Veronica Dahl
Ilkka Niemela (Eds.)

LNCS 4670

Logic Programming

23rd International Conference, ICLP 2007
Porto, Portugal, September 2007
Proceedings

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4670

Verénica Dahl Ilkka Niemeld (Eds.)
Logic Programming

23rd International Conference, ICLP 2007
Porto, Portugal, September 8-13, 2007
Proceedings

@ Springer

Volume Editors

Verénica Dahl

Simon Fraser University, School of Computing Science
Burnaby, BC V5A 1S6, Canada

E-mail: veronica@cs.sfu.ca

Ilkka Niemeld

Helsinki University of Technology

Department of Computer Science and Engineering
P.O. Box 5400, 02015 TKK, Finland

E-mail: ilkka.niemela@tkk.fi

Library of Congress Control Number: 2007933827

CR Subject Classification (1998): D.1.6,1.2.3, D.3, F.3, F.4
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-74608-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74608-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115815 06/3180 543210

Preface

This volume contains the proceedings of the 23rd International Conference on
Logic Programming, ICLP 2007, held in the World Heritage City of Porto, Por-
tugal, September 8-13, 2007. The conference was colocated with seven pre and
post-conference workshops:

— The 8th Workshop on Computational Logic in Multi-Agent Systems
(CLIMA-VIII)

— The 2nd International Workshop on Applications of Logic Programming to
the Web, Semantic Web and Semantic Web Services (ALPSWS 2007)

— Answer Set Programming: Advances in Theory and Implementation (ASP
2007)

— The 4th Workshop on Constraint Handling Rules (CHR 2007)

— The 7th International Colloquium on Implementation of Constraint and
Logic Programming Systems (CICLOPS 2007)

— Workshop on Constraint Based Methods for Bioinformatics (WCB 2007)

— The 17th Workshop on Logic-Based Methods in Programming Environments
(WLPE 2007)

Since the first conference held in Marseilles in 1982, ICLP has been the pre-
miere international conference for disseminating research results in logic pro-
gramming. The present edition of the conference received 74 submissions from
23 countries: Argentina (1), Australia (4), Belgium (6), Brazil (1), Canada
(2), Finland (2), France (4), Germany (3), Greece (1), Hungary (2), India (1),
Israel (1), Ttaly (13), The Netherlands (1), Poland (1), Portugal (10), Russia (2),
Singapore (2), South Korea (1), Spain (6), the United Arab Emirates (1), the
USA (7), and the UK (2). The Program Committee selected 22 technical papers
for presentation and inclusion in the proceedings. In addition, the program also
included 15 poster presentations.

As in the past, the ICLP Program Committee selected the best paper and the
best student paper. The Best Paper Award went to Sabrina Baselice, Piero Bon-
atti and Giovanni Criscuolo, for their paper “On Finitely Recursive Programs,”
while Matti Jarvisalo and Emilia Oikarinen won the Best Student Paper Award
for their paper “Extended ASP Tableaux and Rule Redundancy in Normal Logic
Programs.”

The highlights of ICLP 2007 included invited talks by Gerhard Brewka titled
“Preferences, Contexts and Answer Sets” and by Chitta Baral, titled “Towards
Overcoming the Knowledge Acquisition Bottleneck in Answer Set Prolog Appli-
cations: Embracing Natural Language Inputs.” The program also featured four
invited tutorials: “Answer Set Programming for the Semantic Web” by Thomas
Eiter, “Coinductive Logic Programming and Its Applications” by Gopal Gupta,
“Multi-Paradigm Declarative Languages” by Michael Hanus, and “Logic Pro-
gramming for Knowledge Representation” by Mirostaw Truszczynski.

VI Preface

ICLP 2007 was organized by the Association for Logic Programming (ALP),
in collaboration with the Organizing Committees of the collocated workshops
and the Computer Science Department at the Faculty of Sciences of the Univer-
sity of Porto. It was sponsored by the Association for Logic Programming, the
Portuguese Association for Artificial Intelligence (APPIA), and the University
of Porto. We greatly appreciate their generous support.

Many people contributed to the success of the conference, to whom we hereby
extend our gratitude and thanks. The General Chair, Fernando Silva, worked
hard to coordinate the overall arrangements of the conference, from the confer-
ence site and sponsoring to budgeting and registration. PC members and several
other external referees provided timely and in-depth reviews of the submitted
papers, and worked hard to select the best papers and posters for the conference
program. The Workshop Chair, Agostino Dovier, and the Doctoral Consortium
Chairs, Enrico Pontelli and Inés Dutra, significantly contributed to the confer-
ence’s rich programme. Salvador Abreu, the Publicity Chair, worked hard to
spread all news regarding the conference, and Ricardo Rocha, the Local Chair,
Michel Ferreira and Pedro Ribeiro orchestrated the website and the myriads of
practical arrangements needed at the conference site. Bart Demoen, indefatiga-
ble after thirteen years of successfully running the Logic Programming Contest,
ran yet another challenging and interesting contest. It goes without saying that
the broad logic programming community contributed the most by submitting
excellent technical and application papers and posters. Last but not least, we
thank the developers of the EasyChair conference management system, which
made our job definitely easier.

September 2007 Verénica Dahl
Ilkka Niemela

Program Committee Co-Chairs
ICLP 2007

Organization

ICLP 2007 was organized by the Association for Logic Programming (ALP), in
collaboration with the Computer Science Department at the Faculty of Sciences
of the University of Porto.

Organizing Committee

General Chair Fernando Silva (University of Porto, Portugal)
Program Co-chairs Verénica Dahl (Simon Fraser University,
Canada)

Ilkka Niemeld (Helsinki University of
Technology, Finland)

Workshop Chair Agostino Dovier (University of Udine, Italy)
Doctoral Consortium Chairs Enrico Pontelli (New Mexico State University,
USA)
Inés Dutra (University of Porto, Portugal)
Publicity Chair Salvador Abreu (University of Evora, Portugal)
Local Chair Ricardo Rocha (University of Porto, Portugal)

Program Committee

Maurice Bruynooghe (Katholieke Universiteit Leuven, Belgium)
Keith Clark (Imperial College of London, UK)

Verénica Dahl, Co-chair (Simon Fraser University, Canada)
Marina De Vos (University of Bath, UK)

Yannis Dimopoulos (University of Cyprus, Cyprus)

Inés Dutra (University of Porto, Portugal)

Esra Erdem (Sabanci University, Turkey)

Maurizio Gabbrielli (University of Bologna, Italy)

Patricia M Hill (University of Leeds, UK)

Katsumi Inoue (National Institute of Informatics, Japan)

Tomi Janhunen (Helsinki University of Technology, Finland)
Anthony Kusalik (University of Saskatchewan, Canada)

Nicola Leone (University of Calabria, Italy)

Vladimir Lifschitz (University of Texas at Austin, USA)

Ilkka Niemeld, Co-chair (Helsinki University of Technology, Finland)
Germdn Puebla (Technical University of Madrid, Spain)
Francesca Rossi (University of Padua, Ttaly)

Konstantinos Sagonas (Uppsala University, Sweden)

Peter Schachte (University of Melbourne, Australia)

VIII Organization

Torsten Schaub (University of Potsdam, Germany)
Fernando Silva (University of Porto, Portugal)
Guillermo R. Simari (Universidad Nacional del Sur, Argentina)
Tran Cao Son (New Mexico State University, USA)
Paul Tarau (University of North Texas, USA)
Francesca Toni (Imperial College of London, UK)
Eric Villemonte de la Clergerie (INRIA, France)
David S. Warren (State University of New York at Stony Brook, USA)
Stefan Woltran (Vienna University of Technology, Austria)

Additional Referees

Jesis Almendros
Ofer Arieli
Marcello Balduccini
Ralph Becket
Leopoldo Bertossi
Angela Bonifati
Martin Brain
Daniel Cabeza
Martin Caminada
Alvaro Cortés-Calabuig
Susanna Cozza
Danny De Schreye
Bart Demoen
Cinzia Di Giusto
Antonio J. Fernandez
Wolfgang Faber
Michel Ferreira
Michael Fink

Nuno A. Fonseca
Alfredo Gabaldon
Dorian Gaertner
Lorenzo Gallucci
Martin Gebser
Samir Genaim
Ping Hou

Giovambattista ITanni
Zeynep Kiziltan
Joohyung Lee
Ho-fung Leung
Yuliya Lierler
Francisco Lépez-Fraguas
Lunjin Lu

Thomas Lukasiewicz
Marco Maratea
Francis McCabe
Maria Chiara Meo
Loizos Michael
Pavlos Moraitis

José Francisco Morales
Maxime Morge

Lee Naish

Jonathan Needham
Johannes Oetsch
Magdalena Ortiz
Simona Perri
Andrea Pescetti
Pawel Pietrzak

Inna Pivkina

Axel Polleres

Enrico Pontelli

Jorg Piihrer

Oliver Ray
Francesco Ricca
Jussi Rintanen
Peter Robinson
Ricardo Rocha
Fariba Sadri
Chiaki Sakama
Vitor Santos Costa
Ken Satoh

Tom Schrijvers
Fernando Silva
Mantas Simkus
Jon Sneyers
Zoltan Somogyi
Harald Sondergaard
John Sowa,

Fausto Spoto
Peter Stuckey
Paolo Tacchella
Ferhan Ture

Peter Van Weert
Luca Vigano

Enea Zaffanella
Damiano Zanardini

Table of Contents

Invited Talks

Towards Overcoming the Knowledge Acquisition Bottleneck in Answer
Set Prolog Applications: Embracing Natural Language Inputs
Chitta Baral, Juraj Dzifcak, and Luis Tari

Preferences, Contexts and Answer Setscoiiie....
Gerhard Brewka

Invited Tutorials

Answer Set Programming for the Semantic Web
Thomas Fiter

Coinductive Logic Programming and Its Applications.................
Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and
Ajay Mallya

Multi-paradigm Declarative Languages
Michael Hanus

Logic Programming for Knowledge Representation
Mirostaw Truszczyniski

Regular Talks

Answer Set Programming

On Finitely Recursive Programs,
S. Baselice, P.A. Bonatti, and G. Criscuolo

Minimal Logic Programs i
Pedro Cabalar, David Pearce, and Agustin Valverde

Generic Tableaux for Answer Set Programming
Martin Gebser and Torsten Schaub

Extended ASP Tableaux and Rule Redundancy in Normal Logic
Programs
Matti Jarvisalo and Emilia Oikarinen

X Table of Contents

Applications

Querying and Repairing Inconsistent Databases Under Three-Valued
SEMANTICS « . oottt 149
Sergio Greco and Cristian Molinaro

Logic Programming Approach to Automata-Based Decision
Procedureso 165
Gulay Unel and David Toman

A Logic Programming Framework for Combinational Circuit
Synthesis 180
Paul Tarau and Brenda Luderman

Spatial-Yap: A Logic-Based Geographic Information System 195
David Vaz, Michel Ferreira, and Ricardo Lopes

Constraint Logic Programming

The Correspondence Between the Logical Algorithms Language and
CHR . 209

Leslie De Koninck, Tom Schrijvers, and Bart Demoen

Observable Confluence for Constraint Handling Rules................. 224
Gregory J. Duck, Peter J. Stuckey, and Martin Sulzmann

Graph Transformation Systems in CHR...... 240
Frank Raiser

Multivalued Action Languages with Constraints in CLP(FD) 255
Agostino Dovier, Andrea Formisano, and Enrico Pontelli

Semantics

Declarative Diagnosis of Temporal Concurrent Constraint Programs 271
M. Falaschi, C. Olarte, C. Palamidessi, and F. Valencia

Logic Programs with Abstract Constraint Atoms: The Role of

Computationst 286
Lengning Liu, Enrico Pontelli, Tran Cao Son, and
Mirostaw Truszczyniski

Program Analysis

Resource-Oriented Deadlock Analysis., 302
Lee Naish
Static Region Analysis for Mercury........... 317

Quan Phan and Gerda Janssens

Table of Contents XI

Automatic Binding-Related Error Diagnosis in Logic Programs 333
Pawet Pietrzak and Manuel V. Hermenegildo

User-Definable Resource Bounds Analysis for Logic Programs 348
Jorge Navas, Edison Mera, Pedro Lopez-Garcia, and
Manuel V. Hermenegildo

Automatic Correctness Proofs for Logic Program Transformations. 364
Alberto Pettorossi, Maurizio Proietti, and Valerio Senni

Special Interest Paper

Core TuLiP - Logic Programming for Trust Management 380
Marcin Czenko and Sandro Etalle

Implementation

Demand-Driven Indexing of Prolog Clauses. 395
Vitor Santos Costa, Konstantinos Sagonas, and Ricardo Lopes

Design, Implementation, and Evaluation of a Dynamic Compilation
Framework for the YAP System L. 410
Anderson Faustino da Silva and Vitor Santos Costa

Poster Presentations

Declarative Debugging of Missing Answers in Constraint

Functional-Logic Programming 425
Rafael Caballero, Mario Rodriguez Artalejo, and
Rafael del Vado Virseda

Tightly Integrated Probabilistic Description Logic Programs for the
Semantic Web 428
Andrea Cali and Thomas Lukasiewicz

View Updating Through Active Integrity Constraints................. 430
Luciano Caroprese, Irina Trubitsyna, and Ester Zumpano

Prosper: A Framework for Extending Prolog Applications with a Web
Interface o 432
Levente Hunyadi

Web Sites Verification: An Abductive Logic Programming Tool 434
P. Mancarella, G. Terreni, and F. Toni

Visual Logic Programming Method Based on Structural Analysis and
Design Technique 436
Alezei A. Morozov

XII Table of Contents

Approximating Horn Knowledge Bases in Regular Description Logics
to Have PTIME Data Complexity....... i,
Linh Anh Nguyen

A Linear Transformation from Prioritized Circumscription to
Disjunctive Logic Programming
Emilia Oikarinen and Tomi Janhunen

Representation and Execution of a Graph Grammar in Prolog
Girish Keshav Palshikar

On Applying Program Transformation to Implement Suspension-Based
Tabling in Prolog
Ricardo Rocha, Cldudio Silva, and Ricardo Lopes

Aggregates in Constraint Handling Rules (Extended Abstract).........
Jon Sneyers, Peter Van Weert, Tom Schrijvers, and Bart Demoen

Computing Fuzzy Answer Sets Using DLVHEXoveunneenn...
Davy Van Nieuwenborgh, Martine De Cock, and Dirk Vermeir

The Use of a Logic Programming Language in the Animation of Z
Specificationst
Margaret M. West

A Stronger Notion of Equivalence for Logic Programs
Ka-Shu Wong

A Register-Free Abstract Prolog Machine with Jumbo Instructions
Neng-Fa Zhou

Doctoral Consortium Presentations
Advanced Techniques for Answer Set Programming
Martin Gebser

A Games Semantics of ASP
Jonty Needham and Marina De Vos

Modular Answer Set Programming
Emilia Oikarinen

Universal Timed Concurrent Constraint Programming
Carlos Olarte, Catuscia Palamidessi, and Frank Valencia

Extension and Implementation of CHR (Research Summary)
Peter Van Weert

Author Index

Towards Overcoming the Knowledge Acquisition
Bottleneck in Answer Set Prolog Applications:
Embracing Natural Language Inputs

Chitta Baral, Juraj Dzifcak, and Luis Tari

School of Computing and Informatics
Arizona State University
Tempe, AZ 85287-8809

Abstract. Answer set Prolog, or AnsProlog in short, is one of the lead-
ing knowledge representation (KR) languages with a large body of theo-
retical and building block results, several implementations and reasoning
and declarative problem solving applications. But it shares the problem
associated with knowledge acquisition with all other KR languages; most
knowledge is entered manually by people and that is a bottleneck. Recent
advances in natural language processing have led to some systems that
convert natural language sentences to a logical form. Although these sys-
tems are in their infancy, they suggest a direction to overcome the above
mentioned knowledge acquisition bottleneck. In this paper we discuss
some recent work by us on developing applications that process logical
forms of natural language text and use the processed result together with
AnsProlog rules to do reasoning and problem solving.

1 Introduction

Answer Set Prolog, or AnsProlog in short, is the logic programming language
whose semantics is defined using the answer set semantics [GL88| [GL9I]. A
knowledge base in this language consists of rules of the following form:

lo— 11, ylm, not lyyy1,..., not l,.

where [;’s are literals. Given an AnsProlog knowledge base KB and a query @,
we say KB entails @, denoted by KB = @Q, if Q is true in all answer sets of
K B. A related term, Answer Set Programming (or ASP) often focuses only on
encoding a given problem as an AnsProlog program so that each of its answer sets
encodes a solution of that problem. For knowledge representation and reasoning
both query entailment and problem solving by finding answer sets are important.

Over the last 20 years a large body of work has been done on this language.
These include theoretical building block results, several implementations and
reasoning and declarative problem solving applications. While the book
is a compilation of many of these results, there have been a lot of further de-
velopments since this book was written. Some highlights include the use of SAT
in finding answer sets [[LZ02, [[ie05], the extension of AnsProlog to allow prob-
abilities [BGR04], the recent system CLASP [GKNS07] and some recent work

V. Dahl and 1. Niemeld (Eds.): ICLP 2007, LNCS 4670, pp. 121, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 C. Baral, J. Dzifcak, and L. Tari

on applications involving natural language processing and question answering.
In this paper we focus on the last aspect.

While we seem to be getting closer to an adequate language for creating
knowledge bases, the obstacle of manual knowledge acquisition still haunts the
development of a large body of sizeable knowledge bases. (There are other issues
that have also hampered such development. They include lack of appropriate
tools for facilitating building of knowledge bases such as GUIs, debuggers and
the ability to easily reuse previously coded knowledge modules. Some research
addressing these issues have been taken up recently [BDTO0G, [dVS0T7].) Project
Halo ﬂm, an ambitious attempt to encode knowledge of a high school
chemistry book chapter realized the bottleneck of knowledge acquisition in its
phase one and has focused on it in its second phase.

Automatic knowledge acquisition through learning has focused mostly on
learning from observations. However, some recent developments in natural lan-
guage processing and natural language resource compilations has brought us
closer to the possibility of acquiring knowledge from natural language text.
Amongst them is the resource Wordnet [MBF¥90|, which is much more than
an on-line dictionary; and systems such as LCC and C&C
[CCH] that can translate natural language text to a logical form. Although these
systems are in their infancy, they suggest a direction to overcome the above
mentioned knowledge acquisition bottleneck. In this paper we discuss some re-
cent work by us on developing applications that process logical forms of natural
language text and use the processed result together with AnsProlog rules to do
reasoning and problem solving. We will particularly focus on our attempt to
build a system that can solve puzzles described in a natural language. We will
also briefly mention our other enuttempt7 some reported or to be reported in de-
tail elsewhere, in reasoning about cardinality of dynamic sets, reasoning about
travel, question answering and textual entailment; all dealing with natural lan-
guage input.

2 Processing Natural Language Using C&C Tools and
Boxer

In this section we discuss in detail how we use the C&C tools and some postpro-
cessing to process natural language and obtain (some) knowledge in AnsProlog
syntax which together with additional rules allows us to do reasoning and prob-
lem solving.

We start with the C&C [CCtl, tools that are used to translate natural

language text into a logic form.

2.1 C&C Tools

The C&C tools consists of a set of tools including a robust wide-coverage CCG
parser [CCQ7], several maximum entropy taggers(for example the POS tagger

! Many of these works were done in collaboration with Michael Gelfond and Marcello
Balduccini of Texas Tech University and Richard Scherl of Monmouth University.

Towards Overcoming the Knowledge Acquisition Bottleneck 3

and Named Entity Recognizer) and a semantic analysis tool Boxer [BCS¥04].
Most of them can be used individually, but are designed to be used together. The
system is very robust and the tools have been used in various scenarios, such as
the RTE challenge [RTE], where the problem is to recognize textual entailment;
i.e., to decide if a given hypothesis is entailed by a given text or not. Many of the
tools use statistics and a set of trained models on which the statistical methods
are applied.

When using this system, the extraction of data from the English text is per-
formed as follows. First, the CCG parser [CCH], together with taggers and other
tools, is run on the data to obtain the first basic logic form of the data. Then
the Boxer [CCi] system is used on the parser output to obtain a first order logic
representation of the English text. This is performed sentence by sentence for
the whole text. The Boxer output is, as said, in first order logic and thus contains
variables as well as predicates and quantifiers. We then translate the Boxer first
order logic output to a set of AnsProlog facts.

We now look more closely at each of the steps presented above.

2.2 CCG Parser

The first important step is to obtain the CCG parser output. Note that when
doing this, many other tools are used in the process such as the tagger. Never-
theless, the parser is the most important part of this step. The CCG parser is a
statistical parser with the focus on wide-coverage and high efficiency, producing
a single parse of the text. It is based on the combinatorial categorial gram-
mar(CCG), which is based on the the classical categorial grammar [Woo93].
The CCG parser works on a sentence by sentence basis. That means it parses
and analyzes a single sentence and then moves to another and starts anew with-
out using any information obtained from the previous sentence. Thus by itself,
it is unable to perform and detect things like anaphoras. However, Boxer does
employ a form of anaphora resolution.

The lexical entries of CCG include semantic interpretation and syntactic cat-
egory. The category can not only be a basic category such as noun or verb phrase
and gender, but also a complex category that is obtained recursively from the
basic categories. For example transitive verbs can be given as (S\NP)/NP,
where ‘S’ is a sentence and N P stands for noun phrase. The delimiters ‘\” and
¢/’ represent the first and the second argument of the verb respectively.

Let us now look at 2 different examples which illustrate the output of the
parser.

Example 1. Consider the following sentences:
“The first puzzle category is person.”
The output of the CCG parser, together with all the taggers, is as follows:

sem(1,
bapp(’S[dcl]’,
fapp(’NP[nb]’,
leaf (1,1, ’NP[nb]/N’),

4 C. Baral, J. Dzifcak, and L. Tari

fapp(’N’,

leaf (1,2,’N/N’),

fapp(’N’,

leaf(1,3,’N/N’),

leaf(1,4,°N%)))),
fapp(’S[dcl1]\NP’,
leaf (1,5, (S[dc1]\NP)/(S[ngl\NP)’),
leaf(1,6,’S[ngl\NP’)))).

word(1, 1, ’The’, ’the’, °DT’, ’I-NP’, ’0’, ’NP[nb]/N’).

word(1, 2, ’first’, ’first’, ’JJ’, ’I-NP’, °0’, °’N/N’).

word(1l, 3, ’puzzle’, ’puzzle’, ’NN’, ’I-NP’, ’0’, ’N/N’).

word(1l, 4, ’category’, ’category’, ’NN’, ’I-NP’, ’0°, ’N’).
word(1, 5, ’is’, ’be’, ’VBZ’, *I-VP’, ’0’, ’(S[dcl]\NP)/(S[ng]\NP)?).
word(1l, 6, ’person.’, ’person.’, ’VBG’, ’I-VP’, °0’, ’S[ng]\NP’).

The output consist of 2 parts, first one is a specific parse tree representing the
sentence structure which is used by Boxer for semantic interpretation, with leafs
representing the words of the sentence and the non-leaf nodes are the applied
combinatorial rules. Next we have one line for each word in the sentence. The
structure of the data is as follows. First we have the index of the translated
sentence, followed by the index corresponding to the position within the tree,
the used word, ‘base’ form of the word, followed by it’s types given by various
taggers and finally the category.

Now let us look at a bit more complex sentence.

“Jim Kirby and his partner, asked to name the first man on the moon, nom-
inated Luis Armstrong.”

The parser outputs the following:

sem(1,
bapp(’S[dcl]’,
bapp (’NP [nb] ’,
lex(’N’,’NP’,
fapp(’N’,
leaf(1,1,’N/N),
leaf(1,2,’N’))),
conj(’conj’,’NP[nb]’, NP [nb] \NP[nb]’,
leaf(1,3,’conj’),
fapp(’NP[nb]’,
leaf(1,4,’NP[nb]/N’),
leaf (1,5,°N’)))),
fapp(’S[dcl]\NP’,
leaf (1,6, (S[dc1]\NP)/(S[to]\NP)),
fapp(’S[to]\NP’,
leaf (1,7, (S[to]\NP)/(S[bI\NP)’),
fapp(’S[b]\NP’,
leaf(1,8,’ (S[bI\NP)/NP’),

Towards Overcoming the Knowledge Acquisition Bottleneck 5

bapp(°NP’,
fapp(’NP[nb] ’,
leaf (1,9, ’NP[nb]/N’),
fapp(’N’,
leaf(1,10,’N/N’),
leaf(1,11,°N’))),
fapp (’NP\NP’,
leaf (1,12, (NP\NP)/NP’),
bapp ("NP’,
fapp(’NP[nbl’,
leaf(1,13,’NP[nb]/N?),
leaf(1,14,°’N’)),
lex(’S[dcl]\NP’, NP\NP’,
fapp(’S[dcl]\NP’,
leaf (1,15, (S[dc1]\NP)/NP’),
lex(°N’,’NP’,
fapp(’N’,
leaf(1,16,’N/N’),
leaf (1,17,°N’))))))))))))).

word(1, 1, ’Jim’, ’Jim’, °NNP’, ’I-NP’, ’I-PERSON’, ’N/N’).
word(1, 2, ’Kirby’, ’Kirby’, ’NNP’, ’I-NP’, ’I-PERSON’, ’N’).
word(1, 3, ’and’, ’and’, ’CC’, ’0°, ’0’, ’conj’).

word(l, 4, ’his’, ’his’, ’PRP$’, ’I-NP’, ’0’, ’NP[nbl/N’).

word(1l, 5, ’partner,’, ’partner,’, ’NN’, °I-NP’, ’0°, °N’).

word (1, 6, ’asked’, ’ask’, ’VBD’, ’I-VP’, ’0’, ’(S[dcl]\NP)/(S[to]\NP)’).

word(1, 7, ’to’, ’to’, ’TO’, ’B-VP’, °0’, ’(S[to]\NP)/(S[b]\NP)’).
word(1, 8, ’name’, ’name’, ’VB’, ’I-VP’, ’0’, ’(S[b]\NP)/NP’).
word(1, 9, ’the’, ’the’, ’DT’, ’I-NP’, ’0’, ’NP[nbl/N’).

word(1, 10, ’first’, ’first’, ’JJ’, ’I-NP’, ’0’, °’N/N’).

word(1, 11, ’man’, ’man’, °NN’, ’>I-NP’, ’0’, ’N’).

word(1, 12, ’on’, ’omn’, ’IN’, ’I-PP’, °0’, ’(NP\NP)/NP’).

word(1, 13, ’the’, ’the’, ’DT’, ’I-NP’, ’0’, ’NP[nbl/N’).

word(1, 14, ’moon,’, ’moon,’, ’NN’, ’I-NP’, ’0’, ’N’).

word (1, 15, ’nominated’, ’nominate’, ’VBD’, ’I-VP’, °0’, ’(S[dcl]\NP)/NP’).
word(1, 16, ’Luis’, ’Luis’, ’NNP’, ’I-NP’, ’I-PERSON’, ’N/N’).
word(1l, 17, ’Armstrong.’, ’Armstrong.’, ’NNP’, ’I-NP’, ’0’, ’N’).

In this case, we obtain a similar output, although more complex. The output
is formatted and contains the same information as in the case of the simple
sentence. Let us look at the structure of this sentence. Note that the tree is
divided into several big parts properly representing the sentence. Note that the
first part represents noun phrase ‘Jim Kirby and his partner’ and the verb phrase
‘asked to name the first man on the moon, nominated Luis Armstrong.’. Each

6 C. Baral, J. Dzifcak, and L. Tari

of them is then further divided into specific parts. For example the noun phrase
is divided again into ‘Jim Kirby’, ‘and’ and ‘his partner’.Thus one can easily
observe the structure of the sentence just by looking at the given tree. Another
point to note is that the some categories contain additional information, which
is given in the square brackets. These are called features and provide additional
information about the category. For example ‘S[dcl]’ means that the sentence is
declarative.
The output is then ready to be used by the next step, Boxer.

2.3 Boxer

The next step is to use the Boxer tool on the CCG parser output to obtain
a logic form from it. As said before, Boxer performs semantic analysis of the
given text. The basic output of Boxer is the Discourse Representation Structures
(DRSs) and the box representations of Discourse Representation Theory (DRT).
However, in addition, one of the Boxer outputs can be a first order logic form
representing the semantics of the sentence. This is very useful as it can be then
be transformed into AnsProlog programs. Boxer does take care of some natural
language issues such as anaphora resolution, which is not covered by the parser.
Let us now take a closer look at the given example.

Example 2. Recall the example sentences presented before:

“The first puzzle category is person.”

“Jim Kirby and his partner, asked to name the first man on the moon, nom-
inated Luis Armstrong.”

The Boxer first order logic output(after running it on the output given by the
CCG parser) of the sentences is:

some (_G5981, some(_G6002, and(and(n_puzzle_1(_G5981),
and(a_first_1(_G6002), and(n_category_1(_G6002),
r_nn_1(_G5981, _G6002)))), some(_G6124,

and (v_person_1(_G6124), and(n_event_1(_G6124),
r_agent_1(_G6124, _G6002)))))))

and

some (_G3117, some(_G3287, some(_G3314, some(_G3252,

some (_G3345, some(_G3469, some(_G3499, some(_G3688,

some (_G3730, some(_G3647, some(_G3803, and(and(p_kirby_1(_G3117),
and(p_jim_1(_G3117), and(n_moon_1(_G3287),

and (p_armstrong_1(_G3314), and(p_luis_1(_G3314),
and(a_first_1(_G3252), and(n_man_1(_G3252),

and (v_nominate_1(_G3345), and(n_event_1(_G3345),
and(r_agent_1(_G3345, _G3287), and(r_patient_1(_G3345, _G3314),
and(r_on_1(_G3252, _G3287), and(a_male_1(_G3469),

and (n_partner_1(_G3499), and(r_of_1(_G3499, _G3469),

and (n_moon_1(_G3688), and(p_armstrong_1(_G3730),

Towards Overcoming the Knowledge Acquisition Bottleneck 7

and (p_luis_1(_G3730), and(a_first_1(_G3647), and(n_man_1(_G3647),
and (v_nominate_1(_G3803), and(n_event_1(_G3803),
and(r_agent_1(_G3803, _G3688), and(r_patient_1(_G3803, _G3730),
r_on_1(_G3647, _G3688))))))))))))))))))))))))), some(_G3154,
some (_G3166, some(_G3536, some(_G3548, and(v_ask_1(_G3154),

and (n_proposition_1(_G3166), and(n_event_1(_G3154),
and(r_agent_1(_G3154, _G3117), and(r_theme_1(_G3154, _G3166),

and (some (_G3412, and(v_name_1(_G3412), and(n_event_1(_G3412),
and(r_agent_1(_G3412, _G3117), r_patient_1(_G3412, _G3252))))),
and (v_ask_1(_G3536), and(n_proposition_1(_G3548), and(n_event_1(_G3536),
and(r_agent_1(_G3536, _G3499), and(r_theme_1(_G3536, _G3548),
some (_G3960, and(v_name_1(_G3960), and(n_event_1(_G3960),
and(r_agent_1(_G3960, _G3499), r_patient_1(_G3960, _G3647)
22)2323232)23)32)))))))))))))))

respectively. This can be better visualized as

exists X Y(

n_puzzle_1(X) &

a_first_1(Y) &

n_category_1(Y) &

roon_1(X, Y) &

exists Z(
v_person_1(Z) &
n_event_1(Z) &
r_agent_1(Z, Y)

and

exists X YZ ABCDEF G H(
p_kirby_1(X) & p_jim_1(X) &
n_moon_1(Y) & p_armstrong_1(Z) &
p_luis_1(Z) & a_first_1(A) &
n_man_1(A) & v_nominate_1(B) &
n_event_1(B) &
r_agent_1(B, Y) &
r_patient_1(B, Z) &
r_on_1(A, Y) &
a_male_1(C) & n_partner_1(D) &
r_of_1(D, C) &
n_moon_1(E) & p_armstrong_1(F) &
p_luis_1(F) & a_first_1(G) &
n_man_1(G) & v_nominate_1(H) &
n_event_1(H)&
r_agent_1(H, E) &

8 C. Baral, J. Dzifcak, and L. Tari

r_patient_1(H, F) &
r_on_1(G, E) &
exists I J K L(
v_ask_1(I) & n_proposition_1(J) &
n_event_1(I) &
r_agent_1(I, X) &
r_theme_1(I, J) &
exists M(
v_name_1(M) &
n_event_1(M) &
r_agent_1(M, X) &
r_patient_1(M, A)
) &
v_ask_1(K) & n_proposition_1(_G3548)
n_event_1(K) &
r_agent_1(K, D) &
r_theme_1(K, L) &
exists N(
v_name_1(N) &
n_event_1(N) &
r_agent_1(N, D) &
r_patient_1(N, G)

respectively.

Let us now look more closely at the given output. Let us first check the format.
The predicates are of the form z name number(var), where ‘x’ is the specifier,
‘name’ is the actual word, ‘number’ is the wordnet meaning and ‘var’ is the
variable assigned to it. The specifier gives the basic category of the word. Some
of them are as follows:

— ‘n’ : noun

— ‘p’ : person

— ‘0’ : organization
— ‘I’ : location

— ‘a’ : adjective

— ‘v’ : verb

— ‘1’ : relation

When looking at the output, one can easily observe that the relations specify
connections between the nouns. Boxer detects many types of relations including
but not limited to: agent, patient, in, at, as, of and with.

Also note that the links between the words are given using both relations
and variables, as the same variable can be used in place of multiple words (for
example, ‘X’ is used for both ‘Jim’ and ‘Kirby’ thus connecting them), indicating

Towards Overcoming the Knowledge Acquisition Bottleneck 9

they are the same with respect to semantics. This information can then be used
to effectively extract information from the sentence.

Another important thing to notice when looking at this example is that it
seems like some parts of it are repeating itself, only with different variables.
An example of it is the second existential quantifier, ‘exists I J K L’, where ‘T’
and ‘J’ are used in the exact same way and connect the exact same words as
‘K’ and ‘L’. Also note that this ‘doubling” was not in the parser output. The
problem here seems to be the current version of Boxer. As we will discuss later,
the translation is not perfect and particular words such as ‘his’ (which is present
in the sentence) cause trouble. However, one must add that the overall quality
of the obtained logic form is still good.

2.4 Obtaining the Answer Set Programs

Once we obtain the output form from Boxer, the next step is to translate the
output given as a first order logic form into a set of AnsProlog facts. This is
done in multiple steps, the main parts of the transformation are as follows.

Translating Boxer first order logic output to AnsProlog facts:

— Remove all quantifiers from the output

— Modify each predicate of the form x name number(var), where ‘x’ is the
specifier(‘n’ for noun, ‘v’ for verb, etc.), ‘name’ is the actual word, ‘number’
is the wordnet meaning and ‘var’ is the variable assigned to the word. Change
any such predicate into ‘x(name, number, var).”. Note that this change is re-
quired to be able to reason about specific words and meanings in AnsProlog.

— In case of negation, replace the statement of the form not(p1,pe, ..., pn),
where p; is a predicate for ¢ = 1,2,...,n, with —p1., —pa., ..., —py.. This is
done to preserve negation and to be able to use it in reasoning.

Ezxample 3. Let us recall the 2 examples.

— The first puzzle category is person
— Jim Kirby and his partner, asked to name the first man on the moon, nom-
inated Luis Armstrong.

In this case, the given Boxer output will be translated to:

n(puzzle,1,g5981). a(first,1,g6002).
n(category,1,g6002) .

r(nn,1,g5981, g6002).
v(person,1,g6124) . n(event,1,g6124).
r(agent,1,g6124, g6002).

object (g5981) .
object (g6002) .
object(g6124) .

10 C. Baral, J. Dzifcak, and L. Tari

and respectively into:

p(kirby,1,g3117). p(jim,1,g3117).
n(moon,1,g3287) .

p(armstrong,1,g3314). p(luis,1,g3314).
a(first,1,g3252). n(man,1,g3252).
v(nominate,1,g3345) . n(event,1,g3345).
r(agent,1,g3345, g3287).
r(patient,1,g3345, g3314).
r(on,1,g3252, g3287).

a(male,1,g3469) . n(partner,1,g3499).
r(of,1,g3499, g3469).

n(moon,1,g3688). p(armstrong,1,g3730).
p(luis,1,g3730). a(first,1,g3647).
n(man,1,g3647) .

object(g3117).
object (g3287).
object(g3314).
object (g3252) .
object(g3345) .
object (g3287) .
object (g3469) .
object (g3499) .
object (g3688) .
object (g3730) .
object (g3647) .

Notice that by performing this transformation, we keep all the information
contained in the predicates and variables, but lose other information contained
in the first order logic form given by the CCG parser as well as Boxer. Although
this does not cause a problem with the applications that we are working on, in
future one may also need to use the other knowledge contained in the logic form.

The translation also includes some more specific parts with regards to answer set
solvers, such as Smodels [NS97] reserved words translation (for example Boxer
output ‘eq’ is translated into ‘equal’, since ‘eq’ is a reserved word in Smodels),
changing the case of some letters and adding domain predicates for each variable.

Once we obtain the AnsProlog facts from the text, we can combine them with
the rest of the knowledge base.

3 An Application: Solving Puzzles

We now present an application of the given method. We will use the specified
method to solve a set of puzzles obtained from |blp07]. These puzzles each happen
to have 4 domains, each containing 5 elements. To solve any of these puzzles, one

Towards Overcoming the Knowledge Acquisition Bottleneck 11

needs to form tuples of 4 elements, where for each tuple it contains 1 element
from each domain, while all the tuples are mutually exclusive(e.g. any element
can only be in a single tuple). In addition, the conditions regarding the tuples
are given in natural language and a solution must satisfy all of these conditions.

Let us now take a look at a particular puzzle, puzzle number 37 from [bIp07].

Ezample 4 (Quiz game). The domain of the puzzle contains information about a
person, his partner, the place they are from and question they have been asked.

— The persons are: Dick Eames, Helen Ingle, Jim Kirby, Joanna Long and Paul
Riggs.

— The partners are: Ben Cope, Laura Mayes, Nick O’Hara, Ray Shaw and Tina
Urquart

— The towns are: Blunderbury, Errordon, Messford, Slipwood and Wrongham.

— The questions are to name: Babylon wonder, First man on the moon, Mona
Lisa artist, Six-day war length and Trafalgar commander.

There is a total of 7 clues given as follows:

1. The two ladies from Blunderbury were asked which of the Seven Wonders of
the world was in Babylon and got it half right when they replied the hanging
baskets.

2. Helen Ingle and her team-mate were from Errordon.

3. Jim Kirby and his partner, asked to name the first man on the Moon, nom-
inated Louis Armstrong.

4. Laura Mayes, who was half of the team from Slipwood, and Tina Urquart
were partnered with persons sharing a first name initial.

5. Ray Shaw and his partner both knew really that the British commander at
Trafalgar wasn’t Nelson Eddy but their minds went blank just at the wrong
moment.

6. Ben Cope and Dick Eames, who isn’t from Wrongham, were not partners in
the game.

7. Paul Riggs and his partner Nick O’Hara were not the pair who, asked who
painted Mona Lisa, replied Leonardo Da... um...Caprio.

Naturally, the goal of the puzzle is to figure out each pair of people, where
they are from and what question they had been asked. In this case, the solution
is:

(Joanna Long, Tina Urquart, Blunderbury, Babylon wonder)

(Paul Riggs, Nick O’Hara, Wrongham, Six-day war length)

(Jim Kirby, Laura Mayes, Slipwood, First man on the moon)

(Helen Ingle, Ben Cope, Errordon, Mona Lisa artist)

(Dick Eames, Ray Shaw, Messford, Trafalgar commander)

From this one can easily observe that to solve the puzzles in general, one
can do the following. Extract the facts and clues from the text, enumerate all
the possibilities for the extracted data and use clues to derive rules to impose

12 C. Baral, J. Dzifcak, and L. Tari

restrictions on the possible assignments. Thus in this case, one needs to extract
both the puzzles facts and their respective clues into answer set programming
facts and rules. Let us first look at the fact extraction.

However, looking back at the example one also notices that he needs to know
which names corresponds to men and woman and which have the same initial.
This additional knowledge is assumed to be included in the knowledge base.

3.1 Facts Extraction

The facts are extracted directly from specific input sentences. As said before,
all the puzzles happen to have 4 domains, each of which contains 5 elements.
The problem is that in many cases, some domain elements are not mentioned
in the clues at all. Furthermore, many domains include elements similar to the
other domain, for example first names, making it impossible to have a completely
automatic extraction. Thus, we use the following type of English sentences to
define the domains and their elements. (This is similar to the specification of
domains in the Constraint Lingo system [FMT04].) For the given puzzle we have
(assuming we take into account only first names and represent the questions by
single word, we can as they are all different) the following:

The first puzzle category is person.

The second puzzle category is partner.

The third puzzle category is town.

The fourth puzzle category is question.

The persons are Dick, Helen, Jim, Paul and Joanna.

The partners are Ben, Laura, Nick, Ray and Tina.

The towns are Blunderbury, Errordon, Messford, Slipwood and Wrongham.
The questions are wonder, moon, mona, war and Trafalgar.

The sentence always start with ‘The’, followed by one of the following: ‘first’,
‘second’, ‘third’, ‘fourth’. This specifies which of the 4 domains the element it
is in, for example ‘first’ means 1st domain, ‘second’ means 2nd etc. We use this
to properly connect each puzzle category to one and only one domain. Next
we have the specifier ‘puzzle category is’ followed by the respective category.
In the first case, it is ‘person’ but it can be any word. Then we have a next
sentence of the format ‘The category are’, where category can be any of the
above categories followed by the elements of that particular category. Note that
in the last case, we simplified the questions to one word. This was done in or-
der to improve the performance of the system, in particular the clue extraction
part. However, one might use the whole questions if necessary. These facts are
automatically extracted and there is a set of specific rules that perform this
extraction. Next a set of rules is used to enumerate all possible tuples of 4 ele-
ments. These rules are all contained in the knowledge base about puzzles. In this
particular case, we use 2 predicates h and at, where the first specifies the first
triple of a tuple, while the second predicate includes the first and last element of
the tuple. For example h(joanna,tina,blunderbury), at(joanna, wonder) rep-
resents a tuple (joanna, tina, blunderbury, wonder). This tuple represents the

Towards Overcoming the Knowledge Acquisition Bottleneck 13

knowledge that Joanna and Tina were the pair from Blunderbury and were
asked the question to name the Babylon wonder. The reason for splitting the
tuples of 4 elements into smaller ones is to improve performance and also to
allow us to have a simpler set of clues extraction rules.

3.2 Clues Extraction

The more interesting part of the natural language processing of the puzzle sen-
tences is the clues extraction. Our initial approach is as follows. We have a set
of templates of rules which specify the conditions of the puzzle; i.e., they specify
which tuple assignments are correct. We then have an extraction system that
‘supplies’ these rules. We will illustrate the way it works on an example. Consider
the following rule templateﬁ:

sat(01) :- h(X,Y,2), at(X,T), cix(X,01), cly(Y,01), c1z(Z,01),
c1t(T), cond(01).

The head of the rule is the satisfaction predicate; a rule later on will then
require this to be true thus making sure the condition holds for all answer sets.
The ‘h’ and ‘at’ predicates are used to connect the domains of the puzzles.
The template then allows us to specify 4 variables, e.g. 4 domains, first one,
second one, third one and fourth one using predicates ‘clx’, ‘cly’, ‘clz’ and ‘c1t’
respectively. Then the extraction system ‘feeds’ these predicates based on clues,
making this a real rule. The last predicate says it’s a positive rule and also
specifies the rule identifier ‘O1” used later to ensure all the rules created from
templates are connected to the sentences they were extracted from, all of the
extracted rules are satisfied and that we get only correct answer sets.

For example if we have the clue of the form ‘Jim Kirby and his partner, asked
to name the first man on the moon, nominated Luis Armstrong.’, we can ob-
tain(assuming we have the proper domains) that the first domain element is Jim
and that the fourth is moon(again assuming simplified representations for ques-
tions). Then the extraction system would extract c¢lx(jim), cly(Y), assuming Y’
is a variable representing the second domain, clz(Z), again assuming Z repre-
sents the third domains, and clt(moon). Then the above template rule would
be equivalent to:

sat(01) :- h(jim,Y,Z), at(jim,moon), cond(01).

Note that this is done for all the clues. Clearly, the effectiveness of this system
depends on the accurate extraction from the logic forms. Also, note that during
extraction, we always pick a unique identifier, given by the O1 variable. This
then ensures that the clue is only used for the cases we extracted.

The main idea when extracting clues is as follows. We try to connect each
clue to a sentence of a particular type. In general, one might assume a sentence

2 An alternative template where h is a binary predicate would work fine too. Also,
our use of four domains each with five elements can be easily generalized where the
numbers are not predetermined but are part of the puzzle.

14 C. Baral, J. Dzifcak, and L. Tari

has a subject, an object and a verb. Now depending on the verb, and the con-
nection between subject and object, we will select which clue will be used for
the sentence. To do this, we look for relation(s) which connects the subject and
the object, and if they are present in the facts representing the sentence. For
example for the sentence ‘Jim Kirby and his partner, asked to name the first
man on the moon, nominated Luis Armstrong.” and the given clue template, we
use the following set of extraction rules:

extract_template_1(X,Y,Z,T,01) :- n(man,1,06), r(on,1,06,07),
1(T,1,07), p(X,1,04), r(agent,1,05,04), v(nominate,1,05),
v(ask,1,01),v(name,1,02), r(agent,1,01,03), r(agent,1,02,03).

clx(X, 01) :- extract_template_1(X,Y,Z,T,01).

cly(Y, 01) :- extract_template_1(X,Y,Z,T,01).

clz(Z, 01) :- extract_template_1(X,Y,Z,T,01).

c1t(T, 01) :- extract_template_1(X,Y,Z,T,01).

cond(01) :- extract_template_1(X,Y,Z,T,01).

Here assume X,Y,Z,T are variables representing the four puzzle domains
respectively and Oi, where i is a positive integer, represents any variable given
by boxer. In this case, we use ‘O1’ as the identifier of the sentence. Note that
it does not matter which one of the sentence variables we use, since boxer uses
exclusive variables for each sentence. This kind of extraction is performed for all
the clues.

To ensure this condition is satisfied later, we have the following rule:

:— not sat(01), cond(01).

This rule guarantees all of the extracted conditions are satisfied.
So far we have discussed the extraction of facts and clues. Now let us look at
the enumeration part. This is done using the following simple set of rules:

nh(X,Y,Z) :- h(X,Y1,Z1), Z != Z1.
nh(X,Y,Z) :- h(X,Y1,Z1), Y != Y1.
nh(X,Y,Z) :- h(X1,Y1,Z), X != X1.
nh(X,Y,Z) :- h(X1,Y1,Z), Y != Y1.
nh(X,Y,Z) :- h(X1,Y,Z1), Z != Z1.
nh(X,Y,Z) :- h(X1,Y,Z1), X != X1.

h(X,Y,Z) :- d1(X), d2(Y),d3(Z), not nh(X,Y,Z).

n_at(X,T) :- at(X1,T), X !'= X1.
n_at(X,T) :- at(X,T1), T '= T1.
at(X,T) :- d1(X), d4(T), not n_at(X,T).

These rules enumerate all the possible combinations. The predicates d1, d2, d3
and d4 represent the four respective domains of puzzle elements. The ‘h’ predi-
cate describes the first three domains; the ‘at’ predicate domains 1 and 4; and
domain 1 elements are used as the identifiers.

Towards Overcoming the Knowledge Acquisition Bottleneck 15

Let us now provide an idea on how to use the system. With both facts ex-
traction and puzzle specification already present, the system works in a simple
way. The system takes English sentences for facts and the English sentences
representing the clues of a particular puzzle. It transforms the puzzle domain
information and clues into first order logic using CCG parser and Boxer, then
uses a script to make them answer set programming facts. Then the general
knowledge and extraction rules are added and the answer sets are computed.
The resulting answer sets represent the solutions to the puzzles.

Thus, combining the extracted facts, the interface which ‘feeds’ the rule tem-
plates, and the general module about puzzles that includes enumeration, rule
templates and some additional information (for example for the given puzzle we
need information about names first initial and men/woman names) we obtain
an AnsProlog program with the following answer set;:

h(joanna,tina,blunderbury)
h(paul,nick,wrongham)
h(jim,laura,slipwood)
h(helen,ben,errordon)
h(dick,ray,messford)

at (paul,war)

at (joanna,wonder)
at(jim,moon)

at (helen,mona)
at(dick,trafalgar)

One can easily verify that it corresponds to the solution of the puzzle.

Let us now present some of the current limitations of the system. First, since
the system uses a set of external tools, it automatically inherits the issues that
come with them. At the moment, the most problematic part seems to be current
version of the C&C parser and Boxer. In case of the parser, it has problems
recognizing most types of quotes. Also, many words not found in its dictionary
are not dealt with properly. In case of Boxer, since it uses the output of the
parser, the same problems persist. Also, in case of some sentences, particularly
longer ones, they seem to be translated incorrectly by Boxer despite the fact that
the output of the parser seems correct. We hope at least some of these issues
will be fixed by the next release of C&C tools.

4 Other Applications

In this section we briefly discuss two other applications involving Answer Set
Prolog and natural language.
4.1 Reasoning About Travel

In this subsection, we use examples where there are AnsProlog rules encoding
background knowledge about travel and certain narrative about a person’s travel

16

C. Baral, J. Dzifcak, and L. Tari

given in English and a question asked in English. Consider the following story
about John’s travel.

=W N =

John took a flight from Paris to Baghdad in the morning of June 15.
John would take his laptop on the plane with him.

A few hours later the plane stopped in Rome, where John was arrested.
The police confiscate John’s possession.

By using a natural language understanding system for the above story, we

extracted the following facts.

— Facts extracted from sentence 1:

h(timepoint (morning),1). object(flight).
h(origin(flight,paris),1).

city(paris). o(take(john,flight),1). person(john).
h(dest(flight,baghdad),1). city(baghdad) .
h(date(june,15),1).

day(15). month(june).

— Facts extracted from sentence 2:

o(take(john,laptop),2). person(john). object(laptop).
h(is_in(john,plane),2). vehicle(plane).
h(owned_by(laptop, john),2).

— Facts extracted from sentence 3:

o(stop_in(plane,rome),3). o(arrest_in(john,rome),4).
h(arrested_in(john,rome),5). h(timepoint (afternoon),3).
vehicle(plane). person(john). city(rome).

— Facts extracted from sentence 4:

o(confiscate_pos_of (police,john),5). person(john).
person(police) .

The predicates h and o indicate holds and occurs for the above facts. For

instance, o(take(john, flight),1) means that the action about John taking a
flight occurs at timepoint 1.

With the above story about John, let’s suppose we are interested in asking

the following questions: (1) Where is John on June 15 evening? (2) Who has the
laptop? The questions are automatically translated into the following AnsProlog
rules:

— AnsProlog rule for question 1:

answer_Q1(C) :- city(C), h(is_in(P,C),T), h(date(june,15),T),
h(timepoint(evening),T), P=john.

Towards Overcoming the Knowledge Acquisition Bottleneck 17

— AnsProlog rule for question 2:

answer_Q2(P) :- person(P), h(owned_by(laptop,P),n).

In the AnsProlog rule for question 2, n is a constant that is assumed to be
the last time point of the travel story. To answer the first question, we need to
be able to reason that normally a person P is in city C2 if the destination of his
trip X is C2. There can be exceptions to this rule if for some reason, his trip
is aborted at a certain timepoint. One of the possible reasons for P’s trip to be
aborted is that P is arrested in another city C1.

h(is_in(P,C2),n) :- person(P), city(C1;C2), object(X),
h(origin(X,C1),T), h(dest(X,C2),T),
not h(aborted(P,X),T1), T < T1.
h(aborted(P,X),T+1) :- person(P), city(C), object(X),
o(arrest_in(P,C),T),
h(dest(X,C1),T1), C != C1.

By using the above rules, the fact h(is in(john,baghdad),n) cannot be in-
ferred, as h(aborted(john,trip),5) becomes true due to the extracted fact
o(arrest in(john,rome),4). With the fact h(arrested in(john,rome),5), we
can infer h(is in(john,rome,5) using the following rule:

h(is_in(P,C),T) :- person(P), city(C), h(arrested_in(P,C),T).

Using the inertia axiom, the facts h(is in(john,rome), n) and h(date(june, 15),n)
are inferred. We assume that the last timepoint n corresponds to evening when the
previous to last timepoint n—1 is afternoon and no timepoint is assigned for evening
by the following rule:

h(timepoint (evening) ,n) :- h(timepoint(afternoon),n-1),
not h(timepoint(evening),T).

With the facts h(is in(john,rome),n), h(date(june, 15),n) and
h(timepoint(evening),n), we are able to infer the final answer answer Q1(rome)
for the first question.

To answer the second question, the system needs to reason with the fact
that an ownership of an object OBJ is transferred from person P1 to P if P
confiscates P1’s possession. This is captured by the following two AnsProlog
rules:

h(owned_by(0BJ,P) ,T+1) :- person(P;P1), object(0BJ),
o(confiscate_pos_of(P,P1),T), h(owned_by(0BJ,P1),T).

-h(owned_by(0BJ,P1),T+1) :- person(P;P1), object(0OBJ),
o(confiscate_pos_of (P,P1),T), h(owned_by(0BJ,P1),T).

With the above rules, the facts h(owned by(laptop,police),6) and
—h(owned by(laptop, john),6) are inferred so that we can infer the answer
answer Q2(police) for the second question.

18 C. Baral, J. Dzifcak, and L. Tari

4.2 RTE Examples

RTE is an acronym for “Recognizing Textual Entailment.” In an RTE task, given
a hypothesis-text pair, h-t, the goal is to be able to answer “yes” if the system
verifies that h can be entailed from ¢. The module returns “no” if it realizes that
h cannot be entailed from ¢, while it returns “unknown” if a conclusion cannot be
reached. Natural language processing is used to extract AnsProlog facts AF(h)
and AF(t) corresponding both h and ¢. Query rules R(h) are generated from
AF(h) using a rule generator, and rules Th(h,t) relevant to h and ¢ are used
for reasoning. To determine if h entails ¢, we use the answer set solver Smodels
INS97] with respect to Th(h,t), R(h) and AF(t). We now illustrate this with
respect to two h-t pairs from RTE [DGM06, [BHDD06].

Ezample 5 (Yoko Ono Example).

— T': Yoko Ono unveiled a bronze statue of her late husband, John Lennon, to
complete the official renaming of England’s Liverpool Airport as Liverpool
John Lennon Airport.

— H: Yoko Ono is John Lennon’s widow.

After using NLP, the following facts AF(h), AF(t) are extracted from both
h, t:
AF(h) = {h(widow of (x3,26),1),
name(z6, lennon), name(x3, ono)}
AF(t) = {h(husband of (x1,z),0), o(pass away(z1),0)), name(x1, john),
name(z1, lennon), name(x, yoko), name(x, ono)}.

name(x6, john), name(x3, yoko),

The rule generator of the RTE module takes AF(h) and translates it into the
following AnsProlog rules R(h):

answer (yes) :- h(widow_of(X3,X6),1) ,name(X6,john),
name (X3, yoko) ,name (X6, lennon) ,name (X3, ono) .

answer (no) :- -h(widow_of(X3,X6),1) ,name(X6,john),
name (X3, yoko) ,name (X6,lennon) ,name (X3, o0no) .
answer (unknown) :- not answer(yes), not answer(no).

Using the following rule, T'h(h,t), that encodes that X is a widow if her
husband X1 passed away together with the facts AF(¢) and query rules R(h),
the system returns the fact answer(yes) to indicate that h entails ¢.

h(widow_of (X,X1),T+1) :- o(pass_away(X1),T),
h(husband_of (X1,X),T).

Now let us consider another RTE example.
Ezample 6 (Linnaean Society).

— T: Robinson became a fellow of the Linnaean Society at the age of 29 and a
successful gardening correspondent of The Times.
— H: Robinson was a member of the Linnaean Society.

Towards Overcoming the Knowledge Acquisition Bottleneck 19

After natural language processing, the following facts AF(h), AF(t) are ex-
tracted from both h, ¢:

AF(h) = { name(z1, robinson), name(z5, linnaean), name(x5, society),
h(is(xzl, member(z5)),1) }

AF(t) = { name(z1, fellow), name(z1, robinson), name(x5, linnaean),
name (x5, society), o(become(xl, fellow(z5)),0) }

The rule generator of the RTE module takes AF'(h) and translates it into the
following AnsProlog rules R(h):

answer (yes) :- h(is(X1,member(X5)),1),name(X1,robinson),
name (X5,linnaean) ,name (X5,society) .
answer (no) :- -h(is(X1,member(X5)),1) ,name(X1,robinson),
name (X5,linnaean) ,name (X5, society) .
answer (unknown) :- not answer(yes), not answer(no).

The following static and dynamic causal rules, Th(h,t), are used to describe
person X1 is a member/fellow of society X2 if X1 becomes a member/fellow of
X2, while X1 is a member of X2 if X1 is a fellow of X2.

h(is(X1,member(X2)),T+1) :- o(become(X1,member(X2)),T).
h(is(X1,fellow(X2)),T+1) :- o(become(X1,fellow(X2)),T).
h(is(X1,member(X2)),T) :- h(is(X1,fellow(X2)),T).

-h(is(X1,fellow(X2)),T) :- -h(is(X1,member(X2)),T).

With the rules Th(h,t), the facts AF(t) and the query rules R(h), the system
then returns the fact answer(yes) to indicate that h indeed entails ¢.

5 Conclusions

In this paper we discussed initial steps taken towards automatically extracting
knowledge from natural language text and using them together with other hand
coded knowledge to do reasoning and problem solving. Research in this direction
has the potential to alleviate the knowledge acquisition bottleneck that one faces
when building knowledge bases.

We briefly discussed three examples: solving puzzles, answering questions
about travel and recognizing textual entailment. We reiterate that these are
only initial steps and a lot remains to be done. For example, although our for-
mulation could solve several puzzles, it needs to be further generalized to further
broaden the class of puzzles it can solve. In many puzzles there are relationship
between the elements of the domain and the clues use those relations. Some of
these issues are also mentioned in [FMT04]. Thus the formulation in this paper
needs to be further improved to solve a broader class of puzzles.

20 C. Baral, J. Dzifcak, and L. Tari

In these initial works we have focused on obtaining facts from the natural
langauge processing part. However, the NLP systems that we use produce logic
forms and a next step would be to extract more general knowledge (such as
simple rules), in the AnsProlog syntax, from the logic forms and use them.

An interesting dimension of working on natural language based applications
is that we have come across interesting knowledge representation and reasoning
issues such as reasoning about intentions [BG05] and reasoning about the cardi-
nality of dynamic sets. An example of the later is to find out the cardinality of a
particular class based on English statements about elements joining and leaving
that class or a subclass. We were told that among the 28 questions that could not
be answered by any of the TREC QA systems in 2006, 6 of them involved such
reasoning about cardinality of sets. The lesson we learned from these attempts
is that reasoning with respect to natural language text and queries not only
involves using natural language processing but also sometimes requires devel-
oping interesting knowledge representation rules, such as rules to reason about
membership and cardinality of sets in presence of incomplete knowledge.

Acknowledgements

We thank Yulia Lierler, Steve Maiorano, Jean Michel Pomarede, Michael Gel-
fond, Richard Scherl, Marcello Balduccini and Vladimir Lifschitz for discussions
on the topic of this paper. We thank DTO for its support of this research.

