
Primality Proving with Elliptic Curves

Laurent Théry and Guillaume Hanrot

INRIA, France
{Laurent.Thery,Guillaume.Hanrot}@inria.fr

Abstract. Elliptic curves are fascinating mathematical objects. In this
paper, we present the way they have been represented inside the Coq

system, and how we have proved that the classical composition law on
the points is internal and gives them a group structure. We then describe
how having elliptic curves inside a prover makes it possible to derive a
checker for proving the primality of natural numbers.

1 Introduction

Elliptic curves are a very classical topic of interest in number theory and algebraic
geometry, and the basis for a very large body of theory, with lots of far-fetched
generalisations. Their most famous application is, without any doubt, the proof
of Fermat’s last theorem. They are also commonly used in algorithmic number
theory since the mid 80’s for factoring integers [15] or proving primality [8], but
have also made their way more recently in cryptography, see e.g. [5].

It is then natural to try formalising them inside a proof system. In this work,
the main property we are interested in is their group structure. The difficult part
of the formalisation is in proving associativity. In our formal proof, we follow an
elementary algebraic approach that is particularly suited to proof systems. Our
main source of inspiration has been the proof proposed by Stefan Friedl [7]. The
proof is very technical and consists in massaging equalities over an abstract field
under various conditions. Some of these equalities (exactly 3) are so huge that
they cannot be reasonably handled by a human being. In his paper, Stefan Friedl
advocates the use of a computer algebra like CoCoa [4] to check these equalities.
Reflecting these computations inside the proof system is the main difficulty of
the formal proof. In this paper, we explain how this has been done inside the
proof system Coq [22].

Once the group structure has been established, we can use elliptic curves in a
very effective way to prove the primality of some natural numbers. For this, we
use prime certificates: various primality proving algorithms provide the user with
a compact output, a certificate, with the property that it can be easily checked,
whereas generating it is usually cpu-intensive.

We have already played with the idea of prime certificates and in particular of
Pocklington certificates in [9,10]. This allows us to prove the primality of some
large numbers like the millennium prime (a prime number with exactly 2000
digits discovered by John Cosgrave) or the 27th Mersenne prime 244497 − 1. The
only drawback of the certificates we have been using so far is that they only apply

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 319–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 L. Théry and G. Hanrot

to a restricted class of prime numbers. For example, a Pocklington certificate can
be generated for N if N − 1 can be factored; in particular, we are not able to
generate a Pocklington certificate in the case where (N −1)/2 turns out not to be
prime (this can be shown by compositeness tests) but it is impossible to factor it,
which is a typical case as soon as N grows large. In contrast, under some deep
(typically Crámer’s conjecture) conjectures of analytic number theory, elliptic
curve certificates exist for any prime and can be found in polynomial time. At
the moment, the largest prime for which an elliptic certificate has been generated
has 20562 decimal digits. Ten days are needed to verify its certificate [18].

The paper is organised as follows. In Section 2, we recall what elliptic curves
are and explain how their group structure has been formally established. In
Section 3, we focus on prime certificate and show how it is possible to formally
derive a checker for elliptic curve certificates.

2 Elliptic Curves and Group Structure

In algebraic geometry, an elliptic curve is defined as follows.

Definition. Let K be a commutative field. An elliptic curve E(K) is a pair
(C, P) where C is a (complete) algebraic curve of genus 1 defined over C and P
a point of C(K).

This definition is not very tractable in practice, and the following characteri-
zation, which follows easily from the Riemann-Roch Theorem [21], is rather used
as a definition.

Proposition. Every elliptic curve over K admits an affine plane model of the
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

where the distinguished point of the definition is the projective point (0 : 1 : 0),
i.e. the direction y → ∞. If the characteristic of K is greater than 5, the equation
further simplifies to

y2 = x3 + Ax + B. (2)

Conversely, a nonsingular curve of the form (1) – or (2) if the characteristic is
greater than 5 – defines an elliptic curve. For (2) the non-singularity assumption
is equivalent to 4A3 + 27B2 �= 0.

Most of the interest for elliptic curves stems from the fact that they come
with a natural group structure. A composition law (P, Q) �→ P + Q over E(K)
can be constructed as follows:

– The neuter element is the point at infinity;
– Let (PQ) be the line through P and Q (the tangent to the curve at P if

P = Q).
– Let R be the third point of intersection of (PQ) and K.
– The point P + Q is the symmetrical of R with respect to the line y = 0.

An alternative way of seeing the composition law is that three aligned points
add up to zero, which is the point at infinity.

Primality Proving with Elliptic Curves 321

Theorem 1. (E(K), +) is a group.

