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Abstract. We propose a method to extract purely functional contents
from logical inductive types in the context of the Calculus of Inductive
Constructions. This method is based on a mode consistency analysis,
which verifies if a computation is possible w.r.t. the selected inputs/out-
puts, and the code generation itself. We prove that this extraction is
sound w.r.t. the Calculus of Inductive Constructions. Finally, we present
some optimizations, as well as the implementation designed in the Coq
proof assistant framework.

1 Introduction

The main idea underlying extraction in proof assistants like Isabelle or Coq is to
automatically produce certified programs in a correct by construction manner.
More formally it means that the extracted program realizes its specification.
Programs are extracted from types, functions and proofs. Roughly speaking, the
extracted program only contains the computational parts of the initial specifica-
tion, whereas the logical parts are skipped. In Coq, this is done by analyzing the
types: types in the sort Set (or Type) are computationally relevant while types in
sort Prop are not. Consequently, inductively defined relations, implemented as
Coq logical inductive types, are not considered by the extraction process because
they are exclusively dedicated to logical aspects. However such constructs are
widely used to describe algorithms. For example, when defining the semantics
of a programming language, the evaluation relation embeds the definition of an
interpreter.

Although inductive relations are not executable, they are often preferred be-
cause it is often easier to define a relational specification than its corresponding
functional counterpart involving pattern-matching and recursion. For example,
in Coq, it is easier to define the relation ”the terms t and u unify with s as a
most general unifier” than defining the function that computes the most general
unifier of t and u if it exists. In this case, the difficulty is to prove the termina-
tion of the function while simultaneously defining it. Moreover, proof assistants
offer many tools to reason about relational specifications (e.g. elimination, in-
version tactics) and the developer may prefer the relational style rather than the
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functional style, even though recent work (e.g. in Coq, functional induction or re-
cursive definition) provide a better support for defining functions and reasoning
about them.

Based on these observations, our aim is to translate logical inductive speci-
fications into functional code, with an intention close to the one found in the
Centaur [3] project, that is extracting tools from specifications. Another moti-
vation for extracting code from logical inductive specifications is to get means
to execute these specifications (if executable), in order to validate or test them.
Better still, in a formal testing framework, the extracted code could be used as
an oracle to test a program independently written from the specification.

In this paper, we propose a mechanism to extract functional programs from
logical inductive types. Related work has been done on this subject around se-
mantics of programming languages, for example [3,8,1,4,12] and [2] in a more gen-
eral setting. Like [2], our work goes beyond semantic applications, even though it
is a typical domain of applications for such a work. In addition, our extraction is
intended to only deal with logical inductive types that can be turned into purely
functional programs. This is mainly motivated by the fact that proof assistants
providing an extraction mechanism generally produce code in a functional frame-
work. Thus, we do not want to manage logical inductive specifications that would
require backtracking, that is more a Prolog-like paradigm. In that sense, our
work separates from Centaur [3], Petterson’s RML translator [8] and Berghofer
and Nipkow’s approach [2]. The first one translates Typol specifications, which
are inductively defined semantic relations, into Prolog programs. RML is also
a formalism to describe natural semantics of programming languages, and the
corresponding compiler produces C programs that may backtrack if necessary.
Finally, Berghofer and Nipkow’s tool produces code that can compute more than
one solution, if any. We can also mention the use of Maude [12] to animate exe-
cutable operational semantic specifications, where these specifications are turned
into rewriting systems.

To turn an inductive relation into a function that can compute some results,
we need additional information. In particular, we need to know which arguments
are inputs and which arguments are outputs. This information is provided by the
user using the notion of modes. Furthermore, these modes are used to determine
if a functional computation is possible, in which case we say that the mode is
consistent. Otherwise, the functional extraction is not possible and is rejected by
our method. In order to make functional computations possible, some premises
in the types of constructors may have to be reordered. The notion of mode, going
back actually to attribute grammars [1], is fairly standard, especially in the log-
ical programming community. For example, the logical and functional language
Mercury [7] requires mode declarations to produce efficient code. Similar mode
systems have already been described in [4,2,9].

The paper is organized as follows: first, we informally present our extrac-
tion mechanism with the help of some examples; next, we formalize the extrac-
tion method itself (in particular, the mode consistency analysis and the code
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generation) and prove its soundness; finally, we describe our prototype devel-
oped in the Coq proof assistant framework and discuss some optimizations.

2 Informal Presentation

In this section, we present how our functional extraction must work on some
examples. For these examples, we use the Coq framework with, in particular, its
syntax and OCaml [11] as one of its target languages for extraction. Our general
approach is the following:

1. the user annotates his/her logical inductive type with a mode that specifies
which arguments are inputs, the others being considered as outputs;

2. a mode consistency analysis is performed to determine if the extraction is
possible w.r.t. the provided mode;

3. if the previous analysis is successful, the logical definition is translated into
a functional program.

