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Abstract. Placing our result in a web of related mechanised results, we
give a direct proof that the de Bruijn λ-calculus (à la Huet, Nipkow and
Shankar) is isomorphic to an α-quotiented λ-calculus. In order to estab-
lish the link, we introduce an “index-carrying” abstraction mechanism
over de Bruijn terms, and consider it alongside a simplified substitution
mechanism. Relating the new notions to those of the α-quotiented and
the proper de Bruijn formalisms draws on techniques from the theory of
nominal sets.

1 Introduction

Implementors and theorists alike have long been in de Bruijn’s debt [4]. Rep-
resenting λ-terms without names is a relatively straightforward way of imple-
menting binders internally in, e.g., theorem-proving systems such as Isabelle and
HOL4. Complementing this, the same idea has made it possible to formalise a
great many results about syntax that features binders.

However, we believe that the state-of-the-art for formalisation has moved on.
Implementors may well keep de Bruijn terms in their systems’ internals, but it
does now seem as if it is possible to mechanise important results about syntax
without needing to prove “painful” and “non-obvious” lemmas about indices [11].
The emerging formalisation technologies are appealing for a range of reasons, but
here we focus on just two: i) it is now possible to check that multiple formalisa-
tions do actually correspond and ii) “non-obvious” lemmas about indices turn
out to be related to general nominal properties of de Bruijn terms.

In particular, we can confirm that de Bruijn terms are a model for the λ-
calculus, and can do so in an elegant way. By way of contrast, see for example
Appendix C of Barendregt [2], where the proofs are given as “implicit in de
Bruijn [4]”; or the pioneering work by Shankar [15], where mechanised proofs
of complex theorems establish a connection between unquotiented λ-terms and
de Bruijn terms.

In fact, there are a number of isomorphism results already extant in the lit-
erature. In this paper, we summarise these, and provide a new link between
de Bruijn terms and what we hope will be an ever-expanding web of results, and
body of understanding.
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2 Formalising Binding

In this section, we position our result in the space of relationships between
ten different formalisations of the λ-calculus, following Figure 1. λC is Curry’s
unquotiented λ-terms using variable names and fresh-naming substitution [3]
(plus explicit α [7]). λHi

α , due to Hindley [7], is a quotient construction saying
that an equivalence class reduces to another if there are two syntactic terms
that witness the reduction, in this case in λC . λV is similar to λC but uses
renaming-free substitution (and explicit α), as studied in Vestergaard [17]. λV

α

is the “Hindley-quotient” of λV . λHo
α is a quotient of Curry’s set-up but with

substitution rather than reduction lifted from the syntactic to the quotient type,
as studied in Homeier [8]. dB2 is the set of well-formed, two-sorted de Bruijn
terms in Gordon [5]. λG

α is the type derived from this, in Gordon and Melham [6].
λN

α is a quotient of the first order syntax, with substitution defined directly
on the quotiented level, as in Norrish [12]. dB is the type of pure de Bruijn
terms (with indices representing free and bound variables), as mechanised in
Shankar [15], Huet [9] and Nipkow [11]. Finally, dB ′ is an intermediate formalism
that we define here. It uses constructors that are not injective, hence the oval
node: conceptually, dB ′ is syntactic sugar for dB that looks like λN

α .

Nameless Abstractions (w/indices) dB2 dB

dB ′

Named α-equivalent Abstractions λG
α λN

α λV
α λHi

α λHo
α

Named “Raw” Abstractions λV λC

α
α α α α

α

Fig. 1. λ-calculus formalisations and their directly-proved relationships; dashed, dark
lines are the results in this paper. Double lines are isomorphisms; arrows α-quotienting.

2.1 Named Abstraction

We use Λvar to refer to the “raw” syntax of the λ-calculus, that is the free algebra
generated by the recursion equation

Λvar ∼= V + Λvar × Λvar + V × Λvar (1)

with V some countably-infinite set of variable names. We use Λα to refer to the
quotient of Λvar with respect to α-equivalence. The various λX

α are reduction
systems defined over Λα, while λV and λC are defined directly over Λvar.
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Table 1. Signatures for formalisms with named abstraction, see Figure 1. The α-
collapsed types below a dashed line are bootstrapped from the preceding “raw” type
(λV /λC). For λG

α , substitution is bootstrapped from dB2. See the text for the [proofs:
. . . ]-comments.

