

Lecture Notes in Computer Science 4732
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Klaus Schneider Jens Brandt (Eds.)

Theorem Proving
in Higher Order Logics

20th International Conference, TPHOLs 2007
Kaiserslautern, Germany, September 10-13, 2007
Proceedings

13

Volume Editors

Klaus Schneider
Jens Brandt
University of Kaiserslautern
Department of Computer Science
Reactive Systems Group
P.O.Box 3049, 67653 Kaiserslautern, Germany
E-mail: {klaus.schneider,brandt}@informatik.uni-kl.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): F.4.1, I.2.3, F.3.1, D.2.4, B.6.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

ISSN 0302-9743
ISBN-10 3-540-74590-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-74590-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12115440 06/3180 5 4 3 2 1 0

Preface

This volume constitutes the proceedings of the 20th International Conference
on Theorem Proving in Higher-Order Logics (TPHOLs 2007) held September
10–13, 2007 in Kaiserslautern, Germany. TPHOLs covers all aspects of theorem
proving in higher-order logics as well as related topics in theorem proving and
verification.

There were 52 submissions, and each submission was refereed by at least 4
reviewers, who had been selected by the program committee. Of these submis-
sions, 26 were accepted for presentation at the conference and publication in this
volume. In keeping with tradition, TPHOLs 2007 also offered a venue for the
presentation of work in progress, where researchers invite discussion by means
of a brief preliminary talk and then discuss their work at a poster session. A
supplementary proceedings containing associated papers for work in progress
was published by the University of Kaiserslautern. The organizers are grate-
ful to Constance Heitmeyer (Naval Research Laboratory), Xavier Leroy (INRIA
Rocquencourt) and Peter Liggesmeyer (Fraunhofer IESE) for agreeing to give
invited talks at TPHOLs 2007.

The TPHOLs conference traditionally changes continent each year in order to
maximize the chances of researchers from around the world being able to attend.
Starting in 1993, the proceedings of TPHOLs and its predecessor workshops have
been published in the Lecture Notes in Computer Science series of Springer-
Verlag:

1993 Vancouver LNCS 780 2000 Portland LNCS 1869
1994 Valletta LNCS 859 2001 Edinburgh LNCS 2152
1995 Aspen Grove LNCS 971 2002 Hampton LNCS 2410
1996 Turku LNCS 1125 2003 Rome LNCS 2758
1997 Murray Hill LNCS 1275 2004 Park City LNCS 3223
1998 Canberra LNCS 1479 2005 Oxford LNCS 3603
1999 Nice LNCS 1690 2006 Seattle LNCS 4130

We would like to thank our sponsors: Fraunhofer IESE (Institute of Experimental
Software Engineering), DASMOD (Dependable Adaptive Systems and Mathe-
matical Modeling) Cluster, and DFKI (German Research Center for Artificial
Intelligence).

July 2007 Klaus Schneider
Jens Brandt

Conference Organization

Program Chairs

Klaus Schneider
Jens Brandt

Program Committee

Mark Aagaard
Yves Bertot
Ching-Tsun Chou
Thierry Coquand
Amy Felty
Jean-Christophe Filliatre
Ganesh Gopalakrishnan
Mike Gordon
Jim Grundy
Elsa Gunter
John Harrison
Jason Hickey
Peter Homeier
Joe Hurd

Paul Jackson
Thomas Kropf
John Matthews
Tom Melham
Cesar Munoz
Tobias Nipkow
Sam Owre
Christine Paulin-Mohring
Lawrence Paulson
Klaus Schneider
Konrad Slind
Sofiene Tahar
Burkhart Wolff

External Reviewers

Behzad Akbarpour
Ulrich Berger
Stefan Berghofer
Pierre Castéran
Pierre Corbineau
Amjad Gawanmeh
Florian Haftmann
Osman Hasan
Nathan Linger
Claude Marche
Jia Meng
Paul Miner

John O’Leary
Sam Owre
Tom Ridge
Norbert Schirmer
Natarajan Shankar
Alan Smaill
Mark-Oliver Stehr
Christian Urban
Makarius Wenzel
Yu Yang
Mohamed Zaki

Table of Contents

On the Utility of Formal Methods in the Development and Certification
of Software (Invited Talk) . 1

Constance L. Heitmeyer

Formal Techniques in Software Engineering: Correct Software and Safe
Systems (Invited Talk) . 3

Peter Liggesmeyer

Separation Logic for Small-Step Cminor . 5
Andrew W. Appel and Sandrine Blazy

Formalising Java’s Data Race Free Guarantee . 22
David Aspinall and Jaroslav Ševč́ık

Finding Lexicographic Orders for Termination Proofs in
Isabelle/HOL . 38

Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow

Formalising Generalised Substitutions . 54
Jeremy E. Dawson

Extracting Purely Functional Contents from Logical Inductive Types . . . 70
David Delahaye, Catherine Dubois, and Jean-Frédéric Étienne

A Modular Formalisation of Finite Group Theory . 86
Georges Gonthier, Assia Mahboubi, Laurence Rideau,
Enrico Tassi, and Laurent Théry

Verifying Nonlinear Real Formulas Via Sums of Squares 102
John Harrison

Verification of Expectation Properties for Discrete Random Variables
in HOL . 119

Osman Hasan and Sofiène Tahar

A Formally Verified Prover for the ALC Description Logic 135
José-Antonio Alonso, Joaqúın Borrego-Dı́az, Maŕıa-José Hidalgo,
Francisco-Jesus Mart́ın-Mateos, and José-Luis Ruiz-Reina

Proof Pearl: The Termination Analysis of Terminator 151
Joe Hurd

Improving the Usability of HOL Through Controlled Automation
Tactics . 157

Eunsuk Kang and Mark D. Aagaard

VIII Table of Contents

Verified Decision Procedures on Context-Free Grammars 173
Yasuhiko Minamide

Using XCAP to Certify Realistic Systems Code: Machine Context
Management . 189

Zhaozhong Ni, Dachuan Yu, and Zhong Shao

Proof Pearl: De Bruijn Terms Really Do Work . 207
Michael Norrish and René Vestergaard

Proof Pearl: Looping Around the Orbit . 223
Steven Obua

Source-Level Proof Reconstruction for Interactive Theorem Proving 232
Lawrence C. Paulson and Kong Woei Susanto

Proof Pearl: The Power of Higher-Order Encodings in the Logical
Framework LF . 246

Brigitte Pientka

Automatically Translating Type and Function Definitions from HOL to
ACL2 . 262

James Reynolds

Operational Reasoning for Concurrent Caml Programs and Weak
Memory Models . 278

Tom Ridge

Proof Pearl: Wellfounded Induction on the Ordinals Up to ε0 294
Matt Kaufmann and Konrad Slind

A Monad-Based Modeling and Verification Toolbox with Application
to Security Protocols . 302

Christoph Sprenger and David Basin

Primality Proving with Elliptic Curves . 319
Laurent Théry and Guillaume Hanrot

HOL2P - A System of Classical Higher Order Logic with Second Order
Polymorphism . 334

Norbert Völker

Building Formal Method Tools in the Isabelle/Isar Framework 352
Makarius Wenzel and Burkhart Wolff

Simple Types in Type Theory: Deep and Shallow Encodings 368
François Garillot and Benjamin Werner

Mizar’s Soft Type System . 383
Freek Wiedijk

Author Index . 401

On the Utility of Formal Methods in the

Development and Certification of Software

Constance L. Heitmeyer

Naval Research Laboratory
Washington, DC 20375

http://chacs.nrl.navy.mil/personnel/heitmeyer.html

During the past three decades, many formal methods have been proposed whose
goal is to improve the quality of computer systems. I use the term formal method
to refer to any mathematically-based technique or tool useful in either hardware
or software development. Recently, formal methods have played a significantly
increased role in hardware design. More and more companies that sell micro-
processors and hardware chips, including Intel, IBM, and Motorola, are using
formally-based tools, such as model checkers, theorem provers, and equivalence
checkers, to check hardware designs for flaws. While applied less frequently in
practical software development, formal methods have, in a few recent cases, also
been effective in detecting software defects. A prominent example is the set of
tools developed in Microsoft’s SLAM project which were designed to detect flaws
in device drivers [1], a primary source of software defects in Microsoft programs.
In 2006, Microsoft released the Static Driver Verifier (SDV) as part of Win-
dows Vista, the latest Microsoft operating system. SDV uses the SLAM model
checker to detect cases in which device drivers linked to Vista violate one of a
set of interface rules.

This talk reviews several formally-based techniques of value in developing
software systems, focusing on techniques for specifying, validating, and verifying
software requirements [2], a primary cause of software defects. Next, the talk
describes our recent experience applying formal techniques in the certification
of a security-critical module of an embedded software device [3]. TAME [4],
one formal technique applied in this effort, is a front-end to the higher-order
logic theorem prover PVS. The benefits of using a higher-order logic are
described.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S., Ustuner, A.: Thorough static analysis of device drivers.
In: European Systems Conference (2006)

2. Heitmeyer, C., Archer, M., Bharadwaj, R., Jeffords, R.: Tools for constructing re-
quirements specifications: The SCR toolset at the age of ten. Computer Systems
Science and Engineering 20(1), 19–35 (2005)

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 1–2, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://chacs.nrl.navy.mil/personnel/heitmeyer.html

2 C.L. Heitmeyer

3. Heitmeyer, C.L., Archer, M., Leonard, E.I., McLean, J.: Formal specification and
verification of data separation in a separation kernel for an embedded system. In:
Proc. 13th ACM Conference on Computer and Communications Security, ACM
Press, New York (2006)

4. Archer, M.: TAME: Using PVS strategies for special-purpose theorem proving. An-
nals of Mathematics and Artificial Intelligence 29(1-4), 131–189 (2001)

Formal Techniques in Software Engineering:

Correct Software and Safe Systems

Peter Liggesmeyer

Department of Computer Science
University of Kaiserslautern, Germany

Peter.Liggesmeyer@informatik.uni-kl.de
Fraunhofer Institute Experimental Software Engineering

Kaiserslautern, Germany
Peter.Liggesmeyer@iese.fraunhofer.de

In embedded systems, safety and reliability are usually important quality char-
acteristics. It is required to determine these properties including hardware and
software. Many techniques have been proposed to analyze, model and predict
software and hardware quality characteristics on a quantified basis, e.g. fault
trees, Markov analysis, and statistical reliability models.

Formal techniques are increasingly used to prove properties of critical systems.
They support safety and reliability modelling by generating models based on
formal analysis. Approaches for the automated generation of fault trees augment
the traditional manual procedures.

We developed fault tree generation techniques that are based on finite state
descriptions, and specifications of safety properties using temporal logic. Model
checking is used to determine how specific failures can cause unsafe behaviour.
This information is converted into a fault tree that propagates the failure proba-
bilities of components, e.g. sensors, on residual risks on the system level. This is
a combination of formal techniques, safety modelling and statistical analysis. Fi-
nite state machines are used to represent a system comprising a controller and a
technical process under control. The controller is represented by a deterministic
state machine. The process under control is, in general, non-deterministic, and
so is the model. In the beginning, the verification by symbolic model checking
assumes that the process may produce any arbitrary input for the controller.
This will in most cases yield unreasonable inputs to the controller. By means of
a process specification that is used by a model checker, transitions of the process
are restricted to those transitions that are physically reasonable. Model checking
is then used to determine whether unsafe states are reachable if certain failures
occur.

Statistical reliability growth models are another approach that may be used
to measure and predict reliability and safety. Since different software reliability
models can produce very different answers when used to predict future reliabil-
ity, users need to know which, if any, of the competing models are trustworty
in a specific context. We developed a reliability assessment tool that helps in
reaching such decisions and supports the reliability analysis of software-based
systems. It incorporates reliability models and supports model selection based
on observed failure data using statistically sound criteria. The tool was used to

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 3–4, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

4 P. Liggesmeyer

apply statistical reliability modelling to various projects within Siemens. These
include, e.g., telecommunication software, railway systems, and medical applica-
tions. Although it only supports software reliability models, we also applied the
tool to SW-/HW-Systems to get experience whether and how software reliability
models can be applied to such systems. Model preselection, the selection criteria,
aspects of the failure data used for model selection and calibration, scales (e.g.,
execution time vs. calendar time), the application of software reliability models
to software-/hardware-systems, and the precision and usefulness of the results
are discussed.

Safety and reliability analysis of complex systems will probably not be per-
formed in a pure formal way. But formal and statistical techniques may
contribute to enhance precision and reliability of the models. The traditional
manual analyses are increasingly inappropriate. They are usually based on in-
formal documents that describe the system. Considerable knowledge, system
insight, and overview is necessary to consider many failure modes and depen-
dencies between system components and their functionality at a time. Often,
the behavior is too complicated to fully comprehend all possible failure conse-
quences. Manual analysis is error-prone, costly and not necessarily complete.
Formal and statistical techniques may be used to improve the reliability of the
results.

Separation Logic for Small-Step Cminor

Andrew W. Appel1,� and Sandrine Blazy2,�

1 Princeton University
2 ENSIIE

Abstract. Cminor is a mid-level imperative programming language;
there are proved-correct optimizing compilers from C to Cminor and
from Cminor to machine language. We have redesigned Cminor so that
it is suitable for Hoare Logic reasoning and we have designed a Sepa-
ration Logic for Cminor. In this paper, we give a small-step semantics
(instead of the big-step of the proved-correct compiler) that is moti-
vated by the need to support future concurrent extensions. We detail
a machine-checked proof of soundness of our Separation Logic. This is
the first large-scale machine-checked proof of a Separation Logic w.r.t. a
small-step semantics. The work presented in this paper has been carried
out in the Coq proof assistant. It is a first step towards an environment
in which concurrent Cminor programs can be verified using Separation
Logic and also compiled by a proved-correct compiler with formal end-
to-end correctness guarantees.

1 Introduction

The future of program verification is to connect machine-verified source pro-
grams to machine-verified compilers, and run the object code on machine-verified
hardware. To connect the verifications end to end, the source language should
be specified as a structural operational semantics (SOS) represented in a log-
ical framework; the target architecture can also be specified that way. Proofs
of source code can be done in the logical framework, or by other tools whose
soundness is proved w.r.t. the SOS specification; these may be in safety proofs
via type-checking, correctness proofs via Hoare Logic, or (in source languages
designed for the purpose) correctness proofs by a more expressive proof theory.
The compiler—if it is an optimizing compiler—will be a stack of phases, each
with a well specified SOS of its own. There will be proofs of (partial) correctness
of each compiler phase, or witness-driven recognizers for correct compilations,
w.r.t. the SOS’s that are inputs and outputs to the phases.

Machine-verified hardware/compiler/application stacks have been built be-
fore. Moore described a verified compiler for a “high-level assembly language”
[13]. Leinenbach et al. [11] have built and proved a compiler for C0, a small
C-like language, as part of a project to build machine-checked correctness proofs

� Appel supported in part by NSF Grants CCF-0540914 and CNS-0627650. This work
was done, in part, while both authors were on sabbatical at INRIA.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 5–21, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

6 A.W. Appel and S. Blazy

of source programs, Hoare Logic, compiler, micro-kernel, and RISC processor.
These are both simple one- or two-pass nonoptimizing compilers.

Leroy [12] has built and proved correct in Coq [1] a compiler called CompCert
from a high-level intermediate language Cminor to assembly language for the
Power PC architecture. This compiler has 4 intermediate languages, allowing
optimizations at several natural levels of abstraction. Blazy et al. have built and
proved correct a translator from a subset of C to Cminor [5]. Another compiler
phase on top (not yet implemented) will then yield a proved-correct compiler
from C to machine language. We should therefore reevaluate the conventional
wisdom that an entire practical optimizing compiler cannot be proved correct.

A software system can have components written in different languages, and we
would like end-to-end correctness proofs of the whole system. For this, we propose
a new variant of Cminor as a machine-independent intermediate language to
serve as a common denominator between high-level languages. Our new Cminor
has a usable Hoare Logic, so that correctness proofs for some components can
be done directly at the level of Cminor.

Cminor has a “calculus-like” view of local variables and procedures (i.e. local
variables are bound in an environment), while Leinenbach’s C0 has a “storage-
allocation” view (i.e. local variables are stored in the stack frame). The calculus-
like view will lead to easier reasoning about program transformations and easier
use of Cminor as a target language, and fits naturally with a multi-pass optimiz-
ing compiler such as CompCert; the storage-allocation view suits the one-pass
nonoptimizing C0 compiler and can accommodate in-line assembly code.

Cminor is a promising candidate as a common intermediate language for end-
to-end correctness proofs. But we have many demands on our new variant of
Cminor, only the first three of which are satisfied by Leroy’s Cminor.

• Cminor has an operational semantics represented in a logical framework.
• There is a proved-correct compiler from Cminor to machine language.
• Cminor is usable as the high-level target language of a C compiler.
◦ Our semantics is a small-step semantics, to support reasoning about in-

put/output, concurrency, and nontermination.
◦ Cminor is machine-independent over machines in the “standard model” (i.e.

32- or 64-bit single-address-space byte-addressable multiprocessors).
◦ Cminor can be used as a mid-level target language of an ML compiler [8], or

of an OO-language compiler, so that we can integrate correctness proofs of
ML or OO programs with the proofs of their run-time systems and libraries.

◦ As we show in this paper, Cminor supports an axiomatic Hoare Logic (in fact,
Separation Logic), proved sound with respect to the small-step semantics,
for reasoning about low-level (C-like) programs.

◦ In future work, we plan to extend Cminor to be concurrent in the “stan-
dard model” of thread-based preemptive lock-synchronized weakly consistent
shared-memory programming. The sequential soundness proofs we present
here should be reusable in a concurrent setting, as we will explain.

Leroy’s original Cminor had several Power-PC dependencies, is slightly clumsy
to use as the target of an ML compiler, and is a bit clumsy to use in Hoare-style

Separation Logic for Small-Step Cminor 7

reasoning. But most important, Leroy’s semantics is a big-step semantics that
can be used only to reason about terminating sequential programs. We have
redesigned Cminor’s syntax and semantics to achieve all of these goals. That
part of the redesign to achieve target-machine portability was done by Leroy
himself. Our redesign to ease its use as an ML back end and for Hoare Logic
reasoning was fairly simple. Henceforth in this paper, Cminor will refer to the
new version of the Cminor language.

The main contributions of this paper are a small-step semantics suitable for
compilation and for Hoare Logic; and the first machine-checked proof of sound-
ness of a sequential Hoare Logic (Separation Logic) w.r.t. a small-step semantics.
Schirmer [17] has a machine-checked big-step Hoare-Logic soundness proof for
a control flow much like ours, extended by Klein et al. [10] to a C-like memory
model. Ni and Shao [14] have a machine-checked proof of soundness of a Hoare-
like logic w.r.t. a small-step semantics, but for an assembly language and for
much simpler assertions than ours.

2 Big-Step Expression Semantics

The C standard [2] describes a memory model that is byte- and word-addressable
(yet portable to big-endian and little-endian machines) with a nontrivial seman-
tics for uninitialized variables. Blazy and Leroy formalized this model [6] for
the semantics of Cminor. In C, pointer arithmetic within any malloc’ed block
is defined, but pointer arithmetic between different blocks is undefined; Cmi-
nor therefore has non-null pointer values comprising an abstract block-number
and an int offset. A NULL pointer is represented by the integer value 0. Pointer
arithmetic between blocks, and reading uninitialized variables, are undefined but
not illegal: expressions in Cminor can evaluate to undefined (Vundef) without
getting stuck.

Each memory load or store is to a non-null pointer value with a “chunk”
descriptor ch specifying number of bytes, signed or unsigned, int or float. Storing
as 32-bit-int then loading as 8-bit-signed-byte leads to an undefined value. Load
and store operations on memory, m � v1

ch�→ v2 and m′ = m[v1
ch
:= v2], are partial

functions that yield results only if reading (resp., writing) a chunk of type ch
at address v1 is legal. We write m � v1

ch�→ v to mean that the result of loading
from memory m at address v1 a chunk-type ch is the value v.

The values of Cminor are undefined (Vundef), integers, pointers, and floats.
The int type is an abstract data-type of 32-bit modular arithmetic. The expres-
sions of Cminor are literals, variables, primitive operators applied to arguments,
and memory loads.

There are 33 primitive operation symbols op; two of these are for accessing
global names and local stack-blocks, and the rest is for integer and floating-point
arithmetic and comparisons. Among these operation symbols are casts. Cminor
casts correspond to all portable C casts. Cminor has an infinite supply ident of
variable and function identifiers id . As in C, there are two namespaces—each id

8 A.W. Appel and S. Blazy

can be interpreted in a local scope (using Evar (id)) or in a global scope (using
Eop with the operation symbol for accessing global names).

i : int ::= [0, 232)
v : val ::= Vundef | Vint (i) | Vptr (b, i) | Vfloat (f)
e : expr ::= Eval (v) | Evar (id) | Eop (op, el) | Eload (ch , e)

el : exprlist ::= Enil | Econs (e, el)

Expression Evaluation. In original Cminor, expression evaluation is expressed
by an inductive big-step relation. Big-step statement execution is problematic
for concurrency, but big-step expression evaluation is fine even for concurrent
programs, since we will use the separation logic to prove noninterference.

Evaluation is deterministic. Leroy chose to represent evaluation as a relation
because Coq had better support for proof induction over relations than over
function definitions. We have chosen to represent evaluation as a partial func-
tion; this makes some proofs easier in some ways: f(x) = f(x) is simpler than
f x y ⇒ f x z ⇒ y = z. Before Coq’s new functional induction tactic was avail-
able, we developed special-purpose tactics to enable these proofs. Although we
specify expression evaluation as a function in Coq, we present evaluation as a
judgment relation in Fig. 1. Our evaluation function is (proved) equivalent to
the inductively defined judgment Ψ ; (sp; ρ;φ;m) � e ⇓ v where:

Ψ is the “program,” consisting of a global environment (ident → optionblock)
mapping identifiers to function-pointers and other global constants, and a
global mapping (block→ option function) that maps certain (“text-segment”)
addresses to function definitions.

sp : block. The “stack pointer” giving the address and size of the memory
block for stack-allocated local data in the current activation record.

ρ : env. The local environment, a finite mapping from identifiers to values.
φ : footprint. It represents the memory used by the evaluation of an expression

(or a statement). It is a mapping from memory addresses to permissions.
Leroy’s Cminor has no footprints.

m : mem. The memory, a finite mapping from blocks to block contents [6].
Each block represents the result of a C malloc, or a stack frame, a global
static variable, or a function code-pointer. A block content consists of the
dimensions of the block (low and high bounds) plus a mapping from byte
offsets to byte-sized memory cells.

e : expr. The expression being evaluated.
v : val. The value of the expression.

Loads outside the footprint will cause expression evaluation to get stuck. Since
the footprint may have different permissions for loads than for stores to some
addresses, we write φ � loadch v (or φ � storech v) to mean that all the addresses
from v to v + |ch| − 1 are readable (or writable).

To model the possibility of exclusive read/write access or shared read-only
access, we write φ0 ⊕ φ1 = φ for the “disjoint” sum of two footprints, where ⊕

Separation Logic for Small-Step Cminor 9

Ψ ; (sp; ρ;φ; m) � Eval (v) ⇓ v
x ∈ dom ρ

Ψ ; (sp; ρ; φ; m) � Evar (x) ⇓ ρ(x)

Ψ ; (sp; ρ; φ;m) � el ⇓ vl Ψ ; sp � op(vl) ⇓eval operation v

Ψ ; (sp; ρ; φ; m) � Eop (op, el) ⇓ v

Ψ ; (sp; ρ; φ; m) � e1 ⇓ v1 φ � loadch v1 m � v1
ch�→ v

Ψ ; (sp; ρ; φ;m) � Eload (ch, e1) ⇓ v

Fig. 1. Expression evaluation rules

is an associative and commutative operator with several properties such as φ0 �
storech v ⇒ φ1 	� loadch v, φ0 � loadch v ⇒ φ � loadch v and φ0 � storech v ⇒
φ � storech v. One can think of φ as a set of fractional permissions [7], with 0
meaning no permission, 0 < x < 1 permitting read, and 1 giving read/write
permission. A store permission can be split into two or more load permissions,
which can be reconstituted to obtain a store permission. Instead of fractions, we
use a more general and powerful model of sharable permissions similar to one
described by Parkinson [16, Ch. 5].

Most previous models of Separation Logic (e.g., Ishtiaq and O’Hearn [9])
represent heaps as partial functions that can be combined with an operator like
⊕. Of course, a partial function can be represented as a pair of a domain set
and a total function. Similarly, we represent heaps as a footprint plus a Cminor
memory; this does not add any particular difficulty to the soundness proofs for
our Separation Logic.

To perform arithmetic and other operations, in the third rule of Fig. 1, the
judgment Ψ ; sp � op(vl) ⇓eval operation v takes an operator op applied to a list of
values vl and (if vl contains appropriate values) produces some value v. Operators
that access global names and local stack-blocks make use of Ψ and sp respectively
to return the address of a global name or a local stack-block address.

States. We shall bundle together (sp; ρ;φ;m) and call it the state, written as σ.
We write Ψ ;σ � e ⇓ v to mean Ψ ; (spσ; ρσ;φσ;mσ) � e ⇓ v.

Notation. We write σ[:= ρ′] to mean the state σ with its environment component
ρ replaced by ρ′, and so on (e.g. see rules 2 and 3 of Fig. 2 in Section 4).

Fact. Ψ ; sp � op(vl) ⇓eval operation v and m � v1
ch�→ v are both deterministic

relations, i.e. functions.

Lemma 1. Ψ ;σ � e ⇓ v is a deterministic relation. (Trivial by inspection.)

Lemma 2. For any value v, there is an expression e such that ∀σ. (Ψ ;σ � e ⇓ v).

Proof. Obvious; e is simply Eval v. But it is important nonetheless: reasoning
about programs by rewriting and by Hoare Logic often requires this property, and
it was absent from Leroy’s Cminor for Vundef and Vptr values. �

10 A.W. Appel and S. Blazy

An expression may fetch from several different memory locations, or from the
same location several times. Because ⇓ is deterministic, we cannot model a sit-
uation where the memory is updated by another thread after the first fetch and
before the second. But we want a semantics that describes real executions on
real machines. The solution is to evaluate expressions in a setting where we
can guarantee noninterference. We will do this (in our extension to Concurrent
Cminor) by guaranteeing that the footprints φ of different threads are disjoint.
Erased Expression Evaluation. The Cminor compiler (CompCert) is proved cor-
rect w.r.t. an operational semantics that does not use footprints. Any program
that successfully evaluates with footprints will also evaluate ignoring footprints.
Thus, for sequential programs where we do not need noninterference, it is sound
to prove properties in a footprint semantics and compile in an erased semantics.
We formalize and prove this in the full technical report [4].

3 Small-Step Statement Semantics

The statements of sequential Cminor are:

s : stmt ::= x := e | [e1]ch :=e2 | loop s | block s | exitn

| call xl e el | return el | s1; s2 | if e then s1 else s2 | skip.

The assignment x := e puts the value of e into the local variable x. The store
[e1]ch :=e2 puts (the value of) e2 into the memory-chunk ch at address given
by (the value of) e1. (Local variables are not addressable; global variables and
heap locations are memory addresses.) To model exits from nested loops, block s
runs s, which should not terminate normally but which should exitn from the
(n+1)th enclosing block, and loop s repeats s infinitely or until it returns or exits.
call xl e el calls function e with parameters (by value) el and results returned back
into the variables xl . return el evaluates and returns a sequence of results, (s1; s2)
executes s1 followed by s2 (unless s1 returns or exits), and the statements if and
skip are as the reader might expect.

Combined with infinite loops and if statements, blocks and exits suffice to ex-
press efficiently all reducible control-flow graphs, notably those arising from C
loops. The C statements breakand continueare translated as appropriate exitstate-
ments. Blazy et al. [5] detail the translation of these C statements into Cminor.

Function Definitions. A program Ψ comprises two mappings: a mapping from
function names to memory blocks (i.e., abstract addresses), and a mapping from
memory blocks to function definitions. Each function definition may be written as
f = (xl , yl , n, s), where params(f) = xl is a list of formal parameters, locals(f) =
yl is a list of local variables, stackspace(f) = n is the size of the local stack-block
to which sp points, and the statement body(f) = s is the function body.

Operational Semantics. Our small-step semantics for statements is based on
continuations, mainly to allow a uniform representation of statement execution
that facilitates the design of lemmas. Such a semantics also avoids all search

Separation Logic for Small-Step Cminor 11

Ψ � (σ, (s1; s2) · κ) �−→ (σ, s1 · s2 · κ)
Ψ ; σ � e ⇓ v ρ′ = ρσ[x := v]

Ψ � (σ, (x := e) · κ) �−→ (σ[:= ρ′], κ)

Ψ ; σ � e1 ⇓ v1 Ψ ; σ � e2 ⇓ v2 φσ � storech v1 m′ = mσ[v1
ch
:= v2]

Ψ � (σ, ([e1]ch :=e2) · κ) �−→ (σ[:= m′], κ)

Ψ ; σ � e ⇓ v is true v

Ψ � (σ, (if e then s1 else s2) · κ) �−→ (σ, s1 · κ)

Ψ ; σ � e ⇓ v is false v

Ψ � (σ, (if e then s1 else s2) · κ) �−→ (σ, s2 · κ)
Ψ � (σ, skip · κ) �−→ (σ, κ)

Ψ � (σ, (loop s) · κ) �−→ (σ, s · loop s · κ) Ψ � (σ, (block s) · κ) �−→ (σ, s · Kblock κ)

j ≥ 1

Ψ � (σ, exit 0 · s1 · · · · sj · Kblock κ) �−→ (σ, κ)

j ≥ 1

Ψ � (σ, exit (n + 1) · s1 · · · · sj · Kblock κ) �−→ (σ, exit n · κ)

Fig. 2. Sequential small-step relation. We omit here call and return, which are in the
full technical report [4].

rules (congruence rules), which avoids induction over search rules in both the
Hoare-Logic soundness proof and the compiler correctness proof.1

Definition 1. A continuation k has a state σ and a control stack κ. There are
sequential control operators to handle local control flow (Kseq, written as ·), in-
traprocedural control flow (Kblock), and function-return (Kcall); this last carries
not only a control aspect but an activation record of its own. The control operator
Kstop represents the safe termination of the computation.

κ : control ::= Kstop | s · κ | Kblock κ | Kcall xl f sp ρ κ
k : continuation ::= (σ, κ)

The sequential small-step function takes the form Ψ � k �−→ k′ (see Fig. 2),
and we define as usual its reflexive transitive closure �−→∗. As in C, there is no
boolean type in Cminor. In Fig. 2, the predicate is true v holds if v is a pointer or
a nonzero integer; is false holds only on 0. A store statement [e1]ch :=e2 requires
the corresponding store permission φσ � storech v1.

Given a control stack block s·κ, the small-step execution of the block statement
block s enters that block: s becomes the next statement to execute and the control
stack becomes s · Kblock κ.

1 We have proved in Coq the equivalence of this small-step semantics with the big-step
semantics of CompCert (for programs that terminate).

12 A.W. Appel and S. Blazy

Exit statements are only allowed from blocks that have been previously en-
tered. For that reason, in the two rules for exit statements, the control stack
ends with (Kblock κ) control. A statement (exitn) terminates the (n + 1)th en-
closing block statements. In such a block, the stack of control sequences s1 · · · sj

following the exit statement is not executed. Let us note that this stack may be
empty if the exit statement is the last statement of the most enclosing block.
The small-step execution of a statement (exitn) exits from only one block (the
most enclosing one). Thus, the execution of an (exit 0) statement updates the
control stack (exit 0 · s1 · · · · sj ·Kblock κ) into κ. The execution of an (exit n+ 1)
statement updates the control stack (exit (n+1)·s1 ·· · · sj ·Kblock κ) into exitn·κ.

Lemma 3. If Ψ ;σ � e ⇓ v then Ψ � (σ, (x := e) · κ) �−→ k′ iff Ψ � (σ, (x :=
Eval v) ·κ)) �−→ k′ (and similarly for other statements containing expressions).
Proof. Trivial: expressions have no side effects. A convenient property nonethe-
less, and not true of Leroy’s original Cminor. �

Definition 2. A continuation k = (σ, κ) is stuck if κ 	= Kstop and there does
not exist k′ such that Ψ � k �−→ k′.

Definition 3. A continuation k is safe (written as Ψ � safe(k)) if it cannot
reach a stuck continuation in the sequential small-step relation �−→∗.

4 Separation Logic

Hoare Logic uses triples {P} s {Q} where P is a precondition, s is a statement of
the programming language, and Q is a postcondition. The assertions P and Q are
predicates on the program state. The reasoning on memory is inherently global.
Separation Logic is an extension of Hoare Logic for programs that manipulate
pointers. In Separation Logic, reasoning is local [15]; assertions such as P and
Q describe properties of part of the memory, and {P} s {Q} describes changes
to part of the memory. We prove the soundness of the Separation Logic via a
shallow embedding, that is, we give each assertion a semantic meaning in Coq.
We have P,Q : assert where assert = prog → state → Prop. So PΨσ is a
proposition of logic and we say that σ satisfies P .

Assertion Operators. In Fig. 3, we define the usual operators of Separation Logic:
the empty assertion emp, separating conjunction ∗, disjunction ∨, conjunction
∧, implication ⇒, negation ¬, and quantifier ∃. A state σ satisfies P ∗ Q if its
footprint φσ can be split into φ1 and φ2 such that σ[:= φ1] satisfies P and
σ[:= φ2] satisfies Q. We also define some novel operators such as expression
evaluation e ⇓ v and base-logic propositions �A�.

O’Hearn and Reynolds specify Separation Logic for a little language in which
expressions evaluate independently of the heap [15]. That is, their expressions
access only the program variables and do not even have read side effects on the
memory. Memory reads are done by a command of the language, not within
expressions. In Cminor we relax this restriction; expressions can read the heap.

Separation Logic for Small-Step Cminor 13

emp =def λΨσ. φσ = ∅

P ∗ Q =def λΨσ. ∃φ1.∃φ2. φσ = φ1 ⊕ φ2 ∧ P (σ[:= φ1]) ∧ Q(σ[:= φ2])

P ∨ Q =def λΨσ. Pσ ∨ Qσ

P ∧ Q =def λΨσ. Pσ ∧ Qσ

P ⇒ Q =def λΨσ. Pσ ⇒ Qσ

¬P =def λΨσ. ¬(Pσ)

∃z.P =def λΨσ. ∃z.Pσ

	A
 =def λΨσ. A where σ does not appear free in A

true =def λΨσ.True false =def 	False

e ⇓ v =def emp ∧ 	pure(e)
 ∧ λΨσ. (Ψ ; σ � e ⇓ v)

	e
expr =def ∃v. e ⇓ v ∧ 	is true v

defined(e) =def 	e
int
== e
expr ∨ 	e

float
== e
expr

e1
ch
→ e2 =def ∃v1.∃v2.(e1 ⇓ v1) ∧ (e2 ⇓ v2) ∧ (λσ, mσ � v1

ch
→ v2 ∧ φσ � storech v1) ∧ defined(v2)

Fig. 3. Main operators of Separation Logic

But we say that an expression is pure if it contains no Eload operators—so that
it cannot read the heap.

In Hoare Logic one can use expressions of the programming language as
assertions—there is an implicit coercion. We write the assertion e ⇓ v to mean
that expression e is pure and evaluates to value v in the operational semantics.
This is an expression of Separation Logic, in contrast to Ψ ;σ � e ⇓ v which is
a judgment in the underlying logic. In a previous experiment, our Separation
Logic permitted impure expressions in e ⇓ v. But, this complicated the proofs
unnecessarily. Having emp ∧ �pure(e)� in the definition of e ⇓ v leads to an
easier-to-use Separation Logic.

Hoare Logic traditionally allows expressions e of the programming language
to be used as expressions of the program logic. We will define explicitly �e�expr
to mean that e evaluates to a true value (i.e. a nonzero integer or non-null
pointer). Following Hoare’s example, we will usually omit the � �expr braces in
our Separation Logic notation.

Cminor’s integer equality operator, which we will write as e1
int
== e2, applies

to integers or pointers, but in several cases it is “stuck” (expression evaluation
gives no result): when comparing a nonzero integer to a pointer; when comparing

Vundef or Vfloat(x) to anything. Thus we can write the assertion �e int
== e�expr

(or just write e
int
== e) to test that e is a defined integer or pointer in the current

state, and there is a similar operator e1
float
== e2.

Finally, we have the usual Separation Logic singleton “maps-to”, but anno-
tated with a chunk-type ch. That is, e1

ch�→ e2 means that e1 evaluates to v1, e2

evaluates to v2, and at address v1 in memory there is a defined value v2 of the
given chunk-type. Let us note that in this definition, defined(v1) is implied by
the third conjunct. defined(v2) is a design decision. We could leave it out and
have a slightly different Separation Logic.

14 A.W. Appel and S. Blazy

P ⇒ P ′ Γ ; R;B � {P ′}s{Q′} Q′ ⇒ Q

Γ ; R; B � {P}s{Q}
Γ ;R; B � {P}skip{P}

Γ ;R; B � {P}s1{P ′} Γ ; R; B � {P ′}s2{Q}
Γ ;R; B � {P}s1; s2{Q}

ρ′ = ρσ[x := v] P = (∃v. e ⇓ v ∧ λσ. Q σ[:= ρ′])

Γ ; R; B � {P}x := e{Q}

pure (e) pure (e2) P = (e
ch�→ e2 ∧ defined(e1))

Γ ;R; B � {P}[e]ch :=e1{e ch�→ e1}

pure (e) Γ ; R;B � {P ∧ e}s1{Q} Γ ; R; B � {P ∧ ¬e}s2{Q}
Γ ;R; B � {P}if e then s1 else s2{Q}

Γ ;R; B � {I}s{I}
Γ ;R; B � {I}loop s{false}

Γ ; R; Q · B � {P}s{false}
Γ ; R; B � {P}block s{Q}

Γ ;R; B � {B(n)}exit n{false}

Γ ;R; B � {P}s{Q} modified vars(s) ∩ free vars(A) = ∅
Γ ; (λvl .A ∗ R(vl)); (λn.A ∗ B(n)) � {A ∗ P}s{A ∗ Q}

Fig. 4. Axiomatic Semantics of Separation Logic (without call and return)

The Hoare Sextuple. Cminor has commands to call functions, to exit (from
a block), and to return (from a function). Thus, we extend the Hoare triple
{P} s {Q} with three extra contexts to become Γ ;R;B � {P}s{Q} where:

Γ : assert describes context-insensitive properties of the global environment;
R : list val→assert is the return environment, giving the current function’s post-

condition as a predicate on the list of returned values; and
B : nat → assert is the block environment giving the exit conditions of each

block statement in which the statement s is nested.

Most of the rules of sequential Separation Logic are given in Fig. 4. In this
paper, we omit the rules for return and call, which are detailed in the full tech-
nical report. Let us note that the Γ context is used to update global function
names, none of which is illustrated in this paper.

The rule for [e]ch :=e1 requires the same store permission than the small-step

rule, but in Fig. 4, the permission is hidden in the definition of e ch�→ e2. The
rules for [e]ch :=e1 and if e then s1 else s2 require that e be a pure expression. To
reason about an such statements where e is impure, one reasons by program
transformation using the following rules. It is not necessary to rewrite the actual
source program, it is only the local reasoning that is by program transformation.

Separation Logic for Small-Step Cminor 15

x, y not free in e, e1, Q Γ ;R;B � {P} x := e; y := e1; [x]ch :=y {Q}
Γ ;R;B � {P}[e]ch :=e1{Q}

x not free in s1, s2, Q Γ ;R;B � {P} x := e; if x then s1 else s2 {Q}
Γ ;R;B � {P} if e then s1 else s2 {Q}

The statement exit i exits from the (i+ 1)th enclosing block. A block environ-
ment B is a sequence of assertions B0, B1, . . . , Bk−1 such that (exit i) is safe as
long as the precondition Bi is satisfied. We write nilB for the empty block envi-
ronment and B′ = Q ·B for the environment such that B′

0 = Q and B′
i+1 = Bi.

Given a block environment B, a precondition P and a postcondition Q, the ax-
iomatic semantics of a (block s) statement consists in executing some statements
of s given the same precondition P and the block environment Q ·B (i.e. each ex-
isting block nesting is incremented). The last statement of s to be executed is an
exit statement that yields the false postcondition. An (exitn) statement is only al-
lowed from a corresponding enclosing block, i.e. the precondition B(n) must exist
in the block environment B and it is the precondition of the (exitn) statement.

Frame Rules. The most important feature of Separation Logic is the frame rule,
usually written {P} s {Q}

{A ∗ P} s {A ∗Q}
The appropriate generalization of this rule to our language with control flow is
the last rule of Fig. 4. We can derive from it a special frame rule for simple
statements s that do not exit or return:

∀R,B.(Γ ;R;B � {P} s {Q}) modified vars(s) ∩ free vars(A) = ∅
Γ ;R;B � {A ∗ P} s {A ∗Q}

Free Variables. We use a semantic notion of free variables: x is not free in as-
sertion A if, in any two states where only the binding of x differs, A gives the
same result. However, we found it necessary to use a syntactic (inductive) defin-
ition of the variables modified by a command. One would think that command c
“modifies” x if there is some state such that by the time c terminates or exits, x
has a different value. However, this definition means that the modified variables
of if false then B else C are not a superset of the modified variables of C;
this lack of an inversion principle led to difficulty in proofs.

Auxiliary Variables. It is typical in Hoare Logic to use auxiliary variables to relate
the pre- and postconditions, e.g., the variable a in {x = a} x := x+1 {x = a+1}.
In our shallow embedding of Hoare Logic in Coq, the variable a is a Coq vari-
able, not a Cminor variable; formally, the user would prove in Coq the proposi-
tion, ∀a, (Γ ;R;B � {P}s{Q}) where a may appear free in any of Γ,R,B, P, s,Q.
The existential assertion ∃z.Q is useful in conjunction with this technique.

Assertions about functions require special handling of these quantified auxil-
iary variables. The assertion that some value f is a function with precondition
P and postcondition Q is written f : ∀x1∀x2 . . . ∀xn, {P}{Q} where P and Q

16 A.W. Appel and S. Blazy

are functions from value-list to assertion, each ∀ is an operator of our separation
logic that binds a Coq variable xi using higher-order abstract syntax.

Application. In the full technical report [4], we show how the Separation Logic
(i.e. the rules of Fig. 4) can be used to prove partial correctness properties of
programs, with the classical in-place list-reversal example. Such proofs rely on
a set of tactics, that we have written in the tactic definition language of Coq, to
serve as a proof assistant for Cminor Separation Logic proofs [3].

5 Soundness of Separation Logic

Soundness means not only that there is a model for the logic, but that the
model is the operational semantics for which the compiler guarantees correctness!
In principle we could prove soundness by syntactic induction over the Hoare
Logic rules, but instead we will give a semantic definition of the Hoare sextuple
Γ ;R;B � {P} s {Q}, and then prove each of the Hoare rules as a derived lemma
from this definition.

A simple example of semantic specification is that the Hoare Logic P ⇒ Q
is defined, using the underlying logical implication, as ∀Ψσ. P Ψ σ ⇒ QΨ σ.
From this, one could prove soundness of the Hoare Logic rule on the left (where
the ⇒ is a symbol of Hoare Logic) by expanding the definitions into the lemma
on the right (where the ⇒ is in the underlying logic), which is clearly provable
in higher-order logic:

P ⇒ Q Q⇒ R

P ⇒ R

∀Ψσ.(PΨσ ⇒ QΨσ) ∀Ψσ.(QΨσ ⇒ RΨσ)
∀Ψσ.(PΨσ ⇒ RΨσ)

Definition 4. (a) Two states σ and σ′ are equivalent (written as σ ∼= σ′) if
they have the same stack pointer, extensionally equivalent environments, iden-
tical footprints, and if the footprint-visible portions of their memories are the
same. (b) An assertion is a predicate on states that is extensional over equivalent
environments (in Coq it is a dependent product of a predicate and a proof of
extensionality).

Definition 5. For any control κ, we define the assertion safe κ to mean that
the combination of κ with the current state is safe:

safe κ =def λΨσ. ∀σ′. (σ ∼= σ′ ⇒ Ψ � safe (σ′, κ))

Definition 6. Let A be a frame, that is, a closed assertion (i.e. one with no free
Cminor variables). An assertion P guards a control κ in the frame A (written
as P ��A κ) means that whenever A ∗ P holds, it is safe to execute κ. That is,

P ��A κ =def A ∗ P ⇒ safe κ.

We extend this notion to say that a return-assertion R (a function from value-
list to assertion) guards a return, and a block-exit assertion B (a function from
block-nesting level to assertions) guards an exit:

R r��Aκ =def ∀vl .R(vl)��A return vl ·κ B b��Aκ =def ∀n.B(n)��A exitn ·κ

Separation Logic for Small-Step Cminor 17

Lemma 4. If P ��A s1 · s2 · κ then P ��A (s1; s2) · κ.

Lemma 5. If R r��A κ then ∀s,R r��A s · κ. If B b��A κ then ∀s,B b��A s · κ.

Definition 7 (Frame). A frame is constructed from the global environment Γ ,
an arbitrary frame assertion A, and a statement s, by the conjunction of Γ with
the assertion A closed over any variable modified by s:

frame(Γ,A, s) =def Γ ∗ closemod(s,A)

Definition 8 (Hoare sextuples). The Hoare sextuples are defined in “contin-
uation style,” in terms of implications between continuations, as follows:

Γ ; R; B � {P} s {Q} =def ∀A, κ.

R r��frame(Γ,A,s) κ ∧ B b��frame(Γ,A,s) κ ∧ Q ��frame(Γ,A,s) κ ⇒ P ��frame(Γ,A,s) s · κ

From this definition we prove the rules of Fig. 4 as derived lemmas.
It should be clear from the definition—after one gets over the backward na-

ture of the continuation transform—that the Hoare judgment specifies partial
correctness, not total correctness. For example, if the statement s infinitely loops,
then the continuation (σ, s · κ) is automatically safe, and therefore P ��A s · κ
always holds. Therefore the Hoare tuple Γ ;R;B � {P}s{Q} will hold for that
s, regardless of Γ,R,B, P,Q.

Sequence. The soundness of the sequence statement is the proof that if the
hypotheses H1 : Γ ;R;B � {P} s1 {P ′} and H2 : Γ ;R;B � {P ′} s2 {Q} hold,
then we have to prove Goal : Γ ;R;B � {P} s1; s2 {Q} (see Fig. 4). If we unfold
the definition of the Hoare sextuples, H1, H2 and Goal become:

(∀A,κ)
R r��frame(Γ,A,(s1;s2)) κ B b��frame(Γ,A,(s1;s2)) κ Q ��frame(Γ,A,(s1;s2)) κ

P ��frame(Γ,A,(s1;s2)) (s1; s2) · κ
Goal

We prove P ��frame(Γ,A,(s1;s2)) (s1; s2) · k using Lemma 4:2

R r�� k

R r�� s2 · k
Lm. 5

B b�� k

B b�� s2 · k
Lm. 5

R r�� k B b�� k Q �� k

P ′ �� s2 · k
H2

P �� s1 · s2 · k

P �� (s1; s2) · k
Lm. 4

H1

Loop Rule. The loop rule turns out to be one of the most difficult ones to prove. A
loop continues executing until the loop-body performs an exit or return. If loop s
executes n steps, then there will be 0 or more complete iterations of n1, n2, . . .
steps, followed by j steps into the last iteration. Then either there is an exit
(or return) from the loop, or the loop will keep going. But if the exit is from an
inner-nested block, then it does not terminate the loop (or even this iteration).
Thus we need a formal notion of when a statement exits.
2 We will elide the frames from proof sketches by writing �� without a subscript;

this particular proof relies on a lemma that closemod(s1, closemod((s1; s2), A)) =
closemod((s1; s2), A).

18 A.W. Appel and S. Blazy

Consider the statement s = if b then exit 2 else (skip;x := y), executing in state
σ. Let us execute n steps into s, that is, Ψ � (σ, s · κ) �−→n (σ′, κ′). If n is small,
then the behavior should not depend on κ; only when we “emerge” from s is
κ important. In this example, if ρσb is a true value, then as long as n ≤ 1 the
statement s can absorb n steps independent of κ; if ρσb is a false value, then s can
absorb up to 3 steps. To reason about absorption, we define the concatenation
κ1 ◦ κ2 of a control prefix κ1 and a control κ2 as follows:

Kstop ◦ κ =def κ (Kblock κ′) ◦ κ =def Kblock (κ′ ◦ κ)
(s · κ′) ◦ κ =def s · (κ′ ◦ κ) (Kcall xl f sp ρ κ′) ◦ κ =def Kcall xl f sp ρ (κ′ ◦ κ)

Kstop is the empty prefix; Kstop ◦ κ does not mean “stop,” it means κ.

Definition 9 (absorption). A statement s in state σ absorbs n steps (written
as absorb(n, s, σ)) iff ∀j ≤ n. ∃κprefix.∃σ′. ∀κ. Ψ � (σ, s · κ) �−→j (σ′, κprefix ◦ κ).

Example 1. An exit statement by itself absorbs no steps (it immediately uses its
control-tail), but block (exit 0) can absorb the 2 following steps:
Ψ � (σ, block (exit 0) · κ) �−→ (σ, exit 0 · Kblock κ) �−→ (σ, κ)

Lemma 6. 1. absorb(0, s, σ).
2. absorb(n + 1, s, σ) ⇒ absorb(n, s, σ).
3. If ¬absorb(n, s, σ), then ∃i < n.absorb(i, s, σ) ∧ ¬absorb(i + 1, s, σ). We say

that s absorbs at most i steps in state σ.

Definition 10. We write (s;)ns′ to mean s; s; . . . ; s;
︸ ︷︷ ︸

n

s′.

Lemma 7.
Γ ;R;B � {I}s{I}

Γ ;R;B � {I}(s;)nloop skip{false}

Proof. For n = 0, the infinite-loop (loop skip) satisfies any precondition for par-
tial correctness. For n+ 1, assume κ, R r�� κ, B b�� κ; by the induction hypothesis
(with R r��κ and B b��κ) we know I��(s;)nloop skip·κ. We have R r��(s;)nloop skip·κ
and B b�� (s;)nloop skip ·κ by Lemma 5. We use the hypothesis Γ ;R;B � {I}s{I}
to augment the result to I �� (s; (s;)nloop skip) · κ. �

Theorem 1.
Γ ;R;B � {I}s{I}

Γ ;R;B � {I}loop s{false}

Proof. Assume κ, R r�� κ, B b�� κ. To prove I �� loop s · κ, assume σ and Iσ
and prove safe (σ, loop s · κ). We must prove that for any n, after n steps we
are not stuck. We unfold the loop n times, that is, we use Lemma 7 to show
safe (σ, (s;)nloop skip · κ). We can show that if this is safe for n steps, so is
loop s · κ by the principle of absorption. Either s absorbs n steps, in which case
we are done; or s absorbs at most j < n steps, leading to a state σ′ and a control
(respectively) κprefix ◦ (s;)n−1loop skip · κ or κprefix ◦ loop s · κ. Now, because s
cannot absorb j + 1 steps, we know that either κprefix is empty (because s has
terminated normally) or κprefix starts with a return or exit, in which case we

Separation Logic for Small-Step Cminor 19

escape (resp. past the loop skip or the loop s) into κ. If κprefix is empty then we
apply strong induction on the case n− j steps; if we escape, then (σ′, κ) is safe
iff (σ, loop s · κ) is safe. (For example, if j = 0, then it must be that s = return
or s = exit , so in one step we reach κprefix ◦ (loop s · κ) with κprefix = return or
κprefix = exit .) �

6 Sequential Reasoning About Sequential Features

Concurrent Cminor, like most concurrent programming languages used in prac-
tice, is a sequential programming language with a few concurrent features (locks
and threads) added on. We would like to be able to reason about the sequential
features using purely sequential reasoning. If we have to reason about all the
many sequential features without being able to assume such things as determi-
nacy and sequential control, then the proofs become much more difficult.

One would expect this approach to run into trouble because critical assump-
tions underlying the sequential operational semantics would not hold in the
concurrent setting. For example, on a shared-memory multiprocessor we can-
not assume that (x:=x+1; x:=x+1) has the same effect as (x:=x+2); and on
any real multiprocessor we cannot even assume sequential consistency—that the
semantics of n threads is some interleaving of the steps of the individual threads.

We will solve this problem in several stages. Stage 1 of this plan is the current
paper. Stages 2, 3, and 4 are work in progress; the remainder is future work.

1. We have made the language, the Separation Logic, and our proof extensible:
the set of control-flow statements is fixed (inductive) but the set of straight-
line statements is extensible by means of a parameterized module in Coq.
We have added to each state σ an oracle which predicts the meaning of the
extended instruction (but which does nothing on the core language). All the
proofs we have described in this paper are on this extensible language.

2. We define spawn, lock, and unlock as extended straight-line statements. We
define a concurrent small-step semantics that assumes noninterference (and
gets “stuck” on interference).

3. From this semantics, we calculate a single-thread small-step semantics equip-
ped with the oracle that predicts the effects of synchronizations.

4. We define a Concurrent Separation Logic for Cminor as an extension of the
Sequential Separation Logic. Its soundness proof uses the sequential sound-
ness proof as a lemma.

5. We will use Concurrent Separation Logic to guarantee noninterference of
source programs. Then (x:=x+1; x:=x+1) will have the same effect as
(x:=x+2).

6. We will prove that the Cminor compiler (CompCert) compiles each footprint-
safe source thread into an equivalent footprint-safe machine-language thread.
Thus, noninterfering source programs will produce noninterfering machine-
language programs.

20 A.W. Appel and S. Blazy

7. We will demonstrate, with respect to a formal model of weak-memory-
consistency microprocessor, that noninterfering machine-language programs
give the same results as they would on a sequentially consistent machine.

7 The Machine-Checked Proof

We have proved in Coq the soundness of Separation Logic for Cminor. Each
rule is proved as a lemma; in addition there is a main theorem that if you prove
all your function bodies satisfy their pre/postconditions, then the program “call
main()” is safe. We have informally tested the adequacy of our result by doing
tactical proofs of small programs [3].

Lines Component
41 Axioms: dependent unique choice, relational choice, extensionality

8792 Memory model, floats, 32-bit integers, values, operators, maps (ex-
actly as in CompCert [12])

4408 Sharable permissions, Cminor language, operational semantics
462 Separation Logic operators and rules

9874 Soundness proof of Separation Logic

These line counts include some repetition of specifications (between Modules
and Module Types) in Coq’s module system.

8 Conclusion

In this paper, we have defined a formal semantics for the language Cminor. It
consists of a big-step semantics for expressions and a small-step semantics for
statements. The small-step semantics is based on continuations mainly to allow
a uniform representation of statement execution. The small-step semantics deals
with nonlocal control constructs (return, exit) and is designed to extend to the
concurrent setting.

Then, we have defined a Separation Logic for Cminor. It consists of an as-
sertion language and an axiomatic semantics. We have extended classical Hoare
triples to sextuples in order to take into account nonlocal control constructs.
From this definition of sextuples, we have proved the rules of axiomatic seman-
tics, thus proving the soundness of our Separation Logic.

We have also proved the semantic equivalence between our small-step seman-
tics and the big-step semantics of the CompCert certified compiler, so the Cminor
programs that we prove in Separation Logic can be compiled by the CompCert
certified compiler. We plan to connect a Cminor certified compiler directly to
the small-step semantics, instead of going through the big-step semantics.

Small-step reasoning is useful for sequential programming languages that will
be extended with concurrent features; but small-step reasoning about nonlocal
control constructs mixed with structured programming (loop) is not trivial. We
have relied on the determinacy of the small-step relation so that we can define
concepts such as absorb(n, s, σ).

Separation Logic for Small-Step Cminor 21

References

1. The Coq proof assistant, http://coq.inria.fr
2. American National Standard for Information Systems – Programming Language –

C: American National Standards Institute (1990)
3. Appel, A.W.: Tactics for separation logic (January 2006),

http://www.cs.princeton.edu/~appel/papers/septacs.pdf
4. Appel, A.W., Blazy, S.: Separation logic for small-step Cminor (extended version).

Technical Report RR 6138, INRIA (March 2007),
https://hal.inria.fr/inria-00134699

5. Blazy, S., Dargaye, Z., Leroy, X.: Formal verification of a C compiler front-end.
In: Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp.
460–475. Springer, Heidelberg (2006)

6. Blazy, S., Leroy, X.: Formal verification of a memory model for C-like imperative
languages. In: Lau, K.-K., Banach, R. (eds.) ICFEM 2005. LNCS, vol. 3785, pp.
280–299. Springer, Heidelberg (2005)

7. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: POPL’05, pp. 259–270. ACM Press, New York (2005)

8. Dargaye, Z.: Décurryfication certifiée. JFLA (Journées Françaises des Langages
Applicatifs), 119–133 (2007)

9. Ishtiaq, S., O’Hearn, P.: BI as an assertion language for mutable data structures.
In: POPL’01, January 2001, pp. 14–26. ACM Press, New York (2001)

10. Klein, G., Tuch, H., Norrish, M.: Types, bytes, and separation logic. In: POPL’07,
January 2007, pp. 97–108. ACM Press, New York (2007)

11. Leinenbach, D., Paul, W., Petrova, E.: Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In: SEFM’05. IEEE
Conference on Software Engineering and Formal Methods, IEEE Computer Society
Press, Los Alamitos (2005)

12. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: POPL’06, pp. 42–54. ACM Press, New York (2006)

13. Moore, J.S.: A mechanically verified language implementation. Journal of Auto-
mated Reasoning 5(4), 461–492 (1989)

14. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers.
In: POPL’06, January 2006, pp. 320–333. ACM Press, New York (2006)

15. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142,
pp. 1–19. Springer, Heidelberg (2001)

16. Parkinson, M.J.: Local Reasoning for Java. PhD thesis, University of Cambridge
(2005)

17. Schirmer, N.: Verification of Sequential Imperative Programs in Isabelle/HOL. PhD
thesis, Technische Universität München (2006)

http://coq.inria.fr
http://www.cs.princeton.edu/~appel/papers/septacs.pdf
https://hal.inria.fr/inria-00134699

Formalising Java’s Data Race Free Guarantee

David Aspinall and Jaroslav Ševč́ık

LFCS, School of Informatics, University of Edinburgh

Abstract. We formalise the data race free (DRF) guarantee provided
by Java, as captured by the semi-formal Java Memory Model (JMM) [1]
and published in the Java Language Specification [2]. The DRF guaran-
tee says that all programs which are correctly synchronised (i.e., free of
data races) can only have sequentially consistent behaviours. Such pro-
grams can be understood intuitively by programmers. Formalisation has
achieved three aims. First, we made definitions and proofs precise, lead-
ing to a better understanding; our analysis found several hidden incon-
sistencies and missing details. Second, the formalisation lets us explore
variations and investigate their impact in the proof with the aim of sim-
plifying the model; we found that not all of the anticipated conditions in
the JMM definition were actually necessary for the DRF guarantee. This
allows us to suggest a quick fix to a recently discovered serious bug [3]
without invalidating the DRF guarantee. Finally, the formal definition
provides a basis to test concrete examples, and opens the way for future
work on JMM-aware logics for concurrent programs.

1 Introduction

Today, most techniques for reasoning about shared-memory concurrent
programs assume an interleaved semantics, although modern hardware archi-
tectures and compilers do not guarantee one [4]. So there is a gap between
languages with shared-memory concurrency and reasoning principles for them.
Java aims to bridge the gap via a complex contract, called the Java Memory
Model (JMM) [1,2], which holds between the virtual machine and programmers.
For programmers, the JMM claims that correctly synchronised (data race free)
programs only have sequentially consistent behaviours, which means that rea-
soning based on interleaved semantics is valid in this case. This is the data race
free DRF guarantee. For compiler writers implementing the virtual machine, the
JMM constrains permissible code optimisations; most prominently, instruction
reordering.

To see why the memory model contract is needed, consider the simple program
below, with two threads sharing memory locations x and y:

initially: x = y = 0
1: r1 := x 3: r2 := y
2: y := 1 4: x := 1

The contents of the thread-local registers r1 and r2 at the end of the program
depends on the order of serialisation of memory accesses. For example, the result

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 22–37, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Formalising Java’s Data Race Free Guarantee 23

r1 = 0 and r2 = 0 holds if the order of the statements is 1, 3, 2, 4. On the other
hand, the result r1 = r2 = 1 is not possible in any serialisation of the program,
and most programmers would not expect such an outcome. But if a compiler
or the low-level hardware reorders the independent instructions 1, 2 and 3, 4
in each thread, then the result r1 = r2 = 1 is possible, e.g., by executing the
statements in the sequence 2, 4, 3, 1. This kind of reordering results from simple
optimisations, such as write buffering to main memory or common subexpression
elimination. To allow these optimisations, we need a relaxed memory model that
provides weaker guarantees than global sequential consistency, but allows the
programmer some kind of control to prevent unintended behaviours.

The Java Memory Model has already been revised after the initial version had
serious flaws [5]. The current version is designed to provide:

1. a promise for programmers: sequential consistency must be sacrificed to al-
low optimisations, but it will still hold for data race free programs;

2. a promise for security: even for programs with data races, values should not
appear “out of thin air”, which prevents unintended information leakage;

3. a promise for compilers: common hardware and software optimisations should
be allowed as far as possible without violating the first two requirements.

The first requirement gives us hope for intuitive understanding, and simple pro-
gram logics, for data race free programs. Most programs should be correctly
synchronised, as recommended by [6]. The second requirement makes a security
promise for the “racy” programs: even though values may be undetermined, they
should have an origin within the computation, and not, e.g., appear from other
memory contents which may be sensitive. Considering these goals, Manson et al
[1] published proofs of two theorems. The first theorem, stating the promise for
compilers, was recently falsified — Cenciarelli et al [3] found a counterexample.
The second theorem, which is the DRF guarantee, is the topic of this paper.

Contribution. We describe a formalisation of definitions of the JMM and a proof
of the DRF guarantee it provides. We believe that this is the first theorem prover
formalisation of Java’s memory model. The exercise has provided significant
clarifications of the official definition and proof, turning up notable flaws. Our
formalisation reveals a design space for changes that preserve the DRF guarantee,
enabling us to suggest fixes for the recently discovered bug while preserving the
key guarantee for programmers. When testing our fixes on the JMM test cases [7]
we discovered another flaw in the memory model and we offer a solution for it, as
well. While we have intentionally stayed close to the informal definitions, we have
made some simplifications. The most important is that we require executions to
be finite, because infinite executions cause some tricky problems without, we
believe, illuminating the DRF proof (see Sect. 4 for further details).

Overview. The rest of this paper is organised as follows. In Sect. 2, we introduce
the basic definitions of the JMM, as we have formalised them in Isabelle, together
with some commentary to assist the reader. In Sect. 3 we give our proof of the
DRF guarantee. This considerably expands the informal proof of [8]. Sect. 4
summarises our results, collecting together changes to the JMM to repair the

24 D. Aspinall and J. Ševč́ık

bugs, discussions of the differences between our formalisation and the official
informal work, and the improvements we claim to have made. Sect. 5 concludes,
mentioning related work on other formal methods applied to memory models,
as well as our plans for future work building on the results here.

2 Formal Definitions for the JMM

The following definitions are from [2,1], with minor differences described at the
end of the section. We use abstract types T for thread identifiers, ranged over by
t; M for synchronisation monitor identifiers, ranged over by m; L for variables
(i.e., memory locations), ranged over by v (in examples, x, y, etc.); and V for
values. The starting point is the notion of action.

Definition 1 (Action). An action is a memory-related operation; it is modelled
by an abstract type A with the following properties: (1) Each action belongs to
one thread, denoted T (a). (2) An action has one of the following action kinds:

– volatile read of v ∈ L,
– volatile write to v ∈ L,
– lock on monitor m ∈M,
– unlock on monitor m ∈M,

– normal read from v ∈ L,
– normal write to v ∈ L.

An action kind includes the associated variable or monitor. The volatile read,
write, lock and unlock actions are called synchronisation actions.

In contrast to an interleaved semantics, in relaxed memory models there is no
total ordering of all actions by time. Instead, the JMM imposes a total order,
called synchronisation order, on all synchronisation actions, while allowing non-
volatile reads and writes to be reordered to a certain degree. To capture the
intra-thread ordering of actions, there is a total order, called program order,
on all actions of each thread, which does not relate actions of different threads.
These orders are gathered together in the definition of an execution. An execution
allows non-deterministic behaviours because the order and visibility of memory
operations may not be fully constrained.

Definition 2 (Execution). An execution E = 〈A,P,≤po,≤so,W, V 〉, where:

– A ⊆ A is a set of actions,
– P is a program, which is represented as a function that for each thread decides

validity of a given sequence of action kinds with associated values if the action
kind is a read or a write,

– the partial order ≤po⊆ A×A is the program order,
– the partial order ≤so⊆ A×A is the synchronisation order,
– W ∈ A ⇒ A is a write-seen function. It assigns a write to each read action

from A, the W (r) denotes the write seen by r, i.e. the value read by r is
V (W (r)). The value of W (a) for non-read actions a is unspecified,

– V ∈ A ⇒ V is a value-written function that assigns a value to each write
from A, V (a) is unspecified for non-write actions a.

Formalising Java’s Data Race Free Guarantee 25

(unlock-lock) (volatile write-read)

Fig. 1. Happens before by release-acquire pairs

Following Lamport [9], an approximation of global time is now defined by the
happens-before relation of an execution. An action a happens-before b, written
a ≤hb b, if either: (1) a and b are a release-acquire pair, such as an unlock of
a monitor m and a lock of the same m, where a is ordered before b by the
synchronisation order, or (2) a is before b in the program order, or (3) there is
c such that a ≤hb c and c ≤hb b. A precise definition follows in Def. 4.

Fig. 1 shows two simple cases of the happens-before relation. In the first
execution, the write x := 42 happens-before the read of x because the accesses
to x are protected by the monitor m; the lock of m is ordered after the unlock
of m by the synchronisation order in the given execution. Similarly, a volatile
write and a volatile read from the same variable are a release-acquire pair. In the
second execution, the happens-before includes two such pairs for the variable v.
This means that the three instructions in thread 2 must happen in between the
first two and last two instructions in thread 1.

The precise definition of the happens-before relation is provided via an aux-
iliary synchronises-with ordering. Each is derived from a given execution.

Definition 3 (Synchronizes-with). In an execution with synchronisation or-
der ≤so, an action a synchronises-with an action b (written a <sw b) if a ≤so b
and a and b satisfy one of the following conditions:

– a is an unlock on monitor m and b is a lock on monitor m,
– a is a volatile write to v and b is a volatile read from v.

Definition 4 (Happens-before). The happens-before order of an execution
is the transitive closure of the composition of its synchronises-with order and its
program order, i.e. ≤hb= (<sw ∪ ≤po)+.

To relate a (sequential) program to a sequence of actions performed by one thread
we must define a notion of sequential validity. The next definition is new to our
formalisation and was left implicit in [1], as was the notion of program itself.
To be as abstract as possible, we consider programs as characteristic functions

26 D. Aspinall and J. Ševč́ık

on traces, i.e., thread-indexed predicates on sequences of pairs of an action kind
and a value. An action kind and value pair determines the effect of a memory
operation (e.g. a read from a variable, or a write to a variable with a given value).

Definition 5 (Sequential validity). We say that a sequence s of action kind-
value pairs is sequentially valid with respect to a thread t and a program P if
P (t, s) holds.

The next definition places some sensible restriction on executions.

Definition 6 (Well-formed execution). We say that an execution 〈A,P,≤po,
≤so,W, V 〉 is well-formed if

1. A is finite.
2. ≤po restricted on actions of one thread is a total order, ≤po does not relate

actions of different threads.
3. ≤so is total on synchronisation actions of A.
4. ≤so is consistent with ≤po, i.e. a ≤so b ∧ b ≤po a =⇒ a = b.
5. W is properly typed: for every non-volatile read r ∈ A, W (r) is a non-volatile

write; for every volatile read r ∈ A, W (r) is a volatile write.
6. Locking is proper: for all lock actions l ∈ A on monitors m and all threads t

different from the thread of l, the number of locks in t before l in ≤so is the
same as the number of unlocks in t before l in ≤so.

7. Program order is intra-thread consistent: for each thread t, the sequence of
action kinds and values1 of actions performed by t in the program order ≤po

is sequentially valid with respect to P and t.
8. ≤so is consistent with W : for every volatile read r of a variable v we have

W (r) ≤so r and for any volatile write w to v, either w ≤so W (r) or r ≤so w.
9. ≤hb is consistent with W : for all reads r of v it holds that r 	≤hb W (r) and

there is no intervening write w to v, i.e. if W (r) ≤hb w ≤hb r and w writes
to v then2 W (r) = w.

2.1 Legal Executions

The definition of legal execution constitutes the core of the Java Memory Model,
but it appears convoluted at first sight.

Definition 7 (Legality). A well-formed execution 〈A,P,≤po,≤so,W, V 〉 with
happens before order ≤hb is legal if there is a finite “committing” sequence of
sets of actions Ci and well-formed “justifying” executions Ei = 〈Ai, P,≤poi ,≤soi

,Wi, Vi〉 with happens-before ≤hbi , such that C0 = ∅, Ci−1 ⊆ Ci for all i > 0,
⋃

Ci = A, and for each i > 0 the following rules are satisfied:

1 The value of an action a is V (a) if a is a write, V (W (a)) if a is a read, or an arbitrary
value otherwise.

2 The Java Specification omits the part “W (r) = w”, which is clearly wrong since
happens-before is reflexive.

Formalising Java’s Data Race Free Guarantee 27

1. Ci ⊆ Ai.
2. ≤hbi |Ci = ≤hb |Ci .
3. ≤soi |Ci = ≤so |Ci .
4. Vi|Ci = V |Ci .
5. Wi|Ci−1 = W |Ci−1 .
6. For all reads r ∈ Ai − Ci−1 we have Wi(r) ≤hbi r.
7. For all reads r ∈ Ci − Ci−1 we have Wi(r) ∈ Ci−1 and W (r) ∈ Ci−1.

To get some intuition for Def. 7, we explain some examples of behaviours that
the memory model tries to rule in and out, and how they are argued about.
The structure of reasoning is to consider the desired outcome, and then explain
how it can (or cannot) arise by some (or any) execution. When considering a
possibly-legal execution, we argue that it is allowed by repeatedly extending
a committing sequence with actions which could happen in some speculated
justifying executions Ei. The aim is to commit the entire execution.

As a first example, consider the program on the first page and a desired ex-
ecution in which the result is r1 = r2 = 1. To denote actions, we use W (x, v)
for a write of value v to variable x and R(x) for a read from x. We start with
C1 being two (implicit) initialisation actions which assign the default values:
C1 = {W (x, 0),W (y, 0)}. The two reads must each see the writes of value
1, which are in opposite threads. Since writes must be committed before the
reads that see them (rule 7 of legality), we next commit the writes C2 = C1 ∪
{W (x, 1),W (y, 1)}. Finally, we can commit the reads C3 = C2 ∪ {R(x), R(y)}.
This case needs no speculation; we justify the committing sequence using only
one execution, in which reads see the default writes and all the writes write 0.

Another example of a legal execution is for the first program in Fig. 2 where
the read of x sees the write of x in the other thread and the read of y sees the
first write of y in the first thread. We again start with C1 = {W (x, 0),W (y, 0)}.
To commit the reads, we need to commit the writes with values 42 first (rules 4
and 7). As we cannot commit x:=r2with the value 42 yet (rule 6 and intra-thread
consistency), we commit C2 = C1 ∪ {W (y, 42)} and justify it by an execution
performing the write y:=42. Committing the read r2:=y (C3 = C2 ∪ {R(y)})
enables this read to see the write W (y, 42) (thanks to rule 5) in the corresponding
justifying execution, hence we can commit the write to x with the value 42: C4 =
C3 ∪ {W (x, 42)}. Finally, committing the read r1:=x completes the committing
sequence. Note that in the final execution, the instruction y:=r1 performs the
write to y of 42, whereas the instruction y:=42 was used to justify it!

In contrast, the out of thin air behaviour in the second program of Fig. 2
cannot be achieved by any legal execution. To see this, suppose the contrary
and consider a committing sequence. The writes of 42 must be committed before
the reads (rules 4 and 7), hence when justifying the first committed of the two
writes of 42 none of the reads is committed yet, thus both the reads must see the
writes that happen-before them (rule 6). But the only writes that happen-before
the reads are the default writes of the value 0. As a result, it is not possible to
justify the first write of the value 42.

28 D. Aspinall and J. Ševč́ık

initially x = y = 0
r1 := x r2 := y
if (r1 > 0) x := r2
y := r1

if (r1 == 0)
y := 42

initially x = y = 0
r1 := x r2 := y
y := r1 x := r2

(allowed) (prohibited)

Is it possible to get r1 = r2 = 42 at the end of an execution?

Fig. 2. Examples of legal and illegal executions

Definition 8 (Sequential consistency). An execution is sequentially consis-
tent if there is a total order consistent with the execution’s program order and
synchronisation order such that every read in the execution sees the most recent
write in the total order.

Definition 9 (Conflict). An execution has a conflicting pair of actions a and
b if both access the same variable and either a and b are writes, or one of them
is a read and the other one is a write.

Definition 10 (DRF). A program is data race free if in each sequentially con-
sistent execution of the program, for each conflicting pair of actions a and b in
the execution we have either a ≤hb b or b ≤hb a.

With this definition of data race freedom, the DRF guarantee is very strong. For
example, both programs below are considered data race free.

initially: x = y = 0
r1 := x r2 := y
if (r1 > 0) if (r2 > 0)
y := 1 x := 1

v is volatile
initially: x = v = 0

x := 1 if (v == 1)
v := 1 { x := 42
if (v == 2) v := 2 }
r := x

The DRF guarantee ensures that in the first program [8], the reads of x and
y will always see 0. In the second program, the DRF guarantees that the read
r:=x can only see the write x:=42. Note that if v were not volatile, the second
program would not be data race free and the read of x could see the value 1 (but
not 0). Section 4 contains further discussion on the above definitions.

2.2 Notes on Relation to Informal Definitions

In our formalisation, we define several notions slightly differently to the informal
specification in [1]. We define actions as an abstract data type (Def. 1) instead of
a tuple containing a unique action identifier, a thread identifier, an action kind
and object involved in the action. Def. 2 (execution) differs from the one of [1]
by omitting the synchronises-with and happens-before orders, which are derived

Formalising Java’s Data Race Free Guarantee 29

in terms of the program and synchronisation orders, and by giving a precise
meaning to the notion of programs. Our definition of well-formed executions
(Def. 6) requires the set of actions to be finite instead of just restricting the
synchronisation order to an omega order. We will discuss the motivation for
this change in Sect. 4. We omit action kinds irrelevant for the DRF guarantee
proof – external actions and thread management actions, such as thread start,
thread finish, thread spawn and thread join3. Compared to definition of legality
in [1], we have removed rules 8 and 9 for legality as they are not important for
the proof. Finally, we strengthen the notion of sequential consistency to respect
mutual exclusivity of locks. See Sect. 4 for further details.

3 Proof of DRF Guarantee

Definition 11 (Well-formed program). We say that a program P is well-
formed if for all threads t and action kind-value sequences s, sequential validity
of s with respect to t and P implies

– sequential validity of all prefixes u of s with respect to t and P (P is prefix-
closed), and

– sequential validity of all sequences u obtained from s by changing the value
of the last action-value pair to a different value with respect to t and P ,
provided that the last action in s is a read (P is final read agnostic).

Lemma 1. If ≤p is a partial order on A and ≤t is a total order on S ⊆ A, then
≤q= (≤p ∪ ≤t)+ is a partial order on A.

Lemma 2. For any well-formed execution of a data race free well-formed pro-
gram, if each read sees a write that happens-before it, the execution is sequentially
consistent.

Proof. Using Lemma 1, (≤so ∪ ≤po)+ is a partial order. Take a topological
sort ≤t on (≤so ∪ ≤po)+. Since ≤t is a total order on a finite set, it must be
well-founded. We prove sequential consistency by well-founded induction on ≤t.

Suppose that we have a read r and all reads x ≤t r see the most recent write.
We will show that r also sees the most recent write by contradiction.

Assume that r does not see the most recent write and let w be the most
recent write to the variable read by r. Let A′ be {x |x ≤t r}. Then the execution
E′ = 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r �→ w], V 〉 is a well-formed execution
(see Lemma 3). From the induction hypothesis, E′ is sequentially consistent (all
reads in E′ see the most recent write). From the well-formedness of E it cannot
be the case that W (r) ≤hb w ≤hb r, i.e. either W (r) and w, or w and r are a
conflicting pair of actions in both E and E′.

As a result, E′ is a well-formed sequentially consistent execution with a con-
flict. This is a contradiction with data race freedom of P .
3 However, we have formalised a version that contains all these actions.

30 D. Aspinall and J. Ševč́ık

The proof of Lemma 2 is broadly similar to the informal proof in [1]. There
is a minor difference in performing a topological sort on (≤so ∪ ≤po)+ instead
of happens-before order. This guarantees consistency with the synchronisation
order, which we use in the next lemma. A more significant difference is restricting
the execution to all actions before r in ≤t order and updating W (r) to see w,
instead of constructing a sequentially consistent completion of the execution.
The reason is that sequentially consistent completion might require to insert
initialisation actions to the beginning of the execution, hence the original proof
does not work as stated, because it assumes that the sequentially consistent
completion only adds actions to the “end” of the execution (in terms of ≤t). We
discuss related issues in Sect. 4.

Lemma 3 (Cut-and-update). Let P be a well-formed program, 〈A,P,≤po

,≤so,W, V 〉 a well-formed execution, ≤hb its happens-before order, ≤t a total
order on A, r ∈ A a read action of variable v, and w ∈ A a write action to v
such that:

– ≤t is consistent with ≤so and ≤hb,
– for every read r ∈ A we have W (r) ≤hb r,
– w is the most recent write to r in ≤ t, i.e. w ≤t r and for all writes w′ to

variable v either w′ ≤t w or r ≤t w
′,

Let A′ be {x |x ≤t r}. Then the execution 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r �→
w], V 〉 is a well-formed execution.

Proof. It is straightforward (although tedious) to establish all the conditions
from Def. 6 for well-formedness of 〈A′, P,≤po |A′×A′ ,≤so |A′×A′ ,W [r �→ w], V 〉.

The following is our formal equivalent of Theorem 3 from [1]; ensuring this
property is a key motivation behind the definitions of the JMM.

Theorem 1 (DRF guarantee). Any legal execution E of a well-formed data
race free program is sequentially consistent.

Proof. From Lemma 2 it is sufficient to show that every read in E sees a write
that happens-before it. From the legality of E we have a committing sequence
{Ci, Ei} justifying E. We will show by induction on i that all reads in Ci see
writes that happens-before them.

The base case is trivial (C0 = ∅). For the induction step, let’s assume that all
reads r ∈ Ci−1 we have W (r) ≤hb r. We will show that for any read r ∈ Ci we
get W (r) ≤hb r.

Note that Ei is sequentially consistent: Let ≤hbi be happens-before of Ei.
Using the induction hypothesis with rules 2, 5 we obtain W (r) ≤hbi r for all
reads r ∈ Ci−1. Using rule 6, for all reads r ∈ Ai − Ci−1 we have W (r) ≤hbi r.
Thus, Ei is sequentially consistent by Lemma 2.

Because the program is correctly synchronised, Ei is sequentially consistent,
and r and W (r) are accessing the same variable, r and W (r) must be ordered
by ≤hbi in Ei and thus in E (rules 2 and 7). From well-formedness of E we have
r 	≤hb W (r), so we must have W (r) ≤hb r. This proves the induction step.

Formalising Java’s Data Race Free Guarantee 31

Since each read has to appear in some Ci we have proved that all reads in E
see writes that happen-before them, thus E is sequentially consistent.

Note that we use rule 2 for legality (≤hbi |Ci =≤hb |Ci) only to compare W (r)
and r. Rules 1, 3, 4 and the first part of rule 7 for legality (i.e. ∀r ∈ Ci −
Ci−1. r is read⇒Wi(r) ∈ Ci−1) are not used in the proof at all. Also note that
rule 1 is implied by rule 2.

4 Results of the Formalisation

Our formalisation has resulted in a clarification of the JMM definitions in several
areas. We have also deviated from the JMM in a few places for simplification.

The most significant changes are restricting the executions to be finite and
omitting default initialisation actions because of inconsistencies in the JMM
definitions. Fixing these inconsistencies introduces strange artifacts in infinite
executions, which is why we confine the executions to be finite. As a side product,
this also simplifies proofs without sacrificing anything important, we believe.

We have refined the memory model in several ways. We have clarified the
notion of intra-thread consistency and identified the precise interface with the
sequential part of Java. Moreover, we strengthen the DRF guarantee by con-
sidering a stronger definition of sequential consistency that requires existence
of a total order consistent with program order and synchronisation order, mak-
ing it respect mutual exclusion. In the proof itself, we fix small inconsisten-
cies and eliminate proof by contradiction in favour of induction where possi-
ble, and we state and prove the technically challenging Cut-and-update lemma
(Lemma 3).

Finally, we identify the requirements on legality that are necessary to prove
the DRF guarantee. This allows us to formulate a weaker notion of legality that
fixes the recently discovered bugs in the memory model.

In the following paragraphs we discuss each of the contributions in detail.

Fixing the bugs by weakening legality. The formal proof of Theorem 1(DRF
guarantee) revealed that Def. 7 (legality) is unnecessarily strong. We propose
(and have checked) a weaker legality requirement by omitting the rule 3 (≤soi

|Ci =≤so |Ci) and replacing rules 2 and 7 in Def 7 by the following weaker ones4:

2. For all reads r ∈ Ci we have W (r) ≤hb r ⇐⇒ W (r) ≤hbi r, and r 	≤hbi

W (r),
7. For all reads r ∈ Ci − Ci−1 we have W (r) ∈ Ci−1.

This fixes the counterexample to Theorem 1 of [1] discovered by Cenciarelli et
al [3]. We conjecture that this fix would also enable a correct proof to be given.

While manually testing the weaker notion of legality on the documented
causality tests [7], we found a previously unreported problem of the existing
JMM—it violates the causality tests 17–20. Our weaker legality (revised rule 7)

4 NB: we must keep rule 4, which is needed to prohibit the out of thin air behaviours.

32 D. Aspinall and J. Ševč́ık

validates these examples while properly validating the other test cases. For ex-
ample, causality test case 20 says that the program below should allow the result
r1 = r2 = r3 = 42, because optimisations may produce this (see [7] for details):

initially x = y = 0
T1 T2 T3
join T3 r2 := y r3 := x
r1 := x y := r2 if (r3 == 0)
y := r1 x : = 42

However, it appears that this is not legal, because when committing the write
r1:=x, the write of 42 to y must be already committed, hence the read of x must
see a write to x with value 42. By rules 6 and 7 of legality, this write to x must
be committed and it must happen-before the read. However, there is no such
write. With the weaker legality we are not constrained by rule 7.

Inconsistency for initialisation actions. The Java Memory Model requires that

The write of the default value (zero, false, or null) to each variable
synchronises-with to the first action in every thread [8]

and defines synchronises-with as an order over synchronisation actions. This
is inconsistent with the definition of synchronisation actions; ordinary writes
are not synchronisation actions. Moreover, the JMM does not specify the thread
associated with the initialisation actions and how they are validated with respect
to intra-thread consistency.

There are several solutions to this. The SC- memory model [10] suggests hav-
ing a special initialisation thread and letting its termination synchronise-with
first actions of other threads. In our approach, we have tried to stay close to the
JMM and instead we defined a new kind of synchronisation action—an initialisa-
tion action. These actions belong to a special initialisation thread that contains
only the initialisation actions for all variables accessed in the program. The
initialisation actions behave like ordinary write actions except they synchronise-
with the thread start action of each thread. Note that in both the SC- and our
formalisation, there is no significant difference between treating initialisation ac-
tions differently from normal write actions. We have checked a second version of
our formalisation which adds initialisation actions to Def. 1.

Infinite executions. The JMM does not require finiteness of well-formed execu-
tions. Instead, the synchronisation order must be an omega order. Although it
is not stated explicitly in the JMM specification, the discussion of fairness in
[8] implies a progress property that requires threads in finite executions to be
either terminated or deadlocked. Combination of the progress with the initial-
isation actions introduces an unpleasant artifact. One would expect that this
program:

while(true) { new Object() { public volatile int f; }.f++; }

has just one infinite execution. However, an infinite number of variables f must
be initialised. These initialisations must be ordered before the start of the thread

Formalising Java’s Data Race Free Guarantee 33

performing the loop, which violates omega-ordering of the synchronisation order.
As a result, this program does not have any well-formed execution in the current
JMM. A similar issue also breaks the proof of Lemma 2 in [1], as noted in the
paragraph following the proof given there. In our approach we do not require
the finite executions to be finished5. This allows us to use the Cut-and-update
lemma instead of the sequentially consistent completion used in [1].

Sequential consistency. Sequential consistency in the JMM requires existence of
a total order consistent with program order such that each read sees the most
recent write in that total order. This definition allows the program

initially x = y = z = 0
r1 := y lock m lock m
x := r1 r2 := x y := 1

z := 1 r3 := z
unlock m unlock m

to have a sequentially consistent execution resulting in r1 = r2 = r3 = 1 ,
using the total order lock m, lock m, y:=1, r1:=y, x:=r1, r2:=x, z:=1, r3:=z,
unlock m, unlock m. Taking the most recent writes as values of reads, this order
surprisingly results in r1 = r2 = r3 = 1. One can check that this cannot happen
in any interleaved execution respecting mutual exclusivity of locks.

To make sequential consistency compatible with the intuitive meaning of inter-
leaved semantics, we have formalised sequential consistency by requiring existence
of a total order consistent with both the program order and synchronisation order
and proved the DRF guarantee for this case. Since our definition of sequential
consistency is stricter, the definition of data race free program becomes weaker
(equivalent; it turns out) and consequently the DRF guarantee in the original set-
ting directly follows from our DRF guarantee for stronger sequential consistency.

Requirements on thread management actions. For thread management, the JMM
introduces further actions for thread start, termination, spawn and join. In
well-formed executions, the JMM requires certain actions to be ordered by the
synchronises-with order, e.g., thread spawn must synchronise-with the corre-
sponding thread start, thread finish synchronises-with thread join. However, it
is also necessary to prohibit executions from other undesirable behaviours, such
as running threads that have not been spawned.

To address this in our formalisation, we introduce a constant for application’s
main thread and we specify that (1) for any thread except the main thread there
is a unique thread spawn action, (2) there is no thread spawn action for the main
thread, (3) each thread has a unique thread start action that is ordered before all
actions of that thread in the program order, (4) for each thread there is at most
one thread terminate action, and there is no action ordered after the terminate
action in the program order.

5 We believe that this does not affect observational equivalence, since observable be-
haviours are finite by the definition of [1]. But we have not checked this formally.

34 D. Aspinall and J. Ševč́ık

5 Conclusion

We have formally verified the guarantee of sequential consistency for data race
free programs in the Java Memory Model. We believe that this is one of the first
theorem prover formalisations of the JMM and its properties; it has shown that
the current JMM is still flawed, although perhaps not fatally so. The topic was
an ideal target for formalisation: we started from a highly complex informal def-
inition that is difficult to understand and for which it is hard to be certain about
the claims made. Indeed, while we were working on the DRF proof (Theorem 3
of [1]), Cenciarelli et al [3] meanwhile showed a counterexample to Theorem 1
of [1] that promised legality of reordering of independent statements. We dis-
covered another bug while justifying causality test cases [7]. The second part of
the contract, the out of thin air promise, was not proved or stated in [1], and is
demonstrated only on small prohibited examples so far.

In keeping with the TPHOLs recommendation for good cross-community ac-
cessibility of papers, we have avoided theorem prover-specific syntax throughout.
The formalisation occupies about 4000 lines in Isabelle/Isar [11], and takes un-
der a minute to check. Our definitions build on the standard notion of relations
in Isabelle/HOL as a two-place predicate together with a set representing the
domain; nevertheless we had to establish some further properties required for
the proof. To explore all definitions, we had to produce multiple versions of the
scripts; current theorem prover technology still makes this harder than it ought
to be. For those who are interested in the Isabelle specifics, we have made our
formalisation available on the web.6

Related Work. In the computer architecture world, there is a long history of
work on weak memory models. These models usually specify allowed memory
operation reorderings, which either preserve sequential consistency for data race
free programs, i.e. they provide the DRF guarantee [12], or provide mechanisms
for enforcing ordering (memory barriers). For a detailed survey, see [4,13].

Until recently, the programming languages community has mostly ignored the
issues of memory models and relied on specifications of the underlying hardware
(this is the case for, e.g., C, C++, and OCaml). But programmers write programs
that execute incorrectly under memory models weaker then sequential consis-
tency. For example, Peterson’s mutual exclusion algorithm and double-checked
locking are known to be incorrect for current hardware architectures [14,15]. This
has encouraged recent progress on adapting the work on hardware memory mod-
els to define and explain the memory models of programming languages [16,17].
However, these techniques either violate the out of thin air property, or do not
allow advanced optimisation techniques that remove dependencies. This was the
reason for Java to adopt the memory model based on speculations [1,18], which
has spawned semantic investigation like [3] as well as our own study.

Likewise, little work has yet been done to formalise behaviours of hardware or
software memory models in formal verification community. As far as we know all

6 Please see: http://groups.inf.ed.ac.uk/request/jmmtheory/

http://groups.inf.ed.ac.uk/request/jmmtheory/

Formalising Java’s Data Race Free Guarantee 35

program logics and theorem prover based methodologies [19,20,21] for concurrent
shared memory assume interleaved semantics, which implies sequential consis-
tency. The DRF guarantee, formalised in this paper, ensures that these methods
are correct for data race free programs. The data race freedom can be established
inside the program logics themselves, or using dedicated type systems [22,23]. A
complete framework for thread-modular verification of Java programs, including
the data race freedom and atomicity verification, is currently being developed
in the Mobius project [24].

More work has been done to verify properties of small programs or data struc-
tures using state exploration techniques. Huynh and Roychoudhury [14] check
properties of C# programs by examining all reachable states of a program, while
accounting for reorderings allowed by the CLI specification [25]. Burckhardt et
al [26,27] use a SAT solver to perform bounded tests on concurrent data struc-
tures in relaxed memory models. To explore proposals for replacing the early
JMM [16,28], Yang et al [29] built a flexible framework for modelling executions
in memory models with complex reordering and visibility constraints. To our
knowledge, the only formal verification tool for the current JMM is the data
race analysis by Yang et al [30]. However, data race freedom is a relatively easy
property to show—only sequentially consistent executions need to be examined.
The declarative nature of the JMM and its speculative justifications make it very
hard to explore all executions of the given program; the obligation to find an
execution for each committed action quickly blows up the state space. Our the-
orem proving approach differs from state exploration in the typical way: we aim
to verify general properties of the memory model rather than justify behaviour
of individual programs automatically.

Future Work. The next direction for our analysis is to formalise the description
and verification of the techniques used to justify optimisations in the allowed
causality tests for the JMM [7]. We hope to begin this by formally checking
Theorem 1 of [1] with our fix to legality.

The out of thin air guarantee is the main motivation for the JMM. Without
this requirement, we could define the memory model easily by allowing all code
transformations and executions that appear sequentially consistent for DRF pro-
grams [12] and leave the behaviour for programs that are not correctly synchro-
nised unspecified. The notion of “out of thin air” is mostly example driven—we
only have specific behaviours of concrete programs that should be prohibited
and a general intuition that in two groups of threads, each group using disjoint
sets of variables, there should not be any information leak from one group to
the other, e.g., a reference allocated by a thread in the first group should not be
visible to any read performed by a thread in the other group. We plan to state
and prove these properties formally.

Although it is not described here, we have instantiated our framework with
a simple sequential language that is sufficient to express simple examples, such
as the ones in Fig. 2 or in [7]. However, the backwards style of reasoning in
the JMM makes it difficult to show illegality of individual executions and we
need to find better ways. Moreover, adding allocation to the language makes

36 D. Aspinall and J. Ševč́ık

it impossible to verify validity of a thread trace separately, because we need to
ensure freshness globally. To address this, our idea is to index locations by their
allocating thread, but we have not explored the impact of this yet.

Finally, we hope that with a simplified and clear memory model, we will have
a firmer basis for studying logics for concurrent programs which respect weaker
memory models, which is our overall objective.

Acknowledgements. The second author is supported by a PhD studentship
awarded by the UK EPSRC, grant EP/C537068. Both authors also acknowl-
edge the support of the EU project Mobius (IST-15905).

References

1. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL ’05. Pro-
ceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages, pp. 378–391. ACM Press, New York (2005)

2. Gosling, J., Joy, B., Steele, G., Bracha, G.: Memory Model. In: Java(TM) Lan-
guage Specification, 3rd edn. Java Series, pp. 557–573. Addison-Wesley Profes-
sional, Reading (2005)

3. Cenciarelli, P., Knapp, A., Sibilio, E.: The Java memory model: Operationally,
denotationally, axiomatically. In: 16th ESOP (2007)

4. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
Computer 29(12), 66–76 (1996)

5. Pugh, W.: The Java memory model is fatally flawed. Concurrency - Practice and
Experience 12(6), 445–455 (2000)

6. Peierls, T., Goetz, B., Bloch, J., Bowbeer, J., Lea, D., Holmes, D.: Java Concur-
rency in Practice. Addison-Wesley Professional, Reading (2005)

7. Pugh, W., Manson, J.: Java memory model causality test cases (2004),
http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html

8. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. Special POPL Issue
(submitted)

9. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

10. Adve, S.: The SC- memory model for Java (2004),
http://www.cs.uiuc.edu/~sadve/jmm

11. Wenzel, M.: The Isabelle/Isar reference manual (2005),
http://isabelle.in.tum.de/doc/isar-ref.pdf

12. Adve, S.V., Aggarwal, J.K.: A unified formalization of four shared-memory models.
IEEE Trans. Parallel Distrib. Syst. 4(6), 613–624 (1993)

13. Kawash, J.: Limitations and Capabilities of Weak Memory Consistency Systems.
PhD thesis, The University of Calgary (2000)

14. Roychoudhury, A.: Formal reasoning about hardware and software memory models.
In: George, C.W., Miao, H. (eds.) ICFEM 2002. LNCS, vol. 2495, pp. 423–434.
Springer, Heidelberg (2002)

15. Bacon, D., et al.: The “double-checked locking is broken” declaration (2001),
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

16. Maessen, J.W., Shen, X.: Improving the Java memory model using CRF. In: OOP-
SLA, pp. 1–12. ACM Press, New York (2000)

http://www.cs.umd.edu/~pugh/java/memoryModel/CausalityTestCases.html
http://www.cs.uiuc.edu/~sadve/jmm
http://isabelle.in.tum.de/doc/isar-ref.pdf
http://www.cs.umd.edu/~pugh/java/memoryModel/DoubleCheckedLocking.html

Formalising Java’s Data Race Free Guarantee 37

17. Saraswat, V., Jagadeesan, R., Michael, M., von Praun, C.: A theory of memory
models. In: ACM 2007 SIGPLAN Conference on Principles and Practice of Parallel
Computing, ACM, New York (2007)

18. Manson, J.: The Java memory model. PhD thesis, University of Maryland, College
Park (2004)

19. Ábrahám, E., de Boer, F.S., de Roever, W.P., Steffen, M.: An assertion-based proof
system for multithreaded Java. TCS 331(2-3), 251–290 (2005)

20. Flanagan, C., Freund, S.N., Qadeer, S., Seshia, S.A.: Modular verification of mul-
tithreaded programs. Theor. Comput. Sci. 338(1-3), 153–183 (2005)

21. Moore, J.S., Porter, G.: The apprentice challenge. ACM Trans. Program. Lang.
Syst. 24(3), 193–216 (2002)

22. Flanagan, C., Freund, S.N.: Type-based race detection for Java. In: PLDI, pp.
219–232. ACM Press, New York (2000)

23. Boyapati, C., Rinard, M.: A parameterized type system for race-free Java programs.
In: OOPSLA, pp. 56–69. ACM Press, New York (2001)

24. Huisman, M., Grigore, R., Haack, C., Hurlin, C., Kiniry, J., Petri, G., Poll, E.:
Report on thread-modular verification. Mobius project deliverable D3.3 (2007),
available from http://mobius.inria.fr

25. Microsoft: Standard ECMA-335 Common Language Infrastructure (CLI) (2005)
26. Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of concurrent

data types on relaxed memory models: A case study. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

27. Burckhardt, S., Alur, R., Martin, M.M.K.: CheckFence: Checking consistency of
concurrent data types on relaxed memory models. In: PLDI, San Diego, California,
USA, ACM Press, New York (2007)

28. Manson, J., Pugh, W.: Semantics of multithreaded Java. Technical Report CS-TR-
4215, Dept. of Computer Science, University of Maryland, College Park (2001)

29. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: UMM: an operational memory model
specification framework with integrated model checking capability: Research arti-
cles. Concurr. Comput.: Pract. Exper. 17(5-6), 465–487 (2005)

30. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race
analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 30–45. Springer, Heidelberg (2004)

http://mobius.inria.fr

Finding Lexicographic Orders for Termination

Proofs in Isabelle/HOL

Lukas Bulwahn, Alexander Krauss, and Tobias Nipkow

Technische Universität München, Institut für Informatik
http://www.in.tum.de/~{bulwahn,krauss,nipkow}

Abstract. We present a simple method to formally prove termination
of recursive functions by searching for lexicographic combinations of size
measures. Despite its simplicity, the method turns out to be powerful
enough to solve a large majority of termination problems encountered in
daily theorem proving practice.

1 Introduction

To justify recursive function definitions in a logic of total functions, a termina-
tion proof is usually required. Termination proofs are mainly a technical necessity
imposed by the system, rather than in the primary interest of the user. It is there-
fore much desirable to automate them wherever possible, so that they “get in
the way” less frequently. Such automation increases the overall user-friendliness
of the system, especially for novice users.

Despite the general hardness of the termination problem, a large class of
recursive functions occurring in practice can already be proved terminating using
a lexicographic combination of size measures. One can see this class of functions
as a generalization of the primitive recursive functions.

In this paper, we describe a simple method to generate termination orderings
for this class of functions and construct a termination proof from these orderings.
Unlike the naive enumeration of all possible lexicographic combinations, which
is currently implemented in some systems, we use an algorithm by Abel and
Altenkirch [3] to find the right order in polynomial time.

We subsequently show how, by a simple extension, our analysis can deal with
mutual recursion, including cases where a descent is not present in every step.
When analyzing the complexity of the underlying problem, it turns out that while
there is a polynomial algorithm for the case of single functions, the presence of
mutual recursion makes the problem NP-complete.

We implemented our analysis is Isabelle/HOL, where it can prove termination
of 87% of the function definitions present in the Isabelle Distribution and the
Archive of Formal Proofs [1].

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 38–53, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 39

1.1 Overview of the Analysis

The analysis consists of four basic steps:

1. Assemble a set of size measures to be used for the analysis, based on the
type of the function argument.

2. For each recursive call and for each measure, try to prove local descent,
i.e. that the measure gets smaller at the call. Collect the results of the proof
attempts in a matrix.

3. Operating only on the matrix from step 2, search for a combination of mea-
sures, which form a global termination ordering. This combination, if it ex-
ists, can be found in polynomial time.

4. Construct the global termination ordering and, using the proofs of local
descent, show that all recursive calls decrease wrt. the global ordering.

1.2 Related Work

The field of automated termination analysis is vast, and continuously attracts
researchers. Many analyses (e.g. [4,13,22]) have been proposed in the literature,
and some of them are very powerful. However, these methods are often hard to
integrate, as they apply to different formal frameworks (such as term rewriting),
and their proofs cannot be easily checked independently.

Consequently, the state of the art in the implementations of interactive theo-
rem provers is much less developed:

In PVS [16] and Isabelle [15], and Coq [5], no automation exists, and users
must supply termination orderings manually.

HOL4 [7]1 and HOL Light [8] provide some automation by enumerating all
possible lexicographic orderings. For functions with more than five or six argu-
ments, this quickly becomes infeasible.

ACL2 [10] uses heuristics to pick a size measure of a single parameter. Lexi-
cographic combinations must be given manually, and are expressed in terms of
ordinal arithmetic.

Recently, a more powerful termination criterion has been proposed for ACL2
[14], based on a combination of the size-change principle [13] and other analyses.
However, the analysis is nontrivial and only available as an axiomatic extension
that must be trusted, as its soundness cannot be justified within ACL2’s first-
order logic.

Inspired by this approach, the second author of the present paper developed
a formalization of the size-change principle in Isabelle [12], which can be used
to show termination for a larger class of functions. While that approach is more
powerful than the one presented here, it is also more complicated and computa-
tionally expensive.

Only HOL4 tries to guess termination orderings for mutually recursive defi-
nitions. But the algorithm is a little ad-hoc and fails on many simple examples.
1 The guessing of termination orderings in HOL4 is unpublished work by Slind, ex-

tending his work on function definitions [20,21].

40 L. Bulwahn, A. Krauss, and T. Nipkow

The algorithm we use in §3.3 to synthesize lexicographic orderings has been
discovered independently but earlier by Abel and Altenkirch [2,3]. Compared to
their work, we do not just check termination but construct object-level proofs
in a formal framework.

2 Preliminaries

We work in the framework of classical higher-order logic (HOL). Many examples
are expressed in the Isabelle’s meta-logic, with universal quantification (

∧

) and
implication (=⇒). However, the method is not specific to HOL and could easily
be adapted to other frameworks, such as type theory.

2.1 Termination Proof Obligations

General recursion is provided by a function definition package [11], which trans-
forms a definition into a non-recursive form definable by other means. Then
the original recursive specification is derived from the primitive definition in an
automated process.

A termination proof is needed in order to derive the unconstrained recur-
sive equations and an induction rule. Proving termination essentially requires
to show that the call relation (constructed automatically from the definition) is
wellfounded. A common way of doing this is to embed the call relation in another
relation already known to be wellfounded.

As an example, consider the following function implementing the merge op-
eration in mergesort:

merge xs [] = xs
merge [] ys = ys
merge (x ·xs) (y·ys) = if x ≤ y then x ·merge xs (y·ys) else y·merge (x ·xs) ys

Here · denotes the Cons constructor for lists and [] is the empty list. In order to
show termination of merge, we must prove the following subgoals:

1 . wf ?R
2 .
∧

x xs y ys. x ≤ y =⇒ ((xs, y ·ys), (x ·xs, y ·ys)) ∈ ?R
3 .
∧

x xs y ys. ¬ x ≤ y =⇒ ((x ·xs, ys), (x ·xs, y ·ys)) ∈ ?R

Here, ?R is a schematic variable which may be instantiated during the proof.
Hence, we must come up with a wellfounded relation, for which the remaining
subgoals can be proved. The two curried arguments of merge have been combined
to a pair, hence we can assume that there is only one argument.

In general, if the function has n recursive calls, we get the subgoals

0 . wf ?R
1 .
∧

v1. . . vm1 . Γ 1 =⇒ (r1, lhs1) ∈ ?R
...
n.
∧

v1. . . vmn . Γ n =⇒ (rn, lhsn) ∈ ?R

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 41

Here, r i is the argument of the call, lhsi is the argument on the left hand
side of the equation, and Γ i is the condition under which the call occurs.
These terms contain the pattern variables v1...vmi , which are bound in the
goal.

In practice, proving the termination conditions is often straightforward, once
the right relation has been found. Our approach focuses on relations of a certain
form, suitable for a large class of function definitions.

2.2 A Combinator for Building Relations

Isabelle already contains various combinators for building wellfounded relations.
We are going to add one more to this, which particularly suits our needs.

The measures combinator constructs a wellfounded relation from a list of
measure functions, which map function arguments into the natural numbers.
This is a straightforward generalization of the well-known measure combinator
which takes only a single function:

measures :: (α ⇒ nat) list ⇒ (α × α) set

measures fs = inv-image (lex less-than) (λa. map (λf . f a) fs)

While the definition with predefined combinators is a little cryptic, measures
can be characterized by the following rules:

f x < f y
(x , y) ∈ measures (f ·fs)

(Measures Less)

f x ≤ f y (x , y) ∈ measures fs
(x , y) ∈ measures (f ·fs)

(Measures Leq)

And, by construction, the resulting relation is always wellfounded:

wf (measures fs) (Measures WF)

Our analysis will produce relations of the form measures fs for a suitable function
list fs.

3 Finding Lexicographic Orderings

The overall algorithm consists of the four steps mentioned before, addressing
largely orthogonal issues: Generating measure functions (by a heuristic) , proving
local descents (by theorem proving), finding a lexicographic combination (by
combinatorics), and reconstructing the global proof (by engineering).

We will use the previously defined merge function as a running example.

42 L. Bulwahn, A. Krauss, and T. Nipkow

3.1 Step 1: Generating Measure Functions

From the type τ of the function argument, we generate a set M(τ) of measure
functions by a simple scheme:

M(T) = {λx. |x|T } if T is an inductive data type
M(τ1 × τ2) = {m ◦ fst | m ∈M(τ1)} ∪ {m ◦ snd | m ∈M(τ2)}
M(τ) = {} if τ is a type variable or a function type.

For inductive data types, we return the size function | . |T associated to that
type. Size functions are provided automatically by the definition package for
inductive data types [6]. Product types are special and treated differently, as we
are mainly interested in the measures of the different components. For products,
the measures for the component types are computed recursively and composed
with the corresponding projections.

This scheme basically decomposes (possibly nested) tuples and creates pro-
jection functions measuring the sizes of the components. Components with a
polymorphic or a function type are ignored.

For merge, which operates on a pair of lists, we get the two measure functions:

m1 = (λx . |fst x |) m2 = (λx . |snd x |)

In order to handle types which are not inductive data types, the system can be
extended by manually configuring one or more measure functions for them. For
example, a useful measure for the integers is the function returning the absolute
value.

The emphasis on size measures in this step is mainly motivated by the empir-
ical observation that they tend to be very useful for termination proofs. In fact,
the other steps do not depend on the exact nature of the measures and would
work for other measures just as well.

3.2 Step 2: Proving Local Descents

A local descent is given if a given measure provably decreases at a given recursive
call. For the i-th call and measure mj , this corresponds to the following property:
∧

v1. . . vm. Γ i =⇒ mj r i < mj lhsi

For each call and each measure, we try to prove this conjecture by a suitable
automated method. If this fails, we try to prove the non-strict version instead:
∧

v1. . . vm. Γ i =⇒ mj r i ≤ mj lhsi

For the proof attempts, we use Isabelle’s auto method, which combines rewrit-
ing with classical reasoning and some arithmetic. We collect the results of the
proof attempts in a matrix M with Mij ∈ {<,≤, ?}, where < and ≤ stand for
a successful proof of strict or non-strict descent, and ? denotes a failure of both
proofs. The theorems resulting from successful proofs are stored for later use.

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 43

For the merge example, the resulting matrix is

Mmerge =
(

< ≤
≤ <

)

.

Using the auto method to solve these goals is a somewhat arbitrary decision,
but it turned out that our proof obligations are routinely solved by this method,
usually by unfolding the size function on constructors and using arithmetic.
Again, it does not matter for the rest of the development, how these goals are
proved, and other methods could be plugged in here, if needed.

If the recursive arguments contain calls to “destructor functions” (like tail or
delete), lemmas about these functions are usually needed in order to prove local
descent. Our method makes use of such lemmas when they are available in the
theory, but discovering and proving them automatically is an orthogonal issue
which we do not address. A method to do this is described by Walther [22].

3.3 Step 3: Finding Lexicographic Combinations

Recall that the rows in the matrix represent the different recursive calls and the
columns represent the measures. Our problem of finding a suitable lexicographic
order can now be rephrased as follows:

Reorder the columns in the matrix in such a way that each row starts
with a (possibly empty) sequence of ≤-entries, followed by a <-entry.

Such a permutation of the columns, denoted by a list of column indices, is called
a solution. Usually only a prefix of this list is relevant. Formally, a solution for
a matrix M is a list of indices [c1, . . . , cm], where for all row indices i, there is
a k, such that Mick

= < and for all j < k, Micj = ≤.
The following algorithm can be used to find solutions:

1. Find a column with at least one < entry and no ? entry and select it as the
new front column. The search fails if no such column exists.

2. Remove all rows where the selected column contains a <-entry, as they can
be considered “solved”. Then also remove the column itself and continue the
search on the resulting matrix.

3. The search is successful when the matrix is empty.

Lemma 1. If the algorithm succeeds, the selected columns are a solution for M .

Proof. By straightforward induction.

Note that the algorithm has a choice if more than one column could be selected
in step 1. However, this does not influence the overall success, since a “wrong”
choice cannot lead to a dead-end. This confluence property is illustrated by the
following lemma, whose proof is obvious:

Lemma 2. Let σ = [c1, . . . , cm] be a solution, and c a column which could also
be chosen in step i of the algorithm. Then σ′ = [c1, . . . , ci−1, c, ci, . . . , cm] is also
a solution.

44 L. Bulwahn, A. Krauss, and T. Nipkow

This confluence property eliminates the need for backtracking on failure, which
is the key to making the algorithm polynomial:

Lemma 3. For an n×m-Matrix, the algorithm uses O(n2m) comparisons.

Although choosing an arbitrary column never makes the algorithm go wrong, it
may lead to suboptimal solutions. Consider the following 10 × 5-matrix, where
the ≤-entries were left out for readability:

M =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

< ?
< <
< <
< <
< <

< <
< <
< <

< <
< <

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

Naively proceeding from left to right will produce the solution [1, 2, 3, 4], al-
though the shorter solution [3, 4] exists. In systems where proof objects are stored
explicitly, their size can influence efficiency, and it might be worthwhile to invest
some effort here, to keep proofs small.

As a heuristic, it might seem advantageous to always choose the column with
the most <-entries, since this would eliminate the corresponding rows once and
for all. But this greedy strategy would produce the solution [2, 1, 5, 3, 4] on the
above matrix, which is even bigger than with the naive strategy.

In fact, finding the shortest solution is much harder than finding just one
solution:

Lemma 4. Given a Matrix M , the optimization problem of finding a minimal
solution for M is NP-hard.

Proof. The optimization version of the NP-hard Set Cover problem [18] can
easily be expressed in a matrix: For a universe U = {x1, . . . , xn} and a collection
S1, . . . , Sm of subsets of U , construct the n × m-matrix M with Mij = < if
xi ∈ Sj and ≤ otherwise. Obviously, every solution for M solves the Set Cover

problem and vice-versa.

Since searching for the smallest solution can be hard, we are happy with choosing
just the first suitable column in our implementation.

For our example Mmerge, both [1, 2] and [2, 1] are solutions.

3.4 Step 4: Proof Reconstruction

It remains to assemble the pieces and construct a global relation and a global
proof from the solution of the previous step.

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 45

From a solution σ = [c1, . . . , cn] we construct the relation

R = measures [mc1 , . . . , mcn] .

It is now straightforward to prove the termination goals with the help of the
matrix M and the solution σ:

1. Instantiate the schematic variable ?R by the relation R.
2. Wellfoundedness is trivial by the rule Measures WF.
3. For each call, inspect the matrix in Micj for increasing j. If Micj = ≤,

apply rule Measures Leq and use the stored theorem from §3.2 to solve its
first premise. When Micj = <, apply rule Measures Less, and the stored
theorem, which solves the goal.

By construction, the theorems resulting from the proofs in §3.2 exactly match
the premises of Measures Leq and Measures Less, respectively.

As an example, consider the merge function again. We get the relation

R = measures [λx . |fst x |, λx . |snd x |]

After instantiating the schematic variable and solving the wellfoundedness,
two subgoals remain:

1 .
∧

x xs y ys.
x ≤ y =⇒ ((xs, y ·ys), (x ·xs, y ·ys)) ∈ measures [λx . |fst x |, λx . |snd x |]

2 .
∧

x xs y ys.
¬ x ≤ y =⇒ ((x ·xs, ys), (x ·xs, y ·ys)) ∈ measures [λx . |fst x |, λx . |snd x |]

Since M11 = <, we can directly apply Measures Less to the first subgoal:

1 .
∧

x xs y ys. x ≤ y =⇒ |fst (xs, y ·ys)| < |fst (x ·xs, y ·ys)|
2 .
∧

x xs y ys.
¬ x ≤ y =⇒ ((x ·xs, ys), (x ·xs, y ·ys)) ∈ measures [λx . |fst x |, λx . |snd x |]

Now the first subgoal is exactly what we have proved in §3.2, so we can solve it
using the stored theorem.

For the remaining subgoal, we must first apply Measures Leq, since M21 = ≤:

1 .
∧

x xs y ys. ¬ x ≤ y =⇒ |fst (x ·xs, ys)| ≤ |fst (x ·xs, y ·ys)|
2 .
∧

x xs y ys. ¬ x ≤ y =⇒ ((x ·xs, ys), (x ·xs, y ·ys)) ∈ measures [λx . |snd x |]

Again, we solve the first subgoal using the pre-proved theorem. In one additional
step, we can solve the remaining goal using Measures Less, which finishes the
termination proof.

4 Mutual Recursion

For mutually recursive functions, termination generally has to be proved simul-
taneously. To allow for a uniform treatment, Isabelle internally converts such

46 L. Bulwahn, A. Krauss, and T. Nipkow

definitions into a definition of a single function operating on the sum type, which
is a standard transformation technique (see e.g. [21]).

Consider the functions even and odd, defined by mutual recursion:

even 0 = True
even (Suc n) = odd n
odd 0 = False
odd (Suc n) = even n

For the termination proof, the function is seen as a single function over the
sum type nat + nat. This leads to to the following proof obligations2:

1 . wf ?R
2 .
∧

n. (Inr n, Inl (Suc n)) ∈ ?R
3 .
∧

n. (Inl n, Inr (Suc n)) ∈ ?R

It is not hard to generalize our approach to prove termination for mutual re-
cursions. Unfortunately, we will see that this necessarily destroys the polynomial
time complexity.

4.1 Measures for Sum Types

In order to use our analysis on these problems, we must be able to generate
measure functions on sum types. Thus we extend the measure generation step
(§3.1) as follows:

M(τ1 + τ2) = {case+ m1 m2 | m1 ∈ M(τ1), m2 ∈M(τ2)}

This means that sum measures are built by taking all combinations of the
measures for the component types and combining them with the case combinator
for sum types:

case+ :: (α ⇒ γ) ⇒ (β ⇒ γ) ⇒ (α + β ⇒ γ)

Intuitively, each of the mutually recursive functions gets its own measure,
which is applied to its arguments.

Since even and odd both get only one measure function, case+ (λx . |x |) (λx .
|x |) is the only combination, and with this measure the proof is indeed successful.
The other parts of the analysis require no change.

4.2 Ordering the Functions

With the measures on sum types, many mutually recursive definitions can be
handled without problems. But the approach fails for definition like the
following:

2 We denote the injection functions for sum types with Inl and Inr. If more than two
functions are defined simultaneously, nested sums will occur.

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 47

f 0 = 0
f (Suc n) = g n
g n = Suc (f n)

In the call from g to f, there is no descent, since the only argument is just
passed along. The reason why this definition terminates is not that the argument
decreases, but that in this call, the function decreases, with respect to a suitable
ordering of the functions (here: f < g).

With our sum encoding, it is simple to capture this argument by suitable
measure functions: It suffices to add measure functions which distinguish between
the functions, but are otherwise constant. For f and g, we add the measure case+

(λx . 0) (λx . 1). This results in the matrix

M =
(

< ?
≤ <

)

In general, it is sufficient to add measures which evaluate to 1 for one of the
functions and to 0 for all others.Mfn(τ) describes these measures formally, again
depending only on the argument type τ :

Mfn(τ1 + τ2) = {case+ m1 (λx.0) | m1 ∈Mfn(τ1)}∪
{case+ (λx.0) m2 | m2 ∈Mfn(τ2)}

Mfn(τ) = {(λx.1)} if τ is not a sum type

It is easy to see that with these additional measures (and their lexicographic
combinations, which are formed by the subsequent steps), any partial ordering
between the functions can be captured.

4.3 Complexity of Mutual Recursion

Taking all combinations of measures for sum types as in §4.1 is a brute-force
strategy and it destroys the polynomial runtime behaviour of the algorithm, since
the number of sum measures is obviously exponential in the number of functions
involved. The question arises, whether we can be a little more intelligent here.

Note in particular that we have introduced some redundancy in the proofs
that are performed in step 2: In a call from f to g, it is completely irrelevant
what measure we assign to h, and sum measures differing only in the components
for functions other than f and g will lead to identical proofs.

It is a better strategy to look at the different calls separately: Consider a call
c from f to g (written c : f → g), which corresponds to a goal of the form
∧

v1. . . vm. Γ i =⇒ (Ing r i, Inf lhsi) ∈ ?R

Here we write Inf and Ing to abbreviate the compositions of injections cor-
responding to the functions f and g, respectively.

We can now generate separate sets Mf and Mg of measure functions for
f and g separately and try for which choice of mf ∈ Mf and mg ∈ Mg the
following becomes provable:

48 L. Bulwahn, A. Krauss, and T. Nipkow

∧

v1. . . vm. Γ i =⇒ mg r i < mf lhsi

As before, we try the ≤ version if the proof fails and collect the results in a
matrix. This time we get one matrix M c for each recursive call c, and the rows
and columns of the matrix stand for the Elements of Mf and Mg. Note that
this information is still polynomial in size.

We must now construct measures on the sum type which are useful to prove
termination. At least one of these sum measures must be such that it increases
in none of the calls. Such a measure would be used first in the construction of
the lexicographic combination.

Abstracting from functions and measures and the like, we have the following
problem, which we call the Combination problem:

Let A and B be finite sets and M ⊆ A × A × B × B. Find a mapping
f : A → B such that ∀x, x′ ∈ A. (x, x′, f(x), f(x′)) /∈ M .

The abstraction is as follows: A is the set of functions, and B is the set of basic
measures, where we assume without loss of generality that the number of basic
measures is the same for all functions (take the maximum!). The set M encodes
the result of the proofs: (f, g, i, j) ∈M iff for some call c : f → g, M c

ij =?
Is is a simple exercise to construct a set of functions from an arbitrary Com-

bination instance to see that finding sum measures is indeed required to solve
this problem.

Lemma 5. The Combination problem is NP-complete.