This process may be recursive and may call the regular extraction mechanism
to extract code from functions or proofs.

A mode can be seen as the computational behavior of a logical inductive type.
It is defined as a set of indices denoting the inputs of the relation. For example, let
us consider the predicate add that specifies the addition of two natural numbers,
i.e. given three natural numbers n, m and p, (add n m p) defines that p is the
result of the addition of n and m. This predicate is defined as follows:

Inductive add : nat → nat → nat → Prop :=
| addO : f o ra l l n , add n O n
| addS : f o ra l l n m p , add n m p → add n (S m) (S p ) .

The mode {1, 2} indicates that we consider n and m as inputs and we would
like to compute p. The extracted function is the expected one, defined by pattern-
matching on both arguments (actually only the second one is significant):

l e t rec add p0 p1 = match p0 , p1 with
| n , O → n
| n , S m→ l e t p = add n m in S p
| → assert fa l se

We can also propose to extract a function with the mode {2, 3}. Thus, we
obtain a function that performs subtraction:

l e t rec add p0 p1 = match p0 , p1 with
| n , O → n
| S p , S m→ add p m
| → assert fa l se

Finally the mode {1, 2, 3} means that the three arguments are known and that
we want to produce a function that checks if the triple constitutes a possible
computation or not (as a boolean result):
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l e t rec add p0 p1 p2 = match p0 , p1 , p2 with
| n , O, m when n = m→ true
| n , S m, S p → add n m p
| → fa l se

However, with the mode {1, 3}, the extraction is refused, not because of the
mode analysis (which succeeds) but because it would produce a function with
two overlapping patterns, (n,n) (obtained from the type of the first constructor
addO) and (n,p) (obtained from the type of the second constructor addS). With
such a configuration, more than one result might be computed and therefore the
function would not be deterministic, which is incompatible with a proper notion
of function. Extraction with modes involving only one input are refused for the
same reason.

As a last example, let us consider a case where constraints are put on the
results, e.g. in the eval plus constructor the evaluation of a1 and a2 must map
to values built from the N constructor:

Inductive Val : Set := N : Z → Val | . . .
Inductive Expr : Set := V : Var → Expr | Plus : Expr → Expr → Expr .

Inductive eva l : Sigma → Expr → Val → Prop :=
| ev a l v : f o ra l l ( s : Sigma ) ( v : Var ) , eva l s (V v) ( v a l o f s v )
| e v a l p l u s : f o ra l l ( s : Sigma ) ( a1 a2 : Expr ) ( v w : Z) ,

eva l s a1 (N v ) → eva l s a2 (N w) → eva l s ( Plus a1 a2 ) (N (v + w) ).

where Sigma is an evaluation context and valof is a function looking for the value
of a variable in an evaluation context.

With the mode {1, 2}, the extracted function is the following:

l e t rec eva l s e = match s , e with
| s , V v → va l o f s v
| s , Plus ( a1 , a2 ) →

(match eva l s a1 with
| N v →

(match eva l s a2 with
| N w → N ( zp lu s v w)
| → assert fa l se )

| → assert fa l se )

where valof and zplus are respectively the extracted functions from the defini-
tions of valof and the addition over Z.

Regarding mode consistency analysis, detailed examples will be given in the
next section.

3 Extraction of Logical Inductive Types

The extraction is made in two steps: first, the mode consistency analysis tries to
find a permutation of the premises of each inductive clause, which is compatible
w.r.t. the annotated mode; second, if the mode consistency analysis has been
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successful, the code generation produces the executable functional program. Be-
fore describing the extraction method itself, we have to specify which inductive
types we consider and in particular, what we mean exactly by logical inductive
types. We must also precise which restrictions we impose, either to ensure a
purely functional and meaningful extraction, or to simplify the presentation of
this formalization, while our implementation relaxes some of these restrictions
(see Section 5).