References

[Bar03] Baral, C.: Knowledge representation, reasoning and declarative problem
solving. Cambridge University Press, Cambridge (2003)

[BCS™04] Bos, J., Clark, S., Steedman, M., Curran, J.R., Hockenmaier, J.: Wide-
coverage semantic representations from a ccg parser. In: Proceedings of
the 20th International Conference on Computational Linguistics (COL-
ING ’04), Geneva, Switzerland (2004)

[BDTO06] Baral, C., Dzifcak, J., Takahashi, H.: Macros, macro calls and use of en-
sembles in modular answer set programming. In: Etalle, S., Truszczynski,
M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 376-390. Springer, Heidelberg

(2006)

[BGO5] Baral, C., Gelfond, M.: Reasoning about intended actions. In: Proceed-
ings of AAAI 05, pp. 689-694 (2005)

[BGRO4] Baral, C., Gelfond, M., Rushton, N.: Probabilistic reasoning with answer

sets. In: Lifschitz, V., Niemeld, 1. (eds.) Logic Programming and Non-
monotonic Reasoning. LNCS (LNAI), vol. 2923, pp. 21-33. Springer,
Heidelberg (2003)

[BHDD"06] Bar-Haim, R., Dagan, I., Dolan, B., Ferro, L., Giampiccolo, D., Magnini,
B., Szpektor, I.: The second pascal recognising textual entailment chal-
lenge. In: Proceedings of the Second PASCAL Challenges Workshop on
Recognising Textual Entailment, Springer, Heidelberg (2006)

[blp07] England’s best logic problems. Penny Press (Spring, 2007)

[CCO07]

[CCt]
[DGMOG6]

[dVS07]

[FAW T 04]

[FMTO4]

[GKNS07]

[GL8S

[GLI1]
[Lie05]
[LZ02]

[MBF*90]

[MHG"02]

[MPHS03]

[NS97]

[RTE]
[Wo093]

Towards Overcoming the Knowledge Acquisition Bottleneck 21

Clark, S., Curran, J.R.: Wide-coverage efficient statistical parsing with
ccg and log-linear models. Computational Linguistics (to appear, 2007)
http://svn.ask.it.usyd.edu.au/trac/candc/wiki/

Dagan, 1., Glickman, O., Magnini, B.: The pascal recognising textual
entailment challenge. In: Quinonero-Candela, J., Dagan, 1., Magnini, B.,
d’Alché-Buc, F. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 177-
190. Springer, Heidelberg (2006)

de Vos, M., Schaub, T. (eds.): Proceedings of LPNMR’07 Workshop on
Software engineering for answer set programming, SEA’07 (2007)
Friedland, N., Allen, P., Witbrock, M., Angele, J., Staab, S., Israel, D.,
Chaudhri, V., Porter, B., Barker, K., Clark, P.: Towards a quantitative,
platformindependent analysis of knowledge systems. In: Proceedings of
the Ninth International Conference on the Principles of Knowledge Rep-
resentation and Reasoning (KR 2004), pp. 507-515 (2004)

Finkel, R., Marek, M., Truszczyn’ski, M.: Constraint lingo: towards high-
level constraint programming. Software—Practice & Experience 34(15),
1481-1504 (2004)

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Clasp: A conflict-
driven answer set solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.)
LPNMR 2007. LNCS (LNAI), vol. 4483, pp. 260-265. Springer, Heidel-
berg (2007)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic program-
ming. In: Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of
the Fifth Int’l Conf. and Symp., pp. 1070-1080. MIT Press, Cambridge
(1988)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and dis-
junctive databases. New Generation Computing 9, 365-387 (1991)
Lierler, Y.: Cmodels - sat-based disjunctive answer set solver. In: LP-
NMR, pp. 447-451 (2005)

Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by
sat solvers. In: Proceedings of AAAI-02 (2002)

Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Introduc-
tion to wordnet: An on-line lexical database. International Journal of
Lexicography (special issue) 3(4), 235-312 (1990)

Moldovan, D., Harabagiu, S., Girju, R., Morarescu, P., Novischi, A., La-
catusu, F., Badulescu, A., Bolohan, O.: Lcc tools for question answering.
In: Voorhees, E., Buckland, L., (eds) Proceedings of TREC 2002 (2002)
Moldovan, D., Pasca, M., Harabagiu, S., Surdeanu, M.: Performance is-
sues and error analysis in an open-domain question answering system.
ACM Transaction on Information Systems 21(2), 133-154 (2003)
Niemal4, I., Simons, P.: Smodels - an implementation of the stable model
and well-founded semantics for normal logic programs. In: proceedings of
the 4th International Conference of Logic Programming and Nonmono-
tonic Reasoning, pp. 420-429 (1997)
http://www.pascal-network.org/challenges/rte/

Mary McGee Wood. Categorial grammars. Routledge (1993)

http://svn.ask.it.usyd.edu.au/trac/candc/wiki/
http://www.pascal-network.org/challenges/rte/

Preferences, Contexts and Answer Sets

Gerhard Brewka

Universitit Leipzig, Institut fiir Informatik
Postfach 10 09 20, D-04009 Leipzig, Germany
brewka@informatik.uni-leipzig.de

Abstract. Answer set programming (ASP) is a declarative programming
paradigm based on logic programs under stable model semantics, respectively
its generalization to answer set semantics. Besides the availability of rather ef-
ficient answer set solvers, one of the major reasons for the success of ASP in
recent years was the shift from a theorem proving to a constraint programming
view: problems are represented such that stable models, respectively answer sets,
rather than theorems correspond to solutions.

Itis obvious that preferences play an important role in everyday decision mak-
ing - and in many Al applications. For this reason a number of approaches com-
bining answer set programming with explicit representations of preferences have
been developed over the last years. The approaches can be roughly categorized
according to the preference representation (quantitative vs. qualitative) the type
of preferences they allow (static vs. dynamic) and the objects of prioritization
(rules vs. atoms/formulas).

We will focus on qualitative dynamic formula preferences, give an account of
existing approaches and show that by adding adequate optimization constructs
one obtains interesting solutions to problems in belief merging, consistency han-
dling, game theory and social choice.

Explicit representations of contexts also have quite a tradition in Al, going
back to foundational work of John McCarthy. A context, intuitively, is a particular
view of a state of affairs. Contexts can also be used as representations of beliefs
of multiple agents.

We show how multi-context systems based on bridge rules, as developed by
Fausto Giunchiglia and colleagues in Trento, can be extended to nonmonotonic
context systems. We first discuss multi-context logic programming systems, and
then generalize the ideas underlying these systems to a general framework for in-
tegrating arbitrary logics, monotonic or nonmonotonic. Techniques from answer
set programming are at the heart of the framework.

We finally give a brief outlook on how the two main topics of the talk, prefer-
ences and contexts, can be combined fruitfully.

Several of the presented results were obtained in cooperation with Thomas
Eiter, Ilkka Niemeld and Mirek Truszczyriski.

V. Dahl and I. Niemeld (Eds.): ICLP 2007, LNCS 4670, p. 22, 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Answer Set Programming for the Semantic Web
(Tutorial)*>**

Thomas Eiter

Institut fiir Informationssysteme, Technische Universitat Wien
Favoritenstrale 9-11, A-1040 Vienna, Austria
eiter@kr.tuwien.ac.at

Abstract. The Semantic Web [IL2L[3] aims at extending the current
Web by standards and technologies that help machines to understand
the information on the Web so that they can support richer discovery,
data integration, navigation, and automation of tasks. Its development
proceeds in layers, and the Ontology layer is the highest one that has
currently reached a sufficient maturity, in the form of the OWL Web
Ontology Language (OWL) [l[5], which is based on Description Logics.
Current efforts are focused on realizing the Rules layer, which should
complement the Ontology layer and offer sophisticated representation
and reasoning capabilities. This raises, in particular, the issue of inter-
linking rules and ontologies. Excellent surveys that classify many pro-
posals for combining rules and ontologies are [6[7]; general issues that
arise in this are discussed e.g. in [8QI[I0]. Notably, the World Wide Web
Consortium (W3C) has installed The Rule Interchange Format (RIF)
Working Group on order to produce a core rule language plus extensions
which together allow rules to be translated between rule languages and
thus transferred between rule systems; a first working draft has been
released recently.

Answer Set Programming (ASP) [IIL12[13l[14], also called A-Prolog
[15)06,07], is a well-known declarative programming paradigm which
has its roots in Logic Programming and Non-monotonic Reasoning [I§].
Thanks to its many extensions [19], ASP is well-suited for modeling
and solving problems which involve common sense reasoning, and has
been fruitfully applied to a range of applications including data integra-
tion, configuration, diagnosis, text mining, reasoning about actions and
change, etc.; see [I6L171[20].

Within the context of the Semantic Web, the usage of ASP and related
formalisms has been explored in different directions:

— On the one hand, they have been exploited as a tool to encode rea-

soning tasks in Description Logics, like [16}22]23] 241251261 27].

* This tutorial is based on material and results which has been obtained in joint
work with Giovambattista Ianni (Universita della Calabria), Thomas Krennwallner
(TU Wien), Thomas Lukasiewicz (Universita di Roma “La Sapienza”), Axel Polleres
(DERI Galway), Roman Schindlauer (TU Wien), and Hans Tompits (TU Wien).

** The work has been partially supported by the EC NoE REWERSE (IST 506779)
and the Austrian Science Fund (FWF) project P17212-N04.

V. Dahl and 1. Niemelé (Eds.): ICLP 2007, LNCS 4670, pp. 23[26]2007.
© Springer-Verlag Berlin Heidelberg 2007

24

T. Eiter

— On the other hand, they have been used as a basis for giving a
semantics to a combination of rules and ontologies. Here, increasing
levels of integration have been considered:

e loose couplings, where rule and ontology predicates are sepa-
rated, and the interaction is via a safe semantic interface like an
inference relation e.g. [281[291[301[31132]

e tight couplings, where rule and ontology predicates are sepa-
rated, and the interaction is at the level of models, e.g. [3334]
(354136137, 38,39, T0JA0]; and

e full integration, where no distinction between rule and ontology

predicates is made, e.g., [411[42]43][44].

In this tutorial, we will first briefly review ASP and ontology for-
malisms. We then will recall some of the issues that come up with the in-
tegration of rules and ontologies. After that, we will consider approaches
to combine rules and ontologies under ASP, where particular attention
well be devoted to non-monotonic description logic programs [45] and its
derivatives [28[46] as a representative of loose couplings. However, also
other approaches will be discussed. We further discuss the potential of
such combinations, some applications, and finally some open issues.

References

. Berners-Lee, T.: Weaving the Web. Harper, San Francisco, CA (1999)

2. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific Ameri-

10.

can 284, 34-43 (2001)

. Fensel, D., Wahlster, W., Lieberman, H., Hendler, J. (eds.): Spinning the Semantic

Web: Bringing the World Wide Web to Its Full Potential. MIT Press, Cambridge
(2002)

. W3C: OWL Web ontology language overview (2004), Available at

http://www.w3.org/TR/2004/~REC-owl-features-20040210/

. Horrocks, 1., Patel-Schneider, P.F., van Harmelen, F.: From SHZQ and RDF to

OWL: The making of a Web ontology language. J. Web Sem. 1, 7-26 (2003)

. Antoniou, G., Damésio, C.V., Grosof, B., Horrocks, I., Kifer, M., Maluszynski, J.,

Patel-Schneider, P.F.: Combining rules and ontologies: A survey. Technical Report
IST506779/Linkoping /13-D3/D /PU /al, Linképing University (2005)

. Pan, J.Z., Franconi, E., Tessaris, S., Stamou, G., Tzouvaras, V., Serafini, L., Hor-

rocks, 1., Glimm, B.: Specification of coordination of rule and ontology languages.
Project Deliverable D2.5.1, KnowledgeWeb NoE (2004)

. de Bruijn, J, Eiter, T., Polleres, A., Tompits, H.: On representational issues about

combinations of classical theories with nonmonotonic rules. In: Lang, J., Lin, F.,
Wang, J. (eds.) KSEM 2006. LNCS (LNAI), vol. 4092, pp. 1-22. Springer, Heidel-
berg (2006)

. Eiter, T., Tanni, G., Polleres, A., Schindlauer, R., Tompits, H.: Reasoning with

rules and ontologies. In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U.
(eds.) Reasoning Web. LNCS, vol. 4126, pp. 93-127. Springer, Heidelberg (2006)
Rosati, R.: Integrating ontologies and rules: Semantic and computational issues.
In: Barahona, P., Bry, F., Franconi, E., Henze, N., Sattler, U. (eds.) Reasoning
Web. LNCS, vol. 4126, pp. 128-151. Springer, Heidelberg (2006)

http://www.w3.org/TR/2004/~REC-owl-features-20040210/

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Answer Set Programming for the Semantic Web 25

Provetti, A., Cao, S.T. (eds.): Proc. AAAI 2001 Spring Symposium on Answer
Set Programming: Towards Efficient and Scalable Knowledge Representation and
Reasoning. AAAT Press, Stanford (2001)

Lifschitz, V.: Answer Set Programming and Plan Generation. Artificial Intelli-
gence 138, 39-54 (2002) (Seminal paper at ICLP’99 (invited talk), coining the
term Answer Set Programming)

Marek, V.W., Truszczynski, M.: Stable Models and an Alternative Logic Program-
ming Paradigm. In: Apt, K., Marek, V.W., Truszczyniski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm — A 25-Year Perspective, pp. 375-398. Springer,
Heidelberg (1999)

Niemela, I.: Logic Programming with Stable Model Semantics as Constraint Pro-
gramming Paradigm. Ann. Math. and Artif. Int. 25, 241-273 (1999)

Balduccini, M., Gelfond, M.: Diagnostic reasoning with A-Prolog. Theory and Prac-
tice of Logic Programming 3, 425-461 (2003)

Baral, C.: Knowledge Representation, Reasoning, and Declarative Problem Solving.
Cambridge University Press, Cambridge (2002)

Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS(LNAI), vol. 2408,
pp. 413-451. Springer, Heidelberg (2002)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365-385 (1991)

Niemeld, I. (ed.): Language extensions and software engineering for ASP. Tech.
Rep. WP3, Working Group on Answer Set Programming (WASP, IST-FET-2001-
37004) (2005)
http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/

Woltran, S.: Answer set programming: Model applications and proofs-of-concept.
Tech. Rep. WP5, Working Group on Answer Set Programming (WASP, IST-FET-
2001-37004) (2005) http://www.kr.tuwien.ac.at/projects/WASP/report.html
Bertino, E., Provetti, A., Salvetti, F.: Local closed-world assumptions for reasoning
about semantic web data. In: Buccafurri, F. (ed.) Proc. APPIA-GULP-PRODE,
pp. 314-323 (2003)

Van Belleghem, K., Denecker, M., De Schreye, D.: A strong correspondence between
description logics and open logic programming. In: Proc. ICLP-1997, pp. 346-360.
MIT Press, Cambridge (1997)

Alsag, G., Baral, C.: Reasoning in description logics using declarative logic pro-
gramming. Tech. Rep. CS&E Dept, Arizona State University (2001)

Swift, T.: Deduction in ontologies via ASP. In: Lifschitz, V., Niemela, I. (eds.)
Logic Programming and Nonmonotonic Reasoning. LNCS (LNAI), vol. 2923, pp.
275-288. Springer, Heidelberg (2003)

Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ-description logic to disjunctive
datalog programs. In: Proc. KR-2004, pp. 152-162. AAAI Press, Stanford (2004)
Heymans, S., Vermeir, D.: Integrating ontology languages and answer set program-
ming. In: Maiik, V., Stépankovd, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS,
vol. 2736, pp. 584-588. Springer, Heidelberg (2003)

Heymans, S., Vermeir, D.: Integrating semantic web reasoning and answer set pro-
gramming. In: Proc. ASP- 2003, pp. 194-208 (2003)

Eiter, T., lanni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In: Proc.
IJCAI-2005, Professional Book Center, pp. 90-96 (2005)

Lukasiewicz, T.: Probabilistic description logic programs. In: Godo, L. (ed.) EC-
SQARU 2005. LNCS (LNAI), vol. 3571, pp. 737-749. Springer, Heidelberg (2005)

http://www.tcs.hut.fi/Research/Logic/wasp/wp3/wasp-wp3-web/
http://www.kr.tuwien.ac.at/projects/WASP/report.html

26

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

T. Eiter

Lukasiewicz, T.: Fuzzy description logic programs under the answer set semantics
for the Semantic Web. In: Proc. RuleML-2006, pp. 89-96. IEEE Computer Society
Press, Los Alamitos (2006)

Wang, K., Antoniou, G., Topor, R.W., Sattar, A.: Merging and aligning ontologies
in dl-programs. In: Adi, A., Stoutenburg, S., Tabet, S. (eds.) RuleML 2005. LNCS,
vol. 3791, pp. 160-171. Springer, Heidelberg (2005)

Yang, F., Chen, X., Wang, Z.: p-dl-programs: Combining dl-programs with prefer-
ence for Semantic Web. Manuscript (2006)

Grosof, B.N., Horrocks, 1., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logics. In: Proc. WWW-2003, pp. 48-57.
ACM Press, New York (2003)

Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.:
SWRL: A Semantic Web rule language combining OWL and RuleML, W3C Mem-
ber Submission. (2004), http://www.w3.org/Submission/SWRL/

Donini, F.M., Lenzerini, M., Nardi, D., Schaerf, A.: AL-log: Integrating datalog
and description logics. J. Intell. Inf. Syst. 10, 227-252 (1998)

Levy, A.Y., Rousset, M.C.: Combining Horn rules and description logics in CARIN.
Artificial Intelligence 104, 165-209 (1998)

Rosati, R.: Towards expressive KR systems integrating datalog and description
logics: Preliminary report. In: Proc. DL- 1999, pp. 160-164 (1999)

Rosati, R.: On the decidability and complexity of integrating ontologies and rules.
J. Web Sem. 3, 61-73 (2005)

Rosati, R.: DL+log: Tight integration of description logics and disjunctive datalog.
In: Proc. KR 2006, pp. 68-78. AAAI Press, Stanford (2006)

Yang, F., Chen, X.: DLclog: A hybrid system integrating rules and description
logics with circumscription. In: Proc. DL 07 (2007),
http://www.inf.unibz.it/krdb/events/d1-2007/

Motik, B., Horrocks, I., Rosati, R., Sattler, U.: Can OWL and logic programming
live together happily ever after? In: Cruz, I., Decker, S., Allemang, D., Preist, C.,
Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006. LNCS, vol. 4273,
pp. 501-514. Springer, Heidelberg (2006)

de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: A logic for hybrid rules. In:
Proc. RuleML 2006, IEEE Computer Society Press, Washington (2006),
http://2006.ruleml.org/online-proceedings/rule-integ.pdf

de Bruijn, J., Pearce, D., Polleres, A., Valverde, A.: Quantified equilibrium logic
and hybrid rules. In: Marchiori, M., Pan, J.Z., de Sainte Marie, C. (eds.) RR 2007.
LNCS, vol. 4524, Springer, Heidelberg (2007)

Motik, B., Rosati, R.: A faithful integration of description logics with logic pro-
gramming. In: Proc. IJCAI 2007, pp. 477-482. AAAT Press, Stanford (2007)
Eiter, T., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining Answer Set
Programming with Description Logics for the Semantic Web. In: Proc. KR 04, pp.
141-151 (2004)

Eiter, T., Tanni, G., Krennwallner, T., Schindlauer, R.: Exploiting conjunctive
queries in description logic programs. In: Proc. DL 07 (2007),
http://www.inf.unibz.it/krdb/events/d1-2007/

http://www.w3.org/Submission/SWRL/
http://www.inf.unibz.it/krdb/events/dl-2007/
http://2006.ruleml.org/online-proceedings/rule-integ.pdf
http://www.inf.unibz.it/krdb/events/dl-2007/

Coinductive Logic Programming and Its
Applications

Gopal Gupta, Ajay Bansal, Richard Min, Luke Simon, and Ajay Mallya

Department of Computer Science,
University of Texas at Dallas,
Richardson, TX 75080

Abstract. Coinduction has recently been introduced as a powerful tech-
nique for reasoning about unfounded sets, unbounded structures, and
interactive computations. Where induction corresponds to least fixed
point semantics, coinduction corresponds to greatest fixed point seman-
tics. In this paper we discuss the introduction of coinduction into logic
programming. We discuss applications of coinductive logic programming
to verification and model checking, lazy evaluation, concurrent logic pro-
gramming and non-monotonic reasoning.

1 Introduction

Recently coinduction has been introduced as a technique for reasoning about
unfounded sets [10], behavioral properties of programs [47], and proving liveness
properties in model checking [I3]. Coinduction also serves as the foundation for
lazy evaluation [§] and type inference [16] in functional programming as well as
for interactive computing [6U25].

Coinduction is the dual of induction. Induction corresponds to well-founded
structures that start from a basis which serve as the foundation for building
more complex structures. For example, natural numbers are inductively defined
via the base element zero and the successor function. Inductive definitions have
3 components: initiality, iteration and minimality [6]. Thus, the inductive def-
inition of list of numbers is as follows: (i) [1 (empty list) is a list (initiality);
(ii) [HIT] is as a list if T is a list and H is some number (iteration); and, (iii)
nothing else is a list (minimality). Minimality implies that infinite-length lists
of numbers are not members of the inductively defined set of lists of numbers.
Inductive definitions correspond to least fixed point interpretations of recursive
definitions.

Coinduction eliminates the initiality condition and replaces the minimality
condition with maximality. Thus, the coinductive definition of a list of numbers
is: (1) [HIT] is as a list if T is a list and H is some number (iteration); and,
(ii) the set of lists is the maximal set of such lists. There is no base case in
coinductive definitions, and while this may appear circular, the definition is well
formed since coinduction corresponds to the greatest fixed point interpretation of
recursive definitions (recursive definitions for which gfp interpretation is intended

V. Dahl and I. Niemeld (Eds.): ICLP 2007, LNCS 4670, pp. 27-144.2007.
© Springer-Verlag Berlin Heidelberg 2007

28 G. Gupta et al.

are termed corecursive definitions). Thus, the set of lists under coinduction is
the set of all infinite lists of numbers (no finite lists are contained in this set).
Note, however, that if we have a recursive definition with a base case, then under
coinductive interpretation, the set defined will contain both finite and infinite-
sized elements, since in this case the gfp will also contain the 1fp. In the context
of logic programming, in the presence of coinduction, proofs may be of infinite
length. A coinductive proof essentially is an infinite-length proof.

2 Coinduction and Logic Programming

Coinduction has been incorporated in logic programming in a systematic way
only recently [22/21], where an operational semantics—similar to SLD—is given
for computing the greatest fixed point of a logic program. This operational se-
mantics called co-SLD relies on a coinductive hypothesis rule and systematically
computes elements of the gfp of a program via backtracking. The semantics is
limited to only regular proofs, i.e., those cases where the infinite behavior is
obtained by infinite repetition of a finite number of finite behaviors.

Consider the list example above. The normal logic programming definition of
a stream (list) of numbers is given as program P1 below:

stream([]).
stream([H|T]) :- number(H), stream(T).

Under SLD resolution, the query ?7- stream(X) will systematically produce all
finite streams one by one starting from the [] stream. Suppose now we remove
the base case and obtain the program P2:

stream([H|T]) :- number(H), stream(T).

In the program P2, the meaning of the query 7- stream(X) is semantically null
under standard logic programming. The problems are two-fold. The Herbrand
universe does not allow for infinite terms such as X and the least Herbrand model
does not allow for infinite proofs, such as the proof of stream(X) in program P2;
yet these concepts are commonplace in computer science, and a sound mathe-
matical foundation exists for them in the field of hyperset theory [4]. Coinductive
LP extends the traditional declarative and operational semantics of LP to al-
low reasoning over infinite and cyclic structures and properties [22023127]. In the
coinductive LP paradigm the declarative semantics of the predicate stream/1
above is given in terms of infinitary Herbrand (or co-Herbrand) universe, infini-
tary (or co-Herbrand) Herbrand base [12], and mazimal models (computed using
greatest fized-points).

Thus, under coinductive interpretation of P2, the query ?- stream(X) pro-
duces all infinite sized stream as answers, e.g., X = [1, 1, 1, ...], X = [1,
2, 1, 2, ...], etc., thus, P2 is not semantically null (but proofs may be of
infinite-length).

If we take a coinductive interpretation of program P1, then we get all finite
and infinite stream as answers to the query 7- stream(X). Coinductive logic
programming allows programmers to manipulate infinite structures. As a result,

Coinductive Logic Programming and Its Applications 29

unification has to be necessarily extended and “occurs check” removed. Thus,
unification equations such as X = [1 | X] are allowed in coinductive logic pro-
gramming; in fact, such equations will be used to represent infinite (regular)
structures in a finite manner.

The operational semantics of coinductive logic programming is given in terms
of the coinductive hypothesis rule which states that during execution, if the
current resolvent R contains a call C’ that unifies with a call C' encountered
earlier, then the call C' succeeds; the new resolvent is R'6 where 8 = mgu(C,C")
and R’ is obtained by deleting ¢’ from R. With this extension, a clause
such as

p([1ITI) :- p(T)
and the query 7- p(Y) will produce an infinite answer Y = [1]Y].

Thus, given a call during execution of a logic program, where, earlier, the
candidate clauses were tried one by one via backtracking, under coinductive
logic programming the trying of candidate clauses is extended with yet more
alternatives: applying the coinductive hypothesis rule to check if the current
call will unify with any of the earlier calls. The coinductive hypothesis rule
will work for only those infinite proofs that are regular in nature, i.e., infinite
behavior is obtained by a finite number of finite behaviors interleaved infinite
number of times (such as a circular linked list). More general implementations
of coinduction are possible, but they are beyond the scope of this paper [21].

Even with regular proofs, there are many applications of coinductive logic
programming, some of which are discussed next. These include model checking,
concurrent logic programming, real-time systems, non-monotonic reasoning, etc.
We will not focus on the implementation of coinductive LP (implementation atop
YAP is available from the authors) except to note that to implement coinductive
LP, one needs to remember in a memo-table (memoize) all the calls made to
coinductive predicates.

Finally note that one has to be careful when using both inductive and coin-
ductive predicates together, since careless use can result in interleaving of least
fixed point and greatest fixed point computations. Such programs cannot be
given meaning easily. Consider the following program where the predicate p is
coinductive and q is inductive.

p:-q.

q -~ P
For computing the result of goal ?- q., we will use lfp semantics, which will
produce null, implying that q should fail. Given the goal ?- p. now, it should
also fail, since p calls q. However, if we use gfp semantics (and the coinductive
hypothesis computation rule), the goal p should succeed, which, in turn, implies
that q should succeed. Thus, naively mixing coinduction and induction leads to
contradictions. This contradiction is resolved by disallowing such cyclical nesting
of inductive and coinductive predicates, i.e., stratifying inductive and coinductive
predicates in a program. An inductive predicate in a given strata cannot call a
coinductive predicate in a higher strata and vice versa [23121].

30 G. Gupta et al.
3 Examples
Next, we illustrate coinductive Logic Programming via more examples.

Infinite Streams: The following example involves a combination of an induc-
tive predicate and a coinductive predicate. By default, predicates are inductive,
unless indicated otherwise. Consider the execution of the following program,
which defines a predicate that recognizes infinite streams of natural numbers.
Note that only the stream/1 predicate is coinductive, while the number/1 pred-
icate is inductive.

:— coinductive stream/1.

stream([H | T 1) :- number(H), stream(T).
number (0) .

number (s(N)) :- number(N).

| ?7- stream([0, s(0), s(s(0)) | T 1).

The following is an execution trace, for the above query, of the memoization of
calls by the operational semantics. Note that calls of number/1 are not memo’ed
because number/1 is inductive.

MEMO: stream([0, s(0), s(s(0)) | T 1)
MEMO: stream([s(0), s(s(0)) | T 1)
MEMO: stream([s(s(0)) | T 1)

The next goal call is stream(T), which unifies with the first memo’ed ancestor,
and therefore immediately succeeds. Hence the original query succeeds with the
infinite solution:

T=1[0, s(0), s(s(0)) | T]

The user could force a failure here, which would cause the goal to be unified
with the next two matching memo’ed ancestor producing T = [s(0),s(s(0)) |T]
and T = [s(s(0)) |T] respectively. If no remaining memo’ed elements exist, the
goal is memo’ed, and expanded using the coinductively defined clauses, and the
process repeats—generating additional results, and effectively enumerating the
set of (rational) infinite lists of natural numbers that begin with the prefix
[0,s5(0),s(s(0))].

The goal stream(T) is true whenever T is some infinite list of natural numbers.
If number/1 was also coinductive, then stream(T) would be true whenever T is
a list containing either natural numbers or w, i.e., infinity, which is represented
as an infinite application of successor s(s(s(...))). Such a term has a finite
representation as X = s(X).

Note that excluding the occurs check is necessary as such structures have a
greatest fixed-point interpretation and are in the co-Herbrand Universe. This is
in fact one of the benefits of coinductive LP. Unification without occurs check
is typically more efficient than unification with occurs check, and now it is even
possible to define non-trivial predicates on the infinite terms that result from
such unification, which are not definable in LP with rational trees. Traditional
logic programming’s least Herbrand model semantics requires SLD resolution to

Coinductive Logic Programming and Its Applications 31

unify with occurs check (or lack soundness), which adversely affects performance
in the common case. Coinductive LP, on the other hand, has a declarative se-
mantics that allows unification without doing occurs check, and it also allows
for non-trivial predicates to be defined on infinite terms resulting from such
unification.

List Membership: This example illustrates that some predicates are naturally
defined inductively, while other predicates are naturally defined coinductively.
The member/2 predicate is an example of an inherently inductive predicate.

member(H, [H | 1).
member(H, [| T 1) :- member(H, T).

If this predicate was declared to be coinductive, then member (X, L) is true
whenever X is in L or whenever L is an infinite list, even if X is not in L! The
definition above, whether declared coinductive or not, states that the desired
element is the last element of some prefix of the list, as the following equivalent
reformulation of member/2, called membera/2 demonstrates, where drop/3 drops
a prefix ending in the desired element and returns the resulting suffix.

membera(X, L) :- drop(X, L,).

drop(H, [H | T], T).

drop(H, [| T 1, T1) :- drop(H, T, T1).
When the predicate is inductive, this prefix must be finite, but when the predi-
cate is declared coinductive, the prefix may be infinite. Since an infinite list has
no last element, it is trivially true that the last element unifies with any other
term. This explains why the above definition, when declared to be coinductive,
is always true for infinite lists regardless of the presence of the desired element.

A mixture of inductive and coinductive predicates can be used to define a
variation of member/2, called comember/2, which is true if and only if the desired
element occurs an infinite number of times in the list. Hence it is false when the
element does not occur in the list or when the element only occurs a finite number
of times in the list. On the other hand, if comember/2 was declared inductive,
then it would always be false. Hence coinduction is a necessary extension.

:— coinductive comember/2.
comember (X, L) :- drop(X, L, L1), comember(X, L1).
?7-X=10[1, 2, 3| X1, comember(2, X).

Answer: yes.

7-X=10[1, 2, 3,1, 2, 31, comember(2, X).
Answer: no.
7-X=10[1, 2, 3| X1, comember(Y, X).

Answer: Y = 1;
Y = 2;
Y = 3;

Note that drop/3 will have to be evaluated using OLDT tabling for it not to go
into an infinite loop for inputs such as X = [1,2,3[X] (if X is absent from the
list L, the lfp of drop(X,L) is null).

32 G. Gupta et al.

List Append: Let us now consider the definition of standard append predicate.

append([], X, X).
append([HI|T], Y, [HIZ]) :- append(T, Y, Z).

Not only can the above definition append two finite input lists, as well as split a
finite list into two lists in the reverse direction, it can also append infinite lists
under coinductive execution. It can even split an infinite list into two lists that
when appended, equal the original infinite list. For example:

| - Y = 1[4, 5, 6, | Y], append([1, 2, 3], Y, Z).
Answer: Z = [1, 2, 3 | Y], Y = [4, 5, 6, | Y]

More generally, the coinductive append has interesting algebraic properties.
When the first argument is infinite, it doesn’t matter what the value of the second
argument is, as the third argument is always equal to the first. However, when
the second argument is infinite, the value of the third argument still depends on
the value of the first. This is illustrated below:

| - X=1[1, 2, 3, | X], Y=1[3, 4| Y], append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z], X = [1,2,3|X], Y = [3,4]Y]

The coinductive append can also be used to split infinite lists as in:

| 7= Z=1[1, 2 | Z], append(X, Y, Z).
Answers: X = [1, Y=1[1, 2 | Z1, Z
=[], Yy=10[2112], Z =
=[1,2],Y=2,2Z=1[1, 2| Z];

X 1
X
X
X=101,21x],y= ,2z2=1[1, 2] Z];
X
X
X

=[1, 2 | Z];
(1, 2 | Z];

=[1, 2,11, Yy=102112Z],Z=1[1, 2| Z];
2| z1;
[1, 2 | Z];

-

=[1,2,1,2],Y=2,Z=1[1
=[1,2,1,2 | X],Y= , Z

Note that application of the coinductive hypothesis rule will produce solutions
in which X gets bound to an infinite list (fourth and seventh solutions above).

Sieve of Eratosthenes: Coinductive LP also allows for lazy evaluation to be el-
egantly incorporated into Prolog. Lazy evaluation allows for manipulation of, and
reasoning about, cyclic and infinite data structures and properties. Lazy evalua-
tion can be put to fruitful use, in situations where only a finite part of the infinite
term is of interest. In the presence of coinductive LP, if the infinite terms involved
are rational, then given the goal p(X), q(X) with coinductive predicates p/1 and
q/1, then p(X) can coinductively succeed and terminate, and then pass the result-
ing X to q(X). If X is bound to an infinite irrational term during the computation,
then p and q must be executed in a coroutined manner to produce answers. That
is, one of the goals must be declared the producer of X and the other the consumer
of X, and the consumer goal must not be allowed to bind X. Consider the (coinduc-
tive) lazy logic program for the sieve of Eratosthenes:

:— coinductive sieve/2, filter/3, comember/2.
primes(X) :- generate_infinite_list(I), sieve(I,L), comember(X,L).

Coinductive Logic Programming and Its Applications 33

sieve([H|T], [HIR]) :- filter(H,T,F), sieve(F,R).

filter(H, [1,[1).

filter(H, [KIT],[KIT1]) :- R is K mod H, R > 0, filter(H,T,T1).
filter(H, [KIT],T1) :- O is K mod H, filter(H,T,T1).

In the above program filter/3 removes all multiples of the first element
in the list, and then passes the filtered list recursively to sieve/2. If the call
generate infinite 1ist(I) binds I to an inductive or rational list (e.g., X =
[2, ..., 20] or X = [2, .., 20 | X]), then filter can be completely pro-
cessed in each call to sieve/2. However, in contrast, if I is bound to an irrational
infinite list as in:

:— coinductive int/2.
int (X, [X|Y]) :- X1 is X+1, int(X1, Y).
generate_infinite_list(I) :- int(2,I).

then in primes/1 predicate, the calls generate infinite list/1, comember/2,
and sieve/2 should be co-routined, and likewise, in the sieve/2 predicate, the
calls filter/3 and the recursive call sieve/2 must be coroutined.

4 Application to Model Checking and Verification

Model checking is a popular technique used for verifying hardware and software
systems. It works by constructing a model of the system in terms of a finite state
Kripke structure and then determining if the model satisfies various properties
specified as temporal logic formulae. The verification is performed by means of
systematically searching the state space of the Kripke structure for a counter-
example that falsifies the given property. The vast majority of properties that
are to be verified can be classified into safety properties and liveness properties.
Intuitively, safety properties are those which assert that ‘nothing bad will hap-
pen’ while liveness properties are those that assert that ‘something good will
eventually happen.’

An important application of coinductive LP is in directly representing and
verifying properties of Kripke structures and w-automata (automata that ac-
cept infinite strings). Just as automata that accept finite strings can be directly
programmed using standard LP, automata that accept infinite strings can be di-
rectly represented using coinductive LP (one merely has to drop the base case).

O > O0——»0
-1 0 1 2 3
Figure A Figure B

Fig. 1. Example Automata

34 G. Gupta et al.

Consider the automata (over finite strings) shown in Figure [l A which is repre-
sented by the logic program below.

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).

trans(sO, a, sl1). trans(sl, b, s2).
trans(s2, c, s3). trans(s3, d, s0).
trans(s2, e, s0). final(s2).

A call to 7- automata(X, s0) in a standard LP system will generate all finite
strings accepted by this automata. Now suppose we want to turn this automata
into an w-automata, i.e., it accepts infinite strings (an infinite string is accepted
if states designated as final state are traversed infinite number of times), then
the (coinductive) logic program that simulates this automata can be obtained
by simply dropping the base case (for the moment, we’ll ignore the requirement
that final-designated states occur infinitely often; this can be easily checked by
comember/2).

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).

Under coinductive semantics, posing the query | ?- automata(X, s0). will
yield the solutions:

X=1[a, b, c, d | X];

X =1[a, b, e | X];

This feature of coinductive LP can be leveraged to directly and elegantly verify
liveness properties in model checking, multi-valued model checking, for modeling
and verifying properties of timed w-automata, checking for bisimilarity, etc.

4.1 Verifying Liveness Properties

It is well known that safety properties can be verified by reachability analysis,
i.e, if a counter-example to the property exists, it can be finitely determined
by enumerating all the reachable states of the Kripke structure. Verification of
safety properties amounts to computing least fixed-points and thus is elegantly
handled by standard LP systems extended with tabling [I8]. Verification of live-
ness properties under such tabled LP systems is however problematic. This is
because counterexamples to liveness properties take the form of infinite traces,
which are semantically expressed as greatest fixed-points. Tabled LP systems
[18] work around this problem by transforming the temporal formula denoting
the property into a semantically equivalent least fixed-point formula, which can
then be executed as a tabled logic program. This transformation is quite complex
as it uses a sequence of nested negations.

In contrast, coinductive LP can be directly used to verify liveness properties.
Coinductive LP can directly compute counterexamples using greatest fixed-point
temporal formulae without requiring any transformation. Intuitively, a state is
not live if it can be reached via an infinite loop (cycle). Liveness counterexamples
can be found by (coinductively) enumerating all possible states that can be
reached via infinite loops and then by determining if any of these states con-
stitutes a valid counterexample. Consider the example of a modulo 4 counter,

Coinductive Logic Programming and Its Applications 35

adapted from [20] (See Figure [[1B). For correct operation of the counter, we
must verify that along every path the state s_; is not reached, i.e., there is at
least one infinite trace of the system along which s_; never occurs. This property
is naturally specified as a greatest fixed-point formula and can be verified coin-
ductively. A simple coinductive logic program Sp to solve the problem is shown
below. We compose the counter program with the negation of the property, i.e.,
N1 >= 0. Note that sm1 represents the state corresponding to -1.

:— coinductive s0/2, s1/2, s2/2, s3/2, smi/2.
sm1(N, [sm1|T]) :- N1 is N+1 mod 4, sO(N1,T), N1>=0.
sO(N,[sO|T]) :- N1 is N+1 mod 4, s1(N1,T), N1>=0.
s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.
s2(N, [s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.
s3(N, [s3|T]) :- N1 is N+1 mod 4, sO(N1,T), N1>=0.

The counter is coded as a cyclic program that loops back to state sg via
states s1, so and s3. State s_; represents a state where the counter has the value
—1. The property P to be verified is whether the state s_; is live. The query
:- sm1(-1,X), comember(sml,X) where the comember predicate coinductively
checks that sm1 occurs in X infinitely often, will fail implying inclusion of the
property in the model, i.e., the absence of a counterexample to the property.
The benefit of our approach is that we do not have to transform the model into
a form amenable to safety checking. This transformation is expensive in general
and can reportedly increase the time and memory requirements by 6-folds [20].

This direct approach to verifying liveness properties also applies to multi-
valued model checking of the p-calculus [13]. Multi-valued model checking is
used to model systems, whose specification has varying degrees of inconsistency
or incompleteness. Earlier effort [I3] verified liveness properties by computing the
gfp which was found using negation based transformation described earlier. With
coinduction, the gfp can be computed directly as in standard model checking as
described above. We do not give details due to lack of space. Coinductive LP
can also be used to check for bisimilarity. Bisimilarity is reduced to coinductively
checking if two w-automata accept the same set of rational infinite strings.

4.2 Verifying Properties of Timed Automata

Timed automata are simple extensions of w-automata with stopwatches [II,
and are easily modeled as coinductive logic programs with CLP(R) [9]. Timed
automata can be modeled with coinductive logic programs together with con-
straints over reals for modeling clock constraints. The coinductive logic program
with CLP(R) constraints for modeling the classic train-gate-controller problem is
shown below. This program runs on our implementation of coinduction on YAP
[19] extended with CLP(R). The system can be queried to enumerate all the
infinite strings that will be accepted by the automata and that meet the time
constraints. Safety and liveness properties can be checked by negating those
properties, and checking that they fail for each string accepted by the automata
with the help of comember/2 predicate.

36 G. Gupta et al.

The code for the timed automata represented in Fig [is given below. The
predicate driver/9, that composes the 3 automata, is coinductive, as it executes
forever.

idle

' approach
c:=0

(i) train

(ii) controller (iii) gate iale

Fig. 2. Train-Controller-Gate Timed Automata

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X,up,X,T1,T2,T2). gate(s0,lower,s1,T1,T2,T3) :-
train(sO,approach,s1,T1,T2,T3) :- {T3 = T1}.

{T3 = T1}. gate(sl,down,s2,T1,T2,T3) :-
train(sl,in,s2,T1,T2,T3) :- {T3 = T2,

{T1 -T2 > 2, T1 - T2 < 1}.

T3 = T2}. gate(s2,raise,s3,T1,T2,T3) :-
train(s2,out,s3,T1,T2,T2). {T3 = T1}.
train(s3,exit,s0,T1,T2,T3) :- gate(s3,up,s0,T1,T2,T3) :-

{T3 = T2, {T3 =T2, T1 - T2 > 1,

Tl - T2 < 5}. T1 - T2 < 2}.
train(X,lower,X,T1,T2,T2). gate(X,approach,X,T1,T2,T2).
train(X,down,X,T1,T2,T2). gate(X,in,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2). gate(X,out,X,T1,T2,T2).

gate(X,exit,X,T1,T2,T2).
contr(s0,approach,s1,T1,T2,T1).
contr(sl,lower,s2,T1,T2,T3) :- {T3 = T2, T1 - T2 = 1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2) :- {T1-T2 < 1}.
contr(X,in,X,T1,T2,T2). contr(X,out,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2). contr(X,down,X,T1,T2,T2).

driver(80,81,82,T,T0,T1,T2, [X|Rest], [(X,T)IR]) :-
train(S0,X,S00,T,T0,T00),
contr(S1,X,S10,T,T1,T10) ,
gate(S82,X,S20,T,T2,T20),
{TA > T},
driver(S800,810,820,TA,T00,T10,T20,Rest,R).

Coinductive Logic Programming and Its Applications 37

Given the query:
| ?- driver(sO, sO, sO, T, Ta, Tb, Tc, X, R).

We obtain the following infinite lists as answers (A, B, C, .., etc. are the time
on the wall clock when the corresponding event occurs).

R = [(approach,A), (lower,B), (down,C), (in,D), (out,E),
(exit,F), (raise,G), (up,H) IR],
X = [approach,lower,down,in,out,exit,raise,up | X] 7 ;

R= [(approach,A), (lower,B), (down,C), (in,D), (out,E),
(exit,F), (raise,G), (approach,H), (up,I)IR],
X = [approach,lower,down,in,out,exit,raise,approach,up|X] 7 ;

no

A call to coinductively defined sublist/2 predicate (not shown here) can then
be used to check the safety property that the signal down occurs before in by
checking that the infinite list Y = [down, in | Y] is coinductively contained
in the infinite string X above. This ensure that the system satisfies the safety
property, namely, that the gate is down before the train is in the gate area. A
similar approach can be used to verify the liveness property, namely that the
gate will eventually go up [9], by finding the maximum difference between the
times the gate goes down and later comes up.

Note that from the answers above, one can see that another train can approach
before the gate goes up, however, this behavior is entirely consistent as the gate
will go up and will come down again, by the time the second train arrives in the
gate area (see Figure[2). We can find out the minimum time that must intervene
between two trains for the system to remain safe by finding he minimum value
the time that elapses between two approach signals given the above constraints
(answer is computed to be 7 units of time).

4.3 Verification of Nested Finite and Infinite Automata

We next illustrate application of coinductive logic programming to verification in
which infinite (coinductive) and finite (inductive) automata are nested. It is well
known that reachability-based inductive techniques are not suitable for verifying
liveness properties [I7]. Further, it is also well known that, in general, verification
of liveness properties can be reduced to verification of termination under the
assumption of fairness [24] and that fairness properties can be specified in terms
of alternating fixed-point temporal logic formulas [T1]. Earlier we showed that
co-inductive LP allows one to verify a class of liveness properties in the absence of
fairness constraints. Coinductive LP further permits us to verify a more general
class of all liveness properties that can only be verified in the presence of fairness
constraints.

Essentially, a coinductive LP based approach demonstrates that if a model
satisfies the fairness constraint then, it also satisfies the liveness property. This is

38 G. Gupta et al.

achieved by composing a program Pj;, which encodes the model, with a program
Pr, which encodes the fairness constraint and a program Pyp, which encodes the
negation of the liveness property, to obtain a composite program F,. We then
compute the stratified alternating fixed-point of the logic program P, and check
for the presence of the initial state of the model in the stratified alternating
fixed-point. If the alternating fixed-point contains the initial state, then that
implies the presence of a valid counterexample that violates the given liveness
property. On the other hand, if the alternating fixed-point is empty, then that
implies that no counterexample can be constructed, which in turn implies that
the model satisfies the given liveness property.

We will now illustrate our approach using a very simple example (which can be
programmed on our coinductive LP implementation). Consider the model shown
in Figure [consisting of four states. The system starts off in state s0, enters
state s1, performs a finite amount of work in state s1 and then exits to state
s2, from where it transitions back to state s0, and repeats the entire loop again,
an infinite number of times. The system might encounter an error, causing a
transition to state s3; corrective action is taken, followed by a transition back to
s0 (this can also happen infinitely often). The system is modeled by the Prolog
code shown in Figure

work :- coninductive state/2.
state(s0, [s0,1is1|T]) :-enter, work,
state(sl,T).

state(sl, [s1|T]):-exit, state(s2,T).

state(s2, [s2|T]) :-repeat, state(s0,T).

state(s0, [sO|T]) :-error, state(s3,T).
()z

state(s3, [s3|T]) :-repeat, state(s0,T).
work :- work.

work.

enter. repeat.

exit. error.

Fig. 3. Nested Automata

This simple example illustrates the power of co-logic programming (co-LP,
for brevity, that contains both inductive and coinductive LP) when compared
to purely inductive or purely coinductive LP. Note that the computation rep-
resented by the state machine in the example consists of two stratified loops,
represented by recursive predicates. The outer loop (predicate state/2) is coin-
ductive and represents an infinite computation (hence it is declared as coin-
ductive as we are interested in its gfp). The inner loop (predicate work/0) is
inductive and represents a bounded computation (we are interested in its lfp).
The semantics therefore evaluates work/0 using SLD resolution and state/2
using co-SLD resolution.

The property that we would like to verify is that the computation in the
state s1 represented by work always terminates. In order to do so, we require
the fairness property: “if the transition enter occurs infinitely often, then the
transition exit also occurs infinitely often”. The stratified alternating fixed-
point semantics ensures that this fairness constraint holds by computing the

Coinductive Logic Programming and Its Applications 39

minimal model of the inductive program represented by the predicate state/1
and then composing it with the coinductive program. The resulting program is
then composed with the property, “the state s2 is not present in any trace of
the infinite computation,” which is the negation of the given liveness property.
The negated property is represented by the predicate absent/2. Thus, given the
program above, the user will pose the query:

| ?- state(s0,X), absent(s2,X).

where absent/2 is a coinductive predicate that checks that the state s2 is not
present in the (infinite) list X infinitely often (it is the negated version of the
coinductive comember predicate described earlier). The co-LP system will re-
spond with a solution: X = [s0, s3 | X], a counterexample which states that
there is an infinite path not containing s2. One can see that this corresponds to
the (infinite) behavior of the system if error is encountered.

5 Applications to Non-monotonic Reasoning

We next consider application of coinductive LP to non-monotonic reasoning,
in particular its manifestation as answer set programming (ASP) [5I14]. ASP
has been proposed as an elegant way of introducing non-monotonic reasoning
into logic programming [3]. ASP has been steadily gaining popularity since its
inception due to its applications to planning, action-description, Al, etc.

We believe that if one were to add negation as failure to coinductive LP then
one would obtain something resembling answer set programming. To support
negation as failure in coinductive LP, we have to extend the coinductive hypoth-
esis rule: given the goal not (G), if we encounter not (G’) during the proof, and G
and G’ are unifiable, then not (G) succeeds. Since the coinductive hypothesis rule
provides a method for goal-directed execution of coinductive logic programs, it
can also be used for goal-directed execution of answer set programs. As discussed
earlier, coinduction is a technique for specifying unfounded set; likewise, answer
set programs are also recursive specifications (containing negation as failure) for
computing unfounded sets. Obviously, coinductive LP and ASP must be related.

All approaches to implementing ASP are based on bottom up execution of
finitely grounded programs. If a top-down execution scheme can be designed
for ASP, then ASP can be extended to include predicates over general terms.
We outline how this can be achieved using our top-down implementation of
coinduction. In fact, a top-down interpreter for ASP (restricted to propositions
at present) can be trivially realized on top of our implementation of coinductive
LP. Work is in progress to implement a top-down interpreter for ASP with
general predicates [T5].

5.1 A Top-Down Algorithm for Computing Answer Sets

In top-down execution of answer set programs, given a (propositional) query
goal Q, we are interested in finding out all the answer sets that contain Q, one by
one, via backtracking. If Q is not in any answer set or if there are no answer sets
at all, then the query should fail. In the former case, the query not(Q) should

40 G. Gupta et al.

succeed and should enumerate all answer sets which do not contain Q, one by
one, via backtracking.

The top down execution algorithm is quite simply realized with the help of
coinduction. The traditional Gelfond-Lifschitz (GL) method [3] starts with a
candidate answer set, computes a residual program via the GL-transformation,
and then finds the lfp of the residual program. The candidate answer set is
an answer set, if it equals the lfp of the residual program. Intuitively, in our
top down execution algorithm, the propositions in the candidate answer set are
regarded as hypotheses which are treated as facts during top-down coinductive
execution. A call is said to be a positive call if it is in the scope of even number
of negations, similarly, a call is said to be a negative call if it is in the scope of
odd number of negations.

The top down query processing algorithm works as follows: suppose the cur-
rent call (say, p) is a positive call, then it will be placed in a positive coinductive
hypothesis set (PCHS), a matching rule will be found and the Prolog-style ex-
pansion done. The new resolvent will be processed left to right, except that every
positive call will be continued to be placed in the positive hypothesis set, while a
negative call will be placed in the negative coinductive hypothesis set (NCHS). If
a positive call p is encountered again, then if p is in PCHS, the call immediately
succeeds; if it is in NCHS, then there is an inconsistency and backtracking takes
place. If a negative call (say, not (p)) is encountered for the first time, p will be
placed in the NCHS. If a negative proposition not (p) is encountered later, then
if p is in NCHS, not (p) succeeds; if p is in PCHS, then there is an inconsistency
and backtracking takes place. Once the execution is over with success, (part of)
the potential answer set can be found in the PCHS. The set NCHS contains
propositions that are not in the answer set.

Essentially, the algorithm explicitly keeps track of propositions that are in the
answer set (PCHS) and those that are not in the answer set (NCHS). Any time,
a situation is encountered in which a proposition is both in the answer set and
not in the answer set, an inconsistency is declared and backtracking ensues.

We still need one more step. ASP can specify the falsification of a goal via
constraints. For example, the constraint p :- q, not p. restricts q (and p) to
not be in the answer set (unless p happens to be in the answer via other rules).
For such rules of the form

p :- B
if not (p) is reachable via goals in the body B, we need to explicitly ensure that the
potential answer set does not contain a proposition that is falsified by this rule.

Given an answer set program, a rule p :- B. is said to be non-constraint rule
(NC-rule) if p is reachable through calls in the body B through an even number
of negation as failure calls, otherwise it is said to be a constraint rule (C-rule).
Thus, given the ASP program:

p:-a,notq. ... (1)
q :-b, notr. ... (ii)
r :-c, notp. ... (iii)
q :-d, notp. ... (iv)

Coinductive Logic Programming and Its Applications 41

rules (i), (ii) and (iii) are C-rules, while (i) and (iv) are NC-rules. A rule can be
both an NC-rule as well as a C-rule (such as rule (i)). NC-rules will be used to
compute the potential answers sets, while C-rules will only be used to reject or
accept potential answer sets. Rejection or acceptance of a potential answer set is
accomplished as follows: For each C-rule of the form r; :- B, where B directly
or indirectly leads to not (r;), we construct a new rule:

chk r; :- not(r;), B.
Next, we construct a new rule:
nmr check :- not(chk r;), not(chk rs), ..., not(chk r;),

Now, the top level query, ?-Q, is transformed into: 7- Q, nmr check. Q will
be executed using only the NC-rules to generate potential answer sets, which
will be subsequently either rejected or accepted by the call to nmr check. If
nmr check succeeds, the potential answer set is an answer set. If nmr check
fails, the potential answer set is rejected and backtracking occurs.

For simplicity of illustration, we assume that for each NC-rule, we construct
its negated version which will be expanded when a corresponding negative call
is encountered (in the implementation, however, this is done implicitly). Thus,
given an NC-rule for a proposition p of the form:

p :— Bi.
p - BQ.
p - Bi.

its negated version will be:
not p :- not(B;), not(By), ..., not(B;),

If a call to not (p) is encountered, then this negated not p rule will be used to
expand it.

Note, finally, that the answer sets reported may be partial, because an answer
set may be a union of multiple independent answer subsets, and the other subsets
may not be deducible from the query goal due to the nature of the rules. The
top-down algorithm for computing the (partial) answer set of an ASP program
can be summarized as follows.

1. Initialize PCHS and NCHS to empty (these are maintained as global variables
in our implementation of top-down ASP atop our coinductive YAP implemen-
tation). Declare every proposition in the ASP as a coinductive proposition.
Identify the set of C-rules and NC-rules in the program.

3. Assert chk r; rule for every C-rule with r; as head and build the nmr check
rule; append the call nmr check to the initial query.

4. For each NC-rule, construct its negated version.

5. For every positive call p: if p € PCHS, then p succeeds coinductively and
the next call in the resolvent is executed, else if p € NCHS, then there is an
inconsistency and backtracking ensues, else (p is not in PCHS or in NCHS)
add p to PCHS and expand p using NC-rules that have p in the head (create
a choice-point if there are multiple matching rules).

[\

42 G. Gupta et al.

6. For every negative call of the form not (p): if p € NCHS, then not (p) suc-
ceeds coinductively and the next call in the resolvent is executed, else if p
€ PCHS, then there is an inconsistency and backtracking ensues, else (p is
not in PCHS or in NCHS) add p to NCHS and expand not(p) using the
negated not p rule for p.

Next, let’s consider an example. Consider the following program:

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

After, step 1-4, we obtain the following program.
:- coinductive p/0, q/0, r/0.

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

chk_p :- not(p), not(q).
chk_q :- not(q), not(r).
chk_r :- not(r), not(p).

not_p :- Q.
not_q :- r,p.
not_r :- p.

nmr_chk :- not(chk_p), not(chk_q), not(chk_r).

The ASP program above has {q,r} as the only answer set. Given the trans-
formed program, the query: ?- q will produce {q} as the answer set (with p
known to be not in the answer set). The query 7- r will produce the answer set
{q,r} (with p known to be not in the answer set). It is easy to see why the first
query ?- q will not deduce r to be in the answer set: there is nothing in the
NC-rules that relates q and r.

5.2 Correctness of the Top-Down Algorithm

We next outline a proof of correctness of the top-down method. First, note that
the above top down method corresponds to computing the greatest fix point of
the residual program rather than the least fix point. Second, we argue that the
Gelfond-Lifschitz method for checking if a given set is an answer set [5] should
compute the greatest fix point of the residual program instead of the least fixed
point. A little thought will reflect that circular reasoning entailed by rules such as

p - p.
is present in ASP through rules of the form:

Coinductive Logic Programming and Its Applications 43

p :- not(q).

q :- not(p).
If we extend the GL method, so that instead of computing the lfp, we compute
the gfp of the residual program, then the GL transformation can be modified to
remove positive goals as well. Given an answer set program, whose answer set is
guessed to be A, the modified GL transform then becomes as follows:

1. Remove all those rules whose body contains not (p), where p € A.

2. Remove all those rules whose body contains p, where p ¢ A.

3. From body of each rule, remove all goals of the form not (p), where p ¢ A.
4. From body of each rule, remove all positive goals p such that p € A.

After application of this transform, the residual program is a set of facts. If
this set of facts is the same as A, then A is an answer set. It is easy to see that
our top-down method mimics the modified GL-transformation (note, however,
that our top-down algorithm can be easily modified to work with the original
GL method which computes the Ifp of the residual program: we merely have to
disallow making inference from positive coinductive loops of the formp :- p.).

In the top down algorithm, whenever a positive (resp. negative) predicate is
called, it is stored in the positive (resp. negative) coinductive hypothesis set. This
is equivalent to removing the positive (resp. negative) predicate from the body of
all the rules, since a second call to predicate will trivially succeed by the principle
of coinduction. Given a predicate p (resp. not (p)) where p is in the positive (resp.
negative) coinductive hypothesis set, if a call is made to not (p) (resp. p), then the
call fails. This amounts to ‘removing the rule’ in GL transform [2].

The top down method described above can also be extended for deducing
answers sets of programs containing first order predicates [I5].

6 Conclusions

In this paper we gave an introduction to coinductiive logic programming. Prac-
tical applications of coinductive LP to verification and model checking and to
non-monotonic reasoning were also discussed. Coinductive reasoning can also
be included in first order theorem proving in a manner similar to coinductive

LP [15].

Acknowledgments. We are grateful to Vitor Santos Costa and Ricardo Rocha.

References

1. Alur, R., Dill, D.L.: A theory of timed automata. TCS 126, 183-235 (1994)

2. Bansal, A.: Towards next generation logic programming systems. Ph.D. thesis
forthcoming

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

44

10.

11.

12.

13.

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

G. Gupta et al.

. Barwise, J., Moss, L.: Vicious Circles: On the Mathematics of Non-Wellfounded
Phenomena. CSLI Publications, Stanford (1996)

. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R., Bowen, K. (eds.) Logic Programming: Proc. of the Fifth International
Conference and Symposium, pp. 1070-1080 (1988)

. Goldin, D., Keil, D.: Interaction, Evolution and Intelligence. In: Proc. Congress on
Evolutionary Computing (2001)

. Goguen, J., Lin, K.: Behavioral Verification of Distributed Concurrent Systems
with BOBJ. In: Proc. Conference on Quality Software, pp. 216-235. IEEE Press,
Los Alamitos (2003)

. Gordon, A.: A Tutorial on Co-induction and Functional Programming. In: Pro-
ceedings of the 1994 Glasgow Workshop on Functional Programming, Springer
Workshops in Computing (Functional Programming). pp. 78-95 (1995)

. Gupta, G., Pontelli, E.: Constraint-based Specification and Verification of Real-

time Systems. In: Proc. IEEE Real-time Symposium ’97, pp. 230-239

Jacobs, B.: Introduction to Coalgebra: Towards Mathematics of States and Obser-

vation. Draft manuscript

Liu, X., Ramakrishnan, C.R., Smolka, S.A.: Fully local and efficient evaluation

of alternating fixed-points. In: Steffen, B. (ed.) ETAPS 1998 and TACAS 1998.

LNCS, vol. 1384, Springer, Heidelberg (1998)

Lloyd, J.W.: Foundations of Logic Programming, 2nd edn. Springer, Heidelberg

(1987)

Mallya, A.: Multivalued Deductive Multi-valued Model Checking. Ph.d. thesis. UT

Dallas (2006)

Marek, W., Truszczynski, M.: Stable models and an alternative logic programming

paradigm. In: the Logic Programming Paradigm: a 25-Year Perspective, pp. 375—

398. Springer, Heidelberg (1999)

Min, R.: Coinduction in monotonic and non-monotonic reasoning. Ph.D. thesis

forthcoming

Pierce, B.: Types and Programming Languages. MIT Press, Cambridge, MA (2002)

Podelski, A., Rybalchenko, A.: Transition Predicate Abstraction and Fair Termi-

nation. In: POPL 05, pp. 132-144. ACM Press, New York (2005)

Ramakrishna, Y.S., et al.: Efficient Model Checking Using Tabled Resolution. In:

Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 143-154. Springer, Heidelberg

(1997)

Costa, V.S., Rocha, R.: The YAP Prolog System

Schuppan, V., Biere, A.: Liveness Checking as Safety Checking for Infinite State

Spaces. ENTCS 149(1), 79-96 (2006)

Simon, L.: Extending Logic Programming with Coinduction. Ph.D. Thesis (2006)

Simon, L., Mallya, A., Bansal, A., Gupta, G.: Coinductive Logic Programming.

In: Etalle, S., Truszczyniski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 330-344.

Springer, Heidelberg (2006)

Simon, L., Bansal, A., Mallya, A., Gupta, G.: Co-Logic Programming. In: Arge,

L., Cachin, C., Jurdzinski, T., Tarlecki, A. (eds.) ICALP 2007, LNCS, vol. 4596,

Springer, Heidelberg (2007)

Vardi, M.: Verification of Concurrent Programs: The Automata-Theoretic Frame-

work. In: LICS ’87, pp. 167-176. IEEE, Los Alamitos (1987)

Wegner, P., Goldin, D.: Mathematical models of interactive computing. Brown

University Technical Report CS 99-13 (1999)

Multi-paradigm Declarative Languages*

Michael Hanus

Institut fiir Informatik, CAU Kiel, D-24098 Kiel, Germany
mh@informatik.uni-kiel.de

Abstract. Declarative programming languages advocate a programming
style expressing the properties of problems and their solutions rather than
how to compute individual solutions. Depending on the underlying for-
malism to express such properties, one can distinguish different classes of
declarative languages, like functional, logic, or constraint programming
languages. This paper surveys approaches to combine these different
classes into a single programming language.