Proof. We reduce the 3-coloring problem for graphs (see e.g. [18]) to Combi-

nation. For a graph G = (V, E) to be coloured, we define the problem instance

A = V B = {Red, Green, Blue} M = {(v, v′, c, c) | (v, v′) ∈ E, c ∈ B}.

Now every solution f for Combination is a valid colouring: if (v, v′) ∈ E and
f(v) = c we have (v, v′, c, c) ∈ M and thus f(v′) 	= c. Conversely, every colour-
ing is clearly a valid Combination. Since 3-coloring is NP-hard, so is our
problem, and since checking a given solution is trivial, it is also NP-complete.

What conclusions can be drawn from this result? First, it shows that the intro-
duction of mutual recursion really complicates matters, leading to a search space
exponential in the number of functions involved. Second, this complexity only
concerns the search for suitable measures. The number of proof attempts to be
performed by the theorem prover is still polynomial.

While this is interesting from a theoretic view, in practice the number of
functions in a single mutually recursive definition is often quite small, which
makes this approach feasible.

5 Examples

5.1 Ackermann Function

The ackermann function, defined by

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 49

ack 0 m = Suc m
ack (Suc n) 0 = ack n 1
ack (Suc n) (Suc m) = ack n (ack (Suc n) m)

is easily proved total by our tool. The generated relation is measures [λx . |fst
x |, λx . |snd x |].

5.2 Many Parameters

If the function has many parameters, enumerating lexicographic orders becomes
infeasible, as the following example demonstrates. Both HOL4 and HOL Light
fail to prove termination of the following function in reasonable time, while our
method succeeds within a second.

blowup 0 0 0 0 0 0 0 0 0 = 0
blowup 0 0 0 0 0 0 0 0 (Suc i) = Suc (blowup i i i i i i i i i)
blowup 0 0 0 0 0 0 0 (Suc h) i = Suc (blowup h h h h h h h h i)
blowup 0 0 0 0 0 0 (Suc g) h i = Suc (blowup g g g g g g g h i)
blowup 0 0 0 0 0 (Suc f) g h i = Suc (blowup f f f f f f g h i)
blowup 0 0 0 0 (Suc e) f g h i = Suc (blowup e e e e e f g h i)
blowup 0 0 0 (Suc d) e f g h i = Suc (blowup d d d d e f g h i)
blowup 0 0 (Suc c) d e f g h i = Suc (blowup c c c d e f g h i)
blowup 0 (Suc b) c d e f g h i = Suc (blowup b b c d e f g h i)
blowup (Suc a) b c d e f g h i = Suc (blowup a b c d e f g h i)

5.3 Multiplication by Shifting and Addition

Pandya and Joseph [17] introduced a new proof rule for total correctness of
mutually recursive procedures. The contribution of this proof rule is a refined
method for proving termination by analysing the procedure call graph. They
motivate their approach with an imperative version of the following example:

prod x y z = if y mod 2 = 0 then eprod x y z else oprod x y z
oprod x y z = eprod x (y − 1) (z + x)
eprod x y z = if y = 0 then z else prod (2 ∗ x) (y div 2) z

In the calls from oprod and eprod the second argument decreases but in the calls
from prod all arguments are unchanged. Termination is proved automatically
because one can order the functions such that oprod and eprod are less than
prod.

5.4 Pedal and Coast

Homeier and Martin [9] describe an intricate call graph analysis for which Ho-
meier holds a US patent. Their one example is an imperative version of what
they call the bicycling program:

50 L. Bulwahn, A. Krauss, and T. Nipkow

pedal :: nat ⇒ nat ⇒ nat ⇒ nat
coast :: nat ⇒ nat ⇒ nat ⇒ nat

pedal 0 m c = c
pedal n 0 c = c
pedal (Suc n) (Suc m) c = if n < m

then coast n m (c + Suc m)
else pedal n (Suc m) (c + Suc m)

coast n m c = if n < m
then coast n (m − 1) (c + n)
else pedal n m (c + n)

They claim that termination would be difficult to prove using the rule by Pandya
and Joseph. With our algorithm the proof is automatic: In the call from coast
to pedal, no argument decreases. But by ordering the functions such that pedal
< coast, the proof succeeds. In both examples, ordering the functions (see 4.2)
is essential. A precise analysis of the relationship between all three termination
proof methods is beyond the scope of this paper.

By the way: prod x y z = x ∗ y + z and pedal n m c = n ∗ m + c can
be proved (the latter automatically) via the customized induction principles
generated from the function definitions [11].

6 Practical Considerations and Possible Extensions

6.1 Empirical Evaluation

From the existing non-primitive recursive function definitions in the Isabelle
Distribution and the Archive of Formal Proofs [1], our method can find suitable
orderings for 87% of them, usually in less than a second.

The examples where it fails mainly fall in one of the following categories:

1. Definitions which use a customized size function, where some constructors
are weighted more than others. This method is essentially polynomial inter-
pretation, done manually.

2. Functions over naturals or integers, where the argument is increasing but
bounded from above.

3. Examples for “difficult” functions from the documentation, where a domain
specific semantic argument is used for termination.

4. Functions over more powerful set theoretic constructions like ordinals.
5. Functions that aren’t total and thus require special treatment anyway.

6.2 Feedback from Failure

If our analysis fails to find a termination proof, this can have several reasons:
1. The function is indeed non-terminating.
2. The function is terminating, but the termination argument is more compli-

cated than just lexicographic combinations of size measures.

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 51

3. Lexicographic orders are sufficient, but the automation employed to prove
local descents is not sufficient to derive the required facts, although they are
true.

Of course it is impossible for the system to distinguish between these three
classes of errors. However, instead of just failing, we provide valuable information
to the user by showing the matrix with the proof results. For example, the

matrix
(

< ≤
? ≤

)

will tell us that there must be something wrong with the second

recursive call. This can be a useful debugging aid, at least if the user has a basic
understanding of how the method works.

A few other enhancements help to improve feedback given to the user:

– When proving local descent, many unprovable goals get simplified to False.
For these cases, giving the matrix the entry F instead of ? makes it clear
that the ≤-inequality is clearly false. Apart from output, F and ? are not
treated differently.

– For unsuccessful proof attempts, printing the unfinished proof states can
give the user feedback on lemmas that might be necessary in order for the
proof to work.

– If a row in the matrix does not have a strict descent (<) at all, one could
highlight the corresponding recursive call because it (or its proof) needs
special user attention.

6.3 Using Other Measure Functions

Our measure generation has an emphasis on size measures of data types, When
working on different data, other size functions will be appropriate. We already
mentioned the absolute value of an integer. User-defined types will have their
own notions of structure and size, and our analysis is able to accommodate this,
if users can declare their own measure functions.

Moreover, while the type based choice of measures is simple, this is not the
only possible solution.

In the realm of linear arithmetic, Podelski and Rybalchenko [19] describe how
to synthesize measures (which they call ranking functions) for simple non-nested
while loops. It would be interesting to try to use such a method to generate
measures for our approach, which can then be combined with others (say, from
data types) to more complex termination proofs.

6.4 Incremental Operation

At the moment, the four steps of our algorithm are executed strictly sequentially.
In particular, all proof attempts have to be finished and the matrix has to be
complete, before the search for the lexicographic combination begins. This sepa-
ration simplifies presentation and implementation, but is otherwise unnecessary.

52 L. Bulwahn, A. Krauss, and T. Nipkow

The structure of the system could be modified in a way that the columns
of the matrix are produced incrementally. Once a column “arrives”, the search
algorithm checks immediately, whether it can be used to solve some of the calls.
Otherwise it must be stored because it could be useful in a later step.

Such an architecture allows for several immediate optimizations:

– Once an ordering is found, no more proofs about other measures have to be
tried.

– If certain rows (=calls) have already been solved by previous measures, they
can be ignored in subsequent proof attempts. Instead, the corresponding
entries can be set immediately to ?, since they will not be used anyway.

These changes do not increase the power of the analysis, but only its efficiency.
However, such a lazy strategy would allow us to increase the number of measure
functions to try, without compromising the efficiency of the whole system for
examples where they are not needed.

7 Conclusion

We showed how to automate termination proofs for a large class of practically
relevant function definitions. Our implementation, which is already part of the
Isabelle developer version, is invoked by default for all new function definitions.
This makes the termination proof invisible in many cases, which helps users
concentrate on their actual theorem proving tasks.

References

1. Archive of Formal Proofs, http://afp.sourceforge.net/
2. Abel, A.: foetus – termination checker for simple functional programs. Program-

ming Lab Report (1998)
3. Abel, A., Altenkirch, T.: A predicative analysis of structural recursion. J. Func-

tional Programming 12(1), 1–41 (2002)
4. Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor.

Comput. Sci. 236(1-2), 133–178 (2000)
5. Barthe, G., Forest, J., Pichardie, D., Rusu, V.: Defining and reasoning about recur-

sive functions: a practical tool for the Coq proof assistant. In: Hagiya, M., Wadler,
P. (eds.) FLOPS 2006. LNCS, vol. 3945, Springer, Heidelberg (2006)

6. Berghofer, S., Wenzel, M.: Inductive datatypes in HOL - lessons learned in formal-
logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L.
(eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)

7. Gordon, M., Melham, T. (eds.): Introduction to HOL: A theorem proving environ-
ment for higher order logic. Cambridge University Press, Cambridge (1993)

8. Harrison, J.: The HOL Light theorem prover,
http://www.cl.cam.ac.uk/users/jrh/hol-light

9. Homeier, P.V., Martin, D.F.: Mechanical verification of total correctness through
diversion verification conditions. In: Grundy, J., Newey, M. (eds.) Theorem Proving
in Higher Order Logics. LNCS, vol. 1479, pp. 189–206. Springer, Heidelberg (1998)

http://afp.sourceforge.net/
http://www.cl.cam.ac.uk/users/jrh/hol-light

Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL 53

10. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach, June 2000. Kluwer Academic Publishers, Dordrecht (2000)

11. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006)

12. Krauss, A.: Certified size-change termination. In: Pfenning, F. (ed.) CADE-21.
LNCS, vol. 4603, pp. 460–476. Springer, Heidelberg (to appear, 2007)

13. Lee, C.S., Jones, N.D., Ben-Amram, A.M.: The size-change principle for program
termination. In: ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pp. 81–92. ACM Press, New York (2001)

14. Manolios, P., Vroon, D.: Termination analysis with calling context graphs. In:
Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 401–414. Springer,
Heidelberg (2006)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

16. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, pp. 748–752.
Springer, Heidelberg (1992)

17. Pandya, P., Joseph, M.: A Structure-directed Total Correctness Proof Rule for
Recursive Procedure Calls. The Computer Journal 29(6), 531–537 (1986)

18. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, New York
(1994)

19. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear rank-
ing functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp.
239–251. Springer, Heidelberg (2004)

20. Slind, K.: Function definition in Higher-Order Logic. In: von Wright, J., Harri-
son, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 381–397. Springer,
Heidelberg (1996)

21. Slind, K.: Reasoning About Terminating Functional Programs. PhD thesis, Institut
für Informatik, TU München (1999)

22. Walther, C.: On proving the termination of algorithms by machine. Artif. In-
tell. 71(1), 101–157 (1994)

Formalising Generalised Substitutions

Jeremy E. Dawson1,2

1 Logic and Computation Program, NICTA�

2 Automated Reasoning Group,
Australian National University, Canberra, ACT 0200, Australia

http://users.rsise.anu.edu.au/~jeremy/

Abstract. We use the theorem prover Isabelle to formalise and machine-
check results of the theory of generalised substitutions given by Dunne
and used in the B method. We describe the model of computation implicit
in this theory and show how this is based on a compound monad, and
we contrast this model of computation and monad with those implicit
in Dunne’s theory of abstract commands. Subject to a qualification con-
cerning frames, we prove, using the Isabelle/HOL theorem prover, that
Dunne’s results about generalised substitutions follow from the model of
computation which we describe.

Keywords: general correctness, generalised substitution.

1 Introduction

In [7] Dunne gave an account of general correctness, which combines the concepts
of partial correctness and total correctness, arguing for its utility in analysing the
behaviour of programs. He defined a language of “abstract commands”, giving
several basic abstract commands and operators for joining them, for which he
gave rules in terms of weakest liberal preconditions and termination conditions.
In [6] we considered this abstract command language and described the oper-
ational interpretation of the abstract commands, showing how it is based on a
compound monad. We used the automated theorem proving system Isabelle to
prove that the operational interpretation implies the rules given by Dunne.

In [3] Chartier formalised the operations of the B method of Abrial [1] in
Isabelle/HOL. He formalised generalised substitutions as an abstract type com-
prising the trm and prd functions and a list of variables involved in the substi-
tution. Defining the generalised substitution operations in terms of trm and prd,
he proved that these definitions are equivalent to those of Abrial’s definitions in
terms of the weakest precondition functions.

In [8] Dunne considered the generalised substitutions used in the B method.
He developed the notion of the frame of a substitution, the variables “involved”
in it, and defined generalised substitution operations in terms of frames and
� National ICT Australia is funded by the Australian Government’s Dept of Commu-

nications, Information Technology and the Arts and the Australian Research Council
through Backing Australia’s Ability and the ICT Centre of Excellence program.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 54–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://users.rsise.anu.edu.au/~jeremy/

Formalising Generalised Substitutions 55

weakest preconditions. He then proved a number of properties of these gener-
alised substitutions. In contrast to [7], this theory is based on total correctness.

In this paper we formalise this theory of generalised substitutions, using a
similar approach to our work on abstract commands in [6], and using some of
its results. That is, we develop a model of computation and define the theory in
terms of it. We then find that this enables us to derive the previous definitions
and results as consequences of our formulation. These results are proved using
the Isabelle/HOL theorem prover, see [5]. We have also performed, in Isabelle,
proofs of other results of Dunne in [8], of which details are in the Appendix.

We find that the model of computation we use is also based on a compound
monad, and provides an interesting example of a distributive law for monads.
Furthermore, this distributive law is also a monad morphism from the monad of
[6] to the monad described in this paper.

2 The Operational Models

In [7] Dunne argued that general correctness provides a better framework for
program refinement than either total or partial correctness, and its relative sim-
plicity is supported by the results at the end of [6, §3.2]. However the theory of
generalised substitutions as used in the B method is based on total correctness,
so that when two generalised substitutions with the same frame are equivalent
in total correctness, they are regarded as the same, although they may not be
equivalent in terms of general correctness. So we need to model program (state-
ments) in such a way that two such generalised substitutions are equal.

So we describe the two operational models. Firstly, we review the operational
model of [6], which we used for abstract commands, based on general correctness.
Then we describe the model, on which this paper is based, which fits the total
correctness framework of generalised substitutions. We describe these models, at
first without reference to frames, which we discuss in §4. Furthermore, where we
state that we have proved a result of Dunne [8], this will usually refer to the
result as modified by deleting reference to the frames of the substitutions.

2.1 The General Correctness Operational Model

To express that a command can either terminate in a new state or fail to ter-
minate, in [6] we considered command outcomes, where an outcome is either
termination in a new state or non-termination. Then we model a command as
a function, of type state → outcome set, from states to sets of outcomes. Com-
mands are equal if the corresponding functions are equal: that is, we have an
extensional definition of equality. This model can distinguish between a com-
mand which (when executed in a particular given state) must fail to terminate
from one which may or may not fail to terminate. Since Dunne’s treatment of
abstract commands [7] distinguished between two such commands, this model
was effective in considering abstract commands. However a theory of total cor-
rectness, using weakest preconditions (which are satisfied only when a command
is guaranteed to terminate), does not distinguish between two such commands.

56 J.E. Dawson

2.2 The Total Correctness Operational Model

For the total correctness model, we model a generalised substitution as a function
returning either the tag NonTerm, indicating possible non-termination, or Term
S, indicating guaranteed termination in one of the states contained in the set
S. Note that this implies an extensionsal definition of equality: substitutions are
equal iff they are equal considered as functions of the appropriate type.

To do this we declare the Isabelle datatype

datatype σ TorN = NonTerm | Term σ

where σ is a type variable. This means that a value of the type σ TorN is either
the tag NonTerm or a member of the type σ, tagged with the tag Term. (Thus the
type outcome of [6] is state TorN). We then define the type tcres to be state set
TorN, that is, either non-termination, or termination in (one of) a set of states.
(As in Isabelle, we write a type constructor after the type.)

Then we model a generalised substitution as a function of type state→ tcres.
For a generalised substitution C, we define [C] (or wp C, the weakest precondition
of C) for post-condition Q and initial state s, as follows. Then, from it, we define
total correctness refinement �tc. By P −→ Q we mean ∀s. P s→ Q s.

[C] Q s = ∃S. (∀x ∈ S. Q x) ∧ C s = Term S

A �tc B = ∀Q. [A] Q −→ [B] Q

"wp_tc C Q s == EX S<=Collect Q. C s = Term S"
"ref_tc A B == ALL Q. wp_tc A Q ---> wp_tc B Q"

The definition makes it clear that refinement is a preorder. We then obtain a
direct characterisation of refinement, and, from it, we show (as ref_tc_antisym)
that two generalised substitutions A,B (of type state → tcres) are refinement-
equivalent if and only if they are equal in our operational model. Thus refinement
is a partial order. This confirms that the operational model above is appropriate
for total correctness refinement and equivalence. The related result wp_tc_inj
is useful for proving the equality of two generalised substitutions.

ref_tc_alt = "ref_tc A B ==
ALL s SA. A s = Term SA --> (EX SB<=SA. B s = Term SB)"

ref_tc_antisym = "[| ref_tc A B; ref_tc B A |] ==> A = B"
wp_tc_inj = "wp_tc A = wp_tc B ==> A = B"

2.3 The Total Correctness Compound Monad

In [6, §3.1] we showed that the general correctness operational monad gave a
monad, which we will call the outcome set monad. See [6, §3.1] for a brief dis-
cussion of monads, or Wadler [10] for further information. We now find that the
type tcres, relative to the type state, is a monad, the total correctness monad.

To define a monad M , we need to define the unit and extension functions, of
the types shown. The unit function models the command which does nothing

Formalising Generalised Substitutions 57

(skip) and the extension function is used to model sequencing of commands since
ext A models the action of command A on the output of a previous command.
We then need to show that the unit and extension functions satisfy the following
rules required for a monad.

unit : α→ αM

ext : (α→ βM)→ (αM → βM)

ext f ◦ unit = f (1)
ext unit = unit (2)

ext (ext g ◦ f) = ext g ◦ ext f (3)

As a standard result (see [10]), a monad can be characterised either by the
three functions unit, map and join, and seven axioms involving these functions,
or the functions unit and ext and the three axioms shown above. Rule (3) lets
us define sequencing of commands, A;B (or seq A B) = ext B ◦A, and, as in [6,
§3.1], the associativity of seq (which obviously ought to hold!) follows from (3).

We have that tcres = state set TorN. Each of the type constructors set and
TorN with their associated unit and extension functions, is a monad. It does not
follow, however, that tcres (relative to state) is a monad.

To prove that the total correctness monad is in fact a monad, we used the
results of Dawson [4], which develop those of Jones & Duponcheel [9]. As in
[9], we consider the composition of two monads M and N , but as in Isabelle,
we write a type constructor after the type, so the compound monadic type is
αNM . We write extNM , extM , extN for the extension functions of NM,M , N .

To get a compound monad, we need the function extNM , which “extends”
a function f from a “smaller” domain, α, to a “larger” one, αNM . Consider,
therefore, a “partial extension” function which does part of this job:

extNM : (α→ βNM)→ (αNM → βNM)
pext : (α→ βNM)→ (αN → βNM)

The following rules and definitions are sufficient to define a compound monad
using such a function pext.

pext f ◦ unitN = f (4)
pext unitNM = unitM (5)

pext (extNM g ◦ f) = extNM g ◦ pext f (6)
extNM g = extM (pext g) (7)
unitNM = unitM ◦ unitN (8)

We now give the definitions for our particular monads N = set and M = TorN,
the suffix tc indicating the total correctness monad.

unit tc : state→ tcres
prod tc : tcres set→ tcres

pext tc : (state→ tcres) → state set → tcres
ext tc : (state→ tcres) → tcres→ tcres

58 J.E. Dawson

unit tc s = Term {s} (9)
prod tc S = NonTerm if NonTerm ∈ S (10)

prod tc (Term‘S) = Term (
⋃

S) (11)
pext tc A S = prod tc (A‘S) (12)
ext tc A S = ext o (pext tc A) S (13)

where ext o is the extension function of the TorN monad (see [6]), given by

ext o f NonTerm = NonTerm (14)
ext o f (Term s) = f s (15)

and f ‘S is Isabelle notation for {f s | s ∈ S}.
We have proved, in Isabelle, the following result. We did this by proving rules

(4) to (6), noting that (7) and (8) follow directly from our definitions.

Theorem 1. σ set TorN is a compound monad.

2.4 Relation to the Outcome Set Monad

Jones & Duponcheel [9] also use a function swap : αMN → αNM to define a
compound monad. As they show, when such a function swap can be defined,
satisfying certain conditions S(1) to S(4), then the compound monad αNM can
be constructed. Equivalently, the function swap is a distributive law for monads,
see Barr & Wells [2, §9.2]. Jones & Duponcheel also use the function prod as
above, and give conditions for defining a compound monad in terms of prod.

In fact the total correctness monad can be defined using swap. In this case M
is the outcome monad, and N is the set monad, and swap is a function

swap tc : σ TorN set→ σ set TorN
swap tc S = NonTerm if NonTerm ∈ S (16)

swap tc (Term‘S) = Term S (17)

Here, definition (16) reflects the fact that, in total correctness, a command that
may fail to terminate is equivalent to one which will fail to terminate.

Our Isabelle proofs included the conditions S(1) to S(4) of [9], and so we also
have shown that swap tc is a distributive law for the monads.

The function swap tc : σ TorN set → σ set TorN is also a monad morphism
from the outcome set monad to the total correctness monad. We have proved
the following theorems (which characterise a monad morphism), where unit os
and ext os are the unit and extension functions for the outcome set monad, as
defined in [6, §3.1]:

unit os : state→ outcome set
ext os : (state → outcome set)→ outcome set→ outcome set

unit tc a = swap tc (unit os a) (18)
ext tc (swap tc ◦ f) (swap tc x) = swap tc (ext os f x) (19)

Formalising Generalised Substitutions 59

Since this monad morphism is surjective, we could use the fact that the out-
come set monad satisfies the monad axioms to give an alternative proof to show
that the total correctness monad also satisfies them.

Often, where two monads can be composed to form another monad, the con-
struction depends on one of them, and the other may be arbitrary. Thus, as
discussed in [6, §3.1], the TorN monad can be composed with any other monad
M to give a compound monad, which gave the outcome set monad. In this case
we have that the type σ set TorN is a monad (relative to σ), but it does not
seem to be an example of a more general construction, in that for an arbitrary
monad M , neither σ M TorN nor σ set M is in general a monad.

We also proved the following theorem about abstract commands. Dunne’s
treatment of general correctness in [7] includes a definition of total correctness
refinement, which is referred to as totcref in the result below. This result also
confirms that the operational model of §2.2 is appropriate for total correctness.
For two abstract commands A,B (of type state→ outcome set) the left-hand side
says A � B according to the total-correctness refinement relation for abstract
commands, as defined and discussed in [7] and [6, §3.2]. The right-hand side says
that the refinement relation for generalised substitutions holds of the projections
of A and B into the type state→ tcres.

ref_tc_swap = "totcref A B = ref_tc (swap_tc o A) (swap_tc o B)"

Often in this work, we drew upon [6], using the fact that if two abstract com-
mands are equal, then so are their projections into the total correctness monad.

3 The Generalised Substitutions

Frames. Dunne has also defined that each substitution has a frame. Loosely, this
is the set of variables which “might” be affected. Note, however, that frame(x :=
x) = {x}. Also, from any command a new command may be defined which has
an enlarged frame but is otherwise the same.

Stating the frame of a command does not contribute to a description of what
the command, considered in isolation, does. Thus when we show, for example,
that two commands behave the same way, we do so without considering their
frames. Indeed, the substitution skip and x := x behave the same way, but have
different frames. Likewise, it is impossible to deduce the frame of a substitution
from its behaviour. The work in this section proceeds on this basis. Therefore
the results are therefore subject to the proviso that two generalised substitutions
are in fact distinct if their frames differ.

On the other hand, the specified frame of a substitution does have an effect
in that the parallel composition S‖T depends on the frames of S and T — that
is, if the frames of S or T are extended, then that changes S‖T .

Variables. Indeed, for many generalised substitution operations, we do not need
to consider variables at all: rather, we can consider a machine state abstractly.
For others, we need to consider a state as a map from variables (variable names)

60 J.E. Dawson

to values. As discussed at greater length in [6], where Q is a predicate on states,
we may use the notation Q[x := E] to mean Q, with occurrences of x replaced
by E, when Q is written in the command language, or some similar notation.
This is found in the wp rule for assignment, and in the related Hoare logic rule.

wp(x := E,Q) = Q[x := E] {Q[x := E]} (x := E) {Q}

In fact we could take Q[x := E] to be defined as follows. Considering expres-
sion E as a function from states to values, Q[x := E] s = Q (s[x := E s]) where,
for state s, s[x := E s] means the function s, changed at the domain point x.
(though using this as a definition makes the wp rule above rather trivial, since
assignment will be defined to take state s to state s[x := E s]).

3.1 Meaning of Commands

skip, magic, abort. [8, §3.1, §3.3] skip is the command which is feasible,
terminates and does nothing to the state. It is exactly the function unit tc. It
follows immediately from the monad laws (1) and (2) that skip is an identity for
the binary function seq tc. These are proved in Isabelle as seq_tc_unitL/R.

We define magic and abort in terms of the operational model, as magic_tc_def
and abort_tc_def; then with these definitions, we then prove Dunne’s definitions,
as magic_alt and abort_alt (using precon_tc and guard_tc, see below).

As abort always fails to terminate, it fails to satisfy any post-condition. On
the other hand, magic is always infeasible: while not suffering non-termination,
it cannot produce any result which fails to satisfy any given post-condition, so
it satisfies every post-condition. So we also prove that magic and abort are the
top and bottom members in the lattice of generalised substitutions [8, §7].

magic_tc_def = "magic_tc s == Term {}"
abort_tc_def = "abort_tc s == NonTerm"
magic_alt = "magic_tc = guard_tc (%s. False) unit_tc"
abort_alt = "abort_tc = precon_tc (%s. False) unit_tc"
top_magic_tc = "ref_tc C magic_tc"
bot_abort_tc = "ref_tc abort_tc C"

preconditioned command, guarded command. [8, §3.1] The precondi-
tioned command P |A is the same as A except that, if P does not hold, then
P |A need not terminate. The guarded command P =⇒ A is the same as A if
P holds, but is infeasible (it cannot reach any outcome, that is, it cannot run)
if P does not hold. Dunne defines both of these by giving the formula for their
weakest precondition. We define them using precon_tc_def and guard_tc_def,
and then prove Dunne’s definitions as precon_wp_tc’ and guard_wp_tc.

precon_tc_def = "precon_tc P C s == if P s then C s else NonTerm"
guard_tc_def = "guard_tc P C s == if P s then C s else Term {}"
precon_wp_tc’ = "wp_tc (precon_tc P C) Q s = (P s & wp_tc C Q s)"
guard_wp_tc = "wp_tc (guard_tc P C) Q s = (P s --> wp_tc C Q s)"

Formalising Generalised Substitutions 61

termination, feasibility. [8, §5] We define

"trm_tc C s == C s ~= NonTerm"
"fis_tc C s == C s ~= Term {}"

We can then prove Dunne’s definition of trm and fis, and his results in [8, §5]:

trm_alt = "trm_tc C = wp_tc C (%s. True)"
fis_alt = "fis_tc C = Not o wp_tc C (%s. False)"
pc_trm_tc = "precon_tc (trm_tc A) A = A"
fis_guard_tc = "guard_tc (fis_tc A) A = A"
strongest_guard = "(guard_tc g A = A) = (fis_tc A ---> g)"
strongest_pc = "(precon_tc pc A = A) = (trm_tc A ---> pc)"

sequencing. [8, §3.1] As mentioned earlier, we define sequencing of commands
using ext tc, as shown in seq_tc_def. Dunne defines it by giving the weakest
precondition of A;B, and we prove this result, as seq_wp_tc, from our definition.

seq_tc_def = "seq_tc A B == ext_tc B o A"
seq_wp_tc = "wp_tc (seq_tc A B) Q = wp_tc A (wp_tc B Q)"

choice. In [8, §3.1] Dunne defines a binary operator, A�B, for bounded choice:
A�B is a command which can choose between two commands A and B. Again,
Dunne defines this by giving its weakest precondition. This is a special case of
choice among an arbitrary set of commands. In the total correctness setting,
where choice tc C can fail to terminate if any C ∈ C can fail to terminate, we
define choice tc as shown below.

As the definition is rather unintuitive, we show the types of some of its parts.
Recall that if the type σ represents the machine state, then a command has type
σ → σ set TorN. The definition is unintuitive perhaps because where pext is used
(indirectly) in defining sequencing of commands, the types α and β are both the
state type σ. But in the use of pext below, α is the type of commands.

choice tc C s = pext (λC. C s) C
choice tc : (σ → σ set TorN) set→ σ → σ set TorN

pext : (α→ β set TorN) → α set→ β set TorN
λC. C s : (σ → σ set TorN) → σ set TorN

pext (λC. C s) : (σ → σ set TorN) set→ σ set TorN

When the definition is expanded (choice_tc_def’’ in the Isabelle proofs), it
shows that if {C s |C ∈ C} contains NonTerm then choice tc C s = NonTerm; if
{C s |C ∈ C} = {Term SC |C ∈ C}, then choice tc C s = Term(

⋃

C∈C SC).
We obtained the following results, relating the distribution of sequencing over

choice. The theorem seq_choice_tcL was obtained as an easy corollary of rule
(6), obtained in the course of the proofs about the total correctness monad. We
also proved a result giving the weakest precondition of choice tc, which is the
generalisation of Dunne’s definition of A�B, and from which it easily follows
that choice tc C is the glb of the set C. Proposition 7 of [8, p288] follows.

62 J.E. Dawson

seq_choice_tcL =
"seq_tc (choice_tc Cs) B = choice_tc ((%C. seq_tc C B) ‘ Cs)"

seq_choice_tcR = "Cs ~= {} ==>
seq_tc A (choice_tc Cs) = choice_tc (seq_tc A ‘ Cs)"

choice_wp_tc = "wp_tc (choice_tc Cs) Q s = (ALL C:Cs. wp_tc C Q s)"
choice_glb_tc = "ref_tc A (choice_tc Cs) = (ALL C:Cs. ref_tc A C)"

We note that for many generalised substitutions, the definition may be ob-
tained by translation from the definitions in [6] for abstract commands. For
example, for choice tc we could have defined choice tc C in terms of choice A
for any set A of abstract commands corresponding to the set C of generalised
substitutions. Alternatively, we can relate our definitions to the definitions of
the corresponding abstract commands, where seq, precon, guard and choice
are the corresponding operations on abstract commands: [6, §3.4].

seq_tc = "seq_tc (swap_tc o A) (swap_tc o B) = swap_tc o seq A B"
precon_tc = "precon_tc P (swap_tc o A) = swap_tc o precon P A"
guard_tc = "guard_tc P (swap_tc o A) = swap_tc o guard P A"
choice_tc = "choice_tc (op o swap_tc ‘ As) = swap_tc o choice As"

where (op o swap_tc ‘ As) means {swap tc ◦ A | A ∈ As} (We have sim-
ilar results for magic_tc, abort_tc, trm_tc and fis_tc also). These results
enable us to prove many results for generalised substitutions from the corre-
sponding results for abstract commands. In some cases, such as for the theorem
choice_wp_tc, this provided much simpler proofs in Isabelle.

3.2 Monotonicity

For developing a program by starting with a generalised substitution (expressing
a program specification), and progressively refining it to a concrete program,
it is important that the generalised substitution constructors are monotonic
with respect to the refinement relation (�). All the constructors mentioned are
monotonic. We proved these results in Isabelle as (for example)

seq_tc_ref_mono = "[| ref_tc A1 B1; ref_tc A2 B2 |] ==>
ref_tc (seq_tc A1 A2) (seq_tc B1 B2)"

rephat_ref_mono = "ref_tc A B ==> ref_tc (rephat A) (rephat B)"

3.3 Repetition and Iteration for the General Correctness Model

In [7, §7] Dunne defined A0 = skip and An+1 = A;An, and we proved that
An+1 = An;A. From this we defined repall A s =

⋃

n Ans, that is, repall A is
the (unbounded) choice of any number n of repetitions of A; it terminates iff for
every n, An terminates (proved as repall_term).

In [7, §12] Dunne defined the repetitive closure A∗ of A, where the outcomes
of A∗ are those of repall, augmented by NonTerm in the case where it is feasible
to execute A infinitely many times sequentially (calling this an “infinite chain”).
Thus, in [6, §3.5] we defined a function infch, where infch A s means that it is
possible to execute A infinitely many times sequentially, starting in state s.

Formalising Generalised Substitutions 63

So we had the following definition, from which we proved various results from
[7], including characterisations of repall and repstar as fixpoints.

repstar C state == repall C state Un
(if infch C state then {NonTerm} else {})

A Coinductive Definition. In [6, §3.5] we defined the concept of an infinite
chain explicitly, in terms of the existence of an infinite sequence of states through
which the executing program can pass. Some of these Isabelle proofs involving
this definition were quite difficult.

Subsequently we used Isabelle’s coinductive definition facility to give a more
elegant definition of an equivalent notion: infchs A is the set of states from which
it is possible to execute A infinitely many times sequentially. We also defined
inductively a set icnt A, which we showed is equivalent to {s | NonTerm ∈ A∗ s}.

The Isabelle definitions are:

coinductive "infchs A"
intros I : "Term ns : A s ==> ns : infchs A ==> s : infchs A"

coinductive "icnt A"
intros NTI : "NonTerm : A s ==> s : icnt A"
icI : "Term ns : A s ==> ns : icnt A ==> s : icnt A"

This defines infchs A to be the unique maximal set satisfying

infchs A = {s | ∃s′. Term s′ ∈ A s ∧ s′ ∈ infchs A}

Then Isabelle’s coinductive definition facility provides a coinduction principle:

a ∈ X ∀z.z ∈ X ⇒ ∃s′.Term s′ ∈ A z ∧ s′ ∈ X ∪ infchs A

a ∈ infchs A

and similarly for icnt. We then proved that s ∈ infchs A if and only if infch A s
holds, and that s ∈ icnt A if and only if NonTerm ∈ A∗ s. This made some other
proofs considerably easier than before.

3.4 Repetition and Iteration for the Total Correctness Model

For the total correctness model we used analogous definitions. We used a coin-
ductive definition to define infchs tc C, the set of states from which it is possible
to execute C infinitely many times sequentially and an inductive definition for
reach NT C, the set of states from which NonTerm is reachable.

coinductive "infchs_tc C" intros
"C s = Term S ==> ns : S ==> ns : infchs_tc C ==> s : infchs_tc C"

inductive "reach_NT C"
intros "C s = NonTerm ==> s : reach_NT C"

"C s = Term S ==> ns : S ==> ns : reach_NT C ==> s : reach_NT C"

64 J.E. Dawson

Then we define icnt tc C, using the same introduction rules as for reach NT C,
but in a coinductive definition, not an inductive definition. We then prove that
icnt tc C = reach NT C ∪ infchs tc C, and can relate icnt tc to icnt.

icnt_alt = "icnt_tc C = reach_NT C Un infchs_tc C"
icnt_tc = "icnt_tc (swap_tc o A) = icnt A"

Also using an inductive definition, we define treach A s to be the set of
states reachable from s using A repeatedly.

In [8, §8.2] Dunne defines the generalised substitution C∧. He defines it as
the least fixed point in the refinement ordering μX. (C;X)�skip. For us to
define it in that way would require showing that the least fixed-point exists:
in [8, §8.1] Dunne discusses why this result holds. Rather than proving this
result in Isabelle, we define C∧ using the operational interpretation (suggested
in [8, §8.2]) that the result of C∧ is the states reachable by repeating C, but
with the result NonTerm either if NonTerm is reachable by repeating C or if
an infinite sequence of executions of C is possible. We then proved that C∧,
defined thus, is in fact the least fixed-point of λX. (C;X)�skip. The proofs were
more difficult than the corresponding ones for abstract commands, mentioned
in [6], and it was necessary to use a range of lemmas, including some of those
mentioned in §2.3. We can relate the total correctness repetition constructs to
those for general correctness, using swap tc (for example, rephat_star below).
We proved Dunne’s examples, magic∧ and skip∧. We also defined a function
repall_tc, analogously to repall (see §3.3), and showed that C∧ could instead
have been defined, analogously to A∗, using it. Among the following, rephat_def
and fprep_tc_def are definitions.

rephat_def = "rephat C state ==
if state : icnt_tc C then NonTerm else Term (treach C state)"

fprep_tc_def = "fprep_tc A X ==
X = choice_tc {seq_tc A X, unit_tc}"

rephat_isfp = "fprep_tc A (rephat A)"
rephat_is_lfp = "fprep_tc A Y ==> ref_tc (rephat A) Y"
rephat_star = "rephat (swap_tc o A) s = swap_tc (repstar A s)"
rephat_magic = "rephat magic_tc = unit_tc"
rephat_skip = "rephat unit_tc = abort_tc"

Dunne then defines the if and while constructs as follows [8, §9]:

if tc G then S else T end ≡ (G =⇒ S)� (¬G =⇒ T)
while tc G do S end ≡ (G =⇒ S)∧ ; ¬G =⇒ skip

From these we are then able to prove an alternative definition for if and the
usual programming definition for while:

if_tc_prog = "if_tc G A B s = (if G s then A s else B s)"
ifthen_tc_prog =
"ifthen_tc G A s = (if G s then A s else Term {s})"

while_tc_prog =
"while_tc G A = ifthen_tc G (seq_tc A (while_tc G A))"

Formalising Generalised Substitutions 65

3.5 The prd Predicate

[8, §5] The “before-after” predicate prd relates the values of the variables in the
frame before execution of the command to their values after the command. It is
defined in [8, §5] as prd (S) ≡ ¬[S](s 	= s′) where s = frame(S) and s′ are new
(logical) variables corresponding to the program variables s. Implicitly, prd (S)
depends on s′; (s 	= s′) is a post-condition on the values of s after executing S.

First we define prd_tc which assumes that the frame consists of all variables.
Then, for the analysis of prd_tc, it is possible to treat the state as abstract.

"prd_tc s’ C == Not o wp_tc C (%s. s ~= s’)

where s’, of type state, represents the values s′. We note a difference between
the definitions of [8, §6] and [7, §10]: in the former, if S does not terminate from
state s, then prd(S)s does hold.

As a sort of inverse to this definition, we derived wp_prd_tc, an expression for
wp in terms of prd, namely [S]Q = trm S ∧∀s′. prd(S) → Q. This was suggested
by a similar result in [7, §10].

We also derived [8, §13, p287, Proposition 7] as ref_tc_prdt.

wp_prd_tc = "wp_tc A Q s =
(trm_tc A s & (ALL s’. prd_tc s’ A s --> Q s’))"

ref_tc_prdt = "ref_tc A B = ((trm_tc A ---> trm_tc B) &
(ALL s’. prd_tc s’ B ---> prd_tc s’ A))"

3.6 The Least Upper Bound

[8, §7] ? In §3.1 we showed that, in the refinement ordering, the greatest lower
bound of a set of commands is given by the choice command. To describe the
least upper bound lub S T of S and T is more difficult. We might expect that
[lub S T] Q = [S]Q ∨ [T]Q but this is not so. For if S x = Term {yS} and
T x = Term {yT }, where yS 	= yT , then (lub S T) x = Term {} and so [lub S T]Q x
holds. But if neither Q yS nor Q yT hold, then ([S]Q ∨ [T]Q) x does not hold.

However in [8, §7] Dunne gives a characterisation of the least upper bound of
the set of generalised substitutions on a given frame: we prove this result, applied
to a set of abstract states, as lub_tc. As a corollary of this general result, we get
ACNF_tc, giving Dunne’s normal form, [8, §11, Proposition 4], again in terms of
abstract states. These results use the functions at_tc and pc_aux. The function
at_tc is analogous to atd of [6, §4.2], and is used to express Dunne’s unbounded
choice over a set of logical variables. The function pc_aux_tc is used here and in
§7, and pc aux C s = Term S, where S consists of those states which every C ∈ C
can reach from initial state s (we proved this in Isabelle as pc_aux_alt2).

at_tc_def = "at_tc Ad == choice_tc (range Ad)"
pc_aux_def = "pc_aux Cs == at_tc
(%s’. guard_tc (%s. ALL C:Cs. prd_tc s’ C s) (%s. Term {s’}))"

66 J.E. Dawson

lub_tc =
"ref_tc (precon_tc (%s. EX C:Cs. trm_tc C s) (pc_aux Cs)) A =
(ALL C:Cs. ref_tc C A)"

ACNF_tc = "A = precon_tc (trm_tc A)
(at_tc (%s’. guard_tc (prd_tc s’ A) (%s. Term {s’})))"

Having found the least upper bound of a set of generalised substitutions us-
ing the function pc_aux, we now derive an expresson for weakest precondition of
pc_aux C in terms of {[C] |C ∈ C}, using a function we called lub_pt. We then
proved that lub_pt gives the least upper bound of a set of predicate transform-
ers, provided that they are conjunctive (and so monotonic). This is not enough
to deduce that pc_aux C is the least upper bound of C since weakest precondi-
tion functions fail to be conjunctive, where non-termination is involved. Thus
the theorem lub_tc contains the termination precondition. In §3.8 we discuss
how generalised substitutions correspond to predicate transformers satisfying
the non-empty conjunctivity condition.

Here mono_pt T means that T is monotonic. and conj_pt T Q s means
that T is conjunctive in relation to a given set Q of predicates and state s.
The results lub_pt_lub, lub_pt_ub and lub_pt_is_conj, together show that,
among conjunctive predicate transformers, lub_pt gives the least upper bound.

pc_aux_wp = "wp_tc (pc_aux Cs) = lub_pt (wp_tc ‘ Cs)"
lub_pt_def = "lub_pt Ts Q x == ALL Q’:Qcs Q. EX T:Ts. T Q’ x"
Qcs_def = "Qcs Q == (%y x. x ~= y) ‘ (- Collect Q)"
lub_pt_lub = "[| ALL Qs. conj_pt T Qs s;
ALL U:Us. ALL Q. U Q s --> T Q s; lub_pt Us Q s |] ==> T Q s"

lub_pt_ub = "[| mono_pt T; T : Ts |] ==> T Q ---> lub_pt Ts Q"
lub_pt_is_conj = "conj_pt (lub_pt Ts) Qs s"
conj_pt_def = "conj_pt T Qs s ==
T (%s. ALL Q:Qs. Q s) s = (ALL Q:Qs. T Q s)"

3.7 Parallel Composition

[8, §6] Here we describe this in the case where the frames of the commands are the
set of all program variables. This enables us to treat the machine state abstractly.
We define the parallel composition according to Dunne’s informal description:
S||T can terminate in a state s only if both S and T can terminate in s (but we
define parallel composition of an arbitrary set of generalised substitutions). The
“else” part of pcomprs_tc amounts to pcomprs_tc (Term ‘S) = Term (

⋂

S).
From this we then derive Dunne’s definition, pcomp_tc_alt. We then derive the
further results given in [8, §6], and also prd_pcomp_tc, a variant of his expression
for prd(S||T) which generalises directly to give the parallel composition of an
arbitrary set of generalised substitutions.

pcomp_tc_def = "pcomp_tc Cs s == pcomprs_tc ((%C. C s) ‘ Cs)"
pcomprs_tc_def = "pcomprs_tc rs ==
if NonTerm : rs then NonTerm else Term (Inter (sts_of_ocs rs))"

Formalising Generalised Substitutions 67

pcomp_tc_alt = "pcomp_tc Cs ==
precon_tc (%s. ALL C:Cs. trm_tc C s) (pc_aux Cs)"

trm_pcomp_tc = "trm_tc (pcomp_tc Cs) s = (ALL C:Cs. trm_tc C s)"
prd_pcomp_tc = "prd_tc s’ (pcomp_tc Cs) s =
(trm_tc (pcomp_tc Cs) s --> (ALL C:Cs. prd_tc s’ C s))"

prd_pcomp_tc2 = "prd_tc s’ (pcomp_tc {A, B}) s =
((trm_tc B s --> prd_tc s’ A s) &
(trm_tc A s --> prd_tc s’ B s))"

pcomp_choice_tc = "pcomp_tc {B, choice_tc (insert A As)} =
choice_tc ((%a. pcomp_tc {B, a}) ‘ insert A As)"

3.8 Healthiness Conditions and Positive Conjunctivity

[8, §10.1] Dunne asks whether any choice of frame and predicate transformer
gives a generalised substitution. He gives three necessary conditions, that is,
properties of generalised substitutions. Of these, (GS1) is relevant only when
the definitions of frame(S) and [S] are given at a syntactic level — they must
then be well-defined at the semantic level. Here we are working at the semantic
level. Condition (GS3) in effect says that a generalised substitution has no effect
outside its frame. However, we look at condition (GS2) which says that a gener-
alised substitution [S] distributes through all non-empty conjunctions (of post-
conditions): we prove this as wp_tc_gen_conj. Given a predicate transformer T ,
the result ACNF_tc enables us to determine the generalised substitution C such
that, if T is a weakest precondition, then T = [C]. This gives us the definition
gs_of_pt_def and the theorem gs_of_pt. We then prove (as pt_gc_gs) that if
T is any predicate transformer satisfying the non-empty conjunctivity condition,
then T = [gs of pt T]. That is, the generalised substitutions correspond to the
predicate transformers satisfying the non-empty conjunctivity condition.

wp_tc_gen_conj = "Q : Qs ==>
wp_tc C (%s. ALL Q:Qs. Q s) s = (ALL Q:Qs. wp_tc C Q s)"

gs_of_pt_def = "gs_of_pt T == precon_tc (T (%s. True))
(at_tc (%s’. guard_tc (Not o T (%st. st ~= s’)) (%s. Term {s’})))"

gs_of_pt = "T = wp_tc C ==> C = gs_of_pt T"
pt_gc_gs = "[| ALL Q Qs s. Q : Qs --> conj_pt T Qs s;
C = gs_of_pt T |] ==> T = wp_tc C"

3.9 Properties of Substitutions

We proved the results of Proposition 1 of [8, §10.2], and of Proposition 2 (shown).

trm_or_prd_tc = "trm_tc S s | prd_tc s’ S s"
prd_tc_imp_fis = "prd_tc s’ S ---> fis_tc S"
fis_or_wp_tc = "fis_tc S s | wp_tc S Q s"
wp_imp_trm_tc = "wp_tc S Q ---> trm_tc S"

Our Isabelle proofs of other results of Dunne [8] are listed in the Appendix.

68 J.E. Dawson

4 Frames and Variable Names

So far, we have viewed a command as a function from a state to either NonTerm
or a set of new states, and a condition as a predicate on states. In this treatment,
the view of a state was abstract. However, as in [6, §4], we also need to discuss
frames, and the values of program variables.

In our Isabelle model, as in [6, §4], the program variable names are of type ’n
(eg, strings) and they take values of type ’v, where ’n and ’v are Isabelle type
variables. As a state is an assignment of variables to values, we have the type
definition state = name → value, or, in Isabelle, state = "’n => ’v".

In Dunne’s formulation [7, §7], each generalised substitution comes decorated
with a frame, and the frame of the new command is defined individually for each
generalised substitution constructor: for example

frame (A�B) = frame (A||B) = frame(A) ∪ frame(B)

However we are unable to give an exact semantic meaning to the frame in a
similar sense to the meaning we have given to commands so far. The frame
may be thought of as a set of variables “potentially” set by a command, but
it can be larger than the set of variables actually set by the command. The
frame may be smaller than the set of variables read by the command, and two
commands which have the same operational behaviour can have different frames.
This means that whereas we can deduce the weakest precondition of a generalised
substitution from its operational behaviour, we cannot deduce its frame. (We
could confirm that it does not change variables outside its defined frame, but
this seems straightforward, and we have not done it in Isabelle).

Certain of Dunne’s results involving frames can be seen to follow easily from
the results earlier which treat the state abstractly. Thus, to see Proposition 4 in
its full generality, you consider the state as consisting of only the variables in the
frame, and apply the theorem ACNF_tc. Similarly to get Dunne’s characterisation
of the lub of two generalised substitutions with the same frame u, you just apply
lub_tc to the state consisting only of the variables in u.

We now describe how to express some of Dunne’s other results involving
frames, and prove them. The condition x\Q is defined to mean that no variable
of x appears free in Q. Since we view Q semantically rather than syntactically,
we defined indep x Q to be the condition that changing the value, in a state
s, of a variable in x does not change Q s. In proving these results we also rely
on the fact that a generalised substitution S does not change variables outside
frame(S). So we defined frame_tc S F to mean that F could be the frame of S,
ie, that S does not change variables outside F . In this way we proved the frame
circumscription result [8, §10.1, (GS3)], and [8, Proposition 3].

Note that (Q V R) s ≡ Q s ∨R s and (Q && R) s ≡ Q s ∧R s.

GS3 = "[| frame_tc S F; indep F Q |] ==>
wp_tc S Q s = (trm_tc S s & (fis_tc S s --> Q s))"

prop3 = "[| frame_tc S F; indep F R |] ==>
wp_tc S (Q V R) = (wp_tc S Q V trm_tc S && R)"

Formalising Generalised Substitutions 69

5 Conclusion

We have formalised a computational model suggested by the notion of total
correctness underlying the B method, and have proposed definitions for the
generalised substitution operators in terms of this model. We have shown that
this model and these definitions do in fact imply the characterisations of these
operators in terms of weakest preconditions. We have proved these results in
Isabelle [5], and have also proved the other results of Dunne in [8] (although not
dealing explicitly with frames). Thus we have used formal verification to confirm
a body of theory underlying a widely used program development methodology.

We have shown how the computational model is derived from a compound
monad, and have compared this model and monad with those arising from
Dunne’s theory of abstract commands in [7]. We have shown how the monad
arises from a distributive law, which is in fact a monad morphism.

Acknowledgements. Finally, I would like to thank Steve Dunne and some anony-
mous referees for some very helpful comments.

References

1. Abrial, J.-R.: The B-Book: Assigning Programs to Meanings. CUP, Cambridge
(1996)

2. Barr, M., Wells, C.: Toposes, Triples and Theories. Springer, Heidelberg (1983),
http://www.cwru.edu/artsci/math/wells/pub/ttt.html

3. Chartier, P.: Formalisation of B in Isabelle/HOL. In: Bert, D. (ed.) B 1998. LNCS,
vol. 1393, pp. 66–83. Springer, Heidelberg (1998)

4. Dawson, J.E.: Compound Monads and the Kleisli Category (unpublished note),
http://users.rsise.anu.edu.au/~jeremy/pubs/cmkc/

5. Dawson, J.E.: Isabelle files,
http://users.rsise.anu.edu.au/~jeremy/isabelle/fgc/

6. Dawson, J.E.: Formalising General Correctness. In: ENTCS. Computing: The Aus-
tralasian Theory Symposium, vol. 91, pp. 21–42 (2004), http://www.elsevier.
com/locate/entcs

7. Dunne, S.: Abstract Commands: A Uniform Notation for Specifications and Imple-
mentations. In: ENTCS. Computing: The Australasian Theory Symposium, vol. 42,
pp. 104–123 (2001), http://www.elsevier.com/locate/entcs

8. Dunne, S.: A Theory of Generalised Substitutions. In: Bert, D., Bowen, J.P., Hen-
son, M.C., Robinson, K. (eds.) B 2002 and ZB 2002. LNCS, vol. 2272, pp. 270–290.
Springer, Heidelberg (2002)

9. Jones, M.P., Duponcheel, L.: Composing Monads. Research Report
YALEU/DCS/RR-1004, Yale University (December 1993)

10. Wadler, P.: The Essence of Functional Programming. In: POPL’92. Symposium on
Principles of Programming Languages, pp. 1–14 (1992)

http://www.cwru.edu/artsci/math/wells/pub/ttt.html
http://users.rsise.anu.edu.au/~jeremy/pubs/cmkc/
http://users.rsise.anu.edu.au/~jeremy/isabelle/fgc/
http://www.elsevier.com/locate/entcs
http://www.elsevier.com/locate/entcs
http://www.elsevier.com/locate/entcs

Extracting Purely Functional Contents

from Logical Inductive Types

David Delahaye, Catherine Dubois,
and Jean-Frédéric Étienne

CEDRIC/CNAM-ENSIIE, Paris, France
David.Delahaye@cnam.fr, dubois@ensiie.fr,

etien je@auditeur.cnam.fr

Abstract. We propose a method to extract purely functional contents
from logical inductive types in the context of the Calculus of Inductive
Constructions. This method is based on a mode consistency analysis,
which verifies if a computation is possible w.r.t. the selected inputs/out-
puts, and the code generation itself. We prove that this extraction is
sound w.r.t. the Calculus of Inductive Constructions. Finally, we present
some optimizations, as well as the implementation designed in the Coq
proof assistant framework.

1 Introduction

The main idea underlying extraction in proof assistants like Isabelle or Coq is to
automatically produce certified programs in a correct by construction manner.
More formally it means that the extracted program realizes its specification.
Programs are extracted from types, functions and proofs. Roughly speaking, the
extracted program only contains the computational parts of the initial specifica-
tion, whereas the logical parts are skipped. In Coq, this is done by analyzing the
types: types in the sort Set (or Type) are computationally relevant while types in
sort Prop are not. Consequently, inductively defined relations, implemented as
Coq logical inductive types, are not considered by the extraction process because
they are exclusively dedicated to logical aspects. However such constructs are
widely used to describe algorithms. For example, when defining the semantics
of a programming language, the evaluation relation embeds the definition of an
interpreter.

Although inductive relations are not executable, they are often preferred be-
cause it is often easier to define a relational specification than its corresponding
functional counterpart involving pattern-matching and recursion. For example,
in Coq, it is easier to define the relation ”the terms t and u unify with s as a
most general unifier” than defining the function that computes the most general
unifier of t and u if it exists. In this case, the difficulty is to prove the termina-
tion of the function while simultaneously defining it. Moreover, proof assistants
offer many tools to reason about relational specifications (e.g. elimination, in-
version tactics) and the developer may prefer the relational style rather than the

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 70–85, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Extracting Purely Functional Contents 71

functional style, even though recent work (e.g. in Coq, functional induction or re-
cursive definition) provide a better support for defining functions and reasoning
about them.

Based on these observations, our aim is to translate logical inductive speci-
fications into functional code, with an intention close to the one found in the
Centaur [3] project, that is extracting tools from specifications. Another moti-
vation for extracting code from logical inductive specifications is to get means
to execute these specifications (if executable), in order to validate or test them.
Better still, in a formal testing framework, the extracted code could be used as
an oracle to test a program independently written from the specification.

In this paper, we propose a mechanism to extract functional programs from
logical inductive types. Related work has been done on this subject around se-
mantics of programming languages, for example [3,8,1,4,12] and [2] in a more gen-
eral setting. Like [2], our work goes beyond semantic applications, even though it
is a typical domain of applications for such a work. In addition, our extraction is
intended to only deal with logical inductive types that can be turned into purely
functional programs. This is mainly motivated by the fact that proof assistants
providing an extraction mechanism generally produce code in a functional frame-
work. Thus, we do not want to manage logical inductive specifications that would
require backtracking, that is more a Prolog-like paradigm. In that sense, our
work separates from Centaur [3], Petterson’s RML translator [8] and Berghofer
and Nipkow’s approach [2]. The first one translates Typol specifications, which
are inductively defined semantic relations, into Prolog programs. RML is also
a formalism to describe natural semantics of programming languages, and the
corresponding compiler produces C programs that may backtrack if necessary.
Finally, Berghofer and Nipkow’s tool produces code that can compute more than
one solution, if any. We can also mention the use of Maude [12] to animate exe-
cutable operational semantic specifications, where these specifications are turned
into rewriting systems.

To turn an inductive relation into a function that can compute some results,
we need additional information. In particular, we need to know which arguments
are inputs and which arguments are outputs. This information is provided by the
user using the notion of modes. Furthermore, these modes are used to determine
if a functional computation is possible, in which case we say that the mode is
consistent. Otherwise, the functional extraction is not possible and is rejected by
our method. In order to make functional computations possible, some premises
in the types of constructors may have to be reordered. The notion of mode, going
back actually to attribute grammars [1], is fairly standard, especially in the log-
ical programming community. For example, the logical and functional language
Mercury [7] requires mode declarations to produce efficient code. Similar mode
systems have already been described in [4,2,9].

The paper is organized as follows: first, we informally present our extrac-
tion mechanism with the help of some examples; next, we formalize the extrac-
tion method itself (in particular, the mode consistency analysis and the code

72 D. Delahaye, C. Dubois, and J.-F. Étienne

generation) and prove its soundness; finally, we describe our prototype devel-
oped in the Coq proof assistant framework and discuss some optimizations.

2 Informal Presentation

In this section, we present how our functional extraction must work on some
examples. For these examples, we use the Coq framework with, in particular, its
syntax and OCaml [11] as one of its target languages for extraction. Our general
approach is the following:

1. the user annotates his/her logical inductive type with a mode that specifies
which arguments are inputs, the others being considered as outputs;

2. a mode consistency analysis is performed to determine if the extraction is
possible w.r.t. the provided mode;

3. if the previous analysis is successful, the logical definition is translated into
a functional program.

This process may be recursive and may call the regular extraction mechanism
to extract code from functions or proofs.

A mode can be seen as the computational behavior of a logical inductive type.
It is defined as a set of indices denoting the inputs of the relation. For example, let
us consider the predicate add that specifies the addition of two natural numbers,
i.e. given three natural numbers n, m and p, (add n m p) defines that p is the
result of the addition of n and m. This predicate is defined as follows:

Inductive add : nat → nat → nat → Prop :=
| addO : f o ra l l n , add n O n
| addS : f o ra l l n m p , add n m p → add n (S m) (S p) .

The mode {1, 2} indicates that we consider n and m as inputs and we would
like to compute p. The extracted function is the expected one, defined by pattern-
matching on both arguments (actually only the second one is significant):

l e t rec add p0 p1 = match p0 , p1 with
| n , O→ n
| n , S m→ l e t p = add n m in S p
| → assert fa l se

We can also propose to extract a function with the mode {2, 3}. Thus, we
obtain a function that performs subtraction:

l e t rec add p0 p1 = match p0 , p1 with
| n , O→ n
| S p , S m→ add p m
| → assert fa l se

Finally the mode {1, 2, 3}means that the three arguments are known and that
we want to produce a function that checks if the triple constitutes a possible
computation or not (as a boolean result):

Extracting Purely Functional Contents 73

l e t rec add p0 p1 p2 = match p0 , p1 , p2 with
| n , O, m when n = m→ true
| n , S m, S p → add n m p
| → fa l se

However, with the mode {1, 3}, the extraction is refused, not because of the
mode analysis (which succeeds) but because it would produce a function with
two overlapping patterns, (n,n) (obtained from the type of the first constructor
addO) and (n,p) (obtained from the type of the second constructor addS). With
such a configuration, more than one result might be computed and therefore the
function would not be deterministic, which is incompatible with a proper notion
of function. Extraction with modes involving only one input are refused for the
same reason.

As a last example, let us consider a case where constraints are put on the
results, e.g. in the eval plus constructor the evaluation of a1 and a2 must map
to values built from the N constructor:

Inductive Val : Set := N : Z → Val | . . .
Inductive Expr : Set := V : Var → Expr | Plus : Expr → Expr → Expr .

Inductive eva l : Sigma → Expr → Val → Prop :=
| ev a l v : f o ra l l (s : Sigma) (v : Var) , eva l s (V v) (v a l o f s v)
| e v a l p l u s : f o ra l l (s : Sigma) (a1 a2 : Expr) (v w : Z) ,

eva l s a1 (N v) → eva l s a2 (N w) → eva l s (Plus a1 a2) (N (v + w)) .

where Sigma is an evaluation context and valof is a function looking for the value
of a variable in an evaluation context.

With the mode {1, 2}, the extracted function is the following:

l e t rec eva l s e = match s , e with
| s , V v → va l o f s v
| s , Plus (a1 , a2) →

(match eva l s a1 with
| N v →

(match eva l s a2 with
| N w→ N (zp lu s v w)
| → assert fa l se)

| → assert fa l se)

where valof and zplus are respectively the extracted functions from the defini-
tions of valof and the addition over Z.

Regarding mode consistency analysis, detailed examples will be given in the
next section.

3 Extraction of Logical Inductive Types

The extraction is made in two steps: first, the mode consistency analysis tries to
find a permutation of the premises of each inductive clause, which is compatible
w.r.t. the annotated mode; second, if the mode consistency analysis has been

74 D. Delahaye, C. Dubois, and J.-F. Étienne

successful, the code generation produces the executable functional program. Be-
fore describing the extraction method itself, we have to specify which inductive
types we consider and in particular, what we mean exactly by logical inductive
types. We must also precise which restrictions we impose, either to ensure a
purely functional and meaningful extraction, or to simplify the presentation of
this formalization, while our implementation relaxes some of these restrictions
(see Section 5).

3.1 Logical Inductive Types

The type theory we consider is the Calculus of Inductive Constructions (CIC for
short; see the documentation of Coq [10] to get some references regarding the
CIC), i.e. the Calculus of Constructions with inductive definitions. This theory
is probably too strong for what we want to show in this paper, but it is the
underlying theory of the Coq proof assistant, in which we chose to develop the
corresponding implementation. An inductive definition is noted as follows (in-
spired by the notation used in the documentation of Coq):

Ind(d : τ, Γc)

where d is the name of the inductive definition, τ a type and Γc the context rep-
resenting the constructors (their names together with their respective types). In
this notation, two restrictions have been made: we do not deal with parameters1

and mutual inductive definitions. Actually, these features do not involve specific
technical difficulties. Omitting them allows us to greatly simplify the presen-
tation of the extraction, as well as the soundness proof in particular. Also for
simplification reasons, dependencies, higher order and propositional arguments
are not allowed in the type of an inductive definition; more precisely, this means
that τ has the following form:

τ1 → . . . τn → Prop

where τ i is of type Set or Type, and does not contain any product or dependent
inductive type. In addition, we suppose that the types of constructors are in
prenex form, with no dependency between the bounded variables and no higher
order; thus, the type of a constructor is as follows:

∏n
i=1 xi : Xi.T1 → . . . → Tm → (d t1 . . . tp)

where xi 	∈ Xj, Xi is of type Set or Type, Ti is of type Prop and does not contain
any product or dependent inductive type, and ti are terms. In the following,
the terms Ti will be called the premises of the constructor, whereas the term
(d t1 . . . tp) will be called the conclusion of the constructor. We impose the
additional constraint that Ti is a fully applied logical inductive type, i.e. Ti has
the following form:

1 In CIC, parameters are additional arguments, which are shared by the type of the
inductive definition (type τ) and the types of constructors (defined in Γc).

Extracting Purely Functional Contents 75

di ti1 . . . tipi

where di is a logical inductive type, tij are terms, and pi is the arity of di.
An inductive type verifying the conditions above is called a logical inductive

type. We aim to propose an extraction method for this kind of inductive types.

3.2 Mode Consistency Analysis

The purpose of the mode consistency analysis is to check whether a functional
execution is possible. It is a very simple data-flow analysis of the logical inductive
type. We require the user to provide a mode for the considered logical inductive
type, and recursively for each logical inductive type occurring in this type.

Given a logical inductive type I, a mode md is defined as a set of indices
denoting the inputs of I. The remaining arguments are the output arguments.
Thus, md ⊆ {1, . . . , aI}, where aI is the arity of I. Although a mode is defined
as a set, the order of the inputs in the logical inductive type is relevant. They
will appear in the functional translation in the same order.

In practice, it is often the case to use the extraction with, either a mode
corresponding to all the arguments except one, called the computational mode, or
a mode indicating that all the arguments are inputs, called the fully instantiated
mode. The formalization below will essentially deal with these two modes with
no loss of generality (if more than one output is necessary, we can consider that
the outputs are gathered in a tuple).

In order to make functional computations possible, some premises in a con-
structor may have to be reordered. It will be the case when a variable appears
first in a premise as an input and as an output in another premise written after-
wards. For a same logical inductive type, some modes may be possible whereas
some others may be considered inconsistent. Different mode declarations give
different extracted functions.

Given M, the set of modes for I and recursively for every logical inductive
type occurring in I, a mode md is consistent for I w.r.t. M iff it is consistent
for Γc (i.e. all the constructors of I) w.r.t. M. A mode md is consistent for
the constructor c of type Πn

i=1xi : Xi.T1 → . . . → Tn → T w.r.t. M, where
T = d t1 . . . tp, iff there exist a permutation π and the sets of variables Si, with
i = 0 . . .m, s.t.:

1. S0 = in(md, T);
2. in(mπj , Tπj) ⊆ Sj−1, with 1 ≤ j ≤ m and mπj = M(name(Tπj));
3. Sj = Sj−1 ∪ out(mπj , Tπj), with 1 ≤ j ≤ m and mπj = M(name(Tπj));
4. out(md, T) ⊆ Sm.

where name(t) is the name of the logical inductive type applied in the term t
(e.g. name(add n (S m) (S k)) = add), in(m, t) the set of variables occur-
ring in the terms designated as inputs by the mode m in the term t (e.g.
in({1, 2}, (add n (S m) (S k))) = {n,m}), and out(m, t) the set of variables
occurring in the terms designated as outputs by the mode m in the term t (e.g.
out({1, 2}, (add n (S m) (S k))) = {k}).

76 D. Delahaye, C. Dubois, and J.-F. Étienne

The permutation π denotes a suitable execution order for the premises. The set
S0 denotes the initial set of known variables and Sj the set of known variables
after the execution of the πjth premise (when Tπ1, Tπ2, . . . , Tπj have been
executed in this order). The first condition states that during the execution of T
(for the constructor c) with the mode md, the values of all the variables used in
the terms designated as inputs have to be known. The second condition requires
that the execution of a premise Ti with a mode mi will be performed only if the
input arguments designated by the mode are totally computable. It also requires
that mi is a consistent mode for the logical inductive type related to Ti (we have
constrained Ti in the previous section to be a fully applied logical inductive
type). According to the third condition, all the arguments of a given premise Ti

are known after its execution. Finally, a mode md is said to be consistent for c
w.r.t. M if all the arguments in the conclusion of c (i.e. T) are known after the
execution of all the premises.

We have imposed some restrictions on the presence of functions in the terms
appearing in the type of a constructor. To relax these conditions, such as ac-
cepting functions in the output of the premises (see Section 5), in the step j,
we should verify that the function calls are computable, that is to say their
arguments only involve known variables (belonging to Sj−1).

To illustrate the mode consistency analysis, let us consider the logical induc-
tive type that specifies the big step semantics of a small imperative language.
The evaluation of commands is represented by the relation s �c i : s′, which
means that the execution of the command i in the store s leads to the final store
s′. This relation has the type store → command→ store → Prop, where store
and command are the corresponding types for stores and imperative commands.
For example, the types of the constructors for the while loop are the following:

while1 : (s �e b : true) → (s �c i : s′)→ (s′ �c while b do i : s′′)→
(s �c while b do i : s′′)

while2 : (s �e b : false)→ (s �c while b do i : s)

where given a store s, an expression t and a value v, s �e t : v represents the
evaluation of expressions, i.e. the expression t evaluates to v in the store s. For
clarity reasons, we do not indicate the universally quantified variables, which are
the stores s, s′ and s′′, the expression b and the command i.

If the mode {1, 2} is consistent for �e then the mode {1, 2} is consistent for
both while constructors of �c. But considering the typing relation of the simply
typed λ-calculus Γ � t : τ , denoting that t is of type τ in context Γ and where
Γ is a typing context, t a term and τ a type, the mode {1, 2} is not consistent
for this relation. Actually, this mode is not consistent for the typing of the ab-
straction; the type τ1 in the premise, considered here as an input, is not known
at this step (τ1 /∈ S0):

abs : (Γ , (x : τ1) � e : τ2)→ (Γ � λx.e : τ1 → τ2)

In the following, we will ignore the permutation of the premises and will
assume that all the premises are correctly ordered w.r.t. to the provided mode.

Extracting Purely Functional Contents 77

3.3 Code Generation

The functional language we consider as target for our extraction is defined as
follows (mainly a functional core with recursion and pattern-matching):

e ::= x | cn | Cn | fail | if e1 then e2 else e3 | e1 e2 | fun x→ e
| rec f x→ e | let x = e1 in e2 | (e1, . . . , en)
| match e with | gpat1→ e1 . . . | gpatn→ en

gpat ::= pat | pat when e

pat ::= x | Cn | Cn pat | (pat1, . . . , patn) |

where cn is a constant of arity n, to be distinguished from Cn, a constructor of
arity n. Both constants and constructors are uncurrified and fully applied. More-
over, we use the notations e1 e2 . . . en for ((e1 e2) . . . en), and fun x1 . . . xn→ e
for fun x1→ . . . fun xn→ e (as well as for rec functions).

Given I = Ind(d : τ, Γc), a logical inductive type, well-typed in a context Γ ,
and M, the set of modes for I and recursively for every logical inductive type
occurring in I, we consider that each logical inductive type is ordered according
to its corresponding mode (with the output, if required, at the last position), i.e.
if the mode of a logical inductive type J is M(J) = {n1, . . . , nJ}, then the nth

1

argument of J becomes the first one and so on until the nth
J argument, which

becomes the cth
J one, with cJ = card(M(J)). The code generation for I, denoted

by �I�Γ,M, begins as follows (we do not translate the type τ of I in Γ since this
information is simply skipped in the natural semantics we propose for the target
functional language in Section 4):

�I�Γ,M =
{

fun p1 . . . pcI→ �Γc�Γ,M,P , if d 	∈ Γc,
rec d p1 . . . pcI→ �Γc�Γ,M,P , otherwise

where cI = card(M(I)) and P = {p1, . . . , pcI}.
Considering Γc = {c1, . . . , cn}, the body of the function is the following:

�Γc�Γ,M,P = match (p1, . . . , pcI) with
| �c1�Γ,M
| . . .
| �cn�Γ,M
| → defaultI,M

where defaultI,M is defined as follows:

defaultI,M =
{

false, if cI = aI ,
fail, if cI = aI − 1

where cI = card(M(I)) and aI is the arity of I.
The translation of a constructor ci is the following (the name of ci is skipped

and only its type is used in this translation):

78 D. Delahaye, C. Dubois, and J.-F. Étienne

�ci�Γ,M = �
∏ni

j=1 xij : Xij .Ti1 → . . . → Timi → (d ti1 . . . tipi)�Γ,M

=

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(�ti1�, . . . , �ticI �) → �Ti1 → . . . → Timi�Γ,M,contI,M ,
if ti1, . . . , ticI are linear,

(�σi(ti1)�, . . . , �σi(ticI)�) when guard(σi) →
�Ti1 → . . . → Timi�Γ,M,contI,M , otherwise

where σi is a renaming s.t. σi(ti1), . . . , σi(ticI) are linear, guard(σi) is the cor-
responding guard, of the form xij1 = σi(xij1) and . . . and xijk

= σi(xijk
), with

dom(σi) = {xij1 , . . . , xijk
} and 1 ≤ jl ≤ ni, l = 1 . . . k, and contI,M is defined

as follows:

contI,M =
{

true, if cI = aI ,
�tipi�, if cI = aI − 1

The terms ti1, . . . , ticI must only contain variables and constructors, while tipi

(if cI = aI−1) can additionally contain symbols of functions. The corresponding
translation is completely isomorphic to the structure of these terms and uses the
regular extraction, presented in [6]. Moreover, we consider that the terms tik and
tjk are not unifiable, for i, j = 1 . . . n and k = 1 . . . cI (otherwise, a functional
extraction may not be possible, i.e. backtracking is necessary or there are several
results).

The right-hand side of the pattern rules is generated with the following scheme:

�Tij → . . . → Timi�Γ,M,contI,M =
⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

contI,M, if j > mi,

if �dij tij1 . . . tijcij � then �Ti(j+1) → . . . → Timi�Γ,M,contI,M

else defaultI,M, if j ≤ mi and cij = aij ,

match �dij tij1 . . . tijcij � with
| �tijaij � → �Ti(j+1) → . . . → Timi�Γ,M,contI,M

| → defaultI,M, if j ≤ mi and cij = aij − 1

where Tij = dij tij1 . . . tijaij , aij is the arity of dij and cij = card(M(Γ (dij))). We
consider that the term tijaij is linear and does not contain computed variables
or symbols of functions when cij = aij − 1 (in this way, no guard is required in
the produced pattern).

4 Soundness of the Extraction

Before proving the soundness of the extraction of logical inductive types, we need
to specify the semantics of the functional language we chose as a target for our
extraction and presented in Section 3. To simplify, we adopt a pure Kahn style
big step natural semantics (with call by value) and we introduce the following
notion of value:

v ::= c0 | C0 | ΔC | fail | <x � e,Δ> | <x � e,Δ>rec(f) | (v1, . . . , vn)

Extracting Purely Functional Contents 79

where Δ is an evaluation context, i.e. a list of pairs (x, v), and ΔC is a set of
values of the form Cn (v1, . . . , vn). In addition, we introduce a set Δc of tuples
of the form (cn, v1, . . . , vn, v), with n > 0.

An expression e evaluates to v in an environment Δ, denoted by the judgment
Δ � e � v, if and only if there exists a derivation of this judgment in the system
of inference rules described in Appendix 6 (to save space, we do not include the
corresponding error rules returning fail).

Given I, a logical inductive type, well-typed in a context Γ , and M, the set
of modes for I and recursively for every logical inductive type occurring in I, we
introduce the translation (and evaluation) of the context Γ w.r.t. the logical in-
ductive type I and the set of modesM. A context is a set of assumptions (x : τ),
definitions (x : τ := t) and inductive definitions Ind(d : τ, Γc), where x and d
are names, τ a type, t a term and Γc the set of constructors. The translation
of Γ w.r.t. I and M, denoted by �Γ �I,M, consists in extracting and evaluat-
ing recursively each assumption, definition or inductive definition occurring in I
(thus, this translation provides an evaluation context). For assumptions, defini-
tions and inductive definitions which are not logical inductive types, we use the
regular extraction, presented in [6]. Regarding logical inductive types, we apply
the extraction described previously in Section 3.

The soundness of our extraction is expressed by the following theorem:

Theorem (Soundness). Given I = Ind(d : τ, Γc), a logical inductive type,
well-typed in a context Γ , and M, the set of modes for I and recursively for
every logical inductive type occurring in I, we have the two following cases:

– cI = aI : if �Γ �I,M � �I�Γ,M �t1� . . . �tcI � � true then the statement
Γ � d t1 . . . tcI is provable;

– cI = aI − 1: if �Γ �I,M � �I�Γ,M �t1� . . . �tcI � � v 	= fail then there exists t s.t.
�t� = v and the statement Γ � d t1 . . . tcI t is provable.

where cI = card(M(I)), aI is the arity of I, and t1 . . . tcI , t are terms.

Proof. The theorem is proved by induction over the extraction. We suppose that
Δ � �I�Γ,M �t1� . . . �tcI � � v, with Δ = �Γ �I,M and either v = true if cI = aI , or
v 	= fail if cI = aI − 1. Using the definition of �I�Γ,M given in Section 3 and the
rules of Appendix 6, this expression is evaluated as follows:

Δ � �I�Γ,M �

{

<p1 . . . pcI � �Γc�Γ,M,P , Δ>, if d 	∈ Γc,
<p1 . . . pcI � �Γc�Γ,M,P , Δ>rec(d) = c, otherwise

where P = {p1, . . . , pcI}.
The arguments are also evaluated: Δ � �t1� � v1, . . . , Δ � �tcI � � vcI . Using

the definition of �Γc�Γ,M,P , we have the following evaluation:

Δb �

⎛

⎜

⎜

⎜

⎜

⎝

match (v1, . . . , vcI) with
| �c1�Γ,M
| . . .
| �cn�Γ,M
| → defaultI,M

⎞

⎟

⎟

⎟

⎟

⎠

� v

80 D. Delahaye, C. Dubois, and J.-F. Étienne

where Δb is defined as follows:

Δb =
{

Δ, (p1, v1), . . . , (pcI , vcI), if d 	∈ Γc,
Δ, (d, c), (p1, v1), . . . , (pcI , vcI), otherwise

We know that either v = true or v 	= fail (according to cI); this means that
there exists i s.t. the pattern of �ci�Γ,M matches the value (v1, . . . , vcI). Using
the definition of �ci�Γ,M, we have to evaluate:

Δp � �Ti1 → . . . → Timi�Γ,M,contI,M � v (1)

with Δp = Δb, Δi, where Δi has the following form (by definition of filterΔb
):

Δi =
{

mguΔb
(vt, (�ti1�, . . . , �ticI �)), if ti1, . . . , ticI are linear

mguΔb
(vt, (�σi(ti1)�, . . . , �σi(ticI))), otherwise

where vt = (v1, . . . , vcI). In addition, we have Δp � guard(σi) � true if ti1, . . . , ticI

are not linear.
The reduction of our extraction language is weaker than the one defined for

CIC; in particular, this means that we have: given Δ = �Γ �I,M, a term t and
a value v 	= fail, if Δ � �t� � v then there exists a term t′ s.t. �t′� = v and
Γ � t ≡ t′, where ≡ is the convertibility relation for CIC. Moreover, considering
Δ = �Γ �I,M, a term t and a value v 	= fail, if σ = mguΔ(v, �t�) then there exist
t′ and σ̄ s.t. �t′� = v, dom(σ̄) = dom(σ), �σ̄(x)� = σ(x) for all x ∈ dom(σ̄), and
σ̄ = mguΓ (t′, t). Using these two remarks, there exists Δ̄i as described above
s.t.:

Γ � Δ̄i(d ti1 . . . ticI) ≡ (d t1 . . . tcI) (2)

Note that we can consider Δb = Δ, since the variables pi, i = 1 . . . cI , do not
occur in I; actually, these variables are just used for the curryfication of �I�Γ,M.
Note also that this unification between (d ti1 . . . ticI) and (d t1 . . . tcI) may be
total or partial according to cI (if cI = aI or cI = aI − 1).

Regarding the arguments of ci, we have to consider another property: given
a context Δa, if Δp, Δa � �Ti1 → . . . → Timi�Γ,M,contI,M � v then there ex-
ists a context Δ′

a ⊇ Δa s.t. Γ � Δ̄′
aΔ̄iTij is provable for j = 1 . . .mi, and

Δp, Δ
′
a � contI,M � v. This property is proved by induction over the product

type. Using the definition of �Ti1 → . . . → Timi�Γ,M, we have three cases:

– j > mi: Δp, Δa � contI,M � v and Δ′
a = Δ.

– j ≤ mi, cij = aij :

Δp, Δa �

⎛

⎝

if �dij tij1 . . . tijcij � then
�Ti(j+1) → . . . → Timi�Γ,M,contI,M

else defaultI,M

⎞

⎠ � v

Since either v = true or v 	= fail, we have Δp, Δa � �dij tij1 . . . tijcij � � true
and the then branch is selected. By hypothesis of induction (over the sound-
ness theorem), this means that Γ � Δ̄aΔ̄iTij is provable. Next, we have the
evaluation Δp, Δa � �Ti(j+1) → . . . → Timi�Γ,M,contI,M � v and by hypoth-
esis of induction, there exists Δ′

a ⊇ Δa s.t. Γ � Δ̄′
aΔ̄iTik is provable for

Extracting Purely Functional Contents 81

k = j + 1 . . .mi, and Δp, Δ
′
a � contI,M � v. As Δ′

a ⊇ Δa, Γ � Δ̄′
aΔ̄iTij is

also provable.

– j ≤ mi, cij = aij − 1:

Δp, Δa �

⎛

⎝

match �dij tij1 . . . tijcij � with
| �tijaij � → �Ti(j+1) → . . . → Timi�Γ,M,contI,M

| → defaultI,M

⎞

⎠ � v

Since either v = true or v 	= fail, we have Δp, Δa � �dij tij1 . . . tijcij ��v
′ 	= fail

and the pattern �tijaij � matches v′. By hypothesis of induction (over the
soundness theorem), this means that Γ � Δ̄aΔ̄iTij is provable. Next, we
have the evaluation Δp, Δ

′
p � �Ti(j+1) → . . . → Timi�Γ,M,contI,M � v, with

Δ′
p = Δa, Δm and Δm = mguΔp,Δa

(v′, �tijaij �). By hypothesis of induction,
there exists Δ′

a ⊇ Δ′
p s.t. Γ � Δ̄′

aΔ̄iTik is provable for k = j + 1 . . .mi, and
Δp, Δ

′
a � contI,M � v. As Δ′

a ⊇ Δ′
p, Γ � Δ̄′

aΔ̄iTij is also provable.

Using (1), (2) and the above property (with the empty context for Δa), there
exists a context Δ′

i s.t. Γ � Δ̄′
iΔ̄iTij is provable for j = 1 . . .mi,

Γ � Δ̄′
iΔ̄i(d ti1 . . . ticI) ≡ (d t1 . . . tcI) and Δp, Δ

′
i � contI,M � v. We distin-

guish two cases:

– cI = aI : contI,M = true and the constructor ci can be directly applied to
prove Γ � d t1 . . . tcI .

– cI = aI−1: we have Δp, Δ
′
i � �tipi��v. There exists a term t′ipi

s.t. �t′ipi
� = v

and Γ � Δ̄′
iΔ̄itipi ≡ t′ipi

. Thus, Γ � Δ̄′
iΔ̄i(d ti1 . . . ticI tipi) ≡ (d t1 . . . tcI t

′
ipi

)
and the constructor ci can be applied to prove Γ � d t1 . . . tcI t′ipi

.

5 Implementation and Optimizations

5.1 Implementation

A prototype has been implemented and integrated to the Coq [10] proof assistant.
This implementation follows what has been described in Section 3 and is plugged
into the regular extraction mechanism of Coq so that it can produce code for the
same (functional) languages, i.e. OCaml, Haskell and Scheme. As an example, let
us consider the addition predicate presented in Section 2 with an extraction to
the OCaml language [11]:

Coq < Inductive add : nat → nat → nat → Prop :=
Coq < | addO : f o ra l l n , add n O n
Coq < | addS : f o ra l l n m p , add n m p → add n (S m) (S p) .

Coq < Extraction Logical add [1 2] .
(∗ ∗ va l add : nat → nat → nat ∗ ∗)

l e t rec add p0 p1 =
match (p0 , p1) with

82 D. Delahaye, C. Dubois, and J.-F. Étienne

| (n , O) → n
| (n , S m) → l e t p = add n m in S p
| → assert fa l se

This implementation should be part of the forthcoming version of Coq, and
currently, the development in progress is available on demand (sending a mail
to the authors).

5.2 Optimizations

Conclusion inputs. In Section 3, we described the translation of a logical in-
ductive type when rules do not overlap, that is when the types of the conclusions
do not unify. However, we can implement some heuristics to overcome some of
these cases. Let us consider the example of the while loop, seen in Section 3:

Inductive exec : s t o r e → command → s t o r e → Prop := . . .
| whi le1 : f o ra l l (s s1 s2 : Sigma) (b : expr) (c : command) ,

(eva l s b t rue) → (exec s c s1) → (exec s1 (whi le b do c) s2) →
(exec s (whi le b do c) s2)

| whi le2 : f o ra l l (s : Sigma) (b : expr) (c : command) , (eva l s b f a l s e) →
(exec s (whi le b do c) s) .

These two constructors overlap: the types of their conclusion are identical
up to renaming. A Prolog-like execution would try to apply the first rule by
computing the evaluation of the boolean expression b and matching it with the
value true. If the matching fails, the execution would backtrack to the second
rule. However, in this case, the execution is completely deterministic and no
backtracking is necessary. In fact, we can discriminate the choice between both
constructors thanks to their first premise. We introduce a heuristic to handle
such cases efficiently. It requires the ability to detect common premises between
both overlapping rules and to discriminate w.r.t. syntactic exclusive premises (p
and ¬p, values constructed with different constructors of an inductive type, for
example).

For the while loop example, the extracted function with the mode {1, 2} in-
volves only one case in the global pattern-matching to be able to handle correctly
the execution:

l e t rec exec s c = match s , c with . . .
| s , while (b , c) →

(match (eva l s b) with
| true → s
| fa l se →

l e t s1 = exec s c in
let s2 = exec s1 (while (b , c)) in s2)

Premise outputs. In the formalization, we also assumed that the outputs
of the premises do not contain computed variables. Consequently, we cannot
translate rules where constraints exist on these outputs, which is the case for
the following constructor that describes the typing of a conditional expression
in a logical inductive type named typecheck, when the mode {1, 2} is specified:

Extracting Purely Functional Contents 83

Inductive typecheck : env → expr → type → Prop := . . .
| i f : f o ra l l (g : env) (b , e1 , e2 : expr) (t : type) ,

(typecheck g b bool) → (typecheck g e1 t) → (typecheck g e2 t) →
(typecheck g (i f b then e1 else e2) t) .

There is no difficulty to adapt the translation for such cases. Once the non-
linearity between premise outputs has been detected, we use fresh variables and
guards as follows:

l e t rec typecheck g e = match g , e with . . .
| g , i f (b , e1 , e2) →

(match typecheck g b with
| bool → l e t t = typecheck g e1 in

(match typecheck g e2 with
| t ’ when t ’ = t → t
| → assert fa l se)

| → assert fa l se)

In the same way, it is also possible to deal with nonlinearity or symbols of
functions in the output of a premise.

6 Conclusion

In this paper, we have presented an extraction mechanism in the context of CIC,
which allows us to derive purely functional code from relational specifications
implemented as logical inductive types. The main contributions are the formal-
ization of the extraction itself (as a translation function) and the proof of its
soundness. In addition, a prototype has been implemented and integrated to the
Coq proof assistant, whereas some optimizations (relaxing some limitations) are
under development.

Regarding future work, we have several perspectives. First, we aim to prove
the completeness of our extraction (the mode consistency analysis should be
used in this proof). Concerning our implementation, the next step is to manage
large scale specifications, with, for example, the extraction of an interpreter from
a development of the semantics of a programming language (in Coq, there are
many developments in this domain). Another perspective is to adapt our mech-
anism to produce Coq functions, taking benefit from the new facilities offered
by Coq to define general recursive functions [10]. These new features rely on the
fact that the user provides a well-founded order establishing the termination of
the described function. Provided the mode and this additional information, we
could extract a Coq function from a logical inductive type, at least for a large
class of logical inductive types (e.g. first order unification, strongly normaliz-
able calculi, etc). Finally, the mode consistency analysis should be completed by
other analyses like determinism or termination. The logical programming com-
munity has investigated abstract interpretation to check this kind of operational
properties [5]. Similar analyses could be reproduced in our case. We could also
benefit from results coming from term rewriting system tools.

84 D. Delahaye, C. Dubois, and J.-F. Étienne

References

1. Attali, I., Parigot, D.: Integrating Natural Semantics and Attribute Grammars: the
Minotaur System. Technical Report 2339, INRIA (1994)

2. Berghofer, S., Nipkow, T.: Executing Higher Order Logic. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40.
Springer, Heidelberg (2002)

3. Borras, P., Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual,
V.: Centaur: the System. ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environments (PSDE) 24(2), 14–24
(1988)

4. Dubois, C., Gayraud, R.: Compilation de la sémantique naturelle vers ML. In: Weis,
P. (ed.) Journées Francophones des Langages Applicatifs (JFLA), Morzine-Avoriaz
(France) (February 1999)

5. Hermenegildo, M.V., Puebla, G., Bueno, F., López-Garćıa, P.: Integrated Program
Debugging, Verification, and Optimization using Abstract Interpretation (and the
Ciao System Preprocessor. Science of Computer Programming 58(1-2), 115–140
(2005)

6. Letouzey, P.: A New Extraction for Coq. In: Geuvers, H., Wiedijk, F. (eds.) TYPES
2002. LNCS, vol. 2646, pp. 200–219. Springer, Heidelberg (2003)

7. Overton, D., Somogyi, Z., Stuckey, P.J.: Constraint-based Mode Analysis of Mer-
cury. In: Principles and Practice of Declarative Programming (PPDP), Pittsburgh
(PA, USA), October 2002, pp. 109–120. ACM Press, New York (2002)

8. Pettersson, M.: A Compiler for Natural Semantics. In: Gyimóthy, T. (ed.) CC 1996.
LNCS, vol. 1060, pp. 177–191. Springer, Heidelberg (1996)

9. Stärk, R.F.: Input/Output Dependencies of Normal Logic Programs. Journal of
Logic and Computation 4(3), 249–262 (1994)

10. The Coq Development Team: Coq, version 8.1. INRIA (November 2006), available
at: http://coq.inria.fr/

11. The Cristal Team: Objective Caml, version 3.09.3. INRIA (September 2006), avail-
able at: http://caml.inria.fr/

12. Verdejo, A., Mart́ı-Oliet, N.: Executable Structural Operational Semantics in
Maude. Journal of Logic and Algebraic Programming 67(1-2), 226–293 (2006)

http://coq.inria.fr/
http://caml.inria.fr/

Extracting Purely Functional Contents 85

Appendix A: Semantic Rules of the Extraction Language

(x, v) ∈ Δ
VarΔ � x � v failΔ � fail � fail

const0
Δ � c0 � c0

constr0
Δ � C0 � C0

Δ � e1 � v1 . . . Δ � en � vn (cn, v1, . . . , vn, v) ∈ Δc constnΔ � cn (e1, . . . , en) � v

Δ � e1 � v1 . . . Δ � en � vn Cn (v1, . . . , vn) ∈ ΔC constrnΔ � Cn (e1, . . . , en) � Cn (v1, . . . , vn)

Δ � e1 � true Δ � e2 � v2 iftrueΔ � if e1 then e2 else e3 � v2

Δ � e1 � false Δ � e3 � v3 iffalseΔ � if e1 then e2 else e3 � v3

funΔ � fun x→ e � <x � e,Δ>
rec

Δ � rec f x→ e � <x � e,Δ>rec(f)

Δ � e1 � v1 Δ, (x, v1) � e2 � v2 letΔ � let x = e1 in e2 � v2

Δ � e1 � v1 . . . Δ � en � vn Tuple
Δ � (e1, . . . , en) � (v1, . . . , vn)

Δ � e1 � <x � e3, Δ> Δ � e2 � v2 Δ, (x, v2) � e3 � v3 App
Δ � e1 e2 � v3

Δ � e1 � <x � e3, Δ>rec(f) = c Δ � e2 � v2

Δ, (f, c), (x, v2) � e3 � v3 ApprecΔ � e1 e2 � v3

Δ � e � v filterΔ(v, gpati) = Δi

filterΔ(v, gpatj) = fail, 1 ≤ j < i Δ,Δi � ei � vi matchΔ � match e with | gpat1→ e1 . . . | gpatn→ en � vi

with filterΔ(v, gpat) =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

Δp, if gpat = pat and mguΔ(v, pat) = Δp,
Δp, if gpat = pat when e, mguΔ(v, pat) = Δp,

and Δ,Δp � e � true,
fail, otherwise

A Modular Formalisation of Finite Group

Theory�

Georges Gonthier1, Assia Mahboubi2, Laurence Rideau3,
Enrico Tassi4, and Laurent Théry3

1 Microsoft Research
2 Microsoft Research - Inria Joint Center

3 INRIA
4 University of Bologna

gonthier@microsoft.com, tassi@cs.unibo.it
{Assia.Mahboubi,Laurent.Rideau,Laurent.Thery}@inria.fr

Abstract. In this paper, we present a formalisation of elementary group
theory done in Coq. This work is the first milestone of a long-term effort
to formalise the Feit-Thompson theorem. As our further developments
will heavily rely on this initial base, we took special care to articulate it
in the most compositional way.

1 Introduction

Recent works such as [2,8,9,19] show that proof systems are getting sufficiently
mature to formalise non-trivial mathematical theories. Group theory is a domain
of mathematics where computer proofs could be of real added value. This domain
was one of the first to publish very long proofs. The first and most famous
example is the Feit-Thompson theorem, which states that every odd order group
is solvable. Its historical proof [7] is 255 pages long. That proof has later been
simplified and re-published [5,18], providing a better understanding of local parts
of the proof. Yet its length remains unchanged, as well as its global architecture.
Checking such a long proof with a computer would clearly increase the confidence
in its correctness, and hopefully lead to a further step in the understanding of
this proof. This paper addresses the ground work needed to start formalising
this theorem.

There have been several attempts to formalise elementary group theory using
a proof assistant. Most of them [1,12,23] stop at the Lagrange theorem. An
exception is Kammüller and Paulson [13] who have formalised the first Sylow
theorem. The originality of our work is that we do not use elementary group
theory as a mere example but as a foundation for further formalisations. It is
then crucial for our formalisation to scale up. We have therefore worked out a
new development, with a strong effort in proof engineering.

First, we reuse the SSReflect extension of the Coq system [14] developed
by Gonthier for his proof of the Four Colour theorem. This gives us a library
� This work was supported by the Microsoft Research - Inria Joint Center.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 86–101, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Modular Formalisation of Finite Group Theory 87

and a proof language that is particularly well suited to the formalisation of finite
groups. Second, we make use of many features of the Coq proof engine (nota-
tions, implicit arguments, coercions, canonical structures) to get more readable
statements and tractable proofs.

The paper is organised as follows. In Section 2, we present the SSReflect

extension and show how it is adequate to our needs. In Section 3, we comment
on some of our choices in formalising objects such as groups, quotients and
morphisms. Finally, in Section 4, we present some classic results of group theory
that have already been formally proved in this setting.

2 Small Scale Reflection

The SSReflect extension [10] offers new syntax features for the proof shell
and a set of libraries making use of small scale reflection in various respects.
This layer above the standard Coq system provides a convenient framework for
dealing with structures equipped with a decidable equality. In this section, we
comment on the fundamental definitions present in the library and how modu-
larity is carried out throughout the development.

2.1 Proof Shell

Proof scripts written with the SSReflect extension have a very different flavour
than the ones developed using standard Coq tactics. We are not going to present
the proof shell extensively but only describe some simple features, that, we be-
lieve, have the most impact on productivity. A script is a linear structure com-
posed of tactics. Each tactic ends with a period. An example of such a script is
the following

move⇒ x a H; apply: etrans (cardUI).
case: (a x); last by rewrite /= card0 card1.
by rewrite [+ x]addnC.

by rewrite {1}mem filter /setI.

All the frequent bookkeeping operations that consists in moving, splitting, gen-
eralising formulae from (or to) the context are regrouped in a single tactic move.
For example, the tactic move⇒ x a H on the first line moves (introduces) two
constants x and a and an assumption H from the goal to the context.

It is recommended practise to use indentation to display the control structure
of a proof. To further structure scripts, SSReflect supplies a by tactical to
explicitly close off tactics. When replaying scripts, we then have the nice property
that an error immediately occurs when a closed tactic fails to prove its subgoal.
When composing tactics, the two tacticals first and last let the user restrict
the application of a tactic to only the first or the last subgoal generated by the
previous command. This covers the frequent cases where a tactic generates two
subgoals one of which can be easily disposed of. In practice, these two tacticals
are so effective at increasing the linearity of our scripts that, in fact, we very
rarely need more than two levels of indentation.

88 G. Gonthier et al.

Finally, the rewrite tactic in SSReflect provides a concise syntax that allows
a single command to perform a combination of conditional rewriting, folding and
unfolding of definitions, and simplification, on selected patterns and even specific
occurrences. This makes rewriting much more user-friendly and contributes to
shift the proof style towards equational reasoning. In the standard library of
Coq, the rewrite tactic is roughly used the same number of times as the apply
tactic. In our development for group theory, rewrite is used three times more
than apply — despite the fact that, on average, each SSReflect rewrite stands
for three Coq rewrites.

2.2 Views

The Coq system is based on an intuitionistic type theory, the Calculus of Induc-
tive Constructions [21,16]. In such a formalism, there is a distinction between
logical propositions and boolean values.

On the one hand, logical propositions are objects of sort Prop which is the
carrier of intuitionistic reasoning. Logical connectives in Prop are types, which
give precise information on the structure of their proofs; this information is
automatically exploited by Coq tactics. For example, Coq knows that a proof
of A ∨ B is either a proof of A or a proof of B. The tactics left and right change
the goal A ∨ B to A and B, respectively; dually, the tactic case reduces the goal
A ∨ B ⇒ G to two subgoals A ⇒ G and B ⇒ G.

On the other hand, bool is an inductive datatype with two constructors true

and false . Logical connectives on bool are computable functions, defined by their
truth tables, using case analysis:

Definition (b1 || b2) := if b1 then true else b2.

Properties of such connectives are also established using case analysis: the tactic
by case: b solves the goal b || ∼b = true by replacing b first by true and then by
false ; in either case, the resulting subgoal reduces by computation to the trivial
true = true.

Thus, Prop and bool are truly complementary: the former supports robust
natural deduction, the latter allows brute-force evaluation. SSReflect supplies
a generic mechanism to have the best of the two worlds and move freely from a
propositional version of a decidable predicate to its boolean version.

First, booleans are injected into propositions using the coercion mechanism:

Coercion is true (b: bool) := b = true.

This allows any boolean formula b to be used in a context where Coq would
expect a proposition, e.g., after Lemma ... :. It is then interpreted as (is true b),
i.e., the proposition b = true. Coercions are elided by the prettyprinter, so they
are essentially transparent to the user. Then, the inductive predicate reflect is
used to relate propositions and booleans

Inductive reflect (P: Prop): bool → Type :=
| Reflect true : P ⇒ reflect P true
| Reflect false : ¬P ⇒ reflect P false.

A Modular Formalisation of Finite Group Theory 89

The statement (reflect P b) asserts that (is true b) and P are logically equiva-
lent propositions. In the following, we use the notation P ↔ b for (reflect P b).

For instance, the following lemma:

Lemma andP: ∀b1 b2, (b1 ∧ b2) ↔ (b1 && b2).

relates the boolean conjunction && to the logical one ∧ . Note that in andP, b1

and b2 are two boolean variables and the proposition b1∧ b2 hides two coercions.
The conjunction of b1 and b2 can then be viewed as b1∧ b2 or as b1&& b2. A
naming convention in SSReflect is to postfix the name of view lemmas with
P. For example, orP relates || and ∨ , negP relates ∼ and ¬.

Views are integrated to the proof language. If we are to prove a goal of the
form (b1∧ b2)⇒ G, the tactic case⇒ E1 E2 changes the goal to G adding to the
context the two assumptions E1: b1 and E2: b2. To handle a goal of the form
(b1&& b2)⇒ G, we can simply annotate the tactic to specify an intermediate
change of view: case/andP⇒ E1 E2.

Suppose now that our goal is b1&& b2. In order to split this goal into two
subgoals, we use a combination of two tactics: apply/andP; split. The first tactic
performs the change of view so that the second tactic can do the splitting.
Note that if we happen to have in the context an assumption H: b1, instead of
performing the splitting, the tactic rewrite H /=, i.e., rewriting with H followed
by a simplification, can directly be used to transform the goal b1&& b2 into b2.

Views also provide a convenient way to choose between several (logical) char-
acterisations of the same (computational) definition, by having a view lemma per
interpretation. A trivial example is the ternary boolean conjunction. If we have
a goal of the form b1&& (b2&& b3)⇒ G, applying the tactic case/andP leads to
the goal b1 ⇒ b2&& b3 ⇒ G. We can also define an alternative view with

Inductive and3 (P Q R : Prop) : Prop := And3 of P & Q & R.

Lemma and3P: ∀ b1 b2 b3, (and3 b1 b2 b3) ↔ (b1 && (b2 && b3)).

Now, the tactic case/and3P directly transforms the goal b1&& (b2&& b3)⇒ G

into b1 ⇒ b2 ⇒ b3 ⇒ G.

2.3 Libraries

In our formalisation of finite groups, we reused the base libraries initially devel-
oped for the formal proof of the Four Colour theorem. These libraries build a
hierarchy of structures using nested dependent record types. This technique is
standard in type-theoretic formalisations of abstract algebra [3]. At the bottom
of this hierarchy, the structure eqType deals with types with decidable equality.

Structure eqType : Type := EqType {
sort :> Type;
≡ : sort → sort → bool;
eqP : ∀ x y, (x = y) ↔ (x ≡ y)

}.

90 G. Gonthier et al.

The :> symbol declares sort as a coercion from an eqType to its carrier type. It
is the standard technique to get subtyping. If d is an object of type eqType, then
an object x can have the type x : d, thanks to the sort coercion. The complete
judgement is in fact x : sort d. Moreover, if x and y are of type sort d, the term
x ≡ y is understood as the projection of d on its second field, applied to x and y.
The implicit d parameter is both inferred and hidden from the user.

In the type theory of Coq, the only relation we can freely rewrite with is the
primitive (Leibniz) equality. When another equivalence relation is the intended
notion of equality on a given type, the user usually needs to use the setoid
workaround [4]. Unfortunately, setoid rewriting does not have the same power as
primitive rewriting. An eqType structure provides not only a computable equality
≡ but also a proof eqP that this equality reflects the Leibniz one; the eqP view
thus promotes ≡ to a rewritable relation.

A non parametric inductive type can usually be turned into an eqType by
choosing for ≡ the function that checks structural equality. This is the case for
booleans and natural numbers for which we define the two canonical structures
bool eqType and nat eqType. Canonical structures are used when solving equa-
tions involving implicit arguments. Namely, if the type checker needs to infer
an eqType structure with sort nat, it will automatically choose the nat eqType

structure. By enlarging the set of implicit arguments Coq can infer, canonical
structures make hierarchical structures widely applicable.

A key property of eqType structures is that they enjoy proof-irrelevance for
the equality proofs of their elements: every equality proof is convertible to a
reflected boolean test.

Lemma eq irrelevance: ∀ (d: eqType) (x y: d) (E: x = y) (E’: x = y), E = E’.

An eqType structure only defines a domain, in which sets take their elements.
Sets are then represented by their characteristic function.

Definition set (d: eqType) := d → bool.

and defining set operations like ∪ and ∩ is done by providing the corresponding
boolean functions.

The next step consists in building lists, elements of type seq d, whose elements
belong to the parametric eqType structure d. The decidability of equality on d

is needed when defining the basic operations on lists like membership ∈ and
look-up index. Then, membership is used for defining a coercion from list to set,
such that (l x) is automatically coerced into x ∈ l.

Lists are the cornerstone of the definition of finite types. A finType structure
provides an enumeration of its sort: a sequence in which each element of type
sort occurs exactly once. Note that sort must also have an eqType structure.

Structure finType : Type := FinType {
sort :> eqType;
enum : seq sort ;
enumP : ∀ x, count (set1 x) enum = 1

}.

A Modular Formalisation of Finite Group Theory 91

where (set1 x) is the set that contains only x and (count f l) computes the num-
ber of elements y of the list l for which (f y) is true.

Finite sets are then sets whose domain has a finType structure. The library
provides many set operations. For example, given A a finite set, (card A) rep-
resents the cardinality of A. All these operations come along with their basic
properties. For example, we have:

Lemma cardUI : ∀ (d: finType) (A B: set d),
card (A ∪ B) + card (A ∩ B) = card A + card B.

Lemma card image : ∀ (d d’: finType) (f: d → d’) (A: set d),
injective f ⇒ card (image f A) = card A.

3 The Group Library

This section is dedicated to the formalisation of elementary group theory. We
justify our definitions and explain how they relate to each other.

3.1 Graphs of Function and Intentional Sets

We use the notation f=1g to indicate that two functions are extensionally equal,
i.e., the fact that ∀ x, f x = g x holds. In Coq, f=1g does not imply f = g. This
makes equational reasoning with objects containing functions difficult in Coq

without adding extra axioms. In our case, extra axioms are not needed. The
functions we manipulate have finite domains so they can be finitely represented
by their graph. Given d1 a finite type and d2 a type with decidable equality, a
graph is defined as:

Inductive fgraphType : Type :=
Fgraph (val: seq d2) (fgraph sizeP: size val = card d1): fgraphType.

It contains a list val of elements of d2, the size of val being exactly the cardinality
of d1. Defining a function fgraph of fun that computes the graph associated to a
function is straightforward. Conversely, a coercion fun of fgraph lets the user use
graphs as standard functions. With graphs as functions, it is possible to prove
functional extensionality:

Lemma fgraphP : ∀ (f g : fgraphType d1 d2), f =1 g ⇔ f = g.

Note that here f =1g is understood as (fun of graph f) =1 (fun of graph g).
The special case of graphs with domain d and codomain bool eqType is de-

noted (setType d). We call elements of (setType d) intentional sets by opposition
to the sets in (set d), defined by their characteristic function. We equip inten-
tional sets with the same operations as extensional sets. {x,E(x)} denotes the
intentional set whose characteristic function is (fun x →E(x)), and (f @ A) de-
notes the intentional set of the image of A by f.

Graphs are used to build some useful data-structures. For example, homo-
geneous tuples, i.e., sequences of elements of type K of fixed length n, are im-
plemented as graphs with domain (ordinal n), the finite type {0, 1, 2,. . ., n−1},
and co-domain K. With this representation, the p-th element of a n-tuple t can

92 G. Gonthier et al.

be obtained applying t to p, as soon as p lies in the the domain of t. Also, per-
mutations are defined as function graphs with identical domain and co-domain,
whose val list does not contain any duplicate.

3.2 Groups

In the same way that eqType structures were introduced before defining sets,
we introduce a notion of (finite) group domain which is distinct from the one of
groups. It is modelled by a finGroupType record structure:

Structure finGroupType : Type := FinGroupType {
element :> finType;

1 : element;
−1 : element → element;
∗ : element → element → element;

unitP : ∀ x, 1 ∗ x = x;
invP : ∀ x, x−1 ∗ x = 1;

mulP : ∀ x1 x2 x3, x1 ∗ (x2 ∗ x3) = (x1 ∗ x2) ∗ x3

}.

It contains a carrier, a composition law and an inverse function, a unit element
and the usual properties of these operations. Its first field is declared as a coercion
to the carrier of the group domain, like it was the case in section 2.3. In particular,
we can again define convenient global notations like ∗ or −1 for the projections
of this record type.

In the group library, a first category of lemmas is composed of properties that
are valid on the whole group domain. For example:

Lemma invg mul : ∀ x1 x2, (x2 ∗ x1)
−1 = x1

−1 ∗ x2
−1.

Also, we can already define operations on arbitrary sets of a group domain.
If A is such a set, we can define for instance:

Definition x ˆ y := y−1 ∗ x ∗ y.
Definition A :∗ x := {y, y ∗ x−1 ∈ A}. (∗ right cosets ∗)
Definition A :ˆ x := {y, y ˆ x−1 ∈ A}. (∗ conjugate ∗)
Definition normaliser A := {x, (A :ˆ x) ⊂ A}.

Providing a boolean predicate sometimes requires a little effort, e.g., in the def-
inition of the point-wise product of two sets:

Definition A :*:B := {x ∗ y, ∼(disjoint {y, x ∗ y ∈ (A :∗ y)} B)}

The corresponding view lemma gives the natural characterisation of this object:

Lemma smulgP : ∀A B z, (∃ x y, x ∈ A & y ∈ B & z = x ∗ y) ↔ (z ∈ A :*: B).

Lemmas like smulgP belong to category of lemmas composed of the properties
of these operations requiring only group domain sets.

Finally, a group is defined as a boolean predicate, satisfied by sets of a given
group domain that contain the unit and are stable under product.

Definition group set A := 1 ∈ A && (A :*: A) ⊂ A.

A Modular Formalisation of Finite Group Theory 93

It is very convenient to give the possibility of attaching in a canonical way
the proof that a set has a group structure. This is why groups are declared as
structures, of type:

Structure group(elt : finGroupType) : Type := Group {
set of group :> setType elt;
set of groupP : group set set of group

}.

The first argument of this structure is a set, giving the carrier of the group.
Notice that we do not define one type per group but one type per group domain,
which avoids having unnecessary injections everywhere in the development.

Finally, the last category of lemmas in the library is composed of group prop-
erties. For example, given a group H, we have the following property:

Lemma groupMl : ∀ x y, x ∈ H ⇒ (x ∗ y) ∈ H = y ∈ H.

In the above statement, the equality stands for Coq standard equality between
boolean values, since membership of H is a boolean predicate.

We declare a canonical group structure for the usual group constructions so
that they can be displayed as their set carrier but still benefit from an automati-
cally inferred proof of group structure when needed. For example, such canonical
structure is defined for the intersection of two groups H and K that share the
group domain elt :

Lemma group setI : group set (H ∩ K).
Canonical Structure setI group := Group group setI.

where, as in the previous section, ∩ stands for the set intersection operation.
Given a group domain elt and two groups H and K, the stability of the group

law for the intersection is proved in the following way:

Lemma setI stable : ∀ x y, x ∈ (H ∩ K) ⇒ y ∈ (H ∩ K) ⇒ (x ∗ y) ∈ (H ∩ K).
Proof. by move⇒ x y H1 H2; rewrite groupMl. Qed.

The group structure on the H ∩K carrier is automatically inferred from the
canonical structure declaration and the by closing command uses the H1 and
H2 assumptions to close two trivial generated goals.

This two-level definition of groups, involving group domain types and groups
as first order citizens equipped with canonical structures, plays an important role
in doing proofs. As a consequence, most of the theorems are stated like in a set-
theoretic framework (see section 3.4 for some examples). Type inference is then
used to perform the proof inference, from the database of registered canonical
structures. This mechanism is used extensively throughout the development, and
allows us in particular to state and use theorems in a way that follows standard
mathematical practice.

3.3 Quotients

Typically, every local section of our development assumes once and for all the
existence of one group domain elt to then manipulate different groups of this

94 G. Gonthier et al.

domain. Nevertheless, there are situations where it is necessary to build new
finGroupType structures. This is the case for example for quotients. Let H and K

be two groups in the same group universe, the quotient K/H is a group under the
condition that H is normal in K. Of course, we could create a new group domain
for each quotient, but we can be slightly smarter noticing that given a group H,
all the quotients of the form K/H share the same group law, and the same unit.
The idea is then to have all the quotients groups K/H in a group domain . /H.

In our finite setting, the largest possible quotient exists and is N(H)/H, where
N(H) is the normaliser of H and all the other quotients are subsets of this one.

In our formalisation, normality is defined as:

Definition H
 K := (H ⊂ K) && (K ⊂ (normaliser H)).

If H
 K, H-left cosets and H-right cosets coincide for every element of K. Hence,
they are just called cosets.

The set of cosets of an arbitrary set A is the image of the normaliser of A by
the rcoset operation. Here we define the associated sigma type:

Definition coset set (A : setType elt):= (rcoset A) @ (normaliser A).
Definition coset (A : setType elt):= eq sig (coset set A).

where eq sig builds the sigma type associated to a set. This coset type can be
equipped with eqType and finType canonical structures; elements of this type are
intentional sets.

When H is equipped with a group structure, we define group operations on
(coset H) thanks to the following properties:

Lemma cosets unit : H ∈ (cosets H).
Lemma cosets mul : ∀Hx Hy : coset H, (Hx :*:Hy) ∈ (cosets H).
Lemma cosets inv : ∀Hx : coset H, (Hx :−1) ∈ (cosets H).

where A :−1 denotes the image of a set A by the inverse operation. Group prop-
erties are provable for these operations: we can define a canonical structure of
group domain on coset depending on an arbitrary group object.

The quotient of two groups of the same group domain can always be defined:

Definition A / B := (coset of B) @ A.

where coset of : elt → (coset A) maps elements of the normaliser A to their coset,
and the other ones to the coset unit. Hence A / B defines in fact NA(B)B/B.

Every quotient G / H of two group structures is equipped with a canonical
structure of group of the coset H group domain.

A key point in the readability of statements involving quotients is that the
./. notation is usable because it refers to a definition independent of proofs; the
type inference mechanism will automatically find an associated group structure
for this set when it exists.

Defining quotients has been a place where we had to rework our formalisation
substantially using intentional sets instead of sets defined by their characteristic
function.

A Modular Formalisation of Finite Group Theory 95

A significant part of the library of finite group quotients deals with construc-
tions of group isomorphisms. The first important results to establish are the
so-called three fundamental isomorphism theorems.

Two isomorphic groups do not necessarily share the same group domain. For
example, two quotients by two different groups will have distinct (dependent)
types. Having sets for which function extensionality does not hold had forced us
to use setoids. For theorems with types depending on setoid arguments, especially
the ones stating equalities, we had to add one extensional equality condition per
occurrence of such a dependent type in the statement of the theorem in order
to make these theorems usable. Worse, in order to apply one of these theorems,
the user had to provide specific lemmas, proved before-hand, for each equality
proof. This was clearly unacceptable if quotients were to be used in further
formalisations. Using intentional sets simplified everything.

3.4 Group Morphisms

Group morphisms are functions between two group domains, compatible with
the group laws of their domain and co-domain. Their properties may not hold
on the whole group domain, but only on a certain group of this domain. The
notion of morphism is hence a local one.

We avoid the numerous difficulties introduced by formalising partial functions
in type theory by embedding the domain of a morphism inside its computational
definition. Any morphism candidate takes a default unit value outside the group
where the morphism properties are supposed to hold. Now, we can compute
back the domain of a morphism candidate from its values, identifying the kernel
among the set of elements mapped to the unit:

Definition ker (f: elt 1 → elt2) := {x, elt1 ⊂ {y, f (x ∗ y) ≡ f y}}.

This kernel can be equipped with a canonical group structure. Morphism do-
mains are defined as:

Definition mdom (f: elt1 → elt2) := ker f ∪ {x, f x �= 1}.

As a group is defined as a set plus certain properties satisfied by this set, a
morphism is defined as a function, together with the properties making this
function a morphism.

Structure morphism : Type := Morphism {
mfun :> elt1 → elt2;
group set mdom : group set (mdom mfun);
morphM : ∀ x y, x ∈ (mdom f) ⇒ y ∈ (mdom f) ⇒

mfun (x ∗ y) = (mfun x) ∗ (mfun y)
}.

The domain mdom f of a given morphism f is hence canonically equipped with
an obvious group structure.

Thanks to the use of a default unit value, the (functional) composition of two
morphisms is canonically equipped with a morphism structure. Other standard

96 G. Gonthier et al.

constructions have a canonical morphism structure, like coset of G as soon as G

is a group.
Morphisms and quotients are involved in the universal property of morphism

factorisation, also called first isomorphism theorem in the literature. We care-
fully stick to first order predicates to take as much benefit as possible from the
canonical structure mechanism. If necessary, we embed side conditions inside de-
finitions with a boolean test. In this way we avoid having to add pre-conditions
in the properties of these predicates to ensure well-formedness. For any function
between group domains, we define a quotient function by:

Definition mquo(f : elt1 → elt2)(A : setType elt1)(Ax : coset A):=
if A ⊂ (ker f) then f (repr Ax) else 1.

where repr Ax picks a representative of a coset Ax. Given any morphism, its
quotient function defines an isomorphism between the quotient of its domain by
its kernel and the image of the initial morphism.

Theorem first isomorphism : ∀H : group elt1, ∀ f : morphism elt1 elt2,
H ⊂ (dom f) ⇒ isog (H / (kerH f)) (f @ H).

An isomorphism between A and B is a morphism having a trivial kernel and
mapping A to B. This localised version of the theorem builds an isomorphism
between kerH f, the intersection of a group H with ker f, and the image f @ H of
H.

This definition of morphisms is crafted to eliminate any proof dependency
which cannot be resolved by the type inference system with the help of canonical
structures. A pointed out in section 3.2, statements are much more readable and
formal proofs much easier.

To convince the reader of the efficiency of these canonical structure definitions,
we provide hereafter a verbatim copy of the statements of the isomorphism the-
orems we have formally proved.

Theorem second_isomorphism : forall G H : group elt,
subset G (normaliser H) -> isog (G / (G :&: H)) (G / H).

Lemma quotient_mulg : forall G H : group elt, (G :*: H) / H = G / H.

Theorem third_isomorphism : forall G H K : group elt,
H <| G -> K <| G -> subset K H -> isog ((G / K) / (H / K)) (G / H).

Here (G :&:H) is ASCII forG∩H . The quotient_mulg identity follows from our
design choices for the formalisation of quotients. Rewriting with quotient_mulg
yields the standard statement of the second isomorphism theorem.

In the statement of third_isomorphism, the term H / K is defined as
(coset_of K) @ H. Since K is a group, (coset_of K) is equipped with a canon-
ical structure of morphism. Since H is a group, its image by a morphism has itself
a canonical structure of group, hence type inference is able to find a group struc-
ture for H / K, in the group domain (coset K). Finally, this allows Coq to infer
a group domain structure for coset (H / K), the domain of the isomorphism,
which is (hidden) implicit parameter of the isog predicate.

A Modular Formalisation of Finite Group Theory 97

4 Standard Theorems of Group Theory

In order to evaluate how practical our definitions of groups, cosets and quotients
were, we have started formalising some standard results of group theory. In this
section, we present three of them: the Sylow theorems, the Frobenius lemma and
the Cauchy-Frobenius lemma. The Sylow theorems are central in group theory.
The Frobenius lemma gives a nice property of the elements of a group of a given
order. Finally the Cauchy-Frobenius lemma, also called the Burnside counting
lemma, applies directly to enumeration problems. Our main source of inspiration
for these proofs was some lecture notes on group theory by Constantine [6].

4.1 The Sylow Theorems

The first Sylow theorem asserts the existence of a subgroup H of K of cardinality
pn, for every prime p such that card(K) = pns and p does not divide s. For any
two groups H and K of the same group domain, we define and prove :

Definition sylow K p H := H ⊂ K && card H ≡ plogp(card K).

Theorem sylow1: ∀K p, ∃H, sylow K p H.

The first definition captures the property of H being a p-Sylow subgroup of K.
The expression logp (card K) computes the maximum value of i such that pi

divides the cardinality of K when p is prime. This theorem has already been
formalised by Kammüller and Paulson [13], based a proof due to Wielandt [22].
Our proof is slightly different and intensively uses group actions on sets. Given a
group domain G and a finite type S, actions are defined by the following structure:

Structure action : Type := Action {
act f :> S → G → S;
act 1 : ∀ x, act f x 1 = x;
act morph : ∀ (x y : G) z, act f z (x ∗ y) = act f (act f z x) y

}.

Note that we take advantage of our finite setting to replace the usual bijectivity
of the action by the simpler property that the unit acts trivially.