The only difficult part is associativity. Classically, there are two roads for proving
this. The“low road”uses either computer algebra (the one that we shall carefully
take later on) or elementary but subtle geometric considerations. The“high road”
instead defines a group by taking the quotient of the free abelian group over
E(K) by a subgroup of relations (generated by the relations“three aligned points
add up to zero”), and proceeds to prove that each class contains one and only
one representative consisting of a single point (so that the underlying set is in
bijection with E(K)) and that the operation is the same as +. All these are
consequences of the (non-trivial) Riemann-Roch Theorem.

In our formalisation, we start from (2). We take an arbitrary field K of char-
acteristic other than 2 (this is the only assumption that is needed to prove the
group structure) and two elements A and B such that 4A3 +27B2 �= 0. The type
elt that represents the elements of the curve is defined as follows

Inductive elt: Set :=
inf_elt: elt

| curve_elt (x: K) (y: K) (H: y^2 = x^3 + A * x + B): elt.

An element of type elt is either 0 (inf_elt) or an element of the curve
(curve_elt) that contains an x, a y and a proof H that the point (x, y) is on the
curve.

For the operations on the curve, we need to define the opposite and the addi-
tion. Given a point p of the curve, we define −p as

- If p = 0 then −p = 0
- If p = (x, y) then −p = (x, −y)

Given two points p1 and p2 on the curve, we define p1 + p2 as

- If p1 = 0 then p1 + p2 = p2
- If p2 = 0 then p1 + p2 = p1
- If p1 = −p2 then p1 + p2 = 0
- If p1 = p2 = (x, y) and y �= 0 then

let l = (3x2 + A)/2y and x1 = l2 − 2x in
p1 + p2 = (x1, −y − l(x1 − x)).

- If p1 = (x1, y1) and p2 = (x2, y2) and x1 �= x2 then
let l = (y2 − y1)/(x2 − x1) and x3 = l2 − x1 − x2 in
p1 + p2 = (x3, −y1 − l(x3 − x1)).

We also use p1 −p2 as a shortcut for p1 +(−p2). Note that, as points of the curve
contain a proof that they belong to the curve, the definition of these operations
must also incorporate a proof that these operations are internal. For example,
the opposite is represented by a function opp whose type is elt → elt and its
definition is

322 L. Théry and G. Hanrot

Definition opp p :=
match p with
inf_elt => inf_elt

| curve_elt x y H => curve_elt x (-y) opp_lem
end.

where opp_lem represents the proof that if we know that y2 = x3 +Ax+B (this
is H) then we have (−y)2 = x3 + Ax + B.

We get that 0 is the neuter element, −p is the opposite of p, and the addi-
tion is commutative directly from the definitions. Proving associativity is rather
technical. A detailed description of the formal proof is given in [23]. Here, we
only sketch the proof and discuss the most interesting issues.

As the definition of addition contains five cases, the proof heavily relies on case
analysis. The addition p1 + p2 is trivial if p1 = 0 or p2 = 0 or p1 = −p2. When
the addition is non-trivial we use the notation p1 ⊕ p2. In turn, this addition
can correspond to the tangent case, p1 ⊕t p2, where p1 = p2 or the general case,
p1 ⊕g p2, where p1 �= p2. For associativity, it is easy to discharge the trivial cases
and what remains to be proved is then that p1 ⊕ (p2 ⊕p3) = (p1 ⊕p2)⊕p3. Each
of these additions can be tangent or general, this can be further reduced to four
main cases:

1. p1 ⊕g (p2 ⊕g p3) = (p1 ⊕g p2) ⊕g p3.
2. p1 ⊕g (p2 ⊕t p2) = (p1 ⊕g p2) ⊕g p2.
3. p1 ⊕g (p1 ⊕g (p1 ⊕t p1)) = (p1 ⊕t p1) ⊕t (p1 ⊕t p1)
4. p1 ⊕g (p2 ⊕g (p1 ⊕g p2)) = (p1 ⊕g p2) ⊕t (p1 ⊕g p2)

The first three cases are discharged using explicit computations while the last
case is derived using auxiliary properties such as the cancellation law, i.e. if
p+p1 = p+p2 then p1 = p2. To understand what it means to perform cases 1 – 3
by explicit computations, let us consider the first case. If we take the x compo-
nent of equation 1 and unfold the definition of addition, we get the conditional
equation to be satisfied given in Figure 1. We can now transform this equation
into a polynomial one and then use Buchberger algorithm [3] to check that the
equation is satisfied. This is where the computer algebra system comes into play.
Integrating Buchberger algorithm in a safe way inside a prover is possible and
has already been done [6,13], but cases 1 – 3 can be decided by a much simpler
strategy. To illustrate this strategy, let us consider a more elementary example,
i.e. the proof that the addition is internal in the tangent case. It amounts to
proving that

y2 = x3 + Ax + B ∧
l = (3x2 + A)/2y ∧
x1 = l2 − 2x ∧
y1 = −y − l(x1 − x) ∧

⇒ y2
1 = x3

1 + Ax1 + B

The first step is to get rid of division by normalising the equation into an ex-
pression of the form N/D = 0 where N and D are two polynomial expressions.