1 Introduction

Compared to traditional imperative languages, declarative programming lan-
guages provide a higher and more abstract level of programming that leads to
reliable and maintainable programs. This is mainly due to the fact that, in con-
trast to imperative programming, one does not describe how to obtain a solution
to a problem by performing a sequence of steps but what are the properties of
the problem and the expected solutions. In order to define a concrete declarative
language, one has to fix a base formalism that has a clear mathematical founda-
tion as well as a reasonable execution model (since we consider a programming
language rather than a specification language). Depending on such formalisms,
the following important classes of declarative languages can be distinguished:

— Functional languages: They are based on the lambda calculus and term
rewriting. Programs consist of functions defined by equations that are used
from left to right to evaluate expressions.

— Logic languages: They are based on a subset of predicate logic to ensure an
effective execution model (linear resolution). Programs consist of predicates
defined by definite clauses. The execution model is goal solving based on the
resolution principle.

— Constraint languages: They are based on constraint structures with spe-
cific methods to solve constraints. Programs consist of specifications of con-
straints of the considered application domain based on a set of primitive
constraints and appropriate combinators. Constraint languages are often
embedded in other languages where logic programming is a natural can-
didate. In this case, constraint logic programming [61] can be considered as
a generalization of logic programming where unification on Herbrand terms
is considered as a specific built-in constraint solver.

* This work was partially supported by the German Research Council (DFG) under
grant Ha 2457/5-2 and the NSF under grant CCR-0218224.

V. Dahl and I. Niemelad (Eds.): ICLP 2007, LNCS 4670, pp. 45-{75, 2007.
© Springer-Verlag Berlin Heidelberg 2007

46 M. Hanus

The different declarative programming paradigms offer a variety of programming
concepts to the programmer. For instance, functional programming emphasizes
generic programming using higher-order functions and polymorphic typing, and
efficient and (under particular conditions) optimal evaluation strategies using
demand-driven evaluation, which contributes to modularity in programming [59].
Logic programming supports the computation with partial information (logic
variables) and nondeterministic search for solutions, where constraint program-
ming adds efficient constraint solving capabilities for particular domains. Since
all these features have been shown to be useful in application programming
and declarative languages are based on common grounds, it is a natural idea to
combine these worlds of programming into a single multi-paradigm declarative
language. However, the interactions between the different features are complex
in detail so that the concrete design of a multi-paradigm declarative language
is non-trivial. This is demonstrated by many different proposals and a lot of
research work on the semantics, operational principles, and implementation of
multi-paradigm declarative languages since more than two decades. In the fol-
lowing, we survey some of these proposals.

One can find two basic approaches to amalgamate functional and logic lan-
guages: either extend a functional language with logic programming features or
extend a logic language with features for functional programming. Since func-
tions can be considered as specific relations, there is a straightforward way to
implement the second approach: extend a logic language with syntactic sugar to
allow functional notation (e.g., defining equations, nested functional expressions)
which is translated by some preprocessor into the logic kernel language. A recent
approach of this kind is [25] where functional notation is added to Ciao-Prolog.
The language Mercury [83] is based on a logic programming syntax with func-
tional and higher-order extensions. Since Mercury is designed towards a highly
efficient implementation, typical logic programming features are restricted. In
particular, predicates and functions must have distinct modes so that their ar-
guments are either ground or unbound at call time. This inhibits the application
of typical logic programming techniques, like computation with partially instan-
tiated structures, so that some programming techniques developed for functional
logic programming languages [T1143[44] can not be applied. This condition has
been relaxed in the language HAL [33] which adds constraint solving possibilities.
However, Mercury as well as HAL are based on a strict operational semantics
that does not support optimal evaluation as in functional programming. This
is also true for Oz [82]. The computation model of Oz extends the concurrent
constraint programming paradigm [78] with features for distributed program-
ming and stateful computations. It provides functional notation but restricts
their use compared to predicates, i.e., function calls are suspended if the argu-
ments are not instantiated in order to reduce them in a deterministic way. Thus,
nondeterministic computations must be explicitly represented as disjunctions so
that functions used to solve equations require different definitions than func-
tions to rewrite expressions. In some sense, these approaches do not exploit the
semantical information provided by the presence of functions.

Multi-paradigm Declarative Languages 47

Extensions of functional languages with logic programming features try to
retain the efficient demand-driven computation strategy for purely functional
computations and add some additional mechanism for the extended features.
For instance, Escher [63] is a functional logic language with a Haskell-like syntax
[5] and a demand-driven reduction strategy. Similarly to Oz, function calls
are suspended if they are not instantiated enough for deterministic reduction,
i.e., nondeterminism must be expressed by explicit disjunctions. The operational
semantics is given by a set of reduction rules to evaluate functions in a demand-
driven manner and to simplify logical expressions. The languages Curry [41/58)]
and TOY [66] try to overcome the restrictions on evaluating function calls so
that there is no need to implement similar concepts as a function and a predicate,
depending on their use. For this purpose, functions can be called, similarly to
predicates, with unknown arguments that are instantiated in order to apply a
rule. This mechanism, called narrowing, amalgamates the functional concept of
reduction with unification and nondeterministic search from logic programming.
Moreover, if unification on terms is generalized to constraint solving, features of
constraint programming are also covered. Based on the narrowing principle, one
can define declarative languages integrating the good features of the individual
paradigms, in particular, with a sound and complete operational semantics that
is optimal for a large class of programs [9].

In the following, we survey important concepts of such multi-paradigm declar-
ative languages. As a concrete example, we consider the language Curry that is
based on these principles and intended to provide a common platform for re-
search, teaching, and application of integrated functional logic languages.

Since this paper is a survey of limited size, not all of the numerous papers
in this area can be mentioned and relevant topics are only sketched. Interested
readers might look into the references for more details. In particular, there exist
other surveys on particular topics related to this paper. [3§] is a survey on
the development and the implementation of various evaluation strategies for
functional logic languages that have been explored until a decade ago. [7] contains
a good survey on more recent evaluation strategies and classes of functional logic
programs. [(7] is more specialized but reviews the efforts to integrate constraints
into functional logic languages.

The rest of this paper is structured as follows. The next main section intro-
duces and reviews the foundations of functional logic programming that are rele-
vant in current languages. Section Bl discusses practical aspects of multi-paradigm
languages. Section [] contains references to applications of such languages. Fi-
nally, Section [l contains our conclusions.

2 Foundations of Functional Logic Programming

2.1 Basic Concepts

In the following, we use functional programming as our starting point, i.e., we de-
velop functional logic languages by extending functional languages with features
for logic programming.

48 M. Hanus

A functional program is a set of functions defined by equations or rules. A
functional computation counsists of replacing subexpressions by equal (w.r.t. the
function definitions) subexpressions until no more replacements (or reductions)
are possible and a value or normal form is obtained. For instance, consider the
function double defined byE|

double x = x+x

The expression “double 1”7 is replaced by 1+1. The latter can be replaced by
2 if we interpret the operator “+” to be defined by an infinite set of equations,
e.g., 1+1=2, 1+2=3, etc (we will discuss the handling of such functions later).
In a similar way, one can evaluate nested expressions (where the subexpression
to be replaced is underlined):

double (1+2) — (1+2)+(1+2) — 3+(1+2) — 3+3 — 6

There is also another order of evaluation if we replace the arguments of operators
from right to left:

double (1+2) — ((1+2)+(1+2) — (1+2)+3 — 3+3 — 6

In this case, both derivations lead to the same result. This indicates a funda-
mental property of declarative languages, also termed referential transparency:
the value of a computed result does not depend on the order or time of evalua-
tion due to the absence of side effects. This simplifies the reasoning about and
maintenance of declarative programs.

Obviously, these are not all possible evaluation orders since one can also eval-
uate the argument of double before applying its defining equation:

double (1+2) — double 3 — 3+3 — 6

In this case, we obtain the same result with less evaluation steps. This leads
to questions about appropriate evaluation strategies, where a strategy can be
considered as a function that determines, given an expression, the next subex-
pression to be replaced: which strategies are able to compute values for which
classes of programs? As we will see, there are important differences in case of re-
cursive programs. If there are several strategies, which strategies are better w.r.t.
the number of evaluation steps, implementation effort, etc? Many works in the
area of functional logic programming have been devoted to find appropriate eval-
uation strategies. A detailed account of the development of such strategies can
be found in [38]. In the following, we will survey only the strategies that are
relevant for current functional logic languages.

Although functional languages are based on the lambda calculus that is purely
based on function definitions and applications, modern functional languages of-
fer more features for convenient programming. In particular, they support the

! For concrete examples in this paper, we use the syntax of Curry which is very similar
to the syntax of Haskell [75], i.e., (type) variables and function names usually start
with lowercase letters and the names of type and data constructors start with an
uppercase letter. The application of a function f to an expression e is denoted by
juxtaposition (“f €”). Moreover, binary operators like “+” are written infix.

Multi-paradigm Declarative Languages 49

definition of algebraic data types by enumerating their constructors. For in-
stance, the type of Boolean values consists of the constructors True and False
that are declared as follows:

data Bool = True | False

Functions on Booleans can be defined by pattern matching, i.e., by providing
several equations for different argument values:

not True = False
not False = True

The principle of replacing equals by equals is still valid provided that the actual
arguments have the required form, e.g.:

not (not False) — not True — False

More complex data structures can be obtained by recursive data types. For
instance, a list of elements, where the type of elements is arbitrary (denoted by
the type variable a), is either the empty list “[]” or the non-empty list “e:1”
consisting of a first element e and a list 1:

data List a = [] | a : List a

are written as [e1,e2,...,e,]1. We can define operations on recursive types by
inductive definitions where pattern matching supports the convenient separa-
tion of the different cases. For instance, the concatenation operation “++” on
polymorphic lists can be defined as follows (the optional type declaration in the
first line specifies that “++” takes two lists as input and produces an output list,
where all list elements are of the same unspecified type):

(++) :: [a]l —> [a] —> [al

(] ++ ys = ys

(x:x8) ++ ys = x : xs++ys
Beyond its application for various programming tasks, the operation “++” is
also useful to specify the behavior of other functions on lists. For instance, the
behavior of a function last that yields the last element of a list can be specified as
follows: for all lists [and elements e, last [= e iff dxs : xzs++[e] = [Based on
this specification, one can define a function and verify that this definition satisfies
the given specification (e.g., by inductive proofs as shown in [20]). This is one of
the situations where functional logic languages become handy. Similarly to logic
languages, functional logic languages provide search for solutions for existentially
quantified variables. In contrast to pure logic languages, they support equation
solving over nested functional expressions so that an equation like zs++[e] =
[1,2,3] is solved by instantiating xs to the list [1,2] and e to the value 3. For
instance, in Curry one can define the operation last as follows:

last 1 | xs++[e]l=:=1 = e where xs,e free

2 The exact meaning of the equality symbol is omitted here since it will be discussed
later.

50 M. Hanus

Here, the symbol “=:=" is used for equational constraints in order to provide

a syntactic distinction from defining equations. Similarly, extra variables (i.e.,
variables not occurring in the left-hand side of the defining equation) are ex-
plicitly declared by “where...free” in order to provide some opportunities to
detect bugs caused by typos. A conditional equation of the form [| ¢ = r is
applicable for reduction if its condition ¢ has been solved. In contrast to purely
functional languages where conditions are only evaluated to a Boolean value,
functional logic languages support the solving of conditions by guessing values
for the unknowns in the condition. As we have seen in the previous example,
this reduces the programming effort by reusing existing functions and allows the
direct translation of specifications into executable program code. The important
question to be answered when designing a functional logic language is: How are
conditions solved and are there constructive methods to avoid a blind guessing
of values for unknowns? This is the purpose of narrowing strategies that are
discussed next.

2.2 Narrowing

Techniques for goal solving are well developed in the area of logic programming.
Since functional languages advocate the equational definition of functions, it is a
natural idea to integrate both paradigms by adding an equality predicate to logic
programs, leading to equational logic programming [T3[74]. On the operational
side, the resolution principle of logic programming must be extended to deal
with replacements of subterms. Narrowing, originally introduced in automated
theorem proving [81], is a constructive method to deal with such replacements.
For this purpose, defining equations are interpreted as rewrite rules that are
only applied from left to right (as in functional programming). In contrast to
functional programming, the left-hand side of a defining equation is unified with
the subterm under evaluation. In order to provide more detailed definitions,
some basic notions of term rewriting [I8I[29] are briefly recalled. Although the
theoretical part uses notations from term rewriting, its mapping into the concrete
programming language syntax should be obvious.

Since we ignore polymorphic types in the theoretical part of this survey, we
consider a many-sorted signature X partitioned into a set C of constructors and a
set F of (defined) functions or operations. We write ¢/n € C and f/n € F for n-
ary constructor and operation symbols, respectively. Given a set of variables X,
the set of terms and constructor terms are denoted by 7(CUF,X) and 7 (C, X),
respectively. The set of variables occurring in a term ¢ is denoted by Var(t). A
term ¢ is ground if Var(t) = @. A term is linear if it does not contain multiple
occurrences of one variable. A term is operation-rooted (constructor-rooted) if its
root symbol is an operation (constructor). A head normal form is a term that is
not operation-rooted, i.e., a variable or a constructor-rooted term.

A pattern is a term of the form f(dy,...,d,) where f/n € Fand dy,...,d, €
T(C,X). A term rewriting system (TRS) is set of rewrite rules, where an (uncon-
ditional) rewrite rule is a pair [— r with a linear pattern [as the left-hand side
(lhs) and a term r as the right-hand side (rhs). Note that this definition reflects

Multi-paradigm Declarative Languages 51

the specific properties of functional logic programs. Traditional term rewriting
systems [29] differ from this definition in the following points:

1. We have required that the left-hand sides must be linear patterns. Such
rewrite systems are also called constructor-based and exclude rules like

(xs ++ ys) ++ zs = xs ++ (ys ++zs) (assoc)
last (xs ++ [e]) = e (last)

Although this seems to be a restriction when one is interested in writing
equational specifications, it is not a restriction from a programming language
point of view, since functional as well as logic programming languages en-
forces the same requirement (although logic languages do not require linear-
ity of patterns, this can be easily obtained by introducing new variables and
adding equations for them in the condition; conditional rules are discussed
below). Often, non-constructor-based rules specify properties of functions
rather than providing a constructive definition (compare rule assoc above
that specifies the associativity of “++”), or they can be transformed into
constructor-based rules by moving non-constructor terms in left-hand side
arguments into the condition (e.g., rule last). Although there exist narrowing
strategies for non-constructor-based rewrite rules (see [38I74I8T] for more de-
tails), they often put requirements on the rewrite system that are too strong
or difficult to check in universal programming languages, like termination
or confluence. An important insight from recent works on functional logic
programming is the restriction to constructor-based programs since this sup-
ports the development of efficient and practically useful evaluation strategies
(see below).

2. Traditional rewrite rules I — r require that Var(r) C Var(l). A TRS where
all rules satisfy this restriction is also called a TRS without extra variables.
Although this makes sense for rewrite-based languages, it limits the ex-
pressive power of functional logic languages (see the definition of last in
Section [ZT]). Therefore, functional logic languages usually do not have this
variable requirement, although some theoretical results have only been
proved under this requirement.

In order to formally define computations w.r.t. a TRS, we need a few further
notions. A position p in a term t is represented by a sequence of natural num-
bers. Positions are used to identify particular subterms. Thus, ¢|, denotes the
subterm of t at position p, and ¢[s], denotes the result of replacing the subterm
t|, by the term s (see [29] for details). A substitution is an idempotent mapping
o: X — T(CUF,X) where the domain Dom(c) = {x € X | o(x) # =z} is
finite. Substitutions are obviously extended to morphisms on terms. We denote
by {x1 — t1,..., 2, — t,} the substitution o with o(z;) =¢; (i=1,...,n) and
o(x) = x for all other variables x. A substitution o is constructor (ground con-
structor) if o(z) is a constructor (ground constructor) term for all © € Dom(o).

A rewrite step t —, g t' (in the following, p and R will often be omitted
in the notation of rewrite and narrowing steps) is defined if p is a position in

52 M. Hanus

t, R =1 — r is a rewrite rule with fresh variablesE and o is a substitution
with t|, = o(l) and ¢’ = t[o(r)],. The instantiated lhs (1) is also called a redex
(reducible expression). A term ¢ is called in normal form if there is no term s
with ¢t — s. = denotes the reflexive and transitive closure of a relation —.

Rewrite steps formalize functional computation steps with pattern matching
as introduced in Section 21l The goal of a sequence of rewrite steps is to compute
a normal form. A rewrite strategy determines for each rewrite step a rule and a
position for applying the next step. A normalizing strategy is one that terminates
a rewrite sequence in a normal form, if it exists. Note, however, that normal
forms are not necessarily the interesting results of functional computations, as
the following example shows.

Ezample 1. Consider the operation
idNil [1 = []

that is the identity on the empty list but undefined for non-empty lists. Then,
a normal form like “idNil [1]” is usually considered as an error rather than a
result. Actually, Haskell reports an error for evaluating the term “idNil [1+2]”
rather than delivering the normal form “idNil [3]”. |

Therefore, the interesting results of functional computations are constructor
terms that will be also called wvalues. Evaluation strategies used in functional
programming, such as lazy evaluation, are not normalizing, as the previous ex-
ample shows.

Functional logic languages are able to do more than pure rewriting since they
instantiate variables in a term (also called free or logic variables) so that a rewrite
step can be applied. The combination of variable instantiation and rewriting is
called narrowing. Formally, t ~+, g, t' is a narrowing step if p is a non-variable
position in ¢ (i.e., t|, is not a variable) and o(t) —p g t'. Since the substitution
o is intended to instantiate the variables in the term under evaluation, one often
restricts Dom(o) C Var(t). We denote by ty ~% t, a sequence of narrowing
steps tg ~gy ... ~rp, t, With 0 = o 0+ 007 (where o = {} in the case of
n = 0). Since in functional logic languages we are interested in computing values
(constructor terms) as well as answers (substitutions), we say that the narrowing
derivation t ~7% ¢ computes the value ¢ with answer o if ¢ is a constructor term.

The above definition of narrowing is too general for a realistic implementation
since it allows arbitrary instantiations of variables in the term under evaluation.
Thus, all possible instantiations must be tried in order to compute all possible
values and answers. Obviously, this does not lead to a practical implementation.
Therefore, older narrowing strategies (see [38] for a detailed account) were in-
fluenced by the resolution principle and required that the substitution used in a
narrowing step must be a most general unifier of ¢|,, and the left-hand side of the
applied rule. As shown in [9], this condition prevents the development of opti-
mal evaluation strategies. Therefore, most recent narrowing strategies relax this

3 In classical traditional term rewriting, fresh variables are not used when a rule is
applied. Since we consider also rules containing extra variables in right-hand sides,
it is important to replace them by fresh variables when the rule is applied.

Multi-paradigm Declarative Languages 53

traditional requirement but provide another constructive method to compute a
small set of unifiers in narrowing steps, as we will see below. The next example
shows the non-optimality of narrowing with most general unifiers.

Example 2. Consider the following program containing a declaration of natural
numbers in Peano’s notation and two operations for addition and a “less than
or equal” test (the pattern “_” denotes an unnamed anonymous variable):

data Nat = 0 | S Nat

add 0 y =y

add (S x) y =S (add x y)

leq O _ = True (leg1)
leq (S) O = False (leg2)

leq (S x) (S ¥

Consider the initial term “leq v (add w 0)” where v and w are free variables.
By applying rule leq;, v is instantiated to 0 and the result True is computed:

leq x y (legs)

leq v (add w 0) ~~yy.0y True

Further answers can be obtained by instantiating v to (S...). This requires the
evaluation of the subterm (add w 0) in order to allow the application of rule
legs or legs. For instance, the following narrowing derivation computes the value
False with answer {v — S z,w— 0}:

leq v (add w 0) ~~yy.0; leq v 0 ~oyy.g5 z3 False

However, we can also apply rule leq; in the second step of the previous narrowing
derivation and obtain the following derivation:

leq v (add w 0) ~yy.0y leq v 0 ~yy.py True

Obviously, the last derivation is not optimal since it computes the same value
as the first derivation with a less general answer and needs one more step. This
derivation can be avoided by instantiating v to Sz in the first narrowing step:

leq v (add w 0) ~(y_sz w0} leq (S z) 0

Now, rule leq; is no longer applicable, as intended. However, this first narrow-
ing step contains a substitution that is not a most general unifier between the
evaluated subterm (add w 0) and the left-hand side of some rule for add. O

Needed Narrowing. The first narrowing strategy that advocated the use of
non-most general unifiers and for which optimality results have been shown is
needed narrowing [9]. Furthermore, needed narrowing steps can be efficiently
computed. Therefore, it has become the basis of modern functional logic lan-
guagesd.

Needed narrowing is based on the idea to perform only narrowing steps that
are in some sense necessary to compute a result (such strategies are also called

4 Concrete languages and implementations add various extensions in order to deal
with larger classes of programs that will be discussed later.

54 M. Hanus

lazy or demand-driven). For doing so, it analyzes the left-hand sides of the rewrite
rules of a function under evaluation (starting from an outermost function). If
there is an argument position where all left-hand sides are constructor-rooted,
the corresponding actual argument must be also rooted by one of the constructors
in order to apply a rewrite step. Thus, the actual argument is evaluated to head
normal form if it is operation-rooted and, if it is a variable, nondeterministically
instantiated with some constructor.

Ezxample 3. Consider again the program of Example 2l Since the left-hand sides
of all rules for 1eq have a constructor-rooted first argument, needed narrowing
instantiates the variable v in “leq v (add w 0)” to either 0 or Sz (where z is a
fresh variable). In the first case, only rule leq; becomes applicable. In the second
case, only rules legs or leqs become applicable. Since the latter rules have both
a constructor-rooted term as the second argument, the corresponding subterm
(add w 0) is recursively evaluated to a constructor-rooted term before applying
one of these rules. |

Since there are TRSs with rules that do not allow such a reasoning, needed nar-
rowing is defined on the subclass of inductively sequential TRSs. This class can
be characterized by definitional trees [4] that are also useful to formalize and im-
plement various narrowing strategies. Since only the left-hand sides of rules are
important for the applicability of needed narrowing, the following characteriza-
tion of definitional trees [5] considers patterns partially ordered by subsumption
(the subsumption ordering on terms is defined by ¢t < o(t) for a term ¢ and
substitution o).

A definitional tree of an operation f is a non-empty set 1" of linear patterns
partially ordered by subsumption having the following properties:

Leaves property: The maximal elements of T', called the leaves, are exactly the
(variants of) the left-hand sides of the rules defining f. Non-maximal ele-
ments are also called branches.

Root property: T hasaminimum element, called the root, of the form f(x1, ..., x,)
where 1, ..., x, are pairwise distinct variables.

Parent property: If m € T is a pattern different from the root, there exists a
unique 7' € T, called the parent of = (and 7 is called a child of '), such
that 7' < 7 and there is no other pattern 7”7 € T (CUF, X) with 7/ < 7" < .

Induction property: All the children of a pattern 7 differ from each other only
at a common position, called the inductive position, which is the position of
a variable in %

An operation is called inductively sequential if it has a definitional tree and its
rules do not contain extra variables. A TRS is inductively sequential if all its
defined operations are inductively sequential. Intuitively, inductively sequential
functions are defined by structural induction on the argument types. Purely

5 There might be more than one potential inductive position when constructing a
definitional tree. In this case one can select any of them since the results about
needed narrowing do not depend on the selected definitional tree.

Multi-paradigm Declarative Languages 55

leq x1 x2
add x1 x2

leq 0 x2 = True leq (S x) x2

add 0 x2 = x2 add (S x) x2
=S (add x x2)

leq (S x) 0 = False 1leq (S x) (S y)
=leq xy

Fig. 1. Definitional trees of the operations add and leq

functional programs and the vast majority of functions in functional logic pro-
grams are inductively sequential. Thus, needed narrowing is applicable to most
functions, although extensions are useful for particular functions (see below).

It is often convenient and simplifies the understanding to provide a graphic
representation of definitional trees, where each inner node is marked with a
pattern, the inductive position in branches is surrounded by a box, and the
leaves contain the corresponding rules. For instance, the definitional trees of the
operations add and leq, defined in Example 2] are illustrated in Figure [

The formal definition of needed narrowing is based on definitional trees and
can be found in [9]. A definitional tree can be computed at compile time (see
[74T] for algorithms to construct definitional trees) and contains all information
for the efficient implementation of the decisions to be made at run time (compare
Example B]). Intuitively, a needed narrowing step is applied to an operation-
rooted term t by considering a definitional tree (with fresh variables) for the
operation at the root. The tree is recursively processed from the root until one
finds a maximal pattern that unifies with ¢. Thus, to compute a needed narrowing
step, one starts with the root pattern of the definitional tree and performs at
each level with pattern 7 the following case distinction:

— If 7 is a leaf, we apply the corresponding rule.
— If 7 is a branch and p its inductive position, we consider the corresponding
subterm t|:

1. If t|, is rooted by a constructor ¢ and there is a child 7" of 7 having c at
the inductive position, we proceed by examining 7. If there is no such
child, we fail, i.e., no needed narrowing step is applicable.

2. If ¢|, is a variable, we nondeterministically instantiate this variable by
the constructor term at the inductive position of a child 7’ of 7= and
proceed with 7’.

3. If ¢|, is operation-rooted, we recursively apply the computation of a
needed narrowing step to o(t|,), where o is the instantiation of the vari-
ables of t performed in the previous case distinctions.

As discussed above, the failure to compute a narrowing step in case (1) is not
a weakness but advantageous when we want to compute values. For instance,
consider the term ¢ = idNil [1+2] where the operation idNil is as defined

56 M. Hanus

in Example [[l A normalizing strategy performs a step to compute the normal
form idNil [3] whereas needed narrowing immediately fails since there exists
no value as a result. Thus, the early failure of needed narrowing avoids wasting
resources.

As a consequence of the previous behavior, the properties of needed narrowing
are stated w.r.t. constructor terms as results. In particular, the equality symbol
“=:=" in goals is interpreted as the strict equality on terms, i.e., the equation
t1 =:=19 is satisfied iff ¢; and ¢y are reducible to the same ground constructor
term. In contrast to the mathematical notion of equality as a congruence rela-
tion, strict equality is not reflexive. Similarly to the notion of result values, this
is intended in programming languages where an equation between functional ex-
pressions that do not have a value, like “1dNil [1] =:= idNil [1]”, is usually
not considered as true. Furthermore, normal forms or values might not exist so
that reflexivity is not a feasible property of equational constraints (see [34] for
a more detailed discussion on this topic).

Strict equality can be defined as a binary function by the following set of (in-
ductively sequential) rewrite rules. The constant Success denotes a solved (equa-
tional) constraint and is used to represent the result of successful evaluations.

c=:=c¢ = Success Ve/0 € C
CT...Tp=:=CYl1...Yp = T1=:=y1 &...& xp=:=Y, Ve/neC,n>0
Success & Success = Success

Thus, it is sufficient to consider strict equality as any other function. Concrete
functional logic languages provide more efficient implementations of strict equal-
ity where variables can be bound to other variables instead of instantiating them
to ground terms (see also Section B3]).

Now we can state the main properties of needed narrowing. A (correct) solu-
tion for an equation t1 =:=t5 is a constructor substitution o (note that construc-
tor substitutions are desired in practice since a broader class of solutions would
contain unevaluated or undefined expressions) if o(t;)=:=0(ty) - Success.
Needed narrowing is sound and complete, i.e., all computed solutions are correct
and for each correct solution a possibly more general one is computed, and it
does not compute redundant solutions in different derivations:

Theorem 1 ([9]). Let R be an inductively sequential TRS and e an equation.

1. (Soundness) If e ~ Success is a needed narrowing derivation, then o is a
solution for e.

2. (Completeness) For each solution o of e, there exists a needed narrowing
derivation e ~%, Success with o' (x) < o(x) for all x € Var(e).

3. (Minimality) If e ~7% Success and e ~7*, Success are two distinct needed
narrowing derivations, then o and o' are independent on Var(e), i.e., there
is some x € Var(e) such that o(x) and o' (x) are not unifiable.

Furthermore, in successful derivations, needed narrowing computes only steps
that are necessary to obtain the result and, consequently, it computes the shortest
of all possible narrowing derivations if derivations on common subterms are

Multi-paradigm Declarative Languages 57

shared (a standard implementation technique in non-strict functional languages)
[9, Corollary 1]. Needed narrowing is currently the only narrowing strategy with
such strong results. Therefore, it is an adequate basis for modern functional
logic languages, although concrete implementations support extensions that are
discussed next.

Weakly Needed Narrowing. Inductively sequential TRS are a proper sub-
class of (constructor-based) TRSs. Although the majority of function definitions
are inductively sequential, there are also functions where it is more convenient
to relax this requirement. An interesting superclass are weakly orthogonal TRSs.
These are rewrite systems where left-hand sides can overlap in a semantically
trivial way. Formally, a TRS without extra variables (recall that we consider only
left-linear constructor-based rules) is weakly orthogonal if o(r1) = o(rs) for all
(variants of) rules l; — 71 and lo — 72 and substitutions o with o(l1) = o(l2).

Example 4. A typical example of a weakly orthogonal TRS is the parallel-or,
defined by the rules:

or True _ = True (ory)
or _ True = True (orsy)
or False False = False (ors)

A term like “or s t” could be reduced to True whenever one of the arguments
s or t evaluates to True. However, it is not clear which of the arguments should
be evaluated first, since any of them could result in a nonterminating derivation.
or has no definitional tree and, thus, needed narrowing can not be applied. O

In rewriting, several normalizing strategies for weakly orthogonal TRSs have
been proposed, like parallel outermost [72] or weakly needed [80] rewriting that
are based on the idea to replace several redexes in parallel in one step. Since
strategies for functional logic languages already support nondeterministic evalu-
ations, one can exploit this feature to extend needed narrowing to a weakly needed
narrowing strategy. The basic idea is to generalize the notion of definitional trees
to include or-branches which conceptually represent a union of definitional trees
[4864]. If such an or-branch is encountered during the evaluation of a narrowing
step, weakly needed narrowing performs a nondeterministic guess and proceeds
with the subtrees below the or-branches. Weakly needed narrowing is no longer
optimal in the sense of needed narrowing but sound and complete for weakly
orthogonal TRS in the sense of Theorem [[§].

Overlapping Inductively Sequential Systems. Inductively sequential and
weakly orthogonal TRSs are confluent, i.e., each term has at most one normal
form. This property is reasonable for functional languages since it ensures that
operations are well defined (partial) functions in the mathematical sense. Since
the operational mechanism of functional logic languages is more powerful due
to its built-in search mechanism, in this context it makes sense to consider also
operations defined by non-confluent TRSs. Such operations are also called non-
deterministic. The prototype of such a nondeterministic operation is a binary
operation “?” that returns one of its arguments:

58 M. Hanus

X?7y=x

xX?7y=y
Thus, the expression “0 ? 1” has two possible results, namely 0 or 1.

Since functional logic languages already handle nondeterministic computa-
tions, they can deal with such nondeterministic operations. If operations are
interpreted as mappings from values into sets of values (actually, due to the
presence of recursive non-strict functions, algebraic structures with cones of par-
tially ordered sets are used instead of sets, see [30] for details), one can provide
model-theoretic and proof-theoretic semantics with the usual properties (mini-
mal term models, equivalence of model-theoretic and proof-theoretic solutions,
etc). Thus, functional logic programs with nondeterministic operations are still
in the design space of declarative languages. Moreover, nondeterministic oper-
ations have advantages w.r.t. demand-driven evaluation strategies so that they
became a standard feature of recent functional logic languages (whereas older
languages put confluence requirements on their programs). The following exam-
ple discusses this in more detail.

Ezample 5. Based on the binary operation “?” introduced above, one can define
an operation insert that nondeterministically inserts an element at an arbitrary
position in a list:

insert e [] = [e]
insert e (x:xs) = (e : x : xs) 7 (x : insert e xs)

Exploiting this operation, one can define an operation perm that returns an
arbitrary permutation of a list:

perm [] =[]
perm (x:xs) = insert x (perm xs)

One can already see an important property when one reasons about nondeter-
ministic operations: the computation of results is arbitrary, i.e., one result is
as good as any other. For instance, if one evaluates perm [1,2,3], any permu-
tation (e.g., [3,2,1] as well as [1,3,2]) is an acceptable result. If one puts
specific conditions on the results, the completeness of the underlying computa-
tional model (e.g., INS, see below) ensures that the appropriate results meeting
these conditions are selected.

For instance, one can use perm to define a sorting function psort based on a
“partial identity” function sorted that returns its input list if it is sorted:

sorted [] =1
sorted [x] = [x]
sorted (x1:x2:xs) | leq x1 x2 =:= True = x1 : sorted (x2:xs)

psort xs = sorted (perm xs)

Thus, psortxs returns only those permutations of xs that are sorted. The
advantage of this definition of psort in comparison to traditional “generate-and-
test” solutions becomes apparent when one considers the demand-driven evalu-
ation strategy (note that one can apply the weakly needed narrowing strategy

Multi-paradigm Declarative Languages 59

to such kinds of programs since this strategy is based only on the left-hand
sides of the rules but does not exploit confluence). Since in an expression like
sorted (perm xs) the argument (perm xs) is only evaluated as demanded by
sorted, the permutations are not fully computed at once. If a permutation starts
with a non-ordered prefix, like SO : 0 : perm xs, the application of the third rule
of sorted fails and, thus, the computation of the remaining part of the permu-
tation (which can result in n! different permutations if n is the length of the list
xs) is discarded. The overall effect is a reduction in complexity in comparison
to the traditional generate-and-test solution. O

This example shows that nondeterministic operations allow the transformation
of “generate-and-test” solutions into “test-of-generate” solutions with a lower
complexity since the demand-driven narrowing strategy results in a demand-
driven construction of the search space (see [Bl36] for further examples). Antoy
[5] shows that desirable properties of needed narrowing can be transferred to pro-
grams with nondeterministic functions if one considers overlapping inductively
sequential systems. These are TRSs with inductively sequential rules where each
rule can have multiple right-hand sides (basically, inductively sequential TRSs
with occurrences of “?” in the top-level of right-hand sides), possibly containing
extra variables. For instance, the rules defining insert form an overlapping in-
ductively sequential TRS if the second rule is interpreted as a single rule with
two right-hand sides (“e:x:xs” and “x : insert e xs”). The corresponding strat-
egy, called INS (inductively sequential narrowing strategy), is defined similarly
to needed narrowing but computes for each narrowing step a set of replacements.
INS is a conservative extension of needed narrowing and optimal modulo non-
deterministic choices of multiple right-hand sides, i.e., if there are no multiple
right-hand sides or there is an oracle for choosing the appropriate element from
multiple right-hand sides, INS has the same optimality properties as needed
narrowing (see [5] for more details).

A subtle aspect of nondeterministic operations is their treatment if they are
passed as arguments. For instance, consider the operation coin defined by

coin =07 1

and the expression “double coin” (where double is defined as in Section [ZT]). If
the argument coin is evaluated (to 0 or 1) before it is passed to double, we obtain
the possible results 0 and 2. However, if the argument coin is passed unevaluated
to double, we obtain after one rewrite step the expression coin+coin which has
four possible rewrite derivations resulting in the values 0, 1, 1, and 2. The former
behavior is referred to as call-time choice semantics [60] since the choice for the
desired value of a nondeterministic operation is made at call time, whereas the
latter is referred to as need-time choice semantics. There are arguments for either
of these semantics depending on the programmer’s intention (see [7] for more
examples).

Although call-time choice suggests an eager or call-by-value strategy, it fits
well into the framework of demand-driven evaluation where arguments are shared
to avoid multiple evaluations of the same subterm. For instance, the actual

60 M. Hanus

subterm (e.g., coin) associated to argument x in the rule “double x = x+x”
is not duplicated in the right-hand side but a reference to it is passed so that,
if it is evaluated by one subcomputation, the same result will be taken in the
other subcomputation. This technique, called sharing, is essential to obtain effi-
cient (and optimal) evaluation strategies. If sharing is used, the call-time choice
semantics can be implemented without any further machinery. Furthermore, in
many situations call-time choice is the semantics with the “least astonishment”.
For instance, consider the reformulation of the operation psort in Example[d to

psort xs = idOnSorted (perm xs)

idOnSorted xs | sorted xs =:=xs = xs

Then, for the call psort xs, the call-time choice semantics delivers only sorted
permutations of xs, as expected, whereas the need-time choice semantics de-
livers all permutations of xs since the different occurrences of xs in the rule
of idOnSorted are not shared. Due to these reasons, current functional logic
languages usually adopt the call-time choice semantics.

Conditional Rules. The narrowing strategies presented so far are defined for
rewrite rules without conditions, although some of the concrete program ex-
amples indicate that conditional rules are convenient in practice. Formally, a
conditional rewrite rule has the form [— r < C where [and r are as in
the unconditional case and the condition C' consists of finitely many equational
constraints of the form s=:=t. In order to apply weakly needed narrowing to
conditional rules, one can transform a conditional rule of the form

I — r <« s1=:=t; ... §,=:=1,
into an unconditional rule
I — cond(sy=:=t1 &...& sp,=:=ty, T)

where the “conditional” is defined by cond(Success,z) — x. Actually, Antoy
[6] has shown a systematic method to translate any conditional constructor-
based TRS into an overlapping inductively sequential TRS performing equivalent
computations.

2.3 Rewriting Logic

As discussed in the previous section on overlapping inductively sequential TRS,
sharing becomes important for the semantics of nondeterministic operations.
This has the immediate consequence that traditional equational reasoning is
no longer applicable. For instance, the expressions double coin and coin+coin
are not equal since the latter can reduce to 1 while this is impossible for the
former w.r.t. a call-time choice semantics. In order to provide a semantical ba-
sis for such general functional logic programs, Gonzéalez-Moreno et al. [36] have
proposed the rewriting logic CRWL (Constructor-based conditional ReWriting
Logic) as a logical (execution- and strategy-independent) foundation for declara-
tive programming with non-strict and nondeterministic operations and call-time
choice semantics. This logic has been also used to link a natural model theory

Multi-paradigm Declarative Languages 61

as an extension of the traditional theory of logic programming and to establish
soundness and completeness of narrowing strategies for rather general classes of
TRSs [28].

To deal with non-strict functions, CRWL considers signatures X', that are
extended by a special symbol L to represent undefined values. For instance,
T(CU{L},X) denotes the set of partial constructor terms, e.g., 1:2: L denotes
a list starting with elements 1 and 2 and an undefined rest. Such partial terms
are considered as finite approximations of possibly infinite values. CRWL defines
the deduction of two kinds of basic statements: approximation statements e — t
with the intended meaning “the partial constructor term t approximates the
value of €”, and joinability statements e; =:=es with the intended meaning that
e1 and ez have a common total approximation ¢ € 7(C,X) with e; — ¢ and
eo — t, thus modeling strict equality with terms containing variables. To model
call-time choice semantics, rewrite rules are only applied to partial values. Hence,
the following notation for partial constructor instances of a set of (conditional)
rules R is useful:

RlL={cl—-r<C)|l-r<CecR,0: X —>T((CU{L},X)}
Then CRWL is defined by the following set of inference rules (where the program
is represented by a TRS R):
(Bottom) e— 1 foranyee T(CUFU{L} X)
(Restricted reflexivity) = — x for any variable x € X

e — 1l ey — 1y
cler, ..., en) — c(tr, ... tn)
for any ¢/ne€C, t; € T(CU{L},X)
er—ty ey —t, C r—t

fler, ... en) =t
for any f(t1,...,t,) > r<=C € [R]L and t # L

(Decomposition)

(Function reduction)

e —t ey — 1

(Joinability) for any total term t € T(C, X)

€1 =:1=¢eg

The first rule specifies that | approximates any expression. The condition ¢ # L
in rule (Function reduction) avoids unnecessary applications of this rule since
this case is already covered by the first rule. The restriction to partial constructor
instances in this rule formalizes non-strict functions with a call-time choice se-
mantics. Functions might have non-strict arguments that are not evaluated since
the corresponding actual arguments can be derived to L by the first rule. If the
value of an argument is required to evaluate the right-hand side of a function’s
rule, it must be evaluated to a partial constructor term before it is passed to the
right-hand side (since [R], contains only partial constructor instances), which
corresponds to a call-time choice semantics. Note that this does not prohibit the
use of lazy implementations since this semantical behavior can be enforced by
sharing unevaluated expressions. Actually, [36] defines a lazy narrowing calculus
that reflects this behavior.

62 M. Hanus

CRWL can be used as the logical foundation of functional logic languages
with non-strict nondeterministic operations. It is a basis for the verification of
functional logic programs [27] and has been extended in various directions, e.g.,
higher-order operations [37], algebraic types [17], polymorphic types [35], failure
[68], constraints [67] etc. An account on CRWL and its applications can be found

in [77].
2.4 Residuation

Although narrowing extends soundness and completeness results of logic pro-
gramming to the general framework of functional logic programming, it is not
the only method that has been proposed to integrate functions into logic pro-
grams. An alternative technique, called residuation, is based on the idea to delay
or suspend function calls until they are ready for deterministic evaluation. The
residuation principle is used, for instance, in the languages Escher [63], Le Fun
[2], Life [1], NUE-Prolog [71], and Oz [82]. Since the residuation principle evalu-
ates function calls by deterministic reduction steps, nondeterministic search must
be encoded by predicates [TI27T] or disjunctions [63I82]. Moreover, if some part
of a computation might suspend, one needs a primitive to execute computations
concurrently. For instance, the conjunction of constraints “&” needs to evaluate
both arguments to Success so that it is reasonable to do it concurrently, i.e., if
the evaluation of one argument suspends, the other one is evaluated.

Ezample 6. Consider Example [together with the operation

nat O = Success
nat (S x) = nat x

If the function add is evaluated by residuation, i.e., suspends if the first argu-

ment is a variable, the expression “add y 0 =:= S 0 & nat y” is evaluated as
follows:
add y 0 =:= S 0 & nat y ~y—Sx} add (S x) 0 =:= S 0 & nat x

-0 S (add x 0) =:= S 0 & nat x
-0 add x 0 =:= 0 & nat x
—(x—0} add 0 0 =:= 0 & Success
-} 0 =:= 0 & Success
-} Success & Success

-} Success

Thus, the solution {y + S0} is computed by switching between the residuating
function add and the constraint nat that instantiates its argument to natural
numbers. a

Narrowing and residuation are quite different approaches to integrate functional
and logic programming. Narrowing is sound and complete but requires the
nondeterministic evaluation of function calls if some arguments are unknown.
Residuation might not compute some result due to the potential suspension of
evaluation but avoids guessing on functions. From an operational point of view,

Multi-paradigm Declarative Languages 63

there is no clear advantage of one of the strategies. One might have the impres-
sion that the deterministic evaluation of functions in the case of residuation is
more efficient, but there are examples where residuation has an infinite computa-
tion space whereas narrowing has a finite one (see [39] for more details). On the
other hand, residuation offers a concurrent evaluation principle with synchro-
nization on logic variables (sometimes also called declarative concurrency [34)])
and a conceptually clean method to connect external functions to declarative
programs [2I] (note that narrowing requires functions to be explicitly defined by
rewrite rules). Therefore, it is desirable to integrate both principles in a single
framework. This has been proposed in [41] where residuation is combined with
weakly needed narrowing by extending definitional trees with branches deco-
rated with a flexible/rigid tag. Operations with flexible tags are evaluated as
with narrowing whereas operations with rigid tags suspend if the arguments are
not sufficiently instantiated. The overall strategy is similar to weakly needed
narrowing with the exception that a rigid branch with a free variable in the
corresponding inductive position results in the suspension of the function under
evaluation. For instance, if the branch of add in Figure [I] has a rigid tag, then
add is evaluated as shown in Example

3 Aspects of Multi-paradigm Languages

This section discusses some aspects of multi-paradigm languages that are rele-
vant for their use in application programming. As before, we use the language
Curry for concrete examples. Its syntax has been already introduced in an infor-
mal manner. Conceptually, a Curry program is a constructor-based TRS. Thus,
its declarative semantics is given by the rewriting logic CRWL, i.e., operations
and constructors are non-strict with a call-time choice semantics for nondeter-
ministic operations. The operational semantics is based on weakly needed nar-
rowing with sharing and residuation. Thus, for (flexible) inductively sequential
operations, which form the vast majority of operations in application programs,
the evaluation strategy is optimal w.r.t. the length of derivations and number of
computed solutions and always computes a value if it exists (in case of nondeter-
ministic choices only if the underlying implementation is fair w.r.t. such choices,
as [T4UT556]). Therefore, the programmer can concentrate on the declarative
meaning of programs and needs less attention to the consequences of the partic-
ular evaluation strategy (see [45] for a more detailed discussion).

3.1 External Operations

Operations that are externally defined, i.e., not implemented by explicit rules,
like basic arithmetic operators or I/O operations, can not be handled by
narrowing. Therefore, residuation is an appropriate model to connect external
operations in a conceptually clean way (see also [21]): their semantics can be
considered as defined by a possibly infinite set of rules (e.g., see the definition of
“+” in Section [Z]) whose behavior is implemented in some other programming

64 M. Hanus

language. Usually, external operations can not deal with unevaluated arguments
possibly containing logic variables. Thus, the arguments of external operations
are reduced to ground values before they are called. If some arguments are not
ground but contain logic variables, the call is suspended until the variables are
bound to ground values, which corresponds to residuation.

3.2 Higher-Order Operations

The use of higher-order operations, i.e., operations that take other operations
as arguments or yields them as results, is an important programming technique
in functional languages so that it should be also covered by multi-paradigm
declarative languages. Typical examples are the mapping of a function to all
elements of a list (map) or a generic accumulator for lists (foldr):

map :: (a->b) -> [a] -> [b]
map _ [] = [

map f (x:xs) = f x : map f xs

foldr :: (a->b->b) -> b -> [a] > b
foldr _ z [] =z
foldr f z (x:xs) = f x (foldr f z xs)

Logic languages often provide higher-order features through a transformation
into a first-order program [87] by defining a predicate apply that implements
the application of an arbitrary function of the program to an expression. This
technique is also known as “defunctionalization” [76] and enough to support the
higher-order features of current functional languages (e.g., lambda abstractions
can be replaced by new function definitions). An important difference to purely
functional languages shows up when the function to be applied is a logic variable.
In this case, one can instantiate this variable to all possible functions occurring
in the program [37]. Since this might result also in instantiations that are not
intended w.r.t. the given types, one can restrict these instantiations to well-typed
ones which requires to keep type information at run time [I6/35]. Another option
is the instantiation of function variables to (well-typed) lambda terms in order
to cover programs that can reason about bindings and block structure [55]. Since
all these options might result in huge search spaces due to function instantiation
and their feasibility and usefulness for larger application programs is not clear,
one can also choose a more pragmatic solution: function application is rigid, i.e.,
it suspends if the functional argument is a logic variable.

3.3 Constraints

Functional logic languages are able to solve equational constraints. As shown
in Section [Z2) such constraints occur in conditions of conditional rules and are
intended to restrict the applicability of the rewrite rule, i.e., a replacement with a
conditional rule is only performed if the condition has been shown to be satisfied
(e.g., compare the definition of last in Section [Z]]). Thus, constraints are solved
when conditional rules are applied.

Multi-paradigm Declarative Languages 65

In general, a syntactic extension is not necessary to include constraints. For
instance, the language Curry has no specific constructs for constraints but con-
straints are simply expressions of type Success, i.e., the equational constraint
“=:=" is a function of type “a->a->Success”, and the concurrent conjunction
“&” on constraints that evaluates both arguments in a non-specified order (see
Section 24)) is a function of type “Success->Success->Success”.

If constraints are ordinary expressions, they are first-class values that can be
passed in arguments or data structures. For instance, the following “constraint
combinator” takes a list of constraints as input and creates a new constraint
that is satisfied if all constraints in the input list are satisfied:

allValid :: [Success] -> Success
allValid [] = success
allValid (c:cs) c & allValid cs

Here, success is not a constructor but denotes the trivial constraint that is
always satisfied. Exploiting higher-order functions, one can define it also by

allValid = foldr (&) success

Note that the constructor Success was introduced in Section 22l only to provide
a rewrite-based definition of strict equality. However, functional logic languages
like Curry, Escher, or TOY use a more efficient implementation of strict equality.
The main difference shows up when an equational constraint “x =:= y” between
two logic variables x and y is solved. Solving it with the rewrite rules shown in
Section [Z2] x and y are nondeterministically bound to ground constructor terms
which usually results in an infinite search space. This can be avoided by binding
one variable to the other, similar to logic programming.

One can easily integrate the features of constraint programming by adding
basic constraints that deal with other constraint domains, like real arithmetic,
Boolean, or finite domain constraints. Thus, typical applications of constraint
logic programming can be covered and combined with features of lazy higher-
order programming [TOTIBOBTIETTOTT. As an example demonstrating the
compactness obtained by combining constraint programming with higher-order
features, consider a solver for SuDoku puzzlefﬁ with finite domain constraints.
If we represent the SuDoku matrix m as a list of lists of finite domain variables,
the “SuDoku constraints” can be easily specified by

allValid (map allDifferent m) &
allValid (map allDifferent (transpose m)) &
allValid (map allDifferent (squares0fNine m))

where allDifferent is the usual constraint stating that all variables in its ar-
gument list must have different values, transpose is the standard matrix trans-
position, and squaresOfNine computes the list of 3 x 3 sub-matrices. Then, a

5 A SuDoku puzzle consists of a 9 x 9 matrix of digits between 1 and 9 so that each
row, each column, and each of the nine 3 x 3 sub-matrices contain pairwise different
digits. The challenge is to find the missing digits if some digits are given.

66 M. Hanus

SuDoku puzzle can be solved with these constraints by adding the usual domain
and labeling constraints (see [49] for more details).

3.4 Function Patterns

We have discussed in Section the fundamental requirement of functional
languages for constructor-based rewrite systems. This requirement is the key for
practically useful implementations and excludes rules like

last (xs++[e]l) = e (last)

The non-constructor pattern (xs++ [e]) in this rule can be eliminated by mov-
ing it into the condition part (see Section ZT]):

last 1 | xs++[e]l=:=1 = e where xs,e free (lastc)

However, the strict equality used in (lastc) has the disadvantage that all list
elements are completely evaluated. Hence, an expression like last [failed, 3]
(where failed is an expression that has no value) leads to a failure. This disad-
vantage can be avoided by allowing function patterns, i.e., expressions containing
defined functions, in arguments of a rule’s left-hand side so that (last) becomes
a valid rule. In order to base this extension on the existing foundations of func-
tional logic programming as described so far, a function pattern is interpreted
as an abbreviation of the set of constructor terms that is the result of evaluating
(by narrowing) the function pattern. Thus, rule (last) abbreviates the following
(infinite) set of rules:

last [x] = x
last [x1,x] = x
last [x1,x2,x] = x

Hence, the expression last [failed,3] reduces to 3 w.r.t. these rules. In order
to provide a constructive implementation of this concept, [I3] proposes a spe-
cific demand-driven unification procedure for function pattern unification that
can be implemented similarly to strict equality. Function patterns are a pow-
erful concept to express transformation problems in a high-level way. Concrete
programming examples and syntactic conditions for the well-definedness of rules
with function patterns can be found in [I3].

3.5 Encapsulating Search

An essential difference between functional and logic computations is their de-
terminism behavior. Functional computations are deterministic. This enables a
reasonable treatment of I/O operations by the monadic approach where I/O ac-
tions are considered as transformations on the outside world [86]. The monadic
I/O approach is also taken in languages like Curry, Escher, or Mercury. How-
ever, logic computations might cause (don’t know) nondeterministic choices, i.e.,
a computation can be cloned and continued in two different directions. Since one
can not clone the entire outside world, nondeterministic choices during monadic

Multi-paradigm Declarative Languages 67

I/O computations must be avoided. Since this might restrict the applicability
of logic programming techniques in larger applications, there is a clear need to
encapsulate nondeterministic search between 1/0 actions. For this purpose, one
can introduce a primitive search operator [57I79] that returns nondeterministic
choices as data so that typical search operators of Prolog, like findall, once,
or negation-as-failure, can be implemented using this primitive. Unfortunately,
the combination with demand-driven evaluation and sharing causes some com-
plications. For instance, in an expression like

let y=coin in findall(...y...)

it is not obvious whether the evaluation of coin (introduced outside but de-
manded inside the search operator) should be encapsulated or not. Furthermore,
the order of the solutions might depend on the evaluation time. These and more
peculiarities are discussed in [22] where another primitive search operator is
proposed:

getSearchTree :: a -> I0 (SearchTree a)

Since getSearchTree is an I/O action, its result (in particular, the order of
solutions) depends on the current environment, e.g., time of evaluation. It takes
an expression and delivers a search tree representing the search space when
evaluating the input:

data SearchTree a = Or [SearchTree a] | Val a | Fail

Based on this primitive, one can define various concrete search strategies as tree
traversals. To avoid the complications w.r.t. shared variables, getSearchTree
implements a strong encapsulation view, i.e., conceptually, the argument of
getSearchTree is cloned before the evaluation starts in order to cut any sharing
with the environment. Furthermore, the structure of the search tree is computed
lazily so that an expression with infinitely many values does not cause the non-
termination of the search operator if one is interested in only one solution.

3.6 Implementation

The definition of needed narrowing and its extensions shares many similarities
with pattern matching in functional or unification in logic languages. Thus, it
is reasonable to use similar techniques to implement functional logic languages.
Due to the coverage of logic variables and nondeterministic search, one could try
to translate functional logic programs into Prolog programs in order to exploit
the implementation technology available for Prolog. Actually, there are various
approaches to compile functional logic languages with demand-driven evaluation
strategies into Prolog (e.g., [BIT0I26/4006264]). Narrowing-based strategies can
be compiled into pure Prolog whereas residuation (as necessary for external op-
erations, see Section B.I)) demands for coroutininﬂ. The compilation into Prolog
has many advantages. It is fairly simple to implement, one can use constraint

7 Note that external operations in Prolog do not use coroutining since they are imple-
mented in a non-declarative way.

68 M. Hanus

solvers available in many Prolog implementations in application programs, and
one can exploit the advances made in efficient implementations of Prolog.
Despite these advantages, the transformation into Prolog has the drawback
that one is fixed to Prolog’s backtracking strategy to implement nondeterministic
search. This hampers the implementation of encapsulated search or fair search
strategies. Therefore, there are various approaches to use other target languages
than Prolog. For instance, [15] presents techniques to compile functional logic
programs into Java programs that implement a fair search for solutions, and
[23] proposes a translation of Curry programs into Haskell programs that offers
the primitive search operator getSearchTree introduced in Section B0l Virtual
machines to compile functional logic programs are proposed in [T4/56//69).

4 Applications

Since multi-paradigm declarative languages amalgamate the most important
declarative paradigms, their application areas cover the areas of languages be-
longing to the individual paradigms. Therefore, we discuss in this section only
applications that demonstrate the feasibility and advantages of multi-paradigm
declarative programming.

A summary of design patterns exploiting combined functional and logic fea-
tures for application programming can be found in [II]. These patterns are
unique to functional logic programming and can not be directly applied in other
paradigms. For instance, the constraint constructor pattern exploits the fact
that functional logic languages can deal with failure so that conditions about
the validity of data represented by general structures can be encoded directly
in the data structures rather than in application programs. This frees the appli-
cation programs from dealing with complex conditions on the constructed data.
Another pattern, called locally defined global identifier, has been used to provide
high-level interfaces to libraries dealing with complex data, like programming of
dynamic web pages or graphical user interfaces (GUIs, see below). This pattern
exploits the fact that functional logic data structures can contain logic variables
which are globally unique when they are introduced. This is helpful to create lo-
cal structures with globally unique identifiers and leads to improved abstractions
in application programs. Further design patterns and programming techniques
are discussed in [TTIT2].

The combination of functional and logic language features are exploited in [43]
for the high-level programming of GUIs. The hierarchical structure of a GUI (e.g.,
rows, columns, or matrices of primitive and combined widgets) is represented
as a data term. This term contains call-back functions as event handlers, i.e.,
the use of functions as first-class objects is natural in this application. Since
event handlers defined for one widget should usually influence the appearance
and contents of other widgets (e.g., if a slider is moved, values shown in other
widgets should change), GUIs have also a logical structure that is different from
its hierarchical structure. To specify this logical structure, logic variables in data
structures are handy, since a logic variable can specify relationships between

Multi-paradigm Declarative Languages 69

ES—

Increment | Reset | Stop |

Fig. 2. A simple counter GUI

different parts of a data term. As a concrete example, consider the simple counter
GUI shown in Figure[2l Using a library designed with these ideas, one can specify
this GUI by the following data term:

Col [Entry [WRef wal, Text "O", Background "yellow"],
Row [Button (updateValue incrText wal) [Text "Increment"],
Button (setValue wval "O") [Text "Reset"],
Button exitGUI [Text "Stop"]1]1]
where val free

The hierarchical structure of the GUI (a column with two rows) is directly re-
flected in the tree structure of this term. The first argument of each Button is the
corresponding event handler. For instance, the invocation of exitGUI terminates
the GUI, and the invocation of setValue assigns a new value (second argument)
to the referenced widget (first argument). For this purpose, the logic variable val
is used. Since the attribute WRef of the Entry widget defines its origin and it is
used in various event handlers, it appropriately describes the logical structure of
the GUI, i.e., the dependencies between different widgets. Note that other (more
low level) GUT libraries or languages (e.g., Tcl/Tk) use strings or numbers as
widget references which is potentially more error prone.

Similar ideas are applied in [44] to provide a high-level programming interface
for web applications (dynamic web pages). There, HTML terms are represented
as data structures containing event handlers associated to submit buttons and
logic variables referring to user inputs in web pages that are passed to event han-
dlers. These high-level APIs have been used in various applications, e.g., to im-
plement web-based learning systems [52], constructing web-based interfaces for
arbitrary applications [49] (there, the effectiveness of the multi-paradigm declar-
ative programming style is demonstrated by a SuDoku solver with a web-based
interface where the complete program consists of 20 lines of code), graphical
programming environments [48/54], and documentation tools [46]. Furthermore,
there are proposals to use multi-paradigm languages for high-level distributed
programming [42l85], programming of embedded systems [EO51], object-oriented
programming [53I82], or declarative APIs to databases [32047].

5 Conclusions

In this paper we surveyed the main ideas of multi-paradigm declarative lan-
guages, their foundations, and some practical aspects of such languages for ap-
plication programming. As a concrete example, we used the multi-paradigm

70 M. Hanus

declarative language Curry. Curry amalgamates functional, logic, constraint, and
concurrent programming features, it is based on strong foundations (e.g., sound-
ness and completeness and optimal evaluation on inductively sequential pro-
grams) and it has been also used to develop larger applications. For the latter,
Curry also offers useful features, like modules, strong typing, polymorphism, and
declarative I/O, that are not described in this paper since they are not specific
to multi-paradigm declarative programming (see [58] for such features).

We conclude with a summary of the advantages of combining different declar-
ative paradigms in a single language. Although functions can be considered as
predicates (thus, logic programming is sometimes considered as more general
than functional programming), functional notation should not be used only as
syntactic sugar: we have seen that the properties of functions (i.e., functional
dependencies between input and output arguments) can be exploited to con-
struct more efficient evaluation strategies without loosing generality. For in-
stance, needed narrowing ensures soundness and completeness in the sense of
logic programming and it is also optimal, whereas similar results are not available
for pure logic programs. As a consequence, functional logic languages combine
the flexibility of logic programming with the efficiency of functional program-
ming. This leads to a more declarative style of programming without loosing
efficiency. For instance, most functional logic languages do not have a Prolog-like
“cut” operator since functions can be interpreted as a declarative replacement
for it (see also [24l65]). Moreover, searching for solutions with a demand-driven
evaluation strategy results in a demand-driven search strategy that can consider-
ably reduce the search space. Finally, narrowing can be appropriately combined
with constraint solving and residuation. The latter provides for a declarative
integration of external operations and concurrent programming techniques.

Acknowledgments

T am grateful to thank Sergio Antoy, Bernd Brafiel, Sebastian Fischer and Germéan
Vidal for their comments related to this survey.