A complete account of our proof is given in [20]. The proof works by induction
on n showing that there exists a subgroup of order pi for all 0 < i ≤ n. The
base case is Cauchy theorem, which asserts that a group K has an element of
order p for each prime divisor of the cardinality of the group K. Our proof is
simpler than the combinatorial argument used in [13], which hinged on properties
of the binomial. We first build the set U such that U = {(k1, . . . , kp) | ki ∈
K and

∏i=p
i=1 ki = 1}. We have that card(U) = card(K)p−1. We then define the

action of the additive group Z/pZ that acts on U as

n �−→ (k1, . . . , kp) �→ (kn mod p+1, . . . , k(n+p−1) mod p+1)

Note that defining this action is straightforward since p-tuples are graphs of
functions whose domain is (ordinal p).

98 G. Gonthier et al.

Now, we consider the set S0 of the elements of U whose orbits by the action
are a singleton. S0 is composed of the elements (k, . . . , k) such that k ∈ K and
kp = 1. A consequence of the orbit stabiliser theorem tells us that p divides the
cardinality of S0. As S0 is non-empty ((1, . . . , 1) belongs to S0), there exists at
least one k 	= 1, such that (k, . . . , k) belongs to S0. The order of k is then p.

In a similar way, in the inductive case, we suppose that there is a subgroup
H of order pi, we consider NK(H)/H the quotient of the normaliser of H in K by
H. We act with H on the left cosets of H by left translation:

g �−→ hH �→ (gh)H

and consider the set S0 of the left coset of H whose orbits by the action are
a singleton. The elements of S0 are exactly the elements of NK(H)/H. Again,
applying the orbit stabiliser theorem, we can deduce that p divides the cardinality
of S0 so there exists an element k of order p in S0 by Cauchy theorem. If we
consider H, the pre-image by the quotient operation of the cyclic group generated
by k, its cardinality is pi+1.

We have also formalised the second and third Sylow theorems. The second
theorem states that any two p-Sylow subgroups H1 and H2 are conjugate. This
is proved acting with H1 on the left coset of H2. The third theorem states that
the number of p-Sylow subgroups divides the cardinality of K and is equal to 1
modulo p. The third theorem is proved by acting by conjugation on the sets of
all p-Sylow subgroups.

4.2 The Frobenius Lemma

Given an element a of a group G, (cyclica) builds the cyclic group generated by
a. When proving properties of cyclic groups, we use the characteristic property
of the cyclic function.

Lemma cyclicP: ∀ a b, reflect (∃n, aˆn ≡ b) (cyclic a b).

The order of an element is then defined as the cardinality of its associated cyclic
group. The Frobenius lemma states that given a number n that divides the
cardinality of a group K, the number of elements whose order divides n is a
multiple of n. In our formalisation, this gives

Theorem frobenius: ∀K n, n | (card K) → n | (card {z:K, (orderg z) | n}).

The proof is rather technical and has intensively tested our library on cyclic
groups. For example, as we are counting the number of elements of a given order,
we need to know the number of generators of a cyclic group. This is given by a
theorem of our library.

Lemma φ gen: ∀ a, φ(orderg a) = card (generator (cyclic a)).

where φ is the Euler function.

A Modular Formalisation of Finite Group Theory 99

4.3 The Cauchy-Frobenius Lemma

Let G a group acting on a set S. For each g in G, let Fg be the set of elements
in S fixed by g, and t the number of orbits of G on S, then t is equal to the
average number of points left fixed by each element of G:

t =
1
|G|

∑

g∈G

|Fg|

To prove this lemma, we consider B, subset of the cartesian product G × S
containing the pairs (g, x) such that g(x) = x. We use two ways to evaluate the
cardinality of B, first by fixing the first component: |B| =

∑

g∈G |Fg|, then by
fixing the second component: |B| =

∑

x∈S |Gx| where Gx is the stabiliser of x
in G. Then, when sorting the right hand-side of the second equality by orbits
we obtain that |B| = |Gx1||Gx1 | + |Gx2||Gx2 | + · · · + |Gxt||Gxt | the xi being
representatives of the orbit Gxi. Applying the Lagrange theorem on the stabiliser
of xi in G (the subgroup Gxi), we obtain that for each orbit: |Gxi||Gxi | = |G|
and we deduce that |B| = t|G| =

∑

g∈G |Fg|.
This lemma is a special case of the powerful Pólya method, but it already

has significant applications in combinatorial counting problems. To illustrate
this, we have formally shown that there are 55 distinct ways of colouring with
4 colours the vertices of a square up to isometry. This is done by instantiating
a more general theorem that tells that the number of ways of colouring with n
colours is (n4 + 2n3 + 3n2 + 2n)/8. This last theorem is a direct application of
the Cauchy-Frobenius lemma. The encoding of the problem is the following:

Definition square := ordinal 4.
Definition colour := ordinal n.
Definition colouring := fgraphType square colour.

Vertices are represented by the set {0, 1, 2, 3}, colours by the set {0, 1, . . . , n−1}
and colouring by functions from vertices to colours. The set of isometries is a
subset of the permutations of square that preserve the geometry of the square.
In our case, we use the characteristic condition that the images of two opposite
vertices remain opposite.

Definition isometry := {p : perm square, ∀ i, p (opp i) = opp (p i)}.

where perm square the permutation group and opp the function that returns the
opposite of a vertex. We get that the isometries is a subgroup of the permuta-
tions, since the property of conserving opposite vertices is stable by composition
and the identity obviously preserve opposite vertices.

The action of an isometry p on a colouring c returns the colouring i �→ c(p(i)).
Each set of identical coloured squares corresponds to an orbit of this action. To
apply Cauchy-Frobenius, we first need to give an extensional definition of the

100 G. Gonthier et al.

isometries, i.e., there are 8 isometries: the identity, the 3 rotations of π/2, π
and 3π/2, the vertical symmetry, the horizontal symmetry and the 2 symmetries
about the diagonals. Second, we have to count the elements left fixed by each
isometry.

The proofs of the three theorems presented in this section manipulate many
of the base concepts defined in our formalisation. They have been particularly
important to give us feedback on how practical our definitions were.

5 Conclusion

To our knowledge, what is presented in this paper is already one of the most
complete formalisations of finite group theory. We cover almost all the material
that can be found in an introductory course on group theory. Very few standard
results like the simplicity of the alternating group are still missing, but should
be formalised very soon. The only similar effort but in set theory can be found in
the Mizar system [15]. Theorems like the ones presented in Section 4 are missing
from the Mizar formalisation.

We have deliberately specialised our formalisation to finite group theory: fi-
nite groups are not obtained as a sub-class of generic groups. This design choice
is consistent with the usual presentation of group theory in the literature. Im-
posing the inheritance of finite group theory from generic group theory would be
somehow artificial since they share little results, all of them being trivial ones,
hence it would not help formalising proofs but create pointless delicate subtyping
issues.

Getting the definitions right is one of the most difficult aspects of formalising
mathematics. The problem is not much in capturing the semantics of each in-
dividual construct but rather in having all the concepts working together well.
Group theory has been no exception in that respect. It took much trial and er-
ror to arrive at the definitions presented in this paper. The fact that we were
able to get results like the ones presented in Section 4 relatively easily makes us
confident that our base is robust enough to proceed to further formalisations.

Using SSReflect has been a key aspect to our formal development. De-
cidable types and a substantial use of rewriting for our proofs give a ‘classical’
flavour to our development that is more familiar to what can be found in provers
like Isabelle [17] or Hol [11] than what is usually done in Coq. Moreover, our
novel use of canonical structures allows us to reconcile the convenience of set-
theoretic statements with the expressiveness of dependent types, by harnessing
the automation power of type inference. We think that this combination makes
the Coq system a powerful environment for the formalisation of such algebraic
theories.

An indication of the conciseness of our proof scripts is given by the following
figure. The standard library of Coq contains 7000 objects (definitions + the-
orems) for 93000 lines of code, this makes a ratio of 13 lines per object. The
base library of SSReflect plus our library for groups contains 1980 objects for
14400 lines, this makes a ratio of 7 lines per object.

A Modular Formalisation of Finite Group Theory 101

References

1. Arthan, R.: Some group theory, available at
http://www.lemma-one.com/ProofPower/examples/wrk068.pdf

2. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A Formally Verified Proof of the Prime
Number Theorem. ACM Transactions on Computational Logic (to appear)

3. Bailey, A.: Representing algebra in LEGO. Master’s thesis, University of Edinburgh
(1993)

4. Barthe, G., Capretta, V., Pons, O.: Setoids in type theory. Journal of Functional
Programming 13(2), 261–293 (2003)

5. Bender, H., Glauberman, G.: Local analysis for the Odd Order Theorem. London
Mathematical Society Lecture Note Series, vol. 188. Cambridge University Press,
Cambridge (1994)

6. Constantine, G.M.: Group Theory, available at
http://www.pitt.edu/~gmc/algsyl.html

7. Feit, W., Thompson, J.G.: Solvability of groups of odd order. Pacific Journal of
Mathematics 13(3), 775–1029 (1963)

8. Geuvers, H., Wiedijk, F., Zwanenburg, J.: A Constructive Proof of the Funda-
mental Theorem of Algebra without Using the Rationals. In: Callaghan, P., Luo,
Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 96–111.
Springer, Heidelberg (2002)

9. Gonthier, G.: A computer-checked proof of the four-colour theorem, available at
http://research.microsoft.com/~gonthier/4colproof.pdf

10. Gonthier, G.: Notations of the four colour theorem proof, available at
http://research.microsoft.com/~gonthier/4colnotations.pdf

11. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: a theorem proving environ-
ment for higher-order logic. Cambridge University Press, Cambridge (1993)

12. Gunter, E.: Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-
38, University of Pennsylvania (1989)

13. Kammüller, F., Paulson, L.C.: A Formal Proof of Sylow’s Theorem. Journal of
Automating Reasoning 23(3-4), 235–264 (1999)

14. The Coq development team: The Coq proof assistant reference manual. LogiCal
Project, Version 8.1 (2007)

15. The Mizar Home Page, http://www.mizar.org/
16. Paulin-Mohring, C.: Définitions Inductives en Théorie des Types d’Ordre

Supérieur. Habilitation à diriger les recherches, Université Claude Bernard Lyon I
(December 1996)

17. Paulson, L.C. (ed.): Isabelle. LNCS, vol. 828. Springer, Heidelberg (1994)
18. Peterfalvi, T.: Character Theory for the Odd Order Theorem. London Mathemat-

ical Society Lecture Note Series, vol. 272. Cambridge University Press, Cambridge
(2000)

19. The Flyspeck Project, http://www.math.pitt.edu/~thales/flyspeck/
20. Rideau, L., Théry, L.: Formalising Sylow’s theorems in Coq. Technical Report 0327,

INRIA (2006)
21. Werner, B.: Une théorie des Constructions Inductives. PhD thesis, Paris 7 (1994)
22. Wielandt, H.: Ein beweis für die Existenz der Sylowgruppen. Archiv der Mathe-

matik 10, 401–402 (1959)
23. Yu, Y.: Computer Proofs in Group Theory. J. Autom. Reasoning 6(3), 251–286

(1990)

http://www.lemma-one.com/ProofPower/examples/wrk068.pdf
http://www.pitt.edu/~gmc/algsyl.html
http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colnotations.pdf
http://www.mizar.org/
http://www.math.pitt.edu/~thales/flyspeck/

Verifying Nonlinear Real Formulas Via Sums of Squares

John Harrison

Intel Corporation, JF1-13
2111 NE 25th Avenue, Hillsboro OR 97124, USA

johnh@ichips.intel.com

Abstract. Techniques based on sums of squares appear promising as a general
approach to the universal theory of reals with addition and multiplication, i.e.
verifying Boolean combinations of equations and inequalities. A particularly at-
tractive feature is that suitable ‘sum of squares’ certificates can be found by so-
phisticated numerical methods such as semidefinite programming, yet the actual
verification of the resulting proof is straightforward even in a highly foundational
theorem prover. We will describe our experience with an implementation in HOL
Light, noting some successes as well as difficulties. We also describe a new ap-
proach to the univariate case that can handle some otherwise difficult examples.

1 Verifying Nonlinear Formulas over the Reals

Over the real numbers, there are algorithms that can in principle perform quantifier
elimination from arbitrary first-order formulas built up using addition, multiplication
and the usual equality and inequality predicates. A classic example of such a quantifier
elimination equivalence is the criterion for a quadratic equation to have a real root:

∀a b c. (∃x. ax2 + bx + c = 0)⇔ a = 0 ∧ (b = 0 ⇒ c = 0) ∨ a 	= 0 ∧ b2 ≥ 4ac

The first quantifier elimination algorithm for this theory was developed by Tarski
[32],1 who actually demonstrated completeness and quantifier elimination just for the
theory of real-closed fields, which can be characterized as ordered fields where all non-
negative elements have square roots (∀x. 0 ≤ x ⇒ ∃y. x = y2) and all non-trivial
polynomials of odd degree have a root. There are several interesting models of these
axioms besides the reals (e.g. the algebraic reals, the computable reals, the hyperreals)
yet Tarski’s result shows that these different models satisfy exactly the same properties
in the first-order language under consideration.

However, Tarski’s procedure is complicated and inefficient. Many alternative deci-
sion methods were subsequently proposed; two that are significantly simpler were given
by Seidenberg [30] and Cohen [8], while the CAD algorithm [9], apparently the first
ever to be implemented, is significantly more efficient, though relatively complicated.
Cohen’s ideas were recast by Hörmander [17] into a relatively simple algorithm. How-
ever, even CAD has poor worst-case complexity (doubly exponential), and the Cohen-
Hörmander algorithm is generally still slower. Thus, there has been limited progress on

1 Tarski actually discovered the procedure in 1930, but it remained unpublished for many years
afterwards.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 102–118, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Verifying Nonlinear Real Formulas Via Sums of Squares 103

applying these algorithms to problems of interest. An interesting alternative, currently
unimplemented, is described in [4].

If we turn to implementation in foundational theorem provers using basic logical op-
erations instead of complicated code, the situation is bleaker still. The Cohen-
Hörmander algorithm has been implemented in Coq [23] and HOL Light [24] in a
way that generates formal proofs. However, producing formal proofs induces a fur-
ther significant slowdown. In practice, more successful approaches to nonlinear arith-
metic tend to use heuristic approaches that work well for simple common cases like
x > 0∧y > 0 ⇒ xy > 0 but are incomplete (or at least impractical) in general [18,33],
though in some cases they go beyond the simple algebraic operations [1].

But many important problems in practice are purely universally quantified, i.e. are of
the form ∀x1, . . . , xn.P [x1, . . . , xn] where P [x1, . . . , xn] is an arbitrary Boolean com-
bination of polynomial equations and inequalities. Typical (true) examples are ∀x y.x ≤
y ⇒ x3 ≤ y3, ∀x.0 ≤ 1∧x ≤ 1⇒ x2 ≤ 1 and ∀a b c x.ax2+bx+c = 0 ⇒ b2 ≥ 4ac.
For this logically restrictive but practically important case, a completely different ap-
proach is possible based on sums of squares.

2 Positivity and Sums of Squares

We will be concerned with the set of multivariate polynomials R[x1, . . . , xn] over the
reals, and often more specifically the subset Q[x1, . . . , xn] with rational coefficients.
The cornerstone of what follows is the relationship between a polynomial’s taking non-
negative values everywhere, a.k.a. being positive semidefinite (PSD):

∀x1, . . . , xn. p(x1, . . . , xn) ≥ 0

and the existence of a decomposition into a sum of squares (SOS) of other polynomials:

p(x1, . . . , xn) =
k
∑

i=0

si(x1, . . . , xn)2

Since any square is nonnegative, the existence of a sum-of-squares decomposition
implies nonnegativity everywhere. The converse is not true without restrictions — for
example the following [25] is everywhere strictly positive (geometric mean ≤ arith-
metic mean, applied to x2y4, x4y2 and 1), but one can show by quite elementary con-
siderations that it is not a sum of squares in R[x, y].

1 + x4y2 + x2y4 − 3x2y2

On the other hand, the positive solution of Hilbert’s 17th problem [3] implies that
every PSD polynomial is the sum of squares of rational functions. For instance, we
have:

1 + x4y2 + x2y4 − 3x2y2 =
(

x2y(x2+y2−2)
x2+y2

)2

+
(

xy2(x2+y2−2)
x2+y2

)2

+
(

xy(x2+y2−2)
x2+y2

)2

+
(

x2−y2

x2+y2

)2

104 J. Harrison

We will consider in what follows a liberal notion of ‘sum of squares’ allowing
∑

aisi(x)2 where the ai are nonnegative rational numbers. This amounts to no real
increase in generality since every nonnegative rational can be written as a sum of four
rational squares [34]. And the reasoning that SOS ⇒ PSD is almost equally straight-
forward.

Direct Proof of PSD from SOS

At its simplest, we might seek to prove that a single polynomial is PSD by finding
a SOS decomposition. We have seen that this approach is in general not complete.
Nevertheless, in practice it often works for problems of interest, e.g. the following [12]:

∀w x y z. w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+
3x2 + w2 + 2zw + z2 + 2z + 2w + 1 ≥ 0

via the sum-of-squares decomposition:

w6 + 2z2w3 + x4 + y4 + z4 + 2x2w + 2x2z+
3x2 + w2 + 2zw + z2 + 2z + 2w + 1 =
(y2)2 + (x2 + w + z + 1)2 + x2 + (w3 + z2)2

Besides its theoretical incompleteness, finding a direct SOS expansion only works
for nonnegativity of a single polynomial. However, this can be generalized somewhat
by a change of variables. For example, instead of proving ∀x. x ≥ 0 ⇒ p(x) ≥ 0 we
can prove the equivalent ∀x. p(x2) ≥ 0. More interesting is certifying nonnegativity
over a general compact interval [a, b]:

∀x. a ≤ x ∧ x ≤ b⇒ p(x) ≥ 0

We can likewise prove this equivalent to a simple nonnegativity assertion with a
change of variable. Note first that

x(y) =
a + by2

1 + y2

is a surjection from R to [a, b) with right inverse

y(x) =
√

x− a

b− x

and so

(∀x. a ≤ x ∧ x < b⇒ p(x) ≥ 0)⇔ (∀y ∈ R. p(
a + by2

1 + y2
) ≥ 0)

Moreover, because polynomials are continuous, this is equivalent to the original
claim ∀x. a ≤ x ∧ x ≤ b ⇒ p(x) ≥ 0. We can turn the rational function claim
into purely polynomial nonnegativity by multiplying through by (1 + y2)∂(p) where
∂(p) is the degree of p, since this is guaranteed to cancel all denominators:

(∀x. a ≤ x ∧ x ≤ b⇒ p(x) ≥ 0)⇔ (∀y. (1 + y2)∂(p)p(
a + by2

1 + y2
) ≥ 0)

However, we will now consider a more general and theoretically complete approach
to verifying universal formulas using SOS.

Verifying Nonlinear Real Formulas Via Sums of Squares 105

3 Important Cases of Hilbert’s Theorem

A classic result due to Hilbert [16] shows that there are only a few special classes of
polynomials where PSD and SOS are equivalent. We just note two of them.

Univariate Polynomials

Every PSD univariate polynomial is a sum of just two real squares. For the proof,
observe that complex roots always occur in conjugate pairs, and any real roots must
have even multiplicity, otherwise the polynomial would cross the x-axis instead of just
touching it. Thus, if the roots are ak ± ibk, we can imagine writing the polynomial as:

p(x) = [(x− [a1 + ib1])(x − [a2 + ib2]) · · · (x− [am + ibm])] ·
[(x− [a1 − ib1])(x − [a2 − ib2]) · · · (x− [am − ibm])]

= (q(x) + ir(x))(q(x) − ir(x))
= q(x)2 + r(x)2

However, to expand a polynomial with rational coefficients as a sum of squares of
rational polynomials, a more sophisticated proof is needed. For example Landau [21],
building on a theorem of Hilbert, shows that every PSD univariate polynomial is the
sum of 8 squares. This was subsequently sharpened by Pourchet [27] to show that 5
squares suffice, and indeed that 5 is the best possible in general. However, even the
more constructive proofs of this and related results [5] do not seem to be very practical,
and we will return later in this paper to finding such expansions in practice.

Quadratic Forms

Every PSD quadratic form, in any number of variables, is a sum of squares. (A form
is a polynomial where all monomials have the same [multi-]degree, and in a quadratic
form that degree is 2. So for example x2, wz and xy are permissible monomials in a
quadratic form but not 1, x or y5.) The proof is a straightforward elaboration of the ele-
mentary technique of “completing the square” [10]. We will as usual assume a standard
representation of a quadratic form

f(x1, . . . , xn) =
n
∑

i=1

n
∑

j=1

aijxixj

where aij = aji. We are at liberty to make this symmetry assumption, for given any
representation we can always choose another symmetric one by setting a′ij = a′ji =
(aij + aji)/2.

Theorem 1. Given a quadratic form f(x1, . . . , xn) =
∑n

i=1

∑n
j=1 aijxixj in vari-

ables x1, . . . , xn with the coefficients aij rational and aij = aji, we can construct
either a decomposition:

f(x1, . . . , xn) =
n
∑

i=1

bigi(x1, . . . , xn)2

106 J. Harrison

where the bi are nonnegative rational numbers and the gi(x1, . . . , xn) are linear func-
tions with rational coefficients, or particular rational numbers u1, . . . , un such that
f(u1, . . . , un) < 0.

Proof. By induction on the number of variables. If the form is zero, then it trivially
has an empty SOS decomposition. Otherwise, pick the first variable x1 (the order is
unimportant), and separate the monomials into those involving x1 and those not:

f(x1, . . . , xn) = (a11x
2
1 +

n
∑

i=2

2a1ix1xi) + g(x2, . . . , xn)

If a11 = 0, then there are two cases to consider. If all the a1i are zero, then we
effectively have a form in n−1 variables and so the result holds by induction; in the case
of a witness of non-positive-semidefiniteness, we can assign u1 arbitrarily. Otherwise,
if any a1i 	= 0, the form is not positive semidefinite and our witness is u1 = aii/2 + 1,
ui = −a1i and all other uj = 0; we then have f(u1, . . . , un) = −2a2

1i < 0 as
required.

Now if a11 < 0, then again the form is not PSD, and a suitable witness is simply
u1 = 1 and all other uj = 0, whence all monomials but a11x

2
1 are zero and that one

is negative. The more interesting case is when a11 > 0, and here we ‘complete the
square’. We have:

f(x1, . . . , xn) = a11(x1 +
∑n

i=2(a1i/a11)xi)2+
(g(x2, . . . , xn)−

∑n
j=2

∑n
k=2(a1ja1k/a11)xjxk)

The second term on the right is a quadratic form in variables x2, . . . , xn, so by the
inductive hypothesis we can either find a SOS expansion or a witness of non-positive-
definiteness. In the former case, we just include a11(x1 +

∑n
i=2(a1i/a11)xi)2 and ob-

tain a SOS decomposition for the entire form. In the latter case, we take the witness
u2, . . . , un and augment it by choosing u1 = −

∑n
i=2(a1i/a11)ui, which makes the

term a11(x1 +
∑n

i=2(a1i/a11)xi)2 vanish and hence gives a non-PSD witness for the
whole form. QED

For example, let us apply the method to the form 6x2+49y2+51z2−82yz+20zx−4xy,
with the variables in the obvious order x, y, z. We obtain a SOS decomposition as
follows:

6x2 + 49y2 + 51z2 − 82yz + 20zx− 4xy

= 6
(

x2 − 2
3
xy +

10
3
xz

)

+
(

49y2 + 51z2 − 82yz
)

= 6
(

x2 − 1
3
y +

5
3
z

)2

+
(

49y2 + 51z2 − 82yz
)

− 6
(

−1
3
y +

5
3
z

)2

= 6
(

x2 − 1
3
y +

5
3
z

)2

+
(

145
3

y2 − 226
3

yz +
78
3
z2

)

= 6
(

x2 − 1
3
y +

5
3
z

)2

+
145
3

(

y2 − 226
145

yz

)

+
103
3

z2

Verifying Nonlinear Real Formulas Via Sums of Squares 107

= 6
(

x2 − 1
3
y +

5
3
z

)2

+
145
3

(

y − 113
145

z

)2

+
103
3

z2 − 12769
435

z2

= 6
(

x2 − 1
3
y +

5
3
z

)2

+
145
3

(

y − 113
145

z

)2

+
722
145

z2

4 Quadratic Forms and Matrices

We can establish a correspondence between quadratic forms and matrices by writing a
quadratic form in variables x1, . . . , xn as a vector-matrix-vector product with a vector
of variables:

xTAx =
n
∑

i=1

xi

n
∑

j=1

Aijxj =
∑

1≤i,j≤n

Aijxixj

If we restrict ourselves to symmetric matrices A, then the matrix representation is
unique, and the matrix elements correspond exactly to the coefficients in the standard
formulation above. (In an actual implementation we may choose to use an appropriately
modified upper or lower triangular matrix for efficiency reasons.)

Positive Semidefinite Matrices

Quite generally, a symmetric2 matrix A is said to be positive semidefinite iff xTAx ≥ 0
for all vectors x — in other words, precisely if the associated quadratic form is positive
semidefinite. Two other equivalent characterizations are:

– There is a factorization A = LTL where L is a triangular matrix and the T signifies
transposition.

– All eigenvalues of A are non-negative (they are necessarily real because A is sym-
metric)

A proof of the former is straightforward by recasting the “completing the square” al-
gorithm (theorem 1) in matrix terms [31]. More precisely, a factorization of the form
A = LTL is obtained by Choleski decomposition. A direct translation of the ‘com-
pleting the square’ algorithm gives a decomposition A = LDLT where L, D and LT

are respectively lower-triangular, diagonal and upper-triangular. This has some advan-
tages for symbolic applications because it involves only rational operations, whereas
Choleski decomposition requires square roots.

5 The Universal Fragment Via SOS

The Positivstellensatz

The Artin-Schreier theorem [19] implies that every ordered integral domain can be em-
bedded in a real-closed field called its real closure. For this reason, a universal formula
must hold in all real-closed fields (and hence, by Tarski’s completeness result, in R) iff
it holds in all ordered integral domains:

2 Or Hermitian if we consider the complex case, which we will not do here.

108 J. Harrison

– If it holds in all ordered integral domains, it holds in all real-closed fields, since a
real-closed field is a kind of ordered integral domain.

– If it holds in all real-closed fields, it holds in the real closure of any ordered inte-
gral domain, and therefore, since quantifiers are all universal, in the substructure
corresponding to that integral domain.

This already means that a valid formula can in principle be proved without using the
special axioms about square roots and roots of odd-degree polynomials, based only on
the axioms for an ordered integral domain. This can be put in a still sharper form. First
it is instructive to look at the case of the complex numbers, where the classic Hilbert
Nullstellesatz holds:

Theorem 2. The polynomial equations p1(x) = 0, . . . , pn(x) = 0 have no com-
mon solution in C iff 1 is in the ideal generated by p1, . . . , pn, which we write as
1 ∈ Id 〈p1, . . . , pn〉.

More explicitly, this means that the universally quantified formula ∀x. p1(x) = 0 ∧
· · · pn(x) = 0 ⇒ ⊥ holds iff there are ‘cofactor’ polynomials q1(x), . . . , qn(x) such
that the following is a polynomial identity:

p1(x) · q1(x) + · · ·+ pn(x) · qn(x) = 1

The analogous property fails over R; for example x2 + 1 = 0 alone has no solution
yet 1 is not a multiple of x2 + 1 (considering them as polynomials). However, in the
analogous Real Nullstellensatz, sums of squares play a central role:

Theorem 3. The polynomial equations p1(x) = 0, . . . , pn(x) = 0 have no common
solution in R iff there are polynomials s1(x), . . . , sk(x) such that s1(x)2+· · ·+sk(x)2+
1 ∈ Id 〈p1, . . . , pn〉.

This can be further generalized to so-called ‘Positivstellensatz’ results on the inconsis-
tency of a set of equations, inequations and inequalities.3 Unfortunately these become
a bit more intricate to state. The particular version we rely on in our implementation,
following [26], can be stated as follows:

Theorem 4. The polynomial formulas p1(x) = 0, . . . , pn(x) = 0, q1(x) ≥ 0, . . . ,
qm(x) ≥ 0, r1(x) 	= 0, . . . , rp(x) 	= 0 are impossible in R iff there are polynomials P ,
Q, R such that P +Q+R2 = 0 where P ∈ Id 〈p1, . . . , pn〉, R is a product of powers of
the ri (we can if desired assume it’s of the form

∏p
i=1 r

k
i) and Q is in the cone generated

by the qi, i.e. the smallest set of polynomials containing all qi, all squares of arbitrary
polynomials and closed under addition and multiplication.

It’s perhaps easier to grasp a simple example. Consider proving the universal half of the
quadratic root criterion

∀a b c x. ax2 + bx+ c = 0 ⇒ b2 − 4ac ≥ 0
3 In principle the simple Nullstellensatz suffices to prove unsatisfiability of any unsatisfiable

conjunction of atomic formulas, since in R we have equivalences such as s ≤ t ⇔ ∃x. t =
s + x2, s < t ⇔ ∃x. (t − s)x2 = 1 and s �= t ⇔ ∃x. (t − s)x = 1. Indeed we could then
combine a conjunction of equations into a single equation using s = 0∧t = 0 ⇔ s2+t2 = 0.
However, using a general Positivstellensatz tends to be more efficient.

Verifying Nonlinear Real Formulas Via Sums of Squares 109

by showing the inconsistency of the formulas ax2 + bx+ c = 0 and 4ac− b2 > 0. We
have the following polynomial identity of the form whose existence is guaranteed by
the Positivstellensatz:

(4ac− b2) + (2ax + b)2 + (−4a)(ax2 + bx + c) = 0

Given such a “certificate” (i.e. the additional polynomials necessary in such an equa-
tion), it’s easy to verify the required result by elementary inequality reasoning: (2ax +
b)2 is a square and hence nonnegative, (−4a)(ax2 + bx+ c) is zero since by hypothesis
ax2 + bx+ c = 0, so b2 − 4ac must be nonnegative for the equation to hold.

Finding SOS Decompositions by Semidefinite Programming

Although the Nullstellensatz/Positivstellensatz assures us that suitable SOS certificates
of infeasibility exist, the usual proofs of these results are not constructive. Lombardi
[22] has proved a constructive form, showing how a refutation using Hörmander’s pro-
cedure can be used to systematically construct a Nullstellensatz certificate. However,
given that we know that none of the sophisticated real-closed field axioms are actually
needed, we might seek a more direct approach.

Parrilo [26] pioneered the approach of using semidefinite programming to find SOS
decompositions. Semidefinite programming is the problem of finding feasible values
u1, . . . , um (or more generally, maximizing some linear combination of the ui) to make
a matrix linearly parametrized by those values PSD, subject to a set of linear equational
constraints on the ui. This is a convex optimization problem, and so in principle we
know it can be solved to a given accuracy in polynomial time, e.g. on the basis of
the ellipsoid algorithm [2,11].4 In practice, there are powerful semidefinite program-
ming tools, e.g. based on primal-dual interior point algorithms or the ‘spectral bundle
method’. Our experiments have mostly used the system CSDP [6], which we have found
to be robust and efficient.5

The basic idea of this reduction is to introduce new variables for the possible mono-
mials that could appear in the squares. For example [26] to express 2x4+2x3y−x2y2+
5y4 as a SOS, no monomials of degree> 2 can appear in the squares, since their squares
would then remain uncancelled in the SOS form. With a little more care one can deduce
that only the following monomials, for which we introduce the new variables zi, need
be considered:

z1 = x2, z2 = y2, z3 = xy

Now we write the original polynomial as a quadratic form in the zi:

⎡

⎣

z1

z2

z3

⎤

⎦

T ⎡

⎣

q11 q12 q13
q12 q22 q23
q13 q23 q33

⎤

⎦

⎡

⎣

z1

z2

z3

⎤

⎦

4 As [29] notes, convexity rather than linearity is the fundamental property that makes optimiza-
tion relatively tractable. Indeed, the first polynomial-time algorithm for linear programming
[20] was based on the ellipsoid algorithm for general convex optimization, together with an
argument about about the accuracy bound needed.

5 See also the CSDP Web page https://projects.coin-or.org/Csdp/.

https://projects.coin-or.org/Csdp/

110 J. Harrison

Comparing coefficients in the original coefficient, we obtain linear constraints on the
qij :

q11 = 2
q22 = 5
q33 + 2q12 = −1
2q13 = 2
2q23 = 0

By introducing the new variables, we have returned to the case of quadratic forms,
where SOS and PSD are the same. Thus, if we find qij for which the matrix is PSD,
we can directly read off a sum of squares using the ‘completing the square’ algorithm.
The price we pay is that only solutions satisfying the linear constraints above will yield
an SOS expansion for the original polynomial; for our example q33 = 5 and q12 = −3
give such a solution, from which a SOS decomposition can be read off. SDP solvers
can solve exactly this problem.

When just searching for a direct SOS decomposition as in the example above, we
were able to place a bound on the monomials we need to consider. However, for gen-
eral Positivstellensatz certificates, the only bounds known are somewhat impractical.
Instead of using these, we impose relatively small limits on the degrees of the polyno-
mials considered (in the squares and in the ideal cofactors) as well as the powers used
for the product of inequations. For any particular bound, the problem reduces to semi-
definite programming, and we can keep increasing the bound until it succeeds, at least
in principle.

6 Implementation in HOL and Experience

We have integrated this algorithm into HOL Light, and it is freely available in the latest
version (2.20) as the file Examples/sos.ml.

How It Works

We rely on all the existing machinery in HOL Light for eliminating various auxiliary
concepts like the absolute value function, max and min, and reducing the problem to
a finite set of subproblems that involve just refuting a conjunction of equations, strict
and nonstrict inequalities. All this is currently used in the simple linear prover of HOL
Light, and it was designed so that any other core equation/inequality refuter can be
plugged in. So now the task is just to refute a conjunction of the form:

∧

i

pi(x) = 0 ∧
∧

j

qj(x) ≥ 0 ∧
∧

k

rk(x) > 0

We do this by systematically searching for certificates of the form guaranteed to ex-
ist by the Positivstellensatz. We use iterative deepening, so that at stage n we consider,
roughly speaking, polynomials of degreen in the certificate. Symbolically, using the un-
derlying programming language OCaml in which HOL Light is implemented, we invent
parametrized polynomials for the certificate and solve the constraints that result from

Verifying Nonlinear Real Formulas Via Sums of Squares 111

comparing coefficients, to obtain a semidefinite programming problem. The semidefi-
nite programming problem is printed to a file and we call a semidefinite programming
package to solve it.

Then comes a rather tricky aspect. The vector returned by the SDP solver is of
floating-point numbers, and we need to translate them to rational numbers in HOL.
Unfortunately if we map them to the exact rational they denote, we very often find that
the resulting matrix is not quite PSD, because of the influence of rounding errors (e.g.
0.33333333333 instead of exactly 1/3). So instead we postulate that the “exact” solu-
tions probably involve rational numbers with moderate coefficients, and try rounding
all the values based on common denominators 1, 2, 3, (Once we reach 32 we start
to go up by a multiple of 2 each time.) For each attempt we test, using exact rational
arithmetic in OCaml, whether the resulting matrix is PSD, using the algorithm from
theorem 1. As soon as we find a case where it is, we extract the SOS decomposition and
prove the resulting identity in HOL.

Generally speaking this seems to work quite well. It is interesting to note that al-
though we only seek feasible solutions, we tend to do better when rounding if we try
to optimize something (arbitrarily, we minimize the sum of the diagonal elements of
the matrix). So it seems that extremal solutions tend to involve nicer rational numbers
than arbitrary points. We originally attempted to find good ‘simple’ rational approxi-
mants to the coefficients independently, but the approach of picking a single common
denominator seems to work better.

Examples

The primary interface is REAL_SOS, which attempts to prove a purely universal for-
mula over the reals. Here is a typical user invocation:

REAL_SOS
‘a1 >= &0 /\ a2 >= &0 /\
(a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2) /\
(a1 * b1 + a2 * b2 = &0)
==> a1 * a2 - b1 * b2 >= &0‘;;

and the output from HOL Light:

Searching with depth limit 0
Searching with depth limit 1
Searching with depth limit 2
Searching with depth limit 3
Searching with depth limit 4
Translating proof certificate to HOL
val it : thm =

|- a1 >= &0 /\
a2 >= &0 /\
a1 * a1 + a2 * a2 = b1 * b1 + b2 * b2 + &2 /\
a1 * b1 + a2 * b2 = &0
==> a1 * a2 - b1 * b2 >= &0

The informative messages indicate the iterative deepening of the bounds imposed; at
each stage the semidefinite programming problem is passed to CSDP for solution. At a
bound of 4 the underlying semidefinite programming problem involves a 38×38 matrix
(in 8 block diagonal portions, which SDP solvers can exploit) parametrized by 143

112 J. Harrison

variables. This problem is solved and HOL Light succeeds in rounding the output vector
to a certificate and hence proving the original claim. The entire sequence of events takes
around one second. Numerous similar instances of classic elementary inequalities can
be proved efficiently, including almost all the examples in [12] and the following:

REAL_SOS
‘&0 <= x /\ &0 <= y
==> x * y * (x + y) pow 2 <= (x pow 2 + y pow 2) pow 2‘;;

On top of REAL_SOS, we have also implemented analogous functions for Z and N,
which do some elimination of division and modulus followed by simple-minded and
incomplete discretization (e.g. translating hypotheses of the form x < y to x ≤ y − 1)
then call the real version. This is enough to solve a few not entirely trivial properties of
truncating division on N, e.g.

SOS_RULE
‘!a b c d. ˜(b = 0) /\ b * c < (a + 1) * d ==> c DIV d <= a DIV b‘;;

and

SOS_RULE ‘0 < m /\ m < n ==> ((m * ((n * x) DIV m + 1)) DIV n = x)‘;;

Problems

This approach to verifying nonlinear inequalities, and more generally to nonlinear op-
timization, has much to recommend it on general grounds [26]. But in the context of
a foundational theorem prover it is especially appealing, because the “difficult” part,
finding the certificates, can be done using highly optimized, unverified external pro-
grams. The theorem prover merely needs to verify the certificate [15]. We have found
it fast and powerful enough to prove many lemmas that come up in practice as part of
larger proofs. Quite recently we were happy to use it for the otherwise slightly tedious
lemmas 0 ≤ a ∧ 0 ≤ b ∧ 0 ≤ c ∧ c(2a + b)3/27 ≤ x⇒ ca2b ≤ x (1.25 seconds) and
−1 ≤ t ∧ t ≤ 1 ⇒ 0 ≤ 1 + r2 − 2rt (0.06 seconds). However, we have encountered
two persistent problems that suggest necessary improvements.

First, sometimes our naive rounding procedure is not adequate, and even though the
SDP solver seems to solve the semidefinite program fairly accurately, none of the round-
ings we try results in a PSD matrix. In this case, we end up in an infinite loop, exploring
more complex certificates without any benefit. It would certainly be desirable to have a
more intelligent approach to rounding, but at present we are not sure what the best ap-
proach is. Indeed, in principle the exact floating-point result can be platform-dependent,
since the involved numerical algorithms underlying SDP have often been optimized in
slightly different ways (e.g. a different order of operations when multiplying matrices).

Second, the treatment of strict inequalities in our Positivstellensatz (considering p >
0 as p ≥ 0 and p 	= 0) means that the style of exploration of the search space depends
critically on whether the inequalities are strict or non-strict. This can sometimes have

Verifying Nonlinear Real Formulas Via Sums of Squares 113

tiresome consequences. For example the following example (which I got from Russell
O’Connor) works quite quickly:

REAL_SOS
‘a * a + a * b - b * b >= &0 /\
&2 * a + b >= &0 /\
c * c + c * d - d * d <= &0 /\
d >= &0
==> a * d + c * b + b * d >= &0‘;;

If we replace a few non-strict (≥) inequalities in the hypotheses by strict ones (>),
we might expect it to become easier. Yet because of the difference in treatment of
strict inequalities, the problem is only solved at a much higher depth, and moreover
at that point the rounding problem has appeared and means that we do not solve it at
all!

7 Optimizing the Univariate Case

Most floating-point transcendental function implementations ultimately rely on a poly-
nomial approximation over an interval, and we would like to verify an error bound
theorem of the form ∀x. a ≤ x ≤ b ⇒ |f(x) − p(x)| ≤ ε relating the function f to its
polynomial approximation. By choosing a very accurate Taylor series expansion t(x),
one can reduce the problem to bounding a polynomial ∀x.a ≤ x ≤ b⇒ |t(x)−p(x)| ≤
ε. This is a problem that has sometimes preoccupied the present author for some time,
and formally verified solutions can be quite lengthy to compute [13,14]. The idea of
proving such bounds using SOS techniques, even a direct SOS decomposition after
change of variables, is very attractive.

Unfortunately, the numerical difficulties mentioned above are a serious issue here,
and we have not had much success with SOS methods except on artificially simple
examples. It is not hard to understand why these cases are numerically difficult. The
coefficients of p(x) are carefully chosen to minimize the maximum error over the in-
terval, and are not simple rational numbers. Moreover, by design, the error bounds tend
to be small relative to the coefficients. (A simple and idealized form of the same phe-
nomenon is that the Chebyshev polynomials Tn(x) are bounded by 1 over the interval
[−1, 1] even though their leading coefficient is 2n.)

We therefore consider a different approach, where we adapt the simple proof that
every univariate PSD polynomial is a sum of two real squares to find exact rational
decompositions. This has not yet been completely automated and integrated into HOL
Light, but we have a simple script that runs in PARI/GP6 and appears to be promising.
(We rely on the excellent arbitrary-precision complex root finder in PARI/GP, which
implements a variant of an algorithm due to Schönhage.) We will explain the algorithm
in general, as well as tracing a specific example:

p(x) = ((x − 1)8 + 2(x− 2)8 + (x− 3)8 − 2)/4
= x8 − 16x7 + 126x6 − 616x5 + 1995x4 − 4312x3 + 6006x2 − 4888x+ 1768

6 http://pari.math.u-bordeaux.fr/

http://pari.math.u-bordeaux.fr/

114 J. Harrison

Elimination of Repeated Roots

If a polynomial is ≥ 0 everywhere, then real roots must occur with even multiplicity.
Therefore, we start out as in squarefree decomposition by taking d = gcd(p, p′) and
writing p = d2q. The remaining polynomial q must have no real roots, and hence be
strictly > 0 everywhere. If we can write q as a SOS, we can just multiply inside each
square by d and get a SOS for p. In our running example, this factors out one repeated
root x = 2:

p = x8 − 16x7 + 126x6 − 616x5 + 1995x4 − 4312x3 + 6006x2 − 4888x+ 1768
p′ = 8x7 − 112x6 + 756x5 − 3080x4 + 7980x3 − 12936x2 + 12012x− 4888
d = x− 2
q = x6 − 12x5 + 74x4 − 272x3 + 611x2 − 780x+ 442

Note that this step requires only rational operations and does not introduce any
inaccuracy.

Perturbation

Since all polynomials of odd degree have a real root, the degree of the original p and
our polynomial q must be even, say ∂(q) = n = 2m. Since it is strictly positive, there
must be an ε > 0 such that the perturbed polynomial

q − ε(1 + x2 + ... + x2m)

is also (strictly) positive. To find such an ε we just need to test if a polynomial has
real roots, which we can easily do in PARI/GP; we can then search for a suitable ε
by choosing a convenient starting value and repeatedly dividing by 2 until our goal is
reached; we actually divide by 2 again to leave a little margin of safety. (Of course, there
are more efficient ways of doing this.) In this case we get ε = 1/32 and the perturbed
polynomial becomes:

31/32x6 − 12x5 + 2367/32x4 − 272x3 + 19551/32x2 − 780x+ 14143/32

We have been assuming that the initial polynomial is indeed PSD, but if it is not, that
fact will be detected at this stage by checking the ε = 0 case.

Approximate SOS of Perturbed Polynomial

We now use the basic ‘sum of two real squares’ idea to obtain an approximate SOS
decomposition of the perturbed polynomial r, just by using approximations of the
roots, close enough to make the final step below work correctly. Now we have r =
ls2 + lt2 + u where l is the leading coefficient of r, such that the remainder u is rel-
atively small. Using our PARI/GP script on the running example we obtain for this
remainder:

Verifying Nonlinear Real Formulas Via Sums of Squares 115

u = 7/65536x5 − 522851/268435456x4 + 1527705/268435456x3−
655717/536870912x2 − 14239/2097152x + 1913153/536870912

Absorption of Remainder Term

We now have q = ls2 + lt2 + ε(1 + x2 + ... + x2m) + u, so it will suffice to express
ε(1 + x2 + ... + x2m) + u as a sum of squares. Note that the degree of u is < 2m
by construction (though the procedure to be outlined would work with minor variations
even if it were exactly 2m). Let us say u = a0 + a1x + . . . + a2m−1x

2m−1. Note that

x = (x + 1/2)2 − (x2 + 1/4)
−x = (x − 1/2)2 − (x2 + 1/4)

and so for any c ≥ 0:

cx2k+1 = c(xk+1 + 1/2xk)2 − c(x2k+2 + 1/4x2k)
−cx2k+1 = c(xk+1 − 1/2xk)2 − c(x2k+2 + 1/4x2k)

Consequently we can rewrite the odd-degree terms of u as

a2k+1x
2k+1 = |a2k+1|(xk+1 + sgn(a2k+1)/2xk)2 − |a2k+1|(x2k+2 + 1/4x2k)

and so:

ε(1 + x2 + ... + x2m) + u =
∑m−1

k=0 |a2k+1|(xk+1 + sgn(a2k+1)/2xk)2+
∑m

k=0(ε + a2k − |a2k−1| − |a2k+1|/4)x2k

where by convention a−1 = a2m+1 = 0. This already gives us the required SOS
representation, provided each ε + a2k − |a2k−1| − |a2k+1|/4 ≥ 0, and we can ensure
this by computing the approximate SOS sufficiently accurately. In the running example,
our overall expression is

31/32(x3 − 25369/4096x2 + 313/64x + 32207/4096)2+
31/32(21757/4096x2 − 90963/4096x + 1271/64)2+
14239/2097152(x− 1/2)2+
1527705/268435456(x2 + 1/2x)2+
7/65536(x3 + 1/2x2)2+
2041/65536x6+
1582721/67108864x4+
23424925/1073741824x2+
17779073/536870912

116 J. Harrison

and we can recover a SOS decomposition for the original polynomial by incorporating
the additional factor x− 2 into each square:

31/32(x4 − 33561/4096x3 + 35385/2048x2 − 7857/4096x− 32207/2048)2+
31/32(21757/4096x3 − 134477/4096x2 + 131635/2048x− 1271/32)2+
14239/2097152(x2 − 5/2x + 1)2+
1527705/268435456(x3 − 3/2x2 − x)2+
7/65536(x4 − 3/2x3 − x2)2+
2041/65536(x4 − 2x3)2+
1582721/67108864(x3 − 2x2)2+
23424925/1073741824(x2 − 2x)2+
17779073/536870912(x− 2)2

8 Conclusions and Related Work

Our work so far shows that SOS is a very promising approach to this class of problem.
Despite the implementation in a very foundational theorem-prover, simple problems
are solved fast enough to be a real boon in practice. However, we have also noted a
couple of difficulties. The rounding problem seems to be the most pressing. It could
be avoided given an arbitrary-precision package for semidefinite programming. How-
ever, replacing ordinary floating-point arithmetic in a semidefinite programming engine
with something like MPFR7 would be highly non-trivial even for their designers, since
they are complex programs depending on an infrastructure of linear algebra packages.
Lacking a high-precision SDP solver, we need to come up with a more ‘intelligent’
approach to rounding, but this seems non-trivial. As an answer to our problems with
strict inequalities, there are numerous possibilities, such as directly eliminating strict
inequalities in terms of equations or using a different form of Positivstellensatz, even a
radically different one such as Schmüdgen’s [28]. We have already experimented with
other valuable optimizations, e.g. exploiting symmetry and using Gröbner bases to han-
dle equations, and these should be pursued and properly integrated into the mainstream
version.

Acknowledgements

I want to thank Henri Lombardi for first taking the time to explain some of the basic
theory of the Real Nullstellensatz to me, so setting me off on a long voyage of discovery.
The debt to Pablo Parrilo is clear: a large part of this work is just an implementation
of his key ideas. The ideas for optimizing the univariate case and its implementation
in PARI/GP were worked out when I was a visitor in the Arenaire group at the ENS in
Lyon. I am grateful to many people there for stimulating discussions, and in particular to
Christoph Lauter for help with German translation and for some additional examples. I
also benefited from the discussion at CMU when I presented SOS at a seminar organized
by Jeremy Avigad and Ed Clarke. Laurent Théry, besides porting some of the work

7 http://www.mpfr.org/

http://www.mpfr.org/

Verifying Nonlinear Real Formulas Via Sums of Squares 117

to Coq, persuaded me that I should write things up for publication. I’m also grateful
to the anonymous referees for their constructive suggestions and for catching several
errors.

References

1. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elemen-
tary functions. In: Cook, B., Sebastiani, R. (eds.) Proceedings of PDPAR 2006: Pragmatics
of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

2. Akgül, M.: Topics in relaxation and ellipsoidal methods. Research notes in mathematics,
vol. 97. Pitman (1984)

3. Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Hamburg Abhandlung 5,
100–115 (1927)

4. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical Meth-
ods in Computer Science (to appear), available online at http://arxiv.org/
abs/cs.LO/0601134

5. Basu, S.: A constructive algorithm for 2-D spectral factorization with rational spectral
factors. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Appli-
cations 47, 1309–1318 (2000)

6. Borchers, B.: CSDP: A C library for semidefinite programming. Optimization Methods and
Software 11, 613–623 (1999)

7. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic De-
composition. Texts and monographs in symbolic computation. Springer, Heidelberg (1998)

8. Cohen, P.J.: Decision procedures for real and p-adic fields. Communications in Pure and
Applied Mathematics 22, 131–151 (1969)

9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decom-
position. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33,
pp. 134–183. Springer, Heidelberg (1975)

10. Ferrar, W.L.: Algebra: a text-book of determinants, matrices, and algebraic forms, 2nd edn.
Oxford University Press, Oxford (1957)

11. Grotschel, M., Lovsz, L., Schrijver, A.: Geometric algorithms and combinatorial optimiza-
tion. Springer, Heidelberg (1993)

12. Guangxing, Z., Xiaoning, Z.: An effective decision method for semidefinite polynomials.
Journal of Symbolic Computation 37, 83–99 (2004)

13. Harrison, J.: Verifying the accuracy of polynomial approximations in HOL. In: Gunter,
E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 137–152. Springer, Heidelberg
(1997)

14. Harrison, J.: Formal verification of floating point trigonometric functions. In: Johnson, S.D.,
Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg
(2000)

15. Harrison, J., Théry, L.: A sceptic’s approach to combining HOL and Maple. Journal of
Automated Reasoning 21, 279–294 (1998)

16. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Math-
ematische Annalen 32, 342–350 (1888)

17. Hörmander, L. (ed.): The Analysis of Linear Partial Differential Operators II. Grundlehren
der mathematischen Wissenschaften, vol. 257. Springer, Heidelberg (1983)

18. Hunt, W.A., Krug, R.B., Moore, J.: Linear and nonlinear arithmetic in ACL2. In: Geist,
D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 319–333. Springer, Heidelberg
(2003)

http://arxiv.org/abs/cs.LO/0601134
http://arxiv.org/abs/cs.LO/0601134

118 J. Harrison

19. Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman, New York (1989)
20. Khachian, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics Dok-

lady 20, 191–194 (1979)
21. Landau, E.: Über die Darstellung definiter Funktionen durch Quadrate. Mathematischen

Annalen 62, 272–285 (1906)
22. Lombardi, H.: Effective real nullstellensatz and variants. In: Mora, T., Traverso, C. (eds.)

Proceedings of the MEGA-90 Symposium on Effective Methods in Algebraic Geometry,
Castiglioncello, Livorno, Italy. Progress in Mathematics, vol. 94, pp. 263–288. Birkhäuser
Basel (1990)

23. Mahboubi, A., Pottier, L.: Elimination des quantificateurs sur les réels en Coq. In:
Journées Francophones des Langages Applicatifs (JFLA) (2002), available on the Web
from http://pauillac.inria.fr/jfla/2002/actes/index.html08-
mahboubi.ps

24. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In:
Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp.
295–314. Springer, Heidelberg (2005)

25. Motzkin, T.S.: The arithmetic-geometric inequality. In: Shisha, O. (ed.) Inequalities, Acad-
emic Press, London (1967)

26. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathe-
matical Programming 96, 293–320 (2003)

27. Pourchet, Y.: Sur la répresentation en somme de carrés des polynômes a une indeterminée
sur un corps de nombres algébraiques. Acta Arithmetica 19, 89–109 (1971)

28. Prestel, A., Dalzell, C.N.: Positive Polynomials: From Hilbert’s 17th Problem to Real Al-
gebra. Springer monographs in mathematics. Springer, Heidelberg (2001)

29. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM review 35, 183–283 (1993)
30. Seidenberg, A.: A new decision method for elementary algebra. Annals of Mathematics 60,

365–374 (1954)
31. Strang, G.: Linear Algebra and its Applications, 3rd edn. Brooks/Cole (1988)
32. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of Cali-

fornia Press (1951), Previous version published as a technical report by the RAND Corpo-
ration, J.C.C. McKinsey (1948) (reprinted in [7], pp. 24–84)

33. Tiwari, A.: An algebraic approach to the satisfiability of nonlinear constraints. In: Ong, L.
(ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)

34. Weil, A.: Number Theory: An approach through history from Hammurapi to Legendre.
Birkhäuser Basel (1983)

http://pauillac.inria.fr/jfla/2002/actes/index.html08-mahboubi.ps
http://pauillac.inria.fr/jfla/2002/actes/index.html08-mahboubi.ps

Verification of Expectation Properties for

Discrete Random Variables in HOL

Osman Hasan and Sofiène Tahar

Dept. of Electrical & Computer Engineering, Concordia University
1455 de Maisonneuve W., Montreal, Quebec, H3G 1M8, Canada

{o hasan,tahar}@ece.concordia.ca

Abstract. One of the most important concepts in probability theory is
that of the expectation of a random variable, which basically summarizes
the distribution of the random variable in a single number. In this pa-
per, we develop the basic techniques for analyzing the expected values of
discrete random variables in the HOL theorem prover. We first present
a formalization of the expectation function for discrete random variables
and based on this definition, the expectation properties of three com-
monly used discrete random variables are verified. Then, we utilize the
definition of expectation in HOL to verify the linearity of expectation
property, a useful characteristic to analyze the expected values of proba-
bilistic systems involving multiple random variables. To demonstrate the
usefulness of our approach, we verify the expected value of the Coupon
Collector’s problem within the HOL theorem prover.

1 Introduction

Probabilistic techniques are increasingly being used in the design and analysis of
software and hardware systems, with applications ranging from combinatorial op-
timization and machine learning to communication networks and security proto-
cols. The concept of a random variable plays a key role in probabilistic analysis.
The sources of randomness associated with the system under test are modeled as
random variables and then the performance issues are judged based on the prop-
erties of the associated random variables. One of the most important properties of
random variables is their expectation or expected value. The expectation basically
provides the average of a random variable, where each of the possible outcomes of
this random variable is weighted according to its probability.

Conventional simulation techniques are not capable of conducting the prob-
abilistic analysis in a very efficient way. In fact, simulation based techniques
require enormous amounts of numerical computations to generate meaningful
results and can never guarantee exact answers. On the contrary, formal meth-
ods are capable of providing exact answers in this domain, if the probabilistic
behavior can be modeled using a formalized semantics and we have the means
to reason about probabilistic properties within a formalized framework.

Hurd’s PhD thesis [9] is a pioneering work in regards to the modeling of prob-
abilistic behavior in higher-order-logic. It presents an extensive foundational

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 119–134, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

120 O. Hasan and S. Tahar

development of probability, based on the mathematical measure theory, in the
higher-order-logic (HOL) theorem prover. This formalization allows us to manip-
ulate random variables and reason about their corresponding probability distri-
bution properties in HOL. The probability distribution properties of a random
variable, such as the Probability Mass Function (PMF), completely characterize
the behavior of their respective random variables. It is frequently desirable to
summarize the distribution of a random variable by its average or expected value
rather than an entire function. For example, we are more interested in finding
out the expected value of the runtime of an algorithm for an NP-hard problem,
rather than the probability of the event that the algorithm succeeds within a
certain number of steps.

In this paper, we develop the basic techniques for analyzing the expected
values of discrete random variables in the HOL theorem prover. To the best
of our knowledge, this is a novelty that has not been presented in the open
literature so far. We chose HOL for this purpose in order to build upon the
verification framework proposed in [9]. Discrete random variables, such as the
Uniform, Bernoulli, Binomial and Geometric, are widely used in a number of
probabilistic analysis applications, e.g., analyzing the expected performances of
algorithms [13] and efficiency of cryptographic protocols [12], etc. Most of these
random variables are also natural-valued, i.e., they take on values only in the
natural numbers, N = {0, 1, 2, · · ·}. In order to speed up the formalization and
verification process and to be able to target real life applications, we are going
to concentrate in this paper on formalizing the expectation for this specific class
of discrete random variables.

We first present a formal definition of expectation for natural-valued discrete
random variables. This definition allows us to prove expectation properties for
individual discrete random variables in HOL. To target the verification of ex-
pected values of probabilistic systems involving multiple random variables, we
utilize our formal definition of expectation to prove the linearity of expectation
property [10]. By this property, the expectation of the sum of random variables
equals the sum of their individual expectations

Ex[
n
∑

i=1

Xi] =
n
∑

i=1

Ex[Xi] (1)

where Ex denotes the expectation function. The linearity of expectation is one
of the most important properties of expectation as it allows us to verify the
expectation properties of random behaviors involving multiple random variables
without going into the complex verification of their joint probability distribu-
tion properties. Thus, its verification is a significant step towards using the HOL
theorem prover as a successful probabilistic analysis framework. In order to il-
lustrate the practical effectiveness of the formalization presented in this paper,
we analyze the expectation of the Coupon Collector’s problem [13], a well know
commercially used algorithm, within the HOL theorem prover. We first formalize
the Coupon Collector’s problem as a probabilistic algorithm using the summa-
tion of a list of Geometric random variables. Then, the linearity of expectation
property is used to verify its corresponding expected value.

Verification of Expectation Properties 121

The rest of the paper is organized as follows: Section 2 gives a review of the
related work. In Section 3, we summarize a general methodology for modeling
and verification of probabilistic algorithms in the HOL theorem prover. Then, we
present the formalization of the expectation function for natural-valued discrete
random variables along with the verification of expectation properties of a few
commonly used discrete distributions in Section 4. The results are found to
be in good agreement with existing theoretical paper-and-pencil counterparts.
Section 5 presents the verification of the linearity of expectation property. The
analysis of the Coupon Collector’s problem is presented in Section 6. Finally,
Section 7 concludes the paper.

2 Related Work

Nȩdzusiak [14] and Bialas [2] were among the first ones to formalize some prob-
ability theory in higher-order-logic. Hurd [9] extended their work and developed
a framework for the verification of probabilistic algorithms in HOL. He demon-
strated the practical effectiveness of his formal framework by successfully ver-
ifying the sampling algorithms for four discrete probability distributions, some
optimal procedures for generating dice rolls from coin flips, the symmetric sim-
ple random walk and the Miller-Rabin primality test based on the corresponding
probability distribution properties. Building upon Hurd’s formalization frame-
work, we have been able to successfully verify the sampling algorithms of a few
continuous random variables [7] and the classical cumulative distribution func-
tion properties [8], which play a vital role in verifying arbitrary probabilistic
properties of both discrete and continuous random variables. The current paper
also builds upon Hurd’s framework and presents an infrastructure that can be
used to verify expectation properties of natural-valued discrete random vari-
ables within a higher-order-logic theorem prover.

Richter [15] formalized a significant portion of the Lebesgue integration theory
in higher-order-logic using Isabelle/Isar. In his PhD thesis, Richter linked the
Lebesgue integration theory to probabilistic algorithms, developing upon Hurd’s
[9] framework, and presented the formalization of the first moment method. Due
to its strong mathematical foundations, the Lebesgue integration theory can be
used to formalize the expectation of most of the discrete and continuous random
variables. Though, one of the limitations of this approach is the underlying com-
plexity of the verification using interactive higher-order-logic theorem proving.
It is not a straightforward task to pick a random variable and verify its expec-
tation property using the formalized Lebesgue integration theory. Similarly, the
analysis of probabilistic systems that involve multiple random variables becomes
more difficult. On the other hand, our formalization approach for the expecta-
tion function, is capable of handling these kind of problems for discrete random
variables, as will be demonstrated in Sections 4 and 6 of this paper, but is limited
to discrete random variables only.

Expectation is one of the most useful tools in probabilistic analysis and there-
fore its evaluation with automated formal verification has also been explored in

122 O. Hasan and S. Tahar

the probabilistic model checking community [1,16]. For instance, some proba-
bilistic model checkers, such as PRISM [11] and VESTA [17], offer the capabil-
ity of verifying expected values in a semi-formal manner. In the PRISM model
checker, the basic idea is to augment probabilistic models with cost or rewards:
real values associated with certain states or transitions of the model. This way,
the expected value properties, related to these rewards, can be analyzed by
PRISM. It is important to note that the meaning ascribed to these properties
is, of course, dependent on the definitions of the rewards themselves and thus
there is a significant risk of verifying false properties. On the other hand, there is
no such risk involved in verifying the expectation properties using the proposed
theorem proving based approach due to its inherent soundness.

Probabilistic model checking is capable of providing exact solutions to prob-
abilistic properties in an automated way though; however, it is also limited to
systems that can only be expressed as a probabilistic finite state machine. In
contrast, the theorem proving based probabilistic verification is an interactive
approach but is capable of handling all kinds of probabilistic systems includ-
ing the unbounded ones. Another major limitation of the probabilistic model
checking approach is the state space explosion [3], which is not an issue with the
proposed theorem proving based probabilistic analysis approach.

3 Verifying Probabilistic Algorithms in HOL

This section presents the methodology, initially proposed in [9], for the formaliza-
tion of probabilistic algorithms, which in turn can be used to represent random
variables as well. The intent is to introduce the main ideas along with some
notation that is going to be used in the next sections.

The probabilistic algorithms can be formalized in higher-order logic by think-
ing of them as deterministic functions with access to an infinite Boolean se-
quence B∞; a source of infinite random bits [9]. These deterministic functions
make random choices based on the result of popping the top most bit in the
infinite Boolean sequence and may pop as many random bits as they need for
their computation. When the algorithms terminate, they return the result along
with the remaining portion of the infinite Boolean sequence to be used by other
programs. Thus, a probabilistic algorithm which takes a parameter of type α
and ranges over values of type β can be represented in HOL by the function

F : α→ B∞ → β ×B∞

For example, a Bernoulli(1
2) random variable that returns 1 or 0 with equal

probability 1
2 can be modeled as follows

� bit = λs. (if shd s then 1 else 0, stl s)

where s is the infinite Boolean sequence and shd and stl are the sequence
equivalents of the list operation ’head’ and ’tail’. The probabilistic programs can
also be expressed in the more general state-transforming monad where states are
infinite Boolean sequences.

Verification of Expectation Properties 123

� ∀ a,s. unit a s = (a,s)
� ∀ f,g,s. bind f g s = let (x,s’)← f(s) ∈ g x s’

The unit operator is used to lift values to the monad, and the bind is the
monadic analogue of function application. All monad laws hold for this definition,
and the notation allows us to write functions without explicitly mentioning the
sequence that is passed around, e.g., function bit can be defined as

� bit monad = bind sdest (λb. if b then unit 1 else unit 0)

where sdest gives the head and tail of a sequence as a pair (shd s,stl s).
The work in [9] also presents some formalization of the mathematical measure

theory in HOL, which can be used to define a probability function P from sets
of infinite Boolean sequences to real numbers between 0 and 1. The domain
of P is the set E of events of the probability. Both P and E are defined using
the Carathéodory’s Extension theorem [18], which ensures that E is a σ-algebra:
closed under complements and countable unions. The formalized P and E can
be used to prove probabilistic properties for probabilistic programs such as

� P {s | fst (bit s) = 1} = 1
2

where the function fst selects the first component of a pair and {x|C(x)} rep-
resents a set of all x that satisfy the condition C in HOL.

The measurability and independence of a probabilistic function are important
concepts in probability theory. A property indep, called strong function indepen-
dence, is introduced in [9] such that if f ∈ indep, then f will be both measurable
and independent. It has been shown in [9] that a function is guaranteed to pre-
serve strong function independence, if it accesses the infinite Boolean sequence
using only the unit, bind and sdest primitives. All reasonable probabilistic
programs preserve strong function independence, and these extra properties are
a great aid to verification.

The above mentioned methodology has been successfully used to verify the
sampling algorithms of a few discrete random variables based on the corre-
sponding probability distribution properties [9]. In the current paper, we further
strengthen this particular higher-order-logic probabilistic analysis approach by
presenting the formalization of an expectation function, which can be utilized
to verify expectation properties for discrete random variables.

4 Expectation for Discrete Distributions

There are mainly two approaches that can be used to formalize the expected
value of a random variable in a higher-order-logic theorem prover [10]. Since a
random variable is a real-valued function defined on the sample space, S, we
can formalize expectation in terms of the probability space (S,F, P), where F is
the sigma field of subsets of S, and P is the probability measure. This approach
leads to the theory of abstract Lebesgue integration. Richter [15] formalized

124 O. Hasan and S. Tahar

a significant portion of the Lebesgue integration theory in higher-order-logic.
Richter’s formalization paves the way to manipulate expected values in a higher-
order-logic theorem prover but leads to a very complex verification task when it
comes to verifying expectation properties of probabilistic systems that involve
multiple random variables.

An alternate approach for formalizing the expectation of a random variable
is based on the fact that the probability distribution of a random variable X ,
defined on the real line, can be expressed in terms of the distribution function of
X . As a consequence, the expected value of a natural-valued discrete random
variable can be defined by referring to the distribution of the probability mass
on the real line as follows

Ex[X] =
∞
∑

i=0

iPr(X = i) (2)

where Pr denotes the probability. The above definition only holds if the summa-
tion, carried over all possible values of X , is convergent, i.e.,

∑∞
i=0 |i|Pr(X = i)

<∞.
We are going to follow the second approach. This decision not only simplifies

the formalization task of expectation for discrete random variables considerably,
when compared to the approach involving Lebesgue integration, but also aids
in the verification of expectation properties of probabilistic systems that involve
multiple random variables in a straight forward manner. The expected value
of the natural-valued discrete random variables, given in Equation 2, can be
formalized in HOL follows

Definition 1. Expectation of natural-valued Discrete Random Variables
� ∀ X. expec X = suminf (λn. n P{s | fst(X s) = n})

where suminf represents the HOL formalization of the infinite summation of a
real sequence [6]. The function expec accepts the random variable X with data
type B∞ → (natural ×B∞), and returns a real number.

Next, we build upon the above definition of expectation to verify the expecta-
tion properties of Uniform(n), Bernoulli(p) and Geometric(p) random variables
in HOL. These random variables have been chosen in such a way that each one
of them ranges over a different kind of set, in order to illustrate the generality
of our definition of expectation.

4.1 Uniform(n) Random Variable

The Uniform(n) random variable assigns equal probability to each element in the
set {0, 1, · · · , (n− 1)} and thus ranges over a finite number of natural numbers.
A sampling algorithm for the Uniform(n) can be found in [9], which has been
proven correct by verifying the corresponding PMF property in HOL.

� ∀ n m. m < n ⇒ P{s | fst(prob unif n s) = m} = 1
n

Verification of Expectation Properties 125

where prob unif represents the higher-order-logic function for the Uniform(n)
random variable. The first step towards the verification of the expectation prop-
erty of discrete random variables that range over a finite number of natural
numbers, say k, is to transform the infinite summation of Definition 1 to a finite
summation over k values. This can be done in the case of the Uniform(n) ran-
dom variable by using the above PMF property to prove the fact, for all values
of n greater than 0, that the Uniform(n) random variable never acquires a value
greater than or equal to n.

� ∀ n m. (suc n) ≤ m ⇒ P{s | fst(prob unif (suc n) s) = m} = 0

This property allows us to rewrite the infinite summation of Definition 1,
for the case of the Uniform(n) random variable, in terms of a finite summation
over n values using the HOL theory of limit of a real sequence. The expectation
property can be proved now by induction over the variable n and simplifying the
subgoals using some basic finite summation properties from the HOL theory of
real numbers along with the PMF of the Uniform(n) random variable.

Theorem 1. Expectation of Uniform(n) Random Variable
� ∀ n. expec (λs. prob unif (suc n) s) = n

2

4.2 Bernoulli(p) Random Variable

Bernoulli(p) random variable models an experiment with two outcomes; success
and failure, whereas the parameter p represents the probability of success. A
sampling algorithm of the Bernoulli(p) random variable has been formalized
in [9] as the function prob bern such that it returns True with probability
p and False otherwise. It has also been verified to be correct by proving the
corresponding PMF property in HOL.

� ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ P{s | fst(prob bern p s)} = p

The Bernoulli(p) random variable ranges over 2 values of Boolean data type.
The expectation property of these kind of discrete random variables, which range
over a finite number of values of a different data type than natural numbers, can
be verified by mapping them to the natural line. In the case of Bernoulli(p) ran-
dom variable, we redefined the function prob bern such that it returns natural
numbers 1 and 0 instead of the Boolean quantities True and False respectively,
i.e., the range of the random variable was changed from Boolean data type to
natural data type. It is important to note that this redefinition does not change
the distribution properties of the given random variable. Now, the verification
of the expectation can be handled using the same procedure used for the case of
random variables that range over a finite number of natural numbers. In the case
of Bernoulli(p) random variable, we were able replace the infinite summation of
Definition 1 with the summation of the first two values of the corresponding real
sequence using the HOL theory of limit of a real sequence. This substitution
along with the PMF property of the Bernoulli(p) random variable and some
properties from the HOL theories of real and natural numbers allowed us to
verify the expectation of the Bernoulli(p) in HOL.

126 O. Hasan and S. Tahar

Theorem 2. Expectation of Bernoulli(p) Random Variable
� ∀ p. 0 ≤ p ∧ p ≤ 1 ⇒ expec (λs. prob bernN p s) = p

where the function prob bernN represents the Bernoulli(p) random variable that
ranges over the natural numbers 0 and 1.

4.3 Geometric(p) Random Variable

Geometric(p) random variable can be defined as the index of the first success in
an infinite sequence of Bernoulli(p) trials [4]. Therefore, the Geometric(p) distri-
bution may be sampled by extracting random bits from the function prob bern,
explained in the previous section, and stopping as soon as the first False is
encountered and returning the number of trials performed till this point. Thus,
the Geometric(p) random variable ranges over a countably infinite number of
natural numbers. This fact makes it different from other random variables that
we have considered so far.

Based on the above sampling algorithm, we modeled the Geometric(p) random
variable using the probabilistic while loop [9] in HOL as follows

Definition 2. A Sampling Algorithm for Geometric(p) Distribution
� ∀ p s. prob geom iter p s = bind (prob bern (1-p))

(λb. unit (b, suc (snd s)))
� ∀ p. prob geom loop p =

prob while fst (prob geom iter p)
� ∀ p. prob geom p = bind (bind (unit (T, 1))

(prob geom loop p)) (λs. unit (snd s - 1))

It is important to note that p, which represents the probability of success for
the Geometric(p) or the probability of obtaining False from the Bernoulli(p)
random variable, cannot be assigned a value equal to 0 as this will lead to a
non-terminating while loop. We verified that the function prob geom preserves
strong function independence using the HOL theories on probability. This result
may be used along with the probability and set theories in HOL to verify the
PMF property of the Geometric(p) random variable.

� ∀ n p. 0 < p ∧ p ≤ 1 ⇒
P{s | fst(prob geom p s) = (suc n)} = p(1− p)n

The expectation of Geometric(p) random variable can now be verified by first
plugging the above PMF value into the definition of expectation and then using
the following summation identity

∞
∑

n=1

nxn−1 =
1

(1− x)2
(3)

where 0 ≤ x < 1. The proof task for this summation identity was quite involved
and the HOL theories of limit of a real sequence, real and natural numbers were

Verification of Expectation Properties 127

mainly used. The verified expectation property of Geometric(p) random variable
in HOL is give below.

Theorem 3. Expectation of Geometric(p) Random Variable
� ∀ n p. 0 < p ∧ p ≤ 1 ⇒

expec (λs. prob geom p s) = 1
p

5 Verification of Linearity of Expectation Property

We split the verification of linearity of expectation property in two major steps.
Firstly, we verify the property for two discrete random variables and then extend
the results by induction to prove the general case.

5.1 Two Random Variables

The linearity of expectation property can be defined for any two discrete random
variables X and Y , according to Equation 1, as follows

Ex[X + Y] = Ex[X] + Ex[Y] (4)

To prove the above relationship in HOL, we proceed by first defining a function
that models the summation of two random variables.

Definition 3. Summation of Two Random Variables
� ∀ X Y. sum two rv X Y =

bind X (λa. bind Y (λb. unit (a + b)))

It is important to note that the above definition implicitly ensures that the call
of the random variable Y is independent of the result of the random variable X .
This is true because the infinite Boolean sequence that is used for the compu-
tation of Y is the remaining portion of the infinite Boolean sequence that has
been used for the computation of X . This characteristic led us to prove that the
function sum two rv preserves strong function independence, which is the most
significant property in terms of verifying properties on probabilistic functions.

Theorem 4. sum two rv Preserves Strong Function Independence
� ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ⇒

(sum two rv X Y) ∈ indep fn

Now the linearity of expectation property for two discrete random variables can
be stated using the sum two rv function as follows.

Theorem 5. Linearity of Expectation for Two Discrete Random Variables
� ∀ X Y. X ∈ indep fn ∧ Y ∈ indep fn ∧

summable (λn. n P{s | fst(X s) = n}) ∧
summable (λn. n P{s | fst(Y s) = n}) ⇒
expec (sum two rv X Y) = expec X + expec Y

128 O. Hasan and S. Tahar

Proof: Rewriting the LHS with the definition of the functions sum two rv and
expec and removing the monad notation, we obtain the following expression.

lim
k→∞

(
k
∑

n=0

n P{s | fst(X s) + fst(Y (snd(X s))) = n})

The set in the above expression can be expressed as the countable union of a
sequence of events using the HOL theory of sets.

lim
k→∞

(
k
∑

n=0

n P
⋃

i≤n

{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n− i)})

As all events in this sequence are mutually exclusive, the additive probability
law given in the HOL theory of probability, can be used to simplify the expression
as follows

lim
k→∞

(
k
∑

n=0

n
n+1
∑

i=0

P{s | (fst(X s) = i) ∧ (fst(Y (snd(X s))) = n− i)})

Using the HOL theories of limit of a real sequence, real and natural number,
the above expression can be rewritten as follows

lim
k→∞

(
k
∑

a=0

k
∑

b=0

(a + b) P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})

Rearranging the terms based on summation properties given in the HOL the-
ory of real numbers, we obtain the following expression.

lim
k→∞

(
k
∑

a=0

k
∑

b=0

a P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)}) +

lim
k→∞

(
k
∑

b=0

k
∑

a=0

b P{s | (fst(X s) = a) ∧ (fst(Y (snd(X s))) = b)})

The two terms in the above expression can now be proved to be equal to the
expectation of random variables X and Y respectively, using Theorem 4 and
HOL theory of probability, sets, real and and natural numbers. �

5.2 n Random Variables

The linearity of expectation property for two discrete random variables, verified
in Theorem 5, can now be generalized to verify the linearity of expectation
property for n discrete random variables, given in Equation 1, using induction
techniques.

The first step in this regard is to define a function, similar to sum two rv,
which models the summation of a list of n random variables.

Verification of Expectation Properties 129

Definition 4. Summation of n Random Variables
� (sum rv lst [] = unit 0) ∧
∀ h t. (sum rv lst (h::t) =

bind h (λa. bind (sum rv lst t)
λb. unit (a + b)))

Next, we prove that the function sum rv lst preserves strong function indepen-
dence, if all random variables in the given list preserve it. This property can be
verified using the fact that the function sum rv lst accesses the infinite Boolean
sequence using the unit and bind primitives only.

Theorem 6. sum rv lst Preserves Strong Function Independence
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn) ⇒

(sum rv lst L) ∈ indep fn

The predicate mem in the above definition returns True if its first argument is
an element of the list that it accepts as the second argument.

Using induction on the list argument L of the function sum rv lst and sim-
plifying the subgoals using Theorem 5, we proved, in HOL, that the expected
value of the random variable modeled by the function sum rv lst exists if the
expectation of all individual elements of its list argument exists. Here, by the
existence of the expectation we mean that the infinite summation in the expec-
tation definition converges.

Theorem 7. The Expectation of sum rv lst Exists
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn ∧

summable (λn. n P{s | fst(R s) = n})) ⇒
summable (λn. n P{s | fst(sum rv lst L s) = n})

The linearity of expectation property for n discrete random variables can be
provednow by applying induction on the list argument of the function sum rv lst,
and simplifying the subgoals using Theorems 5, 6 and 7.

Theorem 8. Linearity of Expectation for n Discrete Random Variables
� ∀ L. (∀ R. (mem R L) ⇒ R ∈ indep fn ∧

summable (λn. n P{s | fst(R s) = n})) ⇒
expec (sum rv lst L) = sum (0, length L)

(λn. expec (el (length L - (n+1)) L))

where the function length returns the length of its list argument and the func-
tion el accepts a natural number, say n, and a list and returns the nth element
of the given list. The term (sum(m,n) f), in the above theorem, models the
summation of n values, corresponding to the arguments m+n−1, · · · ,m+1,m,
of the real sequence f . Thus, the left-hand-side of Theorem 8 represents the
expectation of the summation of a list, L, of random variables. Whereas, the
right-hand-side represents the summation of the expectations of all elements in
the same list, L, of random variables.

130 O. Hasan and S. Tahar

6 Coupon Collector’s Problem

The Coupon Collector’s problem [13] is motivated by “collect all n coupons and
win” contests. Assuming that a coupon is drawn independently and uniformly at
random from n possibilities, how many times do we need to draw new coupons
until we find them all? This simple problem arises in many different scenarios.
For example, suppose that packets are sent in a stream from source to destination
host along a fixed path of routers. It is often the case that the destination host
would like to know all routers that the stream of data has passed through. This
may be done by appending the identification of each router to the packet header
but this is not a practical solution as usually we do not have this much room
available. An alternate way of meeting this requirement is to store the identifi-
cation of only one router, uniformly selected at random between all routers on
the path, in each packet header. Then, from the point of view of the destination
host, determining all routers on the path is like a Coupon Collector’s problem.

Our goal is to verify, using HOL, that the expected value of acquiring all n
coupons is nH(n), where H(n) is the harmonic number equal to the summation
∑n

i=1 1/i. The first step in this regard is to model the Coupon Collector’s prob-
lem as a probabilistic algorithm in higher-order-logic. Let X be the number of
trials until at least one of every type of coupon is obtained. Now, if Xi is the
number of trials required to obtain the ith coupon, while we had already acquired
i − 1 different coupons, then clearly X =

∑n
i=1 Xi. The advantage of breaking

the random variable X into the sum of n random variables X1, X2 · · · , Xn is
that each Xi can be modeled as a Geometric random variable, which enables
us to represent the Coupon Collector’s problem as a sum of Geometric random
variables. Furthermore, the expectation of this probabilistic algorithm can now
be verified using the linearity of expectation property.

We modeled the Coupon Collector’s problem in HOL by identifying the
coupons with unique natural numbers, such that the first coupon acquired by
the coupon collector is identified as number 0 and after that each different kind of
a coupon acquired with subsequent numbers in numerological order. The coupon
collector saves these coupons in a list of natural numbers. The following function
accepts the number of different coupons acquired by the coupon collector and
generates the corresponding coupon collector’s list.

Definition 5. Coupon Collector’s List
� (coupon lst 0 = []) ∧
∀ n. (coupon lst (suc n) = n :: (coupon lst n))

The next step is to define a list of Geometric random variables which would
model the Xi’s mentioned above. It is important to note that the probability
of success for each one of these Geometric random variables is different from
one another and depends on the number of different coupons acquired so far.
Since, every coupon is drawn independently and uniformly at random from the n
possibilities and the coupons are identified with natural numbers, we can use the
Uniform(n) random variable to model each trial of acquiring a coupon. Now we
can define the probability of success for a particular Geometric random variable

Verification of Expectation Properties 131

as the probability of the event when the Uniform(n) random variable generates
a new value, i.e., a value that is not already present in the coupon collector’s list.
Using this probability of success, the following function generates the required
list of Geometric random variables.

Definition 6. Geometric Variable List for Coupon Collector’s Problem
� ∀ n. (geom rv lst [] n = [prob geom 1]) ∧
∀ h t. (geom rv lst (h::t) n =

(prob geom
(P{s | ¬(mem (fst(prob unif n s)) (h::t))})
:: (geom rv lst t n)))

where the functions prob geom and prob unif model the Geometric(p) and
Uniform(n) random variables, respectively, which are given in Section 4. The
function geom rv lst accepts two arguments; a list of natural numbers, which
represents the coupon collector’s list and a natural number, which represents
the total number of coupons. It returns, a list of Geometric random variables
that can be added up to model the coupon collecting process of the already
acquired coupons in the given list. The base case in the above recursive defini-
tion corresponds to the condition when the coupon collector does not have any
coupon and thus the probability of success, i.e., the probability of acquiring a
new coupon, is 1.

Using the above definitions along with the function sum rv lst, given in Defi-
nition 4, the Coupon Collector’s problem can be represented now by the following
probabilistic algorithm in HOL.

Definition 7. Probabilistic Algorithm for Coupon Collector’s Problem
� ∀ n. (coupon collector (suc n) =

sum rv lst (geo rv lst (coupon lst n) (suc n))

The function coupon collector accepts a natural number, say k, which rep-
resents the total number of different coupons that are required to be collected
and has to be greater than 0. It returns the summation of k Geometric random
variables that are used to model the coupon collecting process of acquiring k
coupons. The expectation property of the Coupon Collector’s problem can now
be stated using the function coupon collector and the function sum, which can
be used to express the summation of n values, corresponding to the arguments
m + n− 1, · · · ,m + 1,m, of the real sequence f as sum(m,n) f.

Theorem 9. Expectation of Coupon Collector’s Problem
� ∀ n. expec (coupon collector (suc n)) =

(suc n) (sum (0,(suc n)) (λi. 1/(suc i)))

Proof: The PMF property of the Uniform(n) random variable along with the
HOL theories of sets and probability can be used to verify the following proba-
bilistic quantity

∀ n. P{s | ¬(mem (fst(prob unif (n + 1) s)) L)} = 1− length L

(n + 1)

132 O. Hasan and S. Tahar

for all lists of natural numbers, L, such that all the elements in L are less than
(n+1) and none of them appears more than once. The coupon collector’s list,
modeled by the function coupon lst, satisfies both of these characteristics for a
given argument n. Therefore, the probability of succuss for a Geometric random
variable that models the acquiring process of a new coupon when the coupon
collectors list is exactly equal to L, in the probabilistic algorithm for the Coupon
Collector’s problem for (n+1) coupons, is 1− length L

(n+1) . The expectation of such
a Geometric random variable can be verified to be equal to

n + 1
(n + 1)− (length L)

by the expectation property of Geometric(p) random variables, given in
Theorem 3. Now, using the above result along with the linearity of expecta-
tion property and the strong function independence property of the Geometric
random variables, the expectation of the sum of the list of Geometric random
variables, given in the LHS of Theorem 9, can be expressed as the summation
of the individual expectations of the Geometric random variables as follows

n
∑

i=0

(n + 1)
(n + 1)− i

The following summation identity, which can be proved using the HOL theory
of real and natural numbers, concludes the proof.

∀ n.

n
∑

i=0

(n + 1)
(n + 1)− i

= (n + 1)
n
∑

i=0

1
(i + 1) �

Theorem 9 can be used as a formal argument to support the claim that the
expected number of trials required to obtain all n coupons is n

∑n
i=1 1/i. Also, it

is worth mentioning that it was due to the linearity of expectation property that
the complex task of verifying the expectation property of the Coupon Collector’s
problem, which involves multiple random variables, was simply proved using the
expectation property of a single Geometric(p) random variable.

7 Conclusions

In this paper, we presented some techniques for verifying the expectation prop-
erties of discrete random variables in HOL. Due to the formal nature of the
models and the inherent soundness of the theorem proving systems, the analy-
sis is guaranteed to provide exact answers, a novelty, which is not supported by
most of the existing probabilistic analysis tools. This feature makes the proposed
approach very useful for the performance and reliability optimization of safety
critical and highly sensitive engineering and scientific applications.

We presented the formalization of expectation for natural-valued discrete
random variables. This definition was used to verify the expected values of

Verification of Expectation Properties 133

Uniform(n), Bernoulli(p) and Geometric(p) random variables. These random
variables are used extensively in the field of probabilistic analysis and thus their
expectation properties can be reused in a number of different domains. Building
upon our formal definition of expectation, we also verified a generalized version
of the linearity of expectation property in HOL. In order to illustrate the prac-
tical effectiveness of our work, we presented the verification of the expectation
property for the Coupon Collector’s problem. To the best of our knowledge, this
is the first time that the Coupon Collector problem has been analyzed within a
mechanized theorem prover and the results are found to be in good agreement
with existing theoretical paper-and-pencil counterparts.

The HOL theories presented in this paper can be used to verify the expectation
properties of a number of other natural-valued random variables, e.g., Binomial,
Logarithmic and Poisson [10] and commercial computation problems, such as the
Chinese Appetizer and the Hat-Check problems [5]. A potential case study is to
analyze the two versions of the Quicksort [13] and demonstrate the distinction
between the analysis of randomized algorithms and probabilistic analysis of de-
terministic algorithms within the HOL theorem prover. As a next step towards a
complete framework for the verification of randomized algorithms, we need to for-
malize the concepts of variance and higher moments. These bounds are the major
tool for estimating the failure probability of algorithms. We can build upon the
definition of expectation given in this paper to formalize these concepts within
the HOL theorem prover. A very interesting future work could be to link the for-
mal definition of expectation, presented in this paper, with the higher-order-logic
formalization of Lebesgue integration theory [15], which would further strengthen
the soundness of the definitions presented in this paper.

For our verification, we utilized the HOL theories of Boolean algebra, sets, lists,
natural and real numbers, limit of a real sequence and probability. Our results
can therefore be regarded as a useful indicator of the state-of-the-art in theo-
rem proving. Based on this experience, we can say that formalizing mathematics
in a mechanical system is a tedious work that requires deep understanding of
both mathematical concepts and theorem-proving. The HOL automated reason-
ers aid somewhat in the proof process by automatically verifying some of the
first-order-logic goals but most of the times we had to guide the tool by provid-
ing the appropriate rewriting and simplification rules. On the other hand, we
found theorem-proving very helpful in book keeping. Another major advantage
of theorem proving is that once the proof of a theorem is established, due to the
inherent soundness of the approach, it is guaranteed to be valid and the proof can
be readily accessed, contrary to the case of paper-pencil proofs where we have to
explore the enormous amount of mathematical literature to find proofs. Thus, it
can be concluded that theorem-proving is a tedious but promising field, which
can help mathematicians to cope with the explosion in mathematical knowledge
and to save mathematical concepts from corruption. Also, there are areas, such
as security critical software, in military or medicine applications for example,
where theorem-proving will soon become a dire need.

134 O. Hasan and S. Tahar

References

1. Baier, C., Haverkort, B., Hermanns, H., Katoen, J.P.: Model Checking Algorithms
for Continuous time Markov Chains. IEEE Trans. on Software Engineering 29(4),
524–541 (2003)

2. Bialas, J.: The σ-Additive Measure Theory. Journal of Formalized Mathematics 2
(1990)

3. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge
(2000)

4. DeGroot, M.: Probability and Statistics. Addison-Wesley, Reading (1989)
5. Grinstead, C.M., Snell, J.L.: Introduction to Probability. American Mathematical

Society, Providence, RI (1997)
6. Harrison, J.: Theorem Proving with the Real Numbers. Springer, Heidelberg (1998)
7. Hasan, O., Tahar, S.: Formalization of the Continuous Probability Distributions.

In: Conference on Automated Deduction. LNCS (LNAI), vol. 4603, pp. 3–18.
Springer, Heidelberg (2007)

8. Hasan, O., Tahar, S.: Verification of Probabilistic Properties in HOL using the Cu-
mulative Distribution Function. In: Integrated Formal Methods. LNCS, vol. 4591,
pp. 333–352. Springer, Heidelberg (2007)

9. Hurd, J.: Formal Verification of Probabilistic Algorithms. PhD Thesis, University
of Cambridge, Cambridge, UK (2002)

10. Khazanie, R.: Basic Probability Theory and Applications. Goodyear (1976)
11. Kwiatkowska, M., Norman, G., Parker, D.: Quantitative Analysis with the Prob-

abilistic Model Checker PRISM. Electronic Notes in Theoretical Computer Sci-
ence 153(2), 5–31 (2005)

12. Mao, W.: Modern Cryptography: Theory and Practice. Prentice-Hall, Englewood
Cliffs (2003)

13. Mitzenmacher, M., Upfal, E.: Probability and Computing. Cambridge Press, Cam-
bridge (2005)

14. Nedzusiak, A.: σ-fields and Probability. Journal of Formalized Mathematics 1
(1989)

15. Richter, S.: Formalizing Integration Theory, with an Application to Probabilis-
tic Algorithms. Diploma Thesis, Technische Universität München, Department of
Informatics, Germany (2003)

16. Rutten, J., Kwaiatkowska, M., Normal, G., Parker, D.: Mathematical Techniques
for Analyzing Concurrent and Probabilisitc Systems. CRM Monograph Series,
vol. 23. American Mathematical Society, Providence, RI (2004)

17. Sen, K., Viswanathan, M., Agha, G.: VESTA: A Statistical Model-Checker and An-
alyzer for Probabilistic Systems. In: IEEE International Conference on the Quanti-
tative Evaluation of Systems, Washington, DC, USA, pp. 251–252. IEEE Computer
Soceity Press, Los Alamitos (2005)

18. Williams, D.: Probability with Martingales. Cambridge Press, Cambridge (1991)

A Formally Verified Prover for the

ALC Description Logic�

José-Antonio Alonso, Joaqúın Borrego-Dı́az, Maŕıa-José Hidalgo,
Francisco-Jesus Mart́ın-Mateos, and José-Luis Ruiz-Reina

Departamento de Ciencias de la Computación e Inteligencia Artificial.
Escuela Técnica Superior de Ingenieŕıa Informática, Universidad de Sevilla

Avda. Reina Mercedes, s/n. 41012 Sevilla, Spain
{jalonso,jborrego,mjoseh,fjesus,jruiz}@us.es

Abstract. The Ontology Web Language (OWL) is a language used for
the Semantic Web. OWL is based on Description Logics (DLs), a family
of logical formalisms for representing and reasoning about conceptual
and terminological knowledge. Among these, the logic ALC is a ground
DL used in many practical cases. Moreover, the Semantic Web appears
as a new field for the application of formal methods, that could be used
to increase its reliability. A starting point could be the formal verifica-
tion of satisfiability provers for DLs. In this paper, we present the PVS
specification of a prover for ALC , as well as the proofs of its termina-
tion, soundness and completeness. We also present the formalization of
the well–foundedness of the multiset relation induced by a well–founded
relation. This result has been used to prove the termination and the
completeness of the ALC prover.

1 Introduction

The goal of the presented work is the formal verification of satisfiability algo-
rithms for description logics (DLs), as a previous stage to the formal verification
of DLs reasoners. In particular, we describe in this paper a formal proof of the
well–known tableau algorithm for the ALC description logic in the PVS verifica-
tion system [19].

Description Logics [5] are a family of logics which can be used to represent
terminological and conceptual knowledge. Among these, the ground logic is the
ALC logic, introduced by Schmidt–Schauß and Smolka [24], who also developed
a tableau–like algorithm for testing satisfiability in it. ALC is the base for more
expressive logics as SHOIQ, obtained extending ALC in several expressive ways.
The importance of SHOIQ stems from the fact that it and its fragments are
used for reasoning in the semantic web [4]. Specifically, the fragment SHOIN
corresponds to the ontology language OWL–DL [13,12], which was recommended
by the W3C as the standard web ontology language [6]. The fragment SHIQ is
the concept language supported by systems as FaCT++ and RACER [25,10].
� This research was partially funded by Spanish Ministry of Education and Science

under grant TIN2004–03884 and Feder funds.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 135–150, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

136 J.-A. Alonso et al.

Many techniques have been proposed and investigated to obtain decision pro-
cedures for DLs reasoning. Among these, tableaux reasoning are the most suc-
cessful approach so far. In fact, DLs reasoners such as FaCT++ and RACER
are based on tableau algorithms.

We believe that the verification of reasoning systems for the SW poses a new
challenge for the application of formal methods. In this field, our research group
have carried out several works related to the formal verification of reasoning sys-
tems. Some examples are the verification of a generic framework for propositional
logic reasoning algorithms [14], Knuth–Bendix based reasoning [22], Buchberger
algorithm for polynomial–based logical reasoning [15,16] and conceptual process-
ing in Formal Concept Analysis [3].

In this paper, we show a proof in PVS of correctness of the tableau algorithm
for ALC described in theoretical papers. The hardest part of this task is the
termination proof, for which we have extended the multiset library of PVS in
order to include well–foundedness of the multiset order relation. We use this
property and a measure function as it is described in [9] to prove the termination
of the algorithm.

The paper is structured as follows. Section 2 is devoted to describe the proof of
the well–foundedness of the multiset induced relation of a well–founded relation.
Section 3 shows the syntax and semantics of the ALC logic and how we have
formalized it in the PVS language specification. Also, it contains the specification
in PVS of a prover for the ALC logic, with some details about its termination,
soundness and completeness proofs. Section 4 is devoted to explain how we have
constructed in PVS a concrete measure function. Finally, in the last section we
draw some conclusions and suggest some lines of future work.

Since the whole formalization consists of a large collection of PVS theorems
and definitions, we give an overview presenting the main results and a sketch
of how the pieces fit together. We necessarily omit many details that, we ex-
pect, can be inferred from the context. We urge the interested reader to consult
the whole PVS theory developed, which is widely documented and available at
http://www.cs.us.es/~mjoseh/alc/.

2 Well–Founded Ordering of Multisets

Multisets (bags) over a given set T are sets that admit multiple occurrences of
elements taken from T . Dershowitz and Manna [9] prove that every well–founded
relation on T induces a well–founded relation on the set of finite multisets over
T . They also show how the multiset ordering is used to prove the termination of
production systems, programs defined in term of rewriting rules. In our work, we
use this method to prove the termination and completeness of the ALC reasoner.

The goal of this section is to show our extension of the PVS multiset library,
to include the formalization of the Dershowitz and Manna theorem. The proof
formalized in the PVS system is based on the proof described by T. Nipkow
[17]. It uses a characterization of well–foundedness based on the notion of well–
founded part of a set, and the transitive closure of a well–founded binary relation.

http://www.cs.us.es/~mjoseh/alc/

A Formally Verified Prover for the ALC Description Logic 137

2.1 An Alternative Characterization of Well–Foundedness

The definition of well–foundedness included in the PVS prelude is the usual one:
a relation < on T is well–founded if every non-empty subset of T has a minimal
element (w.r.t. <). Nevertheless, the proof of well-foundedness of the multiset
orderings that we have formalized is based on an alternative definition given by
P. Aczel [1]. Let us start describing the PVS proof of the equivalence between
Aczel’s definition and the usual one.

Given a binary relation < defined on a set T , the well–founded part of T
with respect to <, denoted as W (T,<), is the smallest subset of T closed under
the set of rules (∀a ∈ T)[(∀y < a)[y ∈ W (T,<)] → a ∈ W (T,<)]. In our PVS
definition of W (T,<), both the type T and the relation < are introduced as
theory parameters. Also, we use the support that provides PVS for constructing
inductive definitions of sets or predicates.

[T: TYPE+, <: pred[[T,T]]]: THEORY

well_founded_part(x): INDUCTIVE bool =
FORALL y: y < x IMPLIES well_founded_part(y)

This way, the above inductive definition of the well–founded part generates,
automatically, the following induction axioms, which allow us to prove properties
by induction on the defined set:

– Weak induction axiom for the well–founded part:

(∀x)[(∀y)[y < x→ P (y)]→ P (x)]

(∀x)[x ∈ W (T,<)→ P (x)]

– Induction axiom for the well–founded part

(∀x)[(∀y)[y < x→ y ∈ W (T,<) ∧ P (y)]→ P (x)]

(∀x)[x ∈ W (T,<)→ P (x)]

The following theorem characterizes the well–foundedness of a relation by
means of its well–founded part.

Theorem 1. (T,<) is well–founded if and only if W (T,<) = T .

well_founded_part_nsc: THEOREM
well_founded?[T](<) IFF (FORALL x: well_founded_part(x))

The PVS proof of the necessary condition is carried out by induction on (T,<)
with respect to the predicate x ∈ W (T,<). On the other hand, the sufficient
condition is proved using the weak induction axiom for the well–founded part of
T with respect to <.

Additionally, the PVS theory about well–foundedness that we have devel-
oped also includes alternative sufficient conditions of well–foundedness, like the
following embedding lemma.

Lemma 1. If f : (S,<′)→ (T,<) is monotone and (T,<) is well–founded, then
(S,<′) is well–founded.

138 J.-A. Alonso et al.

We prove it using the definition of well–foundedness based in the notion of
minimal element.

2.2 Well–Foundedness of the Transitive Closure

The transitive closure of a binary relation on T , <, is the smallest relation <+

such that

(∀x, y ∈ T)[(x < y ∨ (∃z)[x <+ z ∧ z < y])→ x <+ y]

tr_cl(<)(x,y): INDUCTIVE bool =
x < y OR EXISTS z: tr_cl(<)(x,z) AND z < y

The main result about well–foundedness and transitive closure is the
following:

Theorem 2. If (T,<) is well–founded, then (T,<+) is well–founded.

well_founded_cl_tr: THEOREM
well_founded?[T](<) IMPLIES well_founded?[T](tr_cl(<))

To prove it, by theorem 1, it is sufficient to prove that W (T,<) ⊆W (T,<+). We
prove this in PVS using the weak induction axiom generated by the definition
of W (T,<).

In a similar way, the reflexive transitive closure of a relation, rtr_cl(<), has
been defined and their main properties have been proved in PVS.

2.3 Well–Founded Multiset Relations (in PVS)

In order to specify in PVS the multiset relations, we have used the PVS library
about bags.1 In this library, a multiset (bag) of elements in T is represented
by means of a function with domain T and range N. Let us start showing the
specification of the bag and finite_bag types, and also the specifications of
the basic operations insert and plus, included in it (in the following, we will
denote both as &)

bag: TYPE = [T -> nat]
insert(x,b): bag = (LAMBDA t: IF x = t THEN b(t) + 1 ELSE b(t) ENDIF)
plus(a,b) : bag = (LAMBDA t: a(t) + b(t))
bag_to_set(b): set[T] = {t: T | b(t) > 0}
is_finite(b): bool = is_finite(bag_to_set(b))
finite_bag: TYPE = {b: bag | is_finite(b)}

Let < be a relation in T andM(T) the set of finite multisets over T . The mul-
tiset relation induced by < onM(T) is the relation <mult defined as: N <mult M
if there exist multisets M0,K1,K2 ∈ M(T) such that K1 	= ∅, M = M0 &K1,
N = M0 &K2 and (∀a)[a ∈ K2 → (∃b)[b ∈ K1 ∧ a < b]]. An alternative defini-
tion could be obtained if instead of replacing a multiset K1 of elements in M , a
1 Available at
http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html

A Formally Verified Prover for the ALC Description Logic 139

single element b ∈M were replaced by a multiset of smaller elements (w.r.t. <).
That is, we could define the following multiset reduction relation denoted as <1:
N <1 M if there exists multisets M0,K2 and b ∈ M such that M = M0 & {b},
N = M0&K2 and (∀a)[a ∈ K2 → a < b]. It can be proved that if < is transitive,
then <mult is the transitive closure of <1. Therefore, by theorem 2, proving the
well–foundedness of <mult amounts to proving that <1 is well–founded, provided
that < is transitive.

We specify the relations <1 and <mult in PVS by less_1 and less_mult,
respectively, as follows

less(K,a): bool = FORALL b: member(b,K) IMPLIES b < a

less_1(N,M): bool =
EXISTS M_0,a,K: M = insert(a,M_0) AND N = plus(M_0,K) AND less(K,a)

less_mult(N,M): bool =
EXISTS M_0,K1,K2: nonempty_bag?(K1) AND M = plus(M_0, K1) AND

N = plus(M_0, K2) AND
FORALL a: member(a,K2) IMPLIES

EXISTS b: member(b,K1) AND a < b

Then, we stablish in PVS the following result, ensuring that the relation <1

is well–founded on M(T).

Lemma 2. Let < be a well–founded relation on T . Then <1 is a well–founded
relation on M(T).

wf_less_1: THEOREM well_founded?[finite_bag[T]](less_1)

To prove this lemma, using theorem 1, it is sufficient to prove that M(T) ⊆
W (M(T), <1). The PVS proof is carried out by induction on finite multisets,
according to the following scheme:

P (∅) ∧ (∀a)(∀M)[P (M) → P (M & {a})]
(∀M)P (M)

where the predicate P (M) stands M ∈ W (M(T), <1). Therefore, we have to
prove:

1. ∅ ∈W (M(T), <1) (which is true by its definition).
2. (∀a)[(∀M)[M ∈W (M(T), <1) →M & {a} ∈W (M(T), <1)]].

This result is proved by well–founded induction on < (since it is well–
founded), with the following predicate P (a):

(∀M)[M ∈ W (M(T), <1)→M & {a} ∈ W (M(T), <1)]

With this, the proof is reduced to prove (∀b)[b < a→ P (b)]→ P (a),
or equivalently, to prove that if

(∀b)[b < a→ (∀M)[M ∈ W (M(T), <1)→M & {b} ∈W (M(T), <1)]]

140 J.-A. Alonso et al.

then
(∀M)[M ∈ W (M(T), <1)→M & {a} ∈ W (M(T), <1)] (3)

We finish proving (3) using the weak induction axiom for the well–founded
part W (M(T), <1), with the predicate Q(M):

M & {a} ∈ W (M(T), <1) ∨M /∈ W (M(T), <1).

Finally, as consequence of lemma 2, we obtain the main theorem of this section:

Theorem 3 (Dershowitz and Manna). Let < be a transitive and well–
founded relation on T . Then the relation <mult is a well–founded relation on
M(T).

less_mult_is_wf: THEOREM
transitive?[T](<) IMPLIES well_founded?[finite_bag[T]](less_mult)

A sketch of the proof is as follows. First, we show that the relation <mult is
contained in <+

1 . Furthermore, if the relation < is transitive, then <mult is
transitive and contains the relation <+

1 . Then, if < is transitive, <+
1 =<mult and

therefore, by lemma 2 and theorem 2, we conclude that <mult is well–founded.

3 Tableau Reasoning for ALC –Satisfiability

In this section, we first describe the basic components of ALC logic, and we show
below how we have formalized in PVS the tableau based algorithm for this logic,
as well as the proofs of its termination, soundness and completeness.

3.1 Syntax and Semantics of the ALC Logic

We start presenting a brief introduction to the ALC –logic, its syntax and its
semantics, along with the corresponding description of its specification in PVS.

Let NC be a set of concept names and NR be a set of role names. The set of
ALC –concepts is built inductively from these names as described by the following
grammar, where A ∈ NC and R ∈ NR

C ::= A | ¬C | C1 �C2 | C1 � C2 | ∀R.C | ∃R.C

The set of ALC –concepts can be represented in PVS as a recursive datatype,
using the mechanism for defining abstract datatypes [20], and specifying the
constructors, the accessors and the recognizers. When a datatype is typechecked
in PVS, a new theory is created providing axioms and inductions principles for
this datatype. In particular, this theory contains the relation subterm (specifying
the notion of subconcept) and the well–founded relation <<, that is useful to make
recursive definitions on concepts.

To introduce the assertional knowledge, let NI be a set of individual names.
Given individual names x, y ∈ NI, a concept C and a role name R, the expressions
x: C and (x, y): R are called assertional axioms. An ABox A is a finite set of
assertional axioms. We specify in PVS the assertional axioms by a datatype and
the ABox by a type.

A Formally Verified Prover for the ALC Description Logic 141

assertional_ax: DATATYPE
BEGIN

instanceof(left:NI, right:alc_concept) : instanceof?
related(left:NI, role:NR, right:NI) : related?

END assertional_ax

ABox: TYPE = finite_set[assertional_ax]

The semantics of description logics is defined in terms of interpretations. An
ALC –interpretation I is a pair I = (ΔI , ·I), where ΔI is a non–empty set called
the domain, and ·I is an interpretation function that maps every concept name
A to a subset AI of ΔI , every role name R to a binary relation RI over ΔI and
every individual x to an element of ΔI . We represent in PVS an interpretation
I as a structure that contains the domain of I and the functions that define the
interpretation of concept names, role names, and the individuals.

interpretation: NONEMPTY_TYPE =
[# int_domain: (nonempty?[U]),

int_names_concept: [NC -> (powerset(int_domain))],
int_names_roles: [NR -> PRED[[(int_domain),(int_domain)]]],
int_names_ind: [NI -> (int_domain)] #]

It should be noted that in this specification we have used a universal type U
to represent the elements of the domain. Also, we have taken advantage of the
ability of PVS to deal with dependent types.

The interpretation function is extended to non-atomic concepts as follows

(¬D)I = ΔI \DI

(C1 �C2)I = CI
1 ∩ CI

2

(C1 �C2)I = CI
1 ∪ CI

2

(∀R.D)I = {a ∈ ΔI : (∀b ∈ ΔI)[(a, b) ∈ RI → b ∈ DI]}
(∃R.D)I = {a ∈ ΔI : (∃b ∈ ΔI)[(a, b) ∈ RI ∧ b ∈ DI]}

We have specified this notion in PVS in a natural way, by recursion on C, using
the well–founded relation <<.

The interpretation I is a model of a concept C if CI 	= ∅. Thus, a concept C
is called satisfiable if it has a model

is_model_concept(I,C): bool = nonempty?(int_concept(C,I))
concept_satisfiable?(C): bool = EXISTS I: is_model_concept(I,C)

The interpretation I satisfies the assertional axiom x : C if xI ∈ CI and
satisfies (x, y): R if (xI , yI) ∈ RI . It satisfies the ABox A if it satisfies every
axiom in A. In that case, A is called satisfiable and I is called a model of A.

We have made the PVS formalization of the above definitions using the PVS
set theory and its capability of managing the existential and universal quantifiers.

The previous definitions naturally pose some standard inference problems for
DLs systems, such as concept and ABox satisfiability. It can be proved, and
we have done it in PVS, that concept satisfiability can be reduced to ABox
satisfiability (i.e., C is satisfiable iff for all x ∈ NI, {x:C} is satisfiable).

142 J.-A. Alonso et al.

3.2 Deciding Concept Satisfiability for ALC

A tableau algorithm for ALC tries to prove the satisfiability of a concept C by
attempting to explicitly construct a model of C. This is done considering an
individual name x0 and manipulating the initial ABox {x0:C}, applying a set of
completion rules. In this process, we consider concepts in negation normal form
(NNF), a form in which negations appear only in front of concept names. This
does not mean a restriction since it is easy to specify a PVS function such that,
for each ALC –concept computes another equivalent 2 in NNF form.

An ABox A contains a clash if, for some individual name x ∈ NI and concept
name A ∈ NC, {x:A, x:¬A} ⊆ A. Otherwise, A is called clash–free. To test the
satisfiability of an ALC –concept C in NNF, the ALC –algorithm works starting
from the initial ABox {x0:C} and iteratively applying the following completion
rules

→
: if x:C �D ∈ A and {x:C, x:D} 	⊆ A
then A →
 A ∪ {x:C, x:D}

→�: if x:C �D ∈ A and {x:C, x:D} ∩ A = ∅
then A →� A ∪ {x:E} for some E ∈ {C,D}

→∃: if x:∃R.D ∈ A and there is no y with {(x, y):R, y:D} ⊆ A
then A →∃ A∪ {(x, y):R, y:D} for a fresh individual y

→∀: if x:∀R.D ∈ A and there is a y with (x, y):R ∈ A and y:D 	∈ A
then A →∀ A∪ {y:D}

It stops when a clash has been generated or when no rule is applicable. In
the last case, the ABox is complete and a model can be derived from it. The
algorithm answers “C is satisfiable” if a complete and clash–free ABox has been
generated.

These completion rules can be seen as a production system. Nevertheless, we
have not formalized them in a functional way, but following a more declarative
style, defining the completion rules in PVS as binary relations between ABoxes.
For example, A1 →
 A2 if there exists an assertional axiom x:C �D in A1 such
that {x:C, x:D} 	⊆ A1 and A2 = A1 ∪ {x:C, x:D}

and_step(AB1, AB2): bool =
EXISTS Aa: member(Aa,AB1) AND

instanceof?(Aa) AND
alc_and?(right(Aa)) AND
LET x = left(Aa), C = conc1(right(Aa)), D = conc2(right(Aa))
IN (NOT member(instanceof(x, C), AB1) OR

NOT member(instanceof(x, D), AB1)) AND
AB2 = add(instanceof(x, C), add(instanceof(x, D), AB1))

Once the rules have been specified in this way, we define the successor relation
on the ABoxes type: A1 → A2 if A1 does not contain a clash and A2 is obtained
from A1 by the application of a completion rule

2 Two concepts are equivalent if they have the same models.

A Formally Verified Prover for the ALC Description Logic 143

successor(AB2,AB1): bool =
(NOT contains_clash(AB1)) AND
(and_step(AB1,AB2) OR or_step_1(AB1,AB2) OR or_step_2(AB1,AB2) OR
some_step(AB1,AB2) OR all_step(AB1,AB2))

It should be noted that we have specified the non-deterministic rule →� by two
binary relations (or_step_1 and or_step_2), one for each component.

Take into account that the completion process can be seen as a closure process,
we say the ABox A2 is an expansion of the ABox A1 if A1

∗→ A2, where ∗→ is
the reflexive and transitive closure of →

is_expansion(AB1)(AB2): bool = rtr_cl(successor)(AB2, AB1)

To illustrate the completion process, the following example shows the application
of some completion rules to an initial ABox {x0:C}

Example 1. Let C be the concept ∀R.D � (∃R.(D � E) � ∃R.(D � F)). Then,

A0 := {x0:∀R.D � (∃R.(D � E) � ∃R.(D � F))
∗→ A1 := A0 ∪ {x0:∀R.D, x0:∃R.(D � E), x0:∃R.(D � F)}
→ A2 := A1 ∪ {(x0, x1):R, x1:D � E}
→ A3 := A2 ∪ {x1:D}

Once defined the expansion relation, we use it to specify the notion of consis-
tency: An ABox A is consistent if it has a complete and clash–free expansion.
Similarly, a concept C is consistent if the initial ABox {x0:C} is consistent

is_consistent_abox(AB): bool =
EXISTS AB1: is_expansion(AB)(AB1) AND complete_clash_free(AB1)

is_consistent_concept(C): bool =
is_consistent_abox(singleton(instanceof(x_0,C)))

where complete_clash_free(A) holds if the ABox A is both complete and
clash–free.

This definition is the PVS specification of a generic ALC –algorithm for de-
ciding satisfiability of ALC –concepts. It should be pointed out the two kinds of
non–determinism in it: the way in which the rule →� is applied (“don’t know”
non-determinism); and the choice of which rule to apply in each step and to
which axiom (“don’t care” non-determinism). To prove that the algorithm is
correct, we have to establish its termination, soundness and completeness. The
following subsections describe the corresponding PVS proofs.

3.3 Soundness

The ALC –algorithm is sound, that is:

alc_soundness: THEOREM
is_consistent_concept(C) IMPLIES concept_satisfiable?(C)

The PVS proof is based on the following steps:

144 J.-A. Alonso et al.

1. If A is a complete and clash–free expansion of an initial ABox A0, then
A is satisfiable. We have proved this by specifying in PVS the canonical
interpretation IA associated with A, and proving that IA is a model of A.

2. If A1 → A2 and A2 is satisfiable, then A1 is satisfiable too.
3. Finally, we have proved the soundness theorem, using the induction scheme

suggested by the above definition of the expansion relation (which in turn is
based on the inductive definition of closure).

3.4 Termination

In order to verify the termination of the ALC –algorithm, it suffices to prove that
the successor relation, defined on the set E(C) of the expansions of the initial
ABox {x0:C}, is well founded

well_founded_successor: THEOREM
well_founded?[expansion_abox_concept(C)](successor)

where by the type expansion_abox_concept(C), we specify the set E(C)

expansion_abox_concept(C:(is_nnf?)): TYPE =
(is_expansion(singleton(instanceof(x_0, C))))

The proof of the well–foundedness of the successor relation is based on the
embedding lemma (Lemma 1). So, it suffices to show the existence of a type T ,
a well–founded relation < on T , and a function

μC : E(C) → T (1)

such that
(∀A1,A2)[A1 → A2 ⇒ μC(A2) < μC(A1)] (2)

Those functions with these properties are called measure functions.
The formalization of this proof in PVS has been carried out in two phases. In

the first one, we assume the existence of a measure function, including T and <
in the parameters, and (1) and (2) in the body of the PVS theory,

[..., T: TYPE+, <: (well_founded?[T])]: THEORY

measure_concept(C): [expansion_abox_concept(C) -> T]

measure_concept_decrease_successor: AXIOM
FORALL (AB1,AB2: expansion_abox_concept(C)):
successor(AB2,AB1)
IMPLIES measure_concept(C)(AB2) < measure_concept(C)(AB1)

and we prove that successor is well–founded on E(C).
In the second one, we prove the existence of measure functions. For the sake

of completeness, we outline Nutt’s definition of a measure function. In [18], W.
Nutt constructs a measure function taking T as the type of the finite multisets
of pairs of natural numbers M(N × N), and the well–founded order < as the
extension to M(N× N) of the lexicographic order on N× N, that we denote by
<mult. In order to formalize in PVS that construction, it is necessary carry out
two tasks:

A Formally Verified Prover for the ALC Description Logic 145

1. To prove that the extension toM(N×N) of the lexicographic order on N×N
is a well–founded ordering. For this, it suffices to instantiate, in theorem 3,
T by N× N and < by the lexicographic ordering on N× N.

2. To define a function μC mapping each expansion A ∈ E(C) to a multiset of
pairs, such that μC(A2) <mult μC(A1) if A1 → A2. For the sake of clarity,
we devote section 4 to explain the details of its formalization.

3.5 Completeness

The last verification task is the proof of completeness of ALC –algorithm, that
is:

alc_completeness: THEOREM
concept_satisfiable?(C) IMPLIES is_consistent_concept(C)

The PVS proof is achieved by means three subtasks in turn:

1. If A is a satisfiable ABox, then A is clash–free.
2. If A1 is a satisfiable and not complete ABox, then there exists a satisfiable

ABox A2, which is successor of A1.
3. If A ∈ E(C) is satisfiable, then there exists a complete and clash–free expan-

sion of A in E(C) itself.

In order to carry out the second task, we have proved that for every satisfiable
not complete ABox A, for every rule r and for every axiom of A to which r
is applied, there exists an axiom such that by adding it we obtain a satisfiable
ABox. On the other hand, the last one is the key lemma for the main proof. We
have proved it by well–founded induction on the successor relation.

4 Measure on ALC–Expansion of C

In this section we show a measure function on E(C) verifying the monotonicity
condition of section 3.4. The idea for defining the measure function μC is to map
each expansion A ∈ E(C) to a multiset of pairs, in such way that those pairs
represent all possibles rules that can be applied to A.

The first step is to define the notions of level and colevel. For this, we have
used the library of graphs of PVS [7]. We define the associated graph to an ABox
A, G(A), as the graph whose vertices are the individuals that occur in A, and
whose edges are the subsets {x, y}, such that (x, y):R ∈ A for some role R.

graph_assoc_abox(AB: ABox): graph[NI] =
(# vert:= occur_ni(AB), edges:= dbl_assoc_abox(AB) #)

From this definition, we prove that if A ∈ E(C), then G(A) is a tree with root
x0. This fact allows us to define the level of x in A as the length of the path
from x0 to x (minus 1), and the colevel of x in A, |x|A, as the difference between
the size of the concept C (denoted by |C|) and the level of x in A.

146 J.-A. Alonso et al.

level(AB)(x:(occur_ni(AB))): nat = l(path_from_root(AB)(x)) - 1
colevel(AB)(x:(occur_ni(AB))): nat = size(C) - level(AB)(x)

Also, we prove that the colevel of an individual in A remains invariant under
the completion rules and that if y is a successor of x in A (i.e., (x, y):R ∈ A),
then |y|A = |x|A − 1. Both properties are essential to prove the monotonicity of
μC .

successor_preserve_colevel: LEMMA
occur_ni(AB1)(y) AND successor(AB2,AB1)
IMPLIES colevel(AB2)(y) = colevel(AB1)(y)

colevel_successor_related: LEMMA
successor_related(AB)(y,x) IMPLIES colevel(AB)(y) = colevel(AB)(x) - 1

As we have already said, the elements of the multiset associated to an expan-
sion A should represent all possibles applicable rules to A. In some cases, the
applicability of a rule is completely determined by an instance axiom of A, but
that is not the case for the →∀ rule. Thus, in order to capture the notion of
applicability of a rule, we introduce the type activation (activ), whose elements
are structures consisting of an instance axiom and an individual, that made it
applicable. Then, we specify when an activation is applicable in A and we define
the agenda of A, agenda(A), as the set of applicable activations in A.

activ: TYPE = [# ax: (instanceof?), witness: NI #]

applicable_activ(Ac,AB): bool =
LET Aa = ax(Ac),y = witness(Ac),x = left(Aa),D = right(Aa) IN
member(Aa,AB) AND
CASES D OF
alc_a(A) : false,
alc_not(D1) : false,
alc_and(C1,C2) : x = y AND (NOT member(instanceof(x,C1),AB) OR

NOT member(instanceof(x,C2),AB)),
alc_or(C1,C2) : x = y AND NOT member(instanceof(x,C1),AB) AND

NOT member(instanceof(x,C2),AB),
alc_all(R,D1) : x /= y AND member(related(x,R,y),AB) AND

NOT member(instanceof(y,D1),AB),
alc_some(R,D1) : x = y AND NOT (EXISTS y: member(related(x,R,y),AB) AND

member(instanceof(y,D1),AB))
ENDCASES

agenda(AB): finite_set[activ] = {Ac | applicable_activ(Ac, AB)}

To specify the function μC we found the following difficulty: we can not define
a multiset in PVS in a declarative way, as with sets. Thus, the measure of the
expansion A, μC(A), is constructed by recursion in the agenda of A, adding the
pair (|y|A, |D|) for each applicable activation [x:D, y].

bag_assoc_activ(Ac, AB): finite_bag[[nat, nat]] =
IF NOT applicable_activ(Ac, AB) THEN emptybag

A Formally Verified Prover for the ALC Description Logic 147

ELSE LET Aa = ax(Ac), y = witness(Ac), D = right(Aa) IN
singleton_bag((colevel(AB)(y), size(D)))

ENDIF

expansion_measure_aux(AB,(AB1: finite_set[activ])):
RECURSIVE finite_bag[[nat, nat]] =

IF empty?(AB1) THEN emptybag
ELSE plus(bag_assoc_activ(choose(AB1), AB),

expansion_measure_aux(AB, rest(AB1)))
ENDIF

MEASURE card(AB1)

expansion_measure(AB): finite_bag[[nat, nat]] =
expansion_measure_aux(AB, agenda(AB))

We illustrate the evolution of measures through the effect of completion rules to
example 1.

