-
haviour of the robot. Variables a0, a1 and a2 represent the current, the previous
and the second-to-last decisions respectively.

Now we provide the intended specification for each process:

I(GoR) = {s|∀i. s(i) |= (a0 = r) and s(i + 1) |= (a1 = r)}
I(GoL) = {s|∀i. s(i) |= (a0 = l) and s(i + 1) |= (a1 = l)}
I(Update) = {s|∀i. s(i) |= (a1 = l) ⇒ s(i + 1) |= (a2 = l)}∪

{s|∀i. s(i) |= (a1 = r) ⇒ s(i + 1) |= (a2 = r)}
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Specification of Zigzag can be stated by the following LTL formula:

A = �((a0 = r) ·⇒ ◦(a0 = l)
·
∧ ((a0 = l)

·
∧ ◦(a0 = l) ·⇒ ◦ ◦ (a0 = r)))

The property states that always is true that 1)if the current decision is go right,
the next decision must be go left and 2)if the robot goes left in two consecutive
time units, the next decision must be turn right. I(Zigzag) can be then viewed
as all the possible models of the formula A, i.e. [[A]]:

I(Zigzag) = {s|s(i) |= (a0 = r) ⇒ s(i + 1) |= (a0 = l)}∪
{s| (s(i) |= (a0 = l) ∧ s(i + 1) |= (a0 = l)) ⇒ s(i + 2) |= (a0 = r)}

Let Iα be the abstraction Iκ representing the over-approximation of I and
Ic the under-approximation as before. Let us compute a step of T α

{Zigzag}:

T α
{Zigzag}(α(Ic))(Zigzag) = [[when a2 �= r do GoR + when a2 �= l do GoL||

Update]]α(Ic)
= ({d1.s|d1 |= (a2 �= r) ⇒ d1.s ∈ [[GoR]]α(Ic)}∪

{d1.s|d1 |= (a2 �= l) ⇒ d1.s ∈ [[GoL]]α(Ic)})∩
{d.s|s ∈ [[Zigzag]]α(Ic)} ∩ [[Update]]α(Ic)

Notice that the sequence d1.d2 where d1 |= (a0 = r) and d2 |= (a0 = r) is a
sequence that can be generated from T α

{Zigzag}(α(Ic))(Zigzag) but d1.d2 /∈ Iα.
Using Definition 14 we can say that Zigzag is provably incorrect. The bug in
this case, is that guard in the sub-process when a2 �= r do GoR must be a1 �= r.

7 Conclusions

We have presented a framework for the declarative debugging of tcc programs
w.r.t. the set of computed constraint sequences. Our method is based on a de-
notational semantics for tcc programs which models the semantics in a com-
positional manner. Moreover, we have shown that it is possible to use a linear
temporal logic for providing a specification of correct programs, and generate
automatically from it the sequences which are necessary for debugging.

We follow the idea of considering declarative specifications as programs. The
intended specification can then be automatically abstracted and can be used
to automatically debug the final program. As future work we are developing a
prototype of our debugging system on top of an implementation of an interpreter
of the ntcccalculus that we developed in [16].
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Abstract. We provide new perspectives on the semantics of logic programs with
constraints. To this end we introduce several notions of computation and propose
to use the results of computations as answer sets of programs with constraints.
We discuss the rationale behind different classes of computations and study the
relationships among them and among the corresponding concepts of answer sets.
The proposed semantics generalize the answer set semantics for programs with
monotone, convex and/or arbitrary constraints described in the literature.

1 Introduction and Motivation

In this paper we study logic programs with arbitrary abstract constraints (which we
also simply refer to as constraints). Programs with constraints generalize normal logic
programs, programs with monotone and convex constraints [16,11], and several classes
of programs with aggregates (e.g., [2,6,18]). Intuitively, a constraint A represents a con-
dition on models of the program containing A. The definition of A includes an explicit
description of conditions interpretations have to meet in order to satisfy it. The syn-
tax of such programs and one possible semantics have been proposed in [15]. Another
semantics has been proposed in [21]. Following the approach proposed in [11], and
exploiting analogies to the case of normal logic programs, we introduce several other
semantics based on computations for programs with constraints. We argue that the re-
sults of (some types of) computations adequately generalize answer sets of programs
with constraints.

The notion of an answer set of a logic program [8] is the foundation for answer-set
programming (ASP) [14,17]. Intuitively, an answer set represents beliefs of an agent,
given a logic program encoding its knowledge base. Researchers developed several
characterizations of answer sets, providing a reasoner with alternative ways to deter-
mine them. The original definition of answer sets [8] naturally leads to a “guess-and-
check” approach. We first guess a candidate for an answer set, and then we validate
the guess. The validation consists of recomputing the guess starting with the empty set
and iterating the one-step provability operator [22] for the Gelfond-Lifschitz program
reduct [8]. Alternatively, we can compute an answer set starting with the empty set.
At each step, we include in the set under construction the heads of some of the rules
applicable at this step; typically, we include all the rules selected during the previous
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steps plus some additional ones. Once the process stabilizes, we need to check that the
final result does not block any rules chosen to fire earlier [12,13]. In this second ap-
proach, we replace the initial non-deterministic step of guessing the answer set with
non-deterministic choices of rules to fire at each step of the construction.

Example 1. Let us consider the program P1 consisting of the following rules:
a ← not b c ← a b ← not a d ← b.

This program has two answer sets: {a, c} and {b, d}. In the “guess-and-check” ap-
proach, we might guess {a, c} as a candidate answer set. To verify the guess, we com-
pute the Gelfond-Lifschitz reduct, consisting of the rules a ← , c ← a and d ← b. Next,
we iterate the one-step provability operator for the reduct to compute its least Herbrand
model—which corresponds to {a, c}. Since it coincides with the initial guess, the guess
is validated as an answer set. In this way, we can also validate the guess {b, d}. How-
ever, the validation of {a} fails—i.e., {a} is not an answer set.

The other approach starts with the empty interpretation, ∅, which makes two rules
applicable: a ← not b and b ← not a. The algorithm needs to select some of them to
“fire”, say, it selects a ← not b. The choice results in the new interpretation, {a}. Two
rules are applicable now: a ← not b and c ← a. The algorithm selects both rules for
firing. The interpretation that results is {a, c}. The same two rules that were applicable
in the previous step are applicable now. Thus, there is no possibility to add new elements
to the current set. The computation stabilizes at {a, c}. Since {a, c} does not block any
of the rules fired in the process, {a, c} is an answer set. ��

We note that the first approach starts with a tentative answer set of the program, while
the second starts with the empty interpretation. In the first approach, we guess the entire
answer set at once and, from that point on, proceed in a deterministic fashion. In the
second approach we construct an answer set incrementally making non-deterministic
choices along the way. Thus, each approach involves non-determinism. However, in the
second approach, the role of non-determinism is generally reduced. In this paper we
cast these two approaches in terms of abstract principles related to a notion of computa-
tion. We then lift these principles to the case of programs with abstract constraints and
propose several new semantics for such programs.

The interest in ASP has been fueled by the development of software to compute
answer-sets of logic programs, most notably SMODELS and DLV, which allow program-
mers to tackle complex real-world problems (e.g., [1,10,5]). To facilitate declarative so-
lutions of problems in knowledge representation and reasoning, researchers proposed
extensions of the logic programming language, which support constraints and aggre-
gates [17,2,3,4,6,9,18,19]. This development stimulated interest in logic programming
formalisms based on abstract constraint atoms [15,16]. The concept of an abstract con-
straint atom is general and encompasses several language-level extensions including
aggregates. The introduction of constraints brought forth the question of how to extend
the semantics of answer sets to the case of programs with constraints. Researchers pro-
posed several possible approaches [6,3,19,21,4,20]. They all agree on specific classes
of programs with constraints including normal logic programs (viewed as programs
with constraints), programs with monotone constraints [16], and programs with convex
constraints [11]. However, they differ on programs with arbitrary constraints.
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What makes the task of defining answer sets for programs with arbitrary constraints
difficult and interesting is the nonmonotonic behavior of such constraints. For instance,
let us consider the constraint ({p(1), p(−1)}, {{p(1)}}) (we introduce this notation in
Section 3), which can be seen as an encoding of the aggregate SUM({X | p(X)}) ≥
1.1 This aggregate atom is true in the interpretation {p(1)} but false in {p(1), p(−1)}.

The contribution of this paper is the development of a general framework for defining
and studying answer sets for logic programs with arbitrary constraints. Our proposals
rely on an abstract notion of incremental computation and can be traced back to one of
the two basic approaches to computing answer sets of normal logic programs that we
mentioned above. This notion generalizes an approach developed in [16,11] for the case
of programs with monotone and convex constraints. In the paper, we study properties
of the notions of answer set we introduce, and relate them to the earlier proposals.

2 Computations in Normal Logic Programs—Principles

We start by motivating the notion of a computation, which is central to our paper. To
this end, we look at the case of normal logic programs and build on our discussion in
Example 1. In particular, we show how to use computations to characterize answer-sets.
We represent propositional interpretations as sets of atoms. A program rule whose body
is satisfied by an interpretation M is called M-applicable. We write P (M) to denote
the set of all M -applicable rules in a program P . The one-step provability operator
assigns to an interpretation M the set of the heads of all rules in P (M). We denote this
operator by TP . Fixpoints of TP are supported models of P . An interpretation M is a
stable model or, as we will say here, an answer set of P if M is the least model of the
Gelfond-Lifschitz reduct PM .

We define computations as sequences 〈Xi〉∞i=0 of sets of atoms (propositional inter-
pretations), where Xi represents the status of the computation at step i. In particular,
we require that X0 = ∅. The basic intuition is that a computation, at each step i ≥ 1,
revises its previous status Xi−1. We base the revision on a non-deterministic operator,
ConclP (X), that provides the set of revisions of X that can be justified according to a
logic program P and a set of atoms X . Formally, a set of atoms Y is grounded in a set
of atoms X and a program P if

Y ⊆ {a | (a ← body) ∈ P and X |= body}.

We write ConclP (X) to denote the set of all possible sets Y grounded in X and P .
We require that computations satisfy the principle of revision:

(R) Revision principle: each successive element in a computation must be
grounded in the preceding one and the program, i.e., Xi ∈ ConclP (Xi−1),
for every i, 1 ≤ i.

A computation of an answer set of a program, using a method as described in Example 1,
produces a monotonically increasing sequence of sets, each being a part of the answer
set being built. Thus, at each step not only new atoms are computed, but also all atoms
established earlier are recomputed. This suggests the principle of persistence of beliefs:

1 We assume that 1, −1 are the two available constants.
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(P) Persistence of beliefs: each next element in the computation must contain
the previous one (once we “revise an atom in”, we keep it), i.e., Xi−1 ⊆ Xi,
for every i, 1 ≤ i.

For a sequence 〈Xi〉∞i=0 satisfying the principle (P), we define X∞ to be the result
of 〈Xi〉∞i=0 by setting X∞ =

⋃∞
i=0 Xi. The result of the computation should be an

interpretation that could not be revised further. This suggests one more basic principle
for computations, the principle of convergence:

(C) Convergence: the computation process continues until it becomes stable
(no additional revisions can be made), i.e., X∞ = TP (X∞), where TP is the
one-step provability operator. In other words, X∞ is a supported model of P .

Definition 1. Let P be a normal logic program. A sequence 〈Xi〉∞i=0 is a computation
for P if 〈Xi〉∞i=0 satisfies the principles (R), (P) and (C), and X0 = ∅.

Computations are indeed relevant to the task of describing answer sets of normal logic
programs. We have the following result.

Proposition 1. Let P be a normal logic program. If a set of atoms X is an answer set
of P then there exists a computation for P , 〈Xi〉∞i=0, such that X = X∞.

Proof (Sketch). The sequence 〈X〉∞i=0 can be obtained from the iterations of the one-
step provability operator of the Gelfond-Lifschitz reduct of the program P . ��

Proposition 1 implies that the principles (R), (P) and (C) give a notion of computation
broad enough to derive any answer set. Is this concept of computation what is needed
to precisely characterize answer sets? In other words, does every sequence of sets of
atoms starting with the ∅ and satisfying the principles (R), (P) and (C) result in an
answer set? This is indeed the case for positive normal logic programs, more commonly
referred to as Horn programs.

Proposition 2. Let P be a positive logic program. The result of every computation is
equal to the least model of P , that is, to the unique answer set of P .

However, in the case of arbitrary normal programs, there are computations that do not
result in answer sets.

Example 2. Consider the program P2 containing the two rules a ← not a and a ← a.
The sequence X0 = ∅, X1 = {a}, X2 = {a}, . . . satisfies (R), (P) and (C) and so, it
is a computation for P . However, X =

⋃∞
i=0 Xi = {a} is not an answer set of P2. ��

It follows that the notion of a computation defined by the principles (R), (P) and
(C) is too broad to describe exactly the notion of an answer set. Let us come back
to Example 2. There, a ∈ X1 because the body of the first rule is satisfied by the
set ∅. However, the body of the first rule is not satisfied in every set Xi for i ≥ 1.
Nevertheless, a ∈ Xi, for i ≥ 2, since the body of the second rule is satisfied by Xi−1.
Thus, the reason for the presence of a in the next revision changes between the first and
second step. This is why that sequence does not result in an answer set, even though it

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



290 L. Liu et al.

satisfies the principle (P), which guarantees that atoms once revised in will remain in
throughout the rest of the computation.

These considerations suggest that useful classes of computations can be obtained by
requiring that not only atoms but also reasons for including atoms persist. Intuitively, we
would like to associate with each atom included in Xi a rule that supports the inclusion,
and this rule should remain applicable from that point on. More formally, we state this
principle as follows:

(Pr) Persistence of Reasons: for every a ∈ X∞ there is a rule ra ∈ P (called
the reason for a) whose head is a and whose body holds in every Xi, i ≥ ia−1,
where ia is the least integer such that a ∈ Xia .

This principle is exactly what is needed to characterize answer sets of normal logic
programs.

Definition 2. Let P be a normal logic program. A computation 〈X〉∞i=0 for P is persis-
tent if it satisfies the principle (Pr).

Proposition 3. Let P be a normal logic program. A set X is an answer set of P if and
only if there is a persistent computation for P such that its result is X .

We now observe that, in general, the operator ConclP offers several choices for revising
a current interpretation Xi−1 into Xi during a computation. The question is whether this
freedom is necessary or whether we can restrict the principle (R) and still characterize
answer sets of normal logic programs.

Example 3. Let P3 be the normal logic program:

a ← not b c ← not b e ← a, c f ← a,not c.

This program has only one answer set M = {a, c, e}, which corresponds to the com-
putation ∅, {a, c}, {a, c, e}. In this computation, at each step i = 1, 2, we take as Xi

a greatest element of ConclP3(Xi−1), which exists and is given by TP3(Xi−1). Thus,
the next element of the computation is the result of firing all applicable rules.

On the other hand, selecting an element in ConclP3(X) other than TP3(X) can re-
sult in sequences that cannot be extended to a computation. For example, the sequence
∅, {a}, {a, f} represents a potential computation since it satisfies the (R) and (P) prin-
ciples. Yet, no possible extension of this sequence satisfies the (C) principle. ��

This example indicates that interesting classes of computations can be obtained by re-
stricting the operator ConclP . Since for every X we have TP (X) ∈ ConclP (X), we
could restrict the choice for possible revisions of X based on P to TP (X). The class of
computations obtained under this restriction is a proper subset of the class of computa-
tions. For instance, the program P1 from Example 1 does not admit computations that
revise Xi−1 into Xi = TP (Xi−1). Thus, the class of such computations is not adequate
for the task of characterizing answer sets of normal logic program. We note, though,
that they do characterize answer sets for some special classes of logic programs, for
instance, for stratified logic programs.
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To obtain a general characterization of answer sets by restricting the choices offered
by ConclP (X), we need to modify the operator TP (X). The first approach to comput-
ing answer sets, discussed in the introduction provides a clue: we need to change the
notion of satisfiability used in the definition of TP (X).

Let M ⊆ At . We define the satisfiability relation |=M , between sets of atoms and
conjunctions of literals, as follows: we say that S |=M F holds (where S ⊆ At and F
is a conjunction of literals) if S |= F and M |= F . That is, the satisfaction is based not
only on S but also on M (the “context”). We now define the (context-based) one-step
provability operator T M

P as follows:

T M
P (X) = {a | a ← body ∈ P, X |=M body}.

We note that T M
P (X) ∈ ConclP (X). Thus, we obtain the following result.

Proposition 4. Let P be a normal logic program. A sequence 〈Xi〉∞i=0 of sets of atoms
that satisfies properties (P) and (C), as well as the property Xi = T M

P (Xi−1), for
i = 1, 2, . . ., is a computation for P .

If a computation is determined by the satisfiability relation |=M in the way described
in Proposition 4, we call it an M -computation. Not all M -computations define answer
sets. Let us consider the program P2 from Example 2. The sequence X0 = ∅, Xi = {a},
i = 1, 2, . . ., is a ∅-computation for P2. But the result of this computation ({a}) is not
an answer set for P2.

The problem is that M -computations may not to be persistent. In fact, the ∅-
computation described above is not. It turns out that if we impose the condition of
persistence on M -computations, their results are answer sets.

Proposition 5. Let P be a normal logic program and M ⊆ At . If an M -computation
is persistent then its result is an answer set for P .

It is also the case that every answer set is the result of some persistent M -computation.

Proposition 6. Let P be a normal logic program. A set M of atoms is an answer set of
P if and only if there exists a persistent N -computation whose result is M .

A even stronger result can be proved—in which answer sets are characterized by a
proper subclass of persistent M -computations. We call an M -computation self-justified
if its result is M .

Proposition 7. Let P be a normal logic program. A set M ⊆ At is an answer set of
P if and only if P has a self-justifying M -computation (whose result, by the definition,
is M ).

One can check that self-justified M -computations are persistent. Moreover, in general,
the class of self-justified M -computations is a proper subclass of M -computations.
Thus, we can summarize our discussion in this section as follows. Answer sets of nor-
mal logic programs can be characterized as the results of persistent computations, per-
sistent M -computations, and self-justified M -computations, with each subsequent class
being a proper subclass of the preceding one.
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Our goal, in this section, was to recast answer sets of normal logic programs in
terms of computations. More specifically, taking two ways of computing answer sets
as the departure point, we introduced three characterizations of answer sets in terms of
persistent computations. In Sections 4 and 5, we will show how to generalize the classes
of computations discussed here to the case of programs with constraints. In this way,
we will arrive at concepts of answer sets for programs with constraints that generalize
the concept of answer sets for normal logic programs.

3 Programs with Abstract Constraints—Basic Definitions

We recall here some basic definitions concerning programs with constraints [15,16,11].
We fix an infinite set At of propositional variables. A constraint is an expression A =
(X, C), where X ⊆ At is a finite set, and C ⊆ P(X) (P(X) denotes the powerset
of X). The set X is called the domain of A = (X, C), denoted by Adom . Elements of
C are called satisfiers of A, denoted by Asat . Intuitively, the sets in Asat are precisely
those subsets of Adom that satisfy the constraint. A constraint A is said to be monotone
if for every X ⊆ Y ⊆ Adom , X ∈ Asat implies that Y ∈ Asat . A constraint A is said
to be convex if for all X ⊆ Y ⊆ Z ⊆ Adom such that X, Z ∈ Asat, Y ∈ Asat, too.

Constraints are building blocks of rules and programs. A rule is an expression

A ← A1, . . . , Ak (1)

where A, A1, . . . , Ak are constraints. A constraint program (or a program) is a col-
lection of rules. A program is monotone (convex) if every constraint occurring in it is
monotone (convex).

Given a rule r of the form (1), the constraint A is the head of r and the set {A1, . . . ,
Ak} of constraints is the body of r (sometimes we view the body of a rule as the con-
junction of its constraints). We denote the head and the body of r by hd(r) and bd(r),
respectively. We define the headset of r, written hset(r), as the domain of the head of
r. That is, hset(r) = hd(r)dom .

We view subsets of At as interpretations. We say that M satisfies a constraint A,
denoted by M |= A, if M ∩ Adom ∈ Asat . The satisfiability relation extends in the
standard way to conjunctions of constraints, rules and programs.

Let M ⊆ At be an interpretation. A rule is M -applicable if M satisfies every con-
straint in bd(r). We denote with P (M) the set of all M -applicable rules in P . Let P be
a program. A model M of P is supported if M ⊆ hset(P (M)).

Let P be a program and M a set of atoms. A set M ′ is non-deterministically one-step
provable from M by means of P , if M ′ ⊆ hset(P (M)) and M ′ |= hd(r) for every
rule r ∈ P (M). The nondeterministic one-step provability operator T nd

P for a program
P is an operator on P(At) such that for every M ⊆ At , T nd

P (M) consists of all sets
that are non-deterministically one-step provable from M by means of P .

For an arbitrary atom a ∈ At , the constraint ({a}, {{a}}) is called an elementary
constraint. Since ({a}, {{a}}) has the same models as a, ({a}, {{a}}) is often iden-
tified with (and denoted by) a. For the same reason, ({a}, {∅}) can be identified with
not a. Given a normal logic program P , by C(P ) we denote the program with con-
straints obtained from P by replacing every positive atom a in P with the constraint
({a}, {{a}}), and replacing every literal not a in P with the constraint ({a}, {∅}).
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We note that C(P ) is a convex program [11]. One can show that supported models of
P coincide with supported models of C(P ), and answer sets of P coincide with answer
sets of C(P ) (according to the definition from [11]). In other words, programs with
constraints are sufficient to express normal logic programs. Therefore, in this paper we
focus on programs with abstract constraints only.

4 Computations for Programs with Constraints

Our goal is to extend the concept of a computation to programs with constraints. Once
we have such a concept in hand, we will use it to define answer sets for programs with
constraints. To this end, we will build on the two characterizations of answer sets for
the case of normal logic programs, which we developed in Section 2.

In order to define computations of programs with constraints, we consider the prin-
ciples identified in Sect. 2. The key step is to generalize the revision principle. For
normal programs, it was based on sets of atoms grounded in a set of atoms X (current
interpretation) and P . We will now extend this concept to programs with constraints.

Definition 3. Let P be a program with constraints and let X ⊆ At be a set of propo-
sitional atoms. A set Y is grounded in X and P if for some program Q ⊆ P (X),
Y ∈ T nd

Q (X). We denote by ConclP (X) the set of all sets Y grounded in X and P .

The intuition is the same as before: a set Y is grounded in X and P if it can be justified
by means of some rules in P on the basis of X . It follows directly from the definition
that if Q ⊆ P then T nd

Q (X) ⊆ ConclP (X), which generalizes a similar property in the
case P is a normal logic program: if Q ⊆ P then TQ(X) ∈ ConclP (X).

With this definition of ConclP (X), the principle (R) lifts without any changes. The
same is true for the principle (P) (which is independent of the choice of the class of pro-
grams). The principle (C) is also easy to generalize thanks to its alternative statement
in terms of models:

(C) Convergence: X∞ is a supported model of P , i.e., X∞ ∈ T nd
P (X∞).

Finally, the principle (Pr) generalizes, as well. At a step i of a computation that
satisfies (R), we select as Xi an element of ConclP (Xi−1). By the definition of
ConclP (Xi−1), there is a program Pi−1 ⊆ P (Xi−1) such that Xi ∈ T nd

Pi−1
(Xi−1).

Each such program can be viewed as a reason for Xi. We can now state the generalized
principle (Pr) as follows:

(Pr) Persistence of Reasons: There is a sequence of programs 〈Pi〉∞i=0 such
that for every i, 0 ≤ i, Pi ⊆ Pi+1, Pi ⊆ P (Xi), Xi+1 ∈ T nd

Pi
(Xi).

Having extended the principles (R), (P), (C) and (Pr) to the class of programs
with constraints, we define computations literally extending the earlier definitions.

Definition 4. Let P be a program with abstract constraints. A sequence 〈Xi〉∞i=0 is a
computation for P if X0 = ∅ and the sequence satisfies the principles (R), (P) and
(C). A computation is persistent if it also satisfies the principle (Pr).
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As before, we have the following containment property.

Proposition 8. Let P be a program with constraints. The class of persistent computa-
tions is a proper subset of the class of computations.

Proof (Sketch). The containment is evident. To show that it is proper, we consider the
program C(P2), where P2 is the normal logic program from Example 2. The sequence
∅, {a}, . . . is a computation but not a persistent computation for C(P2).

It is also the case, that computations for programs with constraints generalize computa-
tions for normal logic programs.

Proposition 9. Let P be a normal logic program. The class of computations (respec-
tively, persistent computations) of P , according to the definitions in Section 2, coincides
with the class of computations (respectively, persistent computations) of the program
C(P ), according to definitions in Section 3.

We conclude this section by proposing the first definition of the concept of answer
set for programs with constraints. To this end, we generalize the characterization of
answer sets of normal logic programs in terms of persistent computations discussed in
Section 2.

Definition 5. Let P be a program with constraints. A set X is an answer set of P if
there is a persistent computation for P , whose result is X .

Since persistent computations satisfy the principle (C), answer sets of a program P
with constraints are supported models of P , generalizing a property of normal logic
programs. As a matter of fact, the results of arbitrary computations are supported mod-
els (because of (C)). However, there are programs such that some of their supported
models cannot be reached by a computation. For instance, {a} is a supported model of
the program C(P ), where P = {a ← a}, but there is no computation for C(P ) with
the result {a}.

Proposition 9 implies that our definition of answer sets for programs with constraints
generalizes the definition of answer sets for normal logic programs.

Corollary 1. Let P be a normal logic program. A set X ⊆ At is an answer set of P if
and only if X is an answer set of C(P ).

It is also the case that this concept of answer sets extends that introduced in [16,11] for
monotone and convex programs.

Proposition 10. Let P be a monotone or convex program. Then, a set of atoms X ⊆ At
is an answer set of P according to the definition in [16,11] if and only if X is the answer
set of P according to Definition 5.

5 Computations and Quasi-satisfiability Relations

The notion of a computation discussed so far makes use of the non-deterministic oper-
ator ConclP to revise the interpretations occurring along a computation. As we men-
tioned earlier, the use of ConclP provides a wide range of choices for revising a state
of a computation, essentially considering all the subsets of applicable rules.
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We will now study computations, as well as related concepts resulting by relaxing
some of the postulates for computations, which can be obtained by narrowing down the
set of choices given by ConclP (X) as possible revisions of X . In the case of normal
logic programs, we accomplished this goal by means of an operator T M

P , based on the
satisfiability relation |=M . We will now generalize that idea to the case of programs
with constraints.

Definition 6. A sequence C = 〈Xi〉∞i=0 is a weak computation for a program with
constraints, P , if X0 = ∅ and if C satisfies the properties (P) and (C).

Thus, weak computations are sequences that do not rely on a program P when moving
from step i to step i + 1. We will now define a broad class of weak computations that,
at least to some degree, restore the role of P as a revision mechanism.

Let � be a relation between sets of atoms (interpretations) and abstract constraints.
We extend the relation � to the case of conjunctions (sets) of constraints as follows:
X�A1, . . . , Ak if X�Ai, for every i, 1 ≤ i ≤ k. This relation is intended to represent
some concept of satisfiability of constraints and their conjunctions. We will call such
relations quasi-satisfiability relations. They will later allow us to generalize the relation
|=M .

For a quasi-satisfiability relation �, we define

P �(X) = {r ∈ P | X�bd(r)}.

In other words, P �(X) is the set of all rules in P that are applicable with respect to X

under the relation �. Next, we define T nd;�
P (X) to consist of all sets Y ⊆ hset(P �(X))

such that Y |= hd(r), for every r ∈ P �(X). In other words T nd;�
P works similarly to

T nd
P , except that rules in P �(X) are “fired” rather than those in P (X).

Definition 7. Let � be a quasi-satisfiability relation. A weak computation C = 〈Xi〉∞i=0

is a �-weak computation for P if Xi ∈ T nd;�
P (Xi−1), for i ≥ 1.

Since we do not impose any particular properties on �, it is not guaranteed that
T nd;�

P (X) ⊆ ConclP (X). Thus, �-weak computations are not guaranteed to be com-
putations.

We say that a quasi-satisfiability relation � is a sub-satisfiability relation if for every
X ⊆ At and every abstract constraint A, X�A implies X |= A.

We note that relations |=M considered in Section 2 are sub-satisfiability relations
(with respect to the standard satisfiability relation |=).

Proposition 11. Let P be a program with constraints. If � is a sub-satisfiability relation
then for every X ⊆ At , T nd;�

P (X) ⊆ ConclP (X) and every �-weak computation is a
computation.

From now on, if � is a sub-satisfiability relation, we will write �-computation instead
of �-weak computation. We will now define another class of answer sets for programs
with constraints.

Definition 8. Let P be a program with constraints and � a sub-satisfiability relation.
Then, M is a �-answer set of P if M is the result of a persistent �-computation.
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Since �-computations are computations, we have the following direct consequence of
the appropriate definitions.

Proposition 12. Let P be a program with constraints and � a sub-satisfiability relation.
Then every �-answer set for P is an answer set for P .

A natural questions arises whether every answer set of a program with constraints is a
�-answer set of that program for some sub-satisfiability relation �. Unlike in the case of
normal logic programs, it is not the case.

Example 4. Let P consist of three rules:

({a}, {{a}}). ({b}, {{b}}). ({c}, {{c}}) ← ({a, b, c}, {{a}, {a, c}, {a, b, c}}).

We first note that X0 = ∅, X1 = {a}, X2 = {a, c}, Xi = {a, b, c}, i ≥ 3, is a
persistent computation for P . Thus, {a, b, c} is an answer set or P . However, there is
no sub-satisfiability relation � such that {a, b, c} is a �-answer set for P . Indeed, for
each such relation � we have T nd;�

P (∅) = {a, b}, and it is impossible to derive c, as
the third rule is not applicable with respect to {a, b} (and so, also not a member of
P �({a, b})). ��

Thus, given a program P , the class of �-answer sets is a proper subset of the class of
answer sets of P .

The class of �-answer sets forms a generalization of answer sets of normal logic pro-
grams given by Proposition 5. We will now propose a way to generalize answer sets
of normal logic programs to programs with constraints based on Proposition 7. In our
considerations we extend the approach proposed and studied in [21]. Our method re-
quires a fixed mapping f that assigns to each weak computation C a quasi-satisfiability
relation �f

C . For some mappings f it yields models that are not “grounded enough” to
be called answer sets. For some other mappings f , however, it does result in classes of
models that arguably generalize answer sets of normal logic programs.

Definition 9. Let P be a program with constraints and f a mapping assigning to each
weak computation C a quasi-satisfiability relation �f

C . A weak computation C is (P, f)
self-justified if C is a �f

C-weak computation for P . A set of atoms M is an f -model of
P if M is the result of a (P, f) self-justified weak computation.

The definition of an f -model is sound. Since weak computations satisfy the property
(C), their results are indeed models of P , in fact, even supported models.

Several interesting classes of models of programs with constraints can be described
in terms of f -models by specializing the mapping f .

Supported models. Let C be a weak computation. We define the relation �supp
C as

follows: given a set of atoms X and a constraint A, X�supp
C A if X∞ |= A. One can

show that for every supported model M of P , the sequence C = 〈∅, M, M, . . .〉 is
a weak computation self-justified with respect to P and �supp

C . Thus, every supported
model of P is a supp-model of P . As we observed earlier, all f -models are supported
models. It follows that supported models of P are precisely supp-models of P .
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Mr-models. Let C be a weak computation. We define the relation �mr
C as follows: given

a set of atoms X and a constraint A, X�mr
C A if there is Y ⊆ X such that Y |= A and

X∞ |= A. One can show that mr -models of P are precisely the answer sets of P as
defined by [15].

The discussion of supp-models and mr -models was meant to show the flexibility of
our approach. It took us away, however, from the main theme of the paper — general-
izations of the concept of an answer set. Indeed, neither �supp

C -weak computations nor
�mr

C -weak computations are computations (they do not satisfy the revision principle).
Therefore, we do not view their results as “generalized” answer sets but only as some
special classes of models.

To specialize the general approach of self-justified weak computations so that it
yields extensions of the concept of an answer set, we need to look for mappings f
that ensure that self-justified weak computations are computations (satisfy the revision
principle) and are persistent.

We already saw that requiring that �f
C be a sub-satisfiability relation guarantees

that �f
C -weak computations are indeed computations (referred to, we recall, as �f

C -
computations). We will now seek conditions guaranteeing the persistence of �f

C -
computations.

Under the assumption that � is a sub-satisfiability relation, P �(X) ⊆ P (X). This
property and the appropriate definitions imply that

T nd;�
P (X) = T nd;�

P �(X)(X) = T nd
P �(X)(X).

Consequently, we can show the following result.

Proposition 13. Let � be a sub-satisfiability relation and let C = 〈Xi〉∞i=0 be a �-
computation. If for every constraint A and every i = 0, 1, . . ., Xi�A implies that
Xi+1�A, then C is persistent.

We will now define the mapping s, which assigns to every weak computation C a rela-
tion �s

C . Namely, for a set of atoms X and a constraint A we define X�s
CA if there is i

such that X = Xi and Xj |= A, for every j ≥ i. It is clear that �s
C is a sub-satisfiability

relation. Thus, �c
C -weak computations are computations (�s

C -computations, to be pre-
cise). Moreover, it follows from Proposition 13 that �s

C -computations are persistent.

Definition 10. Let P be a program with constraints. A set of atoms M is a strong
answer set of P (or, an s-answer set for P ) if it is an s-model for P , that is, if M is the
result of a (P, s) self-justified computation.

We will now summarize our discussion so far. Taking characterizations of answer sets
of normal logic programs as the starting point, we proposed three notions of answer sets
for programs with constraints. For normal logic programs, for programs with monotone
constraints, and for programs with convex constraints all three concepts coincide with
the standard notion of an answer set. For general programs with constraints, these three
concepts are different. The following results summarizes the relationships between the
three classes of answer sets we introduced so far.
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Proposition 14. Let P be a program with constraints. The class of strong answer sets
for P is a proper subset of the class of �-answer-sets for P which, in turn, is a proper
subset of the class of answer sets for P .

Example 5. Consider the program P (remember that a is shorthand for ({a}, {{a}})):

a ← ({a, b, c, d}, P({a, b, c, d}))
b ← ({a, b}, {{a}, {a, b}})
c ← ({a, b, c, d}, {∅, {a}, {a, b}, {a, b, c, d}})

where P(X) is the powerset of X . Let us define X�A if for every Y , X ∩ Adom ⊆
Y ⊆ Adom, Y ∈ Asat. Clearly, � is a sub-satisfiability relation. Furthermore ∅, {a},
{a, b}, {a, b} . . . is a �-weak computation, say C. On the other hand, we have that
∅ �s

C({a, b, c, d}, P({a, b, c, d})) and ∅�s
C({a, b, c, d}, {∅, {a}, {a, b}, {a, b, c, d}}).

Thus, any (P, s) self-justified computation will need to have {a, c} as its second el-
ement and will be unable to reach {a, b}. This shows that {a, b} is not a strong answer
set of P . We note that it follows from Example 4 that the second inclusion is proper. ��

6 Yet Another Class of Answer Sets

Given a computation C, we defined the relation �s
C so that it is the weakest sub-

satisfiability relation satisfying the assumptions of Proposition 13. However, in general
there may be other ways to define a sub-satisfiability relation �C with respect to a given
computation C. One such definition was proposed in [21]. Namely, given a weak com-
putation C = 〈Xi〉∞i=0, we define �spt

C as follows: X�spt
C A if X |= A and for each set

Y such that X ∩ Adom ⊆ Y ⊆ X∞ ∩ Adom we have that Y |= A (or equivalently,
Y ∈ Asat). It is easy to see that �spt

C is a sub-satisfiability relation. Thus, it defines
computations. Secondly, �spt

C -computations are persistent as the relation �spt
C satisfies

the assumptions of Proposition 13. Thus, the mapping spt gives rise to yet another class
of answer sets — spt -answer sets. One can show that spt-answer sets capture precisely
the semantics for aggregates proposed in [18,19].

We have the following result relating spt -answer sets to other classes of answer sets
considered in the previous section.

Proposition 15. Let P be a program with constraints. If a computation C is a �spt
C -

computation then it is also a �s
C -computation.

Example 6. Let us consider the program P consisting of two rules

({b}, {{b}}) ← ({a}, {{a}}) ({a}, {{a}}) ← ({a, b}, {∅, {a}, {a, b}})

The sequence ∅, {a}, {a, b} is a �s
C -computation of P . On the other hand, it is not a

�spt
C computation since ∅  �spt

C ({a, b}, {∅, {a}, {a, b}}). ��

Corollary 2. Let P be a program with constraints. If M is an spt -answer set of P then
M is a strong answer set of P .
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Next, we note that, similarly to our other classes of answer sets, the semantics defined
by spt -answer sets also collapses to the standard answer-sets semantics for normal logic
programs and to the answer-sets semantics for programs with convex constraints [11].

The approach based on the mapping spt takes a more “skeptical” perspective than
the one embodied by the mapping s. To ensure persistence, it requires that all possible
extensions of the state in which a constraint A holds satisfy A (and not only those
actually encountered during the computation). In this way, the relations �spt

C are, in a
sense, the strongest relations satisfying the assumptions of Proposition 13. This may be
perceived as a problem of this semantics — �spt

C -computations are localized to convex
subfragments of constraints forming program rules. In other words, they cannot jump
over “missing” satisfiers.

7 A Note on the Complexity

In this paper we introduced several classes of answer sets for programs with constraints.
We have the following result concerning the computational complexity of the problem
concerning the existence of answer sets.

Proposition 16. Assuming an explicit representation of constraints, given a program
with constraints, it is NP-complete to decide whether the program has an answer set
(respectively, �-answer set, strong answer set, spt -answer set).

8 Discussion and Conclusions

We grounded our study in four basic principles: revision, persistence of beliefs, per-
sistence of reasons, and convergence. We showed that there are several ways in which
the principle of revision can be realized. In a least restrictive approach, we allow any
element of ConclP (X) to be a valid revision of X . This choice defines the class of
persistent computations and we take the results of such computations as the definition
of the first notion of an answer set. In the case of normal logic programs and programs
with convex constraints, computations capture precisely the concept of an answer sets
as defined for these classes of programs earlier in [8,11].

More restrictive approaches to the revision principle narrow down choices offered by
ConclP to those offered by T nd;�

P , where � is a sub-satisfiability relation. The results of
persistent �-computations form another class of answer sets, �-answer sets, which forms
a proper subclass of the previous one. However, in the case of normal logic programs
and programs with convex constraints both notions of the answer set coincide.

The final two approaches result from the two specializations of a general schema
to define f -models of a program with constraints. The schema is designed to gener-
alize the guess-and-check approach for normal logic programs. It relies on a mapping
that assigns to weak computations quasi-satisfiability relations. We demonstrated two
mappings, s and spt , for which the resulting weak computations are in fact persistent
computations and so, their results can be used as answer sets. The mapping s seems to
be more appropriate as it is less restrictive. The mapping spt , on the other extreme of
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the spectrum, seems to be too restrictive. As we noted earlier programs that intuitively
should have answer sets do not have spt -answer sets.

This work draws attention to the concept of computation, and shows that, for pro-
grams with arbitrary constraints, there are many classes of computations of interest.
In general, they give rise to different classes of answer set, by formalizing in different
ways the negation-as-failure implicitly present in (non-monotone) constraints. Three
classes of computations seem especially well suited as the basis for the generalization.
Specifically, s-answer sets, �-answer sets and answer sets are viable candidates for the
answer set semantics of programs with constraints, as they are grounded in some basic
and intuitive principles imposed on computations and on schemata to define computa-
tions generalizing those used earlier in the context of normal logic programs. The class
of spt -answer sets may be too restrictive. The issue whether any of the three classes
identified here has any significant advantage over the other two requires further studies.

We note that some of our methods go beyond generalizations of just answer sets.
if we weaken requirements on computations and consider the class of weak computa-
tions, the general schema of defining f -models of programs yields characterizations of
supported models and mr-answer sets [15] and so also deserves further attention.

References

1. Balduccini, M., Gelfond, M., Nogueira, M.: Answer Set Based Design of Knowledge Sys-
tems. Annals of Mathematics and Artificial Intelligence (2006)

2. Dell’Armi, T., et al.: Aggregate Functions in Disjunctive Logic Programming: Semantics,
Complexity, and Implementation in DLV. In: IJCAI, pp. 847–852 (2003)

3. Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable semantics for
logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS, vol. 2237, pp.
212–226. Springer, Heidelberg (2001)

4. Elkabani, I., Pontelli, E., Son, T.C.: Smodels with CLP and its applications. In: Demoen, B.,
Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 73–89. Springer, Heidelberg (2004)

5. Erdem, E., Lifschitz, V., Ringe, D.: Temporal phylogenetic networks and logic programming.
TPLP 6(5), 539–558 (2006)

6. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Seman-
tics and complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229,
pp. 200–212. Springer, Heidelberg (2004)

7. Ferraris, P.: Answer sets for propositional theories. In: Logic Programming and Nonmono-
tonic Reasoning, pp. 119–131. Springer, Heidelberg (2005)

8. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Joint Int.
Conf. and Symp. on Logic Programming, pp. 1070–1080. MIT Press, Cambridge (1988)

9. Gelfond, M.: Representing Knowledge in A-Prolog. In: Computational Logic: Logic Pro-
gramming and Beyond, pp. 413–451. Springer, Heidelberg (2002)
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16. Marek, V.W., Truszczyński, M.: Logic programs with abstract constraint atoms. In: National
Conference on Artificial Intelligence (AAAI) AAAI Press / The MIT Press (2004)
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Abstract. We present a method of detecting if deadlocks may occur in
concurrent logicprograms.Typicaldeadlockanalysis is“process-oriented”,
being based on possible interleaving of processes. Our method is oriented
towards the shared resources (communication channels, locks et cetera)
and is based on orders in which individual resources are used by differ-
ent processes. In cases where there are resources used by only a subset of
all processes the search space can be dramatically reduced. The method
arises very naturally out of the concurrent logic programming paradigm.
Analysis of concurrent programs has previously used “coarsification” and
“partial order” methods to reduce the search space. Our approach re-
discovers and also extends these techniques. Our presentation is based
around a logic programming pearl which finds deadlocked computations
in a program which solves the dining philosophers problem.

Keywords: Concurrency, deadlock analysis, partial order, dining
philosophers, committed choicenondeterminism,floundering, coroutining.

1 Introduction

Concurrent programming is a core area of computer science. Concurrent pro-
cesses (or threads) may operate on a single CPU, multiple CPUs on a single
computer, or over a computer network. Processes often need temporary exclu-
sive access to shared resources such as data storage, communication channels
and hardware devices. This requires concurrency control — mechanisms to sus-
pend a process while another process is using a shared resource and resume the
process when the use has finished. Implementing concurrent systems is notori-
ously difficult and one important class of errors is deadlocks, where all processes
suspend, waiting for each other. Whether a particular system can deadlock is an
important question.

In this paper we explore the area from the perspective of concurrent logic pro-
gramming. By removing the “committed choice” nondeterminism and retaining
essentially the same control information, concurrent logic programs can be trans-
formed into pure logic programs which can be run to find all possible deadlocks.
Our presentation is based around a program to solve the dining philosophers
problem, which we describe initially. We then briefly describe the most basic
technique of conventional deadlock analysis. We then introduce concurrent logic

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 302–316, 2007.
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programming and present our program. The transformation to eliminate com-
mitted choice nondeterminism is then described and we present some analysis
results. We discuss why the transformation is effective and correct, and compare
it with some established deadlock analysis techniques, then conclude.

2 The Dining Philosophers Problem

In the dining philosophers problem [1] there are several philosophers sitting
around a table. There is food in the center of the table, each philosopher has a
plate, and between each is a fork (or chop stick). In order to eat, a philosopher
must acquire both adjacent forks. Each philosopher alternately thinks, becomes
hungry, gets one fork then the other (which may require waiting for adjacent
philosophers to stop using them), eats, puts back the forks and resumes thinking.
The aim is to simulate this situation in software, with a concurrent process for
each philosopher, ensuring this cycle can continue indefinitely. Since each fork is
shared by two adjacent philosophers, some form of concurrency control is needed.

One naive implementation is for each philosopher to first acquire the fork
on their right with some form of atomic operation (using a lock, semaphore,
monitor, et cetera), then acquire the fork on their left in a similar way. With
this algorithm all philosophers may successfully obtain the first fork but then
wait indefinitely for the second fork, creating a deadlock. Deadlocks can be
avoided by making the acquisition of both forks a single atomic operation, but
this requires central concurrency control shared by all philosophers, leading to
greater contention. A better method is to number the philosophers consecutively
and have odd numbered philosophers first get the fork on their left and even
numbered philosophers first get the fork on their right. The coding we will present
allows for both “left handed” and “right handed” philosophers and also allows
philosophers who alternate between the two. We use a form of lock (one for each
fork) as the concurrency control mechanism.

3 Process-Oriented Deadlock Analysis

Whether a deadlock occurs in practice depends not only on the algorithm, but
also timing factors during each execution. Simple testing is thus an unreliable
way of determining if a deadlock can occur so it is desirable to have specialised
tools and techniques. The normal approach is to consider possible interleavings of
operations done by the different processes. To reduce the number of interleavings
considered some sequences of operations within each process are treated as a
single operation (this is called coarsification). For example, the thinking phase
of a philosopher may be very complex but because it is independent of the other
processes it is not necessary to consider all ways it can be interleaved. It is
sufficient to consider all interleavings of “chunks” which include a single atomic
operation which can influence or be influenced by other processes. Analysis of
imperative languages such as Ada and Java is complex but for an implementation
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of the dining philosophers in such a language, analysis may reveal that the lock
and unlock operations are the only critical ones.

Even with coarsification, the number of possible interleavings grows very
rapidly, particularly with a reasonable number of processes. Later we present a
program which will consider computations with a bound on the number of opera-
tions for each lock. For nine philosophers and up to eight operations for each lock
the number of possible interleavings can be conservatively estimated as follows.
First we assume exactly eight operations for each lock and each philosopher. The
number of orderings of these operations is (8 × 9) factorial. However, the order
of operations for each philosopher is fixed (rather than having 8! orderings), so
the number of possible interleavings is (conservatively) (8×9)!

(8!)9 = 2.17×1062. The
search space can be pruned significantly by generating orderings incrementally
and noting some prefixes are impossible, thus efficiently eliminating all order-
ings with that prefix, but even with such pruning the size of the search space is
many orders of magnitude larger than we can effectively search. Various tech-
niques have been devised to reduce the size of the search space further and using
the logic programming paradigm we can very naturally exploit and extend such
techniques — see Section 6. Even with the simple pruning outlined above the
space can be searched completely in a reasonable time frame.

4 Concurrent Logic Programming

There are several forms of parallelism or concurrency which can be exploited
in logic programs. The one which is relevant here is often referred to as stream
and-parallelism. Numerous languages have evolved based on this general idea,
including (variations of) Parlog [2], Concurrent Prolog [3], Guarded Horn Clauses
[4] and Parallel NU-Prolog (PNU-Prolog) [5]. We will use PNU-Prolog in our
examples.

In these languages, several subgoals in the current resolvent can be selected
and matched with clauses concurrently. Each subgoal can be thought of as a pro-
cess, its arguments being internal “state”. A call to a tail-recursive procedure
is analogous to a process which can change its state as the recursion proceeds.
Different processes can communicate via shared variables. Shared lists can be
thought of as streams of messages — the list elements can be “produced” (in-
stantiated) by one “process” and obtained (via matching) by another “process”.
In the code we present the philosopher processes will each produce two streams
of messages requesting (exclusive access to) the two adjacent forks.

4.1 Deterministic Code

Unlike Prolog, backtracking is not normally supported, due to the difficulty of
implementing it in a distributed way. To avoid the need for backtracking, it is im-
portant that procedures can suspend until their input arguments are sufficiently
instantiated. Typically they will suspend until just one clause matches (an impor-
tant class of exceptions is discussed in the next section), and the implementation
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must ensure that the matching clause can be found without speculatively bind-
ing any variables which may be shared by other subgoals which may be selected
concurrently. The suspension mechanism can also be used for concurrency con-
trol — even if there is only one (matching) clause, a subgoal may still suspend
until some (part of) an argument or arguments are non-variables. It is generally
helpful to think of “modes”: calls typically suspend rather than instantiate their
“input” arguments. The implementation of NU-Prolog was adapted to support
parallel execution for a subset of the language which does not require distributed
backtracking and supports this style of programming. However, the full language
supports (sequential) backtracking search and we use this to find deadlocks.

% wait until unlocked and a new lock request message arrives,
% allow entry to lock, recurse with Unlock flag from new message
:- lock1(U, L.Ls) when U and L. % causes process to wait
lock1(unlocked, lock(_I, Locked, Unlocked).Ls) :-

Locked = locked, % back-communication
lock1(Unlocked, Ls).

% Start lock1 process, initially unlocked
lock(Ls) :- lock1(unlocked, Ls).

Fig. 1. A process which can be used as a lock

Figure 1 gives code which can be used to implement a form of lock. A
lock1 “process” accepts a stream of lock request messages. A process using
the lock will instantiate the next element of the message stream to lock(I,
Locked, Unlocked), where Locked and Unlocked are fresh variables, suspend
until Locked is instantiated, perform whatever critical operations are required,
then instantiate Unlocked to unlocked to release the lock. The I argument is
for instrumentation purposes only — we use it to identify the process which
requested the lock. The lock1 process instantiates Locked to locked, but only
when the lock becomes available (previous lock operations have been released).
Although the stream of messages is an input to the process, the Locked com-
ponents of the messages are outputs, a technique called “back-communication”.
The when declaration for lock1 ensures the process suspends until a lock request
message has been created and the previous one has been unlocked; only then will
Locked be instantiated. It is possible for several messages to be instantiated, and
several processes suspended, while the lock waits for an earlier instance to be
unlocked. A top level call to lock creates a lock1 process in an unlocked state.
For brevity, we have not included a base case for lock1 (and other code below)
since the dining philosophers are perpetual processes. A more typical applica-
tion would instantiate the stream to an empty list when the lock is no longer
required, and have another clause to simply succeed in that case.

Figure 2 implements a philosopher process. The sequential nature of philoso-
phers first thinking then attempting to get one fork, then the other, then eating
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% think for a while...
p_think(P, LMs, RMs) :- p_hungry(P, LMs, RMs).

