
A Modular Formalisation of Finite Group
Theory�

Georges Gonthier1, Assia Mahboubi2, Laurence Rideau3,
Enrico Tassi4, and Laurent Théry3

1 Microsoft Research
2 Microsoft Research - Inria Joint Center

3 INRIA
4 University of Bologna

gonthier@microsoft.com, tassi@cs.unibo.it
{Assia.Mahboubi,Laurent.Rideau,Laurent.Thery}@inria.fr

Abstract. In this paper, we present a formalisation of elementary group
theory done in Coq. This work is the first milestone of a long-term effort
to formalise the Feit-Thompson theorem. As our further developments
will heavily rely on this initial base, we took special care to articulate it
in the most compositional way.

1 Introduction

Recent works such as [2,8,9,19] show that proof systems are getting sufficiently
mature to formalise non-trivial mathematical theories. Group theory is a domain
of mathematics where computer proofs could be of real added value. This domain
was one of the first to publish very long proofs. The first and most famous
example is the Feit-Thompson theorem, which states that every odd order group
is solvable. Its historical proof [7] is 255 pages long. That proof has later been
simplified and re-published [5,18], providing a better understanding of local parts
of the proof. Yet its length remains unchanged, as well as its global architecture.
Checking such a long proof with a computer would clearly increase the confidence
in its correctness, and hopefully lead to a further step in the understanding of
this proof. This paper addresses the ground work needed to start formalising
this theorem.

There have been several attempts to formalise elementary group theory using
a proof assistant. Most of them [1,12,23] stop at the Lagrange theorem. An
exception is Kammüller and Paulson [13] who have formalised the first Sylow
theorem. The originality of our work is that we do not use elementary group
theory as a mere example but as a foundation for further formalisations. It is
then crucial for our formalisation to scale up. We have therefore worked out a
new development, with a strong effort in proof engineering.

First, we reuse the SSReflect extension of the Coq system [14] developed
by Gonthier for his proof of the Four Colour theorem. This gives us a library
� This work was supported by the Microsoft Research - Inria Joint Center.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 86–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Modular Formalisation of Finite Group Theory 87

and a proof language that is particularly well suited to the formalisation of finite
groups. Second, we make use of many features of the Coq proof engine (nota-
tions, implicit arguments, coercions, canonical structures) to get more readable
statements and tractable proofs.

The paper is organised as follows. In Section 2, we present the SSReflect

extension and show how it is adequate to our needs. In Section 3, we comment
on some of our choices in formalising objects such as groups, quotients and
morphisms. Finally, in Section 4, we present some classic results of group theory
that have already been formally proved in this setting.

2 Small Scale Reflection

The SSReflect extension [10] offers new syntax features for the proof shell
and a set of libraries making use of small scale reflection in various respects.
This layer above the standard Coq system provides a convenient framework for
dealing with structures equipped with a decidable equality. In this section, we
comment on the fundamental definitions present in the library and how modu-
larity is carried out throughout the development.

2.1 Proof Shell

Proof scripts written with the SSReflect extension have a very different flavour
than the ones developed using standard Coq tactics. We are not going to present
the proof shell extensively but only describe some simple features, that, we be-
lieve, have the most impact on productivity. A script is a linear structure com-
posed of tactics. Each tactic ends with a period. An example of such a script is
the following

move⇒ x a H; apply: etrans (cardUI).
case: (a x); last by rewrite /= card0 card1.
by rewrite [+ x]addnC.

by rewrite {1}mem filter /setI.

All the frequent bookkeeping operations that consists in moving, splitting, gen-
eralising formulae from (or to) the context are regrouped in a single tactic move.
For example, the tactic move⇒ x a H on the first line moves (introduces) two
constants x and a and an assumption H from the goal to the context.

It is recommended practise to use indentation to display the control structure
of a proof. To further structure scripts, SSReflect supplies a by tactical to
explicitly close off tactics. When replaying scripts, we then have the nice property
that an error immediately occurs when a closed tactic fails to prove its subgoal.
When composing tactics, the two tacticals first and last let the user restrict
the application of a tactic to only the first or the last subgoal generated by the
previous command. This covers the frequent cases where a tactic generates two
subgoals one of which can be easily disposed of. In practice, these two tacticals
are so effective at increasing the linearity of our scripts that, in fact, we very
rarely need more than two levels of indentation.

88 G. Gonthier et al.

Finally, the rewrite tactic in SSReflect provides a concise syntax that allows
a single command to perform a combination of conditional rewriting, folding and
unfolding of definitions, and simplification, on selected patterns and even specific
occurrences. This makes rewriting much more user-friendly and contributes to
shift the proof style towards equational reasoning. In the standard library of
Coq, the rewrite tactic is roughly used the same number of times as the apply
tactic. In our development for group theory, rewrite is used three times more
than apply — despite the fact that, on average, each SSReflect rewrite stands
for three Coq rewrites.