3.1 Logical Inductive Types

The type theory we consider is the Calculus of Inductive Constructions (CIC for
short; see the documentation of Coq [10] to get some references regarding the
CIC), i.e. the Calculus of Constructions with inductive definitions. This theory
is probably too strong for what we want to show in this paper, but it is the
underlying theory of the Coq proof assistant, in which we chose to develop the
corresponding implementation. An inductive definition is noted as follows (in-
spired by the notation used in the documentation of Coq):

Ind(d : τ, Γc)

where d is the name of the inductive definition, τ a type and Γc the context rep-
resenting the constructors (their names together with their respective types). In
this notation, two restrictions have been made: we do not deal with parameters1

and mutual inductive definitions. Actually, these features do not involve specific
technical difficulties. Omitting them allows us to greatly simplify the presen-
tation of the extraction, as well as the soundness proof in particular. Also for
simplification reasons, dependencies, higher order and propositional arguments
are not allowed in the type of an inductive definition; more precisely, this means
that τ has the following form:

τ1 → . . . τn → Prop

where τ i is of type Set or Type, and does not contain any product or dependent
inductive type. In addition, we suppose that the types of constructors are in
prenex form, with no dependency between the bounded variables and no higher
order; thus, the type of a constructor is as follows:

∏n
i=1 xi : Xi.T1 → . . . → Tm → (d t1 . . . tp)

where xi �∈ Xj, Xi is of type Set or Type, Ti is of type Prop and does not contain
any product or dependent inductive type, and ti are terms. In the following,
the terms Ti will be called the premises of the constructor, whereas the term
(d t1 . . . tp) will be called the conclusion of the constructor. We impose the
additional constraint that Ti is a fully applied logical inductive type, i.e. Ti has
the following form:

1 In CIC, parameters are additional arguments, which are shared by the type of the
inductive definition (type τ ) and the types of constructors (defined in Γc).
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di ti1 . . . tipi

where di is a logical inductive type, tij are terms, and pi is the arity of di.
An inductive type verifying the conditions above is called a logical inductive

type. We aim to propose an extraction method for this kind of inductive types.

3.2 Mode Consistency Analysis

The purpose of the mode consistency analysis is to check whether a functional
execution is possible. It is a very simple data-flow analysis of the logical inductive
type. We require the user to provide a mode for the considered logical inductive
type, and recursively for each logical inductive type occurring in this type.

Given a logical inductive type I, a mode md is defined as a set of indices
denoting the inputs of I. The remaining arguments are the output arguments.
Thus, md ⊆ {1, . . . , aI}, where aI is the arity of I. Although a mode is defined
as a set, the order of the inputs in the logical inductive type is relevant. They
will appear in the functional translation in the same order.

In practice, it is often the case to use the extraction with, either a mode
corresponding to all the arguments except one, called the computational mode, or
a mode indicating that all the arguments are inputs, called the fully instantiated
mode. The formalization below will essentially deal with these two modes with
no loss of generality (if more than one output is necessary, we can consider that
the outputs are gathered in a tuple).

In order to make functional computations possible, some premises in a con-
structor may have to be reordered. It will be the case when a variable appears
first in a premise as an input and as an output in another premise written after-
wards. For a same logical inductive type, some modes may be possible whereas
some others may be considered inconsistent. Different mode declarations give
different extracted functions.

Given M, the set of modes for I and recursively for every logical inductive
type occurring in I, a mode md is consistent for I w.r.t. M iff it is consistent
for Γc (i.e. all the constructors of I) w.r.t. M. A mode md is consistent for
the constructor c of type Πn

i=1xi : Xi.T1 → . . . → Tn → T w.r.t. M, where
T = d t1 . . . tp, iff there exist a permutation π and the sets of variables Si, with
i = 0 . . .m, s.t.:

1. S0 = in(md, T );
2. in(mπj , Tπj) ⊆ Sj−1, with 1 ≤ j ≤ m and mπj = M(name(Tπj));
3. Sj = Sj−1 ∪ out(mπj , Tπj), with 1 ≤ j ≤ m and mπj = M(name(Tπj));
4. out(md, T ) ⊆ Sm.

where name(t) is the name of the logical inductive type applied in the term t
(e.g. name(add n (S m) (S k)) = add), in(m, t) the set of variables occur-
ring in the terms designated as inputs by the mode m in the term t (e.g.
in({1, 2}, (add n (S m) (S k))) = {n, m}), and out(m, t) the set of variables
occurring in the terms designated as outputs by the mode m in the term t (e.g.
out({1, 2}, (add n (S m) (S k))) = {k}).
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The permutation π denotes a suitable execution order for the premises. The set
S0 denotes the initial set of known variables and Sj the set of known variables
after the execution of the πjth premise (when Tπ1, Tπ2, . . . , Tπj have been
executed in this order). The first condition states that during the execution of T
(for the constructor c) with the mode md, the values of all the variables used in
the terms designated as inputs have to be known. The second condition requires
that the execution of a premise Ti with a mode mi will be performed only if the
input arguments designated by the mode are totally computable. It also requires
that mi is a consistent mode for the logical inductive type related to Ti (we have
constrained Ti in the previous section to be a fully applied logical inductive
type). According to the third condition, all the arguments of a given premise Ti

are known after its execution. Finally, a mode md is said to be consistent for c
w.r.t. M if all the arguments in the conclusion of c (i.e. T ) are known after the
execution of all the premises.