% getting hungry...
p_hungry(P, LMs, RMs) :- p_get_first(P, LMs, RMs).

% issue lock operation for first fork
% (either right or left depending on handedness)
:- p_get_first(p(_, H, _), _, _) when H.
p_get_first(p(I, r, B), LMs, lock(I, Locked, U1).RMs) :-

p_get_second(p(I, r, B), Locked, U1, LMs, RMs).
p_get_first(p(I, l, B), lock(I, Locked, U1).LMs, RMs) :-

p_get_second(p(I, l, B), Locked, U1, LMs, RMs).

% wait until we have first fork, issue lock operation for second
:- p_get_second(p(_, H, _), Locked, _, _, _) when H and Locked.
p_get_second(p(I, l, B), locked, U1, LMs, lock(I, Locked, U2).RMs) :-

p_eat(p(I, l, B), Locked, U1, U2, LMs, RMs).
p_get_second(p(I, r, B), locked, U1, lock(I, Locked, U2).LMs, RMs) :-

p_eat(p(I, r, B), Locked, U1, U2, LMs, RMs).

% wait until we have second fork, eat!
:- p_eat(_, Locked, _, _, _, _) when Locked.
p_eat(P, locked, U1, U2, LMs, RMs) :-

p_release_both(P, U1, U2, LMs, RMs).

% release both forks, recomputed handedness, go back to work
p_release_both(P, unlocked, unlocked, LMs, RMs) :-

next_handedness(P, P1),
p_think(P1, LMs, RMs).

:- next_handedness(p(I, H, B), _) when H and B.
next_handedness(p(I, l, 0), p(I, l, 0)).
next_handedness(p(I, r, 0), p(I, r, 0)).
next_handedness(p(I, l, 1), p(I, r, 1)).
next_handedness(p(I, r, 1), p(I, l, 1)).

Fig. 2. A dining philosopher

then releasing the forks is achieved using a sequence of procedures, each calling
the next. A process identifier P, of the form p(I, H, B), is passed to each pro-
cedure. The first argument, I is an integer used for instrumentation purposes
(we include it in lock messages). H and B are used to define the behaviour of the
philosopher. H is either l or r, meaning the philosopher is currently left or right
handed, respectively (which determines which fork is picked up first). B is either
0, resulting in consistent “handedness” or 1, resulting in alternation between
left and right handed behaviour. After a philosopher finishes eating I remains
unchanged but the new handedness is computed (more complex computations
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could clearly be used here). Two streams of messages, LMs and RMs, are used to
communicate with lock processes for the left and right forks, respectively. When
declarations are used to suspend calls until the locks are obtained (Locked is
instantiated) and only one clause matches (P needs to be instantiated to varying
degrees in different procedures). PNU-Prolog has a preprocessor which accepts
a form of mode declaration (for example, :- lazyDet p get first(i, o, o))
which can be used to generate appropriate when declarations for the code above
(including the lock code). This is easier and less error prone than writing when
declarations manually but we avoid relying on it here to make this presentation
more self-contained.

4.2 Committed Choice Nondeterminism

Each philosopher binds successive elements of the message streams correspond-
ing to adjacent forks. Thus, for each fork there are actually two streams of
messages, and these must be merged into a single stream which is passed to
a lock process. The way these streams are merged must be nondeterministic,
to allow different interleaving of philosopher processes dependent on how long
each one thinks for et cetera. The merge procedure should proceed when either
philosopher instantiates their stream. However, since backtracking is not sup-
ported, committed choice (also called “don’t care”) nondeterminism is used —
even if more than one clause can match, only one is ever chosen.

% nondeterministic committed choice merge of two (infinite) streams
% :- eagerDet merge(i, i, o). % specifies modes, committed choice
% merge(A.As, Bs, A.Cs) :- !, merge(As, Bs, Cs).
% merge(As, B.Bs, B.Cs) :- !, merge(As, Bs, Cs).
% The preprocessor translates this to...
:- merge(A, B, C) when A or B.
merge(A, B, C) :- nonvar(A), A = [D|E], !, C = [D|F], merge(E, B, F).
merge(A, B, C) :- nonvar(B), B = [D|E], !, C = [D|F], merge(A, E, F).

Fig. 3. Committed choice merge

Figure 3 shows how merge can be coded in PNU-Prolog. As with the lock code,
base cases could be added. The comments show a mode declaration and high level
version of the clauses, similar to how merge would be coded in Parlog. The first
clause can proceed without instantiating the inputs if the first argument is a non-
variable; similarly for the second clause and second argument. The when declara-
tion for merge is a disjunction of these conditions. The nonvar tests are also added
to the clauses, thus the control information is used twice. Head unification of input
arguments is moved into the body, after these tests, and output unifications are
moved after the commit operator (cut) to avoid speculative instantiation. If both
inputs are instantiated, most concurrent logic programming languages don’t spec-
ify which clause will be selected and our deadlock analysis technique reflects this.
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In practice, most implementations (including NU-Prolog) would always select the
first clause. Whatever clause is selected, it is committed to.

Unlike the other definitions we have given, the presence of nonvar and cut
make a declarative reading of merge difficult. Cuts destroy completeness, elimi-
nating potentially successful derivations and nonvar tests cause some derivations
to fail, but in a time-dependent way (whether nonvar succeeds can depends on
when it is called). Most stream and-parallel languages do not use explicit nonvar
tests, but they are implicit in the implementation (this is also true in PNU-Prolog
if the preprocessor is used). In typical stream and-parallel code, there are gener-
ally very few of these genuine uses of committed choice nondeterminism (most
languages insist on commits in every clause, but most calls suspend until a sin-
gle clause matches and all arguments are sufficiently instantiated so the commits
and implicit nonvar tests have no effect).

The PNU-Prolog preprocessor supports two distinct kinds of declarations.
LazyDet declarations cause suspension until input arguments are sufficiently
instantiated for all clauses (no clause would further instantiate these arguments
by head unification or any calls before a cut). If any input argument is used in
a call before a cut the procedure delays until that input is ground. Cuts then
behave like a logical if-then-else and nonvar tests are not needed. EagerDet
declarations, used for committed choice nondeterminism, cause suspension until
input arguments are sufficiently instantiated for some clause (hence the condition
in the delay declaration is typically a disjunction). Unifications (or calls) using
input arguments are preceded by nonvar (or ground) tests to make sure the
wrong clauses are not selected.

Figure 4 shows how several philosophers and locks communicate using merge.
Calling main with the first argument instantiated to a list of appropriate process
identifiers will initiate an instance of the dining philosophers problem. With an
appropriate environment the incremental instantiation of the message streams
to the lock processes could be observed. If the computation deadlocks then the
NU-Prolog interactive top level prints a message to that effect and the final state
of instantiation of the message streams is displayed.

% Just 3 philosophers...
% We pass in an id for each philosopher (which encodes the behaviour).
% The streams of lock messages are returned for instrumentation.
main([P1,P2,P3], [Ms1,Ms2,Ms3]) :-

lock(Ms1), lock(Ms2), lock(Ms3),
p_think(P1,Ms1a,Ms2b), p_think(P2,Ms2a,Ms3b), p_think(P3,Ms3a,Ms1b),
merge(Ms1a,Ms1b,Ms1), merge(Ms2a,Ms2b,Ms2), merge(Ms3a,Ms3b,Ms3).

Fig. 4. Three dining philosophers sharing resources

5 Finding Deadlocks

To find deadlocks we propose transforming the original program in three stages.
The first, and most important, replaces “don’t care” nondeterminism with “don’t
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know” nondeterminism, so all possible derivations are explored rather than just
one. The second transformation eliminates some spurious deadlocked derivations
introduced by the first transformation. Some Prolog systems have facilities which
allow alternative methods of eliminating these derivations. The third transfor-
mation allows a fair search to be implemented; other mechanisms for this are
also possible.

5.1 Eliminating Committed Choice Nondeterminism

If we want to explore all possible deadlocked derivations then clearly the cuts
in merge are not a good idea. If we eliminate them the code cannot be run in
parallel, but it is still a valid NU-Prolog program which can be run sequentially.
Some derivations may terminate with some calls still delayed by the when decla-
rations. In sequential Prolog this is normally called floundering, but it is identical
to deadlock in stream and-parallel logic programming. However, the nonvar tests
can still prevent us from finding all deadlocked derivations. If the nonvar call is
selected too early it may fail, whereas if it had been selected later its argument
may then have been instantiated and the call would have succeeded. Thus a
derivation which deadlocks for some timing of calls (computation rule) may not
be found. If we simply eliminate the nonvar calls then merge can instantiate its
inputs, resulting in unbounded numbers of spurious derivations which would not
have occurred in the original program. A solution to this problem is to (at least
initially) delay the evaluation rather than fail due to a nonvar test. However,
delaying just the nonvar tests would not avoid any of the spurious derivations
being explored; we need to delay the use of the whole clause.

Transformation 1

Let P be a committed choice procedure in the original program with N argu-
ments and M clauses, the ith clause being P (Āi):-Bi. Each clause is transformed
into P (V̄ ):-Qi(V̄ ), where V̄ is a sequence of N distinct variables and Qi is a
new procedure name not appearing elsewhere. Each of the M new procedures
Qi is defined with a single clause, Qi(Āi):-Bi. We assume the control informa-
tion on the original procedure is equivalent to that generated by some eagerDet
declaration. That is, P delays until at least one clause is sufficiently instanti-
ated to proceed without further instantiating input arguments before the cut,
and each clause has appropriate nonvar (or ground) tests to prevent it being
selected inappropriately. The control information on each new procedure is that
which would be generated by the same eagerDet declaration (it delays until the
input arguments are sufficiently instantiated and nonvar tests are added). Since
there is a single clause in each Qi the cuts are redundant and are removed1. The
nonvar tests are also redundant but are retained because they become useful in

1 PNU-Prolog actually allows nondeterministic (backtracking) code to be called before
a cut. This is not supported in other committed choice languages and for simplicity
we ignore it here.
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our second transformation. The control information for P remains unchanged.
That is, the condition in the when declaration is the disjunction of the conditions
in the when declarations for the new procedures.

The logic of the transformed code is equivalent to the logic of the original
code with cuts removed. However, the control information for each clause of P
is now used three times: in the when declaration and the body (the nonvar calls)
of new procedure and in the (disjunctive) condition of the when declaration for
P . Figure 5 contains the transformed code for merge.

:- merge(A, B, C) when A or B.
merge(A, B, C) :- m1(A, B, C).
merge(A, B, C) :- m2(A, B, C).

:- m1(A, B, C) when A.
m1(A, B, C) :- nonvar(A), A = [D|E], C = [D|F], merge(E, B, F).

:- m2(A, B, C) when B.
m2(A, B, C) :- nonvar(B), B = [D|E], C = [D|F], merge(A, E, F).

Fig. 5. Multiple solution merge

Derivations in the original parallel committed choice code and those in the
transformed code are related as follows (this is discussed further in Section 6).

1. If a call to P in the original code suspends indefinitely (the inputs never
become sufficiently instantiated), the same applies to the transformed code.

2. If a call to P in the original coed proceeds and all clauses could be selected
for some timing (the inputs become instantiated enough for all clauses even-
tually), in the new code P will be called as well as (on backtracking) all new
procedures.

3. If a call to P in the original proceeds but only some clauses could ever
be selected (the inputs become instantiated enough for only some clauses
eventually), in the new code P will be called and the corresponding new
procedures will be called but calls to the other new procedures will suspend
indefinitely.

Thus, if we ignore derivations in which a new procedure is floundered, the trans-
formed code finds exactly the (successful and) deadlocked derivations of the
original code. Although there are still some spurious derivations, each one re-
sults in just a single floundered call which binds no variables.

5.2 Eliminating Spurious Derivations

Some Prolog systems which support delays have a method of examining which
calls are floundered and this could be used to filter out the unwanted floundered
derivations with m1 or m2; the nonvar tests could be eliminated, resulting in a
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pure logic program. This would allow declarative diagnosis of floundering [6].
Alternatively, the program can be further transformed as follows.

Transformation 2

Anextra argument is added to eachnewprocedure introducedby transformation 1,
and every procedure which (recursively) calls it. We choose a new variable W, not
appearing elsewhere in theprogram,as the additional argument inall cases. If a new
procedure has when declaration P (T1, ..., Tn) when C, the transformed procedure
has when declaration P (T1, ..., Tn, W) whenC or W; other when declarations remain
unchanged.

In addition to transforming the program, we ensure that the top-level goal
instantiates W after all other computation succeeds or deadlocks. This results in
any delayed calls to new procedures “waking up” (proceeding). The nonvar tests
retained by transformation 1 are called and fail (the condition C of the when
declaration is not satisfied), eliminating the spurious derivation. Derivations in
which there are no new procedures delayed at the point where W is instantiated
are not affected since no other calls delay on W.

5.3 Implementing Fair Search

Since derivations can be of unbounded length, it is important to implement a fair
search in order to guarantee finding floundered derivations if they exist. There
are numerous methods of implementing a fair search. Depth first iterative deep-
ening is often a very efficient method and is well suited to Prolog. Unfortunately,
the branching factor for a single “process” (such as a philosopher) is often close
to one, making iterative deepening based on the length of these derivations ineffi-
cient. However, processes typically don’t have unbounded computation between
successive accesses to a shared resource (such as a fork). We have found that im-
posing a depth bound primarily on just calls to the nondeterministic procedures
can be a particularly effective method.

Transformation 3

An extra argument is added to each nondeterministic procedure and every pro-
cedure which (recursively) calls it. We choose a new variable S, not appearing
elsewhere in the program. The new argument is S except in the cases defined
below. For each cycle C of the call graph which is connected to a nondetermin-
istic procedure (each set of mutually recursive procedures which recursively call
a nondeterministic procedure), in at least one procedure in C the new argument
in each clause head is s(S).

In the top level goal, S is instantiated to a depth bound using successor nota-
tion, for example s(s(0)). For a given depth, the number of nondeterministic
calls is limited. In our Dining Philosophers program there are two cycles in the
call graph. One consists of merge and m1, the other consists of merge and m2.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



312 L. Naish

:- merge(A, B, C, W, S) when A or B.
merge(A, B, C, W, s(S)) :- m1(A, B, C, W, S).
merge(A, B, C, W, s(S)) :- m2(A, B, C, W, S).

:- m1(A, B, C, W, S) when A or W.
m1(A, B, C, W, S) :- nonvar(A), A = [D|E], C = [D|F], merge(E,B,F,W,S).

:- m2(A, B, C, W, S) when B or W.
m2(A, B, C, W, S) :- nonvar(B), B = [D|E], C = [D|F], merge(A,E,F,W,S).

Fig. 6. Depth-bounded flounder-preserving multiple solution merge

Thus it is sufficient to use the s(S) arguments in merge — see Figure 6. Thus
the depth bound simply limits the depth of recursion in each call to merge,
that is, the number of lock and unlock operations on each fork. If a call beyond
the depth bound is sufficiently instantiated to proceed, it simply fails when 0 is
matched with s(S) in a clause head. The only derivations which are not failed
are those in which all merge calls flounder before reaching this depth.

main(S, [P1,P2,P3], [Ms1,Ms2,Ms3]) :-
lock(Ms1), lock(Ms2), lock(Ms3),
p_think(P1,Ms1a,Ms2b), p_think(P2,Ms2a,Ms3b), p_think(P3,Ms3a,Ms1b),
merge(Ms1a,Ms1b,Ms1,W,S), merge(Ms2a,Ms2b,Ms2,W,S),
merge(Ms3a,Ms3b,Ms3,W,S),
W = wake. % resume + fail spurious deadlocks with m1/m2

% generate increasing depths
depth(0).
depth(s(S)) :- depth(S).

% as above, also prints each depth
d(S) :- depth(S), write(’Depth limit: ’), writeln(S).

Fig. 7. Three floundering philosophers with depth limit

By simply using our transformed merge procedure and instantiating the wake
up variable W in the rightmost subgoal, our dining philosophers program will find
exactly those derivations which would (succeed or) deadlock in the original pro-
gram. By instantiating the depth bound to a fixed value or generating increasing
depth bounds, we can limit the search or ensure fairness, respectively — see Fig-
ure 7 for code with three philosophers. Figure 8 is a sample run, showing how
deadlock can occur if the second philosopher gets to eat first then all philoso-
phers pick up their left fork. Using nine philosophers numbered 1–9 where even
numbered philosophers are right handed, odd numbered philosophers are left
handed and all philosophers alternate their handedness, the program has suc-
cessfully verified there are three ways deadlock can occur with up to eight lock
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or unlock operations per fork. The first is where all even numbered philosophers
eat once, then all philosophers pick up their left fork then attempt to pick up
their right fork (17 locks obtained, 8 unlocks and 9 locks which suspend, found
at depth 3). The other two involve all odd numbered philosophers eating once
(19 locks obtained, 10 unlocks and 9 locks which suspend, found at depth 4).
Since first and last philosopher share a fork there are two distinct orders to con-
sider and that fork has more operations than others (3 locks obtained, 2 unlocks
and one lock which suspends). A complete search up to depth four (up to eight
operations for each fork) for nine philosophers takes around 100 to 300 seconds
(depending on the behaviour of the philosophers and their arrangement) run-
ning NU-Prolog on a 1GHz Intel Pentium III processor. Memory requirements
are minimal due to the naive backtracking search.

?- d(S), main(S,[p(1,l,1), p(2,r,1), p(3,l,1)], [Ms1, Ms2, Ms3]).
Depth limit: 0
Depth limit: s(0)
Depth limit: s(s(0))
Depth limit: s(s(s(0)))
Warning: Goal floundered.
Ms3 = [lock(2, locked, unlocked), lock(3, locked, _), lock(2, _, _)| _],
Ms2 = [lock(2, locked, unlocked), lock(2, locked, _), lock(1, _, _)| _],
Ms1 = [lock(1, locked, _), lock(3, _, _)| _],
S = s(s(s(0)))

Fig. 8. Three floundering philosophers: sample goal

6 Discussion

The ability to solve problems of this complexity is because the size of search
space is dramatically reduced. Each call to merge in the Prolog program can
match with two clauses, so the number of merge nodes in the tree at depth four
is (conservatively) 2(9×4) = 6.87 × 1010 (not all branches exist because some
calls to m1 and m2 flounder instead of recursively calling merge). Each pair of
lock and unlock operations results in a branching factor of two, compared with a
branching factor of (around) 9× 9 if all (coarsified) interleavings are considered.

The crucial reason for this is that in logic programming with well designed
primitives for delaying calls, floundering is independent of the computation rule
(the order in which subgoals are selected) [7][8]. For any branch of the search
space (which is uniquely determined by the clauses selected in the merge calls),
every computation rule consistent with the when declarations eventually calls
the same subgoals and binds the same variables to the same values. This is why
we avoid having to consider each execution order (interleaving) and why there
is a simple relationship between derivations in the original parallel code and the
transformed backtracking version. It essentially gives us optimal coarsification
“for free” since deterministic code never leads to additional branches in the
search space. It also allows us to significantly reduce the branching factor when
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there are timing-dependent operations. Instead of the branching factor being
the total number of processes, it is typically the degree of contention for the
resource — the number of processes attempting to access the resource. If three
philosophers had to share a fork our code would implement a three-way merge
and the branching factor would be three instead of two. The search space is
determined by the number of orderings of operations on shared resources. For
this reason we refer the method as being resource oriented rather than process
oriented.

Inter-process communication which does not involve contention, such as one
process producing a stream of data and another process consuming it, does not
increase the size of the search space. For example, our program could be adapted
so philosophers could communicate with each other via an extra argument on
the lock and unlocked terms (like a philosopher attaching a note to a fork as it
is put down). Even logic variables can be passed around the ring to set up private
communication channels between pairs of philosophers. Potentially, the logical
positivists and the post-modernists could each team together and cooperate in
complex ways; the existentialists may starve to death. As long as such things are
done in an essentially synchronous way, without contention and without the code
using committed choice nondeterminism, the search space remains the same.

The order in which time-dependent accesses to resources are performed (for
example, the order of lock operations in the output arguments of the merge
calls) plus the sequence of operations performed by each process determines a
partial order for all operations. The search space is reduced by considering all
such partial orders rather than the much larger number of total orders. Par-
tial order methods of concurrency analysis have been investigated previously [9]
and rely on recognising “independence” of operations or state transitions (in
fact, coarsification can also be seen as a partial order method). There are two
components to independence. One is the commutativity of operations. In pure
logic programming essentially the only operation is the procedure call (which
incorporates unification), and this is commutative. The only calls which do not
commute are those to “impure” committed choice procedures. The other com-
ponent of independence is related to the control aspect: independent operations
do not enable or disable (affect suspension of) each other. In logic programming
languages where floundering or deadlock is independent of the computation rule
this aspect of independence is not required. There is greater independence and
thus our method can examine fewer partial orders in the search space.

In the logic programming paradigm, independence is the natural state of af-
fairs and all dependence on execution order is made explicit using committed
choice nondeterminism. Specifically, binding shared variables, such as perform-
ing an unlock operation, clearly affect suspension of other processes but do not
increase the search space in our method. In our code the order of releasing both
forks is not defined — it is not guaranteed to be an atomic operation and could
be done in either order, depending on the compiler and possibly runtime factors.
With two philosophers, P1 and P2, both unlock operations of P1 potentially af-
fect suspension of P2 but our analysis method avoids considering both possible
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orders. Another advantage of using the logic programming paradigm is that dy-
namic process creation and termination require no additional complexity. In our
program the call to next_handedness could spawn a new process so it could be
done in parallel with the philosopher thinking. Synchronisation is not required
until p_get_first is called, but this is all transparent in our technique.

The key requirement for floundering to be independent of the computation
rule is that the “callable atom set” is closed under instantiation. That is, if an
atom can be called (not suspend), any instance of the atom can also be called.
This is a form of monotonicity with respect to callability; a suspended “process”
may become callable due to the actions of other processes but this cannot be
undone by further actions. In [7] is was noted that some proposed concurrent
logic programming languages do not have this property (and our technique does
not apply to such languages). Similarly, some concurrency control primitives in
imperative languages are not monotonic: a process which is not blocked can
become blocked by the action of other processes. However, in cases where the
primitives are monotonic (for example, unlock operations), it seems that the
definition of independence could be weakened, leading to the smaller search
space we have uncovered by our technique. This could add to the arsenal of
existing techniques for reducing the search space.

The code we have presented uses the naive depth first search strategy of Pro-
log but many more sophisticated search algorithms could be used. For example,
intelligent backtracking is familiar to logic programmers, the SPIN concurrency
analysis system uses depth first search augmented with a hashing method to de-
tect states which are identical on different branches of the search space, trading
space for time. Such forms of tabling along with abstract interpretation tech-
niques can be used to make search spaces finite, though some precision may be
lost. These methods, although important, are orthogonal to the partial order
techniques used to initially reduce size of the search space.

7 Conclusion

Analysis of concurrent imperative programs is very challenging. Potentially, ev-
ery operation can influence every process and to determine if a deadlock is pos-
sible, all interleavings of executions need to be considered. Analysis techniques
have been developed which allow detection of some sub-computations which are
independent, greatly reducing the size of the search space. In the concurrent logic
programming paradigm, independence of sub-computations is the normal state
of affairs and even if sub-computations can influence each other during the exe-
cution, the end result is independent of the execution order. Timing-dependent
operations can be coded using committed choice nondeterminism, but this is
the exception rather than the rule. By eliminating committed choice nondeter-
minism and retaining essentially the same control information, concurrent logic
programs can be simply transformed to allow detection of possible deadlocks.
By exploiting the independence of execution order in this way, the techniques
developed for imperative programs are emulated and improved. The logic of the
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underlying problem is neatly exposed, allowing gains in efficiency, and the search
can be performed by the built-in mechanisms of Prolog. Because our program
and general technique highlight several advantages of the logic programming
paradigm, we propose it as a logic programming pearl.
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Abstract. Region-based memory management is a form of compile-
time memory management, well-known from the functional program-
ming world. This paper describes a static region analysis for the logic
programming language Mercury. We use region points-to graphs to model
the partitioning of the memory used by a program into separate regions.
The algorithm starts with a region points-to analysis that determines
the different regions in the program. We then compute the liveness of
the regions by using an extended live variable analysis. Finally, a pro-
gram transformation adds region annotations to the program for region
support. These annotations generate data for a region simulator that gen-
erates reports on the memory behaviour of region-annotated programs.
Our approach obtains good memory consumption for several benchmark
programs; for some of them it achieves optimal memory management.

1 Introduction

Memory management is a classic problem in the implementation of programming
languages. Manual memory management using explicit constructs, such as mal-
loc/free in C, is widely known to be error-prone. Therefore automatic memory
management in the form of runtime garbage collection (RTGC) has become an
integral part in many modern programming languages. The use of RTGC is even
more important for declarative logic programming (LP) languages because these
languages have no procedural constructs for memory management, and instant
reclaiming based on backtracking is not feasible in many logic programs. While
runtime garbage collectors for LP languages can reclaim more than 90% of the
heap space of a logic program, they incur execution overhead because collectors
often need to temporarily stop the main program.

Recently, there has been increasing interest in compile-time memory manage-
ment to reduce the overhead and unpredictability of RTGC. This static method
generally follows two approaches: compile-time garbage collection (CTGC) and
region-based memory management (RBMM). CTGC looks for program points
at which allocated memory cells are no longer used and instructs the program to
reuse those cells for constructing new terms, reducing the memory footprint and
in some cases achieving faster code. In LP, this idea has been used to reuse mem-
ory cells locally in the procedures of Mercury programs [9, 10, 8]. The basic idea
� This work is supported by the project GOA/2003/08 and by FWO Vlaanderen.
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c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



318 Q. Phan and G. Janssens

of RBMM is to divide the heap memory used by a program into different regions.
The dynamically created terms and their subterms have to be distributed over
the regions in such a way that, at a certain point in the execution of the program,
all terms in a region are dead and the whole region can be removed. RBMM is
a topic of intensive research for functional programming languages [16, 1, 4, 15]
and more recently also for imperative languages [3, 2]. For LP languages, there
has been only one attempt to apply RBMM to Prolog [7, 6, 5]. However, the
algorithm for RBMM in [6, 5] was developed for a non-standard implementation
of Prolog which would require substantial changes to have it implemented in
any standard implementation. The authors of [7] fixed the problem by imple-
menting RBMM in the context of a WAM-based Prolog system. Nevertheless,
the work mainly concentrated on the runtime extensions needed by regions to
run Prolog programs with RBMM. It reused a type-based region analysis which
was developed for the functional programming language SML [4] to work with
untyped Prolog, which could lead to poor memory behaviour for large programs
in which type inference for LP obtains imprecise type information. The limited
research on RBMM in LP, therefore, suggests that it is worthwhile to investigate
how a dedicated static region analysis can be developed and implemented in the
context of typed logic programming languages.

Mercury is a pure LP language designed with a native, expressive type sys-
tem, which makes it a natural context for this research. The main contribution
of this paper is an algorithm that augments Mercury programs with region an-
notations. In addition, we have also implemented a region simulator to run the
region-annotated Mercury programs and to evaluate the memory performance
of several benchmark programs. We find that the algorithm can be practically
implemented, and that, with RBMM, the memory savings are very encouraging.

In Section 2, we explain how memory management for Mercury can be based
on the use of regions. The whole algorithm is composed of three phases, which
are described in Sections 3, 4, and 5, respectively. The concept of the region
points-to graph and the points-to analysis are given in Section 3. Section 4
defines the live region analysis which uses the region points-to graph of each
procedure to precisely detect the lifetime of the regions. We do the transfor-
mation by adding RBMM annotations in Section 5. Section 6 briefly discusses
how the presented algorithm can support Mercury programs with backtracking.
The prototype implementation of the algorithm and the experimental results are
shown in Section 7. Finally, Section 8 concludes.

2 Regions and Mercury

Mercury programs. We assume that the input of our program analysis is a
Mercury program that has been transformed by the Melbourne Mercury Com-
piler (MMC) into superhomogeneous form, with the goals reordered and each
unification specialised into a construction (<=), a deconstruction (=>), an as-
signment (:=), or a test (==) based on the modes [14]. The qsort program in
this form then consists of the following procedures as shown in Fig. 1.
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main(!IO) :-
(1) L<=[2,1,3],
(2) A<=[],
(3) qsort(L,A,S),
(4) io.write(S, !IO),

qsort(L,A,S) :-
(
(1) L=>[],
(2) S:=A
;
(3) L=>[Le|Ls],
(4) split(Le,Ls,L1,L2),
(5) qsort(L2,A,S2),
(6) A1<=[Le|S2],
(7) qsort(L1,A1,S)
).

split(X,L,L1,L2) :-
(
(1) L=>[],
(2) L1<=[],
(3) L2<=[]
;
(4) L=>[Le|Ls],

(
(5) X>=Le
->
(6) split(X,Ls,L11,L2),
(7) L1<=[Le|L11]
;
(8) split(X,Ls,L1,L21),
(9) L2<=[Le|L21]
)

).

Fig. 1. qsort program in superhomogeneous form

The use of regions: an example. We illustrate the usefulness of distributing
terms over regions using the qsort example. Memory cells representing a list can
be divided into cells for the elements and those for the list skeleton. Observing
the memory behaviour of the qsort procedure, we see that the output list has
a new skeleton built up in the accumulator while its elements are those of the
input list. In the main predicate, the input list L is no longer used after the call
to qsort. This means that if the skeleton of the input list, the elements, and the
skeleton of the output list (and the accumulator) are stored in three different
regions we can safely free the memory occupied by the input list’s skeleton by
removing its region after the call. Take a closer look inside the qsort procedure
at (4). The call to split creates two new lists with two new skeletons while the
elements are also those of the input list. Therefore, if the two new skeletons are
stored in regions different from the region of the input list’s skeleton, the region
can even be removed earlier, namely after this call to split inside qsort. So, by
storing different components of the lists in separate regions we can do timely
removal and recover dead memory sooner.

The qsort program with region support produced by our analysis is shown in
Fig. 2 with the region annotations in bold. In analogy to program variables used
to refer to memory cells, in RBMM, we use region variables to refer to (i.e., to
be bound to) physical regions in memory. Two special instructions create and
remove handle the creation and removal of regions. create(R) creates a region,
and makes the region variable R bound to it. R must be unbound before and
be bound after the operation. remove(R) removes the region to which R is
currently bound. R must be bound before and be unbound after the operation.
That region variables can become unbound makes them different from regular
Mercury variables. In a procedure definition, {. . .,Ri,. . .} is the list of formal
region parameters. At a call site of the procedure the caller will provide the actual
region parameters in the usual manner of parameter passing. The information
about which variables are stored in which regions will be given in Fig. 3.
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main(!IO) :-
create(R1), create(R2),
(1) L<=[2,1,3],
create(R3),
(2) A<=[],
(3) qsort(L,A,S){R1,R2,R3},
(4) io.write(S, !IO),
remove(R2), remove(R3).

qsort(L,A,S){R1,R2,R3} :-
(
(1) L=>[],

remove(R1),
(2) S:=A
;
(3) L=>[Le|Ls],
(4) split(Le,Ls,L1,L2){R2,R1,R2,R4,R5},
(5) qsort(L2,A,S2){R5,R2,R3},
(6) A1<=[Le|S2],
(7) qsort(L1,A1,S){R4,R2,R3}
).

split(X,L,L1,L2){R5,R1,R2,R3,R4} :-
(
(1) L=>[],

remove(R1),
create(R3),

(2) L1<=[],
create(R4),

(3) L2<=[]
;
(4) L=>[Le|Ls],

(
(5) X>=Le
− >
(6) split(X,Ls,L11,L2){R5,R1,R2,R3,R4},
(7) L1<=[Le|L11]
;
(8) split(X,Ls,L1,L21){R5,R1,R2,R3,R4},
(9) L2<=[Le|L21]
)

).

Fig. 2. Region-annotated qsort program

In Fig. 2, assume that in the main procedure, the list L’s skeleton is in the
region (bound to) R1, its elements in R2, and the skeleton of the accumulator
in R3. In the qsort procedure, the region of the skeleton of the list L passed
to qsort from main is removed in the base case branch of split in the call at
(4). The two new skeletons of the lists L1 and L2 are allocated in two separate
regions. These regions are created by the base case branch of split, and removed
(indirectly) by the calls at (5) and (7). If L1 and L2 are empty lists the removals
will happen in the base case branch of qsort ; otherwise, they will happen in the
base case branch of split. The region of the output list’s skeleton is the region of
the accumulator, which is created in main.

3 Region Points-to Analysis

The goal of this analysis is to build, for each procedure, a region points-to graph
that represents the partitioning into regions of the memory used by the proce-
dure. The concept of a region points-to graph was introduced for Java in [2] and
we adapted it to Mercury.

Region points-to graph. For a procedure p, a region points-to graph, G =
(N, E), consists of a set of nodes, N , representing regions and a set of directed
edges, E, representing references between the regions. Each node has an associ-
ated set of variables of p which are stored in the region represented by the node.
For a node n, its set of variables is denoted by vars(n). The node nX denotes
the node such that X ∈ vars(nX). A directed edge (m, (f, i), n) denotes an edge
from m to n, which is labelled by the type selector (f, i) and represents the
structured relation between the variables in the two nodes. The type selector
(f, i) selects the ith argument of the functor f [8].
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The points-to graphs of split and qsort procedures are shown in Fig. 3. For
split, we see that the skeletons of the lists L and Ls are in the same region and
that the list elements are in the region pointed to by the edge labelled by ([|], 1).
The self-edge with the label ([|], 2) is for the skeleton.

Le

([|],1)
([|],2)

X

([|],2)

([|],1)

([|],1)

([|],2)

(R1) L,Ls (R5)

L2
L21

L1
L11

(R3) (R4)

(R2)

(a) split

S,A

([|],2)

([|],2)

([|],1)

([|],1)

([|],2)

([|],1)

([|],2)

([|],1)

L,Ls Le S2,A1

L2L1(R4)

(R1) (R2) (R3)

(R5)

(b) qsort

Fig. 3. The points-to graphs of split and qsort

The region points-to graph G = (N, E) of a procedure p is compatible if and
only if G satifies the following invariants.

1. If a unification X := Y is in p then X and Y are in the same node.
2. If a unification X = f(. . . , Yi, . . .) (i.e., <= or =>) appears in p then

nX , nYi ∈ N , and, for each i, there exists exactly one edge with the label
(f, i) from nX and (nX , (f, i), nYi) ∈ E.

3. If X is a variable bound to a term, Y is a variable bound to a subterm of
that term and they are of the same type, then they are in the same node.

4. Every variable of p belongs to exactly one node and the variables in a node
have the same type, which is regarded as the type of the node.

5. If p calls a procedure q, then the subgraph of the region points-to graph
of p rooted at the nodes of the actual parameters must be a conservative
approximation of the subgraph of the graph of q rooted at the nodes of the
formal parameters of q.

The fifth invariant includes the effects of procedure calls in the region points-to
graph of p. According to [2], a region points-to graph G = (N, E) is a conservative
approximation of G′ = (N ′, E′) if there exists a function α : N ′ → N such that
(n, (f, i), m) ∈ E′ implies (α(n), (f, i), α(m)) ∈ E ∀n, m ∈ N ′.

The reason for the third invariant is to ensure that the terms of recursive
type are always stored in a fixed, finite number of regions. For a more thorough
development of this design choice the reader is referred to Section 2.3 in [12].

The task of the region points-to analysis then is to produce a compatible graph
for each procedure in a program. To update a region points-to graph G = (N, E)
the analysis uses two operations unify and edge defined as follows.

– k = unify(n, m): unifies nodes n and m and returns the new node k.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



322 Q. Phan and G. Janssens

• N ← N \{n, m}∪{k}, k is a new node and vars(k) = vars(n)∪vars(m).
• E ← E where all appearances of m and n are replaced by k.

– edge(n, sel , m): creates an edge with a label sel from node n to node m.
• G ← (N, E ∪ {(n, sel , m)}).

The region points-to analysis is flow-insensitive (i.e., the execution order of
the literals in a procedure does not matter), and consists of an intraprocedural
analysis and an interprocedural analysis. We will describe them in turn.

3.1 Intraprocedural Analysis

Assume that we are analysing a procedure p. Its region points-to graph G =
(N, E) is computed as follows.

1. Each variable in p is assigned to a separate node: for a variable X , nX

becomes a node in N and vars(nX) = {X}.
2. The specialized unifications in p are processed one by one as follows:

– An assignment X := Y : apply unify(nX , nY ) to ensure the first invariant.
– A test X == Y : do nothing.
– A deconstruction X => f(Y1, . . . , Yn) or a construction

X <= f(Y1, . . . , Yn): create the references from nX to each of nY1 , . . .,
nYn by adding the edges edge(nX , (f, 1), nY1), . . ., edge(nX , (f, n), nYn).

3. The rules in Fig. 4 are fired whenever applicable. Rules P1 and P2 are to
ensure the second invariant. Rule P3 enforces the third invariant.

k = unify(n, n′)
(k, sel, m) ∈ E
(k, sel, m′) ∈ E

m �= m′

unify(m, m′)
(P1)

edge(n, sel, m)
(n, sel, m′) ∈ E

m �= m′

unify(m, m′)
(P2)

edge(n, sel, m)
(k1, m) ∈ E

+

(m, k2) ∈ E+

k1 �= k2
type(k1) = type(k2)

unify(k1, k2)
(P3)

E+ is the reflexive, transitive closure of E; type(n) returns the type of node n.

Fig. 4. Intraprocedural analysis rules

3.2 Interprocedural Analysis

The interprocedural analysis updates the region points-to graph Gp of a pro-
cedure p by integrating the relevant parts of the region points-to graphs of the
called procedures into Gp at each call site. For a call q(Y1, . . . , Yn), the head of
the defining procedure is q(X1, . . . , Xn). The analysis is performed as follows.

1. Process each procedure call q(Y1, . . . , Yn) in p: integrate the graph of q,
Gq = (Nq, Eq), into the graph of p, Gp = (Np, Ep) by building the partial α
mapping from Nq to Np as follows:
(a) Initialize the α mapping with α(nX1) = nY1 ,. . .,α(nXn) = nYn . For those

nodes that have been unified in Gq, the corresponding nodes in Gp should
also be unified. This is achieved by applying rule P4 in Fig. 5 to ensure
that α is a function.
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(b) In the graph Gq, start from each nXi , follow each edge once and apply
rules P5 - P8 in Fig. 5 when applicable. Those rules complete the α
mapping and copy the parts of Gq that are relevant to nXi ’s into Gp.
When two nodes of Gp are unified (rules P4 and P5) or an edge is added
to Gp (rules P7 and P8) we need to apply rules P1 or P3 respectively to
Gp in order to maintain the second and the third invariants. (Rule P2 is
never applicable because its conditions cannot be satisfied.)

2. Repeat step 1 until there is no change in Gp.

α(nXi
) = nYi

α(nXj
) = nYj

nXi
= nXj

nYi
�= nYj

unify(nYi
, nYj

)
(P4)

(nq, sel, mq) ∈ Eq

α(nq) = np

(np, sel, m′
p) ∈ Ep

α(mq) = mp �= m′
p

unify(mp, m
′
p)

(P5)

(nq, sel, mq) ∈ Eq

α(nq) = np

(np, sel, mp) ∈ Ep

α(mq) undefined

α(mq) = mp

(P6)

(nq, sel, mq) ∈ Eq

α(nq) = np

� ∃k : (np, sel , k) ∈ Ep

α(mq) = mp

edge(np, sel , mp)
(P7)

(nq, sel, mq) ∈ Eq

α(nq) = np

� ∃k : (np, sel, k) ∈ Ep

α(mq) undefined
mp : a new node in Gp

α(mq) = mp edge(np, sel, mp)

(P8)

Fig. 5. Interprocedural analysis rules

When the algorithm terminates, i.e., when no rules can be applied and we
reach a fixpoint, the resulting region points-to graphs for the program’s proce-
dures will all be compatible. This is because for each procedure, the analysis
starts with a points-to graph that satisfies the fourth invariant, and no rules
invalidate it. The first invariant is respected by the intraprocedural analysis. If
the second invariant does not hold then rules P1 and P2 must be applied and
also if the third invariant is invalid then rule P3 is applied. Rule P4 ensures that
at a call site an α mapping exists. Then if the fifth invariant does not hold at
least one among the rules P5-P8 must be applicable. The termination of the al-
gorithm can be shown by defining a partial order over the set of region points-to
graphs and showing that the rules are actually monotonic and that there exists
a maximum compatible points-to graph for each procedure. From now on, when
we mention the region points-to graph of a procedure it means the compatible
one obtained after both intra- and inter-procedural analyses.

For the qsort example, the region points-to graphs of split and qsort after the
region points-to analysis are exactly as shown in Fig. 3.

4 Live Region Analysis

Each node in the region points-to graph of a procedure is named by a distinct
region variable. A region variable being live means that it is bound to a physical
region. During the execution of a program the memory cells holding the values
of the variables must be allocated before they are used. Similarly, in RBMM,
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regions also need to be created before used, and should be removed when no long
in use. The goal of live region analysis is to detect which region variables are live
at each program point and to decide which regions are created and removed by
each procedure.

We associate a program point with every literal in the body of a procedure
p. An execution path in p is a sequence of program points, such that at runtime
the literals associated with these program points are performed in sequence. We
use the notions “before” and “after” a program point. Before a program point
means the associated literal has not been executed yet, while after a program
point means its literal has just been completed. The set of live region variables at
a program point is computed via the set of live variables at the program point.

4.1 Live Region Variables at a Program Point

Live variables. A variable is live after a program point in a procedure p if:

– There exists an execution path in p containing the program point that in-
stantiates the variable before or at the program point and uses it after the
program point,

– OR it is an output variable of p, which is instantiated before or at the
program point.

If we call pre inst(i, P ) the set of variables instantiated before the program
point i in the execution path P , post use(i, P ) the set of variables used after i
in P , out(i) the set of variables instantiated by the goal at i, out(p) the set of
output variables of a procedure p then the set of live variables after i is:

LV after (i) = {V | ∃P : V ∈ (pre inst(i, P ) ∪ out(i)) ∩ (out(p) ∪ post use(i, P ))}.

If we call in(i) the set of input variables to the literal at i, the set of live
variables before i is:

LV before (i) = (LV after (i) \ out(i)) ∪ in(i).

The LV before of the first program point of an execution path of a procedure
p is defined to be in(p), the set of input variables of the procedure. The LV after

of the last program point is defined to be out(p).

Live region variables. A region variable is live at a program point if its node
is reachable from a live variable at the program point.

The set of nodes that are reachable from a variable is defined:

Reach(X) = {nX} ∪ {m | ∃(nX , m) ∈ E∗(X)},

in which E∗(X) is defined:

E∗(X) = {(nX , ni) | ∃(nX , sel0, n1), . . . , (ni−1, seli−1, ni) ∈ E}.

The live region variables sets before and after a program point i are defined:

LRbefore(i) =
⋃

(Reach(X)) ∀X ∈ LV before(i).

LRafter (i) =
⋃

(Reach(X)) ∀X ∈ LV after (i).
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4.2 Region Lifetime Across Procedure Boundary

The formal region parameters of a procedure are the region variables that are
reachable from its head variables. For a procedure, we could safely require that
the regions bound to by its formal region parameters are created and removed
only by its callers. But we may achieve better memory use if we can give such
a region a later creation or an earlier removal, or both, inside the procedure. To
reason about this, for a procedure p, we define:

– bornR(p) is the set of region parameters that are bound to regions which are
created inside p, i.e., by p or by one of the procedures it calls.

– deadR(p) is the set of region parameters that are bound to regions which are
removed inside p.

When analysing a procedure p, initially, bornR(p) = outputR(p) \ inputR(p);
deadR(p) = inputR(p) \ outputR(p), where inputR(p) and outputR(p) are the
sets of region variables reachable from input and output variables, respectively.

The analysis then follows each execution path of p and applies the rules in
Fig. 6 to any call q to update the deadR and bornR sets of q. A region variable
is eliminated from deadR(q) if it needs to be live after the call to q in p (i.e., the
region to which it is bound must not be removed in the call to q) (rule L1); or if
the region will be removed more than once by q because of the so-called “region
alias”, which means the same actual region parameter is used for more than one
formal region parameter (rule L2). A region variable is excluded from bornR(q)
if the region it is bound to is already live before the call to q (rule L3); or if q
will create the region more than once due to region alias (rule L4). When there
is a change to those sets of q, q needs to be analysed to propagate the change to
its called procedures. Therefore, this analysis requires a fixpoint computation.

r ∈ LRbefore(pp(l))
r ∈ LRafter (pp(l))

r = α(r′) r
′ ∈ deadR(q)

deadR(q) = deadR(q) \ {r′} (L1)

α(r′) = r α(r′′) = r

r
′ �= r

′′
r

′ ∈ deadR(q)

deadR(q) = deadR(q) \ {r′} (L2)

r ∈ LRbefore(pp(l))
r = α(r′) r′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r′} (L3)

α(r′) = r α(r′′) = r
r′ �= r′′ r′ ∈ bornR(q)

bornR(q) = bornR(q) \ {r′} (L4)

pp(l) returns the program point of the literal l.

Fig. 6. Live region analysis rules

After this analysis, the set of region variables of a procedure, N , is parti-
tioned into four sets: deadR, bornR, constantR, and localR, where localR =
N \ (inputR ∪outputR) and constantR = N \ (deadR ∪ bornR ∪ localR). The first
three sets are constituents of the set of region parameters of the procedure. The
region parameters in deadR are live before a call to the procedure and the regions
they are bound to can safely be removed inside the procedure. Those in bornR are
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unbound before a call to the procedure and will get bound inside the procedure.
Those in constantR escape the procedure scope. The last set, localR, contains
region variables that are absolutely internal to the procedure.

The algorithm to detect live region variables at each program point is an
extension of live variable analysis, which is a standard, well-known program
analysis [11]. The analysis in Section 4.2 aims to compute a shortest possible
lifetime for a region. Its termination can intuitively be understood from the fact
that each procedure uses a finite set of region variables, hence, initially bornR
and deadR sets are also finite, and the analysis just reduces their size.

In the qsort program, split has three execution paths: 〈(1), (2), (3)〉, 〈(4), (5),
(6), (7)〉, and 〈(4), (8), (9)〉; qsort has two: 〈(1), (2)〉 and 〈(3), (4), (5), (6), (7)〉.
The LV and LR sets of split are in Table 2(a), of qsort in Table 2(b) (see also
Fig. 2 and Fig. 3). Note that, in this example, it happens to occur that the
set after one program point is always equal to the one before the next point in
the same execution path. In general, this is not necessarily the case, consider for
example a split point, the set of live region variables after it is the union of all the
sets before its next points. The region parameter sets of the two procedures are:
deadR(split) = {R1}, bornR(split) = {R3, R4}, constantR(split) = {R2, R5};
deadR(qsort) = {R1}, bornR(qsort) = φ, constantR(qsort) = {R2, R3}.

Table 1. Live variable and live region variable sets in qsort program

pp LV LR
(1b) {X, L} {R5 , R1 , R2}

(1a, 2b) {} {}
(2a, 3b) {L1} {R3 , R2}

(3a) {L1 , L2} {R3 , R2 , R4}
(4b) {X, L} {R5 , R1 , R2}

(4a, 5b) {X, Le, Ls} {R5 , R2 , R1}
(5a, 6b) {X, Le, Ls} {R5 , R2 , R1}
(6a, 7b) {L2 , Le, L11} {R4 , R2 , R3}

(7a) {L1 , L2} {R3 , R2 , R4}
(5a, 8b) {X, Le, Ls} {R5 , R2 , R1}
(8a, 9b) {L1 , Le, L21} {R4 , R2 , R3}

(9a) {L1 , L2} {R3 , R2 , R4}

(a) split

pp LV LR
(1b) {L, A} {R1 , R2 , R3}

(1a, 2b) {A} {R3 , R2}
(2a) {S} {R3 , R2}
(3b) {L, A} {R1 , R2 , R3}

(3a, 4b) {A, Le, Ls} {R3 , R2 , R1}
(4a, 5b) {A, Le, L1 , L2} {R3 , R2 , R4 , R5}
(5a, 6b) {Le, L1 , S2} {R2 , R4 , R3}
(6a, 7b) {L1 , A1} {R4 , R2 , R3}

(7a) {S} {R3 , R2}

(b) qsort

5 Program Transformation

The main task of program transformation is to annotate the input program with
create and remove instructions based on the region liveness information. It also
annotates a procedure definition with formal region parameters known from the
live region analysis. Actual region parameters at a call site can be derived from
the formal region parameters of the called procedure and the α mapping at the
call site.

Correctness conditions. To be correct, the transformation of a procedure p
must ensure the following:
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1. If a region variable is live at a program point, it must be bound to a region
before that point.

2. If a region variable is not live at a program point, its binding status must
be unbound before that point.

3. The regions to which the region parameters in deadR(p) are bound will be
removed inside p.

4. The regions to which those in bornR(p) are bound will be created inside p.
5. No creation and removal will occur to those in constantR(p) in the procedure.

Transformation. Each procedure is transformed by following its execution
paths and applying the transformation rules in Fig. 7 to each program point
so that the correctness conditions are respected. Assume that we are analysing
a procedure p. Let li be the associated literal at a program point i in p. A literal
can be either a specialized unification denoted by unif or a call (user-defined
or built-ins). We assume that all the specialized unifications as well as calls to
builtin operations do not remove or create any regions.

li ≡ q(. . .)
r ∈ LRafter (i) \ LRbefore(i)
r ∈ (localR(p) ∪ bornR(p))

� ∃r′ : r = α(r′) ∧ r′ �∈ bornR(q)
add “create r” before li

(T1)

li ≡ X <= f(. . .)
r ∈ Reach(X) \ LRbefore(i) r ∈ LRafter (i)

r ∈ localR(p) ∪ bornR(p)
add “create r” before li

(T2)

li ≡ q(. . .)
r ∈ LRbefore(i) \ LRafter (i)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
� ∃r′ : r = α(r′) ∧ r′ �∈ deadR(q)

add “remove r” after li
(T3)

li ≡ unif
r ∈ LRbefore(i) \ LRafter(i)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
add “remove r” after li

(T4)

lj is right after li in an execution path
r ∈ LRafter(i) \ LRbefore(j)

r ∈ localR(p) ∪ deadR(p) ∪ bornR(p)
add “remove r” before lj

(T5)

Fig. 7. Transformation rules

When a region variable first becomes live, namely when it is not live before i
but is live after i, a region must be created and the region variable is bound to
the region. If the region is created inside li, then no annotation is added at i.
Otherwise the region is created either by a caller of p or by p itself. The former
means that the region should not be created again in p, hence no annotation is
added at i. The latter occurs when the region variable belongs to either bornR(p)
or localR(p), and in this case we add a create instruction before li. This is
reflected by the transformation rules T1 and T2.