References

1. Ait-Kaci, H.: An Overview of LIFE. In: Schmidt, J.W., Stogny, A.A. (eds.) Next
Generation Information System Technology. LNCS, vol. 504, pp. 42-58. Springer,
Heidelberg (1991)

2. Ait-Kaci, H., Lincoln, P., Nasr, R.: Le Fun: Logic, equations, and Functions. In:
Proc. 4th IEEE Internat. Symposium on Logic Programming, pp. 17-23. IEEE
Computer Society Press, San Francisco (1987)

3. Antoy, S.: Non-Determinism and Lazy Evaluation in Logic Programming. In: Proc.
Int. Workshop on Logic Program Synthesis and Transformation (LOPSTR’91),
Workshops in Computing, pp. 318-331. Springer, Heidelberg (1991)

4. Antoy, S.: Definitional Trees. In: Kirchner, H., Levi, G. (eds.) Algebraic and Logic
Programming. LNCS, vol. 632, pp. 143-157. Springer, Heidelberg (1992)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Multi-paradigm Declarative Languages 71

Antoy, S.: Optimal Non-Deterministic Functional Logic Computations. In: Hanus,
M., Heering, J., Meinke, K. (eds.) ALP 1997 and HOA 1997. LNCS, vol. 1298, pp.
16-30. Springer, Heidelberg (1997)

Antoy, S.: Constructor-based Conditional Narrowing. In: Proc. of the 3rd Inter-
national ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming (PPDP 2001), pp. 199-206. ACM Press, New York (2001)

Antoy, S.: Evaluation Strategies for Functional Logic Programming. Journal of
Symbolic Computation 40(1), 875-903 (2005)

Antoy, S., Echahed, R., Hanus, M.: Parallel Evaluation Strategies for Functional
Logic Languages. In: Proc. of the Fourteenth International Conference on Logic
Programming (ICLP’97), pp. 138-152. MIT Press, Cambridge (1997)

Antoy, S., Echahed, R., Hanus, M.: A Needed Narrowing Strategy. Journal of the
ACM 47(4), 776-822 (2000)

Antoy, S., Hanus, M.: Compiling Multi-Paradigm Declarative Programs into Pro-
log. In: Kirchner, H. (ed.) Frontiers of Combining Systems. LNCS, vol. 1794, pp.
171-185. Springer, Heidelberg (2000)

Antoy, S., Hanus, M.: Functional Logic Design Patterns. In: Hu, Z., Rodriguez-
Artalejo, M. (eds.) FLOPS 2002. LNCS, vol. 2441, pp. 67-87. Springer, Heidelberg
(2002)

Antoy, S., Hanus, M.: Concurrent Distinct Choices. Journal of Functional Pro-
gramming 14(6), 657-668 (2004)

Antoy, S., Hanus, M.: Declarative Programming with Function Patterns. In: Hill,
P.M. (ed.) LOPSTR 2005. LNCS, vol. 3901, pp. 6-22. Springer, Heidelberg (2006)
Antoy, S., Hanus, M., Liu, J., Tolmach, A.: A Virtual Machine for Functional Logic
Computations. In: Grelck, C., Huch, F., Michaelson, G.J., Trinder, P. (eds.) IFL
2004. LNCS, vol. 3474, pp. 108-125. Springer, Heidelberg (2005)

Antoy, S., Hanus, M., Massey, B., Steiner, F.: An Implementation of Narrowing
Strategies. In: Proc. of the 3rd International ACM SIGPLAN Conference on Prin-
ciples and Practice of Declarative Programming (PPDP 2001), pp. 207-217. ACM
Press, New York (2001)

Antoy, S., Tolmach, A.: Typed Higher-Order Narrowing without Higher-Order
Strategies. In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 335-352.
Springer, Heidelberg (1999)

Arenas-Sénchez, P., Rodriguez-Artalejo, M.: A Semantic Framework for Functional
Logic Programming with Algebraic Polymorphic Types. In: Bidoit, M., Dauchet,
M. (eds.) CAAP 1997, FASE 1997, and TAPSOFT 1997. LNCS, vol. 1214, pp.
453-464. Springer, Heidelberg (1997)

Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

Berghammer, R., Fischer, S.: Implementing Relational Specifications in a Con-
straint Functional Logic Language. Electronic Notes in Theoretical Computer Sci-
ence 177, 169-183 (2007)

Bird, R.S., Wadler, P.: Introduction to Functional Programming. Prentice-Hall,
Englewood Cliffs (1988)

Bonnier, S., Maluszynski, J.: Towards a Clean Amalgamation of Logic Programs
with External Procedures. In: Proc. 5th Conference on Logic Programming & 5th
Symposium on Logic Programming (Seattle), pp. 311-326. MIT Press, Cambridge
(1988)

Braflel, B., Hanus, M., Huch, F.: Encapsulating Non-Determinism in Functional
Logic Computations. Journal of Functional and Logic Programming 2004(6) (2004)

72

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

M. Hanus

BrafBel, B., Huch, F.: Translating Curry to Haskell. In: Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
60-65. ACM Press, New York (2005)
Caballero, R., Garcia-Ruiz, Y.: Implementing Dynamic-Cut in TOY. Electronic
Notes in Theoretical Computer Science 177, 153-168 (2007)
Casas, A., Cabeza, D., Hermenegildo, M.V.: A Syntactic Approach to Combin-
ing Functional Notation, Lazy Evaluation, and Higher-Order in LP Systems. In:
Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS, vol. 3945, pp. 146-162. Springer,
Heidelberg (2006)
Cheong, P.H., Fribourg, L.: Implementation of Narrowing: The Prolog-Based Ap-
proach. In: Apt, K.R., de Bakker, J.W., Rutten, J.J.M.M. (eds.) Logic program-
ming languages: constraints, functions, and objects, pp. 1-20. MIT Press, Cam-
bridge (1993)
Cleva, J.M., Leach, J., Lopez-Fraguas, F.J.: A logic programming approach to the
verification of functional-logic programs. In: Proceedings of the 6th International
ACM SIGPLAN Conference on Principles and Practice of Declarative Program-
ming, pp. 9-19. ACM Press, New York (2004)
del Vado Virseda, R.: A Demand-Driven Narrowing Calculus with Overlapping
Definitional Trees. In: Proceedings of the 8¢h ACM SIGPLAN International Con-
ference on Principles and Practice of Declarative Programming (PPDP’03), pp.
253-263. ACM Press, New York (2003)
Dershowitz, N., Jouannaud, J.-P.: Rewrite Systems. In: van Leeuwen, J. (ed.) Hand-
book of Theoretical Computer Science, vol. B, pp. 243-320. Elsevier, Amsterdam
1990
%erné)ndez, A.J., Hortald-Gonzdlez, M.T., Sdenz-Pérez, F.: Solving Combinatorial
Problems with a Constraint Functional Logic Language. In: Dahl, V., Wadler, P.
(eds.) PADL 2003. LNCS, vol. 2562, pp. 320-338. Springer, Heidelberg (2002)
Ferndndez, A.J., Hortald-Gonzélez, M.T., Sdenz-Pérez, F., del Vado-Virseda, R.:
Constraint Functional Logic Programming over Finite Domains. Theory and Prac-
tice of Logic Programming (to appear, 2007)
Fischer, S.: A Functional Logic Database Library. In: Proc. of the ACM SIGPLAN
2005 Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp.
54-59. ACM Press, New York (2005)
de la Banda, M.J.G., Demoen, B., Marriott, K., Stuckey, P.J.: To the Gates of
HAL: A HAL Tutorial. In: Hu, Z., Rodriguez-Artalejo, M. (eds.) FLOPS 2002.
LNCS, vol. 2441, pp. 47-66. Springer, Heidelberg (2002)
Giovannetti, E., Levi, G., Moiso, C., Palamidessi, C.: Kernel LEAF: A Logic plus
Functional Language. Journal of Computer and System Sciences 42(2), 139-185
(1991)
Gonzales-Moreno, J.C., Hortald-Gonzalez, M.T., Rodriguez- Artalejo, M.: Polymor-
phic Types in Functional Logic Programming. Journal of Functional and Logic
Programming, 2001(1) (2001)
Gonzélez-Moreno, J.C., Hortala-Gonzalez, M.T., Lépez-Fraguas, F.J., Rodriguez-
Artalejo, M.: An approach to declarative programming based on a rewriting logic.
Journal of Logic Programming 40, 47-87 (1999)
Gonzalez-Moreno, J.C., Hortald-Gonzélez, M.T., Rodriguez-Artalejo, M.: A Higher
Order Rewriting Logic for Functional Logic Programming. In: Proc. of the Four-
teenth International Conference on Logic Programming (ICLP’97), pp. 153-167.
MIT Press, Cambridge (1997)
Hanus, M.: The Integration of Functions into Logic Programming: From Theory
to Practice. Journal of Logic Programming 19&20, 583-628 (1994)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Multi-paradigm Declarative Languages 73

Hanus, M.: Analysis of Residuating Logic Programs. Journal of Logic Program-
ming 24(3), 161-199 (1995)

Hanus, M.: Efficient Translation of Lazy Functional Logic Programs into Prolog.
In: Proietti, M. (ed.) LOPSTR 1995. LNCS, vol. 1048, pp. 252-266. Springer,
Heidelberg (1996)

Hanus, M.: A Unified Computation Model for Functional and Logic Programming.
In: Proc. of the 24th ACM Symposium on Principles of Programming Languages
(Paris), pp. 80-93 (1997)

Hanus, M.: Distributed Programming in a Multi-Paradigm Declarative Language.
In: Nadathur, G. (ed.) PPDP 1999. LNCS, vol. 1702, pp. 376-395. Springer, Hei-
delberg (1999)

Hanus, M.: A Functional Logic Programming Approach to Graphical User Inter-
faces. In: Pontelli, E., Santos Costa, V. (eds.) PADL 2000. LNCS, vol. 1753, pp.
47-62. Springer, Heidelberg (2000)

Hanus, M.: High-Level Server Side Web Scripting in Curry. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 76-92. Springer, Heidelberg (2001)
Hanus, M.: Reduction Strategies for Declarative Programming. In: Gramlich, B.,
Lucas, S. (eds.) Electronic Notes in Theoretical Computer Science, vol. 57, Elsevier
Science Publishers, Amsterdam (2001)

Hanus, M.: CurryDoc: A Documentation Tool for Declarative Programs. In: Proc.
11th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2002) Research Report UDMI/18/2002/RR, University of Udine, pp. 225—
228 (2002)

Hanus, M.: Dynamic Predicates in Functional Logic Programs. Journal of Func-
tional and Logic Programming, 2004(5) (2004)

Hanus, M.: A Generic Analysis Environment for Declarative Programs. In: Proc. of
the ACM SIGPLAN 2005 Workshop on Curry and Functional Logic Programming
(WCFLP 2005), pp. 43-48. ACM Press, New York (2005)

Hanus, M.: Type-Oriented Construction of Web User Interfaces. In: Proceedings
of the 8 h ACM SIGPLAN International Conference on Principles and Practice of
Declarative Programming (PPDP’06), pp. 27-38. ACM Press, New York (2006)
Hanus, M., Héppner, K.: Programming Autonomous Robots in Curry. Electronic
Notes in Theoretical Computer Science, 76 (2002)

Hanus, M., Héppner, K., Huch, F.: Towards Translating Embedded Curry to C.
Electronic Notes in Theoretical Computer Science, 86(3) (2003)

Hanus, M., Huch, F.: An Open System to Support Web-based Learning. In: Proc.
12th International Workshop on Functional and (Constraint) Logic Programming
(WFLP 2003) Technical Report DSIC-II/13/03, Universidad Politécnica de Valen-
cia, pp. 269-282 (2003)

Hanus, M., Huch, F., Niederau, P.: An Object-Oriented Extension of the Declar-
ative Multi-Paradigm Language Curry. In: Mohnen, M., Koopman, P. (eds.) IFL
2000. LNCS, vol. 2011, pp. 89-106. Springer, Heidelberg (2001)

Hanus, M., Koj, J.: An Integrated Development Environment for Declara-
tive Multi-Paradigm Programming. In: Proc. of the International Workshop on
Logic Programming Environments (WLPE’01), Paphos (Cyprus), Also avail-
able from the Computing Research Repository (CoRR) pp. 1-14 (2001), at
http://arXiv.org/abs/cs.PL/0111039

Hanus, M., Prehofer, C.: Higher-Order Narrowing with Definitional Trees. Journal
of Functional Programming 9(1), 33-75 (1999)

Hanus, M., Sadre, R.: An Abstract Machine for Curry and its Concurrent Imple-
mentation in Java. Journal of Functional and Logic Programming, 1999(6) (1999)

http://arXiv.org/abs/cs.PL/0111039

74

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

4.

75.

76.

M. Hanus

Hanus, M., Steiner, F.: Controlling Search in Declarative Programs. In:
Palamidessi, C., Meinke, K., Glaser, H. (eds.) ALP 1998 and PLILP 1998. LNCS,
vol. 1490, pp. 374-390. Springer, Heidelberg (1998)

Hanus, M. (ed.): Curry: An Integrated Functional Logic Language (Vers. 0.8.2)
(2006), Available at http://www.informatik.uni-kiel.de/~curry

Hughes, J.: Why Functional Programming Matters. In: Turner, D.A. (ed.) Research
Topics in Functional Programming, pp. 17-42. Addison-Wesley, Reading (1990)
Hussmann, H.: Nondeterministic Algebraic Specifications and Nonconfluent Term
Rewriting. Journal of Logic Programming 12, 237-255 (1992)

Jaffar, J., Lassez, J.-L.: Constraint Logic Programming. In: Proc. of the 14th ACM
Symposium on Principles of Programming Languages, Munich, pp. 111-119 (1987)
Jiménez-Martin, J.A., Marino-Carballo, J., Moreno-Navarro, J.J.: Efficient Com-
pilation of Lazy Narrowing into Prolog. In: Proc. Int. Workshop on Logic Program
Synthesis and Transformation (LOPSTR’92) Springer Workshops in Computing
Series, pp. 253-270 (1992)

Lloyd, J.: Programming in an Integrated Functional and Logic Language. Journal
of Functional and Logic Programming, 3, 1-49 (1999)

Loogen, R., Lopez Fraguas, F., Rodriguez Artalejo, M.: A Demand Driven Compu-
tation Strategy for Lazy Narrowing. In: Penjam, J., Bruynooghe, M. (eds.) PLILP
1993. LNCS, vol. 714, pp. 184-200. Springer, Heidelberg (1993)

Loogen, R., Winkler, S.: Dynamic Detection of Determinism in Functional Logic
Languages. Theoretical Computer Science 142, 59-87 (1995)

Lépez-Fraguas, F., Sanchez-Herndndez, J.: TOY: A Multiparadigm Declarative
System. In: Narendran, P., Rusinowitch, M. (eds.) RTA 1999. LNCS, vol. 1631,
pp. 244-247. Springer, Heidelberg (1999)

Lépez-Fraguas, F.J., Rodriguez-Artalejo, M., del Vado Virseda, R.: A lazy nar-
rowing calculus for declarative constraint programming. In: Proceedings of the 6th
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, pp. 43-54. ACM Press, New York (2004)

Lépez-Fraguas, F.J., Sdnchez-Herndndez, J.: A Proof Theoretic Approach to Fail-
ure in Functional Logic Programming. Theory and Practice of Logic Program-
ming 4(1), 41-74 (2004)

Lux, W.: Implementing Encapsulated Search for a Lazy Functional Logic Language.
In: Middeldorp, A. (ed.) FLOPS 1999. LNCS, vol. 1722, pp. 100-113. Springer,
Heidelberg (1999)

Lux, W.: Adding Linear Constraints over Real Numbers to Curry. In: Kuchen, H.,
Ueda, K. (eds.) FLOPS 2001. LNCS, vol. 2024, pp. 185-200. Springer, Heidelberg
(2001)

Naish, L.: Adding equations to NU-Prolog. In: Matuszyrski, J., Wirsing, M. (eds.)
PLILP 1991. LNCS, vol. 528, pp. 15-26. Springer, Heidelberg (1991)

O’Donnell, M.J.: Computing in Systems Described by Equations. LNCS, vol. 58.
Springer, Heidelberg (1977)

O’Donnell, M.J.: Equational Logic as a Programming Language. MIT Press, Cam-
bridge (1985)

Padawitz, P.: Computing in Horn Clause Theories. EATCS Monographs on Theo-
retical Computer Science, vol. 16. Springer, Heidelberg (1988)

Peyton Jones, S. (ed.): Haskell 98 Language and Libraries—The Revised Report.
Cambridge University Press, Cambridge (2003)

Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Lan-
guages. In: Proceedings of the ACM Annual Conference, pp. 717-740. ACM Press,
New York (1972)

http://www.informatik.uni-kiel.de/~curry

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Multi-paradigm Declarative Languages 75

Rodriguez-Artalejo, M.: Functional and Constraint Logic Programming. In:
Comon, H., Marché, C., Treinen, R. (eds.) Constraints in Computational Log-
ics. Theory and Applications. LNCS, vol. 2002, pp. 202-270. Springer, Heidelberg
(2001)

Saraswat, V.A.: Concurrent Constraint Programming. MIT Press, Cambridge
(1993)

Schulte, C., Smolka, G.: Encapsulated Search for Higher-Order Concurrent Con-
straint Programming. In: Proc. of the 1994 International Logic Programming Sym-
posium, pp. 505-520. MIT Press, Cambridge (1994)

Sekar, R.C., Ramakrishnan, [.V.: Programming in Equational Logic: Beyond
Strong Sequentiality. Information and Computation 104(1), 78-109 (1993)

Slagle, J.R.: Automated Theorem-Proving for Theories with Simplifiers, Commu-
tativity, and Associativity. Journal of the ACM 21(4), 622-642 (1974)

Smolka, G.: The Oz Programming Model. In: van Leeuwen, J. (ed.) Computer
Science Today. LNCS, vol. 1000, pp. 324-343. Springer, Heidelberg (1995)
Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury, an
efficient purely declarative logic programming language. Journal of Logic Program-
ming 29(1-3), 17-64 (1996)

Van Roy, P., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. MIT Press, Cambridge (2004)

Van Roy, P., Haridi, S., Brand, P., Smolka, G., Mehl, M., Scheidhauer, R.: Mobile
Objects in Distributed Oz. ACM Transactions on Programming Languages and
Systems 19(5), 804-851 (1997)

Wadler, P.: How to Declare an Imperative. ACM Computing Surveys 29(3), 240
263 (1997)

Warren, D.H.D.: Higher-order extensions to PROLOG: are they needed. Machine
Intelligence 10, 441-454 (1982)

Logic Programming for Knowledge
Representation

Mirostaw Truszczynski

Department of Computer Science, University of Kentucky,
Lexington, KY 40506-0046, USA
mirek@cs.uky.edu

Abstract. This note provides background information and references
to the tutorial on recent research developments in logic programming
inspired by needs of knowledge representation.

1 Introduction

McCarthy and Hayes [46] wrote: “[...] intelligence has two parts, which we shall
call the epistemological and the heuristic. The epistemological part is the repre-
sentation of the world in such a form that the solution of problems follows from
the facts expressed in the representation. The heuristic part is the mechanism
that on the basis of the information solves the problem and decides what to
do.” The epistemological part is the concern of knowledge representation. The
heuristic part is typically addressed by search.

While not stated explicitly in McCarthy and Hayes’ definition, the knowledge
representation and the search are closely intertwined. Modeling features of the
language affect the design of search methods. Conversely, the availability of fast
search techniques for particular computational tasks, for instance, proof finding
or model computation, in the case of particular classes of theories, such as Horn
theories or propositional theories in CNF, influences the design of modeling lan-
guages. Effective computational knowledge representation systems require that
the two are integrated.

Logic programming has long been regarded as a prime candidate for a practi-
cal instantiation of computational knowledge representation. First, logic program
clauses align well with natural language constructs humans use to specify con-
straints [31I82]. Next, logic programs (Horn logic programs, to be precise) are
Turing complete [I]. Finally, there are well understood automated proof tech-
niques for reasoning with logic programs [50/32]. These considerations led to the
design of Prolog [6], still a dominant computational knowledge representation
language.

However, the presence of negation in the bodies of logic program rules, while
convenient from the modeling standpoint, posed a challenge. The semantics of
logic programs with negation was not clear and resolving that issue required
a major research effort. The completion semantics [B] was the first attempt to
address the problem. The answer-set semantics [27128] provided a definitive so-
lution within the class of 2-valued semantics.

V. Dahl and I. Niemeld (Eds.): ICLP 2007, LNCS 4670, pp. 76-[88] 2007.
© Springer-Verlag Berlin Heidelberg 2007

Logic Programming for Knowledge Representation 77

For some time after its introduction, the answer-set semantics was a source of
confusion. It was unclear how to use it in practice when modeling application do-
mains, and how to reconcile it with the traditional proof-theory approach to logic
programming. The answer-set programming paradigm [4348] offered an alterna-
tive to proof-based logic programming and shifted the focus from proof-finding
to model-finding. Under the answer-set programming paradigm, a problem is
modeled as a logic program so that answer sets of the program expanded with
an encoding of a particular instance of the problem (not substitutions associated
with proofs) correspond to solutions to the problem for that instance.

With the understanding of the meaning of programs with negation came ad-
ditional evidence of the applicability of logic programs in knowledge representa-
tion. According to [26], the goal of knowledge representation is “to design and
study languages to capture knowledge about environments, their entities and
their behaviors.” Such languages must be able to handle modeling challenges
posed by the qualification and frame problems, defaults, conditionals and nor-
mative statements, (inductive) definitions, and by the need for the elaboration
tolerance. Research showed that answer-set programming, provides means that
adequately address these problems [I2526l3]. While answer-set programming
comes with the penalty of syntactic restrictions (no function symbols) and so,
the limited expressive power (the class NP-search for normal logic programs, and
YP_search for disjunctive programs), it has major advantages. First, arguably
the task of modeling gets much simpler than in proof-based logic programming
— answer-set programs are truly declarative. Second, it becomes possible to
take advantage of fast search techniques developed in the area of propositional
satisfiability.

In this note I will discuss three recent research directions in logic program-
ming inspired by knowledge representation needs. First, knowledge bases must
be constructed in a modular fashion. This brings up the question of equivalence
of answer-set programs, as well as the need for methods to decompose programs
so that answer-sets of the program can be recovered from answer sets of its com-
ponents. Second, there has been a need for extending the syntax of answer-set
programs with means to model numeric constraints. Such constraints are ubiq-
uitous and, in particular, are common in knowledge representation applications.
Finally, there are logics other than logic programs with the answer-set semantics
that also give rise to knowledge representation systems based on the principle
that models of theories describe problem solutions. One of the most promising
such approaches, the ID-logic [8], combines first-order logic (which is used to
model constraints) with logic programs under the well-founded semantics [5§], a
3-valued approximation to the answer-set semantics (which are used to represent
definitions).

Theoretical advances in answer-set programming would remain just that, if
they were not followed by practical applications. These applications require work-
ing and effective answer-set programming software. There has been much work
in that area. I will conclude this paper with brief comments on and references
to some of the state-of-the-art implementations.

78 M. Truszczyniski

2 Modularity

A basic design principle in knowledge representation is the principle of modular-
ity. It stipulates that knowledge bases be composed of modules, each representing
a fragment of an application domain being modeled. The principle of modularity
gave rise to research problems that have generated much interest among logic
programming and answer-set programming researchers. Two of them that I will
discuss are:

1. To characterize cases when two knowledge base modules are equivalent for
substitution, and

2. To improve the efficiency of processing algorithms by taking advantage of
the modular structure of the knowledge base.

Informally, two modules are equivalent for substitution if replacing one with
the other does not affect the meaning of the knowledge base. When optimizing
the knowledge base for conciseness, efficiency of processing, robustness to change,
or other appropriate measure of quality, one approach is to optimize each module
separately. For that approach to be safe, though, the optimized module should
be equivalent for substitution to the original one. Otherwise, optimization might
have unwanted side effects. In a related way, the concept of equivalence for
substitution has applications in knowledge-base query optimization. Thus, the
notion of equivalence for substitution is an important one.

When a knowledge base is represented by a logic program under the answer-
set semantics, one can formalize the concept of the equivalence for substitution,
or strong equivalence, the term more commonly used in answer-set programming,
as follows: two programs P and @ are strongly equivalent if for every program
R, the programs P U R and Q U R have the same answer sets. Indeed, if P and
(@ have this property, one can replace P with Q or Q with P within any larger
program, and the answer sets (a formal description of the “meaning”) will not
change.

The concept of strong equivalence was introduced in [33]. That paper also pre-
sented a complete characterization of strong equivalence in terms of the equiva-
lence in the logic here-and-there [29]. We note in passing that while a necessary
condition, having the same answer sets is not sufficient for two programs to be
strongly equivalent. Thus, a most direct attempt at extending the concept of
equivalence from the classical logic to answer-set programming does not work.
[36U56] presented simple characterizations of strong equivalence that do not make
explicit references to the logic here-and-there. [55] cast the concept in terms of
the equivalence in the modal logic S4F. Several generalizations and variations of
the notion were proposed and studied in [ISJT7ITITOBA23]. [54] extended the
problem of strong equivalence to an abstract algebraic setting of the approxima-
tion theory of operators on lattices [9].

Modularity can also be exploited in processing programs. It is well known
that the problem of the existence of an answer set of a logic program is NP-
complete for normal propositional logic programs [45] and £1’-complete for the

Logic Programming for Knowledge Representation 79

disjunctive ones [I§]. Modular structure of the program can have dramatic effect
on the complexity of this decision problem and the associated search task.

This has been known for quite some time in the case when the dependencies
among modules are acyclic. [2] proposed the class of stratified programs, in which
dependencies between modules are acyclic, and dependencies within modules
are subject to certain restrictions. Each stratified normal logic program has
exactly one answer set. Moreover, it can be computed efficiently. The results on
stratification have been generalized in the form of a splitting theorem, to the
case when the dependencies between modules are still acyclic but the structure
of each module is not restricted anymore [35]. When a program can be “split”,
a form of divide-and-conquer approach can significantly speed up the process of
computing answer sets. It is worth noting that, as strong equivalence, splitting
also has an algebraic description within the approximation theory [60/59].

Recently, researchers focused on the general case, when dependencies among
modules are not acyclic [21J30]. By controlling the way, in which modules inter-
act, [30] managed to characterize answer sets of the overall program in terms of
answer sets of individual modules and outlined several possible applications for
this general result.

3 Programs with Constraints

Numeric constraints are common. Modeling them in the basic language of first-
order logic is, however, a tedious task. It requires auxiliary atoms and leads
to large programs with no transparent meaning. The problem has been long
recognized in the area of database systems, where queries often concern numeric
properties of sets of records. To make the process of formulating such queries
easier, database query languages are equipped with syntax that provides explicit
means to express numeric constraints, referred to in the field of databases as
aggregates. The same holds true of constraint programming languages.

Applications of answer-set programming in knowledge representation brought
up the same problem and motivated extensions of the basic language of program
rules with syntax to model constraints directly [FII7UTO20122149/52]. These ap-
proaches agree on many classes of programs. However, they differ in intuitions,
as well as in some technical aspects. To gain a better understanding of exten-
sions of answer-set programming with constraints, and to offer a more princi-
pled approach to the semantics of such extensions, researchers proposed and
studied answer-set programming formalisms based on abstract constraint atoms
[42/444TI53I38]. This approach lead to a theory of programs with constraints
based on the concept of a computation driven by a generalization of the one-step
provability operator [57]. In the case of programs with monotone and convex
constraints the parallels with the normal logic programming are very strong [41].
Recent work extended these parallels also to the case of arbitrary constraints [3§].
We will now present, following closely [44] and [40], some of the basic aspects
of the theory of programs with abstract constraints concentrating on the case
when these constraints are monotone.

80 M. Truszczyniski

We consider a language determined by a fixed countable set At of propositional
variables. An abstract constraint atomn is a syntactic expression A = (C, X)), where
X C At is a finite set of propositional variables, called the domain of A, and
C C P(At) is the set of satisfiers of A. We will write Ao, for X and Ay, for C.

A propositional interpretation M C At satisfies an abstract constraint atom
A, denoted M = A, if M N Agom € Asar, that is, if the set of elements in the
domain of A that are true in M is a satisfier of A.

A constraint program is a set of constraint rules, that is, expressions of the form

A— Ay, ., Ag,not(Ag41),...,not(4,,) (1)

where A, Aq,...,A,, are constraints and not denotes default negation. The
constraint A is the head and the set {A1, ..., Ag,not(Axi1),...,not(A4,,)}is the
body of r. The concept of satisfiability described above extends in the standard
way to constraint rules and programs.

We denote by At(P) the set of atoms in the domains of constraints in a
constraint program P. We denote by hset(P), the headset of P, that is, the
union of the domains of the heads of all rules in P.

We will now list several basic definitions and properties of constraint programs
mirroring those of normal ones, and culminating with a generalization of the
concept of the answer-set.

M-applicable rules. Let M C At be an interpretation. A rule () is M-
applicable if M satisfies every literal in the body of r. We write P(M) for the
set of all M-applicable rules in P.

Supported models. An interpretation M is a supported model of a constraint
program P if M is a model of P and M C hset(P(M)).

Nondeterministic one-step provability. An interpretation M’ C At is non-
deterministically one-step provable from an interpretation M C At by means of
a constraint program P, if M’ C hset(P(M)) and for every head A of a rule in
P(M), M’ = A. Given a constraint program P, the nondeterministic one-step
provability operator TR is an operator on P(At) such that for every M C At,
Tﬁd(M) consists of all sets that are nondeterministically one-step provable from
M by means of P.

Monotone constraints and monotone-constraint programs. A constraint
A is monotone if for every M, M’ C At, M C M’ and M [= A together imply
that M’ = A. A monotone-constraint program is a program built of monotone
constraints.

Horn constraint programs. A rule (l) is Horn if constraints A, Ay,..., A
are monotone, and if k = m (no occurrences of default negation). A constraint
program is Horn if every constraint rule in the program is Horn.

Bottom-up computations for Horn programs. Let P be a Horn constraint
program. A P-computation is a sequence (Xj)32, such that Xo = 0 and for
every k,

Xip C Xpp1, and Xppq € TRY(X}).

Logic Programming for Knowledge Representation 81

The result of a P-computation t = (X}) is the set | J, X,. We denote it by Ry.
We note that if P is a Horn constraint program and ¢ is a P-computation, Ry
is a supported model of P.

Derivable models. A set M of atoms is a derivable model of a Horn constraint
program P if there exists a P-computation ¢ such that M = R;. If a Horn
constraint program has a model, one can show that it has computations and,
consequently, derivable models. By our comment above, derivable models of a
Horn constraint program P are supported models and so, in particular, models
of P.

The reduct. Let P be a monotone-constraint program and M a subset of
At(P). The reduct of P with respect to M, PM is the Horn constraint program
obtained from P by: (1) removing from P all rules whose body contains a literal
not(B) such that M |= B; and (2) removing literals not(B) for the bodies of
the remaining rules.

Answer sets. Let P be a program. A set of atoms M is an answer set of P
if M is a derivable model of PM. Since PM is a Horn constraint program, the
definition is sound.

The definitions of the reduct and of answer sets follow and generalize the
corresponding definitions proposed for normal logic programs, as in the setting
of Horn constraint programs, derivable models play the role of a least model.

As in normal logic programming, answer sets of monotone-constraint pro-
grams are supported models and, consequently, models. As shown in [5I], mono-
tone-constraint programs generalize programs with weight atoms [5I]. Some
other results one can prove for monotone-constraint programs are extensions
of the characterizations of strong and uniform equivalence of programs, of the
concept of the program completion [B], and of loop formulas [37]. The latter two
concepts proved useful in designing a solver pbmodels [39] for computing answer
sets of programs with weight constraints in the syntax of smodels. Pbmodels
placed second in two events of the 1st Answer-Set Programming Contest [24].

We concentrated here on monotone-constraint programs. Programs built of
more general classes of constraints offer additional challenges. The class of convex
constraint atoms (A is convex if for every M, M’ and M" such that M’ = A,
M'"EAand M' C M C M", M = A, as well) is most closely related to the class
of monotone constraints and the basic approach described above extends. For
arbitrary constraint atoms there is no simple generalization due to non-monotone
behavior of such constraints. [38] developed a principled approach to the problem
of the answer-set semantics for programs with arbitrary constraints. However,
the general approach of [38] resulted in three candidate semantics, none of which
has emerged as the definitive one for programs with arbitrary constraints.

4 Model Expansion and ID-Logic

Several fundamental knowledge representation and reasoning problems can be
stated formally as search problems, and solved by general search methods. In

82 M. Truszczyniski

fact, this observation lies behind the answer-set programming paradigm. We
will now introduce a simple formalism for modeling search problems and show
how to integrate it with logic programming to produce an effective answer-set
programming formalism. This approach stems from the work on the formalism
called datalog with constraints [I3/14] and research on the role of definitions in
knowledge representation [§]. It has been actively studied and developed further
in [T

We start with basic terminology. A signature is a nonempty set o of relation
symbols, each with a positive integer arity. Let U be a fixed infinite countable
set (the universe), and let o be a signature. An instance of o over U is a set [
of finite relations over U, such that there is a one-to-one correspondence r « 7!
between o and I, and the corresponding relation symbols 7 and relations 7! are
of the same arity.

We denote by Inst, the set of all instances of o. If I € Inst,, we define the
domain of I, dom(I), to be the set of all those elements of U that appear in
a tuple of a relation in I. Since all relations in I are finite, dom([) is finite,
too. Let ¢’ C o be signatures. We say that K € Inst, expands I € Insty, if
dom(I) = dom(K) and for every r € o/, r = r. We write I = K|,/ to denote
that K expands I.

The formalism of model expansion (the logic MX) is based on the language
L, of the first-order logic, determined by a signature o (thus, we assume here
no function symbols).

An instance I € Inst, determines a first-order logic interpretation (dom(I),)
of L,. With some abuse of notation, for an instance I € Inst, and a sentence
» € Ly, we write I |= ¢ instead of (dom(I),I) = .

Let o’ C o be signatures and let ¢ € L, be a sentence. Given an instance I €
Inst, we call an instance K € Inst, an I-model of ¢ if K expands I and K = ¢
(hence the term model expansion). The concept extends in a straightforward
way to sets of sentences. We will refer to finite sets of sentences interpreted by
I-models as MX-theories.

Given signatures ¢/ C o, we can regard an MX-theory T from L, as an
encoding of a search problem. This problem has Inst, as the set of its instances
and, for every instance I € Inst,, I-models as solutions to the instance I.

One can show that the expressive power of MX-theories is the same as that
of (normal) logic programs [I3]. In some cases, though, the task of modeling
the search problems as MX-theories is significantly more complicated than when
answer-set programs are used. Modeling definitions is often particularly cumber-
some. To address that issue, researchers proposed extensions of the formalism
MX with logic programs which, under the well-founded semantics [58], are well
suited to model definitions [§].

We will present one such extension, the ID-logic [81247]. Let o' C o be sig-
natures. A theory 7" modeling a search problem in the formalism of the ID-logic
consists of two parts. An MX-theory T” in £, forms one of the parts. A nor-
mal logic program 7", also in £, but with no relation symbol from ¢’ in the
head of a rule, forms the other one. Let 0% be the set of relation symbols in

Logic Programming for Knowledge Representation 83

the heads of the rules of the program T”. Intuitively, these are the symbols that
need to be defined and that are defined in the ID-logic theory T by its
component T,

Given an instance I € Inst,/, an instance K € Inst, is an I-model of T if K
is an [-model of T" and K|,as is the total well-founded model of the program
" U Kla-\c-defﬂ. Informally, to obtain an I-model of an ID-logic theory T, we
guess the extensions of all relation symbols in o (keeping the extensions of the
relation symbols in ¢’ as they are specified by I and not introducing any new
constants), and verify that the extensions of the relation symbols in o%/ are
fully determined by the program 7" and the extensions of the relation symbols
not in 0% under the well-founded semantics.

The ID-logic (under the restriction of no function symbols in the language)
has the same expressive power as (non-disjunctive) answer-set programming [I4].
However, arguably, its semantics is simpler, as it relies on two intuitive concepts:
constraints and definitions. Consequently, the ID-logic has a significant poten-
tial for knowledge representation applications. A practical demonstration of the
modeling capabilities of ID-logic can be found in [I].

5 Tools

While theoretical challenges make answer-set programming an exciting research
area, it is because of the existence of effective computational tools, effective
enough to handle several classes of “industrial-grade” problems, that it is steadily
gaining on importance. We will now briefly review some of these tools.

The general approach to processing answer-set programs consists of two steps:
(1) grounding, that is, instantiating and simplifying an input program with vari-
ables into a propositional program, and (2) solving, that is, computing answer
sets of the program resulting from step (1). The grounding step is designed so
that all answer sets of the original program can be recovered in step (2).

The Iparse/smodels software (www.tcs.hut.fi/Software/smodels/)
constitutes the earliest attempt at making answer-set programming practical.
It remains widely used. Arguably, Iparse is the most widely used grounder by
solver developers, and smodels remains one of the most competitive solvers.

The dlv system (www.dbai.tuwien.ac.at/proj/dlv/|) was proposed
soon after lparse/smodels. The dlv offers an integrated grounder and solver pack-
age capable of computing answer-sets of disjunctive programs with aggregates.
With its front-ends for SQL, inheritance, planning, and abduction and diagnosis,
it emerges as the most flexible answer-set programming system at present. In this
context, it is important to note that dlv won the 1st Answer-Set Programming
Contest in the modeling/grounding/solving category [24].

Among software addressing only one of the stages in the computation of an-
swer sets, gringo (gringo.sourceforge.net/) is a recent newcomer in the
area of grounders. Noteworthy solvers are clasp ([www.cs.uni-potsdam.de/|

1 'We abuse the notation here by viewing instances as sets of the corresponding ground
atoms in the language extending £, with the elements of U as constants.

www.tcs.hut.fi/Software/smodels/
www.dbai.tuwien.ac.at/proj/dlv/
gringo.sourceforge.net/

84 M. Truszczyniski

[cIasp/)), pbmodels (www.cs.uky.edu/ai/pbmodels/)), cmodels (www.cCs-
utexas.edu/users/tag/cmodels.html), as well as gnt (www.tcs.hut.]
[E1/Software/gnt/]). Each of these solvers performed very well in the 1st
Answer-Set Programming Contest [24], with clasp winning in two events. Other
notable solver is assat, which pioneered the idea of using loop formulas to reduce
answer-set computation to propositional satisfiability.

Finally, we mention software for answer-set programming systems based on
the ID-logic. The grounder psgrnd (www.cs.uky.edu/ai/aspps/) can pro-
cess ID-logic theories, in which the first-order component is in the clausal form
(possibly with weight atoms), and the logic program component is a Horn
program. The solver aspps (www.cs.uky.edu/ai/aspps/) is designed to
compute answer-sets of ground ID-logic theories satisfying these restrictions.
Recently more general tools have been developed, including MXG (Wew-cs4
[sfu.ca/research/groups/mxp/mxg/)), an integrated software package for
grounding and computing models of ID-logic theories, and GidL/MidL package
(www.cs.kuleuven.be/~dtai/krr/software/idp.html) for grounding
(GidL) and model generation (MidL) of theories in the ID-logic.

6 Closing Comments

Answer-set programming, a variant of logic programming with the answer-set
semantics, and formalisms such as ID-logic, which combine first-order logic with
logic programming under the well-founded semantics, are well suited for knowl-
edge representation applications. After about a decade since they have been
proposed, they continue to generate theoretical research challenges. In the same
time, thanks to the development of computational software, their practical
importance is steadily growing.

Acknowledgments

The author acknowledges the support of NSF grant I1S-0325063 and KSEF grant
1036-RDE-008.

References

1. Andréka, H., Németi, I.: The generalized completeness of Horn predicate logic as
a programming language. Acta Cybernetica 4(1), 3-10 (1978/79)

2. Apt, K., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. In:
Foundations of deductive databases and logic programming, pp. 89-142. Morgan
Kaufmann, San Francisco (1988)

3. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, Cambridge (2003)

4. Baral, C., Gelfond, M.: Logic programming and knowledge representation. Journal
of Logic Programming 19/20, 73-148 (1994)

www.cs.uky.edu/ai/pbmodels/
file:www.cs.utexas.edu/users/tag/cmodels.html
file:www.cs.utexas.edu/users/tag/cmodels.html
www.cs.uky.edu/ai/aspps/
www.cs.uky.edu/ai/aspps/
www.cs.kuleuven.be/~dtai/krr/software/idp.html

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Logic Programming for Knowledge Representation 85

. Clark, K.L.: Negation as failure, Logic and data bases, pp. 293-322. Plenum Press,

New York, London (1978)

. Colmerauer, A., Kanoui, H., Pasero, R., Roussel, P.: Un systeme de communication

homme-machine en francais, Tech. report, University of Marseille (1973)

. Dell’Armi, T., Faber, W., Ielpa, G., Leone, N., Pfeifer, G.: Aggregate functions in

disjunctive logic programming: semantics, complexity, and implementation in DLV.
In: Proceedings of the 18th International Joint Conference on Artificial Intelligence
(IJCAT 2003), pp. 847-852. Morgan Kaufmann, San Francisco (2003)

. Denecker, M.: The well-founded semantics is the principle of inductive definition.

In: Dix, J., Farinas del Cerro, L., Furbach, U. (eds.) JELIA 1998. LNCS (LNAI),
vol. 1489, pp. 1-16. Springer, Heidelberg (1998)

. Denecker, M., Marek, V., Truszczyniski, M.: Approximations, stable operators, well-

founded fixpoints and applications in nonmonotonic reasoning. In: Logic-Based
Artificial Intelligence, pp. 127-144. Kluwer Academic Publishers, Dordrecht (2000)
Denecker, M., Pelov, N., Bruynooghe, M.: Ultimate well-founded and stable seman-
tics for logic programs with aggregates. In: Codognet, P. (ed.) ICLP 2001. LNCS,
vol. 2237, pp. 212-226. Springer, Heidelberg (2001)

Denecker, M., Ternovska, E.: Inductive situation calculus. In: Proceedings of the
9th International Conference on Principles of Knowledge Representation and Rea-
soning (KR 2004), pp. 545-553. AAAI Press, Stanford (2004)

Denecker, M., Ternovska, E.: A logic for non-monotone inductive definitions, ACM
Transactions on Computational Logic (to appear, 2008)

East, D., Truszczynski, M.: Datalog with constraints. In: Proceedings of the 17th
National Conference on Artificial Intelligence (AAAI 2000), pp. 163-168. AAAI
Press, Stanford (2000)

East, D., Truszczynski, M.: Predicate-calculus based logics for modeling and solving
search problems. ACM Transactions on Computational Logic 7, 38-83 (2006)
Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model
semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224-238.
Springer, Heidelberg (2003)

Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in
answer-set programming: Characterizations and complexity results for the non-
ground case. In: Proceedings of the 20th National Conference on Artificial Intelli-
gence (AAAT 2005), pp. 695-700 (2005)

Eiter, T., Fink, M., Woltran, S.: Semantical characterizations and complexity of
equivalences in answer set programming, ACM Transactions on Computational
Logic (to appear, 2006)

Eiter, T, Gottlob, G.: On the computational cost of disjunctive logic programming;:
propositional case. Annals of Mathematics and Artificial Intelligence 15(3-4), 289
323 (1995)

Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer-set pro-
gramming. In: Proceedings of the 19th International Joint Conference on Artificial
Intelligence (IJCAI 2005), pp. 97-102. Morgan Kaufmann, San Francisco (2005)
Elkabani, I., Pontelli, E., Son, T.C.: Smodels with CLP and its applications: a
simple and effective approach to aggregates in ASP. In: Demoen, B., Lifschitz, V.
(eds.) ICLP 2004. LNCS, vol. 3132, pp. 73-89. Springer, Heidelberg (2004)
Faber, W., Greco, G., Leone, N.: Magic sets and their application to data inte-
gration. In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 306-320.
Springer, Heidelberg (2004)

86

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

M. Truszczyniski

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: semantics and complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004.
LNCS(LNAI), vol. 3229, pp. 200-212. Springer, Heidelberg (2004)

Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy
in non-ground answer-set programming over finite domains. In: Proceedings of the
9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2007). LNCS (LNATI), vol. 4483, pp. 123-135. Springer, Heidelberg (2007)
Gebser, M., Liu, L., Namasivayam, G., Neumann, A., Schaub, T., Truszczynski,
M.: The first answer set programming system competition. In: Proceedings of the
9th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2007). LNCS (LNAI), vol. 4483, pp. 3-17. Springer, Heidelberg (2007)
Gelfond, M.: Representing knowledge in A-Prolog. In: Kakas, A.C., Sadri, F. (eds.)
Computational Logic: Logic Programming and Beyond. LNCS(LNAI), vol. 2408,
pp. 413-451. Springer, Heidelberg (2002)

Gelfond, M., Leone, N.: Logic programming and knowledge representation — the
A-prolog perspective. Artificial Intelligence 138, 3-38 (2002)

Gelfond, M., Lifschitz, V.: The stable semantics for logic programs. In: Proceedings
of the 5th International Conference on Logic Programming (ICLP 1988), pp. 1070
1080. MIT Press, Cambridge (1988)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 365-385 (1991)

Heyting, A.: Die formalen Regeln der intuitionistischen Logik, Sitzungsberichte der
Preussischen Akademie von Wissenschaften. Physikalisch-mathematische Klasse,
42-56 (1930)

Janhunen, T., Oikarinen, E., Tompits, H., Wotran, S.: Modularity aspects of dis-
junctive stable models. In: Proceedings of the 9th International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR 2007). LNCS(LNAI),
vol. 4483, pp. 175-187. Springer, Heidelberg (2007)

Kowalski, R.: Predicate logic as a programming language. In: Proceedings of the
Congress of the International Federation for Information Processing (IFIP-1974)
(Amsterdam), North Holland, pp. 569-574 (1974)

Kowalski, R.: Logic for problem solving. North Holland, Amsterdam (1979)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526-541 (2001)

Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence
for logic programs with variables. In: Proceedings of the 9th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2007).
LNCS(LNAI), vol. 4483, pp. 188-200. Springer, Heidelberg (2007)

Lifschitz, V., Turner, H.: Splitting a logic program. In: Proceedings of the 11th
International Conference on Logic Programming (ICLP 1994), pp. 23-37 (1994)
Lin, F.: Reducing strong equivalence of logic programs to entailment in classical
propositional logic. In: Proceedings of the 8th International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR 2002), Morgan Kaufmann,
San Francisco (2002)

Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT
solvers. In: Proceedings of the 18th National Conference on Artificial Intelligence
(AAAT 2002), pp. 112-117. AAAI Press, Stanford (2002)

Liu, L., Pontelli, E., Son, T.C., Truszczynski, M.: Logic programs with abstract
constraint atoms: the role of computations. In: Proceedings of the 23rd Interna-
tional Conference on Logic Programming (ICLP 2007). LNCS, Springer, Heidelberg
(2007) (this volume)

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Logic Programming for Knowledge Representation 87

Liu, L., Truszczynski, M.: Pbmodels - software to compute stable models by pseu-
doboolean solvers. In: Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR
2005. LNCS(LNALI), vol. 3662, pp. 410-415. Springer, Heidelberg (2005)

Liu, L., Truszczynski, M.: Properties of programs with monotone and convex con-
straints. In: Proceedings of the 20th National Conference on Artificial Intelligence
(AAAI-05), pp. 701-706. AAAI Press, Stanford (2005)

Liu, L., Truszczynski, M.: Properties and applications of programs with mono-
tone and convex constraints. Journal of Artificial Intelligence Research 27, 299-334
(2006)

Marek, V.W., Remmel, J.B.: Set constraints in logic programming. In: Lifs-
chitz, V., Niemeld, I. (eds.) Logic Programming and Nonmonotonic Reasoning.
LNCS(LNAI), vol. 2923, pp. 167-179. Springer, Heidelberg (2003)

Marek, V.W., Truszczynski, M.: Stable models and an alternative logic program-
ming paradigm. In: The Logic Programming Paradigm: a 25-Year Perspective, pp.
375-398. Springer, Berlin (1999)

Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms.
In: Proceedings of the 19th National Conference on Artificial Intelligence (AAAI
2004), pp. 86-91. AAAT Press, Stanford (2004)

Marek, W., Truszczyniski, M.: Autoepistemic logic. Journal of the ACM 38(3),
588-619 (1991)

McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of arti-
ficial intelligence, Machine Intelligence 4, pp. 463-502. Edinburgh University Press
(1969)

Mitchell, D.G., Ternovska, E.: A framework for representing and solving NP search
problems. In: Proceedings of the 20th National Conference on Artificial Intelligence
(AAAT 2005), pp. 430-435. AAAT Press, Stanford (2005)

Niemela, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4),
241-273 (1999)

Pelov, N.: Semantics of logic programs with aggregates, PhD Thesis. Department
of Computer Science, K.U. Leuven, Leuven, Belgium (2004)

Robinson, J.A.: A machine-oriented logic based on resolution principle. Journal of
the ACM 12, 23-41 (1965)

Simons, P., Niemeld, I., Soininen, T.: Extending and implementing the stable model
semantics. Artificial Intelligence 138, 181-234 (2002)

Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in
answer set programming, Theory and Practice of Logic Programming (Accepted
2007), available at http://arxiv.org/abs/cs.AI/0601051

Son, T., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary ab-
stract constraint atoms. In: Proceedings of the 21st National Conference on Arti-
ficial Intelligence (AAAI 2006), pp. 129-134. AAAT Press, Stanford (2006)
Truszczynski, M.: Strong and uniform equivalence of nonmonotonic theories —
an algebraic approach. In: Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR 2006), pp. 389-399.
AAAT Press, Stanford (2006)

Truszezynski, M.: The modal logic S4F, the default logic, and the logic here-and-
there. In: Proceedings of the 22nd National Conference on Artificial Intelligence
(AAAT 2007), AAAT Press, Stanford (2007)

Turner, H.: Strong equivalence made easy: nested expressions and weight con-
straints. Theory and Practice of Logic Programming 3, 609-622 (2003)

http://arxiv.org/abs/cs.AI/0601051

88

57.

58.

59.

60.

M. Truszczyniski

van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a program-
ming language. Journal of the ACM 23(4), 733-742 (1976)

Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general
logic programs. Journal of the ACM 38(3), 620-650 (1991)

Vennekens, J., Denecker, M.: An algebraic account of modularity in ID-logic. In:
Baral, C., Greco, G., Leone, N., Terracina, G. (eds.) LPNMR 2005. LNCS (LNAI),
vol. 3662, pp. 291-303. Springer, Heidelberg (2005)

Vennekens, J., Gilis, D., Denecker, M.: Splitting an operator: an algebraic modu-
larity result and its applications to logic programming. In: Demoen, B., Lifschitz,
V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 195-209. Springer, Heidelberg (2004)

On Finitely Recursive Programs

S. Baselice, P.A. Bonatti, and G. Criscuolo

Universita di Napoli “Federico 1I”

Abstract. Finitary programs are a class of logic programs admitting functions
symbols and hence infinite domains. In this paper we prove that a larger class of
programs, called finitely recursive programs, preserves most of the good prop-
erties of finitary programs under the stable model semantics, namely: (i) finitely
recursive programs enjoy a compactness property; (ii) inconsistency check and
skeptical reasoning are semidecidable; (iii) skeptical resolution is complete. Mo-
reover, we show how to check inconsistency and answer skeptical queries using
finite subsets of the ground program instantiation.

1 Introduction

Answer Set Programming (ASP) is one of the most interesting achievements in the
area of Logic Programming and Nonmonotonic Reasoning. It is a declarative problem
solving paradigm, mainly centered around some well-engineered implementations of
the stable model semantics of logic programs [8/9], such as SMODELS and DLV [143].

The most popular ASP languages are extensions of Datalog, that is, function-free,
possibly disjunctive logic programs with negation as failure. The lack of function sym-
bols has several drawbacks, related to expressiveness and encoding style [4]]. In order to
overcome such limitations and reduce the memory requirements of current implemen-
tations, a class of logic programs called finitary programs has been introduced [4].

In finitary programs function symbols (hence infinite domains) and recursion are
allowed. However, recursion is restricted by requiring each ground atom to depend on
finitely many ground atoms; such programs are called finitely recursive. Moreover, only
finitely many ground atoms must occur in odd-cycles—that is, cycles of recursive calls
involving an odd number of negative subgoals—which means that there should be only
finitely many potential sources of inconsistencies. These two restrictions bring a num-
ber of nice semantic and computational properties [4]. In general function symbols
make the stable model semantics highly undecidable [13]]. On the contrary, if the given
program is finitary, then consistency checking, ground credulous queries, and ground
skeptical queries are decidable. Nonground queries were proved to be r.e.-complete.
Moreover, a form of compactness holds: an inconsistent finitary program has always a
finite unstable kernel, i.e. a finite subset of the program’s ground instantiation with no
stable models. All of these properties are quite unusual for a nonmonotonic logic.

As function symbols are being integrated in state-of-the-art reasoners such as DLV
it is interesting to extend these good properties to larger program classes. This
goal requires a better understanding of the role of each restriction in the definition of
finitary programs. It has already been noted [4] that by dropping the first condition

! A PRIN project on this topic, funded by the Italian government, has just started.

V. Dahl and I. Niemeli (Eds.): ICLP 2007, LNCS 4670, pp. 89+103./2007.
(© Springer-Verlag Berlin Heidelberg 2007

90 S. Baselice, P.A. Bonatti, and G. Criscuolo

(i.e., if the program is not finitely recursive) one obtains a superclass of stratified pro-
grams, whose complexity is then far beyond computability. In the same paper, it is ar-
gued that the second restriction (on odd-cycles) is needed for the decidability of ground
queries. However, if a program is only finitely recursive (and infinitely many odd-cycles
are allowed), then the results of [4] do not characterize the exact complexity of reason-
ing and say nothing about compactness, nor about the completeness of the skeptical
resolution calculus [J3]].

In this paper we shall extend and refine those results, and prove that several impor-
tant properties of finitary programs carry over to all finitely recursive programs. We
shall prove that for all finitely recursive programs the compactness property still holds,
and that inconsistency check and skeptical reasoning are semidecidable. Moreover, we
will extend the completeness of skeptical resolution [3I4] to all finitely recursive pro-
grams. Our results will clarify the role that each of the two restrictions defining finitary
programs has in ensuring their properties.

In order to prove these results we use program splittings [11]], but the focus is shifted
from splitting sequences (whose elements are sublanguages) to the corresponding se-
quences of subprograms. For this purpose we introduce the notion of module sequence.
It turns out that finitely recursive programs are exactly those programs whose module
sequences are made of finite elements. Moreover a finitely recursive program P has a
stable model iff each element P; of the sequence has a stable model, a condition which
is not valid in general for normal programs.

The paper is organized as follows. The next section is devoted to preliminaries. In
Section 3 we give the definition of module sequences for a program and study their
properties. In Section [l we study the theoretical properties and the expressiveness of
finitely recursive programs. Section 3] deals with the completeness of skeptical resolu-
tion, and Section[6] concludes the paper with a final discussion of our results.

2 Preliminaries

We assume the reader to be familiar with the classical theory of logic programming [12].

Normal logic programs are sets of rules A < Ly, ,L, (n > 0), where A is a logical
atom and each L; (i = 1, ,n)is a literal. If r is such a rule, then let head(r) = A and
body(ry = {Ly, ,L,}. Moreover, let body™(r) (respectively body (r)) be the set of all
atoms A s.t. A (respectively not A) belongs to body(r).

The ground instantiation of a program P is denoted by Ground(P), and the set of
atoms occurring in Ground(P) is denoted by atom(P). Similarly, atom(r) denotes the
set of atoms occurring in a rule r.

A Herbrand model M of P is a stable model of P iff M = Im(P™), where Im(X) de-
notes the least model of a positive program X, and P¥ is the Gelfond-Lifschitz transfor-
mation of P, obtained from Ground(P) by (i) removing all rules r such that body (r) N
M # 0, and (ii) removing all negative literals from the body of the remaining rules [8/9].

The dependency graph of a normal program P is a labelled directed graph, denoted
by DG(P), whose vertices are the ground atoms of P’s language. Moreover, (i) there
exists an edge labelled "+ (called positive edge) from A to B iff for some rule r €
Ground(P), A = head(r) and B € body(r); (ii) there exists an edge labelled ’-’ (called

On Finitely Recursive Programs 91

negative edge) from A to B iff for some rule r € Ground(P), A = head(r) and not B €
body(r).

The dependency graph of an atom A occurring in a normal program P is the subgraph
of DG(P) including A and all vertices reachable from A in DG(P).

An atom A depends positively (respectively negatively) on B if there is a directed
path from A to B in the dependency graph with an even (respectively odd) number of
negative edges. Moreover, each atom depends positively on itself. If A depends posi-
tively (respectively negatively) on B we write A >, B (respectively A > B). A depends
on B (in symbols: A > B) if either A >, BorA > B.

Definition 1. An odd-cycle is a cycle in the dependency graph with an odd number of
negative edges. A ground atom is odd-cyclic if it occurs in an odd-cycle.

Note that there exists an odd-cycle iff for some ground atom A, A > A.

Definition 2 (Finitely recursive programs). A normal program P is finitely recursive
iff each ground atom A depends on finitely many ground atoms.

For example, most standard list manipulation programs (member, append, remove etc.)
are finitely recursive. The reader can find numerous examples of finitely recursive pro-
grams in [4]]. Many interesting programs are finitely recursive but not finitary, due to
integrity constraints that apply to infinitely many individuals.

Example 1. Fig. 4 of [4] illustrates a finitary program for reasoning about actions,
defining—among others—two predicates holds(fluent, time) and do(action, time). The
simplest way to add a constraint that forbids any parallel execution of two incompatible
actions a; and a, is including a rule f « not f,do(a;, T),do(as, T) in that program,
where f is a fresh propositional symbol (often such rules are equivalently expressed
as denials « do(ay, T),do(az, T)). This program is not finitary (because f depends on
infinitely many atoms since 7" has an infinite range of values) but it can be reformulated
as a finitely recursive program by replacing the above rule with

J(T) < not f(T),do(a;, T),do(a», T)

Note that the new program is finitely recursive but not finitary, because the new rule
introduces infinitely many odd cycles (one for each instance of f(7)). O

If P is a finitely recursive program then, for each atom A occurring in Ground(P), the
dependency graph of A is a finite graph. Moreover, if A is an odd-cyclic atom then its
dependency graph contains all the odd-cycles in which A occurs. So, the set of atoms
on which A depends and the set of odd-cycles in which A occurs are finite.

The class of finitary programs is obtained by imposing a further constraint on the
dependency graph, that is, a finite upper bound on the number of odd-cyclic atoms.

Definition 3 (Finitary programs). We say that a normal program P is finitary if the
following conditions hold:

1. P is finitely recursive.
2. There are finitely many odd-cyclic atoms in the dependency graph of P.

92 S. Baselice, P.A. Bonatti, and G. Criscuolo

The stable models [8l9] of a normal program can be obtained by splitting a program
into two modules—of which one is self-contained, while the other module depends on
the former—and then combining the stable models of the two modules.

Definition 4 (Splitting set [2]],[10]). A splitting set of a normal program P is any set U
of atoms such that, for any rule r € Ground(P), if head(r) € U then atom(r) C U. If U
is a splitting set for P, we also say that U splits P. The set of rules r € Ground(P) such
that atom(r) C U is called the bottom of P relative to the splitting set U and is denoted
by boty(P).

The top module should be partially evaluated w.r.t. the bottom.

Definition 5 (Partial evaluation [2],[10]). The partial evaluation of a normal program
P with splitting set U w.r.t. a set of ground atoms X is the program ey(Ground(P), X)
defined as follows:

ey(Ground(P), X) = {1’ | there exists r € Ground(P) st (body* (r)nU) C X
and (body (ryNU)N X =0, and head(r") = head(r),
body*(r') = body*(r) \ U, body (r') = body (r)\ U}

Then stable models can be computed in two stages.

Theorem 1 (Splitting theorem [10])). Let U be a splitting set for a logic program P.
An interpretation M is a stable model of P iff M = J U I, where

1. 1 is a stable model of boty(P), and
2. J is a stable model of ey (Ground(P) \ boty(P), I).

The splitting theorem has been extended to transfinite sequences in [T

Definition 6. A (transfinite) sequence is a family whose index set is an initial segment
of ordinals, {o« : « < u}. The ordinal u is the length of the sequence.

A sequence (Ug)q<y of sets is monotone if U, € Ug whenever « < 8, and continuous
if, for each limit ordinal @ < u, Uy = <o Uy-

Definition 7 (Lifschitz-Turner, [11]]). A splitting sequence for a program P is a mo-
notone, continuous sequence (Ug)a<, of splitting sets for P s.t. o<, Uy = atom(P).

In [[T1] Lifschitz and Turner generalized the splitting theorem to splitting sequences.
They proved that each stable model M of P equals the infinite union of a sequence of
models (M)q<, such that (i) My is a stable model of boty,(P), (ii) for all successor
ordinals @ < u, M, is a stable model of ey, | (boty,(P) \ boty, ,(P), Us<a Mp), and (iii)
for all limit ordinals 4 < p, M, = 0. They proved also that each sequence of models
with these properties yields a stable model of P.

3 Module Sequences and a Normal Form for Splitting Sequences

In our study of the computational properties of finitely recursive programs, we shall
replace the notion of splitting sequence with suitable sequences of bottom programs
whose length is bounded by w.