We have imposed some restrictions on the presence of functions in the terms
appearing in the type of a constructor. To relax these conditions, such as ac-
cepting functions in the output of the premises (see Section 5), in the step j,
we should verify that the function calls are computable, that is to say their
arguments only involve known variables (belonging to Sj−1).

To illustrate the mode consistency analysis, let us consider the logical induc-
tive type that specifies the big step semantics of a small imperative language.
The evaluation of commands is represented by the relation s �c i : s′, which
means that the execution of the command i in the store s leads to the final store
s′. This relation has the type store → command → store → Prop, where store
and command are the corresponding types for stores and imperative commands.
For example, the types of the constructors for the while loop are the following:

while1 : (s �e b : true) → (s �c i : s′) → (s′ �c while b do i : s′′) →
(s �c while b do i : s′′)

while2 : (s �e b : false) → (s �c while b do i : s)

where given a store s, an expression t and a value v, s �e t : v represents the
evaluation of expressions, i.e. the expression t evaluates to v in the store s. For
clarity reasons, we do not indicate the universally quantified variables, which are
the stores s, s′ and s′′, the expression b and the command i.

If the mode {1, 2} is consistent for �e then the mode {1, 2} is consistent for
both while constructors of �c. But considering the typing relation of the simply
typed λ-calculus Γ � t : τ , denoting that t is of type τ in context Γ and where
Γ is a typing context, t a term and τ a type, the mode {1, 2} is not consistent
for this relation. Actually, this mode is not consistent for the typing of the ab-
straction; the type τ1 in the premise, considered here as an input, is not known
at this step (τ1 /∈ S0):

abs : (Γ , (x : τ1) � e : τ2) → (Γ � λx.e : τ1 → τ2)

In the following, we will ignore the permutation of the premises and will
assume that all the premises are correctly ordered w.r.t. to the provided mode.
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3.3 Code Generation

The functional language we consider as target for our extraction is defined as
follows (mainly a functional core with recursion and pattern-matching):

e ::= x | cn | Cn | fail | if e1 then e2 else e3 | e1 e2 | fun x→ e
| rec f x→ e | let x = e1 in e2 | (e1, . . . , en)
| match e with | gpat1→ e1 . . . | gpatn→ en

gpat ::= pat | pat when e

pat ::= x | Cn | Cn pat | (pat1, . . . , patn) |

where cn is a constant of arity n, to be distinguished from Cn, a constructor of
arity n. Both constants and constructors are uncurrified and fully applied. More-
over, we use the notations e1 e2 . . . en for ((e1 e2) . . . en), and fun x1 . . . xn→ e
for fun x1→ . . . fun xn→ e (as well as for rec functions).

Given I = Ind(d : τ, Γc), a logical inductive type, well-typed in a context Γ ,
and M, the set of modes for I and recursively for every logical inductive type
occurring in I, we consider that each logical inductive type is ordered according
to its corresponding mode (with the output, if required, at the last position), i.e.
if the mode of a logical inductive type J is M(J) = {n1, . . . , nJ}, then the nth

1
argument of J becomes the first one and so on until the nth

J argument, which
becomes the cth

J one, with cJ = card(M(J)). The code generation for I, denoted
by �I�Γ,M, begins as follows (we do not translate the type τ of I in Γ since this
information is simply skipped in the natural semantics we propose for the target
functional language in Section 4):

�I�Γ,M =
{

fun p1 . . . pcI → �Γc�Γ,M,P , if d �∈ Γc,
rec d p1 . . . pcI → �Γc�Γ,M,P , otherwise

where cI = card(M(I)) and P = {p1, . . . , pcI}.
Considering Γc = {c1, . . . , cn}, the body of the function is the following:

�Γc�Γ,M,P = match (p1, . . . , pcI ) with
| �c1�Γ,M
| . . .
| �cn�Γ,M
| → defaultI,M

where defaultI,M is defined as follows:

defaultI,M =
{

false, if cI = aI ,
fail, if cI = aI − 1

where cI = card(M(I)) and aI is the arity of I.
The translation of a constructor ci is the following (the name of ci is skipped

and only its type is used in this translation):
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�ci�Γ,M = �
∏ni

j=1 xij : Xij .Ti1 → . . . → Timi → (d ti1 . . . tipi)�Γ,M

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(�ti1�, . . . , �ticI �) → �Ti1 → . . . → Timi�Γ,M,contI,M ,
if ti1, . . . , ticI are linear,

(�σi(ti1)�, . . . , �σi(ticI )�) when guard(σi) →
�Ti1 → . . . → Timi�Γ,M,contI,M , otherwise

where σi is a renaming s.t. σi(ti1), . . . , σi(ticI ) are linear, guard(σi) is the cor-
responding guard, of the form xij1 = σi(xij1 ) and . . . and xijk