When a region variable ceases to be live, the region it is currently bound
to is removed. The first case is when the region variable is live before i but
not live after i. If p does not remove the region, it is removed by a caller of p
and no annotation is introduced at i. Otherwise, the region is removed inside p.
This means the region variable is in one of the deadR, localR, or bornR sets of
p. There are two subcases: if li removes the region, then no remove instruction
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needs to be inserted at i; otherwise if p removes the region itself, we insert a
remove instruction after li. The transformation rules T3 and T4 ensure this
effect. While the reason for removing a region to which a region variable that
belongs to the first two sets is bound is straightforward, the removal of a region
that is bound to by a region variable in bornR(p) is allowed because it is accept-
able for p to remove the region after i and re-create it later on. The fact that
region variable is in bornR(p) ensures this. The second case is when the region
variable is live after i, but not live before some program point j following i in a
certain execution path. This can happen when i is a shared point among different
execution paths and the region variable is live after i due to an execution path
to which j does not belong. A remove instruction is added before lj to remove
the region as expressed by the transformation rule T5.

The result of the program transformation of the qsort program has been shown
in Fig. 2. The addition of the remove instructions after the first program points
in both qsort and split procedures results from the application of T4. Two create
instructions inserted in the split procedure are effects of T2.

6 Support for Mercury Programs with Backtracking

The region analysis and transformation presented in Sections 3, 4, and 5 are
correct for Mercury programs without backtracking. The region liveness analy-
sis only takes into account forward execution and the transformation assumes
that at runtime a program will follow only one execution path. To support back-
tracking the authors in [5, 7] described an enhanced runtime for Prolog with
RBMM. The idea is to make backtracking transparent to the algorithm for non-
backtracking programs by using a mechanism to undo changes to the region-
based heap memory, restoring it to the previous state at the point to which the
program backtracks. We reused this idea, developed the necessary details (which
can be found in [13]) in the context of the Melbourne implementation of Mer-
cury [14]. With this support, the algorithm for non-backtracking programs can
be used unchanged to correctly support ones with backtracking.

7 Prototype Implementation and Experimental Results

We implemented an RBMM prototype using MMC version 0.12.0. It consists of
an analyser that uses the region analysis to generate region-annotated programs
and a region simulator. The analyser operates as one of the last analyses on the
High Level Data Structure representation of the original source code and pro-
duces source code with region support. To have a working Mercury system with
RBMM the runtime system of Mercury would need to be extended with support
for regions, which is out of the scope of this paper. Instead, we developed a
region simulator to experiment with region-annotated programs. The simulator
can mimic the region operations in a region-annotated Mercury program as if
the program were being executed by a working RBMM system. The simulator

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Static Region Analysis for Mercury 329

provides an interface with non-logical methods for region creation, removal, allo-
cation into a region, and for supporting backtracking (see [13] for more details).

The program transformation emits a program (as valid Mercury code) in
which create instructions are replaced by calls to the method for region creation
in the simulator’s interface and remove instructions by calls to the region re-
moval method. After each construction a call to the region allocation method is
added to collect the number of words allocated. Procedure definitions and calls
are extended with region parameters as extra parameters. Calls to backtrack-
supporting methods are inserted at suitable places. We also augment the Mercury
runtime system to interact with the simulator so that the saving and restoration
of region-based memory states can be imitated correctly.

Primitive types are not dealt with specially by the analyser, but they are by
the simulator. In particular, when dealing with a list of integers, the integers
themselves are not put in a separate region but stored in the first words of the
cons cells needed for the list skeleton.

When a Mercury program is executed it puts the terms that are created
during execution on the heap. Assume that no RTGC is used, during forward
execution the heap grows and only on backtracking instant reclaiming is done.
With RBMM the terms will be put into regions and the regions can be freed
(and reused) during the forward run of the program. In particular, it should be
the case that temporary data is in regions which are freed as soon as the data
is no longer needed.

In our experiments, we have included some deterministic programs that use
some temporary data: nrev reverses a list of 5000 integers, qsort sorts a list of
100000 integers and primes finds all the primes less than 100; dnamatch and
life are known to be difficult cases for region analysers. Two non-deterministic
programs are used: 9-queens program that first generates a permutation and
then checks, and crypt that finds the unique answer to a cryptoarithmetic puz-
zle1. The experiments allow us to measure the memory used by the benchmarks.

Table 2 shows the experimental results obtained by the region simulator for
the annotated versions of the benchmarks. The experiments were done on a PC
with a 2.8 GHz Pentium 4 CPU, 512 MB of RAM running Debian GNU/Linux
3.1, under a usual load.

Table 2. Experimental results

nrev qsort prime dnamatch rdnamatch life rlife crypt queens
TR 5,002 200,002 29 2,082,005 2,083,005 50,303 50,403 418 7,689
MR 2 21 3 8 9 102 102 4 4
TW 25,015,000 5,865,744 916 18,537,685 18,541,685 894,336 894,336 3,442 159,234
MW 10,000 200,000 194 4,201,700 113,792 8,208 1,068 62 78
SLR 10,000 200,000 194 4,096,000 64,000 6,486 390 32 60
S (%) 99.96 96.59 78.82 77.33 99.39 99.08 99.88 98.20 99.95
AT (ms) 8 11 9 72 78 107 n/a 61 13
CT (ms) 251 243 223 329 343 361 n/a 307 273

1 The original and annotated source code of the benchmark programs can be found

at http://www.cs.kuleuven.be/∼quan/benchmarks.tar.gz
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Our measurements reported in Table 2 are: the total number of regions created
during the execution of a benchmark (TR), the maximum number of regions
coexisting during its run (MR), the total number of words allocated (TW),
the maximum number of words that coexist (MW), and the size in words of the
largest region (SLR). Then savings (S) can be computed as (TW-MW)/TW. We
also give the times in milliseconds taken by our analysis (AT) and by the usual
Mercury compilation of the benchmark (CT). For all benchmarks the analysis
time is only a fraction of the compilation time.

The fact that TR is much larger than MR confirms that the data used by a
program can indeed be divided into regions that can be freed timely during its
execution. If Mercury runs the programs without memory management, it will
actually need TW words. When using RBMM only MW are needed. The savings
are impressive, about 92% on average. The large savings can partly be explained
by the fact that the analysis did a good job of partitioning the heap into regions
such that temporary data can be freed in a timely manner. Optimal memory
management is achieved for nrev, qsort and prime, as the programs use no
more memory than what is needed to store their input data. In a standard LP
system, all memory management in crypt and queens will be handled well by
instant reclaiming because backtracking happens very frequently. The savings
with RBMM in these two benchmarks are with respect to the situation where
instant reclaiming is not used therefore seem to be unfair. However, they show
that the runtime support for backtracking can also provide the ability of instant
reclaiming in the context of RBMM.

In dnamatch and life, while the savings seem acceptable, the memory man-
agement is actually suboptimal. In these programs, there is a region that exists
for almost the whole runtime and contains all the temporary and final values
of the computation of the programs’ output, which make up a significant part
of the maximum number of words used. This undesirable performance is due to
the fact that the present algorithm fails to split temporary values from the final
outputs in these programs. A well-known solution to this problem is to make
such programs region-friendly by rewriting after studying their RBMM-related
behaviour [16, 1, 4, 7]. rdnamatch is a region-friendly version of dnamatch,
achieved by adding an extra predicate to copy the temporary values into re-
gions different from the region of the final output. An orthogonal solution is
to enhance the static analysis: rlife, a manually adapted version of the region-
annotated life, illustrates the effect of such a possible improvement. Their data
show a large reduction in the maximum number of words needed. The latter
solution is more preferable because it is entirely automated, hence freeing logic
programmers from caring about memory management tasks. Moreover, the first
solution requires extra time and memory for copying, while the second solution
requires the same total number of words as before but the region analysis can
distribute them more cleverly. We are working further in this direction.

Three of our benchmarks, nrev, qsort, and dnamatch, were also reported
in [7] with the same inputs. We achieve optimal memory use in nrev and qsort,
while in [7] the former was reported using maximally double and the latter 1.66
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times the memory size of the input list. For dnamatch, we gain a saving of
77.33% compared to 33.5% shown in [7]. The reason for the better results is
probably that our algorithm can remove a region earlier. For example, in the
qsort procedure of the qsort program, the inference in [7] removes the region of
the input list after the call to split (so the list and the two sublists are live at
that point). In our case, that removal happens at the base case in the call to
split , before creating the two sublists.

8 Conclusion

In this paper we have developed a region analysis algorithm for the typed logic
programming language Mercury. Our approach was inspired by the work in [2].
The analyses in [2] take into account the data flow in a program in order to deter-
mine the regions and their lifetimes. Therefore the analyses had to be redefined
for Mercury to deal with unification and a control flow which are fundamentally
different from object manipulation and control flow in Java. Type information
in Mercury has been exploited by the region analysis to achieve a finite region
representation for recursive structures. Apart from that our algorithm allows
interprocedural creation of regions which was not handled in [2]. The analyser
annotates Mercury programs with instructions for RBMM. Experiments with
the analyser for several small benchmarks (4-17 procedures, 70-500 lines of code)
show that it takes a reasonable amount of time. We also implemented a region
simulator which can run the annotated programs produced by the region anal-
yser to imitate the effects of executing Mercury programs in an RBMM system.
The memory use results of the benchmarks are positive, in some programs we ob-
tain optimal memory consumption. This indicates that our method could be an
interesting alternative memory management technique. It should be noted that
the experiments have been done only with small programs and that the lack of
the completely implemented runtime supporting for RBMM makes us unable
to measure runtime performance and the internal cost of the region allocator
and to provide a thorough comparison between our approach and other memory
management techniques available in Mercury, such as RTGC and CTGC. We
are working on integrating the presented algorithm into the MMC and hope to
lift this limitation soon.

We have not provided a formal proof for the whole algorithm and left it as
future work. However, the foundations for the correctness of the algorithm have
been laid intuitively. Finally, we also would like to investigate some extensions
to the presented algorithm: better region partition as mentioned in Section 7
and modular region analysis.
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Abstract. This paper proposes a diagnosis algorithm for locating a cer-
tain kind of errors in logic programs: variable binding errors that result
in abstract symptoms during compile-time checking of assertions based
on abstract interpretation. The diagnoser analyzes the graph generated
by the abstract interpreter, which is a provably safe approximation of the
program semantics. The proposed algorithm traverses this graph to find
the point where the actual error originates (a reason of the symptom),
leading to the point the error has been reported (the symptom). The pro-
cedure is fully automatic, not requiring any interaction with the user. A
prototype diagnoser has been implemented and preliminary results are
encouraging.

1 Introduction

Obtaining a program that satisfies the programmer’s intentions is clearly a cru-
cial objective in software development. If the program does not conform to the
user’s expectations (i.e., if it contains a discrepancy between the program se-
mantics and the specification –a symptom) this means that somewhere in the
program there is an error which has to be found and corrected. The difficulty in
this process comes from the fact that the effects of a given error (the symptoms)
propagate from one location in the code to another and manifest themselves far
away from the place where the error resides. The process of locating (a piece
of code that contains) an error given some symptom is called diagnosis. In this
paper we address the problem of compile-time automatic diagnosis in untyped
(constraint) logic programs, focusing on binding errors, meaning that we locate
a variable binding that eventually produces a symptom (making the program
erroneous). We aim at designing sound foundations for a practical and useful
diagnosis tool that can be used routinely.

Before an error can be diagnosed, its presence has to be detected through a
symptom. Our approach relies on the idea of compile-time program verification
and error detection based on abstract interpretation [7], as proposed in [13,22,14].
Properties expected by the user concern call and success patterns of program
predicates and are given in the form of assertions [11,19,21]. An important char-
acteristic of the approach used is that only a small number of assertions may be
present in the program, or even no assertions at all. In the latter case the sys-
tem takes advantage of assertions written for built-in and library predicates to

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 333–347, 2007.
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detect errors in user programs. Also, the approach is parametric on the abstract
domains used, so that a variety of properties can be proved or disproved, based
on the set of abstract domains used.

Assertion verification is preceded by static program analysis based on abstract
interpretation [7,3,20,15]. The results of the analysis are compared against the
assertions. An assertion that can be shown to be false, together with the related
program point is called a symptom. Such (abstract) symptoms are the starting
point of our diagnosis procedure. The static analyzer produces a program analysis
graph which is essentially a finite representation of all execution paths that may
appear at run-time, annotated with the state at the call and exit points of proce-
dures and at each program point. This graph is the fundamental data structure
exploited by the diagnoser. The diagnoser traverses the graph from the point of
the symptom, against the direction of execution, trying to identify a point (or
points) where variable bindings occur which are responsible for the symptom.
During the traversal, the abstract operations of the analyzer are executed in
order to analyze parts of the graph, and thus come to conclusions regarding cor-
responding pieces of the code. The proposed procedure is fully automatic, and
does not require any user intervention. In the implementation, the initial call
to the diagnoser is (optionally) automatically triggered by the assertion checker
when a discrepancy with an assertion is detected.

2 Related Work

Locating errors is an inherent part of debugging1 and has attracted significant
attention. One of the best-known diagnosis techniques is declarative or algorith-
mic debugging, initially proposed in [24]. In this approach the search for the
error takes the form of an interactive session with the user, who is required to
answer queries about the intended behavior of the program. A drawback of the
approach is that the number of questions posed to the user is typically very large.
One way to reduce the number of queries and to simplify them is to add partial
formal specifications to the program in the form of assertions [11], but the load
on the user remains a problem for the practical takeup of this technique. The al-
gorithmic debugging approach is strongly tied to the declarative semantics while
our aim is to develop an approach that works also for impure (constraint) logic
programs. An additional difference with our approach is that the declarative
debugging session concerns the concrete semantics and a single (test) execution
only, whereas we are interested in diagnosing errors at compile-time, and for all
possible executions.

When the full (abstract) specification of the program is available the method
known as abstract diagnosis [6] can be applied. This method however requires,
in addition to the full specification, again adherence to the declarative semantics
(and also makes the assumption that the specification can be linked with the
concrete semantics via a Galois connection). Other techniques based on applying
1 We prefer to reserve the term “debugging” for a process that involves both locating

and removing the bug.
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a verification condition, such as, e.g., [10], can also be used to locate errors.
In [10], in particular, descriptive types are used to approximate the operational
semantics. A clause on which the inductive proof fails indicates an error.

In the context of strongly-typed languages, the problem of locating type errors,
i.e., understanding why an expression cannot be typed, has received much atten-
tion. These diagnosis algorithms try to find a reason for the failure in type unifi-
cation during type inference. The problem was initially attacked in [26] where the
steps of the type inference procedure are recorded and later looked up for inconsis-
tencies. Many researchers (e.g., [2]) have followed this line and proposed various
improvements. In our case we are dealing with an untyped (logic) language, and
with a general class of properties that goes beyond traditional types. Also, as in
the typed languages, the error might be placed far away from the expression re-
ported in the type error message. But because in our case there may be only a few
assertions in the program, the error may in fact be propagated further and show
up much later, even in different functions or modules, and in a way that does not
correspond intuitively with the direction of the execution-time data flow.

Our approach has a strong relationship with slicing (see e.g.,[12,23] for slicing
in logic programming). Note that in (backward) slicing the goal is to find a piece
of program that potentially affects a value of a variable at the point of interest,
whatever the value is, whereas we are interested only in values violating the
specification. Also, unlike in slicing we do not track dependencies between indi-
vidual variables, letting an abstract domain and the generic abstract interpreter
capture the necessary information.

3 Preliminaries and Notation

We assume that the reader is familiar with logic programming (see, e.g., [1,18])
and abstract interpretation [7]. We will use the standard notions of SLD resolu-
tion and SLD derivation with the Prolog computation rule. We use a standard
notion of substitution, i.e. mappings from program variables to terms. A sub-
stitution will be typically denoted as θ, possibly with sub- or superscripts. We
also use θ|A to denote a projection of θ over variables in an atom A. Let Gk be
a resolvent of the form ← (A1, . . . , An)θ0 · · · θk, obtained in the k-th step of the
derivation. In step k + 1 we obtain the resolvent Gk+1 (denoted Gk � Gk+1) of
the form ← (B1, . . . , Bm, A2, . . . , An)θ0 · · · θkθk+1 where B0 ← B1, . . . , Bm is a
renamed clause of the program and θk+1 = mgu(A1θ0 · · · θk, B0). Let +

� denote
a transitive closure of �. In order to handle program points we annotate every
atom A in a derivation by a program-point identifier p©, which determines a
clause and a position in the clause where A comes from. We write annotated
atoms as A p©. We say that a program point p© corresponds to a derivation state
G iff G is of the form ← (A p©, . . .)θ.

Goal-directed abstract interpretation is a technique whose aim is for a given
initial call pattern (describing a possibly infinite set of input data), to gener-
ate annotations describing (in an abstract way) all possible run-time variable
bindings. The annotations are expressed in an abstract domain Dα (a lattice
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Fig. 1. A fragment of an abstract and-or graph

equipped with a partial order �, and standard elements � and ⊥, and opera-
tions � and �). In the case of logic programming, the annotations typically take
the form of abstract substitutions (approximations of concrete substitutions), i.e.,
mappings from program variables to values in Dα. Abstract domain Dα and con-
crete domain D are linked to each other by two monotone mappings α : D 	→ Dα

and γ : Dα 	→ D, called abstraction and concretization functions respectively.
We do not restrict our attention to any specific abstract domain. However, in
the examples we will use for concreteness regular types [9,25].

Throughout this paper we will use the abstract interpretation framework of
Bruynooghe [3], which, with variations and optimizations (in our case [20,15]), is
the basis of a large portion of the practical analyzers for logic programs. In these
frameworks the analyzer produces a program analysis graph called an abstract
and-or graph. The abstract and-or graph is a finite description of the set of
(concrete) and-or trees that are conceptually traversed during execution of the
program. The abstract graph (see Figure 1) has two sorts of nodes: and-nodes
containing (copies of) heads of clauses, which have body atoms as their children2

and or-nodes which are body atoms representing calls. Each node (whether and-
or or-) is adorned with two substitutions, describing the bindings of variables
just before entering and just after exiting the respective piece of program code.

Let vars(E) denote a set of variables that occur in a syntactic object E. We
use the notation 〈λc, H, λs〉AND to denote an and-node, where H is the head
of a clause, say H ← B1, . . . , Bn. λc is an abstract substitution that describes
the bindings of variables vars(H) before entering the clause, and λs keeps the
bindings after exiting the clause. The and-node with the atom H has children,
each being an or-node, written as 〈λi−1, Bi, λi〉OR, for 1 ≤ i ≤ n. A substitution
λi describes bindings of variables just before calling an atom Bi+1 (or after
succeeding in the clause body if i = n), and it ranges over all vars((H ←
B1, . . . , Bn)). We use a function children(N) to denote an ordered set of children
of an and- or or-node N . We assume that all substitutions in the graph are
different from ⊥, i.e., branches corresponding to sub-computations known to fail

2 Clearly, children of nodes have to be ordered. Moreover, there might be more than
one and-node per clause.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Automatic Binding-Related Error Diagnosis in Logic Programs 337

are not present in the graph. Variables in the program and those in the abstract
and-or graph are renamed apart. During the analysis phase, when the abstract
and-or graph is constructed the following abstract operations (functions) are
used (following [15]):

– Aproj(λ, V ) performs the projection of a substitution λ on a set of variables
V .

– Aextend(λ, V ) extends the substitution λ to the set of variables V .
– Aunif(E1, E2, λ) performs abstract unification of two expressions E1 = E2

and conjoins the results with λ.
– Aconj(λ1, λ2) performs the abstract conjunction of two substitutions.
– Alub(λ1, λ2) performs the abstract disjunction of two substitutions3.

We recall the notion of topmost abstract substitution over the set of variables
V (introduced in [5]), which captures the abstract representation of the most
general concrete substitution, and which, e.g., for our example type domain can
be defined as λ�V

def= {X/� | X ∈ V }. V will be dropped if it is clear from the
context.

4 Assertions, Symptoms, and Errors

Our objective is to find a reason for a symptom, where the symptom is un-
derstood as a deviation of the program behavior from the user expectations.
The expectations have to be expressed as a formal specification. Such specifica-
tion is commonly written in terms of assertions (e.g., see [11,19,21]). A specific
assertion language definition is not required for our results (however, the imple-
mentation and experiments are carried out in the Ciao Preprocessor [14] using its
assertion language [21]). For simplicity we assume that a (partial) specification
is provided in terms of abstract substitutions assigned to program points. We
will refer to such substitutions as program-point assertions or expected proper-
ties, interchangeably. We explicitly allow the specification to be partial, i.e., the
program can contain just a few or even no assertions, the only assertions then
checked being those in libraries. A program-point assertion λProp between atoms
Bi and Bi+1 expresses an expected success pattern of Bi or expected call pattern
of Bi+1. Consequently, λProp ranges over vars(Bi) or vars(Bi+1). Note that we
have chosen program point assertions without loss of generality since predicate-
level assertions (cf. [21]) can be translated to program point assertions with a
simple program transformation. We also assume that the expected properties
are renamed along with the clauses, so that they range over the same variables
as the copies of the clauses present in the abstract graph. These assumptions
simplify the subsequent presentation. Finally, we assume that abstract values
are over-approximations (a dual approach applies for under-approximations).

Now we are in a position to define a notion of symptom. Assume that at a
program point s© there is an associated assertion λProp. A symptom of violating
3 While we will not need this operation in the paper it is included in order to make

the description complete and avoid confusion.
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the assertion occurs whenever there is a derivation D = G0
+
� Gk � · · · with a

state Gk = ← (A s©, . . .)θ0 · · · θk s.t. (θ0 · · · θk)|A �∈ γ(λProp). In other words the
assertion is expected to be satisfied for all variable bindings at s© in any possible
execution. We say that D is an assertion violating derivation. A symptom of
violating the assertion can be signaled by compile-time checking whenever the
static analysis produces an abstract substitution λ at s© (for all concrete θ at
s© θ ∈ γ(λ)), s.t. λ �� λProp.

We are interested in finding the reason for the symptom. We say that a deriva-
tion state Gl = ← (B e©, . . .)θ0 · · · θl (l < k), and the corresponding program
point e© contribute to the symptom at s© iff for any substitution θ there is a
sub-derivation D′ of an assertion violating derivation D which is of the form
← (B e©, . . .)θ +

�← (A s©, . . .)θθ′l+1 · · · θ′k s.t. (θθ′l+1 · · · θ′k)|A �∈ γ(λProp). D′ dif-
fers from the appropriate part of D only in computed substitutions. We assume
the same clauses are selected in corresponding steps. By replacing the input
substitution θ0 · · · θl by a universally quantified substitution θ we try to deter-
mine whether the source of violating the assertion lies between derivation states
Gl and Gk or it is instead propagated from states preceding Gl along with the
substitution θ0 · · · θl. Note that the initial state G0 always contributes to the
symptom. This however is not useful for locating bugs. We define a binding er-
ror as a derivation state (and the corresponding program point) for which the
sub-derivation D′ has the shortest possible length. A binding error indicates a
program point where a variable binding takes place which eventually leads to
the symptom. Note that the actual symptom might be due to some other (non-
binding) error which we are not able to detect. Nonetheless, we provide a strong
indication that the actual error should be searched between the binding error
and the symptom.

Our objective in this paper is to locate binding errors statically. The starting
point of the error diagnosis process is compile-time assertion checking based
on the output of the abstract interpretation framework. Interestingly, although
abstract interpretation in general provides only safe approximations of the prop-
erties, in practice it is often possible to definitely prove or disprove an assertion.
The latter case occurs when we have λa �λProp = ⊥. In those cases we say that
λa is incompatible with the expected property λProp (we will use this notion later
in our diagnosis algorithm) and we have a definite error. However in some cases
the system will not be able to prove or disprove a given assertion (λa �� λProp

and λa �λProp �= ⊥). In this case the system allows the user to choose (via flags)
whether this should be considered an error, a warning, or be ignored. Our prac-
tical experience (and we understand it is also that of for example the ASTREE
developers [8]) is that these cases are often actual symptoms, even if sometimes
they are not and the “false alarm” is simply due to loss of precision in the anal-
ysis. Herein we will consider such cases indeed as symptoms, and start diagnosis
for them, and will accept that in some cases no real error will be responsible for
them, in which case we will guarantee that the diagnosis procedure will never lo-
cate such a non-existing error and will simply report that no error could be found.
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5 Traversing Abstract and–or Graphs

The core of our binding error searching procedure consists of traversing (parts
of) an abstract and-or graph and performing abstract operations, resulting in
abstract substitutions, in a similar way that they are performed during analysis.
Therefore, we will need a notion of traversing an abstract and-or graph, and, at
the same time, replacing existing abstract substitutions with the newly generated
ones.

In the following, an abstract and-or graph R with all substitutions replaced
by λ� will be denoted by R�.

Definition 1 (Forward traversal of an abstract and-or graph R. Defin-
tion of transition ⇒R)

Let ⇒R be a transition over nodes of an abstract and-or graph R:
(Entry) 〈λ′j−1, B

′
j , λ
′
j〉OR ⇒R 〈λc, H, λs〉AND if H ∈ children(B′j)

λadd := Aunif(B′j , H, λ′j−1)
λc := Aproj(λadd, vars(H))

(Enter Body) 〈λc, H, λs〉AND ⇒R 〈λ0, B1, λ1〉OR if B1 ∈ children(H)
λ0 := Aextend(λc, vars(H ← B1, . . . , Bn))

(Move Right) 〈λi−1, Bi, λi〉OR ⇒R 〈λi, Bi+1, λi+1〉OR if ∃H ′, {Bi, Bi+1} ⊆
children(H ′)

(Exit Body) 〈λn−1, Bn, λn〉OR ⇒R 〈λc, H, λs〉AND, if Bn ∈ children(B) and
|children(B)| = n (i.e., Bn is the rightmost child of H)
λs := Aproj(λn, vars(H))

(Exit) 4 〈λc, H, λs〉AND ⇒R 〈λ′j−1, B
′
j , λ
′
j〉OR, if H ∈ children(B′j)

λadd := Aunif(H, B′j , λs)
λext := Aextend(λadd, vars(H ′ ← B′1, . . . , B

′
n′))

λ′j := Aconj(λc, λext) �

We will omit the subscript R in ⇒R if it is clear from the context. We extend the
⇒R relation to a traversal over a finite sequence of nodes s = [s1, . . . , sn], which
will be written as s⇒R, and defined as follows: s1

s⇒R sn iff ∀1≤i<n.si ⇒R si+1,
The “:” operator will denote concatenation of node sequences. For a given s, s�

will denote a sequence of nodes identical to s but with all substitutions replaced
by λ�.

The s⇒ relation is a basis for our binding error searching algorithm. Note
that s⇒ mimics the basic operations performed by abstract interpretation, and
therefore safely approximates the concrete semantics. In the following an abstract
and–or graph is called fresh if it has been adorned directly by the abstract
interpretation process, i.e., no node has been modified by s⇒ afterward.

Lemma 1. Let R be a fresh abstract and-or graph, resulting from analyzing a
program P . Assume an or-node N = 〈λi, A, λi+1〉OR in R. Assume also a sub-
derivation D = ← (A, . . .)θ +

� ← (B, . . .)θθ′ which occurs when executing P .

4 This operation differs from the corresponding one used in constructing the whole
graph (cf. [3,20,15]), as we propagate the success substitution from one clause only.
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(i) If θ|A ∈ γ(λi) then there is a sequence of nodes s s.t. N
s⇒ 〈λ′j , B, λ′j+1〉OR

and θθ′|B ∈ γ(λ′j).
(ii) Moreover, there is a corresponding or-node N∗ = 〈λ�, A, 〉OR and a se-

quence of nodes s� in R� s.t. N∗ s�
⇒ 〈λ∗j , B, 〉OR and θθ′|B ∈ γ(λ∗j ). (Obvi-

ously, we have λ′j � λ∗j .)

We say that s and s� approximate a sub-derivation D.

Corollary 1. Take the assumptions of Lemma 1. Part (ii) holds for all θ.

Since s⇒ performs the same sequence of abstract operations as the entire abstract
interpretation process but limited to one specific path in the abstract and-or
graph, it is evident that every step of s⇒ generates abstract substitutions that
are not more general than those produced by the static analyzer. In other words,
s⇒ never loses precision with respect to the full analysis process.

Now we justify applying s�
⇒ to locate binding errors.

Proposition 1. Let . . . , Bi a© Bi+1, . . . be a fragment of a clause body in the
program P where λProp is an expected property at point a©. Let R denote a
(fresh) abstract and-or graph obtained by the static analysis of P . Assume also
that there exists in R� a sequence of nodes s� and an or-node with atom B′,

s.t. 〈λ�, B′, λ�〉OR s�
⇒ 〈λ∗i , Bi+1, 〉OR

If λ∗i � λProp = ⊥, and if there exists a sub-derivation D reaching a© and
approximated by s� then D contains a symptom at a©. Moreover a derivation
state with B′ as the leftmost atom and with the corresponding substitution is a
binding error related to the symptom.

Proof: Follows from Corollary 1. �

Notice that even though the s⇒ relation approximates the concrete semantics it
is finer grained in the sense that s⇒ distinguishes steps taken as one in an SLD
derivation. The steps are selecting atoms in a resolvent, entering and exiting
clauses. In fact, a starting node of a s⇒ traversal does not have to be an or-
node, it can be an and-node as well. This gives us an opportunity to locate some
errors more precisely than would be captured by the SLD resolution semantics.

6 An Example

In this section we explain informally, in terms of an example, how the s⇒ transi-
tion is used to locate binding errors. The general idea is to traverse the abstract
and–or graph starting from the symptom, and moving against the direction of
execution, in DFS fashion. This makes it feasible to examine only those nodes
which are involved in the (abstract) execution prior the symptom, and therefore
only those which may potentially contain an error.

To illustrate the algorithm let us consider the following slowsort example, de-
picted in Figure 2. slowsort is a program that is meant to sort a list of numbers
by first generating a permutation of the input list and then checking whether
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the generated permutation is a sorted list. The predicate perm/2 generates per-
mutations by removing non-deterministically an element from the list (predicate
del/3) and then calling itself recursively for the rest of the list. The test that
checks if the list is sorted is performed by sorted/2. This code can be aug-
mented with an entry declaration: :- entry slowsort(A,B) : list(A,num).
which declares an intended initial call pattern to the top-level/exported predicate
(cf. [21]). The entry declaration is used by the static analyzer as the starting
point of the (top-down) analysis graph.

slowsort(L,S) :- perm(L,S), sorted(S).

perm([],[]).
% There is a bug here:
perm(L,[H,L1]) :- del(L,H,L2), perm(L2,L1).

del([H|L],H,L).
del([H|L],E,[H|L1]) :- del(L,E,L1).

sorted([]).
sorted([_]).
sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

Fig. 2. An erroneous slowsort program

Observe that the head of
the second clause of perm/2
contains a binding error:
the head should look like:
perm(L,[H|L1]). The error
results in a run-time excep-
tion (“illegal arithmetic ex-
pression”) raised when the
computation reaches the li-
brary predicate =</2 in the
third clause of sorted/1,
since the second element Y
of the input list is a list
itself, rather than a num-
ber, as one would expect.
In the Ciao system libraries
(which subsume the classical notion of “built-ins”) predicates are equipped with
assertions specifying their expected call and success patterns. Therefore, the ex-
pected value of Y is known to the diagnoser (thanks to the modular nature of
analysis) without any prior effort from the user. In fact, static assertion check-
ing [22] is able to detect that the value of Y is of type rt21, defined by the
following regular term grammar rules (see, e.g., [9]):

rt21 → [ ]
rt21 → [num, rt21].

with the meaning that a term of type rt21 is either an empty list or a two-
element list, with the first element being a number and the second one being a
term of type rt21. Therefore the value of Y is not compatible with the expected
type arithexpr (arithmetic expression) which appears in the assertion for =</2.
Let this point be the starting symptom for our diagnosis session.

A part of the abstract and-or graph R generated by the analyzer is depicted
in Figure 3. Abstract substitutions have been left out for the sake of readability.
The root or-node 1© corresponds to the entry declaration. The starting point
of the diagnosis is the illegal call to =</2 in the clause:

sorted([X,Y|L]):- X =< Y, sorted([Y|L]).

which corresponds to node 12©. Observe that node 13© has no descendants, as
the call to X =< Y never succeeds, and computations never reach the goal
sorted([Y|L]). During the diagnosis process we build a sequence of visited
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sorted([Y|L])

sorted([])

Fig. 3. A part of the abstract and-or graph R, an output of the analysis of the slowsort
example from Figure 2

nodes, moving backwards, as discussed in Section 5. We will traverse the graph
R�, starting with the and-node 9©, as 12© is its child. Let the constructed se-
quence of nodes be s. Initially s contains one node:

N9 = 〈{X/�, Y/�, L/�}, sorted([X, Y|L]), {X/�, Y/�, L/�}〉AND

We keep the indexing of N ’s consistent with Figure 3. At this point we have
reached the head of the clause, i.e., we have to find a calling atom, which is a
parent or-node 4©. We add the node

N4 = 〈{S/�}, sorted(S), {S/�}〉OR

to the sequence s. We need to determine if entering the clause, i.e., perform-
ing (abstract) unification when matching a calling atom and the head of clause,
could cause the error symptom. To achieve this we run abstract operations cor-
responding to entering the clause from node 4© to 9© (i.e., we do the traversal
N4

s⇒ N9 with application of rule Entry of Definition 1). As a result, variable Y
is given value � in 12©. This is not incompatible with arithexpr and we cannot
conclude that the node 4© supports our symptom. Thus we keep on traversing
the graph towards and-node 2©, and the left sibling of 4©, i.e., to or-node 3©:

N3 = 〈{L/�, S/�}, perm(L, S), {L/�, S/�}〉OR

We now have s = [N3, N4, N9], which corresponds to succeeding in perm(L,S).
Nothing is assumed at this point about the values of L and S. The diagnoser
checks whether erroneous bindings could be propagated through these vari-
ables from one of the clauses defining perm/2. In order to achieve this a child
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(and-node) of 3© is selected. Assume that 6© has been taken first. Now we have
to check if the (abstract) unification performed when exiting the clause

perm(L,[H,L1]) :- del(L,H,L2), perm(L2,L1).

can cause the symptom. Traversal N6
s⇒ N9 is performed, using the appro-

priate rules Exit, Move Right, Entry (see Definition 1). As a result, vari-
able S obtains a type of two-element list composed of �. Thus, Y is given
value � again and nothing can be concluded yet about an error causing the
symptom. After performing two more steps we reach 6© again and we have
s = [N ′6, N11, N6, N3, N2, N4, N9], where each node contains related atoms with
appropriate top-most abstract substitutions (we rename apart two copies of 6©).
After performing traversal N ′6

s⇒ N9 the variable Y is abstractly bound to the
type t defined as: t → [�, �]. This is now incompatible with the expected prop-
erty arithexpr and the diagnoser signals that 6© supports the symptom. More
precisely, the point of exiting the second clause of perm/2 after recursive call from
the same clause causes the symptom. In other words, we are sure that whatever
execution follows the nodes of s it will cause a run-time error at X =< Y.

Note that the diagnoser performs non-deterministic choices in or-nodes. In
fact, our system returns a second answer as a potential source of the symptom:
the point exiting the first clause of perm/2 after the recursive call. The corre-
sponding sequence of nodes is s = [N5, N11, N6, N3, N2, N4, N9]. This program
point appears counterintuitive, and obviously is not an actual error. Neverthe-
less, observe that writing for example perm([],2) instead of perm([],[])would
make the goal ?- slowsort([1],L) succeed without the run-time error.

7 Binding Error Searching Algorithm

In this section we present the actual algorithm for finding binding errors. The
algorithm makes use of the s⇒ transition introduced in Section 5, as illustrated
in the example of the previous section.

The diagnosis procedure is shown in Algorithm 1. The algorithm takes as
input an abstract and–or graph R, a clause containing a symptom at the
given program point, and an expected property at that point. The set E of
program points supporting the symptom is returned as output. The algorithm
consists of the main module (lines 1-3) and two mutually recursive procedures
search AND(A, i, s) and search OR(A, s), which implement the traversal of the
graph against the control flow.

The search OR(O, s) procedure takes the atom O in the or–node, and the
sequence s of nodes visited so far, i.e., the nodes following O in the control-flow
order. Then, for every child (an and–node) A of O, A is concatenated with
s and the algorithm verifies whether the transition ⇒ over the new sequence
of nodes leads to a violation of the expected property at the program point
of the initial symptom (line 25). Note that we collect nodes from R� rather
than from R. This allows us to differentiate abstract substitutions generated
in the analysis phase from those generated during the error location step. I.e.,
we are able to identify if the problem causing the assertion violation is within
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Algorithm 1. The diagnosis algorithm.
Input:
– analysis output in the form of an abstract and–or graph R,
– a clause Cs = Hs ← Bs

1 , . . . , Bs
ns

,
– an index (program point) 1 ≤ is ≤ ns,
– an expected abstract substitution λProp at the program point between Bs

is
and

Bs
is+1, (or after Bs

ns
if is = ns).

Output: a set of binding errors E .

1: E := ∅, Visited := ∅
2: let A := 〈λ�, Hsσ, λ�〉AND be an and-node in R� corresponding to clause Cs,

where σ is a renaming substitution
3: search AND(A, is, [A])

4: procedure search AND(A, i, s) {A: and–node, i: index, s: sequence of nodes}
5: if i = 0 then
6: let O be an or–node s.t. A ∈ children(O) in R�

7: s′ := [O] : s

8: if O
s′
⇒ 〈λ, Bs

is+1, λ
�〉AND and λ 	 λProp = ⊥ then

9: E := E ∪ {entry(O, A)}
10: else
11: let A′ be an and–node in R� s.t. O is the j-th child of A′

12: if (O, A′) �∈ Visited then
13: Visited := Visited ∪ {(O, A′)}
14: search AND(A′, j − 1, [A′] : s′)
15: end if
16: end if
17: else if (A, O′) �∈ Visited then
18: Visited := Visited ∪ {(A, O′)}
19: let O′ be the i-th child of A
20: search OR(O′, [O′] : s)
21: end if

22: procedure search OR(O, s) {O: or–node, s: sequence of nodes}
23: for all A ∈ children(O) in R� do
24: s′ := [A] : s

25: if A
s′
⇒ 〈λ, Bs

is+1, λ
�〉AND and λ 	 λProp = ⊥ then

26: E := E ∪ {exit(A,O)}
27: else
28: n := |children(A)|
29: search AND(A, n, s′)
30: end if
31: end for

the current sequence of visited nodes (ideally in the first one in the sequence).
If we take a node from R the variable bindings that cause the problem might
have been placed in the current node or they may have been propagated from
the preceding (in control-flow sense) nodes through abstract substitutions. By
using R� we “isolate” abstract values of the current nodes from the ones in the
preceding nodes. If A supports the symptom the term exit(A, O) is added to E
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to indicate that the critical binding occurs when the (abstract) execution leaves
a clause with head A after completing call O. Otherwise, the search AND(A, n, s)
procedure is called which performs similar actions in an and–node.

The search AND(A, i, s) procedure performs one step of backwards traversal of
an instance of a clause with head A. The body atom in question is determined by
the index i. If the clause body has already been traversed (i = 0, line 5), the or–
node O corresponding the call to A is found and the algorithm checks whether
entering the clause from O causes the symptom (line 8). If true, then, similarly
to the or–node case, the term entry(O, A) is recorded in E (line 9). Otherwise,
the search continues in the upper and–node A′ (A′ is a head and O a body atom
of the same clause) with the index value j − 1 pointing to the atom just before
O in the clause body (line 14). If i > 0 when calling search AND(A, i, s), then
the or–node corresponding to the i-th atom in the body is inspected. Note that
when search AND is called from inside search OR (line 29) the second argument
is set to n, i.e., to the length of the corresponding clause body. The reason for
this is that we want to examine the last atom in the body first, in order to find
an atom supporting the symptom located as close as possible to the symptom.

As the and–or graph may contain cycles, the algorithm keeps track of visited
nodes using for that purpose the global variable Visited. Observe, however, that
and–nodes can be visited multiple times during traversal of the graph, and
therefore we need to store not only a node but also a node visited in the previous
step of the current traversal. That is why the elements of Visited are pairs of nodes
rather than individual nodes.

8 Conclusions and Future Work

We have implemented a prototype of the diagnoser in Ciao [4] and integrated it
into the Ciao Preprocessor, CiaoPP [14], whose abstract interpretation engine,
PLAI [20,15]. The diagnoser makes use of abstract operations of PLAI and its
data structures. The diagnoser inherits the parametric nature of the PLAI sys-
tem, which allows the addition of arbitrary abstract domains as plugins. As a
consequence of this the symptoms for which errors can be localized range over
the same properties that can be inferred with the different domains available
in the system: types/shapes, instantiation modes, pointer aliasing and structure
sharing, determinacy, non-failure, etc.

The efficiency of the diagnosis procedure seems to be satisfactory, at least for
the relatively small-sized programs that we have tested to date. For the slowsort
example from Section 6, for example, the diagnosis time, including searching
for all the errors, was 9.33 ms., compared to 34.66 ms. taken by the analysis.
For standard quicksort the diagnosis took 205.97 ms. and analysis 92.98 ms. For
another version of quicksort, i.e., with a different error, we measured 3457.47 ms.
for diagnosis and 333.94 ms for analysis. Diagnosing the same bug starting from
two other, different symptoms took 2474.62 ms. and 1185.82 ms. respectively.5

Further benchmarking of the system is planned as future work.
5 The tests where run on CPU Pentium 4, 1.8GHz, and 1 GB RAM.
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Inevitably, as shown in Section 6, our system may identify several points as
sources of an error symptom. Not all of them are actual errors in the sense of
the user’s expectations, but they are all reasons for the symptom. Also, due
to the approximate (but safe) nature of reasoning in abstract interpretation
and consequently in our algorithm, we are not guaranteed to find sources for
every symptom. In particular, this happens when the abstract value inferred
by the analyzer at the point of the symptom is �. This problem can often
be overcome by adding more assertions to the program (something which may
encourage programmers to write more assertions). In this case the assertions
holding expected properties can guide the diagnosis process.

In principle, a similar effect to that achieved by our error location method
could be achieved by means of backward analysis [17], and this was indeed the
first solution that we considered. However, backwards analysis requires the defi-
nition of new and relatively complex operations on the abstract domain. In addi-
tion, the abstract domains used must be condensing, which is a property satisfied
only by a reduced number of the domains used in practice. Our approach allows
using an arbitrary abstract domain, and simplifies the implementation since it
reuses the standard operations which are already defined in the system for each
domain. We argue that this is a practical advantage, worth taking perhaps some
performance penalty.
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X.: The ASTRÉE Analyser. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp.
21–30. Springer, Heidelberg (2005)

9. Dart, P.W., Zobel, J.: A Regular Type Language for Logic Programs. In: Types in
Logic Programming, pp. 157–187. MIT Press, Cambridge (1992)
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Abstract. We present a static analysis that infers both upper and lower
bounds on the usage that a logic program makes of a set of user-definable
resources. The inferred bounds will in general be functions of input data
sizes. A resource in our approach is a quite general, user-defined notion
which associates a basic cost function with elementary operations. The
analysis then derives the related (upper- and lower-bound) resource us-
age functions for all predicates in the program. We also present an asser-
tion language which is used to define both such resources and resource-
related properties that the system can then check based on the results
of the analysis. We have performed some preliminary experiments with
some concrete resources such as execution steps, bytes sent or received
by an application, number of files left open, number of accesses to a
database, number of calls to a procedure, number of asserts/retracts,
etc. Applications of our analysis include resource consumption verifi-
cation and debugging (including for mobile code), resource control in
parallel/distributed computing, and resource-oriented specialization.

1 Introduction

It is generally recognized that inferring information about the costs of computa-
tions can be useful for a variety of applications. These costs are usually related
to execution steps and, sometimes, time or memory. We propose an analyzer
which allows automatically inferring both upper and lower bounds on the us-
age that a logic program makes of user-definable resources. Examples of such
user-definable resources are bits sent or received by an application over a socket,
number of calls to a procedure, number of files left open, number of accesses to a
database, number of licenses consumed, monetary units spent, disk space used,
etc., as well as the more traditional execution steps, execution time, or mem-
ory. We expect the inference of this kind of information to be instrumental in a
variety of applications, such as resource usage verification and debugging, certi-
fication of resource consumption in mobile code, resource/granularity control in
parallel/distributed computing, or resource-oriented specialization.

In our approach a resource is a user-defined notion which associates a basic
cost function with elementary operations in the base language and/or to some
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predicates in libraries. In this sense, each resource is essentially a user-defined
counter. The user gives a name (such as, e.g., bits received) to the counter and
then defines via assertions how each elementary operation in the program (e.g.,
unifications, calls to builtins, external calls, etc.) increments or decrements that
counter. The use of resources obviously depends in practice on the sizes or values
of certain inputs to programs or predicates. Thus, in the assertions describing
elementary operations the counters may be incremented or decremented not
only by constants but also by amounts that are functions of input data sizes or
values. Correspondingly, the objective of our method is to statically derive from
these elementary assertions and the program text functions that yield upper and
lower bounds on the amount of those resources that each of the predicates in the
program (and the program as a whole) will consume or provide. The input to
these functions will also be the sizes or value ranges of the topmost input data
to the program or predicate being analyzed.

As mentioned previously, most previous work is specific to the analysis of
execution steps and, sometimes, time or memory. The ACE system [16] can auto-
matically extract upper bounds on execution steps for a subset of functional pro-
gramming. The system is based on program transformation. The original program
is transformed into a step-counting version and then into a composition of a cost
bound and a measure function. In [19] another automatic upper-bound analysis
is presented based on an abstract interpretation of a step-counting version. The
analysis measures both execution time and execution steps. However, size mea-
sures cannot automatically be inferred and the experimental section shows few
details about the practicality of the analysis. In [8,7] a semi-automatic analysis
is presented which infers upper-bounds on the number of execution steps. These
bounds are functions on the sizes or value ranges of input data. This seminal work
applies to a large class of logic programs and presents techniques in order to deal
with the generation of multiple solutions via backtracking. The authors also show
how other specific analyses could be developed, such as for, e.g., time or memory.
This approach was later fully automated and extended to inferring upper- and
lower-bounds on the number of execution steps (which is non-trivial because of
the possibility of failure) in [9,12]. Our method builds on this work but general-
izes it in order to deal with a much more general class of user-defined resources,
allowing thus the coverage of an unlimited number of analyses within a single im-
plementation. In [11] a method is presented for automatically extracting cost re-
currences from first-order DML programs. The main feature is the use of depen-
dent types to describe a size measure that abstracts from data to data size. In [17],
and inspired by [3] and [15], a complexity analysis is presented for Horn clauses,
also fully automating the necessary calculations. In [13] a method is presented for
modeling problems such as memory management, lock primitive usage, etc., and
a type-based method is proposed as solution to the inference problem. In [21] a
cost model is presented for inferring cost equations for recursive, polymorphic,
and higher-order functional programs. While it is claimed that the approach can
be modified in order to infer a reduced set of resources such as execution time, exe-
cution steps, or memory, no details are given. Worst case execution time (WCET)
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estimation has been studied for imperative languages and for different application
domains (see, e.g., [20,4,10] and its references). However these and related meth-
ods again concentrate only on execution time. Also, they do not infer cost func-
tions of input data sizes but rather absolute maximum execution times, and they
generally require the manual annotation of loop iteration bounds. In [5] a method
is presented for reserving resources before their actual use. However, the program-
mer (or program optimizer) needs to annotate the program with “acquire” and
“consume” primitives, as well as provide loop invariants and function pre- and
post-conditions. Interesting type-based related work has also been performed in
the GRAIL system [1], also oriented towards resource analysis, but it has concen-
trated mainly on ensuring memory bounds.

In comparison with previous work our approach allows dealing with a class of
resources which is open, in the ample sense that such resources are in fact defined
by programmers using an assertion language, which we also consider itself an
important contribution of our work. Another important contribution of our work
(because its impact in the scalability and automation of the analysis) is that our
approach allows defining the resource usage of external predicates, which can
be used for modular composition. In addition, assertions also allow describing
by hand the usage of any predicate for which the automatic analysis infers a
value that is not accurate enough, and this can be used to prevent inaccuracies
in the automatic inference from propagating. In the following (Sect. 2) we first
present the assertion language proposed. Sect. 3 then provides an overview of
the approach, Sect. 4 shows how size relationships among program variables
are determined, and Sect. 5 and 6 describe how the resource usage functions
are inferred. We have implemented the proposed analysis and applied it to a
series of example programs. The results are presented in Sect. 7. Finally, Sect. 8
summarizes our conclusions.

2 The Resource Assertion Language

We start by describing the assertion schema. This language is used for describ-
ing resources and providing other input to the resource analysis, and is also
the language in which the resource analysis produces its output. This assertion
language is used additionally to state resource-related specifications (which can
then be proved or disproved based on the results of analysis following the scheme
of [12], which allows finding bugs, verifying the program, etc.).

The rules for the assertion language grammar are listed in Fig. 1. In this
grammar V ar corresponds to variables written in the syntax for variables of
the underlying logic programming language (i.e., normally non-empty strings of
characters which start with a capital letter or underscore). Similarly, Num is any
valid number and Pred name any valid name for a predicate in the underlying
programming language (normally non-empty strings of characters which start
with a lower-case letter or are quoted). State prop corresponds to other state
properties (such as modes and types), and Comp prop stands for any other valid
computational property (see [12] and its references).
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〈program assrt〉 ::= :- 〈status flag〉 〈pred assrt〉.
| :- head cost(〈approx〉,Res name,ΔH).
| :- literal cost(〈approx〉,Res name,ΔL).

