
On the Construction and Evaluation of Flexible
Plan-Refinement Strategies

Bernd Schattenberg, Julien Bidot�, and Susanne Biundo

Institute for Artificial Intelligence
Ulm University, Germany

firstname.lastname@uni-ulm.de

Abstract. This paper describes a system for the systematic construc-
tion and evaluation of planning strategies. It is based on a proper formal
account of refinement planning and allows to decouple plan-deficiency
detection, refinement computation, and search control. In adopting this
methodology, planning strategies can be explicitly described and easily
deployed in various system configurations.

We introduce novel domain-independent planning strategies that are
applicable to a wide range of planning capabilities and methods. These
so-called HotSpot strategies are guided by information about current plan
defects and solution options. The results of a first empirical performance
evaluation are presented in the context of hybrid planning.

1 Introduction

In hybrid planning – the combination of hierarchical-task-network (HTN) plan-
ning with partial-order causal link (POCL) techniques – the solution of planning
problems requires the integration of plan synthesis based on primitive opera-
tions with the use of predefined plans that implement abstract actions. As a
consequence, causal reasoning and task expansion interleave during the plan-
development process.

So far, only few research has been devoted to search strategies in hybrid
planning; nor have existing strategies ever been systematically compared and
assessed in this context. For most of today’s planning systems, this is due to the
fact that search strategies are only implicitly defined and indirectly controlled via
parameters. In these frameworks, search strategies and planning algorithms are
strongly interdependent and changing one of them inevitably affects the other.

Furthermore, all these search strategies are basically fixed; i.e., in each plan-
generation cycle, they follow a pre-defined schema indicating at which kind of
deficiency to look first, and which changes to apply to the plan preferably. In
POCL planning, Joslin & Pollack proposed Least-Cost Flaw Repair, a method
that repairs first the flaws associated with the minimal number of modifications
[1]. Peot & Smith presented strategies that consist of delaying the treatment
� This work has been supported by a grant from the Ministry of Science, Research

and the Arts of Baden-Württemberg (Az: 23-7532.24-14-19).

J. Hertzberg, M. Beetz, and R. Englert (Eds.): KI 2007, LNAI 4667, pp. 367–381, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

368 B. Schattenberg, J. Bidot, and S. Biundo

of causal threats for which multiple solutions exist [2]. Their results have been
picked up by Schubert & Gerevini who proposed simple but effective plan metrics
for an A∗ heuristic [3]. In HTN planning, Tsuneto et al. described the fewest-
alternatives first heuristic for selecting task expansions in the UMCP system [4].
McCluskey introduced the Expand then Make Sound method [5] in which the
expansion of an abstract task is followed by repairing the plan’s causal structure.

For studying search strategies, we use the hybrid planning approach presented
in Schattenberg et al. [6]. It provides a formal framework in which the plan gen-
eration process is decomposed into well-defined functions for flaw detection and
the generation of plan modifications, respectively. Furthermore, the approach
decouples search strategies from planning algorithms. The strategies are quite
flexible and can be applied to large varieties of system configurations. Recently,
they have been integrated into a planning-and-scheduling system [7].

2 Refinement-Based Planning

We employ a hybrid planning formalism based on sorted first-order logic [6].
An operator or primitive task schema t(τ) = (prec(t(τ)), add(t(τ)), del(t(τ)))

specifies the preconditions and the positive and negative effects of the task. Pre-
conditions and effects are sets of literals, τ̄ = τ1, . . . , τn are the task parameters.
A ground instance of a task schema is called an operation. A state is a finite
set of ground atoms, and an operation t(c̄) is called applicable in a state s, if
the positive literals of prec(t(c̄)) are in s and the negative are not. The result
of applying the operation in a state s is a state s′ = (s ∪ add(t(c̄))) \ del(t(c̄)).
The applicability of sequences of operations is defined inductively over state
sequences as usual.

Abstract actions are represented by complex tasks. In hybrid planning these
show preconditions and effects exactly like the primitive tasks. The associated
state transition semantics is based on axiomatic state refinements that relate
task preconditions and effects across various abstraction levels [8].

A partial plan or task network is a tuple P = (TE, ≺, VC, CL) with the fol-
lowing sets of plan components : TE is a set of plan steps or task expressions
te = l : t(τ) where l is unique label and t(τ) is a (partially) instantiated task. ≺
is a set of ordering constraints that impose a partial order on the plan steps in
TE. VC is a set of variable constraints v=̇τ and v ˙�=τ , which codesignate and non-
codesignate variables occurring in TE with variables or constants. Furthermore,
it contains sort restrictions of the form v∈̇Z and v ˙�∈Z, where Z is a sort symbol,
that restrict further codesignations. CL is a set of causal links 〈tei, φ, tej〉, indi-
cating that a task tei establishes a precondition of task tej . Causal links are used
in the usual sense as a book-keeping means for maintaining the causal structure.

Task networks are also used as pre-defined implementations of complex tasks.
An expansion method em = (t(τ), (TEem , ≺em , VCem , CLem)) relates such a
complex task schema t(τ) to a task network.