2.2 Views

The Coq system is based on an intuitionistic type theory, the Calculus of Induc-
tive Constructions [21,16]. In such a formalism, there is a distinction between
logical propositions and boolean values.

On the one hand, logical propositions are objects of sort Prop which is the
carrier of intuitionistic reasoning. Logical connectives in Prop are types, which
give precise information on the structure of their proofs; this information is
automatically exploited by Coq tactics. For example, Coq knows that a proof
of A ∨ B is either a proof of A or a proof of B. The tactics left and right change
the goal A ∨ B to A and B, respectively; dually, the tactic case reduces the goal
A ∨ B ⇒ G to two subgoals A ⇒ G and B ⇒ G.

On the other hand, bool is an inductive datatype with two constructors true
and false . Logical connectives on bool are computable functions, defined by their
truth tables, using case analysis:

Definition (b1 || b2) := if b1 then true else b2.

Properties of such connectives are also established using case analysis: the tactic
by case: b solves the goal b || ∼b = true by replacing b first by true and then by
false ; in either case, the resulting subgoal reduces by computation to the trivial
true = true.

Thus, Prop and bool are truly complementary: the former supports robust
natural deduction, the latter allows brute-force evaluation. SSReflect supplies
a generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version.

First, booleans are injected into propositions using the coercion mechanism:

Coercion is true (b: bool) := b = true.

This allows any boolean formula b to be used in a context where Coq would
expect a proposition, e.g., after Lemma ... :. It is then interpreted as (is true b),
i.e., the proposition b = true. Coercions are elided by the prettyprinter, so they
are essentially transparent to the user. Then, the inductive predicate reflect is
used to relate propositions and booleans

Inductive reflect (P: Prop): bool → Type :=
| Reflect true : P ⇒ reflect P true
| Reflect false : ¬P ⇒ reflect P false.

A Modular Formalisation of Finite Group Theory 89

The statement (reflect P b) asserts that (is true b) and P are logically equiva-
lent propositions. In the following, we use the notation P ↔ b for (reflect P b).

For instance, the following lemma:

Lemma andP: ∀b1 b2, (b1 ∧ b2) ↔ (b1 && b2).

relates the boolean conjunction && to the logical one ∧ . Note that in andP, b1

and b2 are two boolean variables and the proposition b1∧ b2 hides two coercions.
The conjunction of b1 and b2 can then be viewed as b1∧ b2 or as b1&& b2. A
naming convention in SSReflect is to postfix the name of view lemmas with
P. For example, orP relates || and ∨ , negP relates ∼ and ¬.

Views are integrated to the proof language. If we are to prove a goal of the
form (b1∧ b2) ⇒ G, the tactic case⇒ E1 E2 changes the goal to G adding to the
context the two assumptions E1: b1 and E2: b2. To handle a goal of the form
(b1&& b2)⇒ G, we can simply annotate the tactic to specify an intermediate
change of view: case/andP⇒ E1 E2.

Suppose now that our goal is b1&& b2. In order to split this goal into two
subgoals, we use a combination of two tactics: apply/andP; split. The first tactic
performs the change of view so that the second tactic can do the splitting.
Note that if we happen to have in the context an assumption H: b1, instead of
performing the splitting, the tactic rewrite H /=, i.e., rewriting with H followed
by a simplification, can directly be used to transform the goal b1&& b2 into b2.

Views also provide a convenient way to choose between several (logical) char-
acterisations of the same (computational) definition, by having a view lemma per
interpretation. A trivial example is the ternary boolean conjunction. If we have
a goal of the form b1&& (b2&& b3) ⇒ G, applying the tactic case/andP leads to
the goal b1 ⇒ b2&& b3 ⇒ G. We can also define an alternative view with

Inductive and3 (P Q R : Prop) : Prop := And3 of P & Q & R.

Lemma and3P: ∀ b1 b2 b3, (and3 b1 b2 b3) ↔ (b1 && (b2 && b3)).

Now, the tactic case/and3P directly transforms the goal b1&& (b2&& b3)⇒ G
into b1 ⇒ b2 ⇒ b3 ⇒ G.

2.3 Libraries

In our formalisation of finite groups, we reused the base libraries initially devel-
oped for the formal proof of the Four Colour theorem. These libraries build a
hierarchy of structures using nested dependent record types. This technique is
standard in type-theoretic formalisations of abstract algebra [3]. At the bottom
of this hierarchy, the structure eqType deals with types with decidable equality.

Structure eqType : Type := EqType {
sort :> Type;
≡ : sort → sort → bool;
eqP : ∀ x y, (x = y) ↔ (x ≡ y)

}.

90 G. Gonthier et al.

The :> symbol declares sort as a coercion from an eqType to its carrier type. It
is the standard technique to get subtyping. If d is an object of type eqType, then
an object x can have the type x : d, thanks to the sort coercion. The complete
judgement is in fact x : sort d. Moreover, if x and y are of type sort d, the term
x ≡ y is understood as the projection of d on its second field, applied to x and y.
The implicit d parameter is both inferred and hidden from the user.