Primality Proving with Elliptic Curves 323

x1 − x2 �= 0 ∧
x4 − x3 �= 0 ∧
x2 − x3 �= 0 ∧
x5 − x1 �= 0 ∧
y2
1 = x3

1 + Ax1 + B ∧
y2
2 = x3

2 + Ax2 + B ∧
y2
3 = x3

3 + Ax3 + B ∧
x4 = (y1 − y2)2/(x1 − x2)2 − x1 − x2 ∧
y4 = −(y1 − y2)/(x1 − x2)(x4 − x1) − y1 ∧
x6 = (y4 − y3)2/(x4 − x3)2 − x4 − x3 ∧
y6 = −(y4 − y3)/(x4 − x3)(x6 − x3) − y3 ∧
x5 = (y2 − y3)2/(x2 − x3)2 − x2 − x3 ∧
y5 = −(y2 − y3)/(x2 − x3)(x5 − x2) − y2 ∧
x7 = (y5 − y1)2/(x5 − x1)2 − x5 − x1 ∧
y7 = −(y5 − y1)/(x5 − x1)(x7 − x1) − y1

⇒ x6 − x7 = 0

where

(x4, y4) = p1 ⊕g p2, (x5, y5) = p2 ⊕g p3,
(x6, y6) = (p1 ⊕g p2) ⊕g p3 and (x7, y7) = p1 ⊕g (p2 ⊕g p3)

Fig. 1. Condition for the x component of the first case

We are then left with proving that N = 0. In our example, a naive normalisation
gives

210y8 − 210y6x3 − 210Ay6x − 210By6 = 0

The second step is to replace all the occurrences of y2 by x3 + Ax + B.

210(x3 +Ax+B)4 −210(x3 +Ax+B)3x3 −210A(x3 +Ax+B)3x−210B(x3 +
Ax + B)3 = 0

The final step is to use distributivity, associativity, commutativity and collect
equal monomials so that everything cancels out.

Note that even a dedicated computer algebra system like Maple may fail,
by using the general Gröbner machinery, to prove such a large identity. The
remedy, like here, is to perform “by hand” the reductions modulo the ideal <
y2
1 − x3

1 − Ax1 − B, y2
2 − x3

2 − Ax2 − B >, by using the fact that the basis given
for this ideal is already a Gröbner basis for the lex ordering y1 > y2 > x1 > x2.

To sum up, three ingredients are needed to automate the proof of the three
lemmas corresponding to cases 1 – 3: a procedure to normalise polynomial expres-
sions (last step), a procedure to rewrite polynomial expressions (second step) and
a procedure to normalise rational expressions (first step).

The procedure to normalise polynomial expressions was already present in
Coq and is described in [11]. Its main characteristic is to use an internal rep-
resentation of polynomials in Horner form. This representation is unique up to
variable ordering. Given a polynomial P and a variable x, we write P as P1+xiQ1
where x does not occur in P1 and is not a common factor in Q1 and we proceed

324 L. Théry and G. Hanrot

on P1 and Q1 recursively. The normal form is further simplified writing 0 for m0
and P for 0 + P and P + 0. For example

210y8 − 210y6x3 − 210Ay6x − 210By6

is represented as

y6((B(−210) + x(A(−210) + x2(−210))) + y2210)

for the ordering y > x > A > B. Once the procedures to add and multiply
polynomials in Horner form have been defined, the normal form of a polynomial
P is obtained by a simple structural traversal of P . As described in [11], this
leads to a very effective way of proving ring equalities by just checking that the
normal form of the left side of the equality is structurally equal to the normal
form of the right side of the equality.

Rewriting has been implemented in a naive way on Horner representation. It
uses a simple procedure that, given a monomial m, splits a polynomial P in a
pair (P1, Q1) in such a way that P = P1 + mQ1. Now rewriting once with the
equation m = R is performed by building the polynomial P1+RQ1. For example,
if we want to rewrite the previous polynomial with the equation y2x2 = z + t,
we first split the polynomial

y6((B(−210) + x(A(−210) + x2(−210))) + y2210)

into
(y6((B(−210) + x(A(−210))) + y2210) , y4x(−210))

We then build

(y6((B(−210) + x(A(−210))) + y2210)) + (z + t) (y4x(−210))

and normalise it. For rewriting with respect to a list of equations, we just iterate
the single rewriting operation for all the equations in a fair way. Note that
in our specific case we are always rewriting with equations of the type y2

i =
x3

i + Axi + B, so we take a special care in choosing a variable ordering for the
Horner representation such that the yi are privileged. By doing so, the splitting
procedure has only to visit a small part of the polynomial.