〈status flag〉 ::= trust | check | true | ε
〈pred assrt〉 ::= pred 〈pred desc〉 〈pre cond〉 〈post cond〉 〈comp cond〉.
〈pred desc〉 ::= Pred name | Pred name(〈args〉)
〈args〉 ::= Var | Var, 〈args〉
〈pre cond〉 ::= : 〈state props〉 | ε
〈post cond〉 ::= => 〈state props〉 | ε
〈comp cond〉 ::= + 〈comp props〉 | ε
〈state prop〉 ::= size(Var,〈approx〉,〈sz metric〉,〈arith expr〉) | State prop
〈state props〉 ::= 〈state prop〉 | 〈state prop〉, 〈state props〉
〈comp prop〉 ::= size metric(Var,〈sz metric〉) | 〈cost〉 | Comp prop
〈comp props〉 ::= 〈comp prop〉 | 〈comp prop〉, 〈comp props〉
〈cost〉 ::= cost(〈approx〉,Res name,〈arith expr〉)
〈approx〉 ::= ub | lb | oub | olb
〈sz metric〉 ::= value | length | size | void
〈arith expr〉 ::= − 〈arith expr〉 | 〈arith expr〉 ! | 〈quantifier〉 〈arith expr〉

| 〈arith expr〉 〈bin op〉 〈arith expr〉
| 〈arith expr〉〈arith expr〉 | logNum 〈arith expr〉
| Num | 〈sz metric〉(Var)

〈bin op〉 ::= + | − | ∗ | /
〈quantifier〉 ::=

∑
|
∏

Fig. 1. Syntax of the Resource Assertion Language

Predicates can be annotated with zero or more pred assertions, which state
properties of the execution states when the predicate is called (pre cond), proper-
ties of the execution states when the predicate terminates execution (post cond),
or properties of the whole computation of the predicate, rather than the input-
output behavior (comp cond, which herein will be used only for resource-related
properties). For brevity, the 〈state props〉 fields can also be written using “star
notation” (see the examples). In addition, there may be a set of global head cost
and literal cost declarations (one for each resource and approximation direc-
tion). The Res name fields determine which resource the assertion refers to.
These Res names are user-provided identifiers which give a name to each par-
ticular resource that needs to be tracked. Resources do not need to be declared
in any other way –the set of resources that the system is aware of is simply
the set of such names that appear in assertions which are in the scope. The
〈approx〉 fields state whether 〈arith expr〉 is providing an upper bound or a
lower bound (with oub meaning it is a “big O” expression, i.e., with only the
order information, and olb meaning it is an Ω asymptotic lower bound).

The first and most fundamental use of assertions in our context is to describe
how the execution of some predicates increments or decrements the usage of the
resources (counters) defined in the program. The purpose of analysis is then to in-
fer the resource usage of all predicates in the program. The head cost(〈approx〉,
Res name, ΔH) declarations are used to describe how predicates in general update
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the value for those resources that are applicable only to predicate heads (such
as counting the number of arguments passed or total execution steps –see Sec-
tion 5). The definition of ΔH : cl head → arith expr is provided by means a
user-defined (or imported) predicate, written in the source language, and which
will be called by the analyzer when the clause head is analyzed. This code gets
loaded into the compiler in a similar way to, e.g., macro expansion code. The lit-
eral cost(〈approx〉, Res name, ΔL) declarations describe how predicate bodies
update the value of certain resources which are applicable only to body literals
(such as, for example, number of unifications). In this case, ΔL : body lit →
arith expr is also user- (or library-)provided code which will be executed when the
body literals of different predicates are analyzed. The cost(〈approx〉, Res name,
〈arith expr〉) comp-type properties are included in pred assertions and used to
provide the actual resource usage functions for each builtin or external (e.g., de-
fined in another language) predicate used in the program. Such assertions have
trust status (meaning that the analysis will assume this value [12]). As mentioned
previously, the aim of the analysis is to derive functions that describe the resource
usage (as well as argument size relations) for the rest of the predicates in the pro-
gram. Note however that it is also possible to provide pred assertions for some
of those predicates and this can also be used to guide the analysis. In particu-
lar, the analysis will compute the most precise expression between the resource
usage function provided by the assertion (〈cost〉) and the resource usage function
inferred by analysis. Additionally, size metric (size metric(Var,〈sz metric〉)) in-
formation can be provided by users if needed (but note that in practice size metrics
can often be derived automatically from the inferred types).

Assertions can also be used, via the pre cond and post cond fields, to declare
relationships between the data sizes of the inputs and outputs of predicates,
which are needed by our analysis, as will be described later. These assertions are
also used to label predicate arguments as input or output, as well as to provide
types or size (size(Var,〈approx〉,〈sz metric〉,〈arith expr〉)) information. In the
same way as with the 〈cost〉 properties, for user-defined predicates these other
assertions can be provided by the user or inferred by analysis. Again, analysis
will compute the most precise of the two.

Example 1. The following example shows how a program can be annotated using
our assertion language in order to perform resource analysis. Consider a client
application in Fig 2 that sends a data buffer through a socket1 and receives
another (possibly transformed) data buffer. Assume that we would like to obtain
an upper bound on the number of bits received by the application –a resource
that we will call bits received.

As we will see, the approach needs to know for each argument in the program
the metric and whether it is input or output in order to perform properly the size
and resource usage analyses described in Sect. 4 and 5. Input/output and metric
information can be required by the language (typed language), given by the user
(via assertions), or, as in our implementation, inferred automatically via analysis.
1 Note that the types of the socket operations must be given to the analysis by other

analyses or by user-provided assertions.
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:- pred main(Opts, IBuf, OBuf)

: list(gnd) * list(byte) * var.

main([Host,Port],IBuf,OBuf) :-

connect_socket(Host,Port,Stream),

exchange_buffer(IBuf,Stream,OBuf),

close(Stream).

exchange_buffer([],_,[]).

exchange_buffer([B|Bs],Id,[B0|Bs0]) :-

exchange_byte(B,Id,B0),

exchange_buffer(Bs,Id,Bs0).

:- trust pred

connect_socket(Host,Port,Stream)

: atm * num * var

=> atm * num * atm

+ cost(ub,bits_received,0).

:- trust pred close(Stream)

: atm => atm

+ cost(ub,bits_received,0).

:- trust pred exchange_byte(B,Id,B0)

: byte * num * var

=> byte * num *

{byte(B0), size(B0,ub,bytes,1)}

+ cost(ub,bits_received,8).

:- head_cost(ub,bits_received,

head_bits_received).

head_bits_received(_,0).

:- literal_cost(ub,bits_received,

literal_bits_received).

literal_bits_received(_,0).

Fig. 2. A simple client application

3 Overview of the Approach

Our basic approach is as follows. Given a predicate call p, let Φ(p, r, n) denote
the units of resource r consumed or produced during the computation of p for an
input of size n. An expression RUpred(p,ap,r,n) is determined (at compile-time)
that approximates Φ(p, r, n) with approximation ap. Typical size metrics are the
actual value of a number, the length of a list or array, the size (number of nodes
and fields) of a data structure, etc. We will refer to such RUpred(p,ap,r,n) ex-
pressions as resource usage bound functions. Certain program information (such
as, for example, input/output modes and size metrics for predicate arguments)
is first automatically inferred by other (abstract interpretation-based) analyzers
and then provided as input to the size and resource analysis (the techniques
involved in inferring this information are beyond the scope of this paper —see,
e.g., [12] and its references for some examples). Based on this information, our
analysis first finds bounds on the size of input arguments to the calls in the body
of the predicate being analyzed, relative to the sizes of the input arguments to
this predicate using the inferred metrics. The size of an output argument in
a predicate call depends in general on the size of the input arguments in that
call. For this reason, for each output argument we infer an expression which
yields its size as a function of the input data sizes. To this end, and using the
input-output argument information, data dependency graphs are used to set up
difference equations whose solution yields size relationships between input and
output arguments of predicate calls. This information regarding argument sizes
is then used to set up another set of difference equations whose solution provides
bound functions on resource usage. Both the size and resource usage difference
equations must be solved by a difference equation solver. Although the operation
of such solvers is beyond the scope of the paper our implementation does provide
a table-based solver which covers a reasonable set of difference equations such
as first-order and higher-order linear difference equations in one variable with
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constant and polynomial coefficients,2 divide and conquer difference equations,
etc. In addition, the system allows the use of external solvers (such as, e.g. [2],
Mathematica, Matlab, etc.). Note also that, since we are computing upper/lower
bounds, it suffices to compute upper/lower bounds on the solution of a set of
difference equations, rather than an exact solution. This allows obtaining an
approximate closed form when the exact solution is not possible.

4 Size Analysis

We will give the intuition behind the data dependency-based method for inferring
bounds on the sizes of output arguments in the head of a predicate as a function
of the sizes of input arguments to the predicate. Besides this, as a result of the
size analysis, we have bounds on the size of each input argument to body literals
in a clause as a function of the size of the input arguments to the head of that
clause. The size of the input arguments to body literals will be used later to infer
functions which give bounds on the resource usage of body literals in terms of
the sizes of the input arguments to the head. We adopt the approach of [8,7] for
the inference of upper bounds on argument sizes and [9] for lower bounds. For
the sake of brevity, we will only consider the inference of upper bounds in this
paper, and refer the reader to [9] for the inference of lower bounds.

Various metrics are used for the “size” of an argument (e.g., value, length,
size,3...). For the sake of brevity, we will only consider the length metric in this
paper, and refer the reader to [8,7,9] for other metrics.

We define the size(〈sz metric〉, t) operation which returns the size of a term
t under the metric 〈sz metric〉:

size(length, t) =

⎧
⎨

⎩

0 if t = [ ] (the empty list)
1 + size(length, T ) if t = [H |T ]

⊥ otherwise.

Thus, size(length, [X, Y ]) = 2, and size(length, [X |Y ]) = ⊥.
We also define the diff(〈sz metric〉, t1, t2) operation, which returns (an upper

bound on) the size difference between two terms t1 and t2 under the metric
〈sz metric〉.

diff(length, t1, t2) =

⎧
⎨

⎩

0 if t1 ≡ t2
diff(length, t, t2) − 1 if t1 = [ |t] for some term t

⊥ otherwise.

Thus, diff(length, [a, b|T ], T ) = −2.
A directed acyclic graph called argument dependency graph is used to rep-

resent the data dependency between argument positions in a clause body (and
between them and those in the clause head). Each node in the graph denotes an
argument position. There is an edge from a node n1 to a node n2 if the variable

2 Note that it is always possible to reduce a system of linear difference equations to a
single linear difference equation in one variable.

3 Metric void in an argument means that analysis does not need to infer its size.
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bindings generated by n1 are used to construct the term occurring at n2. The
node n1 is said to be a predecessor of the node n2, and n2 a successor of n1.

Using the size and diff functions and the argument dependency graph we
can set up size relations for expressing the size of each argument position in terms
of the sizes of its predecessors. Let sz(a) denote the size of the term occurring
at an argument position a, and @a the term occurring at an argument position
a. For the sake of simplicity, we will omit the argument 〈sz metric〉 in the size
and diff functions in the rest of the paper.

– Output arguments. Let l1, . . . , ln denote the input argument positions of the
literal L, and let Ψ b

p : N n
⊥,∞ �→ N⊥,∞ be a function that represents the size of

the b-th (output) argument position of the predicate p of literal L in terms of
the size of its input positions, where N⊥ denotes the set of natural numbers
augmented with the special symbols ⊥ (denoting “undefined”), and ∞.
Assume that a is an output argument position in a clause. Then the follow-
ing size relation is set up:

sz(a) ≤ Ψa
p(sz(l1), . . . , sz(ln))

If L is recursive, then Ψa
p(sz(l1), . . . , sz(ln)) is a symbolic expression. How-

ever, if L is non-recursive then the function Ψa
p has been recursively com-

puted, and thus we replace Ψa
p(sz(l1), . . . , sz(ln)) by the (explicit) expression

resulting from the application of the function Ψa
p to sz(l1), . . . , sz(ln).

– Input arguments. Assume that a is an input argument position in a body
literal. Let predecessors(a) be the set of predecessors of a in the argument
dependency graph. We have the following possibilities:
1. Compute size(@a). If size(@a) 
= ⊥ then set up the size relation:

sz(a) ≤ size(@a).
2. Otherwise, if ∃r ∈ predecessors(a) such that the size metrics cor-

responding to r and a are the same and d = diff(r, a) 
= ⊥, then
sz(a) ≤ sz(r) + d.

3. Otherwise, if size(@a) can be expanded using the definition of the
size function, then expand size(@a) one step and recursively compute
size(ti) for the appropriate subterms ti of @a. If each of these recursive
size computations have a defined result, then use them to compute the
size relation for size(@a). Otherwise, sz(a) = ⊥.

Size relations can be propagated to transform a size relation corresponding to
an input argument in a body literal or an output argument in the clause head
into a function in terms of the sizes of the input arguments of the head. The
basic idea here is to repeatedly substitute size relations for body literals into size
relations for head arguments. This is the purpose of the normalization algorithm
described in [7]. However, for recursive clauses, we need to solve the symbolic
expression due to recursive literals into an explicit function first.

Example 2. Consider again the program described in Fig. 2. Here and in the
rest of the paper we will denote by pred name the name of a predicate, and
by pred namej

i the i-th argument position in the j-th literal with predicate
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name pred name in the body of a clause. If there is only one body literal with
predicate name pred name in the body of a clause then we omit the superscript
j and write simply pred namei. Let headi be the i-th argument position in the
clause head. To simplify notation, we will represent exchange buffer/3 and
exchange byte/3 with ex buf and ex byt respectively. Consider the recursive
clause of exchange buffer/3. First, the system sets up the size relation for the
input/output arguments of the body literals:

sz(ex byt1) ≤ size(B) = sz(arg(1, head1))
sz(ex byt2) ≤ size(Id) = sz(head2) + diff(Id, Id) = sz(head2)
sz(ex byt3) ≤ Ψ3

ex byt(sz(ex byt1), sz(ex byt2)) = 1
sz(ex buf1) ≤ size(Bs) = sz(head1) + diff([B|Bs], Bs) = sz(head1) − 1
sz(ex buf2) ≤ size(Id) = sz(head2) + diff(Id, Id) = sz(head2)
sz(ex buf3) ≤ Ψ3

ex buf (sz(ex buf1), sz(ex buf2))

Then, system sets up the size relation for the output arguments of the head:

sz(head3) ≤ size([B0|Bs0]) = size(Bs0) + 1 =
sz(ex buf3) + diff(Bs0, Bs0) + 1 = sz(ex buf3) + 1

The normalization algorithm is applied to the previous size relation and gives:

sz(head3) ≤ Ψ3
ex buf (sz(ex buf1), sz(ex buf2)) + 1

≤ Ψ3
ex buf (sz(head1) − 1, sz(head2)) + 1

Thus, the system establishes the difference equation for the output argument
(head3) in the head (since it belongs to a recursive predicate). Then, it obtains
the boundary condition Ψ3

ex buf (0, y) = 0 from the non-recursive clause, and
using it, it obtains a closed form function by calling the difference equation
solver (variables x and y represent sz(head1) and sz(head2) respectively):

Ψ3
ex buf (0, y) = 0

Ψ3
ex buf (x, y) = Ψ3

ex buf (x − 1, y) + 1
⇒ Ψ3

ex buf (x, y) = x

5 Resource Usage Analysis

In order to infer the resource usage functions all predicates in the program
are processed in a single traversal of the call graph in reverse topological order.
Consider such a predicate p defined by clauses C1, ..., Cm. Assume that n is a tuple
such that each element corresponds to the size of an input argument position
to predicate p. Then, the resource usage (expressed in units of resource r with
approximation ap) of a call to p, for an input of size n, can be expressed as:

RUpred(p, ap, r, n) =
⊙

(ap)1≤i≤m{RUclause(Ci , p, ap, r, n)} (1)

where
⊙

(ap) is a function that takes an approximation identifier ap and returns
a function which applies over all RUclause(Ci , p, ap, r, n), for 1 ≤ i ≤ m. For exam-
ple, if ap is the identifier for approximation “upper bound” (ub), then a possible
conservative definition for

⊙
(ap) is the

∑
function. In this case, and since the

number of solutions generated by a predicate that will be demanded is generally
not known in advance, a conservative upper bound on the computational cost of
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a predicate is obtained by assuming that all solutions are needed, and that all
clauses are executed (thus the cost of the predicate is assumed to be the sum of
the costs of all of its clauses). However, it is straightforward to take mutual exclu-
sion into account (information which is inferred by CiaoPP [14,12] and is available
to our analysis) to obtain a more precise estimate of the cost of a predicate, us-
ing the maximum of the costs of mutually exclusive groups of clauses. If ap is the
identifier for approximation “lower bounds” (lb), then

⊙
(ap) is the min function.

Let us see now how to compute the resource usage of clauses. Consider a
clause C of predicate p of the form H :− L1, ..., Lk where Lj, 1 ≤ j ≤ k, is a literal
(either a predicate call, or an external or builtin predicate), and H is the clause
head. Assume that ψj(n) is a tuple with the sizes of all the input arguments to
literal Lj, given as functions of the sizes of the input arguments to the clause
head. Note that these ψj(n) size relations have previously been computed during
size analysis for all input arguments to literals in the bodies of all clauses.

Then, RUclause(C, ap, r, n), the resource usage (expressed in units of resource
r with approximation ap) of clause C of predicate p, is RUclause(C, ap, r, n) =
closed form(RU(p, ap, r, n)). That is, it is expressed as the solved form func-
tion of the following expression (which, in general, for recursive clauses yields a
difference equation):

RU(p, ap, r, n) = δ(ap, r)(head(C)) +
lim(ap,C)∑

j=1
(
∏

l≺j

SolsLl (nl))(β(ap, r)(Lj ) + RUlit(Lj , ap, r, ψj(n))) (2)

where lim(ap, C) is a function that takes an approximation identifier ap and a
clause C and returns the index of a literal in the clause body. For example, if
ap is the identifier for approximation “upper bound” (ub), then lim(ap, C) = k
(the index of the last body literal). If ap is the identifier for approximation
“lower bounds” (lb), then lim(ap, C) is the index for the rightmost body literal
that is guaranteed not to fail. δ(ap, r) is a function that takes an approximation
identifier ap and a resource identifier r and returns a function ΔH : cl head →
arith expr which takes a clause head and returns an arithmetic resource usage
expression < arith expr > as defined in Section 2. Thus, δ(ap, r)(head(C))
represents ΔH(head(C)). On the other hand, β(ap, r) is a function that takes
an approximation identifier ap and a resource identifier r and returns a function
ΔL : body lit → arith expr which takes a body literal and returns an arithmetic
resource usage expression < arith expr > as defined in Section 2. In this case,
β(ap, r)(Lj ) represents ΔL(Lj ). SolsLl is the number of solutions that literal Ll

can generate, where l ≺ j denotes that Ll precedes Lj in the literal dependency
graph for the clause. Section 6 illustrates different definitions of the functions
δ(ap, r) and β(ap, r) in order to infer different resources.
RUlit(Lj, ap, r, ψj(n)) is:

– If Lj is recursive (i.e., calls a predicate q which is in the strongly-connected
component of the call graph being analyzed), then RUlit(Lj, ap, r, ψj(n)) is
replaced by a symbolic expression RU(q, ap, r, ψj(n)).
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– If Lj is not recursive, assume that it is a call to q (where q can be either a
predicate call, or an external or builtin predicate), then q has been already
analyzed, i.e., the (closed form) resource usage function for q has been re-
cursively computed as Φ′ and RUlit(Lj, ap, r, n) can be expressed explicitly
in terms of the function Φ′, and it is thus replaced with Φ′(ψj(n)).

Note that in both cases, if there is a resource usage assertion for q, cost(ap,
r, Φ), then RUlit(Lj, ap, r, ψj(n)) is replaced by the most precise (greatest lower
bound if upper bounds or least upper bound if lower bounds) of a) the arithmetic
resource usage expression (in closed form) Φ(ψj(n)) or b) its (closed form) re-
source usage function inferred previously by the analysis (provided they are not
incompatible, in which case an error is flagged).

It can be proved by induction on the number of literals in the body of clause
C that:

1. If clause C is not recursive, then, expression (2) results in a closed form
function of the sizes of the input argument positions in the clause head;

2. If clause C is simply recursive, then, expression (2) results in a difference
equation in terms of the sizes of the input argument positions in the clause
head;

3. If clause C is mutually recursive, then expression (2) results in a difference
equation which is part of a system of equations for mutually recursive clauses
in terms of the sizes of the input argument positions in the clause head.

If these difference equations can be solved (including approximating the solution
in the direction of ap) then RU(p, ap, r, n) can be expressed in a closed form, which
is a function of the sizes of the input argument positions in the head of predicate p
(and hence RUclause(C, ap, r, n) = closed form(RU(p, ap, r, n))). Thus, after the
strongly-connected component to which p belongs in the call graph has been
analyzed, we have that expression (1) results in a closed form function of the
sizes of the input argument positions in the clause head.

Note that our analysis is parameterized by the functions δ(ap, r) and β(ap, r)
whose definitions can be given by means of assertions of type head cost and lit-
eral cost respectively, as given in Figure 1. These functions make our analysis
parametric w.r.t. resources (such as execution steps, bytes sent by an applica-
tion/socket, number of calls to a procedure, etc.).

6 Defining the Parameters (Functions) of the Analysis

In this section we explain and illustrate with examples how the functions that
make our resource analysis parametric, namely, δ (which includes the definition
of ΔH), and β (which includes the definition of ΔL) are written in practice in
our system. For brevity, we assume that we are interested in computing upper
bounds on the different resources.

Assume for example that the resource we want to measure is (an upper bound
on) the number of resolution steps performed by a program. Then we can define
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δ(ub, steps) = delta one, and define delta one(H) = 1 for all H . This is achieved
by providing the following head cost assertion and definition of the delta one
predicate:

:− head cost(ub, steps, delta one).
delta one( , 1).

In order to simplify the process of defining interesting and useful ΔH and ΔL

functions, our implementation provides a library with predicates that perform
(syntactic) operations on clauses, such as, for example, getting the number of
arguments in a clause head or body literal, accessing an argument of a clause
head or body literal, getting the main functor and arity of a term in a certain
position, etc. In this context it is important to remember that the different ΔH

and ΔL function definitions perform syntactic matching on the program text.
Assume now that the resource we want to measure is the number of argument

passings that occur during clause head matching in a program (as an approxi-
mation to the number of unifications performed by the program). Then we can
define δ(ub, num args) = delta num args, and define delta num args(H) =
arity(H). This is achieved by the following code:

:− head cost(ub, num args, delta num args).
delta num args(H, N) :− functor(H, , N).

As another example, if we are interested in decomposing arbitrary unifica-
tions performed while unifying a clause head with the literal being solved into
simpler steps, we can define a resource num unifs, define δ(ub, num unifs) =
delta num unifs, and define delta num unifs(H) = The number of function
symbols, constants, and variables in H .

If, in addition to the number of unifications performed while unifying a clause
head, we are also interested in the cost of term creation for the literals in the
body of clauses, we can define a resource terms created, and define a β function
β(ub, terms created) = beta terms created, where beta terms created(L) =
The number of function symbols, and constants in body literal L. Note that
in this case we define δ(ub, terms created) = delta terms created, and define
delta terms created(H) = 0 for all H .

Example 3. Consider the same program defined in Fig. 2 and the size relations
computed in Example 2. We now show the corresponding resource usage equa-
tions for each clause for the resource bits received (denoted by bits for brevity)
inferred automatically by our system. Although the functions δ(ap, r)(H) and
β(ap, r)(L) take as arguments a clause head H and a body literal L respectively,
in our examples we will only write the predicate name of H and L for the sake
of brevity. Again, to simplify notation we will represent exchange buffer/3,
exchange byte/3 and connect socket/3 with ex buf and ex byt and con sock
respectively. Since the program is analyzed in a single traversal of the call
graph in reverse topological order, the system starts by analyzing the predicate
exchange buffer/3. Note that the resource usage for external predicates (whose
code is not available) connect socket/3, exchange byte/3 and close/1 is
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already given by “trust” assertions which express that: RU(con sock, ub, bits, ) =

0, RU(ex byt,ub, bits, ) = 8 and RU(close,ub, bits, ) = 0.
For the recursive clause of exchange buffer/3, the system sets up the fol-

lowing difference equation, where n represents the length of the first argument
to this predicate (note that the system infers the “length” size metric for this
argument and that n > 0):

RU(ex buf, ub, bits, 〈n〉) = δ(ub, bits)(ex buf) + β(ub, bits)(ex byt)+
RU(ex byt,ub, bits, ) + β(ub, bits)(ex buf)+
RU(ex buf,ub, bits, 〈n − 1〉) =
0 + 0 + 8 + 0 + RU(ex buf,ub, bits, 〈n − 1〉)

For the non-recursive clause of exchange buffer/3 the system infers: RU(ex buf,

ub, bits, 〈0〉) = 0 which can be used as boundary condition for solving the previous
difference equation, yielding the following closed form resource usage function:
RU(ex buf,ub, bits, 〈n〉) = 8 × n.

Now, the main/2 predicate is analyzed, and the system sets up the following
expression for its only clause (where k is the length of the input buffer, i.e., the
second argument to this predicate):

RU(main,ub, bits, 〈k〉) = δ(ub, bits)(main)+
β(ub, bits)(con sock) + RU(con sock, ub, bits, )+
β(ub, bits)(ex buf) + RU(ex buf, ub, bits, 〈k〉)
β(ub, bits)(close) + RU(close,ub, bits, )

= 0 + 0 + 0 + 0 + 8 × k + 0 + 0 = 8 × k

7 Experimental Results

To study the feasibility of the approach we have completed a prototype imple-
mentation of the analyzer. It is written in the Ciao language and uses a number
of modules and facilities from CiaoPP, the Ciao preprocessor (including differ-
ence equation processing). We have also written a Ciao language extension (a
“package” in Ciao terminology) which when loaded into a module allows writ-
ing the resource-related assertions and declarations proposed herein.4 We have
then used this prototype to analyze a set of representative benchmarks which
include definitions of resources using this language and used the system to infer
the resource usage bound functions.

The results from the analysis of these benchmarks are shown in Table 1. For
brevity, we report only results for upper-bounds analysis. The column labeled
Resource shows the actual resource for which bounds are being inferred by
the analysis for a given benchmark. While any of the resources defined in a
given benchmark could then be used in any of the others we show only the
results for the most natural or interesting resource for each one of them. We
have tried to use a relatively wide range of resources: number of bytes sent by

4 The system also supports adding resource assertions specifying expected resource
usages which the implemented analyzer will then verify or falsify using the results
of the implemented analysis.
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Table 1. Accuracy and efficiency in milliseconds of the analysis

Program Resource Usage Function Metrics Time
client “bits received” λx.8 · x length 186

color map “unifications” 39066 size 176

copy files “files left open” λx.x length 180

eight queen “queens movements” 19173961 length 304

eval polynom “FPU usage” λx.2.5x length 44

fib “arithmetic operations”
λx.2.17 · 1.61x+
0.82 · (−0.61)x − 3

value 116

grammar “phrases” 24 length/size 227

hanoi “disk movements” λx.2x − 1 value 100

insert stores “accesses Stores” λn, m.n + k length 292
“insertions Stores” λn, m.n

perm “WAM instructions”
λx.(

∑x
i=1 18 · x!)+

(
∑x

i=1 14 · x!
i
) + 4 · x!

length 98

power set “output elements” λx. 12 · 2x+1 length 119

qsort “lists parallelized” λx.4 · 2x − 2x − 4 length 144

send files “bytes read” λx, y.x · y length / size 179

subst exp “replacements” λx, y.2xy + 2y size / length 153

zebra “resolution steps” 30232844295713061 size 292

an application, number of calls to a particular predicate, robot arm movements,
number of files left open in a kernel code, number of accesses to a database,
etc. The column Usage Function shows the actual resource usage function
(which depends on the size of the input arguments) inferred by the analysis,
given as a lambda term. The column Metrics shows the size metric used for
the relevant arguments. Finally, the column labeled Time shows the resource
analysis times in milliseconds, on a medium-loaded Pentium IV Xeon 2.0Ghz
with two processors, 4Gb of RAM memory, running Fedora Core 5.0. Note that
these times do not include other analyses such as types, modes, etc.

8 Conclusions

We have presented a static analysis that infers upper and lower bounds on the
usage that a logic program makes of a quite general notion of user-definable
resources. The inferred bounds are in general functions of input data sizes. We
have also presented the assertion language which is used to define such resources.
The analysis then derives the related (upper- and lower-bound) resource usage
functions for all predicates in the program. Our preliminary experimental results
are encouraging because they show that interesting resource bound functions can
be obtained automatically and in reasonable time, at least for our benchmarks.
While clearly further work is needed to assess scalability we are cautiously hope-
ful in the sense that our approach allows defining via assertions the resource
usage of external predicates, which can then be used for modular composition.
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These includes also predicates for which the code is not available or which are
written in a programming language that is not supported by the analyzer. In
addition, assertions also allow describing by hand the usage of any predicate for
which the automatic analysis infers a value that is not accurate enough, and this
can be used to prevent inaccuracies in the automatic inference from propagat-
ing. Our expectation is that the automatic analysis will be able to do the bulk
of the work for large applications, even if the cost of some specially complex
predicates may still need to be given by the user. In particular, for the exam-
ples in Table 1 all results where obtained automatically. Finally, we expect the
applications of our analysis to be rather interesting, including resource consump-
tion verification and debugging (including for mobile code), resource control in
parallel/distributed computing, and resource-oriented specialization [6,18].
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Abstract. The many approaches which have been proposed in the liter-
ature for proving the correctness of unfold/fold program transformations,
consist in associating suitable well-founded orderings with the proof trees
of the atoms belonging to the least Herbrand models of the programs.
In practice, these orderings are given by ‘clause measures’, that is, mea-
sures associated with the clauses of the programs to be transformed. In
the unfold/fold transformation systems proposed so far, clause measures
are fixed in advance, independently of the transformations to be proved
correct. In this paper we propose a method for the automatic generation
of the clause measures which, instead, takes into account the particular
program transformation at hand. During the transformation process we
construct a system of linear equations and inequations whose unknowns
are the clause measures to be found, and the correctness of the transfor-
mation is guaranteed by the satisfiability of that system. Through some
examples we show that our method is able to establish in a fully auto-
matic way the correctness of program transformations which, by using
other methods, are proved correct at the expense of fixing sophisticated
clause measures.

1 Introduction

Rule-based program transformation is a program development methodology
which consists in deriving from an initial program a final program, via the ap-
plication of semantics preserving transformation rules [5]. In the field of logic
(or functional) programming, program transformation can be regarded as a de-
ductive process. Indeed, programs are logical (or equational, resp.) theories and
the transformation rules can be viewed as rules for deducing new formulas from
old ones. The logical soundness of the transformation rules easily implies that a
transformation is partially correct, which means that an atom (or an equation,
resp.) is true in the final program only if it is true in the initial program. How-
ever, it is usually much harder to prove that a transformation is totally correct,
which means that an atom (or an equation, resp.) is true in the initial program
if and only if it is true in the final program.

In the context of functional programming, it has been pointed out in the
seminal paper by Burstall and Darlington [5] that, if the transformation rules
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rewrite the equations of the program at hand by using equations which belong to
the same program (like the folding and unfolding rules), the transformations are
always partially correct, but the final program may terminate (w.r.t. a suitable
notion of termination) less often than the initial one. Thus, a sufficient condition
for total correctness is that the final program obtained by transformation always
terminates. This method of proving total correctness is sometimes referred to as
McCarthy’s method [13]. However, the termination condition may be, in practice,
very hard to check.

The situation is similar in the case of definite logic programs, where the folding
and unfolding rules basically consist in applying equivalences that hold in the
least Herbrand model of the initial program. For instance, let us consider the
program:

P : p ← q r ← q q ←
The least Herbrand model of P is M(P ) = {p, q, r} and M(P ) |= p ↔ q. If we
replace q by p in r ← q (that is, we fold r ← q using p ← q), then we get:

Q : p ← q r ← p q ←
The transformation of P into Q is totally correct, because M(P ) = M(Q).
However, if we replace q by p in p ← q (that is, we fold p ← q using p ← q
itself), then we get:

R : p ← p r ← q q ←
and the transformation of P into R is partially correct, because M(P ) ⊇ M(R),
but it is not totally correct, because M(P ) �= M(R). Indeed, program R does
not terminate for the goal p.

A lot of work has been devoted to devise methods for proving the total cor-
rectness of transformations based on various sets of rules, including the folding
and the unfolding rules. These methods have been proposed both in the context
of functional programming (see, for instance, [5,10,17]) and in the context of
logic programming (see, for instance, [3,4,6,7,8,9,11,14,15,16,19,20,21]).

Some of these methods (such as, [3,5,6,11]) propose sufficient conditions for
total correctness which are explicitly based on the preservation of suitable termi-
nation properties (such as, termination of call-by-name reduction for functional
programs, and universal or existential termination for logic programs).

Other methods, which we may call implicit methods, are based on conditions
on the sequence of applications of the transformation rules that guarantee that
termination is preserved. A notable example of these implicit methods is pre-
sented in [9], where integer counters are associated with program clauses. The
counters of the initial program are set to 1 and are incremented (or decremented)
when an unfolding (or folding, resp.) is applied. A sequence of transformations is
totally correct if the counters of the clauses of the final program are all positive.

The method based on counters allows us to prove the total correctness of
many transformations. Unfortunately, there are also many simple derivations
where the method fails to guarantee the total correctness. For instance, in the
transformation from P to Q described above, we would get a value of 0 for the
counter of the clause r ← p in the final program Q, because it has been derived
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by applying the folding rule from clause r ← p. Thus, the method does not yield
the total correctness of the transformation. In order to overcome the limitations
of the basic counter method, some modifications and enhancements have been
described in [9,15,16,21], where each clause is given a measure which is more
complex than an integer counter.

In this paper we present a different approach to the improvement of the basic
counter method: instead of fixing in advance complex clause measures, for any
given transformation we automatically generate, if at all possible, the clause mea-
sures that prove its correctness. For reasons of simplicity we assume that clause
measures are non-negative integers, also called weights, and given a transforma-
tion starting from a program P , we look for a weight assignment to the clauses
of P that proves that the transformation is totally correct.

Our paper is structured as follows. In Section 2 we present the notion of a
weighted transformation sequence, that is, a sequence of programs constructed by
applying suitable variants of the definition introduction, unfolding, and folding
rules. We associate the clauses of the initial program of the sequence with some
unknown weights, and during the construction of the sequence, we generate a
set of constraints consisting of linear equations and inequations which relate
those weights. If the final set of constraints is satisfiable for some assignment
to the unknown weights, then the transformation sequence is totally correct. In
Section 3 we prove our total correctness result which is based on the well-founded
annotations method proposed in [14]. In Section 4 we consider transformation
sequences constructed by using also the goal replacement rule and we present
a method for proving the total correctness of those transformation sequences.
Finally, in Section 5 we present a method for proving predicate properties which
are needed for applying the goal replacement rule.

2 Weighted Unfold/Fold Transformation Rules

Let us begin by introducing some terminology concerning systems of linear equa-
tions and inequations with integer coefficients and non-negative integer solutions.

By PLIN we denote the set of linear polynomials with integer coefficients.
Variables occurring in polynomials are called unknowns to distinguish them from
logical variables occurring in programs. By CLIN we denote the set of linear equa-
tions and inequations with integer coefficients, that is, CLIN is the set {p1 =p2,
p1 <p2, p1 ≤p2 | p1, p2 ∈ PLIN }. By p1 ≥p2 we mean p2 ≤p1, and by p1 >p2 we
mean p2 < p1. An element of CLIN is called a constraint. A valuation for a set
{u1, . . . , ur} of unknowns is a mapping σ : {u1, . . . , ur} → N, where N is the set of
natural numbers. Let {u1, . . . , ur} be the set of unknowns occurring in p ∈ PLIN .
Given a valuation σ for (a superset of) {u1, . . . , ur}, σ(p) is the integer obtained
by replacing the occurrences of u1, . . . , ur in p by σ(u1), . . . , σ(ur), respectively,
and then computing the value of the resulting arithmetic expression. A valuation
σ is a solution for the constraint p1 =p2 if σ is a valuation for a superset of the
variables occurring in p1 = p2 and σ(p1) = σ(p2) holds. Similarly, we define a
solution for p1 <p2 and for p1 ≤p2. σ is a solution for a finite set C of constraints
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if, for every c ∈ C, σ is a solution for c. We say that a constraint c is satisfiable
if there exists a solution for c. Similarly, we say that a set C of constraints is
satisfiable if there exists a solution for C. A weight function for a set S of clauses
is a function γ : S → PLIN . A value of γ is also called a weight polynomial.

A weighted unfold/fold transformation sequence is a sequence of programs,
denoted P0 
→ P1 
→ · · · 
→ Pn, such that n ≥ 0 and, for k = 0, . . . , n−1, Pk+1 is
derived from Pk by applying one of the following transformation rules: weighted
definition introduction, weighted unfolding, and weighted folding. These rules,
which will be defined below, are variants of the familiar rules without weights.
For reasons of simplicity, when referring to the transformation rules, we will often
omit the qualification ‘weighted’. For k = 0, . . . , n, we will define: (i) a weight
function γk : Pk → PLIN , (ii) a finite set Ck of constraints, (iii) a set Defsk

of clauses defining the new predicates introduced by the definition introduction
rule during the construction of the sequence P0 
→ P1 
→ · · · 
→ Pk, and (iv) a
weight function δk : P0 ∪ Defsk → PLIN . The weight function γ0 for the initial
program P0 is defined as follows: for every clause C ∈ P0, γ0(C) = u, where u
is an unknown and, for each pair C and D of distinct clauses in P0, we have
that γ0(C) �=γ0(D). The initial sets C0 and Defs0 are, by definition, equal to the
empty set and δ0 = γ0.

For every k > 0, we assume that P0 and Pk have no variables in common.
This assumption is not restrictive because we can always rename the variables
occurring in a program without affecting its least Herbrand model. Indeed, in
the sequel we will feel free to rename variables, whenever needed.

Rule 1 (Weighted Definition Introduction). Let D1, . . . , Dm, with m>0,
be clauses such that, for i = 1, . . . , m, the predicate of the head of Di does
not occur in P0 ∪ Defsk. By definition introduction from Pk we derive Pk+1 =
Pk ∪ {D1, . . . , Dm}.

We set the following: (1.1) for all C in Pk, γk+1(C) = γk(C), (1.2) for
i = 1, . . . , m, γk+1(Di) = ui, where ui is a new unknown, (2) Ck+1 = Ck,
(3) Defsk+1 = Defsk ∪ {D1, . . . , Dm}, (4.1) for all D in P0 ∪ Defsk, δk+1(D) =
δk(D), and (4.2) for i = 1, . . . , m, δk+1(Di) = ui.

Rule 2 (Weighted Unfolding). Let C: H ← GL ∧ A ∧ GR be a clause in
Pk and let C1: H1 ← G1, . . . , Cm: Hm ← Gm, with m ≥ 0, be all clauses
in P0 such that, for i = 1, . . . , m, A is unifiable with Hi via a most general
unifier ϑi. By unfolding C w.r.t. A using C1, . . . , Cm, we derive the clauses
D1: (H ← GL ∧ G1 ∧ GR)ϑ1, . . . , Dm: (H ← GL ∧ Gm ∧ GR)ϑm, and from Pk

we derive Pk+1 = (Pk − {C}) ∪ {D1, . . . , Dm}.
We set the following: (1.1) for all D in Pk −{C}, γk+1(D) = γk(D), (1.2) for

i = 1, . . . , m, γk+1(Di) = γk(C) + γ0(Ci), (2) Ck+1 = Ck, (3) Defsk+1 = Defsk,
and (4) δk+1 = δk.

For a goal (or set of goals) G, by vars(G) we denote the set of variables occurring
in G.

Rule 3 (Weighted Folding). Let C1: H ← GL ∧ G1 ∧ GR, . . . , Cm: H ←
GL ∧ Gm ∧ GR be clauses in Pk and let D1: K ← B1, . . . , Dm: K ← Bm
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be clauses in P0 ∪ Defsk. Suppose that there exists a substitution ϑ such that
the following conditions hold: (i) for i = 1, . . . , m, Gi = Biϑ, (ii) there exists
no clause in (P0 ∪ Defsk) − {D1, . . . , Dm} whose head is unifiable with Kϑ, and
(iii) for i = 1, . . . , m and for every variable U in vars(Bi) − vars(K): (iii.1) Uϑ
is a variable not occurring in {H, GL, GR}, and (iii.2) Uϑ does not occur in the
term V ϑ, for any variable V occurring in Bi and different from U .

By folding C1, . . . , Cm using D1, . . . , Dm, we derive E: H ← GL ∧ Kϑ ∧ GR,
and from Pk we derive Pk+1 = (Pk − {C1, . . . , Cm}) ∪ {E}.

We set the following: (1.1) for all C in Pk −{C1, . . . , Cm}, γk+1(C) = γk(C),
(1.2) γk+1(E) = u, where u is a new unknown, (2) Ck+1 = Ck ∪ {u≤ γk(C1)−
δk(D1), . . . , u≤γk(Cm)−δk(Dm)}, (3) Defsk+1 = Defsk, and (4) δk+1 = δk.

The correctness constraint system associated with a weighted unfold/fold trans-
formation sequence P0 
→ · · · 
→ Pn is the set Cfinal of constraints defined as
follows:

Cfinal = Cn ∪ {γn(C)≥1 | C ∈ Pn}.

The following result, which will be proved in Section 3, guarantees the total
correctness of weighted unfold/fold transformations. By M(P ) we denote the
least Herbrand model of program P .

Theorem 1 (Total Correctness of Weighted Unfold/Fold Transforma-
tions). Let P0 
→ · · · 
→ Pn be a weighted unfold/fold transformation sequence
constructed by using Rules 1–3, and let Cfinal be its associated correctness con-
straint system. If Cfinal is satisfiable then M(P0 ∪ Defsn) = M(Pn).

Example 1. (Continuation Passing Style Transformation) Let us consider the
initial program P0 consisting of the following three clauses whose weight polyno-
mials are the unknowns u1, u2, and u3, respectively (we write weight polynomials
on a second column to the right of the corresponding clause):

1. p ← u1
2. p ← p ∧ q u2
3. q ← u3

We want to derive a continuation-passing-style program defining a predicate
pcont equivalent to the predicate p defined by the program P0. In order to do so,
we introduce by Rule 1 the following clause 4 with its unknown u4:

4. pcont ← p u4

and also the following three clauses for the unary continuation predicate cont
with unknowns u5, u6, and u7, respectively:

5. cont(ftrue) ← u5
6. cont(fp(X)) ← p ∧ cont(X) u6
7. cont(fq(X)) ← q ∧ cont(X) u7

where ftrue , fp, and fq are three function symbols corresponding to the three
predicates true, p, and q, respectively. By folding clause 4 using clause 5 we get
the following clause with the unknown u8 which should satisfy the constraint
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u8 ≤ u4−u5 (we write constraints on a third column to the right of the corre-
sponding clause):

8. pcont ← p ∧ cont(ftrue) u8 u8 ≤ u4 − u5

By folding clause 8 using clause 6 we get the following clause 9 with unknown
u9 such that u9 ≤ u8 − u6:

(∗) 9. pcont ← cont(fp(ftrue)) u9 u9 ≤ u8 − u6

By unfolding clause 6 w.r.t. p using clauses 1 and 2, we get:

(∗) 10. cont(fp(X)) ← cont(X) u6 + u1
11. cont(fp(X)) ← p ∧ q ∧ cont(X) u6 + u2

Then by folding clause 11 using clause 7 we get:

12. cont(fp(X)) ← p ∧ cont(fq(X)) u12 u12 ≤ u6 + u2 − u7

and by folding clause 12 using clause 6 we get:

(∗) 13. cont(fp(X)) ← cont(fp(fq(X))) u13 u13 ≤ u12 − u6

Finally, by unfolding clause 7 w.r.t. q we get:

(∗) 14. cont(fq(X)) ← cont(X) u7 + u3

The final program is made out of clauses 9, 10, 13, and 14, marked with (∗), and
clauses 1, 2, and 3. The correctness constraint system Cfinal is made out of the
following 11 constraints.

For clauses 9, 10, 13, and 14: u9 ≥1, u6 + u1 ≥1, u13 ≥1, u7 + u3 ≥1.
For clauses 1, 2, and 3: u1 ≥1, u2 ≥1, u3 ≥1.
For the four folding steps: u8 ≤ u4 − u5, u9 ≤ u8 −u6, u12 ≤ u6 +u2 −u7,

u13 ≤u12−u6.
This system Cfinal of constraints is satisfiable and thus, the transformation

from program P0 to the final program is totally correct.

3 Proving Correctness Via Weighted Programs

In order to prove that a weighted unfold/fold transformation sequence P0 
→
· · · 
→ Pn is totally correct (see Theorem 1), we specialize the method based on
well-founded annotations proposed in [14]. In particular, with each program Pk

in the transformation sequence, we associate a weighted program P k by adding an
integer argument n(≥ 0), called a weight, to each atom p(t) occurring in Pk. Here
and in the sequel, t denotes a generic m-tuple of terms t1, . . . , tm, for some m≥0.
Informally, p(t, n) holds in P k if p(t) ‘has a proof of weight at least n’ in Pk. We
will show that if the correctness constraint system Cfinal is satisfiable, then it is
possible to derive from P 0 a weighted program Pn where the weight arguments
determine, for every clause C in Pn, a well-founded ordering between the head
of C and every atom in the body C. Hence Pn terminates for all ground goals
(even if Pn need not) and the immediate consequence operator TP has a unique
fixpoint [2]. Thus, as proved in [14], the total correctness of the transformation
sequence follows from the unique fixpoint principle (see Corollary 1).
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Our transformation rules can be regarded as rules for replacing a set of clauses
by an equivalent one. Let us introduce the notions of implication and equivalence
between sets of clauses according to [14].

Definition 1. Let I be an Herbrand interpretation and let Γ1 and Γ2 be two
sets of clauses. We write I |= Γ1 ⇒ Γ2 if for every ground instance H ← G2 of
a clause in Γ2 such that I |= G2 there exists a ground instance H ← G1 of a
clause in Γ1 such that I |= G1. We write I |= Γ1 ⇐ Γ2 if I |= Γ2 ⇒ Γ1, and we
write I |= Γ1 ⇔ Γ2 if (I |= Γ1 ⇒ Γ2 and I |= Γ1 ⇐ Γ2).

For all Herbrand interpretations I and sets of clauses Γ1, Γ2, and Γ3 the following
properties hold:

Reflexivity: I |= Γ1 ⇒ Γ1
Transitivity: if I |= Γ1 ⇒ Γ2 and I |= Γ2 ⇒ Γ3 then I |= Γ1 ⇒ Γ3
Monotonicity: if I |= Γ1 ⇒ Γ2 then I |= Γ1 ∪ Γ3 ⇒ Γ2 ∪ Γ3.
Given a program P , we denote its associated immediate consequence operator

by TP [1,12]. We denote the least and greatest fixpoint of TP by lfp(TP ) and
gfp(TP ), respectively. Recall that M(P ) = lfp(TP ).

Now let us consider the transformation of a program P into a program Q
consisting in the replacement of a set Γ1 of clauses in P by a new set Γ2 of
clauses. The following result, proved in [14], expresses the partial correctness of
the transformation of P into Q.

Theorem 2 (Partial Correctness). Given two programs P and Q, such that :
(i) for some sets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, and (ii) M(P ) |=
Γ1 ⇒ Γ2. Then M(P ) ⊇ M(Q).

In order to establish a sufficient condition for the total correctness of the trans-
formation of P into Q, that is, M(P ) = M(Q), we consider programs whose
associated immediate consequence operators have unique fixpoints.

Definition 2 (Univocal Program). A program P is said to be univocal if TP

has a unique fixpoint, that is, lfp(TP ) = gfp(TP ).

The following theorem is proved in [14].

Theorem 3 (Conservativity). Given two programs P and Q, such that :
(i) for some sets Γ1 and Γ2 of clauses, Q = (P − Γ1) ∪ Γ2, and (ii) M(P ) |=
Γ1 ⇐ Γ2, and (iii) Q is univocal. Then M(P ) ⊆ M(Q).

As a straightforward consequence of Theorems 2 and 3 we get the following.

Corollary 1 (Total Correctness Via Unique Fixpoint). Given two pro-
grams P and Q such that : (i) for some sets Γ1, Γ2 of clauses, Q = (P −Γ1)∪Γ2,
(ii) M(P ) |= Γ1 ⇔ Γ2, and (iii) Q is univocal. Then M(P ) = M(Q).

Corollary 1 cannot be directly applied to prove the total correctness of a transfor-
mation sequence generated by applying the unfolding and folding rules, because
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the programs derived by these rules need not be univocal. To overcome this
difficulty we introduce the notion of weighted program.

Given a clause C of the form p0(t0) ← p1(t1)∧ . . .∧pm(tm), where t0, t1, . . . ,
tm are tuples of terms, a weighted clause, denoted C(w), associated with C is a
clause of the form:

C(w): p0(t0, N0) ← N0 ≥ N1+· · ·+Nm + w ∧ p1(t1, N1) ∧ . . . ∧ pm(tm, Nm)
where w is a natural number called the weight of C(w). Clause C(w) is denoted
by C when we do not need refer to the weight w. A weighted program is a set of
weighted clauses. Given a program P = {C1, . . . , Cr}, by P we denote a weighted
program of the form {C1, . . . , Cr}. Given a weight function γ and a valuation σ,
by C(γ, σ) we denote the weighted clause C(σ(γ(C))) and by P (γ, σ) we denote
the weighted program {C1(γ, σ), . . . , Cr(γ, σ)}.

For reasons of conciseness, we do not formally define here when a formula
of the form N0 ≥ N1 + · · · + Nm + w (see clause C(w) above) holds in an
interpretation, and we simply say that for every Herbrand interpretation I and
ground terms n0, n1, . . . , nm, w, we have that I |= n0 ≥ n1 + · · · + nm + w holds
iff n0, n1, . . . , nm, w are (terms representing) natural numbers such that n0 is
greater than or equal to n1 + · · · + nm + w.