= σi(xijk
), with

dom(σi) = {xij1 , . . . , xijk
} and 1 ≤ jl ≤ ni, l = 1 . . . k, and contI,M is defined

as follows:

contI,M =
{

true, if cI = aI ,
�tipi�, if cI = aI − 1

The terms ti1, . . . , ticI must only contain variables and constructors, while tipi

(if cI = aI −1) can additionally contain symbols of functions. The corresponding
translation is completely isomorphic to the structure of these terms and uses the
regular extraction, presented in [6]. Moreover, we consider that the terms tik and
tjk are not unifiable, for i, j = 1 . . . n and k = 1 . . . cI (otherwise, a functional
extraction may not be possible, i.e. backtracking is necessary or there are several
results).

The right-hand side of the pattern rules is generated with the following scheme:

�Tij → . . . → Timi�Γ,M,contI,M =⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

contI,M, if j > mi,

if �dij tij1 . . . tijcij � then �Ti(j+1) → . . . → Timi�Γ,M,contI,M

else defaultI,M, if j ≤ mi and cij = aij ,

match �dij tij1 . . . tijcij � with
| �tijaij � → �Ti(j+1) → . . . → Timi�Γ,M,contI,M

| → defaultI,M, if j ≤ mi and cij = aij − 1

where Tij = dij tij1 . . . tijaij , aij is the arity of dij and cij = card(M(Γ (dij))). We
consider that the term tijaij is linear and does not contain computed variables
or symbols of functions when cij = aij − 1 (in this way, no guard is required in
the produced pattern).

4 Soundness of the Extraction

Before proving the soundness of the extraction of logical inductive types, we need
to specify the semantics of the functional language we chose as a target for our
extraction and presented in Section 3. To simplify, we adopt a pure Kahn style
big step natural semantics (with call by value) and we introduce the following
notion of value:

v ::= c0 | C0 | ΔC | fail | <x � e, Δ> | <x � e, Δ>rec(f) | (v1, . . . , vn)
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where Δ is an evaluation context, i.e. a list of pairs (x, v), and ΔC is a set of
values of the form Cn (v1, . . . , vn). In addition, we introduce a set Δc of tuples
of the form (cn, v1, . . . , vn, v), with n > 0.

An expression e evaluates to v in an environment Δ, denoted by the judgment
Δ � e 	 v, if and only if there exists a derivation of this judgment in the system
of inference rules described in Appendix 6 (to save space, we do not include the
corresponding error rules returning fail).

Given I, a logical inductive type, well-typed in a context Γ , and M, the set
of modes for I and recursively for every logical inductive type occurring in I, we
introduce the translation (and evaluation) of the context Γ w.r.t. the logical in-
ductive type I and the set of modes M. A context is a set of assumptions (x : τ),
definitions (x : τ := t) and inductive definitions Ind(d : τ, Γc), where x and d
are names, τ a type, t a term and Γc the set of constructors. The translation
of Γ w.r.t. I and M, denoted by �Γ �I,M, consists in extracting and evaluat-
ing recursively each assumption, definition or inductive definition occurring in I
(thus, this translation provides an evaluation context). For assumptions, defini-
tions and inductive definitions which are not logical inductive types, we use the
regular extraction, presented in [6]. Regarding logical inductive types, we apply
the extraction described previously in Section 3.

The soundness of our extraction is expressed by the following theorem:

Theorem (Soundness). Given I = Ind(d : τ, Γc), a logical inductive type,
well-typed in a context Γ , and M, the set of modes for I and recursively for
every logical inductive type occurring in I, we have the two following cases:

– cI = aI : if �Γ �I,M � �I�Γ,M �t1� . . . �tcI � 	 true then the statement
Γ � d t1 . . . tcI is provable;

– cI = aI − 1: if �Γ �I,M � �I�Γ,M �t1� . . . �tcI � 	 v �= fail then there exists t s.t.
�t� = v and the statement Γ � d t1 . . . tcI t is provable.

where cI = card(M(I)), aI is the arity of I, and t1 . . . tcI , t are terms.