λV

[proofs: =Λvar ]
substitution: Λvar × V × Λvar → Λvar

reduction: Λvar × Λvar

λV
α reduction: Λα × Λα

λC

[proofs: =α]
substitution: Λvar × V × Λvar → Λvar

reduction: Λvar × Λvar

λHi
α reduction: Λα × Λα

λHo
α

substitution: Λα × V × Λα → Λα

reduction: Λα × Λα

λG
α

substitution:
�

(dB2 × V × dB2 → dB2)
Λα × V × Λα → Λα

reduction: Λα × Λα

λN
α

substitution: Λα × V × Λα → Λα

reduction: Λα × Λα

There are seven different types identified in Figure 1 that use names under
abstractions. Though intuition (and, as we shall see, mechanised results) assure
us that they are all the “same”, their constructions are all different to varying
degrees. The differences are most clearly seen in the types’ definitions of substi-
tution, see Table 1. At the “raw” level, λV defines substitution to be “renaming
free”, as used to be the tradition in logic books: where a substitution would cause
a free variable to become captured, the substitution is instead defined to be the
identity function, with the implicit (and satisfiable) requirement that actual uses
avoid such situations. This approach finesses many of the problems of λC , where
an everywhere-correct capture-avoiding substitution mandates fresh-naming (via
either simultaneous substitution, as in Homeier [8], or by well-founded recursion
on term sizes) and, thus, only allows us to reason “up to α” for most properties
[7]. Alternatively, and with substitution defined for Λvar, the type itself can be
α-quotiented. In the case of λHo

α , Homeier lifts the substitution function and
proceeds to define β-reduction at the quotiented type. In the case of λHi

α and
λV

α , Hindley and Vestergaard lift β-reductions from Λvar [7,17].
In λG

α , substitution is defined with reference to the substitution function in
dB2 . In λN

α , substitution is defined directly on Λα, using its “native” notion of
primitive recursion, as in Norrish [12] and Pitts [14].
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2.2 De Bruijn’s Anonymous Abstraction, Using Indices

The type of de Bruijn terms is the free algebra generated by the recursion equation

dB ∼= N + dB× dB + dB (2)

We will use constructors dV, dAPP, and dABS to correspond to the three cases in
the equation above, with the idea that, e.g., dABS (dV 0) is the identity function:
“λx.x”, and dABS (dABS (dAPP (dV 1) (dV 0))) is apply: “λf.λx.f x”. We will use
t, u, z to range over values in dB, while M , N will range over values in Λα.

Nipkow [11] (following Huet [9]) defines two functions by primitive recursion
over this type (see Figure 2). The first is lift, which adds one to the value of
all free indices that are at least equal to the provided bound. (Shankar [15] calls
his version of this function BUMP; it is slightly different because he has the first
bound index of an abstraction be 1, not 0.)

lift (dV i) k = if i < k then dV i
else dV (i + 1)

lift (dAPP t u) k = dAPP (lift t k) (lift u k)
lift (dABS t) k = dABS (lift t (k + 1))

nsub z k (dV i) = if k < i then dV (i - 1)
else if i = k then z
else dV i

nsub z k (dAPP t u) = dAPP (nsub z k t) (nsub z k u)
nsub z k (dABS t) = dABS (nsub (lift z 0) (k + 1) t)

Fig. 2. Functions from Nipkow’s formalisation of de Bruijn terms [11]

Second is substitution, which we call nsub here.1 In order to make their proofs
simpler, Nipkow, Huet and Shankar all define a notion of substitution that si-
multaneously performs a substitution and decrements the indices of the other
free variables that appear in the term in which the substitution is occurring.
This reflects the fact that the substitution is intended to be used for defining
β-contraction, where a dABS constructor disappears in the process. As usual, the
considered β-reduction relation is given as β-contraction plus congruence rules.