A domain model for hybrid planning is specified by D = (T, EM), that is a
set of task schemata T and a set EM of expansion methods for implementing

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 369

the complex tasks in T. Please note that there are in general multiple methods
provided for each complex task schema.

A hybrid planning problem is the structure π = (D, sinit, sgoal , Pinit). It con-
sists of a domain model D and an initial task network Pinit. A partial plan
P = (TE, ≺, VC, CL) is a solution to a problem specification, if and only if TE
consists of primitive task expressions only, and P is executable in sinit and gener-
ates a state send such that sgoal ⊆ send holds. Plan P is thereby called executable
in a state s and generates a state s′, if all ground linearizations of P, that means
all linearizations of all ground instances of the task expressions in TE that are
compatible with ≺ and VC, are executable in s and generate a state s′′ ⊇ s′.

In our framework, violations of the solution criteria are made explicit by so-
called flaws, data structures that represent critical components of a partial plan,
i.e. those that prevent the plan from being a solution. The flaws serve to classify
sub-problems and to guide the search for a solution.

Definition 1 (Flaw). Given a problem specification π and a partial plan P that
is not a solution to π, a flaw f = {α1, . . . , αn} consists of a set of plan compo-
nents αi of P. It represents a defect in which these components are involved.

The set of all flaws is denoted by F and subsets Fx represent classes of flaws.
For a partial plan P = (TE, ≺, VC, CL) the violation of the solution criteria
is mirrored by flaw classes such as the following. The class FCausalThreat, e.g.,
contains flaws f = {〈tei, φ, tej〉, tek} describing causal threats, i.e., indicating
that a task tek is possibly being ordered between plan steps i and j (tek �≺∗ tei

and tej �≺∗ tek) and there exists a variable substitution σ that is consistent
with the equations and in-equations imposed by the variable constraints in VC
such that σ(φ) ∈ σ(del(tek)) for positive literals φ and σ(|φ|) ∈ σ(add(tek)) for
negative literals. This means, the presence of tek in P as it stands will possibly
corrupt the executability of at least some ground linearizations of P.

Flaw classes also cover the presence of abstract actions in the plan, ordering
and variable constraint inconsistencies, unsupported preconditions of actions,
etc. The complete class definitions can be found in [6]. It can be shown that
these flaw definitions are complete in the sense that for any given planning
problem π and plan P that is not flawed, P is a solution to π.

For the definition of the refinement operators, we make use of an explicit
representation of change to the plan data structure: plan modifications. This
representation has two major impacts on the hybrid planning framework: First,
it makes changes to the plan analyzable and with that the available options for
a search strategy become comparable qualitatively and quantitatively. Second,
new functionality can instantly be integrated as soon as it is translated into the
plan modification structure.

Definition 2 (Plan Modification). For a given partial plan P and domain
model D, a plan modification is defined as the structure m = (E⊕, E�). E⊕ and
E� are sets of elementary additions and deletions of plan components over P
and D.

370 B. Schattenberg, J. Bidot, and S. Biundo

E⊕ and E� are assumed to be disjoint and E⊕ ∪ E� �= ∅. Furthermore, we
require plan modifications to be consistent in the sense that all elements in the
deletion set are components of plan P and all elements in the addition set are
new components.

The set of all plan modifications is denoted by M and grouped into modification
classes My. The application of plan modifications is characterized by the generic
plan transformation function app : M × P → P, which takes a plan modification
m = (E⊕, E�) and a plan P, and returns a plan P ′ that is obtained from P by
adding all elements of E⊕ and removing those in E�. As an example, the class
MAddCL contains plan modifications m = ({〈tei, φ, tej〉, v1=̇τ1, . . . , vk=̇τk}⊕, {}�)
for manipulating a given partial plan P = (TE, ≺, VC, CL) by adding causal
links. The plan steps tei and tej are in such a modification in TE and the codes-
ignations represent variable substitutions. They induce a VC′-compatible sub-
stitution σ′ with VC′ = VC ∪{v1=̇τ1, . . . , vk=̇τk} such that σ′(φ) ∈ σ′(add(tei))
for positive literals φ, σ′(|φ|) ∈ σ′(del(tei)) for negative literals, and σ′(φ) ∈
σ′(prec(tej)).

The complete collection of refinement operations for hybrid planning is in-
troduced in [6]. This also covers the expansion of abstract plan steps and the
insertion of new plan steps, ordering constraints, and variable (in-) equations.
These plan modifications are the canonical plan transformation generators in
a refinement-based hybrid planner: starting from an initial task network, the
current plan is checked against the solution criteria, and while these are not
met, refinements are applied. If no applicable modification exists, backtracking
is performed. In order to make the search systematic and efficient, the algorithm
should focus on those modification steps which are appropriate to overcome the
deficiencies in the current plan. Based on the formal notions of plan modifica-
tions and flaws, a generic algorithm and planning strategies can be defined. A
strategy specifies how and which flaws in a partial plan are eliminated through
appropriate plan modification steps. We therefore need to define the conditions
under which a plan modification can in principle eliminate a given flaw.