In the type theory of Coq, the only relation we can freely rewrite with is the
primitive (Leibniz) equality. When another equivalence relation is the intended
notion of equality on a given type, the user usually needs to use the setoid
workaround [4]. Unfortunately, setoid rewriting does not have the same power as
primitive rewriting. An eqType structure provides not only a computable equality
≡ but also a proof eqP that this equality reflects the Leibniz one; the eqP view
thus promotes ≡ to a rewritable relation.

A non parametric inductive type can usually be turned into an eqType by
choosing for ≡ the function that checks structural equality. This is the case for
booleans and natural numbers for which we define the two canonical structures
bool eqType and nat eqType. Canonical structures are used when solving equa-
tions involving implicit arguments. Namely, if the type checker needs to infer
an eqType structure with sort nat, it will automatically choose the nat eqType
structure. By enlarging the set of implicit arguments Coq can infer, canonical
structures make hierarchical structures widely applicable.

A key property of eqType structures is that they enjoy proof-irrelevance for
the equality proofs of their elements: every equality proof is convertible to a
reflected boolean test.

Lemma eq irrelevance: ∀ (d: eqType) (x y: d) (E: x = y) (E’: x = y), E = E’.

An eqType structure only defines a domain, in which sets take their elements.
Sets are then represented by their characteristic function.

Definition set (d: eqType) := d → bool.

and defining set operations like ∪ and ∩ is done by providing the corresponding
boolean functions.

The next step consists in building lists, elements of type seq d, whose elements
belong to the parametric eqType structure d. The decidability of equality on d
is needed when defining the basic operations on lists like membership ∈ and
look-up index. Then, membership is used for defining a coercion from list to set,
such that (l x) is automatically coerced into x ∈ l.

Lists are the cornerstone of the definition of finite types. A finType structure
provides an enumeration of its sort: a sequence in which each element of type
sort occurs exactly once. Note that sort must also have an eqType structure.

Structure finType : Type := FinType {
sort :> eqType;
enum : seq sort ;
enumP : ∀ x, count (set1 x) enum = 1

}.

A Modular Formalisation of Finite Group Theory 91

where (set1 x) is the set that contains only x and (count f l) computes the num-
ber of elements y of the list l for which (f y) is true.

Finite sets are then sets whose domain has a finType structure. The library
provides many set operations. For example, given A a finite set, (card A) rep-
resents the cardinality of A. All these operations come along with their basic
properties. For example, we have:

Lemma cardUI : ∀ (d: finType) (A B: set d),
card (A ∪ B) + card (A ∩ B) = card A + card B.

Lemma card image : ∀ (d d’: finType) (f: d → d’) (A: set d),
injective f ⇒ card (image f A) = card A.

3 The Group Library

This section is dedicated to the formalisation of elementary group theory. We
justify our definitions and explain how they relate to each other.

3.1 Graphs of Function and Intentional Sets

We use the notation f=1g to indicate that two functions are extensionally equal,
i.e., the fact that ∀ x, f x = g x holds. In Coq, f=1g does not imply f = g. This
makes equational reasoning with objects containing functions difficult in Coq

without adding extra axioms. In our case, extra axioms are not needed. The
functions we manipulate have finite domains so they can be finitely represented
by their graph. Given d1 a finite type and d2 a type with decidable equality, a
graph is defined as:

Inductive fgraphType : Type :=
Fgraph (val: seq d2) (fgraph sizeP: size val = card d1): fgraphType.

It contains a list val of elements of d2, the size of val being exactly the cardinality
of d1. Defining a function fgraph of fun that computes the graph associated to a
function is straightforward. Conversely, a coercion fun of fgraph lets the user use
graphs as standard functions. With graphs as functions, it is possible to prove
functional extensionality:

Lemma fgraphP : ∀ (f g : fgraphType d1 d2), f =1 g ⇔ f = g.

Note that here f =1g is understood as (fun of graph f) =1 (fun of graph g).
The special case of graphs with domain d and codomain bool eqType is de-

noted (setType d). We call elements of (setType d) intentional sets by opposition
to the sets in (set d), defined by their characteristic function. We equip inten-
tional sets with the same operations as extensional sets. {x,E(x)} denotes the
intentional set whose characteristic function is (fun x → E(x)), and (f @ A) de-
notes the intentional set of the image of A by f.

Graphs are used to build some useful data-structures. For example, homo-
geneous tuples, i.e., sequences of elements of type K of fixed length n, are im-
plemented as graphs with domain (ordinal n), the finite type {0, 1, 2,. . ., n−1},
and co-domain K. With this representation, the p-th element of a n-tuple t can

92 G. Gonthier et al.

be obtained applying t to p, as soon as p lies in the the domain of t. Also, per-
mutations are defined as function graphs with identical domain and co-domain,
whose val list does not contain any duplicate.