Normalising rational equalities is not as simple as for polynomial expressions.
When reducing the initial expression to a common denominator, the expressions
for the numerator and the denominator can grow very quickly. Our experiments
with the proofs of cases 1 – 3 have shown that getting a normalised numerator of
a reasonable size was mandatory in order to be able to complete the following
rewriting phase. So, when normalising, some reductions are needed. For example,
when normalising P1/Q1+P2/Q2 we can do much better than building the naive
fraction (P1Q2 + P2Q1)/Q1Q2. Unfortunately, gcd algorithms for multivariate
polynomials are far more complex to implement than the simple Euclidean al-
gorithm for univariate polynomials. So, we have just implemented a syntactic
heuristic. Our heuristic factorises the products that are in common between Q1

Primality Proving with Elliptic Curves 325

and Q2 by a simple structural traversal of the lists of products that compose Q1
and Q2. For example, normalising 1/x + 1/xy + 1/y = 0 gives y + 1 + x = 0.

The three procedures (polynomial normaliser, rewriter and rational normaliser)
are put together in a single tactic field. This tactic works on arbitrary field struc-
tures. Given F a rational expression, calling the tactic field[H1 H2] attempts to
solve the goal F = 0 using the rewriting rules H1 and H2. The three procedures have
been defined inside the Coq logic using the two-level approach [1]. Their correct-
ness can then be stated inside the proof system and formally proved. This ensures
once and for all applications that the field tactic only performs valid simplifica-
tions. A key aspect of this tactic is its efficiency. Proving the group law requires
non-trivial computation. Having a relatively efficient procedure is mandatory to
be able to complete the proof. On an Intel Xeon (2.66 GHz) with 2Gb of RAM,
compiling the definition of elliptic curves up to associativity takes one minute and
twenty seconds in Coq.

3 Prime Certificate

The group structure on E(Z/pZ) is used in the same way as the group structure
on (Z/pZ)∗ is used in Pocklington’s p − 1 test, which we recall:

Proposition 1 (Pocklington). Let N be an integer. Assume that there exists
a coprime to N and s such that

– as = 1 mod N ;
– for all prime divisor p of s, one has gcd(as/p − 1, N) = 1.

Then, for any prime q|N , one has q = 1 mod s, so that if s ≥
√

N , N is prime.

The main drawback of Pocklington’s test is the fact that if one is not able to
factor N − 1 to some extent (a little thought shows that the first condition
implies, if N is actually prime, s|N − 1, since the conditions stated imply that s
is the order of a mod N), then there is no way one can apply the theorem.

The following theorem is thus much more versatile, the main point being that,
under reasonable conjectures, we are always able to find, in polynomial time, a
curve over Z/NZ with cardinality which can be factored.

We make use of points in projective coordinates, which is required to give a
meaningful statement. This allows to give formulas without division for the group
law, which thus remain meaningful in any ring – since Z/NZ can be assumed to
be a field only after N has been proved prime...

Proposition 2 (Goldwasser-Kilian). Let N be an integer. Assume that there
exist an elliptic curve y2 = x3+Ax+B with A, B ∈ Z and gcd(4A3+27B2, N) =
1, a point P = (xP : yP : 1) such that y2

P = x3
P +AxP +B mod N , and an integer

s such that

– s.P = (0 : 1 : 0) mod N ;
– for all prime p|s, (s/p).P = (xp : yp : zp) mod N with gcd(zp, N) = 1.

326 L. Théry and G. Hanrot

Then, for all prime q|N , we have the number of points of E(Z/qZ) is such that
#E(Z/qZ) = 0 mod s.

In view of the Hasse-Weil bound [21], which states that for all prime q and
elliptic curve E over Z/qZ, one has #E(Z/qZ) ≤ (

√
q + 1)2, we see that N is

prime as soon as s >
√

q + 1. In the sequel, we shall use the slightly weaker but
much easier bound #E(Z/qZ) ≤ 2q + 1, which shows that N is prime as soon
as s >

√
2q + 1.

An elliptic curve certificate is thus defined recursively by:

CN := (N, A, B, xP , yP , s, (q1, Cq1), . . . , (qk, Cqk
)),

where the qi are the prime factors of s, and checking the certificate amounts to
checking the hypotheses of the theorem, hence modular arithmetic.

Computing a certificate is a much harder problem. The most efficient way
is to use the theory of complex multiplication, after Atkin and Morain. For a
more extensive bibliography, the interested reader can refer to the nice survey
of primality proving by Morain [19].

The idea behind the formal proof of Proposition 2 is to relate computations
with projective coordinates done in Z/NZ with the same computations with
standard coordinates done in Z/qZ when q is a prime divisor of N . We use a
non-standard definition of projective coordinates where we still single out the
zero. A point is either 0 or a triplet (x : y : z). We also define the projection
tq as tq(0) = 0 and tq((x : y : z)) = (x mod q/z mod q, y mod q/z mod q). Note
that the projection in the second case is possible only if z mod q has effectively
an inverse in Z/qZ for prime divisor q of N , so only if gcd(n,N) = 1 . In the
following, we write the property of n having an inverse as invN (n).