Definition 1 (Nipkow [11]). →d is the least relation satisfying the following
rules:

dAPP (dABS t) u →d nsub u 0 t

t →d u
dAPP t z →d dAPP u z

t →d u
dAPP z t →d dAPP z u

t →d u
dABS t →d dABS u

1 We have altered the order of arguments to be compatible with the other mechanisa-
tions: the value being substituted comes first, followed by the index being substituted
out, followed by the term in which the substitution is occurring.
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2.3 Existing Results

We say that two types of the form we consider, e.g., 〈X, →x〉, 〈Y, →y〉, are
isomorphic if there exists a bijection, f : X −→ Y , that is homomorphic

∀x1, x2 . x1 →x x2 ⇔ f(x1) →y f(x2) (3)

In the case of α-quotients, the mappings between the types are surjective and
have the same kernels. By the appropriate adaptation of the First Isomorphism
Theorem of Algebra,2 this means that the various range types of each “raw” type
are pairwise isomorphic. Once it has been established that the α-equivalences of
λV and λC coincide, this means that the isomorphism of λV and λC implies that
all the range types, i.e., dB and the λX

α , are pairwise isomorphic. (In [13], we
further show that a broad class of properties is also shared between the elements
of the “raw” syntax and the range types.)

As noted, the λV -to-λV
α and λC -to-λHi

α α-quotients of the figure are under-
pinned by an epimorphism (i.e., (3) plus surjectivity) by construction [7,17].
In the remaining “raw-to-quotient” cases, property (3) plus surjectivity have
been verified by Norrish [12] (λV -to-λG

α , λV -to-λN
α ) and Homeier [8] (λC -to-λHo

α ,
implicitly).

Vestergaard has mechanised the isomorphism at the base of the figure, between
λV and λC (including their respective α-relations), in Coq. This follows the proof
in Vestergaard [17].

The isomorphism at the named α-equivalent abstractions level between λG
α

and λN
α is between the Gordon-Melham terms and the terms formed by quoti-

enting the raw syntax (Λvar). This isomorphism is uninteresting (and implicitly
demonstrated in [12]) because the constructors and definitions in each type are
immediate images of each other.

The isomorphism between dB2 and λG
α is between the well-formed terms in

Gordon’s two-sorted de Bruijn type [5], and the terms of Gordon and Melham’s
subsequent paper [6]. This connection is a bijection by construction: the latter
type is established using the HOL principle of type definition, which permits new
types to be defined isomorphic to non-empty subsets of old types. Further, the
bijection is behaviour-respecting because substitution in the new type is defined
by following the bijection back to the old type, performing the substitution there
and then returning.

The result most similar to that in this paper is Shankar’s link between dB and
λV [15]. (Strictly speaking Shankar’s λV is not quite the same as the one used by
Vestergaard [17]: where Vestergaard’s substitution will go wrong, it returns the
term being substituted into unchanged; in the same situation, Shankar returns
the result of a recursive descent with free variables incorrectly captured. In
neither case does this detail matter: references to both substitution functions
are set about with side conditions ensuring they are applied only in situations
that make sense.)

Shankar represents the bijection between the two types with a function from
λV to dB (called TRANSLATE) and a function UNTRANS for the opposite direction.
2 The result has been verified in Coq by Vestergaard.
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Neither of these can work directly on the values from the types, but need to
be accompanied by contextual information. For example, the statement that
TRANSLATE undoes an UNTRANS is given as

117. Theorem. UNTRANS-TRANS (rewrite):
(IMPLIES (AND (TERMP X) (LEQ (FIND-M X N) M))

(EQUAL (TRANSLATE (UNTRANS X M N)
(BINDINGS M N))

X))

The other identity is even more complicated, partly because the equality is ac-
tually α-equivalence. The subsequent statements that β-reductions in each type
match up are similarly complex. (They are used to good effect: the Church-
Rosser result for dB is transferred back to λV .)

As we shall see, our own directly-established connection can be expressed
more naturally because we build an isomorphism to λN

α instead of λV . We also
provide an isomorphism result for η-reduction (in Section 4.4).

3 Nominal Reasoning

In this section we provide a brief introduction to the nominal technology that
has an important rôle to play in the isomorphism proofs to come. (For more on
this, see for example, Pitts [14].)

Permutations. Nominal reasoning proceeds over sets that support a permu-
tation action satisfying certain conditions. We call such sets, nominal sets.3 At
the “base level” permutations are defined in terms of their effect on strings.

Definition 2 (Permutations Applied to Strings). A permutation (written
π, π1 etc) is a bijection on strings that is the identity on all but finitely many
strings. We represent a permutation as a list of pairs of strings, and define the
action of a permutation π on a string s (written π(s)) by primitive recursion on
the structure of the list:

[ ] (s) = s

((x, y) :: π) (s) = if x = π(s) then y else if y = π(s) then x
else π(s)

If permutation π is the singleton list [(x, y)], then π is also written (x y).