A class of plan modifications My ⊆ M is called appropriate for a class of flaws
Fx ⊆ F, if and only if there exist partial plans P which contain flaws f ∈ Fx and
modifications m ∈ My, such that the refined plans P ′ = app(m, P) do not contain
these flaws anymore.

It is easy to see that the plan modifications perform a strict refinement, that
means, a subsequent application of any modification instances cannot result in
the same plan twice; the plan development is inherently acyclic. Given that, any
flaw instance cannot be re-introduced once it has been eliminated. This qualifies
the appropriateness relation as a valid strategic advice for the plan generation
process and motivates its use as the trigger function for plan modifications:
the α modification triggering function relates flaw classes with their potentially
solving modification classes. As an example, causal threat flaws can be solved by
expanding abstract actions which are involved in the threat (by overlapping task
implementations), by promotion or demotion, or by separating variables through
inequality constraints [8]: α(FCausalThreat) = MExpTask ∪ MAddOrdCstr ∪ MAddVarCstr.

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 371

Please note, that α states nothing about the relationship between the actual
flaw and modification instances.

The modification triggering function allows for a simple plan generation schema:
based on the flaws that are found in the current plan, the calculation of plan modi-
fications is motivated. A strategy component can then freely choose among all ap-
plicable plan modifications in order to try to solve one of the particular problems
that have been identified. If any flaw remains unanswered by triggered modifica-
tion generating entities, no appropriate refinement candidate exists and the plan
can be discarded. There are even flaw classes that do not trigger any modification.
Flaw instances that represent ordering cycles and variable inconsistencies obvi-
ously cannot be resolved by our refinement operators and do therefore not trigger
any modification: α(FOrdInconst) = α(FVarInconst) = ∅.

The above mentioned triggering function completely separates the computa-
tion of flaws from the computation of modifications, and in turn both computa-
tions are independent from search-related considerations. The system architec-
ture relies on this separation and exploits it in two ways: module invocation and
interplay are specified through the α-trigger, while reasoning about search can
be performed on the basis of flaws and modifications without taking their actual
computation into account. Hence, we map flaw and modification classes directly
onto groups of modules which are responsible for their computation.

Definition 3 (Detection Modules). A detection module x is a function that,
given a partial plan P, a domain model D, and a problem specification π, returns
all flaws of type x that are present in the plan: fdet

x : P × D × Π → 2Fx .

Definition 4 (Modification Modules). A modification module y is a func-
tion which computes all plan modifications of type y that are applicable to a given
plan P and that are appropriate for given flaws with respect to a given domain
model: fmod

y : P × 2Fx × D → 2My for My ⊆ α(Fx).

Please note that plan modifications carry a reference to the flaw instance they
address, i.e., any plan modification is unambiguously linked with its triggering
flaw.

While the plan deficiency detectors and the refinement generators provide
the basic plan generation functionality, strategy functions can be designed for
reasoning about which paths in the refinement space to pursue. To this end, we
split up reasoning about search into two compartments: The first component is
an option evaluation that is performed in the local view of the currently processed
plan; it reasons about the detected flaws and proposed refinements in the current
plan and assesses the modifications. The second component is responsible for the
global view on the refinement space and evaluates the alternative search options.

We begin with the definition of a strategic function that selects all plan mod-
ifications that are considered to be worthwhile options, thereby determining the
ordered set of successors for the current plan in the plan refinement space. In
doing so, the following function also determines the branching behavior of the
upcoming refinement-based planning algorithm.

372 B. Schattenberg, J. Bidot, and S. Biundo

Definition 5 (Modification-Selection Module). Given a plan, a set of
flaws, and a set of plan modifications, a modification-selection module is a
function fmodSel : P × 2F × 2M → 2M×M that selects some (or all) of the plan
modifications and returns them in a partial order for application to the passed
plan.

Strategies discard a plan P, if any flaw remains unaddressed by the associated
modification modules. That means, we reject any plan P, over any domain model
D and for any planning problem π, if for any fdet

x and fmod
y1

, . . . , fmod
yn

with
My1 ∪ . . .∪Myn = α(Fx) the following holds:

⋃
1≤i≤n fmod

yi
(P, D, fdet

x (P, D, π)) = ∅.
The second aspect of search control concerns the selection of those plans

that are to be processed next by the detection and modification modules. These
unassessed partial plans, the leaves of the search tree, are usually called the
fringe. In other words, concrete implementations of the following module are
responsible for the general search schema, ranging from uninformed procedures
such as depth-first, breadth-first, etc., to informed, heuristic schemata.

Definition 6 (Plan-Selection Module). A plan-selection module is a func-
tion that returns a partial order of plans for a given sequence of plans. It is
described as fplanSel : P∗ → 2P×P.

Building on the components defined so far we can now assemble a hybrid plan-
ning system. A software artifact that implements the generic refinement algo-
rithm (Alg. 1) is making the flaw detection and modification generating modules
operational by stepwise collecting plan deficiencies, collecting appropriate mod-
ifications, selecting worthwhile modifications, and finally selecting the next plan
in the fringe of the search tree. Please note that the algorithm is formulated
independently from the deployed modules, since the options to address existing
flaws by appropriate plan modifications is defined via α.