Proof. The theorem is proved by induction over the extraction. We suppose that
Δ � �I�Γ,M �t1� . . . �tcI � 	 v, with Δ = �Γ �I,M and either v = true if cI = aI , or
v �= fail if cI = aI − 1. Using the definition of �I�Γ,M given in Section 3 and the
rules of Appendix 6, this expression is evaluated as follows:

Δ � �I�Γ,M 	

{
<p1 . . . pcI � �Γc�Γ,M,P , Δ>, if d �∈ Γc,
<p1 . . . pcI � �Γc�Γ,M,P , Δ>rec(d) = c, otherwise

where P = {p1, . . . , pcI}.
The arguments are also evaluated: Δ � �t1� 	 v1, . . . , Δ � �tcI � 	 vcI . Using

the definition of �Γc�Γ,M,P , we have the following evaluation:

Δb �

⎛

⎜
⎜
⎜
⎜
⎝

match (v1, . . . , vcI ) with
| �c1�Γ,M
| . . .
| �cn�Γ,M
| → defaultI,M

⎞

⎟
⎟
⎟
⎟
⎠

	 v
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where Δb is defined as follows:

Δb =
{

Δ, (p1, v1), . . . , (pcI , vcI ), if d �∈ Γc,
Δ, (d, c), (p1, v1), . . . , (pcI , vcI ), otherwise

We know that either v = true or v �= fail (according to cI); this means that
there exists i s.t. the pattern of �ci�Γ,M matches the value (v1, . . . , vcI ). Using
the definition of �ci�Γ,M, we have to evaluate:

Δp � �Ti1 → . . . → Timi�Γ,M,contI,M 	 v (1)

with Δp = Δb, Δi, where Δi has the following form (by definition of filterΔb
):

Δi =
{

mguΔb
(vt, (�ti1�, . . . , �ticI �)), if ti1, . . . , ticI are linear

mguΔb
(vt, (�σi(ti1)�, . . . , �σi(ticI ))), otherwise

where vt = (v1, . . . , vcI ). In addition, we have Δp � guard(σi) 	 true if ti1, . . . , ticI

are not linear.
The reduction of our extraction language is weaker than the one defined for

CIC; in particular, this means that we have: given Δ = �Γ �I,M, a term t and
a value v �= fail, if Δ � �t� 	 v then there exists a term t′ s.t. �t′� = v and
Γ � t ≡ t′, where ≡ is the convertibility relation for CIC. Moreover, considering
Δ = �Γ �I,M, a term t and a value v �= fail, if σ = mguΔ(v, �t�) then there exist
t′ and σ̄ s.t. �t′� = v, dom(σ̄) = dom(σ), �σ̄(x)� = σ(x) for all x ∈ dom(σ̄), and
σ̄ = mguΓ (t′, t). Using these two remarks, there exists Δ̄i as described above
s.t.:

Γ � Δ̄i(d ti1 . . . ticI ) ≡ (d t1 . . . tcI ) (2)

Note that we can consider Δb = Δ, since the variables pi, i = 1 . . . cI , do not
occur in I; actually, these variables are just used for the curryfication of �I�Γ,M.
Note also that this unification between (d ti1 . . . ticI ) and (d t1 . . . tcI ) may be
total or partial according to cI (if cI = aI or cI = aI − 1).

Regarding the arguments of ci, we have to consider another property: given
a context Δa, if Δp, Δa � �Ti1 → . . . → Timi�Γ,M,contI,M 	 v then there ex-
ists a context Δ′

a ⊇ Δa s.t. Γ � Δ̄′
aΔ̄iTij is provable for j = 1 . . .mi, and

Δp, Δ
′
a � contI,M 	 v. This property is proved by induction over the product

type. Using the definition of �Ti1 → . . . → Timi�Γ,M, we have three cases:

– j > mi: Δp, Δa � contI,M 	 v and Δ′
a = Δ.

– j ≤ mi, cij = aij :

Δp, Δa �

⎛

⎝
if �dij tij1 . . . tijcij � then

�Ti(j+1) → . . . → Timi�Γ,M,contI,M

else defaultI,M

⎞

⎠ 	 v

Since either v = true or v �= fail, we have Δp, Δa � �dij tij1 . . . tijcij � 	 true
and the then branch is selected. By hypothesis of induction (over the sound-
ness theorem), this means that Γ � Δ̄aΔ̄iTij is provable. Next, we have the
evaluation Δp, Δa � �Ti(j+1) → . . . → Timi�Γ,M,contI,M 	 v and by hypoth-
esis of induction, there exists Δ′

a ⊇ Δa s.t. Γ � Δ̄′
aΔ̄iTik is provable for



Extracting Purely Functional Contents 81

k = j + 1 . . .mi, and Δp, Δ
′
a � contI,M 	 v. As Δ′

a ⊇ Δa, Γ � Δ̄′
aΔ̄iTij is

also provable.