For a type other than strings to be a nominal set, the type must support a
permutation action (written π · x, for x in the putative nominal set) satisfying
the following conditions:

[ ] · t = t
π1 · (π2 · t) = (π1 ◦ π2) · t
(∀s. π1(s) = π2(s)) ⇒ π1 · t = π2 · t

(4)

3 Pitts only calls sets nominal if each element also has finite support, for which see
below.
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As our permutations are actually lists, permutation composition (π1 ◦ π2 in the
second condition) is actually list concatenation. This is also the reason why the
third condition tests for extensional equality (over strings) on the permutations
π1 and π2.

Examples

– The natural numbers and the booleans are both nominal sets, with a per-
mutation action that is everywhere the identity.

– If A is a nominal set, then so too are lists of values drawn from A. The
permutation action over a list value is the permutation of each element.

– If A and B are nominal sets, then so too are functions from A to B. The
permutation action is defined to be

π · (f : A → B) = λ(x : A). π · (f (π−1 · x))

It follows that π · (f(x)) = (π · f)(π · x)

Support. With a permutation action defined, a nominal set immediately gives
rise to a notion of “support”.

Definition 3. We say that the set A supports a value t if

∀x y 
∈ A. (x y) · t = t

If there is a finite set that supports a value t, then there is a smallest such
supporting set, which we refer to as the support of t (written supp(t)). For types
such as λ-calculus terms, support corresponds to the free variables of the term.

When a value has empty support, it follows that (x y)·t = t for all possible x and
y. When the value is a function, this gives us a nice result about the distribution
of permutations over applications:

(x y) · (f(v)) = ((x y) · f)((x y) · v) = f((x y) · v)

This result extends to arbitrary permutations, so that π · f(x) = f(π ·x). Better
yet, if the function is actually a relation or predicate (a function whose range is
the boolean type), then the outer π disappears and we have that R (π ·x1) . . . (π ·
xn) ⇔ R x1 . . . xn. Such a predicate or relation is said to be equivariant.

4 Isomorphisms and De Bruijn Terms

Our goal is to show that dB is isomorphic to λN
α , i.e., a formalism where reduc-

tions occur between α-equivalence classes of the raw syntax. The mechanisation
was performed by Norrish using the HOL4 proof assistant.

At the base level, a bijection between the terms of the quotiented λ-calculus
(Λα) and dB requires a bijection between strings and natural numbers because
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the existing mechanisation of Λα uses strings for its variables. Though occa-
sionally awkward, the fact that the two sorts of variables are of different types
is a useful sanity check when proofs are being performed. In what follows, s,
s′, v and v′ will range over strings, and i, j and k over natural numbers. The
bijections between the types will be written with a hat, so that ı̂ is the string
corresponding to number i, while ŝ is the number corresponding to string s.

4.1 An Intermediate Formalism: dB’

We define dB’ to match λN
α , both in its construction and in its reduction relations.

In particular, abstraction in dB’ will involve an identifier in the style of “λ2.2”
(for the identity function). This new constructor is necessarily not injective (as,
otherwise, we would distinguish, e.g., “λ2.2” and “λ1.1”). Abstraction in λN

α is
also not injective but, whereas the λN

α -construction is based on a quotient of
Λvar, the non-injectivity of the new λ-constructor in dB’ follows directly from its
definition as syntactic sugar for the existing dABS constructor in dB. Though a
separate oval in Figure 1, dB’ is based on the same underlying HOL type as dB.
The difference arises from its use of different constructors to “cover” the type,
and a different reduction relation.

We begin by defining dB-substitution without the index-decrementing used
in nsub. We shall see that this function is isomorphic to substitution over Λα,
while nsub has no natural reading in Λα.

Definition 4 (A clean notion of substitution for dB).

sub z k (dV i) = if i = k then z else dV i

sub z k (dAPP t u) = dAPP (sub z k t) (sub z k u)
sub z k (dABS t) = dABS (sub (lift z 0) (k + 1) t)

The (non-injective) dLAM-function that performs abstraction over a particular
index can now be defined as follows.

Definition 5 (Abstraction over an index).

dLAM i t = dABS (sub (dV 0) (i + 1) (lift t 0))

All dABS terms can be seen as abstractions over an arbitrary fresh index.