On Finitely Recursive Programs 93

Definition 8 (GH, Module sequence). Let P be a normal program and let the set of its
ground heads be
GH ={p | p = head(r), r € Ground(P) }

The module sequence Py, P>, P3s, , P,, induced by an enumeration pi, p2, p3, ,
Pn, of GH is defined as follows:

Py ={r e Ground(P) | pi depends on head(r)}
Py = PiU{re Ground(P) | pii1 depends on head(r)} (i >1)

Of course, we are interested in those properties of module sequences which are indepen-
dent of the enumeration of GH. The following proposition follows easily from the def-
initions. We say that a ground subprogram P’ C Ground(P) is downward closed, if for
each atom A occurring in P’, P’ contains all the rules » € Ground(P) s.t. A = head(r).

Proposition 1. Let P be a normal program. For all module sequences Py, P>, , for P:

1. Ujs1 Pi = Ground(P),

2. foreachi>1and j> i, atom(P;) is a splitting set of P; and P; = botgomp)(P),
3. foreachi > 1, atom(P;) is a splitting set of P and P; = botyomp,)(P),

4. foreachi> 1, P; is downward closed.

Therefore, we immediately see that each module sequence for P consists of the bottom
programs corresponding to a particular splitting sequence {atom(P;));, that depends
on the underlying enumeration of GH. Roughly speaking, such sequences constitute
a normal form for splitting sequences. If P is finitely recursive, then “normal form”
sequences can be required to satisfy an additional property:

Definition 9 (Smoothness). A transfinite sequence of sets (Xq)a<y is smooth iff Xy is
finite and for each non-limit ordinal a + 1 < y, the difference Xo41 \ X, is finite.

Note that when ¢ = w (as in module sequences), smoothness implies that each X,, in the
sequence is finite. Finitely recursive programs are completely characterized by smooth
module sequences:

Theorem 2. The following are equivalent:

1. P is finitely recursive;
2. P has a smooth module sequence (where each P; is finite);
3. all module sequences for P are smooth.

Since smooth module sequences clearly correspond to smooth splitting sequences, the
above theorem implies that by working with module sequences we are implicitly re-
stricting our attention to smooth splitting sequences of length w. Then the characteriza-
tion of finitely recursive programs can be completed as follows, using standard splitting
sequences:

Corollary 1. For all programs P, the following are equivalent:

1. P is finitely recursive;
2. P has a smooth splitting sequence with length w.

94 S. Baselice, P.A. Bonatti, and G. Criscuolo

Next we illustrate how module sequences provide an incremental characterization of
the stable models of normal logic programs.

Remark 1. By Proposition[Il and the Splitting Theorem, if P is a normal program and
Py, P>, ,P,, is a module sequence for P, then for all j > i > 1 and for all stable
models M; of P, the set M; = M; N atom(P;) is a stable model of P;. Similarly, for each
stable model M of P, the set M; = M N atom(P;) is a stable model of P;.

Roughly speaking, the following theorem rephrases the splitting sequence theorem of
[11]] in terms of module sequences. The original splitting sequence theorem applies to
sequences of disjoint program “slices”, while our theorem applies to monotonically in-
creasing program sequences. Since no direct proof of the splitting sequence theorem
was ever published (only the proof of a more general result for default logic was pub-
lished [13]]), here we give a direct proof of our result.

Theorem 3 (Module sequence theorem). Let P be a normal program and P, P,
be a module sequence for P. Then M is a stable model of P iff there exists a sequence
M, M,, s.t.:

1. foreachi > 1, M; is a stable model of P;,
2. foreachi> 1, M; = M;,; N atom(P;),
3. M = UiZl Mi.

Proof. Let M be a stable model of P. Since Py, P, is a module sequence for P then
for each i > 1, atom(P;) is a splitting set of P and P; = botiomp,(P). So, we consider
the sequence M, = M N atom(Py), M, = M N atom(P,), where, by the splitting
theorem [10]], for each i > 1, M, is a stable model of P;, M;.; N atom(P;) = M; and, by
definition of M7, M>, and by property [Tl of proposition[Il | J; M; = M. Then for each
stable model M of P there exists a sequence of finite sets of ground atoms that satisfies
the properties[Il 2l and

Now, without loss of generality, suppose P ground and suppose that there exists a
sequence M, M,, that satisfies the properties[Il 2] and Bl We have to prove that the
set M = [J;s1 M; is a stable model of P; equivalently,

Uiz1 M; = Im(P™)

First we show that |J;»; M; € Im(PM) Property 2] implies that for all i > 1, (M N
atom(P;)) = M;; consequently P/ = PlM". Moreover, since P; C P, we have P € PM,
and hence

pYi = pMc pM
By the monotonicity of Im() [1L6], Vi > 1 Im(PlM") C Im(P™) Moreover, M, is a stable
model of P; and then M; = Im(PfW"), SO

Vi> 1 M; C Im(PM)

We are left to prove the opposite inclusion, that is Im(PM) C | J,»; M; Suppose
p € Im(PM). From P¥ = P and |J; P; = P it follows that |J; P} = |J; PM = PM.
Moreover, by definition, for each i > 1, P; is downward closed, then there must be a k
st.pe Im(P,iW*). We conclude that p € M. and then p € | J; M;. O

On Finitely Recursive Programs 95

The module sequence theorem suggests a relationship between the consistency of a
program P and the consistency of each step in P’s module sequences.

Definition 10. A module sequence Py, P>, for a normal program P is inconsistent if
there exists an i < w s.t. P; has no stable model, consistent otherwise.

Proposition 2. If a normal program P has an inconsistent module sequence then P is
inconsistent.

Proof. Suppose that P has an inconsistent module sequence Py, P, . Then there ex-
ists a P; that has no stable models. Hence, P has an inconsistent bottom set and then P
is inconsistent by the splitting theorem. O

Next we show that the inconsistency of a module sequence S is invariant w.r.t. the
enumeration of GH inducing S'.

Theorem 4. Let S = Py, P>, be a module sequence for a normal program P. If S is
inconsistent then each module sequence for P is inconsistent.

Proof. Let S = Py,P,, be an inconsistent module sequence for P induced by the
enumeration pi, p,, of GH and let i be the least index s.t. P; is inconsistent. Let
§’ = P|,P,, be any module sequence for P induced by the enumeration p1, pj,

of GH. Since i is finite, there exists a finite k s.t. {p1, p2, ,pi} € {p}.p} .pi}- So,
by construction, P; C P, and then atom(P;) C atom(P;). Moreover, by definition, P;
is downward closed and then P; = botuemp,)(P})- Since P; is inconsistent then P is
inconsistent (by the splitting theorem) and then also S’ is inconsistent. O

In other words, for a given program P, either all module sequences are inconsistent, or
they are all consistent. In particular, if P is consistent, then every member P; of any
module sequence for P must be consistent.

It may be tempting to assume that the converse holds, that is, if a module sequence
for P is consistent, then P is consistent, too. Unfortunately, this statement is not valid
in general, as the following example shows.

Example 5. Consider the following program P (due to Fages [7]]):

9(X) < q(f(X))
9(X) < notg(f(X))
r(0)

Note that Py is not finitely recursive because, for each grounding substitution o, g(X)o
depends on the infinite set of ground atoms { q(f(X))o, q(f(f(X))o, }
The first two rules in Py are classically equivalent to

9(X) < [¢q(f(X)) V not g(f(X))]

Since the body is a tautology and the stable models of a program are also classical
models of the program, we have that a stable model of Py should satisfy all ground
instances of q(X). However, the Gelfond-Lifschitz transformation w.r.t. such a model
would contain only the first and the third program rules, and hence the least model of
the transformation would contain no instance of q(X). It follows that P is inconsistent
(it has no stable models). Now consider the following extension P of Py:

96 S. Baselice, P.A. Bonatti, and G. Criscuolo

q(X) < q(f(X)), p(X)
q(X) < not q(f(X)), p(X)
r(0)

p(X) < not p’(X)

p'(X) < not p(X)

c(X) « notc(X),not p(X)

AR~

To see that P is inconsistent, suppose M is a stable model of P. By rules@and[d each
ground instance of p(X) can be either true or false. But each ground instance of c¢(X)
is odd-cyclic, therefore if p(X) is false then rule |6l produces an inconsistency. It follows
that all ground instances of p(X) must be true in M. In this case, however, rules [I}
and Bl are equivalent to program Py and prevent M from being a stable model, as ex-
plained above. So P is inconsistent.

Next, consider the enumeration e = {r(0), g(0), p(0), p’(0), c(0), g(f(0)), p(f(0)),
p'(f(0)), c(f(0)), 1} of the set GH. This enumeration induces the following module
sequence for P.

Py = {r(0)}
Pi = Py U Uil 9(X) « q(f(X)), p(X),
q(X) « not ¢(f(X)), p(X),
p(X) « not p'(X),
p'(X) « not p(X) } [X/f4(0)]
Py = P;U {c(X) « not c(X),not pCO} [X/fF 1(0)] (i=1)

Note that My = {r(0)} is a stable model of Py and for eachi > 1l andk >i 2

M; = {r(0), p(f2(0)), p(f'(O)), p(f7(0), , p(f*(0)),
PO, PR 0), IOy,
a(f°)), g(f'(0), q(f(0), , q(f* ()}

is a stable model of P;. Therefore, each P; is consistent although | J; P; = Ground(P)
is inconsistent. This happens because for each stable model M of Py there exists a P;
(j > 1) such that M is not the bottom part of any stable model of P;. Intuitively, M has
been “eliminated” at step j. In this example P has infinitely many stable models, and it
turns out that no finite step eliminates all of them. Consequently, each P; in the module
sequence is consistent, but the entire program is not.

4 Properties of Finitely Recursive Programs

The smoothness of finitely recursive programs overcomes the problem illustrated by the
above example. Since every module P; is finite, no step in the sequence has infinitely
many stable models. Therefore if every P; is consistent, the entire program P must be
consistent, too, and the following theorem holds:

Theorem 6. For all finitely recursive programs P:

1. if P is consistent then every module sequence for P is consistent;
2. if some module sequence for P is consistent, then P is consistent.

On Finitely Recursive Programs 97

Proof. We prove 1 by contraposition. Suppose that P has an inconsistent module se-
quence Py, P>, . Then, there exists a P; with no stable models. Therefore, P has an
inconsistent bottom set and hence P is inconsistent by the splitting theorem.

To prove point 2, consider a module sequence S for P. If S is consistent then each
P; has a nonempty set of stable models. It suffices to prove that there exists a sequence
M, M,, of stable models of Py, P, , respectively, that satisfies the properties of
Theorem[3] because this implies that M = | J; M; is a stable model of P.

We call a stable model M; of P; "bad” if there exists a k > i s.t. no model M, of P,
extends M;, "good” otherwise. We say that M} extends M; if My N atom(P;) = M, (see
remark [T)). We claim that each P; must have at least a "good” model.

To prove the claim, suppose that all models of P; are "bad”. Since P; is a finite
program it has a finite number M;, ,M; of models. By assumption, for each M;,
there is a program Pk,.] none of whose models extends M;;. Let k = maxik, ,ki};
then no model of P, extends a model of P;, and this is a contradiction because Py, by
hypotheses, has at least a stable model M} and by the splitting theorem M; extends a
stable model of P;. This proves the claim.

Now, let M| be a "good” stable model of Py; then there must exist a "good” stable
model of P, that extends M, exactly for the same reasons, and so on. Therefore there
exists an infinite sequence M, M, that satisfies both properties[I]and[2of Theorem[3]
and hence M = | J; M, is a stable model of P. O

Note that if the enumeration of GH is effective, then for each i the corresponding sub-
program P; can be effectively constructed. In this case (atom(P;));, is an effective
enumerable splitting sequence for P. This observation is the basis for the complexity
results proved in the rest of the paper.

4.1 Compactness

Here we prove that the compactness theorem for finitary programs actually holds for all
finitely recursive programs.

Definition 11 ([4]]). An unstable kernel for a normal program P is a set K € Ground(P)
with the following properties:

1. K is downward closed, that is, for each atom A occurring in K’s rules, K contains
all the rules r € Ground(P) s.t. A = head(r).
2. K has no stable model.

Theorem 7 (Compactness). A finitely recursive program P has no stable model iff it
has a finite unstable kernel.

Proof. By Theorems 2 and [6] P has no stable model iff it has an inconsistent module
sequence. So, let Py, P, ,P,, be an inconsistent module sequence for P and let
i > 1s.t. P; is inconsistent. By proposition[Il P; € Ground(P) and P; is also downward
closed. So it is an unstable kernel for P. Moreover, by TheoremP] P; is finite. O

The compactness theorem for finitary programs [4] can now be regarded as a corollary
of the above theorem.

98 S. Baselice, P.A. Bonatti, and G. Criscuolo

4.2 The Complexity of Reasoning with Finitely Recursive Programs

As we said before, by taking an effective enumeration of the set GH, one can effec-
tively compute each element of the corresponding module sequence. Let us call CON-
STRUCT (P, i) an effective procedure that, given the finitely recursive program P and the
index i, returns the ground program P;, and let SM(P;) be an algorithm that computes
the finite set of the finite stable models of P;:

Theorem 8. Let P be a finitely recursive program. Deciding whether P is inconsistent
is at most semidecidable.

Proof. Given a module sequence Py, P,, ,P,, for P, consider the algorithm CON-
SISTENT (P).

Algorithm CONSISTENT (P)

i=0;
answer = TRUE;
repeat

i=i+1;

P; =CONSTRUCT (P, i);
if SM(P;) = 0 then
answer = FALSE;
until —answer OR P; = Ground(P)
return answer;

I asw e

By TheoremsPland[6 P is inconsistent iff there exists ani > 1 s.t. P; is inconsistent
(note that we can always check the consistency of P; because P; is finite). Then, the
algorithm returns FALS E iff P is inconsistent.

Note that if Ground(P) is infinite then any module sequence for P is infinite and the
algorithm CONSISTENT (P) terminates iff P is not consistent. m|

Next we deal with skeptical inference. Recall that a closed formula F is a skeptical
consequence of P iff F is satisfied (according to classical semantics) by all the stable
models of P.

Theorem 9. Let P be a finitely recursive program and Py, P>, be a module sequence
for P. A ground formula F is a skeptical consequence of P iff there exists a finite k > 1
s.t. F is a skeptical consequence of Py and atom(F) C atom(Py,).

Proof. Let h be the least integer s.t. atom(F') C atom(P},) (note that there always exists
such a & because atom(F) is finite). Suppose that there exists a k > & s.t. F is a skeptical
consequence of Py. Since Py is a bottom for P, then each stable model of P contains a
model of P; and then satisfies F. So, F is a skeptical consequence of P. This proves the
“if” part.

Now suppose that, for each k > h, F is not a skeptical consequence of Pi. This
implies that each Py, is consistent (hence P is consistent) and, moreover, the set S of all
the stable models of Py that falsify F is not empty.

On Finitely Recursive Programs 99

Note that S is finite because Py is finite (as P is finitely recursive). So, if all the
models in S are ”bad” (cf. the proof of Theorem [@)), then there exists a finite integer
Jj > k s.t. no model of P; contains any model of S. Consequently, F is a skeptical
consequence of P;,—a contradiction.

Therefore at least one of these model must be good. Then there must be a model M
of P that contains this ”good” model of P;, and hence F is not a skeptical consequence
of P. O

The next theorem follows easily.

Theorem 10. Let P be a finitely recursive program. For all ground formulas F, the
problem of deciding whether F is a skeptical consequence of P is at most semidecidable.

For a complete characterization of the complexity of ground queries and inconsistency
checking, we are only left to prove that the above upper bounds are tight.

Theorem 11. Deciding whether a finitely recursive program P is inconsistent is r.e.-
complete.

Proof. By Theorem [§ we have that the inconsistency check over the class of finitely
recursive programs is at most semidecidable.

Now we shall prove that it is also r.e.-hard by reducing the problem of skeptical
inference of a quantified formula over a finitary program (that is an r.e.-complete prob-
lem corollary 23]) to the problem of inconsistency check over a finitely recursive
program.

Let P be a finitary program and 3F be a closed quantified formula. Let ((/;;V /1, V

A (b1V I v) A) be the conjunctive normal form of —F. Then IF is a skeptical
consequence of P iff the program P U C is inconsistent, where

pi(x1) < notlj,notlyp, ,notpi(x1)
C = | P2(x2) < nothy,notly, ,notpy(xz)

p1, P2, ... are new atom symbols not occurring in P or F, and x; is the vector of all
variables occurring in (/;;V I V). Note that P U C is a finitely recursive program.
The constraints in C add no model to P, but they only discard those models of P that
satisfy F@ (for some substitution). So, let SM(P) be the set of stable models of P. Then
each model in SM(P U C) satisfies V=F. SM(P U C) = @ (that is P U C is inconsistent)
iff either SM(P) = 0 or all stable models of P satisfy AF. Then SM(P U C) = 0 iff AF
is a skeptical consequence of P. O

Theorem 12. Deciding whether a finitely recursive program P skeptically entails a
ground formula F is r.e.-complete.

Proof. As proved in Theorem[I(Q]deciding whether a finitely recursive program P skep-
tically entails a ground formula F is at most semidecidable.

Now we shall prove that it is also r.e.-hard by reducing the problem of inconsistency
check over a finitely recursive program to the problem of skeptical inference of a ground
formula over a finitely recursive program.

100 S. Baselice, P.A. Bonatti, and G. Criscuolo

Let P be a finitely recursive program and g be a new ground atom that doesn’t occur
in P. Then, P is inconsistent iff ¢ is a skeptical consequence of P. Since ¢ occurs in the
head of no rule of P, g cannot occur in a model of P. So, P skeptically entails ¢ iff P
has no model. O

Corollary 2. Deciding whether a finitely recursive program P doesn’t credulously en-
tail a ground formula F is co-r.e. complete.

5 Skeptical Resolution for Finitely Recursive Programs

In this section we extend the work in by proving that skeptical resolution (a top-
down calculus which is known to be complete for Datalog and finitary programs under
the skeptical stable model semantics) is complete also for the class of finitely recursive
programs. Skeptical resolution has several interesting properties. For example, it does
not require the input program P to be instantiated before reasoning, and it can produce
nonground (i.e., universally quantified) answer substitutions.

Due to space limitations, we are not able to describe the five inference rules of skep-
tical resolution here—the reader is referred to [3]. We only recall that a crucial rule
called failure rule is expressed in terms of an abstract negation-as-failure mechanism
derived from the notion of support. Recall that a support for a ground atom A is a set
of negative literals obtained by unfolding the goal A w.r.t. the given program P until no
positive literal is left.

Definition 12 ([3]). Let A be a ground atom. A ground counter-support for A in a pro-
gram P is a set of atoms K with the following properties:

1. For each support S for A, there existsnot B€ S s.t. Be K.
2. Foreach B € K, there exists a support S for A s.t. notBe€ S.

In other words, the first property says that K contradicts all possible ways of proving
A, while the second property is a sort of relevance property. Informally speaking, the
failure rule of skeptical resolution says that if all atoms in a counter-support are true,
then all attempts to prove A fail, and hence not A can be concluded.

Of course, in general, counter-supports are not computable and may be infinite (while
skeptical derivations and their goals should be finite). In [3]] the notion of counter-
support is generalized to non ground atoms in the following way:

Definition 13. A (generalized) counter-support for A is a pair (K, 8) where K is a set
of atoms and 6 a substitution, s.t. for all grounding substitutions o, Ko is a ground
counter-support for AGo.

The actual mechanism for computing counter-supports can be abstracted by means of
a suitable function CounterSupp, mapping each (possibly nonground) atom A onto a
set of finite generalized counter-supports for A. The underlying intuition is that func-
tion CounterSupp captures all the negative inferences that can actually be computed
by the chosen implementation. To achieve completeness for the nonground skeptical
resolution calculus, we need the negation-as-failure mechanism to be complete in the
following sense.

On Finitely Recursive Programs 101

Definition 14. The function CounterSupp is complete iff for each atom A, for all of its
ground instances Ay, and for all ground counter-supports K for Ay, there exist (K,) €
CounterSupp(A) and a substitution o s.t. Ao = Ay and K'o = K.

Skeptical resolution is based on goals with hypotheses (h-goals for short) which are
pairs (G | H) where H and G are finite sequences of literals. Roughly speaking, the
answer to a query (G | H) should be yes if G holds in all the stable models that satisfy
H.Hence (G | H) has the same meaning in answer set semantics as the formula (A G «
A H). Finally, a skeptical goal (s-goal for short) is a finite sequence of h-goals, and
a skeptical derivation from P and CounterSupp with restart goal Gy is a (possibly
infinite) sequence of s-goals go,g1,..., where each g;;| is obtained from g; through one
of the five rewrite rules of the calculus, as explained in [3]. This calculus is sound
for all normal programs and counter-support calculation mechanisms, as stated in the
following theorem.

Theorem 13 (Soundness, [3]). Suppose that an s-goal (G | H) has a successful skep-
tical derivation from P and CounterSupp with restart goal G and answer substitution
6. Then, for all grounding substitution o, all the stable models of P satisfy ()\ GO «
N\ HO)o (equivalently, Y()\ GO «— N\ HO) is skeptically entailed by P).

However, skeptical resolution is not always complete. Completeness analysis is founded
on ground skeptical derivations, that require a ground version of CounterSupp.

Definition 15. For all ground atoms A, let CounterSupp®(A) be the least set s.t. if
(K,8) € CounterSupp(A’) and for some grounding o, A = A’6c, then (Ko, €) €
CounterSupp?®(A), where € is the empty substitution.

Theorem 14 (Finite Ground Completeness, [3]]). If some ground implication \ G «
N\ H is skeptically entailed by a finite ground program P and CounterSupp is complete
w.r.t. P, then (G | H) has a successful skeptical derivation from P and CounterSupp®
with restart goal G. In particular, if G is skeptically entailed by P, then (G | 0) has such
a derivation.

This basic theorem and the following standard lifting lemma allow to prove complete-
ness for all finitely recursive programs.

Lemma 1 (Lifting, [3]). Ler CounterSupp be complete. For all skeptical derivations
D from Ground(P) and CounterSupp?® with restart goal Gy, there exists a substitution
o and a skeptical derivation D" from P and CounterSupp with restart goal G|, and
answer substitution 6, s.t. D = 90 and Gy = G 6o

Theorem 15 (Completeness for finitely recursive programs). Let P be a finitely re-
cursive program. Suppose CounterSupp is complete w.r.t. P and that for some ground-
ing substitution vy, (NG < /A H)y holds in all the stable models of P. Then (G | H)
has a successful skeptical derivation from P and CounterSupp with restart goal G and
some answer substitution @ more general than .

Proof. By Theorems[2land[9] there exists a smooth module sequence for P with finite
elements Py, P,, ...,and a finite k s.t. (A G « A\ H)y holds in all the stable models of P.

102 S. Baselice, P.A. Bonatti, and G. Criscuolo

Since each P; is downward closed, the ground supports of any given A € atom(Py) w.r.t.
program Pj. coincide with the ground supports of A w.r.t. the entire program P. Conse-
quently, also ground counter-supports and (generalized) counter-supports, respectively,
coincide in Py and P. Therefore, CounterSupp is complete w.r.t. Py, too. As a conse-
quence, since Py is a ground, finite program, the ground completeness theorem can be
applied to conclude that (G | H)y has a successful skeptical derivation from Py and
CounterSupp?® with restart goal Gy. The same derivation is also a derivation from P
(as Py € Ground(P)) and CounterSupp?. Then, by the Lifting lemma, (G | H) has a
successful skeptical derivation from P and CounterSupp, with restart goal G and some
answer substitution 6, s.t. (G | H)y is an instance of (G | H)6. It follows that 6 is more
general than 7. O

6 Conclusions

In this paper we have shown some important properties of the class of finitely recursive
programs, a very expressive fragment of logic programs under the stable model seman-
tics. Finitely recursive programs extend the class of finitary programs by dropping the
restrictions on odd-cycles. We extended to finitely recursive programs many of the nice
properties of finitary programs: (i) a compactness property (Theorem [7); (ii) the r.e.-
completeness of inconsistency checking and skeptical inference (Theorem[IT)); (iii) the
completeness of skeptical resolution (Theorem [[3)).

Unfortunately, some of the nice properties of finitary programs do not carry over
to finitely recursive programs: (i) ground queries are not decidable (Theorem [12] and
CorollaryD); (ii) nonground credulous queries are not semidecidable (as ground queries
are co-r.e.).

As a side benefit, our techniques introduced a normal form for splitting and mod-
ule sequences, where sequence length is limited to w and—if the program is finitely
recursive—the sequence is smooth (i.e., the “delta” between each non-limit element
and its predecessor is finite). Such properties constitute an alternative characterization
of finitely recursive programs. Moreover, if the module sequence of a finitely recur-
sive program is consistent, then the whole program is (this result extends the splitting
sequence theorem).

Acknowledgements

This work is partially supported by the PRIN project Enhancement and Applications of
Disjunctive Logic Programming, funded by the Italian Ministry of Research (MIUR).

References

1. Apt, K.R.: Introduction to Logic Programming. In: van Leeuwen, J. (ed.) Handbook of The-
oretical Computer Science. Formal Model and Semantics, vol. B, pp. 495-574. Elsevier,
Amsterdam and The MIT Press, Cambridge (1990)

2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

10.

11.

12.

13.

14.

15.

On Finitely Recursive Programs 103

Bonatti, P.A.: Resolution for skeptical stable model semantics. J. Autom. Reasoning 27(4),
391-421 (2001)

Bonatti, P.A.: Reasoning with infinite stable models. Artif. Intell. 156(1), 75-111 (2004)
Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: A deductive system for non-
monotonic reasoning. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 364-375. Springer, Heidelberg (1997)

Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming lan-
guage. J. ACM 23(4), 733-742 (1976)

Fages, F.: Consistency of Clark’s completion and existence of stable models. Methods of
Logic in Computer Science 1, 51-60 (1994)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of
the 5th ICLP, pp. 1070-1080. MIT Press, Cambridge (1988)

Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9(3-4), 365-386 (1991)

Lifschitz, V., Turner, H.: Splitting a Logic Program. In: Proceedings of the 12th International
Conference on Logic Programming, Kanagawa 1995. MIT Press Series Logic Program, pp.
581-595. MIT Press, Cambridge (1995)

Lifschitz, V., Turner, H.: Splitting a logic program. In: International Conference on Logic
Programming, pp. 23-37 (1994)

Lloyd, J.W.: Foundations of Logic Programming, 1st edn. Springer, Heidelberg (1984)
Marek, V.W., Remmel, J.B.: On the expressibility of stable logic programming. In: Eiter, T,
Faber, W., Truszczynski, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 107-120.
Springer, Heidelberg (2001)

Niemel, I., Simons, P.: Smodels — an implementation of the stable model and well-founded
semantics for normal lIp. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997. LNCS,
vol. 1265, pp. 421-430. Springer, Heidelberg (1997)

Turner, H.: Splitting a default theory. In: Shrobe, H., Senator, T. (eds.) Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pp. 645-651. AAAI Press, Menlo
Park, California (1996)

Minimal Logic Programs

Pedro Cabalar!, David Pearce?, and Agustin Valverde®*

! Corunna University Corunna, Spain
cabalar@udc.es
2 Universidad Rey Juan Carlos Madrid, Spain
davidandrew.pearce@urjc.es
3 University of Mélaga Mélaga, Spain
a valverde@ctima.uma.es

Abstract. We consider the problem of obtaining a minimal logic program
strongly equivalent (under the stable models semantics) to a given arbi-
trary propositional theory. We propose a method consisting in the genera-
tion of the set of prime implicates of the original theory, starting from its set
of countermodels (in the logic of Here-and-There), in a similar vein to the
Quine-McCluskey method for minimisation of boolean functions. As a side
result, we also provide several results about fundamental rules (those that
are not tautologies and do not contain redundant literals) which are com-
bined to build the minimal programs. In particular, we characterise their
form, their corresponding sets of countermodels, as well as necessary and
sufficient conditions for entailment and equivalence among them.

Keywords: logic programming, answer set programming, minimisation
of boolean and multivalued functions.

1 Introduction

The nonmonotonic formalism of Equilibrium Logic [1], based on the nonclassical
logic of here-and-there (henceforth: HT), yields a logical characterisation for the
answer set semantics of logic programs [2]. By capturing concepts such as the
strong equivalence of programs and providing a means to generalise all previous
extensions of answer set semantics, HT and equilibrium logic provide a useful
foundation for Answer Set Programming (ASP) (see [3/4]). There has recently
been an increasing interest in ASP in the expressiveness of logic programs and
the analysis of program rules in a more logical setting. Properties of Equilibrium
Logic have allowed, for instance, the extension of the traditional definition of
answer set (now equivalent to the concept of equilibrium model) to the most
general syntax of arbitrary propositional [5] and first order [6] theories.

In the case of propositional theories (of crucial importance for current ASP
solvers), in [7] it was actually shown that any arbitrary theory in Equilibrium
Logic is strongly equivalent to (that is, can always be replaced by) a disjunc-
tive logic program possibly allowing default negation in the head. In this way,

* This research was partially supported by Spanish MEC coordinated project TIN-
2006-15455-C03, subprojects 01, 02, 03.

V. Dahl and I. Niemela (Eds.): ICLP 2007, LNCS 4670, pp. 104 2007.
© Springer-Verlag Berlin Heidelberg 2007

Minimal Logic Programs 105

this type of rule constitutes a normal form for general ASP when dealing with
arbitrary theories. Aside from its interest as an expressiveness result, as [5] has
shown, the important concept of aggregate in ASP [§] can be captured by for-
mulas with nested implications, making such syntactic extensions of practical
value. In addition, the problem of generating a program from an arbitrary the-
ory, or merely from another logic program, immediately raises the question of
how good is this generation. A study of the complexity and efficiency of transla-
tion methods from arbitrary theories to logic programs was already carried out
in [9]. A different and perhaps more practically relevant topic has to do with the
quality or simplicity of the resulting program, rather than the effort required to
obtain it. In ASP various methods, including equilibrium logic, have been used
to analyse program simplification, both for ground programs [TOTIIT2/T3] and
more recently for programs with variables [T4JI5].

In this paper we consider the problem of generating a minimal or simpler
logic program strongly equivalent to some initial propositional theory (what
includes, of course, the case of a logic program). We propose a method that
follows steps similar to the Quine-McCluskey algorithm [T6I17], well-known from
the problem of minimising boolean functions. Our algorithm computes the set
of prime implicates of the original theory starting from its set of countermodels
in HT. In a second step, a minimal set of prime implicates is selected to cover
the whole set of countermodels. Obviously, these two steps mean a considerable
computational cost whose reward is the guarantee of syntactic minimality of the
obtained program, something not achieved before, to the best of our knowledge.

As we will discuss later in Section [l the interest of such a minimisation
method lies in its two main potential application areas: (i) it may become a useful
tool for theoretical research, helping to find minimal logic program patterns
obtained from translations of other constructions; and (ii) what possibly has
a greater practical impact, it allows an offline minimisation of a ground logic
program, which can be perhaps later (re-)used in several different contexts. Apart
from the method itself, the paper also provides side results of additional interest
from the viewpoint of expressiveness. We identify the normal form of fundamental
rules, used to conform the minimal programs. In this way, these rules are non-
trivial in the sense that they are not tautological and do not contain redundant
literals. The paper characterises the set of countermodels of any fundamental
rule and provides necessary and sufficient conditions (see Section[d]) for capturing
entailment and equivalence among them.

The paper is organised as follows. Section P recalls the Quine-McCluskey algo-
rithm for minimising boolean functions. Next, Section 3] contains a brief overview
of Equilibrium Logic, including some basic definitions about logic programs. Sec-
tion [presents the algorithm for obtaining prime implicates and the next section
contains a small example. Then, Section [0 presents an alternative definition of
minimal program (based on semantic entailment) and finally, Section [l concludes
the paper. Proofs have been included in the Appendix of an extended version of
this document [I§].

106 P. Cabalar, D. Pearce, and A. Valverde
2 Quine-McCluskey Algorithm

The Quine-McCluskey algorithm [I6/17] allows obtaining a minimal normal form
equivalent to any classical propositional theory I'. The algorithm is dual in the
sense that it can be equally used to obtain a minimal DNF from the set of models
of I' or to obtain a minimal CNF from its set of countermodels. Although the
former is the most popular version, we will actually focus on the latter for the
sake of comparison. After all, as shown in [7], logic programs constitute a CNF
for HT. The Quine-McCluskey algorithm computes the prime implicates of a
theory I' starting from its countermodels. To get a minimal CNF, a second
algorithm (typically, Petrick’s method [19]) must be used afterwards to select
a minimal subset of prime implicates that suffice to cover all countermodels of
I'. In what follows, we skip many definitions from classical propositional logic
assuming the reader’s familiarity.

Let At be a set of atoms (called the propositional signature). We represent
a classical propositional interpretation as a set of atoms I C At selecting those
assigned truth value 1 (true). As usual, a literal is an atom p (positive literal)
or its negation —p (negative literal). A clause is a disjunction of literals and a
formula in CNF is a conjunction of clauses. The empty disjunction and conjunc-
tion respectively correspond to L and T. We will use letters C, D, ... to denote
clauses. Satisfaction of formulas is defined in the usual way. A clause is said to
be fundamental if it contains no repeated atom occurrences. Non-fundamental
clauses are irrelevant: any repeated literal can be just removed, and any clause
containing p V —p too, since it is a tautology. We say that a clause C' subsumes
a clause D, written C' C D, iff all literals of C' occur in D.

Proposition 1. Let C, D be fundamental clauses. Then, C C D iff = C — D.

Proposition 2. An interpretation I is a countermodel of a fundamental clause
Ciff p € I for all positive literals p occurring in C and p € I for all negative
literals —p occurring in C'.

Proposition 2] provides a compact way to represent a fundamental clause C' (and

e
its set of countermodels). We can just define a labelling, let us write it C', that
for each atom p € At contains a pair:

- (p,1) € C when —p occurs in C' (meaning p true in all countermodels),

- (p,0) € C when p occurs as positive literal in C' (meaning p false in all
countermodels) or

-
— (p,-) € C if p does not occur in C' (meaning that the value of p is indifferent).

Note that it is also possible to retrieve the fundamental clause C' corresponding
—
to an arbitrary labelling C', so the relation is one-to-one. Typically, we further

=
omit the atom names (assuming alphabetical ordering) and we just write C as
a vector of labels. As an example, given the ordered signature {p,q,r, s} and

the clause C' = —p V ¢ V —s, we would have ¢ = {(p,1),(q,0),(r,-),(s,1)} or

Minimal Logic Programs 107

simply E’) = 10-1. When all atoms in the signature occur in a fundamental
clause, the latter is said to be developed. Proposition [2 implies that a developed
clause C has a single countermodel — note that in this case C does not contain
indifference symbols. By abuse of notation, we identify a countermodel I with
its corresponding developed clause {(p,1) | p € I} U{(p,0) | p € At \ I}.

An implicate C of a theory I' is any fundamental clause satisfying I" = C.
Clearly, countermodels of C' are countermodels of I" too. As any CNF formula
II equivalent to I'" will consist of implicates of I', the task of finding II can be
seen as a search of a set of implicates whose countermodels suffice to comprise
the whole set of countermodels of I'. However, if we want Il to be as simple
as possible, we will be interested in implicates with minimal size. An implicate
of I' is said to be prime iff it is not subsumed by another implicate of I". The
Quine-McCluskey algorithm computes all implicates of I' by collecting their
labelling vectors in successive sets S;. In fact, at each step, S; collects all the
vectors with 4 indifference labels, starting with ¢ = 0 indifferences (i.e. with
So equal to the set of countermodels of I'). To compute the next set S;11 the
algorithm groups pairs of implicate vectors 6, D in S; that just differ in one
atom p, say, for instance (p, 1) € C and (p,0) € D. Then, it inserts a new vector
E = (6’} \ {(p,1)}) U{(p,-)} in Sit1 and marks both C and D as non-prime
(it is easy to see that clauses C, D are both subsumed by the new implicate
E). When no new vector is formed, the algorithm finishes, returning the set of
non-marked (i.e., prime) implicates.

Exzample 1. The table in Figure[2lschematically shows the result of applying the
algorithm for a signature At = {p, ¢, r, s} and starting from a set of countermod-
els shown in column Sy. Numbers between parentheses represent the counter-
models of a given implicate (using the decimal representation of their vector of
labels). The horizontal lines separate the implicates in each \S; by their number
of 1’s. Finally, ‘*’ marks mean that the implicate has been subsumed by another
one. The prime (i.e., non-marked) implicates are therefore: -100 (—gVrVs), 10--
(=pVq), 1--0 (-pV s) and 1-1- (=p V —r).

3 Equilibrium Logic

We begin defining the (monotonic) logic of here-and-there (HT). A formula is

defined in the usual way as a well-formed combination of the operators 1, A, V, —

with atoms in a propositional signature At. We define —¢ def p— Land T def

—1. As usual, by theory we mean a set of formulas.

An HT-interpretation is a pair (H,T) of sets of atoms with H C T. When
H = T the HT-interpretation is said to be total. We recursively define when
(H,T) satisfies a formula @, written (H,T) = ¢ as follows:

- <H7T>%J-
— (H,T) Epifpe€ H, for any atom p € At

108 P. Cabalar, D. Pearce, and A. Valverde

SO Sl SZ
100 (4,12)

£0100 (4) =100- (8,9)
£1000 (8) *10-0 (8,10)
«1001 (9) =100 (8,12)
#1010 (10) 10-1 (9,11) |0r EZ’%HI)’;%
x 1100 (12) =* 101- (10,11) 1-1- (16 1’1 1;1 15)
«1011 (11) * 1-10 (10, 14) 114,
« 1110 (14) = 11-0 (12, 14)
#1111 (15) * 111 (11,15)

« 111 (14,15)

Fig. 1. Example of computation of Quine McCluskey algorithm

- <H7T> F@Vﬁfif <H7T>):Qoor <H7T>):77[}
- E-H’T1> = it) (H,T) i ¢ or (H,T) k=5 and (i) T = ¢ — o
1 classical 10g1C).

An HT-interpretation is a model of a theory I' if it satisfies all formulas in I".
As usual, we say that a theory I' entails a formula ¢, written I" = ¢, when any
model of I" is a model of ¢. A formula true in all models is said to be valid or
a tautology. An equilibrium model of a theory I' is any total model (T, T) of I"
such that no (H,T) with H C T is model of I'. Equilibrium Logic is the logic
induced by equilibrium models.

An alternative definition of HT can be given in terms of a three-valued se-
mantics (Godel’s three-valued logic). Under this viewpoint, an HT-interpretation
M = (H,T) can be seen as a three-valued mapping M : At — {0, 1,2} where,
for any atom p, M(p) =2 if p € H (p is true), M(p) = 0if p € At\T (pis
false) and M(p) =1if pe T\ H (p is undefined). The valuation of formulas is
defined so that the valuation of conjunction (resp. disjunction) is the minimum
(resp. maximum) value, M (L) = 0 and M(p —) = 2 if M(p) < M(¢) or
M(p —) = M(¢)) otherwise. Finally, models of a theory I' are captured by
those HT-interpretations M such that M (p) =2 for all p € I'.

Lemma 1. In HT, the following formulas are valid:

aNpA—p—f3 (1)
alNp— [V (2)

(aNp— BV -p) < (ahp—F) (3)
(A== BVp) e (ah—p—F) (4)
(= B) = (any—) (5)

(= B) = (a—pBV79) (6)

The following property of HT will have important consequences for adapting
the Quine-McCluskey method to this logic:

Minimal Logic Programs 109

Property 1. For any theory I', (H,T) = I implies (T, T) |= I

We can rephrase the property in terms of countermodels: if (T',T') is a counter-
model of I" then any (H,T) will also be a countermodel. As a result, contrarily
to what happened in classical logic (or in Lukasiewicz three-valued logic, for
instance), we cannot use an arbitrary set S of HT-interpretations to represent
the countermodels of some theory. Let us define the total-closure (t-closure) of
a set of interpretations S as:

StY S U (H,T) | (T,T)eS, HC T}
We say that S is t-closed if S* = S.

Property 2 (Theorem 2 in [7]). Each t-closed set S of interpretations is the set
of countermodels of a logic program.

This fact was used in [7] to compute the number of possible HT-theories (modulo
semantic equivalence) for a finite number n of atoms by counting the possible
t-closed sets of interpretations. The resulting amount happens to be considerably
smaller than 23", which corresponds, for instance, to the number of possible
theories we can form in Lukasiewicz logic.

3.1 Logic Programs
A logic program is a conjunction of clauses (also called rules) of the form:
WA ANag A=by A A=y — LV Ve Vady Ve Vad, ()

with n,m,h,k > 0 and all subindexed letters representing atoms. As before,
empty disjunctions stand for L while empty conjunctions stand for T. The empty
rule would therefore correspond to T — L or simply L. We will use letters r,
', ...to denote rules. We will sometimes abbreviate a rule r like (@) using the
expression:
BY AN=Br — Hd} v -Hd;

where B;F (resp. B;”) denotes the sets of atoms occurring positively (resp. neg-
atively) in the antecedent or body of r, while Hd," (resp. Hd,) denotes the sets
of atoms occurring positively (resp. negatively) in the consequent or head of r.

For sets of rules of form (), equilibrium models and answer sets coincide, [3].
Two rules 7,7’ are said to be strongly equivalent, in symbols r = 7/, if for any
set IT of rules, I U {r} and IT U {r'} have the same equilibrium models; strong
equivalence for sets of rules is defined analogously. Rules (and sets of rules)
are strongly equivalent iff they are logically equivalent in HT, i.e. they have
the same HT-models, [3]. Hence, strongly equivalent rules can be interchanged
without loss in any context, and deduction in HT provides a key instrument for
replacing rules by equivalent, simpler ones.

As happened with non-fundamental clauses in classical logic, some rules may
contain irrelevant or redundant information. To avoid this, we define:

110 P. Cabalar, D. Pearce, and A. Valverde

Definition 1 (fundamental rule). A rule r is said to be fundamental when
all pairwise intersections of sets de, Hd. , B, B, are empty, with the possible
exception of Hd;" N Hd. .

Lemma 2. For any rule r:
i) If one of the intersections B N B, Bf NHd" and B N Hd, is not empty,
then r is a tautology.
1) Otherwise, 1 is strongly equivalent to the fundamental rule:

v . BY A=B;. — (Hd \ B;)V—(Hd, \ B).
The proof follows from ([{l)-(#]). Lemma [plus the main result in [7] implies

Theorem 1. Fundamental rules constitute a normal form for the logic of HT.

4 Generation of Prime Implicates

As can be imagined, our goal of obtaining minimal programs will depend in a
crucial way on how we define the relation simpler than between two programs, or
more specifically, between two rules. To this aim, we can either rely on a syntactic
or on a semantic definition. For classical logic, Proposition [Il shows that both
choices are interchangeable: we can either use the inclusion of literals among
fundamental clauses C' C D (a syntactic criterion) or just use entailment C' = D
instead. In the case of HT, however, we will see later that this correspondence is
not preserved in a direct way. For this reason, we maintain two different concepts
of smaller rule in HT: entailment, written r |= r’ with its usual meaning; and
subsumption, written r C r’ and defined below.

Definition 2 (subsumption). A rule r subsumes another rule v, written r C
', when Hd! C Hd',, Hd, C Hd,,, B} C B}, and B; C B_,.

Rule subsumption » C 7’ captures the idea that r results from removing some
literals in 7’. It follows that the empty rule L subsumes all rules. As usual,
we handle the strict versions of subsumption, written 7 C r’ and meaning both
r Cr" and r # r/, and of entailment, written r |[< 7/ and meaning that r = ' but
r’ = r. From (@), (@) we conclude that subsumption is stronger than entailment:

Theorem 2. For any pair of rules v,r', if r C 1/ then r E1’.

However, in contrast to Proposition [] for classical logic, in HT the converse
direction does not hold. As a counterexample:

Ezample 2. Givenrulesr :p — gand v’ : pA—qg — L we have r =1/ but r € r/.

In the rest of this section we will focus on syntactic subsumption, providing later
(Section [d) a variation that uses semantic entailment instead.

Definition 3 (Syntactically simpler program). We say that program II is
syntactically simpler than program II', written II < II', if there exists some
I' C I’ such that IT results from replacing each rule v’ € I' by some r, r Cr'.

Minimal Logic Programs 111

In other words, we might remove some rules from II’ and, from the remaining
rules, we might remove some literals at any position. Note that I C II’ im-
plies II < II’ but the converse implication does not hold, and that, of course,
syntactically simpler does not generally entail any kind of semantic relation.

Theorem 3. Let I be a <-minimal logic program among those strongly equiv-
alent to some theory I'. Then II consists of fundamental rules.

Definition 4 (implicate/prime implicate). A fundamental rule v is an im-
plicate of a theory I’ iff I' = r. Moreover, r is said to be prime iff it is not
strictly subsumed by another implicate of I'.

To sum up, we face again the same setting as in classical logic: to find a =-
minimal program I7 equivalent to some theory I" means to obtain a set of prime
implicates that cover all countermodels of I'. Therefore, it is crucial that we
are able to characterise the countermodels of fundamental rules, as we did with

Proposition2lin the classical case. Given a fundamental rule r, we define the set

of HT-interpretations C'M s(r) def

{(H,T)|BfCH B, NT=0, Hi{NH =0, Hd_ CT }

Theorem 4. Given a fundamental rule r and an HT-interpretation M: M = r
iff M € CMs(r)t.

Theorem [and the fact that CMs(r) is never empty leads to:
Observation 1. Fundamental rules always have countermodels.

Given two fundamental rules r,r" we say that r covers r’ when CMs(r') C
CMs(r). Notice that this definition of covering is stronger than entailment: if
CMs(r') € CMs(r) then the same still holds for CMs(r')! € CMs(r)t and
from Theorem @ we conclude r = /. On the other hand, it is very easy to see
that covering is a weaker condition than subsumption:

Proposition 3. If r C ' then CMs(r') C CMs(r).

As with classical clauses, the countermodels in C'Ms(r) can also be compactly
described by a mapping of the set of atoms into a set of labels (which contains
more elements now). To do so, note first that the definition of C'Ms(r) can
be directly rephrased in terms of three-valued interpretations as follows: M &
CM s(r) iff the following conditions hold for any atom p: (i) p € B, = M(p) = 2;
(ii) p € Bf = M(p) = 0; (iii) p € Hd} = M(p) # 2; and (iv) p € Hd, =
M(p) # 0. As r is a fundamental rule, the last two conditions are not mutually
exclusive. Thus, when p € Hd," N Hd, we would just have M(p) = 1.

Definition 5 (Rule labelling). Given a fundamental rule r, we define its la-
belling 7 as a set containing, for each atom p € At, a pair:

(p.2) if p€ B} (p,2) if p € Hd! \ Hd,

(p,0) if p € B (p,0) if p € Hd, \ Hd}
(p,1) if p € Hd} N Hd;, (p,-) if p does not occur inr

112 P. Cabalar, D. Pearce, and A. Valverde

Note that (p,2) stands for M (p) # 2 whereas (p,0) stands for M (p) # 0. We will
sometimes write 7 (p) = v when (p,v) € 7 and we also use the abbreviation
7|zp to stand for {(q,v) € T | ¢ # p}. As an example of labelling, given
the signature At = {a,b,c,d, e, p,q}, the fundamental clause r : a Ab A =d —
eV pV —pV g would correspond to 7 = 22-0210. In fact, there actually exists
a one-to-one correspondence between a fundamental rule and its labelling, i.e.,
we can get back the rule from 7. Thus, the set of countermodels C' M s(r), or
its corresponding labelling 7, can be used to univocally represent the original
rule r. It is important to remember, however, that CMs(r) is not the set of
countermodels of 7 — by Theorem H the latter actually corresponds to C' M s(r)?.

A single countermodel M = (H,T') can also be seen as a labelling that assigns
a label in {0, 1,2} to each atom in the signature. Using the above definitions,

the ruld] ryr corresponding to M would be: BTJFM = H, B;,, = At\ T and
Hd = Hd_ =T\H.]Itis easy to see that rules derived from countermodels

are <-mazimal — in fact, there is no way to construct any fundamental rule
strictly subsumed by rj;. These implicates will constitute the starting set Sy
of the algorithm, which will generate new implicates that always subsume at
least one of those previously obtained. The proposed algorithm (Generation of
Prime Implicates, GPI) is shown in Table (a) of Figure dl The algorithm applies
three basic matching steps to implicates whose labels just differ in one atom p.
Note that the possible matches would be much more than three, but only three
cases 1), ii) and iii) yield any effect. To understand the purpose behind these
three operations, consider the form of the corresponding involved fundamental
rules. Using the correspondence between labelling and rule we obtain Table (b)
in Figure [

Proposition 4. Let a, 8 and p be arbitrary propositional formulas. For the three
cases 1), 1t), iii) in Table (b) Figure[]], the equivalence r" < r Ar' is an HT-valid
formula.

Table (b) in Figure [also explains the way in which the algorithm assigns the
non-prime marks. For instance, in cases i) and ii) only r is subsumed by the new
generated rule 7/ and so, GPI leaves r’ without being marked in the current step
i+ 1. However, in case iii) the obtained rule " subsumes not only r and 7’ but
also a A —-p — 3 and o A p — 3 which were left previously unmarked, and must
therefore be marked now too.

To prove termination and correctness of the algorithm, we will provide a
pair of useful definitions. Given a label v € {0,1,2,2,0,-} we define its weight,
w(v), as a value in {0,1,2} specified as follows: w(0) = w(l) = w(2) = 0,
w(2) = w(0) = 1 and w(-) = 2. Intuitively, w(v) points out the number of
matches like i), ii) and iii) in the algorithm required to obtain label v. The
weight of a fundamental rule r, w(r), is defined as the sum of the weights w(v)
of all labels in 7, that is, w(r) def veat w(T (p)). To put an example, given
7 = 22-0210, w(r) =0+ 0+2+0+1+0+1 = 4. Clearly, there exists a

! In fact, constructing a rule per each countermodel was one of the techniques used
in [7] to show that any arbitrary theory is equivalent to a set of rules.

Minimal Logic Programs 113

So = {rar | M [£ I'};

1:=0;
while S; # 0 do
Siv1:=0;

for each 7,7’ ¢ S; such that 7 # 7' and 7|z, = 7| for some p do
casei): (p,1) € 7 and (p,0) € 7’ then
Add 7" : 7|7§p U{ (p, Q) } to Siti;
Mark 7 as non-prime;
case ii): (p,1) € 7 and (p,2) € 7’ then
Add 7" : 7|7§p U{ (p, (_)) } to Siti;
Mark 7 as non-prime;
case iii): (p,2) € 7 and (p,0) € 7' then
Add 7" Ty U1 (p,) } to Siss
Mark 7,7, 7|2, U{(p,0)} and 7|z, U {(p,2)} as non-prime;

end case
end for each
=1+ 1

end while
(a) Pseudocode.

case 1) case ii) case iii)
ro: a— BVpV-op 1o a—[BVpV-p r a—BVp
r caA-p— 3 r talAp— 3 r Ta— BV -op
r’ a— [BVp r’ a— BV -p o —

(b) Rule form of generated implicates.

Fig. 2. Algorithm for generation of prime-implicates (GPI)

maximum value for a rule weight which corresponds to assigning label ‘-’ to all
atoms, i.e., 2 - |At|.

Lemma 3. Let IMP;(I") denote the set of implicates of I' of weight i. Then,
in the algorithm GPI, S; = IMP,(I").

Theorem 5. Algorithm GPI stops after a finite number of steps i = n and
Ui_o . Si is the set of implicates of I'.

Theorem 6. Let I' be some arbitrary theory. The set of unmarked rules obtained
by GPI is the set of prime implicates of I

5 Examples

To illustrate algorithm GPI, we begin considering its application to translate the
theory I' = {(—p — q) — p} into a strongly equivalent minimal logic program.
The set of countermodels is represented by the labels at the first column of the
table below, assuming alphabetical ordering for atoms in {p,¢}. For instance,

114 P. Cabalar, D. Pearce, and A. Valverde

labelling 10 stands for M (p) = 1 and M(q) = 0, that is, M = ((, {p}) whereas
02 stands for M’'(p) = 0 and M'(q) = 2, i.e., M' = ({q}, {q}). The remaining
columns show all matches that take place when forming each remaining S;. The
marks ‘*’ show those implicates that result marked at each match.

So 51 52

10 10,411 — 17

02 02,%12—22 %12,%x10 — 1- (mark =*10,%12 too)
12 02,#01 — 00 22,521 — 20

01 12,%11+——10 00, %10 — 20

11 01,11 — 21

Notice that implicate 01 in Sy is not marked until we form -1 in S5. Observe
as well that implicate 02 is obtained in two different ways at that same step.
Since no match can be formed at Ss the algorithm stops at that point. If we
carefully observe the previous table, the final unmarked labellings 7 (i.e., prime
implicates) are shown below:

T r CMs(r) CMs(r)t
02 —pAg— L 02 02,01
2 g—p 02,12 02,12,01
00 -p — g 02,01 02,01
- pV-p 10,11,12 10,11, 12

20 pV g 11,12,01,02 11,12,01,02

Finally, to obtain a minimal program we must select now a minimal set of
implicates that covers all the countermodels of I". To this aim, any method from
minimisation of boolean functions (like for instance, Petrick’s method [I9]) is
still applicable here, as we just have a “coverage” problem and do not depend
any more on the underlying logic. Without entering into details, the application
of Petrick’s method, for instance, would proceed to the construction of a chart:

01 21 00 1- 20

10 X

02 x x X X
12 X X X
01 x x X X
11 X X

Implicate 1- will be essential, as it is the only one covering countermodel 10.
If we remove it plus the countermodels it covers we obtain the smaller chart:
02 22 00 20
02 x x x X
01 x x x X

that just points out that any of the remaining implicates can be used to form a
minimal program equivalent to I'. So, we get the final four <-minimal programs:

Minimal Logic Programs 115

I ={pV-p, -pA—q— L} Is={pV-p, =p— ~q}
Iy ={pV-p, ¢—p} 11y ={pV -p, ~qVp}

This example can be used to compare to transformations in [9] (for reducing
arbitrary theories to logic programs) that applied on I' yield program IT5 plus
the additional rule {pV-pV—q} trivially subsumed by pV—p in IT>. Nevertheless,
not all examples are so trivial. For instance, the theory {(-=p — ¢q) — (-p — 1)}
from Example 1 in [9] yielded in that case a translation consisting of the six rules
{(gAn=p— L1),(¢ = =), (=p — —p), (=pV =), (=p — —pV —q), (=pV =gV —r)}
that can be trivially reduced (after removing tautologies and subsumed rules)
to {(¢g A—=p— L1),(¢ — —r),(—pV —r)} but which is not a minimal program. In
fact, the GPI algorithm obtains (among others) the strongly equivalent minimal
program {(¢ A —=p — L), (=pV —r)}. Note that another important advantage is
that the GPI method obtains all the possible minimal programs when several
choices exist.

As an example of the use of GPI on logic programs, consider the case where we
must combine two pieces of program from different knowledge sources. If we take,
for instance IT = {(-r Aq — p),(-p — rV s)} and II' = {(r — p), (-r — ¢)},
these two programs are minimal when analysed independently, whereas none of
the rules in IT U IT’ is subsumed by another in that set. After applying GPI to
ITUIT" however, we obtain that the unique minimal strongly equivalent program
is just {(=r — p), (r — p), (=r — @)}

6 Entailment

Looking at the first example in the previous section, and particularly at the
first implicates chart, it may be surprising to find that, although all of them are
prime, some implicates entail others. The reason for this was explained before:
contrarily to the classical case, (our definition of) syntactically simpler does not
mean entailment in HT. Note, for instance, how all implicates excepting 1- are
entailed by 20. We claim, however, that our criterion is still reasonable, as there
is no clear reason why —pV ¢ should be syntactically simpler than pA—qg — L or
p — ¢. On the other hand, it seems that most imaginable criteria for syntactic
simplicity should be probably stronger than our = relation. In this section we
consider an alternative semantic definition of prime implicate that relies on the
concept of entailment.

Definition 6 (s-prime implicate). An implicate r of a theory I' is said to
be semantically prime (s-prime for short) if there is no implicate v’ of I' such
that r' |< r.

The only s-prime implicates in the example would be now 1- and 20. The in-
tuition behind this variant is that, rather than focusing on syntactic simplicity,
we are interested now in collecting a minimal set of rules that are as strong as
possible, but considering rule by rule (remember that the program as a whole
has to be strongly equivalent to the original theory). Since subsumption implies
entailment, finding the s-prime implicates could be done as a postprocessing to

116 P. Cabalar, D. Pearce, and A. Valverde

the GPT algorithm seen before (we would just remove some prime implicates that
are not s-prime). Another, more efficient alternative would be a suitable modifi-
cation of the algorithm to disregard entailed implicates from the very beginning.
For space reasons, we do not enter into the details of this modification. What is
perhaps more important is that in any of these two alternatives for computing
s-prime implicates we can use the following simple syntactic characterisations of
entailment and equivalence of rules.

Theorem 7. For every rule r, and every fundamental rule ', v = ' iff the
following conditions hold:

B, C B,
Hd, C Hd,_, UB,

Bf C BYUHA,

Hd! C Hd} UB,

Either B N Hd,, = @ or Hd, N Hd}, = .

Crds Lo do =

For instance, it is easy to see that rules r and ' in Example Bl satisfy the
above conditions. Theorem [1 leads to a characterisation of equivalence between
fundamental rules.

Corollary 1. If r and v’ are fundamental rules, then: r =5 v’ iff the following
conditions hold:

1. B, =B,

2. Hd} = Hd,

3. Hd, UBS = Hd,, UB/,

4. If Hd} = Hd}, # @, then B}t = B, and Hd, = Hd,,

So we can actually classify fundamental rules into two categories: if their positive
head is not empty Hd;" # @, then there is no other equivalent fundamental rule.
On the other hand, if de = @&, then r can be called a constraint, since it is
strongly equivalent to B;f A Hd_ A =B — 1 but also to any rule that results
from removing atoms from the constraint’s positive body B;f U Hd,. and adding
them negated in the head (this is called shifting in [20]). For instance:

PAGQA-T — L =5 gAN-T ——p =5 pA-T — g =; 1 — 7pV g

7 Discussion and Related Work

We provided a method for generating a minimal logic program strongly equiv-
alent to some arbitrary propositional theory in equilibrium logic. We actually
considered two alternatives: a syntactic one, exclusively treating programs with
a smaller syntax in the sense of rule and literal occurrences; and a semantic one,
in the sense of programs that make use of rules that are as deductively strong
as possible.

Some results in the paper were known before or were previously given for
more restrictive cases. For instance, Lemma] (in presence of Observation [I)

Minimal Logic Programs 117

provides a necessary and sufficient condition for tautological rules. This becomes
a confirmation using HT logic of Theorem 4.4 in [2I]. On the other hand, our
Theorem [7] is a generalisation of Theorem 6 in [13] for programs with negation
in the head. Finally, the shifting operation we derived from Corollary [was
introduced before in [20] (see Corollary 4.8 there) — in fact, we have been further
able to show that it preserves strong equivalence.

As commented in the introduction, we outline two main potential applications
for our method: as a help for theoretical research and as a tool for simplifying
ground logic programs. In the first case, the method may become a valuable
support when exploring a particular group or pattern of expressions. Consider
for instance the translation into logic programs of other constructions (say ag-
gregates, classes of complex expressions in arbitrary theories, high level action
languages, etc) or even think about an hypothetical learning algorithm that must
explore a family of rules to cover input examples. In all these cases, we may be
reasonably interested in finding the smallest strongly equivalent representation
of the set of rules handled. To put an example, the translation of a nested im-
plication (p — ¢) — r into the logic program {(¢ — r),(-p — r),(pV —q V r)}
found in [7] and of crucial importance in that paper, can be now shown, using
our algorithm, to be the most compact (strongly equivalent) possible one.

Regarding the application of our method as a tool for simplifying ground logic
programs, we may use the basic methodology proposed in [22] to clarify the sit-
uation. Three basic types of simplifications are identified, depending on whether
the result is: (i) smaller in size (less atoms or rules, rules with less literals, etc);
(ii) belonging to a simpler class (Horn clauses, normal programs, disjunctive pro-
grams, etc); and (iii) more efficient for a particular algorithm or solver. Apart
from this classification, they also distinguish between online (i.e., embedded in
the algorithm for computing answer sets) and offline simplifications. Our orien-
tation in this paper has been completely focused on (offline) simplifications of
type (i). This has a practical interest when we deal with program modules to
be (re-)used in several different contexts, or for instance, with rules describing a
transition in a planning scenario, as this piece of program is then replicated many
times depending on the plan length. Adapting the algorithm to simplifications of
type (ii) is left for future work: we can force the generation of a particular class
of programs (for instance, by just disregarding implicates not belonging to that
class), or use the method to show that this generation is not possible. Another
topic for future study is the analysis of complexity.