3 Search Strategies

A large number of search strategies can be realized in the proposed refinement-
planning framework by sequencing the respective selection modules and using the
returned partially ordered sets of modifications, respectively plans, to modulate
preceding decisions: if the primary strategy does not prefer one option over
the other, the secondary strategy is followed, and so on, until finally a random
preference is assumed. The following single-objective heuristics constitute the
building blocks for more sophisticated strategy compositions.

Unflexible Strategies: Previous work has presented the translation of some
existing search strategies into our hybrid planning framework and showed that
most of them are unflexible in the sense that they represent a fixed preference
schema on the flaw type they want to get eliminated primarily and then select
appropriate modification methods. For example, it is very common to care for
the plan to become primitive first and then to deal with causal interactions.

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 373

Algorithm 1. The generic refinement planning algorithm.
Require: Sets of modules Det = {fdet

1 , . . . , fdet
d } and Mod = {fmod

1 , . . . , fmod
m }

Require: Selection modules fmodSel and fplanSel

plan(P1 . . . Pn, D, π): {P1 is the plan that is worked on}
if n = 0 then

3: return failure
P ← P1; Fringe ← P2 . . . Pn

F ← ∅
6: for all fdet

x ∈ Det do {Flaw detection}
F ← F ∪ fdet

x (P, D, π)
if F = ∅ then

9: return P
M ← ∅
for x = 1 to d do {Modification generation}

12: Fx = F ∩ Fx {Process flaws class-wise as returned by corresponding fdet
x }

for all f ∈ Fx do
for all fmod

y ∈ Mod with My ⊆ α(Fx) do
15: M ← M ∪ fmod

y (P, f, D)
if f was un-addressed then

Pnext ← fplanSel(Fringe)
18: return plan(Pnext ◦ (Fringe \ Pnext), D, π)

for all m in linearize(fmodSel(P, F, M)) do {Strategic choices}
Fringe ← app(m, P) ◦ Fringe

21: Pnext ← first(linearize(fplanSel(Fringe)))
return plan(Pnext ◦ (Fringe \ Pnext), D, π)

We will not recapitulate the results obtained in [6], but rather give a short,
systematic overview over the possible instances of unflexible selection schemas
for modification and plan selection.

A traditional form of modification selection is either to prefer or to disfavor
categorically specific classes of plan modifications; e.g., we prefer the expansion
of tasks to task insertions or we try to avoid an assignment of variables to
constants “as long as possible.” Systems with built-in strategies of this kind are
typically provided with hand-tailored heuristics such that certain plan properties
modulate the preference schema to some extent, but for now we focus on purely
modification-based forms of decisions.

In the presented framework, the preference of a modification class is encoded
as follows: Let MPref be the preferred modification class by modification-selection
module fmodSel

PrefMC , then the corresponding function is defined as

mi < mj ∈ fmodSel
PrefMC (P, {f1, . . . , fm}, {m1, . . . , mn}) if mi ∈ MPref and mj �∈ MPref

for all plans P ∈ P, sets of flaws f1, . . . , fm ∈ F, and sets of plan modifications
m1, . . . , mn ∈ M. Avoiding the selection (and consequently the application) of
instances of particular modification classes is realized by an analogue selection
module that is returning the inverse of the above definition: fmodSel

DisfMC .

374 B. Schattenberg, J. Bidot, and S. Biundo

Plan selection can also be based upon the availability of refinement options for
a plan. For simplification, the presented algorithm performs three consecutive
sections: one loop for the flaw detection, one loop for the modification generation,
and finally the strategic choices. In the little more complicated implementation
of the framework, after applying the selected plan modifications to the current
plan (line 20), for every new plan in the fringe, flaws and modifications are
calculated in advance, so that the following two plan-selection modules can be
defined for the preference of a modification class:

Pi < Pj ∈ fplanSel
PrefMC ({P1, . . . , Pn}) if |mods(Pi) ∩ MPref| > |mods(Pj) ∩ MPref|

The function mods : P → 2M thereby returns all modifications that have been
published for a given plan. This plan selection can be formulated in relation to
the plan size; e.g., it is related to the number of plan steps:

Pi < Pj ∈ fplanSel
PrefMRatio({P1, . . . , Pn}) if

|mods(Pi) ∩ MPref|
|TEi|

>
|mods(Pj) ∩ MPref|

|TEj|

The plan selection can also be defined inversely, thereby evading partial plans
for which undesired refinement options are available.

Strategies that concentrate on the flaw situation rather than on the available
refinement options are more “problem-oriented” and are typical for agenda-based
planning algorithms, which collect the plan defects and then decide which one to
tackle first. Let FPref be the preferred class of flaws and let modFor : F× P → 2M

be the function that returns all modifications that have been answered to a given
flaw in a given plan. A modification strategy module for preferring FPref is then
defined as:

mi < mj ∈ fmodSel
AddrFC (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and fxi ∈ FPref, fxj �∈ FPref

Like for the modification-dependent strategies, a flaw avoiding modification-
selection module can be set up, and also corresponding absolute and relative
plan selections are available.