Lemma 6 (dABS terms as dLAM terms). If i is not among the free indices of
dABS t, then there exists a t0 such that dABS t = dLAM i t0. By the definition of
dLAM and the injectivity of dABS we further know that

t = sub (dV 0) (i + 1) (lift t0 0)

Proof. Prove by structural induction on t that there exists a t0 such that t =
sub (dV n) i (lift t0 n), where i is again suitably fresh. �
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Now we define →d’, the β-reduction relation for dB’. It mimics the traditional
statement in the λ-calculus for both contraction and congruence rules.

Definition 7 (dB’ β-reduction).

dAPP (dLAM i t) u →d’ sub u i t

t →d’ u
dAPP t z →d’ dAPP u z

t →d’ u
dAPP z t →d’ dAPP z u

t →d’ u
dLAM i t →d’ dLAM i u

4.2 dB’ vs λN
α : Nominal Reasoning with Indices

Thus far we have been working entirely with the dB type, where functions are
trivial to define by primitive recursion. Now we are faced with a choice: to define
a function from dB into Λα, or vice versa. The former choice is less appealing
because a choice of arbitrary fresh name would need to be made in the recursive
dABS-clause. One might imagine writing something like

f (dABS t) = LAM (fresh(t)) (f (sub (fresh(t)) 0 t))

where fresh(t) generates an index fresh for t. But this clause is not primitive
recursive, so one would, e.g., have to write an f that took an additional environ-
ment parameter specifying how the bound variables encountered so far should
be replaced. Instead, we take as our objective a bijective f : Λα → dB, satisfying
the following equations

f (VAR v) = dV v̂

f (APP M N) = dAPP (f M) (f N) (5)
f (LAM v M) = dLAM v̂ (f M)

The existence of such an f is not immediate because Λα is not a free algebra
(LAM is not injective). However, suitable recursion principles for this type do
exist, as shown in Pitts [14].

de Bruijn Terms are a Nominal Set. In order to use recursion principles for
Λα, it remains to be shown that the range of the desired function is a nominal set,
as in Section 3. A subtlety derives from the fact that we (necessarily must) send
free variables to suitably free indices. Permutation on free variables therefore
must be reflected on free indices. Conversely, bound indices are what they are
and must be left untouched.

Thus we are required to define a permutation action for de Bruijn terms, and it
can not be a trivial one (everywhere the identity, say). Inevitably, the complexity
arises in the dABS clause of the definition. When a permutation passes through an
abstraction, the free variables it is acting on are now at different index positions,
which means that the permutation has to be similarly adjusted.
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Definition 8 (Permutation for dB). Let inc (“increment”) over permutations
be

inc [ ] = [ ]

inc ((s1, s2) :: tl) = (̂̂s1 + 1, ̂̂s2 + 1) :: inc tl

The action of a permutation π on a term in dB (written π · t) is

π · (dV i) = dV (̂π(̂ı))
π · (dAPP t u) = dAPP (π · t) (π · u)

π · (dABS t) = dABS (inc(π) · t)

It is straightforward to show that this definition satisfies the requirements to
make dB a nominal set. The support for a value in type dB is as one might
expect: its set of free indices converted into strings via the hat-isomorphism.

Relating dLAM and Permutation. In order to admit (5), we must also char-
acterise the relationship between dLAM (which appears on the RHS of (5)), and
dB-permutation. As dLAM is defined in terms of lift and sub, analogous results
are required of these constants.

We first characterise the relationship between lift and permutation. This
requires the definition of an inc that is parameterised by the index below which
variables should not be touched, with the already-defined inc being inc0 and
with inci being the obvious generalisation.

Lemma 9 (Permutations and lift).

lift (π · t) n = (incn(π)) · (lift t n)

Proof. By induction on the structure of t. The result first needs

inc0 (incn π) = incn+1(inc0 π)

to be shown. This latter is just the sort of tedious result that the POPLmark
authors inveigh against so convincingly in [1]. (Note that it is also an equality on
the representing lists of pairs, not just extensionally in terms of the permutations’
effect on strings.) �


This lemma leads to important results about sub, dLAM and →d’:

Theorem 10 (sub and dLAM have empty support; →d’ is equivariant).

π · (sub t j u) = sub (π · t) (̂π(ĵ)) (π · u)

π · (dLAM i t) = dLAM (̂π(̂ı)) (π · t)
π · t →d’ π · u ⇔ t →d’ u

See Lemma 17 below for the contrast with nsub.
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Proof. The substitution result follows from a structural induction on t. The re-
sult for dLAM is then immediate. The result for →d’ follows from a rule induction
showing that t →d’ u ⇒ π · t →d’ π · u. The fact that all permutations have
inverses gives the other direction of the if-and-only-if. �


Theorem 11 (dB is in bijection with Λα). There exists a bijective f : Λα →
dB with defining equations as in (5).