We have to be careful when computing in Z/NZ since we want the computa-
tion in Z/NZ to project faithfully to the same computation in Z/qZ. Suppose
that we test to zero a variable n. Obviously if we have n = 0, we also have
n mod q = 0, but the converse may not be true: n �= 0 does not imply that
n mod q �= 0. So every time we have a test to zero on a variable n, we have to
check the extra condition that invN (n) to ensure that the computation on Z/qZ

would take the same branch. For this reason, all the functions that we have
defined for Z/NZ take an extra argument that represents the side conditions
so far and return a pair composed of the result plus the new side conditions.
We encode all the side conditions in a single number using the property that
invN (mn) implies invN (m) and invN (n).

A result (p1, sc1) of a computation can be correctly interpreted only if we
have invN (sc1) when p1 = 0 or invN (z1sc1) when p1 = (x1 : y1 : z1). In the
following, we use the notation p1, sc1� to indicate that this property holds. To
give a concrete example, consider the function double that doubles a point p1
under the initial side condition sc1. Its definition is

double(p1, sc1) =
if p1 = 0 then (0, sc1) else
let (x1 : y1 : z1) = p1 in

Primality Proving with Elliptic Curves 327

if y1 = 0 then (0, z1sc1) else
let m = 3x2

1 + Az2
1 and l = 2y1z1 in

let l2 = l2 and x2 = m2z1 − 2x1l2 in
((x2l : l2(x1m − y1l) − x2m : z1l2l), sc1)

and its correctness is stated as

∀p1 sc1 p2 sc2, let (p2, sc2) = double(p1, sc1) in p2, sc2� ⇒ tq(p2) = 2.tq(p1)

Another key property is that the final side condition includes the initial one

∀p1 sc1 p2 sc2, let(p2, sc2) = double(p1, sc1) in p2, sc2� ⇒ p1, sc1�

Knowing that these two properties must hold, we can now explain how the side
conditions have been generated in the body of the function double. When p1 is
zero, no condition has to be added. When p1 is (x1 : 0 : z1), the result is zero so
we include the final side condition that z1 must be invertible. Finally, when p1 is
(x1 : y1 : z1) with y1 �= 0, a defensive final side conditions would be y1z1sc1 to
insure that y1 and z1 are invertible but this is not necessary since if we look at
the z component, z1l2l, of the resulting point, that contains already the product
y1z1.

The function add that adds two points is defined in a similar way. With the
two functions double and add, we can define the function scal that adds n times
the point p1 under the side condition sc1:

scal(n, p1, sc1) =
if n = 1 then (p1, sc1) else
if n is even then let (p2, sc2) = double(p1, sc1) in scal(n/2, p2, sc2) else
let (p2, sc2) = double(p1, sc1) in
let (p3, sc3) = scal((n − 1)/2, p2, sc2) in
add(p1, p3, sc3)

and its correctness is stated as

∀n p1 sc1, p2 sc2, let (p2, sc2) = scal(n, p1sc1) in p2, sc2� ⇒ tp(p2) = n.tp(p1)

Given a list l = [(q1, α1), . . . , (qn, αn)] such that s = qα1
1 . . . qαn

n , checking that
s.a = 0 and (s/qi).a �= 0 for 1 ≤ i ≤ n is done by factorising computations as
much as possible. We first compute p1 = (s/(q1 . . . qn)).a. The function scalL
that, given a point p1 and a list l such that l = [q1, . . . , qn] and a side condition
sc1, verifies that (q1 . . . qn).p1 = 0 and (q1 . . . qn/qi).p1 �= 0 for every qi is defined
as follows

scalL(l, p1, sc1) =
if length(l) = 0 then (p1, sc1) else
let (p2, sc2) = scal(hd(l), p1, sc1) in
let (p3, sc3) = scal list(tl(l), p1, sc2) in

if p3 = 0 then (0, 0) else
let (x3, y3, z3) = p3 in scalL(tl(l), p2, z3sc3)

328 L. Théry and G. Hanrot

where the functions hd and tl return the head element and the tail of a list
respectively and the function scal list applied to l and p1, where l = [qi, . . . , qn],
computes (qi . . . qn).p1. In every recursive call of the function scalL, p3 represents
one of the (q1 . . . qn/qi).p1. If p3 is 0, we put 0 in the side condition in order to
invalidate the final result. If p3 is not 0, tp(p3) must also be non-zero so we add
its z component into the side condition.