Flexible Modification-Selection Strategies: Flexible strategies are capable
of operating on a more general level by exploiting flaw/modification information:
they are neither flaw-dependent as they do not primarily rely on a flaw type
preference schema, nor modification-dependent as they do not have to be bi-
ased in favor of specific modification types. A representative is the modification-
selection strategy Least Committing First (LCF). It works according to the least-
commitment principle and has proven to be very successful in the context of
hybrid planning [6]. It is a generalized variant of Least-Cost Flaw Repair [1] and
selects those modifications that address flaws for which the smallest number of
alternative modifications has been found:

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 375

mi < mj ∈ fmodSel
LCF (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and |modFor (fxi , P)| < |modFor (fxj , P)|

It can easily be seen that this is a flexible strategy, since it does not depend on
the actual types of issued flaws and modifications: it just compares answer set
sizes in order to keep the branching in the search space low.

The so-called HotSpot-based modification-selection strategies have their origin
in the observation that the least-commitment principle is in practice a very
efficient search schema, although it does not take the actual structure of the
compared options into account. It is, for example, not very intuitive to say
that choosing one of two large task expansions represents less commitment than
choosing one of three variable codesignations. The expansion obviously makes
considerably more changes to the plan structure, and we expect that the “amount
of change” has side effects on the overall flaw and modification availability in the
future. Lifting the least-commitment schema on the plan structure level led to the
development of the HotSpot notion, that is plan components that are referred
to by multiple flaws and modifications [6]. We are now going to extend this
strategy family by new modification-selection modules and will later introduce
plan selection that is based on HotSpot calculations.

We begin with flaw-based modification selections, that means plan modifica-
tions are chosen based on the number of cross-references the addressed flaw has
with other flaws. The simplest form of a HotSpot is the number of references to
shared plan components. The following module avoids modifications that address
flaws that contain frequently referenced components:

mi < mj ∈ fmodSel
DirUniHS (P, F, M)

if fxi , fxj ∈ F, mi ∈ M ∩ modFor (fxi , P), mj ∈ M ∩ modFor (fxj , P)

and
∑

f∈F\fxi

|f ∩ fxi| <
∑

f∈F\fxj

|f ∩ fxj |

Direct HotSpot calculations offer a first insight into inter-flaw relationships
but do not capture relatively trivial indirect dependencies. We therefore intro-
duce the notion of plan sub-components which are the structures that constitute
plan components. E.g., a task expression is a component of a plan, but may also
be a sub-component of an ordering constraint. In order to represent HotSpot el-
ements on the sub-component level, the modification selection has to be adapted
as follows: Given a function comp that returns all sub-components of a set of plan
components, we define the indirect uniform HotSpot selection as the function:

mi < mj ∈ fmodSel
IndUniHS (P, F, M)

if fxi , fxj ∈ F, mi ∈ M ∩ modFor (fxi , P), mj ∈ M ∩ modFor (fxj , P)

and
∑

f∈F\fxi

| comp(f) ∩ comp(fxi)| <
∑

f∈F\fxj

| comp(f) ∩ comp(fxj)|

376 B. Schattenberg, J. Bidot, and S. Biundo

The extension of the HotSpot focus on sub-components is that of finding “tran-
sitive relationships” between HotSpot components on the component and sub-
component level: HotZones. The idea is to build an initial map of all HotSpots
in a plan, and then to re-evaluate each individual HotSpot according to the
HotSpots in its neighborhood:

mi < mj ∈ fmodSel
HZone (P, {f1, . . . , fm}, {m1, . . . , mn})

if 1 ≤ xi, xj ≤ m, 1 ≤ i, j ≤ n, mi ∈ modFor (fxi , P), mj ∈ modFor(fxj , P)
and h(fxi , {f1, . . . , fm}, 0) < h(fxj , {f1, . . . , fm}, 0)

The recursive evaluation of the HotSpot value with respect to the HotSpot values
of flaws that share components is defined as follows (constant parameter θ mod-
ulates the slope of the decay in the influence neighbors’ values with increasing
distance d):

h(f, F, d) =

⎧
⎨

⎩

0 for F = ∅∑

fi∈F\f
|f ∩ fi| · e−

d
θ + h(fi, F \ {f, fi}, d + 1) else

The HotSpot strategies defined so far solely focused on the flaws’ commonalities.
As already suggested in [6], overlappings in plan modifications can also be ana-
lyzed for commitment estimates. A direct HotSpot calculation is of course possi-
ble, however not very promising, since elementary additions never share compo-
nents directly (all of them are new) and deletion overlappings are seldom (only
occur in alternative expansions). We therefore define the modification-selection
module fmodSel

ModBasedHS analogously to the indirect uniform HotSpot function such
that it treats the respective domain model entities as sub-components of the
referenced components (by doing so, two task insertion modifications overlap if
they share the same task schema). A second element of the heuristic is that the
influence of transitive references decays (like in the HotZone calculation) because
of the strong interdependencies of the domain model components. We refer to
the experimental results, however omit this module due to lack of space.