The following lemma (proved in [14]) establishes the relationship between
the semantics of a program P and the semantics of any weighted program P
associated with P .

Lemma 1. Let P be a program. For every ground atom p(t), p(t) ∈ M(P ) iff
there exists n ∈ N such that p(t, n) ∈ M(P ).

By erasing weights from clauses we preserve clause implications, in the sense
stated by the following lemma (proved in [14]).

Lemma 2. Let P be a program, and Γ1 and Γ2 be any two sets of clauses. If
M(P ) |= Γ 1 ⇒ Γ 2 then M(P ) |= Γ1 ⇒ Γ2.

A weighted program P is said to be decreasing if every clause in P has a positive
weight.

Lemma 3. Every decreasing program is univocal.

Now, we have the following result, which is a consequence of Lemmata 1, 3, and
Theorems 2 and 3. Unlike Corollary 1, this result can be used to prove the total
correctness of the transformation of program P into program Q also in the case
where Q is not univocal.

Theorem 4 (Total Correctness Via Weights). Let P and Q be programs
such that: (i) M(P ) |= P ⇒ Q, (ii) M(P ) |= P ⇐ Q, and (iii) Q is decreasing.
Then M(P ) = M(Q).

By Theorem 4, in order to prove Theorem 1, that is, the total correctness of
weighted unfold/fold transformations, it is enough to show that, given a weighted
unfold/fold transformation sequence P0 
→· · · 
→Pn, we have that:
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(P1) M(P0 ∪ Defsn) |= P0 ∪ Defsn ⇒ Pn

and there exist suitable weighted programs P 0 ∪ Defsn and Pn, associated with
P0 ∪ Defsn and Pn, respectively, such that:

(P2) M(P 0 ∪ Defsn) |= P 0 ∪ Defsn ⇐ Pn, and
(P3) Pn is decreasing.

The suitable weighted programs P 0 ∪ Defsn and Pn are constructed as we now
indicate by using the hypothesis that the correctness constraint system Cfinal

associated with the transformation sequence, is satisfiable. Let σ be a solution for
Cfinal . For every k = 0, . . . , n and for every clause C ∈ Pk, we take C = C(γk, σ),
where γk is the weight function associated with Pk. For C ∈ Defsk we take
C = C(δk, σ). Thus, P k = P k(γk, σ) and Defsk = Defsk(δk, σ).

In order to prove Theorem 1 we need the following two lemmata.

Lemma 4. Let P0 
→ · · · 
→ Pk be a weighted unfold/fold transformation se-
quence. Let C be a clause in Pk, and let D1, . . . , Dm be the clauses derived by
unfolding C w.r.t. an atom in its body, as described in Rule 2. Then:

M(P 0 ∪ Defsn) |= {C} ⇔ {D1, . . . , Dm}

Lemma 5. Let P0 
→ · · · 
→ Pk be a weighted unfold/fold transformation se-
quence. Let C1, . . . , Cm be clauses in Pk, D1, . . . , Dm be clauses in P0 ∪ Defsk,
and E be the clause derived by folding C1, . . . , Cm using D1, . . . , Dm, as described
in Rule 3. Then:

(i) M(P0 ∪ Defsn) |= {C1, . . . , Cm} ⇒ {E}
(ii) M(P 0 ∪ Defsn) |= {C1, . . . , Cm} ⇐ {E}

We are now able to prove Theorem 1. For a weighted unfold/fold transformation
sequence P0 
→· · · 
→Pn, the following properties hold:

(R1) M(P0 ∪ Defsn) |= Pk ∪ (Defsn−Defsk) ⇒ Pk+1 ∪ (Defsn−Defsk+1), and

(R2) M(P 0 ∪ Defsn) |= P k ∪ (Defsn−Defsk) ⇐ P k+1 ∪ (Defsn−Defsk+1).
Indeed, Properties (R1) and (R2) can be proved by reasoning by cases on the
transformation rule applied to derive Pk+1 from Pk, as follows. If Pk+1 is de-
rived from Pk by applying the definition introduction rule then Pk ∪ (Defsn −
Defsk) = Pk+1 ∪ (Defsn − Defsk+1) and, therefore, Properties (R1) and (R2)
are trivially true. If Pk+1 is derived from Pk by applying the unfolding rule,
then Pk+1 = (Pk − {C}) ∪ {D1, . . . , Dm} and Defsk = Defsk+1. Hence, Prop-
erties (R1) and (R2) follow from Lemma 2, Lemma 4 and from the mono-
tonicity of ⇒. If Pk+1 is derived from Pk by applying the folding rule, then
Pk+1 = (Pk−{C1, . . . , Cm})∪{E} and Defsk = Defsk+1. Hence, Properties (R1)
and (R2) follow from Points (i) and (ii) of Lemma 5 and the monotonicity
of ⇒.

By the transitivity of ⇒ and by Properties (R1) and (R2), we get Proper-
ties (P1) and (P2). Moreover, since σ is a solution for Cfinal and Pn = Pn(γn, σ),
Property (P3) holds. Thus, by Theorem 4, M(P0 ∪ Defsn) = M(Pn).
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4 Weighted Goal Replacement

In this section we extend the notion of a weighted unfold/fold transformation
sequence P0 
→ P1 
→ · · · 
→ Pn by assuming that Pk+1 is derived from Pk by
applying, besides the definition introduction, unfolding, and folding rules, also
the goal replacement rule defined as Rule 4 below. The goal replacement rule
consists in replacing a goal G1 occurring in the body of a clause of Pk, by a new
goal G2 such that G1 and G2 are equivalent in M(P0 ∪ Defsk). Some conditions
are also needed in order to update the value of the weight function and the
associated constraints. To define these conditions we introduce the notion of
weighted replacement law (see Definition 3), which in turn is based on the notion
of weighted program introduced in Section 3.

In Definition 3 below we will use the following notation. Given a goal G :
p1(t1)∧. . .∧pm(tm), a variable N , and a natural number w, by G[N, w] we denote
the formula ∃N1 . . .∃Nm(N ≥ N1+· · ·+Nm+w∧p1(t1, N1)∧. . .∧pm(tm, Nm)).
Given a set X = {X1, . . . , Xm} of variables, we will use ‘∃X ’ as a shorthand for
‘∃X1 . . . ∃Xm’ and ‘∀X ’ as a shorthand for ‘∀X1 . . . ∀Xm’.

Definition 3 (Weighted Replacement Law). Let P be a program, γ be a
weight function for P , and C be a finite set of constraints. Let G1 and G2 be goals,
u1 and u2 be unknowns, and X ⊆ vars(G1) ∪ vars(G2) be a set of variables. We
say that the weighted replacement law (G1, u1) ⇒X (G2, u2) holds with respect
to the triple 〈P, γ, C〉, and we write 〈P, γ, C〉 |= (G1, u1) ⇒X (G2, u2), if the
following conditions hold:
(i) M(P ) |= ∀X (∃Y G1 ← ∃Z G2), and
(ii) for every solution σ for C,

M(P ) |= ∀X∀U (∃Y (G1[U, σ(u1)]) → ∃Z (G2[U, σ(u2)]))
where: (1) P is the weighted program P (γ, σ), (2) U is a variable, (3) Y =
vars(G1)−X , and (4) Z = vars(G2)−X .

By using Lemma 2 it can be shown that, if C is satisfiable, then Condition (ii) of
Definition 3 implies M(P ) |= ∀X (∃Y G1 → ∃Z G2) and, therefore, if 〈P, γ, C〉 |=
(G1, u1) ⇒X (G2, u2) and C is satisfiable, we also have that M(P ) |= ∀X
(∃Y G1 ↔ ∃Z G2).

Example 2. (Associativity of List Concatenation) Let us consider the following
program Append for list concatenation. To the right of each clause we indicate
the corresponding unknown.

1. a([ ], L, L) u1
2. a([H |T ], L, [H |R]) ← a(T, L, R) u2

The following replacement law expresses the associativity of list concatenation:
Law (α): (a(L1, L2, M) ∧ a(M, L3, L), w1)

⇒{L1,L2,L3,L} (a(L2, L3, R) ∧ a(L1, R, L), w2)
where w1 and w2 are new unknowns. In Example 4 below we will show that
Law (α) holds w.r.t. 〈Append , γ, C〉, where C is the set of constraints {u1 ≥ 1,
u2 ≥1, w1 ≥w2, w2 + u1 ≥1}.
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In Section 5 we will present a method, called weighted unfold/fold proof method,
for generating a suitable set C of constraints such that 〈P, γ, C〉 |= (G1, u1) ⇒X

(G2, u2) holds. Now we introduce the Weighted Goal Replacement Rule, which
is a variant of the rule without weights (see, for instance, [20]).

Rule 4 (Weighted Goal Replacement). Let C: H ← GL ∧ G1 ∧ GR be a
clause in program Pk and let C be a set of constraints such that the weighted
replacement law λ : (G1, u1) ⇒X (G2, u2) holds w.r.t. 〈P0 ∪ Defsk, δk, C〉, where
X = vars({H, GL, GR}) ∩ vars({G1, G2}).

By applying the replacement law λ, from C we derive D : H ← GL ∧G2∧GR,
and from Pk we derive Pk+1 = (Pk −{C})∪{D}. We set the following: (1.1) for
all E in Pk−{C}, γk+1(E) = γk(E), (1.2) γk+1(D) = γk(C)−u1+u2, (2) Ck+1 =
Ck ∪ C, (3) Defsk+1 = Defsk, and (4) δk+1 = δk.

The proof of the following result is similar to the one of Theorem 1.

Theorem 5 (Total Correctness of Weighted Unfold/Fold/Replacement
Transformations). Let P0 
→· · · 
→Pn be a weighted unfold/fold transformation
sequence constructed by using Rules 1–4, and let Cfinal be its associated correct-
ness constraint system. If Cfinal is satisfiable then M(P0 ∪ Defsn) = M(Pn).

Example 3. (List Reversal) Let Reverse be a program for list reversal consisting
of the clauses of Append (see Example 2) together with the following two clauses
(to the right of the clauses we write the corresponding weight polynomials):

3. r([ ], [ ]) ← u3
4. r([H |T ], L) ← r(T, R) ∧ a(R, [H ], L) u4

We will transform the Reverse program into a program that uses an accumula-
tor [5]. In order to do so, we introduce by Rule 1 the following clause:

5. g(L1, L2, A) ← r(L1, R) ∧ a(R, A, L2) u5

We apply the unfolding rule twice starting from clause 5 and we get:
6. g([ ], L, L) ← u5 + u3 + u1
7. g([H |T ], L, A) ← r(T, R) ∧ a(R, [H ], S) ∧ a(S, A, L) u5 + u4

By applying the replacement law (α), from clause 7 we derive:
8. g([H |T ],L,A) ← r(T,R) ∧ a([H ],A,S) ∧ a(R,S,L) u5 + u4 − w1 + w2

together with the constraints (see Example 2): u1 ≥1, u2 ≥1, w1 ≥w2, w2+u1≥1.
By two applications of the unfolding rule, from clause 8 we get:

9. g([H |T ], L, A) ← r(T, R) ∧ a(R, [H |A], L) u5+u4−w1+w2+u2+u1

By folding clause 9 using clause 5 we get:
10. g([H |T ], L, A) ← g(T, L, [H |A]) u6

together with the constraint u6 ≤ u4 − w1 + w2 + u2 + u1.
Finally, by folding clause 4 using clause 5 we get:

11. r([H |T ], L) ← g(T, L, [H ]) u7

together with the constraint u7 ≤ u4 − u5.
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The final program consists of clauses 1, 2, 3, 11, 6, and 10. The correctness
constraint system associated with the transformation sequence is as follows.

For clauses 1, 2, and 3: u1 ≥1, u2 ≥1, u3 ≥1.
For clauses 11, 6, and 10: u7 ≥1, u5 + u3 + u1 ≥1, u6 ≥1.
For the goal replacement: u1 ≥1, u2 ≥1, w1 ≥w2, w2 + u1 ≥1.
For the two folding steps: u6 ≤ u4 − w1 + w2 + u2 + u1, u7 ≤ u4 − u5.

This set of constraints is satisfiable and, therefore, the transformation sequence
is totally correct.

5 The Weighted Unfold/Fold Proof Method

In this section we present the unfold/fold method for proving the replacement
laws to be used in Rule 4. In order to do so, we introduce the notions of: (i) syn-
tactic equivalence, (ii) symmetric folding, and (iii) symmetric goal replacement.

A predicate renaming is a bijective mapping ρ : Preds1 → Preds2, where
Preds1 and Preds2 are two sets of predicate symbols. Given a formula (or a set
of formulas) F , by preds(F ) we denote the set of predicate symbols occurring
in F . Suppose that preds(F ) ⊆ Preds1, then by ρ(F ) we denote the formula
obtained from F by replacing every predicate symbol p by ρ(p). Two programs
Q and R are syntactically equivalent if there exists a predicate renaming ρ :
preds(Q) → preds(R), such that R = ρ(Q), modulo variable renaming.

An application of the folding rule by which from program Pk we derive pro-
gram Pk+1, is said to be symmetric if Ck+1 is set to Ck ∪ {u= γk(C1)−δk(D1),
. . . , u=γk(Cm)−δk(Dm)} (see Point 2 of Rule 3).

Given a program P , a weight function γ, and a set C of constraints, we say that
the replacement law (G1, u1) ⇒X (G2, u2) holds symmetrically w.r.t. 〈P, γ, C〉,
and we write 〈P, γ, C〉 |= (G1, u1) ⇔X (G2, u2), if the following condition holds:
(ii*) for every solution σ for C,

M(P ) |= ∀X∀U (∃Y (G1[U, σ(u1)]) ↔ ∃Z (G2[U, σ(u2)]))
where P , U , Y , and Z are defined as in Definition 3. Note that, by Lemma 2,
Condition (ii*) implies Condition (i) of Definition 3. An application of the goal
replacement rule is symmetric if it consists in applying a replacement law that
holds symmetrically w.r.t. 〈P0∪Defsk, δk, C〉. A weighted unfold/fold transfor-
mation sequence is said to be symmetric if it is constructed by applications of
the definition and unfolding rules and by symmetric applications of the folding
and goal replacement rules.

Now we are ready to present the weighted unfold/fold proof method, which
is itself based on weighted unfold/fold transformations.

The Weighted Unfold/Fold Proof Method. Let us consider a program P , a weight
function γ for P , and a replacement law (G1, u1) ⇒X (G2, u2). Suppose that X
is the set of variables {X1, . . . , Xm} and let X denote the sequence X1, . . . , Xm.
Step 1. First we introduce two new predicates new1 and new2 defined by the fol-
lowing two clauses: D1: new1(X) ← G1 and D2: new2(X) ← G2, associated
with the unknowns u1 and u2, respectively.
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Step 2. Then we construct two weighted unfold/fold transformation sequences
of the forms: P ∪ {D1} 
→ · · · 
→ Q and P ∪ {D2} 
→ · · · 
→ R, such that the
following three conditions hold:
(1) For i = 1, 2, the weight function associated with the initial program P ∪{Di}
is γi

0 defined as: γi
0(C) = γ(C) if C ∈ P , and γi

0(Di) = ui;
(2) The final programs Q and R are syntactically equivalent; and
(3) The transformation sequence P ∪ {D2} 
→· · · 
→R is symmetric.

Step 3. Finally, we construct a set C of constraints as follows. Let γQ and γR be
the weight functions associated with Q and R, respectively. Let CQ and CR be
the correctness constraint systems associated with the transformation sequences
P ∪ {D1} 
→ · · · 
→ Q and P ∪ {D2} 
→ · · · 
→ R, respectively, and let ρ be the
predicate renaming such that ρ(Q) = R. Suppose that both CQ and CR are
satisfiable.
(3.1) Let the set C be {γQ(C)≥γR(ρ(C)) | C ∈ Q} ∪ CQ ∪ CR. Then we infer:

〈P, γ, C〉 �UF (G1, u1) ⇒X (G2, u2)
(3.2) Suppose that the transformation sequence P ∪{D1} 
→· · · 
→Q is symmetric
and let the set C be {γQ(C)=γR(ρ(C)) | C ∈ Q} ∪ CQ ∪ CR. Then we infer:

〈P, γ, C〉 �UF (G1, u1) ⇔X (G2, u2)

It can be shown that the unfold/fold proof method is sound.

Theorem 6 (Soundness of the Unfold/Fold Proof Method)
If 〈P, γ, C〉 �UF (G1, u1) ⇒X (G2, u2) then 〈P, γ, C〉 |= (G1, u1) ⇒X (G2, u2).
If 〈P, γ, C〉 �UF (G1, u1) ⇔X (G2, u2) then 〈P, γ, C〉 |= (G1, u1) ⇔X (G2, u2).

Example 4. (An Unfold/Fold Proof ) Let us consider again the program Append
and the replacement law (α), expressing the associativity of list concatenation,
presented in Example 2. By applying the unfold/fold proof method we will gen-
erate a set C of constraints such that law (α) holds w.r.t. 〈Append , γ, C〉.
Step 1. We start off by introducing the following two clauses:

D1. new1(L1, L2, L3, L) ← a(L1, L2, M) ∧ a(M, L3, L) w1
D2. new2(L1, L2, L3, L) ← a(L2, L3, R) ∧ a(L1, R, L) w2

First, let us construct a transformation sequence starting from Append ∪ {D1}.
By two applications of the unfolding rule, from clause D1 we derive:

E1. new1([ ], L2, L3, L) ← a(L2, L3, L) w1 + u1
E2. new1([H |T ], L2, L3, [H |R]) ← a(T, L2, M) ∧ a(M, L3, R) w1 + 2u2

By folding clause E2 using clause D1 we derive:

E3. new1([H |T ], L2, L3, [H |R]) ← new1(T, L2, L3, R) u8

together with the constraint u8 ≤ 2u2.
Now, let us construct a transformation sequence starting from Append ∪{D2}.

By unfolding clause D2 w.r.t. a(L1, R, L) in its body we get:

F1. new2([ ], L2, L3, L) ← a(L2, L3, L) w2 + u1
F2. new2([H |T ], L2, L3, [H |R]) ← a(L2, L3, M) ∧ a(T, M, R) w2 + u2
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By a symmetric application of the folding rule using clause D2, from clause F2
we get:

F3. new2([H |T ], L2, L3, [H |R]) ← new2(T, L2, L3, R) u9

together with the constraint u9 =u2.
The final programs Append ∪{E1, E3} and Append ∪{F1, F3} are syntactically

equivalent via the predicate renaming ρ such that ρ(new1) = new2. The trans-
formation sequence Append ∪ {D2} 
→ · · · 
→ Append ∪ {F1, F3} is symmetric.
Step 3. The correctness constraint system associated with the transformation
sequence Append ∪ {D1} 
→ · · · 
→ Append ∪ {E1, E3} is the following:

C1: {u1≥1, u2 ≥1, w1 + u1 ≥1, u8 ≥1, u8 ≤2u2}
The correctness constraint system associated with the transformation sequence
Append ∪ {D2} 
→ · · · 
→ Append ∪ {F1, F3} is the following:

C2: {u1≥1, u2 ≥1, w2 + u1 ≥1, u9 ≥1, u9 =u2}
Both C1 and C2 are satisfiable and thus, we infer:
〈Append , γ, C12〉 �UF

(a(L1, L2, M)∧a(M, L3, L), w1) ⇒{L1,L2,L3,L} (a(L2, L3, R)∧a(L1, R, L), w2)
where C12 is the set {w1 + u1 ≥ w2 + u1, u8 ≥ u9} ∪ C1 ∪ C2.
Notice that the constraints w1 +u1 ≥w2 +u1 and u8 ≥u9 are determined by the
two pairs of syntactically equivalent clauses (E1, F1) and (E3, F3), respectively.
By eliminating the unknowns u8 and u9, which occur in the proof of law (α)
only, and by performing some simple simplifications we get, as anticipated, the
following set C of constraints: {u1 ≥1, u2 ≥1, w1 ≥w2, w2 + u1 ≥1}.

6 Conclusions

We have presented a method for proving the correctness of rule-based logic pro-
gram transformations in an automatic way. Given a transformation sequence,
constructed by using the unfold, fold, and goal replacement transformation rules,
we associate some unknown natural numbers, called weights, with the clauses
of the programs in the transformation sequence and we also construct a set of
linear constraints that these weights must satisfy to guarantee the total correct-
ness of the transformation sequence. Thus, the correctness of the transformation
sequence can be proven in an automatic way by checking that the corresponding
set of constraints is satisfiable over the natural numbers. However, it can be
shown that our method is incomplete and, more in general, it can be shown that
there exists no algorithmic method for checking whether or not any unfold/fold
transformation sequence is totally correct.

As already mentioned in the Introduction, our method is related to the many
methods given in the literature for proving the correctness of program transfor-
mation by showing that suitable conditions on the transformation sequence hold
(see, for instance, [4,8,9,16,20,21], for the case of definite logic programs). Among
these methods, the one presented in [16] is the most general and it makes use of
clause measures to express complex conditions on the transformation sequence.
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The main novelty of our method with respect to [16] is that in [16] clause mea-
sures are fixed in advance, independently of the specific transformation sequence
under consideration, while by the method proposed in this paper we automat-
ically generate specific clause measures for each transformation sequence to be
proved correct.

Thus, in principle, our method is more powerful than the one presented in [16].
For a more accurate comparison between the two methods, we did some practical
experiments. We implemented our method in the MAP transformation system
(http://www.iasi.cnr.it/~proietti/system.html) and we worked out some
transformation examples taken from the literature. Our system runs on SICStus
Prolog (v. 3.12.5) and for the satisfiability of the sets of constraints over the
natural numbers it uses the clpq SICStus library.

By using our system we did the transformation examples presented in this
paper (see Examples 1, 3, and 4) and the following examples taken from the
literature: (i) the Adjacent program which checks whether or not two elements
have adjacent occurrences in a list [9], (ii) the Equal Frontier program which
checks whether or not the frontiers of two binary trees are equal [5,21], (iii) a
program for solving the N -queens problem [18], (iv) the In Correct Position
program taken from [8], and (v) the program that encodes a liveness property
of an n-bit shift register [16]. Even in the most complex derivation we carried
out, that is, the Equal Frontier example taken from [21], consisting of 86 trans-
formation steps, the system checked the total correctness of the transformation
within milliseconds. For making that derivation we also had to apply several re-
placement laws which were proved correct by using the unfold/fold proof method
described in Section 5.
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Abstract. We propose CoreTuLiP - the core of a trust management language
based on Logic Programming. CoreTuLiP is based on a subset of moded logic
programming, but enjoys the features of TM languages such as RT; in particular
clauses are issued by different authorities and stored in a distributed manner. We
present a lookup and inference algorithm which we prove to be correct and com-
plete w.r.t. the declarative semantics. CoreTuLiP enjoys uniform syntax and the
well-established semantics and is expressive enough to model scenarios which
are hard to deal with in RT.

1 Introduction

Trust management (TM) [6,8,13,15] is an approach to access control in decentralised
distributed systems where access control decisions are based on policy statements is-
sued by multiple principals, and stored in a distributed manner. Policy statements are
often digitally signed to ensure their authenticity and integrity; such statements are
sometimes called credentials or certificates, and – in many cases – can be represented
as datalog clauses. Indeed, like in logic programming, in TM credentials often have to
be combined together to provide an authorisation proof (e.g. a proof that a given user
has indeed access to a given resource).

One of the features of TM advocated in e.g. [16] (w.r.t. classical decentralised access
control, but also w.r.t. logic programming) is distributed storage: in practice credentials
may or may not be stored by the authority who issues them; therefore one of the promi-
nent problems of TM is that of guaranteeing that – under reasonable circumstances – if
there exists a proof of a certain (authorisation) statement, then it is also possible to find
the credentials needed to construct the proof itself.

To date, one of the most successful TM systems is the RT family, defined by Li,
Winsborough and Mitchell [15,16]. This family of languages enjoys a well-defined LP-
based declarative semantics, a syntax similar to that of SDSI [8], and offers the possi-
bility of storing credentials either by the issuer (the authority issuing them) and/or by
the subject (the entity the credential “refers to”). The location where the credential is
stored is determined by the so-called type of the credential. Li et al. show that if all
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credentials are well-typed then there exists a terminating credential chain discovery al-
gorithm which ines whether a given statement is valid in the present state.

Although the RT family is successful in achieving its goals, we believe that it presents
drawbacks which are worth investigating and improving. In particular, RT syntax is
inflexible to the extent that to accommodate natural things such as separation of duty
etc., one has to resort to a number of rather artificial extensions (RT1 until RTD , and
RTT ), which are difficult to grasp and use. Secondly, it cannot be linked naturally with
external languages. Finally, while it enjoys a declarative reading, this reading does not
reflect the crucial type information.

One could speculate that to solve these problems one should simply translate RT
into Logic Programming, and then use the latter to specify and prove authorisation
statements. This is however inaccurate, as this translation would lose one of the essen-
tial elements that make RT a trust management language, in particular the information
concerning where credentials should be stored and how they can be found when needed.

In this paper we present CoreTuLiP, which is the stripped-down version of the TuLiP
(Trust management system based on Logic Programming) system we are developing at
the University of Twente in the context of the I-Share project [12]. CoreTuLiP is basically
a subset of (function-free) moded logicprogramming, with the essential additional feature
that the clauses are not stored at a central authority, but are distributed across the different
principals involved in the system. The mode information determines where a clause will
be stored and a form of well-modedness is used to guarantee that, as the computation
progresses, enough information is available to find the clauses needed to build a proof of
the query being evaluated. Since credentials are distributed, CoreTuLiP is not amenable
to SLD resolution, and requires a mix of top-down and bottom up reasoning. Here, we
present a terminating algorithm which is able to answerwell-moded queries, togetherwith
the soundness and completeness result. Finally, we show that RT0, the core language of
the RT family, is basically equivalent to a subset of CoreTuLiP. Doing so, we prove that
it is possible to define a true trust management language which is as expressive as RT0
also in terms of credential distribution without giving up the established LP formalism.

CoreTuLiP, is also based on LP, but has a more flexible underlying syntax than RT,
and can easily accommodate extensions. For instance, it allows one to express thresh-
olds and separation of duties, which require special additions to RT0.

This paper is structured as follows: in Sect. 2 we introduce the basics of moded Logic
Programming. In Sect. 3 we introduce CoreTuLiP. In Sect. 4 we present the Lookup and
Inference AlgoRithm, and we show that it is sound and complete w.r.t. the standard LP
semantics. In Sect. 5 we compare RT0 with CoreTuLiP. Finally, in Sect. 6 we present
the related work and then we conclude the paper and propose future research in Sect. 7.

2 Preliminaries on Logic Programs

The reader is assumed to be familiar with the terminology and the basic results of the
semantics of logic programs [1,17]. Here, we refer to function-free (Datalog-like) logic
programs and we adopt the notation of [1]. We denote atoms by A, B, H, . . ., queries by
A,B,C, . . . (following [1], queries are simply conjunctions of atoms, possibly empty),
clauses by c, d, . . ., and programs by P . The empty query is denoted by �. For any

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



382 M. Czenko and S. Etalle

syntactic object (e.g. atom, clause, query) o, we denote by Var(o) the set of variables
occurring in o. Given a substitution σ = {x1/t1, ..., xn/tn} we say that {x1, . . . , xn}
is its domain (denoted by Dom(σ)) and that Var({t1, ..., tn}) is its range (denoted by
Ran(σ)). Further, we denote by Var(σ) = Dom(σ) ∪ Ran(σ). If t1, ..., tn is a permu-
tation of x1, ..., xn then we say that σ is a renaming. The composition of substitutions
is denoted by juxtaposition (θσ(X) = σ(θ(X))). We say that a syntactic object (e.g.
an atom) o is an instance of o′ iff for some σ, o = o′σ; o is called a variant of o′,
written o ≈ o′ iff o and o′ are instances of each other. A substitution θ is a unifier of
objects o and o′ iff oθ = o′θ. We denote by mgu(o, o′) any most general unifier (mgu,
in short) of o and o′. Computations are sequences of derivation steps. The non-empty
query q : A, B,C and a clause c : H ← B (renamed apart w.r.t. q) yield the re-
solvent (A,B,C)θ, provided that θ = mgu(B, H). A derivation step is denoted by

A, B,C θ=⇒P,c (A,B,C)θ. c is called its input clause, and B is called the selected
atom of q. A derivation is obtained by iterating derivation steps. A maximal sequence

δ := B0
θ1=⇒P,c1 B1

θ2=⇒P,c2 · · ·Bn
θn+1=⇒P,cn+1 Bn+1 · · · of derivation steps is called

an SLD derivation of P ∪ {B0} provided that for every step the standardisation apart
condition holds, i.e. the input clause employed at each step is variable disjoint from the
initial query B0, and from the substitutions and the input clauses used at earlier steps.
If δ is maximal and ends with the empty query (Bn = �) then the restriction of θ to the
variables of B is called its computed answer substitution (c.a.s., for short).

Moded Programs. Informally speaking, a mode indicates how the arguments of a rela-
tion should be used, i.e. which are the input and which are the output positions of each
atom, and allows one to derive properties such as absence of run-time errors for Prolog
built-ins and absence of floundering for programs with negation [3]. Most compilers
encourage the user to specify a mode declaration.

Definition 1 (Mode). Consider an n-ary predicate symbol p. By a mode for p we mean
a function mp from {1, . . . , n} to {In, Out}.

If mp(i) = In (resp. Out), we say that i is an input (resp. output) position of p (with
respect to mp). We assume that each predicate symbol has a unique mode associated
to it; multiple modes may be obtained by simply renaming the predicates. We use the
notation (X1, . . . , Xn) to indicate the mode m in which m(i) = Xi. For instance,
(In, Out) indicates the mode in which the first (resp. second) position is an input (resp.
output ) position. To benefit from the advantage of modes, programs are required to be
well-moded [3]: they have to respect some correctness conditions relating the input ar-
guments to the output ones. We denote by In(A) (resp. Out(A)) the sequence of terms
filling in the input (resp. output) positions of A, and by VarIn(A) (resp. VarOut(A))
the set of variables occupying the input (resp. output) positions of A.

Definition 2 (Well-Moded). A clause H ← B1, . . . , Bn is well-moded if ∀ i ∈ [1, n]

VarIn(Bi) ⊆
⋃i−1

j=1 VarOut(Bj) ∪ VarIn(H), and

VarOut(H) ⊆
⋃n

j=1 VarOut(Bj) ∪ VarIn(H).

A query A is well-moded iff the clause H ← A is well-moded, where H is any (dummy)
atom of zero arity. A program is well-moded if all of its clauses are well-moded.
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Note that the first atom of a well-moded query is ground in its input positions and a
variant of a well-moded clause is well-moded. The following Lemma, due to [2], shows
the “persistence” of the notion of well-modedness.

Lemma 1. An SLD-resolvent of a well-moded query and a well-moded clause that is
variable-disjoint with it, is well-moded. 	


3 Core TuLiP

We now introduce CoreTuLiP, which in first approximation is a variant of moded LP.
In CoreTuLiP, there are two disjoint types of predicates: (user-defined) credential pred-
icates and built-in constraint predicates. In CoreTuLiP,

– credential predicates have arity two;
– in an atom with a credential predicate, we call the term filling in the first argument

position the issuer, and the one filling in the second argument position the recipient.
– a credential is a clause defining credential predicate. Then, the issuer of a credential

is the term filling in the first argument position of the head.

(the relations with the notions of issuer and subject used in RT are discussed in Sect. 5).
In the full version we are going to have credential predicates with more arguments and
user defined predicates as well. These additions are, however, immaterial for this paper.

Example 1. To access a project document at the University of Twente (UT) one must be
either a project member and a Ph.D. student at the UT or at one of the partner universi-
ties, or be approved by two different assistant professors from the UT. John and Jeroen
are assistant professors at the UT. John states that a project member from one of the
partner universities can access the document if she is approved by at least one project
member who is also an associate professor at that university. Jeroen approves anyone
who is also approved by a project leader at the UT. Sandro is a project leader at the UT.

(c1) access_document(ut, X) :− (c4) approve_access(jeroen, X) :−
project_member(ut, X), approve_access(L, X),
prof(ut, A1), project_leader(ut, L).
prof(ut, A2), (c5) project_leader(ut, sandro).
A1 �= A2, (c6) phd_student(ut, marcin).
approve_access(A1, X), (c7) approve_access(sandro, rico).
approve_access(A2, X). approve_access(jeffrey, rico).

(c2) access_document(ut, X) :− (c8) associate_prof(tud, jeffrey).
phd_student(P, X), (c9) project_member(ut, john).
project_partner(ut, P ), project_member(ut, charles).
project_member(P, X). prof(ut, john).

(c3) approve_access(john, X) :− prof(ut, jeroen).
approve_access(A, X), project_partner(ut, ut).
associate_prof(P, A), (c10) project_partner(ut, tud).
project_partner(ut, P ), project_member(tud, jeffrey).
project_member(P, A), project_member(tud, rico).
project_member(P, X).
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In TM, credentials are always issued by some authority (for the sake of simplicity
here we identify authorities with the set of ground terms). In Example 1, the credential
prof(ut, john) is issued by ut (University of Twente), and has john as the recipient. With
this credential, ut states that john is one of the professors at the University of Twente.
In a practical setting, this credential is signed by ut, and ut and john are placeholders
for the implementation dependent identifiers (like public keys or URIs). Under these
assumptions, it is natural to expect that the issuer of a credential should be a ground
term.

Definition 3. Let cl : H ← B1, . . . , Bn be a clause. We say that cl is well-formed if
it is well-moded and issuer(H) is a ground term.

Modes and Decentralised Storage. Credential predicates have three legal modes:
(In, In), (In, Out), and (Out , In). The reason why the mode (Out , Out) is consid-
ered illegal is that it would allow queries with completely uninstantiated arguments like
prof(X, Y ), in which neither the issuer nor the recipient is specified. Unlike in LP, such
queries cannot be answered in a TM system because the system does not know where to
look for relevant credentials, which could be issued and stored by any authority. By re-
quiring that at least one of the arguments be input, and that the credentials be traceable
(see below) we will be able to find the credentials we need to construct the proofs we
need. For constraint predicates the only legal mode is the one “all-input” (In, . . . , In).

A peculiar feature of trust management systems is that credentials are stored in a
distributed way. For instance, in Example 1, the credential prof(ut, john) which is issued
by ut could be stored by either ut or john. Storing it by john has the advantage that john
does not have to fetch the credential at ut every time he needs it, which in a highly
distributed system may be costly. We call the depositary of a credential the authority
where the credential is stored. In CoreTuLiP, it is the mode of the credential’s head
which determines its depositary (here, we allow only one mode per relation symbol,
so credentials will be stored at one place only; by allowing multiple modes we lift this
limitation in the extended system). Returning to Example 1, if mode(prof) is either
(In, In) or (In , Out), then the credential prof(ut, john) will be stored at ut, otherwise
(if the mode is (Out , In)), john will store it. Storing the credential at some other place
would make it unfindable. The definition below generalises this concept.

Definition 4 (Traceable, Depositary). We say that a clause cl : H ← B1, . . . , Bn is
traceable if it is well-formed and one of the following conditions holds:

1. mode(H) ∈ {(In, In), (In , Out)} – in this case issuer(H) is the depositary of the
rule,

2. mode(H) = (Out , In), and recipient(H)(= In(H)) contains a ground term - in
this case recipient(H) is the depositary of the rule,

3. mode(H) = (Out, In) and recipient(H) contains a variable. In this case we re-
quire that there exists a prefix B1, . . . , Bk of the body such that

– mode(B1) = . . . = mode(Bk) = (Out , In),
– In(H) = In(B1),
– In(Bi+1) = Out(Bi), and is a variable, for i ∈ [1, k − 1],
– Out(Bk) contains a ground term,
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In this case, we say that issuer(Bk)(= Out(Bk)) is the depositary of the rule.

The third case is complex, but it has the advantage of permitting the storage of a creden-
tial at a third party (neither the issuer, nor the recipient). Consider again Example 1, with
the following mode assignments: access_document:(In, In), project_member:(In , In),
prof:(In, Out), and the remaining predicates are moded (Out , In). In this case creden-
tials c1 − c4 and c9 are stored at ut. Credential c5 is stored by sandro, c6 by marcin, c7
by rico, and c8 by jeffrey. tud stores all the credentials c10.

We can now introduce the concept of a state.

Definition 5. A state P is a finite collection of pairs (a, Pa) where Pa is a collection of
traceable credentials and a is the depositary of these credentials.

The declarative semantics of a state is simply given in terms of logic programming as
follows (where for simplicity we assume that all constraints are user-defined)

Definition 6. Let P be the state {(a1, P1), . . . , (an, Pn)}, and A be an atom

– We denote by P (P) the set of clauses P1 ∪ · · · ∪ Pn. We call P (P) the LP-
counterpart of state P .

– We say that A is true in state P iff P (P) ∪ C |= A, where C is a first order theory
determining the meaning of credential predicates.

4 The Lookup and Inference AlgoRithm (LIAR)

The goal of an authorisation system is to check whether a fact is true in a given state.
Since the state P can be very large and distributed across different agents, it is essential
to have an algorithm which takes care of computing whether a given query is true in P
without having to collect the entire P (P). An extra difficulty comes from the fact that
clauses might easily be mutually recursive, and that cases 2 and 3 of Definition 4 make
it impossible to follow a straightforward top-down reasoning. In this section we present
a suitable algorithm. Before we proceed we need the following definitions.

Definition 7 (Connected). We say that two atoms A and B that have mode (Out , In)
are connected if recipient(A) is ground and recipient(A) = recipient(B).

Let A be an atom and S be a set of atoms. We adopt the following conventions:

(i) We write A
∼
∈ S iff ∃A′ ∈ S, such that A′ ≈ A (i.e. A′ is a renaming of A).

(ii) We write A
∼
/∈ S iff �A′ ∈ S such that A′ ≈ A.

(iii) We write A
θ

↪→ S iff ∃A′
∼
∈ S standardised apart w.r.t. A such that γ =mgu(A, A′)

and Aθ ≈ Aγ.

Definition 8. Let A be an atomic well-moded query. We define the Lookup and Infer-
ence AlgoRithm (LIAR) which given a state P and a query A as an input returns the
(possibly empty) sets of atoms FACTSTACK and GOALSTACK. The algorithm is re-
ported in Fig. 1.
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INPUT : A. /* A is the initial atomic query */
Init:

CLSTACK : {A ← A} ;

FACTSTACK = GOALSTACK = VISITED = ∅ ;
SATISFIED = FALSE ;

REPEAT
Phase 1 (Top-down resolution):
CHOOSE:

c : H ← B, C,D ∈ CLSTACK and
B′ ⊆ FACTSTACK, such that the following conditions hold:

(i) B and B′ unify with mgu θ,
(ii) Cθ is well-moded,

(iii) Cθ
∼
/∈ GOALSTACK,

(iv) IF mode(C) = (Out , In) THEN recipient(Cθ) /∈ VISITED ENDIF
ADD Cθ to GOALSTACK;
IF mode(C) ∈ {(In,Out), (In, In)} THEN

FETCH at issuer(Cθ) all clauses {c1, . . . , cn} whose head unifies
with Cθ with mgus {γ1, . . . , γn} respectively ;

FOR EACH ciγi ∈ {c1γ1, . . . , cnγn}DO

IF ciγi

∼
/∈ CLSTACK THEN ADD ciγi to CLSTACK ENDIF

END FOR EACH
ELSEIF mode(C) = (Out , In) THEN

FETCH all clauses {c1, . . . , cn} stored at recipient(Cθ) whose head
has mode (Out , In) ;

ADD recipient(Cθ) to VISITED;

FOR EACH ci ∈ {c1, . . . , cn} DO

IF ci

∼
/∈ CLSTACK THEN ADD ci to CLSTACK ENDIF

END FOR EACH
ENDIF
Phase 2 (Bottom-up model-building):
REPEAT

CHOOSE: H ← B ∈ CLSTACK and B′ ⊆ FACTSTACK,
such that B and B′ unify with mgu θ ;

IF Hθ /∈ FACTSTACK THEN ADD Hθ to FACTSTACK ENDIF;

IF mode(H) = (Out , In) AND issuer(Hθ) /∈ VISITED THEN
ADD to CLSTACK the clause:

dummy(X, issuer(Hθ)) ← dummy(X, issuer(Hθ))
ENDIF

UNTIL nothing can be added to FACTSTACK;
IF A is ground and A ∈ FACTSTACK THEN SATISFIED = TRUE ENDIF

UNTIL SATISFIED OR nothing can be added to FACTSTACK and CLSTACK;
OUTPUT = FACTSTACK;

Fig. 1. The Lookup and Inference AlgoRithm (LIAR). We assume that dummy is a reserved pred-
icate symbol, with mode (Out , In). Statements in boxes are optional and included only for opti-
misation purposes.
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The algorithm maintains three stacks: CLSTACK contains the set of clauses collected
so far, FACTSTACK contains the set of atomic logical consequences inferred from
CLSTACK, and GOALSTACK contains the set of atomic goals already processed (to han-
dle loops). Additionally, the VISITED stack contains the set of entities that have been
visited during the processing. Initially, CLSTACK contains a single clause constructed
from the initial atomic query A; the other stacks are empty. The algorithm is divided in
two phases. Phase 1 contains the credential discovery. First, it selects a new well-moded
atom Cθ from the body of a clause in CLSTACK and then, depending on its mode, it
fetches the new credentials from either issuer(Cθ) or recipient(Cθ). The fetched cre-
dentials are then added to the CLSTACK. Notice that, when mode(C) = (Out , In),
all clauses whose head has mode (Out , In) must be fetched from recipient(Cθ), and
not only the clauses whose head unifies with Cθ. This is because in this case one does
not know which credentials may be needed to prove Cθ, yet. To overcome this prob-
lem, the algorithm overestimates and fetches all credentials with the right mode being
stored at recipient(Cθ). In Phase 2, the model of the set of clauses in the CLSTACK

is build bottom-up. Newly inferred facts are added to the FACTSTACK. For the facts
having mode (Out , In), the algorithm adds a dummy clause to CLSTACK, so that the
“subject traceable” chains can be discovered properly. The algorithm extends naturally
to queries containing more than one atom. The following results show that LIAR al-
gorithm is sound and complete w.r.t. the standard LP semantics, i.e. the centralised
algorithm based on the SLD resolution. All proofs are reported in [9]. We need the
following lemma.

Lemma 2. Let P be a state and FACTSTACK be the result of the algorithm execution
for some well-moded query. Let A be an atom in FACTSTACK. Then A is ground.

The soundness result is rather straightforward.

Theorem 1 (soundness). Let P be a state and FACTSTACK be the result of executing
LIAR on P and a well-moded query. Then ∀A ∈ FACTSTACK, P (P) |= A.

Proof. It is easy to see that, by construction, if an atom A is added to FACTSTACK,
then CLSTACK |= A. Since ∀c ∈ CLSTACK c is an instance of a clause c′ ∈ P (P), it
follows that P (P) |= A. 	

The following completeness result guarantees among other things that – after executing
LIAR on a state P and some well-moded query – for any goal A ∈ GOALSTACK it
holds that if there exists a successful SLD derivation of A in P (P) with c.a.s. θ then

A
θ

↪→ FACTSTACK.

Theorem 2 (completeness). Let P be a state and then FACTSTACK, GOALSTACK be
the result of executing LIAR on P and a given well-moded goal.

Then ∀C ∈ GOALSTACK, if ∃ a successful SLD derivation δ : C
θ−→P (P) � then

C
θ

↪→ FACTSTACK.

5 CoreTuLiP vs. RT0

In this section we are going to compare CoreTuLiP with the well-established RT0 trust
management language. We are going to show that – in most respects – CoreTuLiP is
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at least as expressive as RT0. To this end, we first present a slightly simplified (yet
expressively equivalent) version of RT0 as given in [16]: A principal is a uniquely
identified individual or process. A principal can define a role, which is indicated by a
principal’s name followed by a role name, separated by a dot. For instance a.r, and
alice.pictures are roles. For the sake of uniformity, we depart from [16] in using names
starting with a lowercase letter (sometimes with subscripts) to indicate role names. A
role denotes a set of principals – the members of the role. RT0 allows a principal to
issue four kinds of statements:

– Simple Member: a.r ← d. “a asserts that d is a member of a.r.”
– Simple Inclusion: a.r ← b.r1. “a asserts that a.r includes (all members of) b.r1.”
– Linking Inclusion: a.r ← a.r1.r2. “a asserts that a.r includes b.r2 for every b that

is a member of a.r1.”
– Intersection Inclusion: a.r ← b1.r1 ∩ b2.r2. “a asserts that a.r includes every

principal who is a member of both b1.r1 and b2.r2.”

An RT0 policy (indicated by S) is a set of RT0 statements. Its semantics is defined by
translating it into a semantic program, SP(S), which is a Prolog program with only one
ternary predicate m. Given an RT0 statement c, the semantic program of c, SP(c), is
defined as follows:

SP(a.r ← d)) = m(a, r, d).
SP((a.r ← b.r1)) = m(a, r, X) :− m(b, r1, X).

SP((a.r ← a.r1.r2)) = m(a, r, X) :− m(a, r1, Y ), m(Y, r2, X).
SP((a.r ← b1.r1 ∩ b2.r2)) = m(a, r, X) :− m(b1, r1, X), m(b2, r2, X).

SP extends to the set of statements in the obvious way: SP(S) = {SP(c) | c ∈ S}.
Intuitively, m(a, r, d) indicates that d is a member of the role a.r. Finally, given an
RT0 policy S, the semantics of a role a.r is defined in terms of atoms entailed by the
semantic program: [[a.r]]SP(S) = {d | SP(S) |= m(a, r, d)}.

The Type System of RT0. To ensure traceability, RT0 comes with a type system [16].
In the original presentation, each role name has two types: an issuer-side type and a
subject-side type. Here – also for the sake of simplicity – we assume that each role
has just one of the following three type values: issuer-traces-all (ITA), issuer-traces-def
(ITD), and subject-traces-all (STA). To extend the results we present here to the full
version (i.e. including all possible combinations of RT0 types), we need to extend Core
TuLiP in a straightforward way by allowing predicates with multiple modes.

Concerning storage, if a role name r is issuer-traces-all or issuer-traces-def, then
principal a has to store all the credentials defining a.r. When a role name r is subject-
traces-all then a credential of the form a.r ← e, must be stored by every subject of
this credential. The successful discovery requires that each credential in the policy S
be well-typed. For the sake of simplicity, we use the following definition of well-typed
credentials (equivalent to [16]).

Definition 9. Let c be an RT0 credential. We say that c is well-typed iff the combination
of type value assignments appears as a valid entry in Table 1.
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Table 1. Well-Typed RT0 credentials

a.r ← b.r1

r1 ITA ITD STA
ITA OK

r ITD OK OK OK
STA OK

a.r ← a.r1.r2

r1 ITA ITD STA
r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK
r ITD OK OK OK OK OK

STA OK

a.r ← b1.r1 ∩ b2.r2

r1 ITA ITD STA
r2 ITA ITD STA ITA ITD STA ITA ITD STA

ITA OK OK OK OK OK
r ITD OK OK OK OK OK OK OK OK OK

STA OK OK OK OK OK

For example, take the credential c : a.r ← a.r1.r2 and assume first that type(r)
and type(r1) is ITD, and type(r2) is STA. Then, after checking with Table 1, we see
that c is well-typed w.r.t. this type value assignment. On the other hand, if type(r) =
type(r1) = type(r2) = ITD, then c is not well-typed as there is no valid entry for this
type value assignment in Table 1. Note that simple member credentials (of the form
a.r ← b) are always well-typed.

Three Sorts of Goals. If the set of credentials S is well-typed then there exists a termi-
nating algorithm supporting three sorts of goals.

1. “given a.r, list all principals in [[a.r]]SP(S)”; this goal can be answered provided
that r is issuer-traces-all.

2. “given a.r and b, check if b is a member of [[a.r]]SP(S)”; this goal can be answered
in all cases.

3. “given b, list all roles a.r such that b is a member of [[a.r]]SP(S)”; this goal can be
answered only partially: given b, the system is able to find all subject traceable roles
a.r (i.e. the roles a.r where type(r) = STA) such that b is a member of [[a.r]]SP(S).

5.1 Translating RT0 into CoreTuLiP

We now demonstrate that CoreTuLiP is – in most cases – more expressive than RT0 by
showing that an arbitrary RT0 policy can be translated in a straightforward way into an
equivalent CoreTuLiP state. First, we define a mapping T from RT0 to CoreTuLiP.

Definition 10. Let c be an RT0 credential. Then T (c) is defined as follows:

T (a.r ← d) = r(a, d).
T (a.r ← b.r1) = r(a, X) :− r1(b, X).

T (a.r ← a.r1.r2) =
{

r(a, X) :− r2(Y, X), r1(a, Y ). if type(r1) �= ITA,
r(a, X) :− r1(a, Y ), r2(Y, X). otherwise.

T (a.r ← b1.r1 ∩ b2.r2) =
{

r(a, X) :− r2(b2, X), r1(b1, X). if type(r1) �= ITA,
r(a, X) :− r1(b1, X), r2(b2, X). otherwise.

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



390 M. Czenko and S. Etalle

Concerning the mode of the predicates, we have: if the RT0 type of r is ITA then the
mode of r in T (c) is (In, Out), if the RT0 type of r is ITD then the mode of r in T (c) is
(In, In), and if the RT0 type of r is STA then the mode of r in T (c) is (Out , In). 	


The following theorem shows that, from the view point of the declarative semantics, S
and T (S) are equivalent (recall that m is the fixed predicate symbol used in SP(S)).
The proof can be found in [9].

Theorem 3. Let S be an RT0 policy. Then SP(S) |= m(a, r, d) iff T (S) |= r(a, d).

This shows that each RT0 policy can be translated into a declaratively equivalent Core-
TuLiP state. Now, to prove the full equivalence we still have to prove two things, namely
that (a) if an RT0 credential is stored at principal a then its corresponding CoreTuLiP
statement is stored at a as well, and that (b) the CoreTuLiP system can answer the same
goals the RT0 system can. We start with the following proposition proven in [9].

Proposition 1. Let c be an RT0 credential.

(a) If c is stored at a then T (c) is also stored at a.
(b) If c is a well-typed then T (c) is traceable.