The actual representation of Coq certificates is a list of elementary certifi-
cates rather than a tree. This list must be well-founded in the sense that the
primality of a number that is needed by an elementary certificate at position i
is justified by another certificate at position j > i. An elementary certificate is
either an immediate certificate, a Pocklington certificate or an elliptic certificate.
An immediate certificate is for numbers whose primality is given by a predefined
theorem. In our library there are predefined theorems for the first 5000 prime
numbers. Our elliptic certificates slightly differ from the standard ones to accom-
modate the certificates produced by the tool Primo [17]. An elliptic certificate
is composed of seven elements: {N, A, B, x1, y1, n0, [(q1, α1), . . . , (qn, αn)]}:

- N is the number to be proved prime;
- A and B are the parameters of the elliptic curve y2 = x3 + Ax + B;
- x1 and y1 are the coordinates of the initial point, in projective coordinates

the initial point is p0 = (x1 : y1 : 1);
- n0 is an initial scalar, so the point whose order is checked is n0.p0.
- [(q1, α1), . . . , (qn, αn)] is a complete factorisation of the order s of n0.p0, i.e.

s = qα1
1 . . . qαn

n where all the qi are prime.

An example of such a certificate is

{
329719147332060395689499,
−94080,
9834496,
0,
3136,
8209062,
[(40165264598163841, 1)]

}
It allows to assess the primality of 329719147332060395689499 knowing that
40165264598163841 is prime with the curve y2 = x3 −94080x+9834496 and the
point 8209062.(0, 3136) whose order is 40165264598163841.

The function testCertif that checks an elliptic certificate c is defined as follows:

testCertif (c) =
let (N, A, B, x1, y1, n, l) = c in
let p0 = (x1, y1, 1) in
let sc0 = 4A3 + 27B2 in
let (p1, sc1) = scal(n, p0, sc0) in
let s = mull(l) in

Primality Proving with Elliptic Curves 329

let (n′, l′) = split(l) in
let (p2, sc2) = scal(n′, p1, sc1) in
let (p3, sc3) = scalL(l′, p2, sc2) in
N > 1 and odd(N) and 4N < (s − 1)2 and

y2
1 mod N = (x3

1 + Ax1 + B) mod N and
p3 = 0 and gcd(sc3, N) = 1

where, if l = [(q1, α1), . . . , (qn, αn)], the function mull applied to l returns qα1
1 . . .

qαn
n and the function split applied to l returns (qα1−1

1 . . . qαn−1
n , [q1, . . . , qn]). The

correctness of the function testCertif is stated as

∀c, (testCertif (c)= true ∧ (∀q α, (q, α)∈getL(c) ⇒ prime(q))) ⇒ prime(getN (c))

where getN and getL are the accessor functions for the first component and the
last component of the certificate respectively.

Proving the correctness of the function testCertif is straightforward. It is stan-
dard program verification. Getting the side conditions right was the only tricky
part. Note that it would be very difficult to detect a missing side condition just
by testing. The program only returns a boolean value and it is mainly applied
to certificates for which a positive answer is expected. Missing a side condition
never invalidates valid certificates. Compared to standard checkers, we had to
compromise with the bound on the order s of an element over Z/qZ. We use
the naive bound 4N < (s − 1)2 that is easy to establish. Standard checkers use
the sharper Hasse-Weil bound. Getting this bound formally is a challenge on its
own.

4 Some Benchmarks

Figure 2 shows some benchmarks on prime numbers from 25 to 250 decimal dig-
its. These benchmarks have been done on a processor Intel Xeon (2.66 GHz) with
2Gb of RAM. For each number length, there are nine examples. We generate the
ith example of length n by starting with the digit i and repetitively incrementing
the previous digit by 1 modulo 10 to get the next digit. Once we have n digits,
we just take the first prime number above this number. For example, the nine
prime numbers with 25 digits are:

1234567890123456789012353, 2345678901234567890123567,
3456789012345678901234573, 4567890123456789012345689,
5678901234567890123456797, 6789012345678901234567903,
7890123456789012345678973, 8901234567890123456789017,
9012345678901234567890149

To generate certificates, we automatically convert the ones produced by the pro-
gram Primo. For each example, we give the number of Pocklington certificates
and elliptic certificates that compose the overall certificate and the time in sec-
onds that Coq needs to verify the certificate. Out of the 1538 elliptic certificates
generated by the standard version of Primo only two could not be proved inside

330 L. Théry and G. Hanrot

25 50 75 100 125 150 175 200 225 250
n − 1 1 0 4 2 3 5 5 2 6 7

1 ell 1 4 8 13 14 17 20 26 28 28
time 0.2 8 36 105 297 523 865 1570 2353 3018
n − 1 0 5 3 3 2 3 4 4 3 6

2 ell 2 1 7 10 19 21 24 24 27 35
time 0.9 4 26 105 333 569 1007 1704 2462 3573
n − 1 2 0 1 4 4 1∗ 4 3 5 7

3 ell 2 1 7 10 19 19∗ 24 25 27 35
time 0.1 11 42 132 288 515∗ 1277 1774 2477 2960
n − 1 2 3 4 0 4 6 3 3 7 5