In first experiments with learning strategies, we found in adaptive HotSpot cal-
culation a straightforward enhancement of the uniform calculations. The adaptive
variant tries to predict the conflict potential between two flaw classes in the cur-
rent refinement space exploration and modulates the calculated HotSpot values
with that estimate.

mi < mj ∈ fmodSel
DirAdaptHS (P, F, M)

if fxi , fxj ∈ F, mi ∈ M ∩ modFor (fxi , P), mj ∈ M ∩ modFor (fxj , P)

and
∑

f∈F\fxi

|f ∩ fxi| · g(f, fxi) <
∑

f∈F\fxj

|f ∩ fxj | · g(f, fxj)

Modification-selection module fmodSel
DirAdaptHS works exactly like the uniform module

except every summand is multiplied with the estimate function g : F × F → IR
which is defined as follows:

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 377

g(fa, fb) =
count(Fa, Fb)

maxfx,fy∈F(count(fx, fy))
· guser(fa, fb) for fa ∈ Fa, fb ∈ Fb

Function count records the accumulated amount of HotSpot overlappings be-
tween the corresponding flaw classes according to the results of the fmodSel

DirUniHS
computations that have been obtained in the current plan generation and nor-
malizes the value with the current maximum of all count records. The second
function guser is a user-defined modulation table in which certain conflict weights
can be set. This mechanism allows us to mark, e.g., a HotSpot relationship be-
tween an open precondition flaw and an abstract task flaw to be less critical
than the one between an open precondition and a causal threat.

Like for the uniform selections, the direct adaptive modification selection can
also be formulated as an indirect working module with calls to the respective
indirect uniform HotSpot calculations.

Flexible Plan-Selection Strategies: The simplest way of selecting plans is
choosing the first or last plan in the fringe, which are the conventional un-
informed plan-selection modules fplanSel

First for a depth-first and fplanSel
Last for a

breadth-first search scheme. If a “depth-first-flavor” is to be added in a combi-
nation of strategies, the fplanSel

LongerHistoryFirst selection prefers plans that have been
obtained by a longer sequence of modification applications (the inverse strategy
favors leaves of shorter refinement paths). Other simple plan metrics that can
be used to estimate the stage of development for a given plan are based on the
size of the constraint sets and in particular on the number of plan steps.

An effective plan-selection module that is based on plan metrics is the follow-
ing:

Pi < Pj ∈ fplanSel
ConstrPlans (P1, . . . , Pn) if

(| ≺i | + |VCi| + |CLi|) · |TEj|
|TEi| · (| ≺j | + |VCj | + |CLj |)

> 1

The idea behind this selection function is to focus on plans that are more con-
strained than others and that are therefore more likely to either get completed
or turn out a failure. Since processed plans tend to get processed again, it is
more of a depth-first search but it is less vulnerable to getting trapped in useless
task-insertion paths (for solely inserting tasks reduces the heuristic value).

In the fixed-strategy section, we already mentioned flaw- and modification-
based plan metrics. More general forms of that schema compare the relative sizes
of detected flaw sets or those of proposed modification sets:

Pi < Pj ∈ fplanSel
LessFlawsPerTask(P1, . . . , Pn) if

|flaws(Pi)|
|TEi|

<
|flaws(Pj)|

|TEj |
As our experiments have shown, the heuristic to develop plans that have less flaws
per plan step is a very effective estimate (although not admissible in general).
Moreover, plan metrics such as flaws : P → IN or the size of the plan component
sets are computationally extremely cheap.

The last selection functions is related to an A∗-heuristic proposed in [3], which
is used as a UCPOP plan-selection. In our framework, such a strategy is modelled
as follows:

378 B. Schattenberg, J. Bidot, and S. Biundo

Pi < Pj ∈ fplanSel
S+OC (P1, . . . , Pn) if

|TEi| + |flaws(Pi) ∩ FOpenPrec|
|TEj | + |flaws(Pj) ∩ FOpenPrec|

< 1

For plan selection, a set of HotSpot-based metrics can be derived from the
presented modification-selection functions. We will briefly describe the ideas be-
cause their arithmetics are presented above. The first two strategies consider
the flaw-based HotSpot situation in the plans. Plan selections fplanSel

DirUniHS and
fplanSel
IndUniHS accumulate the direct, respectively indirect HotSpot values for each

plan and relate these values to the total number of detected flaws. The result is
in both cases an average of the direct and indirect HotSpot values for flaws and
gives a good estimation of the degree of connectivity between defects in plans.

The HotZone concept can also be transfered to plan-selection task, namely
in two ways: the simpler form is identifying the plan with the smallest maximal
HotZone value. The fplanSel

LeastHZone module performs for each plan the calculations
of fmodSel

HZone for each flaw, keeps the maximum HotZone value for each plan, and
then prefers the plans accordingly. Similarly to the other HotSpot heuristics, this
strategy has also the option to prefer strong or weak interactions in the plan.