3.2 Groups

In the same way that eqType structures were introduced before defining sets,
we introduce a notion of (finite) group domain which is distinct from the one of
groups. It is modelled by a finGroupType record structure:

Structure finGroupType : Type := FinGroupType {
element :> finType;

1 : element;
−1 : element → element;

∗ : element → element → element;
unitP : ∀ x, 1 ∗ x = x;
invP : ∀ x, x−1 ∗ x = 1;

mulP : ∀ x1 x2 x3, x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3

}.

It contains a carrier, a composition law and an inverse function, a unit element
and the usual properties of these operations. Its first field is declared as a coercion
to the carrier of the group domain, like it was the case in section 2.3. In particular,
we can again define convenient global notations like ∗ or −1 for the projections
of this record type.

In the group library, a first category of lemmas is composed of properties that
are valid on the whole group domain. For example:

Lemma invg mul : ∀ x1 x2, (x2 ∗ x1)−1 = x1
−1 ∗ x2

−1.

Also, we can already define operations on arbitrary sets of a group domain.
If A is such a set, we can define for instance:

Definition x ˆ y := y−1 ∗ x ∗ y.
Definition A :∗ x := {y, y ∗ x−1 ∈ A}. (∗ right cosets ∗)
Definition A :ˆ x := {y, y ˆ x−1 ∈ A}. (∗ conjugate ∗)
Definition normaliser A := {x, (A :ˆ x) ⊂ A}.

Providing a boolean predicate sometimes requires a little effort, e.g., in the def-
inition of the point-wise product of two sets:

Definition A :*:B := {x ∗ y, ∼(disjoint {y, x ∗ y ∈ (A :∗ y)} B)}

The corresponding view lemma gives the natural characterisation of this object:

Lemma smulgP : ∀ A B z, (∃ x y, x ∈ A & y ∈ B & z = x ∗ y) ↔ (z ∈ A :*: B).

Lemmas like smulgP belong to category of lemmas composed of the properties
of these operations requiring only group domain sets.

Finally, a group is defined as a boolean predicate, satisfied by sets of a given
group domain that contain the unit and are stable under product.

Definition group set A := 1 ∈ A && (A :*: A) ⊂ A.

A Modular Formalisation of Finite Group Theory 93

It is very convenient to give the possibility of attaching in a canonical way
the proof that a set has a group structure. This is why groups are declared as
structures, of type:

Structure group(elt : finGroupType) : Type := Group {
set of group :> setType elt;
set of groupP : group set set of group

}.

The first argument of this structure is a set, giving the carrier of the group.
Notice that we do not define one type per group but one type per group domain,
which avoids having unnecessary injections everywhere in the development.

Finally, the last category of lemmas in the library is composed of group prop-
erties. For example, given a group H, we have the following property:

Lemma groupMl : ∀ x y, x ∈ H ⇒ (x ∗ y) ∈ H = y ∈ H.

In the above statement, the equality stands for Coq standard equality between
boolean values, since membership of H is a boolean predicate.

We declare a canonical group structure for the usual group constructions so
that they can be displayed as their set carrier but still benefit from an automati-
cally inferred proof of group structure when needed. For example, such canonical
structure is defined for the intersection of two groups H and K that share the
group domain elt :

Lemma group setI : group set (H ∩ K).
Canonical Structure setI group := Group group setI.

where, as in the previous section, ∩ stands for the set intersection operation.
Given a group domain elt and two groups H and K, the stability of the group

law for the intersection is proved in the following way:

Lemma setI stable : ∀ x y, x ∈ (H ∩ K) ⇒ y ∈ (H ∩ K) ⇒ (x ∗ y) ∈ (H ∩ K).
Proof. by move⇒ x y H1 H2; rewrite groupMl. Qed.

The group structure on the H ∩K carrier is automatically inferred from the
canonical structure declaration and the by closing command uses the H1 and
H2 assumptions to close two trivial generated goals.

This two-level definition of groups, involving group domain types and groups
as first order citizens equipped with canonical structures, plays an important role
in doing proofs. As a consequence, most of the theorems are stated like in a set-
theoretic framework (see section 3.4 for some examples). Type inference is then
used to perform the proof inference, from the database of registered canonical
structures. This mechanism is used extensively throughout the development, and
allows us in particular to state and use theorems in a way that follows standard
mathematical practice.

3.3 Quotients

Typically, every local section of our development assumes once and for all the
existence of one group domain elt to then manipulate different groups of this

94 G. Gonthier et al.

domain. Nevertheless, there are situations where it is necessary to build new
finGroupType structures. This is the case for example for quotients. Let H and K
be two groups in the same group universe, the quotient K/H is a group under the
condition that H is normal in K. Of course, we could create a new group domain
for each quotient, but we can be slightly smarter noticing that given a group H,
all the quotients of the form K/H share the same group law, and the same unit.
The idea is then to have all the quotients groups K/H in a group domain . /H.