4 ell 2 4 7 12 12 9 22 27 30 40
time 1.1 11 49 130 257 339 948 1754 2275 4688
n − 1 1 3 3 5 3 5 8 3 4 3

5 ell 1 2 6 9 11 20 20 29 33 37
time 0.7 3 36 143 264 514 1092 1859 2882 4090
n − 1 1 2 4 3∗ 4 2 7 4 2 1

6 ell 0 3 8 14∗ 14 19 21 22 34 33
time 0.1 6 39 189∗ 223 479 977 1317 2811 3727
n − 1 0 1 5 2 1 2 4 5 7 3

7 ell 2 4 10 14 16 19 27 27 28 34
time 0.8 11 54 148 329 453 1259 1514 2498 3327
n − 1 2 2 3 7 4 5 2 7 2 1

8 ell 0 4 7 6 17 20 28 31 34 40
time 0.1 6 44 91 310 489 1442 2252 2817 3721
n − 1 2 2 3 5 7 4 5 7 5 5

9 ell 1 4 10 13 9 20 27 26 29 33
time 0.4 7 46 139 194 549 1229 2061 2509 3645

Fig. 2. Checking certificates for numbers from 25 to 250 digits

Coq. They are indicated by a star in Figure 2. This comes from the fact that our
condition 4N < (s − 1)2 is stronger than the usual bound given by Hasse Theo-
rem. The first certificate that fails is for N = 896191029759386718510467381341
and s = 1501356318335977, the second one for N = 13524493647665641984723
and s = 95147824089. To let us prove these primes correct, Marcel Martin,
the developer of Primo, has added an extra option to Primo so to make the
search for certificates “less aggressive”and only generate certificates that can be
checked using the modified Hasse bound. The two certificates indicated by a star
in Figure 2 have been generated using this extra option.

All the examples and the code are available at

http://coqprime.gforge.inria.fr/

They compile with the current version 8.1 of the Coq system. The time to
check a certificate grows quickly with the number of digits, for example we
need one hour to check a number with 250 decimal digits. Note that the theory

http://coqprime.gforge.inria.fr/

Primality Proving with Elliptic Curves 331

predicts that the worst-case complexity for checking a certificate for N with an
underlying quadratic multiprecision arithmetic is O((log N)4), which more or
less corresponds to what we observe. Note also that it would be easy to gain a
small constant factor in the current implementation by optimizing our function
scal, eg. by using sliding window methods and/or addition-substraction chains.

In order to be able to check larger numbers, we would need two main improve-
ments in the Coq system. First, all our computations are done inside Coq with
user-defined data-structures, i.e. we use the modular arithmetic defined in [10]
based on a datatype composed of 256 constructors that simulates an 8-bit arith-
metic. We would need a direct access to the machine 32-bit arithmetic instead.
In [10], some tests for Pocklington certificates with a native 32-bits arithmetic
exhibit a speed-up of 80. Such speed-up would make it possible, in our case, to
verify a 250-digit number in less than a minute. We have also experienced with
extracting our code to Ocaml [16] and linking it with the arbitrary-precision
integer library BigNum [20]. We got in this case an even bigger speed-up since
checking one of our 250-digit numbers only takes 0.2 second and we were ca-
pable to check in 36 seconds the millennium prime, a prime with 2000 decimal
digits whose certificate generated by Primo contains 245 elliptic certificates and
8 Pocklington ones.

Second, we are in a purely functional setting and a large amount of time is thus
spent in allocating memory for new numbers. Computations should use constant
memory to be really efficient. For this, we would need Coq to accommodate
destructive datastructures as proposed for ACL2 in [2] with a monadic approach.

5 Conclusion

We believe that what is presented in this paper is a very nice illustration of a key
aspect of formal verification. Defining prime numbers from scratch is very simple
in a proof assistant. It is done with five definitions in Coq: one for the natural
numbers, one for the addition, one for the multiplication, one for the divisibility
and finally one for the primality. All these definitions are straightforward, so it
is easy to get convinced that the notion of primality has been correctly captured
in the proof system. Then, the fact that there exists a formal proof for each
of the numbers of Figure 2 ensures that the primality of these numbers follows
logically from these five definitions. For the actual proofs, we are free to use
any elaborate devices like in our case elliptic certificates. Of course, this is true
only if the proof system is sound. It is then crucial to keep the trusted base of
the prover as small as possible. This is what we have done here, reflecting the
symbolic manipulations and internally checking the prime certificates generated
by Primo.

Another aspect that this example illustrates is how important is for a proof
system not only to reason right but also to compute right. Our initial attempts
in proving cases 1 – 3 have clearly indicated that we were on the fringe of what
was actually possible to prove inside Coq: the parser had problems to handle
the huge terms we were generating and using the standard rewriting tactic of

332 L. Théry and G. Hanrot

Coq was generating titanic proof terms. Reflecting symbolic manipulation was
the key point that made everything possible. All we have developed was generic
enough to be integrated into the Coq system. Nevertheless, a way to look at
what we have done is to consider that we have just been reflecting a specific
rewriting strategy. It would be interesting to investigate how we could reflect a
generic rewriting strategy instead and get back our symbolic manipulation by
simple instantiation.