At last, we have to show how RT0 goals can be transformed into (legal, i.e. well-moded)
CoreTuLiP queries. Since RT does not have a formal notation to express goals we have
to be a bit verbose.

Remark 1 (Translating RT0 goals). Let S be a well-typed RT0 policy and T (S) its
CoreTuLiP equivalent. Let us consider the different sorts of goals supported by RT0.

Sort 1: the general goal of this sort is “given a.r, list all principals in [[a.r]]SP(S)”. This
is translated into the query r(a, X). This goal can be answered in RT0 only if the role
r has type ITA. But in this case the mode of r in T (S) is (In, Out), and the query
r(a, X) is well-moded w.r.t. it. Therefore, we can conclude that goals of sort 1 can be
safely expressed in CoreTuLiP.

Sort 2: the general goal of this sort is “given a.r and b, check if b is a member of
[[a.r]]SP(S)”. This is translated into the query r(a, b), which being ground is always
well-moded. Therefore, we can conclude that goals of sort 2 can be safely expressed in
CoreTuLiP.

Sort 3: the general goal of this sort is “given b, list all a.r such that b is a member of
[[a.r]]SP(S)”. Such goals have no corresponding CoreTuLiP translation. The technical
reason behind this limitation is purely of syntactic nature: the translation would be
higher-order query (X(Y, b), where X and Y are variables). There are two reasons why
we believe that this limitation of CoreTuLiP w.r.t. RT0 is hardly relevant in practice:
first, RT0 allows to express the query, but it is not able to give a complete answer in
any case: it can only find all such a.r which are also subject traceable. Secondly (also
because RT0 is not able to provide a full answer), this kind of goal is not used in practice
on their own, but only as a subgoal of the goals of Sort 2. 	


The syntactic inability of CoreTuLiP to express goals of Sort 3 is actually a conscious
design choice we made to keep the syntax manageable (to express goals of this sort we
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would need a “polymorphic” mode system in which the actual mode of an atom does
not only depend on its predicate symbol but also on some of its arguments). Actually,
our LIAR algorithm would be able to answer such queries as well.

Summarising, Theorem 3, Proposition 1, and Remark 1 allow us to say that Core-
TuLiP is at least as expressive as RT0, with the small exception of the goals of Sort 3.
In proving this, we have made the restrictive assumption that an RT0 role name has just
one of the following three types: ITA (issuer-traces-all), ITD (issuer-traces-def), or STA
(subject-traces-all). The extension to the full version (i.e. including all possible combi-
nations of RT0 types) can be done in a straightforward way by extending Core TuLiP
so that it allows predicates with multiple modes.

5.2 A Flexible Syntax

As we said already, CoreTuLiP is simply the core language of the TM system we are
developing. The full language will allow credentials with more than two arguments
and user defined predicates. Nevertheless, CoreTuLiP is already expressive enough to
express complex policies (like thresholds or separation of duty) that in RT require the
adoption of special operators (which are present in more expressive members of the RT
family RT1, RT2, RTT , or RTD). Consider for instance the following statement taken
from [15] “a says that an entity is a member of a.r if one member of a.r1 and two
different members of a.r2 all say so”. This policy cannot be expressed in RT0, and
to express this in RT one needs to use the so-called manifold roles, which extend the
notion of roles by allowing role members to be collections of entities (rather than just
principals). This is done in RT T by defining the operators � and ⊗. A type-5 credential
of the form a.r ← b1.r1�b2.r2 says that {s1∪s2} is a member of a.r if s1 is a member
of b1.r1 and s2 is a member of b2.r2. A type-6 credential a.r ← b1.r1 ⊗ b2.r2 has a
similar meaning, but it additionally requires that s1 ∩s2 = ∅. With these two additional
types, one can express the above statement using the following three credentials:

a.r ← a.r4.r

a.r4 ← a.r1 � a.r3

a.r3 ← a.r2 ⊗ a.r2

In CoreTuLiP, on the other hand, this policy can be expressed quite naturally with the
following one line:

r(a, X) :− r1(a, Y ), r(Y, X), r2(a, Z1), r2(a, Z2), Z1 �= Z2, r(Z1, X), r(Z2, X).

Notably, to express this, we don’t have to use manifold-like structures which are, in our
opinion, rather hard to grasp.

6 Related Work

The term “trust management” was first coined by Blaze, Feigenbaum, and Lacy [7] as
an answer to the inadequacy of traditional authorisation mechanisms based on identity-
based public-key systems like X.509. X.509 strongly depends on a centralised hierarchy
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of certificate authorities (CA), which significantly restricts the possible application area
in the distributed heterogeneous systems. In their work, Blaze et al. identify various
requirements that a trust management system should satisfy and they introduce Policy-
Maker - a trust management engine fulfilling these requirements. A direct descendant
of PolicyMaker is KeyNote [5]. The reader can find a comparison of PolicyMaker and
KeyNote in [6].

Clark et al. developed SDSI/SPKI [8] that combines local namespaces and the cor-
responding name certificates of SDSI [20] with authorisation certificates of SPKI [10].
They present a TM language that they prove to be expressive enough for many ac-
cess control scenarios. All these TM systems avoid the problem of credential storage.
In all these approaches it is assumed that all required credentials can be found when
needed and as such they are not well-prepared to face the reality of the today’s highly
distributed world. In [21] Winsborough and Li identify the features a “good” language
for credentials should have, one of those being the support for distributed storage. The
RT family of Trust Management Languages [16,15] is the first in which the problem
of credential discovery is given an extensive treatment. In particular, in [16], a type
system is introduced in order to restrict the number of possible credential storage op-
tions. In Sect. 5 we compare the type system of RT0 with our approach to the credential
discovery problem.

Li, Grosof, and Feigenbaum in [14] developed a logic-based language, called Dele-
gation Logic (DL), to represent policies, credentials, and requests for distributed autho-
risations. Monotonic version of Delegation Logic – called D1LP – is based on Logic
Programming language Datalog. D1LP extends Datalog with constructs that feature
delegation depth and a wide variety of complex principals.

Bertino et al. [4] introduce an XML-based trust negotiation language X -TNL used
for expressing credentials and disclosure policies in the Trust-X system. Though Trust-
X policies are formalised using logic rules, it also does not directly support credential
discovery.

The well-known eXtensible Access Control Markup Language (XACML) [19] sup-
ports the distributed policies and also provides a profile for role based access control
(RBAC). However, in XACML, it is the responsibility of the Policy Decision Point
(PDP) – an entity handling access requests – to know where to look for the missing
attribute values in the request.

7 Conclusions

In this paper we introduce CoreTuLiP, a true Trust Management Language which en-
joys the advantages of LP syntax and of its declarative semantics. CoreTuLiP forms the
basis for the TuLiP TM language we are developing at the UT (which will include user-
defined predicates and will enjoy most features of moded logic programs, including
interface with other languages, debugging facilities, etc.). The main purpose of Core-
TuLiP is to provide a theoretical basis for the further developments.

CoreTuLiP enjoys the advantages of trust management languages: for instance, state-
ments may be issued by multiple authorities and be stored by authorities different from
the issuing one. To deal with the problem of finding the credentials which are needed for
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a proof, we define the notion of traceable credentials and present a Lookup and Infer-
ence AlgoRithm (LIAR), which we show to be correct and complete w.r.t. the standard
declarative semantics. We also compare CoreTuLiP with RT0 and show that each RT0
credential and goal translates in a straightforward way into Core TuLiP (with the small
exception of the goals of Sort 3).

The theoretical relevance of this paper is that we show that it is possible to define
a true TM language without leaving the well-established LP formalism. The practical
relevance lies in the much greater flexibility, extendibility and accessibility that LP lan-
guage enjoys with respect to – for instance – RT. As we have discussed, to accommodate
various needs, the language RT0 has developed a relatively large number of extensions,
which are in our opinion often hard to grasp. We thought that this was the price we
had to pay to have a true TM language, but CoreTuLiP shows that this can be done
otherwise.

Future Work. CoreTuLiP can be extended in several directions. First we plan to inves-
tigate extending CoreTuLiP to support non-stratified negation. This is connected to our
previous work on RT�[18], where we extend RT0 with negation-in-context. Secondly,
we are going to add support for integrity constraints for TM systems [11]. We also
plan to provide an implementation for CoreTuLiP, possibly supporting the XACML
standard.

Acknowledgements. We would like to thank Pieter Hartel and Jeroen Doumen from the
University of Twente for their feedback and valuable comments to this paper.
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Abstract. As logic programming applications grow in size, Prolog systems need
to efficiently access larger and larger data sets and the need for any- and multi-
argument indexing becomes more and more profound. Static generation of multi-
argument indexing is one alternative, but applications often rely on features that
are inherently dynamic which makes static techniques inapplicable or inaccurate.
Another alternative is to employ dynamic schemes for flexible demand-driven
indexing of Prolog clauses. We propose such schemes and discuss issues that
need to be addressed for their efficient implementation in the context of WAM-
based Prolog systems. We have implemented demand-driven indexing in two dif-
ferent Prolog systems and have been able to obtain non-negligible performance
speedups: from a few percent up to orders of magnitude. Given these results, we
see very little reason for Prolog systems not to incorporate some form of dynamic
indexing based on actual demand. In fact, we see demand-driven indexing as only
the first step towards effective runtime optimization of Prolog programs.

1 Introduction

The WAM [1] has mostly been a blessing but occasionally also a curse for Prolog sys-
tems. Its ingenious design has allowed implementors to get byte code compilers with
decent performance — it is not a fluke that most Prolog systems are still based on the
WAM. On the other hand, because the WAM gives good performance in many cases,
implementors have not incorporated in their systems many features that drastically de-
part from WAM’s basic characteristics. For example, first argument indexing is suffi-
cient for many Prolog applications. However, it is clearly sub-optimal for applications
accessing large data sets; for a long time now, the database community has recognized
that good indexing is the basis for fast query processing.

As logic programming applications grow in size, Prolog systems need to efficiently
access larger and larger data sets and the need for any- and multi-argument indexing
becomes more and more profound. Static generation of multi-argument indexing is one
alternative. The problem is that this alternative is often unattractive because it may
drastically increase the size of the generated byte code and do so unnecessarily. Static
analysis can partly address this concern, but in applications that rely on features which
are inherently dynamic (e.g., generating hypotheses for inductive logic programming
data sets during runtime) static analysis is inapplicable or grossly inaccurate. Another
alternative, which has not been investigated so far, is to do flexible indexing on demand
during program execution.
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This is precisely what we advocate with this paper. More specifically, we present a
small extension to the WAM that allows for flexible indexing of Prolog clauses during
runtime based on actual demand. For static predicates, the scheme we propose is partly
guided by the compiler; for dynamic code, besides being demand-driven by queries, the
method needs to cater for code updates during runtime. Where our schemes radically
depart from current practice is that they generate new byte code during runtime, in effect
doing a form of just-in-time compilation. In our experience these schemes pay off. We
have implemented Demand-Driven Indexing in two different Prolog systems (YAP and
XXX) and have obtained non-trivial speedups, ranging from a few percent to orders of
magnitude, across a wide range of applications. Given these results, we see very little
reason for Prolog systems not to incorporate some form of indexing based on actual
demand from queries. In fact, we see Demand-Driven Indexing as only the first step
towards effective runtime optimization of Prolog programs.

Organization. After commenting on the state of the art and related work concerning
indexing in Prolog systems (Sect. 2) we briefly review indexing in the WAM (Sect. 3).
We then present Demand-Driven Indexing schemes for static (Sect. 4) and dynamic
(Sect. 5) predicates, their implementation in two Prolog systems (Sect. 6) and the per-
formance benefits they bring (Sect. 7). The paper ends with some concluding remarks.

2 State of the Art and Related Work

Many Prolog systems still only support indexing on the main functor symbol of the
first argument. Some others, such as YAP version 4, can look inside some compound
terms [2]. SICStus Prolog supports shallow backtracking [3]; choice points are fully
populated only when it is certain that execution will enter the clause body. While
shallow backtracking avoids some of the performance problems of unnecessary choice
point creation, it does not offer the full benefits that indexing can provide. Other sys-
tems such as BIM-Prolog [4], SWI-Prolog [5] and XSB [6] allow for user-controlled
multi-argument indexing. Notably, ilProlog [7] uses compile-time heuristics and gener-
ates code for multi-argument indexing automatically. In all these systems, this support
comes with various implementation restrictions. For example, in SWI-Prolog at most
four arguments can be indexed; in XSB the compiler does not offer multi-argument
indexing and the predicates need to be asserted instead; we know of no system where
multi-argument indexing looks inside compound terms. More importantly, requiring
users to specify arguments to index on is neither user-friendly nor guarantees good per-
formance results.

Recognizing the need for better indexing, researchers have proposed more flexible
indexing mechanisms for Prolog. For example, Hickey and Mudambi proposed switch-
ing trees [8], which rely on the presence of mode information. Similar proposals were
put forward by Van Roy, Demoen and Willems who investigated indexing on several
arguments in the form of a selection tree [9] and by Zhou et al. who implemented a
matching tree oriented abstract machine for Prolog [10]. For static predicates, the XSB
compiler offers support for unification factoring [11]; for asserted code, XSB can rep-
resent databases of facts using tries [12] which provide left-to-right multi-argument
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indexing. However, in XSB none of these mechanisms is used automatically; instead
the user has to specify appropriate directives.

Long ago, Kliger and Shapiro argued that such tree-based indexing schemes are not
cost effective for the compilation of Prolog programs [13]. Some of their arguments
make sense for certain applications, but, as we shall show, in general they underestimate
the benefits of indexing on EDB predicates. Nevertheless, it is true that unless the modes
of predicates are known we run the risk of doing indexing on output arguments, whose
only effect is an unnecessary increase in compilation times and, more importantly, in
code size. In a programming language such as Mercury [14] where modes are known
the compiler can of course avoid this risk; indeed in Mercury modes (and types) are used
to guide the compiler generate good indexing tables. However, the situation is different
for a language like Prolog. Getting accurate information about the set of all possible
modes of predicates requires a global static analyzer in the compiler — and most Prolog
systems do not come with one. More importantly, it requires a lot of discipline from the
programmer (e.g., that applications use the module system religiously and never bypass
it). As a result, most Prolog systems currently do not provide the type of indexing that
applications require. Even in systems such as Ciao [15], which do come with a built-
in static analyzer and more or less force such a discipline on the programmer, mode
information is not used for multi-argument indexing.

The situation is actually worse for certain types of Prolog applications. For example,
consider applications in the area of inductive logic programming. These applications
on the one hand have high demands for effective indexing since they need to efficiently
access big datasets and on the other they are unfit for static analysis since queries are of-
ten ad hoc and generated only during runtime as new hypotheses are formed or refined.
Our thesis is that the abstract machine should be able to adapt automatically to the run-
time requirements of such or, even better, of all applications by employing increasingly
aggressive forms of dynamic compilation. As a concrete example of what this means
in practice, in this paper we will attack the problem of satisfying the indexing needs
of applications during runtime. Naturally, we will base our technique on the existing
support for indexing that the WAM provides, but we will extend this support with the
technique of Demand-Driven Indexing that we describe in the next sections.

3 Indexing in the WAM

To make the paper relatively self-contained we review the indexing instructions of the
WAM and their use. In the WAM, the first level of dispatching involves a test on the
type of the argument. The switch on term instruction checks the tag of the derefer-
enced value in the first argument register and implements a four-way branch where one
branch is for the dereferenced register being an unbound variable, one for being atomic,
one for (non-empty) list, and one for structure. In any case, control goes to a bucket
of clauses. In the buckets for constants and structures the second level of dispatching
involves the value of the register. The switch on constant and switch on structure in-
structions implement this dispatching: typically with a fail instruction when the bucket
is empty, with a jump instruction for only one clause, with a sequential scan when the
number of clauses is small, and with a hash table lookup when the number of clauses
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has property(d1,salmonella,p).
has property(d1,salmonella n,p).
has property(d2,salmonella,p).
has property(d2,cytogen ca,n).
has property(d3,cytogen ca,p).

(a) Some Prolog clauses

switch on constant r1 5 T1
try L1
retry L2
retry L3
retry L4
trust L5

T1: Hash Table Info
d1 try L1

trust L2
d2 try L3

trust L4
d3 jump L5

(b) WAM indexing

L1: get constant r1 d1
get constant r2 salmonella
get constant r3 p
proceed

L2: get constant r1 d1
get constant r2 salmonella n
get constant r3 p
proceed

L3: get constant r1 d2
get constant r2 salmonella
get constant r3 p
proceed

L4: get constant r1 d2
get constant r2 cytogen ca
get constant r3 n
proceed

L5: get constant r1 d3
get constant r2 cytogen ca
get constant r3 p
proceed

(c) Code for the clauses

switch on constant r1 5 T1
dindex on constant r2 5 3
dindex on constant r3 5 3
try L1
retry L2
retry L3
retry L4
trust L5

T1: Hash Table Info
d1 try L1

trust L2
d2 try L3

trust L4
d3 jump L5

(d) Any arg indexing

Fig. 1. Part of the Carcinogenesis dataset and WAM code that a byte code compiler generates

exceeds a threshold. For this reason the switch on constant and switch on structure
instructions take as arguments the hash table T and the number of clauses N the ta-
ble contains. In each bucket of this hash table and also in the bucket for the variable
case of switch on term the code sequentially backtracks through the clauses using a
try-retry-trust chain of instructions. The try instruction sets up a choice point, the retry
instructions (if any) update certain fields of this choice point, and the trust instruction
removes it.

The WAM has additional indexing instructions (try me else and friends) that allow
indexing to be interspersed with the code of clauses. We will not consider them here.
This is not a problem since the above scheme handles all programs. Also, we will feel
free to do some minor modifications and optimizations when this simplifies things.

Let’s see an example. Consider the Prolog code shown in Fig. 1(a), a fragment of the
machine learning dataset Carcinogenesis. These clauses get compiled to the WAM code
shown in Fig. 1(c). The first argument indexing code that a Prolog compiler generates is
shown in Fig. 1(b). This code is typically placed before the code for the clauses and the
switch on constant is the entry point of the predicate. Note that compared with vanilla
WAM this instruction has an extra argument: the register on the value of which we index
(r1). This extra argument will allow us to go beyond first argument indexing. Another
departure from the WAM is that if this argument register contains an unbound variable
instead of a constant then execution will continue with the next instruction; in effect we
have merged part of the functionality of switch on term into the switch on constant
instruction. This small change in the behavior of switch on constant will allow us to
get Demand-Driven Indexing. Let’s see how.
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4 Demand-Driven Indexing of Static Predicates

For static predicates the compiler has complete information about all clauses and shapes
of their head arguments. It is both desirable and possible to take advantage of this infor-
mation at compile time and so we treat the case of static predicates separately. We will
do so with schemes of increasing effectiveness and implementation complexity.

4.1 A Simple WAM Extension for Any Argument Indexing

Let us initially consider the case where the predicates to index consist only of Datalog
facts. This is commonly the case for all extensional database predicates where indexing
is most effective and called for.

Refer to the example in Fig. 1. The indexing code of Fig. 1(b) incurs a small cost for
a call where the first argument is a variable (namely, executing the switch on constant
instruction) but the instruction pays off for calls where the first argument is bound. On
the other hand, for calls where the first argument is a free variable and some other ar-
gument is bound, a choice point will be created, the try-retry-trust chain will be used,
and execution will go through the code of all clauses. This is clearly inefficient, more
so for larger data sets. We can do much better with the relatively simple scheme shown
in Fig. 1(d). Immediately after the switch on constant instruction, we can statically
generate dindex on constant (demand indexing) instructions, one for each remaining
argument. Recall that the entry point of the predicate is the switch on constant instruc-
tion. The dindex on constant ri N A instruction works as follows:

– if the argument ri is a free variable, execution continues with the next instruction;
– otherwise, Demand-Driven Indexing kicks in as follows. The abstract machine

scans the WAM code of the clauses and creates an index table for the values of the
corresponding argument. It can do so because the instruction takes as arguments
the number of clauses N to index and the arity A of the predicate. (In our example,
the numbers 5 and 3.) For Datalog facts, this information is sufficient. Because the
WAM byte code for the clauses has a very regular structure, the index table can
be created very quickly. Upon its creation, the dindex on constant instruction gets
transformed to a switch on constant. Again this is straightforward because of the
two instructions have similar layouts in memory. Execution of the abstract machine
then continues with the switch on constant instruction.

Figure 2 shows the index table T2 which is created for our example and how the in-
dexing code looks after the execution of a call with mode (out,in,?). Note that the
dindex on constant instruction for argument register r2 has been appropriately patched.
The call that triggered Demand-Driven Indexing and subsequent calls of the same mode
will use table T2. The index for the second argument has been created.

The main advantage of this scheme is its simplicity. The compiled code (Fig. 1(d))
is not significantly bigger than the code which a WAM-based compiler would generate
(Fig. 1(b)) and, if Demand-Driven Indexing turns out unnecessary during runtime (e.g.
execution encounters only open calls or with only the first argument bound), the extra
overhead is minimal: the execution of some dindex on constant instructions for the
open call only. In short, this is a simple scheme that allows for indexing on any single
argument. At least for big sets of Datalog facts, we see little reason not to use it.
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switch on constant r1 5 T1
switch on constant r2 5 T2
dindex on constant r3 5 3
try L1
retry L2
retry L3
retry L4
trust L5

T1: Hash Table Info
d1 try L1

trust L2
d2 try L3

trust L4
d3 jump L5

T2: Hash Table Info
salmonella try L1

trust L3
salmonella n jump L2
cytrogen ca try L4

trust L5

Fig. 2. WAM code after demand-driven indexing for argument 2; T2 is generated dynamically

Optimizations. Because we are dealing with static code, there are opportunities for
some easy optimizations. Suppose we statically determine that there will never be any
calls with in mode for some arguments or that these arguments are not discriminat-
ing enough.1 Then we can avoid generating dindex on constant instructions for them.
Also, suppose we know that some arguments are most likely than others to be used in
the in mode. Then we can simply place the dindex on constant instructions for them
before the instructions for other arguments. This is possible since all indexing instruc-
tions take the argument register number as an argument; their order does not matter.

4.2 From Any Argument Indexing to Multi-argument Indexing

The scheme of the previous section gives us only single argument indexing. However,
all the infrastructure we need is already in place. We can use it to obtain any fixed-order
multi-argument Demand-Driven Indexing in a straightforward way.

Note that the compiler knows exactly the set of clauses that need to be tried for each
query with a specific symbol in the first argument. For multi-argument Demand-Driven
Indexing, instead of generating for each hash bucket only try-retry-trust instructions,
the compiler can prepend appropriate demand indexing instructions. We illustrate this
on our running example. The table T1 contains four dindex on constant instructions:
two for each of the remaining two arguments of hash buckets with more than one al-
ternative. For hash buckets with none or only one alternative (e.g., for d3’s bucket)
there is obviously no need to resort to Demand-Driven Indexing for the remaining ar-
guments. Figure 3 shows the state of the hash tables after the execution of queries
has property(C,salmonella,T), which creates T2, and has property(d2,P,n)
which creates the T3 table and transforms the dindex on constant instruction for d2
and register r3 to the appropriate switch on constant instruction.

Implementation issues. In the dindex on constant instructions of Fig. 3 notice the in-
teger 2 which denotes the number of clauses that the instruction will index. Using this
number an index table of appropriate size will be created, such as T3. To fill this ta-
ble we need information about the clauses to index and the symbols to hash on. The
clauses can be obtained by scanning the labels of the try-retry-trust instructions fol-
lowing dindex on constant; the symbols by looking at appropriate byte code offsets
(based on the argument register number) from these labels. In our running example,
the symbols can be obtained by looking at the second argument of the get constant in-
struction whose argument register is r2. In the loaded bytecode, assuming the argument

1 In our example, suppose the third argument of has property/3 was the atom p throughout.
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switch on constant r1 5 T1
switch on constant r2 5 T2
dindex on constant r3 5 3
try L1
retry L2
retry L3
retry L4
trust L5

T1: Hash Table Info
d1 dindex on constant r2 2 3

dindex on constant r3 2 3
try L1
trust L2

d2 dindex on constant r2 2 3
switch on constant r3 2 T3
try L3
trust L4

d3 jump L5

T2: Hash Table Info
salmonella dindex on constant r3 2 3

try L1
trust L3

salmonella n jump L2
cytrogen ca dindex on constant r3 2 3

try L4
trust L5

T3: Hash Table Info
p jump L3
n jump L4

Fig. 3. Demand-Driven Indexing for all arguments; T1 is static; T2 and T3 are created dynamically

register is represented in one byte, these symbols are found sizeof(get constant) +
sizeof(opcode) + 1 bytes away from the clause label; see Fig. 1(c). Thus, multi-
argument Demand-Driven Indexing is easy to get and the creation of index tables can
be extremely fast when indexing Datalog facts.

4.3 Beyond Datalog and Other Implementation Issues

Indexing on demand clauses with function symbols is not significantly more difficult.
The scheme we have described is applicable but requires the following extensions:

1. Besides dindex on constant we also need dindex on term and dindex on structure
instructions. These are the Demand-Driven Indexing counterparts of the WAM’s
switch on term and switch on structure.

2. Because the byte code for the clause heads does not necessarily have a regular
structure, the abstract machine needs to be able to “walk” the byte code instructions
and recover the symbols on which indexing will be based. Writing such a code
walking procedure is not hard.

3. Indexing on a position that contains unconstrained variables for some clauses is
tricky. The WAM needs to group clauses in this case and without special treatment
creates two choice points for this argument (one for the variables and one per each
group of clauses). However, this issue and how to deal with it is well-known by now.
Possible solutions to it are described in a paper by Carlsson [16] and can be readily
adapted to Demand-Driven Indexing. Alternatively, in a simple implementation, we
can skip Demand-Driven Indexing for positions with variables in some clauses.

Before describing Demand-Driven Indexing more formally, we remark on the following
design decisions whose rationale may not be immediately obvious:

– By default, only table T1 is generated at compile time (as in the WAM) and the
additional index tables T2, T3, . . . are generated dynamically. This is because we
do not want to increase compiled code size unnecessarily (i.e., when there is no
demand for these indices).

– On the other hand, we generate dindex on * instructions at compile time for the
head arguments.2 This does not noticeably increase the generated byte code but it

2 The dindex on * instructions for T1 can be generated either by the compiler or the loader.
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greatly simplifies code loading. Notice that a nice property of the scheme we have
described is that the loaded byte code can be patched without the need to move any
instructions.

– Finally, one may wonder why the dindex on * instructions create the dynamic in-
dex tables with an additional code walking pass instead of piggy-backing on the
pass which examines all clauses via the main try-retry-trust chain. Main reasons
are: 1) in many cases the code walking can be selective and guided by offsets and
2) by first creating the index table and then using it we speed up the execution of
the queries and often avoid unnecessary choice point creations.

Note that all these decisions are orthogonal to the main idea and are under compiler
control. For example, if analysis determines that some argument sequences will never
demand indexing we can simply avoid generation of dindex on * instructions for them.
Similarly, if some argument sequences will definitely demand indexing we can speed up
execution by generating the appropriate tables at compile time instead of dynamically.

4.4 Demand-Driven Index Construction and Its Properties

The idea behind Demand-Driven Indexing can be captured in a single sentence: we can
generate every index we need during program execution when this index is demanded.
Subsequent uses of these indices can speed up execution considerably more than the
time it takes to construct them (more on this below) so this runtime action makes sense.

Let p/k be a predicate with n clauses. At a high level, its indices form a tree whose
root is the entry point of the predicate. For simplicity, assume that the root node of
the tree and the interior nodes corresponding to the index table for the first argument
have been constructed at compile time. Leaves of this tree are the nodes containing the
code for the clauses of the predicate and each clause is identified by a unique label
Li, 1 ≤ i ≤ n. Execution always starts at the first instruction of the root node and fol-
lows Algorithm 1. The algorithm might look complicated but is actually quite simple.
Each non-leaf node contains a sequence of byte code instructions with groups of the
form 〈I1, . . . , Im, T1, . . . , Tl〉, 0 ≤ m ≤ k, 1 ≤ l ≤ n where each of the I instructions,
if any, is either a switch on * or a dindex on * instruction and each of the T instruc-
tions either forms a sequence of try-retry-trust instructions (if l > 1) or is a jump
instruction (if l = 1). Step 2.2 dynamically constructs an index table T whose buckets
are the newly created interior nodes in the tree. Each bucket associated with a single
clause contains a jump to the label of that clause. Each bucket associated with many
clauses starts with the I instructions which are yet to be visited and continues with a
try-retry-trust chain pointing to the clauses. When the index construction is done, the
instruction mutates to a switch on * WAM instruction.

Complexity properties. Index construction during runtime does not change the com-
plexity of query execution. First, note that each demanded index table will be con-
structed at most once. Also, a dindex on * instruction will be encountered only in cases
where execution would examine all clauses in the try-retry-trust chain.3 The construc-
tion visits these clauses once and then creates the index table in time linear in the num-
ber of clauses as one pass over the list of 〈c, L〉 pairs suffices. After index construction,

3 This statement is possibly not valid in the presence of Prolog cuts.
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Algorithm 1. Actions of the abstract machine with Demand-Driven Indexing
1. if the current instruction I is a switch on *, try, retry, trust or jump, act as in the WAM;
2. if the current instruction I is a dindex on * with arguments r, l, and k (r is a register) then

2.1 if register r contains a variable, the action is a goto the next instruction in the node;
2.2 if register r contains a value v, the action is to dynamically construct the index:

2.2.1 collect the subsequent instructions in a list I until the next instruction is a try;
2.2.2 for each label L in the try-retry-trust chain inspect the code of the clause with

label L to find the symbol c associated with register r in the clause; (This step
creates a list of 〈c, L〉 pairs.)

2.2.3 create an index table T out of these pairs as follows:
• if I is a dindex on constant or a dindex on structure then create an index

table for the symbols in the list of pairs; each entry of the table is identified by
a symbol c and contains:
∗ the instruction jump Lc if Lc is the only label associated with c;
∗ the sequence of instructions obtained by appending to I a try-retry-trust

chain for the sequence of labels L′
1, . . . , L

′
l that are associated with c

• if I is a dindex on term then
∗ partition the sequence of labels L in the list of pairs into sequences of labels

Lc, Ll and Ls for constants, lists and structures, respectively;
∗ for each of the four sequences L, Lc, Ll, Ls of labels create code:

· the instruction fail if the sequence is empty;
· the instruction jump L if L is the only label in the sequence;
· the sequence of instructions obtained by appending to I a try-retry-trust

chain for the current sequence of labels;
2.2.4 transform the dindex on * r, l, k instruction to a switch on * r, l, T instruction;
2.2.5 continue execution with this instruction.

execution will visit a subset of these clauses as the index table will be consulted. Thus,
in cases where Demand-Driven Indexing is not effective, execution of a query will at
most double due to dynamic index construction. In fact, this worst case is pessimistic
and unlikely in practice. On the other hand, Demand-Driven Indexing can change the
complexity of query evaluation from O(n) to O(1) where n is the number of clauses.

4.5 More Implementation Choices

The observant reader has no doubt noticed that Algorithm 1 provides multi-argument
indexing but only for the main functor symbol. For clauses with compound terms that
require indexing in their sub-terms we can either employ a program transformation such
as unification factoring [11] at compile time or modify the algorithm to consider index
positions inside compound terms. This is relatively easy to do but requires support from
the register allocator (passing the sub-terms of compound terms in appropriate registers)
and/or a new set of instructions. Due to space limitations we omit further details.

Algorithm 1 relies on a procedure that inspects the code of a clause and collects the
symbols associated with some particular index position (step 2.2.2). If we are satisfied
with looking only at clause heads, this procedure needs to understand only the structure
of get and unify instructions. Thus, it is easy to write. At the cost of increased imple-
mentation complexity, this step can of course take into account other information that
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may exist in the body of the clause (e.g., type tests such as var(X), atom(X), aliasing
constraints such as X = Y, numeric constraints such as X > 0, etc.).

A reasonable concern for Demand-Driven Indexing is increased memory consump-
tion. In our experience, this does not seem to be a problem in practice since most applica-
tions do not have demand for indexing on many argument combinations. In applications
where it does become a problem or when running in an environment with limited mem-
ory, we can easily put a bound on the size of index tables, either globally or for each
predicate separately. For example, the dindex on * instructions can either become inac-
tive when this limit is reached, or better yet we can recover the space of some tables.
To do so, we can employ any standard recycling algorithm (e.g., LRU) and reclaim the
memory of index tables that are no longer in use. This is easy to do by reverting the cor-
responding switch on * instructions back to dindex on * instructions. If the indices are
demanded again at a time when memory is available, they can simply be regenerated.

5 Demand-Driven Indexing of Dynamic Predicates

We have so far lived in the comfortable world of static predicates, where the set of
clauses to index is fixed and the compiler can take advantage of this knowledge. Dy-
namic code introduces several complications:

– We need mechanisms to update multiple indices when new clauses are asserted or
retracted. In particular, we need the ability to expand and possibly shrink multiple
code chunks after code updates.

– We do not know a priori which are the best index positions and cannot determine
whether indexing on some arguments is avoidable.

– Supporting the logical update (LU) semantics of ISO Prolog becomes harder.

We briefly discuss possible ways of addressing these issues. However, note that Prolog
systems typically provide indexing for dynamic predicates and thus already deal in
some way or another with these issues; Demand-Driven Indexing makes the problems
more involved but not fundamentally different than with only first argument indexing.

The first complication suggests that we should allocate memory for dynamic indices
in separate chunks, so that these can be expanded and deallocated independently. In-
deed, this is what we do. Regarding the second complication, in the absence of any other
information, the only alternative is to generate indices for all arguments. As optimiza-
tions, we can avoid indexing predicates with only one clause and exclude arguments
where some clause has a variable.

Under LU semantics, calls to dynamic predicates execute in a “snapshot” of the
corresponding predicate. Each call sees the clauses that existed at the time when the
call was made, even if some of the clauses were later retracted or new clauses were
asserted. If several calls are alive in the stack, several snapshots will be alive at the
same time. The standard solution to this problem is to use time stamps to tell which
clauses are live for which calls. This solution complicates freeing index tables because:
(1) an index table holds references to clauses, and (2) the table may be in use (i.e., may
be accessible from the execution stacks). An index table thus is killed in several steps:

1. Detach the index table from the indexing tree.
2. Recursively kill every child of the current table; if a table is killed so are its children.
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3. Wait until the table is not in use, that is, it is not pointed to from anywhere.
4. Walk the table and release any references it may hold.
5. Physically recover space.

6 Implementation in XXX and in YAP

The implementation of Demand-Driven Indexing in XXX follows a variant of the scheme
presented in Sect. 4. The compiler uses heuristics to determine the best argument to
index on (i.e., this argument is not necessarily the first) and employs switch on * in-
structions for this task. It also statically generates dindex on constant instructions for
other arguments that are good candidates for Demand-Driven Indexing. Currently, an
argument is considered a good candidate if it has only constants or only structure sym-
bols in all clauses. Thus, XXX uses only dindex on constant and dindex on structure
instructions, never a dindex on term. Also, XXX does not perform Demand-Driven In-
dexing inside structure symbols. For dynamic predicates, Demand-Driven Indexing is
employed only if they consist of Datalog facts; if a clause which is not a Datalog fact is
asserted, all dynamically created index tables for the predicate are simply removed and
the dindex on constant instruction becomes a noop. All this is done automatically, but
the user can disable Demand-Driven Indexing in compiled code using an option.

YAP implements Demand-Driven Indexing since version 5. The current implemen-
tation supports static code, dynamic code, and the internal database. It differs from
the algorithm presented in Sect. 4 in that all indexing code is generated on demand.
Thus, YAP cannot assume that a dindex on * instruction is followed by a try-retry-trust
chain. Instead, by default YAP has to search the whole predicate for clauses that match
the current position in the indexing code. Doing so for every index expansion was found
to be very inefficient for larger relations: in such cases YAP will maintain a list of match-
ing clauses at each dindex on * node. Indexing dynamic predicates in YAP follows very
much the same algorithm as static indexing: the key idea is that most nodes in the index
tree must be allocated separately so that they can grow or shrink independently. YAP
can index arguments where some clauses have unconstrained variables, but only for
static predicates, as in dynamic code this would complicate support for LU semantics.

YAP uses the term JITI (Just-In-Time Indexing) to refer to Demand-Driven Indexing.
In the next section we will take the liberty to use this term as a convenient abbreviation.

7 Performance Evaluation

We evaluate JITI on a set of benchmarks and applications. Throughout, we compare per-
formance of JITI with first argument indexing. For the benchmarks of Sect. 7.1 and 7.2
which involve both systems, we used a 2.4 GHz P4-based laptop with 512 MB of mem-
ory. For the benchmarks of Sect. 7.3 which involve YAP 5.1.2 only, we used a 8-node
cluster, where each node is a dual-core AMD 2600+ machine with 2GB of memory.

7.1 Performance of Demand-Driven Indexing When Ineffective

In some programs, Demand-Driven Indexing does not trigger4 or might trigger but have
no effect other than an overhead due to runtime index construction. We therefore wanted

4 In XXX only; even 1st argument indexing is generated on demand when JITI is used in YAP.
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Table 1. Performance of some benchmarks with 1st vs. demand-driven indexing (times in msecs)

(a) When JITI is ineffective

YAP XXX
Benchmark 1st JITI 1st JITI
tc l io (8000) 13 14 4 4
tc r io (2000) 1445 1469 614 615
tc d io ( 400) 3208 3260 2338 2300
tc l oo (2000) 3935 3987 2026 2105
tc r oo (2000) 2841 2952 1502 1512
tc d oo ( 400) 3735 3805 4976 4978
compress 3614 3595 2875 2848

(b) When JITI is effective

YAP XXX
1st JITI ratio 1st JITI ratio

sg cyl 2,864 24 119× 2,390 28 85×
muta 30,057 16,782 1.79× 26,314 21,574 1.22×
pta 5,131 188 27× 4,442 279 16×
tea 1,478,813 54,616 27× — — —

to measure this overhead. As both systems support tabling, we decided to use tabling
benchmarks because they are small and easy to understand, and because they are a bad
case for JITI in the following sense: tabling avoids generating repetitive queries and the
benchmarks operate over extensional database (EDB) predicates of size approximately
equal to the size of the program. We used compress, a tabled program that solves a
puzzle from an ICLP Prolog programming competition. The other benchmarks are dif-
ferent variants of tabled left, right and doubly recursive transitive closure over an EDB
predicate forming a chain of size shown in Table 1(a) in parentheses. For each variant of
transitive closure, we issue two queries: one with mode (in,out) and one with mode
(out,out). For YAP, indices on the first argument and try-retry-trust chains are built
on all benchmarks under Demand-Driven Indexing. For XXX, Demand-Driven Index-
ing triggers on no benchmark but the dindex on constant instructions are executed for
the three tc ? oo benchmarks. As can be seen in Table 1(a), Demand-Driven Indexing,
even when ineffective, incurs a runtime overhead that is at the level of noise and goes
mostly unnoticed. We also note that our aim here is not to compare the two systems, so
the YAP and XXX columns should be read separately.

7.2 Performance of Demand-Driven Indexing When Effective

On the other hand, when Demand-Driven Indexing is effective, it can significantly im-
prove runtime performance. We use the following programs and applications:

sg cyl. The same generation DB benchmark on a 24 × 24 × 2 cylinder. We issue the
open query.

muta. A computationally intensive application where most predicates are defined in-
tentionally.

pta. A tabled logic program implementing Andersen’s points-to analysis. A medium-
sized imperative program is encoded as a set of facts (about 16,000) and properties
of interest are encoded using rules. Program properties are then determined by the
closure of these rules.

tea. Another implementation of Andersen’s points-to analysis. The analyzed program,
the javac benchmark, is encoded in a file of 411,696 facts (62,759,581 bytes in
total). Its compilation exceeds the limits of the XXX compiler (w/o JITI). So we
run this benchmark only in YAP.
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As can be seen in Table 1(b), Demand-Driven Indexing significantly improves the
performance of these applications. In muta, which spends most of its time in recursive
predicates, the speed up is only 79% in YAP and 22% in XXX. The remaining bench-
marks execute several times (from 16 up to 119) faster. It is important to realize that
these speedups are obtained automatically, i.e., without any programmer intervention
or by using any compiler directives, in all these applications.

7.3 Performance of Demand-Driven Indexing on ILP Applications

The need for Demand-Driven Indexing was originally noticed in inductive logic pro-
gramming applications. These applications tend to issue ad hoc queries during execu-
tion and thus their indexing requirements cannot be determined at compile time. On
the other hand, they operate on lots of data, so memory consumption is a reasonable
concern. We evaluate JITI’s time and space performance on some learning tasks us-
ing the Aleph system [17] and the datasets of Fig. 4 which issue simple queries in an
extensional database. Several of these datasets are standard in the ILP literature.

Time performance. We compare times for 10 runs of the saturation/refinement cycle of
the ILP system; see Table 2(a).The Mesh and Pyrimidines applications are the only
ones that do not benefit much from indexing in the database; they do benefit through
from indexing in the dynamic representation of the search space, as their running times
improve somewhat with Demand-Driven Indexing.

The BreastCancer and GeneExpression applications use unstructured data. The
speedup here is mostly from multiple argument indexing. BreastCancer is particularly
interesting. It consists of 40 binary relations with 65k elements each, where the first
argument is the key. We know that most calls have the first argument bound, hence
indexing was not expected to matter much. Instead, the results show Demand-Driven
Indexing to improve running time by more than an order of magnitude. This suggests
that even a small percentage of badly indexed calls can end up dominating runtime.

IE-Protein Extraction and Thermolysin are example applications that manipulate
structured data. IE-Protein Extraction is the largest dataset we consider, and index-
ing is absolutely critical. The speedup is not just impressive; it is simply not possible to
run the application in reasonable time with only first argument indexing. Thermolysin
is smaller and performs some computation per query, but even so, Demand-Driven In-
dexing improves its performance by an order of magnitude. The remaining benchmarks
improve from one to more than two orders of magnitude.

Space performance. Table 2(b) shows memory usage when using Demand-Driven In-
dexing. The table presents data obtained at a point near the end of execution; memory
usage should be at the maximum. These applications use a mixture of static and dynamic
predicates and we show their memory usage separately. On static predicates, memory
usage varies widely, from only 10% to the worst case, Carcinogenesis, where the in-
dex tables take more space than the original program. Hash tables dominate usage in
IE-Protein Extraction and Susi, whereas try-retry-trust chains dominate in Breast-
Cancer. In most other cases no single component dominates memory usage. Memory
usage for dynamic predicates is shown in the last two columns; this data is mostly used
to store the search space. Observe that there is a much lower overhead in this case. A
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Table 2. Time and space performance of JITI on Inductive Logic Programming datasets

(a) Time (in seconds)

Time
Benchmark 1st JITI ratio
BreastCancer 1,450 88 16×
Carcinogenesis 17,705 192 92×
Choline 14,766 1,397 11×
GeneExpression 193,283 7,483 26×
IE-Protein Extraction 1,677,146 2,909 577×
Mesh 4 3 1.3×
Pyrimidines 487,545 253,235 1.9×
Susi 105,091 307 342×
Thermolysin 50,279 5,213 10×

(b) Memory usage (in KB)

Static code Dynamic code
Clauses Index Clauses Index
60,940 46,887 630 14
1,801 2,678 13,512 942

666 174 3,172 174
46,726 22,629 116,463 9,015

146,033 129,333 53,423 1,531
802 161 2,149 109
774 218 25,840 12,291

5,007 2,509 4,497 759
2,317 929 116,129 7,064

GeneExpression learns rules for yeast gene activity given a database of genes, their interac-
tions, and micro-array gene expression data;

BreastCancer processes real-life patient reports towards predicting whether an abnormality
may be malignant;

IE-Protein Extraction processes information extraction from paper abstracts to search pro-
teins;

Susi learns from shopping patterns;
Mesh learns rules for finite-methods mesh design;
Carcinogenesis, Choline, Pyrimidines try to predict chemical properties of compounds and

store them as tables, given their chemical composition and major properties;
Thermolysin also manipulates chemical compounds but learns from the 3D-structure of a

molecule’s conformations.

Fig. 4. Description of the ILP datasets used in the performance comparison of Table 2

more detailed analysis shows that most space is occupied by the hash tables and by
internal nodes of the tree, and that relatively little space is occupied by try-retry-trust
chains, suggesting that Demand-Driven Indexing is behaving well in practice.

8 Concluding Remarks

Motivated by the needs of applications in the areas of inductive logic programming,
program analysis, deductive databases, etc. to access large datasets efficiently, we have
described a novel but also simple idea: indexing Prolog clauses on demand during pro-
gram execution. Given the impressive speedups this idea can provide for many LP ap-
plications, we are a bit surprised similar techniques have not been explored before. In
general, Prolog systems have been reluctant to perform code optimizations during run-
time and our feeling is that LP implementation has been left a bit behind. We hold
that this should change. Indeed, we see Demand-Driven Indexing as only a first, very
successful, step towards effective runtime optimization of logic programs.

As presented, Demand-Driven Indexing is a hybrid technique: index generation oc-
curs during runtime but is partly guided by the compiler, because we want to combine
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it with compile-time WAM-style indexing. More flexible schemes are of course possi-
ble. For example, index generation can be fully dynamic (as in YAP), combined with
user declarations, or driven by static analysis to be even more selective or go beyond
fixed-order indexing. Last, observe that Demand-Driven Indexing fully respects Prolog
semantics. Better performance can be achieved in the context of one solution computa-
tions, or in the context of tabling where order of clauses and solutions does not matter
and repeated solutions are discarded.
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Abstract. We propose dynamic compilation for Prolog, in the style of
Just-In-Time compilers. Our approach adapts to the actual characteris-
tics of the target program by (i) compiling only the parts of the program
that are executed frequently, and (ii) adapting to actual call patterns.
This allows aggressive optimization of the parts of the program that are
really executed, and better informed heuristics to drive these optimiza-
tions. Our compiler does need to support all features in the language, only
what is deemed important to performance. Complex execution patterns,
such as the ones caused by error handling, may be left to the interpreter.
On the other hand, compilation is now part of the run-time, and thus
incurs run-time overheads. We have implemented dynamic compilation
for YAP system. Our initial results suggest that dynamic compilation
achieves very substantial performance improvements over the original
interpreter, and that it can approach and even out-perform state-of-the-
art native code systems. We believe that we have shown that dynamic
compilation is worthwhile and fits naturally with Prolog execution.

1 Introduction

Most Prolog systems rely on interpreters of Warren’s Abstract Machine, or WAM
[1]. Towards better performance, previous research on high-performance Prolog
implementations proposed the design of native-code compilers [2,3,4]. Such sys-
tems can be complex and hard to maintain, as they need to cope with all the
complexity in logic program execution. Thus, global analysis and/or user anno-
tations have so far been considered essential for high performance [5,4]. In fact,
the Mercury Project took this argument to what seems to be its logical conclu-
sion: the Mercury designers argued that issues such as mode declarations and
determinism are a fundamental problem with Prolog, and therefore proposed a
new language where such declarations are always required.

In this approach we propose an alternative approach to the efficient implemen-
tation of Prolog. Our goal is to build a system that would be easy to maintain
while achieving good performance. In order to do so, arguably we need to know
what are the most important components of programs (the so-called hot-spots)

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 410–424, 2007.
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and how they are called. Compiling such program fragments should be the key
to good performance; only compiling them should be the key to simplicity.

Our approach is based on dynamic compilation, an idea that has become the
fundamental principle in the compilation of high performance virtual machines,
such as Java Virtual Machine. Dynamic compilers, and namely dynamic compi-
lers for Java [6,7,8], only compile code after the code is first called. The advantage
is that compilation can benefit from dynamic information, such as the instantia-
tion of virtual methods in an object oriented language. The drawback is that the
compilation is now included in the program’s execution time. Researchs showed
that best performance is achieved when the compiler is very selective about
which parts of the program it decides to compile and when and how it decides
to compile them. More specifically, it should compile some parts only if the extra
time spent in compilation can be amortized by the performance gain expected
from the compiled code. Once such hot-spots or hot-regions are detected, the
dynamic compiler must be very aggressive in identifying good opportunities for
optimizations that can achieve good performance.

We believe that dynamic approach naturally fits the Prolog language. Tech-
niques such Type or mode feedback, that read type or mode information from
runtime data, can alleviate the need for extensive global analysis. Hot-spot se-
lection may reduce compile-time overhead and reduce complexity by avoiding
complex structures that are hard to analyze and to generate good code for.
To prove our thesis, we developed an dynamic compilation framework for the
YAP System [9,10], YAPc. YAPc combines the YAP interpreter with a dy-
namic compiler that performs runtime feedback-directed optimizations. A low-
overhead, continuously operating sampling profiler identifies program hot regions
for optimization. Our experimental results show that this approach provides sig-
nificant advantages in terms of performance, besides addressing the issue of
maintainability.

This paper makes the following contributions:

– System architecture: we present an architecture for a simple, but efficient
dynamic compilation framework for the YAP System with a mixed mode
interpreter. We believe that our architecture can be easy to maintain. Ex-
perimental data is presented for both performance and code quality.

– Profiling techniques: we present a program profiling mechanism that com-
bines two different techniques. One is a continuously operating, lightweight
sampling profiler for detecting program hot, and the other is a type feedback
profiler that collects detailed information for the hots gathered by the first
profiler.

– Compilation techniques: we present compilation techniques that decrease
both the runtime pauses runtime and overhead of native calls.

The rest of this paper is organized as follows. The next section summarizes
related work, comparing our system to prior systems. Section 3 describes the
overall architecture of our system. Section 4 describes our compilation scheme.
Section 5 presents some results to show the effectiveness of our framework. Fi-
nally, we conclude in section 6.
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2 Related Work

Native-code compilation is an old idea in Prolog. The first Prolog compiler, the
DEC-10 compiler, generated native code [11]. Other native code compilers in-
clude BIM-Prolog [12], and the work by Komatsu et al [13], who demonstrated
that specialized hardware is not essential for high-performance execution of
Prolog.