Proof. The existence of f now follows once dB is established as a nominal set,
and it is shown that

supp(dLAM i t) = supp(t)\{ı̂}

This in turn relies on results specifying the free variables (or support) of sub
and lift (the latter is from Nipkow).

Injectivity of f follows from a structural induction, and standard properties
of substitution. Surjectivity of f follows from a complete induction on the size
of the dB term onto which a value in Λα maps.4 �


The Homomorphism between dB’ and λN
α . Given its construction, it is

not surprising that dB with relation →d’ is isomorphic to Λα and relation →β

Theorem 12.
M →β N ⇔ f(M) →d’ f(N)

Proof. Two straightforward rule inductions, one for each direction. Both results
rely on the fact that

f (M [v := N ]) = sub (f N) v̂ (f M)

which is proved by “BVC-compatible” structural induction (see [12]) on M . �


4.3 The Homomorphism Between dB and dB’

Now we must grasp the nettle, and get to grips with Nipkow’s definition of →d,
and the accompanying nsub function. We will establish that →d and →d’ are
in fact the same relation, giving us the identity as a homomorphism between dB
and dB’.

We begin by proving the following:

Lemma 13.

n ≤ i ⇒
sub u i t = nsub u n (sub (dV n) (i + 1) (lift t n))

Proof. By structural induction on t. �

4 Complete induction allows us to assume the induction hypothesis for all smaller

terms, not just those of size one smaller.
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Using this, we can show that

dAPP (dLAM i t) u →d sub u i t

which is to say that Nipkow’s relation →d does indeed reduce →d’-redexes in
the correct way. If we expand the definition of dLAM on the LHS, we see that the
redex is

dAPP (dABS (sub (dV 0) (i + 1) (lift t 0)) u)

Using Lemma 13 with n = 0 we get the desired identity. The same lemma is
used to show the “converse” relation, that

dAPP (dABS t) u →d’ nsub u 0 t

The congruence rules for dAPP are the same in both relations, so our remaining
task is to show that the different congruence rules for dABS and dLAM match up.

Abstraction Congruences Correspond. One of the two correspondences is
to show that

t →d’ u ⇒ dABS t →d’ dABS u

In order to apply the abstraction rule for →d’, we must show that the dABS
terms correspond to dLAM terms. Using Lemma 6, we can pick a suitably fresh
i, and show the existence of t0 and u0 such that

dABS t = dLAM i t0

dABS u = dLAM i u0

t = sub (dV 0) (i + 1) (lift t0 0)
u = sub (dV 0) (i + 1) (lift u0 0)

We have t →d’ u, and want t0 →d’ u0, from which the abstraction rule for →d’

would give us dABS t →d’ dABSu. The problem here is that our assumption is
about a large, complicated term, and we want to conclude that the reduction
occurs between sub-terms (t0 and u0). Standard proofs by rule induction would
handle the reverse situation well (results of the form t → u ⇒ sub w i t →
sub w i u), but our goal looks like the converse.

The Nominal “Aha!”. The solution to our problem is to realise that both
the substitution and the lifting that occur in terms t and u are no more than
variable permutations, and that they are in fact the same permutation applied
to t0 and u0. Then, we will express our assumption t →d’ u as π · t0 →d’ π · u0
for some permutation π. Because →d’ is equivariant (Theorem 10), this gives
t0 →d’ u0 as desired.

That a substitution of a fresh variable into a term is a permutation is an easy
induction. The interest comes in showing that a lifting is also a permutation.
First we define a function lift-pm that constructs a “lifting permutation”. Given
a lower bound 	 and an upper bound m, lift-pm(	, m) constructs the permutation
that maps ı̂ to î + 1 if 	 ≤ i ≤ m, maps m̂ + 1 back to 	̂, and preserves the values
of all other arguments.
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Lemma 14 (Lifting is a permutation). If n is at least as large as the largest
free index in t, then

lift t m = (lift-pm(m, n)) · t

Proof. By structural induction on t. The dABS case requires another tedious
result about index-maneuvering, namely that

inc0(lift-pm(m, n)) = lift-pm(m + 1, n + 1)

Thankfully, the result does not need to be generalised to cover the behaviour of
inci. �


We can now prove that abstraction congruences for any equivariant reduction
relation must correspond:

Theorem 15 (Abstraction Congruences Correspond). If R is equivari-
ant, that is R (π · t) (π · u) ⇔ R t u, then

R t u
R (dABS t) (dABS u)

⇔ R t u
R (dLAM i t) (dLAM i u)

where one can read each inference rule as an implication universally quantified
(over t, u and i) at the top level. The generality of the result is useful when we
consider η-reduction.