In our finite setting, the largest possible quotient exists and is N(H)/H, where
N(H) is the normaliser of H and all the other quotients are subsets of this one.

In our formalisation, normality is defined as:

Definition H � K := (H ⊂ K) && (K ⊂ (normaliser H)).

If H � K, H-left cosets and H-right cosets coincide for every element of K. Hence,
they are just called cosets.

The set of cosets of an arbitrary set A is the image of the normaliser of A by
the rcoset operation. Here we define the associated sigma type:

Definition coset set (A : setType elt):= (rcoset A) @ (normaliser A).
Definition coset (A : setType elt):= eq sig (coset set A).

where eq sig builds the sigma type associated to a set. This coset type can be
equipped with eqType and finType canonical structures; elements of this type are
intentional sets.

When H is equipped with a group structure, we define group operations on
(coset H) thanks to the following properties:

Lemma cosets unit : H ∈ (cosets H).
Lemma cosets mul : ∀ Hx Hy : coset H, (Hx :*:Hy) ∈ (cosets H).
Lemma cosets inv : ∀Hx : coset H, (Hx :−1) ∈ (cosets H).

where A :−1 denotes the image of a set A by the inverse operation. Group prop-
erties are provable for these operations: we can define a canonical structure of
group domain on coset depending on an arbitrary group object.

The quotient of two groups of the same group domain can always be defined:

Definition A / B := (coset of B) @ A.

where coset of : elt → (coset A) maps elements of the normaliser A to their coset,
and the other ones to the coset unit. Hence A / B defines in fact NA(B)B/B.

Every quotient G / H of two group structures is equipped with a canonical
structure of group of the coset H group domain.

A key point in the readability of statements involving quotients is that the
./. notation is usable because it refers to a definition independent of proofs; the
type inference mechanism will automatically find an associated group structure
for this set when it exists.

Defining quotients has been a place where we had to rework our formalisation
substantially using intentional sets instead of sets defined by their characteristic
function.

A Modular Formalisation of Finite Group Theory 95

A significant part of the library of finite group quotients deals with construc-
tions of group isomorphisms. The first important results to establish are the
so-called three fundamental isomorphism theorems.

Two isomorphic groups do not necessarily share the same group domain. For
example, two quotients by two different groups will have distinct (dependent)
types. Having sets for which function extensionality does not hold had forced us
to use setoids. For theorems with types depending on setoid arguments, especially
the ones stating equalities, we had to add one extensional equality condition per
occurrence of such a dependent type in the statement of the theorem in order
to make these theorems usable. Worse, in order to apply one of these theorems,
the user had to provide specific lemmas, proved before-hand, for each equality
proof. This was clearly unacceptable if quotients were to be used in further
formalisations. Using intentional sets simplified everything.

3.4 Group Morphisms

Group morphisms are functions between two group domains, compatible with
the group laws of their domain and co-domain. Their properties may not hold
on the whole group domain, but only on a certain group of this domain. The
notion of morphism is hence a local one.

We avoid the numerous difficulties introduced by formalising partial functions
in type theory by embedding the domain of a morphism inside its computational
definition. Any morphism candidate takes a default unit value outside the group
where the morphism properties are supposed to hold. Now, we can compute
back the domain of a morphism candidate from its values, identifying the kernel
among the set of elements mapped to the unit:

Definition ker (f: elt 1 → elt2) := {x, elt1 ⊂ {y, f (x ∗ y) ≡ f y}}.

This kernel can be equipped with a canonical group structure. Morphism do-
mains are defined as:

Definition mdom (f: elt1 → elt2) := ker f ∪ {x, f x �= 1}.

As a group is defined as a set plus certain properties satisfied by this set, a
morphism is defined as a function, together with the properties making this
function a morphism.

Structure morphism : Type := Morphism {
mfun :> elt1 → elt2;
group set mdom : group set (mdom mfun);
morphM : ∀ x y, x ∈ (mdom f) ⇒ y ∈ (mdom f) ⇒

mfun (x ∗ y) = (mfun x) ∗ (mfun y)
}.

The domain mdom f of a given morphism f is hence canonically equipped with
an obvious group structure.

Thanks to the use of a default unit value, the (functional) composition of two
morphisms is canonically equipped with a morphism structure. Other standard

96 G. Gonthier et al.

constructions have a canonical morphism structure, like coset of G as soon as G
is a group.

Morphisms and quotients are involved in the universal property of morphism
factorisation, also called first isomorphism theorem in the literature. We care-
fully stick to first order predicates to take as much benefit as possible from the
canonical structure mechanism. If necessary, we embed side conditions inside de-
finitions with a boolean test. In this way we avoid having to add pre-conditions
in the properties of these predicates to ensure well-formedness. For any function
between group domains, we define a quotient function by:

Definition mquo(f : elt1 → elt2)(A : setType elt1)(Ax : coset A):=
if A ⊂ (ker f) then f (repr Ax) else 1.

where repr Ax picks a representative of a coset Ax. Given any morphism, its
quotient function defines an isomorphism between the quotient of its domain by
its kernel and the image of the initial morphism.