References

1. Pearce, D.: Equilibrium logic. Ann. Math. Artif. Intell. 47, 3-41 (2006)

2. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Kowalski, R.A., Bowen, K. (eds.) Proc. of the Fifth International Conference on
Logic Programming, ICLP’88, Seattle, WA, USA, pp. 1070-1080. The MIT Press,
Cambridge, Massachusetts (1988)

3. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2(4), 526-541 (2001)

118

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Cabalar, D. Pearce, and A. Valverde

Lifschitz, V., Pearce, D., Valverde, A.: A characterization of strong equivalence for
logic programs with variables. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR
2007, LNCS (LNATI), vol. 4483. Springer, Heidelberg (2007)

. Ferraris, P.: Answer sets for propositional theories. In: Baral, C., Greco, G., Leone,

N., Terracina, G. (eds.) LPNMR 2005. LNCS(LNAI), vol. 3662, pp. 119-131.
Springer, Heidelberg (2005)

. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc. of

the Intl. Joint Conf. on Artificial Intelligence (IJCAI’07) (2007)

. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic

programs. Theory and Practice of Logic Programming (to appear, 2007)

. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-

grams: Semantics and complexity. In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004.
LNCS(LNAI), vol. 3229, Springer, Heidelberg (2004)

. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-

rium logic to logic programs. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA
2005. LNCS(LNAI), vol. 3808, pp. 4-17. Springer, Heidelberg (2005)

Osorio, M., Navarro, J.A., Arrazola, J.: Equivalence in answer set programming.
In: Pettorossi, A. (ed.) LOPSTR 2001. LNCS, vol. 2372, pp. 57-75. Springer, Hei-
delberg (2002)

Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under
uniform and strong equivalence. In: Lifschitz, V., Niemelé, I. (eds.) Logic Program-
ming and Nonmonotonic Reasoning. LNCS(LNAI), vol. 2923, pp. 87-99. Springer,
Heidelberg (2003)

Pearce, D.: Simplifying logic programs under answer set semantics. In: Demoen, B.,
Lifschitz, V. (eds.) ICLP 2004. LNCS, vol. 3132, pp. 210-224. Springer, Heidelberg
(2004)

Lin, F., Chen, Y.: Discovering classes of strongly equivalent logic programs. In: Proc.
of the Intl. Joint Conf. on Artificial Intelligence (IJCAT’05), pp. 516-521 (2005)
Eiter, T., Fink, M., Tompits, H., Traxler, P., Woltran, S.: Replacements in non-ground
answer-set programming. In: Proc. of KR’06, pp. 340-350. AAAI, Stanford (2006)
Fink, M., Pichler, R., Tompits, H., Woltran, S.: Complexity of rule redundancy in
non-ground answer-set programming over finite domains. In: Baral, C., Brewka, G.,
Schlipf, J. (eds.) LPNMR 2007, LNCS (LNAI), vol. 4483. Springer, Heidelberg (2007)
Quine, W.V.O.: The problem of simplifying truth functions. American Mathemat-
ical Monthly 59, 521-531 (1952)

McCluskey, E.J.: Minimization of boolean functions. Bell System Technical Jour-
nal 35, 1417-1444 (1956)

Cabalar, P., Pearce, D., Valverde, A.: Minimal logic programs (extended report),
Technical report (2007), available at
http://www.dc.fi.udc.es/~cabalar/minlp-ext.pdf

Petrick, S.R.: A direct termination of the irredundant forms of a boolean function
from the set of prime implicants. Technical Report AFCRC-TR-56-110, Air Force
Cambridge Res. Center, Cambridge, MA (1956)

Inoue, K., Sakama, C.: Negation as failure in the head. Journal of Logic Program-
ming 35(1), 39-78 (1998)

Inoue, K., Sakama, C.: Equivalence of logic programs under updates. In: Alferes,
J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 174-186. Springer,
Heidelberg (2004)

Eiter, T., Fink, M., Tompits, H., Woltran, S.: Formal methods for comparing and
optimizing nonmonotonic logic programs Research project (last updated 2007),
web page http://www.kr.tuwien.ac.at/research/eq.html

http://www.dc.fi.udc.es/~cabalar/minlp-ext.pdf
http://www.kr.tuwien.ac.at/research/eq.html

Generic Tableaux for Answer Set Programming

Martin Gebser and Torsten Schaub*

Institut fiir Informatik, Universitéit Potsdam, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract. We provide a general and modular framework for describing infer-
ences in Answer Set Programming (ASP) that aims at an easy incorporation of
additional language constructs. To this end, we generalize previous work charac-
terizing computations in ASP by means of tableau methods. We start with a very
basic core fragment in which rule heads and bodies consist of atomic literals. We
then gradually extend this setting by focusing on the concept of an aggregate, un-
derstood as an operation on a collection of entities. We exemplify our framework
by applying it to conjunctions in rule bodies, cardinality constraints as used in
smodels, and finally to disjunctions in rule heads.

1 Introduction

Answer Set Programming (ASP; [1]]) has become an appealing tool for declarative prob-
lem solving. Unlike the related area of satisfiability checking (SAT; [2]]), it however
lacked a formal framework for describing inferences conducted by ASP solvers, such
as the resolution proof theory in SAT [3]]. This deficiency has led to a great heterogeneity
in the description of ASP algorithms and has impeded their formal comparability. We
addressed this problem in [4] by introducing a family of tableau calculi [5]] for ASP. The
idea is to view answer set computations as derivations in an inference system: A branch
in a tableau corresponds to a successful or unsuccessful computation of an answer set;
an entire tableau represents a traversal of the search space. This approach provided a
uniform proof-theoretic framework for analyzing and comparing different operations,
strategies, or even algorithms of ASP solvers. Among others, we related the approaches
of existing ASP solvers to appropriate tableau calculi, in the sense that computations of
solvers are described by tableaux in corresponding calculi.

In this work, our primary goal is to generalize this approach towards a flexible and
modular framework that is easily amenable to new language constructs. We begin with
characterizing inferences in a basic core fragment in which rule heads and bodies con-
sist of atomic literals. We then gradually extend this setting by focusing on aggregates.
An aggregate is understood as an operation on a collection of entities. To obtain a basic
understanding of how to describe inferences on aggregates, we view conjunctions in
rule bodies as simple Boolean aggregates. We then extend the framework to cardinality
constraints, as used in smodels [6], and to disjunctions in rule heads.

After establishing the formal background, we introduce in Section [our generic
tableau framework. In Section [Bl and [6l we gradually extend this framework with

* Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and IIIS at Griffith University, Brisbane, Australia.

V. Dahl and I. Niemeli (Eds.): ICLP 2007, LNCS 4670, pp. 119-133] 2007.
(© Springer-Verlag Berlin Heidelberg 2007

120 M. Gebser and T. Schaub

conjunctions, cardinality constraints, and disjunctions, respectively. Section [7]is dedi-
cated to the proof complexity associated with these constructs. Finally, we discuss our
approach in Section 8l

2 Background

We are interested in an extensible proof-theoretic framework dealing with logic pro-
grams incorporating composite language constructs, like aggregates. To this end, we
need a semantic account of answer sets being, on the one hand, flexible and general
enough to accommodate a variety of composite language constructs, and, on the other
hand, conservative enough to correspond to standard answer set semantics on well-
established language fragments. Among several proposals [6/7,89/10], we have chosen
Paolo Ferraris’ approach that deals with propositional theories and gives meaning
to complex constructs by mapping them into propositional formulas.

We start by recalling Ferraris’ answer set semantics [10]. A propositional theory is
a finite set of propositional formulas, constructed of atoms from an alphabet P and the
connectives L, A, V, and —. Any other connective is considered as an abbreviation, in
particular, —¢ stands for (¢ —). An interpretation X, represented by the set of atoms
true in X, is a model of a propositional theory @ if X | ¢ for all ¢ € &. The reduct,
X of dwrt X isa propositional theory, (recursively) defined as follows:

P* = {¢* | ¢ € D}
1 if X - ¢
pX =<0 ifpeX

‘1XO¢§ ifX):¢and¢:¢1o¢2foro€{/\,\/,—>}

Intuitively, all (maximal) subformulas of & that are false in X are replaced by | in X,
all other subformulas of @ stay unchanged. It is clear that any model of X is also
a model of @, since X contains L if X [~ ¢ for some ¢ € &. Also note that all
occurrences of negation, that is, subformulas of the form (¢ — L), are replaced by
constants in ¢X, since either ¢ or (¢ — L) is false in X. An interpretation X is an
answer set of a propositional theory @ if X is a minimal model of X .

We next consider logic programs. Given an alphabet P, a logic program is a finite
set of rules of the form «v «+ [3 where « and (3 are literals, understood here as expres-
sions over P possibly preceded by the negation as failure operator not. In the following
sections, we gradually refine heads « and bodies 3 for obtaining particular classes of
logic programs. The semantics of logic programs is given by the answer sets of cor-
responding propositional theories, obtained via particular translations to be provided
in the following sections. However, the proof-theoretic characterizations below apply
directly to logic programs, without translating them into propositional theories.

We describe calculi for the construction of answer sets from logic programs. Such
constructions are associated with an (initial) assignment and a binary tree called a
tableau [3]. An assignment A is a partial mapping from the expressions in a program
into {T', F'}, indicating whether a member of the domain of A, denoted by dom(A),
is true or false, respectively. The domain of A, dom(A), varies throughout this paper

Generic Tableaux for Answer Set Programming 121

depending on the considered language fragment. We define AT = {v € dom(A) |
A(v) = T} and AF = {v € dom(A) | A(v) = F}. We also denote A by a set of
signed expressions: {Tv | v € AT} U{Fv | v € AF}. Furthering this notation, we
call an assignment that leaves all expressions undefined empty and denote it by ().

The nodes of tableaux are (mainly) signed expressions, that is, expressions preceded
by either T" or F', indicating an assumed truth value. A fableau for a logic program I
and an initial assignment A is a binary tree such that the root node of the tree consists
of the rules in /7 and all members of A. The other nodes in the tree are entries of the
form T'w or F'v, where v € dom(A), generated by extending a tableau using tableau
rules (given in the following sections) in the standard way [3]: Given a tableau rule
and a branch in the tableau containing the prerequisites of the rule, the tableau can be
extended by adding new entries to the end of the branch as specified by the rule. If the
rule is the cut rule (cf. (g) in Figure[l), then entries T'v and F'v are added as the left and
the right children to the end of the branch. For the other rules, the consequents are added
to the end of the branch. For convenience, the representation of tableau rules makes use
of two conjugation functions, ¢ and f. For a literal [, define:

g [TLifLe dom(A) g1 [FLitLe dom(A)
| Fvifl =notvforv e dom(A) " | Twifl =notvforv e dom(A)

Some rule applications are subject to provisos. For instance, (v € I") guides the appli-
cation of the cut rule by restricting cut objects to members of I" (cf. Figure[T).

A tableau calculus T is a set of tableau rules. An entry T'w (or F'v) can be deduced
in a branch if T'v (or F'v) can be generated from nodes in the branch by applying rules
of 7. Note that any branch corresponds to a pair (I1, A) consisting of a program I7 and
an assignment A; we draw on this relationship for identifying branches in the sequel.
A branch in a tableau is contradictory if it contains both entries T'v and F'v for some
v € dom(A). A branch is complete if it is contradictory or if it is closed under all rules
in 7, except for the cut rule, and either Tv € A or Fv € A for each v € dom(A). A
tableau is complete if all its branches are complete. A complete tableau for a program 7
and the empty assignment () such that all branches are contradictory is a refutation
for IT; provided that 7 is a complete calculus, it means that IT has no answer set.

3 Generic Tableau Rules

We begin with a simple class of unary programs where rules o < (3 are restricted to
atomic literals, that is, o and (3 are either equal to p or not p for some atom p € P. The
semantics of a unary program I/ is given by the answer sets of a propositional theory,
T[II], (recursively) defined as follows:

T[] ={7[8] — 7la] | (o B) € II} (1
RE S

For illustration, consider II; = {a « not b;not a «— ¢;b « ¢;¢ «— b}, whose
corresponding propositional theory is 7[I1;] = {=b — a;¢ — —a;c — b;b — ¢}. The

122 M. Gebser and T. Schaub

sets X; = {a} and Xy = {b, c} are models of 7[II;], their reducts are (7[I;])** =
{~1 —a; L — L}and (7[I[1])*2> = {L — 1l;c — —=l;¢c — b;b — c}. Clearly, X;
is the unique minimal model of (7[/;])X1, thus, X is an answer set of I1;. The unique
minimal model of (7[I11])*2 is 0, that is, X5 is not an answer set of IT;.

Unlike the semantics, our tableau framework directly deals with logic programs.
The global design, however, follows the two semantic requirements for answer sets:
modelhood wrt a program and (non-circular) support wrt the reduct. To begin with, we
define for a program II, two sets S, S" C atom(II), viz. the set of atoms occurring
in /7, and an assignment A:

supa(11,S,8") = {(a « B) € I | fB ¢ A, Supa(a, S), supa(B,5")} (3)

The purpose of sup, (11,5, S’) is to determine all rules in T that can, wrt A, provide
a support for the atoms in S external wrt S’. Of particular interest are the cases where
supy (I1,S,S") is empty or a singleton {a@ < f}. In the first case, the atoms in S
cannot be supported and are prone to be false, while the second case tells us that o < 3
is the unique support for S external wrt S” so that 5 must be true to (non-circularly)
support .S.

Looking at the definition of sup, (11, S, S’) in (3), we note that a rule o + 3 such
that f3 € A cannot provide any support wrt A. Otherwise, we check via supa (a, S)
that v can support S and via sup4(/3, S") that 3 does not (positively) rely on S”. For the
simple case of unary programs, these concepts are defined as follows:

supa(p,S) ifpe S 4)
supa(p, 8') ifp € (P\) ©)
supa(not v,S") for every expression v (6)

The universal validity of (@) is because only positive dependencies are taken into ac-
count. Also note that a rule o « [such that & = not v cannot support any set .S of
atoms. (We further illustrate the above concepts after Theorem/[Il)

The tableau rules constituting our basic calculus are given in Figure [Il Rules /7
and /| provide basic rule-based inferences such as modus ponens and modus tollens.
Tableau rules NT and N | amount to negation and support for atoms stemming from
Clark’s completion [I1]]. Note that the derivability of an atom p and thus the appli-
cability of tableau rules N7 and N |, respectively, is determined by sup, (11, {p}, 0).
In the general case, rule N | makes use of two further constructs, mina(«, S) and
maxa(B3,S’), that are used to determine entries that must necessarily be added to A
in order to support some atom in S via rule o < [without positively relying on S’.
However, these concepts play no role in the setting of unary programs:

mina(p,S) =0 forpeP 7
maza(p,S’) =0 forpeP (8)
maza(not v, S") =0 for every expression v 9

Tableau rules U1 and U | take care of unfounded sets [[12]], either by identifying atoms
that cannot be non-circularly supported (UT) or by preventing true atoms to become

Generic Tableaux for Answer Set Programming 123

a—f a—f
tg fa
ta fB
(a) Implication (17) (b) Contraposition (1)
I, A

Fp (p € atom(II), sup, (11, {p},0) = 0)
(c) Negation (N7T)
I, A
5, mina (e {n)). maza (5,0) (€ (AT 0 atom(ID)), sup, (11, {p},0) = {or — 3})
(d) Support (N |)

’

I, A
Fp (8 Catom(Il),p € S, supy(I1,5,5) =)
(e) Unfounded Set (UT)
I, A .
¢8, mina(a, S), maza(B, S) (S C atom(IT), (A" N S) £ 0, sup, (11,5, 5) = {a — B})

(f) Well-founded Set (U |)

Tv| Fv (vel)
(8) Cut (C[I'))

Fig. 1. Generic tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting (g)

unfounded (U |). The applicability of U7 and U | is determined by sup, (II, S, .S) for
a set S of atoms; hence, these rules subsume N1 and N | relying on sup, (I, {p}, ().
We nonetheless include N T and N | since their applicability is easy to determine, and
so they have counterparts in virtually all ASP solvers. Finally, the cut rule C[I'] in (g)
constitutes the only rule introducing multiple branches. It allows for case analysis on
the expressions in I, if the deterministic tableau rules do not yield a complete branch.

Note that the definition of sup, (11,5, S") in @) is common to both support-driven
(viz. NT and N|) and unfoundedness-driven (viz. UT and U|) inferences. As we
demonstrate in the following sections, an additional language construct is then in-
corporated into the basic tableau calculus by supplying tableau rules for handling its
truth value and by extending the definition of 5upa (c, S) and supa (3, S’) (along with
mina(a, S) and maza (8, S")) to impose an appropriate notion of support.

For a unary program 17, we fix the domain of assignments A as well as the cut objects
used by C[I'] to dom(A) = I' = atom(IT). This allows us to characterize the answer
sets of unary programs by tableaux.

Theorem 1. Let IT be a unary program and) the empty assignment.
Then, the following hold for the tableau calculus consisting of tableau rules (a-g):

1. Program II has no answer set iff every complete tableau for IT and () is a refutation.
2. If IT has an answer set X, then every complete tableau for II and () has a unique
non-contradictory branch (II, A) such that X = AT N atom(II).

124 M. Gebser and T. Schaub

3. If a tableau for II and () has a non-contradictory complete branch (II, A), then
AT N atom(I1) is an answer set of 1.

For illustration, consider the program IT; = {a < not b;b < not a;c «— not a}.
Cutting on c results in branches with T'c and F'c, respectively. The first one can be
extended by tnot a = Fa via N |. Indeed, supq., (T2, {c},0) = {c « not a} tells
us that ¢ «<— not a is the only rule that allows for supporting ¢, which necessitates a to be
false. To be more precise, we have fnot a = T'a ¢ {Tc}, and both Sup;r.;(c, {c}) and
@{TC} (not a,) are satisfied; the proviso of N | is thus established with respect to rule
¢ < not a, so we deduce tnot a = Fa. The two remaining sets, ming.}(c, {c}) =
mazgrey (not a, () = 0, are superfluous in the simple language fragment of unary
programs. Having deduced F'a, we can either apply /7 or | to conclude T'b and so to
obtain a complete branch. The second branch with F'c can be extended by fnot a = Ta
via [|. From this, we deduce F'b, either by N1 or N |, obtaining a second complete
branch. The two complete branches tell us that {b, ¢} and {a} are the answer sets of IT5.

Further, consider the program IT3 = {a < b;b < a;b < ¢; ¢ < not d;d «— not c}
along with the following two complete branches:

H3 HS

Td (Clatom(IT)]) Ta (Clatom(IT)])
Fc (N1,N|,UT,U]) To (IT,N],U])

Fa (UY) Tc (U))

Fb (I|l,NT,U7) Fd (NT,N|,UT,U])

We have chosen these branches for illustrating the application of the unfounded set rule
(U7T) and the well-founded set rule (U |), respectively. (Along the branches, we indi-
cate all possible inferences leading to the same result.) We first inspect the deduction
of Fa by UT in the left branch. Taking set {a, b} (and its element) makes us check
whether supirq pey (113, {a, b}, {a,b}) is empty. To this end, we have to inspect all
rules that allow for deriving an atom in {a, b} (as stipulated via M{ﬂL Fe(a,{a,b})).
Given fc = Fc, we only need to consider a < b and b < a. Neither rule satisfies
W{Td)pc}(ﬂ7 {a,b}), which leaves us with supgpq gy (113, {a, b}, {a,b}) = 0. The
well-founded set inference of T'c in the right branch requires a set of atoms, some of
whose elements is true, such that only one rule can non-circularly support the set. Tak-
ing {a,b}, we can verify that supp, 1) (113, {a,b},{a,b}) = {b < c}. The mem-
bership of b « cis justiﬁed by the fact that fc = Fc¢ ¢ {Ta,Tb}, and that both
sup{Ta 751(b,{a,b}) and sup supgra, v} (c,{a,b}) hold. Furthermore neither a < b nor
b« ais included in sup;p, vy (113, {a b}, {a,b}) because sup;rq 1oy (b, {a, b}) and
sup(ra, oy (a, {a,b}) donot hold. Hence, only tc = T'c can justify T'a and T'b.

4 Conjunctive Bodies

Having settled our basic framework, we now allow rule bodies to contain conjunctions.
While rule bodies themselves are often regarded as conjunctions, we here take a slightly
different perspective in viewing conjunctions as (simple) Boolean aggregates, which
like atoms can be preceded by not. This gives us some first insights into the treatment

Generic Tableaux for Answer Set Programming 125

F{ly,... L1l liv1, ... ln}

thy, ..., tl, thy, ..., tli—1,tliyq1,...,tl,
T{li,...,ln} fli
(h) True Conjunction (TC1) (i) Falsify Conjunction (TC'|)
Il T{l1,...,ln}
F{li,...,li...,ln} th,..., tl,
(j) False Conjunction (FC1) (k) Justify Conjunction (FC'|)

Fig. 2. Tableau rules for conjunctions

of more sophisticated aggregates like cardinality constraints to be dealt with in the next
section.

A conjunction over an alphabet P is an expression of the form {l1,...,l,} where;
is an atomic literal for 1 < ¢ < n. We denote by conj(P) the set of all conjunctions
that can be constructed from atoms in P. A rule @ <« f such that « is an atomic
literal and [is an atomic literal or a (possibly negated) conjunction of atomic literals
is a conjunctive rule. A logic program is a conjunctive program if every rule in it is
conjunctive. For defining the semantics of conjunctive programs, we add the following
case to translation 7[7] in @):

7[7] = N 7(l] if m € conj(P)

For accommodating conjunctions within the generic tableau rules in Figure [Il we
extend the previous concepts in (@9) in a straightforward way:

supa({ly,...,1,},8") if supa(l,S’) foreveryl € {l1,...,1,}
maza({l1, ..., 1} S") = Uieq,,. 1,y maza(l,)

Note that maza ({l1,...,1l,},S’) is still empty since maza (I, S’) = 0 for every atomic
literal I € {l1,. .., }. It thus has no effect yet, but this changes in the next section.

For a conjunctive program I/, we fix the domain dom(A) of assignments A and
the cut objects I" of C[I'] to dom(A) = I = atom(II) U congj(II), where conj(II)
is the set of conjunctions occurring in I/. The additional tableau rules for handling
conjunctions are shown in Figure 2l Their purpose is to ensure that T'{l1,...,l,} € A
iff (AT NP) |= (r[l1] A+ - - AT[l,]). By augmenting the basic calculus with the tableau
rules in Figure] Theorem[I] extends to conjunctive programs.

Theorem 2. Let IT be a conjunctive program and) the empty assignment.
Then, statements 1. to 3. given in Theorem[ll hold for the tableau calculus consisting
of tableau rules (a-k).

5 Cardinality Constraints

We define a cardinality constraint over an alphabet P as an expression of the form
J{l1, ..., 1.}k where [; is an atomic literal for 1 < i < n and j, k are integers such that

126 M. Gebser and T. Schaub

0 < j < k < n. We denote by card(P) the set of all cardinality constraints that can
be constructed from atoms in P. For v € (P U card(P)), we say that v and not v are
cardinality literals. A rule a < (3 such that «v is a cardinality literal and 3 is a cardinality
literal or a (possibly negated) conjunction of cardinality literals is a cardinality rule. A
logic program is a cardinality program if it consists of cardinality rules.

Several syntactic classes of programs with cardinality constraints (and other aggre-
gates) can be found in the literature [6,[7,[8][OL[10]. Furthermore, the semantics differ
on aggregates in the heads of rules; which semantics is the right one depends on the
intention and cannot be answered a priori. On the one hand, we here adopt the approach
of [6,[Z,[8]] and interpret cardinality constraints in heads as “choice constructs,” that is,
derived atoms within a cardinality constraint are not minimized. On the other hand, the
syntactic class of programs (or formulas, respectively) considered in [10] is presum-
ably the most general one. It allows for arbitrary aggregates over arbitrary formulas,
so that cardinality constraints and rules as defined here form a syntactic fragment. The
other approaches [6,[7,[8L 0], however, do not cover our notion of a cardinality rule.
As before, we thus embed cardinality programs into the framework of to fix their
semantics.

The fact that true atoms are not minimized within cardinality constraints in heads
of rules necessitates an extended translation of cardinality programs into propositional
theories, since the semantics of the latter per default relies on the minimization of true
atoms[] We now replace the definition of 7[17] in (@) with the following one:

T[] = {7[f] = 7la] | (a« < B) € I, & card(P)} U (10)
{7[8] = (7l A Apeatom(a)® V p)) | (o = B) € IT, o0 € card(P)}

where atom (j{l1,...,l,}k) = {l1,..., L.} NP for (j{l1,...,ln}k) € card(P). Note
that conjuncts /\ ¢ ;o) (P V —p) are tautological and thus neutral as regards the
(classical) models of 7[I7]. Given an interpretation X, they rather justify the truth of all
p € atom(a) N X in (7[I1])X where —p is replaced by L. We further add another case
to translation 7[r] in (@), which amounts to the aggregate translation given in [10]:

Tln] = (ch{ll,...,ln,},ICI:jT[C]) A _‘(\/Cg{ll7---7ln}v|C|:k+1T[C])
if (m=j{l1,...,ln}k) € card(P)

Notably, the upper bound k is translated into a negative subformula, and only the sub-
formula for the lower bound j still appears potentially in the reduct wrt a set of atoms.
Also note that 7[j{l1, ..., 1, }k] is of exponential size. Even if auxiliary atoms are used
to obtain a polynomial translation, like the one described in [6], compilation approaches
incur a significant blow-up in space. Our proof-theoretic characterizations, provided in
the following, apply directly to cardinality constraints and thus avoid any such blow-up.

Figure [3] shows the tableau rules for cardinality constraints. For a cardinality pro-
gram 7, we fix the domain dom(A) of assignments A and the cut objects I" of C[I'] to

! Interpreting aggregates in rule heads as “choice constructs” avoids an increase of complexity
by one level in the polynomial hierarchy. If derived atoms were to be minimized, it would be
straightforward to embed disjunctive programs (see next section) into cardinality programs.

Generic Tableaux for Answer Set Programming 127

th, ...t fley1,. .., fln
Ti{ly, ... Loy lbgt, oy lntk
(1) True Bounds (TLUT)

Fj{li,....LG—1, 0yl g1y -y In bk Fi{li, ..., G i1y ooy bty ooy oo In bk
th, ... thi—1, fligr, ..., fln th, ..., th, fliyo, ..., fln
fl, .. fle tlhiv1,. .., th
(m) Falsify Lower Bound (TL|) (n) Falsify Upper Bound (TU |)
fli, ..., fln th, ... tles
Fj{li,...,lj,....ln}k Fi{li,...,lgs1, ..., In}k
(o) False Lower Bound (FLT) (p) False Upper Bound (FUT)
Ti{li, ..., L g1 Itk Ti{ly, .. ey loyr ..y lntk
flivi, ..., fln tl, ... tl
th,... tl; Flig1, .o, Fln
(q) Justify Lower Bound (FL|) (r) Justify Upper Bound (FU |)

Fig. 3. Tableau rules for cardinality constraints

dom(A) = I" = atom(IT)U conj (II)U card (IT), where card (IT) is the set of cardinal-

ity constraints occurring in I7. For a cardinality constraint j{l1,..., [, }k, the tableau

rules in FigureBlensure that T'(j{l1,...,l,}k) € Aiff (AT NP) = 7[j{l1,. .., L }k].
For illustration, consider the cardinality constraint

v = 2{a,b,c,not d,not e}3 ,

having n = 5 literals, lower bound j = 2, and upper bound k& = 3. For an assignment A4,
tableau rule TLU T allows for deducing Ty if at least 7 = 2 literals [of y are true (i.e.,
tl € A) and at least n — k = 2 literals [of ~y are false (i.e., fI € A). This holds, for in-
stance, for assignment A, = {T'a, Fb, Td, Fe}; hence, Ty can be deduced via TLUT.
Indeed, the lower and upper bound of v are satisfied in every non-contradictory branch
that extends A1, no matter whether T'c or F'c is additionally included. Rules 7'L] and
TU | are the contrapositives of T'L U T, ensuring that either the lower or the upper bound
of v is violated if F'y belongs to an assignment. For instance, F'c and T'e can be deduced
via TL| wrt assignment Ay = {F~y, Ta, Fb, Td}. Observe that the upper bound k& = 3
cannot be violated in non-contradictory extensions of As since n—k = 2 literals of -y are
already false wrt A, as it contains F'b and T'd. Conversely, T'U | allows for deducing
Tcand Fe wrt { Fy, Ta, Fb, Fd} in order to violate the upper bound of ~y; the lower
bound of cannot be violated because of T'a and F'd. The remaining four tableau rules
in Figure [either allow for deducing F'y, if its lower bound (FLT) or its upper bound
(F'UT) is violated, or make sure that the lower bound (F'L]) and the upper bound (F'U |)
are satisfied, if Ty belongs to an assignment. For v as above, F'y can be deduced via
FLT wrtassignment { b, Fe, T'd, Te} or via FU T wrt assignment {T'b, T'c, F'd, Fe}.
Conversely, FL| allows for deducing T'a and Fe wrt {Ty, Fb, Fe, Td}, and FU | al-
lows for deducing F'a and T'e wrt {Ty, Tb,Tc, Fd}.

128 M. Gebser and T. Schaub

To integrate cardinality constraints into the generic setting of the tableau rules in
Figure[Tl we also have to extend the concepts in (@{0):

supa(5{l1,- .., }k,S) if {l1,...,1,} NS # 0 and

Hle ({l,....ln}\9) | tle A} <k
supa(5{l1,. .., I}k, S") if {1 € ({l1,.... 1,3\ S) | Fl & A} >

{fille ({li,.. ., L3\ S), tl ¢ A}
mina(j{l1, ..., ln}k,S) = if [{le{l,....,}\S)|tle A} =k—1

0if [{le({l,...,l,}\S)|tle A #k—1

{ti| e ({ln,....In}\ 5", fl & A}
maza(j{l,.. . LYk, S) = & it [{1€ ({l,.. L3\ S) | fFlg AY =
0if [{1e ({lh,... . ln}\S") | F1 & A} #j

Recall that Sup4 (a, S) is used to determine whether a rule with head a can provide sup-
port for the atoms in S. If & = j{l1, ..., I, }k, then some atom of S must be contained
in {ly,...,l,}. Furthermore, if ({l1,...,l,} \ S) already contains k (or more) literals
that are true wrt A, then the addition of Tpto A forp € ({l1,...,1,}NS) would violate
the upper bound k, so that the corresponding rule o «— (3 cannot support .S. This also
explains the false literals in mina (j{l1,. .., 1, }k, S) that can be deduced if k¥ — 1 liter-
als of ({l1,...,1,}\ 9) are already true wrt A. If one more literal in ({l1,...,0,} \ 5)
were made true, S would lose its last (external) support a < (3, though containing
some atom that is true wrt A (cf. N | and U] in Figure[I). In addition, supa (8, S’) is
used to verify whether a support via 3 is external wrt S’. If, for a rule o < (3, either
8 =j{l1,...,l,}k or B is a conjunction such that j{l;, ..., 1, }k € (3, then there must
be enough non-false literals in ({l1, ..., [, }\ S’) to achieve the lower bound j. Further-
more, if the number of such literals is exactly 7, then all of them must be true for pro-
viding a support that is external wrt S”. This is expressed by maza (j{l1,...,l.}k, 5.
For illustration, consider the following cardinality program I,

r1: 0{c,d,e}3 —
IIy =< ro: a,b}2—c,d rq s 1{b,d}2 — 1{a,c}2
rs: 0{a,d}1 — 1{b, not e}2 rs: 1{a,d}2 b

Let assignment A contain Ta, F'c, and F{c, d}, and note that tableau rule U | (or N |)
does not apply to set {a} since sup,(I14,{a},{a}) = {rs,rs}. Let us however con-
sider set {a,b}. Given that {c,d,e} N {a,b} = 0 and F{c,d} € A, we have r; ¢
supy (I1y, {a,b},{a,b}) and ro & sup,(I1y,{a,b},{a,b}). Considering r5, we have
b € {a, b} and thus supa (b, {a, b}) does not hold. For 74, we have {a, c} \ {a, b} = {c}
and fc = Fc € A, so that there are no non-false literals in {a,c} \ {a,b}. That
is, the lower bound 1 of 1{a, c}2 cannot be achieved independently from {a, b}, and
thus 5upa(1{a, c}2, {a,b}) does not hold. We have now established that only 73 is po-
tentially contained in sup, (14, {a, b}, {a,b}). Since (not e) € {b,not e} is a non-
false literal not belonging to {a,b}, supa(1{b, not e}2, {a,b}) holds. Furthermore,
Supa(0{a,d}1,{a,b}) holds because td = T'd does not belong to A. We thus have

% In the sequel, we skip set notation for conjunctive bodies within rules, like {c, d} in rule ro.

Generic Tableaux for Answer Set Programming 129

tll F{ll;...;ln}
T{ly;..50l;.. .5} fla,... fln
(s) True Disjunction (TD7) (t) Falsify Disjunction (TD)

T{l1;...;li_1;li;li+1;...;ln}

fla,. .., fln floyoo o flica, fliva, ..., fln
F{li;...;ln} tl;
(u) False Disjunction (FDT) (v) Justify Disjunction (FD])

Fig. 4. Tableau rules for disjunctions

supy [y, {a,b}, {a,b})={rs}.Asliteralsdeduciblevia U |, weobtain T'(1{b, not e}2),
maza(1{b, not e}2,{a,b}) = {tnot e = Fe}, and mina(0{a,d}1,{a,b}) = {fd =
Fd}. Finally, note that, if T'd had been contained in A, we would have obtained
supy (Iy, {a,b},{a,b}) = 0, so that deducing Fa via U7 would have led to a con-
tradiction. Indeed, {a, b} is the only answer set of IT, compatible with T'a and F'c.
The tableau calculus for cardinality programs is obtained by adding the rules in
Figure[3to those in Figure[Iland[2l Then, Theorem[Ilextends to cardinality programs.

Theorem 3. Let IT be a cardinality program and () the empty assignment.
Then, statements 1. to 3. given in Theorem[[lhold for the tableau calculus consisting
of tableau rules (a-r).

6 Disjunctive Heads

A disjunction over an alphabet P is an expression of the form {l1;...;l,} where [; is
an atomic literal for 1 < ¢ < n. We denote by disj(P) the set of all disjunctions that
can be constructed from atoms in P. For v € (P U card(P) U disj(P)), v and not v
are disjunctive literals. A rule o < (3 such that « is a disjunctive literal and [is a car-
dinality literal or a (possibly negated) conjunction of cardinality literals is a disjunctive
rule. A logic program is a disjunctive program if it consists of disjunctive rules.

In contrast to cardinality constraints serving as “choice constructs,” the common se-
mantics for disjunctions relies on the minimization of derived atoms. Hence, we adhere
to the definition of 7[I7] in (I0) and just add another case to T[] in @):

7[7(] = \/IETFT[” ifr e dlS](P)
We further extend the concepts in (@[9) to disjunctive heads:

Supa({ly; .. :1a1, S) if {l1s..., 1} NS #0 and
{te{l,...,l,}\S)|tle A} =0
mina({ly;.. ;0. },S) = {fl|le{l1,...,l,}\S)}

For a disjunctive program II, we fix the domain dom(A) of assignments A and the cut
objects I of C'[I") to dom(A) = I = atom (II)Ucong (IT)Ucard (IT)Udisj (IT), where

130 M. Gebser and T. Schaub

disj (IT) is the set of disjunctions occurring in I7. The additional tableau rules for han-
dling disjunctions are shown in Figure[] Their purpose is to ensure that T'{ly; . ..; 1, } €
Aiff (AT NP) | (1[l1) V -+ V 7[l,,]). The tableau calculus for disjunctive programs
is obtained by adding the rules in Figure [to those in Figure[Il Pl and Bl In this way,
Theorem[T] extends to disjunctive programs.

Theorem 4. Let IT be a disjunctive program and () the empty assignment.
Then, statements 1. to 3. given in Theorem[Ilhold for the tableau calculus consisting
of tableau rules (a-v).

7 Proof Complexity

For comparing different tableau calculi, we use the concept of proof complexity
[I4]). Intuitively, proof complexity is concerned with lower bounds on the run-times of
proof-finding algorithms independent from heuristic influences. We thus compare the
sizes of minimal refutations for unsatisfiable logic programs, that is, programs without
answer sets. The size of a tableau is determined in the standard way as the number of
nodes it contains. A tableau calculus 7 is not polynomially simulated by another tableau
calculus 7" if there is an infinite (witnessing) family {II"} of unsatisfiable programs
such that minimal refutations of 7" for IT are asymptotically exponential in the size of
minimal refutations of 7 for I7. A tableau calculus 7 is exponentially stronger than a
tableau calculus 7" if 7 polynomially simulates 7, but not vice versa.

We have shown in [4]] that the cut rule has a major influence on proof complex-
ity. For normal logic programs I7, both C|atom (II)] and C[congj (II)] yield sound and
complete tableau calculi. However, the calculus obtained with Clatom (IT) U cong (IT))
is exponentially stronger than both of them [4]]. It is thus an interesting question whether
cutting on other composite constructs, namely, cardinality constraints and disjunctions,
leads to stronger calculi. In this context, let us stress that cutting on atoms is sufficient
for obtaining complete calculi even in the presence of language extensions, provided
that the truth values of all composite constructs can be deduced from atomic literals via
(deterministic) tableau rules. For cardinality constraints and disjunctions, this is possi-
ble using the tableau rules in Figure[3land[l In general, the assumption that knowing the
atoms’ truth values is enough to evaluate all constructs in a program seems reasonable.

We first consider cardinality programs I1. Let 7. = {(a-f), (h-r), Clatom(II) U
conj(IT) U card(IT)]} and 7. = {(a-f), (h-r), Clatom(II) U congj(IT)]}. Both calculi
contain all deterministic tableau rules dealing with cardinality programs; the difference
is that cutting on cardinality constraints is allowed with 7, but not with 7. Since every
refutation of 7 is as well a refutation of 7., it is clear that 7. polynomially simulates 7.

As the following result shows, the converse does not hold.

Theorem 5. Tableau calculus 1. is exponentially stronger than 7.

This result is witnessed by the following unsatisfiable cardinality programs:

7 — { (E<—l{al,b1}2,...,1{an7bn}27n0tm ’ ’L:]-n}

¢ a; < not b; b; «— not a;

Generic Tableaux for Answer Set Programming 131

Roughly, a branch containing F'(1{a;, b;}2) for 1 < i < n yields an immediate con-
tradiction because F'a; and F'b; can be deduced via TL|, violating the last two rules
in IT7. The unrestricted cut rule of 7, permits cutting on 1{a;, b;}2 for 1 < i < n, and
the resulting minimal refutation has linear size in n. In contrast to this, 7, must cut on
atoms a; or b;, spanning a complete binary tree whose size is exponential in n.

The practical consequence of Theorem[3is that ASP solvers dealing with cardinality
constraints can gain significant speed-ups by branching on them. Notably, the compi-
lation of cardinality constraints into so-called “basic constraint rules” [[6]], as done by
Iparse [13], introduces auxiliary atoms abbreviating cardinality constraints. In this way,
smodels can (implicitly) branch on cardinality constraints although its choices are re-
stricted to atoms. In contrast to this compilation approach introducing abbreviations,
we here however consider cardinality constraints as self-contained structural entities.

Regarding disjunctive programs, we mention that verifying the non-applicability of
tableau rules U7 and U |, dealing with unfounded sets, is coNP-hard [IEI]E Thus,
tableaux for disjunctive programs are generally not polynomially verifiable, unless
P=NP. Different from cardinality constraints occurring in bodies of rules, the syntax
of disjunctive programs usually restricts disjunctions to occur in heads of rules; this is
done here as well. If this restriction were dropped, program II” could be rewritten using
disjunctions {a;; b;} rather than 1{a;,b;}2 for 1 < i < n. This would yield the same
exponential separation between cut rules with and without disjunctions as encountered
on cardinality constraints. With disjunctions {l1;...;l,} restricted to heads of rules,
the crux is that the information gained in the branch of T'{ly;...;l,} is rather weak.
We thus conjecture that, with disjunctions restricted to heads, the possibility to branch
on them does not yield exponential improvements, though it is certainly convenient to
apply the cut rule to disjunctions as well. The effect of allowing or disallowing cutting
on disjunctions in heads of rules however remains a subject to future investigation.

Finally, when looking at the inferences of existing ASP solvers, an asymmetry can
be observed in unfounded set handling [4]]. While (non-SAT-based) ASP solvers make
inferences that can be described by tableau rule UT, no solver implements U |. This
brings our attention to the question whether omitted inferences deteriorate proof com-
plexity. (Of course, the available inferences must still be strong enough to guarantee
soundness.) In what follows, we denote by RT and R| the forward and backward vari-
ant, respectively, of any of the (deterministic) tableau rules in Figure [Tl to @l Given a
tableau calculus 7, we say that 7' C 7 is an approximation of T if (T \ T') C {R] |
R1 € T'}. (We assume that TLUT € T’ if {TL|, TU|} N (T \ T’) # 0 given
that TL U1 has two backward counterparts, viz. TL| and TU |.) That is, if 7 contains
both R and R, then an approximation 7’ of 7 might drop R|. Of course, R| can
also be kept, so that 7 is an (the greatest) approximation of itself. It is clear that every
approximation 7" of 7 is polynomially simulated by 7.

Assuming an unrestricted cut rule, the next result shows that the converse also holds.

Theorem 6. Let T be a tableau calculus and T' an approximation of T .
If Clatom(IT) U cong(IT) U card(II) U disj(II)] € T', then T is polynomially
simulated by T

3 For cardinality programs, verifying the absence of unfounded sets is tractable. Suitably ad-
justed, the operations described in [8]] could be used to accomplish this task.

132 M. Gebser and T. Schaub

In fact, an inference conducted by R| can alternatively be obtained by cutting on the
consequent of R|. Then, one of the two branches becomes contradictory by apply-
ing RT. However, recall that proof complexity assumes an optimal heuristics determin-
ing the “right” objects to cut on, which is inaccessible in practice. Hence, it is reasonable
to also deduce the consequents of R | within an ASP solver whenever it is feasible.

8 Discussion

In contrast to propositional logic, where the proof-theoretic foundations of SAT solvers
are well-understood [2,3[13]], little work has so far been done on proof theory for ASP
and its solving approaches. The imbalance becomes even more apparent in view of the
comprehensive semantic characterizations that nowadays exist for ASP. For instance,
the approach in specifies answer sets for propositional theories, going beyond the
syntax of logic programs; it also provides a general semantics for aggregates. Though
the latter are a key issue in ASP, where knowledge representation is a major objec-
tive, the support of such composite constructs in ASP solvers is rather ad hoc. This
can, for instance, be seen with Iparse compiling away negative weights within weight
constraints, sometimes leading to counterintuitive results [10], and with dlv not
supporting aggregates in the heads of rules. While we have in [4] restricted our atten-
tion to normal logic programs, whose role in ASP is comparable to CNF in SAT, in
this work, we have primarily aimed at language extensions and their integration into
a common proof-theoretic framework. On the examples of cardinality constraints and
disjunctive heads, we have seen that tableaux are well-suited for augmenting the core
language and basic inference mechanisms with additional constructs.

Several lessons can be learned from the illustrative integration of cardinality con-
straints and disjunctive heads. Independently of the construct under consideration, in-
ference rules follow two major objectives: first, making sure that solutions correspond
to models of programs, and second, verifying that all true atoms are non-circularly
supported. Different notions of support are possible. For instance, atoms derived via
composite constructs in heads of rules might be subject to minimization, as with dis-
junctions, or not, as with cardinality constraints allowing for “choices.” Such issues need
to be settled in order to specify the required inference patterns. This also concerns com-
putational complexity; for instance, it increases by one level in the polynomial hierarchy
with disjunctive heads or negative weights within weight constraints. Furthermore, the
proof complexity of an approach critically depends on the cut rule determining the ob-
jects available for case analysis. Composite constructs often constitute structures that
are valuable in this respect, as it has been shown for conjunctions and cardinality con-
straints. We conclude that complex language constructs deserve particular attention in
the context of ASP solving. For solvers using learning, like clasp [18], it is important
not only that inferences are performed but also that their reasons are properly identi-
fied. The declarative nature of tableau rules provides a basis to describe such reasons.
Importantly, the extensibility of the framework also allows for combining the processes
of designing novel language constructs and of fixing their proof-theoretic meaning.

Acknowledgments. We are grateful to Robert Mercer, Richard Tichy, and the anony-
mous referees for many helpful suggestions.

Generic Tableaux for Answer Set Programming 133

References

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press, Cambridge (2003)

Mitchell, D.: A SAT solver primer. Bulletin of the European Association for Theoretical
Computer Science 85, 112-133 (2005)

Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of
clause learning. Journal of Artificial Intelligence Research 22, 319-351 (2004)

Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,
Truszezynski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11-25. Springer, Heidelberg
(2006)

D’Agostino, M., Gabbay, D., Hihnle, R., Posegga, J. (eds.): Handbook of Tableau Methods.
Kluwer Academic Publishers, Dordrecht (1999)

Simons, P., Niemeld, 1., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181-234 (2002)

Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of
Logic Programming 5(1-2), 45-74 (2005)

Liu, L., Truszczynski, M.: Properties of programs with monotone and convex constraints.
In: Veloso, M., Kambhampati, S. (eds.) Proceedings of the National Conference on Artificial
Intelligence (AAAI’05), pp. 701-706. AAAI/MIT Press (2005)

Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates. [19]
40-52

Ferraris, P.: Answer sets for propositional theories. [19] 119-131

Clark, K.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, pp.
293-322. Plenum Press, New York (1978)

van Gelder, A., Ross, K., Schlipf, J.: The well-founded semantics for general logic programs.
Journal of the ACM 38(3), 620-650 (1991)

Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of
the European Association for Theoretical Computer Science 65, 66—-89 (1998)

Jarvisalo, M., Junttila, T., Niemel4, 1.: Unrestricted vs restricted cut in a tableau method for
Boolean circuits. Annals of Mathematics and Artificial Intelligence 44(4), 373-399 (2005)
Syrjénen, T.: Lparse 1.0 user’s manual,
http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

Leone, N., Rullo, P., Scarcello, F.: Disjunctive stable models: Unfounded sets, fixpoint se-
mantics, and computation. Information and Computation 135(2), 69-112 (1997)

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3), 499-562 (2006)

Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
Veloso, M. (ed.) Proceedings of the International Joint Conference on Artificial Intelligence
(IJCAT’07), pp. 386-392. AAAI/MIT Press (2007)

Baral, C., Greco, G., Leone, N., Terracina, G. (eds.): LPNMR 2005. LNCS (LNAI),
vol. 3662. Springer, Heidelberg (2005)

http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz

Extended ASP Tableaux and
Rule Redundancy in Normal Logic Programs

Matti Jarvisalo and Emilia Oikarinen

Laboratory for Theoretical Computer Science
P.O. Box 5400, FI-02015 Helsinki University of Technology (TKK), Finland

Abstract. We introduce an extended tableau calculus for answer set program-
ming (ASP). The proof system is based on the ASP tableaux defined in [Geb-
ser&Schaub, ICLP 2006], with an added extension rule. We investigate the power
of Extended ASP Tableaux both theoretically and empirically. We study the rela-
tionship of Extended ASP Tableaux with the Extended Resolution proof system
defined by Tseitin for clause sets, and separate Extended ASP Tableaux from
ASP Tableaux by giving a polynomial length proof of a family of normal logic
programs {II,, } for which ASP Tableaux has exponential length minimal proofs
with respect to n. Additionally, Extended ASP Tableaux imply interesting insight
into the effect of program simplification on the length of proofs in ASP. Closely
related to Extended ASP Tableaux, we empirically investigate the effect of redun-
dant rules on the efficiency of ASP solving.

1 Introduction

Answer set programming (ASP) is a declarative problem solving paradigm which has
proven successful for a variety of knowledge representation and reasoning tasks. The
success has been brought forth by efficient solver implementations bringing the theo-
retical underpinnings into practice. However, there has been an evident lack of theoret-
ical studies into the reasons for the efficiency of current ASP solvers (e.g. [TI213/4]).
Solver implementations and their inference techniques can be seen as determinisations
of the underlying rule-based proof systems. Due to this strong interplay between theory
and practice, the study of the relative efficiency of these proof systems reveals impor-
tant new viewpoints and explanations for the successes and failures of particular solver
techniques. While such proof complexity [5]] studies are frequent in the closely related
field of propositional satisfiability (SAT), where typical solvers have been shown to be
based on refinements of the well-known Resolution proof system [6]], this has not been
the case for ASP. Especially, the inference techniques applied in current state-of-the-art
ASP solvers have been characterised by a family of tableau-style ASP proof systems
for normal logic programs only very recently [7]], with some related preliminary proof
complexity theoretic investigations [8]. The close relation of ASP and SAT and the re-
spective theoretical underpinning of practical solver techniques has also received little
attention up until recently [QI10]], although the fields could gain much by further studies
on these connections.

This paper continues in part bridging the gap between ASP and SAT. Influenced
by Tseitin’s Extended Resolution proof system [[11] for clausal formulas, we introduce

V. Dahl and I. Niemeli (Eds.): ICLP 2007, LNCS 4670, pp. 134 2007.
(© Springer-Verlag Berlin Heidelberg 2007

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 135

Extended ASP Tableaux, an extended tableau calculus based on the proof system in [[7].
The motivations for Extended ASP Tableaux are many-fold. Theoretically, Extended
Resolution has proven to be among the most powerful known proof systems, equivalent
to, e.g., extended Frege systems; no exponential lower bounds for the lengths of proofs
are known for Extended Resolution. We study the power of Extended ASP Tableaux,
showing a tight correspondence with Extended Resolution.

The contributions of this paper are not only of theoretical nature. Extended ASP
Tableaux is in fact based on adding structure into programs by introducing additional
redundant rules. On the practical level, structure of problem instances has an important
role in both ASP and SAT solving. Typically, it is widely believed that redundancy
can and should be removed for practical efficiency. However, the power of Extended
ASP Tableaux reveals that this is not generally the case, and such redundancy removing
simplification mechanism can drastically hinder efficiency. In addition, we contribute
by studying the effect of redundancy on the efficiency of a variety of ASP solvers.
The results show that the role of redundancy in programs is not as simple as typically
believed, and controlled addition of redundancy may in fact prove to be relevant in
further strengthening the robustness of current solver techniques.

The paper is organised as follows. After preliminaries on ASP and SAT (Sect.),
the relationship of Resolution and ASP Tableaux proof systems and concepts related
to the complexity of proofs are discussed (Sect. B). By introducing the Extended ASP
Tableaux proof system (Sect.), proof complexity and simplification are then studied
w.r.t. Extended ASP Tableaux (Sect.[3). Experimental results related to Extended ASP
Tableaux and redundant rules in normal logic programs are presented in Sect.

2 Preliminaries

As preliminaries we review basic concepts related to answer set programming (ASP) in
the context of normal logic programs, propositional satisfiability (SAT), and translations
between ASP and SAT.

2.1 Normal Logic Programs and Stable Models

We consider normal logic programs (NLPs) in the propositional case. The symbol “~”
denotes default negation. A default literal is an atom, a, or its default negation, ~a. We
define shorthands L™ = {a | a € L} and L~ = {a | ~a € L} for a set of default
literals L, and ~A = {~a | a € A} for a set of atoms A. A program IT over the set of
propositional atoms atoms(II) consists of a finite set of rules r of the form

h<—a17...7am~b17...7~bm7 (1)

where h € atoms(II) U {L} and a;,b; € atoms(II). A rule consists of a head,
head(r) = h, and a body, body(r) = {a1,...,an,~b1,...,~by}. This allows the
shorthand head(r) < body(r)™ U ~body(r)~ for (). A rule 7 is a fact if |body(r)| =
0. We define head(II) = | J, o ;{head(r)} and body(IT) = |J, . {body(r)}. The set
of default literals of a program I7 is dlits(1T) = {a,~a | a € atoms(II)}.

136 M. Jarvisalo and E. Oikarinen

In ASP, we are interested in stable models [12]] (or answer sets) of a program I1. An
interpretation M C atoms(II) defines which atoms of IT are true (¢ € M) and which
are false (¢ ¢ M). An interpretation M C atoms(II) is a (classical) model of I if
and only if body(r)* C M and body(r)~ N M = 0 imply head(r) € M for each rule
r € II. A model M is a stable model of a program I/ if and only if there is no model
M' c M for IT™ | where

IT™ = {head(r) « body(r)™ | r € IT and M N body(r)” = 0}

is called the Gelfond-Lifschitz reduct of II with respect to M. We say that a program
11 is satisfiable if it has a stable model, and unsatisfiable otherwise.

Given a,b € atoms(IT), we say that b depends directly on a, denoted a <; b,
if and only if there is a rule € I such that b = head(r) and a € body(r)T.
The positive dependency graph of II, denoted by Dep (1), is a directed graph with
atoms(I7) and {(b,a) | a <; b} as the sets of vertices and edges, respectively. A
NLP is tight if and only if its positive dependency graph is acyclic. We denote by
loop(IT) the set of all loops in Dep™(IT). Furthermore, the external bodies of a set
of atoms A in IT is eb(A) = {body(r) | 7 € II, head(r) € A, body(r)* N A =0}. A
set U C atoms(II) is unfounded if eb(U) = (). We denote the greatest unfounded set,
i.e., the union of all unfounded sets, of II by gus(IT).

2.2 Propositional Satisfiability

Let X be a set of Boolean variables. Associated with every variable € X there are
two literals, the positive literal, denoted by x, and the negative literal, denoted by z. A
clause is a disjunction of distinct literals. We adopt the standard convention of viewing
a clause as a finite set of literals and a CNF formula as a finite set of clauses. The sets of
variables and literals appearing in a set of clauses C are denoted by vars(C) and lits(C).
A truth assignment T associates a truth value 7(z) € {false,true} with each vari-
able x € X. A truth assignment satisfies a set of clauses if it satisfies every clause in
it. A clause is satisfied if it contains at least one satisfied literal, where a literal x (re-
spectively, Z) is satisfied if 7(x) = true (respectively, 7(z) = false). A clause set is
satisfiable if there is a truth assignment that satisfies it, and unsatisfiable otherwise.

2.3 SAT as ASP

There is a natural linear-size translation from sets of clauses to normal logic programs
so that the stable models of the encoding represent the satisfying truth assignments of
the original clause set [[13] faithfully, i.e., there is a bijective correspondence between
the satisfying truth assignments and stable models of the translation. Given a clause set
C, this translation nlp(C) introduces a new atom c for each clause C' € C, and atoms a,,
and a, for each variable = € vars(C). The resulting NLP is then

np(C) := | {{aa « ~} U{as — ~aa}}U (J{L —~ctUu ()
xz€vars(C) cec

U {{ec—a, |z elits(C)} U{c—a, | T € lits(C)}}. 3)
cecC

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 137

The rules (Z) encode the facts that (i) each variable is assigned an unambiguous truth
value and that (ii) each clause in C must be satisfied, while (3 encodes that each clause
is satisfied if at least one of its literals is satisfied.

2.4 ASP as SAT

Contrarily to the case of translating SAT into ASP, there is no modulaf] and faith-
ful translation from normal logic programs to propositional logic [13]]. Moreover, any
faithful translation is potentially of exponential size when additional variables are not
allowed[14] B. However, if a program 7 satisfies the syntactic tightness condition, the
answer sets of I can be characterised faithfully by the classical models of a linear-size
propositional formula called Clark’s completion of I1, defined using a Boolean
variable z,, for each a € atoms(IT) as

cun = A (u@ V (/\W/\xb»v @

h€atoms(IT) Bebody(h) \beB+ beB~

where body(h) = {body(r) | head(r) = h}. For simplicity, we have the special cases
that (i) if =y, is L then the equivalence becomes the negation of the right hand side, and
(ii) if h € facts(IT) then the equivalence reduces to the clause {x, }.

As in this paper, often one needs to consider the clausal representation of Boolean
formulas. For a linear-size clausal translation of C'(IT), introduce additionally a new
Boolean variable zp for each B € body(II) \ {0}. Using these new variables, we
arrive at the clausal completion

comp(H) = U {xBE /\ xrp N\ /\ xb}U U {jB} 5)

Bebody(IT)\{0} beB+ beB~ Bebody(L)
U U {xh = \/ xB} U U {zn} (6)
hehead(IT)\{L} Bebody(h) hefacts(IT)
h¢facts(IT)
U U {Za}, (7)
a€catoms(IT)\head(IT)

where the shorthands x = /\wie yTiand v = ine T stand for the sets of clauses
{Z1,. . Tny 2} UU,, ex{wi, @} and {21, ... 2, 2} U, c x {Zi, 2}, respectively. For
an example of a logic program’s clausal completion, see Fig. [[(left).

! Intuitively, for a modular translation, adding an atom to a program leads to a local change not
involving the translation of the rest of the program [13].

2 However, polynomial size propositional encodings using extra variables are known,
e.g. [13I16]]. Also, ASP as Propositional Satisfiability approaches for solving normal logic pro-
grams have been developed, e.g., ASSAT (based on incrementally adding loop formulas)
and ASP-SAT [[18] (based on generating a classical model and testing its minimality).

138 M. Jarvisalo and E. Oikarinen

3 Proof Systems for ASP and SAT

In this section we review concepts related to proof complexity (see, e.g., [3]) in the
context of this paper, and discuss the relationship of Resolution and ASP Tableaux [[7]].

3.1 Propositional Proof Systems and Complexity

Formally, a (propositional) proof system is a polynomial-time computable predicate S
such that a propositional expression F is unsatisfiable if and only if there is a proof p
for which S(FE, p). A proof system is thus a polynomial-time procedure for checking
the correctness of proofs in a certain format. While proof checking is efficient, finding
short proofs may be difficult, or, generally, impossible since short proofs may not exist
for a too weak proof system. As a measure of hardness of proving unsatisfiability of an
expression F in a proof system S, the (proof) complexity of E in S is the length of the
shortest proof of E in S. For a family { £, } of unsatisfiable expressions over increasing
number of variables, the (asymptotic) complexity of { E,,} is measured with respect to
the sizes of F,,.

For two proof systems 5,5, we say that S’ (polynomially) simulates S if for all
families { £, } it holds that C's/ (E,,) < p(Cs(E,,)) for all E,,, where p is a polynomial,
and Cs and C's; are the complexities in S and S’, respectively. If S simulates S” and
vice versa, then S and S are polynomially equivalent. If there is a family {E,} for
which S” does not polynomially simulate .S, we say that {E,,} separates S from S’,
and S is stronger than S’.

3.2 Resolution

The well-known Resolution proof system (RES) for clause sets is based on the resolu-
tion rule. Let C, D be clauses, and x a Boolean variable. The resolution rule states that
we can directly derive C'U D from {z} U C and {Z} U D by resolving on .

A RES derivation of a clause C' from a clause set C is a sequence of clauses m =
(C1,Cy,...,Cy), where C,, = C and each C;, where 1 < i < n, is either (i) a clause
in C (an initial clause), or (ii) derived with the resolution rule from two clauses C;, Cj,
where j, k < ¢ (a derived clause). The length of 7 is n, the number of clauses occurring
in it. Any derivation of the empty clause () from C is a RES proof of C.

Any RES proof 7 = (C1,Cs, ..., C},) can be presented as a directed acyclic graph,
in which the leafs are initial clauses, inner nodes are derived clauses, and the root is the
empty clause. There are edges from C; and C; to C}, iff C}, has been directly derived
from C; and C; using the resolution rule. Many Resolution refinements, in which the
structure of the graph representation is restricted, have been proposed and studied. Of
particular interest here is Tree-like Resolution (T-RES), in which it is required that
proofs are represented by trees. This implies that a derived clause, if subsequently used
multiple times in the proof, must be derived anew each time from initial clauses.

T-RES is a proper RES refinement, i.e., RES is stronger than T-RES [21]]. On the
other hand, it is well known that the DPLL method [22]], the basis of most state-of-
the-art SAT solvers, is polynomially equivalent to T-RES. However, conflict-learning
DPLL is stronger than T-RES, and polynomially equivalent to RES under a slight
generalisation [6]].

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 139

3.3 ASP Tableaux

Although ASP solvers for normal logic programs have been available for many years,
the deduction rules applied in such solvers have only recently been formally defined as
a proof system, which we will here refer to as ASP Tableaux [[7]] (ASP-T).

An ASP tableau for a NLP I7 is a binary tree of the following structure. The root
of the tableau consists of the rules /7 and the entry F_L for capturing that L is always
false. The non-root nodes of the tableau are single entries of the form Ta or Fa, where
a € atoms(IT) U body(IT). As typical for tableau methods, entries are generated by
extending a branch (a path from the root to a leaf node) by applying one of the rules in
Fig DL if the prerequisites of a rule hold in a branch, the branch can be extended with the
entries specified by the rule. For convenience, we have the shorthand t! (f1) for literals,
defined as T if [is positive (negative), and F/ if [is negative (positive).