Finally, the initial motivation that has lead to this work was to see how far
we could go in proving primality inside a proof system. With elliptic certificates,
we have reached the current state of the art. We can now prove the primality of
any number with less than 300 decimal digits. We believe that, with the future
improvement of numerical evaluation inside Coq, this limit will quickly increase.
Anyway, the infrastructure is there. In particular, this is, to our knowledge, the
first time that associativity has been formally proved inside a proof system. We
hope that this initial effort will motivate deeper mathematical formalisations
with elliptic curves inside proof systems.

Acknowledgments

Many people made this work possible. Joe Hurd was the first to draw our at-
tention to formalising elliptic curves inside a prover [14]. After unsuccessful at-
tempts, John Harrison revitalised our interest showing us that he could auto-
matically solve the equation of the x component of the generic case in less than
3 minutes inside HolLight [12] with his integrated version of Buchberger algo-
rithm. Bruno Barras and Benjamin Grégoire helped us with their expertise in
integrating the field tactic into Coq. Finally, Marcel Martin has very kindly
added extra options to the Primo system to fit our needs.

References

1. Boutin, S.: Using Reflection to Build Efficient and Certified Decision Procedures.
In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997)

2. Boyer, R.S., Moore, J.S.: Single-threaded objects in ACL2. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 9–27. Springer, Heidelberg (2001)

3. Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F.
(eds.) Gröbner Bases and Applications, pp. 3–31. Cambridge University Press,
Cambridge (1998)

4. Capani, A., Niesi, G., Robbiano, L.: Cocoa: Computations in commutative algebra,
available at http://cocoa.dima.unige.it/

5. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Discrete Mathematics and Its Applications. Chapman & Hall / CRC (2005)

6. Créci, J., Pottier, L.: Gb: une procédure de décision pour le système Coq. In:
JFLA’2004, pp. 83–90 (2004)

7. Friedl, S.: An elementary proof of the group law for elliptic curves. Excerpt from
undergraduate thesis, Regensburg (1998), available at
http://www.labmath.uqam.ca/~friedl/papers/AAELLIPTIC.PDF

http://cocoa.dima.unige.it/
http://www.labmath.uqam.ca/~friedl/papers/AAELLIPTIC.PDF

Primality Proving with Elliptic Curves 333

8. Goldwasser, S., Kilian, J.: Almost all primes can be quickly certified. In: Proceed-
ings of the 18th STOC, pp. 316–329 (1986)

9. Grégoire, B., Théry, L.: A Purely Functional Library for Modular Arithmetic and
its Application to Certifying Large Prime Numbers. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg
(2006)

10. Grégoire, B., Théry, L., Werner, B.: A Computational Approach to Pocklington
Certificates in Type Theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

11. Grégoire, B., Mahboubi, A.: Proving ring equalities done right in Coq. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Hei-
delberg (2005)

12. Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

13. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson,
P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 159–174. Springer, Heidelberg
(2001)

14. Hurd, J.: Formalized elliptic curve cryptography, available at
http://www.cl.cam.ac.uk/~jeh1004/research/talks/elliptic-talk.pdf

15. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673
(1987)

16. Leroy, X.: Objective Caml (1997), available at http://pauillac.inria.fr/ocaml/
17. Martin, M.: PRIMO - primality proving, available at http://www.ellipsa.net/
18. Morain, F.: Certificate for (((((((((23 + 3)3 + 30)3 + 6)3 + 80)3 + 12)3 + 450)3 +

894)3 + 3636)3 + 70756)3 + 97220, available at
http://www.lix.polytechnique.fr/Labo/Francois.Morain

19. Morain, F.: La primalité en temps polynomial, d’après Adleman, Huang; Agrawal,
Kayal, Saxena. Séminaire Bourbaki, 3(55) (2002)

20. Ménissier-Morain, V.: The CAML Numbers Reference Manual. Technical Report
141, INRIA (1992)

21. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)
22. The COQ development team: The Coq Proof Assistant Reference Manual v7.2.

Technical Report 255, INRIA (2002), available at http://coq.inria.fr/doc
23. Théry, L.: Proving the group law for elliptic curves formally. Technical Report 330,

INRIA (2007)

http://www.cl.cam.ac.uk/~jeh1004/research/talks/elliptic-talk.pdf
http://pauillac.inria.fr/ocaml/
http://www.ellipsa.net/
http://www.lix.polytechnique.fr/Labo/Francois.Morain
http://coq.inria.fr/doc

	Primality Proving with Elliptic Curves
	Introduction
	Elliptic Curves and Group Structure
	Prime Certificate
	Some Benchmarks
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