Theorem first isomorphism : ∀ H : group elt1, ∀ f : morphism elt1 elt2,
H ⊂ (dom f) ⇒ isog (H / (kerH f)) (f @ H).

An isomorphism between A and B is a morphism having a trivial kernel and
mapping A to B. This localised version of the theorem builds an isomorphism
between kerH f, the intersection of a group H with ker f, and the image f @ H of
H.

This definition of morphisms is crafted to eliminate any proof dependency
which cannot be resolved by the type inference system with the help of canonical
structures. A pointed out in section 3.2, statements are much more readable and
formal proofs much easier.

To convince the reader of the efficiency of these canonical structure definitions,
we provide hereafter a verbatim copy of the statements of the isomorphism the-
orems we have formally proved.

Theorem second_isomorphism : forall G H : group elt,
subset G (normaliser H) -> isog (G / (G :&: H)) (G / H).

Lemma quotient_mulg : forall G H : group elt, (G :*: H) / H = G / H.

Theorem third_isomorphism : forall G H K : group elt,
H <| G -> K <| G -> subset K H -> isog ((G / K) / (H / K)) (G / H).

Here (G :&:H) is ASCII forG∩H . The quotient_mulg identity follows from our
design choices for the formalisation of quotients. Rewriting with quotient_mulg
yields the standard statement of the second isomorphism theorem.

In the statement of third_isomorphism, the term H / K is defined as
(coset_of K) @ H. Since K is a group, (coset_of K) is equipped with a canon-
ical structure of morphism. Since H is a group, its image by a morphism has itself
a canonical structure of group, hence type inference is able to find a group struc-
ture for H / K, in the group domain (coset K). Finally, this allows Coq to infer
a group domain structure for coset (H / K), the domain of the isomorphism,
which is (hidden) implicit parameter of the isog predicate.

A Modular Formalisation of Finite Group Theory 97

4 Standard Theorems of Group Theory

In order to evaluate how practical our definitions of groups, cosets and quotients
were, we have started formalising some standard results of group theory. In this
section, we present three of them: the Sylow theorems, the Frobenius lemma and
the Cauchy-Frobenius lemma. The Sylow theorems are central in group theory.
The Frobenius lemma gives a nice property of the elements of a group of a given
order. Finally the Cauchy-Frobenius lemma, also called the Burnside counting
lemma, applies directly to enumeration problems. Our main source of inspiration
for these proofs was some lecture notes on group theory by Constantine [6].

4.1 The Sylow Theorems

The first Sylow theorem asserts the existence of a subgroup H of K of cardinality
pn, for every prime p such that card(K) = pns and p does not divide s. For any
two groups H and K of the same group domain, we define and prove :

Definition sylow K p H := H ⊂ K && card H ≡ plogp(card K).

Theorem sylow1: ∀ K p, ∃H, sylow K p H.

The first definition captures the property of H being a p-Sylow subgroup of K.
The expression logp (card K) computes the maximum value of i such that pi

divides the cardinality of K when p is prime. This theorem has already been
formalised by Kammüller and Paulson [13], based a proof due to Wielandt [22].
Our proof is slightly different and intensively uses group actions on sets. Given a
group domain G and a finite type S, actions are defined by the following structure:

Structure action : Type := Action {
act f :> S → G → S;
act 1 : ∀ x, act f x 1 = x;
act morph : ∀ (x y : G) z, act f z (x ∗ y) = act f (act f z x) y

}.

Note that we take advantage of our finite setting to replace the usual bijectivity
of the action by the simpler property that the unit acts trivially.

A complete account of our proof is given in [20]. The proof works by induction
on n showing that there exists a subgroup of order pi for all 0 < i ≤ n. The
base case is Cauchy theorem, which asserts that a group K has an element of
order p for each prime divisor of the cardinality of the group K. Our proof is
simpler than the combinatorial argument used in [13], which hinged on properties
of the binomial. We first build the set U such that U = {(k1, . . . , kp) | ki ∈
K and

∏i=p
i=1 ki = 1}. We have that card(U) = card(K)p−1. We then define the

action of the additive group Z/pZ that acts on U as

n �−→ (k1, . . . , kp) �→ (kn mod p+1, . . . , k(n+p−1) mod p+1)

Note that defining this action is straightforward since p-tuples are graphs of
functions whose domain is (ordinal p).

98 G. Gonthier et al.

Now, we consider the set S0 of the elements of U whose orbits by the action
are a singleton. S0 is composed of the elements (k, . . . , k) such that k ∈ K and
kp = 1. A consequence of the orbit stabiliser theorem tells us that p divides the
cardinality of S0. As S0 is non-empty ((1, . . . , 1) belongs to S0), there exists at
least one k �= 1, such that (k, . . . , k) belongs to S0. The order of k is then p.