Example 2. The agendas and measures of the ABoxes of Example 1 are:

agenda measure
A0 {(x0:∀R.D � (∃R.(D � E) � ∃R.(D � F)), x0)} {̇(15, 15)}̇
A1 {(x0:∃R.(D � E), x0), (x0:∃R.(D � F), x0)} {̇(15, 5), (15, 5)}̇
A2 {(x0:∃R.(D � F), x0), (x0:∀R.D, x1), (x1:D � E, x1)} {̇(14, 3), (14, 3), (15, 5)}̇
A3 {(x0:∃R.(D � F), x0)} {̇(15, 5)}̇

Finally, we prove the theorem that assures the monotony of μC .

Theorem 4. Let A1,A2 ∈ E(C). If A1 → A2 then μC(A2) <mult μC(A1) .

expansion_measure_decrease_successor: THEOREM
successor(AB2, AB1)
IMPLIES less_mult(expansion_measure(AB2), expansion_measure(AB1))

The formalization of the proof of this theorem in PVS has turned out to be
more difficult than the hand proof presented in [18]. Firstly, we can observe (in
Example 2) that if A1,A2 ∈ E(C) are such that A1 → A2, then there exists
an activation Ac1 = [x : D, y] ∈ agenda(A1), that matches with the applied
rule. In addition, Ac1 	∈ agenda(A2) and, for each activation Ac2 introduced
in the agenda(A2) as result of the rule application, its associated pair is smaller
(lexicographically) than (|y|A, |D|). Indeed, one of the following cases may occur:

1. Ac2 = [x:E, z], being z a successor of y in A2. Then, |z|A2 < |y|A2 = |y|A1 .
So, (|z|A2 , |E|) < (|y|A1 , |D|).

2. Ac2 = [x:E, y], being E a subconcept of D. In this case, |y|A2 = |y|A1 and
|E| < |D|. So, (|y|A2 , |E|) < (|y|A1 , |D|).

Secondly, we should note that the application of a rule can disable some activa-
tions of the agenda and, so, it can eliminate its associated pairs of the multiset.

148 J.-A. Alonso et al.

Thus, we define in PVS the multiset K1 = μaux(A1, agenda(A1) \ agenda(A2)),
whose elements are the pairs associated to disabled activations. Also, the multi-
set K2 = μaux(A2, agenda(A2) \ agenda(A1)) that contains the pairs associated
to new enabled activations. Finally, M0 = μaux(A1, agenda(A1) ∩ agenda(A2))
is the multiset whose elements are the pairs associated to the activations that
remains enabled after the application of the rule. Regarding these multisets,
we prove the following properties: (1) K1 	= ∅, (2) μC(A2) = M0 & K2, (3)
μC(A1) = M0 &K1 y (4) (∀a ∈ K2)(∃b ∈ K1)[a < b]. Thus, we conclude that
μC(A2) <mult μC(A1).

Once the measure function has been constructed, the parameters T and <,
and the signature measure-concept(C) of subsection 3.4 are interpreted by the
appropriated mechanism of PVS.

5 Conclusions and Future Work

We have presented a formalization of the ALC logic in PVS, and a formaliza-
tion of a tableau–based algorithm for checking satisfiability of ALC –concepts,
proving its soundness, completeness and termination. Both for the termination
proof and the completeness proof we have used the well–foundedness of the
multiset relation induced by a well–founded relation, a property that we have
also formally proved. This last result has been proved in a general setting. So,
the parameters of the PVS theory can be instantiated in order to establish the
well–foundedness of concrete relations.

It should be pointed out that the choice of PVS as our verification system has
turned out to be beneficial for our formalization, since PVS provide definition of
abstract datatypes, inductive sets and dependent types, as well as parameterized
theories of sets, multisets and graphs.

To the best of our knowledge, it is the first work on formalizing DL reasoning,
although related works (see, for example [14,11,21]) have been done for other
logics. And, also, the first work in PVS about the well–foundedness of multiset
relations. Others formal proofs of the well–foundedness of the multiset ordering
have been carried out, in a similar way, in Coq [8] and in Isabelle. In [23], an
ACL2 formalization of the same result is also presented.

Finally, we point out some possible lines for future work. We plan to continue
the work following two research lines. First, we will apply type and operator
refinement techniques presented in [3], in order to construct ALC –reasoners as
PVSio specifications, executable and formally verified, refining the specification
of the ALC –algorithm that we have presented here. Due to “don’t care” non-
determinism of the algorithm specified in PVS, its correctness will be translated
to specific implementations, whose efficiency will depend of the applied opti-
mization strategy.

Also, we are interested in extending the formalization of the ALC logic to
other descriptive logics, incrementally approaching us to the description logic
SHOIN , which is the description logic corresponding to OWL–DL [12], by
adding new constructors. The modular characteristic of the extensions of our

A Formally Verified Prover for the ALC Description Logic 149

formalization may provide the automatic synthesis of ad–hoc reasoning systems
for specifics ontologies [2].

References

1. Aczel, P.: An introduction to inductive definitions. In: Barwise, J. (ed.) Hand-
book of Mathematical Logic, pp. 739–782. North–Holland Publishing Company,
Amsterdam (1977)

2. Alonso, J.A., Borrego, J., Chávez, A.M., Mart́ın, F.J.: Foundational challenges
in automated semantic web data and ontology cleaning. IEEE Intelligent Sys-
tems 21(1), 45–52 (2006)

3. Alonso, J.A., Borrego, J., Hidalgo, M.J., Mart́ın, F.J., Ruiz, J.L.: Verification of the
Formal Concept Analysis. RACSAM (Revista de la Real Academia de Ciencias),
Serie A: Matemáticas 98, 3–16 (2004)

4. Baader, F., Horrocks, I., Sattler, U.: Description logics as ontology languages for
the semantic web. In: Hutter, D., Stephan, W. (eds.) Mechanizing Mathematical
Reasoning. LNCS (LNAI), vol. 2605, pp. 228–248. Springer, Heidelberg (2005)

5. Baader, F., McGuiness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description
Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press, Cambridge (2003)

6. Bechhofer, S., Harmelen, F.v., Hendler, J., McGuinness, I.H.D.L., Patel-Schneider,
P.F., Stein, L.A.: OWL Web Ontology Language Reference (2004), available on the
Web at http://www.w3.org/TR/owl-ref

7. Butler, R.W., Sjogren, J.: A PVS graph theory library. Technical report, NASA
Langley (1998)

8. Coupet-Grimal, S., Delobel, W.: An effective proof of the well–foundedness of the
multiset path ordering. Applicable Algebra in Engineering, Communication and
Computing 17(6), 453–469 (2006)

9. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commu-
nications of the ACM 22(8), 465–476 (1979)

10. Haarslev, V., Möller, R.: RACER system description. In: Goré, R.P., Leitsch, A.,
Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 701–705. Springer,
Heidelberg (2001)

11. Harrison, J.: Formalizing basic first order model theory. In: Grundy, J., Newey,
M. (eds.) Theorem Proving in Higher Order Logics. LNCS, vol. 1479, Springer,
Heidelberg (1998)

12. Horrocks, I., Patel-Schneider, P.: Reducing OWL entailment to description logic
satisfiability. J. of Web Semantics 1(4), 345–357 (2004)

13. Horrocks, I., Patel-Schneider, P.F., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a Web Ontology Language. J. of Web Semantics 1(1), 7–26
(2003)

14. Mart́ın, F.J., Alonso, J.A., Hidalgo, M.J., Ruiz, J.L.: Formal verification of a
generic framework to synthesize SAT–provers. Journal of Automated Reason-
ing 32(4), 287–313 (2004)

15. Medina, I., Palomo, F., Alonso, J.A.: A certified polynomial-based decision proce-
dure for propositional logic. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001.
LNCS, vol. 2152, pp. 297–312. Springer, Heidelberg (2001)

16. Medina, I., Palomo, F., Alonso, J.A., Ruiz, J.L.: Verified computer algebra in
ACL2. In: Buchberger, B., Campbell, J.A. (eds.) AISC 2004. LNCS (LNAI),
vol. 3249, pp. 171–184. Springer, Heidelberg (2004)

http://www.w3.org/TR/owl-ref

150 J.-A. Alonso et al.

17. Nipkow, T.: An inductive proof of the wellfoundedness of the multiset
order. A proof due to W. Buchholz (1998), available on the Web at
http://www4.informatik.tu-muenchen.de/~nipkow/misc/multiset.ps

18. Nutt, W.: Algorithms for constraint in deduction and knowledge representation.
PhD thesis, Universität des Saarlandes (1993)

19. Owre, S., Rushby, J.M., Shankar, N.: PVS: A Prototype Verification System. In:
Kapur, D. (ed.) Automated Deduction - CADE-11. LNCS, vol. 607, pp. 748–752.
Springer, Heidelberg (1992)

20. Owre, S., Shankar, N.: Abstract datatype in PVS. Technical report, Computer
Science Laboratory, SRI International (1997)

21. Ridge, T., Margetson, J.: A mechanically verified, sound and complete theorem
prover for first order logic. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 294–309. Springer, Heidelberg (2005)

22. Ruiz, J.L., Alonso, J.A., Hidalgo, M.J., Mart́ın, F.J.: Formal proofs about rewriting
using ACL2. Ann. Math. Artif. Intell. 36(3), 239–262 (2002)

23. Ruiz, J.L., Alonso, J.A., Hidalgo, M.J., Mart́ın, F.J.: Termination in ACL2 using
multiset relation. In: Kamareddine, F.D. (ed.) Thirty Five Years of Automating
Mathematics, pp. 217–245. Kluwer Academic Publishers, Dordrecht (2003)

24. Schmidt–Schauß, M., Smolka, G.: Attributive concept descriptions with comple-
ments. Artificial Intelligence 48(1), 1–26 (1991)

25. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006)

http://www4.informatik.tu-muenchen.de/~nipkow/misc/multiset.ps

Proof Pearl: The Termination Analysis of

Terminator

Joe Hurd�

Computing Laboratory
Oxford University

joe.hurd@comlab.ox.ac.uk

Abstract. Terminator is a static analysis tool developed by Microsoft
Research for proving termination of Windows device drivers written in
C. This proof pearl describes a formalization in higher order logic of
the program analysis employed by Terminator, and verifies that if the
analysis succeeds then program termination logically follows.

1 Introduction

Terminator [2] is a static analysis tool developed by Microsoft Research to
prove termination of Windows device drivers written in C. The device drivers
are typically thousands or tens of thousands of lines of code running at the
privilege level of the kernel, and an infinite loop will cause the computer to
freeze.

Terminator works by modifying the program to reduce the termination
problem into a safety property. Given a program location l and a finite set
of well-founded relations R1, . . . , Rn on program states at location l (l-states),
Terminator inserts the statement

already_saved_state := false;

at the beginning of the program, and the statements

if (already_saved_state) {
if ¬(R1 state saved_state ∨ · · · ∨ Rn state saved_state) {

error("possible non-termination");
}

}
else if (*) {
saved_state := state;
already_saved_state := true;

}

just before the program location l. A static analysis tool is run on this modified
program to verify that there is no execution trace leading to the error statement.
In the case of Terminator, this verification step is performed by the SLAM
� Supported by a Junior Research Fellowship at Magdalen College, Oxford.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 151–156, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

152 J. Hurd

static analysis tool [1], also developed by Microsoft Research. Since the statement
if (*) is interpreted as demonic non-deterministic choice, the error statement
being unreachable guarantees that between the ith and jth time that program
location l is reached, the l-state goes down in at least one of the well-founded
relations R1, . . . , Rn.

If for every program location there exists a set of well-founded relations that
allow this modification and check to succeed, then it is possible to conclude
that the program must always terminate [6]. It is this logical step that is for-
mally verified in the remainder of this paper. Section 2 presents a higher order
logic formalization of programs and termination; Section 3 adds to the model
the information generated by a successful Terminator analysis; and Section 4
formally verifies that it is sufficient to guarantee program termination. Finally
Section 5 extends the model to verify two optimizations that are implemented
in the Terminator tool. The HOL4 theorem prover [3] was used for this proof
pearl, and all the theorems presented have been mechanically checked.1

Although irrelevant for the correctness proof, it is interesting to see how Ter-

minator automatically constructs the well-founded relations R1, . . . , Rn. The
SLAM tool called by Terminator works by Counter-Example Guided Abstrac-
tion and Refinement (CEGAR), and thus in the case that the property is false
provides a concrete execution trace leading to an error statement. Terminator

starts with no relations,2 repeatedly runs SLAM to generate error traces, and
each time adds a well-founded relation that would rule it out. The well-founded
relations are heuristically generated by an external tool called RankFinder [5].
The hope is that eventually enough well-founded relations are chosen that the
error statement can be proven to be unreachable.

2 Formalizing Termination

Programs are formalized in higher order logic as nondeterministic state machines
equipped with a function mapping states to program locations (this captures the
intuition that the program counter is part of the state):

(’state,’location) program ≡
<| states : ’state → bool; location : ’state → ’location;

initial : ’state → bool; transition : ’state → ’state → bool |> .

Note that the ’state and ’location can be any higher order logic types, and in
particular the states set can be infinite.

The set of all program locations is simply the range of the location function:

locations p ≡ image p.location p.states .

1 The proof script can be downloaded from
http://www.cl.cam.ac.uk/~jeh1004/research/papers/terminatorScript.sml .

2 Note that for program locations that are executed at most once, SLAM will be able
to prove the error statement is unreachable even when there are no relations.

http://www.cl.cam.ac.uk/~jeh1004/research/papers/terminatorScript.sml

Proof Pearl: The Termination Analysis of Terminator 153

Well-formed programs must be closed w.r.t. their set of states, and their set
of program locations must be finite:3

programs ≡
{ p : (’state,’location) program |

finite (locations p) ∧ p.initial ⊆ p.states ∧
∀s, s′. p.transition s s′ ⇒ s ∈ p.states ∧ s′ ∈ p.states } .

A sufficient condition for a program p being terminating is that the p.transition
relation is well-founded. However, this is too strong, and excludes terminating
programs that have unreachable loops in their transition relation. Instead a
notion of program execution traces is introduced:

traces p ≡ { t : ’state lazy list | t0 ∈ p.initial ∧ ∀ti, ti+1 ∈ t. p.transition ti ti+1 } .

The type α lazy list of possibly infinite lists is already defined in the HOL4 the-
orem prover; this work only required some extra constants to support syntactic
constructs such as the above universal quantification over adjacent elements of
the list. Now a program can be defined to terminate if it has no infinite execution
traces:

terminates p ≡ ∀t ∈ traces p. finite t .

3 The Terminator Program Analysis

The previous section presented a simple formalization of programs and defined a
termination predicate on them. This section completes the formalization of the
main verification goal by defining what it means for a Terminator program
analysis to succeed.

At a particular location l of a program p, the result of a successful Termi-

nator analysis (as described in the Introduction) is formalized in higher order
logic as

terminator property at location p l ≡
∃R, n.

(∀k ∈ {0, . . . , n − 1}. well founded (R k)) ∧
∀t ∈ traces p. ∀xi < xj ∈ trace at location p l t.

∃k ∈ {0, . . . , n − 1}. R k xj xi ,

where trace at location p l t filters the execution trace t leaving only the states
corresponding to the location l:

trace at location p l t ≡ filter (λs. p.location s = l) t .

The Terminator analysis for a whole program succeeds if it succeeds at
every location:

terminator property p ≡ ∀l ∈ locations p. terminator property at location p l .

3 The infinite non-terminating program skip; skip; skip; · · · visits each program location
precisely once and thus the Terminator analysis trivially succeeds.

154 J. Hurd

4 Verifying Terminator

At this point the formalization is complete, and the correctness statement for
the Terminator analysis can be expressed as

∀p ∈ programs. terminator property p⇒ terminates p .

How to prove this verification goal? The first step is to fix a program location l,
and prove that no trace can visit l infinitely often.

The proof is easiest to explain by contradiction: suppose a program trace
is filtered to give in an infinite list of l-states x0, x1, x2, The Terminator

analysis results in well-founded relations R0, . . . , Rn−1 such that for every i < j
there exists 0 ≤ k < n satisfying Rk xj xi.

The proof proceeds by induction on n. If n = 0 then the contradiction is
immediate because there is no well-founded relation available to compare x0

and x1. For n > 0 construct an undirected graph G = (V,E) with vertex set
V = N and edge relation

E i j = i < j ∧Rn−1 xj xi .

The next step is formalize a result of Ramsey Theory [4] that every infinite graph
has an infinite subgraph that is either complete (i.e., every vertex is connected
to every other) or empty (i.e., there are no edges).4 Here is the higher order logic
theorem:

� ∀V, E. infinite V ⇒
∃M ⊆ V. infinite M ∧

((∀i, j ∈ M. i < j ⇒ E i j) ∨ (∀i, j ∈ M. i < j ⇒ ¬E i j)) .

What do the two cases mean for the graph G? If the infinite subgraph G′ =
(M,E) is complete, then the subsequence of vertices in M is an Rn−1 infinite
descending sequence: a contradiction since Rn−1 is a well-founded relation. If
instead G′ is empty, then the relation Rn−1 is never used and the problem
reduces to n − 1 well-founded relations: the contradiction is provided by the
inductive hypothesis. The final theorem is

� ∀p ∈ programs. ∀l ∈ locations p.

terminator property at location p l ⇒
∀t ∈ traces p. finite (trace at location p l t) .

The final step of the verification is to deduce that if no program location is
visited infinitely often then there are no infinite program traces:

� ∀p ∈ programs. terminator property p ⇒ terminates p .

Note that this relies on well-formed programs having a finite set of locations.
4 Formalizing Ramsey Theory in higher order logic is not novel; perhaps the earliest

example is Harrison’s HOL88 theory in 1994, now ported to HOL Light.

Proof Pearl: The Termination Analysis of Terminator 155

5 Optimizations

The previous section formally verified the core Terminator program analysis,
but the real tool also implements a number of optimizations to speed up the
termination proof. In this section the verification is extended to include two of
the most significant ones.

The first optimization occurs when there is only one relation that has been
found (so far) at a program location l. Instead of the general program modifi-
cation, Terminator simply modifies the program to compare each l-state with
the previous l-state, by inserting

already_saved_state := false;

at the beginning of the program, and

if (already_saved_state && ¬R state saved_state) {
error("possible non-termination");

}
saved_state := state;
already_saved_state := true;

just before location l. The definition of a successful Terminator program analy-
sis at location l must therefore be weakened to

terminator property at location p l ≡
(∃R.

well founded R ∧
∀t ∈ traces p. ∀xi, xi+1 ∈ trace at location p l t. R xi+1 xi) ∨

[. . . old definition of terminator property at location p l. . .] .

The second optimization that Terminator implements is to skip the analysis
for all but a cut set of program locations:

cut sets p ≡
{L | L ⊆ locations p ∧

∀t ∈ traces p. infinite t ⇒ ∃l ∈ L. infinite (trace at location p l t)} .

Intuitively, a set of program locations is a cut set if every infinite trace visits
the cut set infinitely often. This is a semantic property, and in general is hard
to prove.5 In practice, Terminator chooses a cut set to include all locations at
the start of loops and functions that are called (mutually) recursively.

Taking both these optimizations into account, the result of a successful Ter-

minator program analysis is captured by the following augmented definition:

terminator property p ≡
∃C ∈ cut sets p. ∀l ∈ C. terminator property at location p l .

And the same correctness theorem is still true, requiring only modest changes
to the proofs.
5 Indeed, if the program is terminating, all location sets are cut sets!

156 J. Hurd

6 Summary

This proof pearl presented a formal verification of the termination analysis of the
Terminator static analysis tool. The correctness result is not obvious (at least
to the author), and the proof is an interesting application of Ramsey Theory.
Naturally, the mechanized proof uses the same concepts as the original published
proof [6], but was made more self-contained to simplify both formalization and
presentation. The HOL4 proof script is 500 lines long (including the Ramsey
Theory lemmas), and took two days to get the formalization right and then
another two days to complete the verification.

The verification of the Terminator optimizations in Section 5 represents a
first step toward a verified practical tool, but that is a long way off. An inter-
esting next step would be a deep embedding of structured programs, so that
the Terminator program modification and cut set generation could be incor-
porated into the verification, as well as optimizations such as ignoring program
traces that leave and come back into the current loop.

Acknowledgements

Byron Cook provided the initial stimulus for this work, and it was greatly im-
proved in discussions with both him and Andreas Podelski. Comments from the
anonymous TPHOLs referees greatly improved the paper.

References

1. Ball, T., Bounimova, E., Cook, B., Levin, V., Lichtenberg, J., McGarvey, C., On-
drusek, B., Rajamani, S.K., Ustuner, A.: Thorough static analysis of device drivers.
In: Proceedings of the EuroSys 2006 Conference, April 2006, pp. 73–85 (2006)

2. Cook, B., Podelski, A., Rybalchenko, A.: Terminator: Beyond safety. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 415–418. Springer, Heidelberg
(2006)

3. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL (A theorem-proving
environment for higher order logic). Cambridge University Press, Cambridge (1993)

4. Landman, B.M., Robertson, A.: Ramsey Theory on the Integers, February 2004.
American Mathematical Society, Providence, RI (2004)

5. Podelski, A., Rybalchenko, A.: A complete method for the synthesis of linear ranking
functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–
251. Springer, Heidelberg (2004)

6. Podelski, A., Rybalchenko, A.: Transition invariants. In: 19th IEEE Symposium on
Logic in Computer Science (LICS 2004), July 2004, pp. 32–41. IEEE Computer
Society Press, Los Alamitos (2004)

Improving the Usability of HOL Through
Controlled Automation Tactics

Eunsuk Kang and Mark D. Aagaard

Electrical and Computer Engineering
University of Waterloo
Waterloo, ON, Canada

{ekang,maagaard}@uwaterloo.ca

Abstract. This paper introduces the concept of controlled automation as a bal-
anced medium between high-level automated reasoning and low-level primitive
tactics in HOL. We created a new tactic that subsumes many existing low-level
tactics for logical operations and three new tactics that simplify common uses
of term rewriting: definition expansion, simplification, and equational rewriting.
To implement the tactics, we extended HOL with a facility to label assumptions
and operate uniformly on both goals and assumptions. We select automatically
and predictably which low-level tactic to apply by examining the structure of the
selected assumption or goal. A simple and uniform set of hints enable users to
provide the minimal information needed to guide the tactics. We performed two
case studies and achieved a 60% reduction in the number of unique tactics used.

1 Introduction

HOL 4 [4] is a powerful theorem proving environment, providing a wide range of proof
techniques such as tactics, term rewriting, and decision procedures. However, the vast
richness of HOL can be overwhelming. A novice user often spends a significant amount
of time navigating through the HOL reference manual. Even experienced HOL users oc-
casionally encounter difficulties remembering the name or syntax of a tactic. Based on
these observations, our goal was to automate common proof tasks in HOL and eliminate
much of the need to search documentation when doing common reasoning. By doing
so, we allow the users to focus on devising strategies to conduct the proof.

Tactics in HOL can be classified into two types. Low-level tactics are used to de-
compose a goal into smaller subgoals or transform it into another form through term
rewriting. Most of these low-level tactics carry out one specific operation at a time,
such as eliminating a conjunctive operator or expanding the definition of a constant. In
comparison, high-level tactics are capable of performing multiple operations in a sin-
gle step, often attempting to reduce a goal as much as possible. High-level tactics can
be risky when used without careful discretion because they occasionally perform more
operations than what the user wants them to do. In some other cases, they simply fail to
do what the user expects. Low-level tactics provide finer control, but they are numerous
and difficult to remember.

In this paper, we introduce four new tactics:ELIM TAC,EXPAND TAC, REDUC TAC,
and EQUATE TAC. The purpose of our tactics is to provide a balanced medium between

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 157–172, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

158 E. Kang and M.D. Aagaard

high-level and low-level tactics. These tactics replace many of the existing low-level
tactics and inference rules in HOL, significantly reducing the number of functions that
the user needs to remember throughout a proof. At the same time, all of the tactics
operate on the basic principle that they should perform exactly what the user instructs
them to do — no more, no less — thereby giving the user the complete control of proof
steps. In short, these tactics provide what we call controlled automation.

Each of the four tactics is specialized in terms of the types of low-level proof tasks
that it automates. ELIM TAC is intended for performing primitive logical operations,
such as the elimination of a conjunctive operator. We classify term rewriting into three
different categories; definitional expansion, term simplification, and equational rewrit-
ing. The three types of rewriting tasks are carried out by EXPAND TAC, REDUC TAC,
and EQUATE TAC, respectively.

The implementation of our tactics is based on three underlying ideas. First, we in-
troduce a new data structure called hints, which allows the user to provide the minimal
amount of information needed to guide our tactics. A major portion of our work focused
on establishing hints as an easy-to-use, intuitive control mechanism for HOL users. Sec-
ondly, we develop a system of labelling and identifying an assumption using a string
in order to allow the user to operate directly on the assumption. Lastly, we provide a
precise control mechanism for the user to select between different rewriting strategies,
depending on the type of the rewriting task.

We performed two case studies to evaluate the effectiveness of the new tactics in
improving the usability of HOL, and solicited feedback from novice users in a graduate
course on formal verification. We started with a small example where HOL is used to
solve a logic puzzle from the popular novel series Harry Potter. We then moved on to
a much larger study, where we formally proved the equivalence of several superscalar
microprocessor correctness statements [1]. The statistics gathered from these studies
show an approximately 60% reduction in the number of HOL functions that a user needs
to use in a proof, and a 25 to 40% decrease in the size of a proof script. These results
demonstrate that our work simplifies and reduces the amount of interaction between the
user and the theorem prover.

In Section 2, we describe ELIM TAC and how it replaces many of the most com-
monly used low-level tactics or rules in HOL. Section 3 discusses the three tactics for
rewriting: EXPAND TAC, REDUC TAC, and EQUATE TAC. Sections 4 and 5 contain
the description of the case studies and related work, respectively.

2 Controlled Automation for Logical Operations

2.1 Problem Description

The origins of our work come from two observations that we made about typical HOL
proof scripts. First, many proofs could be shortened if assumptions could be manip-
ulated with the same logical operations that can be applied to the goal. Second, the
logical operation to apply to an assumption or goal can often be predicted based on the
outermost operator of the assumption or goal. From these observations, we set ourselves
the goal of developing a tactic that the user would aim at the goal or an assumption and
say “do the obvious thing”.

Improving the Usability of HOL Through Controlled Automation Tactics 159

Any reasonably complicated proof in HOL likely involves the manipulation of as-
sumptions. Before the user can completely prove the goal or subgoals using automated
reasoners, it is often necessary to transform assumptions into a particular form through
the application of low-level tactics or inference rules. However, HOL does not contain
functions that allow the user to apply a forward inference rule directly to a specific as-
sumption. Instead, an assumption is either moved into the goal and modified via tactics;
or is transformed into a theorem, modified via forward inference rules, and then put
back onto the assumption list. There are several disadvantages to this limitation. The
multi-step processes to manipulate assumptions distract the user from the main reason-
ing of the proof. The names of forward inference rules are often seemingly unrelated to
the names of the corresponding tactic. As the number of assumptions on the goalstack
increases, it becomes difficult to identify the specific assumption to be manipulated.
To overcome these inconveniences, we designed ELIM TAC to operate uniformly on
both the assumptions and the goal and developed a mechanism on top of HOL to name
assumptions and then identify assumptions by name.

A goal-directed proof in HOL typically involves decomposing the goal or assump-
tions into smaller terms. For example, conjunctive goals (e.g. P ∧ Q) are decomposed
into two goals, one for P and one for Q. We observed that it is often possible to guess the
next logical operation to perform by examining the outermost operator of the goal or
assumption. To reduce the number of tactics that the user must remember, ELIM TAC
uses simple rules to choose the tactic to apply based upon the outermost logical con-
nective or quantifier of the identified goal or assumption.

Different tactics have different arguments for users to pass information to the tac-
tic (e.g a witness term for the elimination of an existential quantifier). Therefore, any
process to automate the low-level tactics must include an intuitive, easy-to-use method
for users to pass information to the underlying tactics. Relying on heuristics to guess the
requisite information would violate our intention of giving the user complete control.

The remainder of this section discusses our approaches to solving the challenge of
developing robust mechanisms to:

1. Choose a particular tactic to apply based on the logical structure of a term
2. Enable users to pass requisite information to underlying tactic
3. Operate operate uniformly on a goal or an assumption
4. Ensure that tactics perform the expected operation or fail immediately.

2.2 ELIM TAC

ELIM TAC combines many commonly used low-level tactics. We developed it with one
ultimate purpose: save users time and effort in picking out which tactic to apply. The
type of ELIM TAC is: string -> hint list -> tactic. The first argument
is a label that identifies the goal or an assumption as a target on which the tactic will
carry out its operation. The empty string "" denotes the goal.

The second argument is a list of hints, which serve as a control mechanism for the
user to provide the tactic with the necessary information for carrying out a logical oper-
ation. The choice of hints depends on the type of the operation that is to be performed
on the target expression (e.g. the nullary constructor SKOLEM instructs ELIM TAC to

160 E. Kang and M.D. Aagaard

Table 1. Descriptions of data constructors for hint

Constructor Type in ML Logical Operation

ASM string -> hint ⇒ elimination
MATCH term -> hint ∧, ∨ elimination
INSTANCE term -> hint ∀ elimination
WITNESS term -> hint ∃ elimination
SKOLEM hint Skolemnization

perform skolemnization on an existential quantified term). Table 1 contains a summary
of the data constructors that are applicable to ELIM TAC. Later in this paper, we extend
the definition of hint with additional constructors that are used in our rewrite tactics
(Table 2 in Section 3.3).

Often, ELIM TAC does not require any hints. When the logical operation to perform
can be inferred from the structure of the goal or assumption, an empty list of hints
suffices. In the example sequent below, the current goal is an implicative formula P⇒
Q. Applying ELIM TAC pushes the antecedent into the current list of assumptions (note
that the string “a” on the third line represents the label for the assumption, P):

�P⇒ Q
By ELIM TAC "" []

a •P
�Q

⇒ elimination in goal

The sequents below illustrate the other uses of ELIM TAC for goal decomposition
without hints (∧, ∨, and ∀ elimination).

�P∧Q
By ELIM TAC "" []

�P � Q

�P∨Q
By ELIM TAC "" []

�P

�∀x.u
By ELIM TAC "" []

�u[x′/x]

∧ elimination in goal ∨ elimination in goal ∀ elimination in goal

Next, we introduce an example of a situation where the user is required to provide
an extra bit of information to ELIM TAC. In order to eliminate an existential quantifier,
we specify a witness term with the WITNESS hint.

�∃x.t
By ELIM TAC "" [WITNESS ‘u‘]

� t[u/x]

∃ elimination in goal

We have already presented the use of ELIM TAC for eliminating the disjunctive
operator in a goal. By default, the tactic selects the left of the two disjuncts to spawn

Improving the Usability of HOL Through Controlled Automation Tactics 161

as the subgoal. However, if the user wishes to extract the right disjunct instead, how
should this operation be specified in ELIM TAC? The constructor MATCH accepts a
higher-order pattern and attempts to match it against either one of the two disjuncts in
the goal. If a match is found, it spawns the matched disjunct as a subgoal. However,
if no such match is found, the tactic immediately fails and displays an error message,
instead of arbitrarily selecting a disjunct for subgoal generation. It is important to note
that this failure mechanism is a critical part of all controlled automation techniques.
If an operation violates the user’s intention in any way, a controlled automation tactic
must halt its execution; by doing so, it prevents any further operations that might lead
to undesirable results for the user.

�P∨Q
By ELIM TAC "" [MATCH ‘Q‘]

�Q

∨ elimination in goal

The sequents presented in this section encompass all of the most common logical
operations that one may wish to perform on a goal. In Sections 2.3 and 2.4, we show
how we extend the capabilities of ELIM TAC in order to automate even a wider range
of primitive operations in HOL.

2.3 Assumption Labelling

Black and Windley [2] discuss various ways to select one or more specific assumptions
in HOL. Arguably the most straight-forward and convenient mechanism for the user
is identifying assumptions by their position in the assumption list. From an informal
survey of students in a graduate-level introductory course to theorem proving, we found
that most of them preferred to create their own tactic that allowed them to select a
specific assumption by an explicit numeric index, rather than using built-in capabilities
in HOL. However, this mechanism of identification is highly undesirable since it is
sensitive to changes in a proof script. In the long term, it will likely be detrimental to
the maintenance of the proof script.

In order to provide a mechanism that is convenient for the user and yet insensitive
to changes in a proof, we label assumptions with strings. In order to identify a tar-
get assumption or goal, the user simply passes in the label for the assumption (or the
"" for the goal) to ELIM TAC. We also provided functions to allow the user to la-
bel a newly added assumption or change the label of an existing assumption on the
goalstack.

Our implementation of labelling did not involve any changes to the existing HOL
code. The mapping between an assumption and a label on the goalstack is accom-
plished through a hash table — the key is the term that represents the assumption, and
the hashed item is the string label. The one-to-one mapping between the key and the
hashed item ensures that each assumption has its own unique label, thereby separating
the ordering of assumptions on the goalstack from their labels. When new assump-
tions are added to the goalstack without explicit labels from the user, each of them is

162 E. Kang and M.D. Aagaard

entered into the hash table with a default label. In order to create a default label for
an assumption, we use simple heuristics in which we extract a representative string
based on the size and the first two alphanumeric characters of the term. We designed
our heuristics in such a way that it would reduce the occurrences of duplicate default
labels as much as possible without requiring the user to enter tediously long labels
to refer to assumptions. However, in case of duplicate default labels, all subsequent
duplicate labels after the first one are suffixed with a numeric index. This operation
maintains the one-to-one mapping requirement in the hash table, but also introduces
the dependency of labels on the ordering in which their corresponding assumptions are
added to the goalstack. Based on our experiences with ELIM TAC, the occurrences of
duplicate default labels are rare. However, in order to ensure that assumption labels stay
insensitive to changes in a proof script all the time, we encourage the user to label a new
assumption with a unique, more meaningful name.

2.4 Extending ELIM TAC to Work with Assumptions

Given the underlying infrastructure for assumption labelling, we now describe the full
capabilities ofELIM TAC as a versatile tool for both reducing a goal and transforming an
assumption into a desired form. In this section, we present sequents for uses ofELIM TAC
when operating on an assumption. We also describe how hints are used to fully specify
the user’s intention when more than one primitive operations may be possible.

At times, it is useful to be able to extract one specific conjunct out of a term with
an arbitrary number of conjuncts. Let us assume that the user intends to perform the
elimination of a conjunctive operator on an assumption ‘t1 ∧ t2 ∧ t3‘. Applying
ELIM TAC to the assumption without any hints results in the extraction of the leftmost
conjunct, ‘t1‘.

a • t1∧ t2∧ t3
�P

By ELIM TAC "a" []

a • t2∧ t3
t1 • t1

�P

∧ elimination in assumption

Another common primitive task in HOL is extracting an inner conjunct out of an
expression. Carrying this operation out by using only the built-in functions in HOL
may take several steps, depending on the level of nesting for that particular conjunct.
Instead, we specify a pattern that matches a particular subterm (i.e. ‘t2‘) using the
MATCH hint. The meaning of MATCH depends on the context in which ELIM TAC is
currently being used. When applied to a goal, MATCH is used for the decomposition
of a disjunctive expression; when applied to an assumption, MATCH plays the role in
extracting a particular conjunct out of the assumption.

Improving the Usability of HOL Through Controlled Automation Tactics 163

a • t1∧ t2∧ t3
�P

By ELIM TAC "a" [MATCH ‘t2‘]

a • t1∧ t3
t2 • t2

�P

∧ elimination in assumption using MATCH

In the next example, we show how one can use ELIM TAC to perform the modus
ponens rule involving two assumptions. Given the assumptions, “a1” and “a2” in the
below sequent, the intuitive next step is to match the antecedent in ‘t1 ==> t2‘
against the other assumption and obtain the goal, ‘t2‘. The data constructor ASM
indicates which assumption should be matched against the antecedent of an implicative
assumption.

a1 • t1⇒ t2
a2 • t1

�P
By ELIM TAC "a1" [ASM "a2"]

a1 • t2
a2 • t1

�P

⇒ elimination in assumption using ASM

When applied to an existentially quantified assumption without hints, ELIM TAC
performs skolemnization. Using only the built-in tactics in HOL, the most straightfor-
ward path to skolemnization on an assumption requires four different steps. Here, using
ELIM TAC, we accomplish this operation in a single step:

a •∃x.t
�P

By ELIM TAC "a" []

a • t
�P

∃ elimination in assumption

When an existential quantified expression resides as a subterm within an assump-
tion with two or more conjuncts (e.g. ‘t1 ∧ ?x. t2 ∧ t3‘), it is sometimes desir-
able to perform skolemnization directly on the quantified subterm. We introduce a new
constructor called SKOLEM, which instructs ELIM TAC to search for an existentially
quantified subterm and apply skolemnization directly on it.

164 E. Kang and M.D. Aagaard

a • t1∧ (∃x.t2)∧ t3
�P

By ELIM TAC "a" [SKOLEM]

a • t1∧ t2∧ t3
�P

∃ elimination in assumption using SKOLEM

Lastly, eliminating the universal quantifier from an assumption involves instantiating
the quantified variable with a specific constant. The user must provide this constant
through the hint constructor INSTANCE:

a •∀x.t
�P

By ELIM TAC "a" [INSTANCE ‘u‘]

a • t[u/x]
�P

∀ elimination in assumption using INSTANCE

In this section, we have described the operations that a user can perform using the
combination of ELIM TAC with hints. One possible criticism against ELIM TAC is
that the user is still required to memorize the name and the syntax of the different data
constructors for the type hint. In response, we have tried to keep the number of the
data constructors to a minimum without compromising the robustness of ELIM TAC
in its ability to perform a wide range of primitive operations. Also, the names and the
syntax of the constructors are fairly intuitive and easy to remember. An experiment
with students in the graduate course in theorem proving showed that once they became
familiarized with ELIM TAC, they preferred working with our tactic over having to
remember a wide range of built-in HOL tactics and inference rules.

3 Controlled Automation for Term Rewriting

3.1 Problem Description

HOL contains a wide set of rewrite tactics and as well as several hundreds of previously
proven theorems that can be used “off-the-shelf” as rewrite rules. Despite the richness of
rewriting capabilities available in HOL, term rewriting is not always a straightforward
matter, and the learning curve is stiff for a novice user.

In this section, we identify two major challenges with term rewriting in HOL. First,
we observe that it is generally difficult to control the exact location within a term to
which a rewrite rule must be applied. The most commonly used rewriting tactics such
as REWRITE TAC and ONCE REWRITE TAC walk over the entire term in a left-to-
right order and applies the rewrite rule to the first rewritable subterm that it encounters.
Sometimes, these tactics fail to meet the user’s expectations; they either rewrite a wrong
subterm or rewrite more subterms than the user has in mind.

Improving the Usability of HOL Through Controlled Automation Tactics 165

Secondly, HOL does not provide an efficient way to apply a rewrite rule directly to an
assumption or rewrite a goal using an assumption. The former case is closely related to
the discussion in Section 2.3 - that is, the lack of a built-in mechanism for identifying or
directly operating on one or more specific assumptions. ASM REWRITE TAC attempts
to rewrite the goal using all of the existing assumptions, but is not useful when the user
wishes to rewrite using only a subset of them. FILTER ASM REWRITE TAC improves
upon the former tactic by allowing the user to select a set of assumptions as rewrite
rules, but requires a condition predicate, which can be tedious to create. A simpler
mechanism for rewriting using assumptions is desirable.

In the process of developing controlled automation tactics for term rewriting, we
have classified common rewriting tasks into three different categories:

1. Definitional expansion
2. Term simplification
3. Other equational rewriting

Instead of creating a single tactic that performs all three types of rewriting, we designed
a separate tactic for each one of them. The rationale behind the separation of tactics is
that it is difficult to devise a single rewrite tactic that “does it all” without falling into
the danger of violating the user’s intentions. For instance, it is sometimes desirable to
simplify an arithmetic expression as much as possible, whereas in other situations, the
user may intend to perform a more delicate rewrite operation. In either case, it is nearly
impossible to guess what the user might wish to do for the next step of a proof.

In Sections 3.2 and 3.3, we describe our approaches to solving the aforementioned
challenges - specifying a rewritable subterm and applying rewriting operations directly
to assumptions. Then, in Section 3.4, illustrate how the three rewrite tactics evolve on
top of our solutions to these challenges.

3.2 Specifying the Location of Rewriting

One solution to the challenge of specifying the exact location of rewriting within a term
is combining the built-in tactic GEN REWRITE TAC with conversions. A conversion
in HOL is a function, with a type term -> thm, that takes a term t and produces
a theorem � t = t ′. A composition of multiple conversions can be used to specify the
search strategies for term rewriting when passed to GEN REWRITE TAC.

For instance, let us assume that the user wishes to rewrite the left hand side of the
equation in ‘x - (z + y) = x - (y + z)‘ using the built-in theorem ADD
SYM: � ∀m n. m+ n = n + m.

The conversion RATOR CONV applies a rewrite rule to the operator of a function ap-
plication, and ONCE DEPTH CONV applies the rule only once to an applicable subterm;
the latter conversion is necessary in order to ensure the termination of rewriting. In the
following sequent, the two conversions are composed using the infix operator o and
passed as an argument to the tactic.

�x - (z + y) = x - (y + z)
By GEN REWRITE TAC (RATOR CONV o ONCE DEPTH CONV) [] [ADD SYM]

�x - (y + z) = x - (y + z)

166 E. Kang and M.D. Aagaard

We developed an alternative solution where the user simply specifies a rewritable
subterm using higher-order pattern matching. The main goal of our approach is to elim-
inate the necessity for built-in conversions in rewriting. As a first step, we define a
tactic named NEW REWRITE TAC with a type hint list -> tactic. This tac-
tic shares the same data type hint as ELIM TAC does. However, in the context of
rewriting, the data constructor MATCH is used to specify the higher-order match. In ad-
dition, we add a new constructor THM : thm -> hint, which takes a rewrite rule
as the argument. By combining these two constructors into a list, the user instructs
NEW REWRITE TAC to rewrite only the left hand side of the equation.

�x - (z + y) = x - (y + z)
By NEW REWRITE TAC [MATCH ‘z + y‘, THM ADD SYM]

� x - (y + z) = x - (y + z)

As an another example, let us assume that for whatever reasons, the user wishes to
rewrite the left hand side of the equation SUC (x + y) = SUC (x + y) using
ADD SYM. In this case, the original higher-order matching technique cannot be used
to specify only the left hand side of the term, as any pattern would match both of the
two sides. In order to ensure that our term rewriting approach is complete, we extended
our matching algorithm to allow the user to point at a rewritable subterm using the
underscore character ‘ ‘. The following sequent illustrates this example:

�SUC (x + y) = SUC (x + y)
By NEW REWRITE TAC [MATCH ‘ = a‘, THM ADD SYM]

�SUC (y + x) = SUC (x + y)

As a whole, the meaning of MATCH ‘ = a‘ is equivalent to “extract a subterm
that matches the pattern provided in the hint but rewrite only the part of the subterm
that is highlighted by the underscore character.” Note that since the matching algorithm
used in our approach is based on higher-order pattern matching, the fragment ‘a‘ in
‘ = a‘ matches the right hand side of the entire term (i.e. ‘SUC (x + y)‘). This
mechanism is convenient because the user does not need to spell out the entire term to
provide the exact match.

3.3 Integrating Rewriting with Assumption Handling

Directly Rewriting an Assumption. In Section 2.3, we introduced the system of iden-
tifying an assumption using string labels. We now extend NEW REWRITE TAC to allow
term rewriting on an assumption. The ML type of the tactic is also updated to:

NEW_REWRITE_TAC : string -> hint list -> tactic .

As previously mentioned, the empty string "" denotes the goal on the current goalstack.

Rewriting a Goal using Assumptions. Since NEW REWRITE TAC shares the same
data type hint as ELIM TAC does, we take advantage of the data constructor ASM to
allow the user to specify the assumption to be applied to a goal as a rewrite rule. Then,
the application of the tactic

Improving the Usability of HOL Through Controlled Automation Tactics 167

Table 2. Descriptions of complete data constructors for hint

Constructor Type in ML Logical Operation

ASM string -> hint ⇒ elimination, modus ponens, rewrite rule
ASMS string list -> hint Rewrite rules
INSTANCE term -> hint ∀ elimination
MATCH term -> hint ∧, ∨ elimination, rewrite match
SKOLEM hint Skolemnization
THM thm -> hint Rewrite rule
THMS thm list -> hint Rewrite rules
WITNESS term -> hint ∃ elimination

NEW_REWRITE_TAC "" [ASM "a1"] .

rewrites the goal using the assumption with the label “a1.”
In some cases, it is also desirable to include multiple assumptions as rewrite rules.

In order to support this capability, we introduce a new data constructor for hint called
ASMS. The constructor has an ML type string list -> hint. Similarly, to al-
low the user to specify multiple built-in or previously proven theorem as rewrite rules,
we extend hint with another constructor called THMS. The complete list of data con-
structors of hint and their purposes are shown in Table 2.

3.4 Controlled Rewrite Tactics

Given the supporting mechanisms for specifying a subterm and rewriting with assump-
tions, we finally introduce controlled automation tactics that are specialized for term
rewriting. In this process, we replace NEW REWRITE TAC, which was discussed in the
previous section, with three new tactics, EXPAND TAC, REDUC TAC, and EQUATE
TAC. Syntactically, these tactics share the same ML type string -> hint list
-> tactic. We believe that the range of rewriting operations supported by our tactics
is wide enough such that user will rarely need to resort to the built-in rewrite tactics in
HOL.

Definitional Expansion. EXPAND TAC performs the definitional expansion of one or
more constants in a goal or an assumption. A constant is expandable if there exists a
built-in or user-defined theorem � c = t, where c is the constant itself, and t is the term
that represents the definition of the constant. More generally, if c is an n-arity function,
an expression equivalent to an application of c to its n parameters, p1, p2, ..., pn is ex-
pandable if there exists a theorem � (c p1 p2 ... pn) = t ′, where t ′ is a well-typed term
in the HOL-specific variant of simply typed λ-calculus. One or more of the parameters,
p1, p2, ..., pn, may be universally quantified.

When invoked without any hints, EXPAND TAC traverses the matching subterm
within the target goal or assumption in the top-down manner and unfolds the definition
of the first expandable constant or expression that it encounters. Internally, unnoticed

168 E. Kang and M.D. Aagaard

by the user, EXPAND TAC searches through the database of existing definitions in HOL
and determines whether a constant is expandable. This automatic searching capability
provides convenience to the user but is not always desirable; in this case, hints act as a
useful control mechanism for specifying the behaviour of the tactic.

As an alternative to specifying the rewrite rule through THM, narrowing down the
scope of the subterm search by using MATCH constructor has an identical effect. For
example, let us assume that two theorems, factorial and pow have already been
defined.

factorial: |- (factorial 0 = 1) /\
!n. factorial (SUC n) = (n + 1) * factorial n

pow: |- (!k. pow k 0 = 1) /\
!k n. pow k (SUC n) = k * pow k n

As a next step, the user expands the occurrence of factorial in the left hand side of
the inequality:

�factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" []

�(n + 1) * factorial n > pow 2 (SUC n)

However, the user changes his or her mind and decides to unfold the definition of pow
instead:

�factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" [THM pow]

�factorial (SUC n) > 2 * pow 2 n

It is not necessarily the case that the name of the ML binder (meta-level identifier) is
equal to the name of the constant (HOL term) that is currently being expanded. Alter-
natively, the user can specify the subterm to be rewritten using a higher-order pattern:

�factorial (SUC n) > pow 2 (SUC n)
By EXPAND TAC "" [MATCH ‘a > ‘]

�factorial (SUC n) > 2 * pow 2 n

The latter alternative may be preferred in some cases since it eliminates the user’s man-
date of having to remember the name of the ML binder for a specific theorem.

Term Simplification. REDUC TAC recursively applies a set of built-in simplification
rules about numbers, lists, and propositions as well as user-provided theorems to a goal
or an assumption until no rewrite rule remains applicable. In essence, REDUC TAC is
a wrapper for the built-in HOL simplifier SIMP TAC with an external interface that
gives the user greater control of where to apply simplification. REDUC TAC is most
beneficial when the user wishes to simplify only a particular subterm within a goal or
an assumption. Consider the following sequent:

Improving the Usability of HOL Through Controlled Automation Tactics 169

a •c + 1 - 1 = a + b
�c + 1 - 1 = SUC (a + b - 1)

By REDUC TAC "" [MATCH ‘SUC x‘]

a •c + 1 - 1 = a + b
�c + 1 - 1 = a + b

Applying REDUC TAC to the entire term would reduce ‘c + 1 - 1‘ to ‘c‘, which,
in this example, is not the desirable outcome.

Equational Rewriting. The last of the trio, EQUATE TAC, is intended for rewriting op-
erations that do not fall into the two other categories - definitional expansion and term
simplification. EQUATE TAC may be used to perform any equational rewriting; in this
sense, its behaviour is nearly identical to GEN REWRITE TAC. However, the two tac-
tics differ significantly in their user interfaces. The latter tactic accepts a set of conver-
sions for search strategies as well as a list of rewrite rules and theorems. EQUATE TAC
achieves nearly the same level of customizability with a much simpler external interface
and does not require the user to commit to memory numerous conversion functions.

4 Case Studies

In order to evaluate the effectiveness of our approach in providing controlled automa-
tion, we have carried out two separate case studies in HOL. We first begin with a small
proof that is based on one of the logic puzzles in the popular novel Harry Potter and
the Sorcerer’s Stone. The details of the puzzle are irrelevant for the purpose of our dis-
cussion. The original version of the proof that we carried out is about 280 lines long in
terms of the size of the proof script, and required 8 intermediate lemmas.

The original proof script served as the control subject in our case study. We then
carried out the same proof from scratch, but the main difference now was that our four
tactics were available for use by the human prover. It is important to note that we did
not modify the general, high-level strategies for carrying out the proof between the
two proof scripts. Rather, the focus of our study was to measure the effectiveness of
our approach in automating low-level details in a proof. After the proof was re-done,
we gathered statistics such as the size of the proof script and the number of tactics or
inference rules that the user had to use in order to successfully carry out the proof.

The first row in Table 3 illustrates the statistics from the study of the Harry Potter
puzzle. The data exhibit a considerable amount of reduction in the size of the proof
script. We attribute this improvement mainly to our assumption handling system, which
allows the user to apply an inference rule directly to an assumption in one step. Using
built-in tools in HOL, the same operation would take two to three steps on average.

Perhaps more significantly, the outcome of our study in Table 3 shows a large de-
crease in the number of tactics or inference rules that were used during the proof; the
figure “5” in the last column includes the counting of our tactics. Throughout most parts
of the proof, the user was able to perform logical or rewriting operations using our con-
trolled automation tactics. There were only a few occasions where it was necessary to
resort to built-in functions in HOL.

170 E. Kang and M.D. Aagaard

Table 3. Reduction in the Size of Proof Scripts and Number of Functions Used

Size (LOC) No. Functions
Original Modified Reduction Original Modified Reduction

Harry Potter 282 162 43% 13 5 62%
Microbox 2254 1678 26% 30 12 60%

We also carried out a larger case study (2200 line proof script) in which we redid the
Microbox [1] proofs about correctness statements for superscalar microprocessors. The
second row in Table 3 contains the statistics for the comparison between the original and
the modified version of the proof script for the microprocessor correctness statements.
Similar to the Harry Potter proof, we observed a significant improvement both in terms
of the size of the proof script and the number of functions used. The figure “12” in
the last column of the table includes all of the four controlled tactics that we have
described in this paper. The remaining eight were built-in HOL functions that did not
fit into our definition of controlled automation. These functions included high-level
automated reasoners (e.g.PROVE TAC) and miscellaneous facilities such as tactics for
renaming assumptions or dropping unnecessary assumptions from the goalstack. Based
on the case studies, we believe that our approach holds considerable promise in making
theorem proving in HOL a much simpler, less time-consuming task for both novice and
expert users.

5 Related Work

The purpose of our tactics is not to add expressive or deductive power to the HOL
theorem prover. Rather, our goal is to enable users to quickly perform many of the
common logical or rewriting operations.

Harrison compared declarative and procedural styles of theorem proving [7]. Dela-
haye later compared declarative, procedural, and term-based proofs (for constructive
logics) [3]. Each of these different styles of proof is best suited for different types of
reasoning (e.g., forward vs. backward, short proofs vs. long proofs, elegantly crafted
vs. done-and-forgotten). Our work lies within the world of procedural proof, and re-
lies upon three principal ideas: assumption labelling for simple and robust access to
assumptions, hints as a uniform mechanism to pass information to tactics, and packag-
ing low-level rewrite strategies according to user-level purposes: definition expansion,
simplification and reduction, and equational substitution.

Trybulec’s Mizar theorem prover has long allowed users to label proof steps
[12] [10]. Harrison adapted the idea of labels to do assumption labelling in his Mizar
mode for HOL [5] and in HOL-light [6]. Hickey’s MetaPRL supports the labelling of
proof nodes to denote the type of reasoning that led to the node (e.g. primary line of
reasoning, well-formedness, or antecedent to an assertion) [8].

One of the most valuable hints in our work is MATCH, which allows the user to select
a subterm to operate on. Martin and colleagues used patterns and meta-variables in the
Angel tactic language to identify subterms on which to operate and to extract subterms
from the program to be passed as arguments to tactics [9]. Toyn used patterns to steer

Improving the Usability of HOL Through Controlled Automation Tactics 171

tactics and to select which tactic to apply [11]. In ISAR, Wenzel uses meta-variables
in proof scripts to refer to terms and includes automatic binding of standard variables,
such as ???goal [13]. All of these uses of patterns would certainly be beneficial in hints
or new tactics, but some of the uses could require significant changes to the way that
HOL parses terms.

6 Conclusion and Future Work

In this paper, we have presented the concept of controlled automation as a balanced
medium between high-level automated reasoning and low-level primitive operations in
the HOL theorem prover. In order to show how we achieve this type of automation, we
have introduced four new HOL tactics, which we named ELIM TAC, EXPAND TAC,
REDUC TAC, and EQUATE TAC. We have also described special data structures called
hints, which serve as an intuitive, easy-to-use mechanism for users to provide these
tactics with information for carrying out the desired operations. Two case studies that
we have conducted demonstrate that our tactics significantly improve on the degree of
automation in HOL by reducing the number of functions that a user needs to remember.

We have introduced these tactics (in addition to existing tactics and rules in HOL) to
students who are enrolled in the introductory level course in formal verification. This
year’s offering is the first time that we have done so. A major assignment in the course
is theorem proving using HOL, and the students are given the freedom of using our
tactics. So far, an informal survey of students indicates that they prefer to use the new
tactics whenever possible over the existing ones in HOL. Many students have positively
expressed that they do not have to cope with the burden of remembering the names of
numerous tactics and inference rules in HOL. Our current plan is to continue introduc-
ing our tactics in future offerings of the course and receive feedback from students on
how we can improve our tools to better assist novice users in the process of learning
interactive theorem proving.

Acknowledgements

This research was funded in part by the Natural Science and Engineering Research
Council of Canada (NSERC) and Canadian Foundation for Innovation (CFI). The au-
thors are indebted to Nancy Day and the students in CS-745: Computer-Aided Verifica-
tion for their feedback on earlier versions of the tactics.

References

1. Aagaard, M.D., Day, N.A., Lou, M.: Relating multi-step and single-step microprocessor
correctness statements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 123–141. Springer, Heidelberg (2002)

2. Black, P.E., Windley, P.J.: Automatically synthesized term denotation predicates: A proof
aid. In: Theorem Proving in Higher Order Logics, pp. 46–57. Springer, Heidelberg (1995)

3. Delahaye, D.: Free-style theorem proving. In: Carreño, V.A., Muñoz, C.A., Tahar, S. (eds.)
TPHOLs 2002. LNCS, vol. 2410, pp. 164–181. Springer, Heidelberg (2002)

172 E. Kang and M.D. Aagaard

4. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: a theorem proving environment
for higher order logic. Cambridge University Press, New York (1993)

5. Harrison, J.: A Mizar mode for HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.)
TPHOLs 1996. LNCS, vol. 1125, pp. 203–220. Springer, Heidelberg (1996)

6. Harrison, J.: The HOL light system reference (2006),
http://www.cl.cam.ac.uk/˜jrh13/hol-light/reference_220.pdf

7. Harrison, J.R.: Proof style. In: BRA Types workshop, pp. 154–172. Springer, Heidelberg
(1996)

8. Hickey, J.J.: The MetaPRL Logical Programming Environment. PhD thesis, Cornell (2001)
9. Martin, A.P., Gardiner, P.H.B., Woodcock, J.C.P.: A tactical calculus. Formal Aspects of

Computing 8(4), 479–489 (1996)
10. Rudnicki, P., Trybulec, A.: On equivalents of well-foundedness. Jour. of Automated Reason-

ing 23(3-4), 197–234 (1999)
11. Toyn, I.: A tactic language for reasoning about z specifications. In: 3rd BCS-FACS Northern

Formal Methods Workshop (September 1998)
12. Trybulec, A., Blair, H.A.: Computer assisted reasoning with MIZAR. In: Int’l Joint Conf. on

Artificial Intelligence, pp. 26–28. Morgan Kaufmann, San Francisco (1985)
13. Wenzel, M.: Isar – A generic interpretative approach to readable formal proof documents. In:

Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS,
vol. 1690, pp. 167–183. Springer, Heidelberg (1999)

http://www.cl.cam.ac.uk/~jrh13/hol-light/reference_220.pdf

Verified Decision Procedures on Context-Free

Grammars

Yasuhiko Minamide

Department of Computer Science
University of Tsukuba

minamide@cs.tsukuba.ac.jp

Abstract. We verify three decision procedures on context-free gram-
mars utilized in a program analyzer for a server-side programming lan-
guage. One of the procedures decides inclusion between a context-free
language and a regular language. The other two decide decision prob-
lems related to the well-formedness and validity of XML documents.
From its formalization, we generate executable code for a balancedness
checking procedure and incorporate it into an existing program analyzer.

1 Introduction

We have been developing a program analyzer for the server-side scripting lan-
guage PHP, which approximates the string output of a program with a context-
free grammar [8]. We adopted and developed several advanced decision pro-
cedures on context-free grammars to check properties of a program with the
analyzer [9,17]. Although the correctness of those decision procedures is often
intuitively clear, their detailed proofs can be rather complicated. That motivated
us to verify them by using a proof assistant.

In this paper, we verify three procedures on context-free grammars used in
our analyzer in Isabelle/HOL [13]. They decide the following three problems:

– inclusion between a context-free language and a regular language;
– whether a context-free language is balanced or not;
– inclusion between a context-free language and a regular hedge language.

The second and third procedures are used to check the well-formedness and
validity, respectively, of dynamically generated XML documents in the analyzer.

Of the three decision procedures, we generated executable code of the second,
the balancedness checking procedure, with Isabelle’s code generator. Although
the formalization of the procedure is almost executable, the formalization must
be revised to obtain executable code and achieve reasonable efficiency. We in-
corporated the generated code into the PHP string analyzer by replacing the
corresponding handwritten code. The analyzer with the generated code has been
applied successfully to real PHP programs.

Our formalization and verification were conducted using the development ver-
sion of Isabelle. We made positive use of new features introduced in the devel-
opment version, such as a new function definition package by Krauss [7] and

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 173–188, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

174 Y. Minamide

the revised locale mechanism, which make it possible to write proof scripts in a
more natural manner. The proof scripts of the formalization in this paper are
available from http://www.score.cs.tsukuba.ac.jp/~minamide/cfgv/.

2 Context-Free Grammars

In this section, we formalize context-free grammars (CFGs) and several basic
procedures on them. The decision procedures in this paper are based on inter-
pretation of a CFG over a monoid. The interpretation can be naturally formalized
by considering a CFG over the monoid. Thus, we extend the notion of CFGs
and formalize CFGs over a monoid.

2.1 Formalization of CFGs

To simplify our formalization, we only consider a grammar in a normal form
such that each production has one of the forms: x → a and x → yz where x,
y, and z are nonterminals (variables) and a is a terminal. A CFG is represented
with the following record type:
record (′v , ′a) cfg =

prod1 :: (′v × ′a) set
prod2 :: (′v × ′v × ′v) set
start :: ′v

where ′v and ′a are the types of nonterminals and terminals, respectively. This
declaration introduces a record type with three fields prod1, prod2, and start.
The fields prod1 and prod2 contain productions of the form x→ a and x→ yz,
respectively. A component of a record can be accessed with the field name, e.g.;
prod1 r accesses the prod1 field of a record r. A CFG over strings is modeled
with type (′v , ′a list) cfg. Note that this type permits a production of the form
x→ w for any sting w. Thus, the normal form above is not as strict as Chomsky
normal form.

Although a grammar itself can be given without considering a monoid opera-
tion, the operation is necessary to define the language of the grammar. The set
of monoid elements generated from a nonterminal is defined as an inductively
defined relation: (x ,v) ∈ derive cfg opr formalizes “v is derived from nonterminal
x”.
derive :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ (′v × ′a) set
inductive derive cfg opr
(x ,v) ∈ prod1 cfg =⇒ (x ,v) ∈ derive cfg opr
[[(y ,v) ∈ derive cfg opr ; (z ,w) ∈ derive cfg opr ; (x ,y ,z) ∈ prod2 cfg]] =⇒

(x ,opr v w) ∈ derive cfg opr

For a CFG over strings, concatenation of lists, the infix operator @ in Isabelle,
is used for opr. Although this relation is defined even if opr does not satisfy the
laws of monoids, we only use opr satisfying the laws in this paper. The language
of a CFG is the set of monoid elements derived from the start symbol.

lang-of :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ ′a set
lang-of cfg opr ≡ { v . (start cfg , v) ∈ derive cfg opr}

Verified Decision Procedures on Context-Free Grammars 175

2.2 Computing the Language of a CFG over a Finite Monoid

The language of a CFG can also be characterized as a fixed point of a monotone
function over ′v ⇒ ′a set below.

onestep :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇒ ′a set] ⇒ ′v ⇒ ′a set
onestep cfg opr m x ≡ m x ∪ {v . (x ,v) ∈ prod1 cfg} ∪

{opr v w | v w . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ v ∈ m y ∧ w ∈ m z}

The fixed point of this function can be computed if we consider a CFG over a
finite monoid. The procedure can be formalized as follows using the predefined
while-combinator in Isabelle.

compute-langs :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v] ⇒ ′a set
compute-langs cfg opr ≡

while (λx . onestep cfg opr x �= x) (onestep cfg opr) (λx . {})

The following equality is proved by the rule of Hoare logic for while formalized
in Isabelle.

theorem fixes cfg ::(′v ::finite, ′a::finite) cfg
shows compute-langs cfg opr x = {v . (x ,v) ∈ derive cfg opr}

To guarantee that the while loop terminates, both the sets of nonterminals and
terminals must be finite. The constraints are given as the type class finite of ′v
and ′a.

2.3 Image of a Context-Free Language

An interpretation of a CFG with a monoid is considered as an image of its
language under a homomorphism to the monoid.

Let us consider a homomorphism h between monoids ′a and ′b. A standard
result of the theory of CFGs is that the image of a context-free language (CFL)
over ′a under the homomorphism h is a CFL over ′b. This is shown by construct-
ing a grammar over ′b as follows:

image-of :: [(′v , ′a) cfg , ′a ⇒ ′b] ⇒ (′v , ′b) cfg
image-of cfg f ≡

(| prod1 = prod1 cfg � rel-of f , prod2 = prod2 cfg , start = start cfg |)

where s (t is the composition1 of two relations and rel-of converts a function
into a relation.

s � t ≡ {(x ,z). ∃ y . (x ,y) ∈ s ∧ (y ,z) ∈ t} rel-of f ≡ {(x ,y). f x = y}

Then, the following formalizes the result above.

theorem assumes ∀ v w . h (opr v w) = opr ′ (h v) (h w)
shows lang-of (image-of cfg h) opr ′ = h ‘ lang-of cfg opr

where h ‘ xs is the image of the set xs under the function h.
1 The order of the arguments is different from the standard composition operator in

Isabelle/HOL.

176 Y. Minamide

2.4 Reachable and Generating Nonterminals

We formalize two basic procedures on CFGs: computing the set of reachable
nonterminals and computing the set of generating nonterminals. The latter pro-
cedure is then extended to generate a witness for each generating nonterminal.

We say a nonterminal X is reachable if there exists a derivation S
∗⇒ αXβ

where α and β are strings over terminals and nonterminals, and S is the start
symbol. The standard procedure to compute the set of reachable nonterminals
applies depth-first search by considering production rules as a graph.

A CFG is converted into a graph with next-rel and, we formalize reachability
based on the graph as follows.

next-rel cfg ≡ {(x ,y). ∃ z . (x ,y ,z) ∈ prod2 cfg} ∪ {(x ,z). ∃ y . (x ,y ,z) ∈ prod2 cfg}
reachable cfg xs ≡ (next-rel cfg)∗ ‘‘ xs

where r ‘‘ xs is the image of the set xs under the relation r.
We formalize a depth-first search to compute the set of reachable nonterminals

as follows.

function
dfs :: [(′v ::finite, ′a) cfg , ′v list , ′v set] ⇒ ′v set where
dfs cfg [] ys = ys
dfs cfg (x#xs) ys =

(if x ∈ ys then dfs cfg xs ys else dfs cfg (nexts cfg x@xs) (insert x ys))

The function nexts cfg x computes a list of nodes adjacent to x. This for-
malization is almost identical to a depth-first search we write in a functional
programming language. It is shown that this function always terminates by a
lexicographic order similar to that used by Moore in his formalization of a graph
search algorithm [10]. The correctness of this procedure is verified as the follow-
ing theorem.

theorem dfs cfg (nexts cfg x) {x} = reachable cfg {x}

We say a nonterminal X is generating if X ∗⇒ w where w is a terminal string.
The following is a formalization of a standard algorithm to compute generating
nonterminals, which is considered as a fixed-point computation.

genv-onestep :: [(′v , ′a) cfg , ′v set] ⇒ ′v set
genv-onestep cfg m ≡ m ∪ {x . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ y ∈ m ∧ z ∈ m}

genv :: (′v , ′a) cfg ⇒ ′v set
genv cfg ≡

while (λx . genv-onestep cfg x �= x) (genv-onestep cfg) {x . ∃ v . (x ,v) ∈ prod1 cfg}

Each iteration adds the nonterminals that are shown to be generating by genv-
onestep from the nonterminals obtained in the previous iteration. The correct-
ness of the function is proved as follows.

lemma fixes cfg ::(′v ::finite, ′a) cfg
shows genv cfg = {x . ∃w . (x ,w) ∈ derive cfg opr}

Verified Decision Procedures on Context-Free Grammars 177

The function genv is extended to obtain a map of type s ⇀ t, which gives a
witness for each generating nonterminal, i.e., a string generated from it. Type
s ⇀ t is a synonym of s ⇒ t option. The extended procedure is used in the
balancedness checking procedure in Section 4.

To extend genv naturally, we use the function choose defined below

choose xs ≡ if xs �= {} then Some (SOME x . x∈xs) else None

The expression SOME x . P x represents an arbitrary element x satisfying P x.
If there is no such element, it is an arbitrary element.

We thus obtain the following function that gives a witness for each generating
nonterminal.

genv-onestep ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇀ ′a] ⇒ ′v ⇀ ′a
genv-onestep ′ cfg opr m ≡
(λx . if x ∈ dom m then m x

else choose {opr w1 w2 | w1 w2 . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ m y = Some w1 ∧
m z = Some w2})

genv ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a] ⇒ ′v ⇀ ′a
genv ′ cfg opr ≡ while (λx . genv-onestep ′ cfg opr x �= x) (genv-onestep ′ cfg opr)

(λx . choose {v . (x ,v) ∈ prod1 cfg})

The structures of genv and genv ′ are almost identical, and thus we can easily
show the following lemma.

lemma fixes cfg ::(′v ::finite, ′a) cfg shows dom (genv ′ cfg opr) = genv cfg

3 Decision Procedure for Inclusion Between a CFL and a
Regular Language

We verify a decision procedure checking inclusion L(G) ⊆ L(M) for a CFG G and
a nondeterministic finite automaton M . Textbooks on formal languages usually
describe a decision procedure for this problem based on product construction of a
pushdown automaton and a finite automaton. On the other hand, the procedure
in this section directly operates on a grammar. It is a variant of the context-
free graph reachability algorithm of Reps [15]. We use Nipkow’s formalization of
automata in Isabelle [12].

3.1 Nipkow’s Formalization of Automata

We review Nipkow’s formalization of nondeterministic automata. Nipkow for-
malized an automaton as a triple of a start state, a transition function, and a
predicate defining final states. The following is its reformulation with a record
type:

record (′a, ′s) na =
start :: ′s

178 Y. Minamide

next :: [′a, ′s] ⇒ ′s set
fin :: ′s ⇒ bool

where ′a and ′s are the types of an alphabet and states, respectively. The for-
malization itself allows the set of states to be infinite.

Then, the extended transition function delta over lists and the function accepts
describing accepted strings are defined in the standard manner:

delta A [] p = {p}
delta A (a#w) p = Union(delta A w ‘ next A a p)

accepts A w ≡ ∃ q ∈ delta A w (start A). fin A q

where the function Union gives the union of a set of sets and has type ′a set set
⇒ ′a set.

3.2 Transition Monoid

The following theorem states that a regular language is characterized by a finite
monoid [4].

Theorem 1. Let Σ be a finite alphabet. The following are equivalent for L ⊆
Σ∗.

1. L is regular.
2. There exist a finite monoid M, a homomorphism h : Σ∗ → M, a subset

B ⊆M such that L = h−1(B).

One of the easiest ways to construct the monoid, the homomorphism, and the
subset in the theorem is to consider a monoid of relations over states, where the
composition of relations plays the role of the monoid operation. This monoid of
relations over states and the homomorphism associated with it implicitly appear
in Nipkow’s formalization. The function steps in the formalization translates a
string into a relation and has the following property.

steps A w = {(p,q). q ∈ delta A w p}

This function plays the role of the homomorphism in the theorem.
In addition to Nipkow’s formalization, we introduce the following function,

where final-of na plays the role of B in the theorem for the nondeterministic
automaton na.

final-of :: (′a, ′s) na ⇒ (′s × ′s) set set
final-of na ≡ {r . ∃ q . (start na, q) ∈ r ∧ fin na q}

Then, the following is a formalization of the theorem in Isabelle, which can be
easily proved with the lemmas provided in Nipkow’s formalization.

theorem steps na w ∈ final-of na ←→ accepts na w

Verified Decision Procedures on Context-Free Grammars 179

3.3 Decision Procedure

With the formalization of CFGs and automata, it is quite easy to formalize a
decision procedure to check inclusion between the languages of a CFG and a
nondeterministic finite automaton. The inclusion can be checked by interpreting
a grammar with the monoid characterizing the regular language. We obtain the
expression to compute the interpretation over (′s × ′s) set as follows.

(steps na) ‘ lang-of cfg (op @)
= lang-of (image-of cfg (steps na)) (op �)
= compute-langs (image-of cfg (steps na)) (op �) (start cfg)

This can then be used as the decision procedure as follows.
theorem fixes cfg :: (′v ::finite, ′a list) cfg and na :: (′a, ′s::finite) na
shows lang-of cfg (op @) ⊆ {w . accepts na w} ←→
compute-langs (image-of cfg (steps na)) (op �) (start cfg) ⊆ final-of na

The type system of Isabelle recognizes that the type (′s × ′s) set is an instance
of finite from s ::finite. Hence, we can compute the language and decide inclusion
between finite sets of type (′s × ′s) set.

4 Balancedness Checking Procedure

We introduce a CFG over a paired alphabet and verify a balancedness checking
procedure that decides whether the language of a grammar is balanced or not.
The procedure was developed by Berstel and Boasson [2] and the formalization
in this paper is based on [9].

4.1 Balanced Strings

For a base alphabet A, we consider a paired alphabet consisting of two sets Á
and À:

Á = { á | a ∈ A } À = { à | a ∈ A }
The elements of Á and À are considered as left and right parentheses: á and à
match. The fundamental notion on a string over a paired alphabet is whether it
is balanced. For example, áb́b̀ćc̀à and áàb́b̀ are balanced, but áb̀ and áb́b̀ are not.
We call the set of all balanced strings the Dyck set [1]. A language L is balanced
if all φ ∈ L are balanced.

We formalize strings over a paired alphabet as lists over the following data
type.
datatype ′a balphabet = L ′a | R ′a

Then, the set of balanced strings, the Dyck set, is formalized as the following
inductively defined set.
dyckset :: ′a balphabet list set
inductive dyckset

[] ∈ dyckset
xs ∈ dyckset =⇒ [L x]@xs@[R x] ∈ dyckset
[[xs ∈ dyckset ; ys ∈ dyckset]] =⇒ xs@ys ∈ dyckset

180 Y. Minamide

4.2 Monoid for Balancedness Checking

The Dyck set is not regular and thus cannot be characterized with a finite
monoid. However, there is an infinite monoid, that makes it possible to decide
whether the language of a CFG is balanced or not.

We say a string φ is partially balanced if it is a substring of some balanced
string. Each partially balanced φ can be uniquely factorized into the following
form:

φ = φ1à1φ2à2 . . . φnànϕb́mψm · · · b́2ψ2b́1ψ1

where φi, ψi, and ϕ are all balanced. We say à1à2 . . . ànb́m · · · b́2b́1 the reduced
form of the string and write ρ(φ) for it. The set of reduced forms À∗Á∗ with ⊥
constitute a monoid, where ⊥ represents the reduced form of unbalanced strings.
The balancedness checking procedure is developed based on this monoid.

We formalize the monoid over À∗Á∗ ∪ {⊥} with the following data type:

datatype ′a bmonoid = B ′a list ′a list | Bot

where B [a1, a2, . . . , an] [b1, b2, . . . , bm] represents à1à2 . . . ànb́m · · · b́2b́1, and B []
[] is the unit of the monoid.

Let φ and ψ be partially balanced strings. The monoid operation between
their reduced forms is defined by considering that of their concatenation φψ. It
is formalized as follows.

function
concat :: [′a bmonoid , ′a bmonoid] ⇒ ′a bmonoid (infixr ♦ 65) where
B cs1 [] ♦ B cs2 ss2 = B (cs1@cs2) ss2
B cs1 ss1 ♦ B [] ss2 = B cs1 (ss2@ss1)
B cs1 (s#ss1) ♦ B (c#cs2) ss2 = (if s = c then B cs1 ss1 ♦ B cs2 ss2 else Bot)
Bot ♦ y = Bot
x ♦ Bot = Bot

Intuitively, it is clear that this operation is associative. On the other hand, the
proof of this is not straightforward. We derive an equivalent definition of the
function using the prefix relation of lists and prove associativity based on the
definition.

With the monoid laws of ′a bmonoid, it is straightforward to show that h de-
fined below is a homomorphism from lists over a paired alphabet to the monoid.

hom-of :: [′a ⇒ ′b bmonoid , ′a list] ⇒ ′b bmonoid
hom-of h [] = B [] []
hom-of h (x#xs) = h x ♦ hom-of h xs

h ≡ hom-of (λx . case x of L x ⇒ B [] [x] | R x ⇒ B [x] [])

Finally, we show that the Dyck set is characterized by this monoid.

theorem xs ∈ dyckset ←→ h xs = B [] []

The implication from left to right is easily proved by induction on the derivation
of xs ∈ dyckset. The other direction is rather difficult to prove. We introduce a

Verified Decision Procedures on Context-Free Grammars 181

notion similar to the partially balanced string as an inductively defined set and
prove: xs /∈ dyckset −→ h xs 	= B [] [].

For balancedness checking, we also introduce an ordering over reduced forms,
which was used to improve the time complexity of a balancedness checking pro-
cedure in [9]. The ordering is defined as follows.

à1 · · · ànćm · · · ć1 ≤ à1 · · · ànb̀1 · · · b̀j b́j · · · b́1ćm · · · ć1

This is formalized as the following order over bmonoid.

b1 ≤ b2 ≡ (∃ cs ss zs. b1 = B cs ss ∧ b2 = B (cs@zs) (ss@zs))
∨ (b1 = Bot ∧ b2 = Bot)

4.3 Decision Procedure

Because the monoid introduced in the previous subsection is infinite, it does not
directly give rise to a balancedness checking procedure. However, it is shown
that balancedness can be checked by generating the monoid elements derived
from each nonterminal to some bound.

In this section, we assume that a CFG is reduced. This means that every
nonterminal is accessible from the start symbol and every nonterminal produces
at least one terminal string. This condition is expressed with the following con-
ditions on cfg in Isabelle.

∀ x . x ∈ reachable cfg {start cfg} ∀ x . ∃w . (x , w) ∈ derive cfg opr

Because we assume that a grammar is reduced, for each nonterminal X , we can
find terminal strings φ1 and φ2 such that S ∗⇒ φ1Xφ2. We then have S ∗⇒ φ1ψφ2

for any ψ such that X
∗⇒ ψ. For φ1ψφ2 to be balanced, the reduced forms of

φ1 and φ2 must be the following forms: ρ(φ1) = án . . . á1 and ρ(φ2) = b̀1 · · · b̀m.
Furthermore, we have ρ(ψ) ≤ àn . . . à1b́1 · · · b́m. This observation is formalized
as the following lemmas for bmonoid.

lemma assumes b1 ♦ b2 ♦ b3 = B [] []
shows (∃ ss. b1 = B [] ss) ∧ (∃ cs. b3 = B cs [])

lemma assumes B [] ss ♦ b ♦ B cs [] = B [] [] shows b ≤ B ss cs

These properties enable us to use àn . . . à1b́1 · · · b́m above as a bound when we
check the balancedness of the language of a grammar.

We have the following decision procedure based on the observation so far by
considering the interpretation of a CFG over the monoid.

1. Compute φ1 and φ2 such that S ∗⇒ φ1Xφ2 for each nonterminal X .
2. Generate the monoid elements derived from each nonterminal to the bound

determined by φ1 and φ2.
3. If the bound is exceeded for some nonterminal, then the language is not

balanced. Otherwise, the language is balanced iff the start symbol only gen-
erates the unit element, i.e., B [] [] in Isabelle.

182 Y. Minamide

The first step of the procedure is based on the procedures to compute reach-
able and generating nonterminals. First, we must compute a witness for each
generating nonterminal by the procedure in Section 2.4. Then, we apply a depth-
first search procedure to compute φ1 and φ2 above. Then, from φ1 and φ2, the
bound is constructed by the following function.

mkbound (B [] ss, B cs []) = B ss cs

The depth-first search procedure computes paths from the start symbol to all
the reachable nonterminals, where a path corresponds to a pair φ1 and φ2 above.
Please refer to the proof script for details.

The second step of the procedure is easily formalized as follows, where the
bound is given as a function bounds.

compute-langs ′ :: [(′v , ′a) cfg , [′a, ′a] ⇒ ′a, ′v ⇒ ′a set , ′v] ⇒ ′a set
compute-langs ′ cfg opr bounds ≡

while (λm. onestep cfg opr m �= m ∧ (∀ x . m x ⊆ bounds x))
(onestep cfg opr) (λx . {})

If bounds x is finite for all x, the function terminates.
The following is the formalization of the whole decision procedure, where

mkcon is the depth-first search procedure and finds a bound, a pair of φ1 and φ2

above, for each nonterminal by using a function gf giving a generated monoid
element for each nonterminal.

bcheck cfg ≡
(let gf = λx . the (genv ′ cfg (op ♦) x);

con = λx . the (mkcon (op ♦) (B [] []) cfg gf (start cfg) x) in
(∀ x . ∃ ss cs. con x = (B [] ss, B cs [])) ∧
(let bounds = λx . {b. b ≤ mkbound (con x)};

result = compute-langs ′ cfg (op ♦) bounds in
∀ x . result x ≤ bounds x ∧ result (start cfg) = {B [] []}))

The correctness of this procedure is verified in the following sense.

theorem fixes cfg ::(′v ::finite, ′a balphabet list) cfg
assumes ∀ x . ∃w . (x , w) ∈ derive cfg (op @)

∀ x . x ∈ reachable cfg {start cfg}
shows bcheck (image-of cfg h) ←→ lang-of cfg (op @) ⊆ dyckset

5 Decision Procedure for Inclusion Between a
Context-Free Language and a Regular Hedge Language

We formalize a decision procedure deciding inclusion between a context-free
language and a regular hedge language [11]. The procedure can be considered
as a combination of the previous two decision procedures, and was developed by
Minamide and Tozawa [9].

Verified Decision Procedures on Context-Free Grammars 183

5.1 Hedges and Balanced Strings

We call a sequence of trees over the unranked alphabet Σ a hedge. The sets of
trees and hedges denoted by t and h are defined as follows:

t ::= a〈h〉
h ::= ε | t h

where a ∈ Σ. We write H(Σ) for the set of hedges over Σ. By expanding t in
the definition of hedges, hedges can also be defined as follows.

h ::= ε | a〈h〉h

We formalize this definition as the following datatype in Isabelle.

datatype ′a hedge = Empty | Br ′a ′a hedge ′a hedge

Hedges can be considered as balanced strings by the following function.

hedge2word :: ′a hedge ⇒ ′a balphabet list
hedge2word Empty = []
hedge2word (Br a xs ys) = [L a]@hedge2word xs@[R a]@hedge2word ys

It is shown that this function is injective and its range is the set of balanced
strings. The key to proving these properties is the following property of balanced
strings. It is proved by using the monoid in Section 4.

lemma assumes [L a]@xs1@[R a]@xs2 = [L a]@ys1@[R a]@ys2
xs1 ∈ dyckset ys1 ∈ dyckset

shows xs1=ys1 ∧ xs2 = ys2

5.2 Regular Hedge Grammars and Binoids

A regular hedge grammar (RHG) is a grammar over hedges with production
rules of the following forms.

X → ε X → a〈Y 〉Z

The set of hedges generated by a RHG is called a regular hedge language (RHL).
It is basically a regular tree language over an unranked alphabet.

RHGs are formalized with the following record type as CFGs, and the deriva-
tion and the language of a RHG are formalized in the same manner as those of
CFGs.

record (′v , ′a) rhg =
prod1 :: ′v set
prod2 :: (′v × ′a × ′v × ′v) set
start :: ′v

Pair and Quere showed that a RHL is characterized with an algebra called bi-
noid [14]. A binoid B over Σ is a monoid with the following additional operation.

(̂) : Σ × B → B

184 Y. Minamide

For example, the set of hedges itself constitutes a binoid, where the monoid
operation is the concatenation of two hedges and the additional operation above
is one that builds a〈h〉 from a and h.

The following shows that a RHL can be characterized with a finite binoid.

Theorem 2. The following are equivalent for a set of hedges L ⊆ H(Σ).

1. L is regular.
2. There exist a finite binoid B, a homomorphism h : H(Σ) → B, a subset

B ⊆ B such that L = h−1(B).

The binoid satisfying the theorem above can be obtained by considering a monoid
of relations over nonterminals. The additional operation (̂) is defined as up rhg
a b for a and b below.

up :: [(′v , ′a) rhg , ′a, (′v × ′v) set] ⇒ (′v × ′v) set
up rhg a b ≡ {(x ,y) |x y . ∃ (z , f) ∈ b. f ∈ prod1 rhg ∧ (x ,a,z ,y) ∈ prod2 rhg}

Although this binoid is used in the decision procedure for CFL-RHL inclusion,
any binoid that satisfies the theorem is also suitable for the procedure. Thus, we
introduce the locale binoid below and describe the main part of the procedure
in the locale. Finally, we obtain our decision procedure by instantiating it to the
binoid above.

locale binoid =
fixes up :: [′a, ′b] ⇒ ′b
fixes prod :: [′b, ′b] ⇒ ′b (infixr ♦ 70)
fixes unit :: ′b
assumes assoc: (x ♦ y) ♦ z = x ♦ y ♦ z
assumes unitl : unit ♦ x = x
assumes unitr : x ♦ unit = x

5.3 Monoid for CFL-RHL Inclusion

Let us assume that a RHL is characterized with a binoid B, a homomorphism
◦, and a set B. The idea of the decision procedure is to interpret a set of

strings generated from each nonterminal by using elements of the B. However,
each string φ such that X ∗⇒ φ is not necessarily balanced, but rather partially
balanced. Therefore, we again use the factorization of φ:

φ = φ1à1φ2à2 . . . φnànϕb́mψm · · · b́2ψ2b́1ψ1

where φi, ψi, and ϕ are all balanced. Then, we interpret φ with an element of
(BΣ)∗B(ΣB)∗ as follows:

φ◦
1à1φ

◦
2à2 . . . φ

◦
nànϕ

◦b́mψ◦
m · · · b́2ψ◦

2 b́1ψ
◦
1

where ◦ is applied to balanced strings by considering them hedges. This is the
ideas of the decision procedure.

The elements of the set (BΣ)∗B(ΣB)∗ ∪ {⊥} constitute a monoid, and it is
represented by the following datatype:

Verified Decision Procedures on Context-Free Grammars 185

datatype (′b, ′a) bmonoid = B (′b × ′a) list ′b (′b × ′a) list | Bot

where ′b and ′a are the types for B and Σ, respectively.
Then, by using the locale binoid we formalize the monoid operation with the

following function, where concat x y z is written as x�y�z with Isabelle’s mixfix
annotation.

function (in binoid)
concat :: [(′b, ′a) bmonoid , ′b, (′b, ′a) bmonoid] ⇒ (′b, ′a) bmonoid where
B cs1 b1 [] �x� B [] b2 ss2 = B cs1 (b1♦x♦b2) ss2
B cs1 b1 [] �x� B ((cb2 ,c2)#cs2) b2 ss2 = B (cs1@(b1♦x♦cb2 ,c2)#cs2) b2 ss2
B cs1 b1 ((sb1 ,s1)#ss1) �x� B [] b2 ss2 = B cs1 b1 (ss2@(sb1♦x♦b2 ,s1)#ss1)
B cs1 b1 ((sb1 ,s)#ss1) �x � B ((cb2 ,c)#cs2) b2 ss2 =
(if s = c then B cs1 b1 ss1 � up s (sb1♦x♦cb2) � B cs2 b2 ss2 else Bot)
Bot �x� b = Bot
b �x� Bot = Bot

The monoid operation is then λxy.x�unit�y, where unit is the unit of the binoid.
The rest of the decision procedure is quite similar to the balancedness checking

procedure and is formalized in the same manner.

6 Executing a Verified Decision Procedure

We generated executable code of the balancedness checking procedure from our
formalization with Isabelle’s code-generating facility [6]. The generated proce-
dure was incorporated into the PHP string analyzer [8] by replacing the corre-
sponding handwritten procedure. The analyzer checks whether a PHP program
always generates a well-formed XHTML document with the procedure. The re-
vised analyzer was tested on real PHP programs. We describe issues that arose
during this experiment.

The formalization of the balancedness checking procedure we have described
is almost executable, but still requires some revisions to obtain executable code.
We have formalized decision procedures as abstractly as possible by using set
and s ⇀ t instead of concrete data structures. They are barriers to generating
code and making it efficient.

Isabelle has the library ExecutableSet, which allows us to generate code for
finite sets using lists. We generated executable code for sets with this library, but
some revisions of the formalization and an extension of the library were required.
We explain the issues with the procedure for computing the set of generating
nonterminals with a witness.

genv-onestep ′ cfg opr m ≡
(λx . if x ∈ dom m then m x

else choose {opr w1 w2 | w1 w2 . ∃ y z . (x ,y ,z) ∈ prod2 cfg ∧ m y = Some w1 ∧
m z = Some w2})

genv ′ cfg opr ≡ while (λx . genv-onestep ′ cfg opr x �= x) (genv-onestep ′ cfg opr)
(λx . choose {v . (x ,v) ∈ prod1 cfg})

186 Y. Minamide

The first issue is the set comprehension in the formalization. The definition
includes the following set comprehension: {v . (x ,v) ∈ prod1 cfg}. Although this
set is finite if prod1 is finite, this is not explicit in the expression and executable
code cannot be directly generated from it. To obtain executable code, we must
revise the formalization by using the following property.

{v . (x , v) ∈ prod1 cfg} =
�

(x ′, v)∈prod1 cfg . if x = x ′ then {v} else {}

The second problem concerns the choose function in the definition. The def-
inition of choose uses SOME, i.e., Hilbert’s ε, for which code generation is not
supported by the library. Furthermore, it appears that the code of choose cannot
be implemented faithfully with lists. If choose is implemented with choosel over a
list, then choosel xs = choosel ys should hold for lists xs and ys representing the
same set. This property cannot be satisfied without any additional structure on
its elements. To overcome this issue, we revised our formalization so that choose
is used only for sets over types that are instances of linorder. The definition of
choose was also revised so that it chooses the minimum element in a set.

We could generate code with these revisions. However, to obtain code with
reasonable efficiency, more revisions were required. In our experiments, we rep-
resented nonterminals with type int in the ML side. Because the set of elements
of int is finite and linearly ordered, the type satisfies the required conditions to
use it as the type of nonterminals. However, the following two issues arise.

We verified the correctness of our decision procedures under the assumption
that all nonterminals are generating and reachable. This simplified our verifi-
cation, but it is not reasonable to assume it when we represent nonterminals
with type int in ML. Thus, we revised our formalization so that the procedures
assume that only the nonterminals used in a CFG are generating and reachable.

Finally, the evaluation strategy of functional programming languages becomes
an issue for efficient execution: they do not evaluate the expression inside a
lambda abstraction. In the decision procedure, type s ⇀ t is used to represent
finite maps. The type is actually a function type to option type. Then, all the
computation related to a map is delayed until the map is applied to an argument.
That caused an exponential blowup of execution time. To avoid this blowup, we
insert the function reduce-fun with the following type into the places where
evaluation inside a lambda abstraction is desirable.

reduce-fun :: [′a::{finite,linorder} set , ′a ⇒ ′b] ⇒ ′a ⇒ ′b

An expression reduce-fun f s forces the evaluation of f for the values in the set
s and reconstructs the function. For the definition of the function, please refer
to the proof script.

By applying these revisions, we could run the analyzer with the code gener-
ated by Isabelle for real PHP programs. We tested it on two PHP programs, for
which the analyzer generated CFGs with 170 and 70 production rules. With the
handwritten code, the balancedness can be checked very quickly, taking 0.016 and
0.003 seconds for the two programs. On the other hand, the generated code was
quite slow, taking 32.6 and 16.7 seconds. We checked execution times for each part

Verified Decision Procedures on Context-Free Grammars 187

of the procedure and found that the depth-first search is efficient, but the fixed-
point computations used in genv ′and compute-langs ′are very slow. We think that
this is because the formalization of depth-first search is very close to a standard
implementation, but the formalization of the fixed-point computation is rather
abstract. It will be necessary to revise its formalization and adopt a more efficient
data structure to represent finite maps to obtain more efficient code.

7 Related Work

Our formalization is strongly influenced by Nipkow’s formalization of automata,
which formalizes automata and regular expressions, and verifies a lexical analyzer
obtained from a regular expression [12]. There have been several other attempts
to formalize the theory of formal languages in a proof assistant. Courant and
Filliâtre formalized regular and context-free languages in Coq [3]. The formal-
ization includes some standard theory of context-free languages such as trans-
formation between a context-free grammar and a pushdown automaton. Rival
and Goubault-Larrecq formalized tree automata in Coq [16] and executed some
procedures on tree automata in Coq.

We have described several issues in obtaining an (efficient) executable bal-
ancedness checking procedure in Section 6. The importance of obtaining effi-
cient executable code from an elegant formalization is recognized in the context
of ACL2. Greve et al. reviewed issues there and described the features in ACL2
to support it [5]. This will be good guide to obtain really efficient executable
code for our decision procedures.

8 Conclusion

We haveverified three precisionprocedures on context-free grammars.The formal-
ization and verification of the procedures went smoothly and took me about non-
intensive two months. On the other hand, the revisions to generate executable code
for the balancedness checking procedure required more time than we expected.

We plan to generate code for the other two procedures. Although code will
be generated in the same manner as the balancedness checking procedure, we
expect a more severe problem with efficiency. It is because the relations over
states or nonterminals used there will become too large if int are used in the
ML side.

References

1. Berstel, J.: Transductions and Context-Free Languages. Teubner Studienbucher
(1979)

2. Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta
Informatica 38(9), 649–671 (2002)

3. Courant, J., Filliâtre, J.-C.: Beginning of formal language theory (1993),
http://coq.inria.fr/contribs-eng.html

http://coq.inria.fr/contribs-eng.html

188 Y. Minamide

4. Eilenberg, S.: Automata, Languages, and Machines. ch. 3, Academic Press, London
(1974)

5. Greve, D.A., Kaufmann, M., et al.: Efficient execution in an automated reasoning
environment. Journal of Functional Programming (to appear, 2007)

6. Haftmann, F.: Code generation from Isabelle/HOL theories, available in the Is-
abelle distribution (2007)

7. Krauss, A.: Partial recursive functions in higher-order logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 589–603. Springer,
Heidelberg (2006)

8. Minamide, Y.: Static approximation of dynamically generated Web pages. In: Pro-
ceedings of the 14th International World Wide Web Conference, pp. 432–441. ACM
Press, New York (2005)

9. Minamide, Y., Tozawa, A.: XML validation for context-free grammars. In:
Kobayashi, N. (ed.) APLAS 2006. LNCS, vol. 4279, pp. 357–373. Springer, Heidel-
berg (2006)

10. Strother Moore, J.: An exercise in graph theory. In: Kaufmann, M., Manolios, P.,
Strother Moore, J. (eds.) Computer-Aided Reasoning: ACL2 Case Studies, ch. 5,
pp. 41–74. Kluwer Academic Publishers, Dordrecht (2000)

11. Murata, M.: Hedge automata: a formal model for XML schemata (1999),
http://www.xml.gr.jp/relax/hedge_nice.html

12. Nipkow, T.: Verified lexical analysis. In: Grundy, J., Newey, M. (eds.) Theorem
Proving in Higher Order Logics. LNCS, vol. 1479, pp. 1–15. Springer, Heidelberg
(1998)

13. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

14. Pair, C., Quere, A.: Définition et étude des bilangages réguliers. Information and
Control 13(6), 565–593 (1968)

15. Reps, T.: Program analysis via graph reachability. Information and Software Tech-
nology 40(11–12), 701–726 (2000)

16. Rival, X., Goubault-Larrecq, J.: Experiments with finite tree automata in Coq. In:
Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 362–377.
Springer, Heidelberg (2001)

17. Tozawa, A., Minamide, Y.: Complexity results on balanced context-free languages.
In: Proc. of Tenth International Conference on Foundations of Software Science
and Computation Structures. LNCS, vol. 4423, pp. 346–360. Springer, Heidelberg
(2007)

http://www.xml.gr.jp/relax/hedge_nice.html

Using XCAP to Certify Realistic Systems Code:

Machine Context Management

Zhaozhong Ni1, Dachuan Yu2, and Zhong Shao3

1 Microsoft Research, One Microsoft Way, Redmond, WA 98052, U.S.A.
zhaozhong.ni@microsoft.com

2 DoCoMo Communications Laboratories USA, Inc, Palo Alto, CA 94304, U.S.A.
yu@docomolabs-usa.com

3 Department of Computer Science,Yale University, New Haven, CT 06520, U.S.A.
shao@cs.yale.edu

Abstract. Formal, modular, and mechanized verification of realistic
systems code is desirable but challenging. Verification of machine con-
text management (a basis of multi-tasking) is one representative exam-
ple. With context operations occurring hundreds to thousands of times
per second on every computer, their correctness deserves careful exam-
ination. Given the small and stable code bases, it is a common misun-
derstanding that the context management code is suitable for informal
scrutiny and testing. Unfortunately, after being extensively studied and
used for decades, it still proves to be a common source of bugs and confu-
sion. Yet its verification remains difficult due to the machine-level detail,
irregular patterns of control flows, and rich application scenarios.

This paper reports our experience applying XCAP—a recent theo-
retical verification framework—to certify a realistic x86 implementation
of machine context management. XCAP supports expressive and modu-
lar logical specifications, but has only previously been applied on simple
idealized machine and code. By applying the XCAP theory to an x86
machine model, building libraries of common proof tactics and lemmas,
composing specifications for the context data structures and routines,
and proving that the code behave accordingly, we achieved the first for-
mal, modular, and mechanized verification of realistic x86 context man-
agement code. Our proofs are fully mechanized in the Coq proof assistant.
Our certified library code runs on stock hardware and can be linked with
other certified systems and application code. Our technique applies to
other variants or extensions of context management (e.g., more complex
context, different platforms), provides a solid basis for further verifica-
tion of thread implementation and concurrent programs, and illustrates
how to achieve formal, modular, and mechanized verification of realistic
systems code.

1 Introduction

Formally establishing safety and correctness properties of realistic systems code
in a modular and machine-checkable fashion is a highly desirable but extremely

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 189–206, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

190 Z. Ni, D. Yu, and Z. Shao

challenging goal. Among various systems code libraries, machine context man-
agement, the basis of multi-tasking and an essential feature of modern sys-
tem software, is one representative example. We use the following 19-line x86
machine-context switching routine (omitting floating-point and special registers)
to illustrate our point.

swapcontext:
mov eax, [esp+4] | mov eax, [esp+8]
mov [eax+_eax], 0 | mov esp, [eax+_esp]
mov [eax+_ebx], ebx | mov ebp, [eax+_ebp]
mov [eax+_ecx], ecx | mov edi, [eax+_edi]
mov [eax+_edx], edx | mov esi, [eax+_esi]
mov [eax+_esi], esi | mov edx, [eax+_edx]
mov [eax+_edi], edi | mov ecx, [eax+_ecx]
mov [eax+_ebp], ebp | mov ebx, [eax+_ebx]
mov [eax+_esp], esp | mov eax, [eax+_eax]

| ret

The left half of the code saves the current machine context, whereas the right
half loads the new machine context and resumes the program control from there.
Although conceptually easy to recognize, context switching is hard to reason about
even at the meta-level—it involves program counters, register files, stacks, private
and shared heaps, function calls/returns, higher-order control-flows, etc.

Because context switching occurs so frequently—hundreds to thousands of
times per second on every computer—code sequences similar to the above one
deserve the most careful examination. Their safety and correctness are crucial
to all multi-tasking software built on top of them. A common misunderstanding
is that such code is so stable and small in size that it is more suitable for
informal scrutiny and testing. Unfortunately, despite having been extensively
studied and used for decades, this code still proves to be a common source of
bugs and confusion. A quick web search reveals many reports and discussions of
bugs in context management code [8,20,11,7,17,19] even today. Thus, it should
be a focus of formal methods and mechanized verifications. Yet to the authors’
knowledge, there has been no formal proof, either manual or mechanized, of the
safety and correctness of code similar to the above one.

Recently, formal studies on systems code for operating system kernels have at-
tracted growing interest. One example is the Singularity project [5], which aims
to build a highly reliable OS using a type-safe language (C#) and other tech-
niques. Another example is the Verisoft project [3], which uses computer-aided
logical proofs to obtain the correctness of critical systems including OS kernels.
Unfortunately, both fall short at the above 19-line code: Singularity trusts unsafe
assembly code for doing context switching; Verisoft uses an abstract model of
user process that hides the context switching details. Moreover, without a full
verification of context management, existing work on concurrent verification is
prevented from being integrated with the verification of systems code, as it relies
on the correctness of concurrency primitives.

Using XCAP to Certify Realistic Systems Code 191

This paper reports our experience on applying XCAP [12], a recent assembly
code verification framework, to an x86 machine model, and certifying a realistic
machine context implementation with it. XCAP allows expressive and modular
logical specifications of safety and correctness, but has been applied previously
only on a simple idealized machine model and application code. Starting with
the code for context management, we show in this paper how to build the im-
plementation infrastructure and carry out the verification. We first applied the
XCAP theory to an x86 machine model, which required some changes to the
inference rules for program reasoning. To support practical verification, we built
libraries of proof tactics and lemmas. We then specified the context data struc-
tures and routines using the XCAP logic-based specifications, and proved that
the code behaves accordingly.

Our library code and proof can be linked with other systems code and ap-
plication code, as well as their corresponding proofs. The code runs on stock
hardware. Our approach is applicable to other variants of context management
(such as more complex contexts, different hardware platforms, etc.). It provides
a solid basis for further verification of concurrent programs. Besides achieving
the first formal, modular, and mechanized verification of x86 context manage-
ment code, our experience also illustrates how verification of realistic systems
code can be done in general.

In particular, we want to point out the following features in our case study.

– As shown by swapcontext(), our code is representative and realistic, and runs
on stock hardware. Its verification does not require a change of programming
style or the abandonment of legacy code. There are no performance penalties
or compatibility issues.

– Without compromising soundness, our machine model supports realistic
features such as variable-length instruction decoding, finite machine-word,
word-aligned byte-addressed memory, conditional flags, stack push/pop, and
function call/return.

– Our specifications are modular and expressive. For example, the private lo-
cal data that belongs to a context can be of arbitrary shape and size. The
approach is not specialized to a particular kind of multi-tasking implemen-
tation, thus our method will likely support other possible usages of machine
contexts.

– Everything—the code, machine model, adapted XCAP meta theory (includ-
ing
soundness), proof tactics and lemmas, and code specification and proof—is
fully mechanized using the Coq proof assistant, thus leaving a tiny trusted
computing base.

The paper is organized as follows. We start in Section 2 by discussing our
machine context implementation. In Section 3 we show how to apply XCAP to
an x86 machine model. We then specify and verify the context code in Section 4.
Section 5 discusses our Coq implementation. Finally, we compare with related
work and conclude in Section 6.

192 Z. Ni, D. Yu, and Z. Shao

2 Machine Context Management

Context refers to the local (private) data of a computation task. It is a widely
used concept in software and programming. It is crucial to multi-tasking, as
the latter is eventually carried out by doing a context switch. Depending on its
application and abstraction level, a context may contain program counters, reg-
ister files, stacks, private heap, thread control blocks, process control blocks, etc.
Common context management operations include context creation, restoring,
and switching.

Context data structures. The x86 machine context implementation in this paper
is at the same level as those found in typical Windows, Unix, and Linux systems.
To simplify the problem and focus on the most critical part, we ignore orthog-
onal features such as floating point and special registers. The machine context
structure mctx st contains the eight general purpose registers of an x86 processor
(including a stack pointer register, which should point to a stack with a valid
return address on top). The corresponding pointer type is mctx t. Below are the
definitions in C.

typedef struct mctx_st *mctx_t;
struct mctx_st {int eax, int ebx, int ecx, int edx,

int esi, int edi, int ebp, int esp};

Context creation. The makecontext() function initializes a new context with
its arguments: location of context, new stack pointer, return link, address of
target function, and argument for target function. It is basis of and analogous
to the creation of a new thread. The new stack pointer points to a stack frame
prepared for the target function. Notice here func() is a higher-order function
pointer, and lnk is also a higher-order continuation pointer. When the
newly created context gets first switched to, func() will start execution. When
it finishes, func() should return to lnk.

void makecontext (mctx_t mctx, char *sp, void *lnk, void *func, void *arg);
mov eax, [esp+4] // load address of the context
mov ecx, [esp+8] // load stack top pointer for the new stack frame
mov edx, [esp+20] // load the function’s argument
mov [ecx-4], edx // push it onto new stack
mov edx, [esp+12] // load the function’s return link
mov [ecx-8], edx // push it onto new stack
mov edx, [esp+16] // load the function address
mov [ecx-12], edx // push it as return IP onto new stack
sub ecx, 12
mov [eax+_esp], ecx // all useful info for fresh context is on new stack
ret

Context switching. The swapcontext() function saves the current old context
and loads a new one for further execution. Because the stack pointer is changed
to the new context’s, instead of returning to its direct caller in the old context,

Using XCAP to Certify Realistic Systems Code 193

it returns to its previous caller in the new context. (Alternatively, the first time
a new context gets switched to, it “returns” to the function pointer func(), as
supplied upon its creation.) Because its code was presented in the beginning of
the paper, we only present its interface below.

void swapcontext (mctx_t old, mctx_t new);

Context loading. The loadcontext() function loads a new context and continues
execution from there. It is essentially the second half of swapcontext(), with a
slight difference in the location of context pointers. Technically speaking, it is
not a “function” since it never returns to its caller.

void loadcontext (mctx_t mctx);
mov eax, [esp+8] // load address of the new context
mov esp, [eax+_esp] // load the new stack pointer
mov ebp, [eax+_ebp] // load the new registers
mov edi, [eax+_edi]
mov esi, [eax+_esi]
mov edx, [eax+_edx]
mov ecx, [eax+_ecx]
mov ebx, [eax+_ebx]
mov eax, [eax+_eax]
ret // invoke the new context

Why traditional methods are insufficient? One may be tempted to think that
traditional type systems or program logics should be sufficient to verify the
safety and correctness of this “simple” code. After all, it is only 3 functions and
40 assembly instructions. However, as will become apparent in the detailed dis-
cussion in the next few sections, a general verification of this code requires at
least the following features: 1) polymorphism over arbitrary shape of program
data; 2) explicit multiple stacks with flexible stack handling (such as one con-
text manipulating other contexts’ stacks); 3) separation-logic-like strong-update
style of memory model (i.e., context data should not be managed by garbage
collectors, as is in the real-world scenario); 4) general embedded code pointers
(not merely higher-order functions, but also higher-order continuations, e.g., see
the discussion of func and lnk for makecontext() earlier); 5) support of par-
tial correctness. Traditional type systems such as Typed Assembly Languages
(TAL) [9] typically have problems with (1), (2), (3), and (5). Traditional pro-
gram logics, including Hoare Logic [4] and Separation Logic [16] often fail on
(4), as explained in [12]. The very recent index-based semantic model approach
for Foundational Proof-Carrying Code [1] does not support (5). Only with re-
cent hybrid type/logic systems such as XCAP [12], can all of these features be
supported simultaneously.

3 Applying XCAP to x86 Machine Model

Our verification is carried out following XCAP [12], a logic-based verification
framework that facilitates modular reasoning in the presence of embedded code

194 Z. Ni, D. Yu, and Z. Shao

(Prog) P ::= (S, pc)
(State) S ::= (H,R,F)
(Mem) H ::= {l1 � w1, . . . ,ln � wn}
(R f ile) R ::= {eax � w1, . . . ,esp � w8}
(FReg) F ::= {cf � b1,zf � b2}
(Cond) cc ::= a | ae | b | be | e | ne

(Word) w ::= i (uint32)
(CdLbl) f ::= i (uint32)
(Label) l ::= i (i%4=0)
(Bool) b ::= tt | f f
(Addr) d ::= i | r±i
(Opr) o ::= i | r

(Reg) r ::= eax | ebx | ecx | edx | esi | edi | ebp | esp

(Instr) c ::= add r,o | sub r,o | mov r,o | mov r, [d] | mov [d],o | cmp r,o | jcc f | jmp o
| push o | pop r | call o | ret

Fig. 1. Syntax of the x86 machine model

pointers and other higher-order features. In [12], XCAP is applied to an idealized
RISC-like toy machine and simple user-level code. When applying XCAP to x86,
we had to make practical adaptations and build useful abstractions, particularly
for the machine-level details and the handling of the stack and function calls. In
this section we first briefly present our adaptation steps and then show how to
carry out the verification in general. Interested readers are referred to [12] and
the technical report [15] for more details.

Machine model. We formalized a subset of x86 as the machine model for XCAP, as
presented in Fig. 1. The execution environment consists of a memory, a register file
of general-purpose registers, a flags register made up of a carry bit and a zero bit,
and a program counter. The memory appears as a single continuous address space,
whereboth code anddata (static anddynamic) reside in.Thedata part of themem-
ory, the register file, and the flags register form the machine state. We support com-
mon instructions for arithmetic, data movement, comparison, control flow trans-
fer, and stack manipulation, as well as realistic x86 features such as variable-length
instruction decoding, finite machine-word, word-aligned byte-addressed memory,
conditional flags, stackpush/pop, and function call/return.Operational semantics
for the x86 machine model can be found in the TR [15] . In the rest of this paper, I
represents a sequence of instructions; and Nextc denotes a function that computes
the resulting state of executing instruction c.

Basic reasoning. Thebasic idea ofXCAP followsHoare logic—aprogrampoint can
be associated with an assertion which documents its requirement on the machine
state. The readers can assume that an assertion is simply a logical predicate on
machine state.

A program can be viewed as a collection of code blocks (instruction sequences)
connected together with control-flow instructions such as jmp and call. Every code
block has an associated assertion as its precondition, which is put together in a
code heap specification Ψ (think of this as a header file). The verification is carried
out by finding appropriate intermediate assertions for all program points, follow-
ing inference rules.

Using XCAP to Certify Realistic Systems Code 195

To verify that a code block add r, o; I iswell-formed (i.e., correctwith respect to
the specification) under pre-condition a, which can be thought of as a predicate of
type State→ Prop, we must find an intermediate assertion a′ to serve both as the
post-condition of add r, o and as the pre-condition of I. More specifically, we must
establish: (1) if a holds on a machine state, then a′ holds on the updated machine
state after executing add r, o; (2) I is well-formed under pre-condition a′. Below
is the corresponding inference rule (⇒ and ◦ stand for assertion implication and
function composition).

a⇒ (a′ ◦Nextadd r,o) Ψ �{a′}I

Ψ �{a}add r,o;I
(ADD)

Reasoning about memory. The reasoning on memory (data heap and stack) oper-
ations is carried out following separation logic [16]. In particular, the primitives of
separation logic are defined as shorthands using the primitives of the underlying
assertion logic in XCAP via a shallow embedding. Some representative cases are
given as follows.

emp � λH. H={}
l �→ w � λH. l �=NULL ∧ H={l�w}
l �→ � λH.∃w. (l �→ w H)

a1 ∗ a2 � λH.∃H1, H2. H1�H2 =H ∧ a1 H1 ∧ a2 H2

l �→ w1, . . . , wn � l �→ w1 ∗ l+4 �→ w2 ∗ . . . ∗ l+4(n−1) �→ wn

l �→ [n] � l �→ , . . . , (the number of is n/4)

Reasoning about control-flow transfer. Direct control transfers are simple—when
transferring control to code at label f, one should establish the pre-condition of f
as required by the code heap specification. This is illustrated with the following
rule:

a⇒ Ψ(f) f∈dom(Ψ)
Ψ �{a} jmp f

(JMPI)

A distinguishing feature of XCAP compared to other program logics is the spe-
cial support for embedded code pointers. It introduces a syntactic construct
cptr(f, a) to serve as an assertion of “f points to code with pre-condition a”. For
an indirect jump, the verification only uses the information enclosed in the cptr as-
sertion. Modularity is achieved by not referring to the actual target address or the
local code heap specification.

a⇒ (λ(H,R).a′ (H,R) ∧ cptr(R(r),a′))
Ψ �{a} jmp r

(JMPR)

The above rule claims that it is safe to jump to register r under assertion a, if r
contains a code pointer with a pre-condition a′ that is weaker than a. Interested
readers are referred to [12] for more details on cptr and the new assertion language,
PropX . For this paper, please keep in mind that assertions are actually of type
State→ PropX .

196 Z. Ni, D. Yu, and Z. Shao

The function call and return instructions are supported as in the following new
rules:

a⇒ (Ψ(f)◦Nextpush fret
) f∈dom(Ψ)

Ψ �{a}call f; [fret]
(CALLI)

a⇒ λ(H,R,F).cptr(H(R(esp)),a′) a⇒(a′ ◦Nextpop)
Ψ �{a} ret

(RET)

A call instruction pushes a return address onto the stack and transfers control to
the target code. In our actual implementation, the return address is calculated from
the pc. To avoid obfuscating the presentation, we use an explicit [fret] in the above
Rule calli. This rule says, if a holds on the current state, then Ψ(f) holds on the
updated state after executing the stack push. The rule ret says, the top of the
stack is a code pointer with pre-condition a′ and, if a holds on the current state, a′

holds on the updated state after executing the stack pop (of the return address). It
is worth noting that Rule calli does not enforce the validity of the return address.
This allows some “fake” function calls that never return, a pattern indeed used in
loadcontext().

Stack and calling convention. The support for call and return instructions is
one of the many adaptations made for x86. Besides specializing XCAP for the
machine model, we also built key abstractions to help manage the complexity
of the reasoning, such as the handling of the stack and calling convention. The
calling convention is illustrated in Fig. 2. It is convenient to build a specification
template reflecting this convention.

For a function with n arguments a1 . . . an, we write its specification (i.e., a
pre-condition in the form of an assertion) as:

Fn a1, . . . , an {Aux : x1, . . . , xm; Local : [fs]; Pre : apre; Post : apost}

The intention of this macro is that x1, . . . , xm are “auxiliary variables” commonly
used in Hoare-logic style reasoning, fs is the size of required free space on the
stack, and apre and apost are the pre- and post-conditions of the function. This
macro is defined as:

∃a1, . . . ,an,cs,sp,ss,ret,x1, . . . ,xm,aprv.

reg(cs,sp) ∧ ss≥ f s
∧ stack(sp,ss,ret,a1, . . . ,an) ∗ aprv ∗ apre

∧ cptr(ret, ∃retv. reg(cs,sp+4)∧eax=retv
∧ stack(sp+4,ss+4,a1, . . . ,an) ∗ aprv ∗ apost)

The first line of this definition quantifies over the values of (1) function ar-
guments a1, . . . , an, (2) callee-save registers cs (a 4-tuple), (3) the stack pointer
sp, (4) the size of available space on stack ss, (5) the return address ret, (6)
auxiliary variables x1, . . . , xm, and (7) some hidden private data expressed as
the predicate aprv.

Using XCAP to Certify Realistic Systems Code 197

argument 1

return addr

…

argument n

Caller frames

local storage

excess space

Heap Data

esp

user handled

auto enforced

Fig. 2. Function calling convention

The second line relates the register file with the callee-save values cs (4-tuple)
and the stack pointer sp and makes sure that there is enough space available on
the stack.

reg(ebx,esi,edi,ebp,esp) � ebx=ebx∧esi=esi∧edi=edi∧ebp=ebp∧esp=esp

The third line describes (1) the stack frame upon entering the function using
the macro below, (2) the private data hidden from the function, and (3) the user
customized pre-condition apre, which does not directly talk about register files
and the current stack frame, because they are already handled by the calling
convention.

stack(sp,ss,w1, . . . ,wn) � sp−ss �→ [ss] ∗ sp �→w1, ,wn.

The last two lines of the Fn definition specify the return address ret as an
embedded code pointer using cptr. When a function returns, the callee-save regis-
ters, stack frame, and private data must all be preserved, and the post-condition
apost must be established. Note that (1) eax may contain a return value retv,
and (2) the return instruction automatically increases the stack pointer by 4.

4 Formal Verification of Machine Context Management

What is a machine context? Although the C specification in Section 2 appears to
indicate that a context is merely eight words, the actual assumptions underlying
it are rather complex. As illustrated in Figure 3, the eight words represent a
return value retv, six registers referred to collectively as cs, and a stack pointer
sp. sp points to a return address ret found on top of a stack frame. The saved
registers may point to some private data. There may also be some environment
data shared with external code. Eventually, a context is consumed when being
invoked. A correct invocation of jumping to the return address ret requires (1)
the saved register contents be restored into the register file, (2) the stack and
private data be preserved, and (3) the shared environment be available.

198 Z. Ni, D. Yu, and Z. Shao

retv

bx

cx

dx

si

di

bp

sp

mctx

shared environment

private data
ret code to

execute

cs

Fig. 3. Machine context

All these requirements make it challenging to specify the invariants on con-
texts. Because of the expressiveness of XCAP, we can define a heap predicate
mctx t(aenv,mctx) for the context data structure, parametric to the environment
described as aenv,

∃retv,cs,sp,ret,aprv. mctx �→retv,cs,sp ∗ sp �→ret ∗ aprv

∧ cptr(ret, reg6(cs,sp+4) ∧ eax=retv ∧ aenv ∗ mctx �→retv,cs,sp ∗ sp �→ret ∗ aprv)

where aprv describes the private data, and reg6 is defined similarly to reg with
6-tuple.

Context switching. The swapcontext() function take two pointers (one to the
old context and another to the new context) and performs three tasks: saves
registers to the old context, loads registers from the new context, and transfers
control to the new context. From the implementation, swapcontext() gets called
by one client and “returns” to another. However, this is entirely transparent
to the clients—when swapcontext() returns, the stack and private data of that
client are kept intact.

We present the specification and proof outline of swapcontext() in Fig. 4. It uses
a macro Fn6, a variant of Fn obtained by replacing reg with reg6 and changing cs
to refer to 6 registers. Fn6 automatically manages the preservation of the stack and
private data. In addition, the pre-condition specifies three pieces of memory: (1)
the old context pointed to by old—at the beginning of the routine it is simply 32
bytes ofmemory available for use, (2) the shareddata aenv, and (3) the new context
pointed to by new.