Aquarius [5] and Parma [14] were particularly influential in the development
of Prolog compilation technology. Both use a fine-grained instruction set to allow
more effective optimizations. The systems showed great performance, as mea-
sure on a number of standard (small) benchmarks. Both systems relied on global
analysis to obtain type, mode, and reference-chain length information [15]. Such
information can enable aggressive optimizations, especially when analysis is able
to derive types that have only an operational meaning, such as dereference (re-
ference chains), trailing, and aliasing-related types (uninitialized variables). On
the other hand, it significantly increases compile time and is not guaranteed to
generate precise information.

Unfortunately, Aquarius and Parma were never widely used. Other native
compilers, such as the SICStus native code compiler [16], or the WAMCC [17]
and its successor, GNU-Prolog [18], do not perform such analysis, which ar-
guably limits the performance benefits they can offer. Recent work in CIAO [4]
again demonstrated the usefulness of doing type analysis and computing mode
information to improve compiled code. The new CIAO compiler uses this in-
formation to remove type and mode checks, and to use specialized versions of
critical builtins. The initial results are very promising, as their system benefits
from substantial progress in global analysis.

One alternative to global analysis is to ask the user for type, mode and even
determinacy declarations. Mercury requires such declarations for every proce-
dure. As such, Mercury can use this information at all levels in its compiler.
Moreover, because it is strongly moded, Mercury can avoid some of the comple-
xity associated with mode verification and dereferencing in Prolog. Performance
results do show higher performance than Prolog [19]. On the other hand, Mer-
cury sacrifices some of the expressiveness in Prolog. Languages such as HAL [20]
try to bridge the two approaches by using the constraint framework, and intro-
ducing Herbrand domains.

Maybe the work closest to us is partial translation in BinProlog [21], which also
compiles selected sequences of instructions to native code. Partial translation was
originally developed in the context of binarization, an algorithm where one can
generate long sequences of straight-line code to create continuations. Such code
sequences are amenable to optimization. One difference with our approach is that
we do not necessarily guarantee compositionality, instead we trust the seman-
tics of Prolog. A second difference is that we use dynamic translation, whereas
BinProlog relies on instruction sequence length to choose which sequences to
compile top C.
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2.1 Dynamic Optimization Systems

Just-in-time (JIT) or dynamic compilation stems from work in the object-
oriented languages. Arguably, the seminal work in JIT technology is the Self-
93 [22] compiler. Self-93 pioneered on-line profile-directed adaptive compilation
systems. Before execution, Self-93 compiles its program with a simple compiler.
At run-time, a much more sophisticated compiler is called if a method is deemed
critical. The goal of this second compiler was to avoid long compilation pauses
and to improve responsiveness for interactive programs. Note that compilation
could take advantage of type feedback information for receiver class distributions
by profiling the initial code.

Hank [23] described the problems of using a function-based compilation stra-
tegy. The work proposed region formation to perform an aggressive inlining pass
first, followed by a partitioning phase that created new regions based on heuris-
tics from offline profile results. Way [24] improved this region formation algo-
rithm to make it scalable by combining region selection and the inlining process,
thus reducing the compilation time and memory requirements considerably.

The notion of mixed execution of interpreted and compiled code was conside-
red as a continuous compiler or smart JIT approach by Plezbert and Cytron [25],
and the study of three-mode execution using an interpreter, a fast non-optimizing
compiler, and a fully optimizing compiler was reported by Agesen and Detlefs
[26]. In both of these papers, it was proven that there is a performance advan-
tage by using an interpreter in the system for balancing the compilation cost
and resulting code quality.

Arguably, most of the recent work in JIT compilation has taken place within
the Java community. Jalapeño [8] is an example research Java Virtual Machine
that implements a multilevel recompilation scheme using a baseline compiler
and a optimizing compiler. The optimizing compiler compiles entire methods.
HotSpot [27] is a popular JVM product implementing an adaptive optimization
system. Two Sun JIT compiler are available, both compile from Java bytecode.
The Client compiler is a simpler compiler and is optimized for speed, whereas
the Server compiler is more aggressive, and designed for long-running programs.
Following SELF-83, the HotSpot Server Compiler [7] employs the uncommon
trap mechanism to avoid code generation for uncommon cases. In this mecha-
nism, the system falls back to the interpreter at a safe point if an uncommon
path is actually taken; hence, only common paths need to be compiled.

3 System Architecture

We propose dynamic compilation system towards a robust system that could
achieve close to the best possible performance. The overall architecture of our
system is as depicted in figure 1. Notice we compile a clause at a time. All clauses
in the program are managed by the clause manager. Clauses are first compile
for interpretation, but the code is set up to to also count clause informations.
The interpreter will use these counters to decide on whether it should make a
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Fig. 1. System architecture of our dynamic system

compilation request. The compiler will then take advantage of mode information,
as we shall see. We describe each of the major components of the system next.

3.1 Mixed Mode Interpreter

Most clauses in a Prolog program are not frequently called. Arguably, compiling
all such clauses is inefficient both in terms of compilation time and code space.
Mixed mode interpretation (MMI) allows the efficient mixed execution of inter-
preted and compiled code by sharing the execution stack between compiled code
and the emulator.

Initially, every clause is interpreted by the MMI. Each clause receives a counter
that is decremented at every call. When the count reaches zero, it is known
that the clause has been invoked frequently, and JIT compilation is triggered.
Originally, we envisioned counters as a first step, to be used only until a better
solution was found. However, the simple counter-based approach seems to work
well so far [28,29].

3.2 Compilation Control

The compilation controller receives as input a clause that a clause with a counter
set to zero and decides whether the clause should be compiled. Currently, the
controller uses a simple rule to make this decision: it only compiles clauses whose
size exceeds a pre-defined threshold. The assumption underlying this rule is
that small clauses don’t need to be optimized, because these will not improve
performance.

3.3 Type-Feedback-Based Profiler

Compilation should have representation-level type information on the current
arguments. Ideally, we should know the types and modes of clause usage. Of
course, the interpreter cannot give us that. On the other hand, it can give us
the current types and modes for the current call. If we assume these types and
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modes are the most often used ones, and this is likely to be the case, then the
compiler can generate code specialised for these types and modes, and only for
them. In other words, and in the spirit of the uncommon trap mechanism, the
compiler will still need to test whether the call is being called with the current
code. But, if these tests succeed, it can generate specialized code. If these tests
fail, compiler will need to fall back to the interpreter.

Our system therefore first inspects the internal state of the system, inferring
the current types of the input arguments. It then stores this information in a
way that is usable by the compiler.

3.4 The Compiler

We implemented a new compiler for the YAP system. The compiler is written
in C and supports a simple pointer-based language that fits naturally WAM
description code.

The dynamic compiler first parses its input, a set of instructions of the WAM-
derived YAAM abstract machine [30], into an abstract syntax tree (AST), thus
reducing instruction granularity. Note that the full AST for a clause can be quite
complex. Next, the parser uses the type-feedback to specialize the control-flow
graph and to decide at which points it should perform inlining. The parser con-
cludes by transforming the AST into an intermediate low level representation.
The instruction selector next finds the appropriate machine instructions to im-
plement the low level representation. Following this step, the register allocator
allocates real machine registers. After real registers are allocated, the peephole
optimizer performs low-level optimizations on the code, and finally the compiler
generates native code. When the compiler finishes the compilation process, the
native code is installed into run-time system, and scheduled for execution.

Our compiler implements several optimizations such as region selection, in-
lining, recursive-call elimination, coalescing, and peepholing. Some of these will
be described in more detail the next section.

The bulk of the compiler effort lies in between the two halves of a tradi-
tional compiler. This “middle half” of the compiler performs the representation-
level type analysis and region selection that bridges the semantic gap between
the high-level polymorphic program input to the compiler and the lower-level
monomorphic version of the program suitable for the optimizations performed
by a traditional compiler back-end.

3.5 Exception Handling

We have shown that control will return back to the emulator if a clause is called
with unexpected modes. In general, we call such situations exceptions : they can
appear in the compiled code if arguments are called with an unexpected instan-
tiation or unexpected types. YAPc benefits from the referential transparency of
Prolog to address this problem. If we compile pure code, then if the Prolog code
partially succeeded for G with bindings θ, then it should also succeed for a call
Gθ. This means that the native code running G, should obtain the same results
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as the interpreter running Gθ. Therefore, it should be sufficient to reexecute the
code from scratch in the interpreter.

In the practice, there are two technical problems. The first problem is often
found in JIT systems, and results from the fact that the compiler may maintain
data at a state that is inconsistent with the external environment. In our case,
this is easily shown by pondering on how the WAM reuses registers. Consider
the recursive clause in append/3:

append([X|L], T, [X|NL]) :- append(L, T, NL).

Most WAM compilers will generate code of the form:

get_list A1
unify_var X4
unify_var X1
get_list A3
unify_val X4
unify_var X3

notice that the code destroys the contents of register A1 before starting unifica-
tion with A3. If the code needs to return to the interpreter (ie, because A3 was
called instantiated, but was expected to be free), the interpreter would find A1
set to the tail of the list and A3 set to the original, resulting in wrong execution.
The compiler should take care so that the interpreter always finds consistent
arguments.

There are at least two solutions for this problem. First, the system can save the
registers before calling the compiled code, and if it an exception occurs restore
these registers back. Whatever their state, they will be correct. Alternatively,
compiled code could try to guarantee that the external registers are consistent
at points of a possible exception. Such points are called safe points. In this case,
a simple strategy is only to write in the WAM argument registers at the very
end of the code, when we are sure no exceptions can occur. These solutions are
similar to what is used in JITs [7,6].

In the above example, the register A1 could be kept in the stack and recovered
if the A3 test failed. Alternatively, the register X1 might not be aliased with A1
until the return to interpreted code. The first solution is simpler to implement,
but the second solution decreases the overhead in the interface of the two sys-
tems. Currently, YAPc implements the first solution: we will experiment with
the second approach in future work.

The second problem arises from meta-logical instructions, such as cut and
var/1. These instructions can break referential transparency. The program:

a(X) :- var(X), !, X=2, exception.
a(X).

may not work correctly if we allow bindings to X . The problem is that the first
(compiled) call to a(X) would set X = 2. At the second (interpreted) call, the
interpreter would use a(2). This call will fail the var/1 meta-test, backtrack to
the second clause, and succeed with an unexpected result.
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A first solution is never to compile code containing cuts or meta-predicates
unless we can prove that the code is called with sufficient instantiation. This can
be improved by creating a safe point at every cut, that is, by making sure all
the registers needed by the interpreter are correctly set before a cut.

4 The Compiler

In this section, we discuss a number of issues on how clauses are compiled in
some more detail. First, we do not always compile the full clause. Second, we
discuss the region selection algorithm. Last, if a clause is called in a variety of
ways we may have a number of compiled versions of the same original clause.

4.1 Partial Compilation

In practice, we only completely compile clauses if they are facts, ie, if they termi-
nate with a procceed. Otherwise, compilation terminates at the first instruction
before an execute or a call. The compiler therefore only partially compiles the
clause.

This decision was taken on the following grounds:

Compilation Simplicity: This is the simplest straight-line fragment of code
we can compile independently of other code.

Interface Simplicity: This reduces to the very minimum the actual interface
between compiler and interpreter. If we were to compile to native code call
instruction, the emulator would need to know that the environment was
created by native code.

There is an exception to this rule. Consider again the append/3 example

append([], L, L).
append([X|L], T, [X|NL]) :- append(L, T, NL).

In this case, a simple tail-recursive procedure, we know the procedure is calling
itself. It therefore makes sense not to stop at the call instruction. Instead, YAPc
follows the indexing code and compiles the loop as a single unit.

A more ambitious approach will be to inline the clause called for the ins-
truction execute/call (in the style of the VAM [31]). However, as it will be seen
in section 6, so far partial compilation has shown itself to be a good choice in
keeping the system light and with good performance.

4.2 Region-Based Compilation

Programs often contain rarely or never executed paths. Compiling such paths
can cause adverse effects that reduce the effectiveness of code generated. For
example, an optimizing compiler can spend a lot of time applying aggressive
optimizations in rarely executed code. This can increase both compilation time
(a major problem in dynamic compilation) and code size, with little or no benefit.
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If we can eliminate from the compilation target the fragments that are rarely
or never executed, we can focus the optimization efforts only on non-rare paths,
making the optimization process both faster and more effective.

In our work, we implement a region-based compilation technique. We define
region to be the the straight-line code segment that corresponds to the current
mode for the current goal. All other portions of code are removed. Our algorithm
works as follows.

First, we assume each clause is represented as a control flow graph (CFG) with
a single entry block and a single exit block. The algorithm begins basic blocks as
either rare or non-rare by employing both heuristics and dynamic profile results.
We use the following heuristics:

– A block that performs type checking is rare.
– A block that processes errors is rare.
– A block that contains unresolved or uninitialized cell references is rare.
– A block that ends with a return instruction is non-rare.

If the dynamic profile information shows that a block is never executed, then
we mark the block as rare. Otherwise, the block is marked as non-rare. Dynamic
profiling information has priority over the static heuristics.

An iteration phase propagates this information through backward data flow
until it converges for all of the basic blocks. After this, the compiler traverses the
basic blocks to determine the transitions from non-rare blocks to rare blocks, and
marks those locations as rare block entry points. After performing live analysis to
find the set of live variables at each rare block entry point, the compiler generates
a new region exit basic block for each entry point and replaces the original entry
block by redirecting its incoming control flow edge to the new block. All the
rare blocks that originally existed following rare block entry points are no longer
reachable from the top of the method and thus eliminated in the succeeding
control flow cleanup phase.

During region selection, the compiler also inlines functions at the clause’s
executable paths. Currently, the compiler only performs inlining of unification
and dereferencing as such functions are key to performance.

4.3 Multiple Version Code Management

Compiled clauses are registered at a runtime system called the code manager,
which controls and manages all compiled codes by associating them with their
corresponding clause structures and with information about the specialization
context. This means all future invocations to this clause through indirect clause
lookup will be directed to the new version of the code, instead of the existing
interpreted code.

The system maintains an list of specialized code for each clause. This is nec-
essary because call patterns can change during execution. If so, the clause can
deserve more compilation. In order to decide which version should be run, the
code manager must be able to inspect the runtime first.
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Currently, the system does not need a mechanism for on-stack replacement
[32], the technique of dynamically rewriting stack frames from one version to
another, as Prolog procedures are usually quite small, so we do not lose much if
we postpone the invocation of compiled code until the next call.

5 Evaluation

This section presents some experimental results showing the effectiveness of our
dynamic system. We outline our experimental methodology first, describe the
benchmarks used for the evaluation, and then present and discuss our perfor-
mance results.

5.1 Benchmarking Methodology

All the performance results presented in this section were obtained using a Pen-
tium IV 2.4 MHz uni-processor with 1 GB memory, running Linux, and using
the latest version of YAP Prolog System [33]. The benchmarks we chose for
evaluating our JIT compiler are shown in table 1. These benchmarks are widely
used by the Prolog community [14,34].

Table 1. Benchmarks description

Program Description

Append Inserts a list of 50 integers.

Crypt Solves a cryptoarithmetic puzzle.

Deriv Symbolically differentiates four functions of a single variable.

Fib Calcules the 100’is number of Fibonacci’s series.

Hanoi Hanoi tower.

Merge Sort Mergesorts a list of 50 integers using difference lists.

MMatrix Multiples two matrices of 10x10 integers.

Naive Reverse Reverses a list of 50 elements using the naive algorithm.

Poly Symbolically raises 1+x+y+z to the tenth power.

Prime Finds all primes up to 100.

Quick Sort Quicksorts a list of 50 integers using difference lists.

Queens Finds all safe placements of 8 queens on a 8x8 chessboard.

Query Finds countries with approximately equal population density.

Tak An artificial benchmark heavily recursive and does lots
of simple integer arithmetic.

Zebra Solves a puzzle.

The following configuration and parameters were used throughout the
experiments.

– Each benchmark was invoked 100000 times, therefore the execution time for
each benchmark is 100000 × benchmark time.
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– The execution time shown is the average among five rounds.
– The threshold in the mixed mode interpreter to initiate dynamic compilation

was set to 1000.
– In No Opt mode the following optimizations were disabled: region selection,

inlining, coalescing, and peepholing.
– In Full Opt mode all optimizations were enabled; this is the default in our

compiler.
– Garbage collection was disabled throughout.

5.2 Dynamic Compilation

In order step to evaluate total performance we compare YAPc against the stan-
dard emulator. Table 2 summarizes the results. The second column contains the
execution times (in seconds) of programs running in interpreted mode. The third
column corresponds the execution times using our dynamic framework without
optimizations. The fourth column corresponds the execution times using our dy-
namic framework with all optimizations. The other columns show the speedup.

Table 2. Execution performance

Execution Time Speedup
Program Interpreter Mixed Mode

Only No Opt Full Opt
No Opt Full Opt

Append 0.18 0.07 0.05 2.57 3.50

Crypt 29.04 10.02 8.25 2.89 3.52

Deriv 0.99 0.55 0.31 1.80 3.13

Fib 2.39 1.52 0.84 1.57 2.85

Hanoi 39.25 15.32 10.78 2.56 3.64

Merge Sort 8.34 3.78 1.49 2.21 5.60

MMatrix 21.55 11.56 7.38 1.86 2.92

Naive Reverse 3.57 1.23 0.83 2.90 4.28

Poly 333.52 123.25 44.77 2.71 7.45

Prime 13.66 7.11 3.50 1.92 3.90

Quick Sort 3.77 1.96 1.47 1.92 2.57

Queens 14.83 10.88 5.60 1.36 2.65

Query 14.50 6.95 3.48 2.09 4.17

Tak 1079.89 520.12 326.25 2.08 3.31

Zebra 272.08 120.58 45.73 2.26 5.95

As we expected, mixed mode execution is faster than interpreted-only. The
YAP Prolog System is between 2 to 7 times slower than mixed mode execution
with all optimizations on these benchmarks. The smallest difference is for the
Quick Sort program: mixed mode is only 2.57 times faster than interpreted-
only. Poly has the major difference: 7.45 times faster than in interpreted-only.
Optimizations are crucial to performance, without optimizations we gain only a
factor of two. This is for two reasons:
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1. Emulator overhead: it is very short, besides our system compiles only clauses
(some clauses).

2. Much longer compilation times: region selection speeds up the compilation
time by a factor between 5 to 17 times.

We found our dynamic compiler to be very fast. Compilation time varies from
0.0021 to 0.0431 seconds. Compilation speed depends on the characteristics of
the program. If the compiler process a few clause only, this decreases compilation
time, and results in very compact code. Longer compiler time result from two
factors: the complexity of YAAM instructions, this is the case of Tak, and the
need to compile a large number clauses, this is the case of Poly. In this last case,
nine clauses were compiled.

Since translation is taking place during program execution, the compilation
time is now part of the execution time, and thus an overhead. On the other hand,
the compilation time is very small, resulting in a low overhead, that does not
decrease the performance of runtime system.

The performance obtained by using dynamic compilation is much better, and
performing well for all programs. Best speedups are obtained in programs with a
large number of clause. We believe our results were possible because we benefit
from the runtime information from the MMI, allowing more aggressive optimiza-
tion of the parts of the program that are actually executed often.

5.3 Code Quality

Table 3 shows the statistics for code quality when running the benchmarks with
the same configuration described in methodology, with and without region se-
lection. The second to fifth rows are code statistics, showing the total number
of bytes, the total number of assembly instructions, the total number of spills,
and the total number of fetches. In this table, bold statistics were collected with
our technique on, and the others with our technique off.

The native code we generate is very compact, Append and Naive Reverse are
the best cases. For these, all temporaries had been kept in machine registers,
and we did not need to represent registers in memory. Other programs do suffer
register spilling.

Both region-based selection and type-feedback profiler compact a considerable
portion of code. This occurs because our techniques removes several type checks,
and eliminates some rare paths. Using region selection, code size decreases from
2 to 6 times. And the compiler needs few instructions to represent the code
specialized for the running program, ranging from 64 to 1138 instructions. As
expected in a register-limited architecture, our compiler does needs to represent
temporaries in memory. The exceptions are for Append, Naive Reverse.

Type-feedback is key to our good results: it speeds up compilation time (be-
tween 2.25 to 17.22 fold) and results in much more compact code, with less
register pressure.
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Table 3. Code quality characteristics

Native CodeProgram
Bytes Instructions Spills Fetches

Append 1623(224) 498(64) 37(0) 106(0)

Crypt 6091(1218) 2030(427) 112(26) 256(52)

Deriv 5644(1044) 1652(407) 98(20) 189(48)

Fib 1845(606) 899(238) 38(16) 86(42)

Hanoi 1596(828) 460(225) 33(19) 60(19)

Merge Sort 3008(1524) 756(402) 89(42) 135(59)

MMatrix 5325(1026) 1365(321) 125(28) 725(54)

Naive Reverse 2265(464) 679(126) 58(0) 140(0)

Poly 12984(7792) 5984(1012) 296(62) 848(95)

Prime 6292(966) 1972(346) 138(39) 456(66)

Quick Sort 5657(1723) 1743(520) 142(23) 348(72)

Queens 6920(4265) 2088(892) 105(85) 289(125)

Query 3510(2133) 1044(602) 80(52) 189(78)

Tak 2340(1427) 696(415) 44(31) 116(55)

Zebra 8293(4476) 2273(1138) 142(64) 434(177)

6 Conclusions

We have described the design and implementation of YAPc, a new dynamic
compilation framework for Prolog. Our work was motivated by good results
achieved by the dynamic compilation of indexing code [35]. YAPc addresses the
problem of clause compilation and is based on the idea of Hot-Spot compilation:
we only compile often used regions in the program, and use the uncommon trap
mechanism to address unexpected modes. Region selection relies on a simple
counter mechanism to select critical procedures, and on type or mode feedback
to select the main paths in those procedures.

Performance results show that the system can achieve quite good performance
as compared to interpreted-only approach. Our results show significant speedups
on a number of benchmarks over a state-of-the-art interpreter. In fact, in some
cases YAPc did obtain similar or even superior performance to the CIAO com-
piler and to Mercury [10]. Moreover, results show low compilation overheads.
Therefore, we believe that our work shows that dynamic compilation can be
used to execute logic programs efficiently.

We believe our dynamic framework will be a major contribution to the future
of the YAP Prolog System, and hope it will the ideas will be useful throughout
the logic programming community. In the future, we will continue to improve
the system. One major area of ongoing research is how to dynamically change
compilation strategies as we go along, given full execution data. Ideally, it should
be possible to re-recompile clauses, as execution goes along. A second area is how
we could benefit from global analysis data, if such data is available, to achieve
the best of both worlds. A third area is to better integrate compilation of several
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distinct clauses as a single unit. Last, it would make sense to cache compiled
code segments so that they can be reused in later runs.
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It is well known that constraint logic and functional-logic programming lan-
guages have many advantages, and there is a growing trend to develop and
incorporate effective tools to this class of declarative languages. In particular,
debugging tools are a practical need for diagnosing the causes of erroneous com-
putations. Recently [1], we have presented a prototype tool for the declara-
tive diagnosis of wrong computed answers in CFLP (D), a new generic scheme
for lazy Constraint Functional-Logic Programming which can be instantiated
by any constraint domain D given as parameter [2]. The declarative diagno-
sis of missing answers is another well-known debugging problem in constraint
logic programming [4]. This poster summarizes an approach to this problem in
CFLP (D). From a programmer’s viewpoint, a tool for diagnosing missing an-
swers can be used to experiment wether the program rules for certain functions
are sufficient or not for computing certain expected answers. For example, con-
sider a CFLP (H)-program fragment written in T OY [3], where strict equality
and disequality constraints are used for generating family relationships based on
the basic family facts shown in Fig. 1.

Fig. 1. Missing family relationships

type person = [char]

motherOf, fatherOf, sonOf, daughterOf, brotherOf, sisterOf :: person -> person
motherOf X = Y <== maleChildOf Z Y == X // femaleChildOf Z Y == X
brotherOf X = Y <== maleChildOf (fatherOf X) (motherOf X) == Y, Y /= X
sonOf X = maleChildOf X Y // maleChildOf Y X
% Analogously for the other basic family relationships

� The authors have been partially supported by the Spanish National
Projects MERIT-FORMS (TIN2005-09207-C03-03) and PROMESAS-CAM
(S-0505/TIC/0407).
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basicFamilyRelation :: person -> person
basicFamilyRelation = motherOf // fatherOf // sonOf // ... // brotherOf // sisterOf
familyRelation :: person -> person
familyRelation = basicFamilyRelation // basicFamilyRelation . basicFamilyRelation
(//) :: A -> A -> A (.) :: (B -> C) -> (A -> B) -> (A -> C)
X // Y = X (F . G) X = F (G X)
X // Y = Y

In order to find a family relationship between alice and alan, a user can ins-
pect the computed answers for the goal familyRelation == R, R "alice" ==
"alan", involving higher-order patterns. Different diagnosis for missing answers
are possible. For instance, the answer R -> sonOf . brotherOf . motherOf
(i.e., alan is son of a brother of the mother of alice) may be missed due to an in-
complete definition of familyRelations, which could be extended by adding the
new rule familyRelation = familyRelation . basicFamilyRelation; while
other answers such as R -> cousinOf or R -> sonOf . uncleOf may be missed
due to an incomplete definition of basicFamilyRelation, which could be ex-
tended like this: basicFamilyRelation = ... // cousinOf // uncleOf.

Declarative programming paradigms such as the CFLP (D) scheme involve
complex operational details such as constraint solving, lazy evaluation of possibly
higher-order and non-deterministic functions, logical variables etc. Therefore,
declarative debugging is a better option than debugging techniques which rely on
the inspection of low-level computation traces. Declarative debugging requires
suitable trees to represent computations. Inspired by [1] and [4], we propose so-
called Negative Proof Trees (shortly, NPT s) as computation trees for declarative
debugging of missing answers in CFLP (D). NPT s represent logical proofs in
a Constrained Negative Proof Calculus. The root of a NPT has attached an
answer collection statement of the form G ⇒

∨
i∈I Si, where G is an initial goal

and Si are all the observed computed answers. Internal nodes have attached
answer collection statements ftn → t � S ⇒

∨
i∈I Si; these correspond to all

the computed answers Si for an intermediate goal ftn → t � S, asking for
results of the function call ftn which match t and satisfy the constraints within
S. NPT s are built in such a way that the validity of the collection statement
at each node follows from the collection statements at their children, under the
assumption that the function definition relating the parent node to the children
nodes is complete. As usual, declarative diagnosis proceeds by finding a buggy
node which is invalid but such that all its children are valid. Every such buggy
node points to an incomplete function definition. The search for a buggy node
can be implemented with the help of an external oracle (usually the user with
some semiautomatic support) who has a reliable declarative knowledge of the
valid collection statements, the so-called intended interpretation. A prototype
under development is available at http://gpd.sip.ucm.es/rafa/missing.
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Abstract. We present a novel approach to probabilistic description logic pro-
grams for the Semantic Web, where a tight integration of disjunctive logic pro-
grams under the answer set semantics with description logics is generalized by
probabilistic uncertainty. The approach has a number of nice features. In particu-
lar, it allows for a natural probabilistic data integration and for a natural represen-
tation of ontology mappings under probabilistic uncertainty and inconsistency. It
also provides a natural integration of a situation-calculus based language for rea-
soning about actions with both description logics and probabilistic uncertainty.

1 Overview

The Semantic Web aims at an extension of the current Web by standards and technolo-
gies that help machines to understand the information on the Web so that they can
support richer discovery, data integration, navigation, and automation of tasks. The Se-
mantic Web consists of several hierarchical layers, where the Ontology layer, in form of
the OWL Web Ontology Language, is currently the highest layer of sufficient maturity.
OWL consists of the three sublanguages OWL Lite, OWL DL, and OWL Full, where
OWL Lite and OWL DL are essentially very expressive description logics with an RDF
syntax. As a next step in the development of the Semantic Web, one aims especially at
sophisticated reasoning capabilities for the Rules, Logic, and Proof layers.

In particular, there is a large body of work on integrating rules and ontologies, which
is a key aspect of the Semantic Web. Significant research efforts focus on hybrid in-
tegrations of rules and ontologies, called description logic programs (or dl-programs),
which are of the form KB =(L, P ), where L is a description logic knowledge base,
and P is a finite set of rules involving either queries to L in a loose integration [2] or
concepts and roles from L as unary resp. binary predicates in a tight integration [3].

Other works explore formalisms for uncertainty reasoning in the Semantic Web. In
particular, the work [4] extends the loosely integrated dl-programs of [2] by probabilis-
tic uncertainty as in Poole’s independent choice logic (ICL) [5]. The ICL is a power-
ful representation and reasoning formalism for single- and also multi-agent systems,
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Professorship of the DFG, and the STREP FET project TONES (FP6-7603) of the EU.
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which combines logic and probability, and which can represent a number of important
uncertainty formalisms, in particular, influence diagrams, Bayesian networks, Markov
decision processes, normal form games, and Pearl’s causal models.

In this paper [1], we present tightly integrated probabilistic disjunctive description
logic programs (or simply probabilistic dl-programs) under the answer set semantics,
which are a tight integration of disjunctive logic programs under the answer set seman-
tics, expressive description logics, and probabilistic uncertainty. To our knowledge, this
is the first such approach. The main contributions of this paper are as follows:

– We present a novel approach to probabilistic dl-programs, which is based on the ap-
proach to disjunctive dl-programs under the answer set semantics of [3]. The latter
is a tight integration that assumes no structural separation between the vocabularies
of the description logic and the logic program components. In the same spirit as [4],
this approach is developed as a combination of dl-programs with probabilistic un-
certainty as in the ICL. However, rather than being based on a loose integration
of rules and ontologies, it is based on a tight integration. Furthermore, rather than
being based on normal dl-programs, it is based on disjunctive dl-programs.

– We present an approach to probabilistic data integration for the Semantic Web,
which is based on the novel approach to probabilistic dl-programs, where prob-
abilistic uncertainty over possible worlds may be used as trust, error, or mapping
probabilities. This application takes inspiration from a number of recent probabilis-
tic data integration approaches in the database and web community.

– Since the ICL is actually a formalism for reasoning about actions in dynamic sys-
tems, our approach to probabilistic dl-programs also provides a natural way of
combining a language for reasoning about actions with both description logics and
probabilistic uncertainty, especially towards Web Services.

– We show that consistency checking and query processing in probabilistic dl-
programs are decidable resp. computable, and that they can be reduced to con-
sistency checking and cautious/brave reasoning in tightly integrated disjunctive
dl-programs. This directly reveals algorithms for solving the former two problems.

– We also analyze the complexity of consistency checking and query processing in
probabilistic dl-programs in special cases, which turn out to be complete for the
classes NEXPNP and co-NEXPNP, respectively. Moreover, in the special case of
stratified normal probabilistic dl-programs relative to the description logic DL-Lite,
these two problems can be solved in polynomial time in the data complexity.
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Motivation. Current database systems are often large and complex and the case that a
user or an application has full access to the entire database is rare. It is more likely to
occur that access is granted via windows of the entire systems, called views. A view,
usually virtual, is defined by giving a query on the whole database and at any point
the content of the view is just the outcome of this query. Applications query a base
relation or a view in the same way. Therefore, querying a view does not represent a
serious conceptual problem. In contrast, the issue of view updating is problematic and of
paramount importance: it refers to the problem of translating an update request against
a view into an update request involving the base of data. Over the years, a substantial
amount of research has been devoted to the various issues surrounding view updating
and not surprisingly a wide selection of approaches to the view update problem has
evolved. See [2,3] for surveys of methods for view updating.

The basic problem underlying view updating is that a translation from a view up-
date into corresponding updates over the extensional database does not always exist
or several translations could be performed in order to satisfy the update request. The
complexity of the view update problem arises even in the case of a simple update op-
eration, such as inserting a tuple in a view. Current commercial DBMS, e.g. Access,
MySql, Oracle, SQLServer accept an update against a view, and propagate it to the
stored relation, only in the simple case in which the view is defined from one database
relation, and reject any update request against a view if this is defined by joining more
than one relation. This rigid behavior ensures the acceptance of an update request if and
only if a unique translation exists and solves, albeit drastically, the ambiguity of more
translations.

Approach. Our work focuses on view updating in the presence of existentially derived
predicates1 and non-flat integrity constraints 2 and proposes a logic framework that
translates a view updating into an update of the underlying database. Specifically, given
a deductive database consisting of a set of base facts, a set of integrity constraints and a
set of deductive rules and given an update request, consisting of a set of insert and delete
operations of base and derived facts, it allows us to determine how the update request
can be translated into a minimal set of updates of the stored base facts, while ensuring
integrity constraint maintenance and performing “smaller change”. The benefits of this
proposal, evident in the presence of existential derived predicates, will be intuitively
introduced by a few examples.

1 An existential derived predicate is defined by a deductive rule containing variables in the body
that do not occur in the head of the rule. Note that this situation is likely to occur in many real
cases, e.g the simple case of a database view defined as a projection of a base relation.

2 A flat integrity constraint is defined only in terms of base predicates, i.e. its definition does not
contain view.

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 430–431, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



View Updating Through Active Integrity Constraints 431

Example 1. Consider the update request +P (a) asking for the insertion of the fact P(a) and the
deductive database consisting of the fact Q(a, b) and the view P (X) ← Q(X,Y ), R(X, Y, Z).
The request, not allowed by commercial DBMS, could be translated, as proposed in [4], in the
translations: {+R(a, b, vali)}, for each possible value of vali, and {+Q(a, vali), +R(a, vali,
valj)} for each possible value of valj and each possible value of vali �= b. However, this seems
us to be a “bigger change” to the database that is not strictly necessary for performing the de-
sired update. The solution, proposed in this paper, retrieves in this case, the unique translation
{+R(a, b, ⊥)}. The existential variable Z is fixed to the value ⊥ (the NULL value), that suffices,
in the absence of any additional information specifying Z, to perform the desired view update.
Intuitively, Q(a, b), thought of as a ‘trustable’ fact, as it belongs to the extensional database, is
used to ‘justify’ the construction of the translation. �

Our proposal is a contribution to support view updating, consisting of insertion and
deletion operations in deductive database, preventing the anomalies previous
approaches suffer from. In fact, as shown before, existing approaches satisfy the update
request by generating as many translations as the different values that can be assigned
to the existential variables, whereas, intuitively, the approach proposed in this paper,
that could be defined cautiously liberal, limits the wide range of translations to those
that are “justified” or validated by the deductive database.
Example 2. Consider the deductive database, obtained by extending the Example 1:

Q(a, b). P (X) ← Q(X, Y ), R(X,Y, Z)
S(a, b, c). R(X, Y, Z) ← S(X, Y, Z), T (X, Y, Z)

and the update request +P (a). In this case our approach retrieves as unique repair
R = {+T (a, b, c)}. The proposed strategy implements a process that takes advantage of the
initial knowledge, i.e. the set of extensional facts and the set of intensional facts derived through
views of the deductive database. In this specific case, it recognizes that due to the insertion of
T (a, b, c) the intensional fact R(a, b, c) can be derived and, consequently, the update request
asking for the insertion of the fact P (a) can be justified. �

The novelty of our proposal consists in the definition of a formal declarative semantics
for view updating that allows the identification, among the set of all possible repairs,
of the subset of justified repairs, i.e. the repairs whose actions are “justified” by the
database or by other updates. Given a deductive database and an update request, the
computation of justified repairs is performed by rewriting the update request and the
deductive database in the form of active integrity constraints, whose semantics, given
in terms of stable models, has been formally defined in [1].
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Abstract. Clear separation of presentation and code-behind, declara-
tive use of visual control elements and a supportive background frame-
work to automate recurring tasks are fundamental to rapid web
application development. This poster presents a framework that facili-
tates extending Prolog applications with a web front-end. The framework
relies on Prolog to the greatest possible extent, supports code re-use, and
integrates easily into existing web server solutions.

Keywords: web integration; application development framework.

When developing web applications, separating application logic (what the pro-
gram does) and presentation (how results are displayed) is of paramount im-
portance. This approach leads to a logic focused closely on the task at hand
and a replaceable presentation layer that wraps all web-related issues. Prosper
augments regular Prolog modules that encapsulate application logic with a pre-
sentation layer that facilitates X(HTML) content generation.

Prosper [1] has a two-layered architecture (Figure 1). The lower layer, Pro-
log Web Container, maintains a direct persistent connection to the web server
through the FastCGI protocol [2], which caters for flexibility and easy integration
with an existing web server. In addition, Prolog Web Container parses HTTP
request and generates HTTP response headers and content (similarly to the PiL-
LoW [3] library), maintains a worker thread pool and assigns jobs to threads.
The primary task of the container is to isolate the communication protocol and
provide a natural view of request and session data for the programmer as well
as balancing incoming request load.

Prolog Server Pages, built on top of the container, defines an XML-based doc-
ument model. The conventional XML document model is extended with special
elements belonging to a dedicated namespace each of which realizes a transfor-
mation rule. A transformation rule can be thought of as a Prolog predicate that
defines a mapping between a source and a target XML subtree. For instance, a
simple iteration rule repeats its content a specified number of times. The exact
behavior of the transformation is specified by means of XML attributes. At-
tribute values may bind to Prolog predicates or may use the so-called expression
language. Expression language can be seen as an extension to the is/2 predicate
to include basic atom manipulation, request context variables and user-defined
Prolog functions. Prolog Server Pages also offer once-assignable local variables
valid inside the server page document to propagate computed values.
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Prosper includes a predefined set of special elements implementing the most
common transformation rules such as conditionals and iteration constructs. How-
ever, the set of transformation rules is not restricted. Relying on the extension
infrastructure, the user may create new modules that contain hook predicates
registered for steps associated with reply generation. Modules correspond to
XML namespaces and exported hook predicate names to element names in server
page documents. Special elements and their implementor hook predicates are de-
clared in a configuration file.

The document model allows declarative, XML-based definition of visual ap-
pearance without the use of a foreign language interface (as opposed to e.g. Prolog-
Beans [6]). Complementing the visual part of Prolog Server Pages, logic modules
give real power to the architecture. Logic modules (which are conventional Pro-
log modules) provide the code-behind that incorporates application logic and are
not interleaved with the presentation layer (unlike [4] and [5]). Server pages can
reference code-behind in a variety of ways: assign server page variables based on
application logic, test for the satisfiability of predicates and formulate conditions
using the return value of functions, thereby affecting visual layout.

Prolog Server 

Pages core 

Prolog Web 

ContainerFastCGI

module

context

assertion

extension

infra-

structure

predefined

special elements 

user-defined 

special elements 

expression

language

Fig. 1. The architecture of the proposed framework
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Abstract. We present the CIFFWEB system, an innovative tool for the
verification of web sites, relying upon abductive logic programming. The
system allows the user to define rules that a web site should fulfill by
using (a fragment of) the query language Xcerpt. The rules are translated
into abductive logic programs with constraints and their fulfillment is
checked through the CIFF abductive proof procedure.

1 Web Checking Rules

The exponential growth of the WWW raises the question of maintaining and
repairing automatically web pages at both structural and data level. Our web
checking rules are characterized by using (a fragment of) the query language
Xcerpt [2] for expressing complex queries in a natural syntax. The following is
an example of a XML page [P1] about a theater company (left) and a rule
expressing that no director should occur twice in the director list [R1] (right).

%%% directorindex.xml GOAL all error [var D,"double director"]
<dirlist> FROM
<dir>dir1</dir> in {resource{"file:directorindex.xml"},
<dir>dir2</dir> dirlist {{
<dir>dir2</dir> dir {{var D}}, dir {{var D}} }}
</dirlist> } END

Web checking rules are specified by a condition part (starting with FROM) and an
error part (starting with GOAL). The intuitive meaning of a rule is that for each
instance in the XML resource(s) matching the condition part, an error needs
to be returned. Due to lack of space, the example does not cover the whole
expressiveness of our rules: in particular the absence of XML data (without
construct) and (arithmetical) constraints over variables can also be expressed.

However, to the best of our knowledge, Xcerpt lacks of both a clear seman-
tics for negation constructs (without) and a concrete tool for evaluating Xcerpt
queries. Hence, we map web checking rules into abductive logic programs with
constraints (ALPCs) that can be fed as input to the CIFF System 4.0, an im-
plementation of the general-purpose CIFF abductive proof procedure [3] which
is sound with respect to the 3-valued completion semantics. Using CIFF for
determining the fulfillment of the rules, we inherit its formal properties, thus
obtaining a sound concrete tool for web sites verification.
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2 Mapping Rules to Abductive Logic Programs

The CIFF proof procedure gets as input an ALPC 〈P, A, IC〉� where P is a
normal logic program (with constraints), A is a set of abducible predicates and
IC is a set of integrity constraints of the form L1 ∧ · · · ∧ Lm → H where each
Li is a literal and H is a disjunction of atoms. Constraint atoms are evaluated
wrt an underlying structure �, as in constraint logic programming [3].

Since CIFF is not designed to handle directly XML resources, we translate
XML pages into sets of atoms of the form pg el(ID,Tag,IDF). Each XML Tag
element is associated to both a unique ID and to its father’s id (IDF) in order to
represent the page structure. The same is done for the data inside a XML tag.
Similarly, we translate Xcerpt rules into ALPCs, where abducibles are associated
with errors. In the absence of negation (without construct) each web checking
rule is translated into a single integrity constraint whose head is an abducible
atom abd err(Args,Msg) representing the error. As an example, the translation
of both [P1] and [R1] is the following.
[P1]: pg_el(1,dirlist,_). pg_el(2,dir,1). data_el(3,’dir1’,2).

pg_el(4,dir,1). data_el(5,’dir2’,4).
pg_el(6,dir,1). data_el(7,’dir2’,6).

[R1]: [pg_el(ID1,dirlist,_), pg_el(ID2,dir,ID1), data_el(ID3,D,ID2),
pg_el(ID4,dir,ID1), data_el(ID5,D,ID4), ID2 #\= ID4]
implies [abd_err([D],"double director")].

Running the CIFF System 4.0 with the above input, the abductive answer
[abd err([’dir2’],’double director’)] is correctly produced1.

3 Conclusions

The CIFFWEB tool shows how abductive logic programming can be exploited
for verifying properties’ fulfillment of web sites. The main advantages of this
approach are the expressiveness, a clear formal semantics and a concrete com-
putational counterpart. There are many issues to be addressed yet. In particular
abductive reasoning can also be exploited for web sites repairing. A (more com-
plex) formalization of the repairing task is work in progress. We are also working
on expressiveness extensions to the framework, a user-friendly GUI, and medium-
large size experiments. In the literature there is limited work on these topics.
The GVERDI-R system [1] is the closest work.
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The convergence of logic and visual languages is recognized as a promising ap-
proach for both the logic programming automation and enhancement of visual
modeling/programming methods. The distinction of our approach is in that we
unite the Actor Prolog concurrent object-oriented logic language [1,2,3] with
the Structural Analysis and Design Technique (SADT) diagrams to obtain new
issues in the following areas:

1. Functional modeling of complex systems;
2. Rapid prototyping of artificial intelligence applications;
3. Graphic user interface management.

The SADT diagrams (also called the IDEF∅ diagrams) are a variety of func-
tional diagrams and are widely applied for analysis and design of complex sys-
tems. Note that the main idea of our approach is in use of the logic language for
analysis/animation of the SADT diagrams, but not in use of the visual notation
for automation of programming. That is why we have employed SADT, but not
the UML language that has much more specialized destination.

Our method of visual programming/modeling includes the following scheme
of logic program design:

1. Standard SADT diagrammers are used to develop a graphic description of
the software system. SADT description is a hierarchy of blocks that receive
and pass data flows (see an example of SADT diagram on Fig. 1).

2. Each elementary block of the SADT model is put into correspondence with
a logic description in the form of a certain class of Actor Prolog. The source
text in Actor Prolog can be written by a programmer or taken from the
library of reusable modules (components).

3. The graphic description of the software system is automatically translated
into the text in Actor Prolog. The syntactic means of Actor Prolog make
possible to implement the block-hierarchical structure and links between
blocks of the diagrams in the form of communicating processes.

4. Assembling the automatically created text and descriptions of elementary
blocks, we obtain a ready-to-use program in Actor Prolog.

Experimentation with visual programming has shown that the diagrams can
be conveniently used not only as a visual programming language but simply as
a graphic user interface. At present, visual programming system automatically
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Fig. 1. An example of user interface based on SADT diagram

creates visual interface of a logic program on the basis of source SADT diagrams
(see example of user interface on Fig. 1).

The individual blocks of visual user interface based on the SADT diagrams are
implemented by using parallel processes of Actor Prolog. As a rule, each elemen-
tary block of a diagram has its own dialog box that can be opened by the click of
a mouse. The color of the block changes automatically depending on the state of
the corresponding process. A user may interact with the blocks of the diagram in
any order. Repeated alteration of any parameters entered earlier is also possible.

We applied the visual programming method for logic programming of Internet
agents [4]. It was shown that the tools for visual programming based on SADT
and the object-oriented logic approach substantially simplify and accelerate cre-
ation of complex logic programs.

This work was supported by RFBR, project no. 06-07-89302.
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This work is a continuation of our previous works [4,5]. We assume that the reader
is familiar with description logics (DLs). A knowledge base in a description logic is
a tuple (R ,T ,A) consisting of an RBox R of assertions about roles, a TBox T of
global assumptions about concepts, and an ABox A of facts about individuals (objects)
and roles. The instance checking problem in a DL is to check whether a given indi-
vidual a is an instance of a concept C w.r.t. a knowledge base (R ,T ,A), written as
(R ,T ,A) |= C(a). This problem in DLs including the basic description logic ALC
(with R = /0) is EXPTIME-hard. From the point of view of deductive databases, A is
assumed to be much larger than R and T , and it makes sense to consider the data com-
plexity, which is measured when the query consisting of R , T , C, a is fixed while A
varies as input data. It is desirable to find and study fragments of DLs with PTIME data
complexity. Several authors have recently introduced a number of Horn fragments of
DLs with PTIME data complexity [2,1,3]. The most expressive fragment from those is
Horn-SH I Q introduced by Hustadt et al. [3]. It assumes, however, that the construc-
tor ∀R.C does not occur in bodies of program clauses and goals. The data complexity
of the “general Horn fragment of ALC ” is coNP-hard [6]. So, to obtain PTIME data
complexity one has to adopt some restrictions for the “general Horn fragments of DLs”.
The goal is to find as less restrictive conditions as possible.

A RBox is a finite set of assertions of the form Rs1 ◦ . . . ◦ Rsk � Rt , where Rs1 , . . . ,
Rsk , Rt are role names. A regular RBox is an RBox whose set of corresponding grammar
rules t → s1 . . . sk forms a grammar such that the set of words derivable from any symbol
s using the grammar is a regular language specified by a finite automaton. We assume
that the corresponding finite automata specifying R are given when R is considered. By
R eg we denote ALC extended with regular RBoxes. We extend the language of ALC
and R eg with the concept constructor ∀∃, which creates a concept ∀∃Rt .C from a role
name Rt and a concept C. Let Sem1(∀∃Rt .C) = {∀Rt .C,∃Rt .�} and Sem2,R (∀∃Rt .C) =
{∀Rt .C} ∪ {∀Rs1 . . .∀Rsi−1∃Rsi .� | Rs1 ◦ · · · ◦ Rsk � Rt is a consequence of R and 1 ≤
i ≤ k}. Then, for a model I = 〈ΔI , ·I 〉 of an RBox R , define x ∈ ΔI to be an instance of
a concept C in I w.r.t. s ∈ {Sem1,Sem2,R }, write I ,x |=s C, in the usual way if C is not
of the form ∀∃Rt .D, and that I ,x |=s ∀∃Rt .D if I ,x |=s D′ for every D′ ∈ s(∀∃Rt .D).
We write I |=s C(a) for I ,aI |=s C.

A positive concept is a concept (in the extended language) without the constructors
⊥, ¬, �,

.=. A deterministic positive concept is a positive concept which does not con-
tain the constructor ∀ (but may contain ∃ and ∀∃).
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A positive logic program is a finite set of program clauses formed using the following
BNF grammar, in which C denotes a positive concept without ∀∃ :

D ::= � | A | C � D | D�D | ∀Rt .D | ∃Rt .D

A deterministic positive logic program is a finite set of deterministic program clauses
formed using the above BNF grammar with C being a deterministic positive concept.

Given a positive logic program T ′, the deterministic version of T ′ is the determinis-
tic positive logic program T obtained from T ′ by replacing every concept of the form
∀R.C in bodies of program clauses of T ′ by ∀∃R.C.

In the full version [6] of this paper, we present an algorithm that, given s ∈
{Sem1,Sem2,R } and a knowledge base (R ,T ,A) consisting of a regular RBox R ,
a deterministic positive logic program T , and an ABox A , constructs a finite “least
s-pseudo-model” I of (R ,T ,A). For s = Sem2,R , the least s-pseudo-model I has the
property that, I |=Sem2,R C(a) iff (R ,T ,A) |=Sem2,R C(a), for every deterministic pos-
itive concept C. For s = Sem1, we have only the one-way assertion: I |=Sem1 C(a)
implies (R ,T ,A) |=Sem1 C(a), for every positive concept C.

Given a Horn knowledge base (R ,T ′,A) and a positive concept C, where R is a reg-
ular RBox and T is a positive logic program, we propose the approximation of checking
(R ,T ′,A) |= C(a) by checking whether I |=Sem1 C(a), where T is the deterministic
version of T ′ and I is the least Sem1-pseudo-model of (R ,T ,A) constructed by the
algorithm given in [6]. The approximation is correct in the sense that I |=Sem1 C(a)
implies (R ,T ′,A) |= C(a). It is a good approximation because that:

– First, Sem1, which interprets ∀∃R.D in premises as ∀R.D �∃R.�, is highly “ac-
ceptable”. For example, ∀∃child.good person � happy parent w.r.t. Sem1 is more
“acceptable” than the clause ∀child.good person � happy parent.

– Second, (R ,T ,A) |=Sem2,R C(a) implies I1 |=Sem1 C(a) if C is a deterministic pos-
itive concept. At least, when the constructors ∀R.D and ∀∃R.D are disallowed in
C and bodies of program clauses of T ′ (as assumed for Horn-SH I Q [3]), the ap-
proximation is exact, i.e. (R ,T ′,A) |= C(a) iff I |=Sem1 C(a).