– j ≤ mi, cij = aij − 1:

Δp, Δa �

⎛

⎝
match �dij tij1 . . . tijcij � with
| �tijaij � → �Ti(j+1) → . . . → Timi�Γ,M,contI,M

| → defaultI,M

⎞

⎠ 	 v

Since either v = true or v �= fail, we have Δp, Δa � �dij tij1 . . . tijcij �	v′ �= fail
and the pattern �tijaij � matches v′. By hypothesis of induction (over the
soundness theorem), this means that Γ � Δ̄aΔ̄iTij is provable. Next, we
have the evaluation Δp, Δ

′
p � �Ti(j+1) → . . . → Timi�Γ,M,contI,M 	 v, with

Δ′
p = Δa, Δm and Δm = mguΔp,Δa

(v′, �tijaij �). By hypothesis of induction,
there exists Δ′

a ⊇ Δ′
p s.t. Γ � Δ̄′

aΔ̄iTik is provable for k = j + 1 . . .mi, and
Δp, Δ

′
a � contI,M 	 v. As Δ′

a ⊇ Δ′
p, Γ � Δ̄′

aΔ̄iTij is also provable.

Using (1), (2) and the above property (with the empty context for Δa), there
exists a context Δ′

i s.t. Γ � Δ̄′
iΔ̄iTij is provable for j = 1 . . .mi,

Γ � Δ̄′
iΔ̄i(d ti1 . . . ticI ) ≡ (d t1 . . . tcI ) and Δp, Δ

′
i � contI,M 	 v. We distin-

guish two cases:

– cI = aI : contI,M = true and the constructor ci can be directly applied to
prove Γ � d t1 . . . tcI .

– cI = aI −1: we have Δp, Δ
′
i � �tipi�	v. There exists a term t′ipi

s.t. �t′ipi
� = v

and Γ � Δ̄′
iΔ̄itipi ≡ t′ipi

. Thus, Γ � Δ̄′
iΔ̄i(d ti1 . . . ticI tipi ) ≡ (d t1 . . . tcI t′ipi

)
and the constructor ci can be applied to prove Γ � d t1 . . . tcI t′ipi

.

5 Implementation and Optimizations

5.1 Implementation

A prototype has been implemented and integrated to the Coq [10] proof assistant.
This implementation follows what has been described in Section 3 and is plugged
into the regular extraction mechanism of Coq so that it can produce code for the
same (functional) languages, i.e. OCaml, Haskell and Scheme. As an example, let
us consider the addition predicate presented in Section 2 with an extraction to
the OCaml language [11]:

Coq < Inductive add : nat → nat → nat → Prop :=
Coq < | addO : f o ra l l n , add n O n
Coq < | addS : f o ra l l n m p , add n m p → add n (S m) (S p ) .

Coq < Extraction Logical add [ 1 2 ] .
(∗ ∗ va l add : nat → nat → nat ∗ ∗)

l e t rec add p0 p1 =
match (p0 , p1 ) with
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| (n , O) → n
| (n , S m) → l e t p = add n m in S p
| → assert fa l se

This implementation should be part of the forthcoming version of Coq, and
currently, the development in progress is available on demand (sending a mail
to the authors).

5.2 Optimizations

Conclusion inputs. In Section 3, we described the translation of a logical in-
ductive type when rules do not overlap, that is when the types of the conclusions
do not unify. However, we can implement some heuristics to overcome some of
these cases. Let us consider the example of the while loop, seen in Section 3:

Inductive exec : s t o r e → command → s t o r e → Prop := . . .
| whi le1 : f o ra l l ( s s1 s2 : Sigma ) (b : expr ) ( c : command) ,

( eva l s b t rue ) → ( exec s c s1 ) → ( exec s1 ( whi le b do c ) s2 ) →
( exec s ( whi le b do c ) s2 )

| whi le2 : f o ra l l ( s : Sigma ) (b : expr ) ( c : command) , ( eva l s b f a l s e ) →
( exec s ( whi le b do c ) s ) .

These two constructors overlap: the types of their conclusion are identical
up to renaming. A Prolog-like execution would try to apply the first rule by
computing the evaluation of the boolean expression b and matching it with the
value true. If the matching fails, the execution would backtrack to the second
rule. However, in this case, the execution is completely deterministic and no
backtracking is necessary. In fact, we can discriminate the choice between both
constructors thanks to their first premise. We introduce a heuristic to handle
such cases efficiently. It requires the ability to detect common premises between
both overlapping rules and to discriminate w.r.t. syntactic exclusive premises (p
and ¬p, values constructed with different constructors of an inductive type, for
example).