In a similar way, in the inductive case, we suppose that there is a subgroup
H of order pi, we consider NK(H)/H the quotient of the normaliser of H in K by
H. We act with H on the left cosets of H by left translation:

g �−→ hH �→ (gh)H

and consider the set S0 of the left coset of H whose orbits by the action are
a singleton. The elements of S0 are exactly the elements of NK(H)/H. Again,
applying the orbit stabiliser theorem, we can deduce that p divides the cardinality
of S0 so there exists an element k of order p in S0 by Cauchy theorem. If we
consider H, the pre-image by the quotient operation of the cyclic group generated
by k, its cardinality is pi+1.

We have also formalised the second and third Sylow theorems. The second
theorem states that any two p-Sylow subgroups H1 and H2 are conjugate. This
is proved acting with H1 on the left coset of H2. The third theorem states that
the number of p-Sylow subgroups divides the cardinality of K and is equal to 1
modulo p. The third theorem is proved by acting by conjugation on the sets of
all p-Sylow subgroups.

4.2 The Frobenius Lemma

Given an element a of a group G, (cyclica) builds the cyclic group generated by
a. When proving properties of cyclic groups, we use the characteristic property
of the cyclic function.

Lemma cyclicP: ∀ a b, reflect (∃n, aˆn ≡ b) (cyclic a b).

The order of an element is then defined as the cardinality of its associated cyclic
group. The Frobenius lemma states that given a number n that divides the
cardinality of a group K, the number of elements whose order divides n is a
multiple of n. In our formalisation, this gives

Theorem frobenius: ∀K n, n | (card K) → n | (card {z:K, (orderg z) | n}).

The proof is rather technical and has intensively tested our library on cyclic
groups. For example, as we are counting the number of elements of a given order,
we need to know the number of generators of a cyclic group. This is given by a
theorem of our library.

Lemma φ gen: ∀ a, φ(orderg a) = card (generator (cyclic a)).

where φ is the Euler function.

A Modular Formalisation of Finite Group Theory 99

4.3 The Cauchy-Frobenius Lemma

Let G a group acting on a set S. For each g in G, let Fg be the set of elements
in S fixed by g, and t the number of orbits of G on S, then t is equal to the
average number of points left fixed by each element of G:

t =
1

|G|
∑

g∈G

|Fg|

To prove this lemma, we consider B, subset of the cartesian product G × S
containing the pairs (g, x) such that g(x) = x. We use two ways to evaluate the
cardinality of B, first by fixing the first component: |B| =

∑
g∈G |Fg|, then by

fixing the second component: |B| =
∑

x∈S |Gx| where Gx is the stabiliser of x
in G. Then, when sorting the right hand-side of the second equality by orbits
we obtain that |B| = |Gx1||Gx1 | + |Gx2||Gx2 | + · · · + |Gxt||Gxt | the xi being
representatives of the orbit Gxi. Applying the Lagrange theorem on the stabiliser
of xi in G (the subgroup Gxi), we obtain that for each orbit: |Gxi||Gxi | = |G|
and we deduce that |B| = t|G| =

∑
g∈G |Fg|.

This lemma is a special case of the powerful Pólya method, but it already
has significant applications in combinatorial counting problems. To illustrate
this, we have formally shown that there are 55 distinct ways of colouring with
4 colours the vertices of a square up to isometry. This is done by instantiating
a more general theorem that tells that the number of ways of colouring with n
colours is (n4 + 2n3 + 3n2 + 2n)/8. This last theorem is a direct application of
the Cauchy-Frobenius lemma. The encoding of the problem is the following:

Definition square := ordinal 4.
Definition colour := ordinal n.
Definition colouring := fgraphType square colour.

Vertices are represented by the set {0, 1, 2, 3}, colours by the set {0, 1, . . . , n−1}
and colouring by functions from vertices to colours. The set of isometries is a
subset of the permutations of square that preserve the geometry of the square.
In our case, we use the characteristic condition that the images of two opposite
vertices remain opposite.

Definition isometry := {p : perm square, ∀ i, p (opp i) = opp (p i)}.

where perm square the permutation group and opp the function that returns the
opposite of a vertex. We get that the isometries is a subgroup of the permuta-
tions, since the property of conserving opposite vertices is stable by composition
and the identity obviously preserve opposite vertices.

The action of an isometry p on a colouring c returns the colouring i �→ c(p(i)).
Each set of identical coloured squares corresponds to an orbit of this action. To
apply Cauchy-Frobenius, we first need to give an extensional definition of the

100 G. Gonthier et al.

isometries, i.e., there are 8 isometries: the identity, the 3 rotations of π/2, π
and 3π/2, the vertical symmetry, the horizontal symmetry and the 2 symmetries
about the diagonals. Second, we have to count the elements left fixed by each
isometry.

The proofs of the three theorems presented in this section manipulate many
of the base concepts defined in our formalisation. They have been particularly
important to give us feedback on how practical our definitions were.