The new context is specified with the help of the macro mctx t. The environ-
ment parameter of this macro consists of two parts: the shared data aenv and an-
other mctx t macro, describing the old context. This is because the old context
will be properly set up by the routine before switching to the new one. One tricky
point is that the old context will be expecting an (existentially quantified) new
shared environment anewenv. Although one may expect the new environment
to be simply the old one, aenv, together with the new context at new, this may
not necessarily be the case. For instance, the new context may be dead already
and de-allocated when the old context regains control.

The post-condition of swapcontext() is relatively simple: the space for the old
context will still be available, together with the new shared data anewenv. An

Using XCAP to Certify Realistic Systems Code 199

Fn6 old,new { Aux: anewenv; Local: [0];
Pre: old �→ [32]∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new);
Post: old �→ [32]∗anewenv∧eax=0}

swapcontext: // void swapcontext (mctx t old, mctx t new);

reg6(cs,sp) ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old �→ [32] ∗aprv ∗aenv
∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old �→ [32] ∗aprv ∗anewenv)

mov eax, [esp+4] // load address of the context data structure we save in
... // save old context
mov eax, [esp+8] // load address of the context data structure we have to load

eax=new ∧ ss≥0 ∧ stack(sp,ss,ret,old,new) ∗old �→0,cs,sp∗aprv ∗aenv
∗mctx t(mctx t(anewenv,old)∗aenv,new)
∧cptr(ret, reg6(cs,sp+4)∧eax=0∧ stack(sp+4,ss+4,old,new)∗old �→ [32] ∗aprv ∗anewenv)

// shuffle and cast

eax=new ∧ old �→0,cs,sp∗ sp �→ret ∗ stack(sp,ss)∗ sp+4 �→old,new∗aprv
∧cptr(ret, reg6(cs,sp+4)

∧eax=0∧anewenv ∗old �→0,cs,sp∗ sp �→ret ∗ stack(sp,ss)∗ sp+4 �→old,new∗aprv)
∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

// pack old context

eax=new ∧mctx t(anewenv,old)∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

// unpack new context

eax=new ∧mctx t(anewenv,old)∗aenv ∗new �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗anewprv
∧cptr(ret ′, reg6(cs′,sp′+4)

∧eax=retv′ ∧mctx t(anewenv,old)∗aenv ∗new �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗anewprv)

mov esp, [eax+ esp] // load the new stack pointer.
... // load the new context

reg6(cs′,sp′)∧eax=retv′ ∧mctx t(anewenv,old)∗aenv ∗new �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗anewprv
∧cptr(ret ′, reg6(cs′,sp′+4)

∧eax=retv′ ∧mctx t(anewenv,old)∗aenv ∗new �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗anewprv)

ret

Fig. 4. Verification of machine context switching

interesting proof step in Fig. 4 is the one after the old context is packed but
before the new one is unpacked. At that point, there is no direct notion of stack
or function. The relevant machine state essentially comprises of two contexts
and one environment:

eax=new∧ mctx t(anewenv,old)∗aenv ∗mctx t(mctx t(anewenv,old)∗aenv,new)

Intuitively, it should be safe to load the new context from eax and then switch
to it.

Context creation. We present the specification and proof outline ofmakecontext()
in Figure 5. The intermediate assertions are also organized using Fn. For concise-
ness, we omitted commonparts of these macros, thus emphasizing only the change-
able parts.

The pre-condition of the routine specifies (1) an empty context at mctx, (2)
a stack nsp with available space of size nss, (3) some private data of the target

200 Z. Ni, D. Yu, and Z. Shao

Fn mctx,nsp, lnk, f unc,arg { Aux: aenv; Local: [0];
Pre: mctx �→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12

∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr(f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx �→ [32]∗aprv;
Post: aret });

Post: mctx t(aenv,mctx)}
makecontext: // void makecontext (mctx t mctx, char *sp, void *lnk, void *func, void *arg);

Local: [0]; Pre: mctx �→ [32]∗ stack(nsp,nss)∗aprv∧nss≥12
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr(f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx �→ [32]∗aprv;
Post: aret });

mov eax, [esp+4] // load address of the context data structure.
... // initialize the new context
mov [eax+ esp], ecx // only the stack pointer matters for a fresh new context

Local: [0]; Pre: mctx �→ [28],nsp−12∗ stack(nsp−12,nss−12, f unc, lnk,arg)∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)
∧cptr(f unc, Fn arg′ { Local: nss−8;

Pre: sp′=nsp−8∧arg′=arg∧aenv ∗mctx �→ [32]∗aprv;
Post: aret });

// unfold, shuffle, and cast

Local: [0]; Pre: mctx �→retv′,cs′,nsp−12∗nsp−12 �→ f unc
∗stack(nsp−12,nss−12)∗nsp−8 �→ lnk,arg∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret)

∧cptr(f unc, reg6(cs′,nsp−8)∧eax=retv′ ∧aenv ∗mctx �→retv′,cs′,nsp−12∗nsp−12 �→ f unc
∗stack(nsp−12,nss−12)∗nsp−8 �→ lnk,arg∗aprv
∧cptr(lnk, esp=nsp−4∧ stack(nsp−4,nss−4,arg)∗aret));

// pack the fresh context

Local: [0]; Pre: mctx t(aenv,mctx);

ret

Fig. 5. Verification of machine context creation

context (potentially accessible from the argument arg of the function func() of
the target context, (4) a link (return address) lnk to be used when the target
context finishes execution, and (5) a function pointer func() for the code to be
executed in the target context. It also specifies the exact requirements on the
code at pointers lnk and func: (1) aret occurs both in the post-condition of
func() and in the pre-condition of lnk, indicating that the code at the return
address lnk may expect some results from the context function func(); (2) the
stack should be properly maintained upon returning to lnk. The post-condition
of the routine simply states that, when makecontext() returns, mctx will point
to a proper context which expects a shared environment of aenv.

Our interface of makecontext() is faithful to the Unix/Linux implementa-
tions. The heavy usage of function and continuation pointers shows how crucial

Using XCAP to Certify Realistic Systems Code 201

loadcontext: // void loadcontext (mctx t mctx);

reg(cs,sp)∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)

mov eax, [esp+4]

eax=mctx∧ stack(sp,ss,ret,mctx)∗aenv ∗mctx t(stack(sp,ss,ret,mctx)∗aenv,mctx)

// unpack context

eax=mctx ∧anewenv ∗mctx t(anewenv,mctx)

// unpack context

eax=mctx ∧anewenv ∗mctx �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗aprv
∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′ ∧anewenv ∗mctx �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗aprv)

mov esp, [eax+ esp] // load the new stack pointer.
mov ebp, [eax+ ebp]
mov edi, [eax+ edi]
mov esi, [eax+ esi]
mov edx, [eax+ edx]
mov ecx, [eax+ ecx]
mov ebx, [eax+ ebx]
mov eax, [eax+ eax]

reg6(cs′,sp′+4)∧eax=retv′ ∧anewenv ∗mctx �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗aprv
∧cptr(ret ′, reg6(cs′,sp′+4)∧eax=retv′ ∧anewenv ∗mctx �→retv′,cs′,sp′ ∗ sp′ �→ret ′ ∗aprv)

ret

Fig. 6. Verification of machine context loading

XCAP’s support of embedded code pointers is. As the proof shows, the most
complex step is on transforming code pointers’ pre-conditions and packing all
the resources into a context.

Context loading. loadcontext() essentially performs the second half of the task
of swapcontext(), with some differences in the stack layout. Although we refer
to it as a “function”, it actually never returns and does not require the stack top
to contain a valid return address. We present the verification of loadcontext() in
Figure 6.

5 The Coq Implementation

We have mechanized everything in this paper using the Coq proof assistant [18].
By everything we mean the machine model, XCAP and its meta theory (includ-
ing soundness proof), separation logic, and specification and proof of the context
implementation.

Proof details. Our Coq implementation (downloadable at [14]) consists of ap-
proximately 17,000 lines of Coq code. Figure 7 presents a break down of individ-
ual components in the implementation. The full compilation of our implementa-
tion in Coq (proof-script checking and proof-binary generation) takes about 52

202 Z. Ni, D. Yu, and Z. Shao

Implementation component Line of code Compile time
Safe extension to Coq on extensional equality on functions 9 Loc 1s
Math lemmas 384 Loc 1s
Set level mapping 220 Loc 1s
Type level mapping 218 Loc 1s
Type list 103 Loc 1s
Target machine (TM) 441 Loc 10s
PropX meta theory (independent of XCAP meta theory) 4,504 Loc 6m
PropX lemmas (independent of XCAP meta theory) 258 Loc 3s
Separation-logic style memory assertions 74 Loc 1s
Common data-structure related lemmas 1,171 Loc 10s
(independent of XCAP meta theory)
XCAP (x86 version) 755 Loc 3s
XCAP common definitions and lemmas 297 Loc 3s
Machine context module: code, data structure, and specification 144 Loc 1s
Proof for loadcontext() function 753 Loc 15s
Proof for swapcontext() function 4,917 Loc 3m
Proof for makecontext() function 2,372 Loc 40m
Total (on Intel Core 2 Duo T7200 2GHz / 4MB L2 / 2GB Ram) 16,620 Loc 52m

Fig. 7. Break-down of Coq implementation

minutes under Windows Vista on an Intel Core 2 Duo T7200 2GHz CPU with
4MB L2 cache and 2GB memory.

The proof for lemmas and the context code is typically on implications from
one assertion to another, either on the same machine state (casting), or on two
consecutive states before and after the execution of an instruction. Proof steps
mostly adjust the shape of the assertions to match, split implications into smaller
ones, and track the changed parts down to the basic data units. Coq’s proof
searching ability is useful, but often too weak for the reasoning about memory
and resources.

Coq has many built-in proof tactics for intuitive handling of proofs of Prop
sort, such as intro, split, left, right, exists, cut, auto, etc. Following them, we
defined a similar set of proof tactics for PropX , such as introx, splitx, leftx,
rightx, existsx, cutx, autox, etc. Each of these new PropX tactics can be used
similarly to the Prop ones, which increases the productivity when working with
PropX for experienced Coq users.

To make PropX formulas more readable, we defined some pretty-printing
notations. For example, one can directly write the following formula:

All x, <<even x>> .\/ Ex y, z. <<x = y + z>> ./\ <<prime y /\ prime z>>

and write a function specification in the same style as used in our paper presen-
tation:

Fn ... {Aux : ...; Local: [...]; Pre: ... ; Post: ...}

Using XCAP to Certify Realistic Systems Code 203

Definition mctx_t L aenv mctx : Heap -> PropX L := fun H =>
Ex retv, bx, cx, dx, si, di, bp, sp, ret.
star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))
(star (pto _ sp ret)

(fun H => extv _ _ (eq_rect _ _
(Lift _ _ (var tO _ H)

./\ codeptr _ ret
(fun S’ => match S’ with ((H’,R’),F’) in

reg6 _ bx cx dx si di bp (sp+4) R’ ./\ << R’ eax = retv>>
./\ star (fun H => Shift _ _

(eq_rect _ _ (aenv H) _ (app_nil_eq _)) _)
(star (ptolist _ mctx (retv::bx::cx::dx::si::di::bp::sp::nil))
(star (pto _ sp ret)

(fun H => Lift _ _ (var tO _ H)))) H’
end)) _ (nil_app_eq _)))) H.

Fig. 8. Coq encoding of mctx t

Development time. The development of the proof took about three person-
months. There are several reasons for the large proof size and development time.
First of all, this is the first time we did this kind of realistic proof, so a lot of
infrastructure code and experience needed to be developed and learned. For ex-
ample, about half of the 17,000 lines of code is independent of machine context
verification; such code can be reused for other verification purposes. The first
procedure we certified, swapcontext(), took one person-month and 5,000 lines of
code. We believe these numbers would be at least halved if we did it again. Sec-
ond, there is much redundancy due to the relatively low level of proof reuse. The
third reason is the complexity of the machine model, which needs features such
as finite integers that are not supported well in Coq. Nevertheless, the biggest
reason, we believe, is the complexity of reasoning about the actual code.

As an example, the machine context data type in the previous section is
implemented as in Figure 8, which is far more complex than what its meta pre-
sentation looks like. Part of the complexity is due to the de Bruijn representation
of impredicative quantifiers. Further improved pretty printing notations can help
simplify the presentation. Still, there is the inherent complexity surrounding a
machine context data structure that can not be omitted or avoided by any formal
reasoning about it.

Discussion on the proof size. The large size of the proof naturally raises prac-
ticality concerns. However, when making comparisons with other verification
methods, there are several aspects of our method that need to be taken into
consideration.

For comparison with abstraction-based verification methods, we believe that
while they provide insights on the invariants of the algorithms and high-level
programs, for low-level systems code such as context management, working at
an abstract level will not have an actual advantage. As explained in the beginning

204 Z. Ni, D. Yu, and Z. Shao

of this paper, it is the level it works at and the complexity of this code that are
most interesting.

For comparison with analysis- and test-based verification methods, the im-
portant question to ask is what kind of guarantee one can deliver. Many of these
tools can automatically find bugs, but only in a “best-effort” fashion—false neg-
atives are expected. In our case, we want to completely exclude certain categories
of bugs, as guaranteed by the language-based approach in general.

For comparison with other language-based methods, such as type systems,
the important question to ask is what kind of code is supported. There have
been efforts to use higher-level safe languages for systems programming, all with
trade-offs in efficiency and/or compatibility, some even with significant changes
in programming style. In our case, we require no change to the existing sys-
tems programming style and code base, and thus we expect no performance or
compatibility issues. In general, we believe that systems and application code
requires different level of safety guarantees, thus their verification will naturally
result in different levels of productivity. For example, it is feasible to automat-
ically generate proofs for TAL programs in XCAP [13] and link them with the
certified context routines in this paper following methods in [13] or [2].

6 Related Work and Conclusion

Hoare-logic style systems have been widely used in program verification. They
support formal reasoning using assertions and inference rules based on expres-
sive program logics. Nonetheless, there has been no work in the literature on
the logical specification and verification of machine context management. The
challenge there, based on our experience, largely lies in working with embedded
code pointers. For example, among the efforts applying Hoare-logic-based veri-
fication to machine code, an earlier work, Yu et al [21], is able to do mechanized
verification of MC68020 object code. However, as explained in [12], they cannot
support embedded code pointers and they encountered the problem of “func-
tional parameters”. Recently, Myreen et al [10] support verification of realistic
ARM code, but support of embedded code pointers is missing.

Separation logic [16,6] provides a helpful abstraction for working with memory.
Our verification makes use of a shallow embedding of separation logic in the
assertion language to reason about the machine state.

The Singularity OS [5] uses a mixture of C# and assembly code to implement
threading. Whereas most parts of the code enjoy type safety, context switching is
written in unsafe assembly code. Furthermore, threading and context data struc-
tures are specified using managed data pointers, which belong to the weak update
memory model (ML-like reference types also belong to it). It is significantly dif-
ferent from the separation-logic style unmanaged strong update memory model
used in this paper, as well as in Unix/Windows kernel. One disadvantage for
using weak update for certified systems programming is that its memory man-
agement relies on garbage collection, which may not be appropriate for some
systems programs.

Using XCAP to Certify Realistic Systems Code 205

The verification of context switching in this paper addresses the actual im-
plementation details, including those hidden behind the implementation of con-
tinuations and storage management. The code we verified is at the same level as
the actual executable running on a real machine. The trusted computing base
is extremely small. Besides the obvious progress/preservation property, because
our verification is based on logical assertions, it conveys a more expressive safety
policy: the run-time states of the machine should satisfy the corresponding as-
sertions as written in the specification.

Conclusion. We have presented the first formal, modular, and mechanized veri-
fication of machine context management code and showed how to build a verifi-
cation infrastructure for certifying realistic low-level systems code. In particular,
we applied the XCAP framework to an x86 machine model, developed new proof-
tactics and lemma libraries, and used it to certify the code and data structures
in an x86 machine-context implementation. Everything has been mechanized in
the Coq proof assistant. Our approach is applicable to other variants of context,
provides a solid basis for further verification of thread implementations, and il-
lustrates the formal, modular, and mechanized verification of realistic systems
code in general.

By following better engineering practices and building smarter domain-specific
proof-searching tools, especially those for separation logic and program logics, we
believe that the automation in systems code specification and verification can be
gradually increased to a level where it is practical to apply to the building of prov-
ably correct software.

Acknowledgment. We thank David Tarditi and anonymous referees for sugges-
tions and comments on the draft of this paper. A large part of this research was
done when the first author was at Yale University and supported in part by gifts
from Intel and Microsoft, and NSF grant CCR-0524545. Any opinions, findings,
and conclusions contained in this document are those of the authors and do not
reflect the views of these agencies.

References

1. Appel, A.W., Mellies, P.-A., Richards, C.D., Vouillon, J.: A very modal model of
a modern, major, general type system. In: Proc. 34th ACM Symp. on Principles
of Prog. Lang., January 2007, ACM Press, New York (2007)

2. Feng, X., Ni, Z., Shao, Z., Guo, Y.: An open framework for foundational proof-
carrying code. In: Proc. Workshop on Types in Language Design and Implemen-
tation (January 2007)

3. Gargano, M., Hillebrand, M., Leinenbach, D., Paul, W.: On the correctness of
operating system kernels. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, pp. 2–16. Springer, Heidelberg (2005)

4. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM (October 1969)

206 Z. Ni, D. Yu, and Z. Shao

5. Hunt, G.C., Larus, J.R., Abadi, M., Aiken, M., Barham, P., Fahndrich, M., Haw-
blitzel, C., Hodson, O., Levi, S., Murphy, N., Steensgaard, B., Tarditi, D., Wobber,
T., Zill, B.: An overview of the Singularity project. Technical Report MSR-TR-
2005-135, Microsoft Research, Redmond, WA (October 2005)

6. Ishtiaq, S.S., O’Hearn, P.W.: BI as an assertion language for mutable data struc-
tures. In: Proc. 28th ACM Symp. on Principles of Prog. Lang., pp. 14–26. ACM
Press, New York (2001)

7. Jabber software development list: Jabberd crash in swapcontext() via
mio raw connect() (2001),
http://mailman.jabber.org/pipermail/jdev/2001-March/005655.html

8. Libc for alpha systems mailing list: {make,set,swap}context broken on powerpc32
(2006),
http://www.archivesat.com/Libc_for_alpha_systems/thread2267226.htm

9. Morrisett, G., Walker, D., Crary, K., Glew, N.: From System F to typed assembly
language. In: Proc. 25th ACM Symp. on Principles of Prog. Lang., January 1998,
pp. 85–97. ACM Press, New York (1998)

10. Myreen, M.O., Gordon, M.J.C.: Hoare logic for realistically modelled machine code.
In: Proc. 13th International Conference on Tools and Algorithms for Construction
and Analysis of Systems (2007)

11. NetBSD port-amd64 mailing list: swapcontext(3) does not work? (2004),
http://mail-index.netbsd.org/port-amd64/2004/11/30/0003.html

12. Ni, Z., Shao, Z.: Certified assembly programming with embedded code pointers. In:
Proc. 33rd ACM Symp. on Principles of Prog. Lang., January 2006, ACM Press,
New York (2006)

13. Ni, Z., Shao, Z.: A translation from typed assembly languages to certified assembly
programming (October 2006),
flint.cs.yale.edu/flint/publications/talcap.html

14. Ni, Z., Yu, D., Shao, Z.: Coq code for using xcap to certify realistic systems code:
Machine context management (March 2007),
http://flint.cs.yale.edu/flint/publications/mctx.html

15. Ni, Z., Yu, D., Shao, Z.: Technical report for using xcap to certify realistic systems
code: machine context management (June 2007),
http://flint.cs.yale.edu/flint/publications/mctx.html

16. Reynolds, J.: Separation logic: a logic for shared mutable data structures. In: Proc.
17th Symp. on Logic in Computer Science (2002)

17. SecurityTracker.com: Solaris 10 x64 kernel setcontext() bug lets local users deny
service (2006),
http://securitytracker.com/alerts/2006/Feb/1015557.html

18. The Coq Development Team: The Coq proof assistant reference manual (v8.0)
(2004)

19. The glibc-bugs mailing list: [bug libc/357] new: getcontext() on ppc32 destroys
saved parameter 1 in caller’s frame (2004),
http://sourceware.org/ml/glibc-bugs/2004-08/msg00201.html

20. The glibc-bugs mailing list: [bug libc/612] new: makecontext broken on powerpc-
linux (2004),
http://sources.redhat.com/ml/glibc-bugs/2004-12/msg00102.html

21. Yu, Y.: Automated Proofs of Object Code For A Widely Used Microprocessor.
PhD thesis, The University of Texas at Austin (1992)

http://mailman.jabber.org/pipermail/jdev/2001-March/005655.html
http://www.archivesat.com/Libc_for_alpha_systems/thread2267226.htm
http://mail-index.netbsd.org/port-amd64/2004/11/30/0003.html
flint.cs.yale.edu/flint/publications/talcap.html
http://flint.cs.yale.edu/flint/publications/mctx.html
http://flint.cs.yale.edu/flint/publications/mctx.html
http://securitytracker.com/alerts/2006/Feb/1015557.html
http://sourceware.org/ml/glibc-bugs/2004-08/msg00201.html
http://sources.redhat.com/ml/glibc-bugs/2004-12/msg00102.html

Proof Pearl: De Bruijn Terms Really Do Work

Michael Norrish1 and René Vestergaard2

1 Canberra Research Lab, Nicta
Michael.Norrish@nicta.com.au

2 School of Information Science, JAIST, Ishikawa, Japan
vester@jaist.ac.jp

Abstract. Placing our result in a web of related mechanised results, we
give a direct proof that the de Bruijn λ-calculus (à la Huet, Nipkow and
Shankar) is isomorphic to an α-quotiented λ-calculus. In order to estab-
lish the link, we introduce an “index-carrying” abstraction mechanism
over de Bruijn terms, and consider it alongside a simplified substitution
mechanism. Relating the new notions to those of the α-quotiented and
the proper de Bruijn formalisms draws on techniques from the theory of
nominal sets.

1 Introduction

Implementors and theorists alike have long been in de Bruijn’s debt [4]. Rep-
resenting λ-terms without names is a relatively straightforward way of imple-
menting binders internally in, e.g., theorem-proving systems such as Isabelle and
HOL4. Complementing this, the same idea has made it possible to formalise a
great many results about syntax that features binders.

However, we believe that the state-of-the-art for formalisation has moved on.
Implementors may well keep de Bruijn terms in their systems’ internals, but it
does now seem as if it is possible to mechanise important results about syntax
without needing to prove “painful” and “non-obvious” lemmas about indices [11].
The emerging formalisation technologies are appealing for a range of reasons, but
here we focus on just two: i) it is now possible to check that multiple formalisa-
tions do actually correspond and ii) “non-obvious” lemmas about indices turn
out to be related to general nominal properties of de Bruijn terms.

In particular, we can confirm that de Bruijn terms are a model for the λ-
calculus, and can do so in an elegant way. By way of contrast, see for example
Appendix C of Barendregt [2], where the proofs are given as “implicit in de
Bruijn [4]”; or the pioneering work by Shankar [15], where mechanised proofs
of complex theorems establish a connection between unquotiented λ-terms and
de Bruijn terms.

In fact, there are a number of isomorphism results already extant in the lit-
erature. In this paper, we summarise these, and provide a new link between
de Bruijn terms and what we hope will be an ever-expanding web of results, and
body of understanding.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 207–222, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

208 M. Norrish and R. Vestergaard

2 Formalising Binding

In this section, we position our result in the space of relationships between
ten different formalisations of the λ-calculus, following Figure 1. λC is Curry’s
unquotiented λ-terms using variable names and fresh-naming substitution [3]
(plus explicit α [7]). λHi

α , due to Hindley [7], is a quotient construction saying
that an equivalence class reduces to another if there are two syntactic terms
that witness the reduction, in this case in λC . λV is similar to λC but uses
renaming-free substitution (and explicit α), as studied in Vestergaard [17]. λV

α

is the “Hindley-quotient” of λV . λHo
α is a quotient of Curry’s set-up but with

substitution rather than reduction lifted from the syntactic to the quotient type,
as studied in Homeier [8]. dB2 is the set of well-formed, two-sorted de Bruijn
terms in Gordon [5]. λG

α is the type derived from this, in Gordon and Melham [6].
λN

α is a quotient of the first order syntax, with substitution defined directly
on the quotiented level, as in Norrish [12]. dB is the type of pure de Bruijn
terms (with indices representing free and bound variables), as mechanised in
Shankar [15], Huet [9] and Nipkow [11]. Finally, dB ′ is an intermediate formalism
that we define here. It uses constructors that are not injective, hence the oval
node: conceptually, dB ′ is syntactic sugar for dB that looks like λN

α .

Nameless Abstractions (w/indices) dB2 dB

dB ′

Named α-equivalent Abstractions λG
α λN

α λV
α λHi

α λHo
α

Named “Raw” Abstractions λV λC

α
α α α α

α

Fig. 1. λ-calculus formalisations and their directly-proved relationships; dashed, dark
lines are the results in this paper. Double lines are isomorphisms; arrows α-quotienting.

2.1 Named Abstraction

We use Λvar to refer to the “raw” syntax of the λ-calculus, that is the free algebra
generated by the recursion equation

Λvar ∼= V + Λvar × Λvar + V × Λvar (1)

with V some countably-infinite set of variable names. We use Λα to refer to the
quotient of Λvar with respect to α-equivalence. The various λX

α are reduction
systems defined over Λα, while λV and λC are defined directly over Λvar.

Proof Pearl: De Bruijn Terms Really Do Work 209

Table 1. Signatures for formalisms with named abstraction, see Figure 1. The α-
collapsed types below a dashed line are bootstrapped from the preceding “raw” type
(λV /λC). For λG

α , substitution is bootstrapped from dB2. See the text for the [proofs:
. . .]-comments.

λV

[proofs: =Λvar]
substitution: Λvar × V × Λvar → Λvar

reduction: Λvar × Λvar

λV
α reduction: Λα × Λα

λC

[proofs: =α]
substitution: Λvar × V × Λvar → Λvar

reduction: Λvar × Λvar

λHi
α reduction: Λα × Λα

λHo
α

substitution: Λα × V × Λα → Λα

reduction: Λα × Λα

λG
α

substitution:

�
(dB2 × V × dB2 → dB2)
Λα × V × Λα → Λα

reduction: Λα × Λα

λN
α

substitution: Λα × V × Λα → Λα

reduction: Λα × Λα

There are seven different types identified in Figure 1 that use names under
abstractions. Though intuition (and, as we shall see, mechanised results) assure
us that they are all the “same”, their constructions are all different to varying
degrees. The differences are most clearly seen in the types’ definitions of substi-
tution, see Table 1. At the “raw” level, λV defines substitution to be “renaming
free”, as used to be the tradition in logic books: where a substitution would cause
a free variable to become captured, the substitution is instead defined to be the
identity function, with the implicit (and satisfiable) requirement that actual uses
avoid such situations. This approach finesses many of the problems of λC , where
an everywhere-correct capture-avoiding substitution mandates fresh-naming (via
either simultaneous substitution, as in Homeier [8], or by well-founded recursion
on term sizes) and, thus, only allows us to reason “up to α” for most properties
[7]. Alternatively, and with substitution defined for Λvar, the type itself can be
α-quotiented. In the case of λHo

α , Homeier lifts the substitution function and
proceeds to define β-reduction at the quotiented type. In the case of λHi

α and
λV

α , Hindley and Vestergaard lift β-reductions from Λvar [7,17].
In λG

α , substitution is defined with reference to the substitution function in
dB2 . In λN

α , substitution is defined directly on Λα, using its “native” notion of
primitive recursion, as in Norrish [12] and Pitts [14].

210 M. Norrish and R. Vestergaard

2.2 De Bruijn’s Anonymous Abstraction, Using Indices

The type of de Bruijn terms is the free algebra generated by the recursion equation

dB ∼= N + dB× dB + dB (2)

We will use constructors dV, dAPP, and dABS to correspond to the three cases in
the equation above, with the idea that, e.g., dABS (dV 0) is the identity function:
“λx.x”, and dABS (dABS (dAPP (dV 1) (dV 0))) is apply: “λf.λx.f x”. We will use
t, u, z to range over values in dB, while M , N will range over values in Λα.

Nipkow [11] (following Huet [9]) defines two functions by primitive recursion
over this type (see Figure 2). The first is lift, which adds one to the value of
all free indices that are at least equal to the provided bound. (Shankar [15] calls
his version of this function BUMP; it is slightly different because he has the first
bound index of an abstraction be 1, not 0.)

lift (dV i) k = if i < k then dV i
else dV (i + 1)

lift (dAPP t u) k = dAPP (lift t k) (lift u k)
lift (dABS t) k = dABS (lift t (k + 1))

nsub z k (dV i) = if k < i then dV (i - 1)
else if i = k then z
else dV i

nsub z k (dAPP t u) = dAPP (nsub z k t) (nsub z k u)
nsub z k (dABS t) = dABS (nsub (lift z 0) (k + 1) t)

Fig. 2. Functions from Nipkow’s formalisation of de Bruijn terms [11]

Second is substitution, which we call nsub here.1 In order to make their proofs
simpler, Nipkow, Huet and Shankar all define a notion of substitution that si-
multaneously performs a substitution and decrements the indices of the other
free variables that appear in the term in which the substitution is occurring.
This reflects the fact that the substitution is intended to be used for defining
β-contraction, where a dABS constructor disappears in the process. As usual, the
considered β-reduction relation is given as β-contraction plus congruence rules.

Definition 1 (Nipkow [11]). →d is the least relation satisfying the following
rules:

dAPP (dABS t) u →d nsub u 0 t

t →d u
dAPP t z →d dAPP u z

t →d u
dAPP z t →d dAPP z u

t →d u
dABS t →d dABS u

1 We have altered the order of arguments to be compatible with the other mechanisa-
tions: the value being substituted comes first, followed by the index being substituted
out, followed by the term in which the substitution is occurring.

Proof Pearl: De Bruijn Terms Really Do Work 211

2.3 Existing Results

We say that two types of the form we consider, e.g., 〈X,→x〉, 〈Y,→y〉, are
isomorphic if there exists a bijection, f : X −→ Y , that is homomorphic

∀x1, x2 . x1 →x x2 ⇔ f(x1) →y f(x2) (3)

In the case of α-quotients, the mappings between the types are surjective and
have the same kernels. By the appropriate adaptation of the First Isomorphism
Theorem of Algebra,2 this means that the various range types of each “raw” type
are pairwise isomorphic. Once it has been established that the α-equivalences of
λV and λC coincide, this means that the isomorphism of λV and λC implies that
all the range types, i.e., dB and the λX

α , are pairwise isomorphic. (In [13], we
further show that a broad class of properties is also shared between the elements
of the “raw” syntax and the range types.)

As noted, the λV -to-λV
α and λC -to-λHi

α α-quotients of the figure are under-
pinned by an epimorphism (i.e., (3) plus surjectivity) by construction [7,17].
In the remaining “raw-to-quotient” cases, property (3) plus surjectivity have
been verified by Norrish [12] (λV -to-λG

α , λV -to-λN
α) and Homeier [8] (λC -to-λHo

α ,
implicitly).

Vestergaard has mechanised the isomorphism at the base of the figure, between
λV and λC (including their respective α-relations), in Coq. This follows the proof
in Vestergaard [17].

The isomorphism at the named α-equivalent abstractions level between λG
α

and λN
α is between the Gordon-Melham terms and the terms formed by quoti-

enting the raw syntax (Λvar). This isomorphism is uninteresting (and implicitly
demonstrated in [12]) because the constructors and definitions in each type are
immediate images of each other.

The isomorphism between dB2 and λG
α is between the well-formed terms in

Gordon’s two-sorted de Bruijn type [5], and the terms of Gordon and Melham’s
subsequent paper [6]. This connection is a bijection by construction: the latter
type is established using the HOL principle of type definition, which permits new
types to be defined isomorphic to non-empty subsets of old types. Further, the
bijection is behaviour-respecting because substitution in the new type is defined
by following the bijection back to the old type, performing the substitution there
and then returning.

The result most similar to that in this paper is Shankar’s link between dB and
λV [15]. (Strictly speaking Shankar’s λV is not quite the same as the one used by
Vestergaard [17]: where Vestergaard’s substitution will go wrong, it returns the
term being substituted into unchanged; in the same situation, Shankar returns
the result of a recursive descent with free variables incorrectly captured. In
neither case does this detail matter: references to both substitution functions
are set about with side conditions ensuring they are applied only in situations
that make sense.)

Shankar represents the bijection between the two types with a function from
λV to dB (called TRANSLATE) and a function UNTRANS for the opposite direction.
2 The result has been verified in Coq by Vestergaard.

212 M. Norrish and R. Vestergaard

Neither of these can work directly on the values from the types, but need to
be accompanied by contextual information. For example, the statement that
TRANSLATE undoes an UNTRANS is given as

117. Theorem. UNTRANS-TRANS (rewrite):
(IMPLIES (AND (TERMP X) (LEQ (FIND-M X N) M))

(EQUAL (TRANSLATE (UNTRANS X M N)
(BINDINGS M N))

X))

The other identity is even more complicated, partly because the equality is ac-
tually α-equivalence. The subsequent statements that β-reductions in each type
match up are similarly complex. (They are used to good effect: the Church-
Rosser result for dB is transferred back to λV .)

As we shall see, our own directly-established connection can be expressed
more naturally because we build an isomorphism to λN

α instead of λV . We also
provide an isomorphism result for η-reduction (in Section 4.4).

3 Nominal Reasoning

In this section we provide a brief introduction to the nominal technology that
has an important rôle to play in the isomorphism proofs to come. (For more on
this, see for example, Pitts [14].)

Permutations. Nominal reasoning proceeds over sets that support a permu-
tation action satisfying certain conditions. We call such sets, nominal sets.3 At
the “base level” permutations are defined in terms of their effect on strings.

Definition 2 (Permutations Applied to Strings). A permutation (written
π, π1 etc) is a bijection on strings that is the identity on all but finitely many
strings. We represent a permutation as a list of pairs of strings, and define the
action of a permutation π on a string s (written π(s)) by primitive recursion on
the structure of the list:

[] (s) = s

((x, y) :: π) (s) = if x = π(s) then y else if y = π(s) then x
else π(s)

If permutation π is the singleton list [(x, y)], then π is also written (x y).

For a type other than strings to be a nominal set, the type must support a
permutation action (written π · x, for x in the putative nominal set) satisfying
the following conditions:

[] · t = t
π1 · (π2 · t) = (π1 ◦ π2) · t
(∀s. π1(s) = π2(s)) ⇒ π1 · t = π2 · t

(4)

3 Pitts only calls sets nominal if each element also has finite support, for which see
below.

Proof Pearl: De Bruijn Terms Really Do Work 213

As our permutations are actually lists, permutation composition (π1 ◦ π2 in the
second condition) is actually list concatenation. This is also the reason why the
third condition tests for extensional equality (over strings) on the permutations
π1 and π2.

Examples

– The natural numbers and the booleans are both nominal sets, with a per-
mutation action that is everywhere the identity.

– If A is a nominal set, then so too are lists of values drawn from A. The
permutation action over a list value is the permutation of each element.

– If A and B are nominal sets, then so too are functions from A to B. The
permutation action is defined to be

π · (f : A→ B) = λ(x : A). π · (f (π−1 · x))

It follows that π · (f(x)) = (π · f)(π · x)

Support. With a permutation action defined, a nominal set immediately gives
rise to a notion of “support”.

Definition 3. We say that the set A supports a value t if

∀x y 	∈ A. (x y) · t = t

If there is a finite set that supports a value t, then there is a smallest such
supporting set, which we refer to as the support of t (written supp(t)). For types
such as λ-calculus terms, support corresponds to the free variables of the term.

When a value has empty support, it follows that (x y)·t = t for all possible x and
y. When the value is a function, this gives us a nice result about the distribution
of permutations over applications:

(x y) · (f(v)) = ((x y) · f)((x y) · v) = f((x y) · v)

This result extends to arbitrary permutations, so that π · f(x) = f(π ·x). Better
yet, if the function is actually a relation or predicate (a function whose range is
the boolean type), then the outer π disappears and we have that R (π ·x1) . . . (π ·
xn)⇔ R x1 . . . xn. Such a predicate or relation is said to be equivariant.

4 Isomorphisms and De Bruijn Terms

Our goal is to show that dB is isomorphic to λN
α , i.e., a formalism where reduc-

tions occur between α-equivalence classes of the raw syntax. The mechanisation
was performed by Norrish using the HOL4 proof assistant.

At the base level, a bijection between the terms of the quotiented λ-calculus
(Λα) and dB requires a bijection between strings and natural numbers because

214 M. Norrish and R. Vestergaard

the existing mechanisation of Λα uses strings for its variables. Though occa-
sionally awkward, the fact that the two sorts of variables are of different types
is a useful sanity check when proofs are being performed. In what follows, s,
s′, v and v′ will range over strings, and i, j and k over natural numbers. The
bijections between the types will be written with a hat, so that ı̂ is the string
corresponding to number i, while ŝ is the number corresponding to string s.

4.1 An Intermediate Formalism: dB’

We define dB’ to match λN
α , both in its construction and in its reduction relations.

In particular, abstraction in dB’ will involve an identifier in the style of “λ2.2”
(for the identity function). This new constructor is necessarily not injective (as,
otherwise, we would distinguish, e.g., “λ2.2” and “λ1.1”). Abstraction in λN

α is
also not injective but, whereas the λN

α -construction is based on a quotient of
Λvar, the non-injectivity of the new λ-constructor in dB’ follows directly from its
definition as syntactic sugar for the existing dABS constructor in dB. Though a
separate oval in Figure 1, dB’ is based on the same underlying HOL type as dB.
The difference arises from its use of different constructors to “cover” the type,
and a different reduction relation.

We begin by defining dB-substitution without the index-decrementing used
in nsub. We shall see that this function is isomorphic to substitution over Λα,
while nsub has no natural reading in Λα.

Definition 4 (A clean notion of substitution for dB).

sub z k (dV i) = if i = k then z else dV i

sub z k (dAPP t u) = dAPP (sub z k t) (sub z k u)
sub z k (dABS t) = dABS (sub (lift z 0) (k + 1) t)

The (non-injective) dLAM-function that performs abstraction over a particular
index can now be defined as follows.

Definition 5 (Abstraction over an index).

dLAM i t = dABS (sub (dV 0) (i + 1) (lift t 0))

All dABS terms can be seen as abstractions over an arbitrary fresh index.

Lemma 6 (dABS terms as dLAM terms). If i is not among the free indices of
dABS t, then there exists a t0 such that dABS t = dLAM i t0. By the definition of
dLAM and the injectivity of dABS we further know that

t = sub (dV 0) (i + 1) (lift t0 0)

Proof. Prove by structural induction on t that there exists a t0 such that t =
sub (dV n) i (lift t0 n), where i is again suitably fresh. ��

Proof Pearl: De Bruijn Terms Really Do Work 215

Now we define →d’, the β-reduction relation for dB’. It mimics the traditional
statement in the λ-calculus for both contraction and congruence rules.

Definition 7 (dB’ β-reduction).

dAPP (dLAM i t) u →d’ sub u i t

t →d’ u
dAPP t z →d’ dAPP u z

t →d’ u
dAPP z t →d’ dAPP z u

t →d’ u
dLAM i t →d’ dLAM i u

4.2 dB’ vs λN
α : Nominal Reasoning with Indices

Thus far we have been working entirely with the dB type, where functions are
trivial to define by primitive recursion. Now we are faced with a choice: to define
a function from dB into Λα, or vice versa. The former choice is less appealing
because a choice of arbitrary fresh name would need to be made in the recursive
dABS-clause. One might imagine writing something like

f (dABS t) = LAM (fresh(t)) (f (sub (fresh(t)) 0 t))

where fresh(t) generates an index fresh for t. But this clause is not primitive
recursive, so one would, e.g., have to write an f that took an additional environ-
ment parameter specifying how the bound variables encountered so far should
be replaced. Instead, we take as our objective a bijective f : Λα → dB, satisfying
the following equations

f (VAR v) = dV v̂

f (APP M N) = dAPP (f M) (f N) (5)
f (LAM v M) = dLAM v̂ (f M)

The existence of such an f is not immediate because Λα is not a free algebra
(LAM is not injective). However, suitable recursion principles for this type do
exist, as shown in Pitts [14].

de Bruijn Terms are a Nominal Set. In order to use recursion principles for
Λα, it remains to be shown that the range of the desired function is a nominal set,
as in Section 3. A subtlety derives from the fact that we (necessarily must) send
free variables to suitably free indices. Permutation on free variables therefore
must be reflected on free indices. Conversely, bound indices are what they are
and must be left untouched.

Thus we are required to define a permutation action for de Bruijn terms, and it
can not be a trivial one (everywhere the identity, say). Inevitably, the complexity
arises in the dABS clause of the definition. When a permutation passes through an
abstraction, the free variables it is acting on are now at different index positions,
which means that the permutation has to be similarly adjusted.

216 M. Norrish and R. Vestergaard

Definition 8 (Permutation for dB). Let inc (“increment”) over permutations
be

inc [] = []

inc ((s1, s2) :: tl) = (̂̂s1 + 1, ̂̂s2 + 1) :: inc tl

The action of a permutation π on a term in dB (written π · t) is

π · (dV i) = dV (̂π(̂ı))
π · (dAPP t u) = dAPP (π · t) (π · u)
π · (dABS t) = dABS (inc(π) · t)

It is straightforward to show that this definition satisfies the requirements to
make dB a nominal set. The support for a value in type dB is as one might
expect: its set of free indices converted into strings via the hat-isomorphism.

Relating dLAM and Permutation. In order to admit (5), we must also char-
acterise the relationship between dLAM (which appears on the RHS of (5)), and
dB-permutation. As dLAM is defined in terms of lift and sub, analogous results
are required of these constants.

We first characterise the relationship between lift and permutation. This
requires the definition of an inc that is parameterised by the index below which
variables should not be touched, with the already-defined inc being inc0 and
with inci being the obvious generalisation.

Lemma 9 (Permutations and lift).

lift (π · t) n = (incn(π)) · (lift t n)

Proof. By induction on the structure of t. The result first needs

inc0 (incn π) = incn+1(inc0 π)

to be shown. This latter is just the sort of tedious result that the POPLmark
authors inveigh against so convincingly in [1]. (Note that it is also an equality on
the representing lists of pairs, not just extensionally in terms of the permutations’
effect on strings.) ��

This lemma leads to important results about sub, dLAM and →d’:

Theorem 10 (sub and dLAM have empty support; →d’ is equivariant).

π · (sub t j u) = sub (π · t) (̂π(ĵ)) (π · u)

π · (dLAM i t) = dLAM (̂π(̂ı)) (π · t)
π · t →d’ π · u ⇔ t →d’ u

See Lemma 17 below for the contrast with nsub.

Proof Pearl: De Bruijn Terms Really Do Work 217

Proof. The substitution result follows from a structural induction on t. The re-
sult for dLAM is then immediate. The result for →d’ follows from a rule induction
showing that t →d’ u ⇒ π · t →d’ π · u. The fact that all permutations have
inverses gives the other direction of the if-and-only-if. ��

Theorem 11 (dB is in bijection with Λα). There exists a bijective f : Λα →
dB with defining equations as in (5).

Proof. The existence of f now follows once dB is established as a nominal set,
and it is shown that

supp(dLAM i t) = supp(t)\{ı̂}

This in turn relies on results specifying the free variables (or support) of sub
and lift (the latter is from Nipkow).

Injectivity of f follows from a structural induction, and standard properties
of substitution. Surjectivity of f follows from a complete induction on the size
of the dB term onto which a value in Λα maps.4 ��

The Homomorphism between dB’ and λN
α . Given its construction, it is

not surprising that dB with relation →d’ is isomorphic to Λα and relation →β

Theorem 12.
M →β N ⇔ f(M)→d’ f(N)

Proof. Two straightforward rule inductions, one for each direction. Both results
rely on the fact that

f (M [v := N]) = sub (f N) v̂ (f M)

which is proved by “BVC-compatible” structural induction (see [12]) on M . ��

4.3 The Homomorphism Between dB and dB’

Now we must grasp the nettle, and get to grips with Nipkow’s definition of →d,
and the accompanying nsub function. We will establish that →d and →d’ are
in fact the same relation, giving us the identity as a homomorphism between dB
and dB’.

We begin by proving the following:

Lemma 13.

n ≤ i ⇒
sub u i t = nsub u n (sub (dV n) (i + 1) (lift t n))

Proof. By structural induction on t. ��
4 Complete induction allows us to assume the induction hypothesis for all smaller

terms, not just those of size one smaller.

218 M. Norrish and R. Vestergaard

Using this, we can show that

dAPP (dLAM i t) u →d sub u i t

which is to say that Nipkow’s relation →d does indeed reduce →d’-redexes in
the correct way. If we expand the definition of dLAM on the LHS, we see that the
redex is

dAPP (dABS (sub (dV 0) (i + 1) (lift t 0)) u)

Using Lemma 13 with n = 0 we get the desired identity. The same lemma is
used to show the “converse” relation, that

dAPP (dABS t) u →d’ nsub u 0 t

The congruence rules for dAPP are the same in both relations, so our remaining
task is to show that the different congruence rules for dABS and dLAM match up.

Abstraction Congruences Correspond. One of the two correspondences is
to show that

t→d’ u ⇒ dABS t→d’ dABS u

In order to apply the abstraction rule for →d’, we must show that the dABS
terms correspond to dLAM terms. Using Lemma 6, we can pick a suitably fresh
i, and show the existence of t0 and u0 such that

dABS t = dLAM i t0

dABS u = dLAM i u0

t = sub (dV 0) (i + 1) (lift t0 0)
u = sub (dV 0) (i + 1) (lift u0 0)

We have t→d’ u, and want t0 →d’ u0, from which the abstraction rule for →d’

would give us dABS t →d’ dABSu. The problem here is that our assumption is
about a large, complicated term, and we want to conclude that the reduction
occurs between sub-terms (t0 and u0). Standard proofs by rule induction would
handle the reverse situation well (results of the form t → u ⇒ sub w i t →
sub w i u), but our goal looks like the converse.

The Nominal “Aha!”. The solution to our problem is to realise that both
the substitution and the lifting that occur in terms t and u are no more than
variable permutations, and that they are in fact the same permutation applied
to t0 and u0. Then, we will express our assumption t →d’ u as π · t0 →d’ π · u0

for some permutation π. Because →d’ is equivariant (Theorem 10), this gives
t0 →d’ u0 as desired.

That a substitution of a fresh variable into a term is a permutation is an easy
induction. The interest comes in showing that a lifting is also a permutation.
First we define a function lift-pm that constructs a “lifting permutation”. Given
a lower bound � and an upper bound m, lift-pm(�,m) constructs the permutation
that maps ı̂ to î + 1 if � ≤ i ≤ m, maps m̂ + 1 back to �̂, and preserves the values
of all other arguments.

Proof Pearl: De Bruijn Terms Really Do Work 219

Lemma 14 (Lifting is a permutation). If n is at least as large as the largest
free index in t, then

lift t m = (lift-pm(m,n)) · t

Proof. By structural induction on t. The dABS case requires another tedious
result about index-maneuvering, namely that

inc0(lift-pm(m,n)) = lift-pm(m + 1, n + 1)

Thankfully, the result does not need to be generalised to cover the behaviour of
inci. ��

We can now prove that abstraction congruences for any equivariant reduction
relation must correspond:

Theorem 15 (Abstraction Congruences Correspond). If R is equivari-
ant, that is R (π · t) (π · u)⇔ R t u, then

R t u
R (dABS t) (dABS u)

⇔ R t u
R (dLAM i t) (dLAM i u)

where one can read each inference rule as an implication universally quantified
(over t, u and i) at the top level. The generality of the result is useful when we
consider η-reduction.

Proof. Immediate, given Lemma 14, and Lemma 6. ��

Lemma 16 (→d⊆→d’).
t→d u ⇒ t→d’ u

Proof. A rule induction over the definition of →d. The redex case is handled by
Lemma 13 (as already discussed). The dAPP congruence cases are immediate; the
dABS congruence case is as just discussed (by Lemma 14, and Theorem 10). ��

The Other Inclusion. Showing →d’⊆→d, we know that →d can perform both
→d’’s redex-reductions (from Lemma 13), and the application congruences. To
show the abstraction congruence case, we need to show that →d is equivariant
in order to apply Theorem 15.

But the definition of →d involves nsub, so we have to characterise how nsub
behaves when it interacts with a permutation. This prompts a rather incompre-
hensible lemma (note the odd way in which the permutation π does not affect
the index i):

Lemma 17.

π · (nsub t i u) = nsub (π · t) i (inci(π) · u)

220 M. Norrish and R. Vestergaard

Proof. By structural induction on u. The dV case requires a number of splits
on the ordering possibilities (<, =, >) between the index of the variable and i.
The dABS case uses Lemma 9. ��

Now we can conclude that →d is equivariant (by rule induction), and follow
immediately with

Lemma 18 (→d’⊆→d).
t→d’ u ⇒ t→d u

Theorem 19 (Relations →d and →d’ Coincide).

t→d’ u ⇔ t→d u

Proof. Combining Lemmas 16 and 18. ��

Theorem 20 (Isomorphism). The types dB and λN
α , with their respective

reduction relations, →d and →β, are isomorphic, as witnessed by the bijective f :

M →β N ⇔ f(M)→d f(N)

Proof. From Theorems 12 and 19. ��

4.4 Bonus: η-Reduction

Nipkow [11] also defines a notion of η-reduction for his terms. The congruence
rules are standard. Writing →ne for “Nipkow’s η”, the redex rule is

0 	∈ dFV(t)
dABS (dAPP t (dV 0)) →ne nsub u 0 t

where the choice of u is immaterial. (Because 0 is not a free index of t, nsub is
used only to decrement the free indices of t, which is required as t moves out
from underneath an abstraction.)

Using exactly the same techniques as before, it is easy to define a notion of
reduction that better emulates the definition in the λ-calculus. This relation
(written →e), has contraction rule

i 	∈ dFV(t)
dLAM i (dAPP t (dV i)) →e t

It is straightforward to show that →e corresponds to the η-reduction rule in Λα.
Thanks to Theorem 15, showing that →ne and →e correspond only requires us
to show the equivalence of the redex rules, and that→ne and→e are equivariant.
These proofs are mainly straightforward. We use some of the lemmas stated in
Nipkow, among them

nsub u n (lift t n) = t

We also state and prove the similar

n 	∈ dFV(t) ⇒ lift (nsub u n t) n = t

Proof Pearl: De Bruijn Terms Really Do Work 221

5 Conclusion

We have proved what everyone knew (or hoped) to be true from the outset.
However, the proofs we have described are not entirely trivial, suggesting that
they were indeed worth doing. In fact, the proofs are only made in the least
palatable by using insights from the theory of nominal sets.

This theory helps in two important ways: it makes it possible to define the
bijection f from Λα to dB in a natural style; and it helps us perform many of the
resulting proofs. In particular, the proofs are helped greatly by the realisation
that lift is a permutation. To best exploit this, we needed to prove that our
reduction relations →d and →d’ were equivariant, which in turn prompted the
curious Lemma 17.

We hope that this work encourages others to extend the web of equivalence
results in Figure 1, which we believe to be a valuable summary of existing work in
its own right. In the near future, we hope to consider, for example, the two-sorted
calculus of McKinna and Pollack [10], and the weak HOAS style construction of
the λ-calculus in Urban and Tasson [16].

Finally, we hope this work will go some way towards bringing about the day
when reasoning about de Bruijn terms is never again necessary.

Acknowledgements. NICTA is funded by the Australian Government’s Backing
Australia’s Ability initiative, in part through the Australian Research Council.
We would like to thank James Cheney for valuable discussions in this area, and
comments on this paper in particular.

Availability. The sources mechanising this paper’s proofs are distributed as part
of the HOL4 system, available from http://hol.sourceforge.net. (The proofs
for β are part of the latest public release (January 2007); the η proofs are in the
publicly accessible CVS repository.)

References

1. Aydemir, B.E., Bohannon, A., Fairbairn, M., Nathan Foster, J., Pierce, B.C.,
Sewell, P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized
metatheory for the masses: the POPLMARK. In: Hurd, J., Melham, T. (eds.)
TPHOLs 2005. LNCS, vol. 3603, Springer, Heidelberg (2005)

2. Barendregt, H.P.: The Lambda Calculus: its Syntax and Semantics. Studies in
Logic and the Foundations of Mathematics, vol. 103. revised edn. Elsevier, Ams-
terdam (1984)

3. Curry, H.B., Feys, R.: Combinatory Logic. North-Holland, Amsterdam (1958)
4. de Bruijn, N.G.: Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser Theorem.
Indag. Math. 34, 381–392 (1972)

5. Gordon, A.D.: A mechanisation of name-carrying syntax up to alpha-conversion.
In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 413–425.
Springer, Heidelberg (1994)

http://hol.sourceforge.net

222 M. Norrish and R. Vestergaard

6. Gordon, A.D., Melham, T.: Five axioms of alpha conversion. In: von Wright, J.,
Harrison, J., Grundy, J. (eds.) TPHOLs 1996. LNCS, vol. 1125, pp. 173–190.
Springer, Heidelberg (1996)

7. Roger Hindley, J.: The Church-Rosser Property and a Result in Combinatory Logic.
PhD thesis, University of Newcastle upon Tyne (1964)

8. Homeier, P.: A proof of the Church-Rosser theorem for the lambda calculus in
higher order logic. In: Boulton, R.J., Jackson, P.B. (eds.) TPHOLs 2001. LNCS,
vol. 2152, pp. 207–222. Springer, Heidelberg (2001)

9. Huet, G.P.: Residual theory in lambda-calculus: a formal development. Journal of
Functional Programming 4(3), 371–394 (1994)

10. McKinna, J., Pollack, R.: Some lambda calculus and type theory formalized. Jour-
nal of Automated Reasoning 23(3–4), 373–409 (1999)

11. Nipkow, T.: More Church-Rosser proofs (in Isabelle/HOL). Journal of Automated
Reasoning 26, 51–66 (2001)

12. Norrish, M.: Mechanising λ-calculus using a classical first order theory of terms
with permutations. Higher-Order and Symbolic Computation 19, 169–195 (2006)

13. Norrish, M., Vestergaard, R.: Structural preservation and reflection of diagrams.
Technical Report IS-RR-2006-011, JAIST (2006)

14. Pitts, A.M.: Alpha-structural recursion and induction. Journal of the ACM 53(3),
459–506 (2006)

15. Shankar, N.: A mechanical proof of the Church-Rosser theorem. Journal of the
ACM 35(3), 475–522 (1988)

16. Urban, C., Tasson, C.: Nominal techniques in Isabelle/HOL. In: Nieuwenhuis, R.
(ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 38–53.
Springer, Heidelberg (2005)

17. Vestergaard, R.: The Primitive Proof Theory of the λ-Calculus. PhD thesis, School
of Mathematical and Computer Sciences, Heriot-Watt University (2003)

Proof Pearl: Looping Around the Orbit

Steven Obua

Technische Universität München
D-85748 Garching, Boltzmannstr. 3, Germany

obua@in.tum.de
http://www4.in.tum.de/~obua

Abstract. We reexamine the While combinator of higher-order logic
(HOL) and introduce the For combinator. We argue that both com-
binators should be part of the toolbox of any HOL practitioner, not
only because they make efficient computations within HOL possible, but
also because they facilitate elegant inductive reasoning about loops. We
present two examples that support this argument.

1 Introduction

Higher-order logic (HOL), as implemented for example in the theorem proving
assistant Isabelle, is a logic of total functions. Despite that it is also possible
to reason about partial functions in HOL, an issue that crops up quickly when
the functions under consideration originate from functional programs [2]. In this
paper we are concerned with those partial HOL functions which correspond to
while and for loops in imperative languages like C. We present a methodol-
ogy for reasoning about and computing with them that rests on treating these
functions as parameterizations of two combinators, the While and the For com-
binator. The For combinator is a derivation of the While combinator so that
the termination relevant part of the state of the computation can be treated
separately.

The While combinator itself is well-known in the HOL community [2,3,4].
Nevertheless, the same community shuns its direct use whenever possible. This
is due to the fact that it is widely believed that reasoning about the While
combinator must be done using a rather awkward Hoare-style rule which mingles
termination and partial correctness issues. That this is not so can be shown by
specializing also well-known techniques for dealing with partial functions [1,2]
to the While combinator case. In doing so, the notion of the orbit of a map
finds a natural application. It allows to settle the termination issue in a concrete
enough fashion to deal with simple loops, so that one can concentrate on solving
the partial correctness issue using ordinary inductive reasoning.

We illustrate this point by reexamining the example of a find function from
[3,4]. We then proceed to the example that actually inspired this paper; it deals
with the calculation of simple properties of planar graphs that are represented
as hypermaps. The later example also illustrates how valuable loops are for
calculations on concrete data.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 223–231, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

224 S. Obua

2 The While Combinator

Here is a prototypical code snippet in the programming language C which em-
ploys a while loop:

s = s0;
while (Continue(s))

s = f(s);
s1 = s;

The variable s is initialized with the value of s0; then, as long as the condition
Continue(s) is met, s is updated with f(s). Upon exiting the loop the resulting
value s is written to the variable s1. If the loop does not terminate, the line
s1 = s will never be executed.

The While combinator models the above loop in HOL. Its signature is

While :: (α→ bool)→ (α→ α) → α→ α, (1)

and its relation to the above code snippet is given by

s1 = While continue f s0. (2)

There is a catch, though; like all HOL functions, While is total. Therefore it must
return some value, even if the loop does not terminate. This problem is usually
solved by returning arbitrary in the nonterminating case, where arbitrary is a
polymorphic constant without any definition.

We will not concern ourselves with the details of defining the While combi-
nator. We used the function package for defining partial functions by Krauss [1]
which he has recently extended to deal with tail-recursive functions in a spe-
cial way. Two theorems characterize the While combinator. The first theorem is
well-known and describes While as a tail-recursive function:

While continue f s = if continue s then While continue f (f s) else s. (3)

It is generated automatically by the function package. The second one allows
to reason inductively about While. In order to state it, we first introduce the
notion of the orbit of a function at a given point,

Orbit f s = {fn s |n ∈ IN} = {s, f s, f (f s), . . .}, (4)

and use it to define the predicate terminates:

terminates (continue, f, s) = ∃ t. t ∈ Orbit f s ∧ ¬ (continue t) (5)

We can now state the induction rule:

terminates (continue, f, s)
∀ x. (terminates (continue, f, x) ∧ (continue x −→ P (f x))) −→ P x

P s (6)

This rule is proven by improving on the induction rule which is generated by the
function package; most importantly, we replace the abstract domain While-dom

Proof Pearl: Looping Around the Orbit 225

which is defined as the accessible part of the call-graph relation by the simpler
and more concrete terminates predicate.

A more compact, but still quite useful induction rule can be derived from (6):

terminates (continue, f, s) ∀ x. (continue x −→ P (f x)) −→ P x
P s (7)

Rule (7) indicates even more clearly how the issues of termination and partial
correctness can be treated separately when reasoning about While.

Compare these two pretty induction rules with the following Hoare-style total
correctness rule, which is usually used for reasoning about While:

A s ∀x. A x −→ continue x −→ A (f x)
∀x. A x −→ ¬ (continue x) −→ B x

R is well-founded ∀x. A x −→ continue x −→ (f x, x) ∈ R
B (While continue f s) (8)

This rule mingles termination and partial correctness issues, and is therefore
often more difficult to handle. No wonder it is introduced in [3] with the warning

...termination rears its ugly head again.

Note that (8) is easily derived from (7) by setting

P s = (A s −→ B (While continue f s)). (9)

3 Example: Finding a Fixpoint

A simple example of the usage of While is the find function which searches for
a fixpoint of a function f by repeatedly applying f. It should obey the equation

find f x = if f x = x then x else find f (f x). (10)

We use the While combinator to define find:

find f x = While (λx. f x 	= x) f x. (11)

A trivial observation is that above definition can be written in shorter notation:

find f = While (λx. f x 	= x) f. (12)

The point is: If you cannot rewrite your loop in this shorter notation that does
not mention the loop state explicitly, then you are probably in trouble and you
should rethink your definition, as problems may arise later when reasoning about
your loop by induction.

Equation (10) follows directly and automatically from (3) and (11). It can
be used for calculations on concrete data, for example to show the following
theorem:

f 0 = 1 f 1 = 2 f 2 = 2
find f 0 = 2 (13)

226 S. Obua

In case of termination, we expect the result of find f x to be a fixpoint of f:

terminates (λx. f x 	= x, f, x)
f (find f x) = find f x (14)

We prove (14) by using the induction rule (7), where

P s = (f (find f s) = find f s). (15)

Because we assume termination in (14), we only need to show the second as-
sumption in (7): for any x, show P x, given that

continue x implies P (f x). (16)

We do this by case distinction:

– If continue x does not hold, then we have f x = x by just using the definition
of continue in the find case. Using (10), we obtain find f x = x. Therefore
P x rewrites to f x = x, which we assumed to be true in this branch of our
case distinction.

– If continue x does hold, we can again use (10), obtaining find f x = find f
(f x). Rewriting P x with this identity yields P (f x), which we know to be
true because of (16).

It is hard to imagine a simpler and more straightforward proof of (14) than the
above one. Compare this to the presentation in [3, 183-186], where the direct
definition of find via the While combinator is regarded a necessary evil to achieve
executability. Also, the correctness result obtained there has a much stronger
termination assumption than our theorem. We did not need to think at all
about the termination assumption of our theorem: after all, we know when a
loop terminates, and this knowledge is encoded once and for all in the definition
of the terminates predicate.

From a computational point of view, the correctness result (14) is not very
useful: Using (13) together with (14) (and ignoring the termination assumption,
which makes matters only worse), we obtain the theorem

f 0 = 1 f 1 = 2 f 2 = 2
f 2 = 2 (17)

which is probably not the most useful of theorems.
The computational perspective will brighten up with our next example. But

first, we will introduce a useful specialization of the While combinator.

4 The For Combinator

Look at the following code snippet in the programming language C:

for (i = i0, a = a0; Continue(i); i = f(i))
a = A(i, a);

a1 = a;

Proof Pearl: Looping Around the Orbit 227

Here the state of the loop is split into two variables, the loop index i and the
accumulator a. After the initialization of i and a the loop iterates as long as the
condition Continue(i) holds. After each loop step a is updated with A(i, a)
and i with f(i), respectively. Upon exiting the loop the loop index is discarded
and the accumulator stored in a1.

We call the combinator that models the above loop the For combinator. Its
signature is

For :: (α→ bool)→ (α→ α) → (α→ β → β) → α→ β → β, (18)

and its relation to the above code snippet is given by

a1 = For continue f A i0 a0. (19)

It can be defined directly using the While combinator:

For continue f A i0 a0 =
fst (While (λ (a, i). continue i) (λ (a, i). (A i a, f i)) (a0, i0)). (20)

Of course, this definition should never be used except for proving the simplifica-
tion and induction rules of For. Here is the simplification rule:

For continue f A i a =
if continue i then For continue f A (f i) (A i a) else a. (21)

Its proof is immediate using the simplification rule (3) for the While combinator.
Why is the For combinator useful? Could we not just use While instead? The

answer should be obvious: It often simplifies reasoning about the termination
of the loop because it splits the loop state into two components, one which is
relevant for termination, the loop index, and one which is not, the accumulator.
This becomes apparent when looking at its induction rule:

terminates (continue, f, j)
∀ i a. (terminates (continue, f, i) ∧ (continue i −→ P (f i) (A i a))) −→ P i a

P j b (22)

Note that the terminates predicate only mentions the loop index, but not the
accumulator. The proof of the induction rule follows from (6) and the theorem

terminates (λ (a, i). continue i, λ (a, i). (A i a, f i), (a, i)) =
terminates (continue, f, i). (23)

Again, there is a more compact form of the above rule:

terminates (continue, f, j) ∀ i a. continue i −→ P (f i) (A i a) −→ P i a
P j b (24)

Now we are equipped to deal with our next (and last) example.

228 S. Obua

5 Example: Planar Graphs

Recently, planar graphs have received attention for being at the heart of two
large-scale verification efforts, the completed proof of the Four Color Theorem
by Gonthier [5], and the ongoing Flyspeck Project [7], which aims at formalizing
Hales’s proof of the Kepler Conjecture [8]. An important part of the Flyspeck
Project has already been completed by Nipkow and Bauer [6], the enumeration
of all tame graphs, which are special planar graphs. As a planar graph consists
of nodes, edges and faces, one possibility to represent a planar graph would be a
list of faces, where each face is again a list of nodes, leaving the representation of
the edges implicit in the arrangement of nodes. This is the representation used
in [6]. Gonthier instead favors the hypermap representation. It builds on the
notion of dart. Darts can be viewed as the oriented edges of a graph (Gonthier
chooses a different, but equivalent, point of view; he sees them as angles be-
tween incident edges of the same face). Let us assume that we are given three
permutations e, n and f of a finite set D of darts. Two darts α and β are called
equivalent with respect to a permutation p of D iff ∃n. α = pn β holds. The
such induced relation on darts is an equivalence relation, and we write |p| for
its number of equivalence classes. If now the given three permutations fulfill the
equations

e = e−1 = n ◦ f and 2 |e| = |D| and |e|+ |f |+ |n| = |D|+ 2, (25)

then we can construct a connected planar graph in the following way:

1. The nodes, edges and faces are the equivalence classes of n, e and f .
2. An edge E = {δ1, δ2} consists therefore of the two oriented edges δ1 and δ2.
3. There is an oriented edge δ from node N1 to node N2 iff δ ∈ N1 and e δ ∈ N2.
4. An oriented edge δ belongs to a face F iff δ ∈ F .

0

1

4

5 6

7

8

11

10

9
2

3

Fig. 1. A planar graph

Proof Pearl: Looping Around the Orbit 229

Consider the planar graph in Fig. 1. Each dart is denoted by a number, and we
have D = {0, 1, 2, . . . , 11}. The permutations are given by

f = (0 �→ 1 �→ 2 �→ 3 �→ 4, 5 �→ 6 �→ 7, 8 �→ 9 �→ 10 �→ 11),
e = (0 �→ 11, 1 �→ 10, 2 �→ 9, 3 �→ 6, 4 �→ 5, 7 �→ 8),
n = (0 �→ 5 �→ 8, 1 �→ 11, 2 �→ 10, 3 �→ 9 �→ 7, 4 �→ 6).

(26)

It might be instructive to check the equations (25).
Darts are also viewed as faces, nodes and edges. For example, there are three

faces, face 0, face 5, and face 8 (to see why there are three faces, not two, imagine
how the graph looks when drawn on a sphere instead of in the plane); and face
7 is the same as face 5.

Each one of the three permutations can be expressed in HOL as function
of type nat → nat. Given such representations face, the face permutation, and
node, the node permutation, we are interested in two simple calculations:

– Given a dart representing a node, calculate the number of edges that are
incident with the node.

– Given a dart representing a face, calculate the number of edges that border
the face.

Both calculations amount to the same task:

Given a function h :: α→ α and a value x :: α, calculate |Orbit h x|.

We can express this calculation as a for loop,

card-orbit h x = For (λ y. y 	= x) h (λ y a. a + 1) (h x) 1, (27)

and calculate/prove in HOL

card-orbit face 0 = 5 and card-orbit node 0 = 3, (28)

therefore we expect face 0 to be bordered by 5 edges, and node 0 to be incident
with 3 edges. To show that these expectations are justified, we need to prove

terminates (λ y. y 	= x, h, h x) −→ card-orbit h x = |Orbit h x|. (29)

So, how do we prove this? A direct reasoning by induction is problematic for
two reasons.

First, we cannot “curry away” the loop state in (27), as we could do for
our previous example by moving from (11) to (12). We can remedy this by
introducing a more general loop:

card-section continue h y a = For continue h (λ y a. a + 1) y a. (30)

Note that we not only generalized the loop state, but also the continuation
condition. This is not really necessary, in principle you could just as well work
with the concrete continuation condition.

230 S. Obua

Second, the reason why (29) is correct cannot be seen by going from one loop
iteration to the next, as the loop accumulator is just a counter. The reason why
incrementing the loop accumulator is the right action to take is that the current
loop index is different from all other loop indices that have been encountered
before. But this loop invariant cannot be expressed in terms of the loop state,
and is therefore lost for a proof by induction that aims at proving (29) directly.
We remedy this by also “generalizing” the accumulator from a number to a set:

section continue h y A = For continue h (λ y A. A ∪ {y}) y A. (31)

To state and prove the correctness of section, we need a more general concept
than what Orbit provides. We define:

Section continue h y = {fn y |n ∈ IN ∧ ∀ m ≤ n. continue (fm y)}. (32)

An easy loop induction (that is, an induction based on (24)) yields:

terminates (continue, h, y)
section continue h y A = A ∪ Section continue h y (33)

Basic considerations lead to the theorem

{x} ∪ Section (λ y. y 	= x) h (h x) = Orbit h x, (34)

and together with (33) we arrive at

terminates (λ y. y 	= x, h, h x)
section (λ y. y 	= x) h (h x) {x} = Orbit h x (35)

All we need to do now is to connect card-section with section, and we would be
done with the proof of (29)! The following theorem does exactly that:

terminates (continue, h, y) finite A
card-section continue h y |A| =

|section continue h y A|+ |A ∩ Section continue h y| (36)

Its proof is again straightforward by loop induction, this time based on (22)
instead of (24). Here the strength of the For combinator shows, because it em-
phasizes the similarities of section and card-section which are different only in
the accumulator they use, but equal with respect to termination issues.

We are returning now to the computational point of view, as earlier promised.
How can we use (29) for computations on concrete data within HOL? Well, this
is obvious enough; combining for example (28) with (29) we obtain the theorem

terminates (λ y. y 	= 0, face, 1) terminates (λ y. y 	= 0, node, 5)
|Orbit face 0| = 5 ∧ |Orbit node 0| = 3 (37)

This looks already pretty useful, but we can do even better. Note that the
termination conditions can be calculated themselves! This is possible because
the terminates predicate is governed by the general recursion equation

Proof Pearl: Looping Around the Orbit 231

terminates (continue, h, x) =
if continue x then terminates (continue, h, h x) else True. (38)

“Calculating away” the termination conditions in (37) leaves us with

|Orbit face 0| = 5 ∧ |Orbit node 0| = 3. (39)

6 Conclusion

We showed that both While and For are natural, computational useful and
elegant tools for defining and reasoning about loops. Natural, because every pro-
grammer knows intuitively how to handle them, computational useful, because
they allow for computing with partial functions on concrete data in HOL with-
out worrying about termination if the concrete data induces termination, and
elegant, because they come with clean induction rules.

Their main advantage over current automated tools for defining partial func-
tions like the function package [1] is that the termination conditions of the loops
defined by them can be automatically derived as simple parameterizations of the
termination conditions of the respective combinator. Especially the For combi-
nator shines here. Consider for example the functions card-section and section:
They would have been assigned different termination domains card-section-dom
and section-dom by the function package, although they obviously have the same
termination behaviour.

All theorems and proofs of this paper have been formalized in Isabelle/HOL [3],
and can be obtained from [9].

Acknowledgement. Thanks to Alexander Krauss for explaining the details of
his function package and numerous issues concerning partial functions in HOL.
Also thanks to Norbert Schirmer for illuminating the Hoare-logic point of view.

References

1. Krauss, A.: Partial Recursive Functions in Higher-Order Logic. In: Furbach, U.,
Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

2. Owens, S., Slind, K.: Adapting Functional Programs to Higher-Order Logic (sub-
mitted)

3. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic. Springer, Heidelberg (2002)

4. Berghofer, S., Nipkow, T.: Executing Higher-Order Logic. In: Callaghan, P., Luo, Z.,
McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, Springer, Heidelberg
(2002)

5. Gonthier, G.: A computer-checked proof of the Four Color Theorem,http://
research.microsoft.com/ gonthier/4colproof.pdf

6. Nipkow,T., Bauer, G., Schultz, P.: Flyspeck I: Tame Graphs. In:Furbach,U., Shankar,
N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

7. Hales, T.: The Flyspeck Project, http://www.math.pitt.edu/~thales/flyspeck/
8. Hales, T.: A proof of the Kepler conjecture. Annals of Mathematics 162, 1065–1185
9. Looping around the Orbit, http://www4.in.tum.de/~obua/looping/

http://research.microsoft.com/~gonthier/4colproof.pdf
http://research.microsoft.com/~gonthier/4colproof.pdf
http://www.math.pitt.edu/~thales/flyspeck/
http://www4.in.tum.de/~obua/looping/

Source-Level Proof Reconstruction for

Interactive Theorem Proving

Lawrence C. Paulson and Kong Woei Susanto

Computer Laboratory, University of Cambridge, England
LP15@cam.ac.uk, kongwoei@gmail.com

Abstract. Interactive proof assistants should verify the proofs they re-
ceive from automatic theorem provers. Normally this proof reconstruc-
tion takes place internally, forming part of the integration between the
two tools. We have implemented source-level proof reconstruction: reso-
lution proofs are automatically translated to Isabelle proof scripts. Users
can insert this text into their proof development or (if they wish) exam-
ine it manually. Each step of a proof is justified by calling Hurd’s Metis
prover, which we have ported to Isabelle. A recurrent issue in this project
is the treatment of Isabelle’s axiomatic type classes.

1 Introduction

Interactive theorem proving is notoriously labour intensive. Researchers are ac-
tively developing many verification technologies that are fully automatic, such
as model checkers and SMT solvers. However, interactive theorem provers are
unrivalled for their rich assertion languages that support quantifiers, recursive
definitions and set notation. Interactive theorem provers also excel at managing
elaborate hierarchies of formal developments. Much recent work concerns adding
automation to interactive theorem provers to increase their users’ productivity.

Correctness is paramount when external tools are coupled to interactive theo-
rem provers. Although most verification tools appear to be highly reliable, errors
can easily be introduced in the interface code, which translates problems from
the interactive prover to the automatic tool. The translations themselves can be
unsound: Meng and Paulson [9] show that using a compact translation improves
the external tool’s success rate, but admits the possibility of unsound proofs.
Finally, many interactive provers adhere to the LCF philosophy [2] that all in-
ferences must be checked by a small proof kernel. For all of these reasons, the
interactive prover must check the automatic tool’s output.

This paper concerns proof reconstruction at the source level. Rather than
checking the proof behind the scenes, we deliver an actual piece of proof script.
Source-level reconstruction is particularly appropriate when the external tool
needs large computational resources: the user can write the proof script with
the help of a powerful, multi-core workstation, and later replay it on an elderly
laptop. A visible proof script also gives the highest possible confidence of cor-
rectness, as the reasoning is broken down into small steps that can be examined
by hand.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 232–245, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Source-Level Proof Reconstruction for Interactive Theorem Proving 233

Our particular interest lies in automatic theorem provers (ATPs) for first-
order logic. We have elsewhere described [11] an interface between Isabelle and
resolution theorem provers. Until now, we have been able to call external provers
from Isabelle but could not do much with the result. We can now perform proof
reconstruction by parsing the output of any ATP that delivers proofs in TSTP
format [21]. Each inference is justified by a call to Hurd’s Metis prover [5].

Paper outline. We begin (§2) by presenting the background material: Isabelle
and our project to link it with automatic theorem provers. We then describe our
experience of porting Metis to Isabelle (§3). There follows a lengthy presentation
of how we generate single-step proof scripts (§4), with additional examples (§5).
We finally give brief conclusions (§6).

2 Background

Isabelle/HOL [14] is an interactive theorem prover for higher-order logic, built
upon the Isabelle logical framework [16]. (Henceforth, we shall use Isabelle and
Isabelle/HOL synonymously.) Isabelle has been used for countless projects, such
as the mechanization of the prime number theorem by Avigad et al. [1]. Isabelle’s
version of higher-order logic has many similarities with that used in HOL4 [15]
and HOL Light [3]. All are based on polymorphic simple type theory, without
subtyping or dependent types. Polymorphism is expressed by free type variables
with implicit universal quantification, so a theorem like rev (rev xs) = xs
is universally quantified both in the list xs and in the anonymous type of its
elements. None of these tools offer explicit quantification over type variables [7].

2.1 Order-Sorted Polymorphism

Order-sorted polymorphism [12] distinguishes Isabelle’s version of higher-order
logic from other versions. In Isabelle, a type may belong to any finite number of
type classes. This idea, which gives a controlled treatment of overloading, orig-
inates with Wadler and Blott [22]. It is particularly powerful in an interactive
theorem prover, where type classes can be specified using axioms [24]. Finite
types, for example, can be characterized by an axiom stating that there exists a
list enumerating all of the type’s elements. We can then prove individual types to
be finite by exhibiting such lists. We can even prove that certain type construc-
tors, such as Cartesian product, preserve the property of finiteness; the proof
requires exhibiting a construction that enumerates the elements of the product
given enumerations of its component types.

Orderings provide other examples of type classes. The class order of partial
orderings consists of all types equipped with a reflexive, anti-symmetric and
transitive relation ≤. The class linorder of linear orderings extends order with
the axiom x ≤ y ∨ y ≤ x. To prove that the type of integers belongs to class
linorder, we define a suitable instance of ≤ and prove suitable instances of
the four axioms. The definition of ≤ on lists can refer to ≤ on list elements.
The lexicographic ordering on lists yields a partial order if the list elements are

234 L.C. Paulson and K.W. Susanto

partially ordered and a linear order if they are linearly ordered. We declare such
facts to Isabelle as follows:

instance list :: (order) order
...

instance list :: (linorder) linorder
...

Here, . . . designates the proofs of the type class axioms, which typically refer
to the corresponding properties of the element type. Paulson has shown how
axiomatic type classes allow the various numeric types such as the integers, ra-
tionals and reals to be formalized without proving separate instances of algebraic
properties for each type [17].

Axiomatic type classes are powerful, but they complicate the task of using
external verification tools to prove Isabelle subgoals. For one thing, we must en-
sure that the automatic tools can reason with type classes as well as Isabelle can.
Isabelle automatically applies its database of instance declarations to specific
cases; for example, it can automatically recognize that lists of lists of integers
belong to class linorder. Also, Isabelle automatically applies forgetful inclusions,
for example that linorder is a subclass of order.

Incorrect treatment of type classes compromises soundness. Hurd [5] reports
that types can be ignored entirely when integrating HOL4 with an automatic
theorem prover. He describes a potential unsoundness by exhibiting a polymor-
phic “Russell constant” R such that RR = ¬(RR) if types are ignored. (With
types, the fatal equation cannot even be written.) He uses proof reconstruction
to detect unsoundness, which he says “occurs in less than 1% of all HOL sub-
goals”. Omitting type information is unthinkable in the presence of axiomatic
type classes. They govern the properties that may be assumed of Isabelle’s nu-
merous overloaded functions, such as orderings and the arithmetic operators.
Type information is necessary to stop the ATP from assuming, for example,
that the subset relation is a linear ordering. Such errors are far more likely than
the automatic discovery of Russell’s paradox. Although unsound proofs cannot
survive proof reconstruction, they can prevent sound proofs from being found.

We have described our first-order formalization of type information else-
where [11].

– Types are first-order terms. A type operator taking n operands is simply
an n-ary function symbol, while type variables are first-order variables. For
example, the type of lists of integers might be tc_list(tc_int).

– Type classes are first-order predicates. For example, the claim that the
type of booleans is finite might be class_finite(tc_bool). To express an
instance declaration, for example that the Cartesian product of two finite
types is itself finite, we use the obvious implication.

– Type class inclusions, such as that every linear ordering is a partial ordering,
are formalized as implications between two atomic formulas.

As we are using resolution theorem provers, we use clause form: disjunctions of
possibly negated atomic formulas. The formalization of the type class hierarchy

Source-Level Proof Reconstruction for Interactive Theorem Proving 235

is close to clause form already, as it consists of implications between atomic for-
mulas. Since resolution uses proof by contradiction, the conjecture to be proved
is negated before it is translated into clauses; existing theorems being used as
lemmas are also translated. In both cases, we have to formalize class constraints
on the type variables appearing in a clause. (For examples, see §4.2 below.)

– Because the conjecture has been negated, the implicit universal quantifica-
tion over its type variables becomes existential. Type variables in the con-
jecture are Skolemized, yielding new constants. Class constraints on these
type variables become additional facts, such as class_finite(t_a).

– Type variables in a lemma remain universally quantified. Type constraints
in a clause take the form of additional negative literals, with the intuitive
meaning such as “if class_finite(T) then . . . ”.

Although this formalization is straightforward, it complicates the translations
between higher-order logic and first-order logic. Proof reconstruction has to take
first-order clauses that contain minimal type information and somehow recover as
much of it as possible. The parts of the proof that relate to the type system must
then be deleted, as they represent reasoning that Isabelle carries out implicitly.
References to specific literals in a clause must be adjusted to account for such
deletions.

2.2 The Interface Between Isabelle and ATPs

The Isabelle-ATP interface is designed to give users push-button assistance.
When invoked, it examines its entire database of approximately 7000 theorems,
selecting several hundred that appear to be relevant to the problem [10]. If
the problem contains higher-order features such as functions or booleans being
passed as arguments, then it is translated into a first-order form [9]. An auto-
matic theorem prover is then invoked: currently, either E [19], SPASS [23] or
Vampire [18]. The prover is given a considerable amount of processor time, per-
haps 60 seconds per subgoal. Because this is much longer than users may want to
wait, the prover runs in the background, allowing the user to continue working
interactively. Responses from the ATP, whether successful or not, are reported
when they appear.

The first working version of this system [11] could occasionally reconstruct
Isabelle proofs, but it was problematical. It worked by reading the output of
SPASS and emulating each SPASS inference rule in Isabelle. SPASS used many
inference rules that differed slightly from one another. The information it de-
livered was incomplete, omitting details such as which subterm of which literal
had been rewritten. Finally, SPASS re-ordered the literals in the clauses it was
given.

In view of these difficulties, we decided instead to base proof reconstruction
on Hurd’s Metis prover, described below. We would parse an ATP’s output
merely to extract the names of the lemmas used; then, we would deliver that list
of lemmas to Metis. This was a sensible division of labour: leading ATPs can
cope with problems that contain hundreds of clauses; Metis is relatively easy to
integrate with interactive theorem provers.

236 L.C. Paulson and K.W. Susanto

However, we foresaw that Metis alone would often be insufficient. We per-
formed extensive experiments [8] with 285 first-order problems. We were able
to put nearly all of these problems into a minimal form by using an ATP to
identify the necessary axioms. These minimal problems were similar to those
that Metis would have to prove if we relied on it for proof reconstruction. Metis
was unable to prove 8% of them in 10 seconds1 and even given 60 seconds failed
to prove 5%. It is a shame to let proof reconstruction fail for so many problems,
especially as they are likely to be the most difficult ones. Another objection is
that it is wasteful to use an ATP merely as a relevance filter when it delivers
full proofs. We decided to parse these proofs and reconstruct them line by line,
but instead of emulating an ATP’s specific inference rules, we would justify each
line by calling Metis. That project is the main subject of this paper.

3 Porting Metis to Isabelle

Hurd has written his Metis prover [5] in order to add further automation to
HOL4. He has already shown [4] how difficult it is to harness existing ATPs
for this purpose: ambiguities in their output complicate proof reconstruction.
Although Metis cannot compete with the best ATPs, it includes a full imple-
mentation of the superposition calculus, and its performance is respectable [6].

Metis expresses proofs using five simple inference rules, designed for easy
emulation in any interactive proof assistant for higher-order logic.2

A1

∨

. . .
∨

An
axiom [A1, . . . , An]

The axiom rule constructs an axiom. It takes as its argument a list of literals and
returns their disjunction. The corresponding theorem must already be known to
the proof assistant; axioms in the resolution proof correspond to uses of existing
theorems as lemmas.

L
∨

¬L assume L

The assume rule takes as argument a literal L and returns the theorem L
∨

¬L.

A1

∨

. . .
∨

An

A1[σ]
∨

. . .
∨

An[σ]
instantiate σ

The instantiate rule instantiates free variables. It takes two arguments, a sub-
stitution and a theorem, returning the appropriate instance of the theorem.

A1

∨

. . .
∨

L
∨

. . .
∨

Am B1

∨

. . .
∨

¬L
∨

. . .
∨

Bn

A1

∨

. . .
∨

Am

∨

B1

∨

. . .
∨

Bn
resolve L

1 On a 2.8GHz Intel Xeon processor.
2 While we were revising this paper, Hurd released Metis 2.0. The set of inference

rules in this version is simpler than its predecessor; we describe the new version.

Source-Level Proof Reconstruction for Interactive Theorem Proving 237

The resolve rule takes a literal L and two theorems. The resulting theorem
contains all literals of the first theorem other than L and all literals of the
second theorem other than ¬L.

¬(s = t)
∨

¬L
∨

L[t]
equality (L, p, t)

The equality rule takes a literal L, a path p and a term t. Writing s for the term
denoted by path p and L[t] for the result of replacing this occurrence by t, it
yields a theorem stating that if s = t and L then L[t].

Unification is not required: all substitutions are supplied explicitly using the
instantiate rule. The idea is that the Metis performs the unifications and proof re-
construction merely has to perform the supplied instantiations. This description
makes it sound like integration with Isabelle ought to be easy, but we encoun-
tered some difficulties.

We began by modifying the Metis sources to compile with Isabelle. We then
did the easy half of the integration: allowing Isabelle to call Metis, passing Is-
abelle theorems as axioms. We then turned to the difficult half, proof recon-
struction, using the rules above. Most of the rules were straightforward; the
difficult one was instantiate, and ironically we would have preferred to do our
own unifications. Reconstructing type information missing from the resolution
proof requires us to ignore any supplied instantiations that do relate to types,
instead performing type inference to generate the correct type instantiations.

Converting Metis terms into Isabelle terms required type inference and proved
to be surprisingly complicated. We finally got proof reconstruction working for
first-order problems without types. Adding translations for higher-order prob-
lems and a treatment of types and type classes required another five months
before proof reconstruction became robust. Among our problems was the need
to adjust path quantifiers to account for the deletion of type literals. We also
discovered several bugs (none affecting soundness) in Isabelle’s forward proof
mechanisms. A major difference between Isabelle and HOL4 is that Isabelle
works almost entirely by backward proof, while HOL4 ultimately reduces every-
thing to forward proof.

4 Producing Single-Step Proofs

The Metis proof method gives us a new way to reconstruct resolution proofs
generated by another ATP. As in our first attempt [11], we translate each clause
in the resolution proof to an Isabelle formula. Rather than emulate the ATP’s
specific inference rules, however, we prove each clause by calling Metis, passing it
the inference rule’s premises. Rather than parse the output of SPASS, we parse
TSTP format [21], a recently introduced language for proof communication.
TSTP format is easy to parse and is precisely documented.3 E can output TSTP
format and we have reason to hope that SPASS and Vampire will support it
eventually.
3 http://www.cs.miami.edu/∼tptp/TPTP/SyntaxBNF.html

http://www.cs.miami.edu/~tptp/TPTP/SyntaxBNF.html

238 L.C. Paulson and K.W. Susanto

4.1 TSTP Format

TSTP (Thousands of Solutions from Theorem Provers) format defines a language
for communicating proofs. A resolution prover typically produces a list of proof
lines, each containing a clause and a justification referring to previous lines. The
final line contains a contradiction. A proof line in TSTP format has the following
syntax:

cnf(<name>,<formula_role>,<cnf_formula><annotations>).

Here is a description of these items:

– The <name> is a symbol identifying the formula. Although identifiers are
permitted, all ATPs that we know of use positive integers.

– The <formula_role> is axiom for an axiom clause or negated_conjecture
for clauses arising (even indirectly) from the negation of the conjecture.

– The <cnf_formula> is the formula itself. As we use clause form, it is a
disjunction of literals. The disjunction symbol is | and the empty clause
explicitly contains the literal $false.

– Any number of <annotations> may follow. These describe the provenance
of the formula, for example as a named clause in a given file or proved from
previous lines. Proof justifications can vary from one ATP to the next, but
we only need to identify references to previous proof lines.

4.2 A Small Example

Let us examine the proof of a simple goal, one of our standard test problems.
It arises in the middle of an interactive proof; the remaining goal is to prove
0 ≤ f(x) + (−lb(x)) from the two assumptions

∀y. lb(y) ≤ f(y) and ∀y. f(y) ≤ lb(y) + g(y).

The proof is trivial. Ignore the second assumption and in the first one instantiate
y by x; then, move lb(x) across the inequality. Given the equivalent clause form,
E immediately generates a 22-line resolution proof. Below we present about
half of these lines to illustrate some issues involved in the translation. We have
reformatted the lines and shortened some names to improve clarity.

The proof refers to specific axioms from the input file. The first axiom is
X −X = 0.

cnf(216,axiom,
(c_minus(X,X,X3)=c_HOL_Ozero(X3) |
~class_OrderedGroup_Oab__group__add(X3)),
file(’BigO__bigo_bounded2_1’, cls_right__minus__eq_1)).

The variable X3 ranges over types, and the second literal restricts type X3 to
belong to the class OrderedGroup.ab group add (Abelian groups). This type class

Source-Level Proof Reconstruction for Interactive Theorem Proving 239

was implicit in the original problem through its use of overloaded operators such
as addition. As subtraction (c_minus) and zero (c_HOL_Ozero) are polymorphic,
they carry type information as an additional argument. We have to undo this
translation to obtain an Isabelle formula.

The next two axioms express inclusions between type classes. They state that
elements of Ring and Field.ordered idom (ordered integral domains) also belong
to the classes OrderedGroup.ab group add (Abelian groups) and OrderedGroup.

pordered ab group add (partially ordered Abelian groups). These axioms cannot
be expressed in Isabelle, so references to them must be deleted from proofs.

cnf(343,axiom,
(class_OrderedGroup_Opordered__ab__group__add(X3) |
~class_Ring__and__Field_Oordered__idom(X3)),
file(’BigO__bigo_bounded2_1’, clsrel_Ring__and__Field_123)).

cnf(350,axiom,
(class_OrderedGroup_Oab__group__add(X3) |
~class_Ring__and__Field_Oordered__idom(X3)),
file(’BigO__bigo_bounded2_1’, clsrel_Ring__and__Field_923)).

Negating the test problem generates an additional conjecture clause: one as-
serting type information about the type variable ’b, which is implicit in the
subgoal. As remarked above in §2.1, negating a polymorphic subgoal creates an
existentially quantified type variable that turns into a Skolem constant. This
type, t_b, belongs to the class of ordered integral domains. The other conjecture
clause shown refers to the assumption ∀y. lb(y) ≤ f(y).

cnf(335,negated_conjecture,
(class_Ring__and__Field_Oordered__idom(t_b)),
file(’BigO__bigo_bounded2_1’, tfree_tcs)).

cnf(336,negated_conjecture,
(c_lessequals(v_lb(X3),v_f(X3),t_b)),
file(’BigO__bigo_bounded2_1’, cls_conjecture_0)).

Now the proof begins. The first two lines follow type class inclusions, deducing
that the type variable ’b belongs to the class of Abelian groups. During the
translation, such proof steps must be deleted.

cnf(366,negated_conjecture,
(class_OrderedGroup_Opordered__ab__group__add(t_b)),
inference(spm,[status(thm)],[343,335,theory(equality)])).

cnf(367,negated_conjecture,
(class_OrderedGroup_Oab__group__add(t_b)),
inference(spm,[status(thm)],[350,335,theory(equality)])).

The next proof step creates an instance of X − X = 0 for type ’b, deleting
the second literal. As this step still concerns type information, it too must be
deleted.

cnf(1968,negated_conjecture,
(c_minus(X,X,t_b)=c_HOL_Ozero(t_b)),
inference(spm,[status(thm)],[216,367,theory(equality)])).

240 L.C. Paulson and K.W. Susanto

After several steps, omitted here, E nears the conclusion. E takes its time: the
last three steps each express contradiction. Naturally such repeated steps must
be deleted.

cnf(4421,negated_conjecture,
($false | $false),
inference(rw,[status(thm)],

[inference(rw,[status(thm)],[4420,2575,theory(equality)]),
336,theory(equality)])).

cnf(4422,negated_conjecture,
($false),
inference(cn,[status(thm)],[4421,theory(equality)])).

cnf(4423,negated_conjecture,
($false),
4422,[’proof’]).

4.3 The Translation Method

Our system translates a TSTP file into an Isabelle proof by parsing it, recon-
structing type information, removing redundancy and discarding steps that have
no place in Isabelle’s inference system. If the original subgoal contained higher-
order features such as function variables, then its first-order counterpart will
contain an explicit “apply” operator and “is-true” predicate [9]; these must also
be removed.

We represent abstract syntax by a data structure for n-ary trees with integers
in the leaves and strings labelling the branch nodes. Here is the corresponding
ML datatype declaration:

datatype stree = Int of int | Br of string * stree list;

Isabelle provides top-down parsing primitives that we use to parse CNF lines.
We have written additional code to translate TSTP identifiers (which must be
strictly alphanumeric) back to the Isabelle ones from whence they came. For
example, _O in a TSTP identifier corresponds to a full stop (.) in an Isabelle
identifier. We first remove the prefix indicating what class of identifier it is: c_
for constant, tc_ for type constructor, T_ for type variable, etc. If the ATP
generates its own variables, such as X3, then we have to guess what they stand
for. Note that variables in a resolution proof always start with a capital letter.

Next, we identify type information. Although type class information must be
deleted from proofs, it must be noted so that the Isabelle terms we generate are
well-typed. Polymorphic constants must be reconstructed. Given a constant, we
look up its definition. If its type scheme contains n type variables, then its last
n arguments represent types. Type literals in a clause help us by specifying the
type classes of some type variables.

cnf(2542,negated_conjecture,
(c_plus(c_HOL_Ozero(t_b),X3,t_b)=X3 |
~class_OrderedGroup_Oab__group__add(t_b)),
inference(spm,[status(thm)],[147,1968,theory(equality)])).

Source-Level Proof Reconstruction for Interactive Theorem Proving 241

For example, the type variable ’b in the clause above belongs to the type class
OrderedGroup.ab group add ; this determines the types of the constants 0 and + in
the clause. In other clauses, the type class of ’b is Ring and Field.ordered idom.

Having type class constraints for all type variables allows us to generate the
corresponding instances of constants, which in turn should allow us to recon-
struct terms correctly. Our experience confirms this, even with 100-step proofs
involving many type classes.

For each clause, we separate the type literals from the others. The remaining
literals, those meaningful to Isabelle, are formed into a disjunction. Type infer-
ence is then performed using the stored type class information. The disjunction
is finally generalized over its free variables. If no “real” literals are present, then
the clause contains type information only; we represent it differently from an
empty clause, which represents contradiction.

In order to re-assemble the proof, we examine the supplied annotations, ex-
tracting all the integers they contain. With E, all integers in annotations refer to
previous proof lines. (If an ATP used integers for other purposes, then we would
need to identify and delete them.) We go through three phases.

1. Axiom references are deleted. Axioms represent either type information or
known Isabelle theorems. The latter can be designated by their Isabelle iden-
tifiers, so it would be pointless to include them as proof lines. At this stage
we also eliminate duplicate proofs of an assertion; these typically differ in
type literals only.

2. The proof is then purged of chains of reasoning relating to types. This step
is repeated until the deletions stop.

3. Finally, some proof lines are removed in order to reduce the proof length.
Removal of a line involves replacing all references to it by references to its
antecedents. The proof tree becomes shorter but bushier.

The user can control the factor by which proof lines are combined to shorten
the proof. If the factor is n, then only every nth line is retained. Polymorphic
lines must be removed because Isabelle does not have type quantifiers; such lines
typically involve instantiating a polymorphic lemma to other polymorphic types.
After removing all polymorphic lines, we still have a proof because the final line
is monomorphic: it is simply False and has type bool.

We output the proof as an Isar structured script [13] of a simple form: a
series of assertions and justifications. The script begins with the proof method
neg clausify, which negates the subgoal and converts it into clauses. All asser-
tions must be explicit in Isar proofs, so the conjecture clauses that are used must
be introduced explicitly using Isar assume declarations. Each intermediate clause
of the proof is introduced using a have declaration and proved by calling Metis
with its antecedents. Isar requires the final line to be declared using show ; the
assertion is always False.

242 L.C. Paulson and K.W. Susanto

proof (neg_clausify)

fix x

assume 0: "
V
y. lb y ≤ f y"

assume 1: "¬ (0 ::’b) ≤ f x + - lb x"

have 2: "
V
X3. (0 ::’b) + X3 = X3"

by (metis diff_eq_eq right_minus_eq)

have 3: "¬ (0 ::’b) ≤ f x - lb x"

by (metis 1 compare_rls(1))

have 4: "¬ (0 ::’b) + lb x ≤ f x"

by (metis 3 le_diff_eq)

show "False"

by (metis 4 2 0)

qed

Note that E’s line numbers, which ranged into the thousands, have been
renumbered starting from zero. References to axiom clauses are replaced by the
corresponding Isabelle theorem references, such as le diff eq or compare rls(1).

As of this writing, the default output contains a huge amount of type infor-
mation, most of which is redundant. We have switched this off for our examples
in order to improve readability. Some problems require type information, but we
should generate no more than is necessary. This merely requires some bookkeep-
ing to ensure that (variable, type) and (type variable, class) pairs only appear
once.

proof (neg_clausify)

fix x

assume 0: "Y ⊆ X ∨ X = Y ∪ Z"

assume 1: "Z ⊆ X ∨ X = Y ∪ Z"

assume 2: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Y ⊆ x) ∨ X
= Y ∪ Z"

assume 3: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ Z ⊆ x) ∨ X
= Y ∪ Z"

assume 4: "(¬ Y ⊆ X ∨ ¬ Z ⊆ X ∨ ¬ X ⊆ x) ∨ X
= Y ∪ Z"

assume 5: "
V
V. ((¬ Y ⊆ V ∨ ¬ Z ⊆ V) ∨ X ⊆ V) ∨ X = Y ∪ Z"

have 6: "LOrder.sup Y Z
= X ∨ ¬ X ⊆ x ∨ ¬ Y ⊆ X ∨ ¬ Z ⊆ X"

by (metis 4 sup_set_eq)

have 7: "Z ⊆ x ∨ LOrder.sup Y Z
= X ∨ ¬ Y ⊆ X"

by (metis 3 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq)

have 8: "Z ⊆ x ∨ LOrder.sup Y Z
= X"

by (metis 7 Un_upper1 sup_set_eq 0 sup_set_eq)

have 9: "LOrder.sup Y Z = X ∨ ¬ Z ⊆ X ∨ ¬ Y ⊆ X"

by (metis equalityI 5 sup_set_eq Un_upper2 sup_set_eq Un_upper1 sup_set_eq

Un_least sup_set_eq)

have 10: "Y ⊆ x"

by (metis 2 sup_set_eq Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq

0 sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)

have 11: "X ⊆ x"

by (metis Un_least sup_set_eq 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1

sup_set_eq 0 sup_set_eq 8 9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq

0 sup_set_eq 10)

show "False"

by (metis 11 6 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq

9 Un_upper2 sup_set_eq 1 sup_set_eq Un_upper1 sup_set_eq 0 sup_set_eq)

qed

Fig. 1. Proof of First Example

Source-Level Proof Reconstruction for Interactive Theorem Proving 243

5 Two Larger Examples

The example presented above was trivial. Here, we consider two examples that
involve lengthy proofs. These illustrate the appearance of non-trivial proofs and
the effect of the reduction factor.

Our first example involves proving a logical equivalence:

X = Y ∪ Z ⇐⇒ Y ⊆ X ∧ Z ⊆ X ∧ (∀V. Y ⊆ V ∧ Z ⊆ V → X ⊆ V)

E produces a TSTP proof consisting of 53 lines. These include 6 conjecture
clauses. The resulting single-step proof contains a further 26 steps. Increasing
the reduction factor to 4 results in a proof consisting of 6 steps (Fig. 1). The series
of claims is almost legible, especially if we note that LOrder.sup is equivalent to
union.

proof (neg_clausify)

fix c x

assume 0: "
V
X1. |h X1 | ≤ c * |f X1 |"

assume 1: "c
= (0 ::’a)"
assume 2: "¬ |h x | ≤ |c | * |f x |"
have 3: "

V
X3. |0 ::’a | = |X3 | * (0 ::’a) ∨ ¬ (0 ::’a) ≤ (0 ::’a)"

by (metis abs_mult_pos mult_cancel_right1)

have 4: " |(1 ::’a) * (0 ::’a) | = - ((1 ::’a) * (0 ::’a))"
by (metis abs_of_nonpos mult_le_cancel_right2 max.f_below_strict_below.below_refl

max.f_below_strict_below.below_refl)

have 5: "c = (0 ::’a) ∨ c < (0 ::’a)"
by (metis linorder_antisym_conv2 2 abs_of_nonneg linorder_linear 0)

have 6: "(0 ::’a) ≤ (1 ::’a)"
by (metis zero_le_square AC_mult.f.commute mult_cancel_left1)

have 7: "
V
X3. (0 ::’a) = |X3 | ∨ X3
= (0 ::’a)"

by (metis abs_minus_cancel neg_equal_iff_equal 4 mult_cancel_right1 3 mult_cancel_right1

max.f_below_strict_below.below_refl mult_cancel_right1 minus_equation_iff 3

mult_cancel_right1 max.f_below_strict_below.below_refl)

have 8: "
V
X1 X3. (0 ::’a) * |X1 | = |X3 * X1 | ∨ X3
= (0 ::’a)"

by (metis abs_mult 7)

have 9: "
V
X1 X3. X3 * X1 = (0 ::’a) ∨ X3
= (0 ::’a)"

by (metis zero_less_abs_iff 8 mult_cancel_left1 abs_not_less_zero 3 mult_cancel_right1

max.f_below_strict_below.below_refl)

have 10: "
V
X3. X3 * (1 ::’a) = (0 ::’a) ∨ |X3 |
= (0 ::’a) ∨ ¬ (0 ::’a) ≤ (1 ::’a)"

by (metis abs_eq_0 abs_mult_pos mult_cancel_right1 AC_mult.f.commute)

have 11: "
V
X3. ¬ |X3 | < (0 ::’a) ∨ ¬ (0 ::’a) ≤ (1 ::’a)"

by (metis abs_not_less_zero abs_mult_pos mult_cancel_right1 AC_mult.f.commute)

have 12: "
V
X3. X3 = (0 ::’a) ∨ ¬ |X3 | ≤ (0 ::’a) ∨ ¬ (0 ::’a) ≤ (1 ::’a)"

by (metis abs_le_zero_iff abs_mult_pos mult_cancel_right1 AC_mult.f.commute

mult_cancel_right1 AC_mult.f.commute)

have 13: "
V
X3. X3 * X3 = (0 ::’a) ∨ ¬ X3 ≤ (0 ::’a) ∨ ¬ (0 ::’a) ≤ X3"

by (metis 12 6 abs_mult abs_mult_self AC_mult.f.commute mult_le_0_iff)

have 14: "
V
X3. |h X3 | ≤ (0 ::’a) ∨ ¬ |f X3 | ≤ (0 ::’a)"

by (metis 0 10 mult_cancel_right1 AC_mult.f.commute 6 abs_mult AC_mult.f.commute

9 mult_eq_0_iff abs_mult_self 13 abs_ge_zero abs_mult_pos mult_cancel_right1

AC_mult.f.commute 6)

have 15: "
V
X3. |h X3 | < (0 ::’a) ∨ ¬ c < (0 ::’a) ∨ ¬ (0 ::’a) < |f X3 |"

by (metis order_le_less_trans 0 mult_less_0_iff)

show "False"

by (metis 15 5 1 11 6 2 abs_of_nonpos 2 abs_of_nonneg linorder_linear 0 7

mult_cancel_right1 14 linorder_not_le 12 6 linorder_not_le)

qed

Fig. 2. Proof of Second Example

244 L.C. Paulson and K.W. Susanto

Our second example involves proving |h(x)| ≤ |c|×|f(x)| from the assumptions
∀x. |h(x)| ≤ c × |f(x)| and c 	= 0. The original hand proof is six lines long, and
involves first proving the lemma c× |f(x)| ≤ |c| × |f(x)| using the monotonicity
of multiplication. However, E produces a 303-step proof. The single-step Isabelle
proof contains 61 steps (including 3 conjecture clauses), which decreases to 16
steps if we set the reduction factor to 4 (Fig. 2). It is clear that this proof could
be further simplified. For example, claim 6 proves 0 ≤ 1, which is already a
theorem in Isabelle. We should process these proofs to make them as simple and
as natural as possible.

6 Conclusions

Translating the output of an automatic theorem prover into a fragment of proof
script has many advantages. Correctness can be checked automatically, but the
script is also open to manual inspection. User can insert these scripts into their
proof developments, eliminating the need to run ATPs a second time. There are
some rough edges at present, but the system reliably translates proofs that are
hundreds of lines long.

We have ported Hurd’s Metis prover to Isabelle to use as the basis of these
proof scripts. In most cases, a single call to Metis suffices to reproduce the
proof. Sometimes, however, Metis fails or a more detailed proof description is
required. We have therefore implemented a translation from the TSTP output
format to Isar structured proof scripts. E produces TSTP output and we expect
other ATPs to follow suit. The work can similarly be ported to other interactive
provers, since the Isar scripts we generate are simple sequences of assertions
justified by Metis calls.

The idea of an interactive prover generating its own proof scripts is promising.
It opens up many new avenues for research.

Acknowledgements. The research was funded by the epsrc grant GR/S57198/01
Automation for Interactive Proof. The first implementation of proof reconstruc-
tion in our system is due to Claire Quigley. Jia Meng also made many contribu-
tions to our work. Joe Hurd offered much advice on Metis. The TPHOLs referees
made many valuable comments.

References

1. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Transactions on Computational Logic (in press)

2. Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

3. Harrison, J.: HOL Light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

4. Hurd, J.: Integrating Gandalf and HOL. In: Bertot, Y., Dowek, G., Hirschowitz, A.,
Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 311–321. Springer,
Heidelberg (1999)

Source-Level Proof Reconstruction for Interactive Theorem Proving 245

5. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Archer,
M., Di Vito, B., Muñoz, C. (eds.) Design and Application of Strategies/Tactics in
Higher Order Logics, number NASA/CP-2003-212448 in NASA Technical Reports,
pp. 56–68 (September 2003)

6. Hurd, J.: Metis performance benchmarks (2004),
http://gilith.com/software/metis/performance.html

7. Melham, T.F.: The HOL logic extended with quantification over type variables.
Formal Methods in System Design 3(1-2), 7–24 (1994)

8. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated reso-
lution problems. In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) FLoC’06 Workshop
on Empirically Successful Computerized Reasoning. CEUR Workshop Proceedings,
vol. 192, pp. 53–69 (2006)

9. Meng, J., Paulson, L.C.: Translating higher-order problems to first-order clauses.
In: Sutcliffe, G., Schmidt, R., Schulz, S. (eds.) FLoC’06 Workshop on Empirically
Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192, pp.
70–80 (2006)

10. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. Journal of Applied Logic (in press)

11. Meng, J., Quigley, C., Paulson, L.C.: Automation for interactive proof: First pro-
totype. Information and Computation 204(10), 1575–1596 (2006)

12. Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.)
Logical Environments, pp. 164–188. Cambridge University Press, Cambridge (1993)

13. Nipkow, T.: Structured Proofs in Isar/HOL. In: Geuvers, H., Wiedijk, F. (eds.)
TYPES 2002. LNCS, vol. 2646, pp. 259–278. Springer, Heidelberg (2003)

14. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

15. Norrish, M., Slind, K.: The HOL system description (2007), On the Internet at
http://hol.sourceforge.net/

16. Paulson, L.C.: The foundation of a generic theorem prover. Journal of Automated
Reasoning 5(3), 363–397 (1989)

17. Paulson, L.C.: Organizing numerical theories using axiomatic type classes. Journal
of Automated Reasoning 33(1), 29–49 (2004)

18. Riazanov, A., Voronkov, A.: The design and implementation of VAMPIRE. AI
Communications 15(2), 91–110 (2002)

19. Schulz, S.: System description: E 0.81. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS (LNAI), vol. 3097, pp. 223–228. Springer, Heidelberg (2004)

20. Sutcliffe, G., Schmidt, R., Schulz, S. (eds.): FLoC’06 Workshop on Empirically
Successful Computerized Reasoning. CEUR Workshop Proceedings, vol. 192 (2006)

21. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated
theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial
Intelligence and Applications, vol. 112, pp. 201–215. IOS Press, Amsterdam (2004)

22. Wadler, P., Blott, S.: How to make ad-hoc polymorphism less ad hoc. In: 16th An-
nualSymposium on Principles of Programming Languages, pp. 60–76. ACM Press,
New York (1989)

23. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 27, vol. II, pp. 1965–
2013. Elsevier Science, Amsterdam (2001)

24. Wenzel, M.: Type classes and overloading in higher-order logic. In: Gunter, E.L.,
Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 307–322. Springer, Heidel-
berg (1997)

http://gilith.com/software/metis/performance.html
http://hol.sourceforge.net/

Proof Pearl: The Power of Higher-Order

Encodings in the Logical Framework LF

Brigitte Pientka

School of Computer Science
McGill University

bpientka@cs.mcgill.ca

Abstract. In this proof pearl, we demonstrate the power of higher-
order encodings in the logical framework Twelf[PS99] by investigating
proofs about an algorithmic specification of bounded subtype polymor-
phism, a problem from the POPLmark challenge [ABF+05]. Our encod-
ing and representation of the problem plays to the strengths of the logical
framework LF. Higher-order abstract syntax is used to deal with issues
of bound variables. More importantly, we exploit the full advantage of
parametric and higher-order judgments. As a key benefit we get a te-
dious narrowing lemma, which must normally be proven separately, for
free. Consequently, we obtain an extremely compact and elegant encod-
ing of the admissibility of general transitivity and other meta-theoretic
properties.

1 Introduction

Stimulated by the POPLmark challenge [ABF+05], there have been many discus-
sions over the last two years about what support current proof assistants provide
for specifying programming languages and proofs about them. In this paper we
present an implementation of bounded subtype polymorphism within the log-
ical framework Twelf [PS99], inspired by the first problems in the POPLmark
challenge[ABF+05]. The logical framework LF [HHP93] provides an elegant
meta-language for the specification of deductive systems together with the proofs
about them. It has been particularly successful in encoding the meta-theory of
programming languages. Encodings in LF typically rely on ideas of higher-order
abstract syntax where object variables and binders are implemented by vari-
ables and binders in the meta-language (i.e. logical framework). One of the key
benefits behind higher-order abstract syntax representations is that one can
avoid implementing common and tricky routines dealing with variables, such as
capture-avoiding substitution, renaming and fresh name generation.

However concentrating on encoding object variables and binders by variables
and binders in the meta-language only utilizes part of the power of higher-order
encodings. One important and often neglected aspect of higher-order encodings
is the direct support for implementing hypothetical and parametric judgments
via higher-order functions. This has two important consequences: 1) A context
or environment to keep track of assumptions is unnecessary. This eliminates the

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 246–261, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Proof Pearl: The Power of Higher-Order Encodings 247

need of building up a context and managing it explicitly. More importantly,
it eliminates the need to explicitly reason about the properties of the context
such as weakening, exchange, or strengthening. 2) Since we can view hypotheti-
cal judgments as functions, applying a substitution lemma amounts to function
application. As a consequence tedious substitution lemmas need not be proven
separately. Encodings within the logical framework LF usually try to exploit
both properties extensively. This approach typically greatly reduces the size of
the final proofs. Moreover, the meta-theoretic development scales better when
we extend the language by including new constructors.

In this proof pearl we play to the strengths of logical frameworks, and we
follow in spirit the philosophy expressed by Bob Harper’s comments subsequent
to posting our solution to the POPLmark mailing list:

“ You have to listen to the logical framework, as it were, and take its
advice in guiding you towards a better way to formulate your system.
We learned this lesson many years ago when we first invented LF — the
exercise of formalizing a logic in LF does wonders for the logic.” (Bob
Harper’s post to the POPLmark-list 2 May 2006).

In other words, the representation of our problem determines our success or
failure to prove properties about it. Hence, we start by taking a close look at
the original problem posed in the POPLmark challenge, and explain our choice
of representation in the logical framework LF to take full advantage of the logi-
cal framework LF. The pay-off will be substantial, compared to other solutions
which follow the problem specification more literally. We use not only higher-
order abstract syntax to encode bound variables in our object language, but we
model parametric and hypothetical judgments as higher-oder functions thereby
eliminating the need to prove substitution and narrowing lemmas separately.
Our reasoning is purely structural and does not require any extra arguments
to reason explicitly about the size of arguments and derivations. And finally,
our solutions unlike others does not require tedious explicit proofs to show that
certain cases are impossible. As we will demonstrate our proof of admissibility
of transitivity is remarkably short and fits on less than a page.

Organization of the paper

The paper is organized as follows: We first introduce our algorithmic subtyping
relation for bounded polymorphism, and comment on the difference between
this formulation and the original challenge in [ABF+05]. Next, we will discuss
its encoding in the logical framework Twelf, develop the proof that transitivity
is admissible and show its implementation in Twelf. Finally, we will compare
and discuss other POPLmark challenge solutions to this problem.

2 Bounded Polymorphic Subtyping

In this section, we will briefly introduce bounded subtype polymorphism and the
basic meta-theory of System Fsub (see also Ch. 26 [Pie02b]). In this system, we

248 B. Pientka

enrich polymorphic types such as ∀α.T with a subtype relation and refine the
universal quantifier to carry a subtyping constraint. The syntax of types can be
defined as follows:

Types T ::= top | α | T1 ⇒ T2 | ∀α ≤ T1.T2

Context Γ ::= · | Γ,w:α ≤ T

In ∀α ≤ T1.T2, the type variable α only binds occurrences of α in T2. We will
use small Greek letters such as α, β etc. to denote type variables. The typing
context Γ keeps track of constraints such as α ≤ T . A context Γ,w:α ≤ T is
well-formed if T is a well-formed type in the context Γ and there exists no other
assumption α ≤ S in Γ , i.e. there is a unique constraint α ≤ T for each type
variable. Next, we describe a subtyping algorithm using the judgment:

Γ � T ≤ S Type T is a subtype of S in the context Γ

Γ � T ≤ top
sa-top α ≤ T ∈ Γ

Γ � α ≤ T
sa-hyp

Γ � α ≤ α
sa-ref-tvar

Γ � T1 ≤ S1 Γ � S2 ≤ T2

Γ � S1 ⇒ S2 ≤ T1 ⇒ T2
sa-arr Γ � α ≤ U Γ � U ≤ T

Γ � α ≤ T
sa-tr-tvar

Γ � T1 ≤ S1 Γ,w:α ≤ T1 � S2 ≤ T2

Γ � ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-allα,w

The description is algorithmic in the sense that general rules for reflexivity
and transitivity are admissible, and for each type constructor, top, ∀ and ⇒
there is one rule which can be applied. Following standard design principles
found in many logics, we allow hypothetical reasoning, i.e. given an assumption
α ≤ T we can directly conclude α ≤ T . While the resulting algorithm is syntax
directed, it does not eliminate all non-determinism, if viewed as a bottom-up
search algorithm. In the rule sa-tr-tvar for example we still need to guess the
type U . To illustrate how a proof can be derived, consider the following example:

w:α ≤ top, v:β ≤ α � α ≤ α
sa-ref-tvar

w:α ≤ top, v:β ≤ α � β ≤ α
sa-hyp

w:α ≤ top, v:β ≤ α � (α⇒ β) ≤ (α⇒ α)
sa-arr

w:α ≤ top � (∀β ≤ α.α⇒ β) ≤ (∀β ≤ α.α⇒ α) sa-allβ,v

· � (∀α ≤ top.∀β ≤ α.α⇒ β) ≤ (∀α ≤ top.∀β ≤ α.α⇒ α) sa-allα,w

We note that the formulation of the transitivity rule given here is different
from the challenge problem stated in [ABF+05]. Instead of the sa-hyp and the
sa-tr-tvar rule, we typically find the following specialized transitivity rule:

(α ≤ U) ∈ Γ Γ � U ≤ T

Γ � α ≤ T
sa-tr’

In contrast to the rule sa-tr-tvar, there is no need to guess U . Clearly, the
rule sa-tr’ is a derived rule in the system we stated. In other words, the

Proof Pearl: The Power of Higher-Order Encodings 249

system we consider is slightly more general. The lack of a general hypothesis rule
is compensated by using sa-tr’ together with reflexivity. For example to prove
w:α ≤ β � α ≤ β, we will use first transitivity to look up α ≤ β in the context,
and then prove that β ≤ β by reflexivity. As we will show, our logically motivated
algorithmic description of subtyping will lead to a much cleaner meta-theoretic
development and is a nice example how the original problem specification influ-
ences the proofs about it.

3 Representing Bounded Polymorphism Using HOAS

In this section, we encode bounded polymorphic types together with the algo-
rithmic subtyping system in the Twelf system, which is an implementation of
the logical framework LF. Twelf supports the specification of deductive systems,
given via axioms and inference rules, together with the proofs about them, and
is hence ideally suited for this task. The LF language, a dependently typed
lambda-calculus, can be briefly described as follows:

Kinds K ::= type | Πx:A.K
Types A ::= a M1 . . .Mn | A1 → A2 | Πx : A1.A2

Objects M ::= x | c |M1 M2 | λx:A.M

Objects provided by the logical framework LF include lambda-abstraction, ap-
plication, constants and variables. The type label at the lambda-abstraction can
be omitted in practice. Types classify objects, and range over type constants
a which may be indexed by objects M1 . . .Mn, as well as non-dependent and
dependent function types. Viewing types as propositions, LF types can be inter-
preted as logical propositions. The atomic type a M1 . . .Mn corresponds to an
atomic proposition, the non-dependent function type A1 → A2 corresponds to
an implication, and the dependent function type Πx:A.B can be interpreted as
the universal quantifier. We will use types and formulas interchangeably. Kinds
classify types. For a thorough introduction to LF including the typing rules and
meta-theoretic development we refer the reader to [Pfe97]. Here we focus on how
to use the full power of LF to formalize the example of bounded polymorphism
and proofs about it.