For the while loop example, the extracted function with the mode {1, 2} in-
volves only one case in the global pattern-matching to be able to handle correctly
the execution:

l e t rec exec s c = match s , c with . . .
| s , while (b , c ) →

(match ( eva l s b ) with
| true → s
| fa l se →

l e t s1 = exec s c in
let s2 = exec s1 (while (b , c ) ) in s2 )

Premise outputs. In the formalization, we also assumed that the outputs
of the premises do not contain computed variables. Consequently, we cannot
translate rules where constraints exist on these outputs, which is the case for
the following constructor that describes the typing of a conditional expression
in a logical inductive type named typecheck, when the mode {1, 2} is specified:
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Inductive typecheck : env → expr → type → Prop := . . .
| i f : f o ra l l ( g : env ) (b , e1 , e2 : expr ) ( t : type ) ,

( typecheck g b bool ) → ( typecheck g e1 t ) → ( typecheck g e2 t ) →
( typecheck g ( i f b then e1 else e2 ) t ) .

There is no difficulty to adapt the translation for such cases. Once the non-
linearity between premise outputs has been detected, we use fresh variables and
guards as follows:

l e t rec typecheck g e = match g , e with . . .
| g , i f (b , e1 , e2 ) →

(match typecheck g b with
| bool → l e t t = typecheck g e1 in

(match typecheck g e2 with
| t ’ when t ’ = t → t
| → assert fa l se )

| → assert fa l se )

In the same way, it is also possible to deal with nonlinearity or symbols of
functions in the output of a premise.

6 Conclusion

In this paper, we have presented an extraction mechanism in the context of CIC,
which allows us to derive purely functional code from relational specifications
implemented as logical inductive types. The main contributions are the formal-
ization of the extraction itself (as a translation function) and the proof of its
soundness. In addition, a prototype has been implemented and integrated to the
Coq proof assistant, whereas some optimizations (relaxing some limitations) are
under development.

Regarding future work, we have several perspectives. First, we aim to prove
the completeness of our extraction (the mode consistency analysis should be
used in this proof). Concerning our implementation, the next step is to manage
large scale specifications, with, for example, the extraction of an interpreter from
a development of the semantics of a programming language (in Coq, there are
many developments in this domain). Another perspective is to adapt our mech-
anism to produce Coq functions, taking benefit from the new facilities offered
by Coq to define general recursive functions [10]. These new features rely on the
fact that the user provides a well-founded order establishing the termination of
the described function. Provided the mode and this additional information, we
could extract a Coq function from a logical inductive type, at least for a large
class of logical inductive types (e.g. first order unification, strongly normaliz-
able calculi, etc). Finally, the mode consistency analysis should be completed by
other analyses like determinism or termination. The logical programming com-
munity has investigated abstract interpretation to check this kind of operational
properties [5]. Similar analyses could be reproduced in our case. We could also
benefit from results coming from term rewriting system tools.
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Appendix A: Semantic Rules of the Extraction Language

(x, v) ∈ Δ
VarΔ � x 	 v failΔ � fail 	 fail

const0
Δ � c0 	 c0 constr0

Δ � C0 	 C0

Δ � e1 	 v1 . . . Δ � en 	 vn (cn, v1, . . . , vn, v) ∈ Δc constnΔ � cn (e1, . . . , en) 	 v

Δ � e1 	 v1 . . . Δ � en 	 vn Cn (v1, . . . , vn) ∈ ΔC constrnΔ � Cn (e1, . . . , en) 	 Cn (v1, . . . , vn)

Δ � e1 	 true Δ � e2 	 v2 iftrueΔ � if e1 then e2 else e3 	 v2

Δ � e1 	 false Δ � e3 	 v3 iffalseΔ � if e1 then e2 else e3 	 v3

funΔ � fun x→ e 	 <x � e, Δ>
rec

Δ � rec f x→ e 	 <x � e, Δ>rec(f)

Δ � e1 	 v1 Δ, (x, v1) � e2 	 v2 letΔ � let x = e1 in e2 	 v2

Δ � e1 	 v1 . . . Δ � en 	 vn Tuple
Δ � (e1, . . . , en) 	 (v1, . . . , vn)

Δ � e1 	 <x � e3, Δ> Δ � e2 	 v2 Δ, (x, v2) � e3 	 v3 App
Δ � e1 e2 	 v3

Δ � e1 	 <x � e3, Δ>rec(f) = c Δ � e2 	 v2
Δ, (f, c), (x, v2) � e3 	 v3 ApprecΔ � e1 e2 	 v3

Δ � e 	 v filterΔ(v, gpati) = Δi

filterΔ(v, gpatj) = fail, 1 ≤ j < i Δ, Δi � ei 	 vi matchΔ � match e with | gpat1→ e1 . . . | gpatn→ en 	 vi

with filterΔ(v, gpat) =

⎧
⎪⎪⎨

⎪⎪⎩

Δp, if gpat = pat and mguΔ(v, pat) = Δp,
Δp, if gpat = pat when e, mguΔ(v, pat) = Δp,

and Δ, Δp � e 	 true,
fail, otherwise
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