The second HotZone derivate is fplanSel
FewerHZones , a module that prefers plans with

fewer HotZone clusters. Such clusters are identified by performing the fmodSel
HZone

computation: When following the transitive overlappings of components, the set
of flaws can be partitioned accordingly into independent sub-sets. The number
of identified sub-sets is the number of HotZones.

Following the modification-based modification selection, the examination of
plan modifications can contribute to the plan selection as well: Corresponding
to the direct uniform HotSpot plan-selection, fplanSel

FewerModHotSpotRatio is a strategy
module that accumulates the computed modification overlappings as provided by
fmodSel
ModBasedHS and relates these values to the total number of plan modifications

issued for a particular plan. The average overlapping of plan modifications is
intended to estimate the amount of interdependencies between the available flaw
resolution proposals on a particular plan, and these interdependencies in turn
indicate potentially conflicting refinement options in the future.

4 Evaluation

Most of the selection modules are not suitable for being used as singular strate-
gies, because they cover only particular aspects of information about the search
space. Consequently, we combine strategies into sequences of selection mod-
ules, as described above. This technique covers a wide area of search control
in planning: e.g., performing modification selection, modulated by the available
alternative modifications, as it is done in the fewest alternatives first heuristic
for task-expansion selection of the UMCP system [4], is achieved by employ-
ing fmodSel

PrefMC (MExpTask) as the primary modification selection, and fmodSel
LCF as the

secondary strategy.
The well-known “expand then make sound” (EMS) strategy can be emulated

by modification selections (1) fmodSel
AddrFC with argument FCausalThreat, (2) fmodSel

AddrFC
with argument FOpenPrec, and (3) fmodSel

PrefMC with argument MExpTask: the strategy

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 379

defers task expansion until the current plan is sound. The reverse combination
correlates with the UMCP-style of HTN planning, which expands until the very
concrete level and then fixes the causal structure.

Although our framework provides the means, a systematic experimental eval-
uation of all strategy combinations is not feasible. About 40 modification and
60 plan-selection modules – combined to triples – are far too many configura-
tions to test; even though this includes many trivially fruitless combinations,
such as fixed strategies that avoid, respectively prefer the same flaw classes. It
also became apparent that all HotSpot variants are only performing well in the
“avoidance” mode, and the same holds for plan selections that prefer less con-
strained or developed plans. Seeking HotSpots implies an early commitment and
going after un-constrained plans tends to degrade into breadth-first search.

Our experiment domains were the UMTranslog domain from [6], a hierarchi-
cal variant of the Satellite competition domain, and an artificial domain “Criss-
Cross”. Its name is derived from the fact that the causal structure includes
many interleaving causal dependencies, and plans in that domain have typically
many HotSpots. The solution space for CC-problems is relatively sparse, while
the larger problems in the Satellite and UMTranslog domains can be solved in
multiple ways. UMTranslog and CC share a deep task expansion hierarchy and
many (typing-) constraints in their methods. This makes both domains behave
exactly the same way during our experiments: every strategy for UMTranslog
is performing well in CC and vice versa. Satellite problems are a little bit less
constrained and hierarchically structured. This may be the reason why they
need different strategies and may also explain, why larger problems, which offer
a larger selection of modification options, are sometimes easier to solve for the
HotSpot strategies than smaller ones.

For this presentation, we conducted a series of experiments with only binary
combinations of modification selection and a plan selection with the modules
fplanSel
LessFlawsPerTask and fplanSel

FewerModsFirst , which is a good compromise between a
prediction of the future efforts and the branching factor for the newly explored
node. Table 1 shows the results in terms of visited plans for finding a solution.
The table contains no pure fixed strategy components, because their performance
was between one and two orders of magnitude worse and also afflicted with a
high variance. The first row displays our reference strategy from [6].

The Satellite domain turned out to be particularly vulnerable to variance
problems and this is reflected in many runs of the smaller problems perform-
ing worse than the larger ones. Also because of high sample variances, we used
the established LCF as a primary selection and used other flexible strategies
for modulation. Two interesting observations could be made: using LCF for
modulation did not work very well in most cases because the primary HotSpot
strategies favor independent (in terms of plan structures) flaw situations, and
those have in turn more modifications available on average due to a higher
degree of freedom. I.e., a secondary LCF strategy mostly contradicts the pri-
mary HotSpot and cannot stabilize its decisions. The second interesting outcome
is the HZone/LCF combination. It is a good example for the dependency of

380 B. Schattenberg, J. Bidot, and S. Biundo

Table 1. Modification-selections for the Satellite and CrissCross domains

fmodSel primary – secondary Sat1 Sat2 Sat3 Sat4 CC1 CC2 CC3 CC4 CC5
LCF – PrefMC(MExpTask) 62 50 957 886 21 33 73 95 190
LCF – DirUniHS 43 48 771 854 21 34 75 92 185
LCF – DirAdaptHS 31 42 596 418 21 31 71 95 184
LCF – IndUniHS 24 37 475 367 21 30 69 95 186
LCF – IndAdaptHS 33 40 468 482 22 29 71 87 209
LCF – HZone 24 40 424 375 21 30 71 98 188
HZone – LCF 36 68 399 718 22 30 70 99 161
LCF – ModBasedHS 36 128 945 702 22 33 70 93 204

domain characteristics and strategy quality: The HotZone is better informed
than LCF in a domain with many interdependencies, while LCF performs bet-
ter if that information is scarce. Furthermore, it was the only stable strategy in
the experiments for the larger Satellite problems.