3.1 Encoding Bounded Polymorphic Types

To represent the previous system describing bounded subtype polymorphism, we
start with representing the language of types as objects in LF. The first obvious
question is how to represent the polymorphic type ∀α ≤ T1.T2, in particular
how to represent type variables α and the fact that any occurrence of the type
variable α in the type T2 is bound by the universal quantifier. Encodings in
the logical framework LF are typically based on higher-order abstract syntax
where we represent variables in the object language (i.e. the type variables α in

250 B. Pientka

∀α ≤ T1.T2) with variables in the meta-language (i.e. bound variables in LF). In
other words, type variables α bound by ∀ in the object-language will be bound
by λ-abstraction in the meta-language. With this representation the framework
provides α-conversion and substitution for the object language.

To clarify the translation between object-level types and their representation
in LF, we introduce the following function �·	 which maps object-level types to
their representation in the logical framework LF. On the left, we show how to
translate object-level types to their representation into LF, and on the right we
show the definition of the constructors in LF.

Encoding object-level types to LF objects Data-type definition in LF

tp : type.
�α	 = α
�top	 = top top : tp.
�T1 ⇒ T2	 = arr �T1	 �T2	 arr : tp -> tp -> tp.
�∀α ≤ T1.T2	 = all �T1	 λα.�T2	 all : tp -> (tp -> tp) -> tp.

On the right, we define an LF type called tp, with the constructors top, arr,
and all. The type for the constructor all takes in two arguments, an argument
of type tp and another argument of function type (tp -> tp). Intuitively, the first
argument stands for the bound, while the second argument represents the body of
the forall-expression. The key idea to note is that in the type ∀α ≤ T1.T2 the type
variable α is a binding occurrence with scope T2 and is not allowed to occur in T1.
Variables α in the object-level are represented by variables α in the meta-level. To
illustrate the encoding of a concrete type, consider the following examples.

Object-level type LF object
∀α ≤ top.α⇒ α all top (λα. arr α α)
∀α ≤ top.∀β ≤ α.β ⇒ α all top (λα. all α (λβ. arr β α))

To prove the adequacy of this encoding we need to show that there is a
bijection between the types represented in our object-language and the types
described in the logical framework LF. This follows standard principles which
are extensively discussed for example in [HL06]. We need to prove that every
object-level type T which may contain the free type variables α1, . . . , αn has
a representation as an LF object T of type tp in an LF context a1:tp, . . .,
an:tp, and vice versa. Here we will highlight only the role of the LF context,
since Twelf provides us with the ability to specify the shape of it and check that
indeed every LF object of type tp will be generated in this context. This is done
by the following combination of block and world declarations

%block g : block a:tp.
%worlds (g) (tp).

The block and world declaration states that the LF context is essentially of
the form a1:tp, . . ., an:tp. This guarantees that every valid LF object of type
tp is either generated by a constant from the signature or by an assumption in
the LF context.

Proof Pearl: The Power of Higher-Order Encodings 251

3.2 Encoding Subtyping Relation

A succinct feature of higher-order abstract syntax encodings is that we do not
represent variables as a syntactic category explicitly, but variables are implicit.
This will play a important role when we encode the subtyping relation described
in the previous section. Recall that the algorithmic description is syntactically
defined by cases for each possible type. Moreover there are two rules, sa-ref-tvar
and sa-tr-tvar, which are specifically restricted to type variables. A direct im-
mediate encoding seems problematic since trying to distinguish on variables as
syntactic entities is inherently against the idea of higher-order abstract syntax!
The benefit of HOAS is that it eliminates the need for object level variables, but
the price is that we now cannot directly access them and we cannot even state
a generic rule for variables.

There are different approaches to solve this problem – for example one could
introduce a separate judgment to check if a given object is in fact a type vari-
able. This approach has been followed in the implementation by Ashley-Rollman,
Crary, and Harper [MARH]. However, this has also some disadvantages. In par-
ticular, we have to prove substitution and narrowing lemmas separately, as well
as various lemmas about impossible cases. Here we will take a different ap-
proach: Instead of a general variable rule, we will add rules for reflexivity and
transitivity for each type variable. In other words, every time we introduce a
type variable α, we also introduce the corresponding reflexive and transitive
properties such as α ≤ α and an assumption which says for all U and V , if
α ≤ U and U ≤ V then α ≤ V . Taking full advantage of the power of our
meta-language, we allow not only atomic assumptions such as α ≤ T or α ≤ α,
but we also allow more complex assumptions which from a meta-logic point of
view can be described using universal quantifiers and implications in the meta-
logic. So “for all U and V , if α ≤ U and U ≤ V then α ≤ V ” is represented as
ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V . Now we can rewrite our formal algorithmic
system given in the previous section.

Γ � T ≤ top
sa-top α ≤ T ∈ Γ

Γ � α ≤ T
sa-hyp

Γ � T1 ≤ S1 Γ � S2 ≤ T2

Γ � S1 ⇒ S2 ≤ T1 ⇒ T2
sa-arr

Γ � T1 ≤ S1

Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V

w:α ≤ T1, ref :α ≤ α � S2 ≤ T2

Γ � ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2
sa-all

It is worth keeping in mind that in order to use a universally quantified as-
sumption ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V we first must instantiate U and V
appropriately.

We are now ready to show the encoding of these subtyping rules in LF. We
first define the constant sub which describes the subtyping relation. Next, we
represent each inference rule in the object-language as a clause consisting of

252 B. Pientka

nested universal quantifiers and implications. Upper-case letters denote logic
variables which are implicitly bound by a Π-quantifier at the outside.

sub : tp -> tp -> type.
sa top : sub S top.
sa arr : sub S2 T2 -> sub T1 S1

-> sub (arr S1 S2) (arr T1 T2) .
sa all : (Πa:tp.

(ΠU.ΠV.sub U V -> sub a U -> sub a V) ->
sub a T1 -> sub a a ->
sub (S2 a) (T2 a))

-> sub T1 S1
-> sub (all S1 (λv.(S2 v))) (all T1 (λv.(T2 v))).

%block l0 :
some {T:tp}
block {a:tp} {tr:ΠU.ΠV. sub U V -> sub a U -> sub a V}

{w: sub a T}{ref: sub a a}.
%worlds (l0) (sub).

Using a higher-order logic programming interpretation, we can read the clause
sa arr as follows: To prove the goal sub (S1 => S2) (T1 => T2), we must
prove sub T1 S1 and then sub S2 T2. Similarly we can read the clause sa all:
To prove sub (all S1 (λv.(S2 v))) (all T1 (λv.(T2 v))), we need to
prove first sub T1 S1, and then assuming tr: ΠU.ΠV. sub U V -> sub a U
-> sub a V, w:sub a T1, and ref:sub a a, prove that sub (S2 a) (T2 a) is
true where a is a new parameter of type tp.

LF objects belonging to the type sub T S are derivations showing that indeed
T is a subtype of S. All derivations for sub T S (i.e. all LF objects belonging
to the type sub T S) are generated either by a constant in the signature or by
an element in the LF context which assert the following four assumptions:a:tp,
tr:ΠU.ΠV.sub U V->sub a U->sub a V, w:sub a T, ref:sub a a. The block
declaration describes the shape of the LF context, and the world declaration veri-
fies that these are the only LF contexts constructed. Next we show the derivation
for the example considered earlier encoded as an LF object:

ex1 : sub (all top (λa. all a (λ b.arr a b)))
(all top (λa. all a (λ b.arr a a))) =

sa all
(λa:tp. λtra:ΠU:tp.ΠV:tp.sub U V -> sub a U -> sub a V.
λw:sub a top. λrefa:sub a a.
sa all
(λb:tp.λtrb:ΠU:tp.Π.V:tp.sub U V -> sub b U -> sub b V
λv:sub b a.λrefb:sub b b. sa arr v refa) refa)

sa top.

Proof Pearl: The Power of Higher-Order Encodings 253

3.3 Encoding Admissibility of Transitivity

Finally, we can turn our attention to encoding the proof for transitivity.

Theorem 1 (Admissibility of transitivity).
If Γ � S ≤ Q and Γ � Q ≤ T then Γ � S ≤ T .

Typically, this requires the proof of the following narrowing lemma which needs
to be proven simultaneously.

Lemma 1 (Narrowing).
If Γ,w:α ≤ Q � J and Γ � T ≤ Q then Γ, v:α ≤ T � J .

However, in our setting, since we localized all rules involving type variables, we
will see this is unnecessary. Following the general LF philosophy, we now encode
the proof that transitivity is admissible as a relation between derivations. The
implementation of the proof is shown in Figure 1.

% Transitivity proof:

trans: ΠQ:tp.sub S Q -> sub Q T -> sub S T -> type.

%mode trans +Q +D +E -F.

tr-top: trans T D sa top sa top.

tr-ar: trans Q2 D2 E2 F2 ->

trans Q1 E1 D1 F1 ->

trans (arr Q1 Q2) (sa arr D2 D1) (sa arr E2 E1) (sa arr F2 F1).

tr-all:

(Πa:tpΠv:sub a T1.Πref: sub a a

Πtr:ΠU.ΠV.sub a U -> sub U V -> sub a V.

% Assumption v

(ΠP:tp.ΠE:sub T1 P.trans T1 v E (tr T1 P v E)) ->

(% Reflexivity

ΠP:tp.ΠE:sub a P. trans a ref E E) ->

(% Transitivity

ΠT’:tp.ΠS’:tp.ΠU’:tp.ΠD’:sub a U’.ΠD’’:sub U’ T’.

ΠE’:sub T’ S’.ΠF’:sub U’ S’.

trans T’ D’’ E’ F’ ->

trans T’ (tr U’ T’ D’ D’’) E’ (tr U’ S’ D’ F’)) ->

% i.h. on D2’ and E2

trans (Q2 a) (D2 a (tr v E1) ref tr) (E2 a v ref tr) (F2 a v ref tr)) ->

% i.h. on E1 and D1

trans Q1 E1 D1 F1 ->

trans (all Q1 Q2) (sa all D2 D1) (sa all E2 E1) (sa all F2 F1).

Fig. 1. Admissibility of transitivity implemented in Twelf

We begin by defining a type family, which may be thought of as a meta-
predicate corresponding to our lemma that transitivity is admissible as follows:

254 B. Pientka

trans: ΠQ.sub S Q -> sub Q T -> sub S T -> type.
%mode +P +D +E -F.

Twelf binds implicitly variables S and T at the outside via Π-quantifier and
reconstructs their appropriate types. We will however quantify explicitly over the
variable Q, since our induction will proceed on the structure of the type Q and
the first derivation sub S Q. The meta-predicate trans specifies how to translate
the derivation D:sub S Q and E:sub Q T to a derivation F:sub S T. In other
words, given D:sub S Q and E:sub Q T we aim to construct a derivation F:sub
S T. This translation must be total, i.e. it must be defined on all possible inputs.
While the theoretical foundation underlying the logical framework guarantees
that only valid derivations are constructed, we must verify separately that all
cases are covered and all appeals to the induction hypothesis are valid, relying
on external checkers such as mode, coverage, termination and totality. The mode
declaration specifies that the first two derivations together with the type Q are
viewed as inputs. The last derivation sub S T is viewed as an output. To verify
totality we need to show that every appeal to the induction hypothesis is valid.
The induction will proceed simultaneously on the type Q and the derivation D
= sub S Q, and we can apply the induction hypothesis if either Q is smaller or
if Q stays the same, the derivation D is decreasing. Because of this we explicitly
reason about the the type Q and we explicitly quantify over it at the beginning.
Each case in the proof will correspond to a clause in our meta-program. Next,
we will consider each case in the proof individually.

Case. First, we consider a generic case for top.

D =
Γ � S ≤ Q

and E = sa-top
Γ � Q ≤ top

Clearly, there exists a derivation F : Γ � S ≤ top by using the rule sa-top.
This is represented as a clause in our meta-program as follows:

tr top : trans Q D (sa top) (sa top).

Case. D =

D1

Γ � Q1 ≤ S1

D2

Γ � S2 ≤ Q2
sa-arr

Γ � S1 ⇒ S2 ≤ Q1 ⇒ Q2

This derivation is repre-
sented as sa arr D2 D1.

E =

E1
Γ � T1 ≤ Q1

E2
Γ � Q2 ≤ T2

sa-arr
Γ � Q1 ⇒ Q2 ≤ T1 ⇒ T2

This derivation is repre-
sented as sa arr E2 E1.

F1 : Γ � T1 ≤ S1 by i.h. on E1 and D1

F2 : Γ � S2 ≤ T2 by i.h. on D2 and E2
F : Γ � (S1 ⇒ S2) ≤ (T1 ⇒ T2) by rule sa-arr using F1 and F2

Proof Pearl: The Power of Higher-Order Encodings 255

The appeal to the induction hypothesis corresponds to recursively applying
the meta-predicate trans to sub-derivations E1 and D1 and D2 and E2 respec-
tively. This case corresponds to the following case in the implementation of the
proof.

tr-ar:
trans Q2 D2 E2 F2 ->
trans Q1 E1 D1 F1 ->
trans (arr Q1 Q2) (sa arr D2 D1) (sa arr E2 E1) (sa arr F2 F1).

The most interesting case is the case for sa-all.

Case. In the case for sa-all we have the following:

D = Γ � ∀α ≤ S1.S2 ≤ ∀α ≤ Q1.Q2 E = Γ � ∀α ≤ Q1.Q2 ≤ ∀α ≤ T1.T2

By inversion on D we get:

D1 : Γ � Q1 ≤ S1 and
D2 : Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V, w:α ≤ Q1, ref :α ≤ α � S2 ≤ Q2.

We note that D2 is parametric in α and hypothetical in the three assumptions
tr, w, and ref . This parametric and hypothetical derivation is encoded as a
function in Twelf. The LF object describing the derivation D is described by the
following term:

(sa all (λa:tp.λtr:ΠU.ΠV.sub U V -> sub a U -> sub a V.
λw:sub a Q1.λref:sub a a.D2 a tr w ref)

D1)

By inversion on E we get:

E1 : Γ � T1 ≤ Q1 and
E2 : Γ, tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V, v:α ≤ T1, ref :α ≤ α � Q2 ≤ T2.

This is described by the derivation

(sa all (λa:tp.λtr:ΠU.ΠV.sub U V -> sub a U -> sub a V.
λv:sub a T1.λref:sub a a. E2 a tr v ref)

E1)

To prove that there exists a derivation for F = Γ � ∀α ≤ S1.S2 ≤ ∀α ≤ T1.T2

we first appeal to the induction hypothesis on E1 and D1 to obtain a derivation

F1 = Γ � T1 ≤ S1

This can be represented in Twelf as trans Q1 E1 D1 F1. If we now could
derive some derivation

F2 : Γ, tr:∀U∀T.α ≤ U → U ≤ T → α ≤ T, v:α ≤ T1, ref :α ≤ α � S2 ≤ T2

256 B. Pientka

then we could simply assemble a derivation F using the sa-all rule together
with F1 and F2. However applying the induction hypothesis on D2 and E2 to
obtain such a F2 will not work because D2 depends on the assumption w:a ≤ Q1

while E2 depends on the assumption v:α ≤ T1. We need to first create a derivation
D′

2 which depends on v:α ≤ T1! How can this be done? – This is the place where
typically we must appeal to the narrowing lemma which allows us to replace the
assumption w:a ≤ Q1 with the assumption v:a ≤ T1 since T1 ≤ Q1. Here, we
will take however a different view.

Recall D2 is a parametric and hypothetical derivation which can be viewed
as a function which expects as inputs tr:ΠU.ΠV.α ≤ U → U ≤ V → α ≤ V , an
object of type α ≤ Q1, and ref :α ≤ α. In other words, we need to turn a func-
tion which expects an object of type α ≤ Q1 into a function which expects an
object v of type α ≤ T1. The idea is to substitute a derivationW which depends
on v:α ≤ T1 for any use of w:α ≤ Q1. We can construct such a derivation W as
follows:

Wα,v =

v
α ≤ T1

E1
T1 ≤ Q1

tr
α ≤ Q1

Note that the derivation W is parametric in α and hypothetical in v:α ≤ T1. By
substituting W for any use of w in the hypothetical derivation D2, we obtain a
derivation D′

2
α,v which is parametric in α and hypothetical in v:α ≤ T1. Now

we are able to appeal to the i.h. on D′
2
α,v and E2

α,v, and obtain

F2 : Γ, tr:∀U∀T.α ≤ U → U ≤ T → α ≤ T, v:α ≤ T1, ref :α ≤ α � S2 ≤ T2

This derivation W can be represented as an object (tr T1 Q1 v E1) in LF.
To obtain a derivation D′

2 from D2 we simply apply D2 to a, (tr T1 Q1 v E1),
ref, and tr. This will be encoded by the following line in the proof

trans (Q2 a)
(D2 a tr (tr T1 Q1 v E1) ref) (E2 a tr v ref) (F2 a tr v ref))

We are not done yet with the case for sa-all. Since our context keeps track of
local rules for reflexivity and transitivity, our proof must also account for these
cases locally. In particular the appeal to the i.h. on D′

2 and E2 takes place in
a context where we have the assumptions tr, v, and ref. These cases will be
part of the encoding of of the case for sa all. We will consider each of the local
assumptions next and show the encoding for each of them, before we assemble all
the pieces into the encoding for the case of sa-all. We emphasize that these cases
correspond to the local assumptions by writing the name of the rule in question
in type-writer font. Note that these proofs about local assumptions take place in
the context where we have in fact the local assumptions tr, v, and ref. Hence,
we are free to use some of these assumptions in our proof.

Case. Given D = v
Γ � α ≤ T1

and E = Γ � T1 ≤ P

we must construct a derivation F = Γ � α ≤ P .

Proof Pearl: The Power of Higher-Order Encodings 257

First, we note that we must prove this case for any type P and for any derivation
E :Γ � T1 ≤ P , if we have a derivation D:Γ � α ≤ T1 and a derivation E we can
construct a derivation Γ � α ≤ P . How can this be achieved? This is done by
instantiating the transitivity rule tr with T1 and P and using D and E to fill
in the premises. Since all proofs are done in an LF context where we have the
assumption tr denoting the transitivity rule for type variables, this is feasible.
Therefore this case will be represented as

(ΠP:tp.Π.E:sub T1 P.trans T1 v E (tr T1 P v E))

We explicitly quantify universally over P and E to emphasize the fact that this
translation holds universally.

Case. Given D = ref
Γ � α ≤ α

and E = Γ � α ≤ P ,

we must construct a derivation F = Γ � α ≤ P , but this is simply achieved by
providing E . Again, this must be proven for all types P and all derivations E ,
and we explicitly quantify universally over P and E to emphasize the fact that
this translation holds universally. Therefore this case is represented as :

(ΠP:tp.ΠE:sub a P.trans a ref E E)

Case. Given D =

D′

Γ � α ≤ U ′
D′′

Γ � U ′ ≤ T ′
tr

Γ � α ≤ T ′ and E ′ = Γ � T ′ ≤ S′

we must show that there exists a derivation F = Γ � α ≤ S′.

F ′ : Γ � U ′ ≤ S′ by i.h. on D′′ and E ′
F : Γ � α ≤ S′ by tr rule using D′ and F ′.

This case will be represented as:

ΠT’:tp.ΠS’:tp.ΠU’:tp.
ΠD’:sub a U’.ΠD’’: sub U’ T’.ΠE’:sub T’ S’.ΠF’: sub U’ S’.
trans T’ D’’ E’ F’ -> % appeal to i.h. on D’’ and E’
trans T’ (tr U’ T’ D’ D’’) E’ (tr U’ S’ D’ F’))

Again we explicitly quantify over the type variables T’, S’, U’, and the deriva-
tions involved in this case to emphasize that we prove this statement for all types
T’, S’, and U’, and all derivations D’, D’’, and E’.

Finally, we can assemble all the pieces to represent the polymorphic case which
is described in Figure 1.

Checking modes, termination, coverage. To verify that the encoding indeed con-
stitutes a proof, meta-theoretic properties such as coverage and termination need
to be established separetely. Coverage guarantees that all cases have been cov-
ered, and termination guarantees that all appeals to the induction hypothesis
are valid. In Twelf, the user must declare specifically which checkers are to be

258 B. Pientka

%block l :
some {T1:tp}
block {a:tp}

{tr:ΠU:tp.ΠT:tp.sub U T -> sub a U -> sub a T}
{w:sub a T1}
{ref:sub a a}
{tr-w :ΠU:tp.ΠE:sub T1 U.trans T1 w E (tr T1 U E w)}
{tr-ref:ΠU:tp.ΠE:sub a U.trans a ref E E}
{tr-tr :(ΠT’:tp.ΠS’:tp.ΠU’:tp.

ΠD’:sub a U’.ΠD’’:sub U’ T’.
ΠE’:sub T’ S’.ΠF’:sub U’ S’.
trans T’ D’’ E’ F’ ->
trans T’ (tr U’ T’ D’’ D’) E’ (tr U’ S’ F’ D’))}.

%worlds (l) (trans Q D E F).
%covers trans +Q +D +E -F.
%terminates {Q D} (trans Q D E F).
%total {Q D} (trans Q D E F).

Fig. 2. Checking totality of the trans encoding

used. This is shown in Figure 2. The mode declaration %mode trans +Q +D +E
-F specifies inputs and outputs of the defined meta-predicate, and directly cor-
responds to what we assume in the statement of transitivity and what we need
to prove. The mode checker [RP96] verifies that all inputs are known when the
predicate is called and all output arguments are known after successful execu-
tion of the predicate. To guide the coverage checker [SP03], we must declare the
context we prove the theorem in. This block and world declaration must include
all the dynamic parameters and dynamic hypothesis. Then the coverage decla-
ration %covers trans +Q +D +E -F verifies that we have covered all cases for
the inputs Q and D in the proof for trans, i.e. either there is a case for objects
generated by the signature or there is a case which arises due to our dynamic
parameters and assumptions. The declaration %terminates {Q D} (trans Q D
E F). verifies that in all appeals to the induction hypothesis either the type Q
was decreasing or if Q stayed the same the derivation D decreased in size [Pie05b].
Finally, the totality declaration verifies that our proof is total relying on mode,
coverage and termination.1

Remark 1. In addition to the proof for admissibility of transitivity, we have
also encoded the proof that reflexivity is admissible, and showed that the al-
gorithm described here is a correct implementation of the declarative descrip-
tion of bounded subtype polymorphism where we have general reflexivity and
transitivity rules. To use the admissibility lemmas, we were required to weaken
the worlds of some of the lemmas such that they all shared a common world.
This is an artifact of Twelf’s world checker. The full implementation is available

1 Technically, we can only specify total, but we found it cleaner to specify the decla-
rations corresponding to the different parts of the totality checker separately.

Proof Pearl: The Power of Higher-Order Encodings 259

at http://www.cs.mcgill.ca/~bpientka/code/pearland is an interesting ex-
ample of higher-order judgments in the logical framework and their power.

Remark 2. In addition to reasoning about a formal specification it is interesting
to investigate whether we can execute and test our specification. This is im-
portant since it allows the developer to generate sample behavior and animate
a given specification. In our view, whether a given specification can be directly
executed is to a large extent determined by the underlying operational semantics
used. Using the types-as-formulas paradigm, we can assign types a higher-order
logic programming interpretation [Pfe91] which allows us to execute specifica-
tion. The encoding provided for subtyping is, maybe surprisingly, executable,
although at first sight, it may seem we did not gain an algorithm since there
is some non-deterministic left; however, this non-determinism is very limited to
the specialized transitivity rules. A simple loop detection mechanism as provided
by the tabled higher-order logic programming engine [Pie02a,Pie05a] in Twelf is
able to handle the remaining non-determinism in the transitivity rule.

4 Conclusion

We have presented a higher-order encoding of subtyping algorithm for bounded
polymorphism, one of the challenge problems from the POPLmark challenge.
We not only use higher-order abstract syntax for implementing the types but
exploit the full power of parametric and higher-order judgments. As a key benefit
we get the narrowing lemma for free. This makes the encoding of the proof
that general transitivity is admissible is extremely compact. Our reasoning is
purely structural and does not require any extra size argument. Finally, unlike
other encodings based on higher-order abstract syntax ours does not require
proofs showing that some cases are impossible. It is remarkable that the proof
for admissibility of transitivity fits on less than a page, and it is by far the
shortest one so far submitted. We believe our development illustrates nicely
how the problem formulation does wonders for the subsequent meta-theoretic
development.

As mentioned, our case study is inspired by one of the POPLmark challenge
problems, and there have been several solutions submitted exploring a wide range
of possible variable encodings. We can categorize the solutions into several cate-
gories: encoding variables via de Bruijn indices, encoding variables via concrete
names, encoding variables in a nameless approach, and giving an encoding using
nominal types. All these solutions must prove the narrowing lemma and often
various other properties about variables separately. Closest to our solution is the
one by Ashley-Rollman, Crary, and Harper within the logical framework Twelf.
While their proposal uses higher-order abstract syntax for encoding bound type
variables, it does not exploit the full power of higher-order functions to imple-
ment hypothetical judgments. Our solution differs from their solution in that we
push the power of hypothetical and parametric judgments and it demonstrates
what is possible if we design the specification following the LF methodology.

260 B. Pientka

We believe this case study provides interesting insights in how higher-order
encodings can yield extremely compact implementations. The key behind this
encoding is to think about derivations as higher-order functions, and compose
higher-order functions to create new derivation. Due to the compactness of our
encoding we also believe it is easier to scale. For example, to add new type
constructors for cross products we simply add the corresponding cases in the
subtyping algorithm and in the transitivity proof. However, we do not need to
prove any additional lemmas.

In the future, it would be interesting to investigate whether our approach can
be replicated in other systems which support higher-order abstract syntax and
hypothetical and parametric judgments. For example, Momigliano and Ambler
[MA03] propose an extension to Hybrid which supports meta-reasoning with
higher-order abstract syntax in Isabelle HOL. In Coq, Felty has developed a
two-level meta-logic to facilitate hypothetical and parametric reasoning [Fel02].
Another meta-logic capable of replicating our proof idea is FOλ�N by McDowell
and Miller [MM02]. Replicating the meta-theoretic development in this paper in
other systems would provide valuable insights into how well the methodology
scales to other systems. It also would allow a direct comparison between these
systems concerning their philosophy, automatic proof support, and complexity
of encoding.

Acknowledgment

I would like to thank Chad E. Brown, Stefan Monnier, David Xi Li, and Amy
Felty for listening and commenting on the implementation.

References

ABF+05. Aydemir, B., Bohannon, A., Fairbairn, M., Foster, J., Pierce, B., Sewell,
P., Vytiniotis, D., Washburn, G., Weirich, S., Zdancewic, S.: Mechanized
metatheory for the masses: The POPLmark challenge. In: Hurd, J., Melham,
T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 50–65. Springer, Heidelberg
(2005)

Fel02. Felty, A.P.: Two-level meta-reasoning in Coq. In: Carreño, V.A., Muñoz,
C.A., Tahar, S. (eds.) TPHOLs 2002. LNCS, vol. 2410, pp. 198–213.
Springer, Heidelberg (2002)

HHP93. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. Journal
of the Association for Computing Machinery 40(1), 143–184 (1993)

HL06. Harper, R., Licata, D.: Mechanizing metatheory in a logical framework (sub-
mitted for publication)

MA03. Momigliano, A., Ambler, S.J.: Multi-level meta-reasoning with higher-order
abstract syntax. In: Gordon, A.D. (ed.) ETAPS 2003 and FOSSACS 2003.
LNCS, vol. 2620, pp. 375–391. Springer, Heidelberg (2003)

MARH. Crary, K., Ashley-Rollman, M., Harper, R.: Twelf solution to POPLmark
challenge, electronically available at
http://fling-l.seas.upenn.edu/~plclub/cgi-bin/poplmark/

http://fling-l.seas.upenn.edu/~plclub/cgi-bin/poplmark/

Proof Pearl: The Power of Higher-Order Encodings 261

MM02. McDowell, R.C., Miller, D.A.: Reasoning with higher-order abstract syntax
in a logical framework. ACM Transactions on Computational Logic 3(1),
80–136 (2002)

Pfe91. Pfenning, F.: Logic programming in the LF logical framework. In: Huet, G.,
Plotkin, G. (eds.) Logical Frameworks, pp. 149–181. Cambridge University
Press, Cambridge (1991)

Pfe97. Pfenning, F.: Computation and deduction (1997)
Pie02a. Pientka, B.: A proof-theoretic foundation for tabled higher-order logic pro-

gramming. In: Stuckey, P.J. (ed.) ICLP 2002. LNCS, vol. 2401, pp. 271–286.
Springer, Heidelberg (2002)

Pie02b. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge
(2002)

Pie05a. Pientka, B.: Tabling for higher-order logic programming. In: Nieuwenhuis,
R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp.
54–68. Springer, Heidelberg (2005)

Pie05b. Pientka, B.: Verifying termination and reduction properties about higher-
order logic programs. Journal of Automated Reasoning 34(2), 179–207 (2005)

PS99. Pfenning, F., Schürmann, C.: System description: Twelf — a meta-logical
framework for deductive systems. In: Ganzinger, H. (ed.) Automated Deduc-
tion - CADE-16. LNCS (LNAI), vol. 1632, pp. 202–206. Springer, Heidelberg
(1999)

RP96. Rohwedder, E., Pfenning, F.: Mode and termination checking for higher-
order logic programs. In: Nielson, H.R. (ed.) ESOP 1996. LNCS, vol. 1058,
pp. 296–310. Springer, Heidelberg (1996)

SP03. Schürmann, C., Pfenning, F.: A coverage checking algorithm for LF. In:
Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 120–135.
Springer, Heidelberg (2003)

Automatically Translating Type and Function

Definitions from HOL to ACL2

James Reynolds

University of Cambridge
jr291@cam.ac.uk

http://www.cl.cam.ac.uk/

Abstract. We describe an automatic, semantics preserving translation
between HOL, the higher-order logic supported by the HOL4 theorem
proving environment, and a deep embedding of the first order logic sup-
ported by ACL2. An implementation of this translation allows ACL2 to
be used as a symbolic execution engine for functions defined in HOL.

1 Introduction and Previous Work

A deep embedding of the ACL2 universe of s-expressions was given in the earlier
paper [1], this embedding allowed the formulation of relationships between the-
orems in HOL and theorems in ACL2 using a small section of trusted printing
code. Using this formulation the basic axioms of ACL2 were imported into HOL
and proved consistent using the HOL4 theorem prover.

Previously, if one wished to export HOL definitions to ACL2 these would
have to be proven interactively to be equivalent to definitions in the embedding
of s-expressions. In this paper we present an automatic system for translating
functions and values from HOL into the embedded language of s-expressions,
henceforth sexp, and therefore ACL2. This allows us to use ACL2 as a symbolic
execution engine for HOL, or to use HOL as a specification language for a de-
velopment in ACL2, as well as a number of other possibilities [2]. This builds on
the previous work by providing automation from the original definition in HOL
to the specification in ACL2.

The previous work also refers to other systems designed to translate HOL to
Boyer-Moore style theorem provers, however, it was noted that the translation of
formulae using these tools may be unsound. The work described here attempts to
alleviate this criticism by using a proof driven translation from HOL to the deep
embedding, so the full translation only relies on a very small body of trusted code.

The ideas behind the automatic translation will be introduced first via a
number of concrete examples, after which the general translation will be given.

1.1 Translating Binary Trees

The type of numbered binary trees may be defined in HOL using the datatype
definition:

bintree = Node of bintree→ bintree | Leaf of num

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 262–277, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Automatically Translating Type and Function Definitions 263

From this definition the translation described later will automatically create
an ACL2 predicate, bintreep, which recognises s-expressions corresponding to
translations of HOL binary trees:

(defun bintreep (s)
(if (consp s)

(if (equal 0 (car s))
(if (consp (cdr s))

(if (bintreep (cadr s)) (bintreep (cddr s)) nil)
nil)

(if (equal 1 (car s)) (natp (cdr s)) nil))
nil))

The flatten function takes a binary tree and produces a list of its leaves in
depth-first search order:

� (∀a b. flatten (Node a b) = app (flatten a) (flatten b)) ∧
(flatten (Leaf x) = Cons x nil)

This function is automatically translated to the embedding of s-expressions and
then pretty-printed to the following ACL2 defun:

(defun acl2_flatten (a)
(if (bintreep a)

(if (equal (car a) 0)
(binary-append (acl2_flatten (cadr a))

(acl2_flatten (cddr a)))
(cons (cdr a) nil))

nil))

Finally, using the automatically generated translation function, E, that translates
HOL types to s-expressions, the translation will also return a theorem of semantic
equivalence:

� E (flatten tree) = acl2 flatten (E tree)

Translating values from HOL to the sexp universe requires creating functions
from HOL types to sexp and their inverses, as well as generating a recogniser
predicate in sexp that can be exported to ACL2. In order to prove semantic
equivalence these functions must be proven to be bijections between the set
denoted by the HOL type and the set defined by the recogniser predicate.

The translation of functions from HOL to sexp requires converting from a
form in which clauses pattern match constructors to a single clause which uses
destructor functions. The translation will also need to match the domain of the
HOL function to that of the function over the untyped universe sexp. This will
involve restrictions requiring the recogniser predicate as well as dealing with
functions which are not fully specified.

1.2 Tabulating Primes - An Example

The Sieve of Eratosthenes is a simple algorithm for tabulating all the primes
up to a specified natural number. This algorithm creates a list of numbers from

264 J. Reynolds

two to n, then repeatedly reads off the head of the list as prime and removes
multiples of this from the rest of the list.

The following four HOL functions implement this algorithm to find primes up
to n:

� (∀a. nlist 0 a = a) ∧
(∀n a. nlist (Suc n) a = nlist n (Cons (Suc n) a))

� ∀h l. tail (Cons h l) = l

� (∀n. flist n Nil = Nil) ∧
(∀n x xs. flist n (Cons x xs) =

if divides n x
then flist n xs
else Cons x (flist n xs))

� (plist Nil = Nil) ∧
(∀x xs. plist (Cons x xs) = Cons x plist (flist x xs))

� ∀n. primes n = plist (tail (nlist n Nil))

In the above code nlist creates the list of numbers, flist removes multiples of a
number n and plist performs the iterative step to produce the list of primes.

The terms 0 and Suc represent the constructors for num, the type of the
natural numbers, and the terms Cons and Nil are the constructors for lists of
natural numbers. Running this code in HOL using the built in evaluator EVAL
it is possible to generate primes up to 1000 in just under six minutes.

1.3 The Sexp Universe

The sexp universe consists of four basic constructors: for named symbols, char-
acters, strings and complex rational numbers, and is closed under a pairing
operator cons. The sexp universe is an untyped one, hence, in order to reason
about the translation of HOL types predicates are used to partition the universe
into sets corresponding to types in HOL.

1.4 Translating Lists of Natural Numbers

The datatype declaration numlist describes the constructors for lists of natural
numbers, num. The declaration specifies an empty list constructor, Nil and a
Cons constructor that adds natural numbers to the front of the list:

numlist = Nil | Cons of num→ numlist

In order to translate values from the HOL type numlist to the sexp universe,
a function Enumlist is created that translates values of type numlist to values
of type sexp. This function, to be defined later, labels the constructors using a
natural number representing their position in the type declaration, hence Nil �→ 0
and Cons �→ 1. Each constructor is translated by forming pairs (using cons) of

Automatically Translating Type and Function Definitions 265

the translations of each argument to that constructor. In the following definition
the form ′n is used to indicate the complex number n+ 0i in the sexp universe
and Enum denotes the corresponding translation function for the num type:

� (Enumlist Nil = cons ′0 ′0)
(∀a b. Enumlist (Cons a b) = cons ′1 (cons (Enum a) (Enumlist b)))

The translation is simplified by ensuring that all translations, including those
for empty constructors, are pairs, hence Nil is translated as cons ′0 ′0.

In order to prove the semantic equivalence of any encoded function two other
definitions are required: the inverse of the function Enumlist; Dnumlist and a
predicate that recognises translated values, Pnumlist.

As well as defining the sexp universe the embedding also provides a base set
of defined constants, referred to as F . The constants relevant to the encoding of
the numlist type are as follows:

Constant Function HOL Type
ifsexp if-then-else constructor : sexp→ sexp→ sexp→ sexp
=sexp equality operator : sexp→ sexp→ sexp
t, nil true and false : sexp
car first element of a cons : sexp→ sexp
car second element of a cons : sexp→ sexp
consp predicate for cons : sexp→ sexp
natp predicate for a natural number : sexp→ sexp

Using this set of functions it is easy to define a function Dnumlist and predicate
Pnumlist. The latter of which must be constructed entirely using constructs from
the base set, F , as it will eventually be exported to ACL2. In the following
definition of numlistp, p ∧sexp q and p ∨sexp q are shorthand for ifsexp p q nil
and ifsexp p t q:

� ∀s. (numlistp : sexp→ sexp) s =
(consp s) ∧sexp (=sexp

′0 (car s)) ∧sexp (=sexp
′0 (cdr s)) ∨sexp

(consp s) ∧sexp (=sexp
′1 (car s)) ∧sexp (consp (cdr s))∧sexp

(natp (car (cdr s))) ∧sexp (numlistp (cdr (cdr s)))

1.5 Translation from Clause Form

Function definitions in ACL2 are not given in the clause form commonly seen
in definitions in HOL. For this reason, before translation can take place the
functions must be converted into a single clause form that does not perform
pattern matching. This procedure replaces pattern matching on constructors
with functions that detect the constructor used and call appropriate destructors.

Since the constructors of numlist were translated as labeled products it is a
simple matter to generate functions that correspond to this type’s destructors.
The destructors for the numlist type will be the two functions, hd and tl, that
act as follows:

� ∀a b. hd (Cons a b) = a
� ∀a b. tl (Cons a b) = b

266 J. Reynolds

These functions could be defined using primitive recursion, however, to ease fur-
ther translation they are instead created by translating, selecting the appropriate
member of the product, then performing the inverse translation:

� ∀x. hd x = Dnum (cadr (Enumlist x))
� ∀x. tl x = Dnumlist (cddr (Enumlist x))

Here the functions cadr x and cddr x are built-in abbreviations for the composi-
tions car (cdr x) and cdr (cdr x).

As well as these functions, a function that returns the constructor number is
created by decoding the label at the left of the product:

� ∀x. Label x = Dnum (car (Enumlist x))

and the following theorem is generated:

� ∀x. (Label x = 1)⇒ (x = Cons (hd x) (tl x))

With these three functions it is possible to convert the functions used in the
sieve from forms using clauses to a forms more suitable for conversion, e.g:

� ∀n l. flist n l =
if Label l = 1 then Nil

else if divides (hd l) n
then flist n (tl l)
else Cons (hd l) (flist n (tl l))

1.6 Definition of Flistsexp

In order to preserve semantic equivalence the function flistsexp is defined in such
a way that it will only operate on the sexp equivalent of values of the num
and numlist types. This is achieved by defining flistsexp as a guarded call to the
function flist with translated values:

� ∀n l. flistsexp n l =
ifsexp (ifsexp (natp n) (numlistp l) nil)

Enumlist(flist (Dnum n)(Dnumlist l))
cons ′0 ′0

In the event that flistsexp is called with the incorrect types of values, the encoding
of the empty list, cons ′0 ′0, will be returned.

During the encoding of the numlist type the following relationships are au-
tomatically proved:

� ∀x. Dnumlist(Enumlist x) = x
� ∀x. |= numlistp x⇒ (Enumlist(Dnumlist x) = x)
� ∀x. |= numlistp (Enumlist x)

here the |= operator converts the sexp notion of truth to the HOL boolean
values, T and F :

� ∀x. |= x = ¬(x = nil)

Automatically Translating Type and Function Definitions 267

Using these and the corresponding theorems for the num type it is trivial to
convert the definition of flistsexp to get the semantic equivalence theorem:

� ∀n l. Enumlist (flist n l) = flistsexp (Enum n) (Enumlist l) (1)

1.7 The Recursive Form of FlistSexp

The last stage in the translation process is to convert the definition of flistsexp

to one which only uses functions over sexp. This is achieved by rewriting the
term flist (Dnum n) (Dnumlist l), in the definition with the body of flist given in
1.5, then rewriting any recursive calls with the following theorem derived from
the semantic equivalence theorem (1):

� ∀n l. flist n l = Dnumlist (flistsexp (Enum n) (Enumlist l))

This results in the recursive theorem:

� ∀n l. flistsexp n l =
ifsexp (ifsexp (natp n) (numlistp l) nil)

Enumlist(if (Label (Dnumlist l)) = 1
then Nil
else if divides (hd (Dnumlist l)) (Dnum n)

then Dnumlist (flistsexp (Enum (Dnum n))
(Enumlist (tl (Dnumlist l))))

else Cons (hd l)
Dnumlist (flistsexp (Enum(Dnum n))

(Enumlist (tl (Dnumlist l)))))
cons ′0 ′0

The final stage in the translation involves pushing the function Enumlist over the
HOL functions to get:

� ∀n l. flistsexp n l =
(ifsexp (ifsexp (natp n) (numlistp l) nil)

(ifsexp (=sexp (car l) ′1)
cons ′0 ′0
(ifsexp (dividessexp (cadr l) n)

(flistsexp n (cddr l))
(cons ′1 (cons (cadr l) (flistsexp n (cddr l))))))

cons ′0 ′0

The destructors and label functions will always be translated at the following
stages:

Enum (Label (Dnumlist x))
Enum (hd (Dnumlist y))
Enumlist (tl (Dnumlist z))

In the case of Label this can be reduced to car x if the theorem � numlistp x
can be proven at that point. The hd and tl functions may be reduced to cadr y

268 J. Reynolds

and cddr z respectively, but only if the theorems � numlistp x and � car x = ′1
can be proven. This means that during the translation process the predicates
relating to the variables must be handled very carefully.

1.8 The Finished Translation

The first step in exporting the translated definitions to ACL2 is to export the
definition for the predicate numlistp. The other sieve functions are translated as
follows:

� ∀l. tailsexp l =
(ifsexp (ifsexp (numlistp l) (=sexp (car l) ′1) nil)

(cddr l)
(cons ′0 ′0))

� ∀n a. nlistsexp n a =
(ifsexp (ifsexp (numlistp a) (natp n) nil)

(ifsexp (=sexp n ′0)
a
(nlistsexp (+sexp n (−sexp

′1)) (cons ′1 (cons n a)))
(cons ′0 ′0))

� ∀l. plistsexp l =
(ifsexp (numlistp l)

(ifsexp (=sexp (car l) ′0)
(cons ′0 ′0)
(cons ′1 (cons (cadr l)

(plistsexp (flistsexp (cadr l) (cddr l))))
(cons ′0 ′0))

� ∀n. primessexp n =
(ifsexp (natp n)

(plistsexp (tailsexp (nlistsexp n (cons ′0 ′0))))
(cons ′0 ′0))

The recursive definition of tailsexp has an extra guard, (=sexp (car l) ′1) this is
because the tail function is not specified for the empty list.

Once these definitions were exported to ACL2 the compiled program computes
primes up to 1000 in 0.82s and could even tabulate the primes up to 10,000 in
just over two minutes. The final theorem of semantic equivalence is stated as:

� ∀n l. Enumlist (primes n) = primessexp (Enum n)

2 The General Translation

The HOL universe is strictly typed with a type τ donating a set of values, Ωτ , by
contrast, the universe of s-expressions is an untyped one; ACL2 uses predicates

Automatically Translating Type and Function Definitions 269

to partition the universe into types. To relate HOL typed values to elements in
the universe of s-expressions, Ωsexp, for each type τ a function Eτ : Ωτ → Ωsexp

must be constructed and a predicate, Pτ , defined to denote the corresponding
subset of Ωsexp:

Eτ : Ωτ → {x | Pτ x} ⊆ Ωsexp

A function in HOL, f : τ0 → . . . → τn → τ may be viewed as a function over
sets; Ωτ0×... ×τn → Ωτ . All functions in HOL are total, as such any function,
fsexp over s-expressions must be seen as a function: Ωsexp → Ωsexp. This trans-
lation therefore relates functions using a default value for each type τ , donated
Vτ ∈ Ωsexp, so that functions can be constrained to be:

fsexp ∈ ({x | Pτ0×... ×τn x} → {x | Pτ x})
⋃

({x | ¬Pτ0×... ×τn x} → {Vτ})

The value Vτ is selected to be in the set {x | Pτ x}, this enables us to easily
prove � ∀x. Pτ (fsexp x) which simplifies the translation process. The relation-
ship between the functions f and fsexp is embodied in HOL as a theorem of
equivalence that represents the commutativity of translating the result of f and
applying fsexp to translated arguments:

f x
evaluate−−−−−→ result ∈ Ωτ

⏐

⏐

'translate translate

⏐

⏐

'

fsexp xsexp
evaluate−−−−−→ resultsexp ∈ Ωsexp

If a function recurses using the function r, e.g. f x = g (f (r x)), then since HOL
is strictly typed it is obvious that: � ∀ x. x ∈ Ωτ ⇒ (r x) ∈ Ωτ . In the sexp
world however this fact must be proven from the definition of r, hence as part of
the translation each function r used to recurse must be proven to preserve the
property Pτ ;

� ∀xsexp. |= Pτ xsexp ⇒|= Pτ (rsexp xsexp)

3 Compound Types

The HOL system has a number of methods for describing types, however, the
most common, and most amenable to automatic procedures is the system of
constructing compound types from a set of previously defined types. In the ex-
ample given in 1.2 the list of natural numbers type, num list, is a compound
type formed by defining the constructors Cons : Ωnum → Ωnum list → Ωnum list

and Nil : Ωnum list.
A compound type may be viewed as a tree where each node represents a

constructor and edges represent the values given to the constructor. A mutually
recursive compound type with free type variables {α0, . . . , αn} is created from
a specification of the form:

(α0, . . . , αn) τ0 = C00 of −→τ00 | . . . | Ci0 of −→τi0

. . .

(α0, . . . , αn) τj = C0j of −→τ0j | . . . | Cij of −→τij

270 J. Reynolds

where −→τ00 . . .−→τij are vectors of types whose elements can be either a pre-defined
type τ or any of α0, . . . , αn, τ0 . . . τn.

Since all compound types may be viewed as trees, algorithms can be designed
to work in the same way on all compound types, this class of algorithms is
called polytypic[4]. The translation given in this paper uses a polytypic algo-
rithm to generate definitions for the functions Eτ : Ωτ → Ωsexp, their inverses;
Dτ : Ωsexp → Ωτ , and the predicates Pτ .

The algorithm operates by mapping each constructor, or node, to the encoding
of a labeled product of its arguments. The inverse mapping simply inverts this
procedure and the predicate is similarly defined. This reduces the problem of
translating compound types to translating products and certain base types.

3.1 Translating Labeled Products

Both HOL and ACL2, and hence sexp, have simple product constructors, infix
comma (,) and cons respectively. In HOL the product constructor forms the
Cartesian product of two types, written τ0 × τ1, which donates the Cartesian
product of the associated sets: Ωτ0 × Ωτ1 . The cons constructor, in contrast,
actually defines the set Ωsexp as being closed under the operator cons and four
basic constructors for symbols, characters, strings and complex rational numbers.

Since the comma operator in HOL is polymorphic, e.g. it constructs products
for any τ0 and τ1, the translation of products requires use of higher order func-
tions. Each function (or predicate) involved in the translation of τ0× τ1 will rely
on the corresponding functions (or predicates) for τ0 and τ1. The function:

Eτ0×τ1 : (Ωτ0 → Ωsexp)→ (Ωτ1 → Ωsexp)→ Ωτ0 ×Ωτ1 → Ωsexp

is simply defined as:

� ∀f g a b. Eτ0×τ1 f g (a, b) = cons (f a) (g b)

where f and g are the corresponding functions for τ0 and τ1.
The inverse operation and predicate are defined similarly:

� ∀f g a b. Dτ0×τ1 f g (cons a b) = (f a, g b)
� ∀f g a b. Pτ0×τ1 f g (cons a b) = ifsexp (f a) (g b) nil

The relationships between the functions may be formally written:

� ∀x. Dτ (Eτ x) = x (2)
� ∀x. |= Pτ x⇒ Eτ (Dτ x) = x (3)
� ∀x. |= Pτ (Eτ x) (4)

and in the case of products are easily proved using their definitions.
An arbitrary sized product, written τ0× . . .× τn, may be encoded using n− 1

instantiations of Eτx×τy , in future this will be abbreviated as follows:

� ∀f0 . . . fn. Eτ0×...×τn f0 . . . fn = Eτ0×τ1...τn f0 (Eτ1×τ2...τn f1 . . . fn) . . .)

Automatically Translating Type and Function Definitions 271

Similar abbreviations will be used for Dτ0×...×τn and Pτ0×...×τn . Labeled prod-
ucts are easily defined by using the complex number constructor to produce the
natural numbers, the function Enum : � → Ωsexp will be used to represent this
operation with the type num representing the naturals; Ωnum = �.

Example 1. The α List type
The α List datatype can be written using the recursive form given previously as:

α List = Nil | Cons of α→ α List

which results in a set consisting of Nil and closed under the operation Cons:

� Nil ∈ ΩαList

� ∀a b. a ∈ ΩαList ∧ b ∈ Ωα ⇒ Cons a b ∈ ΩαList

The α List type may easily be translated using labeled products as follows:

� (∀f. EαList f Nil = Enum×num Enum Enum (0,0)) ∧
(∀f a b. EαList f (Cons a b) = Enum×α×αList Enum f (EαList f) (1, a, b))

Since the translation process requires labeled products, empty constructors, such
as Nil, are given an arbitrary second element, in this case the encoding of the
label 0.

The DαList function is defined in a similar way, but must check whether the
label is 0 or 1 to determine which product function to call. In order to do this an
identity translation function is used which simply acts as � ∀a. I a = a, it can
be used to translate part of the product, leaving the rest of the product available
for future translation. In the following example the let (x, y) = a in b syntax is
shorthand for the paired-lambda abstraction: (λ(x, y). b) a.

� ∀f. DαList f x =
let (l, r) = Dnum×τ Dnum I x
in if l = 0 then Nil

else if l = 1 then (let (a, b) = Dα×αList f (DαList f) r in Cons a b)
else ARB

The HOL term ARB is a constant defined in every type about which only
reflection may be proven, it is used here to reinforce the concept that if Pτ x is
false then Dτ x is not specified.

The predicates, Pτ , are defined similarly, except that truth values are used
instead of constructors.

Example 2. The RoseT ree type, nested mutual recursion

The RoseT ree datatype defines an arbitrarily branching tree using the α List
type described previously:

RoseT ree = Branch ofRoseT ree List

272 J. Reynolds

which results in a set of trees:

� ∀a. a ∈ ΩRoseTree List ⇒ Branch a ∈ ΩRoseTree

The definition is more easily viewed as a mutually recursive definition, where
RoseT ree and RoseT reeList, distinct from RoseT ree List, are described in the
same declaration:

RoseT ree = Branch ofRoseT reeList;
RoseT reeList = Nil | Cons of RoseT ree→ RoseT reeList

The translation functions for the RoseT ree type are easily stated as simple
extensions of the functions for List:

� ∀a. ERoseTree (Branch a) = ERoseTree List ERoseTree a
� ∀a. DRoseTree (Branch a) = DRoseTree List DRoseTree a
� ∀a. PRoseTree (Branch a) = PRoseTree List PRoseTree a

However, HOL requires all functions defined to be total, hence they must all
be proven to terminate, as such the definition of the above functions cannot
take place without reference to the corresponding functions EαList, DαList and
PαList. This is resolved by defining the RoseT ree type as if it had been defined
as a mutually recursive type using a placeholder function X then removing X
by proving it equivalent to ERoseTree List ERoseTree using a simple induction on
the type List:

� (∀a. ERoseTree (Branch a) = X a) ∧
(X Nil = Enum×num Enum Enum (0, 0)) ∧
(∀a b. X (Cons a b) =

Enum×RoseTree×RoseTree List Enum ERoseTree X(1, a, b))

The other translation functions are defined in a similar manner.

4 Converting Functions

As well as an embedding of the sexp universe in HOL, the theories defined in
[1] also provide sexp equivalents of various ACL2 low level functions. These
functions were proven by hand to be equivalent, up to translation, to similar
functions defined in HOL. For each function f which has an equivalent defined
for the sexp universe the following equivalence was proven in the form of a
rewrite theorem:

� ∀a0 . . . an. Eτ (f a0 . . . an) = fsexp (Eτ0 a0) . . . (Eτn an)

This set of base functions, F , serves as a starting point for the translation
process, once a function is translated, it is added to the set in the rewrite form
above and can then be used by further translations.

The translation given here maintains semantic equivalence by defining the
function fsexp : Ωsexp → Ωsexp as the function:

Automatically Translating Type and Function Definitions 273

� ∀x. fsexp x = ifsexp (Pτ x) (Eτ ′ (f (Dτ x))) Vτ ′

Using the relationships 2, 3 and 4 it is easy to show that this definition implies
that: � ∀x. f x = Dτresult

(fsexp (Eτargumentx)) (5)

Once fsexp is defined it must be expressed in a form that uses only functions
found in F .

4.1 Functions in Clause Form

A recursive function in HOL is given as a number of clauses that each match a
particular constructor:

� (∀−→a0. f (C0
−→a0) = A −→a0) ∧

. . .
(∀−→an. f (Cn

−→an) = A −→an) ∧

Definitions in ACL2 however do not use this form; an ACL2 definition can be
viewed as an equivalence between a function term and its body, e.g:

∀−→a . f −→a = A −→a

The first step in translating a function from HOL to sexp then is to translate the
clause definition to one suitable for translation to ACL2, this involves replacing
the clause definitions with a function that can determine which constructor was
used and call an appropriate destructor.

The destructor for the argument m of constructor n is the function Dmn that
satisfies:

� ∀ −→am. Dmn (Cm
−→am) = −→am(n).

If a labeling function is specified such that:

� ∀m −→am. Label (Cm
−→am) = m

then the translation can replace pattern matching of constructed arguments with
a statement that uses Label and the destructor functions D00 . . .Dij .

As described in section 1.5, the destructor functions are defined by translating
the value, selecting the appropriate member of the product then performing the
inverse translation:

Dmn x = D−→τm(n) (select n (Eτm x))

The select construct is an abbreviation for a term constructed from car and cdr
to select the appropriate element in the product. The label function is defined
similarly except that the label is known to be of type num and at the left of the
product:

Label x = Dnum (car (Eτm x))

274 J. Reynolds

Example 3. The Append function; app

The append function can be defined in HOL as:

� (∀c. app Nil c = c) ∧
(∀a b c. app (Cons a b) c = Cons a (app b c))

and may be modified to a single function clause using the list destructors: Like
the numlist type given earlier, destructors for Cons are constructed by selecting
the appropriate product:

� ∀a b.Dα (cadr (EαList (Cons a b))) = a
� ∀a b.Dα (cddr (EαList (Cons a b))) = b

and the label function is defined by decoding the left of the product:

� ∀a. (Dnum (car (EαList Nil)) = 0) ∧ (Dnum (car (EαList (Cons a b))) = 1)

Using these functions it is a simple matter to prove the append function has the
equivalent definition:

� ∀x y. app x y =
if (Dnum (car (EαList Nil)) = 0)

then y
else Cons (Dα (cadr (EαList x)))

(app (Dα (cddr (EαList x))) y)

4.2 Rewriting

The second stage of the translation process is to convert the function fsexp

in the form given earlier to a recursive definition that uses only functions in
F . This is achieved by rewriting f x in the definition of fsexp with its body,
and then replacing any recursive calls to f using equation 5. This results in a
recursive definition of fsexp which may be completed by rewriting terms using
the translations for the functions found in F . However, this process must also
form rewrites for the destructor and labeling constructs.

The rewriting stage involves pushing Eτ functions over terms, so the destructor
functions will be translated from: E−→τm(n) (D−→τm(n) (select n x)), using equation3
this can be reduced to:

� ∀x. |= P−→τm(n) (select n x) ⇒ (E−→τm(n) (D−→τm(n) (select n x)) = select n x)

In order to resolve the antecedent theorems of the form:

� ∀ x. (|= Pτm x) ∧ (Dnum (car x) = n)⇒|= P−→τm(n) (select n x)

are constructed when the type is first processed. The rewriting process then keeps
track of which type predicates and constructor predicates have been encountered
in if statements and uses these to resolve the antecedents.

Automatically Translating Type and Function Definitions 275

Example 4. Translating a guarded statement
The following term may be encountered when processing a list function, the
check on the label was inserted by the translation process and as such has a
standard form:

EαList (if (Dnum (car x) = 1) then (DαList (cddr x)) else Nil

The rewrite would progress by pushing the encoding function over the if state-
ment to get a term of the form:

ifsexp (Ebool (Dnum (car x) = 1)) (EαList (DαList (cddr x))) (EαList Nil)

Before this is translated any further the branches of the if statement will be
encoded, the first of which will result in the term:

� (|= PαList (cddr x)) ⇒ (EαList (DαList (cddr x)) = cddr x)

which will be reduced to:

� (|= PαList x) ∧ (Dnum(car x) = 1)⇒ (EαList (DαList (cddr x)) = cddr x)

Since the second of these terms is included in the predicate of the if statement
the rewriter can then reduce the entire expression to:

� (|= PαList x) ⇒ (. . . = ifsexp(car x =′ 1)(cddr x)(cons ′0 ′0))

The final antecedent will be removed later as the whole function would have
been guarded with a PαList x term.

4.3 Incomplete Specifications

As well as the domain of a function in HOL being limited by its type, it is
also possible for functions to have their domain limited further at the time of
specification using the HOL ARB construct. Since it is not possible to prove
anything about a clause whose value is ARB it is not possible, at that point in
the domain, to relate f to fsexp.

This translation solves this by allowing the user to supply a predicate X to
limit the domain of the translation to avoid the areas for which the result of f is
ARB . The values of fsexp are hence defined to be Vτ , and the theorem stating
the commutativity of the translation is then dependent upon X .

As was mentioned earlier, it is important to also be able to prove that the
function preserves this restriction on the domain, in the case of incomplete spec-
ifications the user must supply this theorem:

� ∀−→x . X −→x ⇒ P −→x ⇒ X (r −→x)

where P represents conditional statements between the original function and the
recursive call.

The equivalent theorem in sexp is produced automatically.

276 J. Reynolds

Example 5. The last function
Like many list functions, the last function is an example of a function which is
often implemented with an incomplete specification. The function last may be
implemented in HOL as follows:

� (∀a. last (Cons a Nil) = a)
(∀a b c. last (Cons a (Cons b c)) = last (Cons b c))

The function may be translated using the label functions and destructors to:

� ∀a. last a =
if (Dnum (car (EαList(Dα (cddr (EαList a))))) = 1)

then (Dα (cadr (EαList (Dα (cddr (EαList a))))))
else (Dα (cddr (EαList (Dα (cddr (EαList a))))))

The lastsexp function would then be defined using the predicate ¬(null a):

� ∀a. lastsexp a =
if Ebool(¬(null a)) ∧ PαList a

then EαList Eα (last (DαList Dα a))
else Enum×num Enum Enum (0, 0)

The user would also have to supply a theorem to prove that when the recursive
call to last is made using the second matched constructor the tail of the list will
not be empty:

� ∀a. ¬(null a)⇒ (∃ a b c. (Cons a (Cons b c))) ⇒ ¬(null (tl a))

4.4 Using Higher Level ACL2 Constructs

Constants defined in ACL2 can make use of constructs that operate outside
of the ACL2 logic to lower execution times, these constructs have no effect on
the semantics of the function they only affect the method of execution. When
defining the base set of constants, F , it is advantageous to use high level ACL2
functions, however this often requires translating types in a manner that devi-
ates from the automatic translation. For example, the α List translation given
in example 1 differs from the ACL2 notion of lists; a string of cons pairs termi-
nated using nil. In these cases hand-proven translation functions are used that
correspond closely to the definitions used in ACL2, this allows F to contain high
level constants such as len and last.

ACL2 also has a Single Threaded Object construct, which allows imperative
style execution using destructive updates. Work is ongoing to allow the automatic
translation of monadic HOL functions to use these objects.

5 Conclusions

The translation presented in this paper allows first-order functions defined using
compound types composed of a base set of hand-proven types to be exported to

Automatically Translating Type and Function Definitions 277

ACL2 in a logically consistent manner, and has been extended to automatically
translate first-order instantiations of maps and folds. So far, other first order
constructs available in HOL, such as inductive rule definitions, may only be
translated after their equivalence to a functional form has been proven.

This method may also be applied to other target domains, some success has
already been made in this area; translations to functions over lists of booleans
have been performed using rules given to a general mechanism.

The translation has already been successfully applied to the type and associ-
ated functions of Red-Black trees as well as an implementation of IEEE floating
point arithmetic used in the ARM Vector Floating Point unit [3]. The following
table compares the timings of evaluating powers of e, it neatly demonstrates the
gains in efficiency the translation provides in symbolic execution:

Precision: Iterations: HOL time: ACL2 time:
Single 32 bit 5 7.72s 0.01s

10 16.2s 0.02s
Double 64 bit 5 13.7s 0.04s

10 27.4s 0.07s
Extended 80 bit 5 17.5s 1.08s

10 35.2s 2.12s

In the future we aim to use this translation to translate the VFP model and ARM
model together in order to efficiently evaluate whole floating point programs.

References

1. Gordon, M.J.C., Reynolds, J., Hunt, W.A., Kaufmann, M.: An integration of hol
and acl2. fmcad 0, 153–160 (2006)

2. Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the
acl2 logic in hol. ACL2 Workshop 0, 40–46 (2006)

3. Reynolds, J.: A hol implementation of the arm fp co-processor programmer’s model.
In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, Springer, Heidel-
berg (2005)

4. Slind, K., Hurd, J.: Applications of polytypism in theorem proving. In: Basin, D.,
Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 103–119. Springer, Heidelberg
(2003)

Operational Reasoning for Concurrent Caml

Programs and Weak Memory Models

Tom Ridge

University of Cambridge

Abstract. This paper concerns the formal semantics of programming
languages, and the specification and verification of software. We are in-
terested in the verification of real programs, written in real programming
languages, running on machines with real memory models. To this end,
we verify a Caml implementation of a concurrent algorithm, Peterson’s
mutual exclusion algorithm, down to the operational semantics. The im-
plementation makes use of Caml features such as higher order parame-
ters, state, concurrency and nested general recursion. Our Caml model
includes a datatype of expressions, and a small step reduction relation
for programs (a Caml expression together with a store). We also develop
a new proof of correctness for a modified version of Peterson’s algorithm,
designed to run on a machine with a weak memory.

1 Introduction

Program verification has a long and venerable history, from the pioneering work
of Turing [MJ84], through to recent work such as the mechanized verification of
the Four Colour Theorem [Gon05]. However, there are problems with existing
approaches.

– The languages and programs are typically highly idealized, and far removed
from the real languages people actually use. Attempts to address real lan-
guages are typically not foundational.

– With the advent of multicore processors, assumptions about how to model
memory are no longer justified, and existing proofs are typically invalid in
the case that the algorithm is running on a machine with a weak memory.

We explore the issues involved by conducting two verifications: for the first, we
verify a non-trivial concurrent Caml program, Peterson’s algorithm for mutual
exclusion [Pet81], down to the operational semantics; for the second we verify
Peterson’s algorithm with a weak memory model.

The Caml code we verify appears in Fig. 1 and can be compiled and run
with recent versions of OCaml1 (for readers not familiar with Caml syntax, we
describe a standard pseudocode version in Sect. 2). We formalize a semantics
for Caml in Sect. 3 and the proof in Sect. 4. The complexity that arises in the
proofs stems from the size of individual states (Caml expressions that occupy
1 http://caml.inria.fr

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 278–293, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://caml.inria.fr

Operational Reasoning for Concurrent Caml Programs 279

let turn = ref false in

let trys =

let try_f = ref false in

let try_t = ref false in

fun x -> if x then try_t else try_f in

let rec loop = fun id ->

(trys id := true) (* set trying flag *)

; (turn := not id) (* set turn flag *)

; (let rec test = fun _ ->

if !turn = id || not !(trys (not id)) then () else test ()

in test ()) (* looping in test *)

; () (* critical region *)

; (trys id := false) (* exit crit *)

; loop id

in

(Thread.create loop false, Thread.create loop true)

Fig. 1. Peterson’s algorithm, Caml code

several pages), the large number of reachable states for each thread , and the
consequent intricacy of the interleavings of the two threads. Reasoning directly
about the operational semantics requires clever proof techniques to mitigate
these complexities. We briefly outline these techniques, which we describe in
greater detail in Sect. 4.

– We factor the proof into an abstract part and an operational part. We iso-
late the core interleavings of the threads by constructing an abstract model
of Peterson’s algorithm. The Caml implementation is a refinement of this
abstract model.

– The Caml part of the proof is an invariant proof. We use the theorem prover
to symbolically execute along paths of the system, proving the invariant
along the way.

– We employ a strong induction hypothesis, which makes use of a notion of
“recurrent states”. We consider paths starting from these recurrent states,
and whenever we encounter another recurrent state, we apply the induc-
tion hypothesis, and so terminate symbolic execution along that particular
branch. The induction scheme, with the notion of recurrent states, is useful
even for non-concurrent, infinite state systems.

– To reduce the complexity of the state space of the parallel composition of the
two threads, T1|T2, we replace a thread, T2 say, with an invariant I2, which
represents possible interference of T2, but is much easier to work with. We
also consider I1|T2. This is similar to rely-guarantee reasoning [Jon81], and
allows us to perform a thread-modular verification. The rely-guarantee style
reasoning extends smoothly to multiple threads.

– In order for the induction to work smoothly we eliminate the interleaving
between T1 and I2, so that T1 is always making progress. We construct a

280 T. Ridge

thread-like object T ′
1, that executes roughly as T1, but incorporates possible

interference from I2 into each T1 step. It is the system T ′
1 that we symbolically

execute.

These techniques allow us to reduce the Caml proof to little more than simpli-
fication, which we use to symbolically execute the thread-like objects, and to
check the invariant at each stage. In fact, the proof could be entirely automated.
Moreover, the techniques apply directly to similar algorithms such as Simpson’s
4-slot for which we already have abstract proofs [Rid]. We claim that our ap-
proach is reproducible and can be applied to many other algorithms: given an
abstract proof of an algorithm, proving the connection to a Caml (or other) im-
plementation can often be reduced to little more than symbolic execution using
the theorem prover’s simplifier.

To address the second problem, we demonstrate reasoning about Peterson’s
algorithm at an abstract level with a very weak memory model. This requires us
to formalize a model of weak memory (Sect. 6), modify Peterson’s algorithm, and
to develop a new proof of correctness (Sect. 7). In essence, the proof of Peterson’s
algorithm with a weak memory model follows the outline of the original abstract
proof, but includes proof patches to cope with the additional complexities. We
include background information on weak memory models in Sect. 5.

Mechanization of these proofs is vital, especially as we move towards verifi-
cation of realistic full scale languages: the reachable states of the operational
semantics are simply too complex for informal proof. Moreover, reasoning about
concurrent algorithms even without weak memory models is considered difficult.
With the additional complexity of weak memory models, we found mechaniza-
tion to be invaluable. For example, the process of constructing the proof revealed
several possible execution paths that we were not aware of, and which required
us to alter our proofs.

Our contributions are:

– We develop a mechanized verification of a Caml implementation of Peterson’s
algorithm, down to the operational semantics.

– The Caml implementation is a refinement of an abstract model of Peterson’s
algorithm. This is important because there are many abstract verifications
which we would like to reuse for more complex program models.

– We develop some novel proof techniques which we have sketched above, and
which we describe more fully in Sect. 4.

– We develop a mechanized proof of correctness for a version of Peterson’s
algorithm, with a weak memory model.

Small-step operational semantics are the most successful means of language spec-
ification available. In principle, it is clear that operational reasoning is sufficient
to prove the correctness of programs. If the language and programs are specified
by means of operational semantics, the most direct form of proof is by using
operational reasoning. The motivation of this work is to promote operational
reasoning as a means of program verification.

Operational Reasoning for Concurrent Caml Programs 281

Basic definitions. Given an underlying set of states S, a state transition
system or sts on S is a pair consisting of a set of start states ⊆ S, and a
transition relation ⊆ S×S. Given an sts L, a sequence p is a function from N to
S, such that adjacent points p n, p (n+ 1) are related by the transition relation
of L. A path is a sequence that starts in a start state. A state a is reachable if
there is a path p, and position n, such that p n = a. If L and K are defined on
the same set of underlying states S, the parallel composition of L and K is the
sts formed by taking the union of the start states, and the union of the transition
relations. An abstraction relation R from an sts L to an sts K relates each start
state of L to some start state of K, and if a is reachable by L, and related to b,
and L makes a transition from a to a′, then K can make a transition from b to b′,
and moreover a′ and b′ are also related by R. The key fact about an abstraction
relation is that for every path of L, there is a path of K such that corresponding
positions in the paths are related. Abstraction relations are a form of simulation
relations.

Isabelle/HOL. The mechanizations described here were conducted in the Is-
abelle/HOL theorem prover. List cons is represented in Isabelle syntax by an infix
#, and updating a function f at argument a with value v is written f(a := v).
Isabelle also has two implications, −→ and =⇒. For the purposes of this paper,
they may be considered equivalent. Apart from that, Isabelle’s syntax is close to
informal mathematics.

2 Background on Peterson’s Algorithm

In this section, we describe Peterson’s algorithm informally using pseudocode,
give a formal model of the abstract algorithm in HOL, give the key lemmas
needed to prove the mutual exclusion property, and state the mutual exclusion
property itself.

In Fig. 1 we give the Caml version of Peterson’s algorithm that we verify.
By way of introduction, we here present an informal pseudocode version, Fig. 2,
and explain how it works. The algorithm uses two variables, trys (an array

trys[0] = 0
trys[1] = 0
turn = 0

P0: trys[0] = 1 P1: trys[1] = 1
turn = 1 turn = 0
while(trys[1] && turn == 1); while(trys[0] && turn == 0);

// do nothing // do nothing
// critical section // critical section
... ...
// end of critical section // end of critical section
trys[0] = 0 trys[1] = 0

Fig. 2. Peterson’s algorithm, informal pseudocode

282 T. Ridge

peterson-trans i s s ′ ≡

(∗ j is the other process ∗)
let j = ¬ i in

(∗ extract parts of the state ∗)
let ((turn,trys),pcs) = s in
let ((turn ′,trys ′),pcs ′) = s ′ in
let (itry ,ipc) = (trys i , pcs i) in
let (itry ′,ipc ′) = (trys ′ i , pcs ′ i) in
let (jtry , jpc) = (trys j , pcs j) in
let (jtry ′, jpc ′) = (trys ′ j , pcs ′ j) in

(∗ nothing happens to j ∗)
(jpc ′ = jpc ∧ jtry ′ = jtry)

(∗ process i takes a step ∗)
∧ (

(∗ looping in any state ∗)
((ipc ′,itry ′,turn ′) = (ipc,itry ,turn))

∨ ((ipc,ipc ′) = (NonCrit ,SetTry)
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (SetTry ,SetTurn)
∧ (itry ′,turn ′) = (True,turn))

∨ ((ipc,ipc ′) = (SetTurn,Test)
∧ (itry ′,turn ′) = (itry ,j))

∨ ((ipc,ipc ′) = (Test ,Crit)
∧ ((jtry = False) ∨ (turn = i))
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (Crit ,Exit)
∧ (itry ′,turn ′) = (itry ,turn))

∨ ((ipc,ipc ′) = (Exit ,NonCrit)
∧ (itry ′,turn ′) = (False,turn)))

Fig. 3. Thread transitions for Peterson’s algorithm, in HOL

of booleans) and turn. A trys[0] value of 1 indicates that thread P0 wants
to enter the critical section, similarly trys[1] = 1 indicates that P1 wants to
enter the critical section. The variable turn holds the id of the thread whose
turn it is. Entrance to the critical section is granted for P0 if P1 does not want
to enter its critical section or if P1 has given priority to P0 by setting turn to 0.
The algorithm guarantees that the two threads are never executing their critical
sections simultaneously.

It is straightforward to formalize an abstract state transition system for Pe-
terson’s algorithm. For each thread, the program counter, or pc, is either non-
critical, about to set the try variable, about to set the turn variable, testing
the turn variable and the other thread’s try variable, in the critical section, or
exiting the critical section by unsetting the try variable.

datatype pc = NonCrit | SetTry | SetTurn | Test | Crit | Exit

We identify thread id with a boolean rather than an integer.The turn and
try variables are booleans (try is indexed by thread id). The system state is
a tuple consisting of the turn and try variables, and the program counters
for each thread. The transition relation for a thread is parameterised on the
thread id.

Operational Reasoning for Concurrent Caml Programs 283

types thread-id = bool types turn = thread-id types trys = (thread-id ⇒ bool)
types pcs = (thread-id ⇒ pc) types peterson-state = (turn ∗ trys) ∗ pcs

constdefs peterson-trans :: thread-id ⇒ peterson-state ⇒ peterson-state ⇒ bool

We define the transitions in Fig. 3. Each thread starts in its non-critical state,
with all variables initialised to false. The state transition system is a parallel
composition of the two threads.

constdefs peterson-starts :: peterson-state set
peterson-starts ≡ {((False,λ x . False),λ x . NonCrit)}

constdefs peterson-sts :: peterson-state sts
peterson-sts ≡
par (peterson-starts, peterson-trans False) (peterson-starts, peterson-trans True)

We first characterise the thread states where the try variable is set, following
Lemma 10.5.1 in [Lyn96]. The key lemma, lemma-10-5-2, is proved by induction
on n. Mutual exclusion follows directly, since turn cannot be both i and j.

lemma lemma-10-5-2 :
∀ i p. is-path peterson-sts p
−→ (∀ n.
let ((turn,trys),pcs) = p n in
let (itry ,ipc) = (trys i , pcs i) in
let j = ¬i in
let (jtry ,jpc) = (trys j , pcs j) in
ipc = Crit ∧ jpc ∈ {Test ,Crit}
−→ (turn = i))

lemma mutual-exclusion:
∀ p. is-path peterson-sts p
−→ (∀ n i .
let ((turn,trys),pcs) = p n in
let (itry ,ipc) = (trys i , pcs i) in
let j = ¬i in
let (jtry ,jpc) = (trys j , pcs j) in
¬ (ipc = Crit ∧ jpc = Crit))

3 Caml Formalization

In this section we give the datatype of Caml expressions, describe the small-step
operational semantics for Caml, and give the state transition system for the
Caml implementation of Peterson’s algorithm.

If we examine the code in Fig. 1, we see that we need to model several features
of Caml: general recursion, nested recursion, state, higher order parameters, and
concurrency. We do not model features, such as modules, that are not required
for our example. Adding additional features would not essentially alter the proof,
however, which rests largely on symbolic evaluation of the code.

We declare a datatype of Caml expressions in Isabelle/HOL. This includes
the usual functional core (including let), constants (including fix), state (as-
signment, reference, dereference, and locations) and concurrency (Par). A trace
expression is not part of the standard Caml syntax. It is semantically neutral
(i.e. Trace(a,e) behaves as e), and it removes the need to quote Caml expressions
explicitly.

284 T. Ridge

datatype ′a exp =

Var var
| Lam ′a lambda
| App ′a exp ∗ ′a exp
| LetVal ′a exp ∗ ′a lambda

| Const const

| Assign ′a exp ∗ ′a exp
| Deref ′a exp
| Ref ′a exp
| Loc loc

| Par ′a exp ∗ ′a exp

| Trace ′a ∗ ′a exp

and ′a lambda = Lambda var ∗ ′a exp

We use the -dparsetreeOCaml compiler switch to obtain an abstract syntax
tree of the Caml code, which we import into Isabelle/HOL, modulo some pretty
printing of the thread pair as a Par. We first modify the Caml code by tagging
subexpressions with trace information, in particular, we modify the () expression
in the critical section to Trace("Crit",()).

constdefs peterson :: string exp
peterson ≡
LetVal(Trace(′′turn ′′,Ref (Const FFalse)),Lambda(′′turn ′′,LetVal(Trace(′′trys ′′,. . .

We need to model how Caml expressions evaluate or reduce. Expressions
reduce in the context of a store. Our store is a pair (n,w) where n is the next
free location in the store w, a map from locations to expressions. Our reduction
relation is then a relation between (n,w, e), the current store and expression,
with (n′, w′, e′), the store and expression at the next step. To make symbolic
evaluation easier, we phrase this as a function reduce′ from (n,w, e) to a list of
possible next states, which we later lift to a relation rreduce. We give an excerpt
from this definition, illustrating that variables and lambdas do not reduce, and
the reduction of a function value (lambda expression) e1 applied to a value e2 is
by substituting e2 in the body of the function.

primrec
reduce ′ n w (Var v) = []
reduce ′ n w (Lam l) = []
reduce ′ n w (App e1e2) = reduce ′-3 n w e1e2
reduce ′-3 n w (e1 ,e2) = (

if is-value e1 then (
if is-value e2 then (
if is-Lam e1 then [(n,w ,subst-lambda e2 (dest-Lam e1))]
else . . .)))

We combine the Caml definition of Peterson’s algorithm with the Caml re-
duction relation to get a state transition system for the Caml implementation
of Peterson’s algorithm.

types caml = loc ∗ (loc ⇒ string exp) ∗ string exp

Operational Reasoning for Concurrent Caml Programs 285

constdefs peterson-starts :: caml set
peterson-starts ≡ {(loc-counter , λ x . null-exp, peterson)}

constdefs peterson-sts :: caml sts
peterson-sts ≡ (peterson-starts, rreduce)

4 Proof of Correctness

In this section, we outline the proof of correctness. The difficulty of the proof
arises from the complexity of the state space. For example, in the abstract model,
we can show a property is invariant by case splitting on a thread’s program
counter.For the Caml thread, which is represented as a Caml expression, case
splitting does not make sense, and we have to find some other way to characterise
the possible states the thread might take.

Given that we have added trace information to identify the critical section,
our statement of correctness informally says that it is not the case that the Caml
expression is a Par of two threads executing in their critical section. A thread
is represented as a Caml sequence of the current expression, and the remaining
expressions to execute. A sequence is just a let of the current expression, and
the rest of the sequence as the body of the let. This gives rise to the following
statement of correctness.

lemma mutual-exclusion:
∀ p n. is-path peterson-sts p −→ ¬ (∃ e1 l1 e2 l2 . let (n,w ,e) = p n in
e = Par (LetVal (Trace (′′Crit ′′,e1),l1), LetVal (Trace (′′Crit ′′,e2),l2)))

The proof proceeds by constructing an abstraction relation from the Caml sts
to the abstract sts.

lemma is-abstraction: is-abstraction PetersonML.sts Peterson2 .peterson-sts R

The abstraction relates Caml states matching Trace(′′Crit′′, e) to abstract states
with program counter Crit. If the Caml threads were both in their critical section,
then by the main property of abstraction relations, so too would the two abstract
threads. Since we have shown that this is impossible, we get mutual exclusion
for the Caml implementation. To show that R is indeed an abstraction relation,
we have to show that, for reachable states of the Caml system, transitions can
be matched by transitions of the abstract system. That is, we have to show an
invariant of all reachable states.

The main barrier to this approach is the complexity of the reachable states of
the Caml implementation. Intermediate program expressions can grow substan-
tially larger than the original program (because let rec duplicates a body of code,
and we have nested use of let rec, and we also have two thread subexpressions
which duplicate the outer loop code). Individual instructions, which execute in a
single step in the abstract model, can take many steps to execute in the concrete
model, especially as many features are defined on top of the relatively small
core. For example, the Caml code corresponding to the Test instructions can

286 T. Ridge

take more than 40 steps to execute. This in turn influences the interleavings
that can occur. These factors combine to cause a blowup in the complexity of
the state space.

Although intermediate states are extremely large, the state space is still finite.
This means it is at least theoretically possible to enumerate all the reachable
states and prove mutual exclusion this way. This would not tell us anything about
proving general programs correct with an operational semantics. We therefore
resolve to develop general techniques that do not take any advantage of the
finiteness of the state space.

Let the two Caml thread transition systems be Ti, Tj, where {i, j} = {true,
false}. By definition of reachable, we must prove ∀p ∀n (is-path (par Ti Tj) p→
I (p n)) where I states that if Ti takes a step, then so too can the abstract model
of Ti, all respecting the abstraction relation (we also prove the equivalent for Tj).
We attempt to prove this by cases on n. If n = 0, then we prove I(p 0), else if
n = 1 we prove I(p 1) . . . , at each stage using the knowledge of the previous
state to determine the next state (using the definition of Caml reduction). Where
reduction may result in several alternatives, for example when reading the value
of an undetermined variable (we symbolically execute parametric expressions),
we have a branch in the proof. In this way, the machine keeps track of the possible
Caml expression at each stage. This allows us to avoid spelling out which states
are reachable.

Eventually, the path will loop back to a state already seen. Rather than paths,
we consider sequences p which may start in one of these recurrent states. Instead
of proving ∀p ∀n (. . .→ I(p n)) we prove the equivalent ∀n ∀p (. . .→ I(p n)), by
complete induction on n (then cases on n, as above). The induction statement
contains quantification over a higher-order object, the function p, which makes
it a relatively strong use of induction. Suppose n > 30, and (p 30) is a recurrent
state (not necessarily occurring elsewhere on p). Then consider n′ = n− 30, and
p′ = drop 30 p, i.e. p′ is the subsequence of p starting at position 30. We can
invoke the induction hypothesis on n′ (since n′ < n) with p′ as the path (which
starts in a recurrent state) to show I(p′ n′), i.e. I(p n) and we have finished
the proof. This technique does not require the state space to be finite, or for
computations to terminate, indeed our threads never terminate. To preempt
possible mis-readings, we emphasize that the recurrent states are not necessarily
states that have been seen previously on the path.

We wish to avoid considering the interleavings of each thread, so we use a form
of rely-guarantee style reasoning [Jon81]. Our system is a parallel composition
of two threads Ti, Tj . Write this as Ti|Tj . The lemma we want to prove is that
if Ti takes a step, so too can the abstract model. Then we replace the state of
Tj with some arbitrary (but reachable for Ti|Tj) state of Tj , and replace the
transitions of Tj with Ij where Ij represents the invariant guaranteed by (an
arbitrary number of steps of) Tj. In our case, Ij simply states that the trys j
and turn variables in the Caml state are either Const TTrue or Const FFalse,
and the trys i variable is preserved. A key point is that the reachability of Ti|Ij

Operational Reasoning for Concurrent Caml Programs 287

is at least that of Ti|Tj. This technique extends smoothly to cope with more
than two threads.

At every step we have to consider that Ij may make a transition, in which
case we invoke the induction hypothesis, since the state of Tj is unchanged. This
leads to lengthy proofs. We can reduce the proof size by half in the following way.
Instead of considering transitions of Ti|Ij , we consider transitions of T ′

i , where
(T ′

i x x′) ↔ ∃y (Ti x y ∧ Ij y x′). In effect, our transitions include steps of Ti

together with interference from Ij . The key point, again, is that the reachability
of T ′

i is at least that of Ti|Ij , and therefore at least that of Ti|Tj . Note that we
have now modularised the proof, since we are considering an sts T ′

i which is very
close to the sts for our original single thread Ti. Again, this technique extends
smoothly to cope with more than two threads.

We have reduced the problem to examining paths of a single “thread” sts T ′
i

that looks similar to Ti. The proofs consist of little more than simplification to
execute the reduction steps, and to check abstract transitions match concrete
transitions, and some manual instantiation of the induction hypothesis when
reaching a recurrent state. So the parts of the proof which are specific to Pe-
terson’s algorithm are reduced to simplification, whilst the techniques described
above can be captured in general lemmas, and reused in other settings. This
concludes our discussion of the Caml verification.

5 Background on Weak Memory Models

Programmers usually understand concurrent programs based on a notion of “se-
quential consistency” [Kaw00], i.e. there is some sequential execution of the
program which validates the observed behaviour. For example, suppose two con-
current threads Tr, Tw execute as follows. All variables are initialized to 0. Tw
writes 1 to location x, then 2 to location y. Tr reads 2 from location y, then 0
from location x.

Tw : x← 1; y ← 2;
Tr : y → 2; x→ 0;

With a sequentially consistent memory, such an execution would be impossi-
ble. y → 2 must occur after y ← 2, and so after x ← 1, in which case x → 0
should be x → 1. Although this type of reasoning is usually valid on single
processor machines, it is costly to provide such behaviour in multiprocessor ma-
chines, so most multicore systems provide weaker guarantees about the order in
which reads and writes are seen. In a weak memory model, where no guarantee
is provided about the order of reads and writes to different memory locations,
the execution above might be perfectly feasible. However, most algorithms are
verified with a sequentially consistent model of memory. In the presence of weak
memory models, existing algorithms must be modified (or new algorithms in-
vented), along with new proofs of correctness. Practical experience bears out
these claims. For example, Holzmann [HB06] describes how a standard imple-
mentation of Peterson’s algorithm was observed to fail when executing on the
Intel Pentium D processor.

288 T. Ridge

Weak memory models are difficult to program against. Indeed, it is known
[Kaw00] that problems such as mutual exclusion are impossible to solve, even
with relatively strong memory models, without explicit synchronization primi-
tives, such as a “memory barrier” instruction. A memory barrier ensures that all
writes on all processors are flushed to main memory. Although these operations
can provide the guarantees programmers need, they are typically very expensive
to execute, so that there is a desire to reduce their use as much as possible.

In general there is a three-way trade off, between the strength of the synchro-
nization primitive, the extent to which the primitive is used in an algorithm,
and the strength of the memory model. In this work, we fix our synchroniza-
tion primitive as a per location memory barrier. We must now choose between a
strong algorithm (many memory barriers) coupled to a weak memory model, or
a weak algorithm with a strong memory model. We choose a strong algorithm,
i.e. we emphasize portability between memory models over efficiency of the al-
gorithm. We modify Peterson’s algorithm slightly to work with a weak memory.
With reference to the original pseudocode, Fig. 2, we include memory barriers
after the first write of each thread to their try variables, and after writes to the
turn variable.

6 Weak Memory Model Formalization

Compared to the previous abstract formalization, the model is more complex.
Reads and writes no longer refer directly to memory. Memory locations must be
reified in the model, so that we can talk about a write to a particular memory
location. We model the history of writes by maintaining a list, pending-writes,
which is updated every time a thread writes to memory.

types thread-id = bool datatype loc = Turn | Try thread-id

datatype pc = NonCrit | SetTry | Barrier loc | SetTurn | Test | Crit | Exit

types val = bool types memory = loc ⇒ val
types pending-writes = (thread-id ∗ loc ∗ val) list
types pcs = thread-id ⇒ pc types peterson-state = memory ∗ pending-writes ∗ pcs

pending-writes is a purely logical construct that reflects the history of the
trace into the current state, allowing easier invariant proofs. It is not intended
that a real implementation maintain a cache of pending writes. The memory, a
map from locations to values, is also a logical construct. The interpretation of
the memory at location loc will turn out to be the following: if there have been
no writes by any thread to loc since the last memory barrier, then two threads
reading from loc agree on the value, which is (memory loc). Our proofs are valid
for any memory model where the memory barrier satisfies this property.

On executing a memory barrier for a location loc, if there is some pending
write for loc, then the memory is updated by taking the last write that some
thread made to loc. The thread that is chosen need not be the thread executing

Operational Reasoning for Concurrent Caml Programs 289

∨ ((ipc,ipc ′) = (Barrier Turn,Test)
∧ barrier Turn (memory ,pws) (memory ′,pws ′))

∨ ((ipc,ipc ′) = (Test ,Crit)
∧ (read memory pws (i ,Try j ,False) ∨ read memory pws (i ,Turn,i))
∧ (memory ′,pws ′) = (memory ,pws))

Fig. 4. Peterson’s algorithm, modified for weak memory, excerpt

the memory barrier instruction. All pending writes for loc are then dropped
from the list of pending writes. If there are no pending writes, memory remains
unaltered.

constdefs barrier :: loc ⇒ memory ∗ pending-writes ⇒ memory ∗ pending-writes ⇒
bool

In accordance with our logical interpretation of pending writes, the write
operation simply appends the write to the list of pending writes. Since we aim
to keep our memory model as weak as possible, we declare but do not define the
read operation. We will later constrain read with properties that are required
for the correctness proof. The transitions are phrased in a similar style to before,
and we give an excerpt only, Fig. 4.

constdefs write :: (thread-id ∗ loc ∗ val) ⇒ pending-writes ⇒ pending-writes
write tidlocv pws ≡ tidlocv#pws

consts read :: memory ⇒ pending-writes ⇒ (thread-id ∗ loc ∗ val) ⇒ bool

7 Proof of Correctness

The weak memory proof follows the outline of the previous abstract proof. The
read operation depends on the memory and the pending writes. Our first task is
to characterise the pending writes to each location, given the state of a thread.
For example, in the following lemma, invariant P shows that if thread i is in the
non-critical state, then the pending writes to i’s try variable are either empty, or
contain a single write by i, setting the try variable to false. The lemma is named
because it logically precedes Lemma 10.5.1; it does not appear in [Lyn96].

lemma lemma-10-5-0 :
defines P-def : P ≡ λ i memory pws pcs ipc.
let pws-Try-i = filter (λ (tid ,loc,v). loc = Try i) pws in
if ipc ∈ {NonCrit ,SetTry} then pws-Try-i ∈ {[],[(i ,Try i ,False)]}
else if ipc = Barrier (Try i) then pws-Try-i ∈ {[(i ,Try i ,True)], [(i ,Try i ,True),(i ,Try

i ,False)]}
else pws-Try-i = []
defines R-def : R ≡ λ i memory pws pcs ipc.
let pws-i-Turn = filter (λ (tid ,loc,v). tid = i ∧ loc = Turn) pws in

290 T. Ridge

if ipc = Barrier Turn then pws-i-Turn ∈ {[(i ,Turn,¬i)],[]}
else pws-i-Turn = []
shows ∀ p. is-path peterson-sts p
−→ (∀ n i .
let (memory ,pws,pcs) = p n in
let ipc = pcs i in
P i memory pws pcs ipc
∧ R i memory pws pcs ipc)

One might imagine that placing a memory barrier after every write to a
location is sufficient to ensure correctness. This is not correct for our model of
memory, because it is still possible to read from a location with a pending write,
in which case the read is unconstrained. Another subtlety is the interaction of
the memory barriers. For example, thread i may have written to variable turn,
and be on the point of doing a memory barrier to force the write to memory.
In the meantime, the other thread j may also write to turn, and complete the
subsequent memory barrier. In this case, i will execute the memory barrier but
i’s pending write will have been discarded by j’s memory barrier. This case can
be seen in the characterisation of the pending writes, since if i’s pc is Barrier
Turn, the pending writes to the turn variable may be the empty list. In this
scenario, i’s write may never reach memory at all.

With lemma-10-5-0, we can prove the equivalent of lemma-10-5-1, i.e. that
if thread i’s program counter lies in the range SetTurn to Exit, and thread
j reads i’s try variable to be v, then v must be true. The proof requires a
restriction on the behaviour of the read operation: if there have been no writes
to a location since the last memory barrier for that location, and two threads
read that location, then they read the same value. It is easiest to express this
as the existence of a function memory from locations to values, which gives the
common value that threads must read in case there are no pending writes. We
use a locale to capture this assumption, and the proof is conducted within this
locale, in the scope of the assumption.

locale l = assumes a:
∀ memory pws tid loc v . filter (λ (tid ,loc ′,v). loc ′ = loc) pws = []
−→ (read memory pws (tid ,loc,v) = (memory loc = v))

We can now prove the equivalent of lemma-10-5-2, property Q in the follow-
ing lemma statement. We require an auxiliary fact to handle the case that a
thread’s write to the turn variable has been discarded by the memory barrier of
the other thread. For example, it is conceivable that j writes to turn, i writes to
turn, i performs a memory barrier, and subsequently enters the critical section.
j then performs a memory barrier (but there are no pending writes), reads i’s
write to turn which gives priority to j, and so enters the critical section. How-
ever, if i enters the critical section, then i’s memory barrier must have committed
j’s pending write to the turn variable. In which case, j is prevented from entering

Operational Reasoning for Concurrent Caml Programs 291

the critical section. Some work is required to phrase this reasoning as the invari-
ant P . As before, our final correctness theorem follows directly from Q, since
memory Turn cannot be both i and j simultaneously.

lemma (in l) lemma-10-5-2 :
defines P-def :
P ≡ λ i ipc jpc memory pws.
ipc = Crit
∧ jpc = Barrier Turn
∧ filter (λ(tid ,loc,c). loc = Turn) pws = []
−→ memory Turn = i
defines Q-def :
Q ≡ λ i ipc jpc memory pws.
ipc = Crit
∧ jpc ∈ {Test ,Crit}
−→ memory Turn = i

shows
∀ p. is-path peterson-sts p
−→ (∀ n i .
let (memory ,pws,pcs) = p n in
let ipc = pcs i in
let j = ¬ i in
let jpc = pcs j in
P i ipc jpc memory pws
∧ Q i ipc jpc memory pws)

8 Related Work

A substantial amount of program verification has used Hoare logics [Hoa69]. A
state of the art example of mechanized Hoare reasoning for while-programs with
state is [MN05]. The language treated is significantly simpler than that here. The
work of Homeier [HM95] also treats a very simple language. This work includes
a verification condition generator, essentially a tool that constructs a syntax-
directed proof for the program (augmented with user hints and invariants),
and returns the steps that could not be proven automatically as “verification
conditions”.

Our work uses operational reasoning directly above an operational seman-
tics. Operational reasoning is much more flexible then Hoare logic, since any
technique allowed by the meta-logic (in our case higher-order logic) is directly
usable. On the other hand, we know of no essential advantages of Hoare logic
over operational reasoning. Strother Moore has also followed this course. The
detail of the operational models mandate mechanical support, but current the-
orem provers are more than up to the task. Indeed, Strother Moore states2

“had there been decent theorem provers in the 1960s, Floyd and Hoare would
never have had to invent Floyd-Hoare semantics!” His work [LM04] focuses on
operational Java program verification. However, he first compiles the Java to
bytecode, and then verifies this. Correctness properties are phrased as prop-
erties of the bytecode, and reasoning occurs above the bytecode, not above
the original Java program. The examples treated, such as an “add one” pro-
gram, and a Java function that implements factorial, are significantly simpler
than the work presented here. Concurrency, and the problem of the state space
explosion in interleaving between threads, is also not tackled. A very rare ex-
ample of operational reasoning applied to a high-level language is the work of

2 http://www.cs.utexas.edu/users/moore/best-ideas/vcg/index.html

http://www.cs.utexas.edu/users/moore/best-ideas/vcg/index.html

292 T. Ridge

Compton [Com05] who verifies a version of Stenning’s protocol for a restricted
model of Caml and UDP. This work is similar, but again much simpler, than
that presented here.

Of course, where concurrency is involved, all these examples assume a sequen-
tially consistent memory model. There has been much work on weak memory
models. The PhD of Kawash [Kaw00] provides good references into the litera-
ture. Mechanization usually takes the form of model checking. Examples include
[MLP04], where the authors tackle the problem by analysing dependencies be-
tween reads and writes; and [BAM06], where the authors use a constraint based
approach based on the SAT encoding method in [GYS04]. As far as interactive
mechanization goes, Mike Gordon has some early unpublished work3 on memory
models of the Alpha processor.

For weak memory models, model checking offers a tractable approach to many
of the main problems. However, model checking is not always an option. The
thrust of our work is to see if traditional reasoning techniques, employed when
designing algorithms such as Peterson’s, can scale to the weak memory case.
Our experience leads us to believe that they can, but that the effort is great,
and mechanical assistance seemingly mandatory. Put simply, it is very hard
for humans to design concurrent algorithms if they are restricted to reasoning
about the interleaving of thread transitions. Weak memory models add even
more complexity. However, new ways of thinking (and proving facts) about weak
memory may alleviate the problem.

9 Conclusion

We presented the verification of a Caml implementation of Peterson’s algorithm,
down to the operational semantics. The proofs were non-trivial, and we spent
considerable effort phrasing the lemmas and shaping the induction statements,
as described in Sect. 4. However, once the overall structure of the proof was in
place, the actual body of the proof was mostly symbolic execution. The lemmas,
induction schemes, and proof techniques are general, and have the potential to
scale to real programs in real languages, so that future verifications will benefit
from the experience described here. We also addressed the problem of weak
memory models by verifying a version of Peterson’s algorithm running on a
weak memory model.

Our model of Caml included all the features necessary to support the example
of Peterson’s algorithm. However, we are interested in verifying other programs
which use more Caml features. To this end, we are working with several others
on a highly realistic model of Caml, using the Ott tool [SNO+] to state our
definitions. We intend to develop metatheory for this model, and operational
proofs of program correctness for other Caml programs. The next program we
intend to verify is a Caml implementation of a fully automatic theorem prover
for first order logic [RM05].

3 See http://www.cl.cam.ac.uk/research/hvg/FTP/FTP.html

http://www.cl.cam.ac.uk/research/hvg/FTP/FTP.html

Operational Reasoning for Concurrent Caml Programs 293

References

[BAM06] Burckhardt, S., Alur, R., Martin, M.M.K.: Bounded model checking of con-
current data types on relaxed memory models: A case study. In: Ball, T.,
Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 489–502. Springer, Hei-
delberg (2006)

[Com05] Compton, M.: Stenning’s protocol implemented in UDP and verified in Is-
abelle. In: Atkinson, M.D., Dehne, F.K.H.A. (eds.) CATS. CRPIT, vol. 41,
pp. 21–30. Australian Computer Society (2005)

[Gon05] Gonthier, G.: A computer-checked proof of the Four Colour Theorem (2005),
http://research.microsoft.com/∼gonthier/4colproof.pdf

[GYS04] Gopalakrishnan, G., Yang, Y., Sivaraj, H.: An efficient execution verification
tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS,
vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

[HB06] Holzmann, G.J., Bosnacki, D.: The design of a multi-core extension of the
Spin Model Checker. In: FMCAD. Formal Methods in Computer Aided
Design (November 2006)

[HM95] Homeier, P.V., Martin, D.F.: A mechanically verified verification condition
generator. Comput. J. 38(2), 131–141 (1995)

[Hoa69] Hoare, C.A.R.: An axiomatic basis for computer programming. Communi-
cations of the ACM, 12 (1969)

[Jon81] Jones, C.B.: Development methods for computer programs including a
notion of interference. Technical Report PRG-25, Programming Research
Group, Oxford University Computing Laboratory (1981)

[Kaw00] Kawash, J.Y.: Limitations and capabilities of weak memory consistency sys-
tems. PhD thesis, Computer Science, University of Calgary (2000)

[LM04] Liu, H., Moore, J.S.: Java program verification via a JVM deep embedding
in ACL2. In: Slind, K., Bunker, A., Gopalakrishnan, G.C. (eds.) TPHOLs
2004. LNCS, vol. 3223, pp. 184–200. Springer, Heidelberg (2004)

[Lyn96] Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann, San Francisco
(1996)

[MJ84] Morris, F.L., Jones, C.B.: An early program proof by Alan Turing. Annals
of the History of Computing 6(2), 143–193 (1984)

[MLP04] Midkiff, S.P., Lee, J., Padua, D.A.: A compiler for multiple memory models.
Concurrency and Computation: Practice and Experience 16(2-3), 197–220
(2004)

[MN05] Mehta, F., Nipkow, T.: Proving pointer programs in higher-order logic. In-
formation and Computation 199, 200–227 (2005)

[Pet81] Peterson, G.L.: Myths about the mutual exclusion problem. Information
Processing Letters 12(3), 115–116 (1981)

[Rid] Ridge, T.: Simpson’s four slot algorithm in Isabelle/HOL, available online,
at http://www.cl.cam.ac.uk/∼tjr22

[RM05] Ridge, T., Margetson, J.: A mechanically verified, sound and complete theo-
rem prover for FOL. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS,
vol. 3603, Springer, Heidelberg (2005)

[SNO+] Sewell, P., Nardelli, F.Z., Owens, S., Peskine, G., Ridge, T., Sarkar, S.,
Strnǐsa, R.: Ott: Effective tool support for the working semanticist. In: ICFP
2007. The 12th ACM SIGPLAN International Conference on Functional
Programming (accepted, 2007)

http://research.microsoft.com/~gonthier/4colproof.pdf
http://www.cl.cam.ac.uk/~tjr22

Proof Pearl:

Wellfounded Induction on the Ordinals Up to ε0

Matt Kaufmann1 and Konrad Slind2

1 Department of Computer Sciences, University of Texas, Austin
kaufmann@cs.utexas.edu

2 School of Computing, University of Utah
slind@cs.utah.edu

Abstract. We discuss a proof of the wellfounded induction theorem for
the ordinals up to ε0. The proof is performed on the embedding of ACL2
in HOL-4, thus providing logical justification for that embedding and
supporting the claim that the ACL2 logic has a model.

1 Introduction

A formalization of the ACL2 logic in higher order logic is described in [5,6]. The
formalization involved defining the type of s-expressions, defining the primitive
functions of ACL2, and stating the logical axioms used by ACL2. The formal
soundness of the ACL2 logic has been pursued by doing a theory interpretation:
if each of the ACL2 axioms can be proved as a theorem, then ACL2 has a model.
The main motivation for doing this proof was to ensure that the embedding is
logically sound. More specifically, we want to know that if a theorem, φ, is
proved in a given ACL2 theory, T , then the translation of φ to SEXP (the ACL2
theory in HOL) is provable in HOL from the translation of T into SEXP. Thus,
ACL2 theorems can be safely imported into HOL, allowing principled access to
the ACL2 proof engine (which includes its evaluator) from HOL. In the work
reported in [5,6] all of the axioms identified for ACL2 were proved in HOL, except
for those sanctioning the use of induction and recursion. This note finishes the
task.1

Induction and recursion in ACL2 are important sources of reasoning power.
In this paper, we show how the wellfounded induction and recursion theorems
already proved in HOL-4 can be instantiated to obtain the induction and re-
cursion theorems used in ACL2. The essential lemma is that a particular order
relation (<o) on the ordinals up to ε0 is wellfounded.

1 Hanbing Liu and Robert Krug [email communications] have subsequently discovered
first-order axioms that are not made explicit in the list of axioms distributed with
ACL2, and hence have not been proved in HOL. All such missing axioms need to be
made explicit and then proved in order truly to finish the task, but addressing that
deficiency is potential future work beyond the scope of this paper.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 294–301, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Proof Pearl: Wellfounded Induction on the Ordinals Up to ε0 295

2 Ordinal Notation for ε0

An ordinal notation gives a syntactic representation for the ordinals, and thus
supports computation over entities capable of representing a wide variety of
infinite sets. The main use of the ordinals in ACL2 is to provide a basis for the
termination proofs required to install recursive definitions in the logic and to
justify induction schemes. However, there are other uses as well; for example,
an ACL2 formalization of algorithms implementing ordinal arithmetic may be
found in [9].

Different notations capture different initial segments of the countable ordinals.
One important notation captures the ordinals up to ε0. In the following, we will
present this notation as an exercise in datatypes and inductive definitions in
higher order logic and, as well, provide the ACL2 definitions actually used in the
proof. A point worth noting is that we are not ascribing any semantics at all to
the notation; a separate proof would be needed to show that indeed the following
definitions do correspond to the ordinals up to ε0. A good basis for such work
would be Huffman’s formalization of the countable ordinals in Isabelle/HOL [7].

Definition 1 (Raw syntax of ordinals). The raw syntax of ordinals is cap-
tured by the following ML-style datatype definition:

osyntax = End of num
| Plus of (osyntax * num) * osyntax

We will occasionally write Plus as infix +, and will also treat Plus as being curried
rather than taking a pair of arguments.

As can be seen, an osyntax element is essentially a list of exponent × coefficient
pairs, ending in a natural number. The intuition is that the syntax (Plus(α, k) t)
represents the ordinal ωα ·k+t, but a few more definitions are necessary to ensure
this. On the raw syntax we first define some basic functions and the notion of
rank. The rank of an ordinal x is a natural number describing the height of the
tower of exponents in the first term of x.

Definition 2 (osyntax operations).

finp(End) = T tail(Plus t) = t
finp(Plus) = F

expt(End) = End(0) coeff(End x) = x
expt(Plus(e, k) t) = e coeff(Plus(e, k) t) = k

rank(End) = 0
rank(Plus(e, k) t) = 1 + rank e

The order relation <o is defined with an inductive definition.

296 M. Kaufmann and K. Slind

Definition 3 (<o).

x < y

End(x) <o End(y) End(x) <o Plus(e, k) t

e1 <o e2

Plus(e1, k1) t1 <o Plus(e2, k2) t2

e1 = e2 k1 < k2

Plus(e1, k1) t1 <o Plus(e2, k2) t2

e1 = e2 k1 = k2 t1 <o t2

Plus(e1, k1) t1 <o Plus(e2, k2) t2

The ordinals less than ε0 are then the subset of the raw syntax elements meeting
the following inductively defined predicate.

Definition 4 (Cantor Normal Form).

ord(End x)
ord(e) e 	= End(0) 0 < k ord(t) expt(t) <o e

ord(Plus(e, k) t)

Thus, if ord(x) holds, x has the form

ωα1 · k1 + ωα2 · k2 + · · ·+ ωαn · kn + p

and successive exponents strictly decrease, i.e., αn <o · · · <o α2 <o α1. Also,
exponents and coefficients must be non-zero.

2.1 ACL2 Definitions

The above definitions are for essentially presentational purposes, as our verifica-
tion must use the actual definitions used by ACL2 (as represented in the HOL-4
theory SEXP). Since ACL2 does not have the strict type system of HOL, and
also requires total functions, the definitions have to take care over default cases.
We will use a shorthand from [6] for bridging the gap from s-expressions to the
booleans used by HOL. In ACL2, a statement is false if it is equal to the symbol
nil; otherwise it is true.

Definition 5. |= x = (x 	= nil)

In the following collection of definitions, an atom is anything that is not a
cons; less is the usual (strict) order on numbers; nat injects a natural num-
ber into the complex rationals used by ACL2; and natp is true if its argument
is a natural number. Finally, sharp-eyed readers will note that rank delivers
a HOL natural number and not an s-expression, unlike the other definitions.
This provided a small convenience in the proof (by induction) of the main
lemma.

Proof Pearl: Wellfounded Induction on the Ordinals Up to ε0 297

Definition 6 (ACL2 formalization).

finp x = atom x
tail x = cdr x
expt x = if |= finp x then (nat 0) else car(car x)
coeff x = if |= finp x then x else cdr(car x)
rank x = if |= finp x then 0 else 1 + rank(expt x)

oless x y =
if |= finp x then (if |= not(finp y) then not(finp y) else less x y) else
if |= finp y then nil else
if |= not(equal (expt x) (expt y)) then oless (expt x) (expt y) else
if |= not(equal(coeff x) (coeff y)) then less (coeff x) (coeff y)
else oless (tail x) (tail y)

ord x =
if |= finp x then (natp x) else
if |= consp(car x) then
if |= ord(expt x) then
if |= not(equal (nat 0) (expt x)) then
if |= posp(coeff x) then
if |= ord(tail x) then oless (expt(tail x) (expt x))
else nil else nil else nil else nil else nil

For readability we give a definition describing an ordinal with rank no greater
than n.

Definition 7. ordn n x = ord(x) ∧ rank x ≤ n

The reader may think that the proof we are about to conduct is made more diffi-
cult by these apparently more complex definitions; however, the true complexity
of the proof lies at a more abstract level and the differences between styles of
definition are lost in the noise.

3 The Proof

The final theorem is a simple consequence of the following lemma.2

Theorem 1 (Main Lemma). Every set having at least one ordinal of rank
≤ n has an <o-minimal element.

∀n. ∀P. (∃x. P x ∧ ordn n x) ⊃
∃x. P x ∧ ordn n x ∧ ∀y. ordn n y ∧ y <o x ⊃ ¬P y

2 After developing the proof, we were surprised to recall a similar, informal proof in
the ACL2 online documentation under the heading Proof-of-well-foundedness. Of
course, the theorem is second-order and therefore cannot be stated within ACL2, let
alone proved in that system.

298 M. Kaufmann and K. Slind

Proof. A proof by complete induction is perhaps simpler, but we originally ob-
tained the proof by mathematical induction, and there is no essential difference.
We will be perhaps painfully pedantic in the following proof; the reason for this
is that we want to provide enough detail that this can be a useful pedagogical
example.

We can restrict our attention to non-empty sets of ordinals of rank ≤ n since
adding non-ordinals or ordinals of rank > n to the set P makes no difference to
the existence of an <o-minimal element.
Base Case. Every non-empty set of ordinals of rank ≤ 0 is a set of natural
numbers, so has a minimal (in fact least) element by the well-ordering property,
and this is an <o-minimal element since natural numbers are smaller than any
other kind of ordinal.
Step Case. Assume the IH. We want to show that every non-empty set of
ordinals of rank ≤ n+ 1 has an <o-minimal element. So assume we are given a
non-empty set of ordinals of rank ≤ n + 1. Either some element of the set has
rank ≤ n, or every element has rank exactly n + 1. In the former case, we can
immediately use the IH to get an <o-minimal element.

Otherwise, we can refine our goal to that of showing that every non-empty
set of ordinals of rank = n + 1 has a minimal element. We then proceed by
contradiction, namely we assume there exists a non-empty set of ordinals, each
of rank n + 1, where for each element in the set, there exists an <o-smaller
element also in the set. That means that there exists a non-empty set of such
sets:3

∃S. (∃si. si ∈ S) ∧
(∀si. si ∈ S = (∃x. x ∈ si)∧

(∀x ∈ si. ord(x) ∧ (rank x = n + 1) ∧ ∃y. y ∈ si ∧ y <o x))

From that we know that the set of first exponents of ordinals occurring anywhere
in S is non-empty.

∃E. (∃e. e ∈ E) ∧ ∀e. e ∈ E = ∃si x. si ∈ S ∧ x ∈ si ∧ e = expt x

Moreover, every element of E has rank n, so the IH applies, and E has a minimal
element α1. Now consider some sj ∈ S such that α1 is the first exponent of some
element of sj:

∃sj x. sj ∈ S ∧ x ∈ sj ∧ α1 = expt x

We are going to work inside sj from now on. Consider sα1 , the subset of sj

consisting of all ordinals with first exponent α1; this is a non-empty set. Now
{coeff(x) | x ∈ sα1}, the set of first coefficients of elements of sα1 , is a non-empty
set of numbers, so has a minimal element k1. This yields sα1,k1 , a non-empty
subset of sα1 where each element has first exponent k1.

∃sα1,k1 . (∃a. a ∈ sα1,k1) ∧ (∀b. b ∈ sα1,k1 = b ∈ sα1 ∧ coeff(b) = k1)
3 This is the crucial use of higher order in the proof, moving from a set having a

property to a set of sets, each having that property.

Proof Pearl: Wellfounded Induction on the Ordinals Up to ε0 299

We have sα1,k1 ⊆ sα1 ⊆ sj ∈ S. At this point, we have in effect constructed the
first term in a minimal witness ωα1 · k1 + . . ., which will result in our desired
contradiction. We could continue to find α2 and k2 and so on. The following
steps make this ‘and so on’ precise.

Consider the set of all tails of elements in sα1,k1 . This is non-empty.

∃Tails . (∃b. b ∈ Tails) ∧ ∀c. c ∈ Tails = ∃b. b ∈ sα1,k1 ∧ c = tail b

Now we do a case split on whether there is an element in Tails with rank ≤ n.
If there is, we may use the IH to obtain a minimal element t ∈ Tails, and use
this to obtain ωα1 · k1 + t, an element of sj with no element of sj being, by
construction, <o-smaller than it. This contradicts sj ∈ S.

Otherwise, every element in Tails has rank n+1. Now consider whether Tails
has a <o-minimal element. If it does, then we again build a minimal element of
sj and obtain a contradiction. Otherwise, Tails is a non-empty set of ordinals,
each of rank n + 1, with no minimal element. So Tails ∈ S. The smallest first
exponent of any element of Tails must be <o-smaller than α1; however, recall
that α1 was chosen to be the smallest first exponent of any element in any set
in S. So Tails /∈ S. Contradiction.

Theorem 2 (Corollary). Every set with at least one ordinal has an <o-
minimal element.

∀P. (∃x. P x ∧ ord x) ⊃ ∃x. P x ∧ ord x ∧ ∀y. ord y ∧ y <o x ⊃ ¬P y

Proof. By instantiating n in the main lemma to rank x. In other words, the
induction of the Main Lemma is essentially on the rank of x.

We now recall the formal definition of wellfoundedness. A relation R is well-
founded if every non-empty set has an R-minimal element:

Definition 8 (Wellfoundedness).

WF(R) ≡ ∀P. (∃w. P w) ⊃ ∃min. P min ∧ ∀b. R b min ⊃ ¬P b.

Then if we define <ord≡ λx y. ord x∧ord y∧x <o y, which just requires that the
arguments of <o be in Cantor Normal form, it is trivial to prove WF(<ord). Now
we are ready to directly use the general theorem for induction already available
in HOL-4:

WF(R) ⊃ (∀x. (∀y. R y x ⊃ P y) ⊃ P x) ⊃ ∀x. P x .

The desired induction theorem is a simple instantiation, given the fact that
measure functions into wellfounded sets yield wellfounded sets.

Theorem 3 (ε0-Induction).

(∀x. (∀y. m(y) <ord m(x) ⊃ P y) ⊃ P x) ⊃ ∀x. P x

300 M. Kaufmann and K. Slind

3.1 Recursion

The wellfounded recursion theorem in HOL-4 is formulated as

WF(R) ⊃ ∃!f. ∀x. f(x) = M (f |R, x) x

where the notation (f |R, x) restricts f to be applied only to elements that are
R-less than x. A corresponding recursion theorem for the ordinals up to ε0 is
again a simple instantiation.

Theorem 4 (ε0-Recursion).

∃!f. ∀x. f(x) = M (f | (λxy. m(x) <ord m(y)), x) x

Although this recursion theorem is appealingly succinct, it is not used to justify
recursive definitions in ACL2 [8]. Instead, a primitive recursive interpreter-based
definition (with a “clock”) can in principle be defined to build a function sat-
isfying a specified recursive equation. The interpreter-based definition always
terminates (given a large enough clock) because of the well-foundedness of <ord.
The relationship of the existing approach in ACL2 and the ε0-recursion theorem
may be interesting to explore.

4 Discussion

We have formally proved ε0-induction in higher order logic, thus helping finalize
an embedding of ACL2 in HOL-4 [5,6]; the whole development may be found
in the examples/acl2/ml directory in the HOL-4 distribution. The presentation
of the proof of the Main Lemma is informal but it follows the formal proof
quite closely, e.g., important formulas occurring in the proof have been faithfully
transcribed. In particular, after the induction on rank, the backbone of the proof
is the existence of the sets S, E, sj , sα1 , sα1,k1 , and Tails . We do not claim that
the proof given here is original or unsurpassably beautiful—although we like
it—but it has been presented in detail so that others can follow and adapt it.

The ordinal ε0, originally defined by Cantor, is very important in the history
of logic and set theory. Gentzen used PRA (Primitive Recursive Arithmetic, a
subsystem of PA, Peano Arithmetic) plus ε0-induction to prove the consistency
of PA [2]. Hence, by Goedel’s second incompleteness theorem, ε0-induction is not
provable in PA. (Of course, ε0-induction is not even a formula of PA, so some
work needs to be done to give this statement some force.) Gentzen showed how
to derive ε0-induction in [3], by means of proof theory, in contrast to our set-
theoretic proof. An accessible discussion on the use of ordinals in proof theory,
especially for PA and related systems, may be found in [1].

Although the main point of our formal proof of ε0-induction is to help check
the axiomatization of ACL2 it may be that—in analogy to Goodstein’s enter-
taining theorem [4] which can be stated in PA, but the proof of which needs
ε0-induction—useful theorems emerge which are not provable in ACL2. In that
case, it may be possible to transfer the statement to the ACL2 embedding in
HOL, and prove it there, justifying its subsequent use in ACL2.

Proof Pearl: Wellfounded Induction on the Ordinals Up to ε0 301

Acknowledgements

This material is based upon work supported by DARPA and the National Science
Foundation under Grant No. CNS-0429591.

References

1. Franzen, T.: Inexhaustibility, a non-exhaustive treatment. Lecture Notes in Logic,
vol. 16. A.K. Peters (2004)

2. Gentzen, G.: The consistency of elementary number theory. In: Szabo, M.E. (ed.)
The Collected Papers of Gerhard Gentzen. Studies in Logic and the Foundations of
Mathematics, North Holland, Amsterdam (1969)

3. Gentzen, G.: Provabillity and nonprovability of restricted transfinite induction in
elementary number theory. In: Szabo, M.E. (ed.) The Collected Papers of Gerhard
Gentzen. Studies in Logic and the Foundations of Mathematics, North Holland,
Amsterdam (1969)

4. Goodstein, R.: On the restricted ordinal theorem. Journal of Symbolic Logic 9,
33–41 (1944)

5. Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An embedding of the
ACL2 logic in HOL. In: Proceedings of ACL2 2006. ACM International Conference
Proceeding Series, vol. 205, pp. 40–46. ACM Press, New York (2006)

6. Gordon, M.J.C., Hunt, W.A., Kaufmann, M., Reynolds, J.: An integration of HOL
and ACL2. In: Proceedings of FMCAD 2006, pp. 153–160. IEEE Computer Society
Press, Los Alamitos (2006)

7. Huffman, B.: Countable ordinals. Isabelle Archive of Formal Proofs (November 2005)
8. Kaufmann, M., Moore, J.S.: Structured theory development for a mechanized logic.

Journal of Automated Reasoning 26(2), 161–203 (2001)
9. Manolios, P., Vroon, D.: Ordinal arithmetic: Algorithms and mechanization. Journal

of Automated Reasoning, 1–37 (2006)

A Monad-Based Modeling and Verification Toolbox with
Application to Security Protocols�

Christoph Sprenger and David Basin

Department of Computer Science, ETH Zurich, Switzerland
{sprenger,basin}@inf.ethz.ch

Abstract. We present an advanced modeling and verification toolbox for func-
tional programs with state and exceptions. The toolbox integrates an extensible,
monad-based, component model, a monad-based Hoare logic and weakest pre-
condition calculus, and proof systems for temporal logic and bisimilarity. It is im-
plemented in Isabelle/HOL using shallow embeddings and incorporates as much
modeling and reasoning power as possible from Isabelle/HOL. We have validated
the toolbox’s usefulness in a substantial security protocol verification project.