5 Conclusion

To our knowledge, what is presented in this paper is already one of the most
complete formalisations of finite group theory. We cover almost all the material
that can be found in an introductory course on group theory. Very few standard
results like the simplicity of the alternating group are still missing, but should
be formalised very soon. The only similar effort but in set theory can be found in
the Mizar system [15]. Theorems like the ones presented in Section 4 are missing
from the Mizar formalisation.

We have deliberately specialised our formalisation to finite group theory: fi-
nite groups are not obtained as a sub-class of generic groups. This design choice
is consistent with the usual presentation of group theory in the literature. Im-
posing the inheritance of finite group theory from generic group theory would be
somehow artificial since they share little results, all of them being trivial ones,
hence it would not help formalising proofs but create pointless delicate subtyping
issues.

Getting the definitions right is one of the most difficult aspects of formalising
mathematics. The problem is not much in capturing the semantics of each in-
dividual construct but rather in having all the concepts working together well.
Group theory has been no exception in that respect. It took much trial and er-
ror to arrive at the definitions presented in this paper. The fact that we were
able to get results like the ones presented in Section 4 relatively easily makes us
confident that our base is robust enough to proceed to further formalisations.

Using SSReflect has been a key aspect to our formal development. De-
cidable types and a substantial use of rewriting for our proofs give a ‘classical’
flavour to our development that is more familiar to what can be found in provers
like Isabelle [17] or Hol [11] than what is usually done in Coq. Moreover, our
novel use of canonical structures allows us to reconcile the convenience of set-
theoretic statements with the expressiveness of dependent types, by harnessing
the automation power of type inference. We think that this combination makes
the Coq system a powerful environment for the formalisation of such algebraic
theories.

An indication of the conciseness of our proof scripts is given by the following
figure. The standard library of Coq contains 7000 objects (definitions + the-
orems) for 93000 lines of code, this makes a ratio of 13 lines per object. The
base library of SSReflect plus our library for groups contains 1980 objects for
14400 lines, this makes a ratio of 7 lines per object.

A Modular Formalisation of Finite Group Theory 101

References

1. Arthan, R.: Some group theory, available at
http://www.lemma-one.com/ProofPower/examples/wrk068.pdf

2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A Formally Verified Proof of the Prime
Number Theorem. ACM Transactions on Computational Logic (to appear)

3. Bailey, A.: Representing algebra in LEGO. Master’s thesis, University of Edinburgh
(1993)

4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2), 261–293 (2003)

5. Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. London
Mathematical Society Lecture Note Series, vol. 188. Cambridge University Press,
Cambridge (1994)

6. Constantine, G.M.: Group Theory, available at
http://www.pitt.edu/~gmc/algsyl.html

7. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of
Mathematics 13(3), 775–1029 (1963)

8. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Funda-
mental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 96–111.
Springer, Heidelberg (2002)

9. Gonthier, G.: A computer-checked proof of the four-colour theorem, available at
http://research.microsoft.com/~gonthier/4colproof.pdf

10. Gonthier, G.: Notations of the four colour theorem proof, available at
http://research.microsoft.com/~gonthier/4colnotations.pdf

11. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher-order logic. Cambridge University Press, Cambridge (1993)

12. Gunter, E.: Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-
38, University of Pennsylvania (1989)

13. Kammüller, F., Paulson, L.C.: A Formal Proof of Sylow’s Theorem. Journal of
Automating Reasoning 23(3-4), 235–264 (1999)

14. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, Version 8.1 (2007)

15. The Mizar Home Page, http://www.mizar.org/
16. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre

Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I
(December 1996)

17. Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
18. Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathemat-

ical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge
(2000)

19. The Flyspeck Project, http://www.math.pitt.edu/~thales/flyspeck/
20. Rideau, L., Théry, L.: Formalising Sylow’s theorems in Coq. Technical Report 0327,

INRIA (2006)
21. Werner, B.: Une théorie des Constructions Inductives. PhD thesis, Paris 7 (1994)
22. Wielandt, H.: Ein beweis für die Existenz der Sylowgruppen. Archiv der Mathe-

matik 10, 401–402 (1959)
23. Yu, Y.: Computer Proofs in Group Theory. J. Autom. Reasoning 6(3), 251–286

(1990)

http://www.lemma-one.com/ProofPower/examples/wrk068.pdf
http://www.pitt.edu/~gmc/algsyl.html
http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colnotations.pdf
http://www.mizar.org/
http://www.math.pitt.edu/~thales/flyspeck/

	A Modular Formalisation of Finite Group Theory
	Introduction
	Small Scale Reflection
	Proof Shell
	Views
	Libraries

	The Group Library
	Graphs of Function and Intentional Sets
	Groups
	Quotients
	Group Morphisms

	Standard Theorems of Group Theory
	The Sylow Theorems
	The Frobenius Lemma
	The Cauchy-Frobenius Lemma

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