– Third, I is constructed in polynomial time in the size of A , and checking I |=Sem1

C(a) can be done in polynomial time in the size of I and C. That is, the approxi-
mation has PTIME data complexity.
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Introduction

The stable model semantics of disjunctive logic programs (DLPs) is based on minimal
models which assign atoms false by default. While this feature is highly useful—leading
to concise problem encodings—it occasionally renders knowledge representation with
disjunctive rules difficult. Reiter-style minimal diagnoses [1] provide a good example
in this respect. This problem can be alleviated by a more refined control of minimiza-
tion provided by parallel circumscription [2] which allows certain atoms to vary or to
have fixed truth values. The scheme of prioritized circumscription [3,2] generalizes this
setting with priority classes for atoms being minimized. Our aim is to bring these en-
hancements of minimality to the realm of disjunctive logic programming. We strive for
a translation-based approach where varying and fixed atoms, as well as priority classes
are effectively removed from representations by transformations. We have already ad-
dressed parallel circumscription and provided a linear and faithful but non-modular
translation [4]. Here we present a similar transformation for prioritized circumscrip-
tion, extend our implementation [5], and report preliminary experiments.

Circumscription. In the sequel, we consider the two forms of circumscription in the
propositional case. Given a theory Π represented as a positive DLP, the purpose of a
prioritized circumscription Circ(Π, P1 > . . . > Pk, V, F ) 1 of Π is to falsify atoms in
each set Pi, with a decreasing level of priority 0 < i ≤ k, as far as possible. Meanwhile
the truth values of atoms in V may vary freely and the truth values of atoms in F are
kept fixed. These objectives can be captured using a notion of minimality as follows.

Definition 1. A model M |= Π of a positive DLP Π is 〈P1 > . . . > Pk, V, F 〉-minimal
iff there is no N |= Π such that (i) N ∩ P1 ⊂ M ∩ P1, or N ∩ (P1 ∪ . . . ∪ Pi−1) =
M∩(P1∪. . .∪Pi−1) and N∩Pi ⊂ M∩Pi for some 1 < i ≤ k; and (ii) N∩F = M∩F .

The parallel circumscription Circ(Π, P, V, F ) of Π is obtained as a special case of
Definition 1 (k = 1). In addition, the 〈P1 > . . . > Pk, V, F 〉-minimality of M |= Π is
captured by the unsatisfiability of a translation TrUNSAT(Π, P1 > . . . > Pk, F, M) =

{(A \ F ) ← (B \ F ) | A ← B ∈ Π , M 
|=
∨

(A ∩ F ), and M |= B ∩ F} ∪
{e0 ←} ∪

⋃k
i=1{ei ← (Pi ∩ M) ∪ {ei−1}} ∪ {⊥ ← ek}∪

⋃k
i=1{⊥ ← a, ei−1 | a ∈ Pi \ M}. 2 (1)

� This research has been partially funded by the Academy of Finland under project “Advanced
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1 The sets of atoms P1, . . . , Pk, V , and F are mutually disjoint and cover all atoms of Π .
2 Here e0 and e1, . . . , ek, which correspond to priority classes P1, . . . , Pk , are new atoms.
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Translation-Based Approach. In [4], we present a transformation that captures the
models of a parallel circumscription Circ(Π, P, V, F ) with the stable models of its
translation. Prioritized circumscription is handled by translating it to parallel circum-
scription using Lifschitz’ (quadratic) scheme [5]. Here we extend the method from [4]
for prioritized circumscription. The translation Trcirc2dlp(Π, P1 > . . . > Pk, V, F )
consists of two DLP modules (cf. DLP-functions in [6]). The module Trgen(Π) gener-
ates a model candidate for Circ(Π, P1 > . . . > Pk, V, F ) roughly in the same way as
in [4]. The module Trmin(Π) encodes the test for 〈P1 > · · · > Pk, V, F 〉-minimality
as an unsatisfiability check based on (1). When the two modules are joined as a single
DLP, model candidates created by Trgen(Π) are passed as input to Trmin(Π) for test-
ing 〈P1 > . . . > Pk, V, F 〉-minimality. As a consequence, the 〈P1 > · · · > Pk, V, F 〉-
minimal models M of a positive DLP Π and the stable models N of Trcirc2dlp(Π, P1 >
. . . > Pk, V, F ) end up in a bijective correspondence such that M = N ∩ At(Π).
Experiments. Our translator CIRC2DLP (v2.1)3 implements Trcirc2dlp(·). We use the
problem of finding Reiter-style minimal diagnoses for digital circuits as the benchmark.
For k > 1 priority classes for minimization, the performance of CIRC2DLP significantly
improves the quadratic translation from [5]. On smaller instances the running times of
CIRC2DLP (using DLV as back-end) and CIRCUM2 are very similar, but the memory
consumption of CIRCUM2 becomes soon a bottleneck (over 512MB) as instances grow.

Discussion. The translation Trcirc2dlp(·) improves its predecessors [4,5] and it has a
distinctive set of properties: (i) arbitrary propositional theories Π subject to prioritized
circumscription are covered, (ii) the translation Trcirc2dlp(Π, P1 > . . . > Pk, V, F ) can
be produced in linear time and space before computing any models, (iii) the minimal
models of Circ(Π, P1 > . . . > Pk, V, F ) and the stable models of its translation are in
a bijective relationship, (iv) the signature At(Π) is preserved, and (v) there is no need
for incremental updating. All previous transformations lack some of the features (i)–
(v). In particular, those involving characteristic clauses and loop formulas, and the one
underlying CIRCUM2, are worst-case exponential. Our first experiments indicate that
CIRC2DLP combined with a disjunctive solver compares favorably with CIRCUM2.
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Structured diagrams - e.g., ER diagrams - consist of finite types of symbols in-
terconnected according to well-defined rules. Graph grammars [CEEe95, Hab92]
are a well-known formalism used to specify the syntax of structured diagrams.
Many graph grammar formalisms have been defined, which differ mainly in
their graph rewrite mechanism. Graph grammars are well understood in al-
gebraic framework; but there is little work in linking them to logic program-
ming [CMR+91, CMR+91, CR93, Sch93].

We propose a graph grammar formalism called Graph Grammar in Prolog
(GGP). We show how GGP can be embedded in Prolog, akin to how DCG em-
beds context-free string grammars in Prolog. Like DCG, we use Prolog to provide
an executable semantics to the GGP formalism. We illustrate the formalism by
defining syntax of a simple class of graphs.

An edge terminal is a Prolog term of the form edge(vertex(U,A),
vertex(V,B)) which states that there is a directed edge between two vertices
having IDs U, V and labels A, B respectively. The vertex IDs or labels can be
Prolog variables or constants. A non-terminal (also called an N -term) is a Pro-
log term of the form name(L), where name is an atom and L is a Prolog list,
typically consisting of only Prolog variables. A GGP production has the form
Head ==> Body. where Head is an N -term and Body is a sequence of terminals
and N -terms (and also the usual Prolog predicates).

The following GGP productions define the syntax for star graphs, whose center
is labeled with a and all other vertices are labeled with b. Only one non-terminal
star is used. The second GGP production is recursive: N -term star occurs
as head as well as in the body. The N -terms and terminals can freely share
Prolog variables; e.g., the head star and the N -term star in the body in second
production share the Prolog variables S0.

star([S0]) ==> edge(vertex(S0,a),vertex(S1,b)).
star([S0]) ==> edge(vertex(S0,a),vertex(S1,b)), star([S0]).

A declarative reading of these GGP productions is as follows. Prolog variable
S0 identifies the ID of the centre vertex of the star graph. The first production
says that a graph consisting of two vertices S0, S1, labeled with a and b re-
spectively and having a single directed edge from S0 to S1 is a star graph. The
second production says that a graph is a star graph with centre vertex S0 labeled
with a, if it includes vertices S0, S1 labeled with a and b and a directed edge
from S0 to S1 and the graph obtained by deleting this (S0, S1) edge (without
deleting the vertices S0 and S1) is a star graph.
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A GGP parses a given graph (represented as unordered sets of vertices and
edges) and reports whether or not the sets obeys the syntax specified by the
GGP productions. Each step in the GGP derivation removes one edge from the
given set of edges. The derivation terminates when all edges are removed. Prolog
variables in N -terms get instantiated during the derivation. As in DCG, each
GGP production is translated into a corresponding Prolog rule. Above GGP
productions are translated into the following Prolog code.

star(A,B,[C],D,E) :- check_edge(A,B,vertex(C,a),vertex(F,b),D,E).
star(A,B,[C],D,E) :- check_edge(A,B,vertex(C,a),vertex(F,b),G,H),

star(G,H,[C],D,E).

We use the Prolog interpreter to check whether the above (translated) GGP
parses a directed 5-vertex star graph where the central vertex having ID 1 is
labeled with a and other vertices (having IDs 2, 3, 4, 5) are labeled with b.
Actual vertex IDs and the order of vertices and edges in the lists are immaterial.

?- star([v(1,a),v(2,b),v(3,b),v(4,b),v(5,b)],
[e(1,2),e(1,3),e(1,4),e(1,5)], X,_,[]).

X = [1]

We have also developed a formalism called simple graph grammar (SGG),
which can be viewed as both a string grammar (with a string rewrite mechanism)
and a graph grammar (with a graph rewriting mechanism). GGP is an embedding
of SGG in Prolog. We have used GGP to define syntax of various structured
diagrams: ER diagram, message sequence chart and statecharts. We are working
on using GGP as a graph transformation and graph database query mechanism.

Acknowledgments. Sincere thanks to Dr. Manasee Palshikar and colleagues
in TRDDC.
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Tabling is a technique of resolution that overcomes some limitations of traditional
Prolog systems in dealing with redundant sub-computations and recursion. We
can distinguish two main categories of tabling mechanisms: suspension-based
tabling mechanisms and linear tabling mechanisms. Suspension-based tabling
mechanisms need to preserve the state of suspended tabled subgoals in order to
ensure that all answers are correctly computed. A tabled evaluation can be seen
as a sequence of sub-computations that suspend and later resume. On the other
hand, linear tabling mechanisms use iterative computations of tabled subgoals
to compute fix-points. The main idea of linear tabling is to maintain a single
execution tree where tabled subgoals always extend the current computation
without requiring suspension and resumption of sub-computations.

A common approach used to include tabling support into existing Prolog sys-
tems is to modify and extend the low-level engine. Although this approach is
ideal for run-time efficiency, it is not easily portable to other Prolog systems as
engine level modifications are rather complex and time consuming and require
changing important components of the system such as the compiler, the code
generator, and the data structures that support Prolog execution. A different
approach to incorporate tabled evaluation into existing Prolog systems is to ap-
ply source level transformations to a tabled program. The transformed program
then uses external tabling primitives that provide direct control over the search
strategy to implement tabled evaluation. This idea was first explored by Fan and
Dietrich [1] that implemented a form of linear tabling using source level program
transformation and tabling primitives implemented as Prolog built-ins.

In this work, we present a suspension-based tabling mechanism based on pro-
gram transformation, but we use the C language interface, available in most
Prolog systems, to implement the tabling primitives. In particular, we use the
C interface of the Yap Prolog system to build external Prolog modules imple-
menting the support for tabled evaluation. We can distinguish two main modules
in our implementation: the module that implements the specific control primi-
tives and the module that implements the table space data structures. The table
space was implemented using tries [2]. To implement our mechanism, that we
named tabled evaluation with continuation calls, we followed a local scheduling
� This work has been partially supported by Myddas (POSC/EIA/59154/2004) and
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strategy [3]. Suspension is implemented by leaving a continuation call for the
current computation in the table entry corresponding to the variant call be-
ing suspended. During this process and as further new answers are found, they
are stored in their tables and returned to all variant calls by calling the previ-
ously stored continuation calls. To implement the program transformation step,
we have extended the original program transformation module of Ramesh and
Chen [4] to include the tabling primitives for our approach.

To evaluate the impact of our approach, we ran it against the state-of-the-art
YapTab system, that implements tabling support at the low-level engine. YapTab
also implements a suspension-based mechanism, uses tries to implement the table
space and is implemented on top of Yap. This was thus a first and fair compari-
son between the approach of supporting tabling at the low-level engine and the
approach of supporting tabling by applying source level transformations coupled
with tabling primitives. As expected, YapTab outperformed our mechanism in
all programs tested. On average, YapTab was about 7.50 faster than the contin-
uation calls mechanism. Best performance was achieved for left recursive tabled
predicates with the recursive clause first, with an average overhead between 2
and 3. The results obtained also suggested that there is a cost in the execution
time that is proportional to the number of redundant answers, variant calls and
continuation calls executed during an evaluation. In particular, the number of
continuation calls seems to be the most relevant factor that contributes to this
cost because continuation calls are not compiled, they are constructed and called
in run-time using the C language interface.

Considering that Yap and YapTab are respectively two of the fastest Prolog
and tabling engines currently available, the results obtained are very interesting
and very promising. We thus argue that our approach is a good alternative to
incorporate tabling into any Prolog system. It requires neither advanced knowl-
edge of the implementation details of tabling nor time consuming or complex
modifications to the low-level engine. Moreover, both source level transforma-
tions and tabling primitives can be easily ported to other Prolog systems with
a C language interface. Currently, we are already working with the Ciao group
to include our implementation as a module of the Ciao Prolog system.
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Introduction

Constraint Handling Rules (CHR) [2,3,4] is a general-purpose programming lan-
guage based on committed-choice, multi-headed, guarded multiset rewrite rules.
As the head of each CHR rule only considers a fixed number of constraints, any
form of aggregation over unbounded parts of the constraint store necessarily
requires explicit encoding, using auxiliary constraints and rules.

Example 1. Suppose the constraints account(AccountId,ClientId,Balance)
and client(ClientId) constitute a simplified representation of the accounts
and clients of a bank. Consider the business rule “A client whose accumulated
sum of account balances is $25,000 or more is a platinum client”. A common ap-
proach to encode this rule in CHR is the introduction of an auxiliary constraint:

client(C), accumulated_balance(C,Sum) ==> Sum ≥ 25000 | platinum(C).

However, the explicit maintenance of such an auxiliary constraint is an inherently
cross-cutting concern which requires invasive modifications to many rules, spread
throughout the entire program, e.g.:

deposit(A,X), account(A,C,B), accumulated_balance(C,Acc)
<=> account(A,C,B+X), accumulated_balance(C,Acc+X).

...
withdraw(A,X), account(A,C,B), accumulated_balance(C,Acc)

<=> B > X, account(A,C,B-X), accumulated_balance(C,Acc-X). ��

Aggregates. We propose an extension of CHR with aggregate expressions in
the heads of rules. Aggregates accumulate information over possibly unbounded
parts of the constraint store. We provide a wide range of predefined aggregates,
including all aggregates commonly found in related paradigms such as database
query languages [1] (i.e. min, max, sum, count and avg) and production rule sys-
tems (i.e. not, exists and forall). The complete list of predefined aggregates,
together with a number of example uses, can be found in [5].
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V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 446–448, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



Aggregates in Constraint Handling Rules 447

Example 2. The auxiliary constraint in Example 1 can be avoided using sum:

client(C), sum(B,account(_,C,B),Sum) ==> Sum ≥ 25000 | platinum(C).

No further program changes are required to implement the business rule. ��

User-defined Aggregates. Often information has to be aggregated in
application-specific ways. Therefore, we designed a general high-level mechanism
that enables CHR end-users to create their own user-defined aggregates :

aggregate(Start, Inc, Dec, Final, Template, Goal, Result)

The aggregate/7 construct is expressive enough to specify any aggregate. All
predefined aggregates are implemented by it. For instance, sum(T,G,R) is defined
as aggregate(=(0),plus,minus,=,T,G,R), where ‘=(0)’ indicates unification
with zero, and plus/3 and minus/3 are two straightforward Prolog predicates
computing the sum, respectively the difference of the first two arguments.

The first four arguments of aggregate/7 specify the host-language proce-
dures or CHR constraints that determine how the aggregate is computed. First,
an intermediate working value is initialized using Start. Then, for each match-
ing found for Goal, a corresponding instance of Template is passed to Inc to
increment the current working value. After all increments required are made, the
working value is finalized using Final, to obtain the aggregate’s result Result.

Complex aggregate goals. We allow arbitrary conjunctions of CHR con-
straints and guards in the aggregate goal Goal: for example, the expression
count((platinum(C),account(_,C,_)), N) counts the number of accounts
owned by platinum clients. We also allow nested aggregates, i.e. aggregates inside
the goal of another aggregate. For example, the client C with the largest total
balance S is given by argmax(S, (client(C), sum(B,account(_,C,B),S))).

Implementation. We have developed a prototype implementation [6] based on
a source-to-source transformation to regular CHR (extended with some low-level
compiler pragma’s). The implementation allows aggregate computation using
either an on-demand or an incremental strategy. Case studies indicate that ag-
gregates can significantly reduce the program size and improve the readability,
while the run-time overhead is an acceptable constant factor.
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Abstract. In this poster, we show how the fuzzy answer set semantics, i.e. a
combination of answer set programming and fuzzy logic, can be mapped onto
the semantics for HEX-programs.

We refer the reader to [4] for an in-depth introduction to the framework of fuzzy answer
set programming, while [2] is a good starting point for the concept of HEX-programs.

The mapping from the FASP semantics to HEX-programs we present is based on the
well-known guess-and-check methodology in answer set programming [3]. Intuitively,
the guess part of our encoding will be responsible for computing x-consistent fuzzy
y-answer sets, while the checking part of the encoding will check the foundedness con-
dition of fuzzy models.

To handle the fuzzy operations on the lattice under consideration, e.g. negation or
implication, we will use external atoms. Our translation uses, among others, the fol-
lowing external functions: &not gt[X, Y ](), &not geq[X, Y ](), &negator[V ](NV ),
&t norm[X1, . . . , Xk](X), &implicator[X, Y ](Z) and &support[X, Z](Y ). Note
that we use &not gt and &not geq to handle �>L and �≥L, where L is the lattice under
consideration, as the properties x �> y ⇔ x ≤ y and x �≥ y ⇔ x < y do not hold for
non-total lattices.

The first program in our translation will compute, for a program P , the x-consistent
fuzzy y-models, with x, y ∈ L. This program P x,y

guess , with x, y ∈ L, contains the
following rules.

{fi(l , v1 ) ∨ · · · ∨ fi(l , vn) ← | l ∈ LitP}
fi(⊥, 0L) ←

nfi(L, NV ) ← fi(L, V ), &negator [V ](NV )
consistent(X ) ← &consistency[fi ](X )

← consistent(X ), &not geq[X , x ]()
body(r , X , a) ← fi(b1 , X1 ), . . . , fi(bk , Xk), nfi(bk+1 , Xk+1 ), . . . , nfi(bm , Xm),

&t norm[X1, . . . , Xm](X)
body(r , X , a) ← fi(b1 , X1 ), . . . , fi(bk , Xk), nfi(bk+1 , Xk+1 ), . . . , nfi(bm , Xm),

&t norm[X1, . . . , Xm](X)
rule(R, Z ) ← body(R, X , H ), fi(H , Y ), &implicator [X , Y ](Z )

aggregation(X ) ← &aggregate[rule](X )
← aggregation(X ), &not geq[X , y]()
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To check, for a program P , whether an x-consistent fuzzy y-model M of P com-
puted by P x,y

guess is also an x-consistent fuzzy y-answer set of P , we need additional
rules, denoted by Pcheck , that check M for unfounded sets. To accomplish this, we will
use the saturation technique that is used in some complexity proofs of the answer set se-
mantics for disjunctive programs [1] and in the work of automated integration of guess
and check programs in answer set programming [3].

Intuitively, we will compute a set of literals X . If X is such that it has no literal in
common with the fuzzy interpretation contained in fi , it cannot be used to show that fi
is not unfounded-free. Therefore, we consider X always as founded in this case and we
will saturate the answer set accordingly. On the other hand, when X has at least one
literal in common with the fuzzy interpretation contained in fi , then, if X is founded,
we will saturate the answer set. Thus, because of the minimality of answer sets, if a set
X exists that is unfounded w.r.t. fi , no saturation will occur and we will have a minimal
answer set for the HEX-program. As a result, saturated answer sets of the HEX-program
P x,y

guess ∪Pcheck will correspond to x-consistent fuzzy y-answer sets of P . This program
Pcheck contains the following rules.

sup(R, Y ) ← body(R, X , H ), rule(R, Z ), &support [X , Z ](Y )
{x (l) ∨ x (l ′) ← | l ∈ LitP}
founded ← x (L), body(R, B , L), &no body intersection[R, x ](),

fi(L, V ), sup(R, S ), &not gt [V , S ](), B �= 0L
founded ← &no intersection[fi , x ]()

founded ∨ unfounded ←
unfounded ← founded

{x (l) ← founded ; x (l ′) ← founded | l ∈ LitP}

The following theorem confirms that the combination of P x,y
guess and Pcheck can be

used to retrieve the x-consistent fuzzy y-answer sets of P .

Theorem 1. Let P be a program, let I be a fuzzy interpretation and take x, y ∈ L. I
is an x-consistent fuzzy y-answer set of P iff there exists an answer set I ′ of P x,y

guess ∪
Pcheck such that {fi(l , I (l)) | l ∈ LitP} ⊆ I ′; and {founded , unfounded} ⊆ I ′.

In future work, we intend to implement an automated version of the translation and
integrate it with the DLVHEX system.
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1 Extended Abstract

Animation of a formal specification involves its execution and this paper is con-
cerned with Z specifications and their correct animation. Since Z is based on
typed set theory the logic programming language Gödel [2] was chosen as the
execution language. Abstract Approximation was suggested in [1] to provide a
formal framework and some proof rules for the correct animation of Z. We de-
scribe here how the correctness criteria are applied to our method of structure
simulation [3].

The Gödel programming language is defined as a theory in first order logic
and an implementation must be sound with respect to this semantics. Gödel is
strongly typed so that the sorts in Gödel can model the types of Z, and also a
set data type is supported. A small example is provided to give a ‘flavour’ of
the simulation. A file system involves a single given set of file identifiers [FileId ].
A global variable MaxFiles : IN defines the maximum files of the system, where
MaxFiles > 0. The schema FileSys1 has components Files , Count where Files is
a finite subset of the set FileId , and Count is the number of files in Files .

FileSys =̂ [Files : IFFileId ; Count : 0 . . MaxFiles | #Files = Count ]

The given sets of the specification are declared as one of the base types (in Gödel)
and some constants of the base types introduced to model the environment (for
example F1, F2, F3). Other base types include schema and variable names and
a ‘binding type’ BindVar, used to facilitate the binding formation of schemas.
In order to be able to refer to variable names globally we have made them into
constants in Gödel, hence upper case. These link to (lower case) variables via a
‘binding function’. We require more than one kind of binding function to allow
for different types in the second argument. Thus Bind1(Files,files) has a
set of file ids as a second argument, Bind2(Count, count ) has an integer as
a second argument. In order to make a set or list of these, the return value of
each is the same, BindVar. The code, query and result which follows is from
Gödel module Demo and demonstrates the simulation of FileSys . Although not
required here, a set library models functions, relations etc. to augment the set

1 The horizontal form of schema definition is shown.
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operations already provided by Gödel. In more complex examples, it is necessary
to instantiate some variable bindings. In contrast the query shown has variables
uninstantiated.

% Schema for state FileSys - head contains a schema binding
SchemaType( [ Bind1(Files, files ), Bind2(Count, count )], FileSys)
<- setFID = {x : IsFileId(x) } & %% schema predicate

files Subset setFID & count In {y : 0 =< y =< 10} &
Card(files, count).

%% Query - in this simple example all bindings are generated.
[Demo] <- SchemaType(b, FileSys).
b = [Bind1(Files,{}),Bind2(Count,0)] ? % first schema binding
b = [Bind1(Files,{F1}),Bind2(Count,1)] ? %% second schema binding
%% ... there are 8 possibilities in total.

In abstract approximation, the interpretation of Z syntactical objects in both
the execution language (in our case Gödel) and in Z are compared. For cor-
rectness, the interpretation in the Gödel domain must always underestimate the
interpretation in the Z domain. The approximation expresses the underlying con-
cept of ‘safeness’ in abstract approximation, that a computation in Gödel should
never provide more information than the result obtained by the evaluation of an
expression in Z. The criteria involve a structural induction rule and takes place
in the following order: base types, predicate expressions, declarations, schemas
(see the report [4]).

For example predicates evaluate to either true, false or ⊥ and at the same time
the environment may be enhanced via resolution. Consider the state schema
FileSys and the declaration Files : IFFileId . This is equivalent to the evaluation
of the predicate Files ⊆ FileId . Before the computation, Files is uninstantiated
(= ⊥) and FileId = {F1, F2, F3}. We denote by PZ [[p]]ρZ the interpretation
of syntactic predicates p in Z in an environment ρZ (and similarly for Gödel).
Both interpretations evaluate to true and both enhance the environment in 8
possible ways. In this case the Gödel interpretation equals the Z. If it had not
been possible to find values to satisfy the predicate then in both interpretations
it would have evaluated to false and the environment is unaltered. If the program
had floundered the predicate would have evaluated to ⊥ and underestimated the
equivalent Z interpretation.
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Abstract. Several different notions of equivalence have been proposed
for logic programs with answer set semantics, most notably strong equiv-
alence. However, strong equivalence is not preserved by certain logic
program operators such as the strong and weak forgetting operators of
Zhang and Foo. We propose a stronger notion of equivalence, called
T-equivalence, which is preserved by these operators. We give a syn-
tactic definition and provide a model-theoretic characterisation of T-
equivalence. We show that strong and weak forgetting does preserve T-
equivalence and using this, arrive at a model-theoretic definition of the
strong and weak forgetting operators.

Introduction

The answer set semantics for logic programs is a dialect of logic programming
with negation-by-failure, which allows it to handle both defaults as well as in-
complete information [1]. Several different notions of equivalence have been pro-
posed for logic programs with answer set semantics, the most widely studied
being strong equivalence [2]: Two logic programs P and Q are strongly equiva-
lent, if by adding any set of rules R to both P and Q, the resulting programs
P ∪ R and Q ∪ R have the same answer sets.

However, for some applications strong equivalence is not strong enough. One
case of this is with the strong and weak forgetting operators of Zhang and Foo
[3]. There are strongly equivalent logic programs which do not remain strongly
equivalent after the same forgetting operators are applied to both.

T-Equivalence. We address this problem by introducing a stronger notion of
equivalence, which we call T-equivalence. It is defined syntactically using three
inference rules to define a consequence relation, then saying that logic programs
P and Q are T-equivalent iff the set of consequences of P and Q are the same.

Definition 1. Let P be a logic program. Define the consequence relation � on
logic program rules by the following inference rules:

(C0) P � r for every r ∈ P and every r of the form a ← a where a is an atom.
(C1) If P � a ← B, not C and X, Y are sets of atoms, then P � a ←

B, X, not C, not Y .
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(C2) If P � a ← B1, x, not C1 and P � x ← B2, not C2, then P � a ←
B1, B2, not C1, not C2.

There is a model-theoretic characterisation of T-equivalence similar to the char-
acterisation of strong equivalence by SE-models [4] and the characterisation of
uniform equivalence by by UE-models [5]:
Definition 2. Let P be a logic program, and let X, Y be sets of atoms. We say
the pair (X, Y ) is a T-model of P if X |= PY . Let M(P ) denote the set of all
T-models of P .

Theorem 1. Let P, Q be logic programs. Then P and Q are T-equivalent iff
M(P ) = M(Q).

Forgetting. In the logic program context, forgetting is the modification of a
program to remove certain facts while preserving as much information as possi-
ble. We consider the strong forgetting and weak forgetting operators defined by
Zhang and Foo [3], which forgets sets of atoms from a logic program.

We define three postulates which encode desirable properties for an equiva-
lence relation ∼ on logic programs in relation to a forgetting operator F . Let
P be a logic program, and S a (possibly empty) ordered sequence of atoms.
We write F (P, S) for the program obtained from P by applying the forgetting
operation with each element of S in order. The postulates are: (1) F (P, S) ∼
F (P, π(S)) for any permutation π, (2) P ∼ Q ⇒ F (P, S) ∼ F (Q, S), and (3)
P ∼ Q ⇒ P strongly equivalent to Q.

We have the following result in relation to strong and weak forgetting:
Theorem 2. For both strong forgetting and weak forgetting, T-equivalence sat-
isfies postulates (1)–(3).
This result allows us to construct model-theoretic versions of strong and weak
forgetting in terms of T-models. For space reasons, the definitions of these oper-
ators are omitted here. These definitions, plus the proofs of the results presented
here, can be found in the extended version of this paper [6].
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1 Introduction

The majority of current Prolog systems are based on the WAM, in which reg-
isters are used to pass procedure arguments and store temporary data. In this
paper, we present a stack machine for Prolog, named TOAM Jr., which departs
from the TOAM adopted in early versions of B-Prolog in that it employs no
registers for temporary data and it offers variable-size instructions for encoding
unification and procedure calls. TOAM Jr. is suitable for fast bytecode inter-
pretation: the omission of registers facilitates instruction merging and the use
of jumbo instructions results in more compact code and execution of fewer in-
structions than the use of fine-grained instructions. TOAM Jr. is employed in
B-Prolog version 7.0. Benchmarking shows that TOAM Jr. helps significantly
improve the performance: the execution speed is increased by 48% on a Win-
dows PC and 77% on a Linux machine. Despite the overhead on standard Prolog
programs caused by the adoption of a spaghetti stack to support event handling
and constraint solving, B-Prolog version 7.0 compares favorably well with the
state-of-the-art WAM-based Prolog systems.

2 The TOAM Jr. Instruction Set

TOAM Jr. inherites the memory architecture from the TOAM. There is a frame
for each procedure call, which stores arguments, machine status registers, and
local variables. A different set of machine status registers needs to be saved for
each different procedure type, and hence frames for different types of procedures
have different structures.

Instructions are classified into the following categories: control (allocate,
return, fork, cut, and fail), branch (jmpn constant, switch on cons, jmpn
struct, and hash), move (move list and move struct), unify (unify constant,
unify value, unify list, and unify struct) and call (call and last call).
The following shows an example. An operand in the form of y(Loc) denotes a
frame slot where a positive offset refers to an argument and a negative offset
refers to a local variable. A tagged operand can be an uninitialized frame slot
v(i), an initialized frame slot u(i), or a constant c(a). A singleton variable is
denoted as v(0). The binary literal ’0b11101’ is the layout bit vector for the last
call, which indicates that all the arguments except for the second one (Y) are
misplaced and need to be rearranged if the current frame is reused.

V. Dahl and I. Niemelä (Eds.): ICLP 2007, LNCS 4670, pp. 455–457, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



456 N.-F. Zhou

% p(X,Y,Z):-S=f(X,Y),q(S),r(Z,Y,X,W,9).
p/3: allocate_det(3,5) % arity=3; frame size=5

move_struct(y(-1),f/2,u(3),u(2)) % S=f(X,Y)
call(q/1,u(-1)) % q(S)
last_call(0b11101,r/5,u(1),u(2),u(3),v(0),c(9))

TOAM Jr. offers specialized instructions that carry the numbers and types of
operands in their opcodes, and also merged instructions each of which combines
two or more base instructions.

3 Experimental Results

Table 1 compares B-Prolog version 7.0 (BP7.0) with version 6.9 (BP6.9) and
three fast WAM implementations (Yap 5.1.1, SICStus 4.0, and hProlog 2.7.14)
on CPU time on a Linux machine (3.8GHz CPU and 2G RAM). B-Prolog outper-
forms SICStus and Yap but is about 10% slower than hProlog. Benchmarking
on a Windows XP machine reveals that BP7.0 is on average 48% faster than
BP6.9, 12% faster than SICStus, and 27% faster than Yap. No Windows version
of hProlog was available.

Table 1. Comparison on CPU times

program BP7.0 BP6.9 Yap Sics hProlog

boyer 1 1.69 1.28 1.87 1.04
browse 1 1.72 1.45 1.55 0.74

chat parser 1 1.56 1.36 1.82 1.13
crypt 1 1.56 1.65 1.94 0.92

meta qsort 1 1.54 1.21 1.22 0.70
nreverse 1 3.31 1.17 1.03 0.62
poly 10 1 1.63 1.81 1.59 0.87
queens 8 1 1.68 1.29 1.60 0.75
reducer 1 1.62 1.43 1.73 0.98

sendmore 1 1.96 1.81 2.33 1.13
tak 1 1.70 3.25 2.42 1.09

zebra 1 1.30 0.83 1.07 0.91

mean 1 1.77 1.55 1.68 0.91

The speedup of BP7.0 over BP6.9 is mainly attributed to the use of special-
ized jumbo instructions, which would be more difficult if registers were existent.
Other factors affect the performance too. In B-Prolog, the top bit of a word
is reserved for tagging and, because of this, pointers have to be repaired af-
ter being untagged on Linux machines. Repairing pointers imposes about 5%
speed overhead. hProlog uses the lowest three bits for tags and therefore re-
quires no repairing of pointers. The B-Prolog and hProlog compilers are able

Please purchase PDF Split-Merge on www.verypdf.com to remove this watermark.



A Register-Free Abstract Prolog Machine with Jumbo Instructions 457

to detect the determinacy of a key predicate in tak. This is probably the main
reason why they run faster on tak than the other two systems. B-Prolog has
suspension frames stored on the stack (so called spaghetti stack), which facili-
tates context switching for action rules but incurs certain overhead on Prolog
programs: even for a predicate that is made up of only one fact, the return in-
struction needs to check if the current frame is reusable since any predicate can
be interrupted.
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Abstract. Theoretical foundations and practical realizations of answer set solv-
ing techniques are vital research issues. The challenge lies in combining the
elevated modeling capacities of answer set programming with advanced solv-
ing strategies for combinatorial search problems. My research shall contribute
to bridging the gap between high-level knowledge representation and efficient
low-level reasoning, in order to bring out the best of both worlds.

Introduction and Motivation. Answer Set Programming (ASP; [1]) is a declarative
branch of logic programming in which combinatorial search problems are encoded
as logic programs whose answer sets then correspond to problem solutions. The first
ASP solvers, namely, dlv [2] and smodels [3], were based on the Davis-Putnam-
Logemann-Loveland procedure (DPLL). In the last decade, a new search algorithm
called Conflict-Driven Clause Learning (CDCL; [4]) replaced DPLL as the basic pro-
cedure for state-of-the-art Boolean Satisfiability (SAT) solvers. While CDCL rests upon
solid proof-theoretic fundaments, there currently is no canonical proof system for
ASP, in the sense that different ASP solvers are usually not perceived as instances of a
common proof-theoretic framework. In my opinion, the development of semantic and
proof-theoretic foundations able to explain existing ASP solving strategies and further
allowing the investigation of what is not yet implemented might have an impact that is
at least twofold. First, focusing on essential mechanisms rather than on specific “heuris-
tic” aspects certainly enhances the understanding of ASP solving approaches. Based on
this, the secondary benefit, hopefully, will be a wider variety of more powerful ASP
solvers than currently available. The availability of highly efficient solvers should then
establish ASP as the primary framework for applications where its superior modeling
capacities give it an edge on SAT and similar formalisms. My work shall contribute to
the enhancement of ASP solving in order to further improve the practicability of ASP
as a framework for knowledge representation and reasoning.

Research Summary. My research started with the question what would clause learning
look like in an ASP solver. In the process of writing my diploma thesis [5] on it, I discov-
ered that the major difficulties lay within the specifications of ASP solving algorithms.
Indeed, after some failed attempts, I finally found that the approaches of ASP solvers
were conceptionally much simpler than what the literature suggested. The first applica-
tion of these findings was lookahead in the ASP solver nomore++ [6]. Along the same
lines, we noticed that the Lin-Zhao theorem could be strengthened [7]. Both works were
further extended last year. First, we introduced a tableau system [8] explaining the in-
ference patterns of all ASP solvers that do not substantially extend the language of input
programs. A major result was that branching on rule bodies has a significant impact on
proof complexity, that is, there are classes of logic programs yielding an exponential
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separation between our approach and the one of dlv and smodels; empirical evidence
can be found in [9]. Second, we focused on the relationship between unfounded sets and
loops. In [10], we introduced the notion of an elementary set, which allowed us to gen-
eralize the results in [7] to disjunctive programs, and in [11], we proposed algorithms
for localizing the handling of unfounded sets in ASP solvers. Based on these works, we
recently identified the class of Head-Elementary-set-Free (HEF) programs [12] that is
more general than the class of Head-Cycle-Free (HCF) programs. Still, verifying the sta-
bility of models is tractable for HEF programs, and minimal nonempty unfounded sets
can be computed efficiently, properties that may be exploited in the future to improve
disjunctive ASP solvers. My other recent works consist of contributing to the develop-
ment of ASP systems, namely, the conflict-driven ASP solver clasp [13,14,15], the
grounder gringo [16], and the debugging support tool spock [17].
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Abstract. We present a games semantics of AnsPrologwith single headed
clauses. Using the semantics, we derive tools for the assistance of verification
of programs and tools based on those programs, a well as proposing a solver that
grounds on the fly.

1 Introduction

Answer set programming, otherwise knows as ASP or AnsPrologis a relatively new
formalism in logic programming. AnsPrologprograms consist of headed clauses which
allow negation in the bodies of the rules. See [1] for more details.

We aim to use games semantics to build a fully abstract denotational semantics of
AnsProlog. In this abstract, we cover very briefly our work so far which at the moment
consists of a correct denotational semantics from which we have derived some algorith-
mic tools. At present there is no mathematical model of ASP other than that which we
propose here.

The work on algorithmic games semantics was pioneered in [3] where the inten-
sional nature of games semantics was exploited to build tools for program analysis. We
have shown that the debugging algorithm developed in [2] is indeed correct using our
semantics. Similarly, we have shown that it is possible to construct a solver using the
semantics which does grounding only when it is essential to the computation of the
answer set, bypassing much unneeded grounding.

2 Preliminary Results

Games semantics has been around for many years in one form or another, starting with
Lorenzen’s paper describing intuitionistic reasoning using interaction[4]. Games se-
mantics became much more mathematically formal with the introduction of the arena,
see [3] for more details.

Traditionally, games correspond to the types of a language with winning strategies
denoting terms. The games are defined by a set of moves, a labelling function on those
moves stating which player plays each move and whether it’s a question or answer, and
a justification relation which states which moves can be played when.

Alongside this we have such accessibility rules such as that of polite dialogue. This
means each player must listen to the other and answer them or ask a question that is
clearly justified by the statement preceding it, but we do not have space here to include
all the rules. Lastly, winning for a player involves having the last move.
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Player Move Justification
O a? Opening
P a ← b? query evidence for a
O b? Query validity of P’s evidence
P b ←? Evidence for b
O � answer to P’s request
P b answer to O’s query about b
O � answers P’s query about a ← b
P a hence winning the game

Fig. 1. Play for the program Π

We have chosen to denote the
game to be derived from the Her-
brand base, with consistent pro-
grams over that base being the
winning strategies. The game-play
continues as a dialogue between
Proponent and Opponent; P’s aim
is to win by establishing the truth
(or unprovability) of each of the
atoms, and O aims to win by
revealing inconsistencies in P’s
strategy, putting him in a position
of being unable to make a move.

The game for a Herbrand base, �HBΠ� has as its set of moves MHB = {a?|a ∈
HBΠ} ∪ {a| ∈ HBΠ} ∪ {a ← B?| a ∈ HBΠ , B ⊂ HBΠ} ∪ {�, ⊥}, of which
moves of the form a? are O-questions, a ←?B are P questions, a, not a are P ans and
�, ⊥ are O answers.

Consider the program Π = {a ← b; b ←}.The play for this program continues as in
Figure 1. The answer set is obtained directly from P’s positive answers.

We have already obtained the correctness of the semantics using the normal induction
technique, and we have used the dialogue style developed to prove the correctness of
the debugging algorithm in [2]

3 Future Work

Constructing a solver based on this semantics is a project in which we have already
made some progress; there seems to be major savings in grounding computation.

Obtaining a fully abstract model of AnsPrologis the major goal; that is a model that
is not only denotationally correct but also complete, and then use it to derive semantics
for related models such as equilibrium logic.

Above all we want to develop a series of tools for verification and development of
AnsPrologprograms in a similar vein to [3].
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Introduction

In answer set programming (ASP) a problem is solved declaratively by writing down a
logic program the answer sets of which correspond to the solutions of the problem, and
computing the answer sets of the program using a special purpose search engine. The
growing interest towards ASP is mostly due to efficient search engines, such as SMOD-
ELS and DLV. Consequently, a variety of interesting applications of ASP has emerged,
e.g., in planning, product configuration, and computer aided verification. Despite the
declarative nature of ASP the development of programs resembles that of programs
in conventional programming, i.e., a programmer often develops a series of programs
for a particular problem, e.g., when optimizing execution time and space. This gives
rise to a meta-level problem of verifying whether subsequent programs are equivalent.
To solve the equivalence verification problem a translation-based approach has been
proposed and extended further [1,2,3]. The idea is to combine logic programs P and
Q into logic programs EQT(P, Q) and EQT(Q, P ) which have no answer sets iff P
and Q are equivalent, which allows the use of the same ASP solver for the equivalence
verification task as for the search of answer sets. The translation-based method treats
programs as integral entities which limits its usefulness, e.g., if a small local change is
made in a large program. The same line of thinking applies to current ASP methodol-
ogy in general. ASP programs are typically seen as integral entities, and there is a lack
of mechanisms available in modern programming languages that ease program devel-
opment by allowing re-use of code or breaking programs into smaller pieces.

Objectives. The aim of this research is to obtain a deeper understanding of program
development within ASP. We want to make program development in ASP easier and,
more generally, make ASP methodology more accessible for specialists in other fields
than computer science. We want to develop ASP into a more module-oriented direction
in which ASP programs consist of modules that are combined through suitable inter-
faces. Modularization of ASP is a way to structure and ease the program development
process, and to make ASP an even more attractive approach for solving hard combina-
torial problems, e.g., in the areas of Semantic Web and bioinformatics. Modularity has
been studied extensively in conventional logic programming [4], but there are only a
few approaches for incorporating modularity into ASP, see e.g. [5,6].

Current stage of research. In [7,8,9,10] we propose a simple and intuitive notion
for ASP modules that interact through an input/output interface. This is achieved by
accommodating program modules proposed by Gaifman and Shapiro [11] in conven-
tional logic programming to the context of ASP. One of the main results is a module
theorem showing that the ASP module system is compositional with respect to the
semantics. Furthermore, we introduce an equivalence relation (modular equivalence)
that is a proper congruence relation for composition of modules, and show that de-
ciding modular equivalence is coNP-complete for modules that have well established
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communication interface. This allows us to extend the earlier translation-based method
for verification of so-called visible equivalence [3] to cover the verification of modular
equivalence. Based on an experimental evaluation, modularization of the verification of
(modular) equivalence seems to be a good idea, especially when the common context
shared by the modules is large and the number of submodules stays reasonable.

Open issues. A crucial step further is to extend the concept of modularity to the non-
ground case, i.e., to consider program modules involving variables. Understanding the
relations between ASP and other constraint programming approaches is essential, when
considering a (more) general view on module-oriented constraint programming. There
is a need for a well-defined module interface that gives support for other constraint pro-
gramming approaches, such as propositional satisfiability, constraint programming, and
circumscription, in addition to ASP. We have already studied the relation between circum-
scription and ASP in [12,13] introducing a translation-based method for embedding par-
allel circumscription into ASP in and later extending the method to the case of prioritized
circumscription. The translation-based method allows the use of efficient ASP solvers for
computing circumscription without developing a special purpose solver for the task.
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Abstract. In this doctoral work we aim at developing a rich timed con-
current constraint (tcc) based language with strong ties to logic. The new
calculus called Universal Timed Concurrent Constraint (utcc) increases
the expressiveness of tcc languages allowing infinite behaviour and mo-
bility. We introduce a constructor of the form (abs x, c)P (Abstraction
in P) that can be viewed as a dual operator of the hidden operator
local x inP . i.e. the later can be viewed as an existential quantification
on the variable x and the former as an universal quantification of x, exe-
cuting P [t/x] for all t s.t. the current store entails c[t/x]. As a compelling
application, we applied this calculus to verify security protocols.

1 Introduction

Concurrent Constraint Programming (ccp) [3] is a well-established and mature
model for concurrency with several reasoning techniques and strong ties to logic.
ccp agents can alternatively be viewed as logic formulae, algebraic terms and
computational processes. ccp is based on a monotonic shared-memory model
and parametric in an information system. Processes interact by communicating
through the shared store posting new constraints (tell(c) operator) or testing
the structure of the store (ask c then P ) for synchronisation purposes.

Timed Concurrent Constraint (tcc) [2] is a temporal extension of ccp aimed
at specifying reactive systems. In tcc time is conceptually divided into discrete
intervals and computation occurs in bursts of activity. When an stimulus (i.e. a
constraint) is received from the environment, a tcc process is executed with that
constraint as the initial store. When the resting point is reached, the environment
can observe the store produced and a residual process is computed to be executed
in the next time interval. As is shown in [2], tcc programs can be compiled into
finite state automata.

Motivated in models for the analysis of security protocols where it is necessary
to deal with the unbounded capabilities of the spy, in this doctoral work we are
interested in increasing the expressiveness of tcc by adding two distinguished
capabilities: (1) ability to express infinite behavior and (2) mobility. (1) will allow
us to model complex systems such as those emerging e.g. in systemic biology and
security and (2) will lead us to a name passing discipline in the tcc model. We
have demonstrated that this new language is Turing complete.
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2 An Universal Binder (Abstractions)

utcc is a derived language from tcc adding a new construct for process ab-
straction. This construct takes the form (abs x, c) P where intuitively P [t/x] is
executed for every possible term t s.t. the current store can entail the constraint
c[t/x]. This operator is dual w.r.t. the hiding operator (local x , c)P where the
former can be viewed as forall x s.t. c(x) do P and the latter as there exists x
s.t. c(x) and P .

Formalising this new construct has challenging technical problems. In tcc, op-
erational semantics requires that processes quiesce in a finite number of internal
reductions to guarantee instantaneous responses [2]. Nevertheless, abstractions
can easily generate infinite behaviour within a time unit. For example, consider
the ability of composing messages posted in the network, i.e. given two messages
m1 and m2, the spy can build a new compounded message {m1, m2}. An ab-
straction modelling this fact could be (abs x, out(x))(abs y, out(y))out({x, y})
where out is an uninterpreted predicate in the constraint system. Given the out-
put of the messages m1 and m2, this process generates a new one (out({m1, m2}))
and with this, a new reduction can take place producing out({m1, {m1, m2}})
and so on. Thus the resting point will never be reached.

Inspired in works such as [1], we propose a symbolic semantics for utcc able
to compute in a single symbolic step a possible infinite number of internal re-
ductions in the operational semantics. The key point in this approach is to find
a constraint representing the possible infinite number of constraints generated
by reductions in the operational semantics.

We believe that utcc has much to offer to the concurrency theory community.
In particular, to reason about security protocols. The underlying assumptions of
utcc are reminiscent of those process calculi used for security. The protocols can
be represented in a declarative way and reasoned about using the techniques utcc
enjoys. Namely, operational, symbolic and denotational semantics. Furthermore,
utcc allows for verification of reachability properties using a proof system based
on Linear Temporal Logic.
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Introduction

Constraint Handling Rules (CHR) [1, 4] is a powerful, yet elegant committed-
choice CLP language, consisting of multi-headed, guarded multiset rewrite rules.
Originally designed for the implementation of constraint solvers, CHR has
matured towards a general purpose language, used in a wide range of application
domains, including natural language processing, multi-agent systems, and type
system design. Several high-performance compilers for CHR exist.

CHR aims at supporting a very high-level, declarative programming style.
Declarative programs simply describe the problem, leaving the choice of the al-
gorithm to solve it, and all implementation details, to the underlying language.
Efficiently implementing declarative languages therefore presents many interest-
ing challenges. The end-user though, enjoys considerably reduced development
times, and vastly improved understandability, maintainability and robustness.

Practice, however, shows that CHR’s conciseness and expressiveness is fre-
quently lacking, in particular when used as a general purpose language. Many
programming idioms can only be realized in CHR using tedious auxiliary con-
straints and rules. Moreover, these auxiliary constructs often cross-cut the entire
program, obfuscating its readability. These error-prone and cumbersomely repet-
itive solutions clearly impair the advantages of declarative programming.

The main goal of my research is to improve the usability of the CHR language,
by extending the language with expressive, declarative language features, and by
developing, implementing, and evaluating new and existing program analyses and
compilation techniques for (extended) CHR programs.

Extending CHR. We extended the CHR language with negation as absence [12,
13], allowing CHR rules to test for the absence of constraints. We defined a formal
operational semantics, and realized a prototype implementation in SWI-Prolog.
We showed the declarative advantages of negation as absence, and evaluated the
issues of integrating it with the refined operational semantics of CHR [3].

Recently, we generalized negation as absence to a much more powerful lan-
guage feature, called aggregates [8, 9]. The proposed framework, implemented
using source-to-source transformations to regular CHR, supports nested aggre-
gate expressions, efficient incremental aggregate computation and application-
tailored user-defined aggregates. Case studies clearly demonstrate the gained
� Research Assistant of the Research Foundation – Flanders (FWO-Vlaanderen).
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expressiveness and conciseness, and that the desired runtime complexity is at-
tainable with an acceptable constant time overhead.

Implementing CHR. I developed a state-of-the-art CHR compiler and run-
time system for Java, called K.U.Leuven JCHR [11]. It features a statically typed
declarative syntax, a tight integration with the object-oriented host-language,
extensive static analysis, and a compilation to highly optimized code. It outper-
forms other CHR systems by up to several orders of magnitude.

In future work, I will develop a first efficient parallel CHR system1. Lever-
aging the full power of current and future multicore processors demands highly
concurrent software [10]. Writing concurrent programs, however, is notoriously
difficult. The abstract of [7] reads: “For concurrent programming to become main-
stream, we must discard threads as a programming model. Nondeterminism should
be judiciously and carefully introduced where needed, and it should be explicit in
programs.” Clearly, the inherently parallel CHR language provides a valid so-
lution [5]. The parallelization of forward chaining rule-based systems has never
been fully successful in the past [2]. I believe the key to effective parallel match-
ing is lazy matching, especially when combined with other forms of parallellism
available in CHR programs, such as parallel rule firing and parallel search. Im-
portant problems are still to be researched in all aspects of the system, from
language features and semantics, to analysis, implementation, and optimization.
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