1 Introduction

The choice of a specification formalism with supporting verification methods and tools
is critical to the success of substantial verification projects. In order to obtain manage-
able proofs, models and their properties must be formulated at an appropriate level of
abstraction and verification methods and tools must be available for reasoning at that
abstraction level. In this paper, we present a comprehensive formalism providing such
abstractions for the specification and verification of functional programs with non-pure
features, namely state and exceptions. It consists of the following elements: (1) a mod-
eling language capturing the computational structure of the systems under study, (2)
a notion of component for structuring models, (3) a notion of component abstraction,
including a proof method to establish an abstraction relation between two components,
and (4) property specification languages and proof methods. We have implemented this
toolbox in Isabelle/HOL [18]. Our aim is to provide a set of practically useful tools
rather than to develop meta-theoretical studies about programming languages and log-
ics. Therefore, we work with shallow embeddings and exploit Isabelle/HOL’s expres-
sive specification language (for 1–2) and powerful reasoning tools (for 3–4) as much as
possible. We now discuss (1)–(4) in turn.

Ad 1. Modeling state and exception handling directly in HOL results in models that
are cluttered with additional state parameters and error-handling branches. This situa-
tion calls for an additional layer of abstraction, which can be elegantly modeled using
monads [15]. In our case, the monad of choice is a deterministic state-exception monad,
which extends HOL with operations for sequential composition, state manipulation, and
exception handling. All other control structures, such as pattern matching, if-then-else

� This work was partially supported by the Zurich Information Security Center. It represents the
views of the authors.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 302–318, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Monad-Based Modeling and Verification Toolbox 303

and function definitions, are borrowed directly from Isabelle/HOL. We would like to
stress that most of our method and tools can be easily adapted to other monads.

Ad 2. We take a simple view of components as modules encapsulating a state with in-
terface functions that manipulate this state. We represent the state in an object-oriented
style as an extensible record and component composition as record extension and func-
tion composition. Using extensible records allows the extended component to automat-
ically inherit properties proved for the base component.

Ad 3. We compare (abstract or refine) components using bisimilarity. Two compo-
nents are bisimilar if all pairs of equally named interface functions are bisimilar. To
show this, we have developed a compositional proof system to establish the bisimilarity
of programs. Its judgments and rules resemble those of Hoare logic except that pre- and
post-conditions are relations between pairs of states of two programs.

Ad 4. In order to state and prove properties about components, we have embed-
ded several logics in Isabelle/HOL: a weakest pre-condition (WP) calculus, a Hoare
logic, and linear-time temporal logic (LTL). All these logics rely on HOL’s set theory
as their underlying assertion language. The WP calculus is derived from Pitts’ evalua-
tion logic [20] and provides the basis for the definition of the Hoare logic. Both of these
are tailored to the state-exception monad, whereas the temporal logic is interpreted over
standard transition systems. The benefit of embedding these logics in Isabelle/HOL is
that this enables the use of the corresponding, well-established proof methods. We re-
duce the verification of temporal properties to pre-/post-condition and assertional rea-
soning using standard proof rules [14]. The resulting Hoare triples are proved using a
combination of Hoare logic and the underlying WP calculus. While Hoare logic pro-
vides the full flexibility of interactive proofs, we may unfold Hoare triples at any point
during a proof and invoke the WP calculus, using Isabelle’s efficient simplifier to auto-
matically reduce the resulting weakest pre-conditions into simpler HOL assertions.

Our contribution is two-fold. First, we show how to leverage the rich modeling and
reasoning infrastructure provided by a theorem prover like Isabelle/HOL for seman-
tic embeddings of various modeling, specification, and verification concepts. This al-
lows us to model, specify and reason at an adequate level of abstraction. We adapt and
integrate well-known techniques with less standard and new ones to build a unique,
comprehensive, and modular modeling and verification toolbox. Second, we provide
a ready-to-use verification toolbox with a wide scope of application. This toolbox has
proved its effectiveness in a substantial cryptographic protocol verification project [21].
For a rough idea of the size of the theories involved, our development spans more than
22k lines of Isabelle/HOL sources, organized into more than 50 theories. The toolbox
accounts for about 20% of these figures. In particular, the combination of Hoare logic
and the WP calculus offers a good degree of proof automation, which was crucial to the
successful completion of the sizable verification effort involved. We use examples from
our project [21] to illustrate the application of the concepts presented in this paper.

2 Background

Isabelle/HOL notation. In Isabelle/HOL, t :: T denotes a term t of type T. The ex-
pression c x ≡ t defines the constant c with the parameter x as the term t . Definitions

304 C. Sprenger and D. Basin

constitute the principal mechanism for producing conservative extensions of HOL. Type
variables are denoted by lowercase Greek letters. Given types α and β, α⇒ β is the
type of (total) functions from α to β, α × β is the product type, and α set is the type of
sets of elements of type α. The type unit contains a single element. There are several
mechanisms to define new types. A datatype declaration introduces an inductive data
type. For example, the polymorphic option type is defined by datatype α option =
None | Some α. Functions of type α⇒ β option are used to model partial functions
from α to β. The declaration types T1= T2 merely introduces a new name for the type
T2, possibly with parameters, as in types α ⇀ β = α⇒ β option.

Application: Cryptographically Sound Protocol Verification. In our security pro-
tocol verification project [21], we work with the protocol model proposed by Backes,
Pfitzmann, and Waidner [2], henceforth called the BPW model. This model is substan-
tially more complex than standard Dolev-Yao models (e.g., [19]), but has the advantage
of being cryptographically sound, which means that properties proven of protocols hold
with respect to standard cryptographic definitions of security (defined in probabilistic
and complexity-theoretic terms). Roughly speaking, the BPW model can be viewed as
a centralized cryptographic library component: it has an encapsulated state, where it
tracks which principals know which messages, and a collection of interface functions
for constructing, decomposing, and transmitting messages. Principals (and the attacker)
use the interface functions when executing (respectively attacking) protocols. We model
not only the BPW model, but also protocols defined on top of it, as components. We
have constructed a second formalization of the BPW model, which abstracts the rep-
resentation of protocol messages from DAGs to inductive terms, and we have proved
its bisimulation equivalence with the first formalization. Finally, we have modeled the
Needham-Schroeder-Lowe authentication protocol [12] on top of the second formaliza-
tion and proved various security (secrecy and authentication) properties.

We refer the interested reader to [21] for more details about this application as well
as for a detailed comparison with related work on security protocol verification.

3 Monads and Components

In this section, we describe a monad-based hierarchical component model. Components
are formalized as an encapsulated state manipulated by a set of interface functions.
Our formalization of components is extensible, whereby properties proved for a given
component remain valid for all extensions.

3.1 State-Exception Monad

Monads are a concept from category theory introduced in programming language se-
mantics by Moggi [15] to model different computational phenomena in a functional
setting, including exceptions, state, non-determinism, and input/output. From a pro-
gramming perspective, a monad is a type constructor with a unit and a binding op-
eration enjoying unit and associativity properties. In our case, we are working with a
state-exception monad with just a single type of exception:

A Monad-Based Modeling and Verification Toolbox 305

datatype α result = Exception | Value α −− result type
types (α, σ) S = σ ⇒ α result × σ −− monad type

return :: α ⇒ (α, σ) S −− monad unit
return a ≡ λs. (Value a , s)

bind :: (α, σ) S ⇒ (α ⇒ (β, σ) S) ⇒ (β, σ) S −− monad bind
bind m k ≡ λs. let (a , t) = m s in

case a of Exception ⇒ (Exception , t) | Value x ⇒ k x t

A term of type (α, σ) S is called a computation. Computations act on a state of type σ
and either result in an exception or a result value of type α. The monad unit, which we
call return , embeds a value into a computation. Binding acts as sequential composition
with value passing in the style of a let-binding. We write do x ← m; k x for bind m k.
The monad unit and associativity laws are easily proved in Isabelle/HOL:

lemma bind_left_unit : do x ← return a; k x = k a
lemma bind_right_unit : do x ← m; return x = m
lemma bind_assoc: do y ← (do x ← m; k x); h y = do x ← m; (do y ← k x; h y)

The monad-specific operations are concerned with state transformations and excep-
tion handling. State extraction and update are handled by the functions distill and xform,
respectively.

distill :: (σ ⇒ α) ⇒ (α, σ) S −− return transformed state
distill f ≡ λs. return (f s) s

xform :: (σ ⇒ σ) ⇒ (unit , σ) S −− set transformed state as new state
xform f ≡ do t ← distill f ; λs. return () t

Exception handling is achieved by the functions throw and try_catch , which are duals
of return and bind with respect to the type of result.

throw :: unit ⇒ (α, σ) S
throw x ≡ λs. (Exception , s)

try_catch :: (α, σ) S ⇒ (α, σ) S ⇒ (α, σ) S
try_catch k h ≡ λ s . let (r , t) = k s in

case r of Exception ⇒ h t | Value b ⇒ (Value b , t)

We write try k catch h instead of try_catch k h and we call h the exception handler.
Exception handling can easily be generalized to handle multiple types of exceptions. In
this case, the exception would be passed to the exception handler h.

We borrow control structures such as if -then-else and pattern matching (case) from
the Isabelle/HOL meta-language. We do not need iteration and recursion in our appli-
cation, but these can also be borrowed from Isabelle/HOL to a certain extent, which
we discuss below. Summarizing, we use the state-exception monad to add a layer of
abstraction to Isabelle/HOL that is appropriate to specify our models.

Generality of our approach. Ideally, we would like to define monads and the monad
laws abstractly and instantiate them to the concrete monads of interest. This could be
achieved by using axiomatic constructor classes in the style of Haskell, but Isabelle’s

306 C. Sprenger and D. Basin

type system only supports the less axiomatic type classes. The latter do not support type
constructors and the axioms may only contain a single free type variable. Thus, we can
only define concrete monads. There are also restrictions concerning the definition of
recursive functions. Only terminating functions can be defined and the corresponding
Isabelle/HOL packages are pushed to their limits when termination not only depends on
the explicit function arguments, but also on the implicit state argument of the monad.
One possible solution is to define and prove specialized fixed point theorems as in [11].

A different, more elaborate solution to both problems above is proposed by Huff-
man, Matthews, and White [6]. They formalize axiomatic constructor classes in Isabelle/
HOLCF, an extension of Isabelle/HOL with domain theory. By a clever construction,
they are able to represent HOLCF domains in a universal domain and reflect repre-
sentable domains as values and type constructors as continuous functions. This allows
them to define axiomatic constructor classes in terms of axiomatic type classes and ap-
ply them to realize an abstract definition of monads. Moreover, in the domain-theoretic
context, fixed points can be used to define recursive functions given any continuous func-
tional. However, for our toolbox, we have chosen to live with the restrictions imposed
by the simpler, direct formalization of concrete monads in Isabelle/HOL.

3.2 Hierarchical Component Model

Our components consist of a state that is manipulated by a set of interface functions.
For reasons that will become clear shortly, we model a state as a record and consider its
individual fields to be the state variables. For example, record point = x :: nat y :: nat
defines a record type for points, of which the record (|x=1, y=2|) is an element.

Example 1 (BPW model). We start by briefly describing the BPW model and refer the
reader to [2] for full details. The BPW model constitutes a library of cryptographic
operations, which keeps track of, and controls access to, the messages known by each
party. The BPW model provides local functions for operating on messages and send
functions for exchanging them between an arbitrary, but fixed, number N of honest
users and the adversary (which we identify with the network). The state of our abstract
formalization of the BPW model is defined as:

record δ mLibState = knowsM :: party ⇒ hnd ⇀ δ msg

There is a single state variable called knowsM, which defines for each party a partial
function mapping handles to protocol messages. Here, the type δ of payload data is
polymorphic, since it depends on the concrete protocol built on top of the BPW model.

The interface functions refer to messages indirectly using handles, which are a form
of pointer required for reasons of cryptographic soundness. As an example of an inter-
face function, we show here the function for generating fresh nonces.

gen_nonceM :: party ⇒ (hnd, (δ , σ) mLibState_scheme) S
gen_nonceM u ≡ do n ← distill (λs. freshTagM s); newmsgM u (mNonce n)

The function freshTagM returns a fresh tag, which has not been used so far, i.e. is not
part of any known message. Then newmsgM u (mNonce n) creates a fresh handle h and
updates the knowledge map knowsM for user u with the new mapping h �→ mNonce n.

A Monad-Based Modeling and Verification Toolbox 307

For hierarchical model construction and proofs we rely on record extensibility:
record cpoint = point + c :: color extends points with a color field. Behind the scenes,
the definition of a record type r creates a record scheme α r_scheme, which extends
the declared type r with a polymorphic field more of type α. The type r is derived as
unit r_scheme. Record extensibility is based on the instantiation of the record scheme
parameter α with additional fields, which induces a subtyping relation between record
schemes and their instantiations [16]. For example, point and cpoint are both subtypes
of α point_scheme (but cpoint is not a subtype of point).

We exploit record subtyping to construct new components from existing ones. Given
an existing component C with a state of type, say, C_scheme, we construct a new com-
ponent D by extending the state of C with additional variables and defining a new set
of interface functions. This construction has the advantage that any invariant I (in fact,
any property) we have proved for componentC still holds when C’s interface functions
operate on the extended state; since the latter is just an instance of C_scheme, there is
no need for an explicit proof of this fact. This explains why the function gen_nonce
in Example 1 operates on the record scheme (δ , σ) mLibState_scheme instead of the
plain record δ mLibState. Moreover, if the component D only uses C’s interface func-
tions to manipulate C’s part of the state (as sound engineering practice dictates), then a
straightforward proof shows that the invariant I lifts to D.

Observe that record extension is linear and neither associative nor commutative.
Therefore, this is a hierarchical method rather than a compositional one. Although this
is adequate in our case, it may be too restrictive for other applications. Without using
record subtyping, we would have to explicitly embed the state of each component into
a global system state and prove that properties of individual components can be lifted
to the composed system. The benefit of such additional work would be a compositional
method, where properties of individual components can be proved separately.

Example 2 (Generic protocols). Security protocols are modeled on top of the BPW
model. Each user A runs a protocol componentPA, which maintains its own local state
and provides a user and a network handler, which respond to input from the user and
the network, respectively. The local state of each user is modeled as an extension of the
state of the BPW model with a new polymorphic field loc type user ⇒ σ. The type
variable σ will be instantiated by concrete protocols.

record (δ , σ) globState = δ mLibState +
loc :: user ⇒ σ −− local state of each protocol machine

The protocol handlers invoke the local BPW functions to parse and construct protocol
messages. The output of either handler may go to the user or the network (i.e., the
adversary). A protocol component is a record type, whose fields are the two protocol
handlers. A protocol is a function assigning a protocol component to each honest user.
Concrete protocols inhabit instances of the type (ι , o , δ , σ) protocol , where ι and o
are the types of user input and output.

datatype o proto_out = pToUser o | pToNet netmsg

record (ι , o , δ , σ) proto_component =
proto_user_handler :: ι ⇒ (o proto_out , (δ , σ) globState) S
proto_net_handler :: user ⇒ hnd ⇒ (o proto_out , (δ , σ) globState) S

308 C. Sprenger and D. Basin

types (ι , o , δ , σ) protocol = user ⇒ (ι , o , δ , σ) proto_component

The complete protocol system provides (1) local BPW model functions used by the
adversary to parse and construct messages and (2) system-level user and network han-
dlers, which are parametrized by the protocol. These handlers connect the protocol-level
handlers to the BPW-model send functions in order to exchange messages with the ad-
versary. A message transfer corresponds to updating the recipient’s knowledge map.

Example 3 (NSL protocol). We now give an instance of the above protocol type: the
Needham-Schroeder-Lowe (NSL) protocol [12], a well-studied, three-step protocol for
mutual authentication. In our setting, the local state of each protocol component consists
of a variable nonces, which is a function mapping each user to a set of nonce handles
that were created in protocol sessions with that user. Below, we show the protocol user
handler in some detail, but we only sketch the protocol network handler.

record ustate = nonces :: user ⇒ hnd set

NeedhamSchroederLowe :: (user , user , user , ustate) protocol
NeedhamSchroederLowe A ≡ (|

proto_user_handler = λB. −− construct the first NSL message
do na ← gen_nonce (User A); do z ← add_nonce A B na;
do nameA ← store (User A) A; do m ← pair (User A) (na, nameA)
do em ← encrypt (User A) (pke (User A) B) m;
return (pToNet (A, B, em))

proto_net_handler = λB m. −− respond to incoming NSL messages
do pm ← parse_msg A B m;
case pm of

msg1 nb nameB ⇒mk_msg2 A B nb
| msg2 na nb nameB ⇒mk_msg3 A B nb
| msg3 nb ⇒ return (pToUser B)

|)

The protocol user handler for user A initiates the protocol with another user B by
constructing, stepwise, the first protocol message (whose form is {NA, A}K(B), i.e.,
the public-key encryption of a nonce and user name) using the interface functions of
the BPW model. The auxiliary function add_nonce adds the freshly generated nonce
handle na to the set of nonces that A has created in runs with B (stored in variable
nonces). The protocol network handler receives a message (at handle m), parses it, and,
depending on the result, reacts by constructing a reply message (mk_msg2 or mk_msg3)
or returning to the user at the end of the protocol run (the third case).

Component behavior. We give an operational semantics to components in terms of a
derived transition system. A transition system σ trsys is a record with two fields: the set
init of initial states of type σ set and the transition relation trans :: (σ × σ) set . A
computation m gives rise to a transition relation tr m ≡ {(s, snd (m s)) | s . True}.
The transition relation of a component is the union of the transition relations of its
interface functions. By adding a set of initial states, we obtain the transition system
associated with a component. The runs of a transition system are defined as infinite
sequences of states, σ run = nat ⇒ σ, starting in an initial state and where successive
states are related by transitions. The runs will serve as models for LTL formulas.

A Monad-Based Modeling and Verification Toolbox 309

4 Program and Temporal Logics

In this section, we describe the weakest pre-condition calculus and the Hoare logic,
which we use for pre-/post-condition reasoning, and the linear-time temporal logic used
for temporal reasoning. All these logics use HOL sets (of states) as their basic assertions
and set operations as boolean connectives. Hence, when we say that a state s satisfies
a basic assertion P, we mean s ∈ P. The WP calculus and the Hoare logic are both
tailored to our state-exception monad, whereas the temporal logic is interpreted over
standard transition systems and linked to the other logics via gluing lemmas. We first
present the logics and then illustrate their combined application in Section 4.4.

4.1 Weakest Pre-condition Calculus

Our weakest pre-condition calculus is inspired by Pitts’ evaluation logic [20], which
generalizes first-order dynamic logic by interpreting it over monads. We present a se-
mantic embedding of a variant of evaluation logic, instantiated to the state-exception
monad. We have two box modalities: [x ← m]Q x for normal termination and [@ m]Q
for exceptional termination. These correspond to the weakest pre-condition of the com-
putation m with respect to the post-condition Q. We do not need the dual diamond
modalities for our purposes (these could be defined directly or using set complement).

[x ← m]Q x ≡ {s. ∀ x t . (m s) = (Value x , t) −→ t ∈ Q x}
[@ m]Q ≡ {s. ∀ t . (m s) = (Exception , t) −→ t ∈ Q}

Note the dependence of the assertion Q on the result value x in [x ← m]Q x. The fol-
lowing general properties of the WP calculus follow directly from the definition.

lemma BoxN_true: [x ← p] true = true
lemma BoxN_conj: [x ← p]((P x) ∩ (Q x)) = [x ← p](P x) ∩ [x ← p](Q x)
lemma BoxN_monotone: ∀ x. P x ⊆ Q x =⇒ [x ← p] P x ⊆ [x ← p] Q x

Analogous results can be shown for the exception modality [@ p]. We also prove prop-
erties related to the monad operations. For the basic monad operations we have:

lemma BoxN_return: [x ← return a] Q x = Q a
lemma BoxE_return: [@ return a] P = true

lemma BoxN_bind: [y ← (do x ← p; q x)] Q y = [x ← p][y ← q x] Q y
lemma BoxE_bind: [@ do x ← p; q x] Q = [x ← p][@ q x] Q ∩ [@ p] Q

The first lemma reflects the fact that the return value a is bound to x and the state remains
unchanged. The second lemma expresses that return never produces an exception. The
third lemma decomposes the modality for the binding operator into two modalities. The
fourth lemma states that the weakest pre-condition of do x ← p; q x with respect to
exceptions and Q is composed of two conditions: (1) if p terminates with value x and
(q x) results in an exception then the resulting state satisfies Q, and (2) whenever p
directly produces an exception then the resulting state also satisfies Q.

Similar equations hold for the exception operations, where throw and try_catch are
dual (with respect to the type of result) to the cases for return and bind, respectively.

310 C. Sprenger and D. Basin

lemma BoxN_throw: [z ← throw ()](P z) = true
lemma BoxE_throw: [@ throw ()]P = P

lemma BoxN_try_catch: [x ← try p catch q](P x) = [x ← p](P x) ∩ [@ p][x ← q](P x)
lemma BoxE_try_catch: [@ try p catch q]Q = [@ p][@ q]Q

The weakest pre-conditions of the state-manipulation operations satisfy the follow-
ing equations. The cases for exceptions equal true and are therefore not shown.

lemma BoxN_distill: [x ← distill f](P x) = {s . s ∈ P (f s)}
lemma BoxN_xform: [z ← xform f](P z) = f−1 (P ())

The first equation describes that distill f returns the result of applying f to the current
state, but does not modify the state itself. The second equation states the weakest pre-
condition for state update consists of exactly those states that are elements of P () under
f , where f−1 denotes the inverse image of f .

4.2 Hoare Logic

We construct our Hoare logic on top of the WP calculus. This is reflected in the follow-
ing definitions of Hoare triples:

{P} m {> Q} ≡ P ⊆ [x ← m](Q x) {P} m {@ Q} ≡ P ⊆ [@ m]Q

Again, we have one type of triple for each kind of termination, where the assertion Q in
{P} m {> Q} depends on the value returned by computation m.

By defining the Hoare triples in terms of the WP calculus, we can switch from Hoare
logic to the WP calculus at any point simply by unfolding the definition of Hoare triples.
Typically, we start non-trivial proofs using the rules of Hoare logic. Later, we switch to
the WP calculus and automatically rewrite the resulting goals into assertions of HOL’s
set theory, using the equations of Section 4.1. The resulting assertions are often auto-
matically solved using standard reasoning tools provided by Isabelle/HOL.

Next, we present the set of proof rules of our Hoare logic. In a deep embedding of
Hoare logic in HOL, we would inductively define a derivability relation (and a program
syntax) as in [17]. Here, we are working with a shallow embedding and therefore we
represent proof rules semantically as Isabelle/HOL rules. Deriving these rules in Is-
abelle corresponds to proving their soundness. The two rules for return follow directly
from the WP calculus by unfolding the definitions of Hoare triples.

·
{P x} return x {> P}

returnN
·

{P} return x {@ Q}
returnE

The first rule expresses that the state and the value x are invariant in return x. The
second rule captures the fact that the return statement never produces an exception and
therefore vacuously establishes an arbitrary post-condition (including false).

The two rules for bind are proved using the lemma BoxN_monotone above.

{P} p {> Q}
�

x. {Q x} q x {> R}
{P} do x ← p; q x {> R}

bindN

{P} p {@ R} {P} p {> Q}
�

x. {Q x} q x {@ R}
{P} do x ← p; q x {@ R}

bindE

A Monad-Based Modeling and Verification Toolbox 311

In the last premise of these rules, the symbol
∧

denotes the universal quantifier of
Isabelle’s meta-logic. Thus, the corresponding Hoare triple must hold for all possible
inputs to computation q. In the rule bindE, we distinguish two cases: the first premise
covers the case where computation p terminates with an exception, while the other two
deal with the case where p terminates with a value x, but q x results in an exception.

The proof rules for the try_catch construct are dual to the rules for bind and can be
proved using the lemma BoxE_monotone:

{P} p {> R} {P} p {@ Q} {Q} q {> R}
{P} try p catch q {> R}

try_catchN

{P} p {> Q} {Q} q {@ R}
{P} try p catch q {@ R}

try_catchE

The rules for the state manipulation functions distill and xform directly reflect their
WP calculus characterization in the lemmas BoxN_distill and BoxN_xform.

·
{{t. t ∈ P (f t)}} distill f {> P}

distillN
·

{f−1(P ())} xform f {> P}
xformN

Finally, we have proved various additional rules, such as the consequence rule of Hoare
logic, which is used to strengthen preconditions and weaken postconditions.

Following the classical argument (e.g., [23]), we have proved the completeness of
our Hoare logic rules relative to the HOL assertion language in Isabelle/HOL. The core
of the argument is an induction on computations m, which establishes the derivability of
{[x ← m]Q x} m {> Q}, for all Q. Since we are working with a shallow embedding, we
have not formalized the program syntax, so we prove each case of the induction sepa-
rately. Additionally, we must ensure that [x ← m]Q x can be expressed in our assertion
language (HOL set theory), which is the case by construction in our setting.

4.3 Linear-Time Temporal Logic

We now briefly sketch our embedding of LTL with past operators in Isabelle/HOL. We
have chosen to keep this embedding independent of monads, so that it can be reused
independently in different contexts. We interpret LTL formulas over runs and transi-
tion systems, in the standard way (see, e.g., [14]). Hence, we restrict ourselves to a
summarized account.

We have formalized the syntax of LTL formulas in Isabelle/HOL as an inductive
data type σ ltl parametrized by a type of states σ. Here we deviated from our principle
of working with shallow embeddings. Since LTL does not have binding operators, the
overhead associated with a deep embedding was small and allowed us to prove some
meta-theoretical results about LTL by induction on the syntax. We note however that
a shallow embedding would have also been sufficient for our work. LTL formulas are
interpreted in the standard way at positions of runs: (r , i) |= f means that formula f
holds at position i of run r. A transition system T satisfies a formula if all of its runs at
position 0 do, which is written T |= f. A component, in the sense of Section 3.2, satisfies
a LTL formula if its derived transition system does.

312 C. Sprenger and D. Basin

Proof rules. Following the approach of [14], we derive a set of proof rules to reduce
temporal reasoning to pre-/post-condition reasoning. The most important rule that we
have derived is the following one for establishing an invariant P of a transition system
T using an inductive invariant I and a previously proved auxiliary invariant J.

T |= �J (init T) ⊆ I I ∩ J ⊆ P {I ∩ J} (trans T) {I}
T |= �P

INV

The Hoare triple appearing in this rule is defined over a transition relation.

{P} tran {Q} ≡ ∀ s t . s ∈ P ∧ (s , t) ∈ tran → t : Q

To enable structured reasoning about components in our Hoare logic, we prove a gluing
lemma for each component that reduces Hoare triples about the component’s transition
relation to a set of Hoare triples over the component’s interface functions. Here is an
example of such a gluing lemma.

Example 4 (Hoare triples for protocol system). We define a notion of Hoare triple for
the global protocol system component and link it to the Hoare triples for the transition
relation derived from that component. The definition overloads the notation {_} _ {_}
and uses {P} m {& Q} for the conjunction of {P} m {> λx. Q} and {P} m {@ Q}.

{P} proto {Q} ≡ ∀ h im nm pkh skh u
{P} sys_user_handler proto u im {& Q} ∧
{P} sys_net_handler proto nm {& Q} ∧
{P} gen_nonceM Adv {& Q} ∧ {P} encryptM Adv pkh h {& Q} ∧
{P} decryptM Adv skh h {& Q} ∧ ...

lemma HoareSys_decomposition: {P} (glob_trans proto) {Q} = {P} proto {Q}

The relation glob_trans proto denotes the transition relation derived from the entire
protocol system. Triples of the form {P} (glob_trans proto) {Q} arise as subgoals,
when rule INV is applied to prove protocol invariants. Using the above lemma, these
are rewritten to a set of Hoare triples over the protocol system interface functions.

4.4 Example: Nonce Secrecy Invariant for the NSL Protocol

To illustrate the use of our reasoning tools, we state and prove an invariant of the NSL
protocol: the nonces created in sessions between two honest users remain secret.

nonceSecrecy ≡ {s. ∀ A B n .
n ∈ Nonces s A B −→ secret s (mNonce n) {User A, User B} }

theorem nonceSecrecy_invariant : NSLtrsys |= �nonceSecrecy

Here, Nonces s A B is the set of nonces that A has created in runs with B (these are
accessible via the handles in the set nonces s A B). The predicate secret s m U ex-
presses that in state s message m can be derived by at most the parties A ∈ U from their
knowledge in knowsM s A. The theorem states that nonceSecrecy is an invariant of the
transition system derived from the NSL protocol system (� denotes “always” in LTL).
The proof proceeds in several stages.

A Monad-Based Modeling and Verification Toolbox 313

1. Apply rule INV and lemma HoareSys_decomposition to reduce the temporal state-
ment to a set of preservation lemmas over the NSL system interface functions.

2. Prove the preservation of the invariant by each BPW model interface function.
Here, we automate most proofs using the WP calculus.

3. Lift the previous preservation results to the NSL protocol level by automatically
applying Hoare logic rules to “pull” the invariant through the protocol handlers.

4. Lift these results to the system level by applying Hoare logic rules interactively
with user-supplied assertions.

We provide an example of the last point. At the NSL system level, the main cases
concern the system user and network handlers. Roughly speaking, these compose the
respective protocol-level handler with the user send function, which transmits network
messages to the adversary. The user send function requires an additional pre-condition
to preserve the invariant, which simply states that adding the sent message to the ad-
versary knowledge does not compromise nonce secrecy. We manually apply the bindN
rule, which separates the respective protocol handler from the user send function. As the
intermediate assertion Q, we use the conjunction of the invariants (main and auxiliary)
with a previously established strong post-condition of the respective protocol handler,
which states that the relevant nonces are fresh and encrypted and thus inaccessible to the
adversary. Since these postconditions imply the pre-condition of the user send function,
we use the consequence rule to complete the proof.

5 Bisimulation

Abstracting components (e.g. the state representation) can substantially improve proof
automation. When doing this, we must ensure that the behavior of the abstracted compo-
nent is equivalent to the original one. We use bisimilarity as our notion of equivalence.
We first define bisimulation in the context of the state-exception monad and then give
compositional proof rules for establishing the bisimilarity of two components. Finally,
we present an example from our formalization of the BPW model.

5.1 Bisimilar Components

The state-exception monad is deterministic. Therefore, two computations m1 and m2

are bisimilar, with respect to a witnessing relation R, if they produce a (unique) pair of
bisimilar states and identical results, whenever started in a pair of bisimilar states.

bisim R m1 m2 ≡ ∀ s t s’ t’ x y.
(s , t) ∈ R ∧ m1 s = (x, s’) ∧ m2 t = (y, t ’) −→

(∃ v. x = Value v ∧ y = Value v ∧ (s ’, t ’) ∈ R)
∨ (x = Exception ∧ y = Exception ∧ (s ’, t ’) ∈ R)

This notion is lifted pointwise to functions and afterwards to components by requiring
that corresponding pairs of functions in both components match up1. Note that, since
we are working with shallow embeddings of components and bisimulation, the notion

1 This definition can be seen as an instantiation of the coalgebraic definition of bisimulation [10]
when the component is viewed as a coalgebra [9].

314 C. Sprenger and D. Basin

of bisimilar components is not formalized itself in Isabelle/HOL. Instead, the proof that
two components C and C’ are bisimilar consists of a collection of lemmas of the form
bisim R f f ’, one for each pair of associated interface functions f of C and f ’ of C’.

We would like to prove such judgments compositionally by following the structure
of the computations m1 and m2. The idea is to consider the statement bisim R m1 m2 as
a Hoare-like tuple of the form {R} m1 m2 {R}, where the bisimulation relation R acts
as both the pre- and postcondition. For compositional proofs, we need to generalize
these judgments, as we can neither expect that intermediate pairs of states arising from
program decomposition are in the bisimulation relation nor that intermediate outputs
are identical. Therefore, we obtain the definition of bisim R m1 m2 as an instance of a
generalized notion of a bisimulation tuple:

{R} m1 m2 {λ a b. S a b | T} ≡ ∀ s t s’ t ’ x y .
(s , t) ∈ R ∧ m1 s = (x, s’) ∧ m2 t = (y, t ’) −→

(∃ a b . x = Value a ∧ y = Value b ∧ (s ’, t ’) ∈ S a b)
| (x = Exception ∧ y = Exception ∧ (s ’, t ’) ∈ T)

bisim R m1 m2 ≡ {R} m1 m2 {(λ a b. {p. a = b} ∩ R) | R}

Bisimulation tuples have two postconditions. The first postcondition is a parametrized
relation S a b, required to hold whenever the computation m1 returns the value a and
m2 returns the value b. The second postcondition T covers the case where both compu-
tations terminate with an exception. Note that {R} m1 m2 {λa b. true | true} expresses
the property that both computations terminate with the same type of result. We call this
property equi-termination.

5.2 Compositional Proof Rules for Bisimulation

Since proving a bisimulation tuple {R} m1 m2 {S |T} requires compositional reasoning
about two computations simultaneously, we need O(n2) proof rules to cover all cases,
where n is the number of constructs of our “programming language”. We can distin-
guish rules for pairs of computations with (1) identical top-level constructors from (2)
those with different ones. As for (2), many combinations are only bisimilar in restricted
or trivial cases. For instance, return and throw are only bisimilar, if the precondition is
equivalent to false. A simple example of (1) is the return rule.

R ⊆ Sn a b

{R} (return a) (return b) {Sn | Se}
bisim_return

More interesting are the rules for composed computations. The basic rule for the case
where both computations are sequential compositions is stated as follows.

{R} m1 m2 {Sn | Te}
�

a b. {Sn a b} (k1 a) (k2 b) {Tn | Te}
{R} (do a ← m1; k1 a) (do b ← m2; k2 b) {Tn | Te}

bind_sym

This rule only covers the well-behaved case where the first parts of both sequential
compositions equi-terminate. This situation is depicted in Figure 1, where computations
are shown above the arrow and their results below. The rule bind_sym does not cover
the case where m1 and m2 do not equi-terminate or where the second computation has

A Monad-Based Modeling and Verification Toolbox 315

|

m2

m1

m2

m1

R Tn c d Te

k a

Val a

Val b

Sn a b R Te

Exc

Exc

2

Val c Exc

Val d Exc

k b

1

|

|

Fig. 1. Bisimulation for bind , symmetric case

a different structure. For such asymmetric cases, we derive the rule bind_left (below)
and bind_right (symmetric, not shown).

{R} m1 m2 {λa b. false | Te}
{R} (do a ← m1; k1 a) m2 {Tn | Te}

bind_left

When read backwards, this rule allows us to cut off the second part k1 of a sequential
composition with m1, which is never invoked, in case both m1 and m2 always equi-
terminate with an exception (and establish Te).

In general, when we prove a subgoal whose form matches the conclusion of rule
bind_sym we must partition the relation R into two relations Ra and Rb, according to
whether or not m1 and m2 equi-terminate on a pair of states in R. We then apply rule
bind_sym in the former case and rules bind_left and bind_right in the latter case.

We have derived similar rules for the exception handling constructs. Again, all other
control flow constructs including recursion are borrowed directly from HOL. All rules
are sound by construction. Their completeness has not yet been investigated.

Using component invariants. In non-trivial bisimulation proofs we usually need in-
variants of both components to strengthen the bisimulation relation. We have derived
a specialized rule for sequential composition from rule bind_sym, which allows us to
use invariants in bisimulation proofs.

{R ∩ I × J} m1 m2 {Sn | Te}�
a b. {Sn a b ∩ I × J} (k1 a) (k2 b) {Tn | Te}
{I} m1 {> λz. I} {J} m2 {> λz. J}

{R ∩ I × J} (do a ← m1; k1 a) (do b ← m2; k2 b) {Tn | Te}
bind_sym_inv

The Hoare triples in premises 3 and 4 express that I and J are indeed invariants of
m1 and m2, respectively. This rule allows us to “pull” the invariants over sequential
compositions and carry them along in the proof.

Example 5 (Bisimulation of BPW model interface functions). Recall from the introduc-
tion that we have formalized two versions of the BPW model: a first one with DAG-
based messages and a second one, where these messages are abstracted into inductively
defined terms. In order to allow us to work with the more abstract second formalization
for concrete protocol verification, we have proved its bisimilarity with the first one. The
state of the DAG-based version is a record containing a knowledge map knowsI of type
user ⇒ hnd ⇀ ind, which maps handles to indices for each user, and a table db of

316 C. Sprenger and D. Basin

type ind ⇒ ’d entry , which maps indices to message entries. The latter correspond to
message constructors, which may contain indices themselves. The bisimulation relation
I2M expresses that for a given user and handle, the DAG-based message i in knowsI is
abstracted to the message term m in knowsM.

I2M ≡ { (s , t). (∀ u. dom (knowsI s u) = dom (knowsM t u)) ∧
(∀ u h i m. knowsI s u h = Some i ∧ knowsM t u h = Some m −→ message s i m) }

We prove bisimilarity for each pair of matching BPW model interface functions. Let us
consider the case of the length query function. There we must show that the bisimulation
relation is preserved and that both versions return the same message length. We obtain
the subgoal below after unfolding the definitions of the length query functions.

{I2M Int (finiteKnowsI Int lengthInv) × finiteKnowsM}
(do (i , e) ← lookupI u h; return (len e))
(do m ← lookupM u h; return (len_ofM m))

{λla lb . {p. la = lb} Int I2M | I2M}

Note the auxiliary invariants in the pre-condition of the bisimulation tuple. In particular,
the invariant lengthInv of the DAG-based formalization states that a concrete message
i and its abstract counterpart m (related by message s i m) have identical lengths. We
apply the rule bisim_sym_inv to separate the message lookup operation from the return
statements. The intermediate relation Sn in this rule is instantiated to the following
relation, which states that the index i pointing to entry e as returned by lookupI is
abstracted to the term-based message m returned by lookupM.

λ(i , e) m. I2M
�

{(s, t). knowsI s u h = Some i ∧ db s i = e ∧ message s i m}

The first premise of the rule bisim_sym_inv is covered by a previously proved lemma
about the lookup functions. Thanks to the intermediate relation above, we can easily
derive the second premise using the rule bisim_return and the invariant lengthInv . The
remaining premises are discharged by previously proved invariant preservation results.

In summary, the rules allow compositional bisimulation proofs. They capture repet-
itive reasoning patterns and thus help us to concentrate on the essential aspects of the
proofs, namely the invariants and intermediate relations.

6 Conclusions and Related Work

We have presented a general-purpose toolbox for modeling state-based components
using monads, for reasoning about their properties using program and temporal logics,
and for reasoning about their equivalence using a compositional proof system for bisim-
ulation. Since our principal motivation was pragmatic rather than meta-theoretical, we
have used shallow embeddings and introduced new concepts and proof rules only where
we deemed them necessary to raise the level of abstraction. This allows us to exploit
Isabelle/HOL’s specification language, its extensive libraries, and its reasoning tools as
much as possible. For example, we have only formalized sequential composition and
exception handling, while all further control structures are borrowed from HOL. Our
experience in a substantial case study showed that this provides appropriate abstraction
in modeling component-based systems and in proving complex theorems about them.

A Monad-Based Modeling and Verification Toolbox 317

Related Work. Filiâtre [5] appears to be the first to use monads to formalize an ML-
like imperative language in the proof assistant Coq. He gives a functional translation
of this language and generates proof obligations from pre-/post-condition annotations.
Krstić and Matthews [11] interpret BDD algorithms written in C in a state-exception
monad isomorphic to ours. They verify the functional correctness of these algorithms
directly in Isabelle/HOL without additional program logics. In fact, they state that the
complexity of the BDD programs forced them to use the monadic approach as a more
flexible alternative to Hoare logic. However, our work shows that monads and Hoare
logic can be combined to take advantage of features of both.

There is a sizable body of work on modeling Java(-like) languages and associated
Hoare logics, including the Bali [22] and the LOOP [7] projects. The latter is most
closely related to our work. They have formalized a coalgebraic semantics of Java and
a corresponding Hoare logic in PVS. These handle non-termination, normal termina-
tion, and several forms of abrupt termination. In [9], the connection to monads is in-
vestigated. We do not model partiality, but we treat normal termination and exceptions
similarly. Jacobs [8] develops WP calculi to improve proof automation and implements
two of them as new PVS commands. In contrast, our Hoare logic is directly formulated
in terms of the WP calculus and we use the standard Isabelle simplifier to rewrite WP
expressions. Our approach is simpler, but does not admit alternative search strategies.

Nipkow has formalized Hoare logics for a family of while-languages and proved
soundness and completeness results for each of them [17]. He models exceptions by
adding an error flag to the state. As a consequence, most proof rules require pre-
conditions depending on this flag. In contrast, in the state-exception monad, exceptions
are more akin to values, which makes the rules for exception handling duals of those
for return and bind and leads to a more abstract and modular treatment.

There exist several shallow embeddings of temporal logics in HOL. Långbacka has
formalized the temporal logic of actions (TLA) in the HOL prover [13]. The Isabelle
distribution [1] contains an axiomatization of TLA in HOL by Merz and a formalization
of a temporal logic for I/O automata by Müller in HOLCF.

Benton [3] has proposed a relational Hoare logic (RHL) related to our bisimula-
tion proof system to prove the correctness of optimizing program transformations for a
while-language. He shows how to embed standard Hoare logic, as well as other logics,
into RHL. We have chosen to follow a pragmatic approach and integrate our separate
Hoare logic into the bisimulation proof system, which allows us to use the underlying
WP calculus for automating proofs.

Future Work. One direction for future work is to extend the modeling language, e.g.
by adding object-oriented features such as inheritance, overriding and late binding along
the lines of [16, 4] or by lifting the limitations on the definition of monad-based general
recursive functions. Another interesting topic is the completeness of the bisimulation
proof system and the possibility of adapting it to different kinds of monads.

References

[1] Isabelle home page (2007), http://isabelle.in.tum.de
[2] Backes, M., Pfitzmann, B., Waidner, M.: A universally composable cryptographic library.

IACR Cryptology ePrint Archive 2003/015 (January 2003)

http://isabelle.in.tum.de

318 C. Sprenger and D. Basin

[3] Benton, N.: Simple relational correctness proofs for static analyses and program transfor-
mations. In: Proc. of Principles of Programming Languages (POPL) (2004)

[4] Brucker, A., Wolff, B.: A package for extensible object-oriented data models with an ap-
plication to IMP++. In: International Verification Workshop (VERIFY) (August 2006)

[5] Filliâtre, J.-C.: Proof of imperative programs in type theory. In: Altenkirch, T., Naraschewski,
W., Reus, B. (eds.) TYPES 1998. LNCS, vol. 1657, Springer, Heidelberg (1999)

[6] Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF.
In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 147–162. Springer,
Heidelberg (2005)

[7] Huisman, M., Jacobs, B.: Java program verification via a Hoare logic with abrupt termi-
nation. In: Maibaum, T.S.E. (ed.) ETAPS 2000 and FASE 2000. LNCS, vol. 1783, pp.
284–303. Springer, Heidelberg (2000)

[8] Jacobs, B.: Weakest precondition reasoning for Java programs with JML annotations. Jour-
nal of Logic and Algebraic Programming 58, 61–88 (2004)

[9] Jacobs, B., Poll, E.: Coalgebras and monads in the semantics of Java. Theoretical Computer
Science 291(3), 329–349 (2003)

[10] Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. EATCS Bulletin 6,
222–259 (1997)

[11] Krstić, S., Matthews, J.: Verifying BDD algorithms through monadic interpretation. In:
Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 182–195. Springer, Heidelberg (2002)

[12] Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using FDR.
Software - Concepts and Tools 17, 93–102 (1996)

[13] Långbacka, T.: A HOL formalisation of the temporal logic of actions. In: Melham, T.F.,
Camilleri, J. (eds.) Higher Order Logic Theorem Proving and Its Applications. LNCS,
vol. 859, pp. 332–345. Springer, Heidelberg (1994)

[14] Manna, Z., Pnueli, A.: Completing the temporal picture. Theoretical Computer Sci-
ence 83(1), 97–139 (1991)

[15] Moggi, E.: Notions of computation and monads. Information and Computation 93, 55–92
(1991)

[16] Naraschewski, W., Wenzel, M.: Object-oriented verification based on record subtyping in
higher-order logic. In: Grundy, J., Newey, M. (eds.) Theorem Proving in Higher Order
Logics. LNCS, vol. 1479, pp. 349–366. Springer, Heidelberg (1998)

[17] Nipkow, T.: Hoare logics in Isabelle/HOL. In: Schwichtenberg, H., Steinbrüggen, R. (eds.)
Proof and System-Reliability, pp. 341–367. Kluwer, Dordrecht (2002)

[18] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidel-
berg (2002)

[19] Paulson, L.: The inductive approach to verifying cryptographic protocols. J. Computer Se-
curity 6, 85–128 (1998)

[20] Pitts, A.M.: Evaluation logic. In: Birtwistle, G. (ed.) IVth Higher Order Workshop, Banff
1990. Workshops in Computing, pp. 162–189. Springer, Heidelberg (1991)

[21] Sprenger, C., Backes, M., Basin, D., Pfitzmann, B., Waidner, M.: Cryptographically sound
theorem proving. In: 19th IEEE Computer Security Foundations Workshop, Venice, Italy,
July 2006, pp. 153–166. IEEE Computer Society, July (2006)

[22] von Oheimb, D., Nipkow, T.: Hoare logic for NanoJava: Auxiliary variables, side effects
and virtual methods revisited. In: Eriksson, L.-H., Lindsay, P.A. (eds.) FME 2002. LNCS,
vol. 2391, pp. 89–105. Springer, Heidelberg (2002)

[23] Winskel, G.: The Formal Semantics of Programming Languages. MIT Press, Cambridge
(1993)

Primality Proving with Elliptic Curves

Laurent Théry and Guillaume Hanrot

INRIA, France
{Laurent.Thery,Guillaume.Hanrot}@inria.fr

Abstract. Elliptic curves are fascinating mathematical objects. In this
paper, we present the way they have been represented inside the Coq

system, and how we have proved that the classical composition law on
the points is internal and gives them a group structure. We then describe
how having elliptic curves inside a prover makes it possible to derive a
checker for proving the primality of natural numbers.

1 Introduction

Elliptic curves are a very classical topic of interest in number theory and algebraic
geometry, and the basis for a very large body of theory, with lots of far-fetched
generalisations. Their most famous application is, without any doubt, the proof
of Fermat’s last theorem. They are also commonly used in algorithmic number
theory since the mid 80’s for factoring integers [15] or proving primality [8], but
have also made their way more recently in cryptography, see e.g. [5].

It is then natural to try formalising them inside a proof system. In this work,
the main property we are interested in is their group structure. The difficult part
of the formalisation is in proving associativity. In our formal proof, we follow an
elementary algebraic approach that is particularly suited to proof systems. Our
main source of inspiration has been the proof proposed by Stefan Friedl [7]. The
proof is very technical and consists in massaging equalities over an abstract field
under various conditions. Some of these equalities (exactly 3) are so huge that
they cannot be reasonably handled by a human being. In his paper, Stefan Friedl
advocates the use of a computer algebra like CoCoa [4] to check these equalities.
Reflecting these computations inside the proof system is the main difficulty of
the formal proof. In this paper, we explain how this has been done inside the
proof system Coq [22].

Once the group structure has been established, we can use elliptic curves in a
very effective way to prove the primality of some natural numbers. For this, we
use prime certificates: various primality proving algorithms provide the user with
a compact output, a certificate, with the property that it can be easily checked,
whereas generating it is usually cpu-intensive.

We have already played with the idea of prime certificates and in particular of
Pocklington certificates in [9,10]. This allows us to prove the primality of some
large numbers like the millennium prime (a prime number with exactly 2000
digits discovered by John Cosgrave) or the 27th Mersenne prime 244497− 1. The
only drawback of the certificates we have been using so far is that they only apply

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 319–333, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

320 L. Théry and G. Hanrot

to a restricted class of prime numbers. For example, a Pocklington certificate can
be generated for N if N − 1 can be factored; in particular, we are not able to
generate a Pocklington certificate in the case where (N−1)/2 turns out not to be
prime (this can be shown by compositeness tests) but it is impossible to factor it,
which is a typical case as soon as N grows large. In contrast, under some deep
(typically Crámer’s conjecture) conjectures of analytic number theory, elliptic
curve certificates exist for any prime and can be found in polynomial time. At
the moment, the largest prime for which an elliptic certificate has been generated
has 20562 decimal digits. Ten days are needed to verify its certificate [18].

The paper is organised as follows. In Section 2, we recall what elliptic curves
are and explain how their group structure has been formally established. In
Section 3, we focus on prime certificate and show how it is possible to formally
derive a checker for elliptic curve certificates.

2 Elliptic Curves and Group Structure

In algebraic geometry, an elliptic curve is defined as follows.

Definition. Let K be a commutative field. An elliptic curve E(K) is a pair
(C,P) where C is a (complete) algebraic curve of genus 1 defined over C and P
a point of C(K).

This definition is not very tractable in practice, and the following characteri-
zation, which follows easily from the Riemann-Roch Theorem [21], is rather used
as a definition.

Proposition. Every elliptic curve over K admits an affine plane model of the
form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, (1)

where the distinguished point of the definition is the projective point (0 : 1 : 0),
i.e. the direction y →∞. If the characteristic of K is greater than 5, the equation
further simplifies to

y2 = x3 + Ax + B. (2)

Conversely, a nonsingular curve of the form (1) – or (2) if the characteristic is
greater than 5 – defines an elliptic curve. For (2) the non-singularity assumption
is equivalent to 4A3 + 27B2 	= 0.

Most of the interest for elliptic curves stems from the fact that they come
with a natural group structure. A composition law (P,Q) �→ P + Q over E(K)
can be constructed as follows:

– The neuter element is the point at infinity;
– Let (PQ) be the line through P and Q (the tangent to the curve at P if

P = Q).
– Let R be the third point of intersection of (PQ) and K.
– The point P + Q is the symmetrical of R with respect to the line y = 0.

An alternative way of seeing the composition law is that three aligned points
add up to zero, which is the point at infinity.

Primality Proving with Elliptic Curves 321

Theorem 1. (E(K),+) is a group.

The only difficult part is associativity. Classically, there are two roads for proving
this. The“low road”uses either computer algebra (the one that we shall carefully
take later on) or elementary but subtle geometric considerations. The“high road”
instead defines a group by taking the quotient of the free abelian group over
E(K) by a subgroup of relations (generated by the relations“three aligned points
add up to zero”), and proceeds to prove that each class contains one and only
one representative consisting of a single point (so that the underlying set is in
bijection with E(K)) and that the operation is the same as +. All these are
consequences of the (non-trivial) Riemann-Roch Theorem.

In our formalisation, we start from (2). We take an arbitrary field K of char-
acteristic other than 2 (this is the only assumption that is needed to prove the
group structure) and two elements A and B such that 4A3 +27B2 	= 0. The type
elt that represents the elements of the curve is defined as follows

Inductive elt: Set :=
inf_elt: elt

| curve_elt (x: K) (y: K) (H: y^2 = x^3 + A * x + B): elt.

An element of type elt is either 0 (inf_elt) or an element of the curve
(curve_elt) that contains an x, a y and a proof H that the point (x, y) is on the
curve.

For the operations on the curve, we need to define the opposite and the addi-
tion. Given a point p of the curve, we define −p as

- If p = 0 then −p = 0
- If p = (x, y) then −p = (x,−y)

Given two points p1 and p2 on the curve, we define p1 + p2 as

- If p1 = 0 then p1 + p2 = p2

- If p2 = 0 then p1 + p2 = p1

- If p1 = −p2 then p1 + p2 = 0
- If p1 = p2 = (x, y) and y 	= 0 then

let l = (3x2 + A)/2y and x1 = l2 − 2x in
p1 + p2 = (x1,−y − l(x1 − x)).

- If p1 = (x1, y1) and p2 = (x2, y2) and x1 	= x2 then
let l = (y2 − y1)/(x2 − x1) and x3 = l2 − x1 − x2 in
p1 + p2 = (x3,−y1 − l(x3 − x1)).

We also use p1−p2 as a shortcut for p1 +(−p2). Note that, as points of the curve
contain a proof that they belong to the curve, the definition of these operations
must also incorporate a proof that these operations are internal. For example,
the opposite is represented by a function opp whose type is elt → elt and its
definition is

322 L. Théry and G. Hanrot

Definition opp p :=
match p with
inf_elt => inf_elt

| curve_elt x y H => curve_elt x (-y) opp_lem
end.

where opp_lem represents the proof that if we know that y2 = x3 +Ax+B (this
is H) then we have (−y)2 = x3 + Ax + B.

We get that 0 is the neuter element, −p is the opposite of p, and the addi-
tion is commutative directly from the definitions. Proving associativity is rather
technical. A detailed description of the formal proof is given in [23]. Here, we
only sketch the proof and discuss the most interesting issues.

As the definition of addition contains five cases, the proof heavily relies on case
analysis. The addition p1 + p2 is trivial if p1 = 0 or p2 = 0 or p1 = −p2. When
the addition is non-trivial we use the notation p1 ⊕ p2. In turn, this addition
can correspond to the tangent case, p1 ⊕t p2, where p1 = p2 or the general case,
p1⊕g p2, where p1 	= p2. For associativity, it is easy to discharge the trivial cases
and what remains to be proved is then that p1⊕ (p2⊕p3) = (p1⊕p2)⊕p3. Each
of these additions can be tangent or general, this can be further reduced to four
main cases:

1. p1 ⊕g (p2 ⊕g p3) = (p1 ⊕g p2)⊕g p3.
2. p1 ⊕g (p2 ⊕t p2) = (p1 ⊕g p2)⊕g p2.
3. p1 ⊕g (p1 ⊕g (p1 ⊕t p1)) = (p1 ⊕t p1)⊕t (p1 ⊕t p1)
4. p1 ⊕g (p2 ⊕g (p1 ⊕g p2)) = (p1 ⊕g p2)⊕t (p1 ⊕g p2)

The first three cases are discharged using explicit computations while the last
case is derived using auxiliary properties such as the cancellation law, i.e. if
p+p1 = p+p2 then p1 = p2. To understand what it means to perform cases 1 – 3
by explicit computations, let us consider the first case. If we take the x compo-
nent of equation 1 and unfold the definition of addition, we get the conditional
equation to be satisfied given in Figure 1. We can now transform this equation
into a polynomial one and then use Buchberger algorithm [3] to check that the
equation is satisfied. This is where the computer algebra system comes into play.
Integrating Buchberger algorithm in a safe way inside a prover is possible and
has already been done [6,13], but cases 1 – 3 can be decided by a much simpler
strategy. To illustrate this strategy, let us consider a more elementary example,
i.e. the proof that the addition is internal in the tangent case. It amounts to
proving that

y2 = x3 + Ax + B ∧
l = (3x2 + A)/2y ∧
x1 = l2 − 2x ∧
y1 = −y − l(x1 − x) ∧

⇒ y2
1 = x3

1 + Ax1 + B

The first step is to get rid of division by normalising the equation into an ex-
pression of the form N/D = 0 where N and D are two polynomial expressions.

Primality Proving with Elliptic Curves 323

x1 − x2 �= 0 ∧
x4 − x3 �= 0 ∧
x2 − x3 �= 0 ∧
x5 − x1 �= 0 ∧
y2
1 = x3

1 + Ax1 + B ∧
y2
2 = x3

2 + Ax2 + B ∧
y2
3 = x3

3 + Ax3 + B ∧
x4 = (y1 − y2)

2/(x1 − x2)
2 − x1 − x2 ∧

y4 = −(y1 − y2)/(x1 − x2)(x4 − x1) − y1 ∧
x6 = (y4 − y3)

2/(x4 − x3)
2 − x4 − x3 ∧

y6 = −(y4 − y3)/(x4 − x3)(x6 − x3) − y3 ∧
x5 = (y2 − y3)

2/(x2 − x3)
2 − x2 − x3 ∧

y5 = −(y2 − y3)/(x2 − x3)(x5 − x2) − y2 ∧
x7 = (y5 − y1)

2/(x5 − x1)
2 − x5 − x1 ∧

y7 = −(y5 − y1)/(x5 − x1)(x7 − x1) − y1

⇒ x6 − x7 = 0

where

(x4, y4) = p1 ⊕g p2, (x5, y5) = p2 ⊕g p3,
(x6, y6) = (p1 ⊕g p2) ⊕g p3 and (x7, y7) = p1 ⊕g (p2 ⊕g p3)

Fig. 1. Condition for the x component of the first case

We are then left with proving that N = 0. In our example, a naive normalisation
gives

210y8 − 210y6x3 − 210Ay6x− 210By6 = 0

The second step is to replace all the occurrences of y2 by x3 + Ax + B.

210(x3 +Ax+B)4−210(x3 +Ax+B)3x3−210A(x3 +Ax+B)3x−210B(x3 +
Ax + B)3 = 0

The final step is to use distributivity, associativity, commutativity and collect
equal monomials so that everything cancels out.

Note that even a dedicated computer algebra system like Maple may fail,
by using the general Gröbner machinery, to prove such a large identity. The
remedy, like here, is to perform “by hand” the reductions modulo the ideal <
y2
1 − x3

1 −Ax1 −B, y2
2 − x3

2 −Ax2 −B >, by using the fact that the basis given
for this ideal is already a Gröbner basis for the lex ordering y1 > y2 > x1 > x2.

To sum up, three ingredients are needed to automate the proof of the three
lemmas corresponding to cases 1 – 3: a procedure to normalise polynomial expres-
sions (last step), a procedure to rewrite polynomial expressions (second step) and
a procedure to normalise rational expressions (first step).

The procedure to normalise polynomial expressions was already present in
Coq and is described in [11]. Its main characteristic is to use an internal rep-
resentation of polynomials in Horner form. This representation is unique up to
variable ordering. Given a polynomial P and a variable x, we write P as P1+xiQ1

where x does not occur in P1 and is not a common factor in Q1 and we proceed

324 L. Théry and G. Hanrot

on P1 and Q1 recursively. The normal form is further simplified writing 0 for m0
and P for 0 + P and P + 0. For example

210y8 − 210y6x3 − 210Ay6x− 210By6

is represented as

y6((B(−210) + x(A(−210) + x2(−210))) + y2210)

for the ordering y > x > A > B. Once the procedures to add and multiply
polynomials in Horner form have been defined, the normal form of a polynomial
P is obtained by a simple structural traversal of P . As described in [11], this
leads to a very effective way of proving ring equalities by just checking that the
normal form of the left side of the equality is structurally equal to the normal
form of the right side of the equality.

Rewriting has been implemented in a naive way on Horner representation. It
uses a simple procedure that, given a monomial m, splits a polynomial P in a
pair (P1, Q1) in such a way that P = P1 + mQ1. Now rewriting once with the
equation m = R is performed by building the polynomial P1+RQ1. For example,
if we want to rewrite the previous polynomial with the equation y2x2 = z + t,
we first split the polynomial

y6((B(−210) + x(A(−210) + x2(−210))) + y2210)

into
(y6((B(−210) + x(A(−210))) + y2210) , y4x(−210))

We then build

(y6((B(−210) + x(A(−210))) + y2210)) + (z + t) (y4x(−210))

and normalise it. For rewriting with respect to a list of equations, we just iterate
the single rewriting operation for all the equations in a fair way. Note that
in our specific case we are always rewriting with equations of the type y2

i =
x3

i + Axi + B, so we take a special care in choosing a variable ordering for the
Horner representation such that the yi are privileged. By doing so, the splitting
procedure has only to visit a small part of the polynomial.

Normalising rational equalities is not as simple as for polynomial expressions.
When reducing the initial expression to a common denominator, the expressions
for the numerator and the denominator can grow very quickly. Our experiments
with the proofs of cases 1 – 3 have shown that getting a normalised numerator of
a reasonable size was mandatory in order to be able to complete the following
rewriting phase. So, when normalising, some reductions are needed. For example,
when normalising P1/Q1+P2/Q2 we can do much better than building the naive
fraction (P1Q2 + P2Q1)/Q1Q2. Unfortunately, gcd algorithms for multivariate
polynomials are far more complex to implement than the simple Euclidean al-
gorithm for univariate polynomials. So, we have just implemented a syntactic
heuristic. Our heuristic factorises the products that are in common between Q1

Primality Proving with Elliptic Curves 325

and Q2 by a simple structural traversal of the lists of products that compose Q1

and Q2. For example, normalising 1/x+ 1/xy + 1/y = 0 gives y + 1 + x = 0.
The three procedures (polynomial normaliser, rewriter and rational normaliser)

are put together in a single tactic field. This tactic works on arbitrary field struc-
tures. Given F a rational expression, calling the tactic field[H1 H2] attempts to
solve the goalF = 0 using the rewriting rules H1 and H2. The three procedures have
been defined inside the Coq logic using the two-level approach [1]. Their correct-
ness can then be stated inside the proof system and formally proved. This ensures
once and for all applications that the field tactic only performs valid simplifica-
tions. A key aspect of this tactic is its efficiency. Proving the group law requires
non-trivial computation. Having a relatively efficient procedure is mandatory to
be able to complete the proof. On an Intel Xeon (2.66 GHz) with 2Gb of RAM,
compiling the definition of elliptic curves up to associativity takes one minute and
twenty seconds in Coq.

3 Prime Certificate

The group structure on E(Z/pZ) is used in the same way as the group structure
on (Z/pZ)∗ is used in Pocklington’s p− 1 test, which we recall:

Proposition 1 (Pocklington). Let N be an integer. Assume that there exists
a coprime to N and s such that

– as = 1 mod N ;
– for all prime divisor p of s, one has gcd(as/p − 1, N) = 1.

Then, for any prime q|N , one has q = 1 mod s, so that if s ≥
√
N , N is prime.

The main drawback of Pocklington’s test is the fact that if one is not able to
factor N − 1 to some extent (a little thought shows that the first condition
implies, if N is actually prime, s|N − 1, since the conditions stated imply that s
is the order of a mod N), then there is no way one can apply the theorem.

The following theorem is thus much more versatile, the main point being that,
under reasonable conjectures, we are always able to find, in polynomial time, a
curve over Z/NZ with cardinality which can be factored.

We make use of points in projective coordinates, which is required to give a
meaningful statement. This allows to give formulas without division for the group
law, which thus remain meaningful in any ring – since Z/NZ can be assumed to
be a field only after N has been proved prime...

Proposition 2 (Goldwasser-Kilian). Let N be an integer. Assume that there
exist an elliptic curve y2 = x3+Ax+B with A,B ∈ Z and gcd(4A3+27B2, N) =
1, a point P = (xP : yP : 1) such that y2

P = x3
P +AxP +B mod N , and an integer

s such that

– s.P = (0 : 1 : 0) mod N ;
– for all prime p|s, (s/p).P = (xp : yp : zp) mod N with gcd(zp, N) = 1.

326 L. Théry and G. Hanrot

Then, for all prime q|N , we have the number of points of E(Z/qZ) is such that
#E(Z/qZ) = 0 mod s.

In view of the Hasse-Weil bound [21], which states that for all prime q and
elliptic curve E over Z/qZ, one has #E(Z/qZ) ≤ (

√
q + 1)2, we see that N is

prime as soon as s >
√
q + 1. In the sequel, we shall use the slightly weaker but

much easier bound #E(Z/qZ) ≤ 2q + 1, which shows that N is prime as soon
as s >

√
2q + 1.

An elliptic curve certificate is thus defined recursively by:

CN := (N,A,B, xP , yP , s, (q1, Cq1), . . . , (qk, Cqk
)),

where the qi are the prime factors of s, and checking the certificate amounts to
checking the hypotheses of the theorem, hence modular arithmetic.

Computing a certificate is a much harder problem. The most efficient way
is to use the theory of complex multiplication, after Atkin and Morain. For a
more extensive bibliography, the interested reader can refer to the nice survey
of primality proving by Morain [19].

The idea behind the formal proof of Proposition 2 is to relate computations
with projective coordinates done in Z/NZ with the same computations with
standard coordinates done in Z/qZ when q is a prime divisor of N . We use a
non-standard definition of projective coordinates where we still single out the
zero. A point is either 0 or a triplet (x : y : z). We also define the projection
tq as tq(0) = 0 and tq((x : y : z)) = (x mod q/z mod q, y mod q/z mod q). Note
that the projection in the second case is possible only if z mod q has effectively
an inverse in Z/qZ for prime divisor q of N , so only if gcd(n,N) = 1 . In the
following, we write the property of n having an inverse as invN (n).

We have to be careful when computing in Z/NZ since we want the computa-
tion in Z/NZ to project faithfully to the same computation in Z/qZ. Suppose
that we test to zero a variable n. Obviously if we have n = 0, we also have
n mod q = 0, but the converse may not be true: n 	= 0 does not imply that
n mod q 	= 0. So every time we have a test to zero on a variable n, we have to
check the extra condition that invN (n) to ensure that the computation on Z/qZ
would take the same branch. For this reason, all the functions that we have
defined for Z/NZ take an extra argument that represents the side conditions
so far and return a pair composed of the result plus the new side conditions.
We encode all the side conditions in a single number using the property that
invN (mn) implies invN (m) and invN (n).

A result (p1, sc1) of a computation can be correctly interpreted only if we
have invN (sc1) when p1 = 0 or invN (z1sc1) when p1 = (x1 : y1 : z1). In the
following, we use the notation �p1, sc1� to indicate that this property holds. To
give a concrete example, consider the function double that doubles a point p1

under the initial side condition sc1. Its definition is

double(p1, sc1) =
if p1 = 0 then (0, sc1) else
let (x1 : y1 : z1) = p1 in

Primality Proving with Elliptic Curves 327

if y1 = 0 then (0, z1sc1) else
let m = 3x2

1 + Az2
1 and l = 2y1z1 in

let l2 = l2 and x2 = m2z1 − 2x1l2 in
((x2l : l2(x1m− y1l)− x2m : z1l2l), sc1)

and its correctness is stated as

∀p1 sc1 p2 sc2, let (p2, sc2) = double(p1, sc1) in �p2, sc2� ⇒ tq(p2) = 2.tq(p1)

Another key property is that the final side condition includes the initial one

∀p1 sc1 p2 sc2, let(p2, sc2) = double(p1, sc1) in �p2, sc2� ⇒ �p1, sc1�

Knowing that these two properties must hold, we can now explain how the side
conditions have been generated in the body of the function double. When p1 is
zero, no condition has to be added. When p1 is (x1 : 0 : z1), the result is zero so
we include the final side condition that z1 must be invertible. Finally, when p1 is
(x1 : y1 : z1) with y1 	= 0, a defensive final side conditions would be y1z1sc1 to
insure that y1 and z1 are invertible but this is not necessary since if we look at
the z component, z1l2l, of the resulting point, that contains already the product
y1z1.

The function add that adds two points is defined in a similar way. With the
two functions double and add, we can define the function scal that adds n times
the point p1 under the side condition sc1:

scal(n, p1, sc1) =
if n = 1 then (p1, sc1) else
if n is even then let (p2, sc2) = double(p1, sc1) in scal(n/2, p2, sc2) else
let (p2, sc2) = double(p1, sc1) in
let (p3, sc3) = scal((n− 1)/2, p2, sc2) in
add(p1, p3, sc3)

and its correctness is stated as

∀n p1 sc1, p2 sc2, let (p2, sc2) = scal(n, p1sc1) in �p2, sc2� ⇒ tp(p2) = n.tp(p1)

Given a list l = [(q1, α1), . . . , (qn, αn)] such that s = qα1
1 . . . qαn

n , checking that
s.a = 0 and (s/qi).a 	= 0 for 1 ≤ i ≤ n is done by factorising computations as
much as possible. We first compute p1 = (s/(q1 . . . qn)).a. The function scalL
that, given a point p1 and a list l such that l = [q1, . . . , qn] and a side condition
sc1, verifies that (q1 . . . qn).p1 = 0 and (q1 . . . qn/qi).p1 	= 0 for every qi is defined
as follows

scalL(l, p1, sc1) =
if length(l) = 0 then (p1, sc1) else
let (p2, sc2) = scal(hd(l), p1, sc1) in
let (p3, sc3) = scal list(tl(l), p1, sc2) in

if p3 = 0 then (0, 0) else
let (x3, y3, z3) = p3 in scalL(tl(l), p2, z3sc3)

328 L. Théry and G. Hanrot

where the functions hd and tl return the head element and the tail of a list
respectively and the function scal list applied to l and p1, where l = [qi, . . . , qn],
computes (qi . . . qn).p1. In every recursive call of the function scalL, p3 represents
one of the (q1 . . . qn/qi).p1. If p3 is 0, we put 0 in the side condition in order to
invalidate the final result. If p3 is not 0, tp(p3) must also be non-zero so we add
its z component into the side condition.

The actual representation of Coq certificates is a list of elementary certifi-
cates rather than a tree. This list must be well-founded in the sense that the
primality of a number that is needed by an elementary certificate at position i
is justified by another certificate at position j > i. An elementary certificate is
either an immediate certificate, a Pocklington certificate or an elliptic certificate.
An immediate certificate is for numbers whose primality is given by a predefined
theorem. In our library there are predefined theorems for the first 5000 prime
numbers. Our elliptic certificates slightly differ from the standard ones to accom-
modate the certificates produced by the tool Primo [17]. An elliptic certificate
is composed of seven elements: {N,A,B, x1, y1, n0, [(q1, α1), . . . , (qn, αn)]}:

- N is the number to be proved prime;
- A and B are the parameters of the elliptic curve y2 = x3 + Ax + B;
- x1 and y1 are the coordinates of the initial point, in projective coordinates

the initial point is p0 = (x1 : y1 : 1);
- n0 is an initial scalar, so the point whose order is checked is n0.p0.
- [(q1, α1), . . . , (qn, αn)] is a complete factorisation of the order s of n0.p0, i.e.
s = qα1

1 . . . qαn
n where all the qi are prime.

An example of such a certificate is

{
329719147332060395689499,
−94080,
9834496,
0,
3136,
8209062,
[(40165264598163841, 1)]

}
It allows to assess the primality of 329719147332060395689499 knowing that
40165264598163841 is prime with the curve y2 = x3−94080x+9834496 and the
point 8209062.(0, 3136) whose order is 40165264598163841.

The function testCertif that checks an elliptic certificate c is defined as follows:

testCertif (c) =
let (N,A,B, x1, y1, n, l) = c in
let p0 = (x1, y1, 1) in
let sc0 = 4A3 + 27B2 in
let (p1, sc1) = scal(n, p0, sc0) in
let s = mull(l) in

Primality Proving with Elliptic Curves 329

let (n′, l′) = split(l) in
let (p2, sc2) = scal(n′, p1, sc1) in
let (p3, sc3) = scalL(l′, p2, sc2) in
N > 1 and odd(N) and 4N < (s− 1)2 and
y2
1 mod N = (x3

1 + Ax1 + B) mod N and
p3 = 0 and gcd(sc3, N) = 1

where, if l = [(q1, α1), . . . , (qn, αn)], the function mull applied to l returns qα1
1 . . .

qαn
n and the function split applied to l returns (qα1−1

1 . . . qαn−1
n , [q1, . . . , qn]). The

correctness of the function testCertif is stated as

∀c, (testCertif (c)= true ∧ (∀q α, (q, α)∈getL(c) ⇒ prime(q))) ⇒ prime(getN (c))

where getN and getL are the accessor functions for the first component and the
last component of the certificate respectively.

Proving the correctness of the function testCertif is straightforward. It is stan-
dard program verification. Getting the side conditions right was the only tricky
part. Note that it would be very difficult to detect a missing side condition just
by testing. The program only returns a boolean value and it is mainly applied
to certificates for which a positive answer is expected. Missing a side condition
never invalidates valid certificates. Compared to standard checkers, we had to
compromise with the bound on the order s of an element over Z/qZ. We use
the naive bound 4N < (s− 1)2 that is easy to establish. Standard checkers use
the sharper Hasse-Weil bound. Getting this bound formally is a challenge on its
own.

4 Some Benchmarks

Figure 2 shows some benchmarks on prime numbers from 25 to 250 decimal dig-
its. These benchmarks have been done on a processor Intel Xeon (2.66 GHz) with
2Gb of RAM. For each number length, there are nine examples. We generate the
ith example of length n by starting with the digit i and repetitively incrementing
the previous digit by 1 modulo 10 to get the next digit. Once we have n digits,
we just take the first prime number above this number. For example, the nine
prime numbers with 25 digits are:

1234567890123456789012353, 2345678901234567890123567,
3456789012345678901234573, 4567890123456789012345689,
5678901234567890123456797, 6789012345678901234567903,
7890123456789012345678973, 8901234567890123456789017,
9012345678901234567890149

To generate certificates, we automatically convert the ones produced by the pro-
gram Primo. For each example, we give the number of Pocklington certificates
and elliptic certificates that compose the overall certificate and the time in sec-
onds that Coq needs to verify the certificate. Out of the 1538 elliptic certificates
generated by the standard version of Primo only two could not be proved inside

330 L. Théry and G. Hanrot

25 50 75 100 125 150 175 200 225 250

n − 1 1 0 4 2 3 5 5 2 6 7

1 ell 1 4 8 13 14 17 20 26 28 28

time 0.2 8 36 105 297 523 865 1570 2353 3018

n − 1 0 5 3 3 2 3 4 4 3 6

2 ell 2 1 7 10 19 21 24 24 27 35

time 0.9 4 26 105 333 569 1007 1704 2462 3573

n − 1 2 0 1 4 4 1∗ 4 3 5 7

3 ell 2 1 7 10 19 19∗ 24 25 27 35

time 0.1 11 42 132 288 515∗ 1277 1774 2477 2960

n − 1 2 3 4 0 4 6 3 3 7 5

4 ell 2 4 7 12 12 9 22 27 30 40

time 1.1 11 49 130 257 339 948 1754 2275 4688

n − 1 1 3 3 5 3 5 8 3 4 3

5 ell 1 2 6 9 11 20 20 29 33 37

time 0.7 3 36 143 264 514 1092 1859 2882 4090

n − 1 1 2 4 3∗ 4 2 7 4 2 1

6 ell 0 3 8 14∗ 14 19 21 22 34 33

time 0.1 6 39 189∗ 223 479 977 1317 2811 3727

n − 1 0 1 5 2 1 2 4 5 7 3

7 ell 2 4 10 14 16 19 27 27 28 34

time 0.8 11 54 148 329 453 1259 1514 2498 3327

n − 1 2 2 3 7 4 5 2 7 2 1

8 ell 0 4 7 6 17 20 28 31 34 40

time 0.1 6 44 91 310 489 1442 2252 2817 3721

n − 1 2 2 3 5 7 4 5 7 5 5

9 ell 1 4 10 13 9 20 27 26 29 33

time 0.4 7 46 139 194 549 1229 2061 2509 3645

Fig. 2. Checking certificates for numbers from 25 to 250 digits

Coq. They are indicated by a star in Figure 2. This comes from the fact that our
condition 4N < (s− 1)2 is stronger than the usual bound given by Hasse Theo-
rem. The first certificate that fails is for N = 896191029759386718510467381341
and s = 1501356318335977, the second one for N = 13524493647665641984723
and s = 95147824089. To let us prove these primes correct, Marcel Martin,
the developer of Primo, has added an extra option to Primo so to make the
search for certificates “less aggressive”and only generate certificates that can be
checked using the modified Hasse bound. The two certificates indicated by a star
in Figure 2 have been generated using this extra option.

All the examples and the code are available at

http://coqprime.gforge.inria.fr/

They compile with the current version 8.1 of the Coq system. The time to
check a certificate grows quickly with the number of digits, for example we
need one hour to check a number with 250 decimal digits. Note that the theory

http://coqprime.gforge.inria.fr/

Primality Proving with Elliptic Curves 331

predicts that the worst-case complexity for checking a certificate for N with an
underlying quadratic multiprecision arithmetic is O((logN)4), which more or
less corresponds to what we observe. Note also that it would be easy to gain a
small constant factor in the current implementation by optimizing our function
scal, eg. by using sliding window methods and/or addition-substraction chains.

In order to be able to check larger numbers, we would need two main improve-
ments in the Coq system. First, all our computations are done inside Coq with
user-defined data-structures, i.e. we use the modular arithmetic defined in [10]
based on a datatype composed of 256 constructors that simulates an 8-bit arith-
metic. We would need a direct access to the machine 32-bit arithmetic instead.
In [10], some tests for Pocklington certificates with a native 32-bits arithmetic
exhibit a speed-up of 80. Such speed-up would make it possible, in our case, to
verify a 250-digit number in less than a minute. We have also experienced with
extracting our code to Ocaml [16] and linking it with the arbitrary-precision
integer library BigNum [20]. We got in this case an even bigger speed-up since
checking one of our 250-digit numbers only takes 0.2 second and we were ca-
pable to check in 36 seconds the millennium prime, a prime with 2000 decimal
digits whose certificate generated by Primo contains 245 elliptic certificates and
8 Pocklington ones.

Second, we are in a purely functional setting and a large amount of time is thus
spent in allocating memory for new numbers. Computations should use constant
memory to be really efficient. For this, we would need Coq to accommodate
destructive datastructures as proposed for ACL2 in [2] with a monadic approach.

5 Conclusion

We believe that what is presented in this paper is a very nice illustration of a key
aspect of formal verification. Defining prime numbers from scratch is very simple
in a proof assistant. It is done with five definitions in Coq: one for the natural
numbers, one for the addition, one for the multiplication, one for the divisibility
and finally one for the primality. All these definitions are straightforward, so it
is easy to get convinced that the notion of primality has been correctly captured
in the proof system. Then, the fact that there exists a formal proof for each
of the numbers of Figure 2 ensures that the primality of these numbers follows
logically from these five definitions. For the actual proofs, we are free to use
any elaborate devices like in our case elliptic certificates. Of course, this is true
only if the proof system is sound. It is then crucial to keep the trusted base of
the prover as small as possible. This is what we have done here, reflecting the
symbolic manipulations and internally checking the prime certificates generated
by Primo.

Another aspect that this example illustrates is how important is for a proof
system not only to reason right but also to compute right. Our initial attempts
in proving cases 1 – 3 have clearly indicated that we were on the fringe of what
was actually possible to prove inside Coq: the parser had problems to handle
the huge terms we were generating and using the standard rewriting tactic of

332 L. Théry and G. Hanrot

Coq was generating titanic proof terms. Reflecting symbolic manipulation was
the key point that made everything possible. All we have developed was generic
enough to be integrated into the Coq system. Nevertheless, a way to look at
what we have done is to consider that we have just been reflecting a specific
rewriting strategy. It would be interesting to investigate how we could reflect a
generic rewriting strategy instead and get back our symbolic manipulation by
simple instantiation.

Finally, the initial motivation that has lead to this work was to see how far
we could go in proving primality inside a proof system. With elliptic certificates,
we have reached the current state of the art. We can now prove the primality of
any number with less than 300 decimal digits. We believe that, with the future
improvement of numerical evaluation inside Coq, this limit will quickly increase.
Anyway, the infrastructure is there. In particular, this is, to our knowledge, the
first time that associativity has been formally proved inside a proof system. We
hope that this initial effort will motivate deeper mathematical formalisations
with elliptic curves inside proof systems.

Acknowledgments

Many people made this work possible. Joe Hurd was the first to draw our at-
tention to formalising elliptic curves inside a prover [14]. After unsuccessful at-
tempts, John Harrison revitalised our interest showing us that he could auto-
matically solve the equation of the x component of the generic case in less than
3 minutes inside HolLight [12] with his integrated version of Buchberger algo-
rithm. Bruno Barras and Benjamin Grégoire helped us with their expertise in
integrating the field tactic into Coq. Finally, Marcel Martin has very kindly
added extra options to the Primo system to fit our needs.

References

1. Boutin, S.: Using Reflection to Build Efficient and Certified Decision Procedures.
In: Ito, T., Abadi, M. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997)

2. Boyer, R.S., Moore, J.S.: Single-threaded objects in ACL2. In: Ramakrishnan, I.V.
(ed.) PADL 2001. LNCS, vol. 1990, pp. 9–27. Springer, Heidelberg (2001)

3. Buchberger, B.: Introduction to Gröbner Bases. In: Buchberger, B., Winkler, F.
(eds.) Gröbner Bases and Applications, pp. 3–31. Cambridge University Press,
Cambridge (1998)

4. Capani, A., Niesi, G., Robbiano, L.: Cocoa: Computations in commutative algebra,
available at http://cocoa.dima.unige.it/

5. Cohen, H., Frey, G.: Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Discrete Mathematics and Its Applications. Chapman & Hall / CRC (2005)

6. Créci, J., Pottier, L.: Gb: une procédure de décision pour le système Coq. In:
JFLA’2004, pp. 83–90 (2004)

7. Friedl, S.: An elementary proof of the group law for elliptic curves. Excerpt from
undergraduate thesis, Regensburg (1998), available at
http://www.labmath.uqam.ca/~friedl/papers/AAELLIPTIC.PDF

http://cocoa.dima.unige.it/
http://www.labmath.uqam.ca/~friedl/papers/AAELLIPTIC.PDF

Primality Proving with Elliptic Curves 333

8. Goldwasser, S., Kilian, J.: Almost all primes can be quickly certified. In: Proceed-
ings of the 18th STOC, pp. 316–329 (1986)

9. Grégoire, B., Théry, L.: A Purely Functional Library for Modular Arithmetic and
its Application to Certifying Large Prime Numbers. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 423–437. Springer, Heidelberg
(2006)

10. Grégoire, B., Théry, L., Werner, B.: A Computational Approach to Pocklington
Certificates in Type Theory. In: Hagiya, M., Wadler, P. (eds.) FLOPS 2006. LNCS,
vol. 3945, pp. 97–113. Springer, Heidelberg (2006)

11. Grégoire, B., Mahboubi, A.: Proving ring equalities done right in Coq. In: Hurd,
J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Hei-
delberg (2005)

12. Harrison, J.: HOL light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996)

13. Harrison, J.: Complex quantifier elimination in HOL. In: Boulton, R.J., Jackson,
P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 159–174. Springer, Heidelberg
(2001)

14. Hurd, J.: Formalized elliptic curve cryptography, available at
http://www.cl.cam.ac.uk/~jeh1004/research/talks/elliptic-talk.pdf

15. Lenstra Jr., H.W.: Factoring integers with elliptic curves. Ann. Math. 126, 649–673
(1987)

16. Leroy, X.: Objective Caml (1997), available at http://pauillac.inria.fr/ocaml/
17. Martin, M.: PRIMO - primality proving, available at http://www.ellipsa.net/
18. Morain, F.: Certificate for (((((((((23 + 3)3 + 30)3 + 6)3 + 80)3 + 12)3 + 450)3 +

894)3 + 3636)3 + 70756)3 + 97220, available at
http://www.lix.polytechnique.fr/Labo/Francois.Morain

19. Morain, F.: La primalité en temps polynomial, d’après Adleman, Huang; Agrawal,
Kayal, Saxena. Séminaire Bourbaki, 3(55) (2002)

20. Ménissier-Morain, V.: The CAML Numbers Reference Manual. Technical Report
141, INRIA (1992)

21. Silverman, J.H.: The Arithmetic of Elliptic Curves. Springer, Heidelberg (1986)
22. The COQ development team: The Coq Proof Assistant Reference Manual v7.2.

Technical Report 255, INRIA (2002), available at http://coq.inria.fr/doc
23. Théry, L.: Proving the group law for elliptic curves formally. Technical Report 330,

INRIA (2007)

http://www.cl.cam.ac.uk/~jeh1004/research/talks/elliptic-talk.pdf
http://pauillac.inria.fr/ocaml/
http://www.ellipsa.net/
http://www.lix.polytechnique.fr/Labo/Francois.Morain
http://coq.inria.fr/doc

HOL2P - A System of Classical Higher Order

Logic with Second Order Polymorphism

Norbert Völker

University of Essex, England
http://cswww.essex.ac.uk/staff/norbert

Abstract. This paper introduces the logical system HOL2P that ex-
tends classical higher order logic (HOL) with type operator variables
and universal types. HOL2P has explicit term operations for type ab-
straction and type application. The formation of type application terms
t [T] is restricted to small types T that do not contain any universal
types. This constraint ensures the existence of a set-theoretic model and
thus consistency.

The expressiveness of HOL2P allows category-theoretic concepts such
as natural transformations and initial algebras to be applied at the level
of polymorphic HOL functions. The parameterisation of terms with type
operators adds genericity to theorems. Type variable quantification can
also be expressed.

A prototype of HOL2P has been implemented on top of HOL-Light.
Type inference is semi-automatic, and some type annotations are neces-
sary. Reasoning is supported by appropriate tactics. The implementation
has been used to check some sample derivations.

1 Introduction

Classical higher order logic (HOL) is one of the most successful logics in mech-
anised theorem proving. Theorem proving assistants based on it include the
original HOL system [7], and its various descendants such as HOL4, Proof-
Power and HOL-Light [9]. In these systems, the logic is coupled with a simply-
typed polymorphic λ-calculus, that was extended with type classes in case of
Isabelle/HOL [15].

The design of HOL theorem provers has been influenced by functional pro-
gramming languages and their type systems. In the latter domain, there has
been a lot of research into systems that go beyond simply-typed polymorphism,
see for example extensions of Haskell in the Glasgow Haskell Compiler (GHC)
[12]. An important driving force for these developments has been the wish to
support generic programming [2,1].

The research described in this paper is an experiment in extending higher
order logic beyond simply-typed polymorphism. The aim is to support more
generic theorems that can be instantiated to particular polymorphic functions
and type constructors. The inspiration comes from the way category-theoretic
notions [13] have been applied in generic programming. In addition, the system
should allow quantification over type variables as introduced by T. Melham [14].

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 334–351, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://cswww.essex.ac.uk/staff/norbert

HOL2P - A System of Classical Higher Order Logic 335

2 A Recap of Higher Order Logic

It is assumed that the reader has a working understanding of higher-order logic.
The following section provides a brief recap as a basis for discussing the HOL2P
extensions. The details of the presentation follow HOL-Light.

The HOL syntax is that of a simply-typed polymorphic lambda calculus.
Every term belongs to exactly one type. HOL types are either type variables, or
type constructor applications:

T ::= α type variable
| (T1, . . . , Tn) τ type constructor application (n ≥ 0)

Type constructors are identified by their name and have a fixed arity. Primitive
HOL type constructors are the 0-ary bool, a type of individuals ind and the
binary function type operator fun. The latter is usually written in infix form
using the “→” symbol. New type constructors can be defined via a bijection to
a non-empty subset of an existing type. In particular, the type num of natural
numbers is defined as isomorphic to a subset of ind.

Types containing type variables are called polymorphic. Type substitution
replaces type variables in a type with other types. The type resulting from a
substitution is also called an instance of the original type.

HOL terms are either variables, constants, applications or abstractions.

t ::= v : T variable
| c : T constant
| t t application
| λ (v : T). t abstraction

Constants are uniquely identified by their name. Polymorphic constants can have
differently typed instances, and each constant occurrence in a term is annotated
with its type. Variables are identified by their name and HOL type. Variables
with the same name but a different HOL type are unrelated. In particular, a
λ-abstraction with a bound variable v does not bind variables in the abstraction
body with the same name as v but a different type.

An explicit specification of all types in a term would be extremely cumber-
some. Like in functional languages, HOL gets around this problem by an au-
tomated type inference process that starts off with an untyped HOL term and
adds types to the constants and variables occurring in the term.

In HOL-Light, the only primitive constants are equality and Hilbert’s choice
operator. New constants can be introduced as abbreviations for expressions that
are build up from existing constants.

Term instantiation replaces variables in a term with other terms. Unlike type
variables, term variables can be bound, so instantiation only applies to the free
variables.

HOL theorems take the form of sequents (n ≥ 0):

P1, . . . , Pn � P

336 N. Völker

where the hypotheses Pi as well as the conclusion P are terms of type bool.
Theorems can be generated by various inference rules. In HOL-Light, there are
ten primitive inference rules. The following rules are of most interest here:

– Rule ABS says that in order to show equality of two λ-abstractions with iden-
tical bound variables, it is sufficient to show the equality of the abstraction
bodies. The rule has the side condition that the bound variable x does not
occur free in any of the assumptions Γ:

Γ � s = t

Γ � λx. s = λx. t
(ABS)

– Rule MK COMB says that in order to show equality of two applications, it is
sufficient to show equality of the operators and the operands.

Γ1 � f = g Γ2 � x = y

Γ1 ∪ Γ2 � f x = g y
(MK COMB)

– Rule BETA is the trivial case of β-conversion from typed λ-calculus. The
general case can be derived from this by applying the instantiation rule
INST which is described later.

Γ � (λx. t)x = t
(BETA)

– Rule INST TYPE describes the fact that type variables are schematic, which
means that the substitution of types variables in a theorem results in a
new theorem. Note that instantiation applies to both hypotheses and the
conclusion.

Γ[α1, . . . , αn] � p[α1, . . . , αn]
Γ[T1, . . . , Tn] � p[T1, . . . , Tn]

(INST TYPE)

– Rule INST is analogous but describes the instantiation of variables by terms
of the same type.

Γ[x1, . . . , xn] � p[x1, . . . , xn]
Γ[t1, . . . , tn] � p[t1, . . . , tn]

(INST)

HOL also has type and term definition principles. These yield theorems that
connect the new type constructors to non-empty subsets of existing types, and
the new term constants to existing terms. In both cases, the extended theory
can be shown to have the same set-theoretic semantic model as the original one.
Lastly, in case of HOL-Light, there are just three axioms: eta-conversion from

HOL2P - A System of Classical Higher Order Logic 337

λ-calculus, an axiom for Hilbert’s choice which make the logic classical, and an
axiom expressing infinity of type ind.

HOL theorem proving systems have earned a reputation as being extremely
trustworthy. This stems to a significant degree from their clean system architec-
ture that follows the LCF approach [6], as well as the combination of a small
number of basic inference rules and axioms with a few definitional extension
principles that are logically safe.

Limitations of Simply-Typed Polymorphism

A lot of theorem proving can be done within the simply-typed HOL polymorphic
framework. However, there are some cases where its limitations do bite. Generic
Programming is a calculus that allows programs to be parameterised with type
operators. While there has been some research on formalising this framework in
HOL [5], the simple-type restriction does not allow to apply it at the level of
polymorphic HOL functions.

As an example, consider a predicate functor which asserts that a HOL function
φ is a functor from the category of HOL functions to itself. According to its
mathematical definition, this means that φ should preserve the identity (id =
λx. x) and function composition:

φ id = id (1)
φ (f ◦ g) = φ f ◦φ g (2)

A typical example for such a function φ is the map operation on lists:

map list :: (α→ β)→ α list→ β list
map list f [] = []
map list f (cons x xs) = cons (f x) (map list f xs)

map list id = id
map list (f ◦ g) = map list f ◦map list g

There are two problems if one tries to define a general HOL predicate functor
that characterises those functions φ that satisfy rules (1, 2):

1. From abstracting the type constructor list in the map list example, one would
expect functor to be parameterised with a unary type operator variable.
There are no type operator variables in HOL.

2. In general, the three occurrences of φ in equation (2) all have different
types. It is not possible to have differently typed instances of one variable in
HOL.

The conclusion is that simply-typed polymorphic higher order logic is not ex-
pressive enough for the formalisation of such a functor predicate on polymorphic
HOL functions. Similar problems arise with the application of other category-
theoretic concepts such as natural transformations or initial algebras.

338 N. Völker

3 The Logic HOL2P

3.1 HOL2P Types

The type system of HOL2P extends simply typed HOL with:

– Universal types (Πα. T) which bind a type variable α in a type T .
– Type variables with an arity greater than zero. These will normally be re-

ferred to as “type operator variables” in order to distinguish them from the
usual 0-ary type variables.

Universal types are known from the polymorphic λ-calculus (“System F”) [4].
By supporting nested type quantification, they make it possible to define func-
tions with “truly polymorphic” arguments that can be instantiated with different
types. Type operator variables have been used in some programming language
type systems [16].

The syntax of HOL2P types is as follows (n ≥ 0):

T ::= (α :: rank) type variable (rank = large or rank = small)
| (T1, . . . , Tn) τ type constructor application
| (T1, . . . , Tn) θ type operator variable application
| Π(α :: small). T universal type

For an n-fold universal type, there is the usual abbreviated notation:

Πα1 . . . αn. T = Πα1. (...(Παn. T))

The rank of a type variable is either large or small. A type will be called small if
it does not contain any large type variables and no universal types. The instan-
tiation of small type variables is restricted to small types. Small HOL2P types
that do not contain any type operator variables correspond to the normal HOL
types.

The introduction of universal types that bind type variables leads to a dis-
tinction between free and bound type type variables in a type. A bound type
variable is always small. Type operator variables can not be bound in HOL2P
and are thus always free. A type is called closed if it has no free type variables
and no type operator variables. Two types are α-convertible if they can be made
identical by a replacement of bound type variables with fresh new type variables.
There is no β-conversion of types, as the HOL2P type system does not have a
corresponding application operation.

When writing down HOL2P formulas and types, all free type variables are
assumed by default to be large, while the bound type variables are small. With
this convention in mind, the explicit indication of the rank of type variables
can usually be omitted. As an example, here is a HOL2P type for the functor
predicate from above:

functor :: (Πα β. (α → β) → α θ → β θ) → bool (3)

HOL2P - A System of Classical Higher Order Logic 339

The definition of type substitution in HOL2P has to take bindings of type
variables into account. Only free type variables can be instantiated. Also, the
capture of type variables needs to be avoided. The latter can be ensured as
usual by performing α-conversions that introduce fresh bound type variables
as necessary. Lastly, as mentioned above, a small type variable may only be
instantiated with a small type.

The substitution of an n-ary type operator variable θ can take two forms.

– The replacement is an n-ary type constructor τ . In this case, the replacement
of an occurrence (T1 . . . Tn) θ is simply the type (T1, . . . , Tn) τ .

– The replacement can be an n-ary type operator that is specified using the
universal type syntax (Πα1 . . . αn. T) with T a small type. In this case, the
replacement of (T1 . . . Tn) θ is the type T with occurrences of each variable
αi replaced by the corresponding argument type Ti.

As an example for a type substitution, consider the type of predicate functor (̃3).
Replacing the 1-ary type variable θ with the type constructor list yields:

(Πα β. (α → β) → α list→ β list) → bool

while a substitution of θ with the 1-ary type operator specified by (Πα. (α list)
list) gives the following instance:

(Πα β. (α → β) → (α list)list→ (β list)list) → bool

HOL2P has the same primitive type constructors as HOL, and new type con-
structors can be introduced that are isomorphic to non-empty subsets of existing
types. Such type definitions will be restricted to small types, as this allows the
simple syntactic characterisation of small types given above.

3.2 HOL2P Terms

HOL2P extends the terms of HOL with type abstractions and type applications.
This gives the following syntax of terms:

t ::= (v : T) variable
| (c : T) constant
| t t application
| λ (v : T). t abstraction
| Λα. t type abstraction
| t [T] type application

There are two important restrictions on the formation of terms:

(R1) As in System F, the formation of a type abstraction term Λα. t has
the side condition that the type variable α must not occur freely in the
type of any free variable of t.

(R2) In a type application term t [T], T must be a small type.

340 N. Völker

The typing rules for HOL2P variables, constants, applications and abstrac-
tions are as in HOL. For type abstractions and type application terms, we have:

Λα. (t : T) : Πα. T
(t : Πα. S) [T] : S[T \α]

It follows that the type variable α in a type abstraction term (Λα. t) as well as
all type variables within the argument type T of a type application (t [T]) must
be small. This will be assumed whenever a HOL2P term is written down.

With the exception of type operator variables, the types and terms of HOL2P
are a subset of those of System F. The typing rules of HOL2P agree with those in
System F, apart from an implicit “type β-reduction” that needs to be applied to
the System F type of a type application term so as to obtain the corresponding
HOL2P type.

Type membership in HOL2P is unique modulo α-equivalence of types. In
particular, if T and T ′ are two α-convertible types and t is a term, then t : T
holds if and only if t : T ′.

Having both term and type variable bindings in HOL2P terms means that
α-equivalence needs to allow for a renaming of either kind of bound variables.
It also gives rise to a β-conversion of type abstraction/application combinations
discussed in Section 3.3.

Because of restriction (R1) on the formation of type abstractions, the free
variables in a type abstraction Λα. t or application t [T] are the same as the
free variables of the base term t. This implies that the two new term formation
operations do not interfere with term substitutions, i.e. for a term variable v and
a replacement term r of the same type as v, we have:

(Λα. t) [r\v] = Λα. t [r\v]
(t [T]) [r\v] = (t [r\v]) [T]

For type instantiations of HOL2P terms, the possible capture of type variables
in type abstractions needs to be taken into account. This can be solved as usual
by α-conversions that introduce fresh bound type variables.

In the area of theorem proving, universal types are well known from systems
based on intuitionistic logic such as COQ [17]. For classical higher order logic,
there is the problem that its combination with the full polymorphic λ-calculus
is inconsistent [3]. In HOL2P, this is avoided by permitting only a subset of
polymorphic λ-calculus terms - (R2) restricts HOL2P terms such that only type
abstractions over small types can occur.

HOL2P is also restricted in the sense that the formation of universal types is
limited to 0-ary type variables, despite the presence of type operator variables in
the system. Because of these restrictions, the term “second order polymorphism”
seems appropriate for HOL2P.

3.3 Rules

All HOL inference rules also apply in HOL2P. As an example, the inference rule
REFL

HOL2P - A System of Classical Higher Order Logic 341

Γ � t = t
(REFL)

expresses the reflexivity of equality on HOL2P terms. In case of rule INST TYPE,
HOL2P extends the HOL version with type operator variable instantiation, and
the instantiation of type (operator) variables has to preserve the smallness of
types.

HOL2P has three additional inference rules compared to HOL. These support
equational reasoning with type abstractions and applications.

– The congruence rule for type variable abstraction is analogous to the HOL
congruence rule ABS for term abstractions. It also has a similar side condition
in that the type variable α must not occur freely in the assumption list Γ:

Γ � s = t

Γ � Λα. s = Λα. t
(TYABS)

– The congruence rule for type application is reminiscent of the HOL rule
MK CONG, but the assumption about equality of the argument terms is re-
placed by a side condition that the two argument types S and T have to be
α-equivalent.

Γ � s = t

Γ � s [S] = t [T]
(TYAPP)

– There is also a β-conversion rule for combinations of type abstraction and
applications terms. This is similar to the HOL rule BETA. Again, the general
case of this rule can be derived from the special case by suitable instantia-
tions.

Γ � (Λα. t) [α] = t
(TYBETA)

Lastly, the three HOL axioms and the type and term definition principles also
carry over to HOL2P. As already explained, there is a pragmatic restriction in
that type definitions are not allowed to involve universal types, as this avoids
the need to annotate type constructors with a small/large label.

4 Outline of HOL2P Semantics

Simple-typed higher order logic has a set-theoretic semantics due to A. Pitts [8].
Recently, J. Harrison [10] has proof checked a variation of this semantics in
HOL-Light. Our presentation takes some inspiration from the latter source. In
particular, we follow its lead by constructing only a standard model for the three
primitive HOL type constructors bool, ind and function space. It is straightfor-
ward (but somewhat tedious) to extend the approach so as to cater for other
HOL type constructors introduced by type definitions.

The HOL2P semantics will be given in four steps:

342 N. Völker

1. A recap of the standard semantics for HOL types and terms.
2. The construction of a universe for HOL2P types.
3. The semantics of HOL2P types.
4. The semantics of HOL2P terms.

4.1 The Semantics of HOL Terms

According to the well-known semantics of simple-typed HOL [8], there exists a
universe U0 of sets such that each monomorphic HOL type T is modelled by a
set [[T]] ∈ U0. In addition, it can be assumed that the interpretation is standard:

– the model of type bool is a special two-element set boolset,
– the model of type ind is a special infinite set indset and
– the model of a function type A → B is the set theoretic function space

between the models of A and B:

[[A→ B]] = [[A]]→set [[B]]

The subscript set in →set is used to distinguish the set theoretic function space
from the HOL function space.

The semantics [[T]]ρ of a general, possibly polymorphic, HOL type T is para-
meterised with a valuation function ρ which associates each type variable with
an element of U0.

The meaning [[t]]σ,ρ of a HOL term t is additionally parameterised with a
valuation σ that associates each variable with an element of some set in U0.

The term model has to be consistent with the type model:

[[t : T]]σ,ρ ∈ [[T]]ρ

4.2 A Universe for HOL2P Types

Because of restriction (R2), the type variable α in a HOL2P universal type Πα. T
can only be instantiated with a small HOL2P type. Ignoring type operator vari-
ables for the moment, small HOL2P types correspond to types of HOL, and thus
can be interpreted as U0 elements. This suggests that HOL2P universal types
can be modelled as products over U0. This observation leads us to a introduce a
new set-theoretic universe U1 with the following properties:

– U1 extends U0: U0 ⊆ U1

– U1 is closed with respect to the function space operator: A ∈ U1 ∧B ∈ U1 →
A→set B ∈ U1

– U1 is closed with respect to the formation of set theoretic products indexed
by U0, i.e. for f : U0 → U1 we have Πu∈U0 f u ∈ U1.

Similar to the case of U0, such a set U1 can be constructed iteratively by starting
from the base set U0 and adding in iteration (n + 1) all the sets that can be
formed from the elements of iteration n by applying either the function space
operator or products indexed over U0.

HOL2P - A System of Classical Higher Order Logic 343

4.3 The Semantics of HOL2P Types

The interpretation of HOL2P types has to take type operator variables of arity
n > 0 into account. These will be modelled as n-ary functions of type Un

1 → U1.
This means that the semantics [[T]]ρ of a HOL2P type T is parameterised with
a valuation function ρ which maps each type (operator) variable of arity n ≥ 0
to an element of Un

1 → U1.
Small HOL2P types should be modelled as elements of the U0 subset of U1.

This is ensured by imposing two restrictions on the valuation functions ρ used
in HOL2P type interpretations. Firstly, they have to respect smallness of type
variables, e.g. small type variables must be mapped to elements of U0:

ρ (α :: small) ∈ U0

Secondly, because type operator variable applications preserve the smallness of
types, the valuation ρ θ of a type operator variable must be a function that
preserves the U0 subset of U1:

u1 ∈ U0 ∧ . . . 0 ∧ un ∈ U0 ⇒ (ρ θ) (u1, . . . , un) ∈ U0

The definition of [[T]]ρ is by primitive recursion over the structure of T :

[[bool]]ρ = boolset
[[ind]]ρ = indset
[[A→ B]]ρ = [[A]]ρ →set [[B]]ρ
[[α]]ρ = ρ α

[[(T1, . . . , Tn) θ]]ρ = (ρ θ) ([[T1]]ρ, . . . , [[Tn]]ρ)
[[Πα. T]]ρ = Πu∈U0 [[T]]ρ[α�→u]

The first four equations above define the semantics of small HOL2P types with-
out type operator variables. This definition agrees with the normal HOL type
semantics.

4.4 The Semantics of HOL2P Terms

For variable, constant, application and abstraction terms in HOL2P, the meaning
[[t]]σ,ρ of t with respect to valuations σ and ρ can be defined in the same way as
in HOL [10]. For the two HOL2P specific term operations, we have:

[[Λα. t]]σ,ρ = λset (u ∈ U0). [[t]]σ,ρ[α�→u]

[[t [T]]]σ,ρ = [[t]]σ,ρ [[T]]ρ

By induction over the term structure, it can be shown that the meaning of
HOL2P terms is consistent with that of HOL2P types, e.g.:

[[t : T]]σ,ρ ∈ [[T]]ρ

The reader might wonder where the construction of a semantics would break
down if we allowed terms ranging over the full polymorphic λ-calculus in our

344 N. Völker

system. The crucial property is that in case of HOL2P, the model of a universal
type is a product indexed by the fixed set U0. This allows the iterative con-
struction of a universe U1 with the required properties in a countable number of
steps.

Lastly, the three inference rules specific to HOL2P express congruence prop-
erties of type abstractions and applications as well as β-reduction. The validity
of these rules in the model follows directly from the corresponding properties of
set theoretic functions and their applications.

5 Application Examples

Type Quantification

As a first application, we show that HOL2P can express type quantification
terms [14]. For a predicate p and a type variable α, we define ∀α. p and ∃α. p
to be abbreviations for the following boolean HOL2P terms:

∀α. p ≡ ((Λα. p) = (Λα. True)) (4)
∃α. p ≡ ((Λα. p) 	= (Λα. False)) (5)

As usual, a multiple universal quantification can be written in a shorter form:

∀α1 . . . αn. p ≡ ∀α1. ...∀αn. p

The introduction rule for universal quantification over types follows directly
from its definition and the HOL2P TYABS rule. It is subject to the usual side
condition that α is not free in the assumption list Γ:

Γ � p

Γ � ∀α. p
(TYALL-I)

The elimination rule for universal quantification over types follows directly
from the HOL2P TYAPP rule and the “type-β” conversion for type applica-
tion/type abstraction combinations (e.g. the general case of TYBETA):

Γ � ∀α. p
Γ � p[T \α]

(TYALL-E)

There are similar rules for existential quantification over types which can be
derived either from its definition above or by rewriting it in form of a negated
universal type quantification:

∃α. p ≡ ¬(∀α. ¬ p) (6)

As an example for a derivation, consider the statement that there exists a HOL2P
type which is a terminal object in the category of HOL2P functions:

∃α. ∀f g. f = (g : β → α)

HOL2P - A System of Classical Higher Order Logic 345

The proof of this statement is by contradiction using the fact that the unit type
1 is a witness, e.g. it is such a terminal object:

∃α. ∀f g. f = (g : β → α)
⇔ { Equation (6), negation rules }
∀α. ¬(∀f g. f = (g : β → α)) � False
⇐ { Forward reasoning from assumption by TYALL-E with T = 1 }
¬(∀f g. f = (g : β → 1)) � False
⇔ { property of unit type 1 }
True

Notions from Category Theory

The predicate functor discussed in Section 2 applies to universally type-
quantified functions φ:

φ : Πα β. (α→ β) → (α θ → β θ) (7)

It is defined in HOL2P as follows (compare with equations (1, 2) above):

functor φ = (∀α. φ [α] [α] = (id : α θ → α θ))
∧ ∀α β γ. ∀(f : α→ β)(g : β → γ). φ (g ◦ f) = φ g ◦ φ f

For example, the fact that map list is a functor is expressed by the proposition:

functor (Λα β. (map list : (α→ β)→ (α list→ β list))

This shows one of the costs of working in HOL2P - the definition of the
map list constant is given in a form that has free type variables α and β, and
these type variables have to be bound if we want to use map list as an argument
to functor or similar functions that operate on polymorphic arguments.

The definition of predicate functor is parameterised with a free one-ary type
operator variable θ. This is instantiated whenever the constant functor is applied
to a function φ, e.g. we have θ = list in case of φ = map list.

Natural transformations are a key concept of category theory [13]. Given
two functors φ and ψ between categories C and D, a natural transformation
associates every object X in C with a “morphism” ηX : φ X → ψ X subject to
a commuativity rule:

ψ(f) ◦ ηX = ηY ◦φ(f)

In our application of category theory to polymorphic HOL functions embedded
within HOL2P, natural transformations are simply polymorphic functions which
are compatible with two “functor” functions φ and ψ of a type as in (7). This
leads to the definition of a three-argument predicate ntrf as follows:

ntrf :: (Πα β. (α→ β)→ (α φ→ β φ))
→ (Πα β. (α→ β)→ (α ψ → β ψ))
→ (Πα. α φ → α ψ) → bool

ntrf φ ψ η = ∀α β. ∀ (f : α→ β). ψ f ◦ η = η ◦ φ f

346 N. Völker

Since HOL2P functions are total, the predicate ntrf can be applied to any func-
tions φ and ψ that are of the right type, not just functors.

Many polymorphic functions are natural transformations between “type func-
tors”. In fact, this statement is just a rephrasal of the “theorem for free” [20]
one can infer (under certain provisos) from the type of a function. As a simple
example, consider the function rev which reverses the order of elements in a list:

rev [] = []
rev (cons h t) = append (rev t) [h]

It is a “natural transformation from lists to lists”, or to be more precise, from
the map list functor to the map list functor:

ntrf (Λα β. (map list : (α→ β)→ (α list→ β list)))
(Λα β. (map list : (α→ β)→ (α list→ β list)))
(Λα. (rev : α list → α list))

After unfolding definitions, it becomes apparent that this statement is equivalent
to the following better known proposition:

rev (map list f x) = map list f (rev x)

Category theory defines a “horizontal” and a “vertical” composition of natural
transformations, as well as compositions with functors. It is straightforward to
translate these operations so that they apply to the HOL2P natural transfor-
mations defined above, and to show that the results of the operations are again
natural transformations. Formal proofs can be found in the HOL2P example
files. These also contain some further derivations related to homomorphisms,
initial algebras and catamorphisms.

6 Implementation

It would be possible to implement a HOL2P proof assistant in a green-field
software development project, starting from scratch. However, because the logic
is an extension of HOL, and given the availability of several high quality HOL
implementations, it makes more sense to built such a system by trying to reuse
at least parts of existing provers.

For the prototype HOL2P implementation described in this paper, HOL-Light
was chosen as the starting point. This decision was made because of its compact-
ness and clean design which helps to keep the implementation of an extension
more manageable. Having identified the base system, a fundamental question
about the new HOL2P prover arises: should it aim to stay compatible with the
existing HOL-Light prover and its associated libraries or should its design reflect
the extended logic as much as possible?

In order to simplify the reuse of the existing HOL-Light libraries, it was de-
cided to try and keep the number of modifications to a minimum. This was

HOL2P - A System of Classical Higher Order Logic 347

achieved by taking an iterative development approach. Starting off with the ex-
isting HOL-Light system, one by one, modules were replaced with a new HOL2P
version. Whenever a new module was completed, a test was carried out to ensure
that the whole system was still a functioning theorem proving environment. In
particular, interfaces were only ever extended, and not modified in any other
way. Similarly, all functions kept their original signature, although the function-
ality they provide now applies to the more general case of HOL2P types and
terms.

A typical example of this conservative development philosophy is the basic
hol type datatype that represents HOL/HOL2P types. In HOL-Light, this type
is defined as:

hol type = Tyvar of string | Tyapp of string ∗ hol type list

In principle, there are several possible options for the design of a correspond-
ing HOL2P hol type datatype. Having both type variables and type operator
variables in the logic suggests a generalisation of Tyvar so that it takes a second
arity argument, as well as introducing a type application operator similar to
System F. Disregarding universal types for the moment, this might lead to a
type declaration such as the following:

hol type = Tycon of string |Tyvar of string ∗ rank ∗ int
| Tyapp of hol type ∗ hol type list | . . .

While perfectly acceptable for a new design, this definition was rejected. The ra-
tionale was that some HOL-Light libraries make use of the visibility of hol type in
order to define functions by pattern matching. Changing the existing construc-
tors would thus have implied changes to such libraries. Instead, the definition
of hol type in HOL2P keeps the existing constructors and simply adds a new
constructor for universal types 1

hol type = Tyvar of string | Tyapp of string ∗ hol type list
| Utype of hol type ∗ hol type

This declaration raises the question how small and large type variables are dis-
tinguished. This is done on a purely syntactic basis. Small type variables are
recognised by starting with an apostrophe character. Similarly, type operator
variables are distinguished from type constructors by starting with an under-
score character.

The reward of this conservative development philosophy is a high degree of
backward compatibility of the new HOL2P system with HOL-Light, and it is
possible to run at least the main HOL-Light theory developments without any
changes.
1 The reader might be surprised that the first argument of the Utype constructor

is not simply a string, e.g. the type variable name. It was done in order to ease
reuse by keeping the representation in line with the HOL-Light treatment of term
level abstractions. The latter employs a constructor Abs that takes a term as first
argument, and not just a variable name.

348 N. Völker

A brief summary of some major implementation aspects is given below. The
reader interested in details is referred to the system source files and accompany-
ing documentation [18].

– The main challenge in the implementation of the logical core was the pres-
ence of type variable bindings in HOL2P. In particular, this makes the type
and term substitution code more complex as well as requiring a notion of
α-equivalence of types. In order to achieve a uniform treatment of instanti-
ations, type operator variables, constant names and replacement type oper-
ators are all represented as hol type elements.

– For the implementation of derived logical operations, the main difficulty is
the matching of types in the presence of type operator variables. Similar to
normal “higher order” term matching with function variables, it is possible
to have more than one match. For example, trying to solve:

?F (?x) = (nat list) list

there are several possible solutions, i.e.

(1) ?F = Λα. α ?x = (nat list) list
(2) ?F = list ?x = (nat list)
(3) ?F = Λα. α list list ?x = nat
(4) ?F = Λα. nat list list ?x can be any HOL type

In the current HOL2P implementation, a rather simple approach was cho-
sen - the algorithm will only match type operator variables against a type
constructor or another type operator variable. This means that only solution
(2) is allowed. In order to return other solutions, an explicit instantiation of
the type operator variable has to be performed by the user, e.g. by adding
it in the statement of a goal or by instantiating a theorem before using it in
a proof step. For example, after applying the instantiation ?F = Λα. α, the
first solution will be returned, while setting ?F = Λα. (α ?G) ?H will result
in solution (3).

– In the implementation of type inference, the presence of type operator vari-
ables poses the same problem for the unification algorithm as for the match-
ing algorithm above, and the same approach of restricting the number of
solutions was chosen. In order to reduce the amount of explicit type annota-
tions, user can explicitly declare the type of a variable. This information will
then be used during the parsing of later goal statements and other terms in-
put by the user. Unfortunately, despite this facility, a fair number of explicit
type annotations and type instantiations can be necessary, see for example
the category theory derivation source files. Additionally, the way type ap-
plications terms are handled in the parser makes it necessary to explicitly
specify both the original type of a term as well as the type resulting from
performing the operation.

– Boolean type quantification terms as described in Section 5 are treated sim-
ply as syntactic sugar, e.g. they are parsed into normal HOL2P terms ac-
cording to the defining equations (4) and (5).

HOL2P - A System of Classical Higher Order Logic 349

– Reasoning about terms containing type abstractions and type applications
is supported by appropriate tactics. In particular there are tactics that per-
form the introduction and elimination of universal type quantification terms
as described by rules (TYALL-I) and (TYALL-E) above. There is also a
conversion that will perform a “type-β-reduction”, e.g. simplifying a type
abstraction/type application combination by performing the corresponding
type instantiation on the abstraction body term.

7 Conclusions and Further Work

HOL2P is a new logical system that extends classical higher order logic with
type operator variables and universal types, albeit in a restricted form in order
to ensure consistency. The paper shows that the logic is capable of expressing
boolean type quantification terms, as well as allowing the application of basic
category-theoretic notions on the level of polymorphic HOL functions.

HOL2P has been implemented as a modification of HOL-Light using a con-
servative approach which respects existing module interfaces and other visible
module features. This has resulted in a proof assistant that is to a high degree
backwards compatible with HOL-Light, and in particular it is possible to run
the standard theories that come with that system.

The implementation of the logical core of the HOL2P was relatively straight-
forward by transferring techniques for dealing with bound term variables to the
type level. The presence of type operator variables poses a a major challenge
when solving type equations occurring during matching of terms or when uni-
fication is required by type inference. In the current HOL2P implementation, a
simple approach was taken which restricts the number of automatically found
solutions to at most one. In situations where another solution is required, users
need to give explicit type instantiations or annotations, e.g. when stating goals
or when specifying theorems that are to be applied during a proof.

Further work is necessary in order to investigate the practical value of HOL2P.
For example, one could imagine more category-theory inspired datatype defin-
ition packages. These could make use of the extra expressiveness of HOL2P in
order to derive theorems by instantiation from their generic counterparts, with
the aim of reducing the amount of work done at the ML programming level.
Similarly, one could consider recasting recursive function definition packages so
that they operate on hylomorphisms [11] with the aim of simplifying further
reasoning by making use of fusion properties. The use of monads [21] and the
application of generic programming concepts might lead to more structure in
the definition of functions and more calculational proofs. Other potential ap-
plications include model-theoretic reasoning where it can be useful to have a
predicate that expresses the existence of a type.

HOL2P was conceived as a minimal extension of HOL that supports reason-
ing about HOL types and polymorphic HOL functions, with free type operator
variables for genericity. It should be possible to extend the approach to arbi-
trary higher-rank polymorphism, provided one adds appropriate restrictions in

350 N. Völker

the type/term formation rules so as to avoid the impredicativity inherent in full
System F. Another plausible extension would be the introduction of universal
types that bind type operator variables.

With regards to the HOL2P implementation, further work should revisit the
algorithms used for type matching, unification and type inference so as to re-
duce the amount of explicit type annotations required from the user. This work
might benefit from recent advances in type inference research for higher-rank
types [12,19]. Because of the complexity of HOL2P, it would be appropriate to
mechanically check the semantics given in this paper, and ideally also some of
the algorithms used in the implementation of the logical core, similar to the
verification work done for HOL-Light [10].

Acknowledgements

The author would like to thank Ray Turner who suggested the idea of extending
HOL with a second type layer, and who provided moral support. The anonymous
TPHOLs reviewers deserve credit for their helpful comments.

References

1. Backhouse, R., Jansson, P., Jeuring, J., Meertens, L.: Generic programming - an
introduction. In: Swierstra, S.D., Oliveira, J.N. (eds.) AFP 1998. LNCS, vol. 1608,
Springer, Heidelberg (1999)

2. Bird, R.S., de Moor, O.: Algebra of Programming. Prentice-Hall, Englewood Cliffs
(1997)

3. Coquand, T.: A new paradox in type theory. In: Prawitz, D., Skyrms, B., West-
erst̊ahl, D. (eds.) Proceedings 9th Int. Congress of Logic, Methodology and Phi-
losophy of Science, pp. 555–570. North-Holland, Amsterdam (1994)

4. Girard, J.-Y., Lafont, Y., Taylor, P.: Proofs and Types. Cambridge Tracts in The-
oretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)

5. Glimming, J.: Logic and Automation for Algebra of Programming. PhD thesis,
MSc Thesis, University of Oxford (2001)

6. Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

7. Gordon, M.J.C., Melham, T.F.: Introduction to HOL. Cambridge University Press,
Cambridge (1993)

8. Gordon, M.J.C., Pitts, A.: The HOL Logic and System. In: Bowen, J. (ed.) To-
wards Verified Systems. Real-Time Safety Critical Systems Series, vol. 2, Elsevier,
Amsterdam (1994)

9. Harrison, J.: The HOL Light System Reference – Version 2.20 (2006), http://www.
cl.cam.ac.uk/ jrh13/hol-light

10. Harrison, J.: Towards self-verification in HOL-Light. In: Furbach, U., Shankar, N.
(eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

11. Hu, Z., Iwasaki, H., Takeichi, M.: Deriving structural hylomorphisms from recursive
definitions. In: ICFP, pp. 73–82 (1996)

12. Jones, S.P., Vytiniotis, D., Weirich, S., Shields, M.: Practical type inference for
arbitrary-rank types. Journal of Functional Programming 17(1) (2007)

http://www.cl.cam.ac.uk/~jrh13/hol-light
http://www.cl.cam.ac.uk/~jrh13/hol-light

HOL2P - A System of Classical Higher Order Logic 351

13. Mac Lane, S.: Categories for the Working Mathematician. Springer, Heidelberg
(1971)

14. Melham, T.F.: The HOL logic extended with quantification over type variables.
Formal Methods in System Design 3(1–2), 7–24 (1994)

15. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002)

16. Pierce, B.C.: Types and Programming Languages. MIT Press, Cambridge (2002)
17. The Coq Development Team. The Coq Proof Assistant Reference Manual – Version

V8.0 (2004), http://coq.inria.fr
18. Völker, N.: HOL2P Prototype Implementation (2007),

http://cswww.essex.ac.uk/staff/norbert/hol2p
19. Vytiniotis, D., Weirich, S., Jones, S.P.: Boxy types: inference for higher-rank types

and impredicativity. ACM SIGPLAN Notices 41(9), 251–262 (2006)
20. Wadler, P.: Theorems for free? In: Functional Programming Languages and Com-

puter Architecture, Springer, Heidelberg (1989)
21. Wadler, P.: The essence of functional programming. In: POPL, pp. 1–14 (1992)

http://coq.inria.fr
http://cswww.essex.ac.uk/staff/norbert/hol2p

Building Formal Method Tools in the

Isabelle/Isar Framework

Makarius Wenzel1,∗
and Burkhart Wolff2

1 Technische Universität München, Institut für Informatik,
http://www.in.tum.de/~wenzelm/

2 ETH Zürich, Information Security,
http://www.infsec.ethz.ch/people/wolffb

Abstract. We present the generic system framework of Isabelle/Isar
underlying recent versions of Isabelle. Among other things, Isar pro-
vides an infrastructure for Isabelle plug-ins, comprising extensible state
components and extensible syntax that can be bound to tactical ML
programs. Thus the Isabelle/Isar architecture may be understood as an
extension and refinement of the traditional “LCF approach”, with ex-
plicit infrastructure for building derivative systems. To demonstrate the
technical potential of the framework, we apply it to a concrete formal
methods tool: the HOL-Z 3.0 environment, which is geared towards the
analysis of Z specifications and formal proof of forward-refinements.

1 Introduction

Nearly 15 years ago, Paulson concluded his handbook article on theorem prover
design [18] with the “final advice”:

Don’t write a theorem prover. Try to use someone else’s.

Even today, reuse of existing prover technology is still not common practice —
many recent research projects are still based upon attempts to start from scratch,
in particular if formal methods are implemented. This has mostly three reasons:
Besides (1) general ignorance over or scepticism about the logical framework
approach and (2) concerns about efficiency, it is believed that (3) the overhead
to represent a particular formal method in a generic system is in fact too large.

There is a remarkable body of literature addressing (1) and (2); various forms
of logical embeddings have been studied and applied to a wide range of logics
or specification languages. Furthermore, a wide range of techniques to integrate
decision procedures have been developed. Here the usual alternatives are fully
expansive tactics, or procedures generating checkable proof objects or external
implementations integrated via an oracle-mechanism into the LCF proof engine.

In this paper, we want to address (3) and explore the much less known fact
that underlying the most recent versions of Isabelle (which Paulson had in mind
∗

Supported by BMBF project “Verisoft”.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 352–367, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

http://www.in.tum.de/~wenzelm/
http://www.infsec.ethz.ch/people/wolffb

Building Formal Method Tools 353

in the above quote) there is a generic system framework called Isabelle/Isar
that can be compared in a rough analogy to the Eclipse programming system
framework. Some key aspects of Isabelle/Isar are

1. hierarchical organization of theory documents,
2. incremental document processing for interactive theory and proof develop-

ment (with unlimited undo),
3. batch-mode processing for high-quality document preparation (LATEX),
4. extensible syntax for toplevel commands, embedded methods and attributes,

and the inner term language,
5. type-safe programming interfaces for generic user data within the logical

environment,
6. LCF-style programming interfaces for derived rules, tactics etc.

This framework has been applied to build a family of formal method tools. With
this category we refer to a class of tools that provide support for a software spec-
ification formalism and a pragmatics or formalized “method” to use it for soft-
ware analysis. Examples of such FM tools implemented as Isabelle/Isar “plug-
ins” are the test-case generation system HOL-TestGen [11, 2], the environment
for object-oriented modeling HOL-OCL [4, 10], or the proof-environment for
refinement-oriented system development HOL-Z 3.0 [5]. In the present paper we
take the latter as a running example, since the logical embedding [16] and the
proof-support [9] have been described earlier, the overall plug-in is still rela-
tively small (12000 lines of code if the Java-based front-end is included), and
since there exists a “monolithic” implementation [3] of an environment for Z
based on a HOL theorem prover offering the potential of a fair comparison.

The analysis method of HOL-Z 3.0 (built on top of HOL within Isabelle2005)
is based on the idea that a designer writes a specification document in the speci-
fication language Z. This can be done completely independent from Isabelle in an
Emacs/ZETA environment providing type-checking and elementary animation
of Z formulae [1]. In a further step, the designer might want to state a number
of conjectures on his model. In particular, these may be analytical statements
such as “A is refined by B” or “spec A is consistent” in order to describe the
task to proof engineers. Depending on the underlying method, such statements
were compiled to proof-obligations (PO), i. e. formulas to be proven at the end
by the proof-engineer using interactive or automated proof techniques.

The paper proceeds as follows. In §2 we introduce the HOL-Z 3.0 tool as
it appears to end-users. In §3 we outline the main aspects of the Isabelle/Isar
architecture that are relevant for building formal method tools. In §4 we report
on the implementation of HOL-Z 3.0 within the Isabelle/Isar framework. In §5
we compare our Isabelle/HOL-Z system with the more monolithic ProofPower.

2 A Guided Tour Through HOL-Z

2.1 The HOL-Z 3.0 System Architecture

As shown in Figure 1, the model development process with Isabelle/HOL-Z
is divided into two phases. In the modeling phase, the designer concentrates

354 M. Wenzel and B. Wolff

his attention on describing a model of the system in Z. The model (a LATEX
document) is type-checked by ZETA [1] and passed to the verification phase.
In the latter, the proof engineer can prove proof obligations — e. g. stemming
from an interactive refinement — using proof commands. The theorem proving
process is recorded in proof documents. Both ZETA as well as HOL-Z sup-
port “literate specifications”, where formal specifications and proofs are mixed
with informal explanations and the system generates a final document after
checking all proofs. Technically, Isabelle/HOL-Z consists of a shallow embed-

(.tex file)

ZETA ProofGeneral

HOL−Z

(.tex file)(.holz file)

Z specification

modelling phase

documentation

verification phase

specification

Editor

(e.g., Emacs)

(.thy file)
HOL−Z

Fig. 1. The HOL-Z system architecture perspective

ding of the Z language constructs, a library called the mathematical toolkit, a
compiler converting ZETA-output into the logical representation, a number of
generic proof-procedures providing automatic support for Z-specific constructs
like schemas (sets of records), or the schema calculus with its own quantifier
and logical connectives. HOL-Z also provides proof-obligation management in-
stantiated with a concrete method, namely the forward refinement method for Z
as described in Spivey’s book [19]. A complete HOL-Z spec and proof documen-
tation for Spivey’s “BirthdayBook” example, a toy data-base system presented
in an abstract and a concrete version and related via refinement proofs, can be
downloaded as “standard example” via the HOL-Z home page [5]. There are also
references to substantial case-studies that have been done with the system.

2.2 The HOL-Z 3.0 Workflow

The proof document can be processed interactively via Proof General [6]. Sub-
sequently, we highlight the main steps taken when verifying the birthday book
example; the reader interested in the details is referred to the complete down-
load of the “standard example”. We start by loading the output of ZETA when
type-checking the model of the designer:

1 load_holz "BBSpec"

This results in an environment holding all definitions and various automatically
derived simplification rules. In particular, this includes the state invariants for
the abstract state BirthdayBook and the concrete BirthdayBook1, the abstract
insertion operation AddBirthday and its concrete counterpart AddBirthday1 and

Building Formal Method Tools 355

the abstraction relation Abs . In the BirthdayBook example, all these definitions
are presented in the Z idiom as schemas. By typing

set_abs "Abs" [functional]

we inform the refinement package that the Abs schema represents the abstraction
relation and set the system in a mode for functional refinement (i. e. it will
generate simplified POs). This setting will also generate a PO requiring that
Abs actually represents a function, i. e. any concrete state is in fact related to a
unique abstract state. After the statement:

refine_op AddBirthday Addbirthday1

we will have two new POs (we will show the second below) in the proof obligation
database, which can be listed and inspected by the user. The concrete instance
for the second PO resulting from the statement above can be referenced via a
PO name. For example, if we discharge this PO, we can refer to it by:

po "BBSpec_functional .fw_refinementOp_AddBirthday"

The system reacts by displaying this well-known condition of forward-simulation.
In more detail, this means that whenever the concrete system transition re-
lation AddBirthday1 relates a concrete state in BirthdayBook1 to a state in
BirthdayBook1′ and whenever an abstract state BirthdayBook can be related
via Abs to a state in BirthdayBook1, then AddBirthday must allow a transition
to the abstract state BirthdayBook ′ which is an abstraction of BirthdayBook1′:

∀BirthdayBook • ∀BirthdayBook ′ • ∀BirthdayBook1 • ∀BirthdayBook1′ •
(∀ date? : DATE . ∀name? : NAME .

preAddBirthday ∧ Abs ∧ AddBirthday1 ∧ Abs ′ ⇒ AddBirthday)

Recall that in the above Z formula BirthdayBook etc. refer to schemas, which
implies that there are implicit parameters (occasionally decorated by ′). The
Z specific binding structure is suppressed in pretty-printing. The po command
initializes the proof state, which may now be refined by a sequence of regular
Isabelle proof commands [21] (such as apply) that refer to proof methods from
generic Isabelle/HOL or specific ones from HOL-Z.

After reaching the final proof state, one can state

discharged

whereby this PO will be erased from the proof obligation database.

3 Internals: The Isabelle/Isar System Architecture

The system architecture of Isabelle/Isar [22] extends the original “LCF ap-
proach”. We briefly review the latter, before explaining our additional concepts.

356 M. Wenzel and B. Wolff

3.1 The “LCF Approach”

The “LCF approach” was pioneered by the original LCF system due to Robin
Milner [14]. LCF means “Logic of Computable Functions”, but the underlying
logic is not really relevant for the architecture. The same principles have been
transferred later to the HOL family [13, 12], and some traces are also present in
Coq [7]. The main idea of the “LCF approach” is twofold:

1. A full functional programming language acts as “meta language” (ML),
which allows arbitrary manipulations of term entities represented as values.
ML is not part of the logic, but provides access to its implementation.

2. The strong type-discipline of ML ensures “correctness-by-construction”, as
all critical information is wrapped into abstract datatypes. In particular, an
abstract type thm guarantees that any value of that type is in fact derivable,
relative to a small kernel implementing the primitive inferences of the logic.

Figure 2 illustrates the main ML types of a typical “LCF-style” system. In this
diagram a solid line means structural containment (reading downwards, e. g. a
term is contained in a thm), while dashed lines link operand-operation pairs (e. g.
a tactic operates on a goal). The three columns categorize entities according to
their typical use: basic values (manipulated directly), state information (handled
implicitly), and the main “active” operations invoked by the user.

term

thm rule

tacticgoal

basic

values

state

information

main

operations

Fig. 2. The original “LCF approach”

The concrete datatype term provides a syntactic model of λ-terms (consist-
ing of free/bound variables, abstraction, application), with the usual operations
(substitution, reduction etc.). Terms are annotated by explicit type-information,
which may have to be re-checked explicitly for critical operations (this is usually
easy due to the restriction to simple types).

The abstract type thm implements primitive inference objects of the underly-
ing logic (e. g. HOL). Since ML enforces type-safety, the thm type does not need
to store any explicit information about the inferences that lead to a particular
theorem. Some systems provide an explicit proof trace as an option, but this
typically increases space requirements by several orders of magnitude.

Type rule covers functions that produce theorems, e. g. unary thm → thm ,
binary thm → thm → thm, or parameterized ones term → thm → thm. Gen-
eral rules programmed in ML need to replay the constituent inferences for every

Building Formal Method Tools 357

application at run-time. An important special class of immediate derived rules
may be implemented more efficiently, using auxiliary theorems that internalize
the rule as a statement of the logic; this technique essentially exploits the De-
duction Theorem. In Isabelle, derived rules are internalized by default, using
the

∧

quantifier and =⇒ connective of the Pure logical framework to represent
Natural Deduction schemes [17]. Note that in conclusions, the outermost prefix
of
∧

x quantifiers is turned into schematic variables ?x of Isabelle.
Beyond primitive inferences, the LCF approach includes some minimal in-

frastructure for tactical theorem proving, which supports backwards reasoning
from a goal by a sequence of tactic applications. In Isabelle, a goal is again a
thm stating that the sub-goals entail the main conclusion, and a tactic is a lazy
function goal → goal∗∗ that enumerates possible follow-up goals [17]. The tac-
tical layer of the LCF approach imposes a particular discipline of goal-oriented
reasoning, which has turned out quite successful very early [14]: the art of rep-
resenting problems as goals (including auxiliary facts within the statement) and
complex manipulations as tactics has thrived over several decades.

Beyond programming tactics, people have also managed to build advanced
specification mechanisms that turn high-level user input into primitive defini-
tions and proven theorems. This approach has been employed many times to
implement inductive sets and datatypes, recursive functions etc. on top of the
core logic implementation. E. g. see [15] or [8] for techniques of bootstrapping
higher specification concepts in HOL.

Limitations. Despite this success in building complex logical environments
from basic principles, there has traditionally been very little general system
infrastructure to support this task systematically. Consequently, “LCF system
programming” has often a flavor of working on bare-metal. Moreover, imple-
mentors of particular extensions often re-invent auxiliary infrastructure, which
duplicates work and tends to result in a diversity of incompatible features.

To illustrate the limitations of raw LCF, consider the problem of combining
advanced tactics in classic Isabelle. Given tactic simp (the Simplifier, imple-
mented by N.) that depends on a private rule collection, which is represented by
type simpset and maintained by addsimp , delsimp : thm → simpset → simpset ;
given another family of tactics fast , blast etc. (the Classical Reasoner, imple-
mented by P.) that depend on a claset with similar operations; then a combined
tactic force (implemented by O.) depends on clasimpset = claset×simpset . This
is slightly awkward, since declarations on the individual components (addsimp
on simpset etc.) need to be lifted to the tupled container, and users need to
know which container type is passed to which tactic exactly. Even worse, this
technique requires the participant tactic families and corresponding container
types to be known in advance. So this naive composition does not scale well.

Our refined LCF approach addresses such issues by a generic environment
that assimilates arbitrary data in a type-safe fashion. So all tactics may depend
on a uniform context , which is maintained by declarations on the same type.

358 M. Wenzel and B. Wolff

3.2 The Isabelle/Isar Framework

Although the original motivation for Isabelle/Isar is to support human-readable
proof texts [20], the internal system organization has been quite generic from
early on, continuing the original idea of Isabelle as a “logical framework” [17] in
a broader sense. Consequently, the mechanisms for structured proofs are merely
another application of considerably more general infrastructure, which may be
re-used in completely different applications as well. Figure 3 gives an overview of
the main constituents of the Isabelle/Isar framework. In this diagram, a solid or
dashed line means the same as in Figure 2, while an arrow means a backwards
reference that may mutate in a monotonic fashion (as explained below).

basic

values

state

information

main

operations

term

thm

attribute

methodproof−state

theory

context

toplevel command

data (private)

document

Fig. 3. Main concepts of Isabelle/Isar

Here the original entities of the “LCF approach” are still present, although
some have been elevated to more sophisticated concepts.

Generic data, which can be modeled by the user as arbitrary ML types, is
organized explicitly within a theory or context . Operations on data are private
to the particular module implementation; access is mediated by higher elements,
notably attribute, method , or command .

A term is exactly the same as in raw LCF, but a thm holds an additional
reference to the enclosing theory as an explicit certificate. A context is certified
against its background theory in the same way. An attribute covers primitive
operations on theorems, as well as declarations to the theory or context .

An Isar proof-state wraps the raw LCF goal into a rich block-structured con-
figuration, with an explicit context at each position. A method supersedes tactic
as the main goal refinement mechanism, depending on additional structure from
the context and immediate theorems presented in the proof text.

The Isar toplevel integrates the main state components, and encapsulates all
operations by a transaction concept that supports recovery from errors and un-
limited undo. The Isar toplevel loop replaces the bare-bones ML toplevel of LCF:
end-users are no longer exposed to the underlying programming environment.

Building Formal Method Tools 359

A document consists of a command sequence, interleaved with the resulting
toplevel state at each position. This allows to generate output for LATEX type-
setting, involving both the original sources and pretty printed output of logical
entities (using “antiquotations” for term and thm in the text).

We shall now take a closer look at the key concepts required for building
formal reasoning tools within the Isabelle/Isar framework.
Logical Environments. Our central concepts of theory and context are moti-
vated by certain aspects of the underlying calculus. Derivations in Isabelle/Pure
[17] (and the HOL family in general [13]) can be described as a judgment Γ �Θ ϕ,
meaning that proposition ϕ is derivable from assumptions Γ , within theory Θ.
Both Θ and Γ act as a logical environment, but have different characteristics: Θ
holds global declarations of polymorphic type constructors, term constants, and
axioms; Γ covers locally fixed type variables, term variables, and hypotheses.
The following main principles operate on Γ and Θ wrt. the conclusion ϕ:
– Transfer: due to monotonicity of derivations, results may be transferred into

a larger environment, i. e. Γ �Θ ϕ implies Γ ′ �Θ′ ϕ for Θ′ ⊇ Θ and Γ ′ ⊇ Γ .
– Export: by discharging assumptions, results may be exported into a smaller

environment, i. e. Γ ′ �Θ ϕ implies Γ �Θ Δ =⇒ ϕ where Γ ′ ⊇ Γ and
Δ = Γ ′ − Γ . Note that Θ remains unchanged here, discharge of theory
content is not directly supported.

Isabelle/Isar elevates raw Θ to a theory and Γ to a context , both supporting
arbitrarily typed data, being introduced by the user at compile time.

Theories. A theory is a named data container with a unique identifier. Theories
are related by a nominal sub-theory relation, which corresponds to the depen-
dency graph of the original construction; each theory is derived from a certain
sub-graph of ancestor theories. Locally, a theory is updated in a strictly linear
discipline, which reduces the total number of theory identifiers. This organization
is able to support large-scale logical environments efficiently.

The operation merge : theory × theory → theory builds the least upper bound
of two theories, which is trivial for nominally related theories. The operation
begin : name → theory∗ → theory starts a new theory by importing several
parent theories and entering a special draft mode, which is sustained until the
final operation end : theory → theory , where the theory is named and identified
for permanent storage. An intermediate draft theory acts like a linear type, where
updates invalidate earlier versions. The operation checkpoint : theory → theory
produces an intermediate stepping stone that will survive the next update: both
the original and the changed theory remain valid and are related by the sub-
theory relation. Checkpointing essentially recovers pure theory values, at the
expense of extra bookkeeping. The operation copy : theory → theory produces
an auxiliary version with the same content, but detached from the original.

Theory data. may refer to destructive entities, which are maintained in direct
correspondence to the globally graph-structured and locally linear evolution of
theory values, including explicit copies of impure data. A theory data declaration
needs to implement the following ML specification:

360 M. Wenzel and B. Wolff

type T representation
val empty : T initial value
val copy : T → T refresh impure data
val extend : T → T re-initialize on import
val merge : T × T → T join on import

A theory reference maintains a live link to an evolving theory: updates on
drafts are propagated automatically. Derived entities (notably thm or context)
store a theory reference in order to indicate the enclosing logical environment.
Soundness substantially depends on monotonicity of the underlying calculus, as
the referenced theory may grow spontaneously.

Contexts. A context is a pure data container with a back-reference to the en-
closing theory . The operation init : theory → context creates an empty context
from a given theory. Modifications to draft theories are propagated to the con-
text as explained above. The actual context data does not require any special
bookkeeping, thanks to the lack of destructive features at this point.

Although contexts may be manipulated arbitrarily (analogous to thm values),
the common discipline is to follow block structure: a given context is extended
consecutively, and results are exported back into the original context. Note that
an Isar proof-state models block-structure explicitly (using a stack).

Context data is declared by implementing the following ML specification:

type T representation
val init : theory → T initial value

Generic theory and context data is used in Isabelle/Pure from the very be-
ginning of bootstrapping the system. Even the inference kernel itself depends on
types, constants, and axioms being maintained as theory data. If we liken the
original LCF approach to a “micro-kernel” architecture, we may understand the
Isabelle/Isar data management facility as a “nano-kernel”.

After having boot-strapped the basic functionality of Isabelle/Pure, with
many layers of theory and context data, the same principle is continued in
object-logics like Isabelle/HOL. This includes data for reasoning tools (Sim-
plifier, Classical Reasoner etc.) and derived specification mechanisms (inductive
sets, recursive functions etc.). There is no reason to stop here, of course (cf. §4).

Attributes. An attribute covers any immediate operation on a theorem or the
data within the underlying environment (theory or context):

global-attribute = theory → thm → thm global rule
| thm → theory → theory global declaration

local-attribute = context → thm → thm local rule
| thm → context → context local declaration

Practically speaking, attributes model various kinds of ad-hoc transformations
and marginal declarations. Attributes may be adjoined to theorems wherever

Building Formal Method Tools 361

these occur in other Isar elements, using postfix notation thm [attribute]. For
example, thm [simp] is a declaration that corresponds to the primitive addsimp
(cf. §3.1), but operates directly on theory or context . Another example is thm
[symmetric] which concludes a symmetric version of the given theorem, using a
suitable symmetry rule picked from the environment.

Proof States and Methods. A proof-state is a stack over context × goal?,
together with some additional information to model the linguistic structure of
an Isar proof text [20]. Unstructured proof scripts are incorporated into this
model as a trivial case, by ignoring part of this structure.

A method operates on the goal field of a proof-state, depending on the proof
context and immediate facts stemming from previous reasoning; the result is
an enumeration of possible successive goal configurations, with optional case
declarations to augment the context of the subsequent proof body:

method = context → thm∗ → goal → (case∗ × goal)∗∗

Non-empty cases only occur in the most advanced methods, notably cases and
induct [21]. Moreover, many methods merely insert the indicated list of theorems
into the goal as local premises, and then continue in the plain-old tactical sense.
Thus the following simplified version suffices for most situations (recall that
tactic = goal → goal∗∗):

simple-method = context → tactic

In other words, a simple method is a plain tactic that refers to the proof context
explicitly, retrieving arbitrary data as required (simp rules etc.). In order to
combine such methods, each constituent part merely needs to pass-on the context
it has received, such that every component will be able select its own data.

Toplevel Commands. The Isar toplevel maintains an implicit state that is
transformed by a sequence of commands, either interactively or in batch-mode. In
interactive mode, toplevel state transitions are encapsulated as safe transactions,
such that both failure and undo are handled conveniently, without destroying the
underlying draft theory. In batch mode, transitions operate in a strictly linear
fashion, so an error will abort the present attempt to process the input.

A toplevel state consists of a history over empty | theory | proof-state. Special
control commands may revert to previous states (undo), or abort the present
theory or proof construction (kill). Regular commands operate on the topmost
history entry, transforming the current theory or proof-state. The following typed
interfaces allow to compose such toplevel commands:

Toplevel .theory : (theory → theory) → transformer
Toplevel .begin-proof : (theory → proof-state) → transformer
Toplevel .proof : (proof-state → proof-state∗∗) → transformer
Toplevel .end-proof : (proof-state → theory) → transformer

362 M. Wenzel and B. Wolff

Here are some example Isabelle/Isar commands [21] that are based on these.

Toplevel .theory : types, consts, axioms, defs, . . .
Toplevel .begin-proof : lemma, theorem, typedef , . . .
Toplevel .proof : apply, proof , fix, assume, show, . . .
Toplevel .end-proof : done, qed, sorry, . . .

Both Toplevel .theory and Toplevel .begin-proof may be understood as theory
specification elements, the latter with a separate proof obligation; variations on
these are regularly introduced by add-on tools. In contrast, Toplevel .proof and
Toplevel .end-proof refer to the Isar proof language [20], which is not so easily
extended beyond the predefined elements: deeper insight into the proof engine
is required. In practice, it is usually sufficient to plug additional proof tools into
the restricted interface for proof methods.

3.3 Syntax

As an “LCF-style” system, Isabelle/Isar works directly with semantic entities,
modeled as abstract types in ML. Concrete syntax is adjoined superficially be-
tween the core system and the end-user, such that theory sources may be pre-
sented as plain text. There are essentially three syntax layers in Isabelle/Isar:

1. outer syntax: toplevel commands,
2. embedded syntax: attributes and methods,
3. inner syntax: terms and types.

In particular, a command definition includes a parser function to turn a cer-
tain portion of input source into a semantic toplevel transaction. Similar parser
functions may be installed for attributes and methods. Term syntax depends on
an unrestricted context-free grammar maintained within the theory; new gram-
mar productions may be added by mixfix annotations for constants.

The vertical relationship between abstract system concepts and superficial
user syntax may be represented e. g. for type term as the pair of functions
read : context → string → term and print : context → term → string. Inter-
nally, all components communicate directly in a horizontal manner, bypassing
concrete syntax altogether. This works uniformly for pre-defined primitives and
add-on tools alike. Taking the detour via generated sources is not recommended:
both efficiency and robustness would suffer due to the full round-trip through
various (extensible!) syntax layers. This also means that decent tools are obliged
to provide proper internal interfaces by default, not just concrete syntax for
end-users. Otherwise, the tool development chain would be broken here.

4 Application: Implementing HOL-Z 3.0

We now present concrete instances for the generic slots outlined above.

Building Formal Method Tools 363

4.1 Theory Data: Z Environment

HOL-Z requires its own state capturing specific data for parsing and theorem
proving, called the Z-environment (of ML type Zenv). For example, schema iden-
tifiers must have an internal signature (“schema signature”) assigning to local
names their type and type constraint. This signature is necessary to construct
the binding structure of a schema-logical expression. As an example for proof
support, there is a set of type-constraint information (“f is a partial function”:
f ∈ A �→ B) that is used to eliminate side-conditions of this form which oc-
cur in many situations throughout proofs. The data-base of currently unproven
proof-obligations is also part of Zenv. Our theory data declaration looks like this:

structure ZEnv_Data = TheoryDataFun
(type T = ZEnv.Zenv
val empty = ZEnv.mt_zenv
fun copy T = T

5 fun extend T = T
val merge = ZEnv.merge)

The core definitions of the Zenv type (not shown here) are passed to the functor
TheoryDataFun, which extends the theory container by an additional data entry in
a type-safe way. This results in access primitives ZEnv_Data.get: theory -> Zenv

and ZEnv_Data.map: (Zenv -> Zenv) -> theory -> theory, which we keep pri-
vate to our module; only some high-level user operations will be exposed later.

Unlike an immediate implementation of such a state component by a global
ML reference variable, official theory data is subject to toplevel undo operations
performed interactively by the user (as part of the Proof General protocol).

4.2 Toplevel Commands

A common scheme of tool interaction is a facility allowing the import of the
results of a predecessor in the tool-chain. Instead of ad-hoc attempts to gener-
ate Isabelle theory documents indirectly as a text file, we strongly suggest to
base such a facility on the internal Isabelle term-structure and the type-checker.
This way, problems with ambiguous syntax trees can be avoided. Moreover, the
parser for the inner term language is designed for flexibility and power, not for ef-
ficiency! Such an import mechanism is load_holz: string -> theory -> theory

(not further discussed here), which will be bound by the subsequent invocation
to a new toplevel command of the same name:

OuterSyntax .add_parsers
[OuterSyntax .command "load_holz "

OuterKeyword .thy_script
(OuterParse .name >> (Toplevel.theory o load_holz))]

The construction re-uses a number of combinators from various libraries such as
the parsing combinator library where parsers are functions that map a prefix in
an input stream into a function representing the meaning of this prefix; here, this
meaning is a transition function on the theory. There are elementary parsers like

364 M. Wenzel and B. Wolff

OuterParse.name, or infix combinators like >>, which pipes the meaning of the
previously parsed prefix into another function. Summing up, this gives a parser
for load_holz "<holz-file-name>" which results in a transition from a theory
into another one, where the definitions contained in the output file from ZETA
were added. The hint of OuterKeyword.thy_script tells Proof General [6] about
the type of command defined here.

Similarly, the toplevel command zlemma (for the toplevel statement with syn-
tax zlemma <thm-name>: "<goal-text>") is defined; in contrast to the standard
command lemma for starting a proof, zlemma uses the HOL-Z parser for Z formulas
that can make the implicit binding structure in a schema expression explicit.

4.3 Methods and Attributes

Syntactically, methods are embedded into existing toplevel proof commands, such
as apply or by. We bind the specialized tactic intro_sch_all_tac for the introduc-
tion of the universal schema quantifier is passed to the method zintro_sch_all:1

Method.add_methods [...
("zintro_sch_all ",

nat_arg (tac2meth_unary intro_sch_all_tac),
"intro�schema�all�quantifier "),

5 ...]

Analogously, attributes can be introduced that provide forward reasoning el-
ements into a domain-specific Isar language extension. By a similar piece of
setup-code, the attribute syntax thm [zstrip] can be defined which applies a
rule in the sense of §3.1 of type context -> thm -> thm to some theorem. In our
example, this transformer applies a number of destructive operations on schema-
operators (similar to intro_sch_all_tac), which lead to a HOL-ified version of
a Z-etish definition. Such adoptions are a prerequisite for Isabelle’s automated
proof methods (simp, blast , auto etc.), such as apply (simp add: thm [zstrip]).

4.4 Operator Syntax for Z

The so-called inner syntax of Isabelle/Isar is used for denoting terms (occurring
in definitions, lemmas, proofs etc.) Inner syntax is usually wrapped inside quotes
"...". The grammar rules are derived from mixfix annotations in constant dec-
larations — probably the syntax mechanism that is best-known to end-users.

Z favors the conciseness of mathematical notation to an usual degree; a lot of
effort in the language design has been put in inventing mathematical symbols and
shortcuts for many operations. The Z standard offers several representations of
the “lexems” of the language. HOL-Z takes this into account and supports several
of these formats. For example, the operator providing the set of partial functions
is declared by an (internal) operator symbol having a standard denotation in the

1 For various reasons, this rule cannot be represented by one single thm. Rather, uni-
versal schema introduction in Z is a rule scheme that has to be instantiated on the
fly for a given goal; see [9] for details.

Building Formal Method Tools 365

email-format (allowing keyboard shortcuts at the GUI level in Proof General).
Moreover, there is a mapping of the internal operator symbol to the xsymbols-
format, which is inspired by the LATEX format of the Z standard.

consts
partial_func ::"[’a�set ,’b�set]�=>�(’a�<=>�’b)�set"

("_�-|->�_" [54 ,53] 53)

5 syntax (xsymbols)
partial_func ::"[’a�set ,’b�set]�=>�(’a�<=>�’b)�set"

("_�\<pfun >�_" [54 ,53] 53)

It is possible to configure Proof General to associate with the xsymbols-format
a specific font that allows this concise notation to be directly used on screen
during proof work. Furthermore, it is also possible to configure LATEX style files
in a way that LATEX macros for these symbols are used during the batch-mode
document generation; then \<pfun> is really shown as �→.

5 A Comparison to ProofPower

It is instructive to compare HOL-Z to ProofPower [3]. The latter has been built
on top of HOL88 in a collaborative project, which ran from 1990 through to the
end of 1992. It is free software with the exception of a component for specifying
and verifying Ada programs (excluded from our comparison).

ProofPower comprises a developer kit (even providing its own parser gener-
ator), an X11/Motif front-end, a HOL prover kernel as well as the key com-
ponent, a Z specification and proof development system including libraries and
customized proof procedures.

ProofPower and HOL-Z have been both used in substantial case studies and
possess a similar architecture; it is therefore possible to compare the systems
in order to highlight the potential of the generic technologies of Isabelle. The
comparison in Figure 4 deliberately excludes generic code from Isabelle/Isar or
Isabelle/HOL. Under “document generation” we summarize only the LATEX style

HOL-Z ProofPower
LATEX-Frontend with Type-Checker 10340 lines (Java) not available
document generation 1200 lines 2400 lines
user interface 100 14000 lines (C)
emb. + lib. + tactics 1521+7150+3543 lines 329965 lines
build process 165 lines 4700 lines

Fig. 4. Statistics on the two implementations

files; for HOL-Z, the generation mechanism itself is generic. Under “user inter-
face”, we summarize the code for the Motif frontend, which is roughly equivalent
to Proof General. The main difference comes in position “logical embedding +

366 M. Wenzel and B. Wolff

library + tactic support”: for ProofPower, we essentially count all document
files (.doc) of the system comprising the own HOL-system, HOL-libraries al-
ready geared to Z, Z libraries, and the overall proof-technical environment. On
the HOL-Z side, we just consider the embedding in HOL (not Isabelle/HOL it-
self), the Z library, and specialized tactics for proof support and methodological
support (Proof-Obligation Management for consistency and refinement, which is
lacking on the ProofPower side). In our view, the proof-scripts are notably more
concise; this is due to the Isar proof language as well as more automated proof
procedures available in Isabelle.

One could object that counting lines of literate specification .doc files pun-
ishes ProofPower for its excellent documentation. However, even if taking this
into account by a very conservative factor 3, the code size of ProofPower is still an
order of magnitude larger than HOL-Z. Another objection is that a monolithic
development strategy can build sometimes on better components (e.g. Proof
General/Emacs is not really a show-case in GUI design). Further, a generic de-
velopment strategy has also costs in terms of work not reflected in code sizes:
namely, from time to time, new versions of Isabelle are released requiring adop-
tions to modified interfaces; it takes some effort to share the work of others. Still,
we believe that the advantages outweigh these costs by far.

6 Conclusion

Presenting Isabelle/Isar as a framework for building formal method tools might
appear as a bit of a surprise at first sight: the Pure logical framework of Isabelle
[17] was originally conceived as a playground for experimenting with various
versions of constructive type theory; the Isar layer [20] was mainly motivated by
human readable proof texts. None of this is directly relevant to HOL-Z 3.0.

On the other hand, Isabelle has been conceived as a platform for a broad range
of applications from early on. Strictly speaking, this idea is already present in the
original LCF/HOL family, but Isabelle has also managed to reduce the depen-
dency of a specific logic. This “generic-everything” attitude has been emphasized
even further when revising the key system concepts for Isar.

Thus the Isabelle/Isar framework (as of Isabelle2005) already comprises a
solid basis for building advanced applications such as Isabelle/HOL, and HOL-Z
as presented here. Nevertheless, this only marks an intermediate stage in fur-
ther development, both of the framework and its applications. For example, in
post-Isabelle2005 versions the notions of theory and context are refined further
into a local-theory , which will support very general notions of derived theory
specifications, relative to local parameters and assumptions.

A more practical limit for the systematic re-use of existing system infrastruc-
ture is that of documentation and education. There is plenty of folklore wisdom
and oral tradition, which is not easily available in a systematized form. The
present paper — together with an ongoing effort to clean up the actual imple-
mentation and provide up-to-date manuals for implementors — is intended as
an initiative to communicate concepts of the framework at a higher level.

Building Formal Method Tools 367

Acknowledgment. Achim Brucker made valuable suggestions for the design
of the proof-obligation manager and provided many valuable comments.

References

[1] ZeTa system (August 1997), http://uebb.cs.tu-berlin.de/zeta/
[2] HOL-TestGen (January 2005), http://www.brucker.ch/projects/hol-testgen/
[3] ProofPower (January 2005), http://www.lemma-one.com/ProofPower/index/
[4] Isabelle/HOL-OCL (March 2006), http://www.brucker.ch/projects/hol-ocl/
[5] Isabelle/HOL-Z (January 2007), http://www.brucker.ch/projects/hol-z/
[6] Aspinall, D.: Proof General: A generic tool for proof development. In:

Schwartzbach, M.I., Graf, S. (eds.) ETAPS 2000 and TACAS 2000. LNCS,
vol. 1785, Springer, Heidelberg (2000)

[7] Barras, B., et al.: The Coq Proof Assistant Reference Manual, v. 8. INRIA (2006)
[8] Berghofer, S., Wenzel, M.: Inductive datatypes in HOL — lessons learned in

Formal-Logic Engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin,
C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, Springer, Heidelberg (1999)

[9] Brucker, A.D., Rittinger, F., Wolff, B.: HOL-Z 2.0: A proof environment for Z-
specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)

[10] Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zürich
(2006)

[11] Brucker, A.D., Wolff, B.: Using HOL-TestGen for test-sequence generation with
an application to firewall testing. In: Meyer, B., Gurevich, Y. (eds.) TAP 2007:
Tests And Proofs. LNCS, Springer, Heidelberg (2007)

[12] Gordon, M.J.C.: From LCF to HOL: a short history. In: Plotkin, G., Stirling, C.,
Tofte, M. (eds.) Proof, Language, and Interaction: Essays in Honour of Robin
Milner, MIT Press, Cambridge (2000)

[13] Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL: A theorem proving
environment for higher order logic. Cambridge University Press, Cambridge (1993)

[14] Gordon, M., Wadsworth, C.P., Milner, R.: Edinburgh LCF. LNCS, vol. 78.
Springer, Heidelberg (1979)

[15] Harrison, J.: Hol light: A tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, Springer, Heidelberg (1996)

[16] Kolyang, Santen, T., Wolff, B.: A structure preserving encoding of Z in Is-
abelle/HOL. In: von Wright, J., Harrison, J., Grundy, J. (eds.) TPHOLs 1996.
LNCS, vol. 1125, Springer, Heidelberg (1996)

[17] Paulson, L.C.: Isabelle: the next 700 theorem provers. In: Odifreddi, P. (ed.) Logic
and Computer Science, Academic Press, London (1990)

[18] Paulson, L.C.: Handbook of Logic in Computer Science. In: Designing a Theorem
Prover, vol. 2, pp. 415–475. Clarendon Press, Oxford (1992)

[19] Spivey, J.M.: The Z Notation: A Reference Manual, 2nd edn. Prentice Hall Inter-
national Series in Computer Science (1992)

[20] Wenzel, M.: Isar — a generic interpretative approach to readable formal proof
documents. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L.
(eds.) TPHOLs 1999. LNCS, vol. 1690, Springer, Heidelberg (1999)

[21] Wenzel, M.: The Isabelle/Isar Reference Manual, Part of Isabelle2005 (2005)
[22] Wenzel, M., Paulson, L.C.: Isabelle/Isar. In: Wiedijk, F. (ed.) The Seventeen

Provers of the World. LNCS (LNAI), vol. 3600, Springer, Heidelberg (2006)

http://uebb.cs.tu-berlin.de/zeta/
http://www.brucker.ch/projects/hol-testgen/
http://www.lemma-one.com/ProofPower/index/
http://www.brucker.ch/projects/hol-ocl/
http://www.brucker.ch/projects/hol-z/

Simple Types in Type Theory: Deep and Shallow
Encodings

François Garillot1 and Benjamin Werner2,�

1 École Normale Supéieure
45 rue d’Ulm, Paris, France

and INRIA-Futurs at
LIX, École Polytechnique, Palaiseau, France

francois.garillot@ens.fr
2 INRIA-Futurs at

LIX, École Polytechnique, Palaiseau, France
Benjamin.Werner@inria.fr

Abstract. We present a formal treatment of normalization by evalua-
tion in type theory. The involved semantics of simply-typed λ-calculus
is exactly the simply typed fragment of the type theory. This means we
have constructed and proved correct a decompilation function which re-
covers the syntax of a program, provided it belongs to the simply typed
fragment. The development runs and is checked in Coq. Possible appli-
cations include the formal treatment of languages with binders.

1 General Setting
1.1 Deep vs. Shallow

The denomination "normalization by evaluation" is now well-established and
designates a class of techniques dealing with functional programs. However, de-
pending upon the framework these techniques are used in, the aim can vary
greatly. In all cases, the idea is to translate functional programs (λ-terms) from
one level of language to another. This is precisely what we do here. In type
theory, a λ-term can exist under very different forms. Let us consider the term
λx.λy.x. Given any type X of the type theory, we can build the correspond-
ing program; in Coq syntax it will be fun (x:X)(y:X) => x. This is what is
generally called the shallow embedding.

We can however also go for the deep embedding. This involves defining a
data-type describing λ-terms. Again in Coq we can take:

Inductive term : Type :=
Var : id -> term | Lam : id -> term -> term
| App : term -> term -> term.

where id is a well-chosen datatype. The same term is then represented as the
object Lam x (Lam y (Var x)) of type term.
� This work was partly supported by the The Microsoft Research-INRIA Joint Centre.

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 368–382, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Simple Types in Type Theory: Deep and Shallow Encodings 369

Given a λ-term, each of the representations has its advantages and shortcom-
ings. Advantages of the deep embedding representation include:

– We "know" the code of the term, for instance we can print it, compute its
length, etc.

– Correspondingly, we can reason by induction over the structure of the λ-
term.

– We can define properties of λ-terms (typing, reduction. . .) by induction or
by recursion over the term’s structure.

All these things are, at first, impossible with the shallow encoding. On the other
hand, there are tasks where the latter has its advantages:

– With the shallow representation, we do not "know" the code, but we can run
it. Furthermore, the λ-terms are logically identified modulo β-conversion.

– With the deep encoding, one has to make the dreaded choice between de
Bruijn indexes and named variables; both coming with their own, well-
known, difficulties (explicit lifting functions with de Bruijn, treatment of
α-conversion with named variables). With the shallow encoding, this is ba-
sically subcontracted to the proof-system’s implementation.

It is therefore an interesting question to what extent one can switch between
the two representations and recover one from the other. It is this question we
try to address in this work.

Terminology. Since the shallow encoding corresponds to an executable, but
not readable, representation, we will speak of the compiled representation. On
the other hand, the deep encoding’s representation we will call the decompiled
or source level representation.

1.2 Normalization by Evaluation

The more difficult translation is going from the compiled to the source code.
On the compiled level, the inner code of functions cannot be accessed: given a
function, the only possible operation is to apply an argument to it, evaluate and
examine the result. We can think of fuctions as being represented as closures
in an abstract machine. Opening these closures and reconstructing the original
code is precisely what Normalization by Evaluation (NbE) is about.

The result of this decompilation process is always in normal form. This is,
of course, the reason for the terminology "normalization by evaluation" which
was coined by Ulrich Berger. To be precise, the result of the decompilation is
in strong normal form, which means that code under binders is also in normal
form. A consequence is that NbE is used in practice for partial evaluation of
functional programs.

The content of this work can thus roughly be summed up as being a formal
treatment of a particular kind of NbE in Coq. Dependent type theories, like Coq,
are a very interesting framework for using NbE for several reasons:

370 F. Garillot and B. Werner

– The decompilation function takes an argument whose type will vary. When
working in a conventional language like ML, one needs, for instance, to insert
an additional layer (like HOAS in [10]) in order to accommodate this. Using
dependent types, the decompilation is naturally typed.

– Functional programs are, by essence, objects of type theory (compiled form).
But in many cases, for instance when doing metatheory, they are also objects
of study inside the type theory. One will then want to reason about the syntax
of programs, thus using the decompiled form. NbE is precisely the way to
switch from the first encoding to the second.

– Finally, since type-theories are a framework where one can, at the same time,
do computations and proofs, we can not only write the NbE routines, but
also specify and certify their behavior.

1.3 The General Idea

We outline the framework by recalling the basic ideas in the case of a functional
programming language with side-effects. We therefore use Caml syntax in this
section.

We write programs performing NbE over simply typed λ-terms. The routines
use type information in an essential way. We thus first need a data-type for
representing simple types as well as one representing the terms:

type st = Iota | Arr of st*st ;;

type term = Var of string | Lam of string*term
| App of term * term ;;

It is well-known that an important point is being able to produce fresh variables.
In this first rough description, we "cheat" by relying on side-effects: we use a
gensym function returning a new string each time it is called.

We then can program the decomp decompilation function; as usual it is defined
simultaneously with a function "compiling" values. We here call this function
long since it builds a η-long form of variables. Both functions are known under
various names in the literature (reify, value. . .).

let rec decomp t = function
| Iota -> t
| Arr(u1,u2) -> let x = gensym() in

Lam(x,(decomp (t (long (Var(x)) u1)) u2))

and long t = function
| Iota -> t
| Arr(u1,u2) -> fun x->(long (App(t,(decomp x u1))) u2);;

The type of the argument t of decomp, as well as the type of the result of
long, depend on their second argument and the programs are therefore not ty-
pable in this form. However, if we locally switch off the type-checker, we can see,

Simple Types in Type Theory: Deep and Shallow Encodings 371

for instance, that the evaluation of (decomp (Arr Iota Iota) (fun x->x))
indeed returns something of the form Lam(s,Var(s)) where s corresponds to
the current state of gensym.

1.4 Syntax vs. Semantics Point of View

Looking at what is going on through the lenses of the Curry-Howard isomor-
phism, one obtains another interesting explanation: typed λ-terms standing for
proofs, the deep encoding corresponds to the syntactical notion of provability.
The compiled/shallow encoding, on the other hand, is semantical: it is a trans-
lation of the logic of simple types into the type theoretical framework. Having
understood this, it appears that NbE corresponds to a completeness result, since
it lifts results from the semantics back into the syntax. This remark is enlight-
ening even if it is less central in the present work than in the ones of Catarina
Coquand and Jean-Louis Krivine.

1.5 Related Work

We are not aware of too many actually implemented formal treatments of NbE.
The main one is indeed Catarina Coquand’s pioneering work [8] which we saw
first presented at the 1992 European Types meeting; a later version can today be
found in [9]. The motivation however is not exactly the same, and in consequence
we can list some technical differences:

– As mentioned above, Catarina Coquand’s point of view is more on the logical
side and the result is understood as a completeness result. The compiled level
is understood as a semantics. Thus, semantics are always defined with respect
to a context; which we will try to avoid. Also, she uses dependent types in a
much more intensive way than what we do.

– The main technical difference however is the type of the semantics. She
uses a Kripke-style typing of the compiled terms, which is useful for stating
and proving completeness. On the other hand, it makes the actual com-
piled/semantical code more complex, which is what we try to avoid.

The Kripke-style typing of the semantics can also be found, among others, in
the work by Altenkirch et al. [1], which extends NbE the sum types.

Even closer to us is the line of work initiated by Ulrich Berger and Helmut
Schwichtenberg [2,4,6,5]. However, and even if their constructions are precisely
described, the only actual implementation is not exactly NbE, but a formal-
ization of Tait’s strong normalization proof [3]. Ulrich Berger also showed that
Tait’s proof is actually what underlies NbE algorithms; but this analogy is not
explicit in the formalization. Technically, if we leave the issue of formalization
aside, the main difference with Berger’s NbE is due to the fact that again we use
a (slightly) simpler typing of the compiled terms. We have to sacrifice the effi-
ciency of the normalization algorithm for that, whereas efficiency was precisely
his main motivation.

A lot of very detailed work has, of course, been devoted to NbE by Olivier
Danvy. He does not set his work in type theory, but his ideas are obviously

372 F. Garillot and B. Werner

influential in this and the related works. Since his original motivation was par-
tial evaluation, the same technique is called type directed partial evaluation in
his work. Finally, as mentioned above, Jean-Louis Krivine’s work [14] on the
completeness theorem, although very different bears also some relations with
ours.

1.6 About the Formal Coq Development

In what follows, we indicate the Coq name of the definitions and lemmas, so one
can relate the article with the formal proof.1

2 The Syntax of Simply Typed λ-Calculus

The first data-type we need is a representation of simple types. In the present
case, we only use one atomic type we will call Iota in reference to Church. It
seems obvious however that the whole development could accommodate several
atomic types without too much effort. We thus have an inductive type with two
constructors; in Coq syntax:

Inductive ST : Set := Iota : ST | Arr : ST -> ST -> ST.

From now on, except for short Coq verbatim, we write⇒ for Arr and ι for Iota.
Thus ι ⇒ ι ⇒ ι stands for (Arr Iota (Arr Iota Iota)). When studying
simply-typed λ-calculus, it is often convenient to have the type of the variable
be part of its name (or identifier), because it precludes the use of context for
defining typing. We thus take:

Record id : Type := mkid {idx : nat ; idT : ST}.

In the present description we write xA for (mkid x A), except in Coq verbatim.
We can now define the syntax of the language:

Inductive term : Type :=
Var : id -> term | Lam : id -> term -> term
| App : term -> term -> term.

We stress that the natural number component of the identifiers should really be
understood as a "name" and not as anything even remotely related to de Bruijn
indexes. This is reflected in the type of the Lam constructor, and in the definition
of the list of free variables (representing the finite set of their identifiers), as the
recursive function verifying the following equations:

FV(Var x) ≡ {x}
FV(App t u) ≡ FV(t) ∪ FV(u)
FV(Lam x) ≡ FV(t) \ {x}

1 The formal development is available on the web at
http://www.lix.polytechnique.fr/Labo/Benjamin.Werner/

Simple Types in Type Theory: Deep and Shallow Encodings 373

We also define a function generating a fresh identifier, that is, given a type,
an identifier of this type which does not belong to a given finite set:

fresh : (set id)→ ST→ id

fresh l T ≡ jT where j = max{i, iT ∈ l}+ 1

3 Decompilation

We now have to make the most important choice in this development. Namely
the type of the objects on the compiled side. What differentiates our work with
previous ones is that we here take, from the start, the simplest possible transla-
tion described by the following equations :

tr(ι) ≡ term
tr(A⇒ B) ≡ tr(A) → tr(B)

This means that we want to define decompilation such that :

decomp : ∀T : ST, tr(T)→ term
long : term → ∀T : ST, tr(T)

Note that this means that decomp will return a term even when applied to a
"pathological" object (for instance a function f : term → term which discrimi-
nates between β-convertible terms). The "well-behaved" objects, for which the
decompilation result is meaningful, are characterized in section 6.

We are now back at the question of fresh variables: when decompiling a func-
tion f : tr(A) → tr(B), we have to "guess" what free variables are "hidden"
inside it. What are the possible options ?
– Berger deals with the problem by having the program to be decompiled

computing not only its own normal form, but also the variables that were
used in order to decompile it. This results in a very efficient normalization
function, but in the definition of tr, term has to be replaced by nat → term.
The main negative consequence is that terms which originally contain free
variables are more delicate to deal with.

– If we want to emulate the behavior of the imperative gensym used in the
introduction, we run into a similar problem. We would need to perform a
state-passing-style transformation over the program. Not only the decomp
program, but also the program f we want to decompile; which means again
changing the definition of tr.

We here explore another possibility, in which we sacrifice efficiency to salvage
the simplicity of tr: we compute the set of free variables inside f by first de-
compiling f after applying a "dummy" variable to it. We then can find a fresh
variable and decompile it again. Our definition thus reads:

decomp ι t ≡ t

decomp A⇒ B f ≡ let x = fresh (FV(decomp B (f (long Var(dum) A)))) A

in Lam(x, decomp B (f (long x A)))

where dum is a particular identifier chosen for this purpose.

374 F. Garillot and B. Werner

Of course, since it uses two recursive calls instead of one, the algorithm is
exponentially slower than the "reasonable" options above. The advantage is
that it is easy to build terms on the semantical side. For example decompil-
ing Lam x (V ar yι) will return the constant function fun a=>Var tι.

One technicality here is the issue of the freshness of the dummy itself. When
given a term f (long Var(dum) A), there is no obvious way to tell whether
Var(dum) itself is indeed free in (the term corresponding to) f . The idea here
is that the β-conversion relation is such that simply observing the structure of
a β-normal object obtained from the application of a "dummy" to a term will
allow us to infer the free variables of this term.

This is made precise in our development, in which the following lemma comes
up as a requirement:

Lemma 1 (fvc).

∀x t u, (App t (Var x) =βη u ∧ y /∈ FV(u)) ⇒ ∃v, (t =βη v ∧ y /∈ FV(v))

This lemma is essentially about untyped λ-calculus. Its proof is quite intricate
when going into the details of α-conversion. The formalization involves a number
of technical results about β-conversion in a named setting. We provide a formal
proof, admitting two well-known properties of the untyped β-reduction : the
postponability of α-conversion, and the Church-Rosser property.

4 Basic Syntactic Definitions

4.1 Typing

As we have seen, decompilation can be defined independently of typing, reduc-
tion and the usual basic notions about λ-terms. These definitions are however
obviously necessary for going on. We describe a practical definition of typing.
Typing is a binary relation between a term and a type. We can, of course use
the inductive predicate corresponding to the usual rules:

nT : T
t : T

Lam nU t : U ⇒ T

t : U ⇒ T u : U
App t u : T

It is then possible to show that it is decidable whether a term bears a type or
not. In practice, it appears convenient to proceed the other way around starting
with the inference function and then using it to define well-typedness.

infer(Var(xA)) ≡ Some(A)
infer(Lam(xA, t)) ≡ None if infer(t) = None
infer(Lam(xA, t)) ≡ Some(A⇒ B) if infer(t) = Some(B)

infer(App(t, u)) ≡ Some(B) if infer(t) = Some(A⇒ B)
and infer(u) = Some(A)

infer(App(t, u)) ≡ None in the other cases

It is then easy to define well-typedness :

Simple Types in Type Theory: Deep and Shallow Encodings 375

– A term t is well-typed iff infer(t) 	= None
– the term t is of type T iff infer(t) = Some(T)

A technical point which is useful for the actual feasibility of the development
is that since equality is (obviously) decidable over ST, the equalities above are
booleans (which can when necessary be coerced to propositions). Together with
Georges Gonthier’s SSR proof tactic package [13], this makes many proofs shorter
and easier. We come back to this in section 5.

Proving equivalence between the two formulations of typing is easy (10 lines).

4.2 Substitution

Because of the necessary renaming operations, the primitive substitution oper-
ation needs to be defined over several variables. A substitution is a list of pairs
(x, t) meaning that the variables of identifier x are to be substituted by the term
t. The recursive substitution function is defined by the following equations:

(App t u)[σ] ≡ App t[σ] u[σ]
(Var x)[σ] ≡ Var x if no (x, u) occurs in σ

(Var x)[σ] ≡ u if (x, u) is the first occurrence of x in σ

(Lam x t)[σ] ≡ Lam x′ t[(x,Var x′) :: σ]

where x′ = fresh
(
⋃

z∈FV(t)\{x} FV (Var z[σ])
)

Subsitution is primitively defined as handling several variables simultaneously.
This allows us to define substitution through structural recursion over the sub-
stituted term rather than over its size and considerably simplifies proofs.

Moreover, when applying a substitution, we systematically rename all bound
variables in a uniform manner, using fresh, a deterministic choice function defined
up to the set of variables it takes as an argument. This set is chosen such that
is exactly characterizes the free variables of the substituted term, i.e.:

Lemma 2 (eFVS_FV).
⋃

z∈FV(t)\{x} FV (Var z[σ]) = FV (t[σ])

Following the method described by A. Stoughton [17], this provides us with a
way to normalize terms w.r.t. alpha-conversion when applying substitution. We
indeed prove the following lemma:

Lemma 3 (alpha_norm). If t =α u, then ∀σ, t[σ] = u[σ]

We can then simply treat alpha-conversion as the equality on terms w.r.t. a
substitution in the rest of the formalization, a simplification that was piv-
otal in making the treatment of alpha-convertibility manageable in this named
setting.

376 F. Garillot and B. Werner

Since the identifiers carry their type, it is straightforward to define what it
means for a substitution to be well-typed. One then easily shows that such well-
typed substitutions preserve typing.

4.3 Conversion and Normal Forms

Since we do not deal with strong normalization here, we can avoid the pain to
define the oriented reduction relation. We just define conversion as an inductive
equivalence relation.

Definition 1 (conv, normal, atomic). Conversion, written =βη is defined as
the closure by reflexivity, symmetry, transitivity and congruence of the following
clauses:

(β) ∀t u x, (App (Lam x t) u) =βη t[x, u]
(η) ∀t x, x /∈ (FV t)→ t =βη Lam x (App t x)
(α) ∀x y t, y /∈ (FV t) → Lam x t =βη Lam y t[x, y]

The predicates NF (being normal) and AT (being atomic) are mutually induc-
tively defined by the clauses:

(AtV) ∀x, (AT Var x)
(AtApp) ∀t u, (AT t)→ (NF u)→ (AT (App t u))
(NFAt) ∀t, (AT t)→ (NF t)
(NFLam) ∀x t, (NF t) → (NF (Lam x t))

One can then define the sufficient conditions for the decompilation to return a
normal (resp. well-typed) term:

Definition 2 (sem_norm, sem_WT). Given T : ST, we define the predi-
cates SNF T (semantic normal form) and SWT (semantically well-typed) both
ranging over tr(T) by recursion over T :

SNF ι t ≡ NF t

SNF A⇒ B f ≡ ∀g : tr(A), (NF A g)→ (SNF B (f g))

SWT ι t ≡ WT t T

SWT A⇒ B f ≡ ∀g : tr(A), (SWT A g)→ (SWT B (f g))

Lemma 4 (decomp_norm). If SNF T f (resp. SWT T f), then we have also
NF (decomp T f) (resp. WT (decomp T f) T).

Proof. Separately, by induction over T . In each case, one has to prove simul-
taneously the dual condition:

∀t T,AT t→ SNF T (long T t)

∀t T,WT t T → SWT T (long T t).

Simple Types in Type Theory: Deep and Shallow Encodings 377

5 Compilation (Semantics)

We now deal with going from an object t such that WT t T holds to the corre-
sponding object of type tr(T).

An environment I is a function which to any identifier xX associates its
semantics (an object of type tr(X)); formally the type of I is:

Definition sem_env := forall (x : id) , tr x.(idT).

From there, given I we want to define the semantics of a term t such that
WT t T holds as an object of type tr(T) through the following, quite straight-
forward equations:

[Var x]I ≡ I(x)
[App t u]I ≡ [t]I([u]I)

[Lam xT t]I ≡ λα : tr(X).[t]I;α←<x,X>

Formally however, this definition is not as easy to handle as it seems. The
typing is delicate in the case of the application node because it requires (App t u)
to be well-typed. The idea is that if WT (App t u) T , we know there exists
U : ST such that WT u U and WT t (U ⇒ T). This in turn implies that
[t]I : tr(T)→ tr(U) and [u]I : tr(U) which allows the construction [t]I([u]I).

If we go into detail however, the hypotheses are : there exists T, U and U ′,
such that: [t]I : tr(U) → tr(T), [u]I : tr(U ′) and we have a proof that U = U ′.
One then has to use this last proof to transform[u]I into an object of type tr(U).
But programs constructed that way are very difficult to reason about: because
the inner types depend upon values (here the values U and U ′), equational
reasoning about these values can easily make the goal not well-typed anymore.
Also, a naive way to define the compilation would be to have it depend upon the
typing judgement. At least in the setting of Coq, this is not a good idea, again
for the same reason.

Treatment of Type Equality

Georges Gonthier suggested us a convenient way to treat type equality tests.
When U and U ′ turn out to be equal, the result of the equality test will be used
to map an object of some type A(U) to A(U ′). So we can build this coercion
into the equality test’s result. This is done by defining:

Inductive cast_result (a1 a2 : ST) : Type :=
| Cast (k : forall P, P a1 -> P a2)
| NoCast.

One then defines the function cast : ST -> ST -> cast_resultwhich returns
NoCast if its arguments are different and Cast applied to the identity if they are
equal:

378 F. Garillot and B. Werner

Fixpoint cast (a1 a2 : ST) {struct a2} : cast_result a1 a2 :=
match a1 as d1, a2 as d2 return cast_result d1 d2 with
| Iota, Iota => idcast
| Arr b1 c1, Arr b2 c2 =>
match cast b1 b2, cast c1 c2 with
| Cast kb, Cast kc =>
let ka P :=
let Pb d := P (d ==> c1) in let Pc d := P (b2 ==> d) in
fun x => kc Pc (kb Pb x)

in Cast _ _ ka
| _, _ => NoCast
end

| _, _ => NoCast
end.

On one hand one then shows that cast actually implements the equality test.
On the other hand however, one does not need to invoke this property in order
to define a function like compilation. Indeed, we want to make the compilation
function as robust as possible; instead of asking for the argument to verify WT,
the function is defined for any term but can return a default value when the
argument has no semantics. This means the function returns a result of the
following type:

Inductive comp_res : Type :=
| Comp : forall T:ST, (sem_env -> tr T) -> comp_res
| NoComp.

and the comp function is then best described by its actual code:

Fixpoint comp (t:term): comp_res :=
let F T := sem_env -> tr T in
match t with

| Var i => Comp i.(idT) (fun I => (I i))

| Lam i t =>
match comp t with

| NoComp => NoComp _
| Comp U f => Comp (Arr i.(idT) U)

(fun I x => (f (esc I i x)))
end

| App u v =>
match comp u , comp v with

| Comp (U1 ==> U2) su , Comp V sv =>
match cast V U1 with
| Cast f => Comp U2 (fun I => (su I (f tr (sv I))))
| NoCast => NoComp _

Simple Types in Type Theory: Deep and Shallow Encodings 379

end
| _,_ => NoComp _

end
end.

The two main remarks are:

– One easily proves that comp correctly re-implements type-checking. That is
(comp t) is of the form (Cast T v) if and only if (infer t) reduces to (Some T).

– The big advantage of using cast appears, as expected, in the clause for App
t u: we use the cast f in order to construct the result, without having to
know that cast actually implements equality. This may look like a technical
detail but is crucial for keeping the proofs reasonably small and tractable.

One can prove a first result about compilation, namely that its result verifies
the SNF property.

Lemma 5 (comp_norm). Let I be such that for all xA, we have SNF A (I xA).
If (comp t) is of the form (Comp T st) (which is always the case if (WT t T)
holds), then we have (SNF T (st I)).

Definition 3 (id_env). The standard interpretation I0 is defined by

I0(xT) ≡ long T (Var xT)

for all xT .

The lemmas 4 and 5 then ensure:

Theorem 1 (norm_norm). If (comp t) is of the form (Comp T st), then
(NF (decomp (st I0))). This is always the case when WT t T holds.

6 The Central Logical Relation

It then remains to show that compilation and decompilation preserve conversion.
That is if WT t T and if n and I are well-chosen, then

t =βη decomp(T, n, [t]I).

Exactly like in all the related work, one here has to introduce a logical relation
between the syntactic and semantic levels. The definition could not be simpler:

Definition 4 (sem_conv). If t : term, T : ST and f : tr(T) then t ,T f is a
proposition defined recursively by:

t ,ι st ≡ t =βη st

t ,A⇒B st ≡ ∀u su, u ,A su→ (App t u) ,B (st su)

The logical relation allows us to define an extentional equality on the semantical
level:

380 F. Garillot and B. Werner

Definition 5 (ext_eq). If T : ST, then =T is a binary relation over tr(T)
defined by:

t =ι u ≡ t =βη u

f =A⇒B g ≡ ∀(t : term)(f ′ g′ : tr(A)), t ,A f ′ → f ′ =A g′ → (f f ′) =B (g g′)

Notice, in the second clause, that we require one of the arguments to be related
to some term t. This can be understood as a way to prevent considering "patho-
logical" functions, which, for instance, could depend upon the size of terms, the
name of bound variables, etc. . . Although the formulation is not symmetrical, the
definition actually is; since one then shows that the logical relation is extentional.

Lemma 6 (sem_comp_ext1, sem_comp_ext2). Suppose t ,T st. Then:

1. if t =βη t′, then t′ ,T st,
2. if st′ =T st, then t ,T st′.

7 Putting It All Together

We can then finish the normalization proof by proving the main lemma of the
development.

Lemma 7 (sem_comp). Let t be such that (comp t) is of the form (Comp T st),
which is always the case when WT t T holds. Let σ a substitution and I an
interpretation be such that for any xA which is free in t we have σ(x) ,A I(xA).
Then we have:

t[σ] ,T [t]I .

Proof. By induction over the structure of t. It is the longest normalization-
related proof of the development. It uses some technical results about free vari-
ables and α-conversion, that we have not detailed in this account.

The next lemma 8 states that the "well-behaved" functions, which can be
decompiled, are exactly the ones related to some term by ,. Notice that this
means that the lemma 7 can be understood as the real completeness result of
the development: it states that the co-domain of the semantics are precisely the
"well-behaved" functions.

Lemma 8 (sem_decomp). If t ,T st, then t =βη (decomp T (st I0)).

Proof. The proof of this lemma proceeds over a simple induction on the types,
initially conducted simultaneously with the equivalent property on long. It is
the only result relying on lemma 1, but presents no other difficulty.

It is then easy to conclude the weak normalization result:

Theorem 2. If WT t T , then (comp t) is of the form (Comp T st) and:

1. t =βη (decomp T (st I0))
2. NF (decomp T (st I0)).

Proof. It is a corollary of theorem 1, lemma 8 and the fact that well-typed
terms are compilable. For lemma 8, one simply uses the fact that t =α t[Id].

Simple Types in Type Theory: Deep and Shallow Encodings 381

8 Conclusion and Future Work

We have shown that formal treatment of NbE in provers based on type theory is
tractable even when using a formalization style which is very different from the
one followed by Catarina Coquand. We have also shown that NbE is possible
when using the simple types for the compiled terms, even if, in our case, this
comes at the expense of efficiency. Whether one can get rid of this overhead
without changing the typing seems however doubtful to us.

A first possible direction of work is to apply similar techniques, and possibly
reuse part of this development in order to formalize and implement the related
versions of NbE of Berger and his collaborators. This seems at the same time
feasible and useful, especially in a framework like Coq, which implements "real"
compilation and would thus allow really fast normalization.

A second more prospective but, we hope, promising direction of research is us-
ing the present development for making reasoning about structures with binders
easier. Indeed, a language with binders can be described by a context of sim-
ply typed λ-calculus. For instance, untyped λ-terms can be described as simply
typed λ-terms whose free variables are either of the atomic type ι, or equal to
one of the two variables:

APP : ι→ ι→ ι; LAM : (ι→ ι) → ι.

This is the idea of higher-order abstract syntax (HOAS [15]) whose possible
use inside type theory has already been investigated [11,16]. We hope that by
allowing to characterize precisely what are the terms of the type theory which
belong to the simply typed fragment and accessing their syntax, our work can be
a first step for implementing techniques inspired by HOAS inside existing type
theories; possibly in a way similar to [7].

Acknowledgments

We thank Thorsten Altenkirch, Thierry Coquand, Olivier Danvy, Hugo Herbelin,
Marino Miculan and Helmut Schwichtenberg for helpful discussions on the topic.
Anonymous referees made many useful comments. Special thanks go to Ulrich
Berger who pointed out a crucial mistake and Georges Gonthier who provided
the useful SSR proof tactic package and suggested the definition of typing as an
actual function.

References

1. Altenkirch, T., Dybjer, P., Hofmann, M., Scott, P.J.: Normalization by evaluation
for typed lambda calculus with coproducts. In: LICS, pp. 303–310 (2001)

2. Berger, U.: Program extraction from normalization proofs. In: Bezem, M., Groote,
J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 91–106. Springer, Heidelberg (1993)

3. Berger, U., Berghofer, S., Letouzey, P., Schwichtenberg, H.: Program extraction
from normalization proofs. Studia Logica 82(1), 25–49 (2006)

382 F. Garillot and B. Werner

4. Berger, U., Eberl, M., Schwichtenberg, H.: Normalisation by evaluation. In: Möller,
B., Tucker, J.V. (eds.) Prospects for Hardware Foundations. LNCS, vol. 1546, pp.
117–137. Springer, Heidelberg (1998)

5. Berger, U., Eberl, M., Schwichtenberg, H.: Term rewriting for normalization by
evaluation. Inf. Comput. 183(1), 19–42 (2003)

6. Berger, U., Schwichtenberg, H.: An inverse of the evaluation functional for typed
lambda-calculus. In: LICS, pp. 203–211. IEEE Computer Society Press, Los Alami-
tos (1991)

7. Capretta, V., Felty, A.: Combining de bruijn indices and higher-order abstract
syntax in coq. In: Altenkirch, T., McBride, C. (eds.) Proceedings of TYPES 2006.
LNCS, Springer, Heidelberg (2007)

8. Coquand, C.: From semantics to rules: A machine assisted analysis. In: Meinke, K.,
Börger, E., Gurevich, Y. (eds.) CSL 1993. LNCS, vol. 832, pp. 91–105. Springer,
Heidelberg (1994)

9. Coquand, C.: A formalised proof of the soundness and completeness of a sim-
ply typed lambda-calculus with explicit substitutions. Higher-Order and Symbolic
Computation 15(1), 57–90 (2002)

10. Danvy, O., Rhiger, M., Rose, K.H.: Normalization by evaluation with typed ab-
stract syntax. J. Funct. Program. 11(6), 673–680 (2001)

11. Despeyroux, J., Pfenning, F., Schürmann, C.: Primitive recursion for higher-
order abstract syntax. In: de Groote, P., Hindley, J.R. (eds.) TLCA 1997. LNCS,
vol. 1210, pp. 147–163. Springer, Heidelberg (1997)

12. Gonthier, G.: A computer-checked proof of the four colour theorem (2005), available
on http://research.microsoft.com/~gonthier/

13. Gonthier, G.: Notations of the four colour theorem proof (2005), available on
http://research.microsoft.com/~gonthier/

14. Krivine, J.-L.: Une preuve formelle et intuitionniste du théorème de complétude
de la logique classique. Bulletin of Symbolic Logic 2(4), 405–421 (1996)

15. Pfenning, F., Elliott, C.: Higher-order abstract syntax. In: PLDI, pp. 199–208
(1988)

16. Schürmann, C., Despeyroux, J., Pfenning, F.: Primitive recursion for higher-order
abstract syntax. Theor. Comput. Sci. 266(1-2), 1–57 (2001)

17. Stoughton, A.: Substitution revisited. Theor. Comput. Sci. 59, 317–325 (1988)

http://research.microsoft.com/~gonthier/
http://research.microsoft.com/~gonthier/

Mizar’s Soft Type System

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. In Mizar, unlike in most other proof assistants, the types are
not part of the foundations of the system. Mizar is based on untyped set
theory, which means that in Mizar expressions are typed but the values
of those expressions are not.

In this paper we present the Mizar type system as a collection of type
inference rules. We will interpret Mizar types as soft types, by translating
Mizar’s type judgments into sequents of untyped first order predicate
logic. We will then prove that the Mizar type system is correct with
respect to this translation in the sense that each derivable type judgment
translates to a provable sequent.

1 Introduction

1.1 Problem

The activity of checking mathematical proofs for correctness using a computer
is called ‘formalization of mathematics’. Systems for doing this are called proof
assistants [12]. There are three main classes of proof assistants: the ones based on
Church’s higher order logic (e.g., HOL, Isabelle/HOL, ProofPower, and maybe
also systems like PVS), the ones based on Martin-Löf’s type theory (e.g., Coq,
NuPRL, Agda, Epigram), and the proof assistants based on Cantor’s set theory
(e.g., Mizar, Metamath, Isabelle/ZF, the B method). These three ‘cultures’ are
quite different, and people from different cultures sometimes find it hard to get
a clear view on what people from the other cultures are doing. The primary
aim of this paper is to make the set theoretical system Mizar (and in particular
its type system) more understandable to people from the type theoretical and
higher order logic communities.

The Mizar proof assistant [7] has been in development in Bia�lystok, Poland,
from the seventies until today, by a team led by Andrzej Trybulec. The current
version of the system is called PC Mizar and is at version 7. It was originally
released in 1989, and is still being actively developed. The library of formal-
ized mathematics that accompanies the Mizar system is called MML (for Mizar
Mathematical Library). It is the largest library of formalized mathematics that
is currently in existence. At the time of writing it consists of 1.9 million lines
of Mizar text, and is the collaborative work of almost two hundred people (the
so-called ‘Mizar authors.’) The large size of the MML library is partly a reflec-
tion of the fact that Mizar only gives one moderate automation. Also the Mizar

K. Schneider and J. Brandt (Eds.): TPHOLs 2007, LNCS 4732, pp. 383–399, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

384 F. Wiedijk

library contains quite a bit of rather obscure mathematics. Still the Mizar library
is undoubtedly one of the most interesting libraries of formalized mathematics
in the world. The MML contains a formalization of a graduate-level textbook on
the theory of continuous lattices, which is being translated quite faithfully into
the Mizar language. (This project, which is being led by Grzegorz Bancerek, is
currently two thirds finished.)

The Mizar system is based on first order predicate logic with on top of that a
slight extension of Zermelo-Fraenkel set theory (ZF). To be precise: the system
only implements first order predicate logic (together with ‘schematic’ axioms and
theorems1 – to be able to deal with the ‘replacement’ axiom scheme of ZF – and
with a Hilbert choice operator that is hard-wired into the way the system deals
with underspecified functions), but the MML library is based on set theory (all
of the 1.9 million of lines are fully checked for correctness against only a handful
of set theoretical axioms.) It is irrelevant for the rest of the paper exactly which
set theory the Mizar library is based on, but to be specific: Mizar’s set theory is
called Tarski-Grothendieck set theory. It is ZF set theory with one extra axiom
added (where ‘∼’ means that the two sets have the same cardinality):

∀N∃M
(

N ∈M ∧
∀X∀Y (X ∈M ∧ Y ⊆ X⇒Y ∈M) ∧
∀X(X ∈M⇒∃Z(Z ∈M ∧ ∀Y (Y ⊆ X⇒Y ∈ Z))) ∧
∀X(X ⊆M⇒X ∼M ∨X ∈M)

)

This axiom states that there are arbitrarily large universes, or, in other words,
that there are arbitrarily large strongly inaccessible cardinals. From it one can
derive the Axiom of Choice (even without that axiom being hard wired into
the logic.) I do not know why Mizar has selected exactly this set theory for its
foundation. Maybe one of the reasons was that the universes are useful when
one wants to do category theory.

Set theory in the style of Cantor, like ZF set theory or von Neumann-Bernays-
Gödel set theory (NBG), customarily is an untyped theory. Most often there is
just one ‘sort’, the sort of sets. At most there will be two sorts, with the second
sort being the sort of ‘proper classes’. However, the Mizar system is a typed
system: it implements a type system on top of its first order predicate logic.
And not only does it have a type system, its type system is very powerful, and
has many interesting features. In particular: it does support dependent types,
which are very useful if one wants to formalize abstract mathematics.

This raises the question of what the type system of Mizar ‘means’: what the
relation is between the typed version of set theory that one gets in Mizar and
the untyped set theories like ZF that one finds in logic textbooks. This is the
question that this paper will address.

1 Mizar’s notation for set comprehension – in the Mizar community called the
‘Fraenkel-operator’ – is a alternative version of this.

Mizar’s Soft Type System 385

1.2 Approach

There are at least two ways in which to give an interpretation to Mizar’s types:

1. Either one interprets the types of Mizar as classes of sets. In that case the
set theory of Mizar will be taken to be a set theory like NBG set theory,
where proper classes are first class objects.

In this approach the interpretation of the Mizar type ‘Ring’ will be the
class of rings, while the (dependent) type ‘LeftMod of’ will be interpreted
by the ‘class function’ that maps each element of this class of rings to the
class of the left modules over it. This interpretation of ‘LeftMod of’ therefore
maps each element of a proper class to a different proper class.

2. Alternatively one can interpret the types of Mizar as predicates2 that the
system will keep track of automatically. This approach sometimes is called
soft typing3, which is the terminology that we will adopt for it in this paper.
In this approach each reference to the type ‘Ring’ will be interpreted as ac-
tually being about a unary predicate ‘is_Ring’, while the type ‘LeftMod of’
will be interpreted as actually talking about a binary predicate ‘is_LeftMod_
of’.

In this paper we will focus on the second approach, and will not pursue the first
possibility. This second approach has the attractive property that it does not
need set theory. It allows one to give a meaning to the types of typed first order
predicate logic (and even with types that are as powerful as the ones that one
find in Mizar), even in the case that the theory in that logic is not set theory.

Mizar uses types in various ways. First, they annotate all variables that occur
in a Mizar text: both for bound variables in formulas and for variables in a proof4

there is a type. For instance, one writes

for n being Nat holds ...

when one universally quantifies over a variable n that has the type Nat (the type
of natural numbers), and one might write

let n be Nat;

if one is reasoning in a proof about a variable of type Nat.
But types also can be used to create a formula, that states that an expression

has a certain type. For instance one can write that

i is Nat;

2 More generally: a dependent type with n parameters will be interpreted as an n+1-
ary predicate.

3 This term originates in the programming languages community [2], where it is used
with a somewhat different meaning. In that context it means that you statically type
as much as possible, and insert run-time checks for what cannot be statically typed.

4 Although in logic these are considered variables, in the Mizar community they are
often looked at as constants that are local to the proof. In the Isabelle community
these are called fixed variables.

386 F. Wiedijk

Here the keyword ‘is’ is put between a term and a type. This specific example
means that the value of the expression ‘i’ (which for instance could be a variable
of type ‘Integer’) satisfies the defining property of the type ‘Nat’, i.e., this states
that i is non-negative.

This second way of using types does not have a direct counterpart in most
of the proof assistants from the higher order logic and type theory traditions.
There a type judgment is on a different level from the statements that one reasons
about: in those systems type judgments are outside the logic, while statements
are in the logic. But ‘soft types’ cross this boundary.

Apart from using types for reasoning, Mizar also uses types to disambiguate
expressions that involve overloaded notation. Although this feature is very useful
(for instance in Mizar a notation like X + Y can mean many different things,
depending on what the types of X and Y are) we will not go into this use of
Mizar types in this paper.

To reiterate: the interpretation that we give to Mizar types will be to associate
a ‘hidden’ predicate which each type, and to consider references to types to really
be about these hidden predicates. We will consider the Mizar type system as
being an engine that automatically – behind the scenes – generates statements
involving those predicates. For instance, if we call the predicate that corresponds
to the ‘Nat’ type ‘is_Nat’, then the three example lines of Mizar on the previous
page will be interpreted as being an abbreviation of:

for n being set holds (is_Nat(n) implies ...)

let n be set; assume is_Nat(n);

is_Nat(i)

Now we have statements in single sorted predicate logic where all variables are
in the sort ‘set’.

1.3 Related Work

There already is a paper about the Mizar type system by Grzegorz Bancerek [1].
However, the presentation of the type system in that papers is quite different
from the one that is used here. Also, the interpretation of the types in an ‘algebra
of types’ is closer to the first approach that we mentioned on page 385 than to
the second approach that we are pursuing here. Andrzej Trybulec also has such
an approach, using the notion of what he calls dependent type algebras.

The the work of Ingo Dahn [3] and the work of Josef Urban [9,8,10] on trans-
lating Mizar into a form that is digestible by first order theorem provers, is based
on the same interpretation of Mizar types as soft types that we present in Section
5. In the work of Josef Urban [10] also occurs the view of the Mizar type checker
in ‘logic programming’ style, which is how we interpreted our typing rules in
Section 4.

There are other theorem provers that use soft types as a way of pushing the
type system of first order predicate logic beyond the customary ‘many-sorted’
variant of first order predicate logic, where one only has a finite number of types

Mizar’s Soft Type System 387

without any further structure. For instance it is used in the SPASS first order
theorem prover, see [11].

Joe Hurd showed how to have a layer of soft typing on top of a higher order
system [5]. PVS also can be considered to be such a system. However, in PVS
the soft typing is not actually a separate layer.

1.4 Contribution

The contribution of this paper is threefold:

– It gives a presentation of the Mizar type system as a collection of type
inference rules, which is the style that is standard in the type theoretical
research community. This presentation of the Mizar type system is new.

– It gives an interpretation of Mizar’s types by systematically translating type
judgments to sequents of untyped first order predicate logic. This interpre-
tation was already implicitly present in the work of Ingo Dahn and Josef
Urban, but the way it is made explicit in this paper, and the focus that we
have on interpreting it as the semantics of the Mizar type system, is new.

– It shows that this interpretation is correct, in the sense that for any type
judgment that is generated by the Mizar type system, the corresponding
translation is provable.

1.5 Outline

The structure of this paper is as follows. In Section 2 we present the notation
that we will use for Mizar’s type judgments. In Section 3 we give a non-trivial
example of such a judgment, which we both present in our notation and in the
usual Mizar syntax. In Section 4 we present the type inference rules of the Mizar
type system. In Section 5 we prove that these rules are correct with respect to
a translation into untyped logic. Finally in Section 6 we conclude, and mention
some questions for further research.

2 Judgments

In Mizar types have various uses. In particular, they also play an important
rôle in the logical language of the system, because type judgments are one of
the kinds of atomic formula. However, from now on we will focus on the type
system on its own, separately from the logic. That is, we will now just focus
on the mechanism that ascribes types to terms.5 In the Mizar system, this is
5 This might seem to be a strong restriction. In particular the reader might wonder

how the type system fits in with the underlying set theory. (In fact, the Mizar type
system is completely independent of set theory. The Mizar system and its type theory
can be used with any first order theory.)

If one translates a Mizar formalization into standard ‘unsorted’ first order
predicate logic (as is done in [9]), then basically three kinds of statements are
involved. First, there are the statements that actually occur in the Mizar text, which

388 F. Wiedijk

implemented in the part of the system that is called ANALYZER. (The logic is
implemented in the part called CHECKER.6)

We will now describe the syntax that we will use for Mizar type judgments.
The notation that we will use is specific to this paper. It will make the typing
rules of Section 4 much more compact than if we had used the Mizar input
syntax. For a non-trivial example of a typing sequent, both in our syntax as well
as in the Mizar input syntax, see Section 3.

In our judgments we will have four kinds of variables. Actually, three of the
four kinds are not considered to be variables in the Mizar system, but because
we bind these symbols in the context part of the judgments7 we will consider
them to be variables of the type judgment. These kinds of variables are:

x term variable
f ‘functor’ = function symbol
α ‘attributes’ = type modifier
M ‘mode’ = type symbol

(The words ‘functor’, ‘attributes8’, ‘mode’ and (below) ‘radix type’ are Mizar-
specific terminology.9)

Apart from these variables, we will use one special symbol, the asterisk, for
the root type of Mizar, of which all other types are subtypes:

are ‘translated’ by relativizing all quantifiers to the predicates that correspond to
the types. Second, there are the statement that give the definition of the various
predicates, functors, modes and attributes. In the Mizar file these are implicitly
given by the keywords ‘means’ or equals’. Third, there are the statements that
originate in the type system: the statements occurring in the translations of the
type judgments as described in Section 5. Apart from the statements of the second
kind, all these statements have a proof in the Mizar file.

This means that although it might seem in Section 4 that one is allowed to arbi-
trarily build a Mizar context, if one wants to have that context in an actual Mizar
text, then one will need to prove the translation in the style of Section 5 of that
context.

6 Note that neither ANALYZER nor CHECKER has a small ‘kernel’, as is common
in LCF-style systems. To trust the Mizar system, one will need to trust the full code
base.

7 Actually, many of these variables will occur multiple times in the context, because
of the presence of redefinitions and clusters. The first occurrence of the variable –
corresponding to its original introduction in the Mizar text – is the binding one.

8 Most systems do not have anything like the attributes of Mizar, which are type
modifiers that behave a bit like intersection types. See Section 3 below for an example
that shows how attributes are used. In that example the type ‘int’ of the integers has
attributes ‘pos’ and ‘neg’ that allow one to talk about the positive and the negative
integers. For example the type ‘pos int’ contains the positive integers. The elements
of that type are the objects that both satisfy the defining statement of the ‘int’ type
and that of the ‘pos’ attribute.

9 Words like ‘functor’ and ‘radix’ are used with quite different meanings outside of
the context of Mizar, so our use of these words might be confusing. Maybe ‘function
symbol’ or ‘operator’ for ‘functor’ and ‘base type’ for ‘radix type’ would be more
appropriate. However, we decided not to depart from standard Mizar terminology.

Mizar’s Soft Type System 389

∗ the root type

In Mizar input syntax this type is called ‘set’ because it is the type of all sets. It
also used to be called ‘Any’. (In our interpretation of types as unary predicates
it corresponds to the predicate that is constantly true.10)

Mizar also has predicate symbols, which are not treated in this paper. The
reason for leaving them out is that although the arguments to the predicates are
typed, the predicates will not play any part in generating the types.

Next, here is the grammar that gives the various notions that occur in our
type judgments:

t ::= x | f("t)

R ::= ∗ |M("t)
a ::= α | ᾱ
T ::= "aR

D ::= x : T
J ::= · | t : T | T ≤ T | ∃T | α/T

Δ ::= "D

Γ ::=
−−−−→
[Δ](J)

In this grammar t are the terms, R are the radix types, a are the adjectives (these
are either an attribute α or the negation of an attribute ᾱ), T are the types, D
are the declarations, J are the judgment elements, and Δ and Γ are the two
parts of the context of a type judgment. The full type judgments that we will
derive with our typing rules will have the shape:

Γ ;Δ � J

In this judgement Γ corresponds to the type information of a series of Mizar
definitions and registrations. The ‘local context’ Δ corresponds to the types of
the variables that have been introduced inside a Mizar definition or proof. We
call Γ the global context and Δ the local context of the judgment.

In the grammar from this section we use vector notation. For instance, an
expression like ["x : "T](f("x) : T ′) should be read as [x1 : T1, . . . , xn : Tn]
(f(x1, . . . , xn) : T ′). Furthermore all expressions should only be considered ‘mod-
ulo α-equivalence’, so [x : T](f(x) : T ′) and [y : T](f(y) : T ′) are really consid-
ered to be the same. Finally the ‘clusters of adjectives’ "a in front of a type are
considered only as sets. In other words, the expression α1ᾱ2 is considered to be
equivalent to ᾱ2α1, α1α1ᾱ2, α1ᾱ2ᾱ2, and so on.

The instances of the notion of judgment elements J have the following inter-
pretations:
10 In the typing rules of Section 4 the root type plays an essential rôle. One can only

introduce new radix types to the context if one already has a type (which will be its
supertype). So without the root type the rules of Section 4 would not work, as there
would not be a starting point for introducing types.

390 F. Wiedijk

t : T t has type T
T1 ≤ T2 T1 is a subtype of T2

∃T T is a non-empty type
α/T α is an attribute of the type T

In Mizar input language t : T is written as ‘t be T ’ or ‘t being T ’, and T1 ≤ T2

is written as ‘T1 -> T2’.
The centered dot ‘ · ’ is used if one just wants to state that a context is well-

formed. (To indicate that a type T is well-formed one either uses T ≤ T or ∃T ,
depending on whether one already knows that the type is non-empty or not.)

3 Example

We now present an example that demonstrates the various features of the Mizar
type system. The following type judgment11 is derivable using the rules of Sec-
tion 4:

int ≤ ∗, ∃ int,
pos/int,
neg/int,

pos int ≤ neg int,
∃ pos int,

∃ pos neg int,
z : int,

z : neg pos int,
[n : int](S(n) : int),
[n : int](P(n) : int),

[n : neg int](S(n) : pos int),
[n : pos int](P(n) : neg int),

[n : neg int](list(n) ≤ ∗), [n : neg int](∃ list(n)),
nil : list(z),

[n : neg int, x : ∗, l : list(n)](cons(n, x, l) : list(S(n))),
[n : pos int, l : list(n)](car(n, l) : ∗),

[n : pos int, l : list(n)](cdr(n, l) : list(P(n)))
;

x : ∗
�

cdr(S(z), cons(z, x, nil)) : list(P(S(z)))

This example involves types int and list for integers and lists, the latter being a
dependent type with the length of the list as the argument. It has attributes pos
and neg on the type of integers for positive and negative integers. Furthermore it
has functions S and P on the integers for successor and predecessor and functions
nil, cons, car and cdr for the lists.12 The local context of the judgment is just the
11 We put the first two judgment elements ‘int ≤ ∗’ and ‘∃ int’ on a single line, as in

the Mizar text it corresponds to a single definition.
12 These are not the names that are used in the MML for these notions. There int is

called Integer, list is called FinSequence (although the version that depends on the

Mizar’s Soft Type System 391

variable declaration x : ∗, and the statement of the judgment is that the term
‘cdr(S(z), cons(z, x, nil))’ has among its collection of types the type ‘list(P(S(z)))’.

The judgment that we just presented has the shape

Γ ;Δ � J

of which the part Γ corresponds to a series of definitions and registrations. Here
is what this Γ looks like in Mizar syntax:

definition
mode int -> set means ...; existence ...
end;

definition let n be int;
attr n is pos means ...
attr n is neg means ...
end;

registration
cluster pos -> non neg int; coherence ...
end;

registration
cluster pos int; existence ...
cluster non pos non neg int; existence ...
end;

definition
func z -> int means ...
end;

registration
cluster z -> non neg non pos; coherence ...
end;

definition let n be int;
func S n -> int means ...
func P n -> int means ...
end;

registration let n be non neg int;
cluster S n -> pos; coherence ...
end;

definition let n be pos int;

length of the list like in the example is called Tuple, and that type also depends on
the set from which the elements are taken). The attributes pos and neg are called
positive and negative, and nil is called {}. The functions S and P do not exist in
the MML, S(n) is just written as n + 1 and P(n) is just n − 1. The list functions
do not exist either: cons(x, l) is written <*x*>^l, car(l) is written l.1, and cdr(l) is
written l/^1.

The name neg in the MML is not an attribute symbol but a functor symbol, for
intuitionistic negation.

392 F. Wiedijk

redefine func P n -> non neg int; coherence ...
end;

definition let n be non neg int;
mode list of n -> set means ...; existence ...
end;

definition
func nil -> list of z means ...
end;

definition let n be non neg int; let x be set; let l be list of n;
func cons(x,l) -> list of S n means ...
end;

definition let n be pos int; let l be list of n;
func car l -> set means ...
end;

definition let n be pos int; let l be list of n;
func cdr l -> list of P n means ...
end;

For a version of these definitions that has been completed with statements
and proofs in the place of the dots see http://www.cs.ru.nl/~freek/mizar/
example.miz and <http://www.cs.ru.nl/~freek/mizar/example.voc>.13

Note that most of the items in this list of definitions and registrations have
proof obligations. This means that they do not, like in the judgments that we
show in this paper, behave like assumptions, but that they really are statements
that are proved from the existing theory. For example, the part of the context

[n : pos int](P(n) : neg int),

that is the ‘redefinition’ of the predecessor function to give its value the more
specific type ‘neg int’ when it is known that the argument has the type ‘pos int’
is in the Mizar formalization written as

definition
let n be pos int;
redefine func P n -> non neg int;
coherence
proof
. . .
hence P n is non neg int by . . .
end;
end;

where the ‘P n’ in the hence line refers to the earlier definition of the P function.
This means that the dots will have to be a proof that amounts to showing that

13 Note that from the point of view of the MML, this is a very silly example as it just
defines a lot of stuff that is present already, only using different names.

http://www.cs.ru.nl/char `~freek/mizar/example.miz
http://www.cs.ru.nl/char `~freek/mizar/example.miz
http://www.cs.ru.nl/
freek/mizar/example.voc

Mizar’s Soft Type System 393

from n > 0 it follows that n− 1 ≥ 0. Under the translation from Section 5 this
part of the typing context turns into

∀n
(

pos(n) ∧ int(n) ⇒ ¬neg(P(n)) ∧ int(P(n))
)

and in a real Mizar formalization that statement will have to be proved.
Similarly the other definitions and registrations have appropriate proof oblig-

ations (the only judgment elements in the context of the example that do not
have proof obligations are the attribute definitions.)

4 Rules

We will now present the Mizar type system as a collection of typing rules. These
rules present a slightly simplified version of the Mizar type system:

– There are no structure types.
Structure types are the ‘record types’ of Mizar. (For an interesting discussion
of how structure types can be understood in terms of the underlying set
theoretical foundations of the Mizar system, see [6].)

– In the real Mizar system, symbols can be overloaded. Here we suppose that
all symbols have been sufficiently disambiguated. That is, the typing rules
that we are presenting should only be instantiated according to the Baren-
dregt convention (variables should never be ‘hidden’ by later variables.)

– In the real Mizar type system, a redefinition takes priority over the definitions
that come before it in the context. However, in this version of the type system
the order of the definitions is not taken into account when generating type
judgments.

– When reasoning, the set of types of a Mizar expression will be closed under
available equalities. For instance, if one of the statements that justifies the
inference is n = n′ and an expression has type list(n), then it also will be
assigned type list(n′). This kind of equality reasoning is not present in our
version of the Mizar type system.

Note that a Mizar term generally does not have just one type (for instance, every
well typed expression will always also have the type ∗), and can even get a quite
large collection of types.

One can consider these rules to be something like a ‘logic programming’ de-
scription of the Mizar type checker:

;� ·

Γ ;Δ � "t : "T ["x := "t]
Γ ;Δ � J ["x := "t]

["x : "T](J) ∈ Γ ;Δ
Γ ;Δ � ∃T

Γ ;Δ,x : T � ·

Γ ;Δ � ·
Γ ;Δ � ∗ ≤ ∗

Γ ;Δ � ·
Γ ;Δ � ∃ ∗

394 F. Wiedijk

Γ ;Δ � T ≤ T ′

Γ ;Δ � T ≤ T

Γ ;Δ � T ≤ T ′ Γ ;Δ � T ′ ≤ T ′′

Γ ;Δ � T ≤ T ′′

Γ ;Δ � t : T Γ ;Δ � T ≤ T ′

Γ ;Δ � t : T ′
Γ ;Δ � T ≤ T ′ Γ ;Δ � ∃T

Γ ;Δ � ∃T ′

Γ ;Δ � α/T

Γ ;Δ � αT ≤ T

Γ ;Δ � α/T

Γ ;Δ � ᾱT ≤ T

Γ ;Δ � T ≤ T ′ Γ ;Δ � a T ′ ≤ T ′

Γ ;Δ � a T ≤ T

Γ ;Δ � T ≤ T ′ Γ ;Δ � a T ′ ≤ T ′

Γ ;Δ � a T ≤ a T ′

Γ ;Δ � T ≤ aT ′ Γ ;Δ � T ≤ a′T ′

Γ ;Δ � T ≤ aa′T ′

functor definition:
Γ ; "x : "T � ∃T ′

Γ, ["x : "T](f("x) : T ′); � ·
f 	∈ Γ

mode definition:
Γ ; "x : "T � ∃T ′

Γ, ["x : "T](M("x) ≤ T ′), ["x : "T](∃M("x)); � ·
M 	∈ Γ

attribute definition:
Γ ;Δ � ∃T ′

Γ, [Δ](α/T ′); � · α 	∈ Γ

existential cluster:
Γ ;Δ � "aT ′ ≤ T ′ Γ ;Δ � ∃T ′

Γ, [Δ](∃"a T ′); � ·

conditional cluster:
Γ ;Δ � "a T ′ ≤ T ′ Γ ;Δ � "a′ T ′ ≤ T ′

Γ, [Δ]("a T ′ ≤ "a′ T ′); � ·

functorial cluster:
Γ ;Δ � t : T ′ Γ ;Δ � "a T ′ ≤ T ′

Γ, [Δ](t : "a T ′); � ·

functor redefinition:

Γ ; "x : "T � ∃T ′′ Γ ; "x : "T � T ′′ ≤ T ′′′

Γ ; "x′ : "T ′, "x : "T � f("x) : T ′′′

Γ, ["x′ : "T ′, "x : "T](f("x) : T ′′); � ·

mode redefinition:

Γ ; "x : "T � ∃T ′′ Γ ; "x : "T � T ′′ ≤ T ′′′

Γ ; "x′ : "T ′, "x : "T �M("x) ≤ T ′′′

Γ, ["x′ : "T ′, "x : "T](M("x) : T ′′); � ·

Mizar’s Soft Type System 395

The side-conditions ‘. . . 	∈ Γ ’ of the three definition rules mean that the symbol
does not occur anywhere in the context Γ . The ‘extra arguments’ "x′ in the
redefinition rules and generally are the empty vector.

In Mizar the types of actual terms always have to be non-empty.14 This ex-
plains all the assumptions of the form ∃T that occur in these rules. However,
note that clusters sometimes involve types that have not been shown to be non-
empty.

5 Correctness

We will now translate the typing judgments of our Mizar type system into se-
quents of single sorted first order predicate logic.15 We will do this in two phases:

– First we introduce an annotated version of the Mizar type system, in which
all the attributes have explicit arguments. This is exactly the same system
that we already presented, but each attribute α now gets a list of arguments.
These arguments are the arguments that determine the type on which the
attribute was defined.

The grammar of the judgments stays exactly like it was, except that the
rule for an adjective becomes:

a ::= α("t) | ᾱ("t)

The derivation rules also stay all the same, apart from the rules that explic-
itly involve an attribute symbol:

Γ ; "x : "T � ∃T ′

Γ, ["x : "T](α("x)/T ′); � ·
α 	∈ Γ

Γ ;Δ � α("t)/T
Γ ;Δ � α("t)T ≤ T

Γ ;Δ � α("t)/T
Γ ;Δ � ᾱ("t)T ≤ T

We now have the following theorem, that we present here without proof:

Theorem 5.1. For every derivable type judgment of the non-annotated ver-
sion of the Mizar type system, there exists a corresponding type judgment of
the annotated version of the Mizar type system which only differs in that
after the attributes arguments have been added.)

14 There is no good mathematical reason for this restriction. It does lead to higher
quality formalizations, as the formalizer will need to think about whether the types
are empty or not. Also, it of course simplifies the implementation of the inference
checker. On the other hand it sometimes leads to unnatural mode definitions (like
the infamous definition of ‘Element of’).

15 In fact the Mizar typing rules can be motivated from this translation. The Mizar type
system is designed to combine two opposite goals: to have the system automatically
infer as many type judgments as possible for which the translation is provable; but
on the other hand to have a type system in which all typing judgments can be
efficiently inferred.

396 F. Wiedijk

Note that the annotated version of the judgment is not always unique. This
is the reason that the Mizar implementation internally keeps track of these
‘hidden arguments’ of the attributes. (There has been discussion in the Mizar
community about whether these arguments maybe also should be allowed to
be explicit.)

– Now that we have annotated versions of the Mizar type judgments, translat-
ing them into first order logic is easy. We define a translation | · | that maps
our system into first order logic:

|∗|(t) := -
|M("t′)|(t) := M(t, "t′)

|α("t′)|(t) := α(t, "t′)

|ᾱ("t′)|(t) := ¬α(t, "t′)
|a1 . . . an R|(t) := |a1|(t) ∧ . . . ∧ |an|(t) ∧ |R|(t)

|t : T | := |T |(t)
|T ≤ T ′| := ∀x (|T |(x) ⇒ |T ′|(x))

|∃T | := ∃x (|T |(x))
|α/T | := -

|[x1 : T1, . . . , xn : Tn](J)| := ∀x1 . . .∀xn(|T1|(x1) ∧ . . . ∧ |Tn|(xn)⇒ |J |)
|−−−−→[Δ](J);

−→
J ′ � J ′′| :=

−−−−−→|[Δ](J)|,−→|J ′| � |J ′′|

In the first order logic, we take the symbols for types and attributes to be
predicate symbols, where the arity as a predicate symbol is one more than
the original arity. The idea is that if T is a type, then |T |(t) corresponds to
the Mizar statement ‘t is T ’. This explains the order that we chose for the
arguments of the symbol taken as a predicate.
(The translation of α/T as just ‘true’ might be unexpected. One might expect
the translation to be:

|α/T | := ∀x (|α|(x) ⇒ |T |(x))

However, we decided not to do this, as it would be strange to require |α|(t)
to imply |T |(t), but not to require the same property for |ᾱ|(t) (ᾱ also being
an adjective of T). Our translation is interpreting adjectives in the spirit of
intersection types.16)

16 It might be surprising that an attribute can be given whatever radix type one likes.
This corresponds to the fact that in Mizar an attribute definition does not need
any proof (it does not have a ‘correctness condition’): the defining statement of an
attribute can be any formula, without any restriction. Note also that there is no
such thing as an ‘attribute redefinition’.

Mizar’s Soft Type System 397

The following theorem now also is easy:

Theorem 5.2. If Γ ;Δ � J is a judgment of the annotated version of the
Mizar type system, then |Γ ;Δ � J | is a provable sequent of first order pred-
icate logic.

Proof. Induction on the derivation of the judgment: each rule of the type
system corresponds to a small derivation in first order logic. �

6 Conclusion

6.1 Discussion

One of the nicest things about interpreting the Mizar type system as a system
of soft types, is that it shows that the Mizar type system, with all its power, can
easily be added ‘on top’ of any existing proof assistant.17 It is mainly a matter
of defining selected predicates to take the rôle of the types and then to:

– Implement automatic inference of statements about these predicates along
the lines of the rules in Section 4.

– Add a layer of parsing and pretty-printing to the system to have syntax for
the predicates as types. In this layer the implicit arguments that are common
in dependently typed systems can be implemented.

This way even the systems from the HOL family of proof assistants [4] can
have dependent types!

In fact, even in systems like Coq that have a rather powerful type system
already, one often sees the tendency to use ‘soft’ types on top of the ‘hard’
types that are already in the system. For instance, in the C-CoRN library from
Nijmegen, there is a formalization of integration theory, where instead of using
a type for continuous partial functions, there are lines in the development that
look like:

Variables a b : IR.
Hypothesis Hab : a [<=] b.
Variable F : PartIR.
Hypothesis contF : Continuous_I Hab F.

and then the operation called ‘Integral’ takes the predicate ‘contF’ as one of
its arguments. Clearly this is a rough version of soft typing.

Similarly, a development of Galois theory by Georges Gonthier and Sean
McLaughlin (developed in the Microsoft/INRIA institute in Paris) is using a
style of having ‘soft types on top of Coq’.

17 The work of Joe Hurd [5] already is a version of this (although it of course does not
implement the full Mizar type system.)

398 F. Wiedijk

6.2 Future Work

There are various interesting questions that might be pursued as a continuation
of the research presented in this paper:

– A type system really should be decidable, but we have not established this
property for the type system that we presented here. The implementation of
the type system in the Mizar type checker clearly seems to have this property,
but then the rules that we presented in this paper do not exactly match the
type system as it is implemented in the actual system.

It is clear that a naive implementation of our version of the Mizar type
system will not work. The redefinition:

redefine mode Element of n -> Element of n + 1;

(which is allowed in the actual Mizar system!) will with our version of the
typing rules give rise to infinite collections of types.18 This example also
shows that a direct Prolog-style implementation of the rules from Section 4
will not always terminate. However, it is might be the case that a less naive
algorithm than just generating all possible types for an expression still can
implement a type checker for the typing rules from Section 4.

– We have proved that the type system that we present in this paper is correct,
but one also could consider the question of whether it is complete. The
theorem to be proved for this would be that if a sequent is a translation
of a typing judgment in our system of which the context is already a correct
context, and if that sequent is provable in first order predicate logic, that
then in fact the typing judgment is derivable in the type system.

We have not yet tried to prove this property, but thus far we do not know
of a counter-example either.

– It might be interesting to make the rules that we presented here more re-
alistic, by for example adding structure types or equalities between terms.
Maybe even more interesting would be to precisely analyze the differences
between our version of the type system, and the corresponding fragment
of the type system the way it is implemented in the actual Mizar system.
The interesting question would be whether the differences might easily be
removed (either by adapting the typing rules, or by changing the implemen-
tation), or whether the differences are essential for giving the implementation
of the type checker a reasonable performance.

Acknowledgments. It will be clear that this paper was inspired by the papers of
Fairouz Kamareddine. When I wrote this paper I had Herman Geuvers in mind
as my target audience: I hope that this paper managed to communicate the Mizar
type system to him. Furthermore many thanks to Josef Urban, Makarius and
the anonymous referees of the TPHOLs conference for their helpful comments
on a draft version of this paper.

18 We got this example from Josef Urban.

Mizar’s Soft Type System 399

References

1. Bancerek, G.: On the structure of Mizar types. Electronic Notes in Theoretical
Computer Science, 85 (2003)

2. Cartwright, R., Fagan, M.: Soft typing. In: Proceedings of the SIGPLAN ’91 Con-
ference on Programming Language Design and Implementation, pp. 278–292 (1991)

3. Dahn, I.: Interpretation of a Mizar-Like Logic in First-Order Logic. In: Caferra,
R., Salzer, G. (eds.) Automated Deduction in Classical and Non-Classical Logics.
LNCS (LNAI), vol. 1761, pp. 137–151. Springer, Heidelberg (2000)

4. Gordon, M.J.C., Melham, T.F. (eds.): Introduction to HOL. Cambridge University
Press, Cambridge (1993)

5. Hurd, J.: Predicate subtyping with predicate sets. In: Boulton, R.J., Jackson, P.B.
(eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 265–280. Springer, Heidelberg (2001)

6. Lee, G., Rudnicki, P.: Alternative Aggregates in Mizar (to be published in Math-
ematical Knowledge Management, 2007)

7. Muzalewski, M.: An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels
(1993), http://www.cs.ru.nl/∼freek/mizar/mizarmanual.ps.gz

8. Urban, J.: MPTP 0.1: System Description. ENTCS 86(1) (2003)
9. Urban, J.: Translating Mizar for First Order Theorem Provers. In: Asperti, A.,

Buchberger, B., Davenport, J.H. (eds.) MKM 2003. LNCS, vol. 2594, pp. 203–215.
Springer, Heidelberg (2003)

10. Urban, J.: MoMM – Fast Interreduction and Retrieval in Large Libraries of For-
malized Mathematics. International Journal on Artificial Intelligence Tools 15(1),
109–130 (2006)

11. Weidenbach, C.: SPASS: Combining superposition, sorts and splitting (1999)
12. Wiedijk, F. (ed.): The Seventeen Provers of the World. LNCS (LNAI), vol. 3600.

Springer, Heidelberg (2006)

http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz

Author Index

Aagaard, Mark D. 157
Alonso, José-Antonio 135
Appel, Andrew W. 5
Aspinall, David 22

Basin, David 302
Blazy, Sandrine 5
Borrego-Dı́az, Joaqúın 135
Bulwahn, Lukas 38

Dawson, Jeremy E. 54
Delahaye, David 70
Dubois, Catherine 70

Étienne, Jean-Frédéric 70

Garillot, François 368
Gonthier, Georges 86

Hanrot, Guillaume 319
Harrison, John 102
Hasan, Osman 119
Heitmeyer, Constance L. 1
Hidalgo, Maŕıa-José 135
Hurd, Joe 151

Kang, Eunsuk 157
Kaufmann, Matt 294
Krauss, Alexander 38

Liggesmeyer, Peter 3

Mahboubi, Assia 86
Mart́ın-Mateos, Francisco-Jesus 135
Minamide, Yasuhiko 173

Ni, Zhaozhong 189
Nipkow, Tobias 38
Norrish, Michael 207

Obua, Steven 223

Paulson, Lawrence C. 232
Pientka, Brigitte 246

Reynolds, James 262
Rideau, Laurence 86
Ridge, Tom 278
Ruiz-Reina, José-Luis 135

Ševč́ık, Jaroslav 22
Shao, Zhong 189
Slind, Konrad 294
Sprenger, Christoph 302
Susanto, Kong Woei 232

Tahar, Sofiène 119
Tassi, Enrico 86
Théry, Laurent 86, 319

Vestergaard, René 207
Völker, Norbert 334

Wenzel, Makarius 352
Werner, Benjamin 368
Wiedijk, Freek 383
Wolff, Burkhart 352

Yu, Dachuan 189

	Title Page
	Preface
	Conference Organization
	Table of Contents
	On the Utility of Formal Methods in the Development and Certification of Software
	References

	Formal Techniques in Software Engineering: Correct Software and Safe Systems
	Separation Logic for Small-Step Cminor
	Introduction
	Big-Step Expression Semantics
	Small-Step Statement Semantics
	Separation Logic
	Soundness of Separation Logic
	Sequential Reasoning About Sequential Features
	The Machine-Checked Proof
	Conclusion
	References

	Formalising Java’s Data Race Free Guarantee
	Introduction
	Formal Definitions for the JMM
	Legal Executions
	Notes on Relation to Informal Definitions

	Proof of DRF Guarantee
	Results of the Formalisation
	Conclusion
	References

	Finding Lexicographic Orders for Termination Proofs in Isabelle/HOL
	Introduction
	Overview of the Analysis
	Related Work

	Preliminaries
	Termination Proof Obligations
	A Combinator for Building Relations

	Finding Lexicographic Orderings
	Step 1: Generating Measure Functions
	Step 2: Proving Local Descents
	Step 3: Finding Lexicographic Combinations
	Step 4: Proof Reconstruction

	Mutual Recursion
	Measures for Sum Types
	Ordering the Functions
	Complexity of Mutual Recursion

	Examples
	Ackermann Function
	Many Parameters
	Multiplication by Shifting and Addition
	Pedal and Coast

	Practical Considerations and Possible Extensions
	Empirical Evaluation
	Feedback from Failure
	Using Other Measure Functions
	Incremental Operation

	Conclusion
	References

	Formalising Generalised Substitutions
	Introduction
	The Operational Models
	The General Correctness Operational Model
	The Total Correctness Operational Model
	The Total Correctness Compound Monad
	Relation to the Outcome Set Monad

	The Generalised Substitutions
	Meaning of Commands
	Monotonicity
	Repetition and Iteration for the General Correctness Model
	Repetition and Iteration for the Total Correctness Model
	The \prd Predicate
	The Least Upper Bound
	Parallel Composition
	Healthiness Conditions and Positive Conjunctivity
	Properties of Substitutions

	Frames and Variable Names
	Conclusion
	References

	Extracting Purely Functional Contents from Logical Inductive Types
	Introduction
	InformalPresentation
	Extraction of Logical Inductive Types
	Logical Inductive Types
	Mode Consistency Analysis
	Code Generation

	Soundness of the Extraction
	Implementation and Optimizations
	Implementation
	Optimizations

	Conclusion
	References

	A Modular Formalisation of Finite Group Theory
	Introduction
	Small Scale Reflection
	Proof Shell
	Views
	Libraries

	The Group Library
	Graphs of Function and Intentional Sets
	Groups
	Quotients
	Group Morphisms

	Standard Theorems of Group Theory
	The Sylow Theorems
	The Frobenius Lemma
	The Cauchy-Frobenius Lemma

	Conclusion
	References

	Verifying Nonlinear Real Formulas Via Sums of Squares
	Verifying Nonlinear Formulas over the Reals
	Positivity and Sums of Squares
	Important Cases of Hilbert’s Theorem
	Quadratic Forms and Matrices
	The Universal Fragment Via SOS
	Implementation in HOL and Experience
	Optimizing the Univariate Case
	Conclusions and RelatedWork
	References

	Verification of Expectation Properties for Discrete Random Variables in HOL
	Introduction
	Related Work
	Verifying Probabilistic Algorithms in HOL
	Expectation for Discrete Distributions
	Uniform(n) Random Variable
	Bernoulli(\emph{p}) Random Variable
	Geometric (\emph{p}) Random Variable

	Verification of Linearity of Expectation Property
	Two Random Variables
	n Random Variables

	Coupon Collector’s Problem
	Conclusions
	References

	A Formally Verified Prover for the \ALC Description Logic
	Introduction
	Well–Founded Ordering of Multisets
	An Alternative Characterization of Well–Foundedness
	Well–Foundedness of the Transitive Closure
	Well–Founded Multiset Relations (in PVS)

	Tableau Reasoning for \ALC –Satisfiability
	Syntax and Semantics of the \ALC Logic
	Deciding Concept Satisfiability for \ALC
	Soundness
	Termination
	Completeness

	Measureon\ALC–Expansion of \C
	Conclusions and Future Work
	References

	Proof Pearl: The Termination Analysis of {\Terminator}
	Introduction
	Formalizing Termination
	The {\Terminator} Program Analysis
	Verifying {\Terminator}
	Optimizations
	Summary
	References

	Improving the Usability of HOL Through Controlled Automation Tactics
	Introduction
	Controlled Automation for Logical Operations
	Problem Description
	{\ELIM TAC}
	Assumption Labelling
	Extending {\ELIM TAC} toWork with Assumptions

	Controlled Automation for Term Rewriting
	Problem Description
	Specifying the Location of Rewriting
	Integrating Rewriting with Assumption Handling
	Controlled Rewrite Tactics

	Case Studies
	Related Work
	Conclusion and Future Work
	References

	Verified Decision Procedures on Context-Free Grammars
	Introduction
	Context-Free Grammars
	Formalization of CFGs
	Computing the Language of a CFG over a Finite Monoid
	Image of a Context-Free Language
	Reachable and Generating Nonterminals

	Decision Procedure for Inclusion Between a CFL and a Regular Language
	Nipkow’s Formalization of Automata
	Transition Monoid
	Decision Procedure

	Balancedness Checking Procedure
	Balanced Strings
	Monoid for Balancedness Checking
	Decision Procedure

	Decision Procedure for Inclusion Between a Context-Free Language and a Regular Hedge Language
	Hedges and Balanced Strings
	Regular Hedge Grammars and Binoids
	Monoid for CFL-RHL Inclusion

	Executing a Verified Decision Procedure
	Related Work
	Conclusion
	References

	Using XCAP to Certify Realistic Systems Code: Machine Context Management
	Introduction
	Machine Context Management
	Applying XCAP to x86 Machine Model
	Formal Verification of Machine Context Management
	The Coq Implementation
	Related Work and Conclusion
	References

	Proof Pearl: De Bruijn Terms Really Do Work
	Introduction
	Formalising Binding
	Named Abstraction
	De Bruijn’s Anonymous Abstraction, Using Indices
	Existing Results

	Nominal Reasoning
	Isomorphisms and De Bruijn Terms
	An Intermediate Formalism: \texttt{dB
	\texttt{dB}' \emph{vs} \lama{N}: Nominal Reasoning with Indices
	The Homomorphism Between \texttt{dB} and \texttt{dB}'
	Bonus: η-Reduction

	Conclusion
	References

	Proof Pearl: Looping Around the Orbit
	Introduction
	The isaconst{While} Combinator
	Example: Finding a Fixpoint
	The \isaconst{For} Combinator
	Example: Planar Graphs
	Conclusion
	References

	Source-Level Proof Reconstruction for Interactive Theorem Proving
	Introduction
	Background
	Order-Sorted Polymorphism
	The Interface Between Isabelle and ATPs

	Porting Metis to Isabelle
	Producing Single-Step Proofs
	TSTP Format
	A Small Example
	The Translation Method

	Two Larger Examples
	Conclusions
	References

	Proof Pearl: The Power of Higher-Order Encodings in the Logical Framework LF
	Introduction
	Bounded Polymorphic Subtyping
	Representing Bounded Polymorphism Using HOAS
	Encoding Bounded Polymorphic Types
	Encoding Subtyping Relation
	Encoding Admissibility of Transitivity

	Conclusion
	References

	Automatically Translating Type and Function Definitions from HOL to ACL2
	Introduction and Previous Work
	Translating Binary Trees
	Tabulating Primes - An Example
	The \ttSexp Universe
	Translating Lists of Natural Numbers
	Translation from Clause Form
	Definition of \Cnst{Flist}_{sexp}
	The Recursive Form of \Cnst{Flist}_{Sexp}
	The Finished Translation

	The General Translation
	Compound Types
	Translating Labeled Products

	Converting Functions
	Functions in Clause Form
	Rewriting
	Incomplete Specifications
	Using Higher Level ACL2 Constructs

	Conclusions
	References

	Operational Reasoning for Concurrent Caml Programs and Weak Memory Models
	Introduction
	Background on Peterson’s Algorithm
	Caml Formalization
	Proof of Correctness
	Background on Weak Memory Models
	Weak Memory Model Formalization
	Proof of Correctness
	Related Work
	Conclusion
	References

	Proof Pearl: Wellfounded Induction on the Ordinals Up to \ε0
	Introduction
	Ordinal Notation for \ε0
	ACL2 Definitions

	TheProof
	Recursion

	Discussion
	References

	A Monad-Based Modeling and Verification Toolbox with Application to Security Protocols
	Introduction
	Background
	Monads and Components
	State-ExceptionMonad
	Hierarchical Component Model

	Program and Temporal Logics
	Weakest Pre-condition Calculus
	Hoare Logic
	Linear-Time Temporal Logic
	Example: Nonce Secrecy Invariant for the NSL Protocol

	Bisimulation
	Bisimilar Components
	Compositional Proof Rules for Bisimulation

	Conclusions and RelatedWork
	References

	Primality Proving with Elliptic Curves
	Introduction
	Elliptic Curves and Group Structure
	Prime Certificate
	SomeBenchmarks
	Conclusion
	References

	HOL2P - A System of Classical Higher Order Logic with Second Order Polymorphism
	Introduction
	A Recap of Higher Order Logic
	The Logic HOL2P
	HOL2P Types
	HOL2P Terms
	Rules

	Outline of HOL2P Semantics
	The Semantics of HOL Terms
	A Universe for HOL2P Types
	The Semantics of HOL2P Types
	The Semantics of HOL2P Terms

	Application Examples
	Implementation
	Conclusions and Further Work
	References

	Building Formal Method Tools in the Isabelle/Isar Framework
	Introduction
	A Guided Tour Through HOL-Z
	The HOL-Z 3.0 System Architecture
	The HOL-Z 3.0 Workflow

	Internals: The Isabelle/Isar System Architecture
	The “LCF Approach”
	The Isabelle/Isar Framework
	Syntax

	Application: Implementing HOL-Z 3.0
	Theory Data: Z Environment
	Toplevel Commands
	Methods and Attributes
	Operator Syntax for Z

	AComparisontoProofPower
	Conclusion
	References

	Simple Types in Type Theory: Deep and Shallow Encodings
	General Setting
	Deep vs. Shallow
	Normalization by Evaluation
	The General Idea
	Syntax vs. Semantics Point of View
	Related Work

	The Syntax of Simply Typed \lambda'-Calculus
	Decompilation
	Basic Syntactic Definitions
	Typing
	Substitution
	Conversion and Normal Forms

	Compilation (Semantics)
	The Central Logical Relation
	Putting It All Together
	Conclusion and Future Work
	References

	Mizar’s Soft Type System
	Introduction
	Problem
	Approach
	Related Work
	Contribution
	Outline

	Judgments
	Example
	Rules
	Correctness
	Conclusion
	Discussion
	Future Work

	References

	Author Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