A branch is closed under the deduction rules (b)-(i) if the branch cannot be extended
using the rules. A branch is contradictory if there are entries Ta, Fa for some a. A
branch is complete if it is contradictory or if there is the entry Ta or Fa for each
a € atoms(IT)Ubody(IT) and the branch is closed under the deduction rules. A tableau
is complete if all its branches are complete. A complete tableau from I in which all
branches are contradictory is an ASP-T proof of the unsatisfiability of I1. The length of
an ASP-T proof is the number of entries in it. In Fig.[[lan ASP-T proof is presented for
the program I given on the left of the proof, with the rule applied for deducing each
entry given in parenthesis.

a «— ~a,b
b—c
II ={a«— ~a,b.b«— c.c— ~b} c—n~b
_ _ _ FLl
comp(H) = {{w{'\/a,b}vwa}v{m{r\aa,b}vxb}v T -
{x{'\/a,b}vxavib}v{j{c}7l‘c}7 y “
7 7 7 T{~a,b} (i§) F{~a,b
{1y, Te s {Z 1y, T}, Fi @ }Elg%) Flg a, }8
{zony 2o} {Za, Tgnan b x T{~0} 83
_ _ &
{fa»x{~a,b}}y {l’byl’{c}}: T{c} (b)
(o010}, Fe 2oy} e o)) T @

Fig. 1. A logic program I7, its clausal completion comp(II), and an ASP-T proof for 11

Any branch B describes a partial assignment A on atoms(IT) in a natural way, i.e.,
if there is an entry Ta (Fa, respectively) in B for a € atoms(I1), then (a,true) € A
((a,false) € A, respectively). ASP-T is a sound and complete proof system for nor-
mal logic programs [[7]], i.e., there is a complete non-contradictory ASP tableau from
1T if and only if I7 is satisfiable. Thus the assignment .4 described by a complete non-
contradictory branch gives a stable model M = {a € atoms(IT) | (a,true) € A}. As
argumented in [7], current ASP solver implementations are tightly related to ASP-T,
with the intuition that the cut rule is determinised with decision heuristics, while the
deduction rules describe the propagation mechanism in ASP solvers. For instance,
the noMore++ system [2]] is a determinisation of the rules (a)-(g),(h8),(h7),(i§), while
smodels [[I]] applies the same rules with the cut rule restricted to atoms(IT).

140 M. Jarvisalo and E. Oikarinen

(a) Cut
h—1li,...,ln F{li,....li,...,ln}
tli, ..., tl, tll,...,tli_l,tli+1,...,tln
T{l1,...,ln} fl;
(b) Forward True Body (c) Backward False Body
h—l1,...,ln h—li,...,ln
T{l1,...,ln} Fh
Th F{li,...,ln}
(d) Forward True Atom (e) Backward False Atom
he—1li,. .. liy...,ln
fl; T{l1, ... liy..yln}
F{ll,...,li,...,ln} til;
(f) Forward False Body (g) Backward True Body
Th
FBy,...,FB,, b FB:,...,FB;_1,FB;{1,...,FB,, §
Fh () TB, (6]

(h) ()
(h): ¢ € atoms(I1) U body(IT)
(b): § (Forward False Atom) or T (Well-Founded Negation) or } (Forward Loop)
(#): § (Backward True Atom) or T (Well-Founded Justification) or { (Backward Loop)
(8): body(h) = {B1,...,Bm}
(1):{B1,...,Bm} C body(II) and h € gus({r € II | body(r) & {B1,...Bm}})
({):heL,L¢€loop(Il),eb(L) ={Bi1,...,Bn}

Fig. 2. Rules in ASP Tableaux

Interestingly, ASP-T and T-RES are polynomially equivalent under the translations
comp and nlp. Although the similarity of DPLL’s unit propagation and propagation in
ASP solvers is discussed in [9/10], here we want to stress the direct connection between
ASP-T and T-RES.

Theorem 1. Considering tight programs, T-RES under the translation comp can poly-
nomially simulate ASP-T.

The intuitive idea of the proof of Theorem[Ilis the following. Consider again the tight
NLP T and the ASP-T proof T in Fig. [l The completion comp(I7) is also shown
in Fig.[[l We transform T into a binary cut tree T’ where every entry generated by a
deduction rule in 7 is replaced by an application of the cut rule on the corresponding
entry. See Fig.[3l(left) for the cut tree corresponding to the ASP-T proof in Fig.[[l Now
there is a T-RES proof of comp(/1) such that for any prefix p of an arbitrary branch B
in T there is a clause C' € 7 contradictory to the partial assignment in p, i.e., there is
the entry Fa (Ta) in p for each corresponding positive literal x, (negative literal)
in C. Furthermore, each such C has a Tree-like Resolution derivation from comp(IT)
of polynomial length w.r.t. the postfix of B starting directly after p. When reaching the
root of 7”7, we must have derived () since it is contradictory with the empty assignment.
The T-RES proof resulting from the cut tree in Fig. Bl (left) is shown in Fig.[3] (right).
The reverse direction, as stated by Theorem[2 follows from a similar argument.

Theorem 2. Considering clause sets, ASP-T under the translation nlp can polynomi-
ally simulate T-RES.

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 141

0

T
{Za} {za}

2
7

{Z(map} Tad {mapys Ta HE{~a b} Ta) {T(~a b Tat

F{~a,b} T{~a,b}
A Ib} {x{f\/a,b}7xa1jb}

Tb

//

T{~b}| N\ F{~b} {20, 20y} {ap, 2y}

/

Te Fe {Zc,zp} {@e, Tgany}

/

T{c} F{c} {CEC,I{C}} {i{c}uxb}

Fig. 3. Left: cut tree based on the ASP-T proof in Fig.[Il Right: resulting T-RES proof

4 Extended ASP Tableaux

We will now introduce an extension rule to ASP-T, which results in Extended ASP
Tableaux (E-ASP-T), an extended tableau proof system for ASP. The idea is that one
can define names for conjunctions of default literals, i.e., given two Iy, 1> € dlits(IT),
the (elementary) extension rule allows adding the rule p « [y,l5 to II, where p &
atoms(IT) U {_L}. It is essential that p is a new atom for preserving satisfiability.

When convenient, we will apply a generalisation of the elementary extension. By
allowing one to introduce multiple bodies for p, the general extension ruld is

I ::HUU{p<— Ly ooy lik,

Lk €dlits(IT), p & atoms(II) U {L}}.

An E-ASP-T proof of program I7 is an ASP-T proof 1" of I U E, where F is a set of
extending rules generated with the extension rule. The length of an E-ASP-T proof is
the length of T" plus the number of rules in E.

Since head(r) ¢ atoms(I1) U {_L} for all extending rules € E, the extension rule
does not affect the existence of stable models, i.e., for each stable model M of 1], there
is a unique N C atoms(F) \ atoms(IT) such that M U N is a stable model of IT U E.
Thus E-ASP-T is a sound and complete proof system.

5 Proof Complexity

In this section we study proof complexity theoretic issues related to E-ASP-T from
several viewpoints: we (i) consider the relationship between E-ASP-T and Tseitin’s
Extended Resolution, (ii) give an explicit separation of E-ASP-T from ASP-T, and (iii)
relate the extension rule to the effect of program simplification on proof lengths.

3 Notice equivalent constructs can be introduced with the elementary rule. For example, using

additional new atoms, bodies with more than two literals can be decomposed with balanced
parentheses.

142 M. Jarvisalo and E. Oikarinen

5.1 Relationship with Extended Resolution

E-ASP-T is motivated by Extended Resolution (E-RES), a proof system by Tseitin [11].
E-RES consists of the resolution rule and an extension rule which allows one to intro-
duce equivalences of the form x = [; A [, where x is a new variable and [y, [5 literals
in the clause set. In other words, given a clause set C, one application of the exten-
sion rule adds the clauses {Z, 11}, {Z,l2}, and {z,11,l2} to C. E-RES is known to be
more powerful than RES; in fact, E-RES is polynomially equivalent with, e.g., extended
Frege systems, and no superpolynomial proof complexity lower bounds are known for
E-RES. We will now relate E-ASP-T with E-RES, and show that they are polynomially
equivalent under the translations comp and nlp.

Theorem 3. E-RES and E-ASP-T are polynomially equivalent proof systems in the
sense that

(i) considering tight normal logic programs, E-RES under the translation comp poly-
nomially simulates E-ASP-T, and

(ii) considering clause sets, E-ASP-T under the translation nlp polynomially simulates
E-RES.

Proof. (i): Let T be an E-ASP-T proof for a tight NLP I7, i.e., T' is an ASP-T proof
of II U E, where E is the extension of I/. We use the shorthand x; for the variable
corresponding to default literal [in comp(I7), i.e., x; = x4 (] = T,) if | = a (I = ~a)
for a € atoms(II). By Theorem [Tl there is a polynomial T-RES proof for comp (/7 U
E). Since head(E) N (atoms(II) U {L}) = 0, the clauses introduced for head(E) in
comp(IT U E) can be seen as extensions in E-RES, i.e., for each h <« [1,1l5 € F there
are the clauses x;, = x;, A 2y, in comp(II U E). Thus there is an extension E’ for
comp(I7) such that the T-RES proof of comp(II U E) is an E-RES proof of comp(I7).

(ii): Letw = (C4, ..., C,, = 0) be an E-RES proof of a set of clauses C. Let E be the
set of clauses generated with the extension rule in 7. We introduce shorthands for atoms
corresponding to literals, i.e., a; = a, (a; = ~a,) if | = x (I =) for x € atoms(C).
We add the following rules to nlp(C) with the ASP extension rule: a, <« a;,,a;, for
each extension x = [; Aly; ¢ < a; foreach [€ C'in 7 such that C' ¢ C; and p; < ¢1
and p; < ¢;,p;—1 foreach C; € mand 2 <7 < n.

An E-ASP-T proof for nlp(C) is generated as follows. From ¢ = 1 to n — 1 apply
the cut rule on p; in the branch with T'p; for all j < ¢. We notice that each branch with
Fp; and Tp; for all j < ¢ closes without further application of the cut. We can deduce
Fe¢; from Fp;. Now either (i) C; € C, (ii) C; is a derived clause, or (iii) C; € E. For
instance, if C; = {Z,l;} from the extension z = [; A lo, then from ¢; «— ~a, and
¢; — aj, we deduce Ta, and Fa;,. The branch closes as T{a;,,a;,} and Ta;, are
deduced from a, < ay,, a;,. Other cases are similar.

Now, consider the branch with Tp; for all ¢ = 1...n — 1. The empty clause C,, is
obtained by resolving C; = {z} and C, = {z}, j,k < n. Thus we can deduce Tc¢;
and Tc¢y, from p; < ¢;,pj—1 and py < cj, pr—1, respectively, and furthermore, Ta,
and Fa, from ¢; « [and ¢j, « [(I = z orl = %), closing the branch. The obtained
contradictory ASP tableau is of linear length w.r.t. 7. O

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 143

5.2 Pigeonhole Principle Separates Extended ASP Tableaux from ASP Tableaux

As an example, we now consider a family of normal logic programs {I1,,} which sep-
arates E-ASP-T from ASP-T, i.e., we give an explicit polynomial length proof of I7,,
for which ASP-T has exponential length minimal proofs with respect to n. We will
consider this family also in the experiments of this paper.

The program family {PHP”"*} in question is the following typical encoding of the
pigeon-hole principle as a normal logic program:

PHP ™ =) {L—~pin,opintU | {L < pikpin} ®)
1<i<n+1 1<i<j<n+1
1<k<n
U U pig— ~pi,ulnh,; — ~pij}} ©))
1<i<n+1
1<j<n

In the above, p; ; has the interpretation that pigeon i sits in hole j. The rules in ()
require that (i) each pigeon must sit in some hole and that (ii) no two pigeons can sit in
the same hole. The rules in (9) enforce that for each pigeon and each hole, the pigeon
either sits in the hole or does not sit in the hole. Each PHPZ+1 is unsatisfiable since
there is no bijective mapping from an (n + 1)-element set to an n-element set.

Theorem 4. The complexity of {PHP" ™'} with respect to n. is polynomial in E-ASP-T
and exponential in ASP-T

Proof. (i): Following Cook’s extension for achieving a polynomial-length E-RES
proof of a clausal encoding of the pigeonhole principleﬁ, we define the polynomial size
program extension

l
EXT' := U {{eéj — eﬁ;l} U {eé,j — eijl,eéiij}} (10)
1<i<l
1<7<0-1

for 1 <1 < n, where each e]'1" is interpreted as p; ;.

Although not explicitly given by Cook, the extension given in does not seem
to yield a polynomial length tree-like proof of the clausal representation, so Theorem[3]
does not directly imply a polynomial length ASP-T proof for PHP" ! ulU, <i<n EXT!.

However, given the polynomial length E-RES prooiﬁ 7 = (C1,Cy,y...,C, = 0) of
the clausal representation, we can follow the general strategy given in the proof of
Theorem[3]for defining an additional extension F() which allows a polynomial length
ASP-T proof for the resulting program

EPHP; ™ .= PHP; " U |] EXT'UE(n).
1<i<n
(ii): comp(PHP™*!) consists of the clausal encoding of the pigeon-hole principle
and additional clauses (tautologies) for rules of the form a < ~a’, a’ « ~a. Assume

4 . . .
The particular encoding is U1§i§n+1{\/?:1 zij} U U1§i<i/§n+l,1§j§n{_‘mid V oy b
3 The intuitive idea is that the extension allows for reducing PHP”*! to PHP?_; with a poly-
nomial number of Resolution steps. Due to space constraints we do not give 7 explicitly here.

144 M. Jarvisalo and E. Oikarinen

now that there is a polynomial ASP-T proof for PHPZH. By Theorem [l there is a
polynomial T-RES of comp(PHP”). It is easy to see that the additional tautologies
in comp(PHP” ™) do not help in the resolution proof. Thus there is a polynomial
length T-RES proof for the clausal pigeonhole encoding. However, this contradicts the
fact that the complexity of the clausal pigeonhole principle is exponential w.r.t. n for
(Tree-like) Resolution [24]. O

In fact, Theorem M is also witnessed by non-tight programs. Consider the family
{PHP™ U {pij « pij | 1 <i < n+1,1 <j < n}}, which is non-tight with
the additional self-loops {p; ; < pi;}, but preserves (un)satisfiability of PHP" for
all n, m. Since the self-loops do not contribute to the proofs of PHPZ“, ASP-T still
has exponential length minimal proofs for these programs, while the E-ASP-T proof
presented in the proof of Theorem[Mlis still valid.

5.3 Program Simplification and Complexity

We will now give an interesting corollary of Theorem[d] addressing the effect of pro-
gram simplification on the length of proofs.

Tightly related to the development of efficient solver implementations for resolv-
ing ASP programs arising from practical applications is the development of techniques
for simplifying programs. Efficient program simplification through local transformation
rules becomes especially important as practically relevant programs are often produced
automatically, because often a high number of redundant constraints is produced in the
process. While various satisfiability-preserving local transformation rules for simplify-
ing logic programs have been introduced (see, e.g., [23]), the effect of applying such
transformations on the lengths of proofs has not received attention.

Taking a first step into this direction, we now show that even simple transformation
rules may have a drastic negative effect on proof complexity. Consider the local trans-
formation rule red(II) := IT \ {r € II | head(r) ¢ body(II)}. The rules removed
by red are redundant with respect to satisfiability of the program in the sense that red
preserves visible equivalence [[16]. The visible equivalence relation takes the interfaces
of programs into account: atoms(IT) is partitioned into v(I7) and h(II) determining
the visible and the hidden atoms in II, respectively. Programs II; and I are visibly
equivalent, denoted by 117 =, I, if and only if v(I1;) = v(II2) and there is a bijective
correspondence between the stable models of I7; and IT, mapping each a € v(I1;) onto
itself. Defining v(IT) = v(red(II)) = atoms(red(IT)), one can see that red(IT) =, II.

A polynomial time, satisfiability-preserving simplification algorithm red”(IT) is ob-
tained by closing program /7 under red. However, notice that, in the worst case when we
define v(EPHP" ') = v(PHP"™!) = atoms(PHP"), we have red*(EPHP" ') =
PHPZ“. Thus, by Theorem [l red™ transforms a program family having polynomial
complexity in ASP Tableaux into one with exponential complexity with respect to n.

6 Experiments

We evaluate empirically how well current state-of-the-art ASP solvers can make use
of the additional structure introduced to programs using the extension rule. We run
the solvers smodels [1]] (version 2.32, a widely used lookahead solver), clasp [4] (rc4,

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 145

with many techniques—including conflict learning—adopted from DPLL-based SAT
solvers), and cmodels [18]] (version 3.66, a SAT-based ASP solver running the conflict-
learning SAT solver zChaff version 2004.11.15 as the back-end). The experiments are
run on standard PCs with 2-GHz AMD 3200+ processors under Linux.

First, we investigate whether ASP solvers are able to benefit from the extension in
EPHPZH. We compare the number of decisions and running times of each of the
solvers on PHP"™, CPHP™! := PHP"*! U |J, .., EXT', and EPHP?"'. By
Theorem] the solvers should in theory be able to exhibit polynomially scaling number
of decisions for EPHPZH. In fact with conflict-learning this might also be possible
for CPHPZ+1 due to the tight correspondence with conflict-learning SAT solvers and
Resolution. The results for n = 10...12 are shown in Table [[l While the number
of decisions for the conflict-learning clasp and cmodels is somewhat reduced by the
extensions, the solvers do not seem to be able to reproduce the polynomial size proofs,
and we do not observe a dramatic change in the running times. With a timeout of 2
hours, smodels gives no answer for n = 12 on PHP" ! or CPHP” . However, for
EPHPZ+1 smodels returns without any branching, which should be due to the fact that
smodels’s complete lookahead notices that by branching on the critical extension atoms
(as in part (ii) of the proof of Theorem M) the false branch closes immediately. With
this in mind, an interesting further study out of the scope of this paper would be the
possibilities of integrating conflict learning techniques with (partial) lookahead.

In the second experiment, we study the effect of having a modest number of redun-
dant rules on the behaviour of ASP solvers. For this we apply the following procedure
ADDRANDOMREDUNDANCY (I, n, p):

I. Fori=1to [b n]:
la. Randomly select i1, 2 € dlits(I7) such that [; # 2.
1b. I := IT U {r; < l1,l2}, where r; & atoms(I])

2. Return I7

Given a program [1, the procedure iteratively adds rules of the form r; <« [y, 1[5 to II,
where [, [are random default literals currently in the program and r; is a new atom.
The number of introduced rules is p% of the integer n.

In Fig. @ the median, minimum, and maximum number of decisions and running
times for the solvers on ADDRANDOMREDUNDANCY (PHP™ ™! 1, p) are shown for
p = 50,100...,450 over 15 trials at each data point. The mean number of decisions
(left) and running times (right) on the original PHPZJrl are presented by the horizontal

Table 1. Results on PHP? !, CPHP"*!, and EPHP” ! with timeout (-) of 2 hours

Time (s) Decisions

Solver n PHPZT! CPHPT' EPHP"T!' PHP!'T! CPHPIT! EPHP!T!
smodels 10~ 32.28 120.24 9.28 158878 141177 0
smodels 11 471.54 1828.40 23.07 1885949 1619703 0
smodels 12 - - 52.20 - - 0
clasp 10 8.60 7.78 19.26 197982 114840 38842
clasp 11 7278 62.74 97.23 1072358 574874 116534
clasp 12 90033 1046.86 881.90 7787578 4964309 646278
cmodels 10 1.91 2.23 27.42 9455 9916 20615
cmodels 11 7.99 10.28 70.39 23058 26283 38648

cmodels 12 48.36 56.70 270.63 87864 98994 97745

146

M. Jarvisalo and E. Oikarinen

220000 12
15
200000 |-
11
180000 | | 2 105
2 g
S 8 10 t 5
2 160000 | 3 \
3 T 95 \ [
a .
140000 | E 9t o jf
T
120000
sl
100000 ‘ ‘ ‘ ‘ 75 ‘ ‘ ‘ ‘
0 100 200 300 400 500 100 200 300 400 500
P p
(a) clasp decisions (left), time in seconds (right)
50000 24
45000 2
20
, 40000 B O S Ao] € 15
1] <
2 o |] A
2 35000 3 16 A J[------------- S P
g < Tt
S 30000 E 14
12
25000 10
20000 ‘ ‘ ‘ ‘ s : ; ; ;
0 100 200 300 400 500 0 100 200 300 400 500
p P
(b) cmodels decisions (left), time in seconds (right)
170000 200
160000 - 180
150000 £ _ 1680
)
@ 140000 | } g M
S AN 8 120
@ 130000 - »} {‘ 2
g e < 100
S 120000 | ‘}\ g g
110000 | f\{ 60 s
10000F [1 wl =
90000 20
0 100 200 300 400 500 0 100 200 300 400 500
p P
(c) smodels decisions (left), time in seconds (right)
1.86+06 30 ‘
1.7e+06 2 1{ P ,{
" g 2 Jf
.5 1.6e+06 S 22
5 Ul 20
8 1.5e+06 o 2
E .
1.46+06 P 16
14
1.3e+06 12
0 100 200 300 400 500 0 100 200 300 400 500

p

p

(d) smodels without lookahead: decisions (left), time in seconds (right)

Fig. 4. Effects of adding randomly generated redundant rules to PHP? !

lines. Notice that the number of added atoms and rules is linear to n, which is negligible
to the number of atoms (in the order of n?) and rules (n?) in PHPZ“. For similar
running times, the number of holes n is 10 for clasp and smodels and 11 for cmodels.
The results are very interesting: each of the solvers seems to react individually to the
added redundancy. For cmodels (b), only a few added redundant rules are enough to
worsen its behaviour. For smodels (c), the number of decisions decreases linearly with

Extended ASP Tableaux and Rule Redundancy in Normal Logic Programs 147

the number of added rules. However, the running times grow fast at the same time,
most probably due to smodels’s lookahead. We also ran the experiment for smodels (d)
without using lookahead. This had a visible effect on the number of decisions, showing
a benefit from the added rules compared to smodels on PHP" ™.

The most interesting effect is seen for clasp; clasp benefits from the added rules w.r.t.
the number of decision, while the running times stay similar on the average, contrarily
to the other solvers. In addition to this robustness against redundancy, we believe that
this shows promise for further exploiting redundancy added in a controlled way dur-
ing search; the added rules give new possibilities to branch on definitions which were
not available in the original program. However, for benefiting from redundancy with
running times in mind, optimised lightweight propagation mechanisms are essential.

As a final remark, an interesting observation is that the effect of the transforma-
tion presented in [8]], which enables smodels to branch on the bodies of rules, having
an exponential effect on the proof complexity of a particular program family, can be
equivalently obtained by applying the ASP extension rule. This may in part explain the
effect on adding redundancy on the number of decision made by smodels.

7 Conclusions

We introduce Extended ASP Tableaux, an extended tableau calculus for normal logic
programs under the stable model semantics. We study the strength of the calculus, show-
ing a tight correspondence with Extended Resolution, which is among the most power-
ful known propositional proof systems. This sheds further light on the relation of ASP
and propositional satisfiability solving and their underlying proof systems, something
which we believe is for the benefit of both of the communities.

Furthermore, this work shows the intricate nature of the interplay of structure and
the hardness of solving ASP instances. We anticipate that controlled use of the exten-
sion rule is possible and will yield performance gains by considering in more detail
the structural properties of programs in particular problem domains. One could also
consider implementing branching on any possible formula inside a solver. However,
this would require novel heuristics, since choosing the formula to branch on from the
exponentially many alternatives is nontrivial and is not applied in current solvers. We
find this an interesting future direction of research. Another important research direc-
tion set forth by this study is a more in-depth investigation into the effect of program
simplification on the hardness of solving ASP instances.

Acknowledgements. Financial support from Academy of Finland (grant #211025),
Helsinki Graduate School in Computer Science and Engineering, Emil Aaltonen Foun-
dation, the Finnish Cultural Foundation (EO), the Technological Foundation TES, and
the Nokia Foundation (EO) is gratefully acknowledged.

References

1. Simons, P., Niemeli, 1., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181-234 (2002)

2. Anger, C., Gebser, M., Linke, T., Neumann, A., Schaub, T.: The nomore++ approach to an-
swer set solving. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS(LNAI), vol. 3835,
pp- 95-109. Springer, Heidelberg (2005)

148

3.

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

M. Jarvisalo and E. Oikarinen

Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM TOCL 7(3), 499-562 (2006)
Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving. In:
IJCAL pp. 286-392 (2007)

. Beame, P., Pitassi, T.: Propositional proof complexity: Past, present, and future. Bulletin of

the EATCS 65, 66-89 (1998)

. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of

clause learning. Journal of Artificial Intelligence Research 22, 319-351 (2004)

. Gebser, M., Schaub, T.: Tableau calculi for answer set programming. In: Etalle, S.,

Truszezynski, M. (eds.) ICLP 2006. LNCS, vol. 4079, pp. 11-25. Springer, Heidelberg
(2006)

. Anger, C., Gebser, M., Janhunen, T., Schaub, T.: What’s a head without a body? In: ECALI,

pp. 769-770. 10S Press, Amsterdam (2006)

. Giunchiglia, E., Maratea, M.: On the relation between answer set and SAT procedures (or,

between cmodels and smodels). In: Gabbrielli, M., Gupta, G. (eds.) ICLP 2005. LNCS,
vol. 3668, pp. 37-51. Springer, Heidelberg (2005)

Gebser, M., Schaub, T.: Characterizing ASP inferences by unit propagation. In: LaSh ICLP
Workshop, pp. 41-56 (2006)

Tseitin, G.: On the complexity of derivation in propositional calculus. In: Automation of
Reasoning 2: Classical Papers on Computational Logic, pp. 466—483. Springer, Heidelberg
(1983)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: ICLP, pp.
1070-1080. MIT Press, Cambridge (1988)

Niemeld, I.: Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25(3-4), 241-273 (1999)
Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Transactions on
Computational Logic 7(2), 261-268 (2006)

Ben-Eliyahu, R., Dechter, R.: Propositional semantics for disjunctive logic programs. Annals
of Mathematics and Artificial Intelligence 12(1-2), 53-87 (1994)

Janhunen, T.: Some (in)translatability results for normal logic programs and propositional
theories. Journal of Applied Non-Classical Logics 16(1-2), 35-86 (2006)

Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. Artifi-
cial Intelligence 157(1-2), 115-137 (2004)

Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional
satisfiability. Journal of Automated Reasoning 36(4), 345-377 (2006)

Clark, K.: Negation as failure. In: Readings in nonmonotonic reasoning, pp. 311-325. Mor-
gan Kaufmann Publishers, San Francisco (1987)

Fages, F.: Consistency of Clark’s completion and existence of stable models. Journal of Meth-
ods of Logic in Computer Science 1, 51-60 (1994)

Ben-Sasson, E., Impagliazzo, R., Wigderson, A.: Near optimal separation of tree-like and
general resolution. Combinatorica 24(4), 585-603 (2004)

Davis, M., Logemann, G., Loveland, D.: A machine program for theorem proving. Commu-
nications of the ACM 5(7), 394-397 (1962)

Cook, S.A.: A short proof of the pigeon hole principle using extended resolution. SIGACT
News 8(4), 28-32 (1976)

Haken, A.: The intractability of resolution. TCS 39(2-3), 297-308 (1985)

Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and
strong equivalence. In: Lifschitz, V., Niemeld, I. (eds.) Logic Programming and Nonmono-
tonic Reasoning. LNCS (LNAI), vol. 2923, pp. 87-99. Springer, Heidelberg (2003)

Querying and Repairing Inconsistent Databases
Under Three-Valued Semantics

Sergio Greco and Cristian Molinaro

DEIS, Univ. della Calabria, 87030 Rende, Italy

{greco,cmolinaro}@deis.unical.it

Abstract. The problem of managing and querying inconsistent
databases has been deeply investigated in the last few years. As, in the
general case, the problem of consistent query answering is hard, most
of the techniques so far proposed have an exponential complexity. More-
over, polynomial techniques have been proposed only for restricted forms
of constraints (e.g. functional dependencies) and queries.

In this paper we present a technique which allows us to compute
“approximated” consistent answers in polynomial time, for general con-
straints and queries. The paper presents a three-valued semantics for
constraint satisfaction, called deterministic, and considers three valued
databases. Thus, a repaired database is a database where atoms may
be either true or undefined (whereas missing atoms are false) that satis-
fies constraints under the deterministic three valued semantics. We show
that in querying possibly inconsistent databases the answer is safe (true
and false atoms in the answers are, respectively, true and false under
the classical two-valued semantics) and the answers can be computed in
polynomial time. We also show that deterministic answers can be com-
puted by rewriting constraints into logic programs.

1 Introduction

Integrity constraints represent an important source of information about the
real world. They are usually used to define constraints on data (functional de-
pendencies, inclusion dependencies, etc.). Since the satisfaction of integrity con-
straints cannot be, generally, guaranteed, in the evaluation of queries, we must
compute answers which are consistent with the integrity constraints. The pres-
ence of inconsistencies might arise, for instance, when the database is obtained
from the integration of different information sources. The integration of knowl-
edge from multiple sources is an important aspect in several areas such as data
warehousing, database integration, automated reasoning systems, active reactive
databases and others.

In the presence of inconsistencies, an important problem investigated in recent
years consists in characterizing and retrieving the consistent information from
the database. It is well known that the presence of inconsistent data can be re-
solved by “repairing” the database, i.e. by providing a computational mechanism
that ensures consistent “scenarios” of the information (repairs) are obtained in

V. Dahl and I. Niemeld (Eds.): ICLP 2007, LNCS 4670, pp. 149064] 2007.
© Springer-Verlag Berlin Heidelberg 2007

150 S. Greco and C. Molinaro

an inconsistent environment. However, there are many different ways of repair-
ing a database, even if we limit ourselves to the minimal ones. So it is natural
to leave the database inconsistent, so that no piece of information is lost, and to
identify pieces of data which are consistent in answering queries, i.e. to consider
the information present in every repaired database. This leads to the notion of
consistent query answer (CQA): an element of query result in every repaired
database.

Ezample 1. Consider the database schema Teaches(Course, Prof) with the in-
tegrity constraint Course — Prof and the following (inconsistent) database DB.

Course Prof

c1 p1 Course Prof Course Prof Course Prof Course Prof

C2 P2 1 P1 C1 P1 C1 P1 C1 P1

C2 q2 C2 P2 C2 p2 C2 q2 C2 q2

C3 p3 C3 p3 C3 q3 C3 p3 C3 q3

3 a3 DBy DBy DB3 DB,
DB

There are four possible repaired databases: DBy, DBs, DB3, DIB4 obtained
by deleting minimal sets of tuples which make the repaired database consistent.
Moreover, while we are not able to answer the query Teaches(cq, X), asking for
the professor teaching course ¢y, we are able to answer the query Teaches(cy, X)
asking for the professor teaching course c;. O

Therefore, it is very important, in the presence of inconsistent data, to compute
the set of consistent answers, but also to know which facts are unknown and if
there are possible repairs for the database.

The problem of managing and querying inconsistent databases has been
deeply investigated in the last years. As, in the general case, the problem of
consistent query answering is hard, most of the techniques so far proposed have
an exponential complexity. Moreover, polynomial techniques have been proposed
only for restricted forms of constraints (e.g. functional dependencies) and queries.

In this paper we present a technique which allows us to compute “approx-
imated” consistent answers in polynomial time, for general constraints and
queries. The paper presents a three-valued semantics for constraint satisfac-
tion, called deterministic, and considers three valued databases. Thus, a repaired
database is a database where atoms may be either true or undefined (whereas
missing atoms are false) that satisfies constraints under the deterministic (three-
valued) semantics. We show that in querying inconsistent databases the answer
is sound (true and false atoms in the answers are also true and false, respectively,
under the classical two-valued semantics) and can be computed in polynomial
time. We also show that deterministic answers can be computed by rewriting
constraints into logic programs.

Querying and Repairing Inconsistent Databases 151

Related Work

Recently there have been several proposals considering the problem of managing
inconsistent databases. The problem has been deeply investigated mainly in the
areas of databases and artificial intelligence [322].

Arenas et al. [3] proposed a method to compute consistent query answers
based on query rewriting. This technique is simple, but it has a very limited ap-
plicability (first-order queries without disjunction or quantification, and binary
universal integrity constraints). Recently, that approach has been generalized by
Fuxman and Miller [I3] to allow restricted existential quantification in queries
in the context of primary key FDs.

Several works have considered the use of logic programs to capture repairs
as answer sets of logic programs with negation and disjunction [4UT5IT6]. These
approaches are quite general, being able to handle arbitrary universal constraints
and first-order queries. However, the problem of deciding whether an atom is a
member of all answer sets of such a logic program is IT5-complete and for the
class of programs derived from the rewriting of constraints is in I7¥ and coNP-
hard.

The use of preferences and priorities, as well as the definition of constructs
to define unfeasible repairs and answers, have been also proposed [T6/I7IT2].
However, the use of preferences, in most of the approaches proposed, further
increases the computational complexity. A technique for the computation of
repairs based on updating both tuples and attribute-values has been proposed
by Wijsen [23], whereas special classes of constraints have been studied in [6].

Three-valued interpretation of database theories have been proposed as well
and technique for query answering under LCWA (local CWA) computing a
three-valued interpretation that approximates all two-valued interpretation of
a database theory has been presented in [11].

For recent surveys on repairing and querying inconsistent databases we refer
to the recent papers of Bertossi [5] and Chomicki [10].

1.1 Contributions

The novelty of our approach consists in i) the definition of a formal declarative
three-valued semantics, called deterministic, for constraint satisfaction under
three-valued databases, ii) the definition of (three-valued) repairs under such a
semantics, iii) the definition of deterministic consistent query answers for (strati-
fied) Datalog queries over databases with integrity constraints. More specifically:

— We consider databases whose atoms may be either true or undefined (missing
tuples are assumed to be false). The reason for considering three-valued
databases is that in the computation of repairs under deterministic (three-
valued) semantics, some of the atoms may not be assumed to be true or false
and they are assumed to be undefined.

— As databases may be three-valued, we propose a different semantics for
the satisfaction of integrity constraints which for standard (two-valued)
databases coincides with the classical semantics.

152 S. Greco and C. Molinaro

— We propose three-valued repairs consisting of substitutions which make the
truth value of database atoms true, false or undefined. We show that the
set of three-valued repairs defines a lower semi-lattice whose top elements
are standard (two-valued) repairs and whose bottom element defines the
deterministic repair.

— CQA can be computed by considering the deterministic repaired database
(i.e. the database repaired by means of the deterministic repair). We show
that CQA is sound (true and false atoms in the answers are, respectively,
true and false under the classical two-valued semantics), but not complete.

— Finally, we show that deterministic repairs and answers can be computed
in polynomial time and that the deterministic answers can be obtained by
rewriting constraints and queries into a logic program and computing the
fixpoint of this program.

2 Preliminaries

We assume familiarity with relational database theory, logic programs and de-
ductive databases [1U14].

Predicate symbols are partitioned into two distinct sets: base predicates and
derived predicates. Base predicates correspond to database relations defined over
a given domain and they do not appear in the head of any rule; derived predicates
are defined by means of rules. Given a database DB and a program P, Ppp
denotes the program derived from the union of P with the facts in DB, i.e.
Ppp =P UDB. In the following a tuple ¢ of a relation r will also be denoted as
a fact r(¢). Given a set of ground atoms DB and a predicate symbol p, DB[p]
denotes the set of p-tuples in DB. The semantics of Ppg is given by the set of
its stable models by considering their intersection (certain semantics or cautious
reasoning). A (Datalog) query @ is a pair (g, P) where g is a predicate symbol,
called the query goal, and P is a (Datalog) program. The answer to a Datalog
query @ = (g,P) over a database DB (under the certain semantics) is given
by DB'[g] where DB" =, sn4 (Pos) M- A (relational) query can be expressed
by means of ‘safe’ non recursive Datalog, even though alternative equivalent
languages could be used [I].

3 Databases and Integrity Constraints

Databases contain, other than data, intentional knowledge expressed by means
of integrity constraints. Database schemata contain the knowledge of the struc-
ture of data, i.e. they make constraints on the form the data must have. The
relationships among data are usually defined by constraints such as functional
dependencies, inclusion dependencies and others. Integrity constraints, which ex-
press information that is not directly derivable from the database, are introduced
to prevent the insertion or deletion of data which could produce incorrect states.
They are used to restrict the state a database can take and provide information
on the relationships among data.

Querying and Repairing Inconsistent Databases 153

3.1 Integrity Constraints

Generally, a database DB has an associated schema (DS, ZC) defining the inten-
tional properties of DB: DS denotes the structure of the relations, while ZC is a
set of integrity constraints expressing semantic information over data.

Definition 1. An integrity constraint (or embedded dependency) is a formula of
the first order predicate calculus of the form:

(vX) [2(X) > (32)I(W)]

where X, W and Z are sets of variables, @ and I" are two conjunctions of literals
such that X and W are sets of variables appearing in @ and I" respectively,
Z =W — X is the set of variables existentially quantified. o

In the definition above, @ is called the body and I' the head of the integrit
constraint. In the rest of the paper we consider general constraints of the forrrﬁ

n

VX[A\ bi(X)), oXo) D \/ (3Z)bi(X;.2))]
J=1 j=m+1

where ¢(Xy) denotes a conjunction of built-in atoms, X = U;n:l X, X; € X
for i € [0..n]. The body of a constraint ic is denoted by Body(ic) whereas its
head is denoted by Head(ic).

The reason for considering constraints of the above form is that we want to
consider range restricted constraints, i.e. constraints whose variables take values
from finite domains only.

Often we shall write our constraints in a different format by moving literals
from the head to the body and vice-versa. For instance, by rewriting the above
constraint as denial (i.e. with empty head) we obtain:

XL Abi(X), N (BZ)bi(X;.Z5), o(Xo) D 1.
Jj=1 j=m+1

3.2 Repairing and Querying Inconsistent Databases

In this section the formal definition of consistent database and repair is first
recalled and, then, a computational mechanism is presented that ensures that
repairs and consistent answers for inconsistent databases are selected.

An update atom +a(X) is in the form +a(X) (inserting atom) or —a(X)
(deleting atom). Intuitively a ground atom +a(t) states that a(t) will be inserted
into the database whereas a ground atom —a(t) states that a(t) will be deleted
from the database. Given a set U of ground update atoms we define the sets
Ut ={a(t) | +alt) eUl, U ={a(t) | —a(t) € U}. We say that U is consistent
if it does not contain two update atoms +a(t) and —a(t) (i.e. ifUT N U™ =).
Given a database DB and a consistent set of update atoms U, we denote as
U(DB) the updated database DB UUT —U~.

! The meaning of the symbols ‘A’ and ¢,’ is the same.

154 S. Greco and C. Molinaro

Definition 2. Given a database DB and a set of integrity constraints ZC, a re-
pair for (DB, ZC) is a consistent set of update atoms R such that 1) R(DB) = ZC
and 2) there is no consistent set of update atoms & C R such that U (DB) = IC. O

For any database DB and set of integrity constraints ZC, the set of all possible
repairs for (DB,ZC) is denoted as R(DB,ZC). Thus, repaired databases are
consistent databases, derived from the source database by means of a minimal
set of update operations.

Observe that for constraints containing unrestricted variables the set of pos-
sible repairs could be infinite. Thus, in the rest of paper we only consider uni-
versally quantified (or full) integrity constraints of the form:

(v X)[/\ bi(X;), e(Xo) D> \/ b;(X;)]

j=m+1

where X = [Ji*, X; and X; C X for i € [0..7n].

In the following we assume that the constants appearing in constraints also
appear in the database and that for a given database DB its domain is Upp (the
Herbrand universe of DB).

Given a set of universally quantified constraints ZC on a database DB and
an integrity constraint r € ZC, a ground instantiation of r with respect to DB
can be obtained by replacing variables with constants of Upp and eliminating
the quantifiers V. The set of ground instances of r is denoted by ground(r),
whereas ground(ZC) = J,.7¢ ground(r) denotes the set of ground instances of
constraints in ZC. Clearly, for any set of universally quantified constraints ZC,
the cardinality of ground(ZC) is polynomial in the size of the database.

Definition 3. Given a database DB and a set of integrity constraints ZC, an
atom A is true (resp. false) with respect to (DB, ZC) if A belongs to all repaired
databases (resp. there is no repaired database containing A). The atoms which
are neither true nor false are undefined. o

Thus, true atoms appear in all repaired databases, whereas undefined atoms
appear in a non empty proper subset of repaired databases.

Definition 4. Given a database DB, a set ZC of integrity constraints over D
and a query @ = (g, P), the consistent answer of the query Q on (DB,ZIC),
denoted as Q(DB,ZC), gives three sets, denoted as Q(DB,ZC)", Q(DB,ZIC)~
and Q(DB,ZC)*“. These contain, respectively, the sets of g-tuples which are
true (i.e. belonging to (\zer(pp,zc) @(R(PB))), false (i.e. not belonging to
Urer(ps,zc) Q(R(DB))) and undefined (i.e. set of tuples which are neither true
nor false). |

In [I6] it has been shown that given a database DB, a set of integrity constraints
ZC and a query @ = (g,P), then 1) checking if there exists a (two-valued) repair
for DB such that the answer of @) is not empty is in £ and N'P-hard, 2) checking
whether the consistent answer of @ is not empty is in /73 and coN’P-hard. In

Querying and Repairing Inconsistent Databases 155

the same work it has been shown that also when considering special constraints
such as functional dependencies the problem of checking, for a given ground
tuple ¢, whether i) ¢t € Q(DB,ZC)" is coN'P-complete, ii) t € Q(DB,IC)~ is
coNP-complete, iii) ¢t € Q(DB,ZC)" is N'P-complete. The problem becomes
polynomial only when we consider functional dependencies and queries of the
form (g,0).

4 Deterministic Three-Valued Semantics

The problem with the approaches previously proposed is that, in the general
case, computing consistent answers is too expensive and in the presence of large
databases unpracticable. Thus, in this section we propose an alternative solution
which allows us to compute “approximated” answers in polynomial time.

The approach we propose is based on a three-valued interpretation for in-
tegrity constraints, i.e. on the assumption that atoms belonging to a database
may be either true or false or undefined.

We assume that a three-valued database consists of two sets: the set of true
atoms and the set of undefined atoms (atoms which are not included in the
database are false). In the following we term three-valued databases simply
databases. Given a database DB, we denote by DB and DB, respectively,
the set of true and undefined tuples in DB, whereas DB~ = Bpg — DB — DB“
denotes the set of false tuples. A database DB is said to be two-valued if DB = ().

Definition 5. Given a positive Datalog program P and a database DB, the
evaluation of P on DB, denoted P(DB), gives a minimum model consisting of
two sets M+ and M" defined as follows:

~ Mt =T (0),
_ Mu — Wgo;g(@%

where T'p,,,; is the classical immediate consequence operator defined as
Tpps(IT) ={a| @« b1,...,by € (ground(P)UDBT)Aby,... by € 1T}
whereas
Wpps(IY) = {a| a < b1, ... by € (ground(P) U DB UDBY)

Abiy.obp € (M*UI"))} — M* =

It is worth noting that the operator Wp,,, is monotonic and that its fixpoint can
be computed in a finite number of steps (polynomial in the size of DB). The two
sets Mt = T3 (D) and M* = W3 (D), containing true and undefined atoms
which are derived by applying P to DB, will also be denoted by P(DB)* and
P(DB)™, respectively.

For stratified P it is sufficient to partition it into a sequence of subprograms
[P1,...,Py] so that negated literals appearing in a subprogram P; are defined in
strata below P1,...,P;_1 or are database literals. The computation of the stable
model is performed by evaluating one subprogram at a time and by considering
the stable model of the program DBU P U---UP;_1 as the input database for
the program P;. As negation is applied only to database atoms (or atoms derived

156 S. Greco and C. Molinaro

by means of strata below), for the evaluation of rules with negated literals it is
sufficient to refine the definition of T’»,, and Wp,, by checking that negated
body literals are true with respect to the current database.

Given a (stratified) Datalog query @ = (g, P) and a database DB, the answer
of Q over DB, denoted by Q(DB), gives three sets denoted as Q(DB)™, Q(DB)*
and Q(DB)~. These sets contain, respectively, the g-tuples which are derived as
true, undefined and false by applying P over DB, i.e. Q(DB)" = P(DB)"|g],
Q(DB)* = P(DB)"[g) and Q(DB)~ = (Bp,, — Q(DB)* — Q(DB)")]g]

4.1 Deterministic Semantics

The two-valued semantics states that a constraint is satisfied if the head truth
value is greater than or equal to the truth value of the body; clearly, a constraint
with empty head is satisfied if the body is false, whereas a constraint with empty
body is satisfied if the head is true.

Standard constraints satisfaction, stating that a database DB satisfies a con-
straint ic if valuepg(Head(ic)) > valuepg(Body(ic)), cannot be applied imme-
diately to three-valued database. Indeed, the property stating that under the
two-valued semantics literals appearing in constraints can be moved from the
head to the body and vice versa, without modifying the truth value of con-
straints, does not hold under the three-valued semantics.

Ezample 2. Consider for instance the database DB consisting of DB = {a} and
DB" = {b, c}. This database satisfies the constraint ic = aAb D ¢, but does not
satisfy the constraint i’ = bAnot ¢ D not a which is derived from ic by moving
a to the head and c to the body. In fact, DB = ic as valuepg(Body(ic)) =
valuepg(Head(ic)) = undefined, while DB [~ ic' as valuepg(Body(ic')) =
unde fined and valuepg(Head(ic')) = false. |

Therefore, we introduce a different definition for the satisfaction of constraints
under three-valued semantics which we call deterministic semantics. For the sake
of clarity, in the following we assume that constraints are written under the form
of denial (i.e. with empty head).

As for the two valued semantics, constraints whose body is false or whose
head is true are satisfied. Therefore, a literal appearing in a (denial) constraint
must be false if all other literals are true. For instance, a constraint of the form
[D states that the literal [must be false.

Given a set ZC of ground constraints, we define the set T7¢ = 775 (0) where

Trc(T) = {not 1l | Jic=IANUNA--NpAp DEIC s.t. ly,...,l, €T N @ is true}

Intuitively, T7¢ defines the set of literals which must be true in order to
satisfy ZC. Observe that the set Tz¢ is different from the fixpoint computed by
the operator T’p,, as it contains atoms which can be either true or false. Clearly,
if the derived set T7¢ contains both [and not [, then the set of constraints ZC
cannot be satisfied, but for satisfiable sets of constraints, complementary literals
cannot be derived. As the literals in T7¢ must be true, the set ZC of constraints
can be “simplified” as follows:

Querying and Repairing Inconsistent Databases 157

1. each atom [s.t. either [or not [is in T7¢ can be replaced with the corre-
sponding truth value

2. built-in literals can be replaced with their truth value so that the resulting
set contains only database literals,

3. each constraint in ZC which contains the truth value false in the body is
satisfied and can be deleted, whereas the truth value true can be deleted
from the body conjunctions.

The derived reduced set of constraints will be denoted by Red(ZC).

Ezample 3. Consider the set ZC = { a D, not a Anot b DO, bAcAd D } of
(ground) integrity constraints. The set Trc is equal to {not a,b}. The reduced
set of constraints contains only the constraint ¢ A d D (the first two constraints
are deleted as a and not b are false). O

Given a set ZC of ground constraints, observe that all reduced constraints in
Red(ZC) contain at least two literals and no built-in literal.

Definition 6. Let ZC be a set of ground constraints of the form
LA AlaApD (1)

where n > 1, each [; (i = 1..n) is either a positive literal b;(x;) or a negative
literal not b;(x;) and ¢ is a conjunction of built-in atoms. Given a constraint ic
in ZC, we define

Ext(ic) ={)\ 1;,¢ 2 \/ not 1 | S C {ly,....l} A |S|>0}
l;€S Lie{li,ln}—S

as the set of constraints which are derived from ic by moving database body
literals to the head so that both the head and the body are not empty. Moreover,
Ext(ZC) = Ujcezc Ext(ic). O

The following definition states when a set of constraints is satisfiable under
deterministic semantics.

Definition 7. Let DB be a database and ZC be a set of constraints. Then, DB
satisfies ZC under deterministic semantics (denoted as DB =,,ZC) if

— DB): Tground(IC) (1e Tground(IC) - 'DB+ U not DBi), and
— DB | Exzt(Red(ground(ZC))) O

Since under the three-valued semantics a (ground) constraint ic in
Red(ground(ZC)) can change its truth value by moving literals from the body
to the head and vice versa (see Example 2), in the above definition we say that
a database DB satisfies ic under deterministic semantics if DB satisfies (under
classical three-valued semantics) all constraints which can be derived from ic by
moving any set of literals to the head (provided that both the head and the body
of the derived constraints are not empty).

158 S. Greco and C. Molinaro

Example 4. Consider the following set ZC of ground integrity constraints:

not a D aAcAnotdD
aAbD bAeAnot £fD
not gAhD

Thus Tz¢ = {a,not b}, Red(ZC) is as follows

c/AnotdD
not gAhD

whereas Ext(Red(ZC)) is as follows

cDOd not g ODnoth
not d D not ¢ hDg

The database DB consisting of DB = {a} and DB" = {g,h} satisfies ZC under
deterministic semantics as DB |= Tz¢ and DB = Ext(Red(ZC)). |

Proposition 1. Let DB be a database and ZC be a set of ground integrity con-
straints. Then, DB |= Ext(Red(ZC)) iff for each constraint ic =11 A--- Al D in
Red(ZIC) either (i) some literal l; is false w.r.t. DB or (i) all literals 1y, --- 1,
are undefined w.r.t. DB. |

Ezample 5. Consider the set ZC = {a Ab D, b Anot ¢ D} of ground integrity
constraints. Then, Ext(ZC) = {a D not b, b D not a, b D ¢, not ¢ D not b}.
These constraints are satisfied iff either i) b is false, or ii) a is false and c is true,
or iii) all atoms a, b and c are undefined. O

Observe that the cardinality of Ext(ic) is exponential in the number of database
literals appearing in ic. We now show that it is sufficient to consider a number
of derived constraints equal to the number of database literals appearing in ic.

Definition 8. Let ZC be a set of ground constraints and ic be a constraint in
IC, i.e. ic is of the form () with n > 0. We define by

ext(ic) ={li A~ ANlpmt ANliza A~ ANl A Dot l; | i € [1.n] }

the set of constraints which are derived from ic by moving exactly one (database)
body literal to the head. Moreover, ext(ZC) = Ujceze ext(ic).]

Proposition 2. Given a database DB and a set ZC of ground integrity con-
straints, then DB |= Ext(Red(ZC)) iff DB = ext(Red(ZC)). |

Therefore, in the definition of deterministic semantics (Definition [7), instead
of considering the set Ext(Red(ground(ZC))), whose size is exponential in the
number of database literals appearing in the body of constraints, we can con-
sider ext(Red(ground(ZC))), whose size is linear in the number of ground con-
straints and the number of literals appearing in the body of constraints. Con-
sequently, we have that DB |=,5ZC if i) DB = Tyround(ze), and ii) DB =
ext(Red(ground(ZC))).

Querying and Repairing Inconsistent Databases 159

4.2 Repairing Databases
A substitution S for a database DB is a triplet (S*, 5% S7) such that

1. StusS*uUS— C Bps,
2. 5TNS*=0,STNS =0and S~ NS* =10,
3. ST CDB*UDB™, S CDBTUDB™ and S~ C DBT UDB.

Given a database DB and a substitution S for DB, the application of S to DB,
denoted by S(DB), gives the following sets: i) S(DB)* = (DBT —S*—S~)usSt
and ii) S(DB)* = (DB — St — S7) U S“. Observe that the set S(DB)~ =
Bps — S(DB)" — S(DB)" is also equal to (DB~ — ST — S*)US™.

Definition 9. Given a database DB and a set ZC of constraints, a repair for
(DB,ZC) under the deterministic (three-valued) semantics is a substitution R
for DB s.t. (i) R(DB) |=,sZC and (ii) there is no substitution S s.t. S # R,
S(DB) E,,ZC and St C RT, S“*C R*, S~ C R™. O

Repaired databases are consistent databases derived from the source database
by applying repairs over it. Given a database DB and a set ZC of integrity con-
straints, the set of all possible repairs for (DB,ZC), under deterministic (three-
valued) semantics, is denoted as Rps(DB, ZC). Moreover, DBr (DB, ZC) denotes
the set of all possible repaired databases for (DB,ZIC), i.e. DBr(DB,IC) =
{R(DB)| R € Rps(DB,1IC)}.

For the computation of answers to queries of the form (g, (Z))E we will use the
standard definition stating that for a given database DB and a set ZC of integrity
constraints over DB, an atom A is true (resp. false) with respect to (DB, ZC) if
A is true (resp. false) w.r.t. all repaired databases in DBgr (DB, ZC). The atoms
which are neither true nor false are undefined.

Lemma 1. Let DB be a database and ZC a set of integrity constraints over
DB. If there exist two repairs R; and R; for (DB,ZC) and an atom a such that
a € R;r and a ¢ R; (resp. a € R, and a ¢ R;), then there is a repair Ry such
that a € R}!. m|

Given two triplet R = (R, R*, R™) and S = (ST,5% S™) containing true,
undefined and false ground atoms, we say that RC Sif RT € STand R~ C S™.
The relation C can be used to define a partial order on databases, repairs and
query answers.

Theorem 1. Given a database DB and a set ZC of integrity constraints over
DB, then (Rps(DB,ZC),C) is a lower semi-lattice whose top elements are
two-valued. |

The repair defining the bottom element of the semi-lattice (Rps(DB,ZC),C)
is called deterministic and is denoted as Rge;. The database Rgei(DB) obtained
by applying Rge: to DB is called the deterministic repaired database.

2 The case of general queries (g, P) will be discussed in the next subsection.

160 S. Greco and C. Molinaro

Corollary 1. Given a database DB and a set ZC of integrity constraints over
DB, then (DBr(DB,ZIC) C) is a lower semi-lattice whose top elements are
two-valued and whose bottom element is Rger(DB). O

Theorem 2. Given a database DB and a set of integrity constraints ZC over
DB, an atom A is true (resp. false, undefined) with respect to (DB,ZC) if A is
true (resp. false, undefined) w.r.t. the deterministic repaired database. a

4.3 Query Answers

Given a database DB, a set ZC of integrity constraints and a (stratified) Datalog
query @ = (g, P). The consistent answer of Q on (DB,ZC), under deterministic
(three-valued) semantics, denoted as Qps(DB,ZC), consists of the three sets:

Qos(DB,IC)" = () Q(R(DB))*
ReRps(DB,IC)
Qos(PB,IC)" = |J Q(R(DB))"

RERps(DB,IC)
Qps(PB,IC)~ = Bppy — Qps(PB,IC)*" — Qps(DB,IC)"

Theorem 3. Let DB be a database, ZC be a set of integrity constraints,) =
(g,P) be a (stratified) Datalog query and Rger be the deterministic repair for
<'DB,IC>. Then, st(DB,IC) = Q(Rdet(DB)) O

Theorem 4 (Soundness). Let DB be a two-valued database, IC be a set of
integrity constraints over DB and Q = (g,P) be a (stratified) Datalog query.
Then, Qps(DB,2C) C Q(DB,IC). O

Corollary 2. Let DB be a database, IC be a set of integrity constraints and
Q = (g, P) be a (stratified) Datalog query. Then, Qps(DB,ZC) can be computed
i polynomial time. O

5 Rewriting into Logic Programs

Given a database DB, a set ZC of integrity constraints and a query @ = (g, P),
in this section we present how the constraints and the query can be rewrit-
ten into a Datalog program Rew(ground(ZC)) U Rew(P) so that from the
stable model of Rew(ground(ZC)) U DB (if such a model exists) it is pos-
sible to derive the deterministic repair, whereas from the stable model of
Rew(P) U Rew(ground(ZC)) U DB, by selecting the g-tuples, it is possible to
compute the deterministic answer.

Given a ground literal a(t) (resp. not a(t)) we denote by Up(a(t))
(resp. Up(not a(t))) the atom a*(t) (resp. a=(t)); moreover Und(a(t)) and
Und(not a(t)) denote the atom a%(t). It is worth noting that, when consid-
ering atoms of the form a(t), a™(t), a~(t) and a“(t), the symbols a, a™, a~ and
a* are assumed to be different predicate symbols.

Querying and Repairing Inconsistent Databases 161

Definition 10. Let ZC be a set of ground constraints and let ic be a (ground)
constraint in ext(ZC), i.e. ic is of the form:

n

N\ bites). N ot b(a;). plwo) S iw)

j=m-+1
where [(x;) is a literal. We define rew; (ic) as the following Datalog rule:
Up(i(z1)) — N\ Up(b(x;)), [\ Up(not bj(x;)),¢(x0)
j=1 j=m—+1
whereas Rew(ZC) is equal to
{rew;(ic) | ic€ ext(ZC) }U {«— Up(L), Up(not L) | L is a literal appearing in ZC}

Moreover rews(ic) denotes the following set of Datalog rules

Und(l(x)) « /\ b(x;), /\ by (x;), not (), not Up(I(x1)), not Up(not I(x)), ¢(x0)
j=1 j=m+1
bi(x;) — (bj(x;) Anot by (7)) V b (5) V by (x5) j=1.m
by (z;) — (not bj(x;) Anot b} (x;)) V by (x5) V b (x;) j=m+1l.n
Finally, we define the set Rews(ZC) = Ujcecpi(ze) rewz(ic) and Rew(IC) =
Rew,(ZC) U Rews(ZC). |

It is worth noting that in the above definition Rew;(ZC) is a positive
Datalog program which computes Tz¢ (namely Tz¢ = {l(z;)] Up(l(z)) €
MM(Rew:(ZC))}).

Ezample 6. Consider the following set ZC of (ground) integrity constraints

aoD
not aAb D
not bAcAnotdD>D

The set of constraints ext(ZC) is as follows

D not a not bAc>Od
not a D not b cAnotdDb
bDa not b Anot d D not c

The program Rew;(ZC) is

a <—a+,a_
b~ «—a~ — bt b~
at «— bt «—ct,c™
dt «— b, ct «—dt,d™
bt —ct,d™ —et e”

¢ —b,d”

162 S. Greco and C. Molinaro

whereas Rews(ZC) is

at — a not at,not a~

u 1 ’ L _ a” «— (not aAnot at)Va~ Va"
b" «— a”, b, notb™,not b , _ 4 u

u / 4 _ b — (bAnot b)VbT Vb

a' «— b, not a, nota’,not a

b” < (not bAnot bT) Vb~ VDb
¢/~ (cAnotc)Vechtvet
d” « (not d Anot d*)vd vad*

d* «—b”, ¢/, notd, notd",notd"
b < ¢/, d”, not b, not b*, not b~

c* —b”, d’, c, not ¢t not ¢~

Let DB be a two-valued database, ZC be a set of integrity constraints on DB
and M the unique stable model (if it exists) for Rew(ground(ZC)) U DB. Then,
S(M) = {a(t)|a™(t) € M}, {a(t)|la“(t) € M}{a(t)|la=(t) € M}) denotes the
substitution derived from M.

Theorem 5. Let DB be a two-valued database, ZC be a set of integrity con-
straints on DB and M = SM(Rew(ground(ZC)) U DB). Then,

— if M does not exist, then ground(ZC) is not satisfiable,
— else S(M) is the deterministic repair for (DB,ZC). m|

Ezample 7. Consider the database DB which consists of DB = {a,b,c} and
the set ZC of integrity constraints of Example[fl Then, S(SM(Rew(ZC)UDB)) =
({},{c,d},{a,b}) which is the deterministic repair for (DB, ZC). O

Theorem 6. Let DB be a two-valued database and IC be a set of integrity con-
straints on DB. The deterministic repair for (DB,ZC) can be computed in poly-
nomial time in the size of DB. a

Let us now present how queries have to be rewritten to compute (three-valued)
answers.