Proof. Immediate, given Lemma 14, and Lemma 6. �


Lemma 16 (→d⊆→d’).
t →d u ⇒ t →d’ u

Proof. A rule induction over the definition of →d. The redex case is handled by
Lemma 13 (as already discussed). The dAPP congruence cases are immediate; the
dABS congruence case is as just discussed (by Lemma 14, and Theorem 10). �


The Other Inclusion. Showing →d’⊆→d, we know that →d can perform both
→d’’s redex-reductions (from Lemma 13), and the application congruences. To
show the abstraction congruence case, we need to show that →d is equivariant
in order to apply Theorem 15.

But the definition of →d involves nsub, so we have to characterise how nsub
behaves when it interacts with a permutation. This prompts a rather incompre-
hensible lemma (note the odd way in which the permutation π does not affect
the index i):

Lemma 17.

π · (nsub t i u) = nsub (π · t) i (inci(π) · u)
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Proof. By structural induction on u. The dV case requires a number of splits
on the ordering possibilities (<, =, >) between the index of the variable and i.
The dABS case uses Lemma 9. �


Now we can conclude that →d is equivariant (by rule induction), and follow
immediately with

Lemma 18 (→d’⊆→d).
t →d’ u ⇒ t →d u

Theorem 19 (Relations →d and →d’ Coincide).

t →d’ u ⇔ t →d u

Proof. Combining Lemmas 16 and 18. �


Theorem 20 (Isomorphism). The types dB and λN
α , with their respective

reduction relations, →d and →β, are isomorphic, as witnessed by the bijective f :

M →β N ⇔ f(M) →d f(N)

Proof. From Theorems 12 and 19. �


4.4 Bonus: η-Reduction

Nipkow [11] also defines a notion of η-reduction for his terms. The congruence
rules are standard. Writing →ne for “Nipkow’s η”, the redex rule is

0 
∈ dFV(t)
dABS (dAPP t (dV 0)) →ne nsub u 0 t

where the choice of u is immaterial. (Because 0 is not a free index of t, nsub is
used only to decrement the free indices of t, which is required as t moves out
from underneath an abstraction.)

Using exactly the same techniques as before, it is easy to define a notion of
reduction that better emulates the definition in the λ-calculus. This relation
(written →e), has contraction rule

i 
∈ dFV(t)
dLAM i (dAPP t (dV i)) →e t

It is straightforward to show that →e corresponds to the η-reduction rule in Λα.
Thanks to Theorem 15, showing that →ne and →e correspond only requires us
to show the equivalence of the redex rules, and that →ne and →e are equivariant.
These proofs are mainly straightforward. We use some of the lemmas stated in
Nipkow, among them

nsub u n (lift t n) = t

We also state and prove the similar

n 
∈ dFV(t) ⇒ lift (nsub u n t) n = t
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5 Conclusion

We have proved what everyone knew (or hoped) to be true from the outset.
However, the proofs we have described are not entirely trivial, suggesting that
they were indeed worth doing. In fact, the proofs are only made in the least
palatable by using insights from the theory of nominal sets.

This theory helps in two important ways: it makes it possible to define the
bijection f from Λα to dB in a natural style; and it helps us perform many of the
resulting proofs. In particular, the proofs are helped greatly by the realisation
that lift is a permutation. To best exploit this, we needed to prove that our
reduction relations →d and →d’ were equivariant, which in turn prompted the
curious Lemma 17.

We hope that this work encourages others to extend the web of equivalence
results in Figure 1, which we believe to be a valuable summary of existing work in
its own right. In the near future, we hope to consider, for example, the two-sorted
calculus of McKinna and Pollack [10], and the weak HOAS style construction of
the λ-calculus in Urban and Tasson [16].

Finally, we hope this work will go some way towards bringing about the day
when reasoning about de Bruijn terms is never again necessary.
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