Table 2 documents the performance of different single plan selections for a
given least-commitment modification selection. It has to be noted that only the
first strategy (our reference plan selection) and the “fewer HotZones” produce
relatively stable results. High sample variances with encouraging low minima
indicate that further experimentation with modulating secondary plan selections
have to be conducted.

Table 2. Plan-selections for the crisscross domain with fmodSel
LCF – fmodSel

PrefMC (MExpTask)

fplanSel CC1 CC2 CC3 CC4 CC5
LessFlawsPerTask 21 33 73 95 190
DirUniHS 22 42 119 159 220
IndUniHS 22 38 125 152 210
LeastHZone 20 35 124 145 215
FewerHZones 21 34 72 94 205
FewerModBHS 22 35 189 365 420

Our empirical analysis confirms previous results that flexible strategies are
suitable domain-independent search procedures. It also raised a number of inter-
esting questions, e.g., why every combination including the FewerHZones plan
selection performs very well for CrissCross problems but only poor for Satellite
problems, while LeastHZone produces the opposite behaviour. The differences
between those two heuristics are very subtle and it has to be clarified, which
property of a domain or problem they specifically address.

5 Conclusions and Future Developments

We presented a formal framework for refinement-based planning in which the
functionality for generation plans is decomposed into plan-deficiency detection,

On the Construction and Evaluation of Flexible Plan-Refinement Strategies 381

plan-modification computation, and (tactical) search reasoning. In particular, we
focused on search strategies: how to systematically construct strategic guidance
and how to evaluate its performance. Strategies from the literature have been
integrated into this framework and novel ones have been developed.

The newly developed search strategies are procedures that are capable of rea-
soning about the interaction of flaws and plan modifications in general, thereby
becoming unlimited in their applicability and expandability: flexible strategies
can be deployed in any system configuration, ranging from hybrid planning to
resource planning, etc.

However, more experimental evidence has to be collected in order to get more
insight into the relation between modification and plan selections and their per-
formance in specific domains. Future work also includes the investigation of dy-
namic strategies, and a more thorough coverage of the available strategy spec-
trum. In particular, we will deal with strategy performance in an integrated
planning-and-scheduling system.

Acknowledgement. The authors would like to thank Andreas Lanz who con-
tributed to the strategy implementation and the experimental evaluation.

References

1. Joslin, D., Pollack, M.: Least-cost flaw repair: A plan refinement strategy for partial-
order planning. In: Hayes-Roth, B., Korf, R. (eds.) Proc. of the 12th National Con-
ference on AI, pp. 1004–1009. AAAI (1994)

2. Peot, M.A., Smith, D.: Threat removal strategies for partial-order planning. In:
Proc. of the 11th National Conference on AI, pp. 492–499 (1993)

3. Schubert, L.K., Gerevini, A.: Accelerating partial order planners by improving plan
and goal choices. In: Proc. of the 7th IEEE International Conference on Tools with
AI, pp. 442–450. IEEE Computer Society Press, Los Alamitos (1995)

4. Tsuneto, R., Nau, D., Hendler, J.: Plan-refinement strategies and search-space size.
In: Steel, S., Alami, R. (eds.) ECP 1997. LNCS, vol. 1348, pp. 414–426. Springer,
Heidelberg (1997)

5. McCluskey, T.L.: Object transition sequences: A new form of abstraction for HTN
planners. In: Chien, S., Kambhampathi, R., Knoblock, C. (eds.) Proc. of the 5th
International Conference on AI Planning Systems, pp. 216–225. AAAI (2000)

6. Schattenberg, B., Weigl, A., Biundo, S.: Hybrid planning using flexible strategies.
In: Furbach, U. (ed.) KI 2005. LNCS (LNAI), vol. 3698, pp. 258–272. Springer,
Heidelberg (2005)

7. Schattenberg, B., Biundo, S.: A unifying framework for hybrid planning and schedul-
ing. In: Freksa, C., Kohlhase, M., Schill, K. (eds.) KI 2006. LNCS (LNAI), vol. 4314,
pp. 361–373. Springer, Heidelberg (2007)

8. Biundo, S., Schattenberg, B.: From abstract crisis to concrete relief – A preliminary
report on combining state abstraction and HTN planning. In: Cesta, A., Borrajo,
D. (eds.) Proc. of the 6th European Conference on Planning (2001)

	On the Construction and Evaluation of Flexible Plan-Refinement Strategies
	Introduction
	Refinement-Based Planning
	Search Strategies
	Evaluation
	Conclusions and Future Developments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