Definition 11. Let P be a (stratified) Datalog program and r be a rule in P,
i.e. r is of the form

h m n
A~ N\Bi, N\ notB;, N\ L@
=1

j=h+1 k=m+1

where A is an atom of the form p(X), B; (i = 1..m) is an atom of the form p; (X;)
where p; is a base predicate symbol, Ly (k = m+ 1..n) is either a positive literal
pr(Xk) or a negative literal not py(Xy) such that py, is a derived predicate symbol
and @ is a conjunction of built-in atoms. We denote by rew” (r) the following
set of rules:

h m n
A—AB', N\ B, N\ Lo
i=1 j=h+1 k=m+1
AT — A
BI' « (B; Anot B;” Anot B*)V B;f i=1.h
BJF — (not B; A\ not B;' Anot B}')V B j=h+1.m

Querying and Repairing Inconsistent Databases 163

where B; (resp. B, By, B!, B}, BI'), for i = 1.m, is an atom of the
form p;(Xi) (vesp. pi (X:), p; (Xo), p¥(Xo), pf (Xi), p{(X;)). Rew” (P) =
U,.ep rew” (). Moreover, we denote by rew (r) the following set of rules:

h m n
Amd— gy N BIvBY, N\ (BIVBY), N\ (LevLEh),® 1=1.h
i=1Ni#l j=h+1 k=m-+1
h m n
Amdepr A(BIvBY), N\ (BfVBY), N\ (LevIp"d), & I=h+1.m
i=1 j=h+1Aj#1 k=m+1
h m n
Amd e ppnd N (B VBE), N\ (BIVBY), N (LpVLp™), & I=m+1.n
i=1 j=h+1 k=m-+1Ak#l

AY — A pot AT

Observe that in the above rules, Ly is a positive literal Ay or a negative literal
not Ay and in both cases Ly = A4 Moreover, Rew" (P) = |, ep rew? (r)
and Rew(P) = Rew® (P) U RewV (P) U {BY « B"| B is a database atom }. O

Let DB be a two-valued database, ZC be a set of integrity constraints on DB, P
be a (stratified) Datalog program and M the unique stable model (if it exists) for
Rew(P)URew(ground(ZC))UDB. We define the sets T'(M) = {p(t)| p* (t) € M}
and U(M) = {p(t)| pY (t) € M}, respectively, the set of true and undefined atoms
in M. F(M) = Bpp, — T (M) —T(F) denotes the set of atoms which are false
in M.

Theorem 7. Let Q = (g, P) be a (stratified) Datalog query, DB be a two-valued
database, IC be a set of integrity constraints over DB and M = SM(Rew(P) U
Rew(ground(ZC)) UDB). Then,

— if M does not exist, then ground(ZC) is not satisfiable,
— else Qps(DB,IC) = (T(M)[g], U(M)]g], F(M)[g])- O

Clearly, as we have already stressed, only the sets of true and undefined atoms
are effectively computed.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1994)

2. Andritsos, P., Fuxman, A., Miller, R.: Clean Answers over Dirty Databases. ICDE
(2006)

3. Arenas, M., Bertossi, L., Chomicki, J.: Consistent query answers in inconsistent
databases. In: Proc. PODS, pp. 68-79 (1999)

4. Arenas, M., Bertossi, L., Chomicki, J.: Answer Sets for Consistent Query Answering
in Inconsistent Databases. TPLP 3(45), 393-424 (2003)

164

5.

6.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

S. Greco and C. Molinaro

Bertossi, L.: Consistent Query Answering in Databases. SIGMOD Rec., 35(2)
(2006)
Cali, A., Lembo, D., Rosati, R.: On the Decidability and Complexity of Query
Answering over Inconsistent and Incomplete Databases. In: PODS, pp. 260-271
(2003)

. Caroprese, L., Greco, S., Sirangelo, S., Zumpano, E.: Declarative Semantics of

Production Rules for Integrity Maintenance. In: Etalle, S., Truszczyriski, M. (eds.)
ICLP 2006. LNCS, vol. 4079, pp. 26-40. Springer, Heidelberg (2006)

. Chomicki, J., Lobo, J., Naqvi, S.A.: Conflict resolution using logic programming.

IEEE TKDE 15(1), 244-249 (2003)

. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple

deletions. Information & Computation 197(1-2), 90-121 (2005)

Chomicki, J.: Consistent Query Answering: Five Easy Pieces. In: Schwentick, T.,
Suciu, D. (eds.) ICDT 2007. LNCS, vol. 4353, pp. 1-17. Springer, Heidelberg (2006)
Corts-Calabuig, A., Denecker, M., Arieli, O., Bruynooghe, M.: Representation of
Partial Knowledge and Query Answering in Locally Complete Databases. In: Her-
mann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, Springer,
Heidelberg (2006)

Flesca, S., Furfaro, F., Parisi, F.: Consistent Query Answers on Numerical
Databases under Aggregate Constraints. In: Bierman, G., Koch, C. (eds.) DBPL
2005. LNCS, vol. 3774, pp. 279-294. Springer, Heidelberg (2005)

Fuxman, A., Miller, R.J.: First-Order Query Rewriting for Inconsistent Databases.
In: Eiter, T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 337-351. Springer,
Heidelberg (2004)

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
Proc. ICLP, pp. 1070-1080 (1988)

Greco, G., Zumpano, E.: Querying Inconsistent Databases. In: Parigot, M.,
Voronkov, A. (eds.) LPAR 2000. LNCS (LNAI), vol. 1955, pp. 308-325. Springer,
Heidelberg (2000)

Greco, G., Greco, S., Zumpano, E.: A Logical Framework for Querying and Re-
pairing Inconsistent Databases. IEEE TKDE 15(6), 1389-1408 (2003)

Greco, S., Sirangelo, C., Trubitsyna, 1., Zumpano, E.: Preferred Repairs for Incon-
sistent Databases. In: Galindo, F., Takizawa, M., Traunmiller, R. (eds.) DEXA
2004. LNCS, vol. 3180, pp. 44-55. Springer, Heidelberg (2004)

Leone, N., Pfeifer, G., Faber, W., Calimeri, F., Dell’Armi, T., Eiter, T., Gottlob,
G., Tanni, G., Ielpa, G., Koch, K., Perri, S., Polleres, A.: The dlv System. Jelia
(2002)

Rao, P., Sagonas, K.F., Swift, T., Warren, D.S., Freire, J.: XSB: A System for
Effciently Computing WFS. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR
1997. LNCS, vol. 1265, pp. 431-441. Springer, Heidelberg (1997)

Sagonas, K.F., Swift, T., Warren, D.S.: An abstract machine for efficiently com-
puting queries to well-founded models. J. of Logic Programm. 45(1-3), 1-41 (2000)
Syrjanen, T., Niemeld, I.. The Smodels System. In: Eiter, T., Faber, W.,
Truszezynski, M. (eds.) LPNMR 2001. LNCS (LNAI), vol. 2173, pp. 434-438.
Springer, Heidelberg (2001)

Subrahmanian, V.S.: Amalgamating knowledge bases. ACM TKDE 19(2), 291-331
(1994)

Wijsen, J.: Database repairing using updates. ACM TODS 30(3), 722-768 (2005)

Logic Programming Approach to
Automata-Based Decision Procedures

Gulay Unel and David Toman

D.R. Cheriton School of Computer Science, University of Waterloo
{gunel,david}@cs.uwaterloo.ca

Abstract. We propose a novel technique that maps decision problems in
WS1S (weak monadic second-order logic with n successors) to the prob-
lem of query evaluation of Complex-value Datalog queries. We then show
how the use of advanced implementation techniques for Logic Programs,
in particular the use of tabling in the XSB system, yields a considerable
improvement in performance over more traditional approaches. We also
explore various optimizations of the proposed technique based on vari-
ants of tabling and goal reordering. Although our primary focus is on
WSS, it is straightforward to adapt our approach for other logics with
existing automata-theoretic decision procedures, for example WS2S.

1 Introduction

Monadic second-order logics provide means to specify regular properties of sys-
tems in a succinct way. In addition, these logics are decidable by the virtue of
the connection to automata theory. However, only recently tools based on these
ideas—in particular the MONA system [I7]—have been developed and shown
to be efficient enough for practical applications [I5].

However, for reasoning in large theories consisting of relatively simple con-
straints, such as theories capturing UML class diagrams or database schemata,
the MONA system runs into a serious state-space explosion problem—the size
of the automaton capturing the (language of) models for a given formula quickly
exceeds the space available in most computers. Surprisingly, the problem can be
traced to the automata product operation that is used to translate conjunction
in the original formule rather than to the projection/determinization operations
needed to handle quantifier alternations.

This paper introduces a technique that combats this problem. However, unlike
most other approaches that usually attempt to use various compact representa-
tion techniques for automata, e.g., based on BDDs [5] or on state space factoring
using a guided automaton [I7], our approach is based on techniques developed
for program evaluation in deductive databases, in particular on the Magic Set
transformation [2] and SLG resolution, a top-down resolution-based approach
augmented with memoing [9T0]. We also study the impact of using other opti-
mization techniques developed for Logic Programs, such as goal reordering.

The main contribution of the paper is establishing the connection between
the automata-based decision procedures for WS1S (and, analogously, for WS2S)

V. Dahl and I. Niemeld (Eds.): ICLP 2007, LNCS 4670, pp. 165174, 2007.
© Springer-Verlag Berlin Heidelberg 2007

166 G. Unel and D. Toman

and query evaluation in Complex-value Datalog (Datalog®). Indeed, the com-
plexity of query evaluation in Datalog® matches the complexity of the WS1S
decision procedure and thus it seems like an appropriate tool for this task. Our
approach is based on representing automata using nested relations and on defin-
ing the necessary automata-theoretic operations using Datalog® programs. This
reduces to posing a closed Datalog® goal over a Datalog®’ program represent-
ing implicitly the final automaton. This observation combined with powerful
program execution techniques developed for deductive databases, such as the
Magic Set rewriting and SLG resolution, limit the explored state space to ele-
ments needed to show non-emptiness of the automaton and, in turn, satisfiability
of the corresponding formula.

In addition to showing the connection between the automata-based decision
procedures and query evaluation in Datalog®”, we have also conducted experi-
ments with the XSB [27] system that demonstrate the benefits of the proposed
method over more standard approaches.

The remainder of the paper is organized as follows. In Section [2] we formally
introduce monadic second-order logic and the connection to finite automata. We
also define Datalog®” programs, state their computational properties, and briefly
discuss techniques used for program evaluation. Section [B] shows how Datalog®”
programs can be used to implicitly represent a finite automaton and to imple-
ment automata-theoretic operations on such a representation. In this paper we
only present results for the WSIS logic. However, the results extend immedi-
ately to WS2S. Experimental results for the proposed methods are presented in
Section [l Related work is discussed in Section [l Finally, conclusions and future
research directions are given in Section [6

2 Background and Definitions

In this section we provide definitions needed for the technical development in
the rest of the paper.

2.1 Weak Second-Order Logic (WS1S)

First, we define the syntax and semantics of the weak second-order logic of one
successor and comment on techniques used to show its decidability.

Definition 1. The formulas of second-order logics are defined as follows.

— the expressions s(z,y), x C y for x, y second-order variables are atomic
formulas, and

— given formulas ¢ and ¢ and a variable x, the expressions ¢ N\ ¢, =@, and
dx : ¢ are also formulas.

Additional common syntactic features can be defined by the following. Variables
for individuals (first-order variables) can be simulated using second-order vari-
ables bound to singleton sets; a property expressible in WS1S. Thus we allow

Logic Programming Approach to Automata-Based Decision Procedures 167

(6).Co). (D (1)

Fig. 1. Automata representing the formulae z C y and —(z C y)

x € y for x C y whenever we know that x is a singleton. We also use the standard
abbreviations ¢ V¥ for =(—p A =), ¢ — 9 for ~p V1), and Vz : ¢ for =3z : —p.

The semantics of WSI1S is defined w.r.t. the set of natural numbers (successors
of 0); second-order variables are interpreted as finite sets of natural numbers.
The interpretation of the atomic formula s(z,y) is fixed to relating singleton sets
{n+1} and {n}, n € N[Truth and satisfiability of formulas is defined with
the help of valuations mapping variables to finite sets of natural numbers in a
standard way.

Connection to Finite Automata. The crux of the connection lies in an
observation that, for every WS1S formula, there is an automaton that accepts
exactly the (string representations of) models of a given formula [28]. Since
each variable of WS1S is interpreted by a finite set of natural numbers, such
an interpretation can be captured by a finite string. Satisfying interpretations of
formulas (with & free variables) can be represented as sets of strings over {0, 1}*.
The i-th component corresponds to the interpretation of the i-th variable and is
called a track. It turns out that sets of the above strings form regular languages
and thus can be recognized using an automaton. Satisfiability then reduces to
checking for non-emptiness of the language accepted by such an automaton.

Definition 2. A finite automaton is a 5-tuple A = (N, X,S,T,F), where N
is the set of states (nodes), X is the alphabet, S is the initial (starting) state,
T C N x N x X 1is the transition relation, and F is the set of final states.

Given a WSI1S formula ¢, the automaton A, can be effectively constructed
starting from automata for atomic formulz using automata-theoretic operations.

Proposition 1. Let ¢ be a WS1S formula. Then there is an automaton A,
such that ¢ is satisfiable if and only if L(Ay) # 0, where L(A) is the language
accepted by A.

Ezample 1. The automaton A, for the formula ¢ = « C y is shown in the left
part of Figure[l] the complement automaton A, that represents = = =(z C y)
is shown in the right part of Figure [II The labels on the edges are elements of

! The atomic formula s(z,v) is often written as 2 = s(y) in literature, emphasizing
its nature as a successor function.

168 G. Unel and D. Toman

the alphabet of the automaton and capture the valuations of variables allowed
for a particular transition. The tracks in the strings accepted by the automata
represent the valuation for the variables x (first track), and y (second track).

Similarly, the automaton A, e is the product automaton of A, and A, and
accepts L(A,) N L(Ay), the satisfying interpretations of ¢ A ¢. The automaton
Asg.,, the projection automaton of Ay, accepts satisfying interpretations of Jz :
. Intuitively, the automaton As,., acts as the automaton A, for ¢ except that
it is allowed to guess the bits on the track of the variable x. We give the actual
algorithms for the inductive construction of A, in the following section (in a
Datalog®” syntax). While checking for emptiness can be done in time polynomial
in the size of an automaton, the size of A, is non-elementary in the size of
¢ (more precisely, in the depth of quantifier alternation of ¢). This bound is
tight for WS1S decision problem yielding an overall non-elementary decision
procedure.

2.2 Datalog for Complex Values

In the remainder of this section we define a query language that serves as the
target of our approach to WS1S decision procedure.

Complex Data Model. The complex-value data model is an extension of the
standard relational model that allows tuples and finite sets to serve as values
in the place of atomic values [I]. Each value is assigned a finite type generated
by the type grammar “7 := ¢ | [11,...,7%] | {7}”, where ¢ stands for the type
of uninterpreted atomic constants, [11,..., 7] for a k-tuple consisting of values
belonging to the types 71, ..., Tk, respectively, and {7} for a finite set of values
of type 7. Relations are interpreted as sets of values of a given typeﬁ The model
is equipped with several built-in relations, e.g., the equality = (extended to all
types), the subset relation C (defined for set types), the tuple constructor (that
relates tuples of values to the individual values), the singleton set constructor
(relating values of a type to singleton sets of the appropriate set type), etc.

Complex-value Queries. The extended data model induces extensions to re-
lational query languages and leads to the definition of complex-value relational
calculus (calc®) and a deductive language for complex values, Datalog®¥—the
language of Horn clauses built from literals whose arguments range over complex-
valued variables and constants [2/26]. Datalog®” programs and queries are defined
as follows:

Definition 3. A Datalog® atom is a predicate symbol with variables or complex-
value constants as arguments.

A Datalog® database (program) is a finite collection of Horn clauses of the
form h «— q1,..., gk, where h (called head) is an atom with an optional grouping
specification and g1, ..., gr (called goals) are literals (atoms or their negations).

2 We use relations of arity higher than one as a shorthand for sets—unary relations—of
tuples of the same arity.

Logic Programming Approach to Automata-Based Decision Procedures 169

The grouping is syntactically indicated by enclosing the grouped argument
in the (-) constructor; the values then range over the set type of the original
argument.

We require that in every occurrence of an atom the corresponding arguments
have the same finite type and that the clauses are stratified with respect to
negation.

A Datalog® query is a clause of the form «— g1,...,gk.

Evaluation of a Datalog® query (with respect to a Datalog® database P)
determines whether P |= g1, ..., gk.

Datalog® is equivalent to the complex-value calculus in expressive power [IJ.
However, the ability to express transitive closure without resorting to the pow-
erset construction aids our goal of using Datalog® to represent finite automata
and to test for emptiness.

Proposition 2. Thecomplezity of Datalog® query evaluationis non-elementary.

Note that the complexity matches that of the decision procedures for WS1S and
thus mapping of WS1S formulas to Datalog® queries can be done efficiently.

To simplify the notation in the following we allow terms constructed of con-
stants, variables, and finite number of applications of tuple and set constructors
to appear as arguments of atoms. For example p({z},y) < ¢([z,y]) is a short-
hand for p(z,y) < q(w),w = [z,y], z = {z}, where w = [z, y] is an instance of a
tuple constructor and z = {z} of a set constructor built-in relations as discussed
in our overview of the complex-value data model.

Evaluation of Datalog® Programs. The basic technique for evaluation of
Datalog® programs is commonly based on a fixed-point construction of the
minimal Herbrand model (for Datalog® programs with stratified negation the
model is constructed w.r.t. the stratification) and then testing whether a ground
(instance of the) query is contained in the model. The type restrictions guar-
antee that the fixpoint iteration terminates after finitely many steps. While the
naive fixed-point computation can be implemented directly, efficient query eval-
uation engines use more involved techniques such as the semi-naive evaluation,
goal/join ordering, etc. In addition, whenever the query is known as part of the
input, techniques that allow constructing only the relevant parts of the minimal
Herbrand model have been developed. Among these the most prominent are
the magic set rewriting (followed by subsequent fixed-point evaluation) and the
top-down resolution with memoing—the SLG resolution.

Magic Sets. The main idea behind this approach is to restrict the values derived
by a fixpoint computation to those that can potentially aid answering a given
query. This is achieved by program transformation based on adding magic pred-
icates to clauses that limit the breadth of the fixpoint computation at each step.
These predicates are seeded by the values in the query (as those are the only
ones the user desires to derive); more values are added to the interpretations of
the magic predicates by means of additional clauses that relaz the limit depend-
ing on what additional subqueries for a particular predicate need to be asked

170 G. Unel and D. Toman

to answer the original query. This process then becomes a part of the fixpoint
evaluation itself.

SLG Resolution. In contrast, the SLG resolution is based on the more common
SLD resolution used in PROLOG systems. The difference is in memoing what
subgoals have been already resolved against and what answer substitutions were
obtained, if any. Thus, whenever a more specific goal is to be selected, the memo-
ing information is inspected to prevent repetitive computation. This mechanism
also prevents infinite resolution paths in evaluation of Datalog® queries. There
are efficient scheduling strategies implemented for tabled logic programs:

— Batched Scheduling: provides space and time reduction over the naive strat-
egy which is called single stack scheduling.

— Local Scheduling: provides speedups for programs that require answer sub-
sumption.

Surprisingly, it can be shown that both of the techniques essentially simulate
each other and that the magic predicates match the memoing data structures
(modulo open terms). For detailed description of the above techniques see [3120]
and [27], respectively.

3 Automata and Datalog for Complex Values

In this section we present the main contribution of our approach: Given a WS1S
formula ¢ we create a Datalog® program P, such that an answer to a reacha-
bility /transitive closure goal w.r.t. this program proves satisfiability of ¢.

However, we do not attempt to map the formula ¢ itself to Datalog®’. Rather,
we represent the construction of A,—the finite automaton that captures models
of p—as a Datalog®” program F,. This enables the use of the efficient evaluation
techniques discussed in Section [Z2

3.1 Representation of Automata

First, we fix the representation for automata that capture models of WS1S
formulee. Given a WSI1S formula ¢ with free variables z1,...,x; we define a
Datalog®" program P, that defines the following predicates:

1. Node,(n) representing the nodes of A,

2. Start,(n) representing the starting state,

3. Final,(n) representing the set of final states, and

4. Trans,(nf1,nt1,) representing the transition relation.

where = {z1,22,..., 2} € X, is the set of free variables of ¢; concatenation
of their binary valuations represents a letter of A,’s alphabet.

Ezample 2. The following program P, represents the automaton A, shown in
the left part of Figure [}

Logic Programming Approach to Automata-Based Decision Procedures 171

- Trans, (no, no, 0, 0) — Trans,(n1,n1,0,0) <

) — Trans, (no, 70,0, 1) «— Trans,(ni,n1,1,0) «—
Start,(ng) < Trans, (ng,no, 1, 1) «— Trans,(ni,n1,0,1) «—
(ng) «— Trans,(ng,n1,1,0) «— Transg,(ni,n1,1,1) «—

Note that while for atomic formulas, the values representing nodes are atomic,
for automata corresponding to complex formulae these values become complex.

3.2 Automata-Theoretic Operations

We define the appropriate automata-theoretic operations: negation, conjunction,
projection, and determinization used in decision procedures for the logics under
consideration as programs in Datalog® as follows.

Definition 4. The program P-, consists of the following clauses added to the
program P, :

1. Node_,(n) < Node,(n)

2. Start.(n) < Starty(n)

3. Final_4(n) < Nodey(n), —Final,(n)

4. Trans_q(nf1,nty,x) < Trans,(nfi,nty, x)

The following lemma is immediate:
Lemma 1. If P, represents A, then P-. represents A_..

The conjunction automaton which represents the conjunction of the two formulae
that original automata represent is defined as follows.

Definition 5. The program Pu,na, consists of the union of programs P,, and
P,, and the following clauses

1. Nodeg, nas ([1,m2]) < Nodey, (n1), Nodey, (n2)
2. Starte, aa, ([n1, n2]) < Starty, (n1), Starta, (n2)
3. Finala; aas ([n1, n2]) < Finaly, (n1), Finaly, (ng)
4. Transg, nas ([nf1,nfa), [nt1, nta], z,y, z) —
Transy, (nf1,nt1,x,y), Transa, (nfe, nte,y,)

The sets of variables x,y represent the free variables of the formula An, and y, z
of the formula A, .

Again, immediately from the definition we have:

Lemma 2. Let P,, represent A,, and P,, represent A,,. Then Py, na, TEpTE-
sents Aoy Ao -

The projection automaton which represents the existential quantification of a
given formula is defined as follows.

Definition 6. The program P% . is defined as the union of P, with the clauses

EF e

1. Node%,..(n) < Node,(n)
2. Starty,..(n) < Starty(n)

172 G. Unel and D. Toman

3. Finaly,.,(n) < Final,(n)
Finalé‘g:a(no) — Trans, (ng, n1,x,0), Finaly,., (n1)
4. Transy,..(nfi,nt1,y) — Trans,(nf1,nty, z,y)

The sets of variables y and x represent the free variables of the formula o, and
0=1{0,0,...,0} where |o| = |y|.

Lemma 3. If P, represents A, then P3,.. represents A%, which is nondeter-
ministic automaton for the formula 3x : c.

The automaton obtained by the projection operation is nondeterministic. The
following Datalog®’ program produces the representation of a deterministic au-
tomaton which accepts the same language as the nondeterministic one.

Definition 7. The program Pa.. consists of the program PY.. . and the follow-
ing clauses

1. Nodez,.o(N) « Startg,.o (V)
Nodez,.o (N) < Nodegy.o(N1), Transgz.o (N1, N, x)

2. Startg,.o({n}) < Starts,.,(n)

3. Finala;.o (N) < Nodesg,.o(N),Finaly,.. (n),n € N

4. Transgg.o (N1, (n),) < Nodez;.o (N1), Nexta,.o (N1, n, x)
Nextgz:.o (N1, n2,z) < ny € Ny, Transy,.,(n1,n2, x)

Lemma 4. If PY,., represents AY, . then Psg.q represents a deterministic au-
tomaton Azg.q.

Last, the test for emptiness of an automaton has to be defined: To find out
whether the language accepted by A, is non-empty and thus whether « is sat-
isfiable, a reachability (transitive closure) query is used.

Definition 8. The following program TC, computes the transitive closure of
the transition function of A..

1. TransClosy(n,n) <
2. TransClos, (nf1, nt1) < Trans,(nf1,nte, x), TransClos, (nta, nty)

Note that the use of magic sets and/or SLG resolution automatically transforms
the transitive closure query into a reachability query.

Theorem 1. Let ¢ be a WS1S (WS2S) formula. Then ¢ is satisfiable if and
only if P,,TC, = Start,(z), Final,(y), TransClos, (z, y).

Ezample 3. Suppose that we have a formula Jy : y C z, let Ay be the automaton
for the subformula ¢ = y C x, we can use the following logic program to construct
the automaton Asy.4:

Node3,.,(n) < Nodey(n)

Start§,.,(n) < Starty(n)

Finalg, ., (n) < Finaly(n)

Finalg,.,(no) « Transg(no, n1,0,y), Final§,. ,(n1)
Transg, ., (n1,n2,) < Transy(n1,n2,7,y)

Logic Programming Approach to Automata-Based Decision Procedures 173

This part computes the nondeterministic automaton (A4, ;) representing the
formula (see Definition [d]).

NOdegy;¢(N) — Stal’tgy;¢(N)

Nodesy.s(IN) < Nodesy.s(N1), Transsy.4(Ni, N, x)

Startzy.¢({n}) « Startg, ,(n)

Finalgy.(N) < Nodegy.;(N), Finalg,.,(n),n € N

Transsy.4 (N1, (n),) < Nodegy.s(N1), Nextsy.4 (N1, n, z)
Nextsy.¢(N1,ne, x) < ni € Ny, Transgy:d)(nl,ng,x)
TransClosgy.¢(n,n) «—

TransClosgy.¢(n1, n2) < Transgy.g(ni,ns,), TransClosgy.q(n3, n2)

This part computes the deterministic automaton (As,.4) representing the for-
mula (see Definition [7), and the transitive closure of its transition function (see
Definition [§). Note that determinization is not needed unless there is a negation
operation after this step. The satisfiability query is:

«— Startgy.¢(n), Finalsy.4(m), TransClossy.¢(n, m).

The use of SLG resolution to evaluate the transitive closure goal allows us to
construct only the relevant parts of the automaton in a goal-driven way:

Ezample 4. For the formula ¢ = =(z € v) V=(Fw : (y € w) A (2 € w)) the
bottom-up evaluation creates 240 transitions, and 16 transitive closure tuples
for the starting node while the top-down evaluation with memoing technique
creates only 1 transition, and 1 tuple in the transitive closure for the starting
node as shown in Figure 2

4 Experimental Evaluation

We compare the performance of the technique proposed in this paper and imple-
mented using the XSB system] with the MONA system [I5[17], one of the most
advanced tools for reasoning in weak second-order logics (WS1S and WS28S).

The performance results for a set of formulas are given in Figures (] and @l
We present a sample set of size 10 from the set of formulas we used in the
experiments where #1i represents a particular formula. The response times are
measured in seconds; N/A means “Not Answered” in 120 seconds. The formulas
are similar to the ones in T98 satisfiability test suite except we varied their sizes,
the number of existential quantifiers, and free variables.

The results show that XSB outperforms MONA for the formulas with many
free variables since it performs large numbers of conjunction operations very
efficiently with the use of top-down query evaluation and pruning techniques.
This can be easily traced to the effects of goal-driven evaluation of P, which
become more pronounced for large theories consisting of relatively simple for-
mulae, such as those corresponding to constraints used in database schemata

3 We simulate the set values in Datalog® by lists in XSB.

174 G. Unel and D. Toman

? — Starty(n), Finalg (m), TransClosg (n, m).
(0) Call : Startg(n)?

(0) Exit : Starte([1

A7
(8) Call : Finaly(m)?

(8) Exit : Finaly([1,{[1,1]}])?
(18) Call : TransClos,([1, {[1, 1]}, [1, {[1, 1]}])7
(19) Call : Transe([1, {[1,1]}], [1,4{[L, 1]}], z, v, 2, v)?

(19) E:mt : Transg ([1, {[1, 1]}], [1, {[1, 1]}], 0,0, 0,0)?
(18) Ewxit : TransClos,([1, {[1, 1]}], [1, {[1, 1]}])?

n = [1,{[L, 1]}]
m = [L{[1, 1]}]

Fig. 2. Top-down evaluation of the program in Example []

or UML diagrams. The experiments also compared different scheduling strate-
gies of XSB namely the batched(XSB B) and the local(XSB L) ones. Batched
scheduling performs better than local since our programs do not require answer
subsumption. Experiments also show that tabling more predicates in addition
to the auto-tabled ones (results in columns XSB B(T) and XSB L(T)) increases
space requirements but enhances the performance substantially. The additional
predicates we tabled are the Trans predicates in the programs that represent
the determinization step. Since this step is critical in automaton construction,
tabling the Trans predicate in addition to the Node predicate gives better results
(see formulas 5, 9, 10).

On the other hand, MONA usually performs better on formulas that have
less free variables and more quantifiers as it performs the projection operation
faster than XSB. We believe that this is a practical problem caused by the
implementation XSB uses for the evaluation of programs with nested relations
and can be avoided using a more sophisticated implementation of Datalog®".
In addition to this MONA uses a compact representation of automata based
on BDDs [TOIT7/I]] to enhance its performance, whereas XSB uses tries as the
basis for tables combined with unification factoring [23/12]. The size of the trie
structures is, in general, larger than the size of a corresponding BDD. However
it is easier to insert tuples to a trie than into a BDD.

In the preliminary experiments [30] we conducted we also used CORAL, a
deductive system that supports Datalog® and Magic sets. Our results showed
that CORAL also performs better than MONA for the same formulas as XSB,
however XSB is faster than CORAL in all cases.

Logic Programming Approach to Automata-Based Decision Procedures 175

H#1 H#2 H#3 H#4 H#5 H6 HT H#8 #9 #10

MONA 2.66 4.95 N/A N/A 0.42 0.01 0.01 0.05 0.09 0.39
XSB B 0.010.01 0.11 0.01 35.72 1.74 N/A 0.01 6.02 94.64
XSB B(T) 0.01 0.01 0.01 0.01 15.88 0.18 N/A 0.01 0.29 10.96
XSBL 0.010.01 1.68 0.01 41.33 N/A N/A 12.59 8.52 N/A
XSB L(T) 0.01 0.01 1.73 0.01 15.03 N/A N/A 6.63 0.73 N/A

Fig. 3. Performance (secs) w.r.t. increasing number of quantifiers

HT H#6 H#8 H#10 #5 #9 #1 #2 #3 #4

MONA 0.01 0.01 0.05 0.39 0.42 0.09 2.66 4.95 N/A N/A
XSBB N/A 1.74 0.01 94.64 35.72 6.02 0.01 0.01 0.11 0.01
XSB B(T) N/A 0.18 0.01 10.96 15.88 0.29 0.01 0.01 0.01 0.01
XSBL N/A N/A 12,59 N/A 41.33 8.52 0.01 0.01 1.68 0.01
XSB L(T) N/A N/A 6.63 N/A 15.03 0.73 0.01 0.01 1.73 0.01

Fig. 4. Performance (secs) w.r.t. increasing number of variables

4.1 Heuristics for (Large) Conjunctions of Formulas

Representing theories that capture database schemas and/or UML diagrams of-
ten leads to large conjunctions of relatively simple formulas. Hence we develop
heuristics that improve on the naive translation of a formula ¢ to a Datalog®”
program P, presented in Section[8l Many of these heuristics are based on adapt-
ing existing optimization techniques for logic programs.

First, given a formula ¢ = @1 Apa A ... Ay, we have to decide which way the
conjunctions should be associated (parenthesized). Figure [l shows how perfor-
mance depends on parenthesizing of a 4-way conjunction. In the experiment we
test all permutations of two sets of 4 formulas w.r.t. all possible parenthesiza-
tions. The table reports the best and average times over all permutations for a
given parenthesization. The results show that left associative parenthesizing is
generally preferable.

To take advantage of the structure of the input conjunction, we propose an-
other heuristics that produces a more appropriate goal ordering. We use a struc-
ture called a formula graph: the nodes of the graph G, are the conjuncts of
¢ and the edges connect formulas that share variables (the edge labels list the
shared variables).

Example 5. Consider a formula ¢ = ¢1 A pa A 3 A @4 where:

1= Fr10 : (((FY30 : ((z10 € Y30) A (T4 € Y30))) A (3Ya0 1 (210 € Ya0)))
/\—|(E|Y20 : (($10 S Yi()) A (1‘3 S Ygo))))

o2 = (s : (1 € Ya) A (22 € Ya)) A (a5 € V3) A (21 € ¥3)))

Y3 = —|($9 S Y5)

p1 = (z9 € Y5)

176 G. Unel and D. Toman

Formula Parenthesizing Best Time Average Time # Not Answered

1 wi N\ (5 A (pr A pr)) 0.56 23.23 5
((SO-L A (pj) A (SOk AN (pl)) 0.77 7.00 4

((SO-L A (pj) A (pk) N @1 0.62 5.67 0

(i A (95 A pr)) A g 0.61 8.60 1

©wi N\ ((QOJ‘ A (pk) AN SOZ) 0.59 10.26 6

2 wi N\ (05 A (pr A pr)) 0.72 14.56 12
((pi Npj) A A1) 1.26 25.43 8

((SO-L A (pj) A (pk) N o1 0.94 24.18 2

(i A (95 A pr)) A @ 1.65 27.00 5

wi N (@5 A k) A pr) 0.74 18.96 11

Fig. 5. Performance (secs) Results w.r.t. Associativity

The formula graph for ¢ is as follows:

3
Ys SO
T3,T4
¥1 P2 z9,Y5
Ys
P4

For this heuristic we also need to estimate size of the automaton A,. We use
only very simple estimation rules for the automata operations:

— Al = Ay
= [Agiaps| = [Ag, | X |Ay,|
— ‘A3$:¢| — 2|Aup|

The goal ordering heuristics for a formula ¢ = @1 A a2 A ... A ¢, constructs a
left-associative permutation as follows: it starts from the conjunct that has the
largest estimated automaton and then finds its neighbor with the largest automa-
ton (alternatively selecting another conjunct if there are no conjuncts left that
satisfy this criteria). This step is repeated until all the conjuncts are processed.
Intuitively in the case where a conjunction is applied on a large automaton and
a small automaton, when top-down evaluation is used, for every final state we
find in the first automaton we check all the final states of the second one and
see if they form a final state in the conjunction automaton. Since we iterate on
a small sized automaton in this case, ordering the formulas starting from the
large ones is heuristically better. The experimental results shown in Figure
support this optimization. In the table heuristic time is the response time of the
program for the rewriting generated by the proposed heuristics, best time is the
fastest response time among all the programs generated for the formula, and
similarly worst time is the slowest response time. The experiments show that in
many cases the heuristic achieves a performance close to the performance of the
program for the best possible ordering.

Logic Programming Approach to Automata-Based Decision Procedures 177

of Conjuncts Formula Heuristic Time Best Time Worst Time

3 1 68.17 67.97 N/A
2 68.45 68.45 N/A
3 7.60 7.60 N/A
4 94.46 1.04 N/A
5 N/A 5.14 N/A
6 0.42 0.42 3.18
4 1 1.06 0.56 N/A
2 3.81 0.72 N/A
3 0.66 0.64 N/A
5 1 12.61 0.94 N/A
2 15.94 0.92 N/A
3 2.6 0.50 N/A

Fig. 6. Performance (secs) results on ordering

5 Related Work

The connection between logic and automata was first considered by Biichi [6]
and Elgot [13]. They have shown that monadic second-order logic over finite
words and finite automata have the same expressive power, and we can trans-
form formulas of this logic to finite automata and vice versa. Later, Biichi [7],
McNaughton [19], and Rabin [22] proved that monadic second-order logic over
infinite words (and trees) and finite automata also have the same expressive
power. The practical use of this connection was investigated for temporal logics
and fixed-point logics which led to the theory of model checking [32]. Another
automata-theoretic construction was for p-calculus [I631] and could be used,
in turn, for reasoning in expressive description logics. An extensive survey on
automata and logic can be found in [2§].

The logic-automaton connection has been used for implementing decision pro-
cedures for various logics. It is argued that the success of these procedures re-
lies on efficient operations on a compact representation of automata based on
BDDs [I7/1]].

We have used deductive techniques to represent and query nested-relational
representation of finite automata. The systems used to test our implementation
are CORAL [2412526] (in the preliminary experiments [30]), which provides the
set-oriented data manipulation characteristics of relational systems, and XSB [27]
(here sets have to be explicitly simulated). In terms of evaluation strategy, XSB
uses top-down evaluation with memoing, whereas CORAL uses magic sets. The
resolution technique XSB supports performs basic operations such as unification
very efficiently also providing alternative scheduling strategies [I4]. There are nu-
merous other deductive systems which support logic-programming languages with
sets and tuples, e.g., LDL [I1I21]. There is also a BDD-based deductive database
system called bddbddb [33] implemented to be used in program verification which
translates Datalog programs into efficient BDD implementations. Hence, the tech-
niques presented in this paper are complementary to BDDs.

178 G. Unel and D. Toman

Considerable work has been done on query optimization in relational and
deductive database systems [20]. Query optimization in relational systems in-
cludes choosing join orders and cost models [829]. We use the ideas of SLG
resolution [9IT0], and magic sets rewriting [3] as deductive database optimiza-
tion methods, and we are planning to use cost-based optimization methods to
improve our query evaluation.

6 Conclusions and Future Work

In this paper, we presented a translation technique that maps satisfiability ques-
tions for formulas in WS1S to query answering in Datalog®. We have also demon-
strated how evaluation techniques used for answering queries on these programs
can provide efficient decision procedures for second-order logics. In addition we
also study the impact of goal reordering and various other query optimization
techniques on the performance of the decision procedure and propose heuristics
for this purpose.

Future extensions of the proposed approach include extending the translation
to other types of automata on infinite objects, e.g., to Rabin [22] and Alternating
Automata [31], and on improving the upper complexity bounds by restricting the
form of Datalog®” programs generated by the translation (when used for decision
problems in, e.g., EXPTIME). In all these cases, the goal is to match the optimal
theoretical bounds while avoiding the worst-case behavior (inherent in most
automata-based techniques) in as many situations as possible. We also consider
the integration of the technique proposed in this paper with more standard
techniques such as BDDs.

References

1. Abiteoul, S., Beeri, C.: The power of languages for the manipulation of complex
values. VLDB Journal 4(4), 727-794 (1995)

2. Beeri, C., Naqvi, S., Shmueli, O., Tsur, S.: Set construction in a logic database
language. JLP 10(3&4), 181-232 (1991)

3. Beeri, C., Ramakrishnan, R.: On the power of Magic. JLP 10(1/2/3&4), 255-299
(1991)

4. Bernholtz, O., Vardi, M.Y., Wolper, P.: An automata-theoretic approach to
branching-time model checking. In: Dill, D.L. (ed.) CAV 1994. LNCS, vol. 818,
pp. 142-155. Springer, Heidelberg (1994)

5. Bryant, R.E.: Symbolic boolean manipulation with Ordered Binary Decision Dia-
grams. ACM Computing Surveys 24(3), 293-318 (1992)

6. Biichi, J.R.: Weak second-order arithmetic and finite automata. Z. Math. Logik
Grundl. Math. 6, 66-92 (1960)

7. Biichi, J.R.: On a decision method in restricted second-order arithmetic. In: Proc.
Int. Congr. for Logic, Methodology and Philosophy of Science, pp. 1-11 (1962)

8. Chaudhuri, S.: An overview of query optimization in relational systems. In: PODS,
pp. 34-43 (1998)

9. Chen, W., Swift, T., Warren, D.S.: Efficient top-down computation of queries under
the well-founded semantics. JLP 24(3), 161-199 (1995)

10. Chen, W., Warren, D.S.: Query evaluation under the well-founded semantics. In:
PODS, pp. 168-179 (1993)

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Logic Programming Approach to Automata-Based Decision Procedures 179

Chimenti, D., Gamboa, R., Krishnamurthy, R., Naqvi, S.A., Tsur, S., Zaniolo, C.:
The LDL system prototype. IEEE Trans. Knowl. Data Eng. 2(1), 76-90 (1990)
Dawson, S., Ramakrishnan, C.R., Skiena, S., Swift, T.: Principles and practice of
unification factoring. TOPLAS 18(5), 528-563 (1996)

Elgot, C.C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21-52 (1961)

Freire, J., Swift, T., Warren, D.S.: Beyond depth-first strategies: Improving tabled
logic programs through alternative scheduling. Journal of Functional and Logic
Programming 1998(3) (1998)

Henriksen, J.G., Jensen, J.L., Jérgensen, M.E., Klarlund, N., Paige, R., Rauhe,
T., Sandholm, A.: MONA: Monadic second-order logic in practice. In: Brinksma,
E., Steffen, B., Cleaveland, W.R., Larsen, K.G., Margaria, T. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89-110. Springer, Heidelberg (1995)

Janin, D., Walukiewicz, I.: Automata for the modal p-calculus and related results.
In: Héjek, P., Wiedermann, J. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552-562.
Springer, Heidelberg (1995)

Klarlund, N.: MONA & FIDO: The logic-automaton connection in practice. In:
Computer Science Logic, pp. 311-326 (1997)

Klarlund, N., Mgller, A., Schwartzbach, M.I.: MONA implementation secrets. Int.
J. Found. Comput. Sci. 13(4), 571-586 (2002)

McNaughton, R.: Testing and generating infinite sequences by a finite automaton.
Information and Control 9, 521-530 (1966)

Mumick, I.S.: Query Optimization in Deductive and Relational Databases. PhD
thesis, Department of Computer Science, Stanford University (1991)

Naqvi, S., Tsur, S.: A Logical Language for Data and Knowledge Bases. Computer
Science Press (1989)

Rabin, M.O.: Decidability of second-order theories and automata on infinite trees.
Trans. Amer. Math. Soc. 141, 1-35 (1969)

Ramakrishnan, 1., Rao, P., Sagonas, K., Swift, T., Warren, D.: Efficient tabling
mechanisms for logic programs. In: Proc. ICLP, pp. 697-711 (1995)
Ramakrishnan, R., Bothner, P., Srivastava, D., Sudarshan, S.: CORAL - a database
programming language. In: Workshop on Deductive Databases (1990)
Ramakrishnan, R., Srivastava, D., Sudarshan, S.: Coral - control, relations and
logic. In: Proc. VLDB Conference, pp. 238-250 (1992)

Ramakrishnan, R., Srivastava, D., Sudarshan, S., Seshadri, P.: The CORAL de-
ductive system. VLDB Journal 3(2), 161-210 (1994)

Sagonas, K.F., Swift, T., Warren, D.S.: XSB as an efficient deductive database
engine. In: Proc. SIGMOD, pp. 442-453 (1994)

Thomas, W.: Languages, automata, and logic. In: Handbook of Formal Languages,
vol. 3, Springer, Heidelberg (1997)

Ullman, J.D.: Principles of Database and Knowledge-Base Systems, vol. 1&2. Com-
puter Science Press (1989)

Unel, G., Toman, D.: Deciding weak monadic second-order logics using complex-
value datalog. In: Proc. LPAR (Short Paper) (2005)

Vardi, M.Y.: Reasoning about the past with two-way automata. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 628-641. Springer,
Heidelberg (1998)

Vardi, M.Y., Wolper, P.: An automata-theoretic approach to automatic program
verification. In: Proc. LICS, pp. 322-331 (1986)

Whaley, J., Lam, M.S.: Cloning-based context-sensitive pointer alias analysis using
binary decision diagrams. In: Proc. PLDI ’04, pp. 131-144 (2004)

A Logic Programming Framework for
Combinational Circuit Synthesis

Paul Tarau! and Brenda Luderman?

! Department of Computer Science and Engineering
University of North Texas
paul.tarau@gmail.com
2 Intel Corp.

Austin, Texas
brenda.luderman@gmail.com

Abstract. Logic Programming languages and combinational circuit
synthesis tools share a common “combinatorial search over logic formu-
lae” background. This paper attempts to reconnect the two fields with
a fresh look at Prolog encodings for the combinatorial objects involved
in circuit synthesis. While benefiting from Prolog’s fast unification algo-
rithm and built-in backtracking mechanism, efficiency of our search algo-
rithm is ensured by using parallel bitstring operations together with logic
variable equality propagation, as a mapping mechanism from primary in-
puts to the leaves of candidate Leaf-DAGs implementing a combinational
circuit specification. After an exhaustive expressiveness comparison of
various minimal libraries, a surprising first-runner, Strict Boolean In-
equality “<” together with constant function “1” also turns out to have
small transistor-count implementations, competitive to NAND-only or
NOR-only libraries. As a practical outcome, a more realistic circuit syn-
thesizer is implemented that combines rewriting-based simplification of
(<, 1) circuits with exhaustive Leaf-DAG circuit search.

Keywords: logic programming and circuit design, combinatorial object
generation, exact combinational circuit synthesis, universal boolean logic
libraries, symbolic rewriting, minimal transistor-count circuit synthesis.

1 Introduction

Various logic programming applications and circuit synthesis tools share algo-
rithmic techniques ranging from search over combinatorial objects and constraint
solving to symbolic rewriting and code transformations.

The significant semantic distance between the two fields, coming partly from
the application focus and partly from the hardware/software design gap has
been also widened by the use of lower level procedural languages for implement-
ing circuit design tools - arguably for providing better performance fine tuning
opportunities.

While intrigued by the semantic and terminological gap between the two fields,
our interest in the use of logic programming for circuit design has been encour-
aged because of the following facts:

V. Dahl and I. Niemeli (Eds.): ICLP 2007, LNCS 4670, pp. 180, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Logic Programming Framework for Combinational Circuit Synthesis 181

— the simplicity and elegance of combinatorial generation algorithms in the
context of Prolog’s backtracking, unification and logic grammar mechanisms

— the structural similarity between Prolog terms and the Leaf-DAGs typically
used as a data structure for synthesized circuits

— elegant implementations of circuit design tools in high level functional lan-
guages [10]

— the presence of new flexible constraint solving Prolog extensions like CHR
[6] that could express layout, routing and technology mapping aspects of the
circuit design process needed, besides circuit synthesis, for realistic design
tools.

The paper summarizes our efforts on solving some realistic combinational cir-
cuit synthesis problems with logic programming tools. It is organized as follows.
Section [2] describes the generation of combinatorial objects needed for exact
circuit synthesis in Prolog, section B shows uniform bitstring representations for
functions and primary inputs that check function equivalence without backtrack-
ing. Section @ compares various universal boolean function libraries in terms of
total cost of minimal representations of the set of 16 2-argument operators as an
indicator of expressiveness for minimal cost synthesis purposes. As result of this
comparison, section [B] focuses on a surprisingly interesting library consisting of
Strict Boolean Inequality and constant function 1 with subsection [B.] showing
universality of (<, 1) and subsection [£.2] presenting our library specific rewriting
algorithm, usable as minimization heuristics when exact synthesis becomes in-
tractable. Section [Gldescribes low transistor-count implementations of the <-gate
and compares transistor counts for (<, 1) with equivalent NAND-based circuits.
Sections [0 and [§ discuss related and future work and section[d concludes the pa-
per. The Prolog code for the exact synthetizer and various libraries is available
at http://logic.csci.unt.edu/tarau/research/2007/csyn.zip.

2 Combinatorial Objects and Combinational Circuit
Synthesis

Our exact synthesis algorithm uses Prolog’s depth-first backtracking to find
minimal circuits representing boolean functions, based on a given library of
primitives, through composition of combinatorial generation steps and efficient
checking against an output pattern specified as a truth table.

The general structure of the algorithm is as follows:

Through the paper, Leaf-DAGs will be used to represent the synthetized cir-
cuits. The general structure of the algorithm is as follows:

1. First, the algorithm runs a library specific rewriting module (see for a
library specific rewriting module) on the input formula (in symbolic, CNF or
DNF form). This (or a conservative higher estimate) provides an upper limit
(in terms of a cost function, for instance the number of gates) on the size
of the synthesized expression. It also provides a (heuristically) minimized

http://logic.csci.unt.edu/tarau/research/2007/csyn.zip

182 P. Tarau and B. Luderman

formula, in therms of the library, that can be returned as output if exact

synthesis times out.

2. Next, if the formula qualifies for exact synthesis, we enumerate candidate
trees in increasing cost order, to ensure that minimal trees are generated
first. This involves the following steps:

(a) First, we implement a mapping from the set primary inputs to the set
of their occurrences in a tree. This involves generating functions from N
variables to M occurrences. We achieve this without term construction,
through logical variable bindings, efficiently undone on backtracking by
Prolog’s trailing mechanism.

(b) Next, N-node binary trees of increasing sizes are generated. The combina-
tion of the expression trees and the mapping of logic variables (represent-
ing primary inputs) to their (possibly multiple) occurrences, generates
Leaf-DAGs.

3. Finally, we evaluate candidate Leaf-DAGs for equivalence with the output
specification.

We will describe the details of the algorithm and the key steps of their Prolog
implementation in the following subsections.

2.1 Boolean Expression Trees

Size-constrained expression trees are combinatorial objects providing the skele-
tons for the Leaf-DAGs generated by our algorithm, as shown in predicate
enumerate_tree_candidates/5. The constraints are expressed as input pa-
rameters UniqueVarAndConstCount and LeafCount. The generator produces
an expression tree ETree and computes its truth table OutSpec encoded as a
bitstring-integer. Size-constraints, ensuring termination of the recursive predi-
cate generate_expression_tree/7, are encoded as a finite list of nodes, using
DCG notation. Termination is ensured by having each recursive step consume
exactly one node. A finite list of leaf variables provides leaves to the generated
tree in the first clause of predicate generate_expression_tree/7.

enumerate_tree_candidates(UniqueVarAndConstCount,LeafCount,
Leaves,ETree,OutputSpec) : -
N is LeafCount-1,
length(Nodes,N),
generate_expression_tree(UniqueVarAndConstCount,ETree, QutputSpec,
Leaves, [],Nodes, []1).

generate_expression_tree(_,V,V, [V|Leaves],Leaves)-->[].

generate_expression_tree (NbOfBits,ETree,OutputSpec,Vsl,VsN)-->[_],
generate_expression_tree(NbOfBits,L,01,Vs1,Vs2),
generate_expression_tree (NbOfBits,R,02,Vs2,VsN),
{combine_expression_values(NbOfBits,L,R,01,02,ETree,OutputSpec)}.

The predicate combine_expression_values/7, shown below for the (x,®,1)
library, produces tree nodes like L*R and L"R, while computing their bitstring-
integer encoded truth table 0 from the left and right branch values 01 and 02.

A Logic Programming Framework for Combinational Circuit Synthesis 183

combine_expression_values(_,L,R,01,02, L*R,0):-bitand(01,02,0).
combine_expression_values(_,L,R,01,02, L°R,0):-bitxor(01,02,0).

The generated trees have binary operators as internal nodes and variables as
leaves. They are counted by Catalan numbers [15]), with 4" as a (rough) upper
bound for N leave trees.

2.2 Implementing Finite Functions as Logical Variable Bindings

We express finite functions as bindings of a list of logic variables (the range of
the function) to values in the domain of the function.

functions_from([],_).
functions_from([V|Vs],Us) :-member(V,Us) ,functions_from(Vs,Us).

Example: A call like
?7- functions_from([A,B,C], [0,1])
enumerates the 8 functions as variable bindings like:

{A->0,B->0,C->0}
{A->0,B->0,C->1}

{A->1,B->1,C->1}

Assuming the first set has M elements and the second has N elements, a total of
NM backtracking steps are involved in the enumeration, one for each function
between the two sets. As a result, a finite function can be seen simply as a set of
variable occurrences. This provides fast combinatorial enumeration of function
objects, for which backtracking only involves trailing of variable addresses and
no term construction.

2.3 Leaf-DAG Circuit Representations for Combinational Logic

Definition 1. A Leaf-DAG is a directed acyclic graph where only vertices (called
leaves) that have no outgoing edges can have multiple incoming edges.

Leaf-DAGs can be seen as trees with possibly merged leaves. Note that Leaf-
DAGs are naturally represented as Prolog terms with multiple occurrences of
some variables - like X and Y in f(X,¢9(X,Y,Z2),Y).

Our Leaf-DAG generator combines the size-constrained tree generator from
subsection 2] and the functions-as-bindings generator from subsection 2.2 as
follows:

generate_leaf_dag(UniqueVarAndConstCount,LeafCount,
UniqueVarsAndConsts,ETree,OutputSpec) : -
length(Leaves,LeafCount),
functions_from(Leaves,UniqueVarsAndConsts),
enumerate_tree_candidates(UniqueVarAndConstCount,LeafCount,
Leaves,ETree,OutputSpec) .

184 P. Tarau and B. Luderman

Proposition 1. Let catalan(M) denote the M-th Catalan number. The total
backtracking steps for generating all Leaf DAGs with N primary inputs and M
binary operation nodes is catalan(M) * NM+1,

Proof. Tt follows from the fact that Catalan numbers count the trees and NM+1
counts the functions corresponding to mapping the primary inputs to their
leaves, because a binary tree with M internal nodes, each corresponding to an
operation, has M + 1 leaves.

Note that if constant functions like 0 or 1 are part of the library, they are simply
added to the list of primary inputs.

The predicate synthesize_leaf_dag/4 describes a (simplified version) of our
Leaf-DAG generator. Note that if the OutputSpec truth table is given as a con-
stant value, unification ensures that only LeafDAGs matching the specification
are generated. With OutputSpec used as a free variable, the predicate can be
used in combination with Prolog’s dynamic database as part of a dynamic pro-
gramming algorithm that tables and reuses subcircuits to avoid recomputation.

synthesize_leaf_dag(MaxGates,UniqueBitstringIntVars,
UniqueVarAndConstCount ,PIs:LeafDag=0utputSpec) :—
constant_functions(UniqueVarAndConstCount,ICs,0Cs),
once (append (ICs,UniqueBitstringIntVars,UniqueVarsAndConsts)),
for (NbOfGates,1,MaxGates),
generate_leaf_dag(UniqueVarAndConstCount,NbOfGates,
UniqueVarsAndConsts,ETree,OutputSpec),

decode_leaf_dag(ETree,UniqueVarsAndConsts,LeafDag,DecodedVs),
once (append (0Cs,PIs,DecodedVs)) .

Proposition 2. The predicate synthesize_leaf_dag/4 generates Leaf-DAGs
n increasing size order.

Proof. 1t follows from the fact that each call to generate_leaf_dag/5 enumer-
ates on backtracking all Leaf-DAGs of size NbOfGates and the predicate for/3
provides increasing NbOfGates bounds.

Assuming zero cost for constant functions and a fixed transistor cost for each op-
erator, it follows that the synthesizer produces circuits based on single-operator
libraries in increasing cost order. For more complex cost models adaptations to
the tree generator can be implemented easily.

3 Fast Boolean Evaluation with Bitstring Truth Table
Encodings

We use an adaptation of the clever bitstring-integer encoding described in the
Boolean Evaluation section of [7] of n variables as truth tables. Let xj be a
variable for 0 < k < n. Then z; = (22" —1)/(22""" + 1), where the number
of distinct variables in a boolean expression gives n, the number of bits for the
encoding. The mapping from variables, denoted as integers, to their truth table
equivalents, is provided by the following Prolog code:

A Logic Programming Framework for Combinational Circuit Synthesis 185

% Maps variable K in 0..Mask-1 to truth table
% Xk packed as a bitstring-integer.
var_to_bitstring_int (NbOfBits,K,Xk):-

all_ones_mask(NbOfBits,Mask),

NK is NbOfBits-(K+1),

D is (1<<(1<<NK))+1,

Xk is Mask//D.

% Mask is a bitstring-integer ending with NbOfBits of the form
% 11...1. It also provides an encoding of constant function 1.
all_ones_mask(NbOfBits,Mask) :-Mask is (1<<(1<<NbOfBits))-1.

Variables representing such bitstring-truth tables can be combined with the usual
bitwise integer operators to obtain new bitstring truth tables encoding all pos-
sible value combinations of their arguments, like in:

bitand(X1,X2,X3):-X3 is ’/\’ (X1,X2).

bitor(X1,X2,X3):-X3 is ’\/’(X1,X2).

bitxor(X1,X2,X3):-X3 is ’#’(X1,X2).

bitless(X1,X2,X3):-X3 is ’#’(X1,’\/’ (X1,X2)).

bitgt (X1,X2,X3):-X3 is ’#’(X1,’/\’(X1,X2)).

bitnot (NbOfBits,X1,X3):-all_ones_mask(NbOfBits,M),X3 is ’#’ (X1,M).
biteq(Nb0fBits,X,Y,Z):-all_ones_mask(NbOfBits,M),Z is ’#° (M, #’ (X,Y)).
bitimpl (NbOfBits,X1,X2,X3) :-bitnot (NbOfBits,X1,NX1) ,bitor (NX1,X2,X3).
bitnand (NbOfBits,X1,X2,X3) :-bitand(X1,X2,NX3) ,bitnot (NbOfBits,NX3,X3).
bitnor (Nb0fBits,X1,X2,X3) :-bitor(X1,X2,NX3) ,bitnot (NbOfBits,NX3,X3).

The length of the bitstring-truth tables is sufficient for most perfect synthe-
sis problems involving exhaustive search, as most problems become intractable
above the 64 bits corresponding to 6 variables (see Proposition [). However,
using arbitrary length integer packages, available for most Prologs, allows ex-
tending the mechanism further. In practice, a timeout mechanism can be used
to decide if falling back to a heuristic synthesis method is needed.

4 A Comparison of Universal Boolean Function Libraries

Definition 2. A set of boolean functions F' is universal if any boolean function
can be written as a composition of functions in F.

A well known universal set is (conjunction, negation) i.e. (x,~) - this follows
immediately from the rewriting of a truth table in terms of conjunction, dis-
junction and negation followed by elimination of disjunctions using De Morgan’s
laws. Universality of a library is usually proven by expressing conjunction and
negation with its operations.

The table in Fig. [l compares a few libraries used in synthesis with respect
to the total gates needed to express all the 16 2-argument boolean operations

186 P. Tarau and B. Luderman

Library total for 16 operators non-redundant

nand 46 yes
nor 46 yes
nand, 1 33 no
nor, 0 33 no
*, nand 32 no
<, nor 31 no
=,0 28 yes
<1 28 yes

*, <, 1 26 no
*, @, 1 25 yes
<,nand, 1 25 no
<,nor, 1 24 no
*,=,0 23 yes
=,=,0 21 no
<,=,1 21 no

Fig. 1. Relative Expressiveness of Libraries

(themselves included). The last column marks if the library is non-redundant
(or minimal), i.e. if none of its functions can be expressed in terms of the
others.

The comparison gives a hint on the relative expressiveness of libraries.

By including operations like “®” and “=”", that are known to require a rel-
atively high number of other gates (or a high transistor count) to express, one
can minimize the number of operators (and circuit size) required. Using only
gates known to have low transistor-count implementations like nand and nor,
the expressiveness drops significantly (46 required).

Surprisingly, (=, 0) and its dual (<, 1) do significantly better than nand and
nor: they can express all 16 operators with only 28 gates. As section 6l will show,
(<, 1) turns out to have very interesting low transistor implementations. Given
also that it has not been used in any work on synthesis that we are aware of, we
will explore this library in depth in section

Interestingly enough, the libraries (x,=,0) and (=,=,0) that provide, ar-
guably, some the most human readable expressions when expressing other op-
erators, have relatively small gate counts (23 and 21). For instance the first
one expresses A = Bas A = Ax B and A® B as (A = B) = 0, the second
one expresses (A + B) as (0 = A) => B, and both express (A @ B @ C) as
(A= (B=20)).

Note also, that besides spotting out the minimal universal library (<, 0), the
comparison also identifies (<, nor, 1) as a highly expressive library, with potential
for practical design uses, given that < and nor have both low transistor-count
implementations.

Finally, one of the overall “winners” of the comparison is (<, =, 1). It expresses
the 16 operators with only 21 gates and it is a superset of the (<, 1) library. This
also suggests exploring in more detail the potential of < for synthesis.

A Logic Programming Framework for Combinational Circuit Synthesis 187

5 Using Strict Boolean Inequality for Combinational
Circuit Synthesis

While Strict Boolean Inequalityﬁ A < B together with 1 is a universal boolean
function pair, it has been neglected by logicians as well as circuit designers, to
the point where there are surprisingly few references to it in the literature in
both fields. Interestingly enough, its dual, (:>,OE — is a well known universal
function pair that has been extensively studied as an axiomatic basis for both
classical and intuitionistic propositional logic.

One can only speculate about the reasons for this neglect. The lack of algebraic
grouping properties like commutativity and associativity comes to mind. Or, that
its intuitive meaning would be harder to map to common reasoning patterns.

In any case, none of these are critical for the synthesis problem, which, stated
generically, is about finding minimal representations of finite functionsﬁ in terms
of a universal subset of them, given as a library.

As an indication of the usefulness of (<, 1) for synthesis, let’s note that A® B
(known to be part of notoriously hard to synthesize boolean functions) is in fact
(A < B)+ (B < A) and therefore A < B can provide half of A @® B. Note that
it also provides a form of conjunction (with first argument inverted), given its
equivalence to ~ A x B. It follows from this equivalence, that < also works as
an inference rule: from its truth, one can determine uniquely the truth values
of both of its arguments, i.e. the first should be false and the second true. As
a side note, the reader might notice that this is similar, but in a way stronger
than the mechanism through which Modus Ponens works. In the case of Modus
Ponens, if one looks at its premises as a formula, then